板壳理论

[美] S. 钱基辛柯 S. 沃斯诺斯基 著
《板壳理论》翻译组 译

1977
内 容 简 介

本书为 S. 铁棱辛柯一系列著作之一，全书共十六章。除第十三章讨论板的大挠度问题外，其余各章都是讨论板和壳的几何度问题。

本书的特点是：内容丰富，层次分明，机械实用深入简出，数学推导精简扼要，所得解决问题的方程或公式，也易用于实际应用。它是研究板和壳体理论以及进行数值计算（例如有限元法）的有价值的读物。

本书可供航空、航海、机械、桥梁、建筑等方面的科研工作者、工程技术人员、大专院校有关专业师生和研究生参考。

S. Timoshenko S. Woinowsky-Krieger

THEORY OF PLATES AND SHELLS

(second edition)

1959
译者前言

在毛主席的无产阶级革命路线指引下，在毛主席和党中央的亲切关怀下，我国的力学研究工作和在工程设计方面的应用，已经有了很大的发展，为了配合这种大好形势发展的需要，我们遵照伟大领袖毛主席关于“洋为中用”的教导，翻译出版“板壳理论”一书以供读者使用。

原书是 S. 铁摩辛科的一系列著作之一，曾被各国译成多种文字，熟习外文者需要时可以互相参阅。

全书共有 16 章，除第 13 章讨论板的大挠度问题外，其余各章都是讨论板壳的小挠度问题。第 11 章还讨论了板的各向异性问题，第 14, 24, 38, 119, 129 等节中又讨论了一些关于板的温度效应。解题方法，在绝大部分章节中，是用分析法，在若干章节中，例如第 80, 81, 100, 101, 122 等节中，应用了能量法，第 83 节中也应用了有限差分法。在本书中，数值计算法讨论得比较少，也没有讲到有限元法（著者写书时，这方法还不成熟），但书中所写的位移应变关系、应力应变关系、板壳的平衡原理、协调原理、能量原理、位移原理和等的应用成果以及边界条件的考虑，不仅对分析法是很重要的，并且对于数值计算法例如有限元法仍然是很重要的理论基础，还要继续取用。

该书的特点，是内容丰富、层次分明，对机理阐述深入浅出，对数学推导精简扼要。它可以作为航空、航天、航海、机械、桥梁、建筑等工程在板壳力学方面的科研工作者、工程设计人员、工程院校师生的重要参考资料。

本书是根据原著 1959 年英文本第二版和参考 1963 年俄文译本译出的。

限于政治与业务水平，译稿还会有错误，希望读者及时予以批评和指正。
序 言

自从此书第一版印行后，板壳理论在实际上的应用范围已经相当地扩大了，而且在其中又引入了一些新的方法。为了将这些事实考虑进去，本书新版必须作出许多变动和补充，主要增添的有：（1）关于板受横向剪切所引起的挠度的一节；（2）关于在受弯曲板圆孔周围的应力集中的一节；（3）关于弹性基支板的弯曲的一章；（4）关于各向异性板的弯曲的一章；（5）关于评述一下若干用在板件分析中的特殊方法和近似方法的一章。新版书也扩充了关于板的大挠度这一章，增加了若干变厚板的新问题和为便于板件分析工作的一些数值表。

在该书论述壳体理论的部分中，我们仅限于在壳体薄膜理论中增加了应力函数法和在壳体弯曲理论中作了一些小补充。

近年来，壳体理论正在迅速发展，并且在这领域里出现了若干新的著作，由于这些新的进展不宜于在本书内详细讨论，书中仅仅提供了一些新的文献，以备对该领域有特殊要求的读者从中找到需要的线索。

S. 铁摩辛柯

S. 沃洛斯基
符号

\(x, y, z\) 直角坐标
\(r, \theta\) 极坐标
\(r_x, r_y\) 板中面在 \(xz\) 和 \(yz\) 平面内的曲率半径
\(h\) 板或壳的厚度
\(q\) 连续分布载荷的强度
\(p\) 压力
\(P\) 集中载荷
\(\gamma\) 单位体积的重量
\(\sigma_x, \sigma_y, \sigma_z\) 与 \(x, y, z\) 轴平行的正应力分量
\(\sigma_n\) 与n方向平行的正应力分量
\(\sigma_r\) 极坐标中的径向正应力
\(\sigma_{r\theta}\) 极坐标中的切向正应力
\(\tau\) 剪应力
\(\tau_{xy}, \tau_{xz}, \tau_{yz}\) 直角坐标中的剪应力分量
\(u, v, w\) 位移分量
\(\varepsilon\) 单位伸长
\(\varepsilon_x, \varepsilon_y, \varepsilon_z\) \(x, y, z\) 方向的单位伸长
\(\varepsilon_r\) 极坐标中的径向单位伸长
\(\varepsilon_{r\theta}\) 极坐标中的切向单位伸长
\(\varepsilon_{r\theta}\) 它在经线方向和平行圆方向的单位伸长
\(\gamma_{x\varepsilon}, \gamma_{x\theta}, \gamma_{y\theta}\) 直角坐标中的剪应变分量
\(\gamma_{r\theta}\) 极坐标中的剪应变
\(E\) 拉压弹性模数
\(G\) 剪切弹性模数
\(\nu\) 泊松比
V 应变能

D 板或壳的抗弯刚度

M_{x}, M_{y} 板在分别垂直于 x 轴和 y 轴的截面的单位长度上的弯矩

M_{z} 板在垂直于 z 轴的截面的单位长度上的扭矩

M_{n}, M_{n} 板在垂直于 n 方向的截面的单位长度上的弯矩和扭矩

Q_{x}, Q_{y} 板在分别垂直于 x 轴和 y 轴的截面的单位长度上平行于 x 轴的剪力

Q_{n} 板在垂直于 n 方向的截面的单位长度上平行于 x 轴的剪力

N_{x}, N_{y} 板在分别垂直于 x 轴和 y 轴的截面的单位长度上的法向力

N_{z} 板在垂直于 x 轴的截面的单位长度上平行于 y 轴的剪力

M_{r}, M_{r}, M_{r} 极坐标中的径向弯矩、切向弯矩和扭矩

Q_{r}, Q_{r} 径向剪力和切向剪力

N_{r}, N_{r} 单位长度上的径向法向力和切向法向力

r_{1}, r_{2} 旋转面形壳在经线平面内和垂直于经线的平面内的曲率半径

X_{x}, X_{y} 壳在经线平面内和垂直于经线的平面内的曲率变化

X_{z} 壳的扭转

X, Y, Z 壳上平行于 x, y, z 轴的外载荷强度分量

N_{y}, N_{y}, N_{yz} 壳在主法截面的单位长度上的薄膜力

M_{y}, M_{y} 壳在经线截面和垂直于经线的截面的单位长度上的弯矩

X_{y}, X_{y} 柱形壳在轴向平面内和垂直于轴的平面内的曲率变化

N_{x}, N_{x}, N_{xy} 柱形壳在轴向截面和垂直于轴的截面的单位长度
上的薄膜力

\(M_y, M_x \) 柱形壳在轴向截面和垂直于轴的截面的单位长度上的弯矩

\(M_{xy} \) 柱形壳在轴向截面的单位长度上的扭矩

\(Q_y, Q_x \) 柱形壳在轴向截面和垂直于轴的截面的单位长度上平行于 \(z \) 轴的剪力

\(\log \) 自然对数

\(\log_{10}, \log \) 以 10 为底的常用对数
引 论

如将各维作比较时，板的弯曲性质在很大程度上决定于它的厚度。在以下的讨论中将板划分为三类：(1)具有小挠度的薄板；(2)具有大挠度的薄板；(3)厚板。

具有小挠度的薄板 如果板的挠度\(w \)较之于板厚\(h \)为小量，则在作了如下假设后就能建立起一套很有效的承受侧向载荷的板弯曲近似理论：
1. 板的中面没有变形，在弯曲时此面保持中性。
2. 板中原来在中平面法线上的各点，弯曲后仍在中曲面的法线上。
3. 板的横向正应力可以不予考虑。

用了这些假设，所有应力分量可由板的挠度\(w \)表示，而\(w \)是板平面中两个坐标的函数，此函数须满足一维次偏微分方程，这个方程连同边界条件就能完全确定\(w \)。这样，这个方程的解，对计算板中任一点的应力就提供了所有需要的条件。

第二个假设等价于不考虑剪力对板挠度的影响，此假设一般是令人满意的，但在某些情况下（例如板中有孔），剪切的影响变为很重要，此时应对薄板理论作一些修正（参看第39节）。

如果除了侧向载荷还有外力作用在板的中面上，则第一个假设不再成立，此时需要考虑作用在板的中面内的应力对板弯曲的影响。在上述板的微分方程中引入一些附加项便能作到这一点（参看第90节）。

具有大挠度的薄板 只要板被弯曲成可展曲面，第一个假设便完全满意，对于其他情形，板的弯曲伴有中面内的应力。但计算表明，如果板的挠度较之于板厚为小量，则相应的中面内的应力可以忽略不计。如果挠度不是小量，在推导板的微分方程时就必须考
这些附加应力。这样，便得到非线性方程，从而问题的解变为复杂得多（参看第 96 节）。对于大挠度的情况，还必须区分不可动的边缘及在板平面内可动的边缘。边缘情况对板挠度和应力的大小可能产生重大影响（参看第 99 和 100 节）。由于板的变形中面的曲率，附加拉应力占主要地位，其作用方向与所受的侧向载荷的方向相反。因此现在所受的外载荷。部分由弯曲刚度承受，部分由板的薄膜力平衡。由此可见，对抵抗弯曲的能力可以忽略不计的非常薄的板，其作用如同薄膜；但对于很狭的边缘部分应该除外，这是由于加在板上的边界条件，使弯曲可以发生的缘故。

板弯曲成可展曲面的情况，特别是展成柱面，应当作为例外来考虑。这样的板，当挠度与板厚同阶时，可以不产生薄膜应力，也不影响弯曲理论的线性性质。如果这种板的边缘在板平面内不可移动，而挠度又充分地大，那么薄膜应力将会产生（参看第 2 节）。由上可见，在“具有小挠度的板”中，由板平面内不可移动边缘所引起的薄膜力，实际上可不予考虑。

厚板 以上讨论的薄板近似理论对厚度相当大的板是不可靠的，特别是在承受高度集中载荷的情况下更是如此。对于这种情况应该采用厚板理论。厚板理论把板的问题当作三维弹性问题来考虑，因而应力分析变得更加复杂，至今只是对于少数特殊情形，问题才得到完全解决。用这种分析，在有集中载荷的诸点上对薄膜理论就作必要的修正。

薄板理论的主要假设也构成了薄壳一般理论的基础。然而在外载荷作用下，板和壳的性质有重大差异。在承受侧向载荷时，板单元体的静力平衡只是在弯矩和矩扭（通常伴随有剪力）的作用下才成为可能；然而，壳体一般能用“薄膜”应力传递面载荷，这薄膜应力的方向平行于中面上已知点的切平面，并沿壳厚均匀分布。一般来说，若同样条件下壳的这个性质使得它成为比板刚度大的多、经济性较好的结构。

在原则上薄膜力与弯曲无关，并由静力平衡条件完全确定。这些力的确定方法就是所谓“壳体的薄膜理论”。然而，由薄膜理论
得到的壳体边界上的反作用力和变形经常是和实际边界条件不协调的。为了消除这个矛盾，在边界区域内必须考虑壳的弯曲。此弯曲可能稍微影响原来算得的薄膜力的大小。然而这种弯曲往往是非常局部性的，并且可以根据用在薄板小挠度问题中的相同假设进行计算。但是对于有些问题，特别是有关壳的弹性稳定性问题，应该终止使用小挠度假设，而应当采用"大挠度理论"。

如果壳的厚度能与曲率半径相比，或者，考虑集中力附近的应力，则应该采用更严格的、与厚板理论相似的理论。

1）有几类壳，特别是具有负高斯曲率的壳，向我们提供了许多例外情况。在可展曲面情况下，如柱面和锥面，大挠度而无中曲面应变是可能的。在有些情况下，薄膜应力可以忽略不计，只考虑弯曲应力便已足够。
目录

泽者前言 ... i
序言 ... ii
符号 ... ix
引论 ... xii

第一章 长矩形板的柱形面弯曲 .. 1
 1. 板的柱形弯曲微分方程 1
 2. 承受均匀荷载的简支矩形板的柱形弯曲 3
 3. 承受均匀荷载的固支矩形板的柱形弯曲 10
 4. 承受均匀荷载的弹性简支板的柱形弯曲 15
 5. 纵长边在板平面内的小位移对应力和挠度的影响 18
 6. 荷载参数 u 的近似法 ... 23
 7. 具有初始小柱形曲率和承受均匀荷载的长矩形板 26
 8. 弹性基支板的柱形弯曲 29

第二章 板的纯弯曲 .. 33
 9. 微小弯曲板的剪度与曲率 33
 10. 板在纯弯曲时弯矩和曲率的关系 38
 11. 纯弯曲的特殊情况 ... 43
 12. 板在纯弯曲中的应力能 47
 13. 前述公式在应用上的限制 48
 14. 夹支板的热应力 ... 50

第三章 圆形板的对称弯曲 .. 52
 15. 承受侧向荷载的圆形板的对称弯曲微分方程 52
 16. 承受均匀荷载的圆形板 55
 17. 中心有圆孔的圆形板 59
 18. 承受同心圆荷载的圆形板 65
 19. 承受中心荷载的圆形板 70
20. 对圆形板转轴弯曲初等理论的修正 .. 73

第四章 承受侧向载荷的板的小挠度 .. 82
21. 弯曲曲面的极限方程 .. 82
22. 边界条件 .. 86
23. 拉伸弯曲条件的另一方法 .. 92
24. 板的弯曲问题化成弯曲的极限问题 96
25. 弹性常数对弯曲值的影响 101
26. 板的精确理论 ... 102

第五章 简支矩形板 ... 110
27. 承受正弦曲线形载荷的简支矩形板 110
28. 简支矩形板的静荷载（Navier）解 114
29. 矩形板的进一步应用 ... 116
30. 对承受均匀载荷的简支矩形板的不同解 119
31. 承受静水压力的简支矩形板 130
32. 承受三棱形载荷的简支矩形板 136
33. 部分受载的简支矩形板 141
34. 承受集中载荷的简支矩形板 143
35. 承受集中载荷的简支矩形板的弯矩 151
36. 无限长简支矩形板 ... 158
37. 承受矩形均匀载荷的简支矩形板的弯矩 167
38. 矩形板的热应力 ... 171
39. 侧向剪切变形对薄板弯曲的影响 174
40. 变厚度矩形板 ... 183

第六章 各种边缘情况的矩形板 189
41. 沿边缘承受分布力矩的矩形板的弯曲 189
42. 二对边简支另二对边固定矩形板 194
43. 三边简支一边固定矩形板 202
44. 四边固定矩形板 .. 206
45. 一边或二邻边简支而其余边固支的矩形板 217
46. 一对边简支一端自由一端固定或简支的矩形板 219
47. 三边固支一边自由矩形板 223
48. 对边简支另二边自由或弹性支点的矩形板 226
第七章 连续矩形板 .. 242
52. 简支连续板 .. 242
53. 等跨变连续板的近似设计 250
54. 数行等距柱支板的弯曲——无梁板 260
55. 九节间无梁板及二边自由的无梁板 269
56. 固连的支柱对无梁板的弯矩的影响 273

第八章 弹性基支板 .. 275
57. 中心对称弯曲 275
58. 贝塞尔函数在圆形板问题上的应用 281
59. 弹性基支连续矩形板 286
60. 裁截数行等距柱的板 293
61. 半无限弹性基支板的弯曲 295

第九章 杂形板 .. 300
62. 板弯曲的极坐标方程 300
63. 承受线形变化载荷的圆形板 303
64. 承受集中载荷的圆形板 308
65. 沿边界有若干点支的圆形板 312
66. 扇形板 .. 314
67. 变厚度圆形板 318
68. 线性变厚度环形板 322
69. 线性变厚度圆环板 325
70. 圆形板弯曲的非线性问题 328
71. 雅圆形板 331
72. 三角形板 334
73. 斜形板 339
74. 孔周围应力分布 341

第十章 板理论中的特殊方法和近似方法 346
75. 板弯曲的奇点 346
76. 影响面在板设计中的应用 349
第十一章 各向异性板的弯曲 ... 389
 85. 板的弯曲微分方程 ... 389
 86. 在各种特殊情形中刚度的决定 391
 87. 各向异性板理论对网格板计算的应用 394
 88. 矩形板的弯曲 ... 397
 89. 圆形和椭圆形板的弯曲 402

第十二章 板在侧向载荷和中面力联合作用下的弯曲 405
 90. 桥梁曲线的微分方程 .. 405
 91. 均匀侧向载荷和均匀拉力联合作用下的简支矩形板 407
 92. 能量法的应用 ... 409
 93. 侧向载荷和中面力联合作用下的简支矩形板 414
 94. 侧向载荷和拉力（或压力）联合作用下的圆形板 418
 95. 具有微小初始曲率的板的弯曲 421

第十三章 板的挠度 ... 425
 96. 沿边缘承受均匀分布力矩的圆形板的弯曲 425
 97. 承受均匀载荷的大挠度圆形板的近似公式 429
 98. 承受均匀载荷的矩形板的精确解 434
 99. 承受均匀载荷的简支矩形板 438
 100. 中心受载的圆形板 .. 441
 101. 大挠度的板的微分方程 446
 102. 承受均匀载荷的矩形板的大挠度 451
 103. 简支矩形板的大挠度 455

第十四章 壳体的无弯曲变形 459
 104. 定义和符号 ... 459
第十五章 柱形壳的一般理论

第十六章 承受轴对称载荷的旋转面形壳
第一章
长矩形板的柱形面弯曲

1. 板的柱形弯曲微分方程

我们将以沿板长受有不常横向载荷的长矩形板弯曲的简单问题作为板弯曲理论的开始。这样的板在离二端相当远的部分，其挠曲线可以假设是柱轴与板长相平行的柱面。因此对于这个问题，可用相距为一单位长并与板长相垂直的二平行面由板上截取一单元条，而仅仅研究这单元条的弯曲。这单元条的挠度可用和受弯曲梁的挠度方程相似的微分方程表示。

为了得到此挠度方程，可讨论一厚度为 \(h \) 的等厚板，并且取 \(xy \) 平面为受载荷前的中面，即在板二表面中间的平面。令 \(y \) 轴与板的一个长边缘重合，且令 \(x \) 轴的正方向向下，如图所示。如果用 \(l \) 表示板的宽度，那么这个单元条可以看作长为 \(l \) 、深为 \(h \) 、横截面为矩形的杆。在计算这样的杆的弯曲应力时，可用普通梁的理论。假设杆的横截面在弯曲时仍保持为平面，从而这些横截面仅对它们的中性轴作旋转。如果没有正交力作用于杆的两端横截面上，则杆的中性面将与板的中面重合，并且与 \(x \) 轴平行的纤维的单位伸长将与它和中面的距离 \(z \) 成正比。此挠曲线的曲率可以取作等于 \(-d^2w/dx^2\); 式中 \(w \) 是杆在 \(x \) 方向的挠度，可以假设它较之

1）为使板的最大应力与无限长板的最大应力相近似，板的长与宽应满足一定关系，这些关系将在以后讨论，参看第126页和第132页。
于杆长 l 为小量，因此与平面距离为 z 的纤维（图 2）的单位伸长 ε_z 为 $-zd^2\omega/dx^2$。

如应用胡克（Hooke）定律，则在图 2a 所示的微体中，单位伸长 ε_x 和 ε_y 可用正应力 σ_x 和 σ_y 表示为

$$
\varepsilon_x = \frac{\sigma_x}{E} - \frac{\nu\sigma_y}{E},
$$

$$
\varepsilon_y = \frac{\sigma_y}{E} - \frac{\nu\sigma_x}{E} = 0.
$$

式中 E 为材料的弹性模数，ν 为泊松比。为了保持板在弯曲时的连续性，ν 方向的侧向应变必须为零，因此方程 (1) 中的第二式化为 $\sigma_y = \nu \sigma_x$。将此值代入方程 (1) 的第一式，得

$$
\varepsilon_x = \frac{(1 - \nu^2)}{E} \sigma_x
$$

和

$$
\sigma_x = \frac{E \varepsilon_x}{1 - \nu^2} = \frac{E \varepsilon_x}{1 - \nu^2} \frac{d^2 \omega}{dx^2}
$$

如板在 x 方向承受沿板的长边为均匀分布的拉力或压力的作用，由此所得的正应力必须与由弯曲所得的应力 (2) 相加。

如已知弯曲应力 σ_x 的式子，由积分可得此单元条所承受的弯矩：

$$
M = \int_{-h/2}^{h/2} \sigma_x z \, dz = -\int_{-h/2}^{h/2} \frac{E \varepsilon_x}{1 - \nu^2} \frac{d^2 \omega}{dx^2} \, dz = \frac{E h^3}{12(1 - \nu^2)} \frac{d^2 \omega}{dx^2}
$$

引用符号

$$
\frac{E h^3}{12(1 - \nu^2)} = D, \quad (3)
$$

则此单元条的挠度曲线的方程可表示为下列形状：

$$
D \frac{d^2 \omega}{dx^2} = -M, \quad (4)
$$

...
式中 D 与梁弯曲问题中的 EI 相当，叫作板的弯曲刚度。这个方程与梁的挠度微分方程具有相同形式。显然，板的挠度计算变成了方程 (4) 的积分。如果作用在板上的只是侧向载荷，并且在挠度出现时，相对边能够自由地彼此接近，则表示弯矩 M 的式子可以立刻求得，从而挠度曲线可由方程 (4) 的积分得到。实际上这个问题是比较复杂的，因为板往往与边界相连，其边缘不能自由移动。这种支承方法将使板在发生挠度的同时，沿边缘产生拉伸反力。这些反力随挠度的大小而变，并且影响方程 (4) 中的弯矩 M。这问题化或在侧向载荷和轴向力 (其大小决定于此单元条的挠度) 作用下单元条的弯矩的研究”。下面将对具有各种边界条件和承受均匀载荷这种板的情况讨论此问题。

2. 承受均匀载荷的简支矩形板的柱形弯曲

今讨论一承受均匀载荷的长矩形板，当板弯曲时其长边可自由旋转，但不能彼此相向移动。由这板上裁取一单元条，如图 1 所示，则得一承受均匀载荷和轴向力 S 作用 (图 3) 的杆，而 S 力的大小恰使杆的二端不在 x 轴方向移动。用 q 表示均匀载荷的强度，则此单元条在任何横截面上的弯矩为

$$M = \frac{ql}{2} x - \frac{ql^2}{2} - Sw.$$

代入方程 (4)，则得：

$$\frac{d^2 \omega}{dx^2} - \frac{S \omega}{D} = -\frac{q L x}{2D} + \frac{q x^2}{2D}. \quad (\varepsilon)$$

引用符号

$$\frac{S}{D} \frac{L}{4} = u^2 \quad (5)$$

则方程 (4) 的通解可写成如下形式：

$$\omega = C_1 \sinh \frac{2ux}{l} + C_2 \cosh \frac{2ux}{l} + \frac{q L x}{8u^2 D} - \frac{q L x^2}{8u^2 D} - \frac{q L x^4}{16u^4 D}. \quad (b)$$

积分常数 C_1 与 C_2 可由两端的条件决定。因为在此单元条两端的挠度为零，所以

当 $x = 0$ 和 $x = l$ 时，$\omega = 0. \quad (c)$

将表示 ω 的 (b) 式代入，则由以上条件得到

$$C_1 = \frac{q L^4}{16u^4 D} \frac{1 - \cosh 2u}{\sinh 2u}, \quad C_2 = \frac{q L^4}{16u^4 D},$$

而表示挠度 ω 的 (b) 式化为：

$$\omega = \frac{q L^4}{16u^4 D} \left(\frac{1 - \cosh 2u}{\sinh 2u} \sinh \frac{2ux}{l} + \cosh \frac{2ux}{l} - 1 \right)$$

$$+ \frac{q L x^2}{8u^2 D} - \frac{q L x^4}{8u^2 D}.$$

将下列式子

$$\cosh 2u = \cosh^2 u + \sinh^2 u, \quad \sinh 2u = 2 \sinh u \cosh u,$$

$$\cosh^2 u = 1 + \sinh^2 u$$

d 代入，则此式可化成较简单的形状：

$$\omega = \frac{q L^4}{16u^4 D} \left(\frac{-\sinh u \sinh \frac{2ux}{l} + \cosh u \cosh \frac{2ux}{l}}{\cosh u} - 1 \right)$$

$$+ \frac{q L x^2}{8u^2 D} (l - x).$$
或

\[
\omega = \frac{q l^4}{16u^3D} \left[\frac{\cosh u}{\cosh^2 u} \left(1 - \frac{2x}{l} \right) - 1 \right] + \frac{q l^2 x}{8u^3D} \left(l - x \right).
\]

(6)

所以单元条的挠度随参数 \(u \) 而变，而由式(5)可知 \(u \) 的值又是轴向力 \(S \) 的函数。力 \(S \) 可由单元条(图3)二端沿 \(x \) 轴方向不能移动这个条件决定，所以轴向力 \(S \) 使单元条所产生的伸长等于挠度曲线的弧长与原长 \(l \)之差。对于小挠度，这个差可由公式

\[
\lambda = \frac{1}{2} \int_0^l \left(\frac{d\omega}{dx} \right)^2 dx,
\]

(7)

表示。

在计算单元条由力 \(S \) 所产生的伸长时，假定单元条在 \(y \) 方向不可能有侧向应变。引用方程(2)，即有

\[
\omega = \frac{S(1 - v^2)l}{kE} = \frac{1}{2} \int_0^l \left(\frac{d\omega}{dx} \right)^2 dx.
\]

(8)

将表示 \(\omega \) 的(6)式代入并进行积分，则得如下计算 \(S \) 的方程:

\[
\frac{S(1 - v^2)l}{kE} = \frac{q l^2}{D^2} \left(\frac{5}{256} \frac{\tanh u}{u^2} + \frac{1}{256} \frac{\tanh^2 u}{u^3} \right. \\
\left. - \frac{5}{256u^5} + \frac{1}{384u^4} \right);
\]

由式(5)代入 \(S = 4u^3D/l^2 \)，由等式(3)代入 \(D \) 的表示式，最后得方程:

\[
\frac{E^2h^8}{(1 - v^2)q^4} = \frac{135}{16} \frac{\tanh u}{u^2} + \frac{27}{16} \frac{\tanh^2 u}{u^3} - \frac{135}{16u^5} + \frac{9}{8u^6}
\]

(8)

若材料及比值 \(h/l \) 和载荷 \(q \) 都已给知，则这方程的左边可以立刻计算出来，而满足这方程的 \(u \) 值，可用试验校正法求得。如欲简化这个解，可以采用图4所示的曲线：这些曲线的横坐标代表数值 \(u \)，纵坐标代表数值 \(\log_{10}(10^4 \sqrt{U_0}) \)。符号 \(U_0 \) 表示方程(8)右端的数值。采用 \(\sqrt{U_0} \) 是因为它更容易由板的常数与载荷计算得到。

1) 参看作者的 "Strenth of Materials", 第三版, 第1卷, 第178页, 1935年。
图 4

在曲线 A 上，u 值是由 8 变到 4
在曲线 B 上，u 值是由 4 变到 8
在曲线 C 上，u 值是由 8 变到 12

Log 10^* sqrt(U_{0}(u)) 对 u 的数值

u 的数值
引入因子 10^4 是为了使对数值为正。在每一个别情况下，先计算方程 (8) 左端的平方根，也即 $\frac{\partial \rho}{\partial t^2}$，它给出 $\sqrt{U_0}$。数值 $\log_{10}(10^4 \sqrt{U_0})$ 给出图 4 的纵坐标，从而由曲线容易地得出相应的 u 值。已知 u 值，轴向力 S 即可由式 (5) 求得。

在计算应力时，我们注意到在单元条的任何横截面上，它的总应力由弯曲应力和拉应力组成。此弯曲应力与弯矩成正比，而拉应力的值 S/h 沿条长为常数最大应力发生在单元条的中间，因为中间的弯矩最大。由微分方程 (4) 得最大弯矩为

$$ M_{\text{max}} = -D \left(\frac{d^2 \rho}{dx^2} \right)_{x = \alpha}^\alpha. $$

代入 (6) 式的 u 值，则得

$$ M_{\text{max}} = \frac{q l^2}{8} \phi_0(u), $$

式中

$$ \phi_0 = \frac{1 - \text{sech} u}{\frac{\alpha^2}{2}}. $$

ϕ_0 的数值由图 5 的曲线给出。显然，当 u 值增加时，这些数值很快地减小，并且当 u 为大值时，最大弯矩比单元条两端没有拉伸应力时的弯矩 $q l^2 / 8$ 小了好几倍。

现在，拉伸应力 σ_1 和最大弯曲应力 σ_2 可以容易用 u, q 和板的常数表示为

$$ \sigma_1 = \frac{S}{h} = \frac{4u^2 D}{kl^2} = \frac{E w^2}{3(1 - v^2)} \left(\frac{h}{l} \right)^2, $$

$$ \sigma_2 = \frac{6}{h^2} M_{\text{max}} = \frac{3}{4} q \left(\frac{l}{h} \right)^2 \phi_0. $$

而板中的最大应力为

$$ \sigma_{\text{max}} = \sigma_1 + \sigma_2. $$

为了说明如何运用图 4 和图 5 的曲线来计算最大应力，可举一个数字例子；即取一长矩形板，宽为 130 厘米厚为 13 毫米，并设均匀载荷 $q = 1.4$ 公斤/厘米2 ($E = 2.1 \times 10^6$ 公斤/厘米2)。今先计
图 5

- 前 4.5 时的 $f_0(u)$ 和 $y_0(u)$
- 后 4.5 时的 $f_0(u)$ 和 $y_0(u)$

下标 "0" 指简支边
下标 "1" 指固支边
算 $\sqrt{U_0}$：

$$\sqrt{U_0} = \frac{E}{(1 - \nu^2)q} \left(\frac{h}{l} \right)^{\frac{1}{2}} = \frac{2.1 \times 10^6}{(1 - 0.3^2)1.4 \times 10^8} \frac{1}{0.01648} = 0.01648.$$

由对数表可知

$$\log_{10} (10^4 \sqrt{U_0}) = 2.217.$$

由图 4 的曲线 A 得到 $u = 3.795$, 并由图 5 得到 $\psi_0 = 0.1329$。

现在用式 (10) 和 (11) 计算应力，即得

$$\sigma_1 = \frac{2.1 \times 10^6 \times 3.795^2}{3(1 - 0.3^2)} \frac{1}{10^4} = 1108 \text{ 公斤/厘米}^2,$$

$$\sigma_2 = \frac{3}{4} \times 1.4 \times 10^4 \times 0.1329 = 1395 \text{ 公斤/厘米}^2,$$

$$\sigma_{\text{max}} = \sigma_1 + \sigma_2 = 2503 \text{ 公斤/厘米}^2.$$

在计算最大挠度时，可将 $x = l/2$ 代入挠度曲线方程 (6)，这样便得到

$$w_{\text{max}} = \frac{5gq^4}{384D} f_0(u),$$ \quad (12)

式中

$$f_0(u) = \frac{\text{sech } u - 1 + \frac{u^2}{2}}{\frac{5u^2}{24}}.$$

为了简化计算，用图 5 的曲线表示 $f_0(u)$ 的数值。假如在单元条的两端无拉伸反力，则最大挠度就会是 $5gq^4/384D$。此拉伸反力的影响可用因子 $f_0(u)$ 表示。当 u 增加时，这因子的数值即迅速减小。

如把图 5 用到前所讨论的数字例子中，则知当 $u = 3.795$ 时，$f_0(u)$ 的值为 0.145。将此值代入式 (12)，即得

$$w_{\text{max}} = 12 \times 0.145 = 1.74 \text{ 厘米}.$$

由方程 (8) 可知，当板的材料给定时，表示拉伸的参数 u 决定于载荷 q 的强度和板宽与板厚之比 l/h. 由此式 (10) 和 (11) 则知应力 σ_1 与 σ_2 也是 u, q 和 l/h 的函数。所以板中的最大应力仅决定
于载荷 \(q \) 和比值 \(l/h \)。这说明可作出一族用载荷 \(q \) 表示最大应力的曲线。每一曲线对应着一个 \(l/h \) 值。这样的曲线绘在图 6 中。由于矩形柱的出现，并且它随载荷的增加而增加，可知最大应力不与载荷 \(q \) 成正比。当 \(q \) 为大值，最大应力在板厚变化时变化不大。取标号 \(l/h = 100 \) 的曲线，并设 \(q = 1.4 \) 公斤/厘米²，则由曲线可得上述例子算出的 \(\sigma_{\text{max}} \) 值。

![图 6 矩形板的应力](image)

3. 承受均匀载荷的固支矩形板的柱形弯曲 假设板的长边被固定使它不能旋转，仍如以前图 1 的作法，取一单位宽的单元条。用 \(M_{0} \) 表示板的长边每一单位长度上所受的弯矩，作用在这条上的力如图 7 所示。在单元条的任一横截面上的弯矩为：

\[
M = \frac{q_{1}x}{2} - \frac{qx^{'}l}{2} - Sw + M_{0},
\]

将此式代入方程 (4) 则得:

\[
\frac{d^{2}w}{dx^{2}} - \frac{S}{D}w = - \frac{qx_{l}}{2D} + \frac{qx^{''}}{2D} - \frac{M_{0}}{D},
\] (a)
此方程的通解可用(5)式的符号表成下列形式：

\[w = C_1 \sinh \frac{2ux}{l} + C_2 \cosh \frac{2ux}{l} + \frac{q^2P x}{8u^2D} - \frac{q^2P x^3}{8u^2D} - \frac{q^2P}{16u^2D} + \frac{M_0 l^2}{4u^2D}. \]

（b）

由于挠度曲线对于单元条的中间为对称，因而积分常数 \(C_1, C_2 \) 和力矩 \(M_0 \) 可由下列三个条件决定：

当 \(x = 0 \) 和 \(x = \frac{l}{2} \) 时， \(\frac{dw}{dx} = 0; \) \(w = 0, \) \(\frac{d^2w}{dx^2} = 0; \) \(\frac{d^2w}{dx^2} = 0; \)

当 \(x = 0 \) 时，

\[\frac{d^2w}{dx^2} = 0. \]

将表示 \(w \) 的(b)式代入，则由这些条件得出：

\[
C_1 = -\frac{q^2P}{16u^2D}, \quad C_2 = \frac{q^2P}{16u^2D} \cosh u,
\]

\[
M_0 = \frac{q^2P}{4u^2} - \frac{q^2P}{4u} \coth u = -\frac{q^2P}{12} \phi_1(u), \quad (13)
\]

式中

\[
\phi_1(u) = \frac{3(u - \tanh u)}{u^3 \tanh u}.
\]

所以挠度 \(w \) 可写成：

\[
w = -\frac{q^2P}{16u^3D} \sinh \frac{2ux}{l} + \frac{q^2P}{16u^2D} \cosh u \cosh \frac{2ux}{l} + \frac{q^2P x}{8u^2D} - \frac{q^2P x^3}{8u^2D} - \frac{q^2P}{16u^2D} \coth u.
\]

此式可进一步简化，最后化成如下形式：
\[w = \frac{q l}{16u^3D \tanh u} \left\{ \cos \left[\frac{a \left(1 - \frac{2x}{l} \right)}{\cosh u} \right] - 1 \right\} + \frac{q l (1 - x)x}{8u^3D}. \]

（14）

计算参数 \(u \) 时，可如前节一样进行，即把表示 \(w \) 的（14）式代入前节的方程（d）进行积分，得

\[\frac{S(1 - \nu^2)l}{kE} = q l l \left(\frac{3}{256u^3 \tanh u} - \frac{1}{256u^4 \sinh^2 u} + \frac{1}{64u^6} + \frac{1}{384u^8} \right). \]

式用式（5）代入，D 用式（3）代入，计算 \(u \) 的方程最后化为

\[\frac{E^2 l^8}{(1 - \nu^2)q l^8} = \frac{81}{16u^3 \tanh u} - \frac{27}{16u^6 \sinh^2 u} + \frac{9}{4u^8} + \frac{9}{8u^{10}}. \]

（15）

为了简化这个方程的解，可利用图 8 的曲线，图中以参数 \(u \) 为横坐标，以 \(\log_{10}(10^4 \sqrt{U_1}) \) 为纵坐标。符号 \(U_1 \) 代表方程（15）的右边。对于已知的板，先计算方程（15）左边的平方根，即等于 \(Eh^4/(1 - \nu^2)q l^4 \)，于是 \(\sqrt{U_1} \) 就有了。数值 \(\log_{10}(10^4 \sqrt{U_1}) \) 给出图 8 曲线的纵坐标，而相应的横坐标即为所求的 \(u \) 值。

有了 \(u \) 值，即可开始计算板中的最大应力。在单元条的任意横截面上的任一点，总应力包括常数拉应力 \(\sigma_1 \) 与弯曲应力。最大弯曲应力 \(\sigma_2 \) 将作用在弯矩最大的固支边缘处。用式（10）计算 \(\sigma_1 \)，用式（13）计算弯矩 \(M_{\max} \) 即得

\[\sigma_1 = \frac{E h^4}{3(1 - \nu^2)} \left(\frac{h}{l} \right)^2, \]

（16）

\[\sigma_2 = -\frac{6M_0}{h^4} = \frac{q}{2} \left(\frac{1}{h} \right)^2 \psi_1(u), \]

（17）

\[\sigma_{\max} = \sigma_1 + \sigma_2. \]

为了简化弯曲应力 \(\sigma_2 \) 的计算，函数 \(\psi_1(u) \) 的数值给在图 8 的曲线
图 8

曲线 A 由 0 变到 4
曲线 B 由 1 变到 8
曲线 C 由 8 变到 12

Log $10^4 \sqrt{U(u)}$ 对 u 的数值
u 的数值
上。

最大挠度是在单元条的中间，用 $x = l/2$ 代入方程 (14) 即可求得

$$u_{max} = \frac{q l^4}{384 D} f_1(u),$$

式中

$$f_1(u) = \frac{24}{u^4} \left(\frac{u^2}{2} + \frac{u}{\sinh u} - \frac{u}{\tanh u} \right).$$

函数 $f_1(u)$ 也给在图 5 的曲线上。

今用一数字例题说明图 5 和图 8 中曲线的用法。设一长矩形钢板的大小为 $l = 130$ 厘米， $h = 1.3$ 厘米，而 $q = 0.7$ 公斤/厘米。在这样的情形下，可得

$$\sqrt{U_1} = \frac{E}{(1 - \nu^2)q} \left(\frac{h}{l} \right)^4 = \frac{2.1 \times 10^6}{(1 - 0.3^2)0.7 \times 10^4} = 0.032966,$$

$$\log_{10} 10^4 \sqrt{U_1} = 2.5181.$$

由图 8 可知 $u = 1.894$，由图 5 可知 $\phi = 0.8212$。将这些数值代入 (16) 式和 (17) 式，即得

$$\sigma_1 = \frac{2.1 \times 10^6 \times 1.894^2}{3(1 - 0.3^2) \times 10^4} = 276$$

$$\text{公斤/厘米}^2,$$

$$\sigma_2 = \frac{1}{2} \times 0.7 \times 10^4 \times 0.8212 = 2874$$

$$\text{公斤/厘米}^2,$$

$$\sigma_{max} = \sigma_1 + \sigma_2 = 3150$$

$$\text{公斤/厘米}^2.$$

如将这些应力值与尺寸相同而载荷大一倍的简支板（参看第 17 页）中的最大应力相比较，可知由于边界的夹支，正向拉应力将大大的减小，然而最大弯曲应力却增大几倍，因此在夹支边的情况下，最大总应力比在简支边的情况下要大。

和前一节一样，可知板中最大应力仅仅决定于载荷 q 和比值 l/h，因而可作一用载荷 q 表示最大应力的曲线，每一曲线对应着一个 l/h 恒。这些曲线给在图 9 中，由图上可以看出，当轴向

<table>
<thead>
<tr>
<th>n</th>
<th>$\log_{10} 10^4 \sqrt{U_1}$</th>
<th>$\log_{10} 10^4 \sqrt{U_2}$</th>
<th>$\log_{10} 10^4 \sqrt{U_3}$</th>
<th>$f_0(n)$</th>
<th>$f_1(n)$</th>
<th>$f_2(n)$</th>
<th>$f_3(n)$</th>
<th>$\sigma(n)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>0</td>
</tr>
<tr>
<td>0.5</td>
<td>3.889</td>
<td>4.217</td>
<td>3.801</td>
<td>0.908</td>
<td>0.976</td>
<td>0.905</td>
<td>0.984</td>
<td>0.5</td>
</tr>
<tr>
<td>1.0</td>
<td>4.483</td>
<td>2.886</td>
<td>3.376</td>
<td>0.711</td>
<td>0.909</td>
<td>0.704</td>
<td>0.939</td>
<td>1.0</td>
</tr>
<tr>
<td>1.5</td>
<td>4.173</td>
<td>2.663</td>
<td>3.107</td>
<td>0.532</td>
<td>0.817</td>
<td>0.511</td>
<td>0.870</td>
<td>1.5</td>
</tr>
<tr>
<td>2.0</td>
<td>2.911</td>
<td>2.481</td>
<td>2.748</td>
<td>0.380</td>
<td>0.715</td>
<td>0.367</td>
<td>0.806</td>
<td>2.0</td>
</tr>
<tr>
<td>2.5</td>
<td>2.684</td>
<td>2.320</td>
<td>2.491</td>
<td>0.281</td>
<td>0.617</td>
<td>0.268</td>
<td>0.736</td>
<td>2.5</td>
</tr>
<tr>
<td>3.0</td>
<td>2.486</td>
<td>2.174</td>
<td>2.263</td>
<td>0.213</td>
<td>0.529</td>
<td>0.200</td>
<td>0.672</td>
<td>3.0</td>
</tr>
<tr>
<td>3.5</td>
<td>2.311</td>
<td>2.040</td>
<td>2.061</td>
<td>0.166</td>
<td>0.453</td>
<td>0.153</td>
<td>0.614</td>
<td>3.5</td>
</tr>
<tr>
<td>4.0</td>
<td>2.155</td>
<td>1.916</td>
<td>1.881</td>
<td>0.132</td>
<td>0.388</td>
<td>0.120</td>
<td>0.563</td>
<td>4.0</td>
</tr>
<tr>
<td>4.5</td>
<td>2.014</td>
<td>1.801</td>
<td>1.718</td>
<td>0.107</td>
<td>0.335</td>
<td>0.097</td>
<td>0.519</td>
<td>4.5</td>
</tr>
<tr>
<td>5.0</td>
<td>1.886</td>
<td>1.694</td>
<td>1.570</td>
<td>0.088</td>
<td>0.291</td>
<td>0.079</td>
<td>0.486</td>
<td>5.0</td>
</tr>
<tr>
<td>5.5</td>
<td>1.768</td>
<td>1.594</td>
<td>1.435</td>
<td>0.074</td>
<td>0.254</td>
<td>0.066</td>
<td>0.446</td>
<td>5.5</td>
</tr>
<tr>
<td>6.0</td>
<td>1.660</td>
<td>1.501</td>
<td>1.311</td>
<td>0.063</td>
<td>0.223</td>
<td>0.055</td>
<td>0.417</td>
<td>6.0</td>
</tr>
<tr>
<td>6.5</td>
<td>1.560</td>
<td>1.413</td>
<td>1.196</td>
<td>0.054</td>
<td>0.157</td>
<td>0.047</td>
<td>0.391</td>
<td>6.5</td>
</tr>
<tr>
<td>7.0</td>
<td>1.467</td>
<td>1.331</td>
<td>1.089</td>
<td>0.047</td>
<td>0.175</td>
<td>0.041</td>
<td>0.367</td>
<td>7.0</td>
</tr>
<tr>
<td>7.5</td>
<td>1.380</td>
<td>1.253</td>
<td>0.989</td>
<td>0.041</td>
<td>0.156</td>
<td>0.036</td>
<td>0.347</td>
<td>7.5</td>
</tr>
<tr>
<td>8.0</td>
<td>1.298</td>
<td>1.179</td>
<td>0.895</td>
<td>0.036</td>
<td>0.141</td>
<td>0.031</td>
<td>0.328</td>
<td>8.0</td>
</tr>
<tr>
<td>8.5</td>
<td>1.221</td>
<td>1.109</td>
<td>0.806</td>
<td>0.032</td>
<td>0.127</td>
<td>0.028</td>
<td>0.311</td>
<td>8.5</td>
</tr>
<tr>
<td>9.0</td>
<td>1.148</td>
<td>1.042</td>
<td>0.723</td>
<td>0.029</td>
<td>0.115</td>
<td>0.025</td>
<td>0.296</td>
<td>9.0</td>
</tr>
<tr>
<td>9.5</td>
<td>1.079</td>
<td>0.979</td>
<td>0.643</td>
<td>0.026</td>
<td>0.105</td>
<td>0.022</td>
<td>0.283</td>
<td>9.5</td>
</tr>
<tr>
<td>10.0</td>
<td>1.014</td>
<td>0.918</td>
<td>0.568</td>
<td>0.024</td>
<td>0.096</td>
<td>0.020</td>
<td>0.270</td>
<td>10.0</td>
</tr>
<tr>
<td>10.5</td>
<td>0.951</td>
<td>0.860</td>
<td>0.496</td>
<td>0.021</td>
<td>0.088</td>
<td>0.018</td>
<td>0.259</td>
<td>10.5</td>
</tr>
<tr>
<td>11.0</td>
<td>0.892</td>
<td>0.805</td>
<td>0.427</td>
<td>0.020</td>
<td>0.081</td>
<td>0.017</td>
<td>0.248</td>
<td>11.0</td>
</tr>
<tr>
<td>11.5</td>
<td>0.835</td>
<td>0.751</td>
<td>0.362</td>
<td>0.018</td>
<td>0.075</td>
<td>0.015</td>
<td>0.238</td>
<td>11.5</td>
</tr>
<tr>
<td>12.0</td>
<td>0.780</td>
<td>0.700</td>
<td>0.299</td>
<td>0.016</td>
<td>0.069</td>
<td>0.014</td>
<td>0.229</td>
<td>12.0</td>
</tr>
</tbody>
</table>
性的，β的数值就大，而边缘上的条件就接近于简支边的。如约束
是固定刚性的，β的数值就变为很小，而边缘条件就接近于绝对固
支边的。其余两个边界条件和上节所讨论的相同。因此有:

\[\left(\frac{dw}{dx} \right)_{x=0} = -\beta M_0, \quad \left(\frac{dw}{dx} \right)_{x=L} = 0, \quad (b) \]

\[\langle w \rangle_{x=0} = 0. \]

利用这些条件，则上节 (b) 式中的积分常数和 M_0 的大小可以求
得。由于边界弹性，两端的力矩 M_0 将小于绝对固支边情况下
由方程 (13) 所给出的力矩，最后结果可写成

\[M_0 = -\gamma \frac{qL^2}{12} \phi_i(u) \quad (19) \]

式中 γ 是一小于 1 的数字因子，由下列公式给出:

\[\gamma = \frac{2\beta}{l} \frac{\tanh u}{D u + \tanh u} \]

显然，边缘上力矩 M_0 的大小决定于约束的刚性系数 β。当 β 很小
时，系数 γ 接近于 1，而力矩 M_0 接近于用来计算绝对固支边的值
(13)。当 β 很大时，系数 γ 和力矩 M_0 就变小了，而边界条件接近
于简支边的。

在所考虑的这种情况下，挠度曲线可以表为如下形式:

\[u = -\frac{qL^4}{16u^3D} \frac{\tanh u - \gamma(\tanh u - u)}{\tanh u} \left\{ \cosh \left[u \left(1 - \frac{2x}{l} \right) \right] - 1 \right\} \]

\[+ \frac{qL^4}{8u^3D} x(l - x), \quad (20) \]

如 γ = 1，这个式子即化成表示绝对固支板挠度的 (14) 式。如
γ = 0，即得简支板情况下的 (6) 式。

在计算拉伸参数 u 时，可象上节那样进行，而拉力 S 可用单元
条的伸长等于挠度曲线弧长与原长 l 的差这个条件决定。因此

\[\frac{S(1 - \nu^2)l}{\nu E} = \frac{1}{2} \int_0^l \left(\frac{dw}{dx} \right)^2 dx. \]
将(20)式代入这方程并进行积分，即得：

$$
\frac{E^2h^8}{(1 - \nu^2)q^2l^8} \int (1 - \nu)U_0 + \nu U_1 - \nu(1 - \nu)U_2,
$$

式中 U_0 与 U_1 分别代表方程(8)和(15)的右端，而

$$
U_2 = \frac{27(\mu - \tanh \mu)^2}{16\mu^2 \tanh^2 \mu} (\mu \tanh \mu \mu - \mu + \tanh \mu).
$$

$log_{10}(10^4 \sqrt{U_2})$ 的数值由表 1 给出。利用此表，则方程(21)可用试验校正十分容易地解出。对于任一已知板，先计算此方程的左端，并且用图 4 和图 8 的曲线分别决定对于简支边和绝对固支边参数 μ 的值。对于弹性固支边，μ 的数值自然是介于这二值之间。假设这样的一个 μ 值，用表 1 计算 U_0, U_1 和 U_2, 并且算出方程(21)右端的值。一般说来，这个值和以前所计算的左端的数值不同，因此需要再取一个新的 μ 值，再作一次新的试算。用插入法，两次这样的试算通常已足可以确定适合方程(21)的 μ 值。只要确定了参数 μ，两端的弯矩 M 便能够由式(19)计算。单元条中间的弯矩也能计算，从而找到最大应力。这应力是出现在单元条的两端还是中间，决定于边缘约束的刚性程度。

5. 纵长边在板平面内的小位移对应力和挠度的影响

在以前的讨论中我们假设，板在弯曲时，它的长边在板平面内没有位移。在这个假设的基础上，对每一个别情况，计算了拉力 S。现在假设板的边缘有彼此相向的位移 Δ。由于这个位移，单元条的伸长也将有同样数量的减小，从而计算拉力 S 的方程将为

$$
\frac{S(1 - \nu^2)}{hE} = \frac{1}{2} \int_0^l \left(\frac{dw}{dx} \right)^2 dx - \Delta.
$$

同时，不管拉力 S 大小如何，计算挠度曲线的方程(6), (14)和(20)仍可应用。可以将它们微分，并代入方程(a) 的积分符号下。在积分和将 $S = 4\mu' D/l^2$ 代入后，即得：

对于简支边，

$$
\frac{E^2h^8}{q^2(1 - \nu^2)l^8} \frac{\mu^4 + \frac{3\Delta}{h} \nu^4}{\mu^4} = U_0;
$$

\begin{align*}
\text{对于简支边，} \\
\frac{E^2h^8}{q^2(1 - \nu^2)l^8} \frac{\mu^4 + \frac{3\Delta}{h} \nu^4}{\mu^4} = U_0;
\end{align*}
对于固支边，

$$
\frac{E^2h^3}{q^2(1 - \nu^2)l^4} \frac{u^2 + \frac{3l\Delta}{h^2}}{u^2} = U_t.
$$

(23)

如果 Δ 为零，则方程(22)和(23)化为以前对于不可移动的边缘所得到的方程(8)和(15)。

最简单的情形可用这个方法得到：在板的边界上两个纵长边之间放些抗压杆，阻止板的两纵向在弯曲时自由相向移动。板中的拉力 S 将压缩这些杆，因此得到与 S 成正比的位移 Δ。如果 k 是比例因数，它决定于杆的弹性和横截面的面积，则

$$
S = k\Delta,
$$

或，代入 $S = 4u^2D/l^4$，则得

$$
\Delta = \frac{1}{k} \frac{E\alpha^2h^3}{3l^2(1 - \nu^2)}
$$

和

$$
\frac{u^2 + \frac{3l\Delta}{h^2}}{u^2} = 1 + \frac{Eh}{k(1 - \nu^2)}.
$$

所以方程(22)和(23)左端的第二个因子是一常数。如已知结构的尺寸和弹性性能，这常数即可立刻算出，有了这个因子的数值，方程(22)和(23)的解，可以完全依照用在不可移动边缘情况下的方法求得。

在一般情况下，方程(22)和(23)左端的第二个因子可以随着作用在结构上的荷载大小而变化，并且参数 u 只能用试验校正法确定。现在举一例子说明这个方法的步骤，比如遇有波浪的船身在进行应力分析时会遇到这样的问题，船身的底板承受着均匀分布的水压，并且由于船身的弯曲，底板也象梁一样受有板平面内的力。设船身在横截面 mn 处的宽为 b，船底框架间距为 l (图 10)，当船中部处于一个波的波谷中 (图 11b)，则中部浮力减小，两端

* 假设边缘的支承能使 Δ 沿边长均匀相等。
浮力增大，这种浮力改变，对结构的影响是产生下沉弯曲的弯曲并使船底框架间的垂直距离 l 有所增加。为了精确地计算此位移，不仅要考虑弯曲 M 对自身的作用，还需要考虑沿底板 mmn_1 的边缘 mn 和 m_1n_1 (图 10) 所分布的拉力 S 的某些改变对此弯曲的影响。底板 mmn_1 将当作承受均匀分布水压的矩形形板来考虑。由于相邻框架之间的各板受有相等载荷的这个事实，各板的长边将不发生旋转，因此它们可视为沿着这些边是绝对固定的。

和以前一样，用 Δ 表示图 10 中 mm 边与 m_1n_1 边的相向位移，它是由船身弯矩 M 以及沿底板边缘 mn 和 m_1n_1 的每一单位长上的拉伸反作用力 S 而产生的。为了决定 Δ 值，可设想将板 mmn_1n_1 移去，而以均匀分布的力 S 代替，因此沿 mn 和 m_1n_1 的总力为 Sb (图 12a)。从而，一框架相对于另一框架的位移，可说是由弯矩 M 和
偏心载荷 Sb 作用于无底板的船身所产生的。

设 A, I, c 为全船身横截面的面积、中心惯性矩和底板到该横截面中心轴的距离，并设 A_1, I_1, c_1 为对于无底板船身相应量；后一组量可由前一组量推出，其关系如下:

$$A_1 = A - bh,$$

$$c_1 = rac{Ac}{A_1},$$

$$I_1 = I - bh^2 - A_1(c_1 - c)^2,$$

由偏心作用的力 Sb 产生的相对位移 A_1 为

$$
A_1 = \frac{l(1 - \nu^2)}{E} \left(\frac{Sb}{A_1} + \frac{Sbh^2}{I_1}\right),
$$

式中的因子 $1 - \nu^2$ 在忽略不计侧向应变时是必须有的。由弯矩 M 产生的位移为
\[\Delta_2 = -\frac{Mc_1l_i}{EI_i}, \]

所以总位移为:

\[\Delta = \Delta_1 + \Delta_2 = \frac{k(1 - \nu^2)}{E} \left[\frac{Sb}{A_1} + \frac{Shc_1}{I_1} - \frac{Mc_1}{l_i(1 - \nu^2)} \right]. \quad (c) \]

将式

\[S = \frac{4u^2D}{l^2} = \frac{Eh^3}{3l^2(1 - \nu^2)} \]

代入, 最后可得:

\[\Delta = \frac{u^2h^3}{2l} \left(\frac{b}{A_1} + \frac{bc_1^2}{I_1} \right) - \frac{Mc_1}{EI_i}. \quad (d) \]

此量在计算拉伸参数 \(\nu \) 时必须代入方程(23)。

今将此理论应用到一数字例子中。假设

\[b = 16.2 \text{ 米}, \quad I = 14.35 \text{ 米}^4, \quad A = 1.22 \text{ 米}^2, \]

\[c = 3.86 \text{ 米}, \quad h = 1.9 \text{ 厘米}, \quad l = 114.4 \text{ 厘米}, \]

\[q = 0.7 \text{ 公斤/厘米}^2, \quad M = 36.050 \text{ 吨米}. \]

由方程(b)得:

\[A_i = A - bh = 1.22 - 9.019 \times 16.2 = 0.91125 \text{ 米}^2, \]

\[c_1 = \frac{Ac}{A} = \frac{1.22 \times 3.86}{0.91125} = 5.145 \text{ 米}, \]

\[l_1 = l - bh - c^2 - A_i(c_1 - c)^2 = 14.35 - 16.2 \times 0.019 \]

\[\times 3.86^2 - 0.91125 \times (5.145 - 3.86)^2 = 7.9387 \text{ 米}^4. \]

将这些数字代入式(d), 计算 \(\Delta \). 最后得到

\[\frac{3\Delta l}{h^2} = 1.549u^2 - 11.49. \]

从而方程(23)化成

\[\frac{Eh^3}{q^2(1 - \nu^2)^2l^2} \frac{u^2}{u^2} + 1.549u^2 - 11.45 = U_{10}. \]

或

\[\frac{1.596Eh^4}{q(1 - \nu^2)l^4} \sqrt{\frac{u^2 - 4.508}{u^2}} = \sqrt{U_{10}}. \]

22
代入各个数值，并将两端取对数，即得：

\[3.609 + \lg_{10} \sqrt{\frac{u^2 - 4.508}{u^2}} = \lg_{10}(10^4 \sqrt{U_1}) \]

利用图 8 的曲线，此方程可用试验校正法容易地解出 \(u = 2.128 \)，
并由图 5 得 \(A(u) = 0.788 \)。 现在可用方程 (16) 和 (17) 计算最大
应力，这样得到：

\[\sigma_1 = \frac{2.1 \times 10^8 \times 4.258}{3 \times 0.91 \times 60^2} = 969 \text{ 公斤/厘米}^2, \]

\[\sigma_2 = \frac{1}{2} \times 0.7 \times 60^2 \times 0.788 = 993 \text{ 公斤/厘米}^2, \]

\[\sigma_{max} = \sigma_1 + \sigma_2 = 1,962 \text{ 公斤/厘米}^2. \]

如忽略不计由水压所产生在板中的弯曲应力，并用公式 \(\sigma = Mc/I \)
计算底板的应力，则所得的数字只是 947 公斤/厘米²。

6. 计算参数 \(u \) 的近似法

如果板的长边在板平面内不移动，则在计算板的参数 \(u \) 时我们用了方程

\[\frac{S}{hE} \frac{1 - \nu^2}{h^2} = \frac{1}{2} \int_0^l \left(\frac{d\omega}{dx} \right)^2 \, dx \quad \text{(a)} \]

也即认为，来力 \(S \) 产生在单元条上的伸长，等于单元条的挠度曲线
弧长与原长 \(l \) 之差。 在以前几节所讨论的各个情形中，计算挠度
\(\omega \) 的确式子已经求出，并且给出了计算方程 (a) 右端用的表达式和曲线。 如果手头没有这样的表，解此方程变得很复杂，为了简化
这个问题，就必须采用近似法。 由梁弯曲的讨论可知，当两端
简支、所有侧向载荷都在同一方向时，侧向载荷与轴向拉力 \(S \)
（图 3）的联合作用使单元条产生的挠度曲线，用方程

\[\omega = \frac{\nu_0}{1 + \alpha} \sin \frac{\pi x}{l} \quad \text{(b)} \]

来表示是足够精确的，式中 \(\omega_0 \) 表示在侧向载荷单独作用时单元条
中间所产生的挠度，而数_DEST = 10^4 \sqrt{U_1} \]

\[\alpha = \frac{S}{S_{cr}} = \frac{S^P}{\pi^2 D} \quad \text{(c)} \]

1）参看作者的 "Strength of Materials", part II, 第三版, 第 52 页, 1956 年。
给出。所以 α 代表单元条的轴向力 S 和欧拉 (Euler) 临界载荷之比。

将式 (b) 代入方程 (a) 进行积分, 则得:

$$\frac{S l (1 - \nu^2)}{h E} = \frac{\pi^2 \omega_0^2}{4 l (1 + \alpha)^2}.$$

用符号 (c), 并将式 (3) 所表示的 D 值代入, 最后可得:

$$\alpha (1 + \alpha)^2 = \frac{3 \omega_0^2}{\frac{h}{L^2}}.$$

在每一特殊情形中, α 值可由这个方程计算, 从而参数 u 可由式

$$u^2 = \frac{S}{D} = \frac{\pi^2 \alpha}{4}$$

求出。

今举一数字例题说明近似方程 (24) 的应用。设有一简支矩形钢板, 其尺寸为 $l = 130$ 厘米, $h = 1.3$ 厘米, 并承受均匀分布载荷 $q = 1.4$ 公斤/厘米2。在这样的情况下

$$\omega_0 = \frac{5}{384} \frac{q l^3}{D},$$

在代入数值后, 方程 (24) 化为

$$\alpha (1 + \alpha)^2 = 269.56.$$

令

$$1 + \alpha = \alpha,$$

此方程的解可以简化, 因而

$$x^3 - x^2 = 269.56,$$

也即数值 x 的立方与平方之差为一已知数。x 的值可容易地由计算尺或适宜的表求出, 因此找到

$$x = 6.8109 \quad \text{和} \quad \alpha = 5.8109.$$

然后由式 (d) 得:

$$u = 3.7865,$$

并由公式 (e) (见第 7 页) 得:

$$\varphi_0 = 0.13316.$$
计算拉伸应力和最大弯曲应力，可用方程(10)和(11)。这样，便得到：

\[
\sigma_1 = 1103 \text{ 公斤/厘米}^2,
\]

\[
\sigma_2 = 1398 \text{ 公斤/厘米}^2,
\]

\[
\sigma_{\text{max}} = \sigma_1 + \sigma_2 = 2501 \text{ 公斤/厘米}^2.
\]

对于这个例子，在第 2 节的计算中给出（第 9 页）

\[
\sigma_{\text{max}} = 2503 \text{ 公斤/厘米}^2.
\]

因此在这个情况下，近似方程(24)的精确性很高。一般说来，精确性决定于 \(\alpha \) 值的大小。误差随着 \(\alpha \) 的增加而增加。计算指出：当 \(\alpha = 1.44 \) 时，最大应力的误差仅为 0.66%；当 \(\alpha = 12.29 \)，它相当于高度的柔韧性较高时，误差约为 0.30%。这些 \(\alpha \) 值包括在普通实际应用的范围内，因此方程(24)可足够精确地用来解决承受均匀载荷的简支板的某些实际问题。

当载荷不是均匀分布时，例如在沿单元条非均匀分布的静水压力的情况下，这个方程也可应用。如果用近似方程(24)求出了纵向力和挠度则可由方程(b)求得。而任一横截面上的弯矩，则为纵向载荷所产生的弯矩和纵向力所产生的弯矩的代数和。

在边缘固支的情况下，单元条挠度曲线的近似表达式可取为如下形式：

\[
\omega = \frac{\omega_0}{1 + \alpha/4} \left(1 - \frac{\cos \frac{2\pi x}{l}}{l} \right),
\]

（f）

式中 \(\omega_0 \) 是固端梁在弯曲载荷单独作用下的挠度，\(\alpha \) 的意义同以前一样，将此近似代入方程(4)进行积分，即得确定 \(\alpha \) 的方程

\[
\alpha \left(1 + \frac{\alpha}{4} \right) = \frac{3\omega_0^2}{h^2},
\]

（25）

在每一特殊情况下，它能用解方程(24)的方法解之。

如已求得 \(\alpha \) 参数 \(\alpha \) 即可由方程(d)确定；最大应力可用方程(16)和(17)计算；而最大挠度可由方程(18)求得。

1) 将纵向力的近似值代入方程(4)，对它进行积分，即得方程(12)和(9)，这样便能求得挠度和弯矩比较精确的数值。
当弯曲时，如果一边向着另一边移动了一个数量 Δ，则应当用方程
\[
\frac{SL(1 - \nu^2)}{hE} = \frac{1}{2} \int_0^l \left(\frac{\partial \alpha}{\partial x} \right)^2 dx - \Delta
\]
来代替方程 (a)。在此方程中代入式 (b)，则得到在简支情况下决定 α 的方程
\[
\alpha(1 + \alpha)^2 \frac{\Delta I}{\alpha + 12 \frac{\alpha^2 h^2}{\pi^2}} = 3 \frac{w_0^2}{h^2}.
\]
(26)
在固支情况下，应当用式 (f)。从而得到决定 α 的方程
\[
\alpha \left(1 + \frac{\alpha}{4}\right)^2 \frac{\alpha + 12 \frac{\alpha^2 h^2}{\pi^2}}{\alpha} = 3 \frac{w_0^2}{h^2}.
\]
(27)
如果已给出板的尺寸和载荷 q 的值，并且已知位移 Δ，则方程 (26) 和 (27) 均可用前述相同方法容易求解。如位移 Δ 与拉伸力 S 成正比，则方程 (26) 和 (27) 左端的第二个因子是一常数，并且可用上节所述的方法 (第 19 页) 求出，所以，这些方程仍可容易求解。

7. 具有初始小柱形曲率和承受均布载荷的长矩形板

由第 2 节和第 3 节的讨论可知，由于拉伸力 S 抵抗了侧向载荷所产生的弯矩，从而有利于板的强度。这种作用将随挠度的增加而增加。为了进一步减小最大应力，可给板一个适当的初始曲率。这样的初始曲率对于应力和挠度的影响，可用前节提出的方法进行研究 1)。

今讨论一简支长矩形板 (图 13)，它的初始曲率由方程

![图 13](image)

1) 参看作者在 "Festschrift zum siebzigten Geburtstage August Föppl" 上发表的论文，第 74 页，柏林，1923 年。
\[\omega_1 = \delta \sin \frac{\pi x}{l} \] (a)

给出。

如拉伸力 \(S \) 作用在板的边缘上，则初始挠度(a)将以为 \(1/(1 + \alpha) \) 的比例减小，式中 \(\alpha \) 与前一节的意义相同(第 23 页)。侧向载荷与拉伸力 \(S \) 的共同作用将使板产生挠度，这挠度可以近似地用前节的方程(b)表示。所以，如图 13 中虚线表示的，板的总挠度为：

\[\omega = \frac{\delta}{1 + \alpha} \sin \frac{\pi x}{l} + \frac{w_0}{1 + \alpha} \sin \frac{\pi x}{l} = \frac{\delta + w_0}{1 + \alpha} \sin \frac{\pi x}{l}. \] (b)

假设板的长边在板平面内不移动，则拉伸力 \(S \) 可用单元条由拉伸力 \(S \) 所产生的伸长等于单元条挠度曲线弧长与原长之差这个条件求得。在小挠度情况下，这个差由方程

\[\lambda = \frac{1}{2} \int_0^l \left(\frac{d \omega}{dx} \right)^2 dx = \frac{1}{2} \int_0^l \left(\frac{d \omega_1}{dx} \right)^2 dx \] (c)

给出。将代表 \(\omega \) 和 \(\omega_1 \) 的二式(a), (b)代入并积分，即得

\[\lambda = \frac{\pi^2}{4l} \left[\left(\frac{\delta + w_0}{1 + \alpha} \right)^2 - \delta^2 \right]. \]

令 \(\lambda \) 等于单元条的伸长 \(Sl(1 - v^2)/he \)，最后可得

\[\alpha(1 + \alpha)^2 = \frac{3(\delta + w_0)^2}{h^2} - \frac{3\delta^2(1 + \alpha)^2}{h^2}. \] (28)

如取 \(\delta = 0 \)，此方程即化成无初始曲率的板的方程(24)。

为了说明初始曲率对板中最大应力的影响，我们将方程 (28) 应用于一个数字例题中，假设 \(l = 114.4 \) 厘米和 \(h = 0.99 \) 厘米的钢板，承受一均匀分布载荷 \(q = 0.7 \) 公斤/厘米²。如无初始挠度 \(\delta = 0 \)。则方程(28)化成

\[\alpha(1 + \alpha)^2 = 290, \]

由此得到

\[\alpha = 5.97 \quad \text{和} \quad \alpha = \frac{\pi}{2} \sqrt{\alpha} = 3.83. \]

1) 参看作者的 "Strength of Materials", Part II. 第二版，第 52 页，1936 年。
然后由式(10)得
\[\sigma_1 = 791 \text{ 公斤/厘米}^2, \]
由式(11)得
\[\sigma_2 = 994 \text{ 公斤/厘米}^2, \]
板中最大应力为
\[\sigma_{\text{max}} = \sigma_1 + \sigma_2 = 1785 \text{ 公斤/厘米}^2, \]
现在假设板有初始曲率，\(h = k = 0.95 \text{ 厘米} \)。在此情况下，方程(28)给出
\[\alpha(1 + \alpha)^3 = 351.6 - 3(1 + \alpha). \]
令
\[1 + \alpha = x, \]
即得
\[x^4 + 2x = 351.6, \]
由此求得:
\[x = 6.45, \quad \alpha = 5.45, \quad \nu = \frac{\pi}{2} \sqrt{\alpha} = 3.67. \]
由式(10)，得拉伸应力为
\[\sigma_1 = 714 \text{ 公斤/厘米}^2, \]
在计算弯曲应力时，必须考虑挠度的变化:
\[\omega - \omega_1 = \frac{\omega_0}{1 + \alpha} \sin \frac{\pi x}{l} - \frac{\alpha \omega_1}{1 + \alpha} \sin \frac{\pi x}{l}. \]
对应于方程(d)右端第一项的最大弯曲应力，与 \(\nu = 3.67 \) 的平板相同。由表1得出 \(\omega = 0.142 \)，并由方程(11)得
\[\sigma_2 = 1071 \text{ 公斤/厘米}^2. \]
同方程(d) 右端第二项对应的弯矩为
\[-D \frac{d^2 (\frac{\alpha \omega_0}{1 + \alpha} \sin \frac{\pi x}{l})}{dx^2} = -\frac{\omega_0 \delta}{(1 + \alpha) l^2} \sin \frac{\pi x}{l}. \]
此力矩的符号为负，其相应的最大应力
\[\sigma_2' = \frac{6}{h^2} \frac{\omega_0 \delta}{(1 + \alpha) l^2} = 665 \text{ 公斤/厘米}^2. \]
必须由上边所计算的弯曲应力中减去，因此具有初始挠度的板的最大应力为

\[\sigma_{\text{max}} = 714 + 1071 - 665 = 1120 \text{公斤/厘米}^2. \]

将此结果与对平板所得的结果作比较，说明初始曲率的效果是使最大应力由 1785 公斤/厘米\(^2\)减低到 1120 公斤/厘米\(^2\)，这个结果是假设初始挠度等于板厚得到的。加大初始挠度，最大应力还能够进一步减小。

8. 弹性基支板的柱形弯曲 今考虑一承受均匀载荷的矩形形板的弯曲问题，此板的整个表面支承在弹性基础上，并且沿边缘是简支的（图 14）。和以前一样，由板中切出一单元条；此单元条可视为弹性基础上的梁。假设基础在任何点上的反作用力与那点的挠度成正比，应用方程(4)，对它微分两次，即得方程

\[
D \frac{d^4 w}{dx^4} = -q - kw \tag{29}
\]

式中，\(q\) 是作用在板上的载荷强度，\(k\) 是每单位基础面积对单位挠度的反作用力，引用符号

\[
\beta = \frac{1}{2} \sqrt{\frac{k}{4D}} \tag{30}
\]

方程(29) 的通解可写成

\[
w = \frac{q}{K} + C_1 \sin \frac{2\beta x}{l} \sinh \frac{2\beta z}{l} + C_2 \sin \frac{2\beta x}{l} \cosh \frac{2\beta z}{l} + C_3 \cos \frac{2\beta x}{l} \sinh \frac{2\beta z}{l} + C_4 \cos \frac{2\beta x}{l} \cosh \frac{2\beta z}{l}. \tag{31}
\]

这四个积分常数须从单元条两端的条件决定。在所讨论的情形中，挠度对称于单元条的中间，因此，取坐标如图 14 所示，即得 \(C_1 = C_2 = 0\)。常数 \(C_3, C_4\)。
和 G_4 可由单元条在端点 ($x = l/2$) 的挠度和弯矩为零这两个条件求得。所以

$$
\begin{align*}
(w)_{x=l/2} &= 0 \\
\left(\frac{d^2 w}{dx^2} \right)_{x=l/2} &= 0
\end{align*}
$$

将表示 w 的式 (a) 代入，并注意到 $C_1 = C_4 = 0$，即得

$$
\frac{a}{k} + C_1 \sin \beta \sinh \beta + C_4 \cos \beta \cosh \beta = 0, \\
C_1 \cos \beta \cosh \beta - C_4 \sin \beta \sinh \beta = 0,
$$

由此可知

$$
\begin{align*}
C_1 &= -\frac{a}{k} \frac{\sin \beta \sinh \beta}{\sin^2 \beta \sinh^2 \beta + \cos^2 \beta \cosh^2 \beta} = -\frac{a}{k} \frac{2 \sin \beta \sinh \beta}{\cos 2\beta + \cosh 2\beta}, \\
C_4 &= -\frac{a}{k} \frac{\cos \beta \cosh \beta}{\sin^2 \beta \sinh^2 \beta + \cos^2 \beta \cosh^2 \beta} = -\frac{a}{k} \frac{2 \cos \beta \cosh \beta}{\cos 2\beta + \cosh 2\beta}.
\end{align*}
$$

将这些常数值代入式 (a)，并引用式 (30)，单元条的挠度最后可用下式表示：

$$
\begin{align*}
w &= \frac{ql^4}{64E\beta^4} \left(1 - \frac{2 \sin \beta \sinh \beta}{\cos 2\beta + \cosh 2\beta} \sin \frac{2\beta x}{l} \sinh \frac{2\beta x}{l} \\
&\quad - \frac{2 \cos \beta \cosh \beta}{\cos 2\beta + \cosh 2\beta} \cos \frac{2\beta x}{l} \cosh \frac{2\beta x}{l} \right).
\end{align*}
$$

单元条中点的挠度可由 $x = 0$ 代入求得，即

$$
(w)_{x=0} = \frac{ql^4}{64E\beta^4} \left(1 - \varphi_0(\beta) \right),
$$

式中

$$
\varphi_0(\beta) = \frac{2 \cos \beta \cosh \beta}{\cos 2\beta + \cosh 2\beta}
$$

为了求得板边的旋转角度，将式 (d) 对 x 求分，并取 $x = -l/2$，这样就得到：

$$
\left(\frac{d w}{dx} \right)_{x=-l/2} = \frac{ql^4}{24D} \varphi_1(\beta),
$$

式中

$$
\varphi_1(\beta) = \frac{3}{4\beta^2} \frac{\sinh 2\beta - \sin 2\beta}{\cosh 2\beta + \cos 2\beta}.
$$

单元条任一横截面上的弯矩可由式

$$
M = -D \frac{d^2 w}{dx^2}
$$

求得。将表示 w 的式 (d) 代入，即得单元条中间的弯矩
\[(M)_{x=0} = \frac{q^*}{8} \varphi_z(\beta). \]

式中

\[\varphi_z(\beta) = \frac{2 \sinh \beta \sin \beta}{\beta^2 \cosh 2\beta + \cos 2\beta}. \]

为简化挠度和应力的计算，函数 \(\varphi_z \), \(\varphi_1 \) 和 \(\varphi_2 \) 的数值在表 2 中给出。对于小的 \(\beta \) 值，也即对于达到屈服点的基础，函数 \((1 - \varphi_0) / \beta \) 及 \(\varphi_1 \) 与 1 相差不大。因此在最大挠度和弯矩应力同不支承在弹性基础上的简支条相近。随着 \(\beta \) 的增加，基础的影响逐渐变为重要。

如果将一宽度为 \(I \) 的矩形板，用均匀分布在边缘上和每单位长度数量 \(P \) 的荷载，放在弹性基础上（图 15），则得与图 14 相似的条件。这板将被

<table>
<thead>
<tr>
<th>(\beta)</th>
<th>(\varphi_0)</th>
<th>(\varphi_1)</th>
<th>(\varphi_2)</th>
<th>(\beta)</th>
<th>(\varphi_0)</th>
<th>(\varphi_1)</th>
<th>(\varphi_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.5</td>
<td>-0.013</td>
<td>0.200</td>
<td>0.164</td>
</tr>
<tr>
<td>0.2</td>
<td>0.999</td>
<td>0.999</td>
<td>0.999</td>
<td>1.7</td>
<td>-0.052</td>
<td>0.166</td>
<td>0.129</td>
</tr>
<tr>
<td>0.3</td>
<td>0.999</td>
<td>0.999</td>
<td>0.999</td>
<td>1.8</td>
<td>-0.081</td>
<td>0.138</td>
<td>0.101</td>
</tr>
<tr>
<td>0.4</td>
<td>0.979</td>
<td>0.983</td>
<td>0.983</td>
<td>1.9</td>
<td>-0.102</td>
<td>0.116</td>
<td>0.079</td>
</tr>
<tr>
<td>0.5</td>
<td>0.950</td>
<td>0.961</td>
<td>0.959</td>
<td>2.0</td>
<td>-0.117</td>
<td>0.099</td>
<td>0.062</td>
</tr>
<tr>
<td>0.6</td>
<td>0.901</td>
<td>0.923</td>
<td>0.919</td>
<td>2.2</td>
<td>-0.134</td>
<td>0.072</td>
<td>0.037</td>
</tr>
<tr>
<td>0.7</td>
<td>0.827</td>
<td>0.866</td>
<td>0.859</td>
<td>2.4</td>
<td>-0.135</td>
<td>0.055</td>
<td>0.021</td>
</tr>
<tr>
<td>0.8</td>
<td>0.731</td>
<td>0.791</td>
<td>0.781</td>
<td>2.6</td>
<td>-0.127</td>
<td>0.043</td>
<td>0.011</td>
</tr>
<tr>
<td>0.9</td>
<td>0.619</td>
<td>0.702</td>
<td>0.689</td>
<td>2.8</td>
<td>-0.114</td>
<td>0.034</td>
<td>0.005</td>
</tr>
<tr>
<td>1.0</td>
<td>0.498</td>
<td>0.609</td>
<td>0.591</td>
<td>3.0</td>
<td>-0.098</td>
<td>0.028</td>
<td>0.002</td>
</tr>
<tr>
<td>1.1</td>
<td>0.380</td>
<td>0.517</td>
<td>0.498</td>
<td>3.2</td>
<td>-0.081</td>
<td>0.023</td>
<td>0.000</td>
</tr>
<tr>
<td>1.2</td>
<td>0.272</td>
<td>0.431</td>
<td>0.405</td>
<td>3.4</td>
<td>-0.064</td>
<td>0.019</td>
<td>-0.001</td>
</tr>
<tr>
<td>1.3</td>
<td>0.178</td>
<td>0.357</td>
<td>0.327</td>
<td>3.6</td>
<td>-0.049</td>
<td>0.016</td>
<td>-0.002</td>
</tr>
<tr>
<td>1.4</td>
<td>0.100</td>
<td>0.294</td>
<td>0.262</td>
<td>3.8</td>
<td>-0.035</td>
<td>0.014</td>
<td>-0.002</td>
</tr>
<tr>
<td>1.5</td>
<td>0.037</td>
<td>0.242</td>
<td>0.208</td>
<td>4.0</td>
<td>-0.024</td>
<td>0.012</td>
<td>-0.002</td>
</tr>
</tbody>
</table>

图 15
压入弹性基础内，并且弯曲成虚线所表示的形状。如用 δ 表示板边的挠度，则任一点上弹性基础的反作用力为

$$k(\delta - \omega) = k\delta - kw,$$

式中 ω 可用 $\delta = \eta$ 代入方程 (d) 求出，因而 δ 的数值可由载荷与弹性基础的反作用力相互平衡这个条件求得。所以

$$P = \frac{k\delta l}{2} - k \int_0^{L} \omega dx,$$

对于纵向有他种条件的弹性基支板，也能用相似的方法讨论。
第二章
板的纯弯曲

9. 微小弯曲板的斜度与曲率

在讨论板的小挠度时，我们取弯曲前板的中平面为 xy 面。当板弯曲时，原来在 xy 面上的各点有与 xy 面垂直的微小位移 w，从而形成板的中曲面。在以下的讨论中，中曲面的这些位移叫作板的挠度。取板的垂直横截面平行于 xz 平面（图 16a），则中曲面在 x 方向的斜度为 $i_x = \frac{\partial w}{\partial x}$。同样，y 方向的斜度为 $i_y = \frac{\partial w}{\partial y}$。今在 xy 面内取任一方向 an（图 16b）使与 x 轴成 α 角，则在 an 方向相邻两点 a 与 a' 上挠度的差为

$$dw = \frac{\partial w}{\partial x} dx + \frac{\partial w}{\partial y} dy,$$

相应的斜度为

$$\frac{\partial w}{\partial n} = \frac{\partial w}{\partial x} \frac{dx}{dn} + \frac{\partial w}{\partial y} \frac{dy}{dn} = \frac{\partial w}{\partial x} \cos \alpha + \frac{\partial w}{\partial y} \sin \alpha. \quad (a)$$

![图 16](image-url)
为了求出最大斜度为最大的方向 α_1，将 (a) 式对 α 求导数，并令导数为零。这样即得到:

$$\tan \alpha_1 = \frac{\partial \omega}{\partial \alpha} \left/ \left(\frac{\partial \omega}{\partial x} \right. \right. \left/ \left. \partial x \right) \right.$$

(b)

将 $\sin \alpha_1$ 和 $\cos \alpha_1$ 的值代入 (a)，即得最大斜度的表达式:

$$\left(\frac{\partial \omega}{\partial \alpha} \right)_{\alpha_{max}} = \sqrt{\left(\frac{\partial \omega}{\partial x} \right)^2 + \left(\frac{\partial \omega}{\partial y} \right)^2}.$$

(c)

使式 (a) 等于零，则得中曲面斜度为零的方向，相应的角度 α_2 可用式

$$\tan \alpha_2 = -\frac{\partial \omega}{\partial x} \left/ \frac{\partial \omega}{\partial y} \right.$$

(d)

确定。由式 (b) 和 (d)，可知

$$\tan \alpha_1 \tan \alpha_2 = -1.$$

这说明，零斜度方向和最大斜度方向相互垂直。

在确定板的中曲面曲率时，我们注意到板的挠度是较小的。在这样的情况下，中曲面在径向的方向的斜度，可取成等于在这方向上中曲面切线与 xy 平面所成的角度，而且斜度的平方与 1 比较可以忽略不计。因而，中曲面与 xz 面相平行的平面内的曲率 (图 16) 数值等于

$$\frac{1}{r_x} = -\frac{\partial}{\partial x} \left(\frac{\partial \omega}{\partial x} \right) = -\frac{\partial^2 \omega}{\partial x^2}.$$

(e)

取凸面向下时的曲率为正。由于如图所示，挠度的凹面向下时，二次导数 $\partial^2 \omega/\partial x^2$ 为负，故在式 (e) 中取负号。

同理，与 yz 面相平行的平面内的曲率为

$$\frac{1}{r_y} = -\frac{\partial}{\partial y} \left(\frac{\partial \omega}{\partial y} \right) = -\frac{\partial^2 \omega}{\partial y^2}.$$

(f)

这些式子与在讨论受弯曲梁的曲率时所用的式子相似。

在曲面内任意方向 αn (图 16) 的曲率，可得

$$\frac{1}{r_\alpha} = -\frac{\partial}{\partial n} \left(\frac{\partial \omega}{\partial n} \right).$$

• 34 •
代入表示 $\partial w/\partial n$ 的式 (2)，并应用
\[
\frac{\partial}{\partial n} = \frac{\partial}{\partial x} \cos \alpha + \frac{\partial}{\partial y} \sin \alpha,
\]
即得
\[
\frac{1}{r_n} = -\left(\frac{\partial}{\partial x} \cos \alpha + \frac{\partial}{\partial y} \sin \alpha\right)\left(\frac{\partial}{\partial x} \cos \alpha + \frac{\partial}{\partial y} \sin \alpha\right)
\]
\[
= -\left(\frac{\partial^2 w}{\partial x^2} \cos^2 \alpha + 2 \frac{\partial^2 w}{\partial x \partial y} \sin \alpha \cos \alpha + \frac{\partial^2 w}{\partial y^2} \sin^2 \alpha\right)
\]
\[
= \frac{1}{r_x} \cos^2 \alpha + \frac{1}{r_y} \sin 2\alpha + \frac{1}{r_x} \sin^2 \alpha.
\]

显然，已知中曲面上任一点的曲率
\[
\frac{1}{r_x} = -\frac{\partial^2 w}{\partial x^2}, \quad \frac{1}{r_y} = -\frac{\partial^2 w}{\partial y^2},
\]
和
\[
\frac{1}{r_{xy}} = \frac{\partial^2 w}{\partial x \partial y},
\]
就能计算中曲面在这一点的任意方向 n 上的曲率。$\frac{1}{r_{xy}}$ 叫作曲面对于 x 和 y 轴的扭转。

如果取的方向不是方向 an（图 16b），而是与 an 垂直的方向 at，那么在式 (g) 中用 $\pi/2 + \alpha$ 代替 α，就得到此新方向的曲率：
\[
\frac{1}{r} = \frac{1}{r_x} \sin^2 \alpha + \frac{1}{r_y} \sin 2\alpha + \frac{1}{r_{xy}} \cos^2 \alpha.
\]

将二式 (g) 与 (i) 相加，即得：
\[
\frac{1}{r_n} + \frac{1}{r_x} = \frac{1}{r_x} + \frac{1}{r_y},
\]
这说明，在中曲面上任一点上，两个垂直方向，如 n 和 t 的曲率的和同角 α 无关，这个和的值通常叫作曲面在某点的平均曲率。

在点 a 上中曲面对于方向 an 和 at 的扭转为
\[
\frac{1}{r_{at}} = \frac{\partial}{\partial t} \left(\frac{\partial w}{\partial n}\right).
\]
在计算对于 t 的导数时，要注意到方向 at 垂直于 an。因此，

\[35\]
用 $\frac{\pi}{2} + \alpha$ 代替式 (a) 中的 α，即得所求的导数。用此方法可求出

$$
\frac{1}{r_{\alpha \alpha}} = \left(\frac{\partial}{\partial x} \cos \alpha + \frac{\partial}{\partial y} \sin \alpha \right) \left(\frac{\partial w}{\partial x} \sin \alpha + \frac{\partial w}{\partial y} \cos \alpha \right)
= \frac{1}{2} \sin 2\alpha \left(-\frac{\partial^2 w}{\partial x^2} + \frac{\partial^2 w}{\partial y^2} \right) + \cos 2\alpha \frac{\partial^2 w}{\partial x \partial y}
$$

或

$$
\frac{1}{r_{\alpha \alpha}} = \frac{1}{2} \sin 2\alpha \left(\frac{1}{r_x} - \frac{1}{r_y} \right) + \cos 2\alpha \frac{1}{r_{xy}} \tag{i}
$$

在下面的讨论中，将求出使曲面的曲率为最大与最小的 α 值，并得出对应的曲率的值。令式 (g) 对 α 的偏导数为零，就得到确定 α 所需的方程

$$
\frac{1}{r_x} \sin 2\alpha + \frac{2}{r_{xy}} \cos 2\alpha - \frac{1}{r_y} \sin 2\alpha = 0, \tag{k}
$$

因此

$$
\tan 2\alpha = -\frac{r_{xy}}{\frac{1}{r_x} - \frac{1}{r_y}} \tag{35}
$$

由此式可以求出两个 α 值，它们的差为 $\pi/2$。将这两个值代入式 (g)，即得 $1/r_{\alpha \alpha}$ 的两个数值，一个相当于曲面在 α 点的最大曲率，另一个相当于最小曲率。这两个曲率叫作曲面的主曲率；对应的平面 n_α 和 t_α 叫作主曲率面。

由于方程 (k) 的左端二倍于式 (i) 的值，可知如方向 a_n 和 a_t（图 16）是在主曲率面内，则相应的扭转 $1/r_{\alpha \alpha}$ 等于零。

仿效表示应力的莫尔 (Mohr) 圆，可以用一圆说明曲面的曲率与扭转如何随 α 角变化9。为了简化讨论，假设坐标面 xz 和 yz 取成与点 a 上的主曲率面平行。因此

$$
\frac{1}{r_{xy}} = \theta,
$$

1) 参看作者的 "Strength of Materials", part I, 第三版，第 40 页，1955 年。
并由方程（g）和（i）可知，对于任一角 α

$$
\frac{1}{r_n} = \frac{1}{r_x} \cos^2 \alpha + \frac{1}{r_y} \sin^2 \alpha,
$$

$$
\frac{1}{r_n} = \frac{1}{2} \left(\frac{1}{r_x} - \frac{1}{r_y} \right) \sin 2\alpha, \tag{36}
$$

如图17所示，以曲率为横坐标，扭转为纵坐标，并以 $1/r_x - 1/r_y$ 为直径作一圆，那么可以看出，由角 2α 所决定的点 A 的横坐标为

$$
\overline{OB} = \overline{OC} + \overline{CB} = \frac{1}{2} \left(\frac{1}{r_x} + \frac{1}{r_y} \right) + \frac{1}{2} \left(\frac{1}{r_x} - \frac{1}{r_y} \right) \cos 2\alpha
$$

$$
= \frac{1}{r_x} \cos^2 \alpha + \frac{1}{r_y} \sin^2 \alpha,
$$

纵坐标为

$$
\overline{AB} = \frac{1}{2} \left(\frac{1}{r_x} - \frac{1}{r_y} \right) \sin 2\alpha.
$$

将这些结果与公式（36）作比较，可知不论角度 α 为什么值，点 A 的坐标确定了曲面的曲率和扭转，显然，最大扭转相当于是圆的半径，发生在 $\alpha = \pi/4$ 时，也即发生在互相垂直并与半分二主曲率面的夹角的方向上。

在图17所示的例中，$\frac{1}{r_n}$ 任何方向的曲率都是正的，所以曲面的弯曲是向下凸。如果曲率 $1/r_x$ 和 $1/r_y$ 均为负的，则任何方向的曲率也是负的，因而板的弯曲是向上凸。在所有平面内，曲率为同号的曲面叫作同向曲面。有时要讨论二主曲率为异号的曲面，马鞍的形状就是一个很好的例子。这样的曲面叫作反曲面，图18中的圆相当于这类曲面的一个特殊情况，即 $1/r_y = -1/r_x$ 的情况。显然在这情况下，当 $\alpha = \pi/4$ 或 $3\pi/4$ 时，曲率变成零，而扭转等于 $\pm 1/r_x$。
10. 在纯弯曲时弯矩和曲率的关系

在板受纯弯曲的情况下，由于假设梁的横截面在弯曲后仍保持为平面，并且仅绕中性轴旋转，使这些截面总是与挠度曲线垂直，因此可以得到应力分布的精确解。在二互相垂直的方向都有这样的弯曲时，总结果就得到板的纯弯曲，先考虑如图 19 所示，沿板边作用有均匀分布力矩的矩形板的纯弯曲。如图中所给出，取 xy 平面与在挠曲前的板

的中面重合，并令 x 轴和 y 轴与板边重合。垂直于中面的 z 轴向下为正。用 M_x 表示作用于平行 y 轴的边缘单位长上的弯矩，M_y 表示作用在平行于 x 轴的边缘单位长上的弯矩。如图所示，使板的上面产生压缩而下面产生拉伸的弯矩，其数值取为正。同以前一样，用 h 表示板的厚度，并认为它较之于板的其他变量为小量。

考虑如图 20 所示，用分别平行于 xz 面和 yz 面的两对平面从板上截取的一单元体，由于图 19 所表示的情况相当于二均匀弯曲的联合作用，所以在如图 20 所示的所有单元体中，应力状况是完全相同的，从而得到了板的均匀弯曲。假设在板弯曲时，单元体的各个侧面保持为平面，并绕中性轴 n 轴旋转以保持与弯曲了的板的中面垂直。由此可知，板的中面在弯曲时不发生
伸长，因此中面就是中性面。同以前一样，用 $1/r_x$ 和 $1/r_y$ 分别表示中性面在和 xz 面和 yz 面相平行的截面内的曲率。因而，与中性面相距为 z 的薄层 $abcd$（图 20），在 x 和 y 方向的单位伸长可以象梁那样求得，等于是

$$
\varepsilon_x = \frac{z}{r_x}, \quad \varepsilon_y = \frac{z}{r_y} \quad (a)
$$

现应用虎克定律（第 21 页上的式 (1)），在薄层 $abcd$ 内相应的应力为

$$
\sigma_x = \frac{E}{1 - \nu^2} \left(\frac{1}{r_x} + \nu \frac{1}{r_y} \right),
$$
$$
\sigma_y = \frac{E}{1 - \nu^2} \left(\frac{1}{r_y} + \nu \frac{1}{r_x} \right). \quad (b)
$$

这些应力与薄层 $abcd$ 到中性面的距离 z 成正比，并随弯板的曲率的大小而变。

分布在单元体侧面（图 20）上的正应力可化成力偶，它们在每单位长上的数值，显然必须等于外力矩 M_x 和 M_y。这样，就能得到方程

$$
\int_{-h/2}^{h/2} \sigma_x z \, dy \, dz = M_x \, dy, \quad (c)
$$
$$
\int_{-h/2}^{h/2} \sigma_y z \, dx \, dz = M_y \, dx.
$$

代入表示 σ_x 和 σ_y 的式 (b)，即得

$$
M_x = D \left(\frac{1}{r_x} + \nu \frac{1}{r_y} \right) = -D \left(\frac{\partial^2 \omega}{\partial x^2} + \nu \frac{\partial^2 \omega}{\partial y^2} \right), \quad (37)
$$
$$
M_y = D \left(\frac{1}{r_y} + \nu \frac{1}{r_x} \right) = -D \left(\frac{\partial^2 \omega}{\partial y^2} + \nu \frac{\partial^2 \omega}{\partial x^2} \right), \quad (38)
$$

式中 D 为板由式 (3) 决定的弯曲刚度，而 ω 代表板在 z 方向的挠度。

今由薄层 $abcd$，取一与 z 轴平行并与 x 轴和 y 轴斜交的截面，并考虑作用在这个截面上的应力。如用 acd（图 21）表示由这

1) 如果板的挠度较小于厚度 h 为小量，则此结论是足够精确的。在第 12 节中将证明这一点。
种截面切出的这个薄层的一部分，其他在边 ac 上的应力可用静力方程求得。把这个应力分解成正应力 σ_n 和剪应力 τ_{ni}：将作用在微元 acd 上的力分别向 n 和 t 方向投影，即能求得这正应力和剪应力的大小。这样就得到熟知的方程

$$\sigma_n = \sigma_x \cos^2 \alpha + \sigma_y \sin^2 \alpha,$$

$$\tau_{ni} = \frac{1}{2} (\sigma_y - \sigma_x) \sin 2\alpha,$$ \hspace{1cm} (d)

式中 α 是法线 n 与 x 轴或切线 t 与 y 轴之间的夹角（图 21a）。此角以顺时针方向为正。

考虑板厚度上所有象图 21b 中 acd 那样的薄层，可知正应力 σ_n 形成了作用在板的截面 ac 上的弯矩。它在沿 ac 每一位长上的大小是

$$M_n = \int_{-h/2}^{h/2} \sigma_n dz = M_x \cos^2 \alpha + M_y \sin^2 \alpha.$$ \hspace{1cm} (39)

剪应力 τ_{ni} 形成了作用在板的截面 ac 上的扭矩，它在沿 ac 每一位长上的大小是

$$M_{ni} = -\int_{-h/2}^{h/2} \tau_{ni} dz = \frac{1}{2} \sin 2\alpha (M_x - M_y),$$ \hspace{1cm} (40)

如用右手螺旋定则规定 M_n 和 M_{ni} 的符号，则这些力矩向量在 n 和 t 的正方向(图 21c)时，它们的数值为正。当 α 等于零或 π 时，方程 (39) 给出 $M_n = M_x$。当 $\alpha = \pi/2$ 或 $3\pi/2$ 时，则得 $M_n =$
在 σ 等于这些值时，扭矩 M_n 为零。这样，即得图 19 所示的情况。

式(39)和式(40)与式(36)相似，用这些式子，对于任一 σ 值可以立刻算出弯矩和扭矩。为了计算弯矩和扭矩，也可应用图解法。以 M_n 为横坐标，以 M_y 为纵坐标，可象上节那样建立莫尔圆，用它求出 M_y 和 M_n 的值。这圆的直径等于 $M_x - M_y$，如图 22 所示。由角 2α 所指定的点 A，其坐标 OB 和 AB 分别是弯矩 M_n 和扭矩 M_n 的值。

现在要把 M_n 和 M_n 表示成板的中曲面的曲率和扭转的函数。将表示 M_n 和 M_y 的式 (37) 和(38)代人式 (39)，即得

$$M_n = D \left(\frac{1}{r_x} \cos^2 \alpha + \frac{1}{r_y} \sin^2 \alpha \right)$$

$$+ \nu D \left(\frac{1}{r_x} \sin^2 \alpha + \frac{1}{r_y} \cos^2 \alpha \right).$$

应用上节式 (36) 中的第一式，可知括弧内的二式分别相当于中曲面在 n 和 t 方向的曲率，所以

$$M_n = D \left(\frac{1}{r_n} + \nu \frac{1}{r_x} \right) = -D \left(\frac{\partial^2 w}{\partial n^2} + \nu \frac{\partial^2 w}{\partial t^2} \right). \quad (41)$$

为了得到相应的扭矩 M_n 的式子，可考虑一与中面相距为 z，边 ab 和 cd 与 n 和 t 方向平行的薄层 $abcd$ 的变形 (图 23)。在板弯曲时，点 a, b, c 和 d 都有微小的位移，分别用 u 和 v 表示点 a 在 n 方向和 t 的位移分量。因而邻点 d 在 n 方向的位移为 $u + (\partial u/\partial z) dz$，点 b 在 t 方向的位移为 $v + (\partial v/\partial n) dn$。由于这些位移，即得剪应变:

$$\gamma_{nt} = \frac{\partial u}{\partial t} + \frac{\partial v}{\partial n} \quad (e)$$
对应的剪应力为

$$\tau_{nt} = G \left(\frac{\partial u}{\partial r} + \frac{\partial v}{\partial n} \right).$$

图 23b 相当于用通过 n 轴的垂直平面内对中性面所作的截面。由图可以看出，原来垂直于 xy 面的直线元素 pq 将绕与 ns 面垂直的轴旋转，其在逆时针方向的转角等于 $-\partial u/\partial n$。由于这个旋转，直线元素上与中性面相距为 z 的点在 n 方向的位移等于

$$u = -z \frac{\partial w}{\partial n}.$$

如考虑通过 t 轴的垂直截面，则容易证明该点在 t 方向的位移等于

$$v = -z \frac{\partial w}{\partial t}.$$

将位移 u 和 v 的这些表达式 (f) 中，即得:

$$\tau_{nt} = -2 G z \frac{\partial w}{\partial n \partial t},$$

而表示扭矩的式 (40) 化为:

$$M_{nt} = - \int_{-h/2}^{h/2} \tau_{nt} zdz = \frac{G h^3}{6} \frac{\partial^2 w}{\partial n \partial t} = D (1 - \nu) \frac{\partial^2 w}{\partial n \partial t}.$$

由此可知，对于互相垂直的方向 n 和 t，扭矩同中曲面在此二方向上的扭转成正比。当 n 和 t 方向与 x 和 y 轴重合时，只有弯矩 M_n.

42
和 M_x 作用在垂直于 x, y 轴的各截面上(图 19); 因此对应的扭转为零，而截率 $1/r_x$ 和 $1/r_y$ 是板的中曲面的主曲率。如已给出弯矩 M_x 和 M_y，它们即可由方程(37)和(38)立即算出。然后，由角 α 所表示的任一方向的曲率，可用方程(36)的第一式计算，或由图 17 上读取。

在考虑板受纯弯曲的应力时，由式(d)中的第一式可得，最大正应力作用在平行于 xz 或 yz 平面的截面上。将 $z = h/2$ 代入式(b)，并应用式(37)和(38)，即可求得这些应力的大小:

$$
\sigma_x^{(\text{max})} = \frac{6M_x}{h^2}, \quad \sigma_y^{(\text{max})} = \frac{6M_y}{h^2}.
$$

(44)

如果此二应力符号相反，则最大剪应力作用在平分 xz 和 yz 平面所夹的角的平面上，并且等于

$$
\tau_{\text{max}} = \frac{1}{2} (\sigma_x - \sigma_y) = \frac{3(M_x - M_y)}{h^2}.
$$

(45)

如果(44)中二应力的符号相同，则最大剪应力作用在平分 xy 和 xz 平面所夹的角的平面上，或者作用在平分 xy 和 yz 平面所夹的角的平面上，并且等于 $\frac{1}{2} (\sigma_x)_{\text{max}}$ 或 $\frac{1}{2} (\sigma_z)_{\text{max}}$；这由二个主应力 $(\sigma_y)_{\text{max}}$ 或 $(\sigma_z)_{\text{max}}$ 中哪一个较大来决定。

11. 纯弯曲的特殊情况

在上节的讨论中，我们从沿边缘有均匀分布弯矩的矩形板开始研究。为了得到板的纯弯曲的一般情况，可设想由前面所讨论的板(图 19)上，用垂直于板的、任何形状的柱形面或棱柱面截取一部分。假如沿板的这一独立部分的边界上，分布着满足式(39)和(40)的弯矩和扭矩，则这部分的弯曲情况将保持不变。这样就得到了任何形状的板的纯弯曲，因此只要沿板边所分布的弯矩 M_x 和扭矩 M_y 满足式(39)和(40)，此板总是承受纯弯曲。

今以特殊情况

$$
M_x = M_y = M
$$

作为第一个例子。由式(39)和(40)可知，在这种情况下，对于任何
形状的板，在整个边界上有弯矩均匀分布，并且扭矩等于零。由式
(37)和(38)得到:

\[\frac{1}{\tau_z} = \frac{1}{\tau_y} = \frac{M}{D(1 + \nu)}; \]

(46)

也即在这种情况下，板弯曲成球面，它的曲率由式 (46) 给出。

在一般情况下，当 \(M_x \) 与 \(M_y \) 不相等时，可令

\(M_x = M_1, \quad M_y = M_2. \)

于是由方程 (37) 和 (38) 得到

\[\frac{\partial^2 w}{\partial x^2} = -\frac{M_1 - \nu M_2}{D(1 - \nu^2)^2} \]

\[\frac{\partial^2 w}{\partial y^2} = -\frac{M_1 - \nu M_2}{D(1 - \nu^2)^2} \] \(\text{(a)} \)

共有

\[\frac{\partial^2 w}{\partial x \partial y} = 0. \] \(\text{(b)} \)

将这些方程积分，即得

\[w = -\frac{M_1 - \nu M_2}{2D(1 - \nu^2)} x^2 - \frac{M_1 - \nu M_2}{2D(1 - \nu^2)} y^2 + C_1 x + C_2 y + C_3, \] \(\text{(c)} \)

式中 \(C_1, C_2 \) 和 \(C_3 \) 是积分常数。这些常数决定了计算挠度 \(w \) 的原始平面。如果这个平面取成在原点与板的中曲面相切，则这些积分常数必须等于零，于是挠曲面由方程

\[w = -\frac{M_1 - \nu M_2}{2D(1 - \nu^2)} x^2 - \frac{M_1 - \nu M_2}{2D(1 - \nu^2)} y^2 \] \(\text{(d)} \)

给出。

在 \(M_1 = M_2 = M \) 的特殊情形中，由方程 (d) 可得

\[w = -\frac{M(x^2 + y^2)}{2D(1 + \nu)}, \] \(\text{(e)} \)

它不是式 (46) 所给出的球面，而是旋转抛物面。这两个结果的一致只是由于在插导式 (e) 时，应用了曲率 \(1/r_x \) 和 \(1/r_y \) 的近似值 \(\frac{\partial^2 w}{\partial x^2} \) 和 \(\frac{\partial^2 w}{\partial y^2} \)。根据第 9 节中所作的假设，在所有以后的讨论中，都将应用挠度的二阶导数，而非曲率的精确表示式。
一作法大大简化了板件理论的基本方程。

现在回到式 (d)，令 $M_2 = -M_1$。由式 (a) 知，在此情况下主曲率为

$$\frac{1}{r_x} = \frac{1}{r_y} = -\frac{\partial^2 w}{\partial x^2} = \frac{M_1}{D(1 - \nu)}, \quad (f)$$

于是得一反曲面，它的方程为

$$w = -\frac{M_1}{2D(1 - \nu)} (x^2 - y^2). \quad (g)$$

与 x 轴平行的直线在板弯曲后变成向下凸的抛物线 (图 24)。而在 y 轴方向的直线变成了向上凸的抛物线。在平分 x 轴与 y 轴所夹角的直线上，有 $x = y$，或 $x = -y$，由 (g) 式可知，在这两条直线上挠度为零，所有在板弯曲前平行于这两条分角线的直线，在板弯曲时保持为直线，只是转一个角度而已。以这些线为边界的矩形 $abcd$ 将象图 24 所表示的那样扭转。假如按直线 ab, bc, cd 和 ad 作板的垂直截面，则由式 (39) 和 (40) 可知，在这些截面上的弯矩为零，而在截面 ad 和 bc 上的扭矩等于 M_1，在截面 ab 和 cd 上的扭矩等于 $-M_1$。所以 $abcd$ 这部分板处于纯弯曲的状况，此纯弯曲是由沿边缘均匀分布的扭矩产生的 (图 25a)。这些扭矩是由连续分布在边缘上的水平剪应力所形成的 [式 (40)]。这个水平应力的分布可用作用与
实际应力分布等效的二垂直剪力来代替。为了说明这一点，将 ah 边分成如图 25b 中的 $mnpq$ 那样无限狭的矩形。如 Δ 为此矩形的微小宽度，则相应的扭转变力为 M_1，它可以由作用在矩形垂直边上的二个等于 M_2 的垂直力形成。这种用静力等价的二垂直力系代替分布的水平力，除了在离边缘的距离等于板厚（假设厚度很小）的区域内，不会使板发生显著的变化。对一切矩形都作这种替代，我们发现所有作用在这些矩形垂直边上的力 M_2 彼此互相抵消，只留下作用在角 a 和 d 上的二力 M_1。对板的其他边作同样的变换，即可知集中在 α 角上的力，能使板弯曲成如图 25a 所示的互反曲面”（图 25c）。这样的实验是比较容易作的，它可用来作为以上所述板的弯曲理论的实验证明”。在这些实验中测量了沿 bod 线上板的挠度（图 24），并发现实验与由式 (g) 所得的理论结果很相符合。只是在靠近边缘处，实验与理论不相一致，尤其是对于比较厚的板相差更多。这些事实由以上对扭转力偶的变换所作的讨论可以预先想到。

最后举一例讨论板的柱形面弯曲（图 19），柱面的生成线平行于 x 轴。在这样的情况下，$\partial^2 w / \partial y^2 = 0$，由式 (37) 和 (38) 得

$$M_2 = -D \frac{\partial^2 w}{\partial x^2}, \quad M_4 = -\nu D \frac{\partial^2 w}{\partial x^2}.$$ \(h\)

显然，为了使板弯曲成柱形面，不仅要有力矩 M_2 作用，还必须有力矩 M_4 作用。没有力矩 M_4，板就会弯曲成互反曲面”式(h)中的第一式已在第一章讨论长矩形板的柱形弯曲时应用过。虽然在第一章中我们讨论了承受侧向载荷的板的弯曲，并且不仅有弯曲应力存在，还有垂直剪应力作用在垂直于 x 轴的截面上。但是如

2) 作功在边缘上的力系的变换是 Lord Kelvin 和 P. G. Tait 首先提出的；参阅 “Treatise on Natural Philosophy,” vol. I, part 2, 第 203 页, 1883 年。
3) 这样的实验是 A. Nadai 作的, Forschungsarb., 第 170, 171 载, 柏林, 1915 年; 也可参阅他的著作 “Elastische Platten”, 第 42 载, 柏林, 1925 年。
4) 通常假设边缘小，或者弯曲成可展曲面，当然变不是很小时，弯曲成非可展曲面的情形将在以后讨论；参看第 48 载。
与普通梁的理论作比较，可知在薄板的情况下，剪力的影响可以忽略不计，因而对于纯弯曲问题所推导的各式，可以足够精确地用在侧向受载的问题中。

12. 板在纯弯曲时的应变能

如果板是由于均匀分布弯矩 M_x 和 M_y 的作用而弯曲（图 19），则 xz 和 yz 平面是板的挠曲面的主弯曲面，因此如图 20 所示单元体内储藏的应变能，可由计算作用在这单元体上的力矩 M_xdy 和 M_ydx 在板弯曲时所作的功而得到。由于单元体的侧面保持为平面，因此力矩 M_xdy 所作的功等于力矩与对应的侧面在弯曲后扭转的角度的乘积之半。$-\frac{1}{2} \frac{\partial^2 w}{\partial x^2} dx dy$ 代表板在 xz 平面内的曲率，因此对于力矩 M_xdy 的作用为 $-\left(\frac{\partial^2 w}{\partial x^2}\right) dx dy$，而这些力矩所作的功为

$$-\frac{1}{2} M_x \frac{\partial^2 w}{\partial x^2} dx dy.$$

对于由力矩 M_ydx 所作的功也可得一类似的式子。于是，力矩所作的总功，等于单元体所储藏的应变能，即为

$$dV = -\frac{1}{2} \left(M_x \frac{\partial^2 w}{\partial x^2} + M_y \frac{\partial^2 w}{\partial y^2} \right) dx dy$$

将表示力矩的式(37)和(38)代入，单元体的应变能即可写作如下形式:

$$dV = \frac{1}{2} P \left[\left(\frac{\partial^2 w}{\partial x^2} \right)^2 + \left(\frac{\partial^2 w}{\partial y^2} \right)^2 + 2\nu \frac{\partial^2 w}{\partial x^2} \frac{\partial^2 w}{\partial y^2} \right] dx dy. \quad (a)$$

在纯弯曲情况下，由于板曲面各处的曲率为常数，因此在式 (a) 中以板的面积 A 代替面积元 $dx dy$，即得板的总应变能:

$$V = \frac{1}{2} P A \left[\left(\frac{\partial^2 w}{\partial x^2} \right)^2 + \left(\frac{\partial^2 w}{\partial y^2} \right)^2 + 2\nu \frac{\partial^2 w}{\partial x^2} \frac{\partial^2 w}{\partial y^2} \right]. \quad (47)$$

如 x 和 y 的方向与主弯曲面不重合，于单元体的侧面（图 20）上不仅作用有弯矩 M_xdy 和 M_ydx，而且有扭矩 M_xdy 和 M_ydx。由弯矩所产生的应变能仍然以式 (a) 表示。在求由扭矩 M_xdy 所产生的应变能的式子时我们注意到，相应的扭转角等于斜率 $\partial w/\partial y$ 对 x 的变化率以 dx；所以由 M_xdy 所产生的应变能

- 47 -
应用式(43)，它就化为

$$
\frac{1}{2} D (1 - \nu) \left(\frac{\partial^2 w}{\partial x \partial y} \right)^2 dxdy.
$$

力矩 $M_{xy}dx$ 也将产生相同数量的应变能，所以由此二扭矩所生的应变能为

$$
D (1 - \nu) \left(\frac{\partial^2 w}{\partial x \partial y} \right)^2 dxdy. \quad (b)
$$

由于扭矩不影响弯矩所作的功，因此板单元体的总应变能等于弯曲应变能(a)和扭矩应变能(b)的和:

$$
dV = \frac{1}{2} D \left[\left(\frac{\partial^2 w}{\partial x^2} \right)^2 + \left(\frac{\partial^2 w}{\partial y^2} \right)^2 + 2\nu \frac{\partial^2 w}{\partial x^2} \frac{\partial^2 w}{\partial y^2} \right] dxdy \\
+ D (1 - \nu) \left(\frac{\partial^2 w}{\partial x \partial y} \right)^2 dxdy,
$$

或为

$$
dV = \frac{1}{2} D \left\{ \left(\frac{\partial^2 w}{\partial x^2} + \frac{\partial^2 w}{\partial y^2} \right)^2 - 2(1 - \nu) \right\} \times \left[\frac{\partial^2 w}{\partial x^2} \frac{\partial^2 w}{\partial y^2} - \left(\frac{\partial^2 w}{\partial x \partial y} \right)^2 \right] dxdy. \quad (48)
$$

以板的面积 A 代表面积元 $dxdy$，即得整个板的应变能。以后式(48)将应用在比较复杂的板的弯曲问题中。

13. 前述公式在应用上的限制

在讨论受纯弯曲的板的应力分布时，曾假设板的中曲面即为中性面（第 10 节），只有在受弯曲板的中曲面是可展曲面时，才能严格满足此条件。例如，在研究板弯曲或柱形面的纯弯曲时，前述理论在应用上所受的唯一限制是要求板的厚度较之于曲率半径为小量。在上一章讨论的，由侧向载荷所引起的板的柱形面弯曲问题中，要求挠度较之于板的宽度为小量，因为只有在这个条件下，用以表示曲率的近似式才是足够的精确的。
如果板被弯曲成非可展曲面，则在弯曲时，中面将有拉伸或压缩。因此，只有在对应于中曲面拉伸或压缩的应力较之于式（44）所给出的最大弯曲应力为小量，或者换句话说，中曲面的应变较之于最大弯曲应变 $h/2r_{	ext{min}}$ 为小量时，前所导出的纯弯曲理论才是足够精确的。这个要求对板的挠度又加了一个限制，也就是板的挠度 ω 较之于板厚 h 必须为小量。

为了证明这一点，我们研究在边界上承受均匀分布力矩 M 的圆形板的弯曲。对于小挠度，挠曲面是球形的，其半径 r 由式（46）确定。用 AQB（图26）表示圆形板在弯曲后的径向截面，设 a 为弯曲前的外半径，θ 为中点点的挠度。先假设板的中曲面在半径方向没有拉伸或压缩。在此情况下，弧 $O\beta$ 的长度必须等于板原来的外半径 a。于是在弯曲后，板所弯成的角 φ 和半径 b 可由下列各式给出:

$$v = \frac{a}{r}, \quad b = r \sin \varphi$$

显然，这样假设的板的弯曲包含有中曲面的周向压缩应变。在板的边界上这种应变的大小为

$$\varepsilon = \frac{a - b}{a} = \frac{r \varphi - r \sin \varphi}{r \varphi}.$$ \hspace{1cm} (a)

对于小挠度，可取

$$\sin \varphi = \varphi - \frac{\varphi^3}{6},$$

将此式代入式 (a)，即得

$$\varepsilon = \frac{\varphi^3}{6}.$$ \hspace{1cm} (b)

为了将这个应变表示成最大挠度 θ 的函数，我们注意到

$$\theta = r(1 - \cos \varphi) \approx \frac{r \varphi^2}{2},$$
所以

\[\varphi^1 = \frac{2\delta}{r}. \]

将此式代入式 (b)，即得

\[e = \frac{\delta}{3r}. \] (49)

这式表示在板的边界上周向应变的上限。在求此值时假设径向应变为零。在实际情况中，径向应变不等于零，而周向压缩的量比式 (49) 所给出的要小。1)

由以上讨论可知，如式 (49) 所给出的应变较之于最大弯曲应力 \(h/2r \) 为小量，或者换句话说，如挠度 \(\delta \) 较之于板厚 \(h \) 为小量，那么在第 10 节中根据受弯板的中曲面为中性面的假设所得到的各式子是精确的。在二主曲率不相等的纯弯曲的这个比较一般的情况下，可以得到类似的结论2)。使这些结论一般化，我们可以这样说：如板由它的初始平面或由一真正的可展曲面所量起的挠度较之于板厚为小量，则第 10 节的各式应用起来常常是足够精确的。

14. 夹支板的热应力

对于板弯曲成球形面的式 (46)，可以用来计算某些非均匀受热情况下板中的热应力。假设温度在板厚方向的变化规律是线性的，而且温度在与板的表面平行的每一平面上是常数。在此情况下，如温度是相对中曲面的温度来计量的，则可如由温度所引起板的膨胀和收缩，与高中曲面的距离成正比。这样就得到与板形成球形的纯弯曲时完全一样的状况，如非均匀受热板的弯边是完全自由的，则板将弯曲成球面3)。令 \(\alpha \) 为板材料的线性膨胀系数，用 \(t \) 代表板的上表面和下表面的温度差。最大热膨胀和中曲面热膨胀的差是 \(\alpha t/2 \)；非均匀受热所引起的曲率则可以从式

\[\frac{\alpha t}{2} = \frac{h}{2r}. \] (a)

1) 这个问题将在以后讨论；参看第 96 节。
2) 参阅 Kelvin 和 Tait，"Treatise on Natural Philosophy"，vol. 1，part 2，第 172 页。
3) 假设板的挠度较之于板厚为小。
求得，由此式求出

\[
\frac{1}{\nu} = \frac{\alpha t}{h}. \tag{50}
\]

如果板的边缘是自由的，而且挠度较之于板厚为小量，则板的这种弯矩不会产生任何应力。

现在假设板的中曲面可以自由伸张，但边缘夹支，不能自由旋转。在这样的情况下，非均匀受热将在板的边缘上产生均匀分布的弯矩。此分布弯矩的大小恰好使非均匀受热所产生的曲率 [式 (50)] 被抵消，因为只有这样，夹支边的边界条件才能满足。用式 (46) 表示这些弯矩所产生的曲率，则用以计算作用在边界上每单位长的力矩 M 的大小的式子是

\[
\frac{M}{D(1 + \nu)} = \frac{\alpha t}{h}. \tag{b}
\]

由此式得

\[
M = \frac{\alpha t D (1 + \nu)}{h}. \tag{50b}
\]

其相应的最大应力可由式 (44) 求得，等于

\[
\sigma_{\text{max}} = \frac{6M}{h^2} = \frac{6\alpha t D (1 + \nu)}{h^3}. \tag{51}
\]

将表示 D 值的式 (3) 代入，最后可得

\[
\sigma_{\text{max}} = \frac{\alpha t E}{2(1 - \nu)}. \tag{51}
\]

显然，此应力与热膨胀系数 α，板的上下表面温度差 t，以及弹性模数 E 都成正比。公式 (51) 中不包含板的厚度 h；但由于温度差 t 通常与板厚成正比，所以厚板的热应力比薄板要大。

1）由此可见，纯弯曲对整个板的曲率的影响与温度梯度对曲率的影响等价。但符号相反。因而，如在最终完全保持为平面，固支边条件在沿任意给定的边界上显然都是适合的。又因在这种情况下，各个点上和各个方向的弯矩是相同的，所以沿这给定边界上的固支弯矩常常用同一式子 (b) 表示。
第三章
圆形板的对称弯曲

15. 承受侧向载荷的圆形板的对称弯曲微分方程

如果作用在圆形板上的载荷，对于通过中心并垂直于圆板的轴是对称分布的，则板的中面所弯曲成的挠度曲面也是相对的。所有与板中心等距离的点的挠度是相同的，因此只需研究一个通过对称轴的径向截面的挠度就够了（图 27）。取弯曲前板的中平面的中心为坐标原点，作为板的中面上各点离对称轴的距离，为方向向下的挠度。在任一点，挠度曲面的最大斜度等于

\[\frac{d^2 w}{dr^2} = \frac{d^2 \varphi}{dr^2} \]

式中 \(\varphi \) 是 A 点上挠度曲面的法线和对称轴 OB 的微小夹角。由对称性可知，1/\(r \) 是 A 点处挠度曲面的主曲率之一。第二主曲率是在通过法线 AB 并垂直于 \(rz \) 平面的截面内。对于中面上所有相距对称轴为 \(r \) 的点，都可作 AB 那样的法线，这些法线形成一锥顶为 B 的圆锥面。由此可知长度 AB 即为第二主曲率半径，我们用 \(r_t \) 表示它。因而从图上可以看出

1）圆形板弯曲问题的解是 Poisson 给出的；参阅 "Memoirs of the Academy"，第 8 卷，巴黎，1829 年。
\[\frac{1}{r_i} = -\frac{1}{r} \frac{\partial w}{\partial r} + \frac{\varphi}{\varphi} \cdot (b) \]

有了表示主曲率的式 (a) 和 (b)，如假设对于纯弯曲线求得的弯矩与
曲率的关系式 (37) 和 (38) 仍然成立，就能求得对应的弯矩值 \(^1\)。应用这些关系，即得

\[M_r = -D \left(\frac{d^2 w}{dr^2} + \frac{v}{r} \frac{\partial w}{\partial r} \right) = D \left(\frac{\partial \varphi}{\partial r} + \frac{v}{r} \varphi \right) \quad (52) \]

\[M_r = -D \left(\frac{1}{r} \frac{\partial w}{\partial r} + \nu \frac{d^2 w}{dr^2} \right) = D \left(\frac{\varphi}{r} + \nu \frac{d\varphi}{dr} \right) \quad (53) \]

如同以前，式中 \(M_r \) 和 \(M_r \) 表示每单位长上的弯矩。\(M_r \) 作用在板的周向截面上，它为由顶点为 \(B \) 的锥面所作的截面；而 \(M_r \) 作用在
板的径向截面 \(r = \) 上。

方程 (52) 和 (53) 只有一个变量，\(w \) 或 \(\varphi \)。由板单元体的平衡可以求得它。例如在图 28 中，以二圆柱截面 \(ab, cd \) 和二径向截面 \(ad, bc \) 从板上截取一单元体。作用在单元体侧面 \(cd \) 上的力矩为

\[M_r + r d\theta \]

\(\text{图 28} \)

\(^1\) 用顶点为 \(B \) 的圆锥面在板上截取与球面垂直的正截面；这截面上的剪应力对于
扭度的影响可以忽略不计。如果圆的厚度与板的直径比较为一量，这种影响
是不大的。第 20 节中将进一步讨论这问题。只要载荷不是高度集中的，忽略
垂直于板面的应力也是允许的（参考第 72 页）。
作用在侧面 ab 上相应的力矩为

$$
(M_r + \frac{dM_r}{dr} dr)(r + dr)d\theta.
$$

(d)

单元体侧面 ad 和 bc 上的力矩各为 $M_r dr$，此二力矩的合力矩作用在 rOz 平面内，等于

$$
M_r dr d\theta.
$$

(e)

由对称性可知，在板的径向截面上，作用在单元体上的剪力必须为零，但在周向截面上，例如单元体的侧面 cd 和 ab 上，剪力通常是存在的。用 Q 代表半径为 r 的周向截面上每单位长的剪力，则作用在单元体侧面 cd 上的总剪力为 $Q r d\theta$，而作用在侧面 ab 上的相应剪力为

$$
\left[Q + \left(\frac{dQ}{dr} \right) dr \right] (r + dr)d\theta.
$$

忽略不计单元体二相对侧面上剪力的微小差值，我们可说这些剪力形成一作用在 rz 平面内的力矩，等于

$$
Q r d\theta d\theta.
$$

(f)

采用适当的正负号，将力矩 (e), (d), (e) 和 (f) 加在一起，并把单元体上的外载荷所产生的力矩当作高阶小量忽略不计，就能得到下列单元体 $abcd$ 的平衡方程：

$$
(M_r + \frac{dM_r}{dr} dr)(r + dr)d\theta - M_r rd\theta - M_r r dr d\theta
$$

$$
+ Q r d\theta dr = 0,
$$

忽略高阶小量，由此式得到：

$$
M_r + \frac{dM_r}{dr} r = M_r + Q r = 0.
$$

(g)

用表示 M_r 和 M_r 的二式 (52) 和 (53) 代入，方程 (g) 化为

$$
\frac{d^2\varphi}{dr^2} + \frac{1}{r} \frac{d\varphi}{dr} - \frac{\varphi}{r^2} = -\frac{Q}{D},
$$

(54)

或用另一形式表示:

$$
\frac{d^3\omega}{dr^3} + \frac{1}{r} \frac{d^2\omega}{dr^2} - \frac{1}{r^2} \frac{d\omega}{dr} = \frac{Q}{D}.
$$

(55)
在任一承受对称载荷的圆形板的特殊情形中，剪力 \(Q \) 很容易求得，它等于分布在半径为 \(r \) 的圆周内的载荷除以 \(2\pi r \)；有了 \(Q \)，方程 (54) 或 (55) 可用以求出板的斜度 \(\varphi \) 和挠度 \(w \)。如将此二方程化成下列形式：

\[
\frac{d}{dr} \left[\frac{1}{r} \frac{d}{dr} \left(r \varphi \right) \right] = -\frac{Q}{D}, \tag{56}
\]

\[
\frac{d}{dr} \left[\frac{1}{r} \frac{d}{dr} \left(r \frac{dw}{dr} \right) \right] = \frac{Q}{D}, \tag{57}
\]

它们的积分可以简化。如将 \(Q \) 表示成 \(r \) 的函数，则在每一个别问题中，积分此二方程是毫无困难的。

有时候，将方程 (57) 的右端表示成板上分布载荷强度 \(q \) 的函数是有方便的。为此，在方程的两边乘上 \(2\pi r \)。由于

\[Q2\pi r = \int_0^r q2\pi r dr, \]

得到

\[r \frac{d}{dr} \left[r \frac{d}{dr} \left(r \frac{dw}{dr} \right) \right] = \frac{1}{D} \int_0^r qr dr. \]

将此方程两边对 \(r \) 微分，并除以 \(r \)，最后可得：

\[\frac{1}{r} \frac{d}{dr} \left\{ r \frac{d}{dr} \left[\frac{1}{r} \frac{d}{dr} \left(r \frac{dw}{dr} \right) \right] \right\} = \frac{q}{D}. \tag{58} \]

如载荷强度 \(q \) 已表示成 \(r \) 的函数，此方程的积分是容易的。

16. 承受均匀载荷的圆形板　如果半径为 \(a \) 的圆形板承受着均匀分布在整个板的表面上，强度为 \(q \) 的载荷，则在距离板中心为 \(r \) 地方的剪力 \(Q \) 的大小由方程

\[2\pi r Q = \pi r^2 q \]

决定，由此可得

\[Q = \frac{qr}{2}. \tag{a} \]

将 (a) 代入方程 (57)，即得

\[\frac{d}{dr} \left[\frac{1}{r} \frac{d}{dr} \left(r \frac{dw}{dr} \right) \right] = \frac{qr}{2D}. \tag{b} \]
积分一次，为

$$\frac{1}{r} \frac{d}{dr} \left(r \frac{dw}{dr} \right) = \frac{qr^4}{4D} + C_1,$$

式中 C_1 为积分常数，它将在以后由板的中心和边缘的条件求得。用 r 乘方程 (c) 的两边，并作第二次积分，则得

$$r \frac{dw}{dr} = \frac{qr^4}{16D} + \frac{C_1 r^2}{2} + C_2$$

和

$$\frac{dw}{dr} = \frac{qr^3}{16D} + \frac{C_1 r^2}{2} + \frac{C_2}{r}.$$ \hspace{1cm} (59)

再积分一次，求得

$$w = \frac{qr^4}{64D} + \frac{C_1 r^2}{4} + C_1 \log \frac{r}{a} + C_3.$$ \hspace{1cm} (60)

现在对各种特殊情形计算积分常数。

夹支圆形板

在这种情况下，当 $r = 0$ 和 $r = a$ 时，挠度曲面在半径方向的斜度必须为零。所以由方程 (59) 有

$$\left(\frac{qr^3}{16D} + \frac{C_1 r^2}{2} + \frac{C_2}{r} \right)_{r=a} = 0,$$

$$\left(\frac{qr^3}{16D} + \frac{C_1 r^2}{2} + \frac{C_2}{r} \right)_{r=0} = 0.$$

由此二方程的第一式可知 $C_2 = 0$。将此值代入第二式，即得

$$C_1 = -\frac{qa^2}{8D}.$$

在 C_1, C_2 为此二值时，方程 (59) 给出如下的斜度表达式:

$$\varphi = -\frac{dw}{dr} = \frac{qr}{16D} (a^2 - r^2);$$ \hspace{1cm} (61)

式 (60) 化为

$$w = \frac{qr^4}{64D} - \frac{qa^2 r^2}{32D} + C_3.$$ \hspace{1cm} (d)

在板的边缘上，挠度为零。所以

$$-\frac{qa^4}{64D} - \frac{qa^4}{32D} + C_3 = 0.$$

* 56 *
从而得到
$$C_3 = \frac{qa^4}{64D^*}$$
代入式 (49), 即得
$$w = \frac{q}{64D^*} (a^2 - r^2)^2.$$ \hspace{1cm} (62)
最大挠度是在板的中心，由式 (62) 可知等于
$$w_{\text{max}} = \frac{qa^4}{64D^*}.$$ \hspace{1cm} (63)
这个挠度等于承受均匀载荷，弯曲刚度等于 D, 长度等于圆板直径、单位宽度的弯板支板条的中心挠度的 3/8。

有了表示斜度的式 (61), 现在可用式 (52) 和 (53) 来求矩 M_r 和 M_s。由此可得
$$M_r = \frac{q}{16} [a^2 (1 + v) - r^2 (3 + v)],$$ \hspace{1cm} (64)
$$M_s = \frac{q}{16} [a^2 (1 + v) - r^2 (1 + 3v)].$$ \hspace{1cm} (65)
在此二式中代入 $r = a$, 即求得板边界上的弯矩:
$$(M_r)_{r=a} = -\frac{qa^2}{8}, \quad (M_s)_{r=a} = -\frac{qa^2}{8}.$$ \hspace{1cm} (65)
在板的中心, $r = 0$,
$$M_r = M_s = \frac{qa^4}{16} (1 + v)$$ \hspace{1cm} (66)
由式 (65) 和 (66) 可见, 最大应力是在板的边界上:
$$(\sigma_r)_{\text{max}} = -\frac{6M_r}{h^2} = \frac{3}{4} \frac{qa^4}{h^2}.$$ \hspace{1cm} (66)
应力 σ_r 和 σ_s 在板下面上沿半径的变化表示在图 29 上。

简支圆形板 我们再加法计算这种板的挠度，已经证明
在边缘夹支的情况下，作用在边缘上的弯矩为 $M_r = -qa^2/8$ (图 30a)， 如将这种情况与如图 30b 所示的纯弯曲情况迭加，则
在边缘上的弯矩 M_r 将被消去，从而得到边缘简支板的弯曲。
式(46)或第11节的式(e)可知，在弯矩为 $qa^2/8$ 的纯弯矩情形中，挠度曲面为

$$w = -\frac{qa^2}{16D(1+\nu)} (a^2 - r^2).$$

将此挠度和简支圆形板的挠度(62)相加，即得简支圆形板的挠度:

$$w = \frac{q(a^2 - r^2)}{64D} \left(\frac{5 + \nu}{1 + \nu} a^2 - r^2\right).$$

(67)
将 $r = 0$ 代入此式，即得板的中心挠度：

$$\omega_{mx} = \frac{(5 + \nu)qa^4}{64(1 + \nu)D}$$ \hspace{1cm} (68)

当 $\nu = 0.3$ 时，此挠度约为夹支圆形板中心挠度的 4 倍。

计算简支圆形板的弯矩时，须将常数弯矩 $qa^2/8$ 和以前对夹支板计算所得的弯矩 (63) 及 (64) 相加。所以在边缘简支的情况下：

$$M_x = \frac{q}{16} (3 + \nu)(a^2 - r^2), \hspace{1cm} (69)$$

$$M_r = \frac{q}{16} [a^2 (3 + \nu) - r^2(1 + 3\nu)]. \hspace{1cm} (70)$$

最大弯矩是在板的中心，等于

$$M_r = M_x = \frac{3 + \nu}{16} qa^2.$$

相应的最大应力为：

$$(\sigma_r)_{max} = (\sigma_x)_{max} = \frac{6M_r}{h^2} = \frac{3(3 + \nu)qa^2}{8h^2}$$ \hspace{1cm} (71)

为了得到离中心任一距离为 r 处的最大应力，须将对夹支板计算所得的应力与常数值 $\frac{6}{h^2} \frac{qa^2}{8}$ 相加。此常数相当于图 30b 所示纯弯曲的最大应力。在图 29 中由过 O 点的水平轴量取纵坐标，也能得到同样的应力值。可以看出，将边缘夹支起来，我们可以得到板中较好的应力分布。

17. 中心有圆孔的圆形板 首先讨论沿内外边缘分别有均匀分布力矩 M_1 和 M_2 的板的弯曲 (图 31)。在此情况下，剪力 Q
为零，因而方程(57)化为
\[
\frac{d}{dr} \left[\frac{1}{r} \frac{d}{dr} \left(r \frac{dw}{dr} \right) \right] = 0.
\]
将此方程积分两次，则得
\[
- \frac{dw}{dr} = \varphi = \frac{C_1 r}{2} + \frac{C_2}{r}.
\] (a)
再积分一次，即求得挠度
\[
w = - \frac{C_1 r^2}{4} - C_2 \log \frac{r}{a} + C_3.
\] (b)
积分常数 C_1, C_2 和 C_3 由边界条件决定。将式 (a) 代入方程(52)，即得
\[
M_r = D \left[\frac{C_1}{2} - \frac{C_2}{r^2} + \nu \left(\frac{C_1}{2} + \frac{C_2}{r^2} \right) \right].
\] (c)
在 $r = b$ 时，此弯矩应等于 M_1，在 $r = a$ 时，此弯矩应等于 M_2，所以决定常数 C_1 和 C_2 的方程为
\[
D \left[\frac{C_1}{2} (1 + \nu) - \frac{C_2}{b^2} (1 - \nu) \right] = M_1,
\]
\[
D \left[\frac{C_1}{2} (1 + \nu) - \frac{C_2}{a^2} (1 - \nu) \right] = M_2.
\]
由此可得:
\[
C_1 = \frac{2(a^2 M_2 - b^2 M_1)}{(1 + \nu) D (a^2 - b^2)}, \quad C_2 = \frac{a^2 b^2 (M_1 - M_2)}{(1 - \nu) D (a^2 - b^2)}. \] (d)
为了决定式 (b) 中的常数 C_3，必须考虑板边缘处的挠度。例如，设图 31 中的板在沿外边缘有支承。因此当 $r = a$ 时，$w = 0$。从而由 (b) 求得
\[
C_3 = \frac{C_1 a^2}{4} = \frac{a^2 (a^2 M_2 - b^2 M_1)}{2 (1 + \nu) D (a^2 - b^2)}.
\]
在 $M_2 = 0$ 的特殊情况下，得到:
\[
C_1 = -\frac{2 b^2 M_1}{(1 + \nu) D (a^2 - b^2)}, \quad C_2 = -\frac{a^2 b^2 M_1}{(1 - \nu) D (a^2 - b^2)},
\]
\[
C_3 = -\frac{a^2 b^2 M_1}{2 (1 + \nu) D (a^2 - b^2)}.
\]
而表示斜度和挠度的式 (a) 和 (b) 化成

\[\frac{dw}{dr} = \frac{a^2 b^2 M_1}{D(1-\nu)(a^2-b^2)} \left(\frac{1}{r} + \frac{1-\nu}{1+\nu} \frac{r}{a^2} \right), \quad (72) \]

\[\omega = -\frac{b^2 M}{2(1+\nu)D(a^2-b^2)}(a^2-r^2) \]

\[\quad + \frac{a^2 b^2 M_1}{(1-\nu)D(a^2-b^2)} \log \frac{r}{a}. \quad (73) \]

作为第二个例子，我们研究沿内边缘作用有均匀分布剪力 \(Q_0 \)的板的弯曲问题 (图 32)。在半径为 \(r \) 的圆周的单位长度上，剪力

![图 32](image)

等于

\[Q = Q_0 \frac{a}{r} \times \frac{P}{2\pi r}, \]

式中 \(P = 2\pi b Q_0 \) 代表作用在板的内边缘上的总载荷。将此式代入方程 (57) 并进行积分，即得

\[\frac{dw}{dr} = \frac{Pr}{8\pi D} \left(2 \log \frac{r}{a} - 1 \right) - \frac{C_1 r}{2} - \frac{C_2}{r} \quad (c) \]

和

\[\omega = \frac{Pr^2}{8\pi D} \left(\log \frac{r}{a} - 1 \right) - \frac{C_1 r^2}{4} - \frac{C_2 \log r}{a} + C_3. \quad (d) \]

积分常数由边界条件来计算。假设板是沿外边缘简支的，则有

\[(w)_{r=a} = 0, \quad \frac{d}{dr} \left(\frac{1}{r} \frac{dw}{dr} \right)_{r=a} = 0. \quad (g) \]

在板的内边缘上，有条件

\[-D \left(\frac{d^2 w}{dr^2} + \frac{\nu}{r} \frac{dw}{dr} \right)_{r=b} = 0. \quad (h) \]
将式 (e) 和 (i) 代入式 (g) 和 (h)，即得

$$C_1 = \frac{P}{4\pi D} \left(\frac{1 - \nu}{1 + \nu} - \frac{2b^2}{a^2 - b^2} \log \frac{b}{a} \right),$$

$$C_2 = -\frac{(1 + \nu)P}{(1 - \nu)4\pi D} \frac{a^2 b^2}{a^2 - b^2} \log \frac{b}{a}, \quad (i)$$

$$C_3 = \frac{Pa^4}{8\pi D} \left(\frac{1}{2} + \frac{1}{1 + \nu} - \frac{b^4}{a^2 - b^2} \log \frac{b}{a} \right).$$

将这些常数的值代入式 (c) 和 (f)，就得到图 32 所示的板在任一节点上的斜度和挠度。在以后的讨论中需要知道板在内边缘上的斜度，它的值为

$$\left(\frac{dw}{dr} \right)_{r=b} = \frac{Pb}{8\pi D} \left[2 \log \frac{b}{a} - 1 - \frac{1 - \nu}{1 + \nu} \right. \left. + \frac{2b^2}{a^2 - b^2} \log \frac{b}{a} \left(1 + \frac{a^2}{b^2} \frac{1 + \nu}{1 - \nu} \right) \right]. \quad (i)$$

在 b 等于无限小的极限情况下，$b^4 \log (b/a)$ 趋于零，此时积分常数化成

$$C_1 = \frac{1 - \nu}{1 + \nu} \frac{P}{4\pi D}, \quad C_2 = 0, \quad C_3 = \frac{Pa^4}{8\pi D} \left(1 + \frac{1}{2} \frac{1 - \nu}{1 + \nu} \right).$$

将这些值代入式 (f)，即得

$$w = \frac{P}{8\pi D} \left[\frac{3 + \nu}{2(1 + \nu)} \left(a^2 - r^2 \right) + r^2 \log \frac{r}{a} \right]. \quad (k)$$

此式与中心受载而无孔的圆形单板的挠度是一致的 [参看 (89) 式]。因此非常小的中心孔不影响板的挠度。将图 31 和图 32 所示的载荷迭加，即能得到沿外边承受均匀分布载荷，沿内边是固支的板的问题的解 (图 33)。在此情况下，固支边缘上的斜度为零，因此应用

![图 33](attachment:image.png)
表达式 (72) 和 (j)，即得如下确定固支边上的弯矩 M_1 的方程：

$$
- \frac{a^2 b^3 M_1}{D(1 - \nu)(a^2 - b^2)} \left(\frac{1}{b^2} - \frac{1 - \nu}{1 + \nu a^2} \right)
= \frac{P_0}{8\pi D} \left[2 \log \frac{b}{a} - 1 - \frac{1 - \nu}{1 + \nu} \right]
+ \frac{2b^2}{a^2 - b^2} \log \frac{b}{a} \left(1 + \frac{a^2}{b^2} \frac{1 + \nu}{1 - \nu} \right).
$$

由此式可得：

$$
M_1 = \frac{P}{4\pi} \left[(1 + \nu) \frac{a^2}{b^2} + 1 - \nu \right] \left[(1 - \nu) \left(\frac{a^2}{b^2} - 1 \right) \right]
+ 2(1 + \nu) \frac{a^2}{b^2} \log \frac{a}{b}.
\tag{74}
$$

有了表示弯矩 M_1 的式子，迭加式 (73) 和 (f)，式 (f) 中的积分常数由式 (i) 给出，即得此板的挠度。

用同样的迭加法，也能对图 34 所示的问题求解。图中的板沿外边缘简支，并承受均匀分布载荷。在这个问题中，我们应用上节对中心无孔的板所求得的解。考虑用半径为 b 并垂直于板的柱面对板所作的截面，我们求得在此截面上作用有剪力 $Q = \pi q b^2 / 2 \pi b = q b / 2$，以及强度[参看式 (69)] 为

$$
M_s = \frac{q}{16} (3 + \nu) (a^2 - b^2)
$$

的弯矩。所以为了求得图 34 所示问题的应力和挠度，应当把由图 35 表示的弯矩和剪力所产生的应力和挠度，迭加到对于无孔板所求得的应力和挠度上去。前者各量可由式 (72)、(73)、(e) 和 (f) 求得。但要注意所用剪力和弯矩的符号。
若干有实际重要意义的问题表示在图36中。所有这些问题中的最大应力，由形式如

\[\sigma_{\text{max}} = k \frac{q a^2}{h^2} \quad \text{或} \quad \sigma_{\text{max}} = \frac{kP}{h^2} \] (75)

的公式给出。若载荷均匀分布在板面上，则应用第一式；若载荷集中在边缘上，则用第二式。对各种比值 \(a/b \) 和泊松比 \(\nu = 0.3 \) 计算所得的因子 \(k \) 的数值在表3中给出\(^1\).

图 36

\(^1\) 对情况1至情况8的计算是A. M. Wahl和G. Lobo作出的，Trans. ASME，vol. 52，1930。关于承受对称荷载，以及具有孔和不具有孔的圆形板的大多数数据可在以下著作中找到：K. Beyer，“Die Statik im Stahlbetonbau，” 第2版，第652页，柏林，1948年。
<table>
<thead>
<tr>
<th>a/b</th>
<th>1.25</th>
<th>1.5</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>k_1</td>
<td>k_2</td>
<td>k_1</td>
<td>k_1</td>
<td>k_1</td>
<td>k_1</td>
</tr>
<tr>
<td>1</td>
<td>1.10</td>
<td>0.341</td>
<td>1.26</td>
<td>0.519</td>
<td>1.48</td>
<td>0.672</td>
</tr>
<tr>
<td>2</td>
<td>0.66</td>
<td>0.292</td>
<td>1.19</td>
<td>0.491</td>
<td>2.04</td>
<td>0.902</td>
</tr>
<tr>
<td>3</td>
<td>0.135</td>
<td>0.0923</td>
<td>0.410</td>
<td>0.0183</td>
<td>0.014</td>
<td>0.0938</td>
</tr>
<tr>
<td>4</td>
<td>0.122</td>
<td>0.00345</td>
<td>0.336</td>
<td>0.0313</td>
<td>0.74</td>
<td>0.125</td>
</tr>
<tr>
<td>5</td>
<td>0.090</td>
<td>0.00770</td>
<td>0.273</td>
<td>0.00620</td>
<td>0.71</td>
<td>0.0329</td>
</tr>
<tr>
<td>6</td>
<td>0.115</td>
<td>0.0129</td>
<td>0.220</td>
<td>0.0064</td>
<td>0.405</td>
<td>0.0237</td>
</tr>
<tr>
<td>7</td>
<td>0.592</td>
<td>0.134</td>
<td>0.976</td>
<td>0.414</td>
<td>1.440</td>
<td>0.664</td>
</tr>
<tr>
<td>8</td>
<td>0.227</td>
<td>0.00510</td>
<td>0.428</td>
<td>0.0249</td>
<td>0.753</td>
<td>0.0877</td>
</tr>
<tr>
<td>9</td>
<td>0.194</td>
<td>0.00504</td>
<td>0.320</td>
<td>0.0242</td>
<td>0.454</td>
<td>0.0810</td>
</tr>
<tr>
<td>10</td>
<td>0.105</td>
<td>0.00199</td>
<td>0.259</td>
<td>0.0139</td>
<td>0.480</td>
<td>0.0575</td>
</tr>
</tbody>
</table>

在同样这些问题中，最大挠度由形式如

$$w_{max} = k_1 \frac{qa^4}{EH^3} \quad \text{或} \quad w_{max} = k_1 \frac{Pa^3}{EH^3}$$

(76)

的公式给出。系数 k_1 也在表 3 中给出。

当比值 a/b 接近于 1 时，把圆板在半径方向切出的长条当作梁来研究（梁的边界条件和载荷同实际板的情况一样），就能精确地求得式(75)和(76)中系数 k 和 k_1 的值。此时弯矩 M，对于弯曲的影响是完全忽略不计的。

18. 承受均匀载荷的圆形板 我们首先讨论沿半径为 b

的圆周上有均匀分布载荷的简支圆板的问题（图 37a）。把这个板

![Image](image-url)
分成两部分，如图 37b 和图 37c 所示，就能看出里面这部分板是处于由均匀分布弯矩 M_1 所产生的纯弯曲的状况，而外面这部分板是受弯矩 M_1 和剪力 Q_1 的弯曲。用 P 代表所受的裁荷荷，即得

$$Q_1 = \frac{P}{2x_b^a}.$$ \hspace{1cm} (a)

弯矩 M_1 的大小可用沿圆周 $r = b$ 上的连续条件求得。由这个条件可知，板的内外两部分在圆周 $r = b$ 处斜度相同。应用上节的式（72）和（i），求得外面这部分板在内边缘上的斜度等于

$$\left(\frac{dw}{dr}\right)_{r=b} = \frac{a^2 b^2 M_1}{D(1-v)(a^2-b^2)} \left(\frac{1}{b} + \frac{1-v}{1+v} \frac{b}{a^2}\right)$$

$$+ \frac{Pb^3}{8\pi D} \left[2 \log \frac{a}{b} - 1 - \frac{1-v}{1+v} \right]$$

$$+ \frac{2b^3}{a^2-b^2} \log \frac{b}{a} \left(1 + \frac{a^2}{b^2} \left(\frac{1+v}{1-v}\right)\right).$$ \hspace{1cm} (b)

里面这部分板弯曲成球面，它的曲率由式（46）给出。因此在边界上，相应的斜度为

$$\left(\frac{dw}{dr}\right)_{r=b} = \frac{M_1 b}{D(1+v)}.$$ \hspace{1cm} (c)

令式（b）和式（c）相等，即得

$$M_1 = \frac{(1-v)P(a^2-b^2)}{8\pi a^2} - \frac{(1+v)P \log \frac{b}{a}}{4\pi}.$$ \hspace{1cm} (d)

将此表示 M_1 的式子代入式（73），则得外面这部分板由弯矩 M_1 所引起的挠度。剪力 Q_1 所引起的挠度为从上节的式（f）求得。将此二挠度相加，得到外面这部分板的挠度：

$$w = \frac{P}{8\pi D} \left[(a^2-b^2) \left(1 + \frac{1}{2} \frac{1-v}{1+v} \frac{a^2-b^2}{a^2}\right)\right.$$

$$+ (b^2 + r^2) \log \frac{r}{a}\left.\right].$$ \hspace{1cm} (77)

将 $r = b$ 代入此式，即得载荷作用处的挠度：

$$\left(\frac{dw}{dr}\right)_{r=b} = \frac{P}{8\pi D} \left[(a^2-b^2) \left(1 + \frac{1}{2} \frac{1-v}{1+v} \frac{a^2-b^2}{a^2}\right) + 2b^3 \log \frac{b}{a}\right].$$ \hspace{1cm} (e)
为了求得里面这部分板的挠度，需要将这部分板在纯弯曲作用下的挠度加到挠度（e）上去。这样便得到

\[\omega = \frac{P}{8\pi D} \left[(a^2 - b^2) \left(1 + \frac{1}{2} \frac{1 - \nu}{1 + \nu} \frac{a^2 - b^2}{a^2} \right) + 2b^2 \log \frac{b}{a} \right] \\
+ \frac{b^2 - r^2}{2D(1 + \nu)} \left[\frac{(1 - \nu)P(a^2 - b^2)}{8\pi a^2} - \frac{(1 + \nu)P \log \frac{b}{a}}{4\pi} \right] \\
= \frac{P}{8\pi D} \left[(b^2 + r^2) \log \frac{b}{a} + r^2 - b^2 + (a^2 - r^2) \right] \\
\times \frac{(3 + \nu)a^2 - (1 - \nu)b^2}{2(1 + \nu)a^2} = \frac{P}{8\pi D} \left[(b^2 + r^2) \log \frac{b}{a} \\
+ (a^2 - b^2) \frac{(3 + \nu)a^2 - (1 - \nu)b^2}{2(1 + \nu)a^2} \right]. \quad (78) \]

如板的外边是固支，则把式(77)与(78)所表示的挠度和沿板的外边（图38）有均匀分布的弯矩 \(M_2 \)（它的大小恰好使挠度

![Diagram](image)

图 38

曲面在外边缘上的斜度等于零）所产生的挠度迭加，就能求得这种板的挠度。由式(77)可知，简支板在边缘处的斜度为

\[\left(\frac{d\omega}{dr} \right)_{r=a} = -\frac{P}{4\pi D} \frac{1}{1 + \nu} \frac{a^2 - b^2}{a}. \quad (f) \]

弯矩 \(M_2 \) 所产生的斜度为

\[\left(\frac{d\omega}{dr} \right)_{r=a} = \frac{M_2 a}{D(1 + \nu)}. \quad (g) \]

令式 (f) 与 (g) 的和等于零，即得

\[M_2 = \frac{P}{4\pi} \frac{a^2 - b^2}{a^2}. \]
此弯矩产生的挠度为

$$w = \frac{M_2}{D(1 + \nu)} \frac{r^2 - a^2}{2} = \frac{P}{8\pi D(1 + \nu)} \frac{a^2 - b^2}{a^2}(r^2 - a^2).$$ \quad (b)$$

将这挠度与二式(77)和(78)所表示的挠度相加，就得到固定外外面这部分的挠度

$$w = \frac{P}{8\pi D} \left[(a^2 - r^2) \frac{a^2 + b^2}{2a^2} + (b^2 + r^2) \log \frac{r}{a} \right]. \quad (79)$$

以及里面这部分的挠度

$$w = \frac{P}{8\pi D} \left[(b^2 + r^2) \log \frac{b}{a} + r^2 - b^2 + \frac{(a^2 - r^2)(a^2 + b^2)}{2a^2} \right]$$

$$= \frac{P}{8\pi D} \left[(b^2 + r^2) \log \frac{b}{a} + \frac{(a^2 + r^2)(a^2 - b^2)}{2a^2} \right]. \quad (80)$$

已知沿同心圆的圆周上承受均匀分布载荷的板的挠度，那么，承受任何与中心对称的载荷的圆形板的弯曲问题，可用迭加法求解。例如，考虑载荷是在板上一个半径为e的圆内均匀分布的情形（图39）。式(77)可用来求板的不受载部分$(a > r > e)$上任一点的挠度。分布在半径为b，宽度为ab的环形面上的载荷元（参看图39）所产生的挠度，可用$P = 2\pi b q dB$代入式(77)可得。这时，为均匀载荷的强度。将此式对b作一次积分，我们得到挠度

$$w = \frac{q}{4D} \int_0^e \left\{ (a^2 - r^2) \frac{3 + \nu}{2(1 + \nu)} + r^2 \log \frac{r}{a} \right.$$

$$+ b^2 \left[\log \frac{b}{a} - \frac{(1 - \nu)(a^2 - r^2)}{2(1 + \nu)a^2} \right] \right\} b db$$

$$= \frac{qc^2}{8D} \left[\frac{3 + \nu}{2(1 + \nu)} (a^2 - r^2) + r^2 \log \frac{r}{a} \right]$$

$$+ \frac{qc^4}{16D} \left[\log \frac{r}{a} - \frac{1 - \nu}{2(1 + \nu)} \frac{a^2 - r^2}{a^2} \right].$$
或用 P 代表总载荷 $\pi c^2 q$，则得

$$
\omega = \frac{P}{16\pi D} \left\{ \frac{3 + \nu}{1 + \nu} \left(a^2 - r^2 \right) + 2r^2 \log \frac{r}{a}
+ \frac{\nu}{2} \left[\log \frac{r}{a} - \frac{1 - \nu}{1 + \nu} \frac{a^2 - r^2}{a^2} \right] \right\}, \quad (81)
$$

式 (78) 可用以求板在中心的挠度。将 $r = 0$ 和 $P = 2\pi b q d b$ 代入此式进行积分，即得

$$
(\omega)_{r = 0} = \frac{q}{4D} \int_0^c \left[b^3 \log \frac{b}{a} + \frac{a^2}{2} \left(\frac{3 + \nu}{1 + \nu} \right) \right] ddb
= \frac{P}{16\pi D} \left[\frac{3 + \nu}{1 + \nu} a^2 + \frac{\nu}{a^2} \log \frac{c}{a} - \frac{7 + 3\nu}{4(1 + \nu)} \varepsilon^2 \right], \quad (82)
$$

式中 $P = \pi c^2 q$。

最大弯矩是在板的中心，可用式 (d) 求得。将 $P = 2\pi b q d b$ 代入此式并积分，即得

$$
M_{\text{max}} = q \int_0^c \left(\frac{1 - \nu}{4} \frac{a^2 - b^2}{a^2} - \frac{1 + \nu}{2} \log \frac{b}{a} \right) ddb
= \frac{P}{4\pi} \left[(1 + \nu) \log \frac{a}{c} + 1 - \frac{(1 - \nu)\varepsilon^2}{4a^2} \right], \quad (83)
$$

式中 P 同以前一样，代表总载荷 $\pi c^2 q$。

在板的外面非受载荷部分上任一点的弯矩 M_γ 和 M_δ 可用式 (81) 求得，将此式代入一般公式 (52) 和 (53)，可得

$$
M_\gamma = \frac{(1 + \nu)P}{4\pi} \log \frac{a}{r} + \frac{(1 - \nu)P c^2}{16\pi} \left(\frac{1}{r^2} - \frac{1}{a^2} \right), \quad (84)
$$

$$
M_\delta = \frac{P}{4\pi} \left[(1 + \nu) \log \frac{a}{r} + 1 - \nu \right] - \frac{(1 - \nu)P c^2}{16\pi} \left(\frac{1}{r^2} + \frac{1}{a^2} \right), \quad (85)
$$

这些弯矩的最大值是在 $r = \varepsilon$ 的圆周上，等于

$$
M_\gamma = \frac{(1 + \nu)P}{4\pi} \log \frac{a}{\varepsilon} + \frac{(1 - \nu)P (a^2 - \varepsilon^2)}{16\pi a^2}, \quad (86)
$$

1）只有当 ε 大于板厚 h 若干倍时，这公式才能应用。 ε 很小的情形在第 19 节中讨论。
\[M_t = \frac{P}{4\pi} \left[(1 + \nu) \log \frac{a}{c} + 1 - \nu \right] - \frac{(1 - \nu) P (a^2 + c^2)}{16\pi a^2}. \quad (87) \]

对于承受任何一种对称载荷的圆形板，也可应用同样的方法计算挠度和弯矩。

对于任意非对称载荷，用以下所讨论的方法也可以很容易地计算出圆形板的中心挠度。

由于板以及它的边界条件是完全对称的，集中载荷 \(P \) 对板中心所产生的挠度只决定于载荷的大小和载荷至中心的距离。如果将载荷 \(P \) 移至与中心等距离的另一位置，则中心挠度保持不变。如用很多的载荷，它们离中心的距离和 \(P \) 相同，它们的总和等于 \(P \)，并且代替载荷 \(P \)，这个挠度也不会改变。由此可知，在计算板的中心挠度时，集中载荷 \(P \) 可用一均匀分布在圆周上的载荷 \(P \) 代替，而此圆周的半径等于集中载荷到中心的距离。对于沿半径为 \(b \) 的圆周上有均匀分布载荷时，边缘简支板的中心挠度由式(78)给出，等于

\[(w)_{r=0} = \frac{P}{8\pi D} \left[\frac{3 + \nu}{2(1 + \nu)} (a^2 - b^2) - b^2 \log \frac{a}{b} \right]. \quad (i) \]

这个公式给出了距离板的中心为 \(b \) 的集中载荷 \(P \) 所产生的板中心的挠度。有了这公式，应用迭加法就可求得在任一它种载荷作用下板的中心挠度。应当注意，如用周向或径向肋加劲，有孔或无孔圆形板的挠度及应力能够有效地减小。然而在用径向肋加劲时，应力分布不再对称于板的中心。

19. 承受中心载荷的圆形板 对于在中心承受集中载荷的板，可用上节所讨论的方法求解：假设载荷均匀地分布在半径为 \(c \) 的圆内，然后使 \(c \) 趋于零，同时保持总载荷 \(P \) 为有限。应用这个假

1) 计算板中心挠度的方法是 Saint Venant 在他所译 Clebsch 的书中提出的，见 "Théorie de l'Élasticité des corps solides," 第 363 页，巴黎，1883 年。对圆形板应用 Maxwell 的位移定理也能获得(1) 的结果。

设，就能由式(82)求得这个简支板在中心的最大挠度，等于

$$w_{\text{max}} = \frac{(3 + \nu)Pa^2}{16\pi(1 + \nu)D}. \quad (88)$$

由式(81)，板上与中心距离为 r 的任一点的挠度为

$$w = \frac{P}{16\pi D} \left[3 + \nu \left(\frac{a^3}{r^2} - r^2 \right) + 2r^2 \log \frac{r}{a} \right]. \quad (89)$$

对于 $r > a$ 的各点，其弯矩可由式(84)和(85)除去含有 ϵ' 的项求得，即

$$M_r = \frac{P}{4\pi} \left(1 + \nu \right) \log \frac{a}{r}, \quad (90)$$

$$M_r = \frac{P}{4\pi} \left(1 + \nu \right) \log \frac{a}{r} + 1 - \nu. \quad (91)$$

为了得到夹支圆板的各个公式，对式(89)微分，而简支板在边界上的斜度为

$$-\left(\frac{dx}{dr} \right)_{r=a} = \frac{Pa}{4(1 + \nu)\pi D}. \quad (a)$$

沿夹支边均匀分布的弯矩 M_2 (图40) 使板弯曲成球面，其半径由式(46)给出，而在边界上的对应斜度为

$$-\frac{M_2 a}{(1 + \nu)D} \quad (b)$$

应用 (a) 和 (b)，固支边不发生旋转的条件可写成

$$(M_r)_{r=a} = M_2 = -\frac{P}{4\pi}. \quad (c)$$

由上节的式 (h)，可知弯矩 M_2 所产生的挠度为

$$\cdot 71 \cdot$$
\[
\frac{P(r^2 - a^2)}{8\pi D(1 + \nu)}.
\]

将此挠度与式(89)表示的简支板的挠度迭加，就得到下列表示中心受载的简支板挠度的式子：

\[
\psi = -\frac{Pr^2}{8\pi D} \log \frac{r}{a} + \frac{P}{16\pi D} (a^2 - r^2), \quad (92)
\]

将式(c)与对简支板求得的式(90)和(91)相加，我们对离载荷不是很近的任一点的弯矩求得了下列式子：

\[
M_r = \frac{P}{4\pi} \left[(1 + \nu) \log \frac{a}{r} - 1 \right], \quad (93)
\]

\[
M_t = \frac{P}{4\pi} \left[(1 + \nu) \log \frac{a}{r} - \nu \right]. \quad (94)
\]

当 \(r \) 趋近于零时，式(90)、(91)、(93)与(94)趋近于无限大，因此它们不适宜于在中心处作计算弯矩之用。而且，所有对圆板初等弯曲理论所作的假设，在集中载荷作用点的附近不能适用。当载荷 \(P \) 所分布的圆的半径 \(c \) 减小时，压力的强度 \(P/\pi c^2 \) 增加，直到与用初等理论所得的弯曲应力相比较不能再忽略不计为止。在初等理论中，剪应力不予考虑，但当 \(c \) 趋近于零时，剪应力也是一样的无限增加，因为总剪力 \(P \) 所分布的圆面面积 \(2\pi ch \) 趋近于零了。

舍弃初等理论所依据的那些假设，将板靠近载荷作用点的部分视作三个方向的尺寸大小为同阶的弹性体，就能求得载荷作用点附近的应力分布。其作法为想像用半径为 \(h \) 的圆柱面(比板厚 \(h \) 大数倍)，将板的中心受载部分和其他部分分开，如图41所示。在与载荷 \(P \) 的作用点距离为 \(b \) 的地方，假设初等弯曲理论是足够精确的，因此可用式 (90) 计算其相应的应力。板的中心附近的应力分布问题，归结成高为 \(h \)、半径为 \(b \) 的圆柱体，在载荷 \(P \) (分布在半径为 \(c \) 的
小圆上) 和侧面上的反作用力作用下，求其对称应力分布的问题。由这个问题的解可知，最大压应力是在板的上表面中心 A，它的值能用如下的近似公式来表示：

\[\sigma_x = \sigma_y = \sigma_z = \frac{P}{\pi a^2} \left[\frac{1 + 2v}{2} - (1 + v) \alpha \right] \] \hspace{1cm} (95)

式中 \(\alpha \) 是由近似理论得到的弯曲压应力值，譬如说，对于简支板问题应用式 (83)，而 \(\alpha \) 是一数因子，决定于载荷作用区域的直径与板厚之比 \(2e/h \)。表 4 中给出了这个因子的若干数值。这个因子对比值 \(2e/h \) 的变化关系也表示在图 42 中，当 \(e \) 趋近于零时，由式 (95) 计算所得的应力趋向于无限大。

![图 42](image)

表 4 公式 (95) 中因子 \(\alpha \) 的数值

<table>
<thead>
<tr>
<th>(2e/h)</th>
<th>0.10</th>
<th>0.25</th>
<th>0.50</th>
<th>0.75</th>
<th>1.00</th>
<th>1.50</th>
<th>2.00</th>
<th>2.50</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\alpha)</td>
<td>0.0106</td>
<td>0.0466</td>
<td>0.1234</td>
<td>0.2000</td>
<td>0.2635</td>
<td>0.3480</td>
<td>0.3860</td>
<td>0.3980</td>
</tr>
</tbody>
</table>

最大拉应力发生在板的下表面中心 B (图 41)，当 \(e \) 很小时，也即载荷高度集中时，最大拉应力实际与比值 \(2e/h \) 无关；对于简支板可用如下近似公式计算：

1) 许多对称应力分布的例子已在作者的 "Theory of Elasticity" (第二版, 第 384 页, 1951 年) 中讨论过。图 41 所示的问题是 A. Nádaši 研究的 (参阅他所著的 "Elastische Platten", 第 308 页)。S. Woinowsky-Krieger 也研究过这问题 (在他的论文: Ingr-Arch., 第 4 卷。第 305 页, 1933 年), 本书所引的结果即系取自他的论文。

2) 当 \(e \) 为很小时，压应力 \(P/\pi a^2 \) 大于式 (95) 所给出的 \(\sigma_{max} \) (参看图 43)。

3) 在式 (93) 中这个值应当加一负号。

4) 参阅第 72 页所引 Woinowsky-Krieger 的论文。
\[\sigma_{\text{max}} = \frac{P}{h^2} \left[(1 + \nu) \left(0.485 \log \frac{a}{h} + 0.52\right) + 0.48 \right] \quad (96) \]

式中 \(a \) 为外半径。

如欲计算夹支板上表面中心的压应力 \(\sigma_z \) 和 \(\sigma_z \)。由于弯矩 \(M_z = -P/4\pi \) 的作用，公式(95)中压应力 \(\sigma_z \) 的值应当减小，减小的数量等于

\[\frac{P}{4\pi h^2} \frac{6}{2} = \frac{P}{2\pi h^2} \quad (d) \]

对于高度集中载荷 (\(c = 0 \))，夹支板下表面中心的最大拉应力等于(96)式减去 (d) 式，即

\[\sigma_{\text{max}} = \sigma_z = \frac{P}{h^2} \left(1 + \nu\right) \left(0.485 \log \frac{a}{h} + 0.52\right) \quad (97) \]

图 43 中表示了边缘固支的厚圆板 (\(h/a = 0.4 \)) 横截面上的应力分布。计算这些应力时，设 \(c = 0.1a \), \(\nu = 0.3 \)。对于这种情况，垂直于板面的最

![图 43](image)

大压应力 \(\sigma_z \) 比式(95)所给出的最大弯曲应力要大。最大拉应力比初等弯曲理论所给出的拉应力要小。初等理论给出的横截面上的应力分布图在图 43 中用虚线表示。此虚线是弯矩

\[M_{\text{max}} = \frac{P}{4\pi} \left[(1 + \nu) \log \frac{a}{c} - \frac{(1 - \nu) c^2}{4a^2} \right] \quad (98) \]

计算得到的，而此弯矩是由式(83)与 \(M_z = -P/4\pi \) 相加而得。

在确定中心受载的圆形板的安全尺寸时，通常仅限于用式(96)和(97)计算板底面的最大弯曲拉应力即可。在高度集中载荷情况下，板上面的压应力可能比板底面的拉应力大许多倍，但是由于压应力的高度局部性，它们并不代表直接的危险。一般来说，如同属材料，并设板底面的拉应力仍在安全限度以内，则板的局部屈服不会影响板的变形。脆性材料的受压强度通常为受拉强度的数倍，所以当底面的拉应力是在安全限度以内时，这种材料
的板也将是安全的，

如欲精确地求出板的性能，就必须考虑集中载荷在它的作用点附近所产生的局部扰动。这种干扰主要是限制在半径比 a 大数倍的圆柱区域内，因此当板厚与板的半径比较不很小时，干扰对于总挠度的影响应适当实际重视的。图 44 所示厚度与半径之比 h/a 为 0.2，0.4 和 0.6 的圆板正方形板在中心集中载荷作用下的一点挠度说明了这一点 1)。由初等理论 [式 (92)] 计算所得的挠度用虚线表示，可以看出，随着比值 h/a 的减小，初等理论与精确解的差异迅速减小。在下节中将要证明，这个差异主要是由于剪力的影响，而剪力在初等理论中是完全忽略不计的。

20. 对正弯曲初等理论的修正 对纯弯曲推导所得的弯矩与曲率的关系式 (37) 和 (38) 是以前所讨论的正方形板中各种对称弯曲问题的求解基础。但板面平行的平面上的剪应力和正压力对于弯曲的影响，都没有考虑在内。因此只有正方形板弯曲成弯曲的解，以及在内外边缘受有均匀分布弯矩的正方形板（图 31）的解是精确的。在所有其他讨论过的情形中，得到的公式是近似的，其精确程度决定于板的厚度与外半径之比。用近似的方法考虑剪应力和侧向压力对于挠度的影响，可以得到更精确的公式 2)。

1) 图 44 中的曲线是 Weinowsky-Krieger 的精确解的结果，参阅前面所引的论文。

首先讨论边缘支承，承受均匀载荷的无孔圆板。半径为 r 的圆周的每单位弧长上的剪力 Q 为

$$Q = \frac{1}{2} q r$$

由厚度不是小量的板的精确解"可知，剪应力 τ_{rs} 在板的厚度方向是按照抛物线规律分布的，这和横截面为窄矩形的梁相同。所以最大剪应力是在板的中面上，其大小为

$$(\tau_{rs})_{\text{max}} = \frac{3}{2} \frac{q r}{4h}.$$ \hspace{1cm} (a)

相应的剪应变为

$$\frac{d\omega_1}{dr} = -\frac{3}{2} \frac{q r}{2Gh},$$ \hspace{1cm} (b)

式中 ω_1 是板的中面由剪应力所产生的附加挠度。由积分可知由剪应力所产生的挠度为

$$\omega_1 = \frac{3}{2} \frac{q}{4Gh} (q^2 - r^2),$$ \hspace{1cm} (c)

在板的中心

$$(\omega_1)_{\text{max}} = \frac{3}{2} \frac{qa^4}{4Gh}.$$ \hspace{1cm} (d)

作用在板上的侧向压力产生一正曲率，也即向下凸，与承受均匀载荷梁的情形相似。每单位面积的压力 q 使板的上表面产生半径方向的伸长 $\nu q/E$；在板的中面此伸长为 $\nu q/2E$；在板的下表面此伸长为零。假设对于伸长，直线关系成立，则曲率半径 R 的近似值可由式

$$\frac{\nu q}{2E} = \frac{h}{2R}$$

求得。由此得

$$\frac{1}{2R} = \frac{\nu q}{2hE}.$$
并且挠挠度为

\[\omega_2 = -\frac{1}{2R} (a^2 - r^2) = -\frac{\nu h}{2hE} (a^2 - r^2). \]

式 (c)、式 (e) 与式 (67) 相加，就得到比较精确的挠度表达式:

\[\omega = \frac{q}{64D} (a^2 - r^2) \left(\frac{5 + \nu}{1 + \nu} \frac{a^2 - r^2}{a^2} \right) + \frac{q h^2}{8D} \frac{3 + \nu}{6(1 - \nu^2)} (a^2 - r^2). \]

在板的中心此式化为

\[\omega_{\text{max}} = \frac{q a^4}{64D} \left(\frac{5 + \nu}{1 + \nu} + \frac{4}{3} \frac{3 + \nu}{1 - \nu^2} \frac{h^2}{a^2} \right). \]

式 (f) 的第二项表示考虑剪应力和侧向压力所作的修正。当板的厚度与半径比较为小量时，此修正项显然也为小量。由精确解所得这个修正的值为

\[\frac{q a^4}{64D} \frac{2}{5} \frac{8 + \nu + \nu^2}{1 - \nu^2} \frac{h^2}{a^2}. \]

在 \(\nu = 0.3 \) 时，精确值比式 (f) 所给出的约小百分之二十。

在承受均匀载荷的夹支圆板中，由压力产生的挠度度不存在，所以只需要考虑剪力所产生的挠度 \(\omega_1 \)。将此挠度与式 (62) 相加，就得到比较精确的挠度值:

\[\omega = \frac{q}{64D} \left[(a^2 - r^2) + \frac{4h^2}{1 - \nu} (a^2 - r^2) \right]. \]

应该注意此式与精确解是重合的。1)

以下研究沿板的内边缘承受均匀分布剪力的环形板（图 32）中剪应力所产生的挠度。在距离中心为 \(r \) 的地方，最大剪应力为

\[(\tau_{r,s})_{\text{max}} = \frac{3}{2} \frac{P}{2\pi rh}, \]

式中 \(P \) 表示总的剪切载荷。其相应的剪应变为2)

\[\frac{d\omega_1}{dr} = -\frac{3}{2} \frac{P}{2\pi rhG}. \]

1) 参阅前引 Love 的 "Mathematical Theory of Elasticity"，第 481 页。
2) 参阅前书第 485 页。
3) 如板无孔，则按照下述结果 (1)，所给出的式 (i) 的右端应当乘上因子 \((1 - \nu)/(1 + \nu)\)。
进行积分，即得剪力所产生的挠度

$$w_1 = \frac{3}{4} \frac{P}{\pi h G} \log \frac{a}{r} = \frac{P h^2}{8\pi(1 - \nu)D} \log \frac{a}{r}. \tag{j}$$

为了得到图 32 所示板的比较精确的挠度值，须将此挠度与第 17 节中的 (k) 式相加。在孔的半径 b 很小时，总挠度的式子化为

$$w = \frac{P}{8\pi D} \left[\frac{3 + \nu}{2(1 + \nu)} \left(a^2 - r^2 \right) + r^2 \log \frac{r}{a} \right]$$

$$+ \frac{P h^2}{8\pi(1 - \nu)D} \log \frac{a}{r}. \tag{k}$$

在孔边缘的挠度为

$$w_{\text{max}} = \frac{P a^2}{8\pi D} \left[\frac{3 + \nu}{2(1 + \nu)} + \frac{1}{1 - \nu} \frac{h^2}{a^2} \log \frac{a}{b} \right]. \tag{l}$$

此式的第二项表示考虑剪力后所作的修正。P 总是假设为有限的，因此当 b 趋近于零时，修正项无限增大。由此可见，在 b 趋近于零时，相应的剪应力和剪应变变为无限大。

在式 (l) 中代表考虑剪力后所作的修正项不能应用在无孔板上。由于作用在板的上表面中心的集中载荷 P 所产生的挠曲效应，对于无孔板的修正可希望多少要小一些。假设板的中心部分被半径 b 很小的圆柱面截去，并将中心部分对板的其余部分的作用，可以用等价于 P 的垂直剪力和分布在孔的上边缘而表示载荷的接人效应的径向力 S 来代替。种代替表示在图 45 上。显然，径向力 S 使板的中间产生拉伸，同时使板产生向上的挠度。这说明为了使式 (k) 能适用于无孔板，应当减小式中的修正项。为了得到径向力 S 大小的概念，考虑在图 46 所示的两种载荷作用下的圆形板。
在图46(a)中，板沿对称轴分别受有作用着大小相等方向相反的二力沿板的压缩。在图46(b)中，均匀分布在圆板侧面的压力沿板在板平面上承受均匀压缩。由于侧向膨胀的结果，这压力沿板的厚度增加，增加的量为

$$
\Delta h = \frac{2\nu P}{E} h.
$$

对图46所示的两种受载情况应用互易定理，就能由上式得到由于力P(图46(a))使板的半径Δr增加的量。由此可知

$$
P \Delta h = 2\pi h \rho \Delta r,
$$

从而

$$
\Delta r = \frac{P \Delta h}{2\pi \rho h} = \frac{2\nu P}{E} \frac{P}{2\pi r}.
$$

今将此径向伸长与厚度简受内压力ρ, 所产生的径向伸长作比较。如果筒的内半径b较之于外半径r很小，则由拉美（La mise）公式可以得外半径的增加为

$$
\Delta r = \frac{1 + \nu}{E} \frac{P_i b}{r}.
$$

比较式(3)与(4)可知，图46(a)中的力P使板在径向产生的伸长，与中心具有小圆孔的板(图45)在径向由内压力ρ, 所产生的伸长是等值的，这内压力P_i的大小可由式

$$
\frac{2\nu P}{E^2 \pi r} = \frac{1 + \nu}{E} \frac{P_i b}{r}
$$

决定，亦即

$$
\rho_i = \frac{\nu P}{(1 + \nu)\pi b^2}.
$$

现在回到在板的上表面中心承受集中力的问题。此力的作用已在图45中说明。由以上的讨论可知，孔周单位长上所受的力τ必须等于压力$P_i h / 2$。用(5)式中的ρ_i值，得

$$
S = \frac{\nu P h}{2(1 + \nu)\pi b^2}.
$$

作用在板上面的分力S使板产生向上的挠度ω_i, 将

$$
M_i = S h = \frac{\nu P h^2}{4(1 + \nu)\pi b^2}
$$

代入式(73)，在b^2与a^2相比较时b^2可以忽略不计，这样求得挠度ω_i的大小

1) 参阅作者的“Strength of Materials”, part II, 第三版, 第210页, 1956年。
为:

$$w = -\frac{\nu PA^2}{8\pi(1 - \nu^2)} \frac{a^3 - a'^3}{a^3} - \frac{\nu PA^2}{4(1 - \nu^3)\pi D} \log \frac{a}{r}.$$ \hspace{1cm} (p)

将它与式 (k) 相加，我们得到如下计算无孔圆形板在上表面中心有集中载荷作用下的挠度的比较精确的公式:

$$w = \frac{p}{8\pi D} \left[\frac{3 + \nu}{2(1 + \nu)} (a^3 - a'^3) + r^3 \log \frac{r}{a} \right]$$

$$+ \frac{Pb^4}{8\pi(1 + \nu)D} \log \frac{a}{r} - \frac{\nu Pb^4}{8\pi(1 + \nu)^2 D} \frac{a^3 - a'^3}{a^3}. \hspace{1cm} (q)$$

此式可用来计算板中与载荷作用点不太接近的所有点上的挠度。当 r 与板厚比较为同数量级时，式 (q) 不再适用；因此为了得到令人满意的结果，必须用前节所述的方法考虑板的中心部分。 将此中心部分视作为半径 b 很小的圆形板，并将载荷作用点附近的应力分布局部扰所产生的挠度同由初等理论所得到的挠度相加，就能求得中心部分挠度的近似值。中心附近局部干扰所产生的挠度很少受到板边缘情况的影响，因此可用图 44 中的曲线求得近似值。图中的虚曲线是利用式 (92) 作出的。由局部应力干扰所产出的附加挠度，等于实曲线纵坐标和虚曲线纵坐标的差。

例如，研究一板，它里面部分的半径 b = 5h。用式 (92) 计算里面部分的挠度，相当于取图 44 中的虚线，即得

$$\delta_1 = \frac{Pb^4}{16\pi D} = \frac{P}{16\pi D} (5h)^3.$$

应用图 44 中 h/a = 0.2 的曲线，局部应力干扰所产生的附加挠度为

$$\delta_1 = 0.21 \delta_1 = 0.21 \frac{P}{16\pi D} (5h)^3.$$ \hspace{1cm} (r)

如果考虑 b = 2.5h 的板，并且用图 44 中 h/a = 0.4 的曲线，即得

$$\delta_1 = 0.81 \frac{P}{16\pi D} (2.5h)^3.$$ \hspace{1cm} (r)

此式与对 b = 5h 得到的式 (r) 相差很小，取 b 小于 2.5h 是不适宜的，因为对于较小的半径，厚板的边缘情况变成重要条件，从而图 44 中对于长板计算所得的曲线对现在所讨论的问题是不够精确的。

最后，计算中心线中载荷作用下板的总挠度的方法是：用式 (q) 计算挠度，在这式中的第一项令 r = 0，其他两项 r = b = 2.5h；将此挠度与式

1）在这个问题中，初等理论求挠度的计算方法是：取用式 (q) 中的第一项，并以 b 代 a。
（4）所示剪力所产生的板中心部分的挠度相加。

在ν = 0.3 的情况下，简支圆形板的挠度也可用简单的迭加法求得，即，
将图 4{13} 中的曲线与作用在板边界上的径向弯矩 P/4π 引起的纯弯曲所产生的挠度

\[\frac{P(a^2 - r^2)}{8\pi D(1 + \nu)} \]

相加。

应当注意，在比 r/a 是小值时，剪力 P/2πr 对挠度所产生的影响主要由
式 (a) 有端第二项表示。斜度

\[\frac{d\nu}{dr} = -\frac{3}{2} \frac{1 - \nu}{1 + \nu} \frac{P}{2\pi rhG} \] \hspace{1cm} (t)

对应着这一项。

把这个结果和式 (i) 比较，可知如在式 (i) 中引入因子

\[k = \frac{3}{2} \frac{1 - \nu}{1 + \nu} \] \hspace{1cm} (u)

以代替 k = \frac{3}{2}，就可使无孔板问题中得到比较精确的式子来计算由剪力所
产生的变形。

所有以上的讨论只适用于弯曲成旋转面的圆形板。考虑剪力对板变形
的影响，能得到比较一般的弯曲理论，这将在第 26 和 39 节中讨论。

1）图 44 是对 ν = 0.3 计算得到的。
第四章
承受侧向载荷的板的小挠度

21. 挠度曲面的微分方程 假设作用在板上的载荷与板面垂直，并假设挠度较小于板厚为小量（见第13节）。假设在边界上板的边缘可在板平面上自由移动，因此边缘上的反作用力与板垂直。

作了这些假设，那么，在板弯曲时板中面内发生任意变化可以忽略不计。同以前一样（参阅第10节），将坐标轴 与 取在板的中平面内，并设轴垂直于此平面；考虑如图47所示，用分别平

行于面和面的两对平面从板上截取一单元体。除了在板的纯弯曲中讨论过的弯矩 与 以及矩 等外，在单元体的侧面上还作用着垂直剪力1。用 与 分别表示与 轴和 轴平行的单位长度上剪力的大小，因此

\[
Q_x = \int_{-h/2}^{h/2} \tau_{xz} \, dx, \quad Q_y = \int_{-h/2}^{h/2} \tau_{yz} \, dx.
\]
(a)

由于弯矩与剪力是坐标 与 的函数。在讨论单元体的平衡情况时，就必须考虑这些量在坐标 与 有微小的变化量 与

1) 由于假设板的中面应变可以忽略不计，因此没有水平剪力和垂直于单元体侧面的力。

• 82 •
dy时所发生的微小变化，单位体的中平面表示在图48(a)和图48(b)中，并设图中绘出的弯矩与力的方向为正。

此外还须考虑在板的上表面的载荷分布。如用q表示载荷的强度，则作用在单元体上的载荷为$q \, dx \, dy$。

将所有作用在单元体上的力向x轴投影，得到如下平衡方程：
$$
\frac{\partial Q_x}{\partial x} \, dx \, dy + \frac{\partial Q_y}{\partial y} \, dy \, dx + q \, dx \, dy = 0.
$$
消去$dx \, dy$，即得：
$$
\frac{\partial Q_x}{\partial x} + \frac{\partial Q_y}{\partial y} + q = 0. \tag{99}
$$

将所有作用在单元体上的力对x轴取力矩，得到平衡方程：
$$
\frac{\partial M_{xy}}{\partial x} \, dx \, dy - \frac{\partial M_{yx}}{\partial y} \, dy \, dx + Q \, dx \, dy = 0. \tag{99}
$$

1) 由于应力分量σ_z忽略不计，因此我们并不认为载荷是加在板的上或下表面上的。这样，在薄板理论中认为横向集中载荷只是在板的厚度上按线性规律分布的剪应力大小的不连续。同样，可以将板的重量也包括在载荷q中，而不会影响结果的精确性。如果需要考虑表面载荷的影响，则应采用厚板理论（参阅第19节）。

* 83 *
载荷 q 的力矩以及力 Q_y 变化所产生的力矩较之于方程 (b) 中的各项为高阶小量，因此在平衡方程中可以忽略不计。消去 $dxdy$，方程 (b) 化为：

$$\frac{\partial M_{xy}}{\partial x} - \frac{\partial M_{yx}}{\partial y} + Q_y = 0. \quad (c)$$

用同样的方法，对于 y 轴取力矩，得到：

$$\frac{\partial M_{yx}}{\partial y} + \frac{\partial M_{xy}}{\partial x} - Q_x = 0. \quad (d)$$

因为没有 x 方向和 y 方向的力，也没有对 x 轴的力矩所以 (99), (c) 和 (d) 这三个方程就完全决定了这单元体的平衡。由方程 (c) 和 (d) 求出剪力 Q_y 和 Q_x，然后代入方程 (99)，这样就消去了剪力 Q_x 和 Q_y，得到：

$$\frac{\partial^2 M_{yx}}{\partial x^2} + \frac{\partial^2 M_{xy}}{\partial x \partial y} + \frac{\partial^2 M_{yx}}{\partial y^2} - \frac{\partial^2 M_{xy}}{\partial x \partial y} = -q. \quad (e)$$

由于 $\tau_{yy} = \tau_{yx}$，则有 $M_{yx} = -M_{xy}$，因此平衡方程 (e) 最后可写成如下形式：

$$\frac{\partial^2 M_x}{\partial x^2} + \frac{\partial^2 M_y}{\partial y^2} - 2 \frac{\partial^2 M_{xy}}{\partial x \partial y} = -q. \quad (100)$$

为了用板的挠度 w 表示此方程，假设对纯弯曲问题推导所得的方程 (41)和 (43) 也能用来讨论承受侧向载荷的板，这个假设相当于忽略不计剪力 Q_x 和 Q_y 对于弯曲的影响，以及载荷 q 所产生的压力力 σ_z。在上一章中我们已经用过这样的假设，并且已经知道：如果板的厚度较之于它在板平面内的尺寸为小量，则如此所求得的挠度的误差是小量的。考虑剪力对变形影响的弹性薄板弯曲近似理论将在第 39 节中给出，板弯曲问题的精确解的若干例子将在第 26 节中讨论。

用 τ 和 τ 方向代替式 (41)和 (43) 中的 u 和 v，可得：

$$M_x = -D \left(\frac{\partial^2 w}{\partial x^2} + \nu \frac{\partial^2 w}{\partial y^2} \right), \quad M_y = -D \left(\frac{\partial^2 w}{\partial y^2} + \nu \frac{\partial^2 w}{\partial x^2} \right), \quad (101)$$

$$\frac{\partial^2 M_x}{\partial x \partial y} = D(1 - \nu) \frac{\partial^2 w}{\partial x \partial y}. \quad (102)$$
将这些式子代入方程 (100)，即得

$$\frac{\partial^4 w}{\partial x^4} + 2 \frac{\partial^2 w}{\partial x^2 \partial y^2} + \frac{\partial^4 w}{\partial y^4} = \frac{q}{D}.$$ (103)

这个方程也可写成符号形式

$$\Delta \Delta w = \frac{q}{D},$$ (104)

式中

$$\Delta w = \frac{\partial^2 w}{\partial x^2} + \frac{\partial^2 w}{\partial y^2}.$$ (105)

显然，在侧向载荷 q 作用下板的弯曲问题归结为方程 (103) 的积分。如果对于某一特殊问题，找到了这个方程满足这板边界条件的解，则弯矩和扭矩可用式 (101) 与 (102) 计算，相应的正应力和剪应力分别由式 (44) 和

$$(\tau_{xy})_{max} = \frac{6M_{xy}}{h^2}$$

求出。

方程 (c) 和 (d) 可用来决定剪力 Q_x 和 Q_y:

$$Q_x = \frac{\partial M_{xy}}{\partial y} + \frac{\partial M_y}{\partial x} = -D \left(\frac{\partial^2 w}{\partial x^2} + \frac{\partial^2 w}{\partial y^2} \right),$$ (106)

$$Q_y = \frac{\partial M_{xy}}{\partial y} - \frac{\partial M_x}{\partial x} = -D \left(\frac{\partial^2 w}{\partial x^2} + \frac{\partial^2 w}{\partial y^2} \right);$$ (107)

或者用符号形式写成:

$$Q_x = -D \frac{\partial}{\partial x} (\Delta w), \quad Q_y = -D \frac{\partial}{\partial y} (\Delta w).$$ (108)

现在假设剪应力在板的厚度方向按抛物线规律分布，即可求

1) 这个方程是 1811 年 Lagrange 在审查 Sophie Germain 词法论学会所提交的报告时得到的。这个方程的发展历史可参阅 J. Todhunter 和 K. Pearson 所著的 "History of the Theory of Elasticity"，第一卷，第 147, 247, 318 页以及第二卷，第一部，第 263 页。也可参阅 Saint Venant 在他所译 Clebsch 的著作第 73 节，第 689 页中所作的注释。这本书是 "Théorie de l'élasticité des corps solides"，巴黎，1883 年。

2) 在第 26 节中将要证明，在某些情况下，这个假设与板弯曲的精确理论是一致的。
得剪应力τ_{xx}和τ_{yz}。因此
\[(τ_{xx})_{max} = \frac{3}{2} \frac{Q_x}{h}, \quad (τ_{yz})_{max} = \frac{3}{2} \frac{Q_y}{h} .\]
由此可见，如由方程(103)的积分得到了对一定的载荷分布和一定的边界条件下的挠度曲面，则板中的应力就能计算。

22. 边界条件 表示首先讨论矩形板的边界条件。假设x轴和y轴取向成同板的各边平行。

固支边 如果板的边缘固支，则沿边缘挠度为零，并且在边缘上中曲面的切面与板在弯曲前的中平面重合。设固支边是x = a，则边界条件为
\[(ω)_{x=a} = 0, \quad \left(\frac{∂ω}{∂x} \right)_{x=a} = 0 \quad (109)\]

简支边 如果板的边缘x = a是简支，则沿此边缘挠度ω必为零，同时，此边缘能绕边线自由旋转，即沿此边缘没有力矩M_x。这种支承方式表示在图49中。在这种情况下，边界条件的分析表达式为
\[(ω)_{x=a} = 0, \quad \left(\frac{∂^2ω}{∂x^2} + ν \frac{∂^2ω}{∂y^2} \right)_{x=a} = 0. \quad (110)\]

显然沿直线边缘x = a，∂^2ω/∂y^2必须与ω同样为零，因此条件(110)中的第二式也写成∂^2ω/∂x^2 = 0或Δω = 0。所以式(110)等价于
\[(ω)_{x=a} = 0, \quad (Δω)_{x=a} = 0, \quad (111)\]
式中不包含泊松比ν。

自由边 如果板的一边缘，譬如说边缘x = a（图50）是完全自由的，则可很自然的假设沿此边缘没有弯矩和
扭矩，也没有垂直剪力，因此

\[(M_x)_{x=a} = 0, \quad (M_{xy})_{x=a} = 0, \quad (Q_x)_{x=a} = 0.\]

将自由边的边界条件表示成这种形式的是泊松。但后来克希霍夫（Kirchhoff）证明三个边界条件太多，两个条件足以完全决定满足方程（103）的挠度 w。他还证明泊松关于扭矩 M_{xy} 和剪力 Q_x 的两个边界条件必须用一个边界条件代替。开天文（Kelvin）和台特（Tait）说明了这种边界条件数目减少的物理意义。他们指出：如果如图 50 所示，给定扭矩 M_{xy}dy（它们作用在边缘 x = a 上，长度为 dy 的单元上）的水平力用两个大小为 M_{xy}、相距为 dy 的垂直力代替，则板的弯曲情况不会改变。这样的替代并不使扭矩的大小改变，只是在板边缘上的应力分布有局部性的变化，而板其余部分的应力状况仍旧不变。在研究板变成反弯曲面的纯弯曲时（参照第 11 节），我们已经讨论过这种边缘力系转换的特殊情况。进行前述板边扭矩的替代并考虑二相邻的边缘单元（图 50），可知扭矩 M_{xy} 的分布在静力平衡上等价于强度为

\[Q'_x = -\left(\frac{\partial M_{xy}}{\partial y}\right)_{x=a}\]

的剪力分布。所以关于扭矩 M_x，和剪力 Q_x 在自由边 x = a 上的两个边界条件化为一个边界条件

\[V_x = \left(Q_x - \frac{\partial M_{xy}}{\partial y}\right)_{x=a} = 0. \quad (a)\]

将表示 Q_x 和 M_{xy} 的式（106）和（102）代入，对于自由边 x = a 最后得到:

\[\left[\frac{\partial^2 w}{\partial x^3} + (2 - v)\frac{\partial^2 w}{\partial x \partial y^2}\right]_{x=a} = 0. \quad (112)\]

1) 关于这个问题的讨论参阅 Todhunter 和 Pearson 的 "History of the Theory of Elasticity", 第一卷，第 250 页。也可参考 Saint Venant 所译 Clebsch 的著作。

2) 参看 J. Crelle, vol. 49, 第 51 页，1850 年。

3) 参阅 "Treatise of Natural Philosophy", vol. 1, part 2, 第 188 页，1883 年。

自由边上弯矩等于零的条件要求

\[
\left(\frac{\partial^2 w}{\partial x^2} + \nu \frac{\partial^2 w}{\partial y^2} \right)_{x=a} = 0.
\]

式(112)和(113)就是板的自由边 \(x = a \) 上两个必要的边界条件。

作前述如图50所示的扭矩转换，则不仅得到分布在边缘 \(x = a \) 上的剪力 \(Q'_x \)，而且也得到作用在此边缘二端上的二集中力，如图51所示。此二力的大小等于板的相应二角上扭矩 \(M_{xy} \) 的大小。在边缘 \(y = b \) 上同样地作扭矩 \(M_{yx} \) 的转换，同以前一样，可知除了分布剪力 \(Q'_y \) 以外，还有集中力 \(M_{yx} \) 作用在板的角上。这说明在边缘上以某些形式支承的矩形板，在侧向荷载作用下，往往不仅产生分布在边界上的反作用力，而且产生作用在板角上的集中反力。

如果挠度曲面的一般形状已经知道，则这些集中反力的方向就不难确定。今以承受均匀荷载的简支方形板为例，挠度曲面的形状在图52a中用虚线表示。这些虚线是用平行于 \(xy \) 和 \(yz \) 坐标面的平面对板的中曲面所作的截线。研究这些虚线，可知在角 \(A \) 附近的偏导数 \(\partial^2 w/\partial x \) 相当于挠度曲面在 \(x \) 方向的斜度，其值为负，并且随着 \(y \) 的增大其绝对值减小。因此在角 \(A \) 上 \(\partial^2 w/\partial x \partial y \) 为正。由式(102)，可知在此角上 \(M_{yx} \) 为正，

\[1) \] \(M_{yx} \) 是单位长上的扭矩，因此它的单位与力相同。
M_{x} 为负。由这一点以及图 48a 所示 M_{x} 和 M_{y} 的方向，可知如
图 51 中节点 $x = a, y = b$ 上的二集中力的方向都是向下的。
由对称性可知，在板的四个角上，集中力的大小和方向都是相同的。因此如图 52b 所示，在这些角上的条件是

$$ R = 2(M_{xy})_{x=a, y=b} = 2D(1 - \nu) \left(\frac{\partial^2 w}{\partial x \partial y} \right)_{x=a, y=b}. $$

可以看出，当方形板承受均匀载荷时，它的四角一般有向上翘
的趋势，而图 52b 所示角上的集中力阻止了这一趋势。

弹性简支边和弹性固
支板 设矩形板的边缘
$x = a$ 与一承梁固结(图
53)，则沿此边缘的挠度不
为零，而等于梁的挠度，此
边缘的转动也等于梁的扭
转。令 B 为梁的弯曲刚
度，C 为梁的扭转刚度。由式 (a)，可知由板传到支承梁上在 x 方
向的压力为

$$ -N_x = -\left(2x - \frac{\partial M_{xy}}{\partial y} \right)_{x=a}, $$

$$ = D \frac{\partial}{\partial x} \left[\frac{\partial^2 w}{\partial x^2} + (2 - \nu) \frac{\partial^2 w}{\partial y^2} \right]_{x=a}. $$

因此，梁的挠度曲线的微分方程为

$$ B \left(\frac{\partial^2 w}{\partial y^2} \right)_{x=a} = D \frac{\partial}{\partial x} \left[\frac{\partial^2 w}{\partial x^2} + (2 - \nu) \frac{\partial^2 w}{\partial y^2} \right]_{x=a}. $$ (114)

这个方程代表板在边缘 $x = a$ 上的两个边界条件中的一个。

要得到第二个边界条件，应当考虑梁的扭转。板上任一截面
的转角1 为 $-(\partial w/\partial x)_{x=a}$，而在边缘上此角的变化率为

$$ -(\frac{\partial^2 w}{\partial x \partial y})_{x=a}. $$

1 用右手螺旋定则决定转角的正负号。
所以梁所受的扭短为 \(-C(\partial^2 w/\partial x\partial y)_{x=a}\)。由于板和梁是固结的，板会将连续分布的扭矩传到梁上，所以扭矩沿边缘而变化。这种作用在每单位长上的扭矩和板所承受的弯矩 \(M_x\) 大小相等、方向相反。因此，考虑梁上单元体的转角平衡，即可得

\[-C \frac{\partial}{\partial y} \left(\frac{\partial^2 w}{\partial x \partial y} \right)_{x=a} = -(M_z)_{x=a},\]

或者将表示 \(M_z\) 的(101)式代入，则得

\[-C \frac{\partial}{\partial y} \left(\frac{\partial^2 w}{\partial x \partial y} \right)_{x=a} = D \left(\frac{\partial^2 w}{\partial x^2} + \nu \frac{\partial^2 w}{\partial y^2} \right)_{x=a}.\] (115)

这个式子就是板在边缘 \(x = a\) 上的第二个边界条件。

如板具有曲线边缘的情况下（图54），则如图所示，取边缘上某点 \(A\) 的切线方向 \(t\) 和法线方向 \(n\) 为坐标轴。在该点的弯矩和

\[M_n = \int_{-h/2}^{h/2} z\sigma_n dz, \quad M_{nt} = \int_{-h/2}^{h/2} z\tau_{nt} dz.\] (b)

对于应力分量 \(\sigma_n\) 和 \(\tau_{nt}\) 可应用熟知的等式1:

\[\sigma_n = \sigma_x \cos^2 \alpha + \sigma_y \sin^2 \alpha + 2\tau_{xy} \sin \alpha \cos \alpha,
\]

\[\tau_{nt} = \tau_{xy}(\cos^2 \alpha - \sin^2 \alpha) + (\sigma_y - \sigma_x) \sin \alpha \cos \alpha,
\]

可将式(b)表示成如下形式:

1）当纯弯曲的情况有差列，且 \(x\) 和 \(y\) 方向不是主方向；因此对 \(M_n\) 与 \(M_{nt}\) 的表达式，和式(39)与(40)所给出的不同。

* 90 *
\[M_x = M_x \cos^2 \alpha + M_y \sin^2 \alpha - 2M_{xy} \sin \alpha \cos \alpha, \quad (c) \]

\[M_{nn} = M_{xy}(\cos^2 \alpha - \sin^2 \alpha) + (M_x - M_y) \sin \alpha \cos \alpha. \]

在边界上点 \(A \) 所受的剪力 \(Q \)，可用图 54 b 所示板的单元体的平衡方程求得:

\[Q_n ds = Q_x dy - Q_y dx, \]

也即

\[Q_n = Q_x \cos \alpha + Q_y \sin \alpha. \quad (d) \]

有了式 (c) 和 (d)，在每一特殊问题中的边界条件就不难写出。

如果板的曲线边缘是固定时，则对于这样的边缘有:

\[u = 0, \quad \frac{\partial u}{\partial n} = 0. \quad (e) \]

在边缘简支的情况下，有:

\[u = 0, \quad M_n = 0. \quad (f) \]

将式 (c) 中表示 \(M_n \) 的第一式代入，并应用式 (101) 和 (102)，即可将边界条件 (f) 用 \(Q_n \) 及其导数表示。

如果板的边缘是自由的，边界条件为:

\[M_n = 0, \quad V_n = Q_n - \frac{\partial M_{nn}}{\partial n} = 0, \quad (g) \]

式中这项 \(-\partial M_{nn}/\partial n\) 用图 50 表示的方法求得，它相当于扭矩 \(M_n \) 在边缘上的分布所产生的那部分边缘反力。将 \(M_n \) 和 \(M_{nn} \) 代入式 (c) 代入，\(Q_n \) 代入式 (d) 代入，并利用式 (101)，(102)，(106) 和 (107)，即可将边界条件 (g) 表成如下形式:

\[\nu \Delta w + (1 - \nu) \left(\cos^2 \alpha \frac{\partial^2 w}{\partial x^2} + \sin^2 \alpha \frac{\partial^2 w}{\partial y^2} + \sin 2\alpha \frac{\partial^2 w}{\partial x \partial y} \right) = 0, \]

\[\cos \alpha \frac{\partial}{\partial x} \Delta w + \sin \alpha \frac{\partial}{\partial y} \Delta w + \]

\[+ (1 - \nu) \frac{\partial}{\partial n} \left[\cos 2\alpha \frac{\partial^2 w}{\partial x \partial y} + \frac{1}{2} \sin 2\alpha \left(\frac{\partial^2 w}{\partial y^2} - \frac{\partial^2 w}{\partial x^2} \right) \right] = 0, \quad (116) \]

同以前一样，式中

\[\Delta w = \frac{\partial^2 w}{\partial x^2} + \frac{\partial^2 w}{\partial y^2}. \]
在下一节中将说明推导边界条件的另一种方法。

23. 推导边界条件的另一种方法

应用虚位移原理和受弯板应变能的表达式，可以得到板的挠度曲面的微分方程（104）和边界条件。在推导方程（104）时，剪应力对挠度的影响是完全忽略不计的，因此相应的应变能表达式将和第12节所讨论的纯弯曲情形一样，只包含依赖于弯矩和扭矩作用的项，应用式（18），即得无限小单元体中的应变能：

$$
\delta V = \frac{1}{2} D \left\{ \left(\frac{\partial^2 w}{\partial x^2} + \frac{\partial^2 w}{\partial y^2} \right) - 2(1 - \nu) \left(\frac{\partial^2 w}{\partial x^2} \frac{\partial^2 w}{\partial y^2} \right) \right\} dxdy,
$$

式中积分是对整个板面进行的。

式中积分是对整个板面进行的。应用虚位移原理，设板的挠度 w 产生一无限小变分 δw，板中应变能的相应变化应当等于外力对这虚位移所作的功。在计算这功时，必须不仅考虑分布在板面上的侧向载荷 q，而且也要考虑分布在板边缘上的弯矩 M，和横向力 Q。所以虚位移原理给出的一般方程为：

$$
\delta V = \int q \delta w \, dxdy - \int M \frac{\partial \delta w}{\partial n} \, ds + \int (Q - \frac{\partial M}{\partial n}) \delta w \, ds,
$$

式中积分是把板上所作的功，第二项是沿着板的边界积分的，它相当于板边缘有转动 $\theta(\delta w)/\partial n$ 时弯矩所作的功。第三项是相当于作用在板边缘上的横向力所作的功。在计算板的应变能的变分 δV 时，要用到某些转换，以式（117）中的第一项为例详细说明这些转换。此项的变分为

1) 这是最早严格地建立边界条件的方法；参阅 G. Kirchhoff 的论文：J. Crelle, vol. 49, 1850 年，也可参阅他的 Vorlesungen über Mathematische Physik, Mechanik, 第 450 页，1877 年。Kelvin 对 Kirchhoff 的推导方法很感兴趣，他曾和 Helmholtz 谈起过这些方法；参考 Sylvanus Thompson 所著 Kelvin 的传记，第一卷，第 432 页。
\[
\delta \iint \left(\frac{\partial^4 w}{\partial x^4} \right) dx dy \\
= 2 \iint \frac{\partial^4 w}{\partial x^4} \frac{\partial^3 \omega}{\partial x^3} dx dy \\
= 2 \iint \left[\frac{\partial}{\partial x} \left(\frac{\partial^3 w}{\partial x^3} \frac{\partial \omega}{\partial x} \right) - \frac{\partial^3 w}{\partial x^3} \frac{\partial \omega}{\partial x} \right] dx dy \\
= 2 \iint \left[\frac{\partial}{\partial x} \left(\frac{\partial^3 w}{\partial x^3} \frac{\partial \omega}{\partial x} \right) - \frac{\partial}{\partial x} \left(\frac{\partial^3 w}{\partial x^3} \frac{\partial \omega}{\partial x} \right) + \frac{\partial}{\partial x} \frac{\partial \omega}{\partial x} \right] dx dy. \tag{c}
\]

在 (c) 式中，两项的二重积分可用单积分代替，因为对于 \(s \) 和 \(t \) 的任一函数，下列公式都成立：

\[
\iint \frac{\partial F}{\partial x} dx dy = \int F \cos \alpha ds, \tag{d}
\]

\[
\iint \frac{\partial F}{\partial y} dx dy = \int F \sin \alpha ds.
\]

在这些式子中，单积分是沿着边界作的，而 \(\alpha \)，如图 54 所示，为外法线和 x 轴的夹角。利用公式 (d) 中的第一式，可将 (c) 式化成如下形式：

\[
\delta \iint \left(\frac{\partial^4 w}{\partial x^4} \right) dx dy = 2 \iint \frac{\partial^4 w}{\partial x^4} \omega dx dy \\
+ 2 \int \left(\frac{\partial^3 w}{\partial x^3} \frac{\partial \omega}{\partial x} - \frac{\partial^3 w}{\partial x^3} \omega \right) \cos \alpha ds. \tag{e}
\]

考虑边界上如图 54 所示 \(n \) 和 \(s \) 的方向，则有

\[
\frac{\partial \omega}{\partial x} = \frac{\partial \omega}{\partial n} \frac{dn}{ds} + \frac{\partial \omega}{\partial s} \frac{ds}{ds} = \frac{\partial \omega}{\partial n} \cos \alpha - \frac{\partial \omega}{\partial s} \sin \alpha.
\]

利用这个转换，式 (e) 化为：

\[
\delta \iint \left(\frac{\partial^4 w}{\partial x^4} \right) dx dy = 2 \iint \frac{\partial^4 w}{\partial x^4} \omega dx dy \\
+ 2 \int \frac{\partial^3 w}{\partial x^3} \left(\frac{\partial \omega}{\partial n} \cos \alpha - \frac{\partial \omega}{\partial s} \sin \alpha \right) \cos \alpha ds \\
- 2 \int \frac{\partial^3 w}{\partial x^3} \omega \cos \alpha ds. \tag{f}
\]

用部分积分，有

\[
\int \frac{\partial^3 w}{\partial x^3} \sin \alpha \cos \alpha \frac{\partial \omega}{\partial s} ds = \int \frac{\partial^3 w}{\partial x^3} \sin \alpha \cos \alpha \omega ds \\
- \int \frac{\partial}{\partial s} \left(\frac{\partial^3 w}{\partial x^3} \sin \alpha \cos \alpha \right) \omega ds.
\]

由于积分是沿着板的闭合边界作的，因此上式的右端第一项等于零。这样，
就得到：
\[\int \frac{\partial^2 w}{\partial x^2} \sin \alpha \cos \alpha \frac{\partial \delta w}{\partial s} \, ds = - \int \frac{\partial}{\partial s} \left(\frac{\partial^2 w}{\partial x^2} \sin \alpha \cos \alpha \right) \delta w \, ds. \]

将此结果代入式 (e)，最后得到应变能表达式中第一项的变分为如下形式：
\[e \int \left(\frac{\partial^2 w}{\partial x^2} \right)^3 \, dxdy = 2 \int \frac{\partial^2 w}{\partial y^2} \delta w \, dxdy + 2 \int \frac{\partial^2 w}{\partial x^2} \cos^2 \alpha \frac{\partial \delta w}{\partial n} \, ds \\
+ 2 \int \left[\frac{\partial}{\partial s} \left(\frac{\partial^2 w}{\partial x^2} \sin \alpha \cos \alpha \right) - \frac{\partial^3 w}{\partial x^3} \cos \alpha \right] \delta wds. \quad (g) \]

用相同的方法对式(117)中其余各项的变分作变换，即得：
\[e \int \left(\frac{\partial^2 w}{\partial y^2} \right)^3 \, dxdy = 2 \int \frac{\partial^2 w}{\partial y^2} \delta w \, dxdy + 2 \int \frac{\partial^2 w}{\partial x^2} \sin^2 \alpha \frac{\partial \delta w}{\partial n} \, ds \\
- 2 \int \left[\frac{\partial}{\partial s} \left(\frac{\partial^2 w}{\partial y^2} \sin \alpha \cos \alpha \right) + \frac{\partial^3 w}{\partial y^3} \sin \alpha \right] \delta wds, \quad (h) \]

\[e \int \frac{\partial^2 w}{\partial x^2} \frac{\partial^2 w}{\partial y^2} \, dxdy = 2 \int \frac{\partial^2 w}{\partial y^2} \delta w \, dxdy + \int \left(\frac{\partial^2 w}{\partial y^2} \cos^2 \alpha \right) \frac{\partial \delta w}{\partial n} \, ds \\
+ \frac{\partial^2 w}{\partial x^2} \sin^2 \alpha \frac{\partial \delta w}{\partial n} \, ds - \int \left[\frac{\partial^2 w}{\partial y^2} \sin \alpha + \frac{\partial^3 w}{\partial y^3} \cos \alpha \right] \delta wds, \quad (i) \]

\[e \int \left(\frac{\partial^2 w}{\partial x \partial y} \right)^2 \, dxdy = 2 \int \frac{\partial^2 w}{\partial x \partial y} \delta w \, dxdy \\
+ 2 \int \frac{\partial^2 w}{\partial x \partial y} \sin \alpha \cos \alpha \frac{\partial \delta w}{\partial n} \, ds + \int \left[\frac{\partial}{\partial s} \left(\frac{\partial^2 w}{\partial x \partial y} \sin^2 \alpha - \cos^2 \alpha \right) \right] \delta wds. \quad (j) \]

用了这些式子，应变能的变分就能表示成如下形式，
\[\delta V = D \int \left(\int \Delta w \delta w \, dxdy + \int \left[\left(1 - \nu \right) \left(\frac{\partial^2 w}{\partial x^2} \cos^2 \alpha \right) + \frac{\partial^2 w}{\partial x \partial y} \sin \alpha \cos \alpha \right] \frac{\partial \delta w}{\partial n} \, ds \\
+ \int \left[\left(1 - \nu \right) \frac{\partial}{\partial s} \left(\left(\frac{\partial^2 w}{\partial x^2} - \frac{\partial^3 w}{\partial x^3} \sin \alpha \cos \alpha \right) - \frac{\partial^2 w}{\partial y^2} \left(\cos^2 \alpha - \sin^2 \alpha \right) \right) \right] \delta wds \right). \quad (118) \]
将此式代入式 (b)，由于 \(\delta w \) 和 \(\frac{\partial (\delta w)}{\partial n} \) 是适合于边界条件的任意微小量，因此可知，式 (b) 只有在满足如下三个方程时才能成立：

\[
\iint (D \Delta \delta w - q) \delta w \, dx \, dy = 0 \tag{k}
\]

\[
\int \left\{ D \left[(1 - \nu) \left(\frac{\partial^2 w}{\partial x^2} \cos^2 \alpha + 2 \frac{\partial^2 w}{\partial x \partial y} \sin \alpha \cos \alpha + \frac{\partial^2 w}{\partial y^2} \sin^2 \alpha \right)
\right.
\right.
\]

\[
+ \frac{\nu \Delta \delta w}{1 - \nu} \] + \frac{M}{D} \frac{\partial \delta w}{\partial n} \, ds = 0, \tag{l}
\]

\[
\int \left\{ D \left[(1 - \nu) \frac{\partial}{\partial x} \left(\left(\frac{\partial^2 w}{\partial x^2} - \frac{\partial^2 w}{\partial y^2} \right) \sin \alpha \cos \alpha - \frac{\partial^2 w}{\partial x \partial y} (\cos^2 \alpha - \sin^2 \alpha) \right)
\right.
\right.
\]

\[
- \left(\frac{\partial^2 w}{\partial x^2} + \frac{\partial^2 w}{\partial x \partial y} \right) \cos \alpha - \frac{\partial^2 w}{\partial y^2} \sin \alpha \right\}
\]

\[
\left. \left. - \left(\frac{Q}{D} - \frac{\partial M}{\partial s} \right) \right) \delta w \, ds = 0 \tag{m}
\]

只有在板的中曲面的每一点上存在关系式：

\[
D \Delta \delta w - q = 0,
\]

即存在板的挠度曲面的微分方程(104)时，式 (k) 才能成立。方程 (l) 和 (m) 给出了边界条件。

如板沿着边缘固定，则在边缘上 \(\delta w \) 和 \(\frac{\partial (\delta w)}{\partial n} \) 为零，因此方程 (l) 和 (m) 是满足的。在简支边的情况下，\(\delta w = 0, M = 0 \)。所以方程 (m) 是满足的，并且如果：

\[
(1 - \nu) \left(\frac{\partial^2 w}{\partial x^2} \cos^2 \alpha + 2 \frac{\partial^2 w}{\partial x \partial y} \sin \alpha \cos \alpha + \frac{\partial^2 w}{\partial y^2} \sin^2 \alpha \right) + \nu \Delta \delta w = 0, \tag{n}
\]

方程 (l) 也满足。

在与 \(y \) 轴平行的直线边缘的特殊情形中，\(\alpha = 0 \); 并且由方程 (n) 可得

\[
\frac{\partial^2 w}{\partial x^2} + \nu \frac{\partial^2 w}{\partial y^2} = 0,
\]

这是简支边问题应有的结果。

如板的边界是完全自由的，则在方程 (l) 和 (m) 中数项 \(\delta w \) 及 \(\frac{\partial (\delta w)}{\partial n} \) 是任意的；并且，\(M = 0, Q - (\partial M_x / \partial s) = 0 \)。所以对于自由边，由方程 (l) 和 (m) 可得

\[
(1 - \nu) \left(\frac{\partial^2 w}{\partial x^2} \cos^2 \alpha + 2 \frac{\partial^2 w}{\partial x \partial y} \sin \alpha \cos \alpha + \frac{\partial^2 w}{\partial y^2} \sin^2 \alpha \right) + \nu \Delta \delta w = 0 \tag{p}
\]

\[
(1 - \nu) \frac{\partial}{\partial s} \left[\left(\frac{\partial^2 w}{\partial x^2} - \frac{\partial^2 w}{\partial y^2} \right) \sin \alpha \cos \alpha - \frac{\partial^2 w}{\partial x \partial y} (\cos^2 \alpha - \sin^2 \alpha) \right] = 0
\]

· 95 ·
这两个条件同以前所得的方程 (116) 是一致的 (见第 91 页)。与 x 轴平行的自由直线边界的特殊情况中, \(\alpha = 0 \), 因此得到

\[
\frac{\partial^2 \omega}{\partial x^2} + \nu \frac{\partial^2 \omega}{\partial y^2} = 0,
\]

\[
\frac{\partial^2 \omega}{\partial x^2} + (2 - \nu) \frac{\partial^2 \omega}{\partial x \partial y} = 0.
\]

这两个方程与以前所得的方程 (112) 和 (113) 完全吻合。

在力矩 \(M_x \) 与横向力 \(Q_x = (\partial M_x / \partial x) \) 沿着板的边缘的分布情况为已知时, 其相应的边界条件用方程 (1) 和 (2) 也可以容易地求得。

24. 板的弯曲问题化成薄膜的挠度问题 在许多情况下, 用代表薄膜挠度的两个二阶微分方程来代替对于板推导所得的四阶微分方程 (103) 是有好处的。为了这个目的, 我们将方程 (104) 写成如下形式:

\[
\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \right) \left(\frac{\partial^2 \omega}{\partial x^2} + \frac{\partial^2 \omega}{\partial y^2} \right) = \frac{q}{D}.
\]

注意到, 如将表示弯矩的两个式子 (101) (见第 84 页) 相加, 则有

\[
M_x + M_y = -D(1 + \nu) \left(\frac{\partial^2 \omega}{\partial x^2} + \frac{\partial^2 \omega}{\partial y^2} \right).
\]

引用符号

\[
M = \frac{M_x + M_y}{1 + \nu} = -D \left(\frac{\partial^2 \omega}{\partial x^2} + \frac{\partial^2 \omega}{\partial y^2} \right),
\]

则 (a) 和 (b) 两个方程可以用下列形式的两个方程代表:

\[
\frac{\partial^2 M}{\partial x^2} + \frac{\partial^2 M}{\partial y^2} = -q,
\]

\[
\frac{\partial^2 \omega}{\partial x^2} + \frac{\partial^2 \omega}{\partial y^2} = -\frac{M}{D}.
\]

这两个方程与表示承受侧向载荷的均匀伸张薄膜的微分方程属于同类型的。

1) 这种研究板弯曲的方法是 H. Marcus 在他的著作中提出的: "Die Theorie elastischer Gewebe," 第二版, 第 12 页, 柏林, 1932 年。

2) 参阅 S. Timoshenko 和 J. N. Goodier, "Theory of Elasticity," 第二版, 第 269 页, 1951 年。
在简支多边形板的情形中，这两个方程的解可以大大的简化。因为这时候在边界上 \(w = 0 \)，所以沿着边界的每一直线部分，
\[\frac{\partial^2 w}{\partial s^2} = 0. \]
注意到在简支边上 \(M_n = 0 \)，也可知在边界上
\[\frac{\partial^2 w}{\partial n^2} = 0. \]
因此，按照方程(111)的第二式，在边界上有 [参考方程(34)]
\[\frac{\partial^2 w}{\partial t^2} + \frac{\partial^2 w}{\partial n^2} = \frac{\partial^2 w}{\partial x^2} + \frac{\partial^2 w}{\partial y^2} = -\frac{M}{D} = 0. \] (c)
由此可见，在此情况下，求解板的问题化成依次积分两个方程 (120)。首先讨论第一个方程，求得适合边界条件 \(M = 0 \) 的解
1)。将此解代入第二个方程进行积分，即得挠度 \(w \)。这两个积分的问题与均匀伸张、承受侧向载荷，并且边界挠度为零的薄膜挠度问题是同一类型的。薄膜问题比板的问题要简单得多，用象李兹 (Ritz) 法那样的近似积分法或有限差分法，总可求得足够精确的解。应用有限差分法的例子将在以后讨论 (见第 80 和 83 节)，李兹法的若干应用将在讨论扭转问题时给出 2).

简支的并承受沿边界均匀分布弯矩 \(M \) 而弯曲的多边形板，是应用方程 (120) 的另一简单情形。在这样的情况下，方程 (120) 化为
\[\begin{align*}
\frac{\partial^2 M}{\partial x^2} + \frac{\partial^2 M}{\partial y^2} &= 0, \\
\frac{\partial^2 w}{\partial x^2} + \frac{\partial^2 w}{\partial y^2} &= -\frac{M}{D}. \tag{121}
\end{align*} \]
沿着直线边缘，还应 \(\frac{\partial^2 w}{\partial s^2} = 0 \)，所以
\[M_n = -D \frac{\partial^2 w}{\partial n^2}. \]
并且在边界上有
\[\begin{align*}
\frac{\partial^2 w}{\partial x^2} + \frac{\partial^2 w}{\partial y^2} &= \frac{\partial^2 w}{\partial n^2} = -\frac{M_x}{D} = -\frac{M}{D}.
\end{align*} \]

1) 注意，如板不是多边形的，则在边界上当 \(M_n = 0 \) 时，\(M \) 一般不等于零。
2) 参阅前引 Timoshenko 和 Goodier 的著作，第 280 页。
如在板的某点上取 M 的值为常数 $M = M_0$，也就是说，在板的整个面上弯矩 M_x 与 M_y 之和保持为常数，则上式所代表的边界条件和方程(121)中的第一式将得到满足。于是，板的挠度可由方程(121)中的第二式求得1，此方程变为

$$\frac{\partial^2 \omega}{\partial x^2} + \frac{\partial^2 \omega}{\partial y^2} = -\frac{M_0}{D}, \quad (d)$$

由此可知，在简支多边形板受沿着边界均匀分布的弯矩 M_0 的弯矩作用时，板的挠度曲面与均匀伸张的薄膜在均匀分布载荷作用下的一致性是相同的。在许多情况下，薄膜问题的解是已知的，它们可直接用来讨论相应的板的问题。

今以承受沿边界均匀分布的弯矩 M_0 的弯矩作用的简支等边三角形板(图55)为例。此板的挠度曲面与均匀伸张，承受均匀载荷的等边三角形薄膜的挠度曲面相同，后者可以很容易地用经验得到：在等边三角形的边界上张一肥皂膜，再加以均匀的空气压力2。

在这样情况下，挠度曲面的解析式子也是比较简单的。三角形的三个边的方程分别为

$$x + \frac{a}{3} = 0, \quad \frac{x}{\sqrt{3}} + y - \frac{2a}{3\sqrt{3}} = 0,$$

$$\frac{x}{\sqrt{3}} - y - \frac{2a}{3\sqrt{3}} = 0.$$
取等号左面三个式子的乘积:

\[(x + \frac{a}{3})\left(\frac{x}{\sqrt{3}} + y - \frac{2a}{3\sqrt{3}}\right)\left(\frac{x}{\sqrt{3}} - y - \frac{2a}{3\sqrt{3}}\right) = \frac{x^3 - 3y^2x + a(x^2 + y^2)}{3} + \frac{4x^3}{3 \cdot 27},\]

这个式子在边界上显然等于零，因此，取薄膜的挠度式子为:

\[w = N \left[\frac{x^3 - 3y^2x + a(x^2 + y^2)}{3} + \frac{4a^3}{3 \cdot 27} \right], \quad (e)\]

则边界条件 \(w = 0\) 是满足的，式中 \(N\) 为常数因子，其大小应选成满足于方程 (d)。这样，就得到所求的解:

\[w = \frac{M_n}{4aD} \left[x^3 - 3y^2x - a(x^2 + y^2) + \frac{4a^3}{27} \right]. \quad (f)\]

将 \(x = y = 0\) 代入此式，即得三角形板形心的挠度:

\[w_0 = \frac{M_n a^3}{27D}. \quad (g)\]

由式 (101) 与 (102)，得到表示弯矩和扭矩的式子:

\[M_x = \frac{M_n}{2} \left[1 + \nu - (1 - \nu) \frac{3x}{a} \right], \quad (h)\]

\[M_y = \frac{M_n}{2} \left[1 + \nu + (1 - \nu) \frac{3x}{a} \right], \quad (h)\]

\[M_{xy} = -\frac{3(1 - \nu)M_n y}{2a}. \quad (h)\]

由式 (106) 与 (107)，可知剪力为

\[Q_x = Q_y = 0.\]

从第 22 节的式 (d) 可知，沿边界，剪力 \(Q_n = 0\)，而弯矩等于 \(M_n\)。

从第 22 节的式 (c) 可知，沿 BC 边 (图 55) 的扭矩为

\[M_{n\ell} = \frac{3(1 - \nu)M_n}{4a} (y - \sqrt{3} x). \quad (h)\]

沿 BC 边 (图 55) 作用在板上的垂直反力为

\[V_n = Q_n - \frac{\partial M_{n\ell}}{\partial s} = -\frac{3(1 - \nu)}{2a} M_n. \quad (i)\]
由对称性可知，在板的其余二边上也作用着相同的均匀分布反对力。
这些反对力与三角形板的各角上的集中反对力相平衡，集中反对力的大小可用第 88 页上所叙述的方法求得，它等于

$$ R = 2(M_{in})_{x=\frac{1}{2}, y=1} = (1 - \nu)\sqrt{3} M_n. \quad (i) $$

反作用力沿着边界的分布表示在图 55b 上，最大弯曲应力是在各角上，并且作用在各角的平分面上。根据方程 (h)，相应弯矩的大小为

$$ (M_y)_{\text{max}} = (M_y)_{x=\frac{1}{2}} = \frac{M_n(3 - \nu)}{2}. \quad (k) $$

这个确定简支多边形板在沿边界均匀分布的弯矩作用下的挠度的方法，可用来计算非均匀受热在这种板中所产生 的热应力。在第 14 节讨论夹板的热应力时，已经证明 [式 (b)] 非均匀受热在板的边界上产生均匀分布的弯矩，它阻止板的任何弯曲。这些弯矩的大小为

$$ M_n = \frac{\alpha t D(1 + \nu)}{h}. \quad (l) $$

为了得到简支板情形中的热应力，只需要将弯矩为 (l) 的纯弯曲所产生的应力和简支板中由沿边界均匀分布的弯矩 $-\alpha t D(1 + \nu)/h$ 所产生的应力相迭加。已经解释过，在多边形板的情形中，后一问题是很难求解的。

再一次用等边三角形的板为例。设板的边缘夹支，非均匀受热所引起的弯矩为

$$ M' = M_y = \frac{\alpha t D(1 + \nu)}{h}. \quad (m) $$

要求得简支板的弯矩 M_n 和 M_y，必须将弯矩 (m) 与在式 (h) 中令 $M_n = -\alpha t D(1 + \nu)/h$ 所得到的弯矩迭加。用这个方法，最后得到

1) 假定保持板的上表面的温度比下表面高，这样板就有弯曲成凸面向上的趋势。
2) 参阅 J. L. Mautohetsch 的论文，J. Appl. Mechanics，第二卷，第 141 页，
 1935 年。
\[M_x = \frac{\alpha t E h^2}{24} \left(1 + \frac{3x}{a} \right), \]
\[M_y = \frac{\alpha t E h^2}{24} \left(1 - \frac{3x}{a} \right), \]
\[M_{xy} = \frac{1}{8} \frac{\alpha t E h^2 y}{a}. \]

现在把 \(M_x = -\alpha t D(1 + \nu)/h \) 代入式 (i) 和 (ii)，就能得到反作用力，因此求得:

\[V_n = Q_n - \frac{\partial M_{nt}}{\partial s} = \frac{\alpha t E h^2}{8a}, \quad R = -\sqrt{3} \frac{\alpha t E h^2}{12}. \]

非均匀受热所产生的弯矩和反作用力分别用图 56a 和 56b 表示。

图 56

25. 弹性常数对弯矩值的影响

由式 (101) 和 (102) 可见，板中弯矩和

tw=\frac{\alpha t E h^2}{12}

扭矩的大小受泊松比 \(\nu \) 的数值的很大影响。另一方面，可以很容易地证明，在横向载荷的情况下，如果板是沿着直线边缘简支，或者是沿着某条边缘（不论是否直线边缘）铰支，则量 \(Dm \) 的大小同常数 \(E \) 和 \(v \) 都无关。

假设边界条件是以上二种形式任意组合起来的。今考虑如下问题。如果对于 \(\nu \) 的一个假设数值，就给出了弯径 \(M_x \) 和 \(M_y \) 的数值，那么对于一个新的泊松比值，譬如说 \(\nu' \)，必须计算相当的弯矩。设 \(M_x \) 和 \(M_y \) 为这些新的弯矩值。首先对于 \(\nu \)，然后对于 \(\nu' \) 写出 (101) 式，从它们消去曲率 \(\partial^2 w/\partial x^2 \) 和

1) 参阅 J. L. Maunder 的论文 J. Appl. Mechanics, 第二卷，第 141 页，1935 年。
\[M_x' = \frac{1}{1 - \nu^2} \left[(1 - \nu\nu') M_x + (\nu' - \nu) M_y \right], \]

\[M_y' = \frac{1}{1 - \nu^2} \left[(1 - \nu\nu') M_y + (\nu' - \nu) M_x \right]. \]

如 \(M_x \) 与 \(M_y \) 已知，就能容易地计算出 \(M_x' \) 与 \(M_y' \)。

如果常数 \(\nu \) 包含在某些已知的边界条件中，例如在自由边的情况[方程 (112)]下，式 (122) 就不再成立。

如果板是弹性简支或弹性铰支，则弯矩取决于板的弯曲刚度 \(D \) 相对于约束的刚度。

最后，热应力不仅受所有上述因素的影响，而且还受板的刚度 \(D \) 的绝对值的影响。

表 5 中给出了材料对于 \(\nu \) 的平均值，表中最后一个值的变化范围很大，决定于混凝土的生存年限、混凝土的形式以及其他因素。3

表 5 泊松比 \(\nu \) 的平均值

<table>
<thead>
<tr>
<th>材料</th>
<th>(\nu)</th>
</tr>
</thead>
<tbody>
<tr>
<td>钢</td>
<td>0.30</td>
</tr>
<tr>
<td>铝</td>
<td>0.30</td>
</tr>
<tr>
<td>玻璃</td>
<td>0.25</td>
</tr>
<tr>
<td>混凝土</td>
<td>0.15—0.25</td>
</tr>
</tbody>
</table>

26. 板的精确理论
微分方程 (103) 连同边界条件一起确定了板的挠度。此方程是忽略了正应力 \(\sigma_z \) 和剪应力 \(\tau_{xy} \) 对弯曲的影响而推导出来的（见第 21 节）。这就是说，在此推导时，认为与板的中面平行的各层是处于平面应力状态，其中只有应力分量 \(\sigma_z \) 和 \(\tau_{xy} \) 可以不等于零。这种类型的最简单情况就是纯弯曲的情况。在此情况下，挠度曲面是 \(x \) 和 \(y \) 的二次函数[见第 11 节式 (c)], 它满足方程 (103). 应力分量 \(\sigma_z \) 和 \(\tau_{xy} \) 同 \(x \) 成正比，但与 \(x \) 和 \(y \) 无关。

还存在另外的弯曲情况，其中存在平面应力分布，并且方程 (103) 是严格

1. 德国标委会（the German Code）DIN 4227 中给出了计算 \(\nu \) 值的近似公式为 \(\nu = \sqrt{\frac{f_{c}}{350}} \); \(f_c \) 是混凝土在标准第 28 天的抗压强度，以磅/平方英寸为单位，如 \(f \) 以公斤/厘米²为单位，则此公式化为 \(\nu = \sqrt{f} / 92 \)。也可参阅 J. C. Simmons, *Mag. of Concrete Research*, 第 8 卷, 第 39 页, 1956 年。
成立的。例如，考虑中心具有圆孔的圆形容板，有均匀分布的弯矩 \(M \)，作用在孔的边缘上（图 57），用平行于主面中面的二相平平面在板中截取的每一薄层，与厚壁圆筒承受均匀内压力（图 58）的应力状态相同。在这样的情形中，二主应力的和 \(\sigma_1 + \sigma_2 \) 是一常数\(^1\)，由此可知，z 方向的薄层的变形也是常数，与相邻薄层的变形不会互相干扰。所以，又得到平面应力分布，从而方程(103)成立。

现在讨论当板受弯曲而形成平面应力分布时，有关板的挠度曲面的形状的一般问题。要回答这个问题，需要考虑三个平衡微分方程和六个协调条件。如将体力忽略不计，这些方程为\(^1\):

\[
\frac{\partial \sigma_x}{\partial x} + \frac{\partial \tau_{xy}}{\partial y} + \frac{\partial \tau_{xz}}{\partial z} = 0,
\]

\[
\frac{\partial \sigma_y}{\partial y} + \frac{\partial \tau_{yz}}{\partial z} + \frac{\partial \tau_{yz}}{\partial z} = 0,
\]

\[
\frac{\partial \sigma_z}{\partial z} + \frac{\partial \tau_{xz}}{\partial x} + \frac{\partial \tau_{yz}}{\partial y} = 0;
\]

\[
\Delta_1 \sigma_x = - \frac{1}{1 + \nu} \frac{\partial^2 \theta}{\partial x^2},
\]

\[
\Delta_1 \sigma_y = - \frac{1}{1 + \nu} \frac{\partial^2 \theta}{\partial y^2},
\]

\[
\Delta_1 \sigma_z = - \frac{1}{1 + \nu} \frac{\partial^2 \theta}{\partial z^2},
\]

\[
\Delta_1 \tau_{xy} = - \frac{1}{1 + \nu} \frac{\partial^2 \theta}{\partial x \partial y},
\]

\[
\Delta_1 \tau_{yz} = - \frac{1}{1 + \nu} \frac{\partial^2 \theta}{\partial z \partial y},
\]

\[
\Delta_1 \tau_{xz} = - \frac{1}{1 + \nu} \frac{\partial^2 \theta}{\partial z \partial x}.
\]

\(^1\) 参阅前引 Timoshenko 和 Goodier 的著作，第 60 页。

\(^2\) 参看前书第 229 和 232 页。
\[\theta = \sigma_x + \sigma_y + \sigma_z, \]
\[\Delta_i = \frac{\partial \theta}{\partial x^i} + \frac{\partial \theta}{\partial y^i} + \frac{\partial \theta}{\partial z^i}. \]

将方程 (b) 相加, 则得:
\[\frac{\partial^2 \theta}{\partial x^2} + \frac{\partial^2 \theta}{\partial y^2} + \frac{\partial^2 \theta}{\partial z^2} = \Delta_i \theta = 0, \tag{d} \]

即, 三个正应力分量之和代表一调和函数。在平面应力的情况下, \(\tau_{xz} = \tau_{yz} = \sigma_z = 0 \)。因此, 从方程 (c) 的后二式和方程 (b) 的最后一式, 可知 \(\partial^2 \theta / \partial x^2 \)一定是一常数, 而比说 \(\beta \)。所以在平面应力的情况下, 表示 \(\theta \) 的一般式子为
\[\theta = \theta_0 + \beta x, \tag{e} \]

式中 \(\theta_0 \) 是平面调和函数, 即:
\[\frac{\partial^2 \theta_0}{\partial x^2} + \frac{\partial^2 \theta_0}{\partial y^2} = \Delta \theta_0 = 0. \]

可见在平面应力的情况下, 函数 \(\theta \) 由两部分组成: 与 \(\varepsilon \) 无关的 \(\theta_0 \) 与 \(\varepsilon \) 成正比的 \(\beta \), 第一部分沿着板的厚度不变。它决定于板在其自身平面内的变形, 因此, 如果只考虑板的弯曲, 就可以将它略去不计。这样, 在进一步讨论时, 取
\[\theta = \beta x. \tag{f} \]

如果取
\[\sigma_x = \frac{\partial \varphi}{\partial y}, \quad \sigma_y = \frac{\partial \varphi}{\partial x}, \quad \tau_{xy} = -\frac{\partial^2 \varphi}{\partial x \partial y}, \tag{g} \]

则在平面应力分布的情况下, 平衡方程 (a) 将得到满足。式 (g) 中的 \(\varphi \) 称为应力函数。现在研究这个函数的一般形式。

将式 (g) 代入式 (f), 则得:
\[\frac{\partial^2 \varphi}{\partial x^2} + \frac{\partial^2 \varphi}{\partial y^2} = \beta x. \tag{b} \]

进一步, 由方程 (b) 的第一式可知:
\[\Delta_i \frac{\partial^2 \varphi}{\partial y^2} = 0 \quad \Rightarrow \quad \frac{\partial^2 \varphi}{\partial y^2} = 0, \tag{i} \]

利用方程 (h), 上式可写成如下形式:
\[\frac{\partial^2 \varphi}{\partial y^2} \left(\frac{\partial^2 \varphi}{\partial z^2} \right) = 0. \tag{i} \]

同样地, 由方程 (b) 的第二式与第三式, 可得:
\[\frac{\partial^2 \varphi}{\partial x^2} \left(\frac{\partial^2 \varphi}{\partial z^2} \right) = 0, \quad \frac{\partial^2 \varphi}{\partial x^2} \left(\frac{\partial^2 \varphi}{\partial y^2} \right) = 0. \tag{i} \]

* 104 *
由方程 (i) 和 (i) 可知，$\sigma^1\varphi_1$ 是 x 和 y 的线性函数。这个函数可取为零，
而不影响式 (g) 所给出的应力分量的大小。在这样的情况下，应力函数的一般式子为：

$$
\varphi = \varphi_0 + \varphi_1^2,
$$

其中 φ_0 是平面调和函数，而 φ_1 满足方程

$$
\frac{\partial^2 \varphi_1}{\partial x^2} + \frac{\partial^2 \varphi_1}{\partial y^2} = \beta.
$$

（k）

因为我们不考虑板在自己平面内的变形，在进一步讨论时可将 φ_0 略去，因此

应力函数的一般式子可取为：

$$
\varphi = \varphi_1^2,
$$

（l）

将此式代入式 (g)，就可计算出应力分量，于是位移可由下列方程求出：

$$
\frac{\partial u}{\partial x} = \frac{1}{E} \left(\sigma_x - \nu \sigma_y \right), \quad \frac{\partial u}{\partial y} = \frac{1}{E} \left(\sigma_y - \nu \sigma_x \right),
$$

$$
\frac{\partial w}{\partial x} = \frac{\nu}{E} \left(\sigma_x + \sigma_y \right), \quad \frac{\partial w}{\partial y} + \frac{\partial v}{\partial x} = \frac{1}{G} \tau_{xy},
$$

$$
\frac{\partial u}{\partial x} + \frac{\partial w}{\partial x} = 0, \quad \frac{\partial v}{\partial x} + \frac{\partial w}{\partial y} = 0.
$$

（m）

用这个方法，求得垂直于板的位移 w^1：

$$
w = \frac{\beta}{2E} \left(x^2 + y^2 + \nu x^2 \right) + \frac{1 + \nu}{E} \varphi_1,
$$

从而，板的中面的挠度为：

$$
w = \frac{\beta}{2E} \left(x^2 + y^2 \right) + \frac{1 + \nu}{E} \varphi_1.
$$

（n）

由方程 (x) 和 (l)，对应的应力分量为：

$$
\sigma_x = \nu \frac{\partial^2 \varphi_1}{\partial y^2}, \quad \sigma_y = \nu \frac{\partial^2 \varphi_1}{\partial x^2}, \quad \tau_{xy} = -\nu \frac{\partial^1 \varphi_1}{\partial x \partial y}.
$$

而弯矩和扭矩为

$$
M_x = \int_{x_1}^{x_2} \sigma_x y \, dx = \frac{h^3}{12} \frac{\partial^2 \varphi_1}{\partial y^2},
$$

$$
M_y = \int_{y_1}^{y_2} \sigma_y x \, dy = \frac{h^3}{12} \frac{\partial^2 \varphi_1}{\partial x^2},
$$

$$
M_{xy} = -\int_{y_1}^{y_2} \tau_{xy} y \, dy = \frac{h^3}{12} \frac{\partial \varphi_1}{\partial x \partial y}.
$$

（a）

1）在前引作者的 "Theory of Elasticity" 中给出了若干由方程(m)来计算 u, v 和 w 的例子。

• 105 •
白式（n），求得板的曲率和扭转：

\[
\frac{\partial^4w}{\partial x^2} = -\frac{\beta}{E} + \frac{1 + \nu}{E} \frac{\partial^2\varphi_1}{\partial x^2}, \quad \frac{\partial^4w}{\partial y^2} = -\frac{\beta}{E} + \frac{1 + \nu}{E} \frac{\partial^2\varphi_2}{\partial y^2},
\]

\[
\frac{\partial^4w}{\partial x \partial y} = \frac{1 + \nu}{E} \frac{\partial^2\varphi_1}{\partial x \partial y}.
\]

根据这些式子，并应用式（k）和（o），即得：

\[
\frac{\partial^4w}{\partial x^2} + \nu \frac{\partial^4w}{\partial y^2} = -\frac{1 - \nu^2}{E} \frac{\partial^2\varphi_1}{\partial y^2} = -\frac{M_z}{D},
\]

\[
\frac{\partial^4w}{\partial y^2} + \nu \frac{\partial^4w}{\partial x^2} = -\frac{1 - \nu^2}{E} \frac{\partial^2\varphi_2}{\partial x^2} = -\frac{M_y}{D},
\]

\[
\frac{\partial^4w}{\partial x \partial y} = \frac{1 + \nu}{E} \frac{\partial^2\varphi_1}{\partial x \partial y} = \frac{M_{xy}}{(1 - \nu)D}.
\]

从这个分析，可以得出结论：在板的弯曲形成平面应力分布的情况下，挠度 w [见方程 (n)] 严格地满足方程 (103)，同时式 (101) 和 (102) 也代表弯矩和扭矩。如果方程 (k) 的解取成 x 和 y 的二次函数的形式，则挠度曲面 (n) 也是二次的，它代表受纯弯曲时的挠度。一般来说，由方程 (k) 可知，在平面应力分布的情况下，板的挠度和均匀伸张、受有均匀分布载荷的薄板的挠度是相同的。图 57 所示的板代表这种弯曲的一个特殊情形，对于它，方程 (k) 的解用极坐标表示为

\[
\varphi_1 = Ar^2 + Br \log r + C,
\]

式中 A, B 和 C 是常数，选择它们应当是满足边界条件。

沿边缘有均匀分布力矩的简支多边形板（见第 24 节）是这种弯曲的另一个例子，它的挠度曲面的形状满足方程 (n)，同时方程 (101)、(102) 和 (103) 是严格成立的。由方程 (k) 和 (o) 可以看出，在所有这样的情形中，有

\[
M_z + M_y = \frac{h^2}{12} \left(\frac{\partial^2\varphi_1}{\partial x^2} + \frac{\partial^2\varphi_2}{\partial y^2} \right) = \frac{\beta h^2}{12},
\]

即，在整个板上任一垂直方向上的弯矩之和是一常数。

现在考虑板的弯曲形成广义平面应力分布的情形，即，正应力分量 \(\sigma_z \) 在板的所有点上均为零，而剪应力分量 \(\tau_{rz} \) 和 \(\tau_{rz} \) 在板的上下表面 \(z = \pm h/2 \) 上为零。沿一边缘夹角并在对边干涉均匀载荷的矩形板的挠度问题是这种弯曲的一个例子，由矩形板的弯曲理论可知，在这种情形中，在板的所有点上 \(\sigma_z = 0 \)，在板的表面上 \(\tau_{rz} = 0 \)。在板的厚度上 \(\tau_{rz} \) 是按照如下的抛物线法则变化的：

\[
\tau_{rz} = \frac{6Q}{h^2} \left(\frac{h^2}{4} - z^2 \right).
\]

- 106 -
再应用一般方程 (a), (b) 和 (c), 并且如以上平面应力分布的情形那样进行推演，就能求得在这种情况下挠度的一般表达式：

$$\omega = \frac{1}{E} \left[\frac{h^2 \varphi}{4} + (1 + \nu) \varphi_1 \right],$$

式中 φ 是一个 x 和 y 平面的平忭和函数，而 φ_1 满足方程

$$\frac{\partial^2 \varphi_1}{\partial x^2} + \frac{\partial^2 \varphi_1}{\partial y^2} = -\frac{1 - \nu}{1 + \nu} \varphi.$$

可知在这种情况下，当 $q = 0$ 时，微分方程 (103) 还是成立的。

在这种问题中，表示弯矩、扭矩和剪力的方程为

$$M_x = -D \left(\frac{\partial^2 \omega}{\partial x^2} + \nu \frac{\partial^1 \omega}{\partial y} \right) + \frac{8 + \nu}{40} Dh^1 \frac{\partial^1 \omega}{\partial x} \Delta \omega,$$

$$M_y = -D \left(\frac{\partial^2 \omega}{\partial y^2} + \nu \frac{\partial^1 \omega}{\partial x} \right) + \frac{8 + \nu}{40} Dh^1 \frac{\partial^1 \omega}{\partial y} \Delta \omega,$$

$$M_{xy} = D(1 - \nu) \frac{\partial^1 \omega}{\partial x \partial y} + \frac{8 + \nu}{40} Dh^1 \frac{\partial^1 \omega}{\partial x} \Delta \omega,$$

$$Q_x = -D \frac{\partial}{\partial x} \Delta \omega, \quad Q_y = -D \frac{\partial}{\partial y} \Delta \omega.$$

显然，剪力的表达式与近似理论所给出的式 (108) 是一致的，但是弯矩与扭矩的表达式是不相同的，这些式子的第二项代表剪应力的影响。

这些修正项，与求梁的弯曲一样，用初等方法就能得到。考虑 xy 平面内曲率，我们可以说总曲率是由两个因素产生的：弯矩 M_x, M_y 和剪力 Q_x。

弯矩所产生的曲率可由总曲率 $-\theta^1w/\partial\alpha^1$ 减去剪力所产生的那部分曲率 $-\theta(kQx/kG)/\partial\alpha^1$ 而得。分别用:

$$-\frac{\partial^3w}{\partial\alpha^3} + \frac{\partial}{\partial y^1}\left(\frac{kQx}{kG}\right), \quad -\frac{\partial^3w}{\partial\alpha^2} + \frac{\partial}{\partial y^2}\left(\frac{kQx}{kG}\right)$$

代替式(101)中的 $-\partial^3w/\partial\alpha^3$ 和 $-\partial^3w/\partial y^2$, 并利用(123)中的头两个式子, 即求得弯矩的表达式:

$$M_x = -D\left(\frac{\partial^3w}{\partial x^1} + v \frac{\partial^3w}{\partial y^2}\right) + \frac{kDh^2}{6} \frac{\partial^3w}{\partial y^2} \Delta w,$$

$$M_y = -D\left(\frac{\partial^3w}{\partial y^1} + v \frac{\partial^3w}{\partial x^2}\right) + \frac{kDh^2}{6} \frac{\partial^3w}{\partial x^2} \Delta w.$$

如取

$$\frac{k}{6} = \frac{8 + \nu}{40},$$

则上二式子与(123)中的头两个式子是一致的。当 $\nu = 0.3$, 则得 $k = 1.245$。

由梁的弯曲理论可知, 如梁的高度 h 与梁的跨度比较为小量时, 剪力作用所得的修正为小量, 因此可以忽略不计。板的问题中也可得到相同的结论。

应力分量的精确表达式为:

$$\sigma_x = -\frac{Ez}{1 - \nu^2} \left(\frac{\partial^3w}{\partial x^1} + v \frac{\partial^3w}{\partial y^2}\right) + \frac{Edz}{1 - \nu^2} \left(\frac{h^2c}{4} - \frac{2 - \nu}{6} \frac{c^3}{3}\right) \frac{\partial^3w}{\partial y^2} \Delta w,$$

$$\sigma_y = -\frac{Ez}{1 - \nu^2} \left(\frac{\partial^3w}{\partial y^1} + v \frac{\partial^3w}{\partial x^2}\right) + \frac{Edz}{1 - \nu^2} \left(\frac{h^2c}{4} - \frac{2 - \nu}{6} \frac{c^3}{3}\right) \frac{\partial^3w}{\partial x^2} \Delta w,$$

$$\tau_{xy} = -\frac{Ez}{1 - \nu^2} \frac{\partial^3w}{\partial x^1 \partial y^2} - \frac{Edz}{1 - \nu^2} \left(\frac{h^2c}{4} - \frac{2 - \nu}{6} \frac{c^3}{3}\right) \frac{\partial^3w}{\partial x^1 \partial y^2} \Delta w,$$

$$\tau_{zx} = -\frac{E(h^2c - 4z^2)}{8(1 - \nu^2)} \frac{\partial^3w}{\partial x^1} \Delta w, \quad \tau_{zy} = -\frac{E(h^2c - 4z^2)}{8(1 - \nu^2)} \frac{\partial^3w}{\partial y^2} \Delta w,$$

$$\sigma_z = 0.$$

表示 τ_{xy}, σ_y 和 τ_{zy} 的式子的右端的第二项，是剪力对弯曲的影响所引起的修正。显然，应力 σ_x, σ_y, 和 τ_{xy} 不再同侧中面的距离 x 成正比，而包含着 z^3 或 z^3 的一项，剪应力 τ_{xy} 和 τ_{zy} 同矩形梁中一样，随同侧的物理线定则变化。在平面应力分布的情形中，Δw 是一常数，因而公式 (v) 与近似理论所给出的公式是相同的。

1) k 是一常数因子, 在梁的理论中, 它随材料的形状而变。
承受均匀载荷的杆的问题也能用同样的方法严格地处理。因此可以证明，在此基础上坡度一般表达式可由式（g）加上如下的项得到：

\[
\frac{1}{64} \frac{q}{D} \left(x^2 + y^2 \right) \left(x^2 + y^2 - \frac{2k^2}{1-\nu} \right).
\]

这一项是圆柱理论的方程 (103)。求出的方程是近似理论的式 (101) 不完全相同。它包含着一些附加的修正项。如果板的厚度较它的其他尺寸为小，则这些修正项也是小量，可以忽略不计。

在前述所有问题中，讨论板弯曲问题的一般解时没有考虑边界条件。也有许多问题的严格解是考虑边界条件的。所有这些解表明，如果可以认为板是“薄”的，则惯用的理论对于实际应用的需要是足够精确的。有两种情况要除外：(1) 高度集中的横向载荷的邻近区域内；(2) 边缘的边缘区域内，特别是板在角的附近，以及直径与板厚本身的大小同数量级的孔的周围。

在第一种情形中，应当考虑到，正应力 \(\sigma_x \) 和横向剪应力对于板的变形的影响是等重要的。在计算对近似理论所给出的应力作必要修正时（见第 73 页），可以不考虑边界条件。在这样的情况下，厚板理论是解决最方便的工具。

在第二种情形中，正应力 \(\sigma_x \) 对于变形的影响比横向剪应力 \(t_{xy} \) 和 \(t_{yz} \) 对于变形的影响更成为次要的。近年来发展了几种初步考虑横向剪应力影响的修正了的薄板理论（参阅第 39 节）。对于分析板的边缘区域内的应力分布，这些理论比更严格的厚板理论要好得多。

第五章
简支矩形板

27. 承受正弦曲线形荷载的简支矩形板

取坐标轴如图59所示，我们假设分布在板面上的荷载由下式给出:

\[q = q_0 \sin \frac{\pi x}{a} \sin \frac{\pi y}{b} \]

式中，\(q_0 \) 表示在板中心荷载的强度。

在这种情况下，挠度曲面的微分方程（103）化成

\[\frac{\partial^4 w}{\partial x^4} + 2 \frac{\partial^4 w}{\partial x^2 \partial y^2} + \frac{\partial^4 w}{\partial y^4} = \frac{q_0}{D} \sin \frac{\pi x}{a} \sin \frac{\pi y}{b}. \]

简支边的边界条件为:

当 \(x = 0 \) 和 \(x = a \)， \(\omega = 0 \)， \(M_x = 0 \);
当 \(y = 0 \) 和 \(y = b \)， \(\omega = 0 \)， \(M_y = 0 \).

应用弯矩的表达式（101），由于在边上 \(\omega = 0 \)，在平行于 \(x \) 轴和 \(y \) 轴的边缘上分别有 \(\partial^2 \omega/\partial x^2 = 0 \) 和 \(\partial^2 \omega/\partial y^2 = 0 \)。于是，边界条件可写成下列形式:

当 \(x = 0 \) 和 \(x = a \)， (1) \(\omega = 0 \)， (2) \(\frac{\partial^2 \omega}{\partial x^2} = 0 \),

当 \(y = 0 \) 和 \(y = b \)， (3) \(\omega = 0 \)， (4) \(\frac{\partial^2 \omega}{\partial y^2} = 0 \).

可以看出，如果将挠度取成

\[\omega = C \sin \frac{\pi x}{a} \sin \frac{\pi y}{b} \]

则所有边界条件都是满足的。选择式（d）中的常数 \(C \) 时，必须使

110
它适合于方程(b)，将式(d)代入方程(b)，得

\[\pi^4 \left(\frac{1}{a^2} + \frac{1}{b^2} \right)^2 C = \frac{q_0}{D}, \]

因此，满足方程(b)和边界条件(c)的挠度曲面为

\[\omega = \frac{q_0}{\pi^4 D \left(\frac{1}{a^2} + \frac{1}{b^2} \right)^2} \sin \frac{\pi x}{a} \sin \frac{\pi y}{b}, \quad (c) \]

有了这个式子，同时应用式(101)与(102)，即得

\[M_x = \frac{q_0}{\pi^2 \left(\frac{1}{a^2} + \frac{1}{b^2} \right)^2} \left(\frac{1}{a^2} + \frac{v}{b^2} \right) \sin \frac{\pi x}{a} \sin \frac{\pi y}{b}, \]

\[M_y = \frac{q_0}{\pi^2 \left(\frac{1}{a^2} + \frac{1}{b^2} \right)^2} \left(\frac{v}{a^2} + \frac{1}{b^2} \right) \sin \frac{\pi x}{a} \sin \frac{\pi y}{b}, \quad (f) \]

\[M_{xy} = \frac{q_0(1 - \nu)}{\pi^2 \left(\frac{1}{a^2} + \frac{1}{b^2} \right)^2 \frac{a}{b}} \cos \frac{\pi x}{a} \cos \frac{\pi y}{b}. \]

显然，最大挠度和最大弯矩是在板的中心。将 \(x = a/2, \ y = b/2 \) 代入式(c)和(f)，得到

\[\omega_{max} = \frac{q_0}{\pi^4 D \left(\frac{1}{a^2} + \frac{1}{b^2} \right)^2}, \quad (124) \]

\[(M_x)_{max} = \frac{q_0}{\pi^2 \left(\frac{1}{a^2} + \frac{1}{b^2} \right)^2} \left(\frac{1}{a^2} + \frac{v}{b^2} \right), \]

\[(M_y)_{max} = \frac{q_0}{\pi^2 \left(\frac{1}{a^2} + \frac{1}{b^2} \right)^2} \left(\frac{v}{a^2} + \frac{1}{b^2} \right). \quad (125) \]

在方形板的特殊情形中，\(a = b \)，前面的公式化为

\[\omega_{max} = \frac{qa^4}{4\pi^4 D}, \quad (M_x)_{max} = (M_y)_{max} = \frac{(1 + \nu)qa^2}{4\pi^2}, \quad (126) \]

用式(106)和(107)计算剪力，得到
\[Q_x = \frac{q_0}{\pi a} \left(\frac{1}{a^2} + \frac{1}{b^2} \right) \cos \frac{\pi x}{a} \sin \frac{\pi y}{b}, \tag{g} \]

\[Q_y = \frac{q_0}{\pi b} \left(\frac{1}{a^2} + \frac{1}{b^2} \right) \sin \frac{\pi x}{a} \cos \frac{\pi y}{b}. \tag{h} \]

为了求得板的支边上的反作用力，可如第22节所说明的那样计算。对于边缘 \(x = a \)，得

\[V_x = \left(Q_x - \frac{\partial M_{xy}}{\partial y} \right)_{x=a} = -\frac{q_0}{\pi a} \left(\frac{1}{a^2} + \frac{2 - \nu}{b^2} \right) \left(\frac{1}{a^2} + \frac{2 - \nu}{b^2} \right) \sin \frac{\pi y}{b}. \tag{i} \]

同样地，对于边缘 \(y = b \)，

\[V_y = \left(Q_y - \frac{\partial M_{xy}}{\partial x} \right)_{y=b} = -\frac{q_0}{\pi b} \left(\frac{1}{a^2} + \frac{2 - \nu}{b^2} \right) \left(\frac{1}{b^2} + \frac{2 - \nu}{a^2} \right) \sin \frac{\pi x}{a}. \tag{i} \]

所以，压力分布是按照正弦曲线规律的。负号表示作用在板上的反作用力方向向下。由对称性可知，公式 (h) 和 (i) 也分别代表着边缘 \(x = 0 \) 和 \(y = 0 \) 上的压力分布。分布压力的合力为

\[\frac{2q_0}{\pi \left(\frac{1}{a^2} + \frac{1}{b^2} \right)^2} \int_0^b \sin \frac{\pi y}{b} \, dy + \frac{1}{\pi b} \left(\frac{1}{b^2} + \frac{2 - \nu}{a^2} \right) \]

\[\times \left[\int_0^a \sin \frac{\pi x}{a} \, dx \right] = -\frac{4q_0 ab \sin \frac{\pi y}{b}}{\pi^2} + \frac{8q_0 (1 - \nu)}{\pi^2 a b \left(\frac{1}{a^2} + \frac{1}{b^2} \right)^2}. \tag{j} \]

注意到，

\[\frac{4q_0 ab}{\pi^2} = \int_0^a \int_0^b q_0 \sin \frac{\pi x}{a} \sin \frac{\pi y}{b} \, dx \, dy, \tag{k} \]

由此可知，分布反作用力的和大于 (k) 式所给出的作用在板上的

* 112 *
总裁荷。这个结果是很容易解释的，如果注意到，在按第 22 节所述进行推演时，不仅得到分布反作用力，而且内在板的角上得到集中反作用力。根据对称性，这些集中反作用力是相等的；而它们的大小，由图 51 可以看出，等于

\[R = 2(M_{xy})_{r=a, y=b} = \frac{2q_0(1 - \nu)}{\pi^2 ab \left(\frac{1}{a^2} + \frac{1}{b^2} \right)^2}. \] (1)

正号表示这些反作用力的方向是向下的。它们的和恰好等于(i) 式中的第二项。图 60 中圆出了作用在板上的分布反力和集中反力，它们同 (a) 式所确定的载荷保持平衡。 可以看出，在外载荷的作用下，板的各个角有向上翘的趋势，因此必须有集中力 R 作用在角上阻止这个趋势。

最大弯矩应力是在板的中心。设 \(a > b \)，可知在中心 \(M_y > M_x \)，所以最大弯矩应力为

\[(\sigma_y)_{\text{max}} = \frac{6(M_y)_{\text{max}}}{h^2} = \frac{6q_0}{\pi^2 h^2 \left(\frac{1}{a^2} + \frac{1}{b^2} \right)^2} \left(\frac{\nu}{a^4} + \frac{1}{b^4} \right). \]

最大剪应力是在板的长边的中点。注意到，总的横向力 \(V_x = Q_y = \frac{\partial M_{xy}}{\partial x} \) 是按照抛物线规律分布在板的厚度上的，于是，用式 (i)，即得

\[(\tau_{xy})_{\text{max}} = \frac{3q_0}{2\pi \delta h \left(\frac{1}{a^4} + \frac{1}{b^4} \right)^2} \left(\frac{2 - \nu}{a^2} \right). \]

假如正弦曲线形载荷分布为

\[q = q_0 \sin \frac{m x}{a} \sin \frac{n y}{b}, \]

式中 \(m \) 和 \(n \) 是整数，则可如同以前一样求解，得到下列挠度曲面的

* 113 *
表达式:

\[w = \frac{q_0}{\pi^4D \left(\frac{m^2}{a^2} + \frac{n^2}{b^2} \right)} \sin \frac{m\pi x}{a} \sin \frac{n\pi y}{b}, \quad (127) \]

弯矩和扭矩的表达式能够从这个式子直接导分得到。

28. 简支矩形板的纳维埃 (Navier) 解

上述的解可用来计算承受任一种载荷:

\[q = f(x, y) \quad (a) \]

的简支矩形板中所产生的挠度。为此，我们把函数 \(f(x, y) \) 表示成二重三角级数的形式\(^1:\)

\[f(x, y) = \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} a_{mn} \sin \frac{m\pi x}{a} \sin \frac{n\pi y}{b} \quad (128) \]

为了计算这个级数的某一个系数 \(a_{m' n'} \)，在式 (128) 的两边乘上 \(\sin (n'\pi y/b)dy \) 并从 0 积分到 \(b \)。注意到，

当 \(n \neq n' \), \(\int_{0}^{b} \sin \frac{n\pi y}{b} \sin \frac{n'\pi y}{b} \, dy = 0 \),

当 \(n = n' \), \(\int_{0}^{b} \sin \frac{n\pi y}{b} \sin \frac{n'\pi y}{b} \, dy = \frac{b}{2} \),

由此可得

\[\int_{0}^{b} f(x, y) \sin \frac{n\pi y}{b} \, dy = \frac{b}{2} \sum_{m=1}^{\infty} a_{mn} \sin \frac{m\pi x}{a} \quad (b) \]

在 (b) 式的两边乘上 \(\sin (m'\pi x/a)dx \) 并从 0 积分到 \(a \)，可得

\[\int_{0}^{a} \left(\int_{0}^{b} f(x, y) \sin \frac{m'\pi x}{a} \sin \frac{n'\pi y}{b} \, dx \right) dy = \frac{ab}{4} a_{m' n'} , \]

由此，

\[a_{m' n'} = \frac{4}{ab} \int_{0}^{a} \left(\int_{0}^{b} f(x, y) \sin \frac{m'\pi x}{a} \sin \frac{n'\pi y}{b} \, dx \right) dy. \quad (129) \]

对于所给的载荷分布，即对于所给的 \(f(x, y) \)，作式 (129) 所示的积分。

\(^1\) 简支矩形板弯矩问题的第一个解以及利用二重三角级数来求这个解，应当归功于 Navier，他在 1820 年向法国科学院提交了一篇论述这个问题的论文。这篇论文的摘要发表在 Bull. soc. phil.-math.，巴黎，1823 年。手稿藏在 l'Ecole des Ponts et Chaussées 的图书馆里。
分，就可求得级数（128）的系数。这样，所给的载荷就表示成了许多正弦曲线形截荷的和。每一正弦曲线形截荷所产生的挠度已在上节讨论过，把如式（127）所表示的各项相加，就能得到总的挠度。所以：

\[
\omega = \frac{1}{\pi^4 D} \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac{a_{mn}}{m^2 + n^2} \frac{\sin \frac{m\pi x}{a}}{a} \sin \frac{n\pi y}{b}. \tag{130}
\]

以均匀分布在全板面上的载荷为例来说明通解（130）的应用。在此情况下，

\[
f(x, y) = q_0,
\]

这里，\(q_0\)是均匀分布载荷的强度。由式（129），可得

\[
a_{mn} = \frac{4q_0}{ab} \int_0^b \int_0^a \sin \frac{m\pi x}{a} \sin \frac{n\pi y}{b} \, dx \, dy = \frac{16q_0}{\pi^2 mn}, \tag{c}
\]

式中 \(m\) 和 \(n\) 是奇数。如 \(m\) 或 \(n\) 为偶数，或者 \(m\) 和 \(n\) 都是偶数，则 \(a_{mn} = 0\)。代入式（130），即得：

\[
\omega = \frac{16q_0}{\pi^6 D} \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac{\sin \frac{m\pi x}{a} \sin \frac{n\pi y}{b}}{mn \left(\frac{m^2}{a^2} + \frac{n^2}{b^2} \right)}, \tag{131}
\]

式中 \(m = 1, 3, 5, \cdots; n = 1, 3, 5, \cdots\)。

在均匀载荷的情况下，挠度曲面对于轴 \(x = a/2, y = b/2\) 是对称的，因此在级数（131）中，\(m\) 或 \(n\) 为偶数时所有项都等于零是很自然的，因为它们对于上述二轴是不对称的。板的最大挠度是在中心，将 \(x = a/2, y = b/2\) 代入式（131）求得：

\[
\omega_{\text{max}} = \frac{16q_0}{\pi^6 D} \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac{(-1)^{m+n-1}}{mn \left(\frac{m^2}{a^2} + \frac{n^2}{b^2} \right)} \tag{132}
\]

这个级数收敛得很快，只要取第一项，就已能得到令人满意的近似值。例如，在方形板的情况下，第一项给出

\[
\omega_{\text{max}} = \frac{4q_0a^4}{\pi^6 D} = 0.00416 \frac{q_0a^4}{D},
\]

\[\cdot 115 \cdot \]
设 $\rho = 0.3$, 并将式(3)的 D 值代入，有

$$\omega_{\max} = 0.0454 \frac{Qd^4}{Ek^3}$$

这个结果的误差约为百分之 2.5（见表 8）。

从式(132)可以看出，如果二板的厚度相同，比值 a/b 也相同，则它们的挠度随着边长的四次方增加。

应用式(101)和(102)，就能由通解(131)求得弯矩和扭矩的表达式。用这个方法得到的级数像级数(131)那么快地收敛，所以在进一步的讨论（见第 30 节）中，将给出更适合于数字计算的另一种形式的解。由于弯矩和扭矩是用级数(131)的二阶导数表示的，因此在 q_1 和 D 保持相同时，它们的最大值与板边长的平方成正比。板上的总裁荷（等于 $q_0 ah$）也是与板的边长的平方成正比；由此可知，对于两个厚度相等，比值 a/b 相同的板，如果作用在它们上面的总裁荷相等，那么它们的最大弯矩，从而最大应力也是相等的。

29. 纳维埃解的进一步应用

由上节的讨论可知，简支矩形板（图 59）的挠度总是能够表示成二重三角级数（130）的形式，其系数 a_{mn} 由式(129)给出。

我们把这个结果应用到把单一裁荷 P 均匀分布在图 61 所示

![图 61](image)

1）这个结论是 Mariotte 在他 1686 年所发表的论文 "Traité du mouvement des eaux" 中建立起来的。参阅 Mariotte 的科学论文集，新版，第 2 卷，第 467 页。1740 年。
矩形区域上的情况，根据式(129)，有

$$a_{mn} = \frac{4P}{abuv} \int_{\zeta-u/2}^{\zeta+u/2} \int_{\eta-v/2}^{\eta+v/2} \sin \frac{mx}{a} \sin \frac{ny}{b} \, dx \, dy,$$

即

$$a_{mn} = \frac{16P}{\pi^4 mnmn} \sin \frac{m\pi \zeta}{a} \sin \frac{n\pi \eta}{b} \sin \frac{m\pi u}{2a} \sin \frac{n\pi v}{2b}. \quad (a)$$

假如在特殊情况下，$$\zeta = a/2, \eta = b/2, u = a, v = b$$，于是式 (a) 就化为第 28 节中对于承受均匀载荷的板所得到的式 (c)。

另一个有实际意义的情况是单一载荷集中在板的任一给定的点 $$x = \xi, y = \eta$$ 上。应用式 (a)，并令 $$u$$ 和 $$v$$ 趋于零，我们得到如下式子:

$$a_{mn} = \frac{4P}{ab} \sin \frac{m\pi \xi}{a} \sin \frac{n\pi \eta}{b}, \quad (b)$$

从而，由式(130)，挠度为:

$$\omega = \frac{4P}{\pi^4 aBD} \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac{\sin \frac{m\pi \xi}{a} \sin \frac{n\pi \eta}{b}}{\left(\frac{m^2}{a^2} + \frac{n^2}{b^2}\right)^2} \sin \frac{m\pi x}{a} \sin \frac{n\pi y}{b}. \quad (133)$$

这个级数收敛得很快，只取头几项，就能充分精确地求得板上任一点的挠度。例如，我们也可以计算在载荷作用在板的中心时板中心的挠度。这时，有 $$\xi = x = a/2, \eta = y = b/2$$，而级数 (133) 化为

$$\omega_{\text{max}} = \frac{4P}{\pi^4 aBD} \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac{1}{\left(\frac{m^2}{a^2} + \frac{n^2}{b^2}\right)^2}, \quad (c)$$

式中 $$m = 1, 3, 5, \ldots; n = 1, 3, 5, \ldots$$. 在方形板的情况下，式 (c) 化为:

$$\omega_{\text{max}} = \frac{4Pa^2}{\pi^4 D} \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac{1}{(m^2 + n^2)^2}$$

取级数的头四项，得到:

$$\omega_{\text{max}} = \frac{0.01121Pa^2}{D}.$$
它比精确值（见表 23）约小百分之 $3\frac{1}{2}$。

表示集中载荷强度的级数 (128) 在点 $x = \xi, y = \eta$ 上是发散的，表示弯曲矩和剪力的级数在集中载荷的作用点上同样也是发散的。

现在考虑如下的表达式:

$$\omega = K(x, y, \xi, \eta)$$

$$= \frac{1}{x^1 a^1 b^1 D} \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac{\sin \frac{m\pi \xi}{a} \sin \frac{n\pi \eta}{b} \sin \frac{m\pi x}{a} \sin \frac{n\pi y}{b}}{\left(\frac{m^2}{a^2} + \frac{n^2}{b^2}\right)} \cdot (134)$$

根据式 (132)，它表示单位载荷 $P = 1$ 所产生的挠度；引入符号 $K(x, y, \xi, \eta)$ 是为了简化写法。

将 x 和 y 看作变量，$\omega = K(x, y, \xi, \eta)$ 就是在一固定的点 $x = \xi, y = \eta$ 上作用有单位载荷的板的弹性曲面方程。如果把 ξ 和 η 看作变量，则方程 (134) 定义了对于板在一固定点 x, y 的挠度的影响曲面。它的移动单位载荷的位置由 ξ 和 η 给出。所以，如果给出了分布在面积 A 上、强度为 $f(\xi, \eta)$ 的载荷，在板的任一点上相应的挠度就能很容易地求得。事实上，在 $x = \xi, y = \eta$ 作用着载荷微元 $f(\xi, \eta) d\xi d\eta$，应用叠加原理，就得到挠度:

$$\omega = \int_A f(\xi, \eta) K(x, y, \xi, \eta) d\xi d\eta, \quad (135)$$

式中二重积分是扩展在承受载荷的面积，而 $K(x, y, \xi, \eta)$ 是由式 (134) 给出的。

函数 $K(x, y, \xi, \eta)$ 有时称为板的格林 (Green) 函数。在用方程 (134) 给出这个函数时，简支矩形板的边界条件也考虑在内了。然而，格林函数的许多性质同边界条件无关的。格林函数的对称性质

$$K(x, y, \xi, \eta) = K(\xi, \eta, x, y)$$

就是一例，它是由著名的马克斯威尔 (Maxwell) 互易定理"得到的。在函数 (134) 的特殊情形中很容易证明这个性质。

1) 例如参看 S. Timoshenko, D. H. Young, "Theory of Structures," 第 250 页，1945 年。
作为近似解应用的最后一例，考虑均匀分布在半径为 r, 圆心为 $x = a$, $y = b$ 的圆形面积上的单一载荷 p。引入极坐标 ρ, θ, 以受载面积的中心为原点，并且用面积微元 $\rho d\rho d\theta$ 来代替式(129)中的面积微元 $dxdy$，则由式 (129)，有

$$
 a_{mn} = \frac{4}{ab} \frac{p}{\pi \epsilon^2} \int_0^\infty \sin \frac{m\pi x}{a} \sin \frac{n\pi y}{b} \rho d\rho d\theta.
$$

如果圆 $\rho = \epsilon$ 完全包含在板的边界内部，将 (d) 式积分，得到

$$
 a_{mn} = \frac{8p}{abc \gamma_{mn}} J_1(\gamma_{mn}) \sin \frac{m\pi x}{a} \sin \frac{n\pi y}{b},
$$

其中 $\gamma_{mn} = \pi \sqrt{(m/a)^2 + (n/b)^2}$，$J_1(\gamma_{mn})$ 是以 γ_{mn} 为自变量的一阶贝塞尔 (Bessel) 函数。将式 (e) 代入式(130)，就能得到所要的挠度。

我们看到，即使在载荷分布比较复杂的情况下，纳维埃解的形式仍然是简单的。另一方面，二重级数的解对于数值计算是不方便的，特别是在计算中包含函数 u 的高阶导数时。所以，下面将讨论矩形板弯曲问题的另一种更适合于数值计算的解的形式。

30. 对承受均匀载荷的简支矩形板的不同解

在讨论有一对对边简支的矩形板的弯曲问题时，莱维 (M. Levy)建议把解取成下列级数的形式:

$$
 w = \sum_{n=1}^\infty Y_n \sin \frac{m\pi x}{a},
$$

(136)

式中 Y_n 只是 y 的函数。假设边界 $x = 0$ 和 $x = a$ (图 62) 是简支。所以级数 (136) 的每一项在这两条边上满足边界条件 $w = 0$ 和 $\partial^2 w / \partial x^2 = 0$，还需要这样来确定 Y_n: 在边界 $y = \pm b/2$ 上满足边界条件，并且满足挠度曲面的方程:

$$
 \frac{\partial^4 w}{\partial x^4} + 2 \frac{\partial^4 w}{\partial x^2 \partial y^2} + \frac{\partial^4 w}{\partial y^4} = \frac{q}{D}.
$$

(а)

1) 参阅 S. Wainowsky-Krieger, Ingr.-Arch., 第 3 卷, 第 240 页, 1932 年。
2) 参阅 Compt. rend., 第 129 卷, 第 535—539 页, 1899 年。把这个解应用到矩形板弯曲的许多特殊情况的是 E. Espana, "Thèses," 巴黎, 1900 年; 在这篇论文中阐明了由纳维埃的二重级数解到莱维的单级数解的变换。
在将这个方法应用到承受均匀载荷的简支矩形板时，问题可以进一步简化，亦即方程 (a) 的解取成如下形式：

\[\omega = \omega_1 + \omega_2, \]

（b）

并令

\[\omega_1 = \frac{q}{24D} (x^4 - 2a x^2 + a^4 x), \]

（c）

即，\(\omega_1 \) 代表平行于 \(x \) 轴的板条在均匀载荷作用下的挠度。\(\omega_1 \) 满足方程 (a)，同时在边缘 \(x = 0 \) 和 \(x = a \) 上也满足边界条件。

显然，\(\omega_2 \) 的表达式必须满足方程

\[\frac{\partial^4 \omega_2}{\partial x^4} + 2 \frac{\partial^4 \omega_2}{\partial x^2 \partial y^2} + \frac{\partial^4 \omega_2}{\partial y^4} = 0, \]

（137）

它应当这样来选择：使得整个 (b) 满足板的所有边界条件。将 \(\omega_2 \) 取成级数 (136) 的形式，由于对称，\(m = 1, 3, 5 \cdots \)。把它代入方程 (137)，得到

\[\sum_{m=1}^{\infty} \left(Y_{m}^{(2)} - 2 \frac{m^2 \pi^2}{a^2} Y'' + \frac{m^4 \pi^4}{a^4} Y_m \right) \sin \frac{m \pi x}{a} = 0. \]

只要函数 \(Y_m \) 满足方程

\[Y_{m}^{(2)} - 2 \frac{m^2 \pi^2}{a^2} Y'' + \frac{m^4 \pi^4}{a^4} Y_m = 0, \]

（d）

则上面这个方程对于 \(x \) 的任何值都是满足的。方程 (d) 的一般积分可以写成如下形式

\[Y_m = \frac{q a^4}{D} \left(A_m \cosh \frac{m \pi y}{a} + B_m \frac{m \pi y}{a} \sinh \frac{m \pi y}{a} \right) \]

\[+ C_m \sinh \frac{m \pi y}{a} + D_m \frac{m \pi y}{a} \cosh \frac{m \pi y}{a} \]

（138）

由于板的挠度由面对称于 \(x \) 轴 (图 62)，我们在式 (138) 中只保留 \(y \) 的偶函数，并令积分常数 \(C_m = D_m = 0 \)。

1) 采用这种解的形式的是 A. Nádai, Forschungsarb., nos. 170 和 171，柏林，1915 年；也可参考他的著作 “Elastische Platten,” 柏林，1925 年。

2) П. Ф. Папкович 对于 \(Y_m \) 提出了一种略有不同的形式，它能更方便地满足某些特定的边界条件。参阅 Прикл. матем. и механика，第 5 卷，1941 年。
于是，挠度曲面（b）可写成下列形式：

\[
\omega = \frac{q}{24D} \left(x^4 - 2ax^2 + a^2x \right) + \frac{q a^4}{D} \sum_{m=1}^{\infty} \left(A_m \cosh \frac{m\pi y}{a} + B_m \frac{m\pi y}{a} \sinh \frac{m\pi y}{a} \right) \sin \frac{m\pi x}{a},
\]

它满足方程（a），同时还满足边缘 \(x = 0 \) 和 \(x = a \) 上的边界条件，现在还需要确定积分常数 \(A_m \) 和 \(B_m \)，使得在边缘 \(y = \pm b/2 \) 上满足边界条件：

\[
\omega = 0, \quad \frac{\partial^2 \omega}{\partial y^2} = 0.
\]

首先将式（c）展开成三角级数，它给出

\[
\frac{q}{24D} \left(x^4 - 2ax^2 + a^2x \right) = \frac{q a_1}{\pi^4} \sum_{m=1}^{\infty} \frac{1}{m^4} \sin \frac{m\pi x}{a},
\]

式中 \(m = 1, 3, 5, \cdots \)。于是，挠度曲面（c）可写成

\[
\omega = \frac{q a_1}{D} \sum_{m=1}^{\infty} \left(\frac{4}{x^2 m^2} + A_m \cosh \frac{m\pi y}{a} + B_m \frac{m\pi y}{a} \sinh \frac{m\pi y}{a} \right) \sin \frac{m\pi x}{a},
\]

式中 \(m = 1, 3, 5, \cdots \)。把这个式子代入边界条件（f），并引用符号

\[
\frac{m\pi b}{2a} = \alpha_m,
\]

我们便得到下列决定常数 \(A_m \) 和 \(B_m \) 的方程：

\[
\frac{4}{x^2 m^2} + A_m \cosh \alpha_m + \alpha_m B_m \sinh \alpha_m = 0,
\]

\[
(A_m + 2B_m) \cosh \alpha_m + \alpha_m B_m \sinh \alpha_m = 0.
\]

由此，

\[
A_m = -\frac{2(\alpha_m \tanh \alpha_m + 2)}{x^2 m^2 \cosh \alpha_m}, \quad B_m = \frac{2}{x^2 m^2 \cosh \alpha_m}.
\]

把这些常数的值代入式 (g)，就得到下列形式的满足方程 (a) 和边界条件的挠度曲线方程：

$$w = \frac{4qa^4}{\pi^3D} \sum_{m=1,3,5, \ldots} \frac{1}{m^5} \left(1 - \frac{\alpha_m \tanh \alpha_m + 2}{2 \cosh \alpha_m} \frac{2\alpha_m y}{b} \right) \frac{2y}{2 \cosh \alpha_m} \sinh \frac{2\alpha_m y}{b} \sin \frac{m\pi x}{a} ,$$

应用双曲函数表 1)，由它就能计算任意一点的挠度。最大挠度是在板的中心 (x = a/2, y = 0)，在这里

$$w_{\text{max}} = \frac{4qa^4}{\pi^3D} \sum_{m=1,3,5, \ldots} \frac{(-1)^{m-1/2}}{m^5} \left(1 - \frac{\alpha_m \tanh \alpha_m + 2}{2 \cosh \alpha_m} \right).$$

不考虑余弦中的第二项，这个级数相当于承受均匀载荷的板条中间的挠度。所以可将式 (i) 写成如下形式：

$$w_{\text{max}} = \frac{5}{384} \frac{q a^4}{D} - \frac{4 q a^4}{\pi^3 D} \sum_{m=1,3,5, \ldots} \frac{(-1)^{(m-1)/2}}{m^5} \frac{\alpha_m \tanh \alpha_m + 2}{2 \cosh \alpha_m}.$$ (140)

这个式子中的级数收敛得非常快 2)，只取第一项就已足够精确。我们可以用方形板作为例子，由式 (b) 可知，

$$\alpha_1 = \frac{\pi}{2}, \quad \alpha_3 = \frac{3\pi}{2}, \quad \cdots,$$

于是，式 (140) 给出：

$$w_{\text{max}} = \frac{5}{384} \frac{q a^4}{D} - \frac{4 q a^4}{\pi^3 D} (0.68562 - 0.00025 + \cdots)$$

$$= 0.00406 \frac{q a^4}{D}.$$

显然，括号中的第一项可以忽略不计；只取第一项，所得挠度

2) 假设 b 后 a，如图 62 所示。
公式的准确性已达到三位有效数字。

采用公式 (140)，就能把板的最大挠度表示成如下形式：

\[\omega_{\text{max}} = \alpha \frac{qa^4}{D}, \] \hspace{1cm} (141)

其中 \(\alpha \) 为一数值因子，它决定于板的二边长之比 \(a/b \)。 \(\alpha \) 的值在表 8 中给出（第 125 页）。

弯矩 \(M_x \) 和 \(M_y \) 可利用式 (c) 来计算。将这个式子的代数部分代入式 (101)，有：

\[M'_x = q x (a - x) \quad \frac{2}{2}, \quad M'_y = \nu q x (a - x) \quad \frac{2}{2}. \] \hspace{1cm} (k)

将 (c) 式的级数部分代入 (101) 式，有：

\[M_x'' = (1 - \nu) qa^2 a^2 \sum_{m=1}^\infty m^2 \left[A_m \cosh \frac{m \pi y}{a} \right. \]

\[+ B_m \left(\frac{m \pi y}{a} \sinh \frac{m \pi y}{a} - \frac{2 \nu}{1 - \nu} \cosh \frac{m \pi y}{a} \right) \] \left. \sin \frac{m \pi x}{a}, \right] \]

\[M_y'' = -(1 - \nu) qa^2 a^2 \sum_{m=1}^\infty m^2 \left[A_m \cosh \frac{m \pi y}{a} \right. \]

\[+ B_m \left(\frac{m \pi y}{a} \sinh \frac{m \pi y}{a} + \frac{2}{1 - \nu} \cosh \frac{m \pi y}{a} \right) \] \left. \sin \frac{m \pi x}{a}. \right] \hspace{1cm} (1)

总弯矩由式 (k) 和 (1) 相加得到。沿 \(x \) 轴上，弯矩的表达式化为

\[(M_x)_{y=0} = q x (a - x) - \frac{qa^4 a^4}{2} \]

\[\times \sum_{m=1, 3, 5, \ldots} m^2 \left[2 \nu B_m - (1 - \nu) A_m \right] \sin \frac{m \pi x}{a}, \]

\[(M_y)_{y=0} = \nu q x (a - x) - \frac{qa^4 a^4}{2} \]

\[\times \sum_{m=1, 3, 5, \ldots} m^2 \left[2 B_m + (1 - \nu) A_m \right] \sin \frac{m \pi x}{a}. \]

这两个级数收敛得很快，可以立刻算出弯矩，并且表示成下列形式：

\[\cdot 123 \cdot \]
在表6中给出了因子 β' 和 β'' 的数值。

表6 因子 β' 和 β'' 的数值
（用于计算承受均匀压力 q 的简支矩形板的弯矩）

$$
\nu = 0.3, \ b \gg a
$$

<table>
<thead>
<tr>
<th>b/a</th>
<th>$M_x = \beta'q a^3, \ y = 0$</th>
<th>$M_y = \beta''q a^3, \ y = 0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>$x = 0.1a$, $0.2a$, $0.3a$, $0.4a$, $0.5a$</td>
<td>$x = 0.1a$, $0.2a$, $0.3a$, $0.4a$, $0.5a$</td>
</tr>
<tr>
<td>1.1</td>
<td>0.0259, 0.0313, 0.0424, 0.0466, 0.0479</td>
<td>0.0165, 0.0303, 0.0400, 0.0459, 0.0479</td>
</tr>
<tr>
<td>1.2</td>
<td>0.0256, 0.0432, 0.0545, 0.0607, 0.0627</td>
<td>0.0174, 0.0315, 0.0417, 0.0480, 0.0501</td>
</tr>
<tr>
<td>1.3</td>
<td>0.0277, 0.0472, 0.0599, 0.0671, 0.0694</td>
<td>0.0175, 0.0315, 0.0419, 0.0482, 0.0503</td>
</tr>
<tr>
<td>1.4</td>
<td>0.0297, 0.0590, 0.0649, 0.0730, 0.0755</td>
<td>0.0175, 0.0315, 0.0418, 0.0481, 0.0502</td>
</tr>
<tr>
<td>1.5</td>
<td>0.0314, 0.0544, 0.0695, 0.0783, 0.0812</td>
<td>0.0173, 0.0312, 0.0415, 0.0478, 0.0498</td>
</tr>
<tr>
<td>1.6</td>
<td>0.0330, 0.0572, 0.0736, 0.0831, 0.0862</td>
<td>0.0171, 0.0309, 0.0411, 0.0472, 0.0492</td>
</tr>
<tr>
<td>1.7</td>
<td>0.0344, 0.0599, 0.0733, 0.0871, 0.0908</td>
<td>0.0169, 0.0306, 0.0405, 0.0466, 0.0486</td>
</tr>
<tr>
<td>1.8</td>
<td>0.0357, 0.0623, 0.0806, 0.0913, 0.0948</td>
<td>0.0167, 0.0301, 0.0399, 0.0459, 0.0479</td>
</tr>
<tr>
<td>1.9</td>
<td>0.0368, 0.0644, 0.0835, 0.0948, 0.0985</td>
<td>0.0165, 0.0297, 0.0393, 0.0451, 0.0471</td>
</tr>
<tr>
<td>2.0</td>
<td>0.0378, 0.0663, 0.0861, 0.0978, 0.1017</td>
<td>0.0162, 0.0292, 0.0387, 0.0444, 0.0464</td>
</tr>
<tr>
<td>2.5</td>
<td>0.0413, 0.0729, 0.0952, 0.1085, 0.1129</td>
<td>0.0152, 0.0272, 0.0359, 0.0412, 0.0430</td>
</tr>
<tr>
<td>3.0</td>
<td>0.0431, 0.0763, 1.0000, 1.1420, 1.1389</td>
<td>0.0145, 0.0258, 0.0340, 0.0390, 0.0406</td>
</tr>
<tr>
<td>4.0</td>
<td>0.0445, 0.0791, 1.0480, 1.1850, 1.2335</td>
<td>0.0136, 0.0246, 0.0322, 0.0369, 0.0384</td>
</tr>
<tr>
<td>∞</td>
<td>0.0450, 0.0800, 1.0500, 1.1200, 1.2500</td>
<td>0.0135, 0.0242, 0.0315, 0.0360, 0.0375</td>
</tr>
</tbody>
</table>

作用在中线 $x = a/2$ 上的弯矩可用同样的方法计算，并且表示成以下形式:

$$(M_x)_{x=a/2} = \beta'' q a^3, \quad (M_y)_{x=a/2} = \beta'' q a^3.$$ (n)

在表7中给出了 β'' 和 β'' 的数值。

这些弯矩的最大值

$$(M_x)_{max} = \beta q a^3, \quad (M_y)_{max} = \beta'' q a^3.$$ (o)

是在板的中心 ($x = a/2, \ y = 0$)，其相应的因子 β 和 β'' 在表8中找到。方形板特殊情形中的弯矩分布表示在图63中。

由表8可以看出，在比值 b/a 增大时，板的最大挠度和最大弯矩很快地趋近于对于承受均匀载荷的板条（即，使 $b/a = \infty$ 时所得

* 124 *
表 7 因子 β' 和 β'_0 的数值
(用于计算承受均匀压力 q 的简支矩形板的弯矩)

$$\nu = 0.3, \quad b \geq a$$

<table>
<thead>
<tr>
<th>b/a</th>
<th>$M_x = \beta' q a^2, \quad x = a/2$</th>
<th>$M_x = \beta'_0 q a^2, \quad x = a/2$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$y = 0.4a$</td>
<td>$y = 0.3a$</td>
</tr>
<tr>
<td>1.0</td>
<td>0.0168</td>
<td>0.0303</td>
</tr>
<tr>
<td>1.1</td>
<td>0.0197</td>
<td>0.0353</td>
</tr>
<tr>
<td>1.2</td>
<td>0.0225</td>
<td>0.0401</td>
</tr>
<tr>
<td>1.3</td>
<td>0.0252</td>
<td>0.0447</td>
</tr>
<tr>
<td>1.4</td>
<td>0.0275</td>
<td>0.0491</td>
</tr>
<tr>
<td>1.5</td>
<td>0.0302</td>
<td>0.0522</td>
</tr>
<tr>
<td>1.6</td>
<td>0.0324</td>
<td>0.0571</td>
</tr>
<tr>
<td>1.7</td>
<td>0.0346</td>
<td>0.0625</td>
</tr>
<tr>
<td>1.8</td>
<td>0.0367</td>
<td>0.0680</td>
</tr>
<tr>
<td>1.9</td>
<td>0.0389</td>
<td>0.0739</td>
</tr>
<tr>
<td>2.0</td>
<td>0.0416</td>
<td>0.0793</td>
</tr>
<tr>
<td>2.5</td>
<td>0.0505</td>
<td>0.0912</td>
</tr>
<tr>
<td>3.0</td>
<td>0.0601</td>
<td>0.1029</td>
</tr>
<tr>
<td>4.0</td>
<td>0.0730</td>
<td>0.1252</td>
</tr>
<tr>
<td>∞</td>
<td>0.1250</td>
<td>0.1500</td>
</tr>
</tbody>
</table>

表 8 承受均匀载荷的简支矩形板的数值因子 $\alpha, \beta, \gamma, \delta, n$

$$\nu = 0.3$$

<table>
<thead>
<tr>
<th>b/a</th>
<th>$W_{max} = a^2 q a^4 / D$</th>
<th>$(M_x)_{max}$</th>
<th>$(M_y)_{max}$</th>
<th>$(Q_x)_{max}$</th>
<th>$(Q_y)_{max}$</th>
<th>$(V_x)_{max}$</th>
<th>$(V_y)_{max}$</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>0.0048</td>
<td>0.0479</td>
<td>0.0479</td>
<td>0.338</td>
<td>0.338</td>
<td>0.420</td>
<td>0.420</td>
<td>0.065</td>
</tr>
<tr>
<td>1.1</td>
<td>0.0048</td>
<td>0.0554</td>
<td>0.0493</td>
<td>0.360</td>
<td>0.360</td>
<td>0.440</td>
<td>0.440</td>
<td>0.070</td>
</tr>
<tr>
<td>1.2</td>
<td>0.0056</td>
<td>0.0627</td>
<td>0.390</td>
<td>0.390</td>
<td>0.455</td>
<td>0.455</td>
<td>0.074</td>
<td></td>
</tr>
<tr>
<td>1.3</td>
<td>0.0063</td>
<td>0.0694</td>
<td>0.397</td>
<td>0.397</td>
<td>0.468</td>
<td>0.468</td>
<td>0.079</td>
<td></td>
</tr>
<tr>
<td>1.4</td>
<td>0.0070</td>
<td>0.0755</td>
<td>0.392</td>
<td>0.392</td>
<td>0.478</td>
<td>0.478</td>
<td>0.083</td>
<td></td>
</tr>
<tr>
<td>1.5</td>
<td>0.0077</td>
<td>0.0812</td>
<td>0.398</td>
<td>0.398</td>
<td>0.486</td>
<td>0.486</td>
<td>0.085</td>
<td></td>
</tr>
<tr>
<td>1.6</td>
<td>0.0083</td>
<td>0.0862</td>
<td>0.406</td>
<td>0.406</td>
<td>0.491</td>
<td>0.491</td>
<td>0.086</td>
<td></td>
</tr>
<tr>
<td>1.7</td>
<td>0.0083</td>
<td>0.0908</td>
<td>0.414</td>
<td>0.414</td>
<td>0.496</td>
<td>0.496</td>
<td>0.088</td>
<td></td>
</tr>
<tr>
<td>1.8</td>
<td>0.0091</td>
<td>0.0948</td>
<td>0.421</td>
<td>0.421</td>
<td>0.502</td>
<td>0.502</td>
<td>0.090</td>
<td></td>
</tr>
<tr>
<td>1.9</td>
<td>0.0097</td>
<td>0.0985</td>
<td>0.429</td>
<td>0.429</td>
<td>0.504</td>
<td>0.504</td>
<td>0.091</td>
<td></td>
</tr>
<tr>
<td>2.0</td>
<td>0.0103</td>
<td>0.1017</td>
<td>0.436</td>
<td>0.436</td>
<td>0.509</td>
<td>0.509</td>
<td>0.092</td>
<td></td>
</tr>
<tr>
<td>3.0</td>
<td>0.0123</td>
<td>0.1189</td>
<td>0.469</td>
<td>0.469</td>
<td>0.505</td>
<td>0.505</td>
<td>0.093</td>
<td></td>
</tr>
<tr>
<td>4.0</td>
<td>0.0128</td>
<td>0.1235</td>
<td>0.498</td>
<td>0.498</td>
<td>0.502</td>
<td>0.502</td>
<td>0.094</td>
<td></td>
</tr>
<tr>
<td>5.0</td>
<td>0.0129</td>
<td>0.1246</td>
<td>0.500</td>
<td>0.500</td>
<td>0.501</td>
<td>0.501</td>
<td>0.095</td>
<td></td>
</tr>
<tr>
<td>∞</td>
<td>0.0130</td>
<td>0.1250</td>
<td>0.500</td>
<td>0.500</td>
<td>0.500</td>
<td>0.500</td>
<td>0.095</td>
<td></td>
</tr>
</tbody>
</table>
到的弯曲成柱形面的板)计算所得的值。在 $b/a = 3$ 时，板条和板的挠度之差约为百分之 6.5。在 $b/a = 5$ 时，这个差值已小于百分之 0.5。对于相同的比值 b/a，最大弯矩之差分别为百分之 5 和 3。从这个比较可以看出，在 $b/a \geq 3$ 时，板的计算可以用板条的计算代替而不至于有很大的误差。

式 (c) 也可用来计算边界上的剪力及反力。作式 (c) 的二阶导数，可得

$$
\Delta \omega = \frac{\partial^2 \omega}{\partial x^2} + \frac{\partial^2 \omega}{\partial y^2} = - \frac{q x (a - x)}{2D} + \frac{2 x^2 q a^4}{D}
$$

$$
\times \sum_{m=1}^{\infty} m^2 B_m \cosh \frac{m \pi y}{a} \sin \frac{m \pi x}{a}.
$$

将此式代入式 (106) 和 (107)，得到

$$
Q_x = \frac{q (a - 2x)}{2} - 2 x^3 q a \sum_{m=1}^{\infty} m^2 B_m \cosh \frac{m \pi y}{a} \cos \frac{m \pi x}{a},
$$

- 126 -
\[Q_y = -2\pi^3qa \sum_{m=1}^{\infty} m^3B_m \sinh \frac{mxy}{a} \sin \frac{mxz}{a}. \]

对于边 \(x = 0 \) 和 \(y = -b/2 \)，有

\[(Q_x)_{x=0} = \frac{qa}{2} - 2\pi^3qa \sum_{m=1}^{\infty} m^3B_m \cosh \frac{mxy}{a} \]

\[= \frac{qa}{2} - \frac{4qa}{\pi^2} \sum_{m=1,3,5,...}^{\infty} \frac{\cosh \frac{mxy}{a}}{m^2 \cosh \alpha_m}. \]

\[(Q_y)_{y=-b/2} = 2\pi^3qa \sum_{m=1}^{\infty} m^3B_m \sinh \alpha_m \sin \frac{mxz}{a} \]

\[= \frac{4qa}{\pi^2} \sum_{m=1,3,5,...}^{\infty} \frac{\tanh \alpha_m \sin \frac{mxz}{a}}{m^2}. \]

这些剪力的最大数值是在这两条边的中点上：

\[(Q_x)_{x=0, y=0} = \frac{qa}{2} - \frac{4qa}{\pi^2} \sum_{m=1,3,5,...}^{\infty} \frac{1}{m^2 \cosh \alpha_m} \gamma qa, \]

\[(Q_y)_{x=a/2, y=-b/2} = \frac{4qa}{\pi^2} \sum_{m=1,3,5,...}^{\infty} \frac{(-1)^{(m-1)/2}}{m^2 \tanh \alpha_m \sin \frac{mxz}{a}} \gamma_1 qa. \]

数值因子 \(\gamma \) 和 \(\gamma_1 \) 也在表 8 中给出。

边缘 \(x = 0 \) 上的反作用力由下式给出：

\[V_x = (Q_x - \partial M_{x,y})_{y=0} = \frac{qa}{2} - \frac{4qa}{\pi^2} \sum_{m=1,3,5,...}^{\infty} \frac{\cosh \frac{mxy}{a}}{m^2 \cosh \alpha_m} \]

\[+ \frac{2(1-\nu)qa}{\pi^2} \sum_{m=1,3,5,...}^{\infty} \frac{1}{m^2 \cosh^2 \alpha_m} \]

\[\times \left(\alpha_m \sinh \alpha_m \cosh \frac{mxy}{a} - \frac{mxy}{a} \cosh \alpha_m \sinh \frac{mxy}{a} \right). \]

这个压力的最大值是在边 \(y = 0 \) 的中点上：

\[(V_x)_{x=0, y=0} = qa \left[\frac{1}{2} - \frac{4}{\pi^2} \sum_{m=1,3,5,...}^{\infty} \frac{1}{m^2 \cosh \alpha_m} \right. \]

\[+ \frac{2(1-\nu)}{\pi^2} \sum_{m=1,3,5,...}^{\infty} \frac{\alpha_m \sinh \alpha_m}{m^2 \cosh \alpha_m} \right] = \delta qa, \quad (q) \]

\[\cdot 127. \]
式中 δ 是决定于 ν 和 b/a 的数值因子，对式（q）中这个快速收敛的级数求和，就能立刻得到 δ。数值因子 δ_1 和 δ_2 （它对应于与 x 轴平行的边缘的中点）在表 8 中给出。沿方形板边缘上，压力 （q）的分布表示在图 63 中。由矩 M_{xy} 所产生的那部分压力也表示在这图中，这些压力由集中在这板各角上的反作用力来平衡。集中反作用力的大小为

$$ R = 2(M_{xy})_{x=a, y=b/2} = 2D(1 - \nu)(\frac{\partial^2 w}{\partial x \partial y})_{x=a, y=b/2} $$

$$ = \frac{4(1 - \nu)ga^3}{\pi^3} \sum_{m=1, 3, ...}^{\infty} \frac{1}{m^3 \cosh \sigma_m} \times [(1 + \alpha_m \tanh \sigma_m) \sinh \sigma_m - \alpha_m \cosh \sigma_m] = nqa^3. \quad (r) $$

这些力的方向向下，阻止了板的各个角在弯曲时向上翘。系数 n 的值在表 8 的最后一行中给出。

图 64 中的曲线表示了因子 $\alpha, \beta, \beta_1, \delta$ 的值是比 b/a 的函数关系。
角上的集中反力 R 的出现是方向向下，亦非小值，如果力板不是和支承梁牢固地连接的，则必须在板的角上给以支承。

为了求得角上所产生的弯矩，我们考虑板角附近某一板的单元 abc (图 65) 的平衡。为此目标，引入与图 59 中的坐标轴 x, y 具有相同角度为 45° 的新坐标 $1, 2$。可以立即证明，作用在单元的二边 $a b$ 和 $c b$ 上的弯矩分别为 $M_1 = -R/2$ 和 $M_2 = +R/2$，而相应的扭矩为零。事实上，用式 (39)，依照简支板的边界条件，对于由 $\alpha = -45^\circ$ 所给出的力 ae（也就是边缘的元素）可得弯矩

$$M_x = M_1 \cos^2 \alpha + M_2 \sin^2 \alpha = 0.$$

利用式 (40)，同样可以得到作用在相同边缘元素上的扭矩的大小。令 $\alpha = -45^\circ$，依据式 (r)，有

$$M_{xt} = \frac{1}{2} \sin 2\alpha (M_1 - M_2) = \frac{R}{2}.$$

由此可见，板角附近的那一部分板将弯曲成为正反弯曲，角本身上的力矩士 $R/2$ 与板中心的弯矩的大小同量级 (见表 8)。

方形板的弯矩 M_1 和 M_2 的分布 (图 63) 说明冲剪板的角的夹紧影响。如果矩形板的角不能很好地防止上翘，则夹紧作用变为无效，同时板的中心部分的弯矩相应地增大。这时，表 8 中所给出的 $(M_x)_{max}$ 和 $(M_y)_{max}$ 的值应当乘上某个因子 $k > 1$。为此，可以采用如下的近似公式:\(^1\)

$$k = \frac{a^4 - \frac{5}{6} a^2 b^2 + b^4}{a^4 - \frac{5}{6} a^2 b^2 + b^4}.$$

应当注意，在边缘简支的多边形板的情况下，如果板的相邻二边的夹角不是直角，在角上就不会产生物作用力。\(^2\)

1) 这个近似公式是德国毛利粗混凝土标准 (1913 年) 所推荐的，它依据的是 H. Marcus 的一种简化的薄板理论，参阅他的著作 "Die vereinfachte Berechnung biegsamer Platten."，第二版，柏林，1925 年。

2) 简单的证明可参考：例如，H. Marcus，"Die Theorie elastischer Gewebe，" 第二版，第 64 页，柏林，1932 年。
然而，如果考虑了横向剪切变形，那么，即使在矩形板中也不会得到角上的集中反力。就高度集中的反作用力而言，这个剪切变形显然不能再忽略不计，因此惯常的完全不考虑剪切变形的薄板理论必须用更准确的理论来代替。在第39节中将要讨论这个理论，而这个理论实际引出了反作用压力的分布但不包含集中作用在板角上的反力（见图81）。

31. 承受静水压力的简支矩形板 假设一简支矩形板承受如图66所示的载荷。同均匀分布载荷的情况一样，将板的挠度写成

\[w = w_1 + w_2 \] \hspace{1cm} (a)

其中

\[w_1 = -\frac{q_0}{360D} \left(\frac{3x^3}{a} - 10ax^2 + 7a^2x \right) \]

\[= \frac{2q_0a^2}{D} \sum_{m=1, 2, 3, \ldots} \frac{(-1)^{m+1}}{m^5} \sin \frac{m\pi x}{a} \] \hspace{1cm} (b)

代表板条在三角形载荷作用下的挠度。此式满足微分方程

\[\frac{\partial^4 w}{\partial x^4} + 2 \frac{\partial^4 w}{\partial x^2 \partial y^2} + \frac{\partial^4 w}{\partial y^4} = \frac{q}{D} - \frac{q_0 x}{aD} \] \hspace{1cm} (c)

和边界条件：

当

\[x = 0 \quad \text{和} \quad x = a \] 时，

\[w = 0, \quad \frac{\partial^2 w}{\partial x^2} = 0. \]

这部分 \(w_2 \) 可取成级数形式

\[w_2 = \sum_{m=1}^{\infty} Y_m \sin \frac{m\pi x}{a}, \] \hspace{1cm} (d)

其中函数 \(Y_m \) 的形式同上节所取的一样，并且 \(m = 1, 2, 3, \ldots \)。将式(b)和(d)代入式(a)，得到

1) 这个问题是E. Estanave所讨论的，参阅前引第119页的脚注。挠度与弯矩的数值表是В. Г. Галёрина计算的，Bull. Polytech. Inst., 圣彼得堡, 第26和27卷，1918年。
\[\omega = \frac{q_a a^4}{D} \sum_{m=1}^{\infty} \left[\frac{2(-1)^{m+1}}{m^5} + A_m \cosh \frac{m \pi y}{a}
 \right.
 \left. + B_m \cosh \frac{m \pi y}{a} \sinh \frac{m \pi y}{a} \right] \sin \frac{m \pi x}{a}, \] (e)

式中常数 \(A_m \) 和 \(B_m \) 可由下列条件决定：

当 \(y = \pm \frac{b}{2} \) 时，\(\omega = 0, \frac{\partial^2 \omega}{\partial y^2} = 0. \)

从这些条件得到

\[\frac{2(-1)^{m+1}}{m^5} + A_m \cosh a_m + B_m \alpha_m \sinh a_m = 0, \]

\[(2B_m + A_m) \cosh a_m + B_m \alpha_m \sinh a_m = 0. \]

同以前一样，在这两个方程中采用了符号：

\[\alpha_m = \frac{m \pi b}{2a} \]

解此二方程，即得

\[A_m = \frac{2(2 + \alpha_m \tanh \alpha_m)(-1)^{m+1}}{m^5 \cosh \alpha_m}, \quad B_m = \frac{(-1)^{m+1}}{m^5 \cosh \alpha_m}, \] (f)

在 x 轴上，板的挠度为：

\[(\omega)_{y=0} = \frac{q_a a^4}{D} \sum_{m=1}^{\infty} \left[\frac{2(-1)^{m+1}}{m^5} + A_m \right] \sin \frac{m \pi x}{a}. \]

对于方形板，\(a = b \)，有：

\[(\omega)_{y=0} = \frac{q_a a^4}{D} \left(0.002055 \sin \frac{\pi x}{a} - 0.000177 \sin \frac{2\pi x}{a} + 0.000025 \sin \frac{3\pi x}{a} - \cdots \right), \] (g)

板中心的挠度为：

\[(\omega)_{x=a/2, y=0} = 0.00203 \frac{q_a a^4}{D} \] (h)

它是承受均匀载荷的板的挠度的一半（参照第 122 页），这是十分自然的。令式(g)的导数等于零，求得最大挠度是在点 \(x = 0.557a \) 处；此最大挠度等于 0.00206q_a a^4/D，它和公式(h)所给出的中心
挠度相差很少。随着比 \(b/a \) 的增大，最大挠度所在的点趋向于板的中心。当 \(b/a = \infty \)，也即对于板条[参看（b）式]，最大挠度是处在点 \(x = 0.51\, a \) 处。当 \(b/a < 1 \)，随着比 \(b/a \) 的减小，最大挠度所在的点逐渐远离板的中心。在表 9 中给出了 \(x \) 轴上若干点的挠度值 (图 66)。可以看出，随着比 \(b/a \) 的增大，挠度趋向于对板条计算所得的值。当 \(b/a = 4 \) 时，这两个值之间的差约为百分之 1.5。对于 \(b/a > 4 \) 的板，我们总能用计算板条承受三角形载荷时的挠度公式 (b) 来计算挠度，并且结果是足够精确的。将挠度表达式 (e) 代入式 (101)，就能求得弯矩 \(M_x \) 和 \(M_y \)。在 \(x \) 轴上 (\(y = 0 \))，计算 \(M_x \) 的式子为

\[
\begin{align*}
(M_x)_{y=0} &= q_o a^2 \sum_{m=1}^{\infty} \frac{2(-1)^{m+1}}{m^2 m^3} \sin \frac{m\pi x}{a} \\
&+ q_o a^2 \sum_{m=1}^{\infty} m^2 [(1 - \nu) A_m - 2\nu B_m] \sin \frac{m\pi x}{a},
\end{align*}
\]
这个式子右端第一个和式表示板条在三角形截荷作用下的弯矩，它等于 \((q_0/6)(ax - x^3/a) \)。对于第二个和式中的常数 \(A_m \) 和 \(B_m \)，可应用式（f），这样得到:

\[
(M_x)_{y=0} = \frac{q_0(a^2x - x^3)}{6a} - \frac{q_0a^2}{x^3} \sum_{m=1}^{\infty} \frac{(-1)^{m+1}}{m^3 \cosh \alpha_m} \times [2 + (1 - v)\alpha_m \sinh \alpha_m] \sin \frac{m\pi x}{a}
\]

(1)

这个级数收敛得很快，只要取头几项就能求得足够精确的 \(M_x \) 值。用这个方法，在轴上任一点的弯矩都能用如下公式表示:

\[
(M_x)_{y=0} = \beta q_0a^2,
\]

(2)

其中 \(\beta \) 是数因数，它决定于点的坐标 \(x \)，同样地，有

\[
(M_y)_{y=0} = \beta_1 q_0a^2.
\]

(3)

在表 10 中给出了公式（k）与（1）中的数因 \(\beta \) 与 \(\beta_1 \) 的数值。

表 10 数因因子 \(\beta \) 和 \(\beta_1 \)
(用于计算承受静水压力 \(q = q_0x/a \) 的简支矩形板的弯矩)

\[
\nu = 0.3, \quad b > a
\]

<table>
<thead>
<tr>
<th>(b/a)</th>
<th>(M_x = \beta a^2q_1, \quad y = 0)</th>
<th>(M_y = \beta_1 a^2q_3, \quad y = 0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x = 0.25a)</td>
<td>(x = 0.50a)</td>
<td>(x = 0.75a)</td>
</tr>
<tr>
<td>1.0</td>
<td>0.0132</td>
<td>0.0239</td>
</tr>
<tr>
<td>1.1</td>
<td>0.0156</td>
<td>0.0276</td>
</tr>
<tr>
<td>1.2</td>
<td>0.0179</td>
<td>0.0313</td>
</tr>
<tr>
<td>1.3</td>
<td>0.0200</td>
<td>0.0346</td>
</tr>
<tr>
<td>1.4</td>
<td>0.0221</td>
<td>0.0376</td>
</tr>
<tr>
<td>1.5</td>
<td>0.0239</td>
<td>0.0406</td>
</tr>
<tr>
<td>1.6</td>
<td>0.0256</td>
<td>0.0431</td>
</tr>
<tr>
<td>1.7</td>
<td>0.0272</td>
<td>0.0454</td>
</tr>
<tr>
<td>1.8</td>
<td>0.0286</td>
<td>0.0474</td>
</tr>
<tr>
<td>1.9</td>
<td>0.0298</td>
<td>0.0492</td>
</tr>
<tr>
<td>2.0</td>
<td>0.0309</td>
<td>0.0508</td>
</tr>
<tr>
<td>3.0</td>
<td>0.0369</td>
<td>0.0594</td>
</tr>
<tr>
<td>4.0</td>
<td>0.0385</td>
<td>0.0617</td>
</tr>
<tr>
<td>5.0</td>
<td>0.0389</td>
<td>0.0623</td>
</tr>
<tr>
<td>(\infty)</td>
<td>0.0391</td>
<td>0.0625</td>
</tr>
</tbody>
</table>
看出，在 $b \geq 4a$ 时，这些弯矩值与承受三角形载荷的板条的弯矩值非常相近。

式 (106) 和 (107) 是用来计算弯矩的。应用式 (i) ，则由式 (106)，得到 x 轴上各点的剪力:

$$
(Q_x)_{y=0} = -D \frac{\partial}{\partial x} \left(\frac{\partial^2 w}{\partial x^2} + \frac{\partial^2 w}{\partial y^2} \right)_{y=0} = \frac{q_0 (a^2 - 3x^2)}{6a} - \frac{2a}{\pi^2} \sum_{m=1}^{\infty} \left(-1 \right)^{m+1} \frac{m\pi x}{a} \cosh \alpha_m.
$$

剪力 Q_x 和 Q_y 的一般表达式为:

$$
Q_x = \frac{q_0 (a^2 - 3x^2)}{6a} - \frac{2a}{\pi^2} \sum_{m=1}^{\infty} \left(-1 \right)^{m+1} \frac{m\pi y}{a} \cosh \alpha_m \cos \frac{m\pi x}{a}, \quad (m)
$$

$$
Q_y = \frac{2a}{\pi^2} \sum_{m=1}^{\infty} (-1)^{m+1} \frac{m\pi y}{a} \sinh \alpha_m \sin \frac{m\pi x}{a}. \quad (n)
$$

将剪力同扭矩的导数合并在一起，就能求得边界上的垂直反力 V_x 和 V_y 的大小。在边 $x = 0$ 和 $x = a$ 上，这些反力可写成如下形式:

$$
V_x = (Q_x - \frac{\partial M_{xy}}{\partial y})_{x=0, x=a} = \pm q_0 a; \quad (o)
$$

在边 $y = \pm b/2$ 上，可写成

$$
V_y = (Q_y - \frac{\partial M_{xy}}{\partial x})_{y=\pm b/2} = \mp q_0 b; \quad (p)
$$

式中 δ 和 δ_i 是数值因子，它们决定于比 b/a 以及边界上所取的点的坐标。在表 11 中给出了此二因子的许多数值。

为了防止在弯曲时板角的上翘，应当作用有集中反力，它的大小可由角上的扭矩 M_{xy} 的值求得。由于弯荷不是对称的，因此 $x = 0$ 和 $y = \pm b/2$ 上的反力 R_1 不同于 $x = a$ 和 $y = \pm b/2$ 上的反力 R_2。这些反力可写成下列形式:

$$
R_1 = n_1 q_0 a b, \quad R_2 = n_2 q_0 a b. \quad (q)
$$

数值因子 n_1 和 n_2 的值在表 12 中给出。
表 11 数值因子 δ 和 δ

(用于计算承受静水压力 \(q = q_0 x/a \) 的简支矩形板的反力)

\(\nu = 0.3 \), \(b > a \)

<table>
<thead>
<tr>
<th>(b/a)</th>
<th>反力 (\delta q_0 a)</th>
<th></th>
<th>反力 (\delta q_0 b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x = 0)</td>
<td>(x = a)</td>
<td>(y = \pm b/2)</td>
<td></td>
</tr>
<tr>
<td>(y = 0)</td>
<td>(y = 0.25b)</td>
<td>(x = 0.25x)</td>
<td>(x = 0.50x)</td>
</tr>
<tr>
<td>1.0</td>
<td>0.126</td>
<td>0.098</td>
<td>0.294</td>
</tr>
<tr>
<td>1.1</td>
<td>0.136</td>
<td>0.107</td>
<td>0.304</td>
</tr>
<tr>
<td>1.2</td>
<td>0.144</td>
<td>0.114</td>
<td>0.312</td>
</tr>
<tr>
<td>1.3</td>
<td>0.150</td>
<td>0.121</td>
<td>0.318</td>
</tr>
<tr>
<td>1.4</td>
<td>0.155</td>
<td>0.126</td>
<td>0.323</td>
</tr>
<tr>
<td>1.5</td>
<td>0.159</td>
<td>0.132</td>
<td>0.327</td>
</tr>
<tr>
<td>1.6</td>
<td>0.162</td>
<td>0.136</td>
<td>0.330</td>
</tr>
<tr>
<td>1.7</td>
<td>0.164</td>
<td>0.140</td>
<td>0.332</td>
</tr>
<tr>
<td>1.8</td>
<td>0.166</td>
<td>0.143</td>
<td>0.333</td>
</tr>
<tr>
<td>1.9</td>
<td>0.167</td>
<td>0.146</td>
<td>0.333</td>
</tr>
<tr>
<td>2.0</td>
<td>0.168</td>
<td>0.149</td>
<td>0.335</td>
</tr>
<tr>
<td>3.0</td>
<td>0.169</td>
<td>0.163</td>
<td>0.336</td>
</tr>
<tr>
<td>4.0</td>
<td>0.168</td>
<td>0.167</td>
<td>0.334</td>
</tr>
<tr>
<td>5.0</td>
<td>0.167</td>
<td>0.167</td>
<td>0.334</td>
</tr>
<tr>
<td>(\infty)</td>
<td>0.167</td>
<td>0.167</td>
<td>0.333</td>
</tr>
</tbody>
</table>

表 12 公式 (q) 中的数值因子 \(n_1 \) 和 \(n_2 \)

(用于计算承受静水压力 \(q = q_0 x/a \) 的简支矩形板的角上的反作用力 \(R_1 \) 和 \(R_2 \))

\(\nu = 0.3 \), \(b > 0 \)

<table>
<thead>
<tr>
<th>(b/a)</th>
<th>1.0</th>
<th>1.1</th>
<th>1.2</th>
<th>1.3</th>
<th>1.4</th>
<th>1.5</th>
<th>1.6</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n_1)</td>
<td>0.026</td>
<td>0.026</td>
<td>0.026</td>
<td>0.026</td>
<td>0.025</td>
<td>0.024</td>
<td>0.023</td>
</tr>
<tr>
<td>(n_2)</td>
<td>0.039</td>
<td>0.038</td>
<td>0.037</td>
<td>0.036</td>
<td>0.035</td>
<td>0.033</td>
<td>0.032</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(b/a)</th>
<th>1.7</th>
<th>1.8</th>
<th>1.9</th>
<th>2.0</th>
<th>3.0</th>
<th>4.0</th>
<th>5.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n_1)</td>
<td>0.022</td>
<td>0.021</td>
<td>0.021</td>
<td>0.020</td>
<td>0.014</td>
<td>0.010</td>
<td>0.008</td>
</tr>
<tr>
<td>(n_2)</td>
<td>0.030</td>
<td>0.029</td>
<td>0.028</td>
<td>0.026</td>
<td>0.018</td>
<td>0.014</td>
<td>0.011</td>
</tr>
</tbody>
</table>
把两个三角形载荷 \(q = q_0 \frac{x}{a} \) 和 \(q_0 (a - x) / a \) 迭加起来，可得到均匀载荷 \(q_0 \)。由此可知，对于某个 \(b/a \) 的值，表 12 中所列出的因子之和 \(n_1 \div n_2 \) 乘上 \(b/a \)，一定等于表 8 中最后一列相应的 \(n \) 的值。

假如在图 66 中板的长宽相比较是 \(a \) 大于 \(b \)，那么，将 \(\omega_1 \) 和 \(\omega_2 \) 写成下列形式：

\[
\omega_1 = \frac{q_0 x}{a} \frac{1}{384D} (16y^4 - 24b^2y^2 + 5b^4),
\]

\[
\omega_2 = \sum_{m=1}^{\infty} X_{2m-1} \cos \frac{(2m-1)\pi y}{b},
\]

就能得到收敛得更快的级数。式 (r) 代表在二端 \(y = \pm b/2 \) 简支、与 \(y \) 轴平行、承受强度为 \(q_0 x / a \) 的均匀分布载荷的窄条的挠度。此式满足微分方程 (c)，并且也满足 \(y = \pm b/2 \) 处的边界条件 \(\omega = 0 \) 与 \(\partial^2 \omega / \partial y^2 = 0 \)。式 (s) 表示一无穷级数，它的每一项在边缘 \(y = \pm b/2 \) 上也满足这些边界条件。\(\times \) 的函数 \(X_{2m-1} \) 应当这样来选择：使它们中的每一项都满足齐次方程 (137)(见上书 120 页)，因此式 (a) 在边缘 \(x = 0 \) 和 \(x = a \) 上满足边界条件，因为决定函数 \(X_{2m-1} \) 的方法与以前用来决定函数 \(Y_m \) 的方法相似，所以我们仅限于给出最后的数字结果，它们可由表 13，14，15 和 16 查得。这些表中的符号与以前对于承受静水压力所列出的表中的符号相同。

32. 承受三棱形载荷的简支矩形板 假设载荷的强度用图 67 所示的等腰三角形表示。挠度曲面仍然可以表示成如下形式：

\[
\omega = \omega_1 + \omega_2,
\]

其中 \(\omega_1 \) 代表与 \(x \) 轴平行的简支板材的挠度，而 \(\omega_2 \) 的形式与前节 [式 (d)] 相同。为了用三角级数的
表 13 数值因子 a

(用于计算承受静水压力 $q = q_0x/a$ 的简支矩形板的挠度)

$w = aq_0x/D$, $y = 0$, $b < a$

<table>
<thead>
<tr>
<th>a/b</th>
<th>$x = 0.25a$</th>
<th>$x = 0.50a$</th>
<th>$x = 0.60a$</th>
<th>$x = 0.75a$</th>
</tr>
</thead>
<tbody>
<tr>
<td>∞</td>
<td>0.003265</td>
<td>0.00651</td>
<td>0.00781</td>
<td>0.00076</td>
</tr>
<tr>
<td>5</td>
<td>0.00325</td>
<td>0.00648</td>
<td>0.00778</td>
<td>0.00965</td>
</tr>
<tr>
<td>4</td>
<td>0.00325</td>
<td>0.00641</td>
<td>0.00751</td>
<td>0.00832</td>
</tr>
<tr>
<td>3</td>
<td>0.00321</td>
<td>0.00630</td>
<td>0.00692</td>
<td>0.00707</td>
</tr>
<tr>
<td>2</td>
<td>0.00288</td>
<td>0.00506</td>
<td>0.00542</td>
<td>0.00492</td>
</tr>
<tr>
<td>1.9</td>
<td>0.00281</td>
<td>0.00487</td>
<td>0.00518</td>
<td>0.00465</td>
</tr>
<tr>
<td>1.8</td>
<td>0.00270</td>
<td>0.00465</td>
<td>0.00491</td>
<td>0.00434</td>
</tr>
<tr>
<td>1.7</td>
<td>0.00261</td>
<td>0.00441</td>
<td>0.00463</td>
<td>0.00404</td>
</tr>
<tr>
<td>1.6</td>
<td>0.00249</td>
<td>0.00415</td>
<td>0.00432</td>
<td>0.00372</td>
</tr>
<tr>
<td>1.5</td>
<td>0.00234</td>
<td>0.00386</td>
<td>0.00399</td>
<td>0.00359</td>
</tr>
<tr>
<td>1.4</td>
<td>0.00218</td>
<td>0.00358</td>
<td>0.00363</td>
<td>0.00304</td>
</tr>
<tr>
<td>1.3</td>
<td>0.00199</td>
<td>0.00319</td>
<td>0.00325</td>
<td>0.00269</td>
</tr>
<tr>
<td>1.2</td>
<td>0.00179</td>
<td>0.00282</td>
<td>0.00286</td>
<td>0.00234</td>
</tr>
<tr>
<td>1.1</td>
<td>0.00155</td>
<td>0.00243</td>
<td>0.00245</td>
<td>0.00199</td>
</tr>
<tr>
<td>1.0</td>
<td>0.00131</td>
<td>0.00202</td>
<td>0.00201</td>
<td>0.00162</td>
</tr>
</tbody>
</table>

表 14 数值因子 β 和 β_z

(用于计算承受静水压力 $q = q_0x/a$ 的简支矩形板的弯矩)

$\nu = 0.3$, $b < a$

<table>
<thead>
<tr>
<th>a/b</th>
<th>$M_x = \beta b^2 q_0$, $y = 0$</th>
<th>$M_y = \beta_z b^2 q_0$, $y = 0$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$x = 0.25a$ $x = 0.50a$ $x = 0.60a$ $x = 0.75a$</td>
<td>$x = 0.25a$ $x = 0.50a$ $x = 0.60a$ $x = 0.75a$</td>
</tr>
<tr>
<td>∞</td>
<td>0.0094</td>
<td>0.0187</td>
</tr>
<tr>
<td>5.0</td>
<td>0.0094</td>
<td>0.0187</td>
</tr>
<tr>
<td>4.0</td>
<td>0.0094</td>
<td>0.0192</td>
</tr>
<tr>
<td>3.0</td>
<td>0.0096</td>
<td>0.0202</td>
</tr>
<tr>
<td>2.0</td>
<td>0.0198</td>
<td>0.0232</td>
</tr>
<tr>
<td>1.9</td>
<td>0.0111</td>
<td>0.0235</td>
</tr>
<tr>
<td>1.8</td>
<td>0.0115</td>
<td>0.0239</td>
</tr>
<tr>
<td>1.7</td>
<td>0.0117</td>
<td>0.0243</td>
</tr>
<tr>
<td>1.6</td>
<td>0.0120</td>
<td>0.0246</td>
</tr>
<tr>
<td>1.5</td>
<td>0.0123</td>
<td>0.0249</td>
</tr>
<tr>
<td>1.4</td>
<td>0.0126</td>
<td>0.0253</td>
</tr>
<tr>
<td>1.3</td>
<td>0.0129</td>
<td>0.0252</td>
</tr>
<tr>
<td>1.2</td>
<td>0.0131</td>
<td>0.0250</td>
</tr>
<tr>
<td>1.1</td>
<td>0.0134</td>
<td>0.0247</td>
</tr>
<tr>
<td>1.0</td>
<td>0.0132</td>
<td>0.0239</td>
</tr>
</tbody>
</table>
表15 数值因子 S 和 s.
(用于计算承受静水压力 $q = q_0 \times a$ 的简支矩形板中的反力)

$$v = 0.3, \ b < a$$

<table>
<thead>
<tr>
<th>a/b</th>
<th>反力 δq_0a</th>
<th>反力 δq_0b</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x = 0$</td>
<td>$y = 0$</td>
<td>$y = b/4$</td>
</tr>
<tr>
<td>$x = 0.25a$</td>
<td>$x = 0.50a$</td>
<td>$x = 0.60a$</td>
</tr>
<tr>
<td>∞</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>5.0</td>
<td>0.008</td>
<td>0.006</td>
</tr>
<tr>
<td>4.0</td>
<td>0.013</td>
<td>0.010</td>
</tr>
<tr>
<td>3.0</td>
<td>0.023</td>
<td>0.018</td>
</tr>
<tr>
<td>2.0</td>
<td>0.050</td>
<td>0.038</td>
</tr>
<tr>
<td>1.9</td>
<td>0.055</td>
<td>0.041</td>
</tr>
<tr>
<td>1.8</td>
<td>0.060</td>
<td>0.045</td>
</tr>
<tr>
<td>1.7</td>
<td>0.066</td>
<td>0.050</td>
</tr>
<tr>
<td>1.6</td>
<td>0.073</td>
<td>0.055</td>
</tr>
<tr>
<td>1.5</td>
<td>0.080</td>
<td>0.060</td>
</tr>
<tr>
<td>1.4</td>
<td>0.088</td>
<td>0.067</td>
</tr>
<tr>
<td>1.3</td>
<td>0.097</td>
<td>0.074</td>
</tr>
<tr>
<td>1.2</td>
<td>0.106</td>
<td>0.081</td>
</tr>
<tr>
<td>1.1</td>
<td>0.116</td>
<td>0.090</td>
</tr>
<tr>
<td>1.0</td>
<td>0.126</td>
<td>0.098</td>
</tr>
</tbody>
</table>

表16 公式 (q) 中的数值因子 n_1 和 n_2 (第11节)
(用于计算承受静水压力 $q = q_0 / a$ 的简支矩形板在角上的反作用力 R_1 和 R_2)

$$v = 0.3, \ b < a$$

<table>
<thead>
<tr>
<th>b/a</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1.9</th>
<th>1.8</th>
<th>1.7</th>
</tr>
</thead>
<tbody>
<tr>
<td>n_1</td>
<td>0.002</td>
<td>0.004</td>
<td>0.006</td>
<td>0.013</td>
<td>0.014</td>
<td>0.016</td>
<td>0.017</td>
</tr>
<tr>
<td>n_2</td>
<td>0.017</td>
<td>0.020</td>
<td>0.025</td>
<td>0.033</td>
<td>0.034</td>
<td>0.035</td>
<td>0.036</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>b/a</th>
<th>1.6</th>
<th>1.5</th>
<th>1.4</th>
<th>1.3</th>
<th>1.2</th>
<th>1.1</th>
<th>1.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>n_1</td>
<td>0.018</td>
<td>0.020</td>
<td>0.021</td>
<td>0.023</td>
<td>0.024</td>
<td>0.025</td>
<td>0.026</td>
</tr>
<tr>
<td>n_2</td>
<td>0.037</td>
<td>0.037</td>
<td>0.038</td>
<td>0.039</td>
<td>0.039</td>
<td>0.039</td>
<td>0.039</td>
</tr>
</tbody>
</table>
形式来表示挠度 w_1，我们注意到，离板条左端的距离为 ξ 的集中
力 P 所产生的挠度为

$$\frac{2P a^3}{D \pi^4} \sum_{m=1}^{\infty} \frac{1}{m^4} \sin \frac{m\pi \xi}{a} \sin \frac{m\pi x}{a}.$$

用 $qd\xi$ 代替 P（在 $\xi < a/2$ 时用 $q = 2q_0\xi/a$，在 $\xi > a/2$ 时，用
$q = 2q_0(a - \xi)/a$），就得到单位载荷所产生的板条的挠度。板条
上的总载荷所产生的挠度由下列形式的积分得到:

$$\omega_1 = \frac{4q_0 a^4}{D \pi^4} \sum_{m=1}^{\infty} \frac{1}{m^4} \sin \frac{m\pi x}{a} \int_0^{a/2} \xi \sin \frac{m\pi \xi}{a} \, d\xi$$

$$+ \left[_{a/2}^a (a - \xi) \sin \frac{m\pi \xi}{a} \, d\xi \right]$$

$$= \frac{8q_0 a^4}{D \pi^6} \sum_{m=1, 3, 5, \ldots} \frac{(-1)^{(m-1)/2}}{m^8} \sin \frac{m\pi x}{a}.$$

将此式代入式 (a)，并且应用上节的式 (d)，得到

$$\omega = \frac{q_0 a^4}{D} \sum_{m=1, 3, 5, \ldots} \left[\frac{8(-1)^{(m-1)/2}}{\pi^6 m^8} + A_m \cosh \frac{m\pi y}{a} \right] \sin \frac{m\pi x}{a}.$$

这个式子满足方程 (103)，并且也满足边界 $x = 0$ 和 $x = a$ 上的边
界条件。常数 A_m 和 B_m 由边界 $y = \pm b/2$ 上的边界条件求得，
这些边界条件与上节中的相同，它们给出

$$\frac{8(-1)^{(m-1)/2}}{\pi^6 m^8} + A_m \cosh \alpha_m + B_m \alpha_m \sinh \alpha_m = 0,$$

$$(2B_m + A_m) \cosh \alpha_m + B_m \alpha_m \sinh \alpha_m = 0,$$

同以前一样，这里采用符号

$$\alpha_m = \frac{m\pi b}{2a},$$

解方程组 (c)，求得

年。
$$A_m = \frac{-4(2 + \alpha_m \tanh \alpha_m)(-1)^{(m-1)/2}}{\pi^6 m^6 \cosh \alpha_m},$$

$$B_m = \frac{4(-1)^{(m-1)/2}}{\pi^6 m^6 \cosh \alpha_m}.$$ \hspace{1cm} (f)

为了得到板沿着 x 轴的挠度，使式 (d) 中 $y = 0$，于是，有

$$\left(\nu\right)_{y=0} = g_\theta a^4 \frac{1}{D} \sum_{m=1,3,5,\ldots}^\infty \left\{ \frac{8(-1)^{(m-1)/2}}{\pi^6 m^6} + A_m \right\} \sin \frac{m\pi x}{a},$$

最大挠度是在板的中心：

$$w_{\text{max}} = g_\theta a^4 \frac{1}{D} \sum_{m=1,3,5,\ldots}^\infty \left\{ \frac{-8}{\pi^6 m^6} + A_m (-1)^{(m-1)/2} \right\},$$

此式可写成如下形式：

$$w_{\text{max}} = \alpha \frac{g_\theta a^4}{D},$$

式中 α 为数值因子，它随比 b/a 的大小而变。表 17 中列出了这个

<table>
<thead>
<tr>
<th>b/a</th>
<th>W_{max}</th>
<th>$(M_x)_{\text{max}}$</th>
<th>$(M_y)_{\text{max}}$</th>
<th>$(Q_x)_{\text{max}}$</th>
<th>$(Q_y)_{\text{max}}$</th>
<th>$(V_x)_{\text{max}}$</th>
<th>$(V_y)_{\text{max}}$</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>0.00263</td>
<td>0.0340</td>
<td>0.0317</td>
<td>0.199</td>
<td>0.315</td>
<td>0.417</td>
<td>0.250</td>
<td>0.038</td>
</tr>
<tr>
<td>1.1</td>
<td>0.00314</td>
<td>0.0390</td>
<td>0.026</td>
<td>0.212</td>
<td>0.257</td>
<td>0.161</td>
<td>0.232</td>
<td>0.038</td>
</tr>
<tr>
<td>1.2</td>
<td>0.00364</td>
<td>0.0436</td>
<td>0.0330</td>
<td>0.222</td>
<td>0.280</td>
<td>0.173</td>
<td>0.216</td>
<td>0.037</td>
</tr>
<tr>
<td>1.3</td>
<td>0.00411</td>
<td>0.0479</td>
<td>0.0332</td>
<td>0.230</td>
<td>0.265</td>
<td>0.184</td>
<td>0.202</td>
<td>0.036</td>
</tr>
<tr>
<td>1.4</td>
<td>0.00455</td>
<td>0.0518</td>
<td>0.0331</td>
<td>0.236</td>
<td>0.250</td>
<td>0.193</td>
<td>0.189</td>
<td>0.035</td>
</tr>
<tr>
<td>1.5</td>
<td>0.00496</td>
<td>0.0554</td>
<td>0.0329</td>
<td>0.241</td>
<td>0.236</td>
<td>0.202</td>
<td>0.178</td>
<td>0.034</td>
</tr>
<tr>
<td>1.6</td>
<td>0.00533</td>
<td>0.0586</td>
<td>0.0325</td>
<td>0.246</td>
<td>0.224</td>
<td>0.208</td>
<td>0.168</td>
<td>0.033</td>
</tr>
<tr>
<td>1.7</td>
<td>0.00567</td>
<td>0.0615</td>
<td>0.0321</td>
<td>0.247</td>
<td>0.212</td>
<td>0.214</td>
<td>0.158</td>
<td>0.031</td>
</tr>
<tr>
<td>1.8</td>
<td>0.00597</td>
<td>0.0641</td>
<td>0.0316</td>
<td>0.249</td>
<td>0.201</td>
<td>0.220</td>
<td>0.159</td>
<td>0.030</td>
</tr>
<tr>
<td>1.9</td>
<td>0.00625</td>
<td>0.0664</td>
<td>0.0311</td>
<td>0.251</td>
<td>0.191</td>
<td>0.224</td>
<td>0.142</td>
<td>0.029</td>
</tr>
<tr>
<td>2.0</td>
<td>0.00649</td>
<td>0.0685</td>
<td>0.0306</td>
<td>0.252</td>
<td>0.183</td>
<td>0.228</td>
<td>0.135</td>
<td>0.028</td>
</tr>
<tr>
<td>3.0</td>
<td>0.00783</td>
<td>0.0794</td>
<td>0.0320</td>
<td>0.253</td>
<td>0.122</td>
<td>0.245</td>
<td>0.090</td>
<td>0.019</td>
</tr>
<tr>
<td>0.00833</td>
<td>0.0833</td>
<td>0.0250</td>
<td>0.250</td>
<td>0.250</td>
<td>0.250</td>
<td>0.250</td>
<td>0.250</td>
<td>0.250</td>
</tr>
</tbody>
</table>

• 140 •
因子的若干值1。

应用式（d），按照前节的方法进行推演，就能立即得到弯矩
M_x与M_y的表达式。在这个情况下，此二弯矩的最大值显然是在
板的中心，并且可以用下列形式表示:

$$(M_x)_{\text{max}} = \beta q_0 a^2, \quad (M_y)_{\text{max}} = \beta_1 q_0 a^2.$$

数值因子 β 和 β_1 的值也列在表 17 中。在表 17 中还给出了数值
因子 γ, γ_1, δ, δ_1 和 n，它们是用于计算 (1) 板的边缘 $x = 0$ 和
$y = -b/2$ 的中点上的剪力 $(Q_x)_{\text{max}} = \gamma q_0 a$, $(Q_y)_{\text{max}} = \gamma_1 q_0 b$；
(2) 此二点上的反作用力

$$V_x = (Q_x - \frac{\partial M_{xx}}{\partial y})_{\text{max}} = \delta q_0 a,$$

$$V_y = (Q_y - \frac{\partial M_{yy}}{\partial x})_{\text{max}} = \delta_1 q_0 b.$$

(3) 板角上的集中反力 $R = n q_0 a b$，它们的作用方向向下，以阻止
板角的上翘。所有这些值都是对于 $b > a$ 计算得到的。当 $b < a$
时，将 ω_t 这部分板的挠度取成与 y 轴平行的板条的挠度的形式，
能得到更好的收敛性。我们在这里不作推演，只是在表 18 中列出了
数字结果。

将图 67a 所示的载荷与强度为 q_0 的均匀载荷合并在一起，就
得到了图 68 所示的载荷。在这种情况下，计算挠度和应力所需的
数据可由表 8 上的数据减去表 17 或 18 上相应的数据而得到。

![图 68](image)

33. 部分受载的简支矩形板：我们研究一个对称弯曲问题。
在这问题中，均匀载荷 q 是分布在边长为 a 和 b 的矩形区域（图
69 中的阴影部分）上的。

1) 表 17 是取自前引 Галёркин 的论文。
表 18 数值因子 $a, \beta, \gamma, \delta, \eta$

(用于计算承受三铰简壳荷的单支矩形板)

\(v = 0.3, b < a\)

<table>
<thead>
<tr>
<th>(a/b)</th>
<th>(W_{\text{max}})</th>
<th>(\frac{(M_x)_{\text{max}}}{D})</th>
<th>(\frac{(M_y)_{\text{max}}}{D})</th>
<th>(\frac{(Q_x)_{\text{max}}}{D})</th>
<th>(\frac{(Q_y)_{\text{max}}}{D})</th>
<th>(\frac{(V_x)_{\text{max}}}{D})</th>
<th>(\frac{(V_y)_{\text{max}}}{D})</th>
<th>(R)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\infty)</td>
<td>0.01302</td>
<td>0.0375</td>
<td>0.1250</td>
<td>—</td>
<td>0.500</td>
<td>—</td>
<td>0.500</td>
<td>—</td>
</tr>
<tr>
<td>3.0</td>
<td>0.00686</td>
<td>0.0387</td>
<td>0.0922</td>
<td>0.045</td>
<td>0.442</td>
<td>0.027</td>
<td>0.410</td>
<td>0.010</td>
</tr>
<tr>
<td>2.0</td>
<td>0.00686</td>
<td>0.0392</td>
<td>0.0707</td>
<td>0.091</td>
<td>0.412</td>
<td>0.057</td>
<td>0.365</td>
<td>0.023</td>
</tr>
<tr>
<td>1.9</td>
<td>0.00656</td>
<td>0.0352</td>
<td>0.0681</td>
<td>0.098</td>
<td>0.407</td>
<td>0.062</td>
<td>0.358</td>
<td>0.024</td>
</tr>
<tr>
<td>1.8</td>
<td>0.00624</td>
<td>0.0391</td>
<td>0.0651</td>
<td>0.106</td>
<td>0.402</td>
<td>0.058</td>
<td>0.350</td>
<td>0.026</td>
</tr>
<tr>
<td>1.7</td>
<td>0.00588</td>
<td>0.0390</td>
<td>0.0609</td>
<td>0.115</td>
<td>0.396</td>
<td>0.074</td>
<td>0.342</td>
<td>0.028</td>
</tr>
<tr>
<td>1.6</td>
<td>0.00549</td>
<td>0.0388</td>
<td>0.0585</td>
<td>0.124</td>
<td>0.389</td>
<td>0.081</td>
<td>0.332</td>
<td>0.029</td>
</tr>
<tr>
<td>1.5</td>
<td>0.00508</td>
<td>0.0386</td>
<td>0.0548</td>
<td>0.135</td>
<td>0.381</td>
<td>0.090</td>
<td>0.322</td>
<td>0.031</td>
</tr>
<tr>
<td>1.4</td>
<td>0.00464</td>
<td>0.0382</td>
<td>0.0508</td>
<td>0.146</td>
<td>0.371</td>
<td>0.099</td>
<td>0.311</td>
<td>0.033</td>
</tr>
<tr>
<td>1.3</td>
<td>0.00418</td>
<td>0.0376</td>
<td>0.0464</td>
<td>0.158</td>
<td>0.360</td>
<td>0.109</td>
<td>0.296</td>
<td>0.035</td>
</tr>
<tr>
<td>1.2</td>
<td>0.00367</td>
<td>0.0368</td>
<td>0.0418</td>
<td>0.171</td>
<td>0.347</td>
<td>0.120</td>
<td>0.284</td>
<td>0.036</td>
</tr>
<tr>
<td>1.1</td>
<td>0.00316</td>
<td>0.0356</td>
<td>0.0369</td>
<td>0.185</td>
<td>0.332</td>
<td>0.133</td>
<td>0.266</td>
<td>0.037</td>
</tr>
<tr>
<td>1.0</td>
<td>0.00263</td>
<td>0.0340</td>
<td>0.0317</td>
<td>0.199</td>
<td>0.315</td>
<td>0.147</td>
<td>0.250</td>
<td>0.038</td>
</tr>
</tbody>
</table>

图 69

首先将荷载展开成级数

\[
\frac{2}{a} \sum_{m=1}^{\infty} \sin \frac{m \pi x}{a} \int_{(a-u)/2}^{(a+u)/2} q \sin \frac{m \pi x}{a} d\xi = \frac{4q}{a} \sum_{m=1, 3, 5, \ldots}^{\infty} (-1)^{(m-1)/2} \frac{\sin \frac{m \pi u}{2a}}{m} \frac{\sin \frac{m \pi x}{a}}{\sin \frac{m \pi x}{a}}
\]

(a)
它代表板的 \textit{prst} 部分上的挠度。这部分板的相应挠度由微分方程 (103) 所决定，它是

\[
\frac{\partial^4 \omega}{\partial x^4} + 2 \frac{\partial^4 \omega}{\partial x^2 \partial y^2} + \frac{\partial^4 \omega}{\partial y^4} = \frac{4q}{\pi D} \sum_{m=1,3,5,\ldots} \frac{(-1)^{(m-1)/2}}{m} \sin \frac{m \pi y}{2a} \sin \frac{m \pi x}{a}.
\]

（b）

再将挠度取成如下形式：

\[
\omega = \omega_1 + \omega_2,
\]

（c）

其中 \(\omega_1\) 是方程 (b) 的一个特解，它同变量 \(y\) 无关，也就是说，满足方程

\[
\frac{\partial^4 \omega_1}{\partial x^4} = \frac{4q}{\pi D} \sum_{m=1,3,5,\ldots} \frac{(-1)^{(m-1)/2}}{m} \sin \frac{m \pi y}{2a} \sin \frac{m \pi x}{a}.
\]

（d）

对 \(x\) 积分这个方程，得到

\[
\omega_1 = \frac{4qa^4}{\pi^5 D} \sum_{m=1,3,5,\ldots} \frac{(-1)^{(m-1)/2}}{m^5} \sin \frac{m \pi y}{a} \sin \frac{m \pi x}{a},
\]

（d）

由此可知，\(\omega_1\) 一定是方程 (137) 的解，把这个解选成级数 (136) 的形式，并且由于挠度曲面对于 \(x\) 轴是对称的，我们在对 \(Y_m\) 式 (138) 中只保留 \(y\) 的偶函数项，于是，由式 (c)，有

\[
\omega = \sum_{m=1,3,5,\ldots} \left(A_m \cosh \frac{m \pi y}{a} + B_m \frac{m \pi y}{a} \sin \frac{m \pi y}{a} \right) \sin \frac{m \pi x}{a},
\]

（e）

在这里，

\[
a_m = \frac{4qa^4}{\pi^5 m^5 D} \frac{(-1)^{(m-1)/2}}{m^5} \sin \frac{m \pi x}{2a}.
\]

（f）

式 (e) 代表 \textit{prst} 这部分板的挠度。

现在考虑线 \(rs\) 以下这部分不承受载荷的板，我们可将它的挠度曲面取成如下形式：

\[
\omega' = \sum_{m=1,3,5,\ldots} \left(A'_m \cosh \frac{m \pi y}{a} + B'_m \frac{m \pi y}{a} \sinh \frac{m \pi y}{a}

+ C'_m \sinh \frac{m \pi y}{a} + D'_m \frac{m \pi y}{a} \cosh \frac{m \pi y}{a} \right) \sin \frac{m \pi x}{a}.
\]

（g）
现在需要这样来选择级数 (e) 和 (g) 中的常数 A_m, B_m, \ldots, D'_n; 在 $y = b/2$ 的边界上满足边界条件，同时沿线段 ts 保证连续性。为了将这些条件写成更简单的形式，引入符号：

$$a_m = \frac{m\pi b}{2a}, \quad c_m = \frac{m\pi y}{4a}. \tag{h}$$

沿 ts 线的几何条件要求

当 $y = \frac{v}{2}$ 时，$w = w'$, $\frac{\partial w}{\partial y} = \frac{\partial w'}{\partial y}$. \tag{i}

进一步讨论，由于沿线 ts 没有集中力作用，因此沿这线弯矩 M, 和剪力 Q, 必须是连续的。参照式 (i)，这两个条件可写成如下形式：

当 $y = \frac{v}{2}$ 时，$\frac{\partial^2 w}{\partial y^2} = \frac{\partial^2 w'}{\partial y^2}$, $\frac{\partial^3 w}{\partial y^3} = \frac{\partial^3 w'}{\partial y^3}. \tag{j}$

将式 (e) 和 (g) 代入式 (i) 和 (j)，并利用符号 (3)，可以把这些方程写成下列形式：

$$(A_m - A'_m) \cosh 2c_m + (B_m - B'_m)2 \gamma_m \sinh 2\gamma_m$$

$$- C'_m \sinh 2\gamma_m - D'_m 2\gamma_m \cosh 2\gamma_m + a_m = 0,$$

$$(A_m - A'_m) \sinh 2\gamma_m + (B_m - B'_m)(\sinh 2\gamma_m + 2 \gamma_m \cosh 2\gamma_m)$$

$$- C'_m \cosh 2\gamma_m - D'_m (\cosh 2\gamma_m + 2 \gamma_m \sinh 2\gamma_m) = 0, \tag{k}$$

$$(A_m - A'_m) \cosh 2\gamma_m + (B_m - B'_m)(2 \cosh 2\gamma_m + 2 \gamma_m \sinh 2\gamma_m)$$

$$- C'_m \sinh 2\gamma_m - D'_m (2 \sinh 2\gamma_m + 2 \gamma_m \cosh 2\gamma_m) = 0,$$

$$(A_m - A'_m) \sinh 2\gamma_m + (B_m - B'_m)(3 \sinh 2\gamma_m + 2 \gamma_m \cosh 2\gamma_m)$$

$$- C'_m \cosh 2\gamma_m - D'_m (3 \cosh 2\gamma_m + 2 \gamma_m \sinh 2\gamma_m) = 0.$$

由这些方程可得

$$A_m - A'_m = a_m (\gamma_m \sinh 2\gamma_m - \cosh 2\gamma_m),$$

$$B_m - B'_m = \frac{a_m}{2} \cosh 2\gamma_m, \tag{1}$$

$$C'_m = a_m (\gamma_m \cosh 2\gamma_m - \sinh 2\gamma_m),$$

$$D'_m = \frac{a_m}{2} \sinh 2\gamma_m.$$
缘 y = b/2 上的边界条件的两个方程，将式 (g) 代入下列边界条件:

当 y = b/2 时， \(w' = 0, \quad \partial^2 w'/\partial y' = 0 \),

得到

\[
A'_m \cosh \alpha_m + B'_m \alpha_m \sinh \alpha_m + C'_m \sinh \alpha_m + D'_m \alpha_m \cosh \alpha_m = 0, \quad (m)
\]

\[
B'_m \cosh \alpha_m + D'_m \sinh \alpha_m = 0.
\]

由方程 (1) 和 (m)，解出常数

\[
A_m = -\frac{a_m}{\cosh \alpha_m} \left[\cosh (\alpha_m - 2\gamma_m) + \gamma_m \sinh (\alpha_m - 2\gamma_m) + \alpha_m \frac{\sinh 2\gamma_m}{2\cosh \alpha_m} \right], \quad (n)
\]

\[
B_m = \frac{a_m}{2\cosh \alpha_m} \cosh (\alpha_m - 2\gamma_m).
\]

将此二式和式 (f) 代入式 (e)，即得:

\[
w = \frac{4a^4}{D\pi^5} \sum_{m=1, 3, 5, \ldots}^\infty \frac{(-1)^{(m-1)/2}}{m^5} \sin \frac{m\pi b}{2a} \left\{ 1 - \frac{\cosh \frac{m\pi y}{a}}{\cosh \alpha_m} \right\}
\times \left[\cosh (\alpha_m - 2\gamma_m) + \gamma_m \sinh (\alpha_m - 2\gamma_m) + \alpha_m \frac{\sinh 2\gamma_m}{2\cosh \alpha_m} \right]
\]

\[
+ \frac{\cosh \left(\frac{\alpha_m - 2\gamma_m}{2} \right)}{2\cosh \alpha_m} \frac{m\pi y}{a} \sinh \frac{m\pi y}{a} \right\} \sin \frac{m\pi x}{a}, \quad (142)
\]

由此式可以计算板的受载部分任一点上的挠度。

在 \(u = a, \quad v = b \) 的特殊情形中，由式 (h)，有 \(\gamma_m = \alpha_m/2 \)。式 (n) 化为:

\[
A_m = -\frac{a_m}{\cosh \alpha_m} \left(1 + \frac{\alpha_m}{2} \tanh \alpha_m \right), \quad B_m = \frac{a_m}{2\cosh \alpha_m};
\]

于是，式 (142) 与对承受均匀载荷的矩形板推演所得的式 (139) 完全相同。

最大挠度是在板的中心，将 \(y = 0, \quad x = a/2 \) 代入式 (142)，即得
\[\omega_{\text{max}} = \frac{4qa^4}{D\xi^5} \sum_{m=1,3,5,\ldots}^\infty \frac{1}{m^2} \sin \frac{m\pi \xi}{2a} \times \left\{ 1 - \frac{1}{\cosh \alpha_m} \left[\cosh \left(\alpha_m - 2\gamma_m \right) + \gamma_m \sinh \left(\alpha_m - 2\gamma_m \right) + \alpha_m \frac{\sinh 2\gamma_m}{2 \cosh \alpha_m} \right] \right\}. \]

（143）

作为特例，我们研究 \(u = a \) 和 \(v \) 是很小的情况下。这个情况表示沿 \(x \) 轴承受均匀分布载荷。由于在式（143）中 \(\gamma_m \) 很小，因此只需要保留一项小量项。应用符号 \(q = q_0 \) 得到

\[\omega_{\text{max}} = \frac{q_0 a^3}{D\xi^4} \sum_{m=1,3,5,\ldots}^\infty \frac{(-1)^{(m-1)/2}}{m^4} \left(\frac{\alpha_m}{\tanh \alpha_m - \frac{2\gamma_m}{\cosh \alpha_m}} \right). \]

（144）

对于方形板，此式化为

\[\omega_{\text{max}} = 0.00674 \frac{q_0 a^3}{D}. \]

在一般情况下，最大挠度可表示成下列形式：

当 \(a < b \)， \(\omega_{\text{max}} = \frac{a q_0 a^3}{D} \).

当 \(a > b \)， \(\omega_{\text{max}} = \frac{a q_0 b^3}{D} \).

表 19 中给出了系数 \(a \) 的若干数值。

<table>
<thead>
<tr>
<th>(b/a)</th>
<th>2</th>
<th>1.5</th>
<th>1.4</th>
<th>1.3</th>
<th>1.2</th>
<th>1.1</th>
<th>1.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\alpha)</td>
<td>0.00987</td>
<td>0.00911</td>
<td>0.00882</td>
<td>0.00844</td>
<td>0.00799</td>
<td>0.00742</td>
<td>0.00674</td>
</tr>
<tr>
<td>(a/b)</td>
<td>1.1</td>
<td>1.2</td>
<td>1.3</td>
<td>1.4</td>
<td>1.5</td>
<td>2.0</td>
<td>\infty</td>
</tr>
<tr>
<td>(\alpha)</td>
<td>0.008902</td>
<td>0.00926</td>
<td>0.01042</td>
<td>0.01151</td>
<td>0.01251</td>
<td>0.01629</td>
<td>0.02283</td>
</tr>
</tbody>
</table>

我们回到 \(v \) 不一定很小，\(u \) 为任意值的一般情况。应用式（142），可推出弯矩 \(M_x \) 与 \(M_y \) 的表达式。此二弯矩的最大值是在板的中心，它们可用下列公式表示：

\[(M_x)_{\text{max}} = \beta \nu \psi = \beta P, \quad (M_y)_{\text{max}} = \beta \mu \psi = \beta L P, \]

・146・
其中 $P = \mu v q$ 是总载荷。对于具有不同尺寸的受载矩形区域的方形板，在表 20 中列出了它们的数值因子 β 的值。在这个表中，交换文字 μ 和 ν 的位置，也能得到系数 β。

在表 21 和 22 中分别列出了 $b = 1.4a$ 和 $b = 2a$ 的矩形板的

表 20 系数 β（用于计算部分受载的简支方形板中的 $(M_x)_{\text{max}}$）

当 $\nu = 0.3$

<table>
<thead>
<tr>
<th>μ/a</th>
<th>0</th>
<th>0.1</th>
<th>0.2</th>
<th>0.3</th>
<th>0.4</th>
<th>0.5</th>
<th>0.6</th>
<th>0.7</th>
<th>0.8</th>
<th>0.9</th>
<th>1.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>ν/a</td>
<td></td>
<td>0.1</td>
<td>0.2</td>
<td>0.3</td>
<td>0.4</td>
<td>0.5</td>
<td>0.6</td>
<td>0.7</td>
<td>0.8</td>
<td>0.9</td>
<td>1.0</td>
</tr>
<tr>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>0.4</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>0.6</td>
<td></td>
</tr>
<tr>
<td>0.7</td>
<td></td>
</tr>
<tr>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>0.9</td>
<td></td>
</tr>
<tr>
<td>1.0</td>
<td></td>
</tr>
</tbody>
</table>

表 21 系数 β 和 β_1（用于计算部分受载，$b = 1.4a$）

的简支矩形板中的 $(M_x)_{\text{max}}$ 和 $(M_y)_{\text{max}}$）

当 $\nu = 0.3$

<table>
<thead>
<tr>
<th>μ/a</th>
<th>0</th>
<th>0.2</th>
<th>0.4</th>
<th>0.6</th>
<th>0.8</th>
<th>1.0</th>
<th>0</th>
<th>0.2</th>
<th>0.4</th>
<th>0.6</th>
<th>0.8</th>
<th>1.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>ν/a</td>
<td></td>
</tr>
<tr>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td>0.4</td>
<td></td>
</tr>
<tr>
<td>0.6</td>
<td></td>
</tr>
<tr>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>1.2</td>
<td></td>
</tr>
<tr>
<td>1.4</td>
<td></td>
</tr>
</tbody>
</table>

- 147 -
表 22 系数 β 和 β' (用于计算部分受载 $b = 2\alpha$ 的简支矩形板中的 $M_{x,\max}$ 和 $M_{y,\max}$)

$\nu = 0.3$

<table>
<thead>
<tr>
<th>α/α</th>
<th>0</th>
<th>0.2</th>
<th>0.4</th>
<th>0.6</th>
<th>0.8</th>
<th>1.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>ν/α</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0.289</td>
<td>0.220</td>
<td>0.175</td>
<td>0.144</td>
<td>0.118</td>
<td>0.294</td>
</tr>
<tr>
<td>0.2</td>
<td>0.347</td>
<td>0.252</td>
<td>0.199</td>
<td>0.163</td>
<td>0.135</td>
<td>0.111</td>
</tr>
<tr>
<td>0.4</td>
<td>0.275</td>
<td>0.221</td>
<td>0.181</td>
<td>0.150</td>
<td>0.125</td>
<td>0.103</td>
</tr>
<tr>
<td>0.6</td>
<td>0.233</td>
<td>0.195</td>
<td>0.164</td>
<td>0.138</td>
<td>0.115</td>
<td>0.095</td>
</tr>
<tr>
<td>0.8</td>
<td>0.203</td>
<td>0.174</td>
<td>0.148</td>
<td>0.126</td>
<td>0.106</td>
<td>0.088</td>
</tr>
<tr>
<td>1.0</td>
<td>0.179</td>
<td>0.155</td>
<td>0.134</td>
<td>0.115</td>
<td>0.097</td>
<td>0.080</td>
</tr>
<tr>
<td>1.2</td>
<td>0.161</td>
<td>0.140</td>
<td>0.122</td>
<td>0.105</td>
<td>0.089</td>
<td>0.074</td>
</tr>
<tr>
<td>1.4</td>
<td>0.144</td>
<td>0.127</td>
<td>0.111</td>
<td>0.096</td>
<td>0.081</td>
<td>0.068</td>
</tr>
<tr>
<td>1.6</td>
<td>0.130</td>
<td>0.115</td>
<td>0.105</td>
<td>0.087</td>
<td>0.074</td>
<td>0.062</td>
</tr>
<tr>
<td>1.8</td>
<td>0.118</td>
<td>0.104</td>
<td>0.091</td>
<td>0.079</td>
<td>0.067</td>
<td>0.056</td>
</tr>
<tr>
<td>2.0</td>
<td>0.107</td>
<td>0.094</td>
<td>0.083</td>
<td>0.072</td>
<td>0.061</td>
<td>0.051</td>
</tr>
</tbody>
</table>

数值因子 β 和 β'。

34. 承受集中载荷的简支矩形板

在第 29 节中应用纳维埃的方法，对于在某个给定点 $x = \xi$, $y = \eta$ 承受单一载荷 P 的简支矩形板（图 70）的速度，得到了二重级数形式的解。为了得到等价的单级数形式的解，我们首先把纳维埃解 (133) 写成如下形式：

$$
\omega = \frac{4Pb^2}{\pi^4d} \sum_{m=1}^{\infty} S_m \sin \frac{m\pi \xi}{a} \sin \frac{m\pi x}{b}, \quad (a)
$$

系数 S_m 为

$$
S_m = \sum_{n=1}^{\infty} \frac{\sin \frac{m\pi u}{b} \sin \frac{n\pi v}{b}}{\left(\frac{m^2 b^2 + n^2}{a^2} \right)^{1/2}}, \quad (b)
$$

1) 对于不同的比 a/b, α/β 和 a/b 的 M_x 与 M_y 值也可用曲线的形式表示。G. Pigeaud, Ann. ponts et chaussées, 1929 年。也可参照本书第 37 节。
引入符号

\[S_m = \sum_{n=1}^{\infty} \frac{\cos \frac{n \pi (y - z)}{b}}{(\frac{m^2 b^2}{a^2} + n^2)^i}, \quad S''_m = \sum_{n=1}^{\infty} \frac{\cos \frac{n \pi (y + \eta)}{b}}{(\frac{m^2 b^2}{a^2} + n^2)^i}, \quad (c) \]

我们也能将式 (b) 写成

\[S_m = \frac{1}{2} (S'_m - S''_m). \quad (d) \]

为了求级数 (c) 的和，利用已知的级数。

\[\sum_{n=1}^{\infty} \frac{\cos \frac{n \pi \alpha}{\alpha^2 + n^2}}{n^2} = -\frac{1}{2\alpha} + \frac{\pi}{2\alpha} \frac{\cosh \alpha (\pi - z)}{\sinh \pi \alpha}, \quad (e) \]

它在区间 \(0 \leq z < 2\pi \) 上成立，但我们首先将它视为 \(\alpha \) 的函数 \(S(\alpha) \)。将式 (e) 的左边对 \(\alpha \) 微分，有:

\[\frac{\partial S(\alpha)}{\partial \alpha} = -2\alpha \sum_{n=1}^{\infty} \frac{\cos \frac{n \pi \alpha}{\alpha^2 + n^2}}{(\alpha^2 + n^2)^2}. \quad (f) \]

将式 (e) 的右边也对 \(\alpha \) 微分，并将所得结果代入式 (f)，则得

\[\sum_{n=1}^{\infty} \frac{\cos \frac{n \pi \alpha}{\alpha^2 + n^2}}{\alpha^2 + n^2} = -\frac{1}{2\alpha} \frac{\partial S(\alpha)}{\partial \alpha} = -\frac{1}{2\alpha} + \frac{\pi}{4\alpha^2} \frac{\cosh \alpha (\pi - z)}{\sinh \pi \alpha} \]

\[-\frac{\pi(z - \pi)}{4\alpha^2} \frac{\sinh \alpha (\pi - z)}{\sinh \pi \alpha} + \frac{\pi^2}{4\alpha^2} \frac{\cosh \alpha (z - \pi) \cosh \pi \alpha}{\sinh \pi \alpha}. \quad (g) \]

现在，为了得到级数 (c) 的和值，应当在式 (g) 中先令 \(z = (\pi/b)(y - \eta) \)，再令 \(z = (\pi/b)(y + \eta) \)，此外还要令 \(\alpha = mb/a \)。用这些值代入式 (d)，然后将式 (d) 代入式 (a)，我们最后得到下列板的挠度表达式:

\[\omega = \frac{P_{d^2}}{a^2 D} \sum_{n=1}^{\infty} \left(1 + \beta_m \coth \beta_m \frac{\beta_m y_1}{b} \coth \beta_m \frac{\beta_m y_1}{b} - \frac{\beta_m \eta}{b} \coth \frac{\beta_m \eta}{b} \right) \]

\[\times \frac{\sinh \beta_m \eta_1 \sin \frac{m \pi x}{a} \sin \frac{m \pi x}{a}}{m \pi \sinh \beta_m}, \quad (145) \]

其中

\[\beta_m = \frac{m \pi b}{a}, \quad y_1 = b - y, \quad \text{和} \quad \eta \geq \eta. \]
在应用式（145）时，如果 \(y < \eta \)，则量 \(y \) 应当用 \(y \) 代替，而量 \(\eta \) 应当用 \(\eta \) 代替。

我们更深入地研究一个特殊情况：载荷 \(P \) 集中在板的对称轴（可用它作 \(x \) 轴）上的一点 \(A \) （图 71）。此时 \(\eta = b/2 \)，并引入符号

\[
\sigma_m = \frac{m \pi b}{2a} = \frac{\beta_m}{2}, \quad (b)
\]

于是，板的挠度的一般表达式（145）化成

\[
\omega = \frac{P a^2}{2 \pi^3 D} \sum_{m=1}^{\infty} \left[\left(1 + \alpha_m \tanh \alpha_m \right) \sinh \frac{\alpha_m}{b} \left(b - 2y \right) \right. \\
- \left. \frac{\alpha_m}{b} \left(b - 2y \right) \cosh \frac{\alpha_m}{b} \right] \frac{\sin \frac{m \pi \xi}{a}}{m^2 \cosh \alpha_m}, \quad (146)
\]

当 \(y \geq 0 \)，即在图 71 [i] 轴的下面，此式是有效的。在 \(y = 0 \) 的特殊情况下，得到沿 \(x \) 轴上板的挠度为

\[
\omega_{y=0} = \frac{P a^2}{2 \pi^3 D} \sum_{m=1}^{\infty} \left(\tanh \alpha_m - \frac{\alpha_m}{\cosh^2 \alpha_m} \right) \frac{\sin \frac{m \pi \xi}{a}}{m^2}. \quad (i)
\]

这个级数收敛得很快，只用前几项就能得到足够精确的挠度值。在载荷 \(P \) 作用在板中心的情况下，最大挠度是在中心，将 \(x = 5 = a/2 \) 代入式 (i) 便能求得。用这个方法，得到如下结果：

\[
\omega_{\text{max}} = \frac{P a^2}{2 \pi^3 D} \sum_{m=1}^{\infty} \frac{1}{m^3} \left(\tanh \alpha_m - \frac{\alpha_m}{\cosh^2 \alpha_m} \right) = \alpha \frac{P a^2}{D}. \quad (147)
\]

在表 23 中列出了各种比值 \(b/a \) 下的数值因子 \(\alpha \) 的值。

<table>
<thead>
<tr>
<th>表 23</th>
<th>因子 (\alpha) （用于中心载荷简支矩形板的挠度（147））</th>
</tr>
</thead>
<tbody>
<tr>
<td>(b/a)</td>
<td>1.0</td>
</tr>
<tr>
<td>(\alpha)</td>
<td>0.01160</td>
</tr>
</tbody>
</table>

* 150 *
可以看出，随着板长度的增大，其最大挠度很快地趋近于无限长板的挠度。把承受中心集中载荷的方形板的最大挠度与承受中心集中载荷、内切于这方形板的圆形板（参看第 71 页）的最大挠度作一比较，可知圆形板的挠度比相应的方形板的挠度大。这个结果是由于方形板角上集中反力的作用，这些反力有产生向上的挠度的倾向。

弯矩的计算在第 35 和 37 节中讨论。

35. 承受集中载荷的简支矩形板的弯矩 为了决定承受图 71 所示载荷的板沿中轴 \(\gamma = 0 \) 的弯矩，我们要计算式 (146) 的二阶导数，它们是

\[
\left(\frac{\partial^2 \omega}{\partial x^2} \right)_{\gamma = 0} = -\frac{P}{2D\pi} \sum_{m=1}^{\infty} \sin \frac{ma}{m} \left(\tanh \alpha_m - \frac{\alpha_m}{\cosh^2 \alpha_m} \right) \sin \frac{m\pi x}{a},
\]

\[
\left(\frac{\partial^2 \omega}{\partial y^2} \right)_{\gamma = 0} = -\frac{P}{2D\pi} \sum_{m=1}^{\infty} \sin \frac{ma}{m} \left(\tanh \alpha_m + \frac{\alpha_m}{\cosh^2 \alpha_m} \right) \sin \frac{m\pi x}{a}.
\]

将此二导数代入弯矩的表达式 (101)，得到：

\[
(M_z)_{\gamma = 0} = \frac{P}{2\pi} \sum_{m=1}^{\infty} \sin \frac{ma}{m} \left[(1 + \nu)\tanh \alpha_m - \frac{(1 - \nu)\alpha_m}{\cosh^2 \alpha_m} \right] \sin \frac{m\pi x}{a},
\]

\[
(M_y)_{\gamma = 0} = \frac{P}{2\pi} \sum_{m=1}^{\infty} \sin \frac{ma}{m} \left[(1 + \nu)\tanh \alpha_m + \frac{(1 - \nu)\alpha_m}{\cosh^2 \alpha_m} \right] \sin \frac{m\pi x}{a}.
\]

当 \(\nu \) 比 \(a \) 大许多时，可以使

\[
\tanh \alpha_m \approx 1, \quad \frac{\alpha_m}{\cosh^2 \alpha_m} \approx 0.
\]

1) M. Bergsträsser 对于承受集中载荷的板的挠度进行了实验研究；见 Forschungsarbeiten, 第 302 卷，柏林，1928 年；也可参考 N. M. Newmark 和 H. A. Lepper 的报告，Univ. Illinois Bull., 第 36 卷，84 号，1935 年。
于是，

\[(M_{x})_{y=0} = (M_{y})_{x=0} = \frac{(1 + \nu)P}{2\pi} \sum_{m=1}^{\infty} \frac{1}{m} \sin \frac{m\pi x}{a} \sin \frac{m\pi y}{a}\] \hspace{1cm} (b)

在载荷 \(P\) 的作用点附近，这个级数收敛得不够快而不适宜于计算弯矩，所以在这点附近，需要推导另一形式的弯矩表达式。由承受中心集中载荷的圆形板弯曲的讨论 (见第 19 节) 可知，剪力和弯矩在载荷的作用点上变为无限大。在矩形板的问题中也有相似的情况。矩形板在以载荷作用点为圆心、半径很小的圆内的应力分布与承受中心集中载荷的圆形板中心附近的应力分布是本质上相同的。在这个圆内一点的弯曲应力，可以认为由两部分组成：一部分与半径为 \(a\) 承受中心集中载荷的圆形板的情形相同，另一部分与矩形板中的应力与圆形板中的应力之差。当载荷作用点与所考虑的点之间的距离 \(r\) 逐渐变小时，第一部分应力按照 \(\log(a/r)\) 那样变化，并且在中心变为无限大；而第二部分应力，代表两种板边界条件的差异的影响，仍然保持连续。

为了得到载荷作用点附近的弯矩表达式，我们首先研究无限长板的较简单情况 (图 72)。这样板的挠度能由式 (146) 立即推出，只要在该式中令边长 \(b\) 无限增大，即 \(\alpha_m = m\pi b/2a\) 变为无限大，即，令

\[
\tanh \alpha_m \approx 1, \quad \cosh \alpha_m \approx \frac{1}{2} e^{\alpha_m},
\]

\[
\sinh \frac{\alpha_m}{b} (b - 2y) \approx \cosh \frac{\alpha_m}{b} (b - 2y) \approx \frac{1}{2} e^{(\alpha_m/2)(b - 2y)}.
\]

把这些式子代入式 (146)，就得到在 \(x = 5, y = 0\) 点承受集中载荷 \(P\) 的弯矩公式。的挠度”：

1) A. Nádi，详尽地讨论了这个板弯曲的重要问题。参阅他的著作，“Elastische platten,” 第 78～109 页，柏林，1925 年。
\[
\omega = \frac{P a^2}{2 \pi D} \sum_{m=1}^{\infty} \frac{1}{m^3} \sin \frac{m \pi x}{a} \sin \frac{m \pi y}{a} \left(1 + \frac{m \pi y}{a}\right) e^{-m \pi y/a}, \quad (148)
\]

在 \(y \geq 0 \) 时，也就是在 \(x \) 轴的下面（图 72），此式成立。

利用式 (101) 和 (102)，就能立即得到弯矩与扭矩的相应表达式：

\[
M_x = \frac{P}{2 \pi} \sum_{m=1}^{\infty} \frac{1}{m} \sin \frac{m \pi x}{a} \sin \frac{m \pi y}{a} \times \left[1 + \nu + (1 - \nu) \frac{m \pi y}{a}\right] e^{-m \pi y/a},
\]

\[
M_y = \frac{P}{2 \pi} \sum_{m=1}^{\infty} \frac{1}{m} \sin \frac{m \pi x}{a} \sin \frac{m \pi x}{a} \times \left[1 + \nu - (1 - \nu) \frac{m \pi y}{a}\right] e^{-m \pi y/a},
\]

\[
M_{xy} = \frac{P}{2 a} \nu (1 - \nu) \sum_{m=1}^{\infty} \sin \frac{m \pi x}{a} \cos \frac{m \pi x}{a} e^{-m \pi y/a}.
\]

应用第 24 节中所引入的量 \(M = (M_x + M_y)/(1 + \nu) \)，则有

\[
M = -D \left(\frac{\partial^2 \omega}{\partial x^2} + \frac{\partial \omega}{\partial y}\right)
\]

\[
= \frac{P}{\pi} \sum_{m=1}^{\infty} \frac{1}{m} \sin \frac{m \pi x}{a} \sin \frac{m \pi y}{a} e^{-m \pi y/a} \quad (150)
\]

现在，(149) 中的弯矩与扭矩可用函数 \(M \) 表示为下列简单形式：

\[
M_x = \frac{1}{2} \left[(1 + \nu) M - (1 - \nu) y \frac{\partial M}{\partial y}\right],
\]

\[
M_y = \frac{1}{2} \left[(1 + \nu) M + (1 - \nu) y \frac{\partial M}{\partial y}\right],
\]

\[
M_{xy} = -\frac{1}{2} \left[(1 - \nu) y \frac{\partial M}{\partial x}\right].
\]

对级数 (150) 求和，得到

1）例如，参考 W. Magnus 和 F. Oberhettinger, “Formeln und Sätze für die speziellen Funktionen der mathematischen Physik,” 第二版，第 214 页，柏林，1948 年。

\[\text{• 153 •}\]
应用式 (151)，我们就能把无限长板的弯矩与扭矩写成有限形式。进一步考虑到，除了载荷的作用点 \((x = \xi, y = 0)\)，外，每一点上都有 \(\Delta M = 0 \)，因此函数 \(M = -D \Delta w \) 满足（除上述载荷作用点外）方程 \(\Delta M = 0 \)。根据式 (111) 中的第二个式子，在边缘 \(x = 0 \) 与 \(x = a \) 上函数 \(M \) 也满足边界条件 \(M = 0 \)。

对 \(x \) 轴上的点，由式 (151) 推出 \(M_x = M_y \)，所以

\[
(M_x)_{y=0} = (M_y)_{y=0} = (M)_{y=0} = \frac{1 + \nu}{2}. \tag{c}
\]

将式 (c) 与 (152) 应用到特殊情况：载荷作用在板条的中心轴上，即 \(\xi = a/2 \)；得到

\[
(M_x)_{y=0} = (M_y)_{y=0} = \frac{P(1 + \nu)}{8\pi} \log \frac{1 + \sin \frac{\pi x}{a}}{1 - \sin \frac{\pi x}{a}}, \tag{d}
\]

这个结果由级数 (b) 的求和也能得到。

现在我们回来计算靠近载荷作用点，但不一定是 \(x \) 轴上的点的弯矩。在这个问题中，\((x - \xi) \) 和 \(\nu \) 为小量。于是，应用式 (152) 时，可以使

\[\cos \frac{\pi (x - \xi)}{a} \approx 1 - \frac{\pi^2 (x - \xi)^2}{2a^2}, \quad \cosh \frac{\pi y}{a} \approx 1 + \frac{\pi^2 y^2}{2a^2}\]

这样，得到结果：

\[
M = \frac{P}{4\pi} \log \frac{1 - \cos \frac{2\pi \xi}{a}}{1 + \frac{\pi^2 y^2}{2a^2} + 1 + \frac{\pi^2 (x - \xi)^2}{2a^2}}
\]

\[
= \frac{P}{4\pi} \log \left(\frac{2a \sin \frac{\pi \xi}{a}}{\pi r} \right) = \frac{P}{2\pi} \log \frac{2a \sin \frac{\pi \xi}{a}}{\pi r}. \tag{153}
\]

\[\cdot 154 \cdot\]
其中

\[r = \sqrt{(x - \xi)^2 + y^2} \]

代表所考虑的点到载荷 P 的作用点的距离。现在用式 (153) 代入式 (151)，得到下列式子，它们对于集中载荷附近的点有效：

\[
M_x = \frac{1}{2} \left[(1 + \nu) \frac{P}{2\pi} \log \frac{2a\sin \frac{\pi \xi}{a}}{\pi r} + \frac{(1 - \nu)Py^2}{2\pi r^2} \right]
\]

\[
M_y = \frac{1}{2} \left[(1 + \nu) \frac{P}{2\pi} \log \frac{2a\sin \frac{\pi \xi}{a}}{\pi r} - \frac{(1 - \nu)Py^2}{2\pi r^2} \right]
\]

(154)

把这个结果和中心受常的简支圆形板集中载荷作用点附近的弯矩（见第 19 节）作比较是很有意思的。取一与 x 轴的夹角为 \(\alpha \) 的半径 r，由式 (90) 和 (91) 得到对于圆形板有

\[
M_x = M_y \cos^2 \alpha + M_z \sin^2 \alpha = \frac{P}{4\pi} (1 + \nu) \log \frac{a}{r} + (1 - \nu) \frac{P}{4\pi} \frac{x^4}{r^2}
\]

\[
M_y = M_x \sin^2 \alpha + M_z \cos^2 \alpha = \frac{P}{4\pi} (1 + \nu) \log \frac{a}{r} + (1 - \nu) \frac{P}{4\pi} \frac{x^2}{r^2}
\]

(15)

如取圆形板的外半径等于

\[\frac{2a}{\pi} \sin \frac{\pi \xi}{a} \]

则 (154) 的第一式与 (15) 的第一式完全相同。在此条件下，这两个情况的弯矩 \(M_x \) 是一样的。由圆形板的弯矩 \(M \)，减去常量 \((1 - \nu)P/4\pi\) 就得到长矩形板的弯矩 \(M_y \)。由此可知，在半径为 \((2a/\pi) \sin (\pi \xi/a)\)、中心受载的圆形板的应力上叠加弯矩 \(M_y = - (1 - \nu)P/4\pi \) 所产生的简单弯曲，就得到长矩形板中围绕载荷作用点附近的应力分布。

可以设想，如果载荷 \(P \) 均匀分布在半径 \(\epsilon \) 很小的圆面积上，圆形板和长矩形板的弯矩之间还是有同样的关系式。在这样的情况

1）注意，\(x^2 = x' - y^2 \).
下，忽略包含 c^2 的项，由式 (83) 得到圆形板中心的最大弯矩

$$M_{m2,2} = \frac{P}{4\pi} \left[(1 + \nu) \log \frac{a}{c} + 1 \right].$$

所以，由式 (154)，得到长矩形板受载圆面积中心的弯矩:

$$M_x = \frac{P}{4\pi} \left[(1 + \nu) \log \frac{2a \sin \frac{\pi \xi}{a}}{\pi c} + 1 \right] - \frac{(1 - \nu)P}{4\pi}$$

$$M_y = \frac{P}{4\pi} \left[(1 + \nu) \log \frac{2a \sin \frac{\pi \xi}{a}}{\pi c} + 1 \right] - \frac{(1 - \nu)P}{4\pi}.$$

根据对长矩形板和圆形板所作的这个比较可知，用厚板理论对圆形板推导所得的一切有关载荷 P 作用点附近的应力分布的公式图表（见第 19 节），也能在长矩形板的情形中使用。

如板不是很长，则在计算沿 x 轴的弯矩 M_x 与 M_y 时，应当用式 (a) 来代替式 (b)。 当 m 增大时，$\tanh \alpha_m$ 很快趋近于 1，而 $\cosh \alpha_m$ 变为很大的数，因此级数 (a) 的逐项与级数 (b) 的和之差可以很容易地计算；于是，载荷作用点附近沿 x 轴上的弯矩 M_x 与 M_y 可写成下列形式:

$$M_x = \frac{(1 + \nu)P}{2\pi} \sum_{m=1}^{\infty} \frac{1}{m} \sin \frac{m\pi \xi}{a} \sin \frac{m\pi x}{a} + \gamma_1 \frac{P}{4\pi} + \frac{P(1 + \nu)}{4\pi} \log \frac{2a \sin \frac{\pi \xi}{a}}{\pi r} + \gamma_1 \frac{P}{4\pi},$$

$$M_y = \frac{(1 + \nu)P}{2\pi} \sum_{m=1}^{\infty} \frac{1}{m} \sin \frac{m\pi \xi}{a} \sin \frac{m\pi x}{a} + \gamma_1 \frac{P}{4\pi} + \frac{P(1 + \nu)}{4\pi} \log \frac{2a \sin \frac{\pi \xi}{a}}{\pi r} + \gamma_1 \frac{P}{4\pi},$$

式中 γ_1 和 γ_2 是数值因子，它们的大小决定于比 b/a 以及载荷在 x 轴上的位置。在表 24 中列出了载荷作用在中心的情况下此二因子的若干数值。

156
表 24 因子 γ_1 和 γ_2（式 156）

<table>
<thead>
<tr>
<th>b/a</th>
<th>1.0</th>
<th>1.2</th>
<th>1.4</th>
<th>1.6</th>
<th>1.8</th>
<th>2.0</th>
<th>∞</th>
</tr>
</thead>
<tbody>
<tr>
<td>γ_1</td>
<td>-0.565</td>
<td>-0.359</td>
<td>-0.211</td>
<td>-0.125</td>
<td>-0.073</td>
<td>-0.042</td>
<td>0</td>
</tr>
<tr>
<td>γ_2</td>
<td>+0.135</td>
<td>+0.115</td>
<td>+0.085</td>
<td>+0.057</td>
<td>+0.037</td>
<td>+0.023</td>
<td>0</td>
</tr>
</tbody>
</table>

载荷作用点附近的应力分布还是和承受中心集中载荷、半径为 $2a/(\pi) \sin (\pi \xi/a)$ 的圆形板实际相同。为了得到载荷作用点附近的弯矩 M_x 和 M_y，只需要在圆形板的弯矩上迭加弯矩 $M'_x = \gamma_1 P/4\pi$ 与 $M'_y = - (1 - \nu - \gamma_2) P/4\pi$ 所产生的均匀弯矩。假设当载荷 P 是均匀分布在半径 c 很小的圆内时这个结论也是成立的。对于圆心得到

$$M_x = \frac{P}{4\pi} \left[(1 + \nu) \log \frac{a \sin \frac{\pi \xi}{a} + 1}{\pi c} + 1 \right] + \frac{\gamma_1 P}{4\pi},$$

(157)

$$M_y = \frac{P}{4\pi} \left[(1 + \nu) \log \frac{a \sin \frac{\pi \xi}{a} + 1}{\pi c} + 1 \right] - (1 - \nu - \gamma_2) \frac{P}{4\pi}.$$

与分布载荷的情况相同，反作用力的方向向下，并且矩形板角上的集中反力产生很大的夹支弯矩。由中心载荷 P 所引起的角上的反力为

$$R = nF_2.$$

(157)

在表 25 中给出了因子 n 的数值，夹支弯矩的值是 $-R/2$ （见第 88 页）。R 的值可用简单的方法计算，这将在第 36 章中阐述。

表 25 数值因子 n

（用于计算承受中心集中载荷的简支矩形板角上的反力 R）

<table>
<thead>
<tr>
<th>b/a</th>
<th>1.0</th>
<th>1.2</th>
<th>1.4</th>
<th>1.6</th>
<th>1.8</th>
<th>2.0</th>
<th>3.0</th>
<th>∞</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>0.1219</td>
<td>0.1162</td>
<td>0.1034</td>
<td>0.0884</td>
<td>0.0735</td>
<td>0.0600</td>
<td>0.0180</td>
<td>0</td>
</tr>
</tbody>
</table>

157
在方形板承受中心载荷的特殊情况下，弯矩与反作用压力的分布表示在图73上。以虚线表示的那部分曲线，适用于载荷P均匀分布在半径$r = 0.05a$的阴影圆内。

图73

36. 无限长简支矩形板

在以前的讨论中，我们已经在若干情况下研究了无限长矩形板。这种板的挠度和弯矩，通常是在有限长板相应的解中令板的长度无限增大而得到的。但在有些情况下，先对无限长板求解，然后将这些解合并，以得到有限长板的解。在本节中将给出用这个方法求解的若干例子。我们首先考虑如图74所示宽度为a的无限长板沿x轴承受载荷的情况。因为挠度曲线对称于x轴，所以在以下的讨论中只需要考虑对应于y为正值的那部分板。载荷只是分布在x轴上，因此板的挠度u满足方
程:
\[\frac{\partial^4 \omega}{\partial x^4} + 2 \frac{\partial^4 \omega}{\partial x^2 \partial y^2} + \frac{\partial^4 \omega}{\partial y^4} = 0. \] (a)
将这个方程的解写成如下形式:
\[\omega = \sum_{m=1}^{\infty} Y_m \sin \frac{m \pi x}{a}, \] (b)
此式满足板沿简支长边上的边界条件．为了满足方程 (a)，选择
\[Y_m \text{时必须使它满足方程} \]
\[Y_{m}^{IV} - 2 \frac{m^2 \pi^2}{a^2} Y'_m + \frac{m^4 \pi^4}{a^4} Y_m = 0. \]
将这个方程的解写成如下形式:
\[Y_m = A_m e^{mxy/a} + B_m \frac{m \pi y}{a} e^{mxy/a} + C_m e^{-mxy/a} \]
\[\quad + D_m \frac{m \pi y}{a} e^{-mxy/a}, \] (c)
注意到，在远离 x 轴时，挠度及其导数趋近于零，因此常数 \(A_m \) 与
\(B_m \) 应当取为零．于是，解 (b) 可写成
\[\omega = \sum_{m=1}^{\infty} \left(C_m + D_m \frac{m \pi y}{a} \right) e^{-mxy/a} \sin \frac{m \pi x}{a}. \] (d)
根据对称性的条件，有
\[\left(\frac{\partial \omega}{\partial y} \right)_{y=0} = 0. \]
在式 (d) 中取 \(C_n = D_n \)，就满足了这个条件．于是
\[\omega = \sum_{m=1}^{\infty} C_m \left(1 + \frac{m \pi y}{a} \right) e^{-mxy/a} \sin \frac{m \pi x}{a}. \] (e)
在 x 轴上每一个已知载荷分布的特殊问题中，可以立即算出常数
\(C_m \).

例如，设载荷沿整个板宽均匀分布．那么载荷的强度可用下列三角级数表示:
\[q = \frac{4}{\pi} q_0 \sum_{m=1, 3, 5} \frac{1}{m^2} \sin \frac{m \pi x}{a}, \]
其中 \(q_0 \) 是每单位长上的载荷．由于载荷是由板的两半部分均等
分担的，所以
\[(Q_y)_{r=0} = -D \frac{\partial}{\partial y} \left(\frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial y^2} \right)_{r=0} = -\frac{2}{\pi} q_0 \sum_{m=1, 3, 5, \ldots}^{\infty} \frac{1}{m} \sin \frac{m \pi x}{a}. \tag{F} \]

代入 \(\psi\) 的表达式 (e)，即得：
\[\frac{2D \pi^2}{a^3} \sum_{m=1}^{\infty} C_m m^3 \sin \frac{m \pi x}{a} = \frac{2q_0}{\pi} \sum_{m=1, 3, 5, \ldots}^{\infty} \frac{1}{m} \sin \frac{m \pi x}{a},\]

由此可得
\[C_m = \frac{q_0 a^3}{D \pi^4 m^3}, \quad \text{其中} \quad m = 1, 3, 5, \ldots.\]

所以
\[\psi = \frac{q_0 a^3}{\pi^4 D} \sum_{m=1, 3, 5, \ldots}^{\infty} \frac{1}{m^4} \left(1 + \frac{m \pi y}{a} \right) e^{-m \pi y/a} \sin \frac{m \pi x}{a}. \tag{g} \]

最大挠度是在板的中心 \((x = a/2, y = 0)\)，因此
\[(\psi)_{\text{max}} = \frac{q_0 a^3}{\pi^4 D} \sum_{m=1}^{\infty} \frac{(-1)^{(m-1)/2}}{m^4} = \frac{5 \pi q_0 a^3}{1536 D}. \tag{h} \]

在式(144)中令 \(\tanh \alpha_m = 1, \cosh \alpha_m = \infty\) 能得到相同的结果（见第 146 页）。

作为应用解 (e) 的另一例子，考虑长为 \(l\) 的均匀载荷分布在 \(x\) 轴的一部分上（图 74）。用三角级数来表示这个载荷，得到
\[q = \frac{4q_0}{\pi} \sum_{m=1}^{\infty} \frac{1}{m} \sin \frac{m \pi x}{a} \sin \frac{m \pi y}{2a} \sin \frac{m \pi x}{a},\]

其中 \(q_0\) 是 \(x\) 轴的受载部分上载荷的强度。与方程 (f) 相当而决定常数 \(C_m\) 的方程为：
\[D \frac{\partial}{\partial y} \left(\frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial y^2} \right)_{r=0} = \frac{2q_0}{\pi} \sum_{m=1}^{\infty} \frac{1}{m} \sin \frac{m \pi x}{a} \sin \frac{m \pi x}{2a} \sin \frac{m \pi x}{a}. \]

代入 \(\psi\) 的表达式 (e)，得到：
\[\frac{2D \pi^2}{a^3} \sum_{m=1}^{\infty} C_m m^3 \sin \frac{m \pi x}{a} = \frac{2q_0}{\pi} \sum_{m=1}^{\infty} \frac{1}{m} \sin \frac{m \pi x}{a} \sin \frac{m \pi x}{2a} \sin \frac{m \pi x}{a},\]

由此即得：

* 160 *
表示挠度的式（c）化成:

$$\omega = \frac{q_d a^3}{\pi^4 D} \sum_{m=1}^{\infty} \frac{1}{m^4} \sin \frac{m \pi \xi}{a} \sin \frac{m \pi u}{2a} \left(1 + \frac{m \pi y}{a}\right) e^{-m \pi y/a} \sin \frac{m \pi x}{a}. \quad (1)$$

使 x 轴受载部分的长度 u 为无限小，得到距离原点为 ξ 的点
上作用有集中力的特殊情况，将

$$q_d u = P \quad \text{和} \quad \sin \frac{m \pi u}{a} \approx \frac{m \pi u}{a}$$

代入式 (i)，得到:

$$\omega = \frac{P a^3}{2 \pi^4 D} \sum_{m=1}^{\infty} \frac{1}{m^4} \sin \frac{m \pi \xi}{a} \left(1 + \frac{m \pi y}{a}\right) e^{-m \pi y/a} \sin \frac{m \pi x}{a}, \quad (158)$$

此式与前节的式 (148) 完全相同。

对于沿 x 轴一部分 u 上承受均匀分布载荷的长板的挠度表达
式 (i) 进行积分，就能得到其他各种受载情况。例如，考虑强度为 q 的均匀载荷分
布在边长为 u 和 v 的矩形上（图 75 中的阴影部分）。取一无限小的载荷元，其大小为
$q d \eta$，离 x 轴的距离为 η。由这个载荷在

$$y > \eta \quad \text{的点上所产生的相当挠度，是在式 (i) 中以} \quad q d \eta \quad \text{代替} \quad q_d \quad \text{以} \quad y - \eta \quad \text{代替} \quad y$$

而得到的。在 $y \geq v/2$ 的点上，全部载荷所
产生的挠度由如下的积分求得:

$$\omega = \frac{q_d a^3}{\pi^4 D} \sum_{m=1}^{\infty} \frac{1}{m^4} \sin \frac{m \pi \xi}{a} \sin \frac{m \pi u}{2a} \sin \frac{m \pi x}{a} \times \left[1 + \frac{m \pi (y - \eta)}{a}\right] e^{-m \pi (y - \eta)/a} d \eta$$

$$= \frac{q_d a^3}{\pi^4 D} \sum_{m=1}^{\infty} \frac{1}{m^4} \sin \frac{m \pi \xi}{a} \sin \frac{m \pi u}{2a} \sin \frac{m \pi x}{a} \times \left[(\frac{2u}{m \pi} + y - \frac{v}{2}) e^{-\frac{m \pi (2u - v)}{2a}} - (\frac{2u}{m \pi} + y + \frac{v}{2}) e^{-\frac{m \pi (2u + v)}{2a}}\right]. \quad (i)$$

161
适当地改变积分上下限, 具有 \(y < v/2 \) 的点上的挠度也可求得. 现在研究沿 \(x \) 轴的挠度 (图 75). 上半部分载荷所产生的挠度是由在式 (i) 中以 \(v/4 \) 代替 \(v \) 和 \(v/2 \) 得到的, 二倍这样所得到的结果也就是把下半部分载荷的作用考虑在内了, 最后可得:

\[
(\omega)_{y=0} = \frac{4qa^4}{\pi^2 D} \sum_{m=1}^{\infty} \frac{1}{m^4} \sin \frac{m\pi y}{a} \sin \frac{m\pi u}{2a} \sin \frac{m\pi x}{a} \times \left[1 - \left(1 + \frac{m\pi v}{4a} \right) e^{-m\pi v/2a} \right]. \tag{k}
\]

如 \(v = \infty \), 图 75 所示的载荷就延伸至板的全长, 而挠度曲面是柱形的. 由式 (k), 相应的挠度为:

\[
(\omega)_{y=0} = \frac{4qa^4}{\pi^2 D} \sum_{m=1}^{\infty} \frac{1}{m^4} \sin \frac{m\pi x}{a} \sin \frac{m\pi u}{2a} \sin \frac{m\pi x}{a}. \tag{1}
\]

在此式中, 使 \(\xi = u/2 = a/2 \), 得到:

\[
(\omega)_{y=0} = \frac{4qa^4}{\pi^2 D} \sum_{m=1}^{\infty} \frac{1}{m^4} \sin \frac{m\pi x}{a},
\]

此式相当于承受均匀载荷的板条的挠度曲线.

对于均匀分布在 \(x \) 轴的一部分 \(u \) 上的载荷所产生的弯矩, 可由挠度表达式 (i) 立刻求得下列式子:

\[
M_x = \frac{qa}{\pi^2} \sum_{m=1}^{\infty} \frac{1}{m^2} \sin \frac{m\pi y}{a} \sin \frac{m\pi u}{2a} \sin \frac{m\pi x}{a} \times \left[1 + \nu + (1 - \nu) \frac{m\pi v}{a} \right] e^{-m\pi y/a} \tag{m*}
\]

\[
M_y = \frac{qa}{\pi^2} \sum_{m=1}^{\infty} \frac{1}{m^2} \sin \frac{m\pi y}{a} \sin \frac{m\pi u}{2a} \sin \frac{m\pi x}{a} \times \left[1 + \nu - (1 - \nu) \frac{m\pi v}{a} \right] e^{-m\pi y/a}.
\]

此二弯矩的最大值是在 \(x \) 轴上:

\[
(M_x)_{y=0} = (M_y)_{y=0} = \frac{qa(1 + \nu)}{\pi^2} \sum_{m=1}^{\infty} \frac{1}{m^2} \sin \frac{m\pi x}{a} \sin \frac{m\pi u}{2a} \sin \frac{m\pi x}{a} \tag{n}
\]

* 原书公式有错, 已改正——译者.
在 $\xi = a/2 = a/2$ 的特殊情形中，也就是说，当载荷均匀分布于板的全宽上，有:

$$(M_x)_{y=0} = (M_y)_{y=0} = \frac{q_0 a (1 + \nu)}{\pi^2} \sum_{m=1, 3, 5, \ldots}^{\infty} \frac{1}{m^2} \sin \frac{m\pi x}{a}.$$

最大弯矩是在板的中心，它等于:

$$(M_x)_{\max} = (M_y)_{\max} = \frac{q_0 a (1 + \nu)}{\pi^2} \sum_{m=1, 3, 5, \ldots}^{\infty} \frac{(\xi - 1)(m-1)/2}{m^2} = 0.0928 q_0 a (1 + \nu).$$

如果 ϵ 很小，即在集中载荷的情况下，可令:

$$\sin \frac{m\pi u}{2a} \approx \frac{m\pi u}{2a} \quad q_0 u = P.$$

于是，由式 (n) 得到:

$$(M_x)_{y=0} = (M_y)_{y=0} = \frac{P (1 + \nu)}{2\pi} \sum_{m=1}^{\infty} \frac{1}{m^2} \sin \frac{m\pi x}{a} \sin \frac{m\pi u}{2a}.$$

此式与上节的式 (b) 完全相同，也可写成有限形式（见第 154 页）。

如载荷 q 均匀分布在矩形面积上（图 75），则对于 $y \geq \nu/2$ 的那部分板，其弯矩可由式 (m) 的积分得到:

$$M_x = \frac{q a}{\pi^2} \sum_{m=1}^{\infty} \frac{1}{m^2} \sin \frac{m\pi x}{a} \sin \frac{m\pi u}{2a} \sin \frac{m\pi y}{a}$$

$$\times \left\{ \begin{array}{l}
\left[1 + \nu + (1 - \nu) \frac{m\pi (y - \eta)}{a} \right] e^{-\frac{m\pi (2y - \nu)}{2a}} \\
\left[\frac{2a}{m\pi} + (1 - \nu) \frac{m\pi (y + \nu)}{2a} \right] e^{-\frac{m\pi (2y + \nu)}{2a}}
\end{array} \right\}$$

* 163 *
\[M_y = \frac{qa}{n^2} \sum_{m=1}^{\infty} \frac{1}{m^3} \sin \frac{m\pi \xi}{a} \sin \frac{m\pi \nu}{2a} \sin \frac{m\pi x}{2a} \]

\[\times \left\{ \begin{aligned}
&\left[\frac{2\nu a}{m\pi} - (1 - \nu) \left(y - \frac{\nu}{2} \right) \right] e^{-\frac{m\pi(y-x)}{2a}} \\
&- \left[\frac{2\nu a}{m\pi} - (1 - \nu) \left(y + \frac{\nu}{2} \right) \right] e^{-\frac{m\pi(y+x)}{2a}} \end{aligned} \right\}. \quad (159) \]

对于 \(y < \nu/2 \) 的那部分板，其弯矩也可以用类似的方法计算。为了求 x 轴上的弯矩，只需要在式 (159) 中以 \(\nu/2 \) 代替 \(\nu \)，以 \(\nu/4 \) 代替 \(\nu \)，并将所得结果乘以 2，所以:

\[(M_x)_{y \to 0} = \frac{4qa^2}{\pi^2} \sum_{m=1}^{\infty} \frac{1}{m^3} \sin \frac{m\pi \xi}{a} \sin \frac{m\pi \nu}{2a} \sin \frac{m\pi x}{2a} \]

\[\times \left\{ 1 - \left[1 + (1 - \nu) \frac{m\pi \nu}{4a} \right] e^{-\frac{m\pi \xi}{2a}} \right\}. \quad (160) \]

\[(M_y)_{y \to 0} = \frac{4qa^2}{\pi^2} \sum_{m=1}^{\infty} \frac{1}{m^3} \sin \frac{m\pi \xi}{a} \sin \frac{m\pi \nu}{2a} \sin \frac{m\pi x}{2a} \]

\[\times \left\{ \nu - \left[\nu - (1 - \nu) \frac{m\pi \nu}{4a} \right] e^{-\frac{m\pi \xi}{2a}} \right\}. \]

如果所要求的是受载矩形面积中心的弯矩值，利用下节所给的式 (160) 也能将它计算出来。当 \(\nu \) 很小时，式 (160) 与式 (159) 完全相同，这是因为在此情况下 \(qp \) 必须用 \(q_1 \) 来代替。当 \(\nu \) 很大时，板的挠度曲线是一柱形面，而式 (160) 化为

\[(M_x)_{y \to 0} = \frac{4qa^2}{\pi^2} \sum_{m=1}^{\infty} \frac{1}{m^3} \sin \frac{m\pi \xi}{a} \sin \frac{m\pi \nu}{2a} \sin \frac{m\pi x}{2a}, \]

\[(M_y)_{y \to 0} = \frac{4\nu qa^2}{\pi^2} \sum_{m=1}^{\infty} \frac{1}{m^3} \sin \frac{m\pi \xi}{a} \sin \frac{m\pi \nu}{2a} \sin \frac{m\pi x}{2a}. \]

运用源象法\(^1\)，有限长板的挠度和弯矩的表达式可由无限长板的挠度和弯矩的式子求得。首先考虑图 76a 所示边长为 a 和 b

的矩形板有集中力 P 作用在对称轴 x 上的情况。如果现在我们想象板沿着 y 的正方向和负方向伸长，同时沿直线 mn 上作用着一系列彼此相距为 b 、作用方向正负相反的力 P（图 76b）。那么，这样的无限长板的挠度在直线 A_1B_1，AB，CD，C_1D_1，⋯ 上显然为零。在这些线上弯矩也等于零。因此，可以把所考虑的板 $ABCD$ 看作为受载情况如图 76b 所示的无限长板的一部分。所以，在矩形板 $ABCD$ 的集中力作用点 O 所产生的挠度与应力，可以利用对于无限长板推导所得的公式来计算。

由式(158)，求得作用于点 O 的载荷 P 在无限长板的 x 轴上所产生的挠度为

$$
\omega_1 = \frac{Pa^2}{2\pi^2D} \sum_{m=1}^\infty \frac{1}{m^3} \sin \frac{m\pi \xi}{a} \sin \frac{m\pi x}{a}.
$$

作用点与 O 点的距离为 b 的二个相邻的力 P（图 76b），在 x 轴上所产生的挠度为：

$$
\omega_2 = -\frac{Pa^2}{\pi^2D} \sum_{m=1}^\infty \frac{1}{m^3} \sin \frac{m\pi \xi}{a} (1 + 4\alpha_m) e^{-\omega_m} \sin \frac{m\pi x}{a},
$$

同以前一样，式中

$$
\alpha_m = \frac{m\pi b}{2a}.
$$

距离 O 点为 $2b$ 的二个力 P 在 x 轴上所产生的挠度为：

$$
\omega_3 = \frac{Pa^2}{\pi^2D} \sum_{m=1}^\infty \frac{1}{m^3} \sin \frac{m\pi \xi}{a} (1 + 4\alpha_m) e^{-\omega_m} \sin \frac{m\pi x}{a},
$$

其余以此类推。在 x 轴上总的挠度为如下和式：

$$
\omega = \omega_1 + \omega_2 + \omega_3 + \cdots.
$$

165
由于
\[
\tanh \alpha_m = \frac{1 - e^{-2a_m}}{1 + e^{-2a_m}} = 1 - 2e^{-2a_m} + 2e^{-4a_m} + \cdots,
\]
\[
\frac{1}{\cosh^3 \alpha_m} = \frac{4}{(e^{a_m} + e^{-a_m})^3} = \frac{4e^{-2a_m}}{(1 + e^{-2a_m})^2}
\]
\[
= 4e^{-2a_m}(1 - 2e^{-2a_m} + 3e^{-4a_m} - 4e^{-6a_m} + \cdots),
\]
能够使式 (p) 化为第 34 节的式 (146).

我们用积分法来计算反作用力:
\[
R = -2M_{xy},
\]
它作用在矩形板 ABCD 的 D 角上（图 76），是由板重心的集中载荷所产生的。
利用式 (151) 和 (152)，求得其中载荷情形下无限长板的扭矩的一般表达式:
\[
M_{xy} = -\frac{1}{2} (1 - \nu) \frac{\partial M}{\partial x}
\]
\[
\quad = \frac{P(1 - \nu) y}{8a} \left[\sin \frac{\pi(y - \xi)}{a} \left(\frac{\sin \frac{\pi y}{a} - \cos \frac{\pi(x - \xi)}{a}}{\cosh \frac{\pi y}{a} - \cos \frac{\pi(x - \xi)}{a}} \right) - \sin \frac{\pi(y + \xi)}{a} \left(\frac{\sin \frac{\pi y}{a} - \cos \frac{\pi(x + \xi)}{a}}{\cosh \frac{\pi y}{a} - \cos \frac{\pi(x + \xi)}{a}} \right) \right].
\]

(a)

所以，集中于 \(x = \xi = a/2, y = 0\) 的载荷 P 在 \(x = 0\) 的直线上所产生的扭矩为
\[
M_{xy} = -\frac{P(1 - \nu)}{4a} y \frac{\pi y}{\cosh \frac{\pi y}{a}}.
\]

(r)

现在，相继地令 \(y = \xi/2, 3\xi/2, 5\xi/2, \cdots\)，得到作用在 DC 线以上的载荷 ±P 所产生的扭矩。对这些扭矩求和，有
\[
M_{xy} = -\frac{Pb(1 - \nu)}{8a} \left(\frac{1}{\cosh \frac{\pi b}{2a}} - \frac{3}{\cosh \frac{3\pi b}{2a}} + \frac{5}{\cosh \frac{5\pi b}{2a}} + \cdots \right).
\]

(s)

为了将作用在 DC 线以下的载荷也考虑进去，应当把作用在 DC 线以上的载荷所产生的扭矩式 (s) 乘以 2，这样便得到了全部的载荷所产生的扭矩:
\[
M_{xy} = -\frac{Pb(1 - \nu)}{4a} \sum_{m=1,3,5,\ldots}^{\infty} (-1)^{m+1/2} \frac{m}{\cosh \frac{m\pi b}{2a}}.
\]

(1)
作用于D点的反作用力是 $R = -2M_{xy}$，它的值 M_{xy} 由式 (c) 计算，它的作用方向向下，而板的其余在各个角上的反作用力的方向也是向下的。

当P的作用点不在对称轴上时（图77），影响法也是可以应用的。引入如图77所示的辅助力系，并且应用对无限长板推导所得的公式，就能计算挠度和弯矩。如果截荷是分布在矩形面积上，则利用下节给出的 (167) 式，可以计算实际截荷与辅助截荷所产生的弯矩。

37. 承受矩形均载荷的简支矩形板的弯矩

我们再次研究图78所示的在实际上很重要的受载情况。如果像第33节所陈述的那样来求解，我们发现，当u/a和v/b为小值时，表示受载面积中心的弯矩的级数收敛得很慢，因此对于数值计算是不适用的。

![图77]

![图78]

为了推导对于这种情况更适用的公式(1)，我们推广式 (119) 而引入下列符号:

$$M = \frac{M_x + M_y}{1 + \nu} = -D \left(\frac{\partial^2 \omega}{\partial x^2} + \frac{\partial^2 \omega}{\partial y^2} \right),$$

$$N = \frac{M_x - M_y}{1 - \nu} = -D \left(\frac{\partial^2 \omega}{\partial x^2} - \frac{\partial^2 \omega}{\partial y^2} \right).$$

(161)

所以

$$M_x = \frac{1}{2} (1 + \nu) M + \frac{1}{2} (1 - \nu) N,$$

$$M_y = \frac{1}{2} (1 + \nu) M - \frac{1}{2} (1 - \nu) N.$$ (162)

1) 参考 S. Weinowsky-Krieger, *Ingr.-Arch.*, 第21卷, 第331页, 1933年。
首先考虑半径为 \(a_0 \) 的固支圆形板和承受如图 78 所示那样分布的中心载荷。利用对于单一偏心载荷的密切尔（Michell）解，可得到这种板中心的弯矩。如 \(a \) 和 \(v \) 较之于 \(a_0 \) 为小量，则求出对式 (197)（第 308 页）积分的值，其结果可以写成下列形式:

\[
M = \frac{P}{4\pi} \left(2 + 2 \log \frac{2a_0}{d} - \varphi \right),
\]

\[
N = \frac{P}{4\pi} \psi,
\]

其中

\[
\varphi = k \arctan \frac{1}{k} + \frac{1}{k} \arctan \frac{1}{k},
\]

\[
\psi = k \arctan \frac{1}{k} - \frac{1}{k} \arctan \frac{1}{k},
\]

\[
k = \frac{1}{\pi}, \quad d = \sqrt{a^2 + b^2}.
\]

对于具有相同半径 \(a_0 \) 的简支圆形板，应当在 \(M_2 \) 和 \(M_3 \) 上加上一项 \(P/4\pi \) (参阅第 72 页)，即，对于 \(M \) 加上一项 \(P/2\pi(1 + v) \)，对于 \(N \) 保持不变。所以式 (a) 变为

\[
M = \frac{P}{4\pi} \left(2 + 2 \log \frac{2a_0}{d} - \varphi \right) + \frac{P}{2\pi(1 + v)},
\]

\[
N = \frac{P}{4\pi} \psi.
\]

最后，为了得到无限长板条（图 75）的相应式子，应当设 \(a_0 = (2a/\pi) \times \sin (\pi \xi/a) \)，并且引入附加的弯矩 \(M_3 = -(1 - v)P/4\pi \)（见第 155 页）。这个附加的弯矩使 \(M \) 增加了 \(-(1 - v)P/4\pi(1 + v) \)，而 \(N \) 增加了 \(+P/4\pi \)。把这些代入 (b) 式，得到如下结果:

\[
M = \frac{P}{4\pi} \left(2 \log \frac{4a \sin (\pi \xi)}{\pi d} + 3 - \varphi \right),
\]

\[
N = \frac{P}{4\pi} (1 + \psi)
\]

在表 26 中列出了因子 \(\varphi \) 和 \(\psi \) 的值，它们只随比 \(v/a \) 而变。

现在考虑矩形板的情况（图 78），我们只需要把辅助载荷 \(\pm \varphi^0 \)（图 77）的影响考虑进去。在 \(M \) 和 \(N \) 的式子 (164) 上加上它们的影响。在图 78 所

1）如 \(a \) 和 \(v \) 为小值，容许把它们看成为集中载荷。
表 26 式 (163) 中因子 ψ 和 ϕ 的值

$\lambda = \nu / n$

<table>
<thead>
<tr>
<th>k</th>
<th>ψ</th>
<th>ϕ</th>
<th>k</th>
<th>ψ</th>
<th>ϕ</th>
<th>k</th>
<th>ψ</th>
<th>ϕ</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.000</td>
<td>-1.000</td>
<td>1.0</td>
<td>1.571</td>
<td>0.000</td>
<td>2.5</td>
<td>1.427</td>
<td>0.475</td>
</tr>
<tr>
<td>0.05</td>
<td>1.073</td>
<td>-0.923</td>
<td>1.1</td>
<td>1.569</td>
<td>0.054</td>
<td>3.0</td>
<td>1.382</td>
<td>0.549</td>
</tr>
<tr>
<td>0.1</td>
<td>1.144</td>
<td>-0.850</td>
<td>1.2</td>
<td>1.564</td>
<td>0.014</td>
<td>4.0</td>
<td>1.311</td>
<td>0.648</td>
</tr>
<tr>
<td>0.2</td>
<td>1.262</td>
<td>-0.712</td>
<td>1.3</td>
<td>1.556</td>
<td>0.148</td>
<td>5.0</td>
<td>1.262</td>
<td>0.712</td>
</tr>
<tr>
<td>0.3</td>
<td>1.355</td>
<td>-0.658</td>
<td>1.4</td>
<td>1.547</td>
<td>0.189</td>
<td>6.0</td>
<td>1.225</td>
<td>0.757</td>
</tr>
<tr>
<td>0.4</td>
<td>1.427</td>
<td>-0.575</td>
<td>1.5</td>
<td>1.537</td>
<td>0.227</td>
<td>7.0</td>
<td>1.197</td>
<td>0.789</td>
</tr>
<tr>
<td>0.5</td>
<td>1.481</td>
<td>-0.474</td>
<td>1.6</td>
<td>1.526</td>
<td>0.261</td>
<td>8.0</td>
<td>1.176</td>
<td>0.814</td>
</tr>
<tr>
<td>0.6</td>
<td>1.519</td>
<td>-0.382</td>
<td>1.7</td>
<td>1.515</td>
<td>0.293</td>
<td>9.0</td>
<td>1.158</td>
<td>0.834</td>
</tr>
<tr>
<td>0.7</td>
<td>1.545</td>
<td>-0.280</td>
<td>1.8</td>
<td>1.504</td>
<td>0.322</td>
<td>10</td>
<td>1.144</td>
<td>0.850</td>
</tr>
<tr>
<td>0.8</td>
<td>1.560</td>
<td>-0.172</td>
<td>1.9</td>
<td>1.492</td>
<td>0.349</td>
<td>20</td>
<td>1.075</td>
<td>0.923</td>
</tr>
<tr>
<td>0.9</td>
<td>1.568</td>
<td>-0.060</td>
<td>2.0</td>
<td>1.481</td>
<td>0.374</td>
<td>∞</td>
<td>1.000</td>
<td>1.000</td>
</tr>
</tbody>
</table>

示的情况下，可将最后结果写成如下形式：

$$
M = \frac{P}{4\pi} \left(2 \log \frac{4a \sin \frac{\pi \delta}{\mu}}{\pi d} + \lambda - \psi\right)
$$

$$
N = \frac{P}{4\pi} \left(\mu + \phi\right)
$$

式中 ψ, ϕ, d 是如式 (163) 所给出的，ψ 和 ϕ 值可由表 26 找到，并且

$$
\lambda = 3 - 4 \sum_{m=1}^{\infty} \frac{e^{-a_m^2}}{\cosh a_m^2} \sin^2 \frac{mn \delta}{a}
$$

$$
\mu = 1 - 2nb \sum_{m=1}^{\infty} \frac{1}{\cosh^2 a_m} \sin^2 \frac{mn \delta}{a}
$$

其中 $a_m = mnb/2a$, λ 和 μ 的表达式中的级数收敛得很快，这两个值与受载面积的尺寸 μ 和 ν 完全无关（甚至与受载区域的形状也无关）。在表 27 中列出了它们的数值。

根据式 (162)，得到作用在受载面积中心（图 78）的弯矩的表达式：

$$
M_x = \frac{P}{8\pi} \left[2 \log \frac{4a \sin \frac{\pi \delta}{\mu}}{\pi d} + \lambda - \psi\right](1 + \nu) + (\mu + \phi)(1 - \nu),
$$

$$
M_y = \frac{F}{8\pi} \left[2 \log \frac{4a \sin \frac{\pi \delta}{\mu}}{\pi d} + \lambda - \psi\right](1 + \nu) - (\mu + \phi)(1 - \nu).
$$

- 169 -
表 27 对于简支矩形板的因子 λ 和 μ [式 (166)] 的值

<table>
<thead>
<tr>
<th>b/a</th>
<th>ξ/a</th>
<th>λ</th>
<th>μ</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.1 0.2</td>
<td>0.3 0.4 0.5</td>
<td>0.1 0.2 0.3 0.4 0.5</td>
</tr>
<tr>
<td>0.5</td>
<td>2.792 2.352 1.945</td>
<td>1.686 1.599</td>
<td>0.557 0.179</td>
</tr>
<tr>
<td>0.6</td>
<td>2.881 2.545 2.227</td>
<td>2.011 1.936</td>
<td>0.677 0.053</td>
</tr>
<tr>
<td>0.7</td>
<td>2.986 2.677 2.433</td>
<td>2.259 2.198</td>
<td>0.758 0.240</td>
</tr>
<tr>
<td>0.8</td>
<td>3.093 2.758 2.584</td>
<td>2.448 2.399</td>
<td>0.814 0.391</td>
</tr>
<tr>
<td>0.9</td>
<td>3.202 2.932 2.694</td>
<td>2.591 2.553</td>
<td>0.856 0.456</td>
</tr>
<tr>
<td>1.0</td>
<td>3.316 2.879 2.776</td>
<td>2.698 2.669</td>
<td>0.887 0.611</td>
</tr>
<tr>
<td>1.2</td>
<td>3.492 2.936 2.880</td>
<td>2.836 2.820</td>
<td>0.931 0.756</td>
</tr>
<tr>
<td>1.4</td>
<td>3.672 2.990 2.965</td>
<td>2.912 2.903</td>
<td>0.958 0.849</td>
</tr>
<tr>
<td>1.6</td>
<td>3.852 2.982 2.966</td>
<td>2.933 2.948</td>
<td>0.975 0.908</td>
</tr>
<tr>
<td>1.8</td>
<td>3.972 2.990 2.982</td>
<td>2.975 2.972</td>
<td>0.985 0.945</td>
</tr>
<tr>
<td>2.0</td>
<td>4.099 2.990 2.990</td>
<td>2.997 2.985</td>
<td>0.991 0.968</td>
</tr>
<tr>
<td>3.0</td>
<td>4.000 1.000 1.000</td>
<td>2.999 2.999</td>
<td>0.999 0.998</td>
</tr>
<tr>
<td>∞</td>
<td>4.000 1.000 1.000</td>
<td>1.000 1.000</td>
<td>1.000 1.000</td>
</tr>
</tbody>
</table>

作为一个特殊情况, 短支无限长板的弯矩也可用式 (165) 和 (167) 来计算。

在圆、椭圆、以及其他形状的区域上进行积分, 就能对这些受载情况立即求得相应的 M 和 N 的表达式, 以圆形受载区域 (图 79) 为例, 对于它的中心我们得到

$$
M = \frac{P}{\sqrt{\pi}} \left(2\log \frac{2a \sin \frac{\pi \xi}{a}}{\xi} + \lambda - 2 \right)
$$

$$
N = \frac{P}{4\pi \mu}
$$

此式与式 (157) 的结果是等价的, 把式 (168) 与 $\kappa = 1$ 时的式 (165) 作比较, 可以得出结论:

$$
C = \frac{\mu}{\sqrt{\pi}} \exp \left(-\frac{\mu}{\pi} \right) = 0.57\mu, \quad \text{或} \quad \mu = 0.88 \times 2\sigma,
$$

则圆形受载面积与方形受载面积关于面积中心所产生的弯矩是相等的。

应当注意, 随着载荷集中程度的提高, 由式 (157) 和 (167) 所给出的计算弯矩的近似对数公式的精确性也提高, 但惯用的表示这些弯矩的级数却收

* 170 *
敛得更慢了。数字计算也表明，在实际应用上这些近似公式的精确性是完全足够的。

38. 简支矩形板的热应力 假设矩形板上表面的温度比下表面上的温度高，因此由于受热的不均匀，板有向上凸的趋势。因为板沿简支边所受的约束使板的边缘不能离开支承平面，所以板的不均匀受热会在板的边缘上产生一定的反作用力，同时在离开边缘的部分产生一定的弯曲应力。第 24 节所叙述的方法可用以计算这些应力”。我们首先假设板的边缘夹支。在这种情况下，不均匀受热会在边界上产生均匀分布的弯矩，它的值是（见第 51 页）

\[M = \frac{\alpha t D(1 + \nu)}{h} \tag{a} \]

式中 \(t \) 是板上下表面的温度差，\(\alpha \) 是热膨胀系数。为了得到简支板（图 62）的弯矩 \(M \)，和 \(M_0 \)，应当在式 (a) 所给出的均匀分布弯矩上，迭加在简支矩形板中沿边缘所产生的均匀分布的弯矩 \(M' = -\frac{\alpha t D(1 + \nu)}{h} \)。我们用方程 (120)（第 96 页）来讨论后一问题。由于在简支边的情况下，在边界上边缘方向的曲率为零，故有

\[M = \frac{M_x + M_y}{1 + \nu} = \frac{M_n + M_y}{1 + \nu} = -\frac{\alpha t D(1 + \nu)}{h} \tag{b} \]

如在每个板上取 \(M \) 为常数，并且等于边界值 (b)，则方程 (120) 中的第一个方程是满足的，所以方程 (120) 中的第二个方程为

\[\frac{\partial^2 w}{\partial x^2} + \frac{\partial^2 w}{\partial y^2} = \frac{\alpha t (1 + \nu)}{h} \tag{c} \]

由此可见，不均匀受热所产生的板的挠度曲面与承受均匀载荷、均匀伸张的矩形薄板的挠度曲面相同。求出满足边界条件 \(w = 0 \) 的

方程 (c) 的解就得到了这个挠度曲面。

同以前一样，将板的挠度曲面取成如下形式：

$$ w = w_1 + w_2, $$ \hspace{1cm} (d)

其中 w_1 是完全柔韧弦的挠度，此柔韧弦承受均匀载荷，沿轴向伸张，并且载荷的强度除以轴向力等于 $-ct(1 + \nu)/h$。在这样的情况下，挠度曲线为一抛物线，它可用下列三角级数表示：

$$ w_1 = - \frac{ct(1 + \nu)}{h} \frac{x(a - x)}{2}, $$

$$ = - \frac{ct(1 + \nu)}{h} \frac{4a^2}{\pi^2} \sum_{m=1, 3, 5, \ldots} \frac{\sin \frac{m\pi x}{a}}{m^2}. $$ \hspace{1cm} (e)

此式满足方程 (c)，挠度 w_2 必须满足方程

$$ \frac{\partial^2 w_2}{\partial x^2} + \frac{\partial^2 w_2}{\partial y^2} = 0, $$ \hspace{1cm} (f)

它可以取成下列级数的形式：

$$ w_2 = \sum_{m=1, 3, 5, \ldots} Y_m \sin \frac{m\pi x}{a}, $$ \hspace{1cm} (g)

式中 Y_m 是 y 的函数。将式 (g) 代入方程 (f)，得到

$$ Y_m'' - \frac{m^2 \pi^2}{a^2} Y_m = 0. $$

所以

$$ Y_m = A_m \sinh \frac{m\pi y}{a} + B_m \cosh \frac{m\pi y}{a}. $$ \hspace{1cm} (h)

挠度曲面对 x 轴是对称的，因此 Y_m 必须是 y 的偶函数。由此可知，式 (h) 中的常数 A_m 必须取等于零。于是，最后可得

$$ w = w_1 + w_2 = \sum_{m=1, 3, 5, \ldots} \sin \frac{m\pi x}{a}

\times \left[- \frac{ct(1 + \nu)}{h} \frac{4a^2}{\pi^2 m^3} + B_m \cosh \frac{m\pi y}{a} \right]. $$ \hspace{1cm} (i)

这个式子在边界 $x = 0$ 和 $x = a$ 上满足边界条件 $w = 0$. 要在边
\[y = \pm b/2 \] 上满足同样的边界条件，必须有

\[B_m \cosh \frac{m \pi b}{2a} - \frac{\alpha t (1 + \nu)}{h} \frac{4a^2}{\pi^3 m^3} = 0. \]

把由这个方程所求得的 \(B_m \) 值代入 (i) 式，即得：

\[\nu = - \frac{\alpha t (1 + \nu) 4a^2}{x^3 h} \sum_{m=1, 3, 5, \ldots}^\infty \sin \frac{m \pi x}{a} \frac{\cosh \frac{m \pi y}{a}}{m \cosh \alpha_m} \left(1 - \cosh \frac{m \pi y}{a} \right), \quad \text{(i)} \]

同以前一样，式中 \(\alpha_m = m \pi b/2a \).

有了挠度 \(\nu \) 的表达式，我们就能求得相应的弯矩值，将它们与弯矩 \((a) \) 合在一起，最后得到：

\[M_x = \frac{\alpha t D (1 + \nu)}{h} - D \left(\frac{\partial^2 \nu}{\partial x^2} + \nu \frac{\partial^2 \nu}{\partial y^2} \right) \]

\[= \frac{4 \alpha t D (1 - \nu^2)}{x h} \sum_{m=1, 3, 5, \ldots}^\infty \sin \frac{m \pi x}{a} \cosh \frac{m \pi y}{a} \left(1 - \cosh \frac{m \pi y}{a} \right) \cosh \alpha_m \]

\[M_y = \frac{\alpha t D (1 + \nu)}{h} - D \left(\frac{\partial^2 \nu}{\partial y^2} + \nu \frac{\partial^2 \nu}{\partial x^2} \right) \]

\[= \frac{\alpha t (1 - \nu^2) D}{h} - \frac{4 \alpha t (1 - \nu^2)}{x h} \]

\[\times \sum_{m=1, 3, 5, \ldots}^\infty \sin \frac{m \pi x}{a} \cosh \frac{m \pi y}{a} \left(1 - \cosh \frac{m \pi y}{a} \right) \cosh \alpha_m. \]

如果把这些式子中的级数之和写成如下形式：

\[\sum_{m=1, 3, 5, \ldots}^\infty \sin \frac{m \pi x}{a} \cosh \frac{m \pi y}{a} \left(1 - \cosh \frac{m \pi y}{a} \right) \cosh \alpha_m \]

\[= \sum_{m=1, 3, 5, \ldots}^\infty \left(\sin \frac{m \pi x}{a} \frac{m \pi y}{2a} \frac{\sin \frac{m \pi x}{a}}{m \cosh \alpha_m} - \frac{e^{m \pi y/a} \sin \frac{m \pi x}{a}}{m e^{m \pi y/a}} \right) \]

\[+ \sum_{m=1, 3, 5, \ldots}^\infty \frac{e^{m \pi y/a} \sin \frac{m \pi x}{a}}{m e^{m \pi y/a}}. \]

(1)

这种级数之和的值能够容易求得，此式右端的第一个级数收敛得很快，这是因为随着 \(m \) 的增大，\(\cosh (m \pi y/a) \) 和 \(\cosh \alpha_m \) 迅速地趋
近于 $e^{m\pi y/a}$ 和 $e^{n\pi y/a}$，第n个级数可以写成

$$
\sum_{m=1, 3, 5, \ldots}^{\infty} \frac{c_{mx y/a} \sin \frac{m\pi x}{a}}{me^{m\pi y/a}} = \frac{1}{2} \arctan \frac{\sin \frac{\pi x}{a}}{\sinh \left(\frac{\pi b}{2a} - \frac{\pi y}{a} \right)}.
$$

弯矩 M_x 和 M_y 的最大值是在边界上，它们的值为

$$(M_x)_{x=\pm h} = (M_y)_{x=0, y=\pm a} = \frac{c t (1 - \nu^2) D}{h} = E h^2 \frac{c t}{12}.$$

显然，将式 (a) 的弯矩 M 的值乘以 $(1 - \nu)$，就得到式 (n) 的结果。如果注意到，作用在边界上的弯矩 M 在垂直方向产生弯矩

$$M_y = -\nu M_x = -\nu \frac{c t (1 + \nu)}{h},$$

那么将它叠加到弯矩 (a) 上，就同样得到 (n) 的值。

39. 横向剪切变形对薄板弯曲的影响

我们已经知道，由常用的弹性薄板理论可得到对于挠度的四阶微分方程 (103)，并且相应地有二边界条件，它们能够，并且必须在每一边缘上得到满足。然而，对于有限厚度的板，需要三个边界条件要比二个显得更自然些，但是在通用的理论中不可能满足两个以上的边界条件。形式上的理由是这个理论的基本方程的阶数；物理上的理由在于这样的事实：在建立板的应力与挠度的关系时，像 Q_x (第 53 页), Q_y (第 82 页) 这样的一些横向力所引起的板单元的畸变是忽略不计的。显然，不考虑横向应力分量所引起的变形，是与假设剪切弹性模数 $G_t = \infty$ 等价的。照这样，我们实际上是用假想的、不是完全各向同性的材料来代替真实的、可以认为是各向同性的材料，由于假设 $G_t = \infty$，对于作用在板的横截面上的力矩，如果力矩向量与截面的法线相重合，则板单元不会相应地产生转动，这使得我们能够把作用在边缘 $x = a$ 上的水平剪应力所引起

1) 参看 W. E. Byerly, "Elementary Treatise on Fourier Series and Spherical, Cylindrical and Ellipsoidal Harmonics," 第 100 页, Boston, 1893 年，这个结果可以容易地利用下列已知的级数得到：

$$
\frac{1}{2} a \tan \frac{\pi y}{a} = x \sin \varphi + \frac{x^3}{3} \sin 3\varphi - \frac{x^5}{5} \sin 5\varphi + \cdots.
$$

• 174 •
的扭曲的变化率 $\partial M_{xy}/\partial y$，和作用在同一边缘上的垂直力 Q_x 的影响等同起来；这样，边界条件的数目就由三个减为两个（第 87 页）。由于边界条件数目的减少，弹性板的应力分析大大地简化了。另一方面，由于我们赋予板的材料以某些纯假设的性质，因此就不能期望理论的应力分布会与实际情况完全一致。在板的边缘区域和孔径较之于板厚不是大倍的孔的周围，通常用的薄板理论的不精确性实际上是要考虑的。

由于剪切变形的影响而使通常用的薄板理论一般化的工作主要是雷伊士纳（E. Reissner）作的

我们考虑板的一个单元。在它上面作用有外横向载荷 $qdxdy$ 和一组应力分量（图 80）。依据雷伊士纳的理论，假设应力分量 σ_x, σ_y 和 τ_{xy} 是按线性规律分布在板的厚度上。根据第 26 节中的平衡方程 (1)，剪应力 τ_{xy} 和 τ_{yx} 是按抛物线规律分布的。对于应力 σ_z，如果考虑到板的上下表面的条件

\[
(\sigma_x)_{z=-h/2} = -q, \quad (\sigma_x)_{z=h/2} = 0,
\]

那么，由平衡方程 (2) 的第三个方程之一即可立即求得。用这样的方法，我们得到下列用合力（或合力矩）以及坐标 z 来表示各应力分量的方程:

\[
\sigma_x = \frac{12M_{xy}}{h^3}, \quad \sigma_y = \frac{12M_{xy}}{h^3}, \quad \tau_{xy} = -\frac{12M_{x'y}}{h^3}, \quad \tau_{xy} = -\frac{12M_{x'y}}{h^3}, \quad \tau_{xy} = -\frac{12M_{x'y}}{h^3}, \\
\tau_{xy} = \frac{3Q_y}{2h} \left[1 - \left(\frac{2a}{h}\right)^2 \right], \quad \tau_{yx} = \frac{3Q_y}{2h} \left[1 - \left(\frac{2a}{h}\right)^2 \right]
\]

\[\sigma_z = -\frac{3q}{4} \left(\frac{2}{3} - \frac{2z}{h} + \frac{1}{3} \left(\frac{2z}{h} \right)^3 \right). \]

除式 (b) 外，上边的其余各式和通常用的理论的相应关系式是完全一致的。同样地，可重新写出下列应力的合力与合力矩的平衡条件（见第 83，84 页）：

\[\frac{\partial Q_x}{\partial x} + \frac{\partial Q_y}{\partial y} + q = 0, \]
\[\frac{\partial M_x}{\partial x} - \frac{\partial M_y}{\partial y} - Q_z = 0, \]
\[\frac{\partial M_y}{\partial y} - \frac{\partial M_x}{\partial x} - Q_y = 0. \]

假设材料各向同性，并且设板上任一点的位移 \(u_0, v_0, w_0 \) 与板厚 \(h \) 比较为小量，因此可用一般的应力应变关系：

\[\frac{\partial u_0}{\partial x} = \frac{1}{E} \left[\sigma_x - \nu(\sigma_y + \sigma_z) \right], \]
\[\frac{\partial v_0}{\partial y} = \frac{1}{E} \left[\sigma_y - \nu(\sigma_x + \sigma_z) \right], \]
\[\frac{\partial u_0}{\partial y} + \frac{\partial v_0}{\partial x} = \frac{1}{G} \tau_{xy}, \]
\[\frac{\partial u_0}{\partial z} + \frac{\partial w_0}{\partial x} = \frac{1}{G} \tau_{xz}, \]
\[\frac{\partial v_0}{\partial z} + \frac{\partial w_0}{\partial y} = \frac{1}{G} \tau_{yz}; \]

其中 \(G = E/2(1 + \nu) \)。我们不用第六个关系式：

\[\frac{\partial w_0}{\partial z} = \frac{1}{E} \left[\sigma_z - \nu(\sigma_x + \sigma_y) \right], \]

因为这个式子与假设应力 \(\sigma_x, \sigma_y, \tau_{xy} \) 按线性规律分布是矛盾的。

其次 1），我们引入横向位移对于板厚所取的某个平均值 \(w \)。同

样，对于截面 \(x = \text{常数} \) 和 \(y = \text{常数} \) 的旋转也分别引入平均值 \(q_x \) 和 \(q_y \)。这些平均值是这样定义的：合力矩在平均旋转上所作的功以及合力在平均位移上所作的功，分别与同样截面上对应的应力在真实位移 \(u_0, v_0 \) 和 \(w_0 \) 上所作的功相等；也就是

\[
\begin{align*}
\int_{-h/2}^{h/2} \sigma_x u_0 dz &= M_x q_x, & \int_{-h/2}^{h/2} \tau_{xy} v_0 dz &= M_x q_y, \\
\int_{-h/2}^{h/2} \sigma_y v_0 dz &= M_y q_y, & \int_{-h/2}^{h/2} \tau_{xy} u_0 dz &= M_y q_x, \\
\int_{-h/2}^{h/2} \tau_{xz} w_0 dz &= Q_x q_x, & \int_{-h/2}^{h/2} \tau_{yz} w_0 dz &= Q_y q_y.
\end{align*}
\]

现在，将应力表达式 (a) 代入式 (f)，得到平均位移与真实位移之间的下列关系式:

\[
\begin{align*}
\omega &= \frac{3}{2h} \int_{-h/2}^{h/2} w_0 \left[1 - \left(\frac{z}{h} \right)^2 \right] dz, \\
\varphi_x &= \frac{12}{h^2} \int_{-h/2}^{h/2} \frac{u_0}{h} dz, \\
\varphi_y &= \frac{12}{h^2} \int_{-h/2}^{h/2} \frac{v_0}{h} dz.
\end{align*}
\]

利用式 (e)，并注意到式 (b)，我们也能用真实位移来表示应力分量 \(\sigma_x, \sigma_y \) 和 \(\tau_{xy} \); 因此得

\[
\begin{align*}
\sigma_x &= \frac{E}{1 - \nu^2} \left(\frac{\partial u_0}{\partial x} + \nu \frac{\partial v_0}{\partial y} \right) - \frac{3q_y}{4(1 - \nu)} \left[\frac{2}{3} - \frac{2z}{h} + \frac{1}{3} \left(\frac{2z}{h} \right)^2 \right], \\
\sigma_y &= \frac{E}{1 - \nu^2} \left(\frac{\partial v_0}{\partial y} + \nu \frac{\partial u_0}{\partial x} \right) - \frac{3q_y}{4(1 - \nu)} \left[\frac{2}{3} - \frac{2z}{h} + \frac{1}{3} \left(\frac{2z}{h} \right)^2 \right], \\
\tau_{xy} &= \frac{E}{2(1 + \nu)} \left(\frac{\partial u_0}{\partial y} + \frac{\partial v_0}{\partial x} \right).
\end{align*}
\]

将这些式子代入式 (e)，在所得的方程两边乘以 \(12z dx/h^3 \)，并在 \(z \) 的区间 \([-h/2, h/2]\) 内进行积分，同时注意到关系式 (g)，我们得到下列式子:

1）只有 \(z^3 \) 的项在下列 \(\sigma_x \) 和 \(\sigma_y \) 的表达中实际上不出现；因为在 \(\partial u_0/\partial x \) 与 \(\partial v_0/\partial y \) 中具有符号相反的等同项被消去了。

* 177 *
\[
M_x = D \left[\frac{\partial q_x}{\partial x} + \nu \frac{\partial q_y}{\partial y} + \frac{6\nu(1 + \nu)}{5Eh} q \right],
\]
\[
M_y = D \left[\frac{\partial q_x}{\partial y} + \nu \frac{\partial q_x}{\partial x} + \frac{6\nu(1 + \nu)}{5Eh} q \right],
\]
\[
M_{xy} = -\frac{D(1 - \nu)}{2} \left(\frac{\partial q_x}{\partial y} + \frac{\partial q_y}{\partial x} \right).
\]

同以前一样，式中的 \(D \) 由式 (3) 定义。同样地，将应力分量 \(\tau_{xx} \) \(\) 和 \(\tau_{xy} \) 的表达式 (a) 代入 (c) 的最后二式，在所得结果两端乘上 \(3[1-(2z/h)^2]dz/2h \)，并上下限 \(z = \pm h/2 \) 之间进行积分，得到：
\[
q_x = -\frac{\partial \omega}{\partial x} + \frac{12}{5} \frac{1 + \nu}{Eh} Q_x,
\]
\[
q_y = -\frac{\partial \omega}{\partial y} + \frac{12}{5} \frac{1 + \nu}{Eh} Q_y.
\]

现在，八个未知数，即 \(M_x, M_y, M_{xy}, Q_x, Q_y, \omega, q_x \) 和 \(q_y \)，由两个式 (i)，三个式 (i) 以及三个平衡方程 (c) 和 (d) 联系着。

为了将这组方程转换成更便于分析的形式，由式 (i) 和 (i) 消去 \(q_x \) 与 \(q_y \)，并且利用方程 (c) 得到：
\[
M_x = -D \left(\frac{\partial^2 \omega}{\partial x^2} + \nu \frac{\partial^2 \omega}{\partial y^2} \right) + \frac{h^2}{5} \frac{\partial Q_x}{\partial x} - \frac{qh^2}{10} \frac{1 - \nu}{1 - \nu},
\]
\[
M_y = -D \left(\frac{\partial^2 \omega}{\partial y^2} + \nu \frac{\partial^2 \omega}{\partial x^2} \right) + \frac{h^2}{5} \frac{\partial Q_y}{\partial y} - \frac{qh^2}{10} \frac{1 - \nu}{1 - \nu},
\]
\[
M_{xy} = (1 - \nu)D \frac{\partial^2 \omega}{\partial x \partial y} - \frac{h^2}{10} \left(\frac{\partial Q_x}{\partial y} + \frac{\partial Q_y}{\partial x} \right).
\]

把这些式子代入方程 (d)，并且利用方程 (c)，得到下列结果：
\[
Q_x - \frac{h^2}{10} \Delta Q_x = -D \frac{\partial (\Delta \omega)}{\partial x} - \frac{h^2}{10(1 - \nu)} \frac{\partial q}{\partial x},
\]
\[
Q_y - \frac{h^2}{10} \Delta Q_y = -D \frac{\partial (\Delta \omega)}{\partial y} - \frac{h^2}{10(1 - \nu)} \frac{\partial q}{\partial y},
\]

式中
\[
\Delta = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}.
\]

在 \(h = 0 \)，也就是无限薄板的特殊情况，以上的五个方程，即式
(k) 和 (l)，就化成了通常用的薄板理论的弯矩表达式 (101)，(102) 以及剪力表达式 (108)。

为了得到更完全的板的挠度微分方程，只需要将式 (1) 代入方程 (c)，这样便得到

\[D \Delta \Delta \omega = q - \frac{h^2}{10} \frac{2 - \nu}{1 - \nu} \Delta q. \quad (169) \]

为了满足这个方程，可用 \(\omega \)，也就是 \((x, y)\) 点上的“平均挠度”，写成如下形式:

\[\omega = \omega' + \omega''. \quad (m) \]

其中 \(\omega' \) 是下列方程的一般解:

\[D \Delta \Delta \omega' = q - \frac{h^2}{10} \frac{2 - \nu}{1 - \nu} \Delta q, \quad (n) \]

\(\omega'' \) 是下列方程的特解:

\[\Delta \Delta \omega'' = 0. \quad (o) \]

所以，用方程 (169)，我们就能像在普通的薄板理论中那样满足全部的四个边界条件。假如把剪力 \(Q_x \) 和 \(Q_y \) 考虑进去，就能得到一补充的微分方程。事实上，如果依据式 (1) 所提出的形式来表示剪力，即

\[Q_x = -D \frac{\partial (\Delta \omega)}{\partial x} + \frac{\partial \phi}{\partial y}, \quad (p) \]

\[Q_y = -D \frac{\partial (\Delta \omega)}{\partial y} - \frac{\partial \phi}{\partial x}, \]

或

\[Q_x = Q'_x - D \frac{\partial (\Delta \omega'')}{\partial x} - \frac{\partial \phi}{\partial y}, \quad (q) \]

\[Q_y = Q'_y - D \frac{\partial (\Delta \omega'')}{\partial y} - \frac{\partial \phi}{\partial x}. \]

平衡方程 (c) 是满足的。在这些式中，\(\phi \) 代表某个新的应力函数，而 \(Q'_x \) 与 \(Q'_y \) 必须满足关系式

\[Q'_x - \frac{h^2}{10} \Delta Q'_x = -D \frac{\partial (\Delta \omega'')}{\partial x} = - \frac{h^2}{10(1-\nu)} \frac{\partial q}{\partial x}, \quad (r) \]

\[Q'_y - \frac{h^2}{10} \Delta Q'_y = -D \frac{\partial (\Delta \omega'')}{\partial y} = - \frac{h^2}{10(1-\nu)} \frac{\partial q}{\partial y}, \]

- 179 -
此二式可据照式 (1) 和 (n) 推出，将上述二式分别对 x 和 y 微分，并将结果相加，就得到平衡条件

$$\frac{\partial \phi_x}{\partial x} + \frac{\partial \phi_y}{\partial y} + \psi = 0.$$ (s)

为了建立应力函数 ϕ 的微分方程，将式 (q) 代入式 (l)，有

$$\frac{\partial}{\partial y} \left(\psi - \frac{\alpha^2}{10} \Delta \psi \right) = - \frac{\partial}{\partial x} \left(\phi - \frac{\alpha^2}{10} \Delta \phi \right) = 0.$$ (r)

由此可知，圆括弧内的式子为常数，使这些常数等于零，我们有方程

$$\Delta \phi - \frac{10}{\alpha^2} \phi = 0,$$ (170)

在式中仍然假设 $\alpha \neq 0$。这样在方程 (169) 上又增加了一个广义弯曲理论的第二个基本方程 (170)。

建立了两个微分方程，其中一个是一阶的，另一个是二阶的，现在我们就能在板的边缘上满足三个边界条件，而代替满足两个边界条件。考虑由法向 \overline{z} 和切向 \overline{t} 所定出的板的柱形边界的元素的一般情况（图 54），我们能够，比如说，用方程

$$\overline{w} = \overline{w}, \quad \phi_n = \overline{\phi}_n, \quad \phi_t = \overline{\phi}_t.$$ (u)

来固定这元素的状态。在这里，\overline{w} 是已知的平均挠度，而 $\overline{\phi}_n$ 和 $\overline{\phi}_t$ 是元素分别对于 z 轴和 \overline{t} 轴的已知的平均旋转。在固支边的特殊情况下，边界条件是 $\overline{w} = 0, \phi_n = 0$ 和 $\phi_t = 0$。可以在边界上规定某些合力和合力矩的值 $\overline{Q}_n, \overline{M}_n, \overline{M}_{nt}$ 来代替各位移，于是，相应的边界条件为

$$\overline{Q}_n = \overline{Q}_n, \quad \overline{M}_n = \overline{M}_n, \quad \overline{M}_{nt} = \overline{M}_{nt}.$$ (v)

所以，自由边的边界条件由方程 $Q_n = 0, M_n = 0, M_{nt} = 0$ 表示；简支边的边界条件是 $\overline{w} = 0, M_n = 0, M_{nt} = 0$。在简支边的情况下，不会得到板弯上的集中反力。根据通常用的理论，在板弯上应有集中反力，但这和此理论所假设的不考虑剪切变形是显然矛盾的。
作为这个改进了的理论的说明，我们来研究半无限矩形板，其边界为二平行边缘 \(y = 0, y = a \)，以及边缘 \(x = 0 \)。假设没有载荷作用于板上，并设在边缘 \(y = 0, y = a \) 上，挠度 \(\omega \) 和弯矩 \(M \) 为零，而在边缘 \(x = 0 \) 上作用有弯矩、扭矩及剪力，它们由下列式子给出：

\[
\bar{M}_x = M_0 \sin \frac{n\pi y}{a}, \\
\bar{M}_y = H_0 \cos \frac{n\pi y}{a}, \\
\bar{Q}_x = Q_0 \sin \frac{n\pi y}{a},
\]

(\text{w})

其中 \(M_0, H_0, Q_0 \) 为常数，\(n \) 为整数。于是，由于 \(q = 0 \)，方程 (a) 给出 \(\omega'' = 0 \)，并且式 (m) 给出 \(\omega = \omega' \)。取

\[
\omega = \omega'' = \sin \frac{n\pi y}{a} \left(A + \frac{n\pi x}{a} - B \right) \frac{f - \alpha x/a}{D}.
\]

可满足方程 (c)，以及满足当 \(x = \infty \) 时挠度为零的条件。式中 \(A \) 与 \(B \) 是任意常数。其次，设 \(\varphi \) 的解为形式

\[
\varphi = X \cos \frac{n\pi y}{a},
\]

式中 \(X \) 是 \(x \) 的函数，将此式代入方程 (170)，即得

\[
\varphi = C e^{-\alpha x} \cos \frac{n\pi y}{a}.
\]

在此式中

\[
\beta = \sqrt{\frac{n^2 \pi^2}{a^2} + \frac{10}{h^4}},
\]

\(C \) 为常数。根据式 (r) 有 \(Q_x' = Q_y' = 0 \)，而式 (q) 给出

\[
Q_x = -2B \left(\frac{n\pi x}{a} \right)^2 e^{-\alpha x/a} + C \frac{n\pi x}{a} e^{-\alpha x/a} \sin \frac{n\pi y}{a},
\]

\[
Q_y = \left[2B \left(\frac{n\pi x}{a} \right)^2 e^{-\alpha x/a} + C \beta e^{-\alpha x/a} \right] \cos \frac{n\pi y}{a}.
\]

最后，由式 (k) 可得作用于边缘 \(x = 0 \) 的弯矩的表达式

\[
(M_x)_{x=0} = \left[-A(1 - \nu) + 2B \left(1 + \frac{n^4 \pi^4 h^4}{5a^2} \right) + C \frac{\beta a h}{5 \alpha} \right] \frac{n^2 \pi^4}{a^4} \sin \frac{n\pi y}{a},
\]

\[
(M_y)_{x=0} = \left[-A(1 - \nu) + B \left(1 - \nu + \frac{2}{5} \frac{n^4 \pi^4 h^4}{a^2} \right) \right. \\
+ C \left(\frac{a^4}{n^2 \pi^4} + \frac{h^4}{5} \right) \frac{n^2 \pi^4}{a^4} \cos \frac{n\pi y}{a}.
\]

• 181 •
使这两个式子以及剪力的表达式

$$Q_x e = - \left[2B \left(\frac{n\pi}{a} \right)^3 + C \frac{n\pi}{a} \right] \sin \frac{n\pi y}{a}.$$

分别与式 (w) 相等，就得到一个三元方程组，可用以计算未知常数 A, B 和 C。这样，采用这个改进了的板的理论，在边缘 $x = 0$ 上所有的三个边界条件都得到了满足。

考虑边缘 $y = 0$，显然在该边缘上 w 为零。M 在该边缘上也是零，将 Q 的表达式代入式 (k) 中的第二式就能得到公式。

克洛姆 (A. Kromm) 进一步提出了另一种考虑横向剪切变形的板的理论。这个理论对于横向压缩 e_2 忽略不计，但是，它也不限制弯曲应力在板厚上按线性规律分布。将此理论应用于承受均匀载荷，$a/b = 29$ 的矩形方形板问题，克洛姆求出了如图 81 所示作用在边缘上的剪力分布，为了比较，在图中还用虚线表示图说理论所得的剪力分布与集中反力 R 图 (图 63)。可以看出，只要考虑横向剪切变形，在板上就不会得到集中反力，代替集中反力的是均匀分布在板角邻近的一小部分边界上的负力，在板的角上作用着方向向下的有限压力。在此解中，板四边上的扭矩 M_{xy} 为零。

在亨克西 (H. Hencky) 的一篇论文中，还提出了另一种考虑剪切变形

![图 81](attachment:image.png)

2) Ing.-Arch., 第 16 卷, 第 72 页, 1947 年。

- 182 -
的理论。

40. 变厚度矩形板 在推导变厚度板的平衡微分方程时，假设板的厚度没有突变，所以对于等厚度板推导所得的弯矩和扭矩的表达式可足够精确地应用于变厚度板的问题。于是有

\[M_x = -D \left(\frac{\partial^2 w}{\partial x^2} + v \frac{\partial^2 w}{\partial y^2} \right), \quad M_y = -D \left(\frac{\partial^2 w}{\partial y^2} + v \frac{\partial^2 w}{\partial x^2} \right) \]

\[M_{xy} = -M_{yx} = D(1 - v) \frac{\partial^2 w}{\partial x \partial y}. \]

把这些式子代入板单元的平衡微分方程 [方程 (100)，第 84 页]

\[\frac{\partial^2 M_x}{\partial x^2} - 2 \frac{\partial^2 M_{x y}}{\partial x \partial y} + \frac{\partial^2 M_y}{\partial y^2} = -q, \]

并且注意到，弯曲刚度 D 不再是常数，而是坐标 x 和 y 的函数，我们得到

\[D \Delta \Delta w + 2 \frac{\partial D}{\partial x} \frac{\partial}{\partial x} \Delta w + 2 \frac{\partial D}{\partial y} \frac{\partial}{\partial y} \Delta w + 2 \frac{\partial^2 D}{\partial x^2} \frac{\partial^2 w}{\partial x^2} + 2 \frac{\partial^2 D}{\partial y^2} \frac{\partial^2 w}{\partial y^2} + 2 \frac{\partial^2 D}{\partial x \partial y} \frac{\partial^2 w}{\partial x \partial y} = q, \] (171)

同以前一样，在式中采用了符号

\[\Delta = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}. \]

作为方程 (171) 应用的特例，我们研究弯曲刚度 D 是 y 的线性函数的情况:

\[D = D_0 + D_1 y, \] (c)

其中 D_0 与 D_1 为常数。

在这种情况下，方程 (171) 化为:

\[(D_0 + D_1 y) \Delta w + 2 \frac{\partial D}{\partial y} \Delta w = q, \]

或

\[\Delta [(D_0 + D_1 y) \Delta w] = q. \] (172)

考虑载荷强度 q 与弯曲刚度 D 成正比的情形。将板图 82 的挠度设成如下形式:

\[w = w_1 + w_2, \]

并令 w_1 等于由板中截取的与 x 轴平行的板条在强度为

\[q = q_0 \left(1 + \frac{D_1}{D_0} y \right) \] (d)

1) R. Gran Olsson 讨论了这个问题，Ingr. - Arch., 第 5 卷, 第 363 页, 1934 年;
也可参看 F. Reissner, J. Math. and Phys. 第 16 卷, 第 43 页, 1937 年。
的载荷作用下的挠度。如同以前，此挠度可写成三角级数的形式：

\[
\omega_i = \frac{4 \varepsilon_0 \left(1 + \frac{D_1}{D_2}\right) \alpha}{(D_0 + D_1 y) \pi^2} \sum_{m=1,3,5, \ldots} \frac{1}{m^2} \sin \frac{m \pi x}{a}
\]

\[
= \frac{4 \varepsilon_0 \alpha}{\pi^2 D_0} \sum_{m=1,3,5, \ldots} \frac{1}{m^2} \sin \frac{m \pi x}{a}.
\] (c)

由代入法可立即证明这个表示 \(\omega_i \) 的式子满足方程 (172)。在简支边 \(x = 0 \) 和 \(x = a \) 上它也满足边界条件 \(\omega_i = 0 \) 和 \(\partial^2 \omega_i / \partial x^2 = 0 \)。

于是，挠度 \(\omega_i \) 必须满足齐次方程：

\[
\Delta \left[\left(D_0 + D_1 y \right) \Delta \omega_i \right] = 0.
\] (f)

将 \(\omega_i \) 取成级数的形式：

\[
\omega_i = \sum_{m=1,3,5, \ldots}^{\infty} Y_m \sin \frac{m \pi x}{a}.
\] (g)

把这个级数代入方程 (f)，可知函数 \(Y_m \) 应满足下列常微分方程：

\[
\left(\frac{\partial^2}{\partial y^2} - \frac{m^2 \pi^2}{a^2} \right) \left(D_0 + D_1 y \right) \left(Y''_m - \frac{m^2 \pi^2}{a^2} Y_m \right) = 0.
\] (h)

采用符号：

\[
f_m = (D_0 + D_1 y) \left(Y_m'' - \frac{m^2 \pi^2}{a^2} Y_m \right), \quad \frac{m \pi}{a} = \alpha_m,
\] (i)

由方程 (h)，求得：

\[
f_m = A_m e^{\alpha_m y} + B_m e^{-\alpha_m y}.
\]

于是，由式 (i) 得到：

\[
Y_m'' - \alpha_m^2 Y_m = \frac{A_m e^{\alpha_m y} + B_m e^{-\alpha_m y}}{D_0 + D_1 y}.
\] (i)

这个方程的一般解为：

\[
Y_m = C_m e^{\alpha_m y} + D_m e^{-\alpha_m y} + \varepsilon_m,
\] (k)

其中 \(\varepsilon_m \) 是方程 (i) 的一个特解。为了求此特解，使用拉格朗日 (Lagrange) 的参数变分法；即设 \(\varepsilon_m \) 具有形式

\[
\varepsilon_m = E_m e^{\alpha_m y} + F_m e^{-\alpha_m y},
\] (1)

其中 \(E_m \) 和 \(F_m \) 是 \(y \) 的函数，此二函数应当由下列方程决定：

\[
E_m' e^{\alpha_m y} + F_m' e^{-\alpha_m y} = 0,
\]

\[
E_m e^{\alpha_m y} - F_m e^{-\alpha_m y} = \frac{A_m e^{\alpha_m y} + B_m e^{-\alpha_m y}}{\alpha_m (D_0 + D_1 y)}.
\]

1）在这两个方程中，\(E_m' \) 和 \(F_m' \) 是 \(E_m \) 和 \(F_m \) 对于 \(y \) 的导数。
由此可得：

$$E_m = \frac{A_m + B_m e^{-\Delta_m y}}{2\alpha_m (D_0 + D_1 y)}$$

$$E_m' = - \frac{A_m e^{\Delta_m y} + B_m}{2\alpha_m (D_0 + D_1 y)}$$

对此二式积分，即得：

$$E_m = \int \frac{A_m + B_m e^{-\Delta_m y}}{2\alpha_m (D_0 + D_1 y)} dy = \frac{A_m}{2\alpha_m D_1} \log \frac{2\alpha_m}{D_1} (D_0 + D_1 y)$$

$$E_m' = - \int \frac{A_m e^{\Delta_m y} + B_m}{2\alpha_m (D_0 + D_1 y)} dy = - \frac{B_m}{2\alpha_m D_1} \log \frac{2\alpha_m}{D_1} (D_0 + D_1 y)$$

把这两个式子代入式 (1) 和 (k)，并引用符号①：

$$E_{1}(u) = \int_{-\infty}^{u} \frac{e^u}{n} du, \quad E_{1}(-u) = \int_{-\infty}^{u} \frac{e^{-u}}{n} du$$

就能将函数 Y_m 写成下列形式：

$$Y_m = A_m \left\{ \log \frac{2\alpha_m}{D_1} (D_0 + D_1 y) - \frac{2\alpha_m}{D_1} (D_0 + D_1 y) \right\} e^{-\Delta_m y}$$

$$- B_m' \left\{ \log \frac{2\alpha_m}{D_1} (D_0 + D_1 y) \right\} + C_m e^{\Delta_m y} + D_m e^{-\Delta_m y}$$

四个积分常数 A_m, B_m, C_m, D_m 由沿边缘 $y = 0$ 和 $y = b$ 的边界条件求得。

在简支边的情况下，这些条件是：

$$\begin{align*}
(\omega)_{y=0} &= 0, \\
\left(\frac{\partial^2 \omega}{\partial y^2} \right)_{y=0} &= 0
\end{align*}$$

$$\begin{align*}
(\omega)_{y=b} &= 0, \\
\left(\frac{\partial^2 \omega}{\partial y^2} \right)_{y=b} &= 0
\end{align*}$$

对于矩形板，只取级数 (8) 的头三项所得的数字结果表示在图 83 中①．用实线表示变厚度板在直线 \(x = a/2 \) 上的挠度和弯矩 \(M_x, M_y \); 对于弯曲刚度为常数 \(D = (D_h + D_b)/2 \) 的板计算所得的相同的量用虚线表示。在计算中假设 \(D_h = :D_c, \nu = 0.16 \)。

\[
M_y = \frac{4q_o a^2}{\pi^2}, \quad M_x = \frac{4q_o a^2}{\pi^2}, \quad W = \frac{4q_o c^4}{\pi^5 D_0}
\]

\[
\begin{array}{cccc}
0.1082 & 0.0419 & 0.0222 & 0.0143 \\
(0.0735) & (0.0770) & (0.0143) & \\
0.8676 & 0.5935 & 0.2072 & 0.1526 \\
(0.6800) & (0.7811) & (0.1526) & \\
1.2885 & 1.2171 & 0.3092 & 0.2579 \\
(1.1521) & (1.3187) & (0.2579) & \\
1.4778 & 1.6560 & 0.3280 & 0.3354 \\
(1.5755) & (1.6390) & (0.3354) & \\
1.5116 & 1.7619 & 0.2787 & 0.2968 \\
(1.5117) & (1.8041) & (0.2968) & \\
1.2277 & 1.3965 & 0.1834 & 0.2223 \\
(1.4787) & (1.2140) & (0.1834) & \\
0.2754 & 0.2277 & 0.0307 & 0.0355 \\
(0.3548) & (0.2149) & (0.0355) & \\
\end{array}
\]

图 83

最后，考虚板的厚度只是 \(y \) 的线性函数，同时横荷强度是 \(y \) 的任意函数的情形（图 82）。板在直线 \(y = b/2 \) 上的厚度用 \(h_0 \) 来代表，相应的弯曲刚度用

\[
D_0 = \frac{Eh_0^3}{12(1 - \nu^2)}
\]

表示，于是，在板的任一点有

\[
D = D_0 \frac{h^3}{h_0^3}, \quad h = \left[1 + \lambda \left(\frac{2y}{b} - 1 \right) \right] h_0
\]

1) 这些结果取自前引 R. Gran Olsson 的论文。
其中 λ 是常数。由此可知，当 \(y = 0, h = (1 - \lambda)h_0 \); 当 \(y = b, h = (1 + \lambda)h_0 \).

在处理现在这个问题时，下列以量 λ 为参数的方法非常有效的，将挠度 \(w \) 向成为变量 \(x, y, \lambda \) 的函数，写出 \(w(x, y, \lambda) \) 写成幂级数的形式：

\[
\omega = \sum_{m=0}^{\infty} \omega_m \lambda^m,
\]

式中 \(m \) 是整数，而系数 \(\omega_m \) 只是 \(x \) 和 \(y \) 的函数。

把式 (9) 和 (10) 代入方程 (171)，并令 \(\lambda \) 的各次幂的系数等于零，我们得到一系列的微分方程：

\[
\Delta \Delta \omega_x = \frac{q}{D_c},
\]

\[
\Delta \Delta \omega_y = -3 \left[\frac{1}{b} \frac{\partial}{\partial x} \Delta \omega_y + \left(\frac{2y}{b} - 1 \right) \Delta \Delta \omega_0 \right],
\]

\[
\Delta \Delta \omega_z = -3 \left[\frac{4}{b} \frac{\partial}{\partial y} \Delta \omega_z + \left(\frac{2y}{b} - 1 \right) \Delta \Delta \omega_1 \right]
\]

\[
+ 3 \left\{ \frac{9}{b^2} \left[\Delta \omega_0 - \left(1 - \nu \right) \frac{\partial^2 \omega_1}{\partial x^2} \right] \right.
\]

\[
+ \frac{8}{b} \left(\frac{2y}{b} - 1 \right) \frac{\partial}{\partial y} \Delta \omega_0 + \left(\frac{2y}{b} - 1 \right)^2 \Delta \Delta \omega_2 \right\},
\]

假设边界 \(y = 0 \) 和 \(x = a \) 是简支，并且限于讨论载荷为静水压力的问题，即

\[
q = \frac{4qy}{b}.
\]

采用常值的方法，将方程 (10) 的解写成下列形式：

\[
\omega_0 = \sum_{n=1,3,5,\ldots}^{\infty} Y_{n0} \sin \frac{n\pi x}{a},
\]

\[
\omega_1 = \sum_{n=1,3,5,\ldots}^{\infty} Y_{n1} \sin \frac{n\pi x}{a},
\]

\[
\omega_m = \sum_{n=1,3,5,\ldots}^{\infty} Y_{mn} \sin \frac{n\pi x}{a};
\]

系数 \(Y_{mn} (m = 0, 1, 2, \ldots) \) 是 \(x \) 的函数。最后，还能将载荷 (10) 写成类似的形式：

187
把式(5)和(7)代入方程(6)的第一式，我们就能求出函数 Y_{00}；如果边缘 $y = 0$ 和 $y = b$ 是简支的，边界条件就是：当 $y = 0$ 和 $y = b$ 时，$Y_{00} = 0$，$Y_{00} = 0$。将式(5)和(6)代入方程(7)的第二式，就能求出函数 Y_{10}。同样地，将 $w_0, w_1, ..., w_m$ 代入方程组(7)中左端包含 w_0 的那个微分方程，就能求得任一函数 w_m。如边缘 $y = 0, y = b$ 不是简支的，而是固支或自由的，求解的方法和步骤基本相同。

图(84)所示的挠度和弯矩的数字结果为 H. Favre 和 B. Gilg 所求得1)；这些值都是给定支点的中线 $x = a/2$ 并取 $\lambda = 0.2$ 和 $\nu = 0.25$ 以及承受静水压力 q 所得的结果。实验表示在级数(7)中取三项所得的，虚线是第一次近似所得的结果。

1) 参考前引 H. Favre 和 B. Gilg 的论文。
第六章
各种边缘情况的矩形板

41. 沿边缘承受分布力矩的矩形板的弯曲 考虑四边支承
沿边缘 $y = \pm b/2$ 受分布力矩弯曲的矩形板（图 85），挠度 w 必须满足齐次微分方程

$$\frac{\partial^4 w}{\partial x^4} + 2 \frac{\partial^4 w}{\partial x^2 \partial y^2} + \frac{\partial^4 w}{\partial y^4} = 0, \quad (a)$$

以及下列边界条件:
在 $x = 0$ 和 $x = a$ 时，$w = 0$，$\frac{\partial^2 w}{\partial x^2} = 0$； (b)

在 $y = \pm \frac{b}{2}$ 时，$w = 0$； (c)

$$- D \left(\frac{\partial^4 w}{\partial x^4} \right)_{y = b/2} = f_1(x), \quad - D \left(\frac{\partial^4 w}{\partial x^2 \partial y^2} \right)_{y = -b/2} = f_2(x); \quad (d)$$

式中 f_1 和 f_2 代表沿边缘 $y = \pm b/2$ 的弯矩分布。

将方程 (e) 的解写成级数的形式:

$$w = \sum_{m=1}^{\infty} Y_m \sin \frac{m \pi x}{a}, \quad (e)$$

级数中的每一项都满足边界条件(b). 如同以前, 我们把函数 Y_m 取成如下形式:

$$Y_m = A_m \sinh \frac{m \pi y}{a} + B_m \cosh \frac{m \pi y}{a} + C_m \frac{m \pi y}{a} \sinh \frac{m \pi y}{a}$$

$$+ D_m \frac{m \pi y}{a} \cosh \frac{m \pi y}{a}, \quad (f)$$

它满足方程 (a)。

• 189 •
为了简化讨论，我们首先研究两个特殊情形：
1. 对称的情形，即 \((M_y)_{y=\pm L} = (M_y)_{y=-L}\)
2. 反对称的情形，即 \((M_y)_{y=\pm L} = -(M_y)_{y=-L}\)
一般情形可由这两个特殊情形的组合得到。

在对称的情形中，\(Y_m\) 一定是 \(y\) 的偶函数，因此在式 (j) 中必须令 \(A_m = D_m = 0\)。于是，由式 (c) 可得

\[
\omega = \sum_{m=1}^{\infty} \left(B_m \cosh \frac{m\pi y}{a} + C_m \frac{m\pi y}{a} \sinh \frac{m\pi y}{a} \right) \sin \frac{m\pi x}{a} \tag{g}
\]

要满足边界条件 (e)，必须使

\[
B_m \cosh \alpha_m + C_m \alpha_m \sinh \alpha_m = 0,
\]
同以前一样，式中

\[
\alpha_m = \frac{m\pi b}{2a},
\]
所以

\[
B_m = -C_m \alpha_m \tanh \alpha_m,
\]
从而对称情形中的挠度为：

\[
\omega = \sum_{m=1}^{\infty} C_m \left(\frac{m\pi y}{a} \sinh \frac{m\pi y}{a} - \alpha_m \tanh \alpha_m \cosh \frac{m\pi y}{a} \right) \sin \frac{m\pi x}{a} \tag{h}
\]

我们利用边界条件 (d) 来决定常数 \(C_m\)。用三角级数来表示沿边缘 \(y = \pm b/2\) 的弯矩分布。在对称的情形中，有

\[
f_1(x) = f_2(x) = \sum_{m=1}^{\infty} E_m \sin \frac{m\pi x}{a}, \tag{i}
\]
式中的系数 \(E_m\)，对于每一特殊问题可用通常的方法计算。例如，在弯矩均匀分布的情况下，有（见第 159 页）

\[
(M_y)_{y=b/2} = \frac{4M_0}{\pi} \sum_{m=1,3,5,\ldots}^{\infty} \frac{1}{m} \sin \frac{m\pi x}{a}. \tag{j}
\]

将式 (h) 和 (i) 代入条件 (d)，得到：

\[
-2D \sum_{m=1}^{\infty} \frac{m^2 \pi^2}{a^2} C_m \cosh \alpha_m \sin \frac{m\pi x}{a} = \sum_{m=1}^{\infty} E_m \sin \frac{m\pi x}{a},
\]
• 199 •
由此可得

\[C_m = - \frac{\alpha^2 E_m}{2 D m^2 \pi^2 \cosh \alpha_m}, \]

从而

\[w = \frac{a^2}{2 \pi^2 D} \sum_{m=1}^{\infty} \frac{\sin \frac{m \pi x}{a}}{m^2 \cosh \alpha_m} E_m \left(\alpha_m \tanh \frac{m \pi y}{a} \cosh \frac{m \pi y}{a} \right). \] \hspace{1cm} (173)

在强度为 \(M_0 \) 的均匀分布弯矩的特殊情况下，可用式（i）求得

\[w = \frac{2 M_0 a^2}{\pi^2 D} \sum_{m=1, 3, 5, \ldots}^{\infty} \frac{1}{m^4 \cosh \alpha_m} \left(\alpha_m \tanh \frac{m \pi y}{a} \cosh \frac{m \pi y}{a} \right) \sin \frac{m \pi x}{a}. \]

在对称轴（\(y = 0 \)）上，挠度为

\[(w)_{y=0} = \frac{2 M_0 b^2}{\pi^2 D} \sum_{m=1, 3, 5, \ldots}^{\infty} \frac{1}{m^4 \cosh \alpha_m} \sin \frac{m \pi x}{a}. \] \hspace{1cm} (k)

当 \(a \) 较之于 \(b \) 为很大时，可取 \(\tanh \alpha_m \approx \alpha_m \), \(\cosh \alpha_m \approx 1 \). 于是，用级数（i）可得

\[(w)_{y=0} = \frac{M_0 b^2}{\pi^2 D} \sum_{m=1, 3, 5, \ldots}^{\infty} \frac{1}{m} \sin \frac{m \pi x}{a} \approx \frac{1}{8} \frac{M_0 b^2}{D}. \]

这就是长度为 \(b \), 在两端作用有大小相等方向相反的弯矩的板条在中点的挠度。

当 \(a \) 较之于 \(b \) 为小量时, \(\cosh \alpha_m \) 是一个大数，因此沿 \(x \) 轴板的挠度很小。

如果矩形板的长宽比为任一已知数，则根据式（k），板中心的挠度为

\[(w)_{x=0, y=0} = \frac{M_0 a b}{\pi^2 D} \sum_{m=1, 3, 5, \ldots}^{\infty} (-1)^{m-1} \frac{1}{m^2 \cosh \alpha_m}. \]

有了挠度的表达式(173)，通过微分就能得到挠度曲面在边界上的
斜度，作 w 的二阶导数就能计算弯矩。

在表 28 中给出了用这个方法计算得到的某些挠度与弯矩的值。可以看出，例如宽度为 a 的板条的挠度约是边长为 a 的方形板挠度的 3.5 倍。虽然板条中点横截面上传受着作用于二端的全部弯矩 M_0，但矩形板中心的弯矩 M_y 与 M_0 之比随着比 b/a 的增大而很快地减小。这是由于不承受弯矩的边缘 $x = 0$ 和 $x = a$ 的阻尼作用的影响。

表 28 沿边缘 $y = \pm b/2$ 受到均匀分布弯矩的

<table>
<thead>
<tr>
<th>b/a</th>
<th>w</th>
<th>M_x</th>
<th>M_y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.1250M_0b^2/D</td>
<td>0.300M_0</td>
<td>1.600M_0</td>
</tr>
<tr>
<td>0.50</td>
<td>0.0967M_0b^2/D</td>
<td>0.387M_0</td>
<td>0.770M_0</td>
</tr>
<tr>
<td>0.75</td>
<td>0.0620M_0b^2/D</td>
<td>0.424M_0</td>
<td>0.476M_0</td>
</tr>
<tr>
<td>1.00</td>
<td>0.0368M_0b^2/D</td>
<td>0.394M_0</td>
<td>0.256M_0</td>
</tr>
<tr>
<td>1.50</td>
<td>0.0280M_0b^2/D</td>
<td>0.264M_0</td>
<td>0.046M_0</td>
</tr>
<tr>
<td>2.00</td>
<td>0.0174M_0b^2/D</td>
<td>0.153M_0</td>
<td>−0.010M_0</td>
</tr>
</tbody>
</table>

现在我们考虑反对称的情形，即

$$f_1(x) = -f_1(-x) = \sum_{m=1}^{\infty} B_m \sin \frac{m\pi x}{a}.$$

在此情形下，挠度曲面是 y 的奇函数，因此在式(5)中必须令 $B_m = C_m = 0$。所以

$$w = \sum_{m=1}^{\infty} \left(A_m \sinh \frac{m\pi y}{a} + D_m \frac{m\pi y}{a} \cosh \frac{m\pi y}{a} \right) \sin \frac{m\pi x}{a}.$$

由边界条件 (c)，可得

$$A_m \sinh \alpha_m + D_m \alpha_m \cosh \alpha_m = 0,$$

由此，

$$D_m = -\frac{1}{\alpha_m} \tanh \alpha_m A_m,$$

于是，

$$w = \sum_{m=1}^{\infty} A_m \left(\sinh \frac{m\pi y}{a} - \frac{1}{\alpha_m} \tanh \alpha_m \frac{m\pi y}{a} \cosh \frac{m\pi y}{a} \right) \sin \frac{m\pi x}{a},$$

* 192 *
常数 A_m 由条件 (d) 求得。由此，有

$$
\frac{2a^2D}{a^2} \sum_{n=1}^{\infty} A_m \frac{m^2 \sinh \alpha_m \tanh \alpha_m \sin \frac{m\pi x}{a}}{E_m \sin \frac{m\pi x}{a}} = \sum_{m=1}^{\infty} E_m \sin \frac{m\pi x}{a}.
$$

所以

$$
A_m = \frac{a^2}{2\pi^2 D} E_m \frac{m^2 \sinh \alpha_m \tanh \alpha_m}{m^2 \sinh \alpha_m},
$$

$$
\omega = \frac{a^2}{2\pi^2 D} \sum_{n=1}^{\infty} E_m \left(\alpha_m \coth \alpha_m \sinh \frac{m\pi y}{a} \right.
- \frac{m\pi y}{a} \cosh \frac{m\pi y}{a} \bigg) \sin \frac{m\pi x}{a}.
$$

(174)

由对称和反对称情形的解 (173) 和 (174)，能够得到边界条件为 (d) 的一般情形的挠度曲面。为此，我们把所给的弯矩分布分成对称的弯矩分布 M'_y, 和反对称的弯矩分布 M''_y:

$$
(M'_y)_{y=b/2} = (M'_y)_{y=-b/2} = \frac{1}{2} \left[f_1(x) + f_2(x) \right],
$$

$$
(M''_y)_{y=b/2} = -(M''_y)_{y=-b/2} = \frac{1}{2} \left[f_1(x) - f_2(x) \right].
$$

同以前一样，能用三角级数来表示此二弯矩:

$$
(M'_y)_{y=b/2} = \sum_{n=1}^{\infty} E'_m \sin \frac{m\pi x}{a},
$$

$$
(M''_y)_{y=b/2} = \sum_{n=1}^{\infty} E''_m \sin \frac{m\pi x}{a}.
$$

(1)

应用式 (173) 和 (174)，并将上述两个弯矩分布 (1) 中的每一个所
产生的挠度迭加，就得到了总的挠度。所以

$$
\omega = \frac{a^2}{2\pi^2 D} \sum_{n=1}^{\infty} \frac{\sin \frac{m\pi x}{a}}{m^2} \left[\frac{E'_m}{\cosh \alpha} \left(\alpha_m \tanh \alpha_m \cosh \frac{m\pi y}{a} \right.
ight.
- \frac{m\pi y}{a} \sinh \frac{m\pi y}{a} \bigg) + \frac{E''_m}{\sinh \alpha} \left(\alpha_m \coth \alpha_m \sinh \frac{m\pi y}{a} \right.
- \frac{m\pi y}{a} \cosh \frac{m\pi y}{a} \bigg),
$$

(175)

* 193 *
如果弯矩 $M_y = \sum_{n=1}^{\infty} E_m \sin \left(\frac{m\pi x}{l} \right)$ 只是沿边缘 $y = b/2$ 分布，则有 $f_0(x) = 0$, $E'_m = E''_m = \frac{1}{2} E_m$；在这个情况下，挠度化为

$$u' = -\frac{a^2}{4\pi^2 D} \sum_{n=1}^{\infty} \frac{E_m \sin \frac{m\pi x}{a}}{m^4} \left[\frac{1}{\cosh \alpha_m} \left(\alpha_m \tanh \alpha_m \cosh \frac{m\pi y}{a} \right) - \frac{m\pi y}{a} \sinh \frac{m\pi y}{a} \right] + \frac{1}{\sinh \alpha_m} \left(\alpha_m \coth \alpha_m \sinh \frac{m\pi y}{a} \right) - \frac{m\pi y}{a} \cosh \frac{m\pi y}{a} \right].$$

（176）

本节的解（173）到（176）将用来研究各种弯矩情况的板。

在弯矩 M_0 只沿一条边缘（比如说 $y = b/2$）分布时，它在板的中心所产生的挠度和弯矩等于表28所给出的数值的一半。在板的整个边界上同时作用有弯矩的情况下，将以上对于部分受载的板所得的结果适当地进行迭加，就能求出它的挠度与弯矩。

42. 二对边简支另二对边外支的矩形板

假设图86所示的矩形板的边缘 $x = 0$ 和 $x = a$ 是简支，而另二对边外支。在任何侧向载荷作用下，这板的挠度可以这样求得：首先假设四边都是简支的，求得此题的解，然后沿边缘 $y = \pm b/2$ 施加弯矩，它们的大小应当恰好能抵消由侧向载荷所生在此二边缘的旋转。用这种方法，将第五章中所得的解与前节的解迭加，就能解决许多问题。

1) H. Bay 和 U. Wegner 也都讨论过边缘力矩所产生的弯矩。见 H. Bay, Ingr.-
36卷, 第340页, 1956年。
承受均匀载荷的板

假设板的四边为简支，其挠度为 [见式 (139)，第 122 页]

$$
\omega = \frac{4qa^4}{\pi^4D} \sum_{m=1,3, \ldots}^{\infty} \frac{1}{m^4} \sin \frac{m\pi x}{a} \left(1 - \frac{\alpha_m \tanh \alpha_m}{2 \cosh \alpha_m} + \frac{2}{2 \cosh \alpha_m} \right) \cosh \frac{m\pi y}{a} \\
+ \frac{1}{2 \cosh \alpha_m} \frac{m\pi y}{a} \sinh \frac{m\pi y}{a}
$$

在边缘 $y = b/2$ 上，挠度曲面的斜度为

$$
\left(\frac{\partial \psi}{\partial y} \right)_{y=b/2} = \frac{2qa^3}{\pi^4D} \sum_{m=1,3, \ldots}^{\infty} \frac{1}{m^4} \sin \frac{m\pi x}{a} \times \left[\alpha_m - \tanh \alpha_m (1 + \alpha_m \tanh \alpha_m) \right].
$$

为了消去此边缘上的棱度以满足实际边界条件，我们用级数

$$
(M_y)_{y=\pm b/2} = \sum_{m=1}^{\infty} E_m \sin \frac{m\pi x}{a}
$$

所表示的弯矩 M_y 分布在边界 $y = \pm b/2$ 上。系数 E_m 是这样来求：这些弯矩所产生的棱度与式 (b) 所给出的棱度大小相等，方向相反。应用表示这些弯矩所产生的棱度的式 (173)，求得边缘 $y = b/2$ 上的相应棱度为:

$$
\frac{a}{2\pi D} \sum_{m=1,3, \ldots}^{\infty} \frac{\sin \frac{m\pi x}{a}}{m} E_m \left[\tanh \alpha_m (\alpha_m \tanh \alpha_m - 1) - \alpha_m \right].
$$

令此量的值等于式 (b)，得到

$$
E_m = \frac{4qa^2}{\pi^3 m^3} \frac{\alpha_m - \tanh \alpha_m (1 + \alpha_m \tanh \alpha_m)}{\alpha_m - \tanh \alpha_m (\alpha_m \tanh \alpha_m - 1)}
$$

所以，在固支边上弯矩为

$$
(M_y)_{y=\pm b/2} = \frac{4qa^2}{\pi^3} \sum_{m=1,3, \ldots}^{\infty} \frac{\sin \frac{m\pi x}{a}}{m^3}
\times \frac{\alpha_m - \tanh \alpha_m (1 + \alpha_m \tanh \alpha_m)}{\alpha_m - \tanh \alpha_m (\alpha_m \tanh \alpha_m - 1)}.
$$

1) 有关承受均匀载荷、边简支或夹支 (以任何形式组合起来的) 的矩形板的大量

数据，可在 F. Czerny 的论文中找到；参看 Bautechn. Arch., 第 11 卷，第 33

页，柏林，1955 年。

2) 由于均匀载荷所产生的棱度曲线是反对称的，因此在式 (173) 中，m 必须只取奇数

$1, 3, 5, \ldots$.

195
此弯矩的最大值是在边缘的中点，即 \(x = a/2 \) 的点。级数 (f) 收敛得很快，在每一特殊情况下，能立即计算出最大弯矩。例如，由级数 (f) 的头三项可求出方形板中的最大弯矩为 \(-0.070qa^2\)。在一般情况下，此最大弯矩可用公式 \(\gamma qa^2 \) 表示，其中 \(\gamma \) 为数值因子，它的大小随矩形板的长宽比 \(a/b \) 而变。在表 29 中列出了这个系数的若干值。

将系数 \(E_m \) 的值 (e) 代入式 (173)，就得到沿边缘分布的弯矩 \(M \)，所产生的挠度曲面：

\[
\omega_1 = -\frac{2qa^4}{\pi^2D} \sum_{m=1,3,5,\ldots}^{\infty} \left(\frac{m\pi a}{a} \right) \left(\frac{\sin \frac{m\pi x}{a}}{a} \right) \frac{\alpha_m - \tanh \alpha_m (1 + \alpha_m \tanh \alpha_m)}{\tanh \alpha_m \alpha_m - \tanh \alpha_m (\alpha_m \tanh \alpha_m - 1)} \times \left(\frac{m\pi y}{a} \right) \sinh \frac{m\pi y}{a} - \alpha_m \tanh \alpha_m \cosh \frac{m\pi y}{a} \right) .
\]

将 \(x = a/2 \), \(y = 0 \) 代入式 (g)，就得到板中心的挠度。于是，有

\[
(\omega_1)_{\text{max}} = \frac{2qa^4}{\pi^2D} \sum_{m=1,3,5,\ldots}^{\infty} \left(-1 \right)^{(m-1)/2} \frac{\alpha_m - \tanh \alpha_m (1 + \alpha_m \tanh \alpha_m)}{\tanh \alpha_m \alpha_m - \tanh \alpha_m (\alpha_m \tanh \alpha_m - 1)} \frac{m^2}{m^2} \cdot \frac{\alpha_m - \tanh \alpha_m (1 + \alpha_m \tanh \alpha_m)}{\alpha_m - \tanh \alpha_m (\alpha_m \tanh \alpha_m - 1)} .
\]

这个级数收敛得很快，只取少数几项就能得到高度精确的挠度值。在方形板的情况下，例如，只取第一项所得到的挠度值就精确到三位有效数字：

\[
\omega_1 = 0.00214 \frac{qa^4}{D} .
\]

由承受均匀载荷的简支方形板中心的挠度（表 8，第 125 页）减去这个挠度，我们最后得到承受均匀载荷、二边简支二边夹支的方形板中心的挠度值：

\[
w = 0.00192 \frac{qa^4}{D} .
\]

在一般情况下，板中心的挠度可用如下公式表示：

\[
w = \alpha \frac{qa^4}{D} .
\]
<table>
<thead>
<tr>
<th>a/b</th>
<th>$\omega_{max} = \alpha \frac{q b^4}{D}$</th>
<th>$M_x = \beta_1 q b^2$</th>
<th>$M_y = \beta_2 q b^1$</th>
<th>γ</th>
</tr>
</thead>
<tbody>
<tr>
<td>∞</td>
<td>0.00260</td>
<td>0.0125</td>
<td>0.0417</td>
<td>-0.0833</td>
</tr>
<tr>
<td>2</td>
<td>0.00260</td>
<td>0.0142</td>
<td>0.0420</td>
<td>-0.0842</td>
</tr>
<tr>
<td>1.5</td>
<td>0.00247</td>
<td>0.0179</td>
<td>0.0406</td>
<td>-0.0822</td>
</tr>
<tr>
<td>1.4</td>
<td>0.00240</td>
<td>0.0192</td>
<td>0.0399</td>
<td>-0.0810</td>
</tr>
<tr>
<td>1.3</td>
<td>0.00234</td>
<td>0.0203</td>
<td>0.0388</td>
<td>-0.0794</td>
</tr>
<tr>
<td>1.2</td>
<td>0.00228</td>
<td>0.0215</td>
<td>0.0375</td>
<td>-0.0771</td>
</tr>
<tr>
<td>1.1</td>
<td>0.00209</td>
<td>0.0230</td>
<td>0.0355</td>
<td>-0.0739</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>b/a</th>
<th>$\omega_{max} = \alpha \frac{q a^4}{D}$</th>
<th>$M_x = \beta_1 q a^2$</th>
<th>$M_y = \beta_2 q a^2$</th>
<th>γ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.00192</td>
<td>0.0244</td>
<td>0.0332</td>
<td>-0.0697</td>
</tr>
<tr>
<td>1.1</td>
<td>0.00251</td>
<td>0.0347</td>
<td>0.0371</td>
<td>-0.0787</td>
</tr>
<tr>
<td>1.2</td>
<td>0.00319</td>
<td>0.0376</td>
<td>0.0400</td>
<td>-0.0868</td>
</tr>
<tr>
<td>1.3</td>
<td>0.00388</td>
<td>0.0416</td>
<td>0.0426</td>
<td>-0.0938</td>
</tr>
<tr>
<td>1.4</td>
<td>0.00460</td>
<td>0.0514</td>
<td>0.0448</td>
<td>-0.0998</td>
</tr>
<tr>
<td>1.5</td>
<td>0.00531</td>
<td>0.0585</td>
<td>0.0460</td>
<td>-0.1049</td>
</tr>
<tr>
<td>1.6</td>
<td>0.00603</td>
<td>0.0650</td>
<td>0.0469</td>
<td>-0.1090</td>
</tr>
<tr>
<td>1.7</td>
<td>0.00668</td>
<td>0.0712</td>
<td>0.0475</td>
<td>-0.1122</td>
</tr>
<tr>
<td>1.8</td>
<td>0.00732</td>
<td>0.0768</td>
<td>0.0477</td>
<td>-0.1152</td>
</tr>
<tr>
<td>1.9</td>
<td>0.00790</td>
<td>0.0821</td>
<td>0.0476</td>
<td>-0.1174</td>
</tr>
<tr>
<td>2.0</td>
<td>0.00844</td>
<td>0.0889</td>
<td>0.0474</td>
<td>-0.1191</td>
</tr>
<tr>
<td>3.0</td>
<td>0.01168</td>
<td>0.1144</td>
<td>0.0419</td>
<td>-0.1246</td>
</tr>
<tr>
<td>∞</td>
<td>0.01302</td>
<td>0.1250</td>
<td>0.0375</td>
<td>-0.1250</td>
</tr>
</tbody>
</table>
在表 29 中给出了数值因子 α 的若干值。
将挠度表达式（g）代入熟知的弯矩公式（101），得到：

$$M_x = -\frac{2qa^2}{n^3} \sum_{m=1,3,5,...}^{\infty} \frac{\sin \frac{mnx}{a}}{m^3 \cosh \alpha_m - \tanh \alpha_m (1 + \alpha_m \tanh \alpha_m - 1)} \times \left\{ (1 - \nu) \frac{mx}{a} \frac{mxy}{a} \right\}$$

$$- [2\nu + (1 - \nu)\alpha_m \tanh \alpha_m] \cosh \frac{mxy}{a} \right\}, \quad (h)$$

$$M_y = \frac{2qa^2}{n^3} \sum_{m=1,3,5,...}^{\infty} \frac{\sin \frac{mnx}{a}}{m^3 \cosh \alpha_m - \tanh \alpha_m (1 + \alpha_m \tanh \alpha_m - 1)} \times \left\{ (1 - \nu) \frac{mx}{a} \frac{mxy}{a} \right\}$$

$$+ [2 - (1 - \nu)\alpha_m \tanh \alpha_m] \cosh \frac{mxy}{a} \right\}, \quad (i)$$

在板的中心此二弯矩的值为：

$$M_x = \frac{2qa^2}{n^3} \sum_{m=1,3,5,...}^{\infty} \frac{(-1)^{(m-1)/2}}{m^3 \cosh \alpha_m - \tanh \alpha_m (1 + \alpha_m \tanh \alpha_m - 1)} \times [2\nu + (1 - \nu)\alpha_m \tanh \alpha_m],$$

$$M_y = \frac{2qa^2}{n^3} \sum_{m=1,3,5,...}^{\infty} \frac{(-1)^{(m-3)/2}}{m^3 \cosh \alpha_m - \tanh \alpha_m (1 + \alpha_m \tanh \alpha_m - 1)} \times [2 - (1 - \nu)\alpha_m \tanh \alpha_m].$$

这些级数收敛得很快，只要取级数的头二项就能得到足够精确的弯矩值。最后，将这些弯矩与简支板的弯矩（表 8）迭加，一对边简支，另一对边夹支的板中心的弯矩值就可表示如下：

$$M_x = \beta_1 qa^2, \quad M_y = \beta_2 qa^2. \quad (j)$$

其中 β_1 和 β_2 为数值因子，其大小决定于比 b/a。在表 29 中列出了若干此二因子的值。

以方形板为例，板中心的弯矩为：

$$M_x = 0.0244 qa^2, \quad M_y = 0.0332 qa^2.$$
它们比简支方形板中心的弯矩 $M_x = M_y = 0.0479 qa^4$ 为小。但是我们已看到，固支边中点的弯矩 M_y 的值大于 $0.0479 qa^3$。因此，由于二边缘的转角受限制，板中最大应力的值增大了。如矩形板的固支边是长边 ($b < a$)，那么随着比 b/a 的减小，固支边中点的弯矩及板中心的挠度很快地趋近于两端固支的条件的相应值。

承受静水压力的板(图87) 承受静水压力作用的简支矩形板(如第31节图66所示)的挠度曲面为：

$$u = \frac{q_0 a^4}{\pi^2 D} \sum_{m=1}^{\infty} \frac{(-1)^{m+1}}{m^5} \left(2 - 2 + \frac{\alpha_m \tanh \alpha_m \cosh \frac{m\pi y}{a}}{\cosh \alpha_m} \right) \sin \frac{m\pi x}{a}.$$ \[\text{(k)}\]

在边缘 $y = b/2$ 上，挠度曲面的斜率为：

$$\left. \frac{\partial u}{\partial y} \right|_{y=b/2} = \frac{q_0 a^3}{\pi D} \sum_{m=1}^{\infty} \frac{(-1)^{m+1}}{m^4} \left(\alpha_m - \tanh \alpha_m (1 + \alpha_m \tanh \alpha_m)\right) \sin \frac{m\pi x}{a}. \tag{1}$$

这个斜度可以这样来消去：在边缘 $y = \pm b/2$ 上分布如级数 (c) 那样的弯矩 M_y 并且在决定级数 (c) 的系数 E_m 时使这些弯矩所产生的斜度与式 (1) 所给的斜度大小相等方向相反。用这个方法，得到：

$$E_m = \frac{2q_0 a^2 (1 - 1)^{m+1}}{\pi^3 m^3} \frac{\alpha_m - \tanh \alpha_m (1 + \alpha_m \tanh \alpha_m)}{\alpha_m - \tanh \alpha_m (\alpha_m \tanh \alpha_m - 1)}.$$

将此式代入级数 (c)，得到固支边上的弯矩的表达式：

$$(M_y)_{y=\pm b/2} = \frac{2q_0 a^4}{\pi^3} \sum_{m=1}^{\infty} \frac{(-1)^{m+1} \sin \frac{m\pi x}{a}}{m^3} \left(\alpha_m - \tanh \alpha_m (1 + \alpha_m \tanh \alpha_m)\right) \left(\frac{\alpha_m - \tanh \alpha_m (\alpha_m \tanh \alpha_m - 1)}{\alpha_m - \tanh \alpha_m (\alpha_m \tanh \alpha_m - 1)}\right). \tag{m}$$
在固支边的中点，即 \(x = a/2 \) 的点，级数（\(m \)）中 \(m \) 为偶数的项等于零，因此级数的值应该等于承受均匀载荷的板的响应值的一半 [见式(\(i \))]。级数（\(m \)）收敛得很快，因此可以立即求出边缘上任一点的弯矩值。在表 30 中给出了若干个弯矩以及板的中线 \(y = 0 \) 上的弯矩的值。

表 30 承受静水压力载荷，一对边简支、另一对边夹支的
矩形板（图 87）中的弯矩

<table>
<thead>
<tr>
<th>b/a</th>
<th>(x = a/2, \ y = 0)</th>
<th>(x = 3a/4, \ y = 0)</th>
<th>(x = a/2, \ y = b/2)</th>
<th>(x = 3a/4, \ y = b/2)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(M_x)</td>
<td>(M_y)</td>
<td>(M_x)</td>
<td>(M_y)</td>
</tr>
<tr>
<td>0.50</td>
<td>0.007qv2a2</td>
<td>0.021qv2a2</td>
<td>0.018qv4a2</td>
<td>-0.042qv4a2</td>
</tr>
<tr>
<td>0.75</td>
<td>0.011qv2a2</td>
<td>0.020qv2a2</td>
<td>0.018qv4a2</td>
<td>-0.042qv4a2</td>
</tr>
<tr>
<td>1.00</td>
<td>0.013qv2a2</td>
<td>0.017qv4a2</td>
<td>0.017qv4a2</td>
<td>-0.035qv4a2</td>
</tr>
<tr>
<td>1.25</td>
<td>0.021qv2a2</td>
<td>0.021qv4a2</td>
<td>0.024qv4a2</td>
<td>-0.045qv4a2</td>
</tr>
<tr>
<td>1.50</td>
<td>0.030qv2a2</td>
<td>0.023qv4a2</td>
<td>0.031qv4a2</td>
<td>-0.051qv4a2</td>
</tr>
<tr>
<td>2</td>
<td>0.043qv2a2</td>
<td>0.024qv4a2</td>
<td>0.042qv4a2</td>
<td>-0.060qv4a2</td>
</tr>
<tr>
<td>(\infty)</td>
<td>0.063qv2a2</td>
<td>0.019qv4a2</td>
<td>0.055qv4a2</td>
<td>-0.063qv4a2</td>
</tr>
</tbody>
</table>

有集中力作用的板

在这种情况下，板的挠度也是由简支板的挠度（第 34 节）和沿夹支边分布的弯矩所产生的挠度相叠加而得到的。考虑承受中心集中载荷的板，假设边缘 \(y = \pm b/2 \) 为夹支，我们得到这种载荷作用下的挠度的表达式:

\[
\omega_{x, \text{max}} = \frac{Pb^2}{2a^3D} \left[\sum_{m=1, 3, 5, \ldots}^\infty \frac{1}{m^3} \left(\tanh \alpha_m - \frac{\alpha_m}{\cosh^2 \alpha_m} \right) + \sum_{m=1, 3, 5, \ldots}^\infty \frac{1}{m^2} \frac{\tanh \alpha_m}{\sinh \alpha_m \cosh \alpha_m + \alpha_m} \right],
\]

方括弧中的第一个级数相当于简支板的挠度 [见式(\(147 \))]，第二个级数代表夹支边上有弯矩作用所产生的挠度。当比 \(b/a = 2, 1, 1/2 \) 和 \(1/3 \) 时，式(\(n \))方括弧内的式子的值不次为 0.238, 0.436,

1) 参见 S. Timoshenko, *Bauingenieur*, 1922 年，第 51 页。
0.448 和 0.449。

为了得到这种载荷作用下的最大应力，应当在对简支板计算所得的最大应力上迭加下列弯矩所产生的应力:

\[
\begin{align*}
m_x &= -P \sum_{m=1,3,5,\ldots}^{n} \frac{b}{4a} \frac{\tanh \alpha_m}{\sinh \alpha_m \cosh \alpha_m + \alpha_m} \\
\times [2\nu + (1 - \nu)\alpha_m \tanh \alpha_m] \\
m_y &= -P \sum_{m=1,3,5,\ldots}^{n} \frac{b}{4a} \frac{\tanh \alpha_m}{\sinh \alpha_m \cosh \alpha_m + \alpha_m} \\
\times [2 - (1 - \nu)\alpha_m \tanh \alpha_m].
\end{align*}
\]

(0)

将此二次应力矩写成

\[
m_x = \beta_1 P, \quad m_y = \beta_2 P.
\]

(p)

在表 31 中列出了各种不同比例 b/a 的数值因子 β₁ 和 β₂。中心载荷 P 分布在很小的圆或矩形面积上，我们只需要把弯矩 (P) 迭加到用对数公式 (157) 和 (167) 所求对简支板的弯矩上。方形板在夹支边中点的弯矩 M_y 为:

\[
M_y = -0.166P.
\]

计算表明，当夹支边的长度增加时，这个弯矩只有很小的变化。当 b/a = 0.5 时，它等于 -0.168P；当 b/a = 1.2 时，它减小到 -0.155 P↑。

表 31 为承受中心载荷 P 的情况下，由于边缘 y = ±b/2 的约束所引起在 x = a/2 和 y = 0 处的校正弯矩（图 71）

\[
\nu = 0.3
\]

<table>
<thead>
<tr>
<th>b/a</th>
<th>m_x = β_1 P</th>
<th>m_y = β_2 P</th>
<th>b/a</th>
<th>m_x = β_1 P</th>
<th>m_y = β_2 P</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-0.0184</td>
<td>-0.0742</td>
<td>1.0</td>
<td>-0.0505</td>
<td>0.0308</td>
</tr>
<tr>
<td>0.5</td>
<td>-0.0504</td>
<td>-0.0708</td>
<td>1.2</td>
<td>-0.0420</td>
<td>0.0166</td>
</tr>
<tr>
<td>0.6</td>
<td>-0.0524</td>
<td>-0.0656</td>
<td>1.4</td>
<td>-0.0319</td>
<td>-0.0675</td>
</tr>
<tr>
<td>0.7</td>
<td>-0.0540</td>
<td>-0.0580</td>
<td>1.6</td>
<td>-0.0227</td>
<td>-0.0026</td>
</tr>
<tr>
<td>0.8</td>
<td>-0.0544</td>
<td>-0.0484</td>
<td>1.8</td>
<td>-0.0155</td>
<td>-0.0002</td>
</tr>
<tr>
<td>0.9</td>
<td>-0.0532</td>
<td>-0.0396</td>
<td>2.0</td>
<td>-0.0101</td>
<td>+0.0007</td>
</tr>
</tbody>
</table>

1) 关于有限边固支的板的更多数据，可参看 A. Pucher, Ingr.-Arch., 第 14 卷，第 246 页，1934—1944 年。
应当注意，夹支弯矩的最大可能值为 $P/P = -0.3183P$ 不是由中心集中载荷所产生的，而是由靠近固支边的集中载荷所产生的（见第 51 节）。在具有若干可移载荷的情况下，可以肯定地用固支弯矩的影响曲面来求得固支弯矩的最大值（参看第 76 节）。

43. 三边简支一边固支的矩形板

考虑沿边缘 $y = b/2$ 为固支，沿其他边缘为简支的矩形板（图 88）。承受任何侧向载荷的这种板的挠度，可由四边简支的板的解和板的一边分布有弯矩的问题的解（176）添加而成。

承受均匀载荷的板均匀分布载荷所产生的在边缘 $y = b/2$ 上的挠度为

$$\left(\frac{\partial w}{\partial y} \right)_{y=b/2} = \frac{2qa^2}{\pi^4 D} \sum_{m=1, 3, 5, \ldots}^{\infty} \frac{1}{m^4} \sin \frac{m\pi x}{a} \times \left[\alpha_m - \tanh \alpha_m (1 + \alpha_m \tanh \alpha_m) \right].$$ (a)

沿边缘 $y = b/2$ 分布的弯矩 $M_y = \sum E_m \sin \frac{m\pi x}{a}$ 所产生的挠度为 [见 (176) 式]

$$\left(\frac{\partial w}{\partial y} \right)_{y=b/2} = \frac{a}{4\pi D} \sum_{m=1, 3, 5, \ldots}^{\infty} \frac{1}{m} \sin \frac{m\pi x}{a} E_m \left(\alpha_m \tanh^2 \alpha_m - \tanh \alpha_m + \alpha_m \coth^2 \alpha_m - \coth \alpha_m - 2\alpha_m \right).$$ (b)

根据约束的条件，这两个挠度应当大小相等方向相反，所以

$$E_m = -\frac{8qa^2}{\pi^3 m^3 \alpha_m^2 \alpha_m \tanh^2 \alpha_m - \tanh \alpha_m + \alpha_m \coth^2 \alpha_m - \coth \alpha_m - 2\alpha_m},$$ (c)

于是在边缘 $y = b/2$ 上的弯矩的表达式为

$$M_y = \frac{8qa^2}{\pi^3} \sum_{m=1, 3, 5, \ldots}^{\infty} \frac{1}{m^3} \sin \frac{m\pi x}{a} \frac{\alpha_m - \tanh \alpha_m (1 + \alpha_m \tanh \alpha_m)}{2\alpha_m - \tanh \alpha_m (\alpha_m \tanh \alpha_m - 1) - \coth \alpha_m (\alpha_m \coth \alpha_m - 1)].$$ (d)

1) 在这样的对称情况下，m 只应当取奇数。
以方形板为例，由式 (d) 求得固定边中点的弯矩值为

\[(M_y)_{y=b/2, x=a/2} = -0.084qa^2.\]

此弯矩的数值比前节求得的二边固定的方形板固定边中点的弯矩值 \(-0.070qa^2\) 要大些，表 32 中给出了各种不同比率值 \(a/b\) 下的固定边中点的弯矩值。

表 32 一边固定、其它三边简支的矩形板的挠度和弯矩（图 88）

<table>
<thead>
<tr>
<th>(b/a)</th>
<th>((\omega)_{x=a/2, y=0})</th>
<th>((M_y)_{x=a/2, y=0})</th>
<th>((M_m)_{y=a/2, y=0})</th>
<th>((M_y)_{x=a/2, y=0})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\infty)</td>
<td>0.0150qa^4/D</td>
<td>-0.125qa^4</td>
<td>0.125qa^4</td>
<td>0.037qa^4</td>
</tr>
<tr>
<td>2</td>
<td>0.0093qa^4/D</td>
<td>-0.122qa^4</td>
<td>0.094qa^4</td>
<td>0.047qa^4</td>
</tr>
<tr>
<td>1.5</td>
<td>0.0064qa^4/D</td>
<td>-0.112qa^4</td>
<td>0.059qa^4</td>
<td>0.048qa^4</td>
</tr>
<tr>
<td>1.4</td>
<td>0.0058qa^4/D</td>
<td>-0.106qa^4</td>
<td>0.053qa^4</td>
<td>0.047qa^4</td>
</tr>
<tr>
<td>1.3</td>
<td>0.0050qa^4/D</td>
<td>-0.104qa^4</td>
<td>0.056qa^4</td>
<td>0.045qa^4</td>
</tr>
<tr>
<td>1.2</td>
<td>0.0043qa^4/D</td>
<td>-0.098qa^4</td>
<td>0.049qa^4</td>
<td>0.044qa^4</td>
</tr>
<tr>
<td>1.1</td>
<td>0.0035qa^4/D</td>
<td>-0.092qa^4</td>
<td>0.041qa^4</td>
<td>0.042qa^4</td>
</tr>
<tr>
<td>1.0</td>
<td>0.0028qa^4/D</td>
<td>-0.084qa^4</td>
<td>0.034qa^4</td>
<td>0.039qa^4</td>
</tr>
<tr>
<td>1/1.1</td>
<td>0.0023qa^4/D</td>
<td>-0.092q/b^2</td>
<td>0.033q/b^2</td>
<td>0.043q/b^2</td>
</tr>
<tr>
<td>1/1.2</td>
<td>0.0019qa^4/D</td>
<td>-0.098q/b^2</td>
<td>0.032q/b^2</td>
<td>0.047q/b^2</td>
</tr>
<tr>
<td>1/1.3</td>
<td>0.0018qa^4/D</td>
<td>-0.103q/b^2</td>
<td>0.031q/b^2</td>
<td>0.050q/b^2</td>
</tr>
<tr>
<td>1/1.4</td>
<td>0.0017qa^4/D</td>
<td>-0.108q/b^2</td>
<td>0.030q/b^2</td>
<td>0.052q/b^2</td>
</tr>
<tr>
<td>1/1.5</td>
<td>0.0014qa^4/D</td>
<td>-0.111q/b^2</td>
<td>0.028q/b^2</td>
<td>0.054q/b^2</td>
</tr>
<tr>
<td>0.5</td>
<td>0.0049qa^4/D</td>
<td>-0.112q/b^2</td>
<td>0.023q/b^2</td>
<td>0.060q/b^2</td>
</tr>
<tr>
<td>0</td>
<td>0.0052qa^4/D</td>
<td>-0.125q/b^2</td>
<td>0.019q/b^2</td>
<td>0.062q/b^2</td>
</tr>
</tbody>
</table>

将常数 \(E_m\) 的值 (c) 代入式 (176)，得到约束弯矩所产生的挠度曲面。根据它，可得板中心的挠度为

\[(\omega_1)_{x=a/2, y=0} = \frac{a^4}{4\pi^2D} \sum_{m=1, 3, 5, \ldots} \frac{(-1)^{m-1/2} E_m \alpha_m \tanh \alpha_m}{m^2 \cosh \alpha_m}.\]

对于方形板，此级数的头二项给出

\[(\omega_1)_{x=a/2, y=0} = 0.00127 \frac{qa^4}{D}.\]

由简支方形板的挠度 (表 8) 减去此挠度，得到承受均匀载荷，一边固定的方形板中心的挠度为.
\[
\langle \nu \rangle_{z=\alpha/2, y=0} = 0.00279 \frac{q a^4}{D}.
\]

对于其他的比值 \(b/a \)，挠度与弯矩的值可用相似的方法求得。在表32中列出了这些数值。

承受静水压力的板

如果板承受静水压力，如图89所示，

那么在四边简支的情况下，边缘 \(y = b/2 \) 上的斜度为 [见上节 (1) 式]：

\[
\left(\frac{\partial \nu}{\partial y} \right)_{y=b/2} = \frac{q_b a^3}{\pi^4 D} \sum_{m=1}^{\infty} \frac{(-1)^{m+1}}{m^4} \left(\alpha_m - \tanh \alpha_m \right)
- \alpha_m \tanh^2 \alpha_m \sin \frac{m \pi x}{a}.
\]

沿边缘 \(y = b/2 \) 分布的弯矩所产生的斜度为：

\[
\left(\frac{\partial \nu}{\partial y} \right)_{y=b/2} = \frac{a}{4 \pi D} \sum_{m=1}^{\infty} \frac{1}{m} \sin \frac{m \pi x}{a} E_m \left(\alpha_m \tanh^2 \alpha_m - \tanh \alpha_m \right.
+ \alpha_m \coth^2 \alpha_m - \coth \alpha_m - 2 \alpha_m \right).
\]

根据此边缘的约束条件，使式 (g) 等于式 (f) 并用负号，得到

\[
E_m = - \frac{4 q a^2 (1 - 1)^{m+1}}{x^3}
\times \frac{\alpha_m - \tanh \alpha_m (1 + \alpha_m \tanh \alpha_m)}{\alpha_m \tanh^2 \alpha_m - \tanh \alpha_m + \alpha_m \coth^2 \alpha_m - \coth \alpha_m - 2 \alpha_m}.
\]

* 204 *
所以，沿边缘 \(y = b/2 \) 的弯矩 \(M_y \) 的表达式为

\[
(M_y)_{y=b/2} = \frac{1}{\pi^3} \sum_{m=1}^{\infty} \frac{(-1)^{m+1}}{m^3} \sin \frac{mnx}{a} \times \frac{\sigma_m - \tanh \sigma_m (1 + \sigma_m \tanh \sigma_m)}{2\sigma_m - \tanh \sigma_m (\sigma_m \tanh \sigma_m - 1) - \coth \sigma_m (\sigma_m \coth \sigma_m - 1)}.
\]

这个级数收敛得很快，因此可以立即计算出固支边任一一点的弯矩值。以方形板为例，令 \(x = a/2 \)，得到固支边中点的弯矩值

\[
(M_y)_{y=b/2, x=a/2} = -0.042q_o a^2.
\]

很自然的，它等于表 32 中承受均匀载荷的方形板的弯矩值之半。在表 33 中对各种不同比值 \(b/a \) 列出了固支边的若干点上的弯矩值 \((M_y)_{y=b/2}\)。可以看出，随着比 \(b/a \) 的减小，固支边上的 \(M_y \) 值很快地趋近于数值 \(-q_0 b^2 x/8a\)。这是承受强度为 \(q_o a/4 \) 的均布载荷、长度为 \(b \) 的板条固支端上的弯矩值。

<table>
<thead>
<tr>
<th>(b/a)</th>
<th>(x = a/4)</th>
<th>(x = a/2)</th>
<th>(x = 3/4a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\infty)</td>
<td>(-0.036q_o a^2)</td>
<td>(-0.062q_o a^2)</td>
<td>(-0.055q_o a^2)</td>
</tr>
<tr>
<td>(2)</td>
<td>(-0.038q_o a^2)</td>
<td>(-0.061q_o a^2)</td>
<td>(-0.053q_o a^2)</td>
</tr>
<tr>
<td>(3/2)</td>
<td>(-0.034q_o a^2)</td>
<td>(-0.056q_o a^2)</td>
<td>(-0.050q_o a^2)</td>
</tr>
<tr>
<td>(1)</td>
<td>(-0.025q_o a^2)</td>
<td>(-0.042q_o a^2)</td>
<td>(-0.040q_o a^2)</td>
</tr>
<tr>
<td>(2/3)</td>
<td>(-0.030q_o b^2)</td>
<td>(-0.056q_o b^2)</td>
<td>(-0.060q_o b^2)</td>
</tr>
<tr>
<td>(1/2)</td>
<td>(-0.031q_o b^2)</td>
<td>(-0.061q_o b^2)</td>
<td>(-0.073q_o b^2)</td>
</tr>
<tr>
<td>(0)</td>
<td>(-0.031q_o b^2)</td>
<td>(-0.062q_o b^2)</td>
<td>(-0.094q_o b^2)</td>
</tr>
</tbody>
</table>

现在考虑边缘 \(x = a \) 为固支并承受如前所述的静水压力载荷的矩形板（图 90）。

将采样方法应用到这种情况，我们可以把板的挠度曲面写成如下形式：

\[
w = \frac{q_o x}{384D} (16y^4 - 24b^2 y^2 + 5b^4) + \sum_{m=1, 5, 9, \ldots} X_m \cos \frac{m \pi y}{b}, \quad (i)
\]

\[\cdot 205 \cdot\]
式中

\[X_m = A_m \cosh \frac{m\pi x}{b} + B_m \frac{m\pi x}{b} \sinh \frac{m\pi x}{b} + C_m \sinh \frac{m\pi x}{b} + D_m \frac{m\pi x}{b} \cosh \frac{m\pi x}{b}. \]

式(i)满足板的弯曲微分方程以及边界 \(y = \pm \frac{b}{2} \) 上的边界条件。

把式(i) 围括弧中的式子展开成级数:

\[\frac{1536b^4}{\pi^2} \sum_{m=1, 3, 5, \ldots}^\infty (-1)^{(m-1)/2} \frac{1}{m^5} \cos \frac{m\pi y}{b}, \]

根据其他二边的边界条件:

\[(u)_{x=0} = 0, \quad \left(\frac{\partial u}{\partial x^2} \right)_{x=0} = 0; \quad (i) \]

\[(u)_{x=a} = 0, \quad \left(\frac{\partial u}{\partial x} \right)_{x=a} = 0 \]

就能求出系数 \(A_m, B_m, \ldots \)。把这些系数代入式(i) 就得到了完整的解。由这式子计算所得的挠度与弯矩列在表 34 中。

44. 四边固支的矩形板

在讨论这个问题时，我们所用的 \(^1\)

表 34 承受静水压力载荷、边缘 $x = a$ 夹支的矩形板的
挠度与弯矩 (图 90)

$$\nu = 0.3$$

<table>
<thead>
<tr>
<th>b/a</th>
<th>$(w)_{x=a/2, y=0}$</th>
<th>$(M_x)_{x=a/2, y=0}$</th>
<th>$(M_y)_{x=a/2, y=0}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>∞</td>
<td>$0.0024q_o a^4/D$</td>
<td>$0.029q_o a^2$</td>
<td>$0.009q_o a^2$</td>
</tr>
<tr>
<td>2</td>
<td>$0.0023q_o a^4/D$</td>
<td>$0.026q_o a^2$</td>
<td>$0.011q_o a^2$</td>
</tr>
<tr>
<td>1.5</td>
<td>$0.0019q_o a^4/D$</td>
<td>$0.025q_o a^2$</td>
<td>$0.013q_o a^2$</td>
</tr>
<tr>
<td>1.0</td>
<td>$0.003q_o a^4/D$</td>
<td>$0.019q_o a^2$</td>
<td>$0.016q_o a^2$</td>
</tr>
<tr>
<td>2/3</td>
<td>$0.003q_o a^4/D$</td>
<td>$0.028q_o a^2$</td>
<td>$0.034q_o a^2$</td>
</tr>
<tr>
<td>0.5</td>
<td>$0.0045q_o a^4/D$</td>
<td>$0.024q_o a^2$</td>
<td>$0.046q_o a^2$</td>
</tr>
<tr>
<td>0</td>
<td>$0.005q_o a^4/D$</td>
<td>$0.019q_o a^2$</td>
<td>$0.062q_o a^2$</td>
</tr>
</tbody>
</table>

方法与以前研究的问题中所用的方法相同。首先对简支矩形板问题求解，然后在简支矩形板的挠度上迭加沿各边缘分布的弯矩所产生的挠度（参阅第 41 页）。这些弯矩可这样求法：使在固支板的边界上满足条件 $\partial w/ \partial n = 0$，这个方法能应用于任何一种侧向受载情况。

坐标轴对称，由式（139）所给出的简支板的挠度在新的坐标系中可写成如下形式：

\[
\begin{align*}
\varepsilon &= \sum_{m=1, 3, 5, \ldots}^{\infty} \frac{(-1)^{m-1/2}}{m^4} \cos \frac{m\pi y}{a} \\
&\times \left(1 - \frac{\alpha_m \tanh \alpha_m + 2}{2\cosh \alpha_m} \cosh \frac{m\pi y}{a} \\
&+ \frac{1}{2\cosh \alpha_m} \frac{m\pi y}{a} \sinh \frac{m\pi y}{a} \right),
\end{align*}
\] (a)

式中 \(\alpha_m = \frac{m\pi b}{2a} \)。在边缘 \(y = \pm b/2 \) 上，板的旋转为

\[
\begin{align*}
\left(\frac{\partial \varepsilon}{\partial y} \right)_{y=\pm b/2} &= \frac{2ga^3}{\pi^4 D} \sum_{m=1, 3, 5, \ldots}^{\infty} \frac{(-1)^{m-1/2}}{m^4} \cos \frac{m\pi x}{a} \\
&\times \left[\alpha_m - \tanh \alpha_m (1 + \alpha_m \tanh \alpha_m) \right] = \frac{2ga^3}{\pi^4 D} \\
&\times \sum_{m=1, 3, 5, \ldots}^{\infty} \frac{(-1)^{m-1/2}}{m^4} \cos \frac{m\pi x}{a} \left(\frac{\alpha_m}{\cosh^2 \alpha_m} - \tanh \alpha_m \right). \quad (b)
\end{align*}
\]

现在考虑沿边缘 \(y = \pm b/2 \) 分布的弯矩使板所产生的挠度，考虑到对称，可用下列级数来表示这些弯矩：

\[
\begin{align*}
(M_y)_{y=\pm b/2} &= \sum_{m=1, 3, 5, \ldots}^{\infty} (-1)^{m-1/2} E_m \cos \frac{m\pi x}{a}. \quad (c)
\end{align*}
\]

在式（173）中以 \(x + a/2 \) 代替 \(x \)，并取 \(m = 1, 3, 5, \ldots \)，就得到
相应的挠度，即

$$
\nu_1 = - \frac{a^2}{2\pi^2 D} \sum_{m=1, 3, 5, \ldots} E_m \frac{(-1)^{(m-1)/2}}{m^2 \cosh \alpha_m} \cos \frac{m\pi x}{a}
\times \left(\frac{m\pi y}{a} \sinh \frac{m\pi y}{a} - \alpha_m \tanh \alpha_m \cosh \frac{m\pi y}{a} \right).
$$
(d)

对应于此挠度，边缘 \(y = \pm b/2 \) 处的旋转为

$$
\left(\frac{\partial \nu_1}{\partial y} \right)_{y=\pm b/2} = - \frac{a}{2\pi D} \sum_{m=1, 3, 5, \ldots} E_m \frac{(-1)^{(m-1)/2}}{m} \cos \frac{m\pi x}{a}
\times \left(\tanh \alpha_m + \frac{\alpha_m}{\cosh^2 \alpha_m} \right).
$$
(e)

在以下的讨论中，与 \(y \) 轴平行的边缘处的旋转也是需要的。将(d)式对 \(\tau \) 求导数，并令 \(x = \pm a/2 \)，即得

$$
\left(\frac{\partial \nu_1}{\partial x} \right)_{x=\pm a/2} = \frac{a}{2\pi D} \sum_{m=1, 3, 5, \ldots} E_m \frac{1}{m \cosh \alpha_m} \left(\frac{m\pi y}{a} \sinh \frac{m\pi y}{a} - \alpha_m \tanh \alpha_m \cosh \frac{m\pi y}{a} \right)
\times \left(b \sinh \alpha_m \cosh \frac{m\pi y}{a} - 2y \cosh \alpha_m \sinh \frac{m\pi y}{a} \right).
$$
(f)

括弧内的式子是 \(y \) 的偶函数，故在边缘 \(y = \pm b/2 \) 上为零。这样的函数可以写成级数

$$
\sum_{r=1, 3, 5, \ldots} A_r \cos \frac{r\pi y}{b}.
$$
(g)

式中系数 \(A_r \) 可用如下式子计算：

$$
A_r = \frac{2}{b} \int_{-b/2}^{+b/2} \left(b \sinh \alpha_m \cosh \frac{m\pi y}{a} - 2y \cosh \alpha_m \sinh \frac{m\pi y}{a} \right)
\times \cos \frac{r\pi y}{b} \ dy,
$$

由此得到：

$$
A_r = \frac{16ia(-1)^{(r-1)/2}}{m^2 \pi^2} \frac{b^2}{a^2} \frac{1}{\left(\frac{b^2}{a^2} + \frac{i^2}{m^2} \right)^2} \cosh^2 \alpha_m.
$$
将此式代入式（g）和（f），即得：

\[
\left(\frac{\partial w_1}{\partial x} \right)_{x=a/2} = -\frac{4 b^2}{\pi^2 D \alpha} \sum_{m=1, 3, 5, \ldots}^{\infty} \frac{E_m}{m^3} \\
\times \sum_{r=1, 3, 5, \ldots}^{\infty} \frac{i(-1)^{(r-1)/2} \pi y}{(a^2 + i^2 r^2 m^2)}.
\]

（h）

同样地，可以得到沿边缘 \(x = \pm a/2 \) 分布的弯矩 \(M_x \) 所产生的挠度 \(w_2 \)，以及与此挠度相对应的边缘处的旋转。假设 \(M_x \) 对称分布，并且写成级数形式：

\[
(M_x)_{x=\pm a/2} = \sum_{m=1, 3, 5, \ldots}^{\infty} (-1)^{(m-1)/2} F_m \cos \frac{m \pi y}{b},
\]

（i）

应用式（c）与（h），求得对应于此弯矩分布的边缘处的旋转：

\[
\left(\frac{\partial w_2}{\partial x} \right)_{x=a/2} = -\frac{b}{2 \pi D} \sum_{m=1, 3, 5, \ldots}^{\infty} \frac{F_m}{m} \frac{(-1)^{(m-1)/2} \cos \frac{m \pi y}{b}}{m}
\times \left(\tanh \beta_m + \frac{\beta_m}{\cosh^2 \beta_m} \right),
\]

（j）

和

\[
\left(\frac{\partial w_2}{\partial y} \right)_{y=b/2} = -\frac{4 a^2}{\pi^2 D \beta} \sum_{m=1, 3, 5, \ldots}^{\infty} \frac{E_m}{m^3}
\times \sum_{i=1, 3, 5, \ldots}^{\infty} \frac{i(-1)^{(i-1)/2} \pi x}{(a^2 + i^2 r^2 m^2)} \cos \frac{i \pi x}{a},
\]

（k）

式中 \(\beta_m = m \pi a / 2 b \).

当弯矩（c）和（i）同时作用时，板的边缘处的旋转是由叠加方法得到的。以边缘 \(y = b/2 \) 为例，得到：

\[
\left(\frac{\partial w_1}{\partial y} + \frac{\partial w_2}{\partial y} \right)_{y=b/2} = -\frac{a}{2 \pi D} \sum_{m=1, 3, 5, \ldots}^{\infty} \frac{E_m}{m} \frac{(-1)^{(m-1)/2} \cos \frac{m \pi x}{a}}{m}
\times \left(\tanh \alpha_m + \frac{\alpha_m}{\cosh^2 \alpha_m} \right)
\times -\frac{4 a^2}{\pi^2 D \beta} \sum_{m=1, 3, 5, \ldots}^{\infty} \frac{E_m}{m^3}
\times \sum_{r=1, 3, 5, \ldots}^{\infty} \frac{i(-1)^{(r-1)/2} \pi x}{(a^2 + i^2 r^2 m^2)} \cos \frac{i \pi x}{a}.
\]

（1）
有了式 (b) 和 (i)，我们就能推出计算级数 (c) 和 (i) 中的系数 \(E_m \) 和 \(F_m \) 的方程，(c)和(i)表示了作用于夹支板边缘的弯矩。在夹支板的情况下，边缘是不能转动的。所以，对于边缘 \(y = \pm b/2 \) 有

\[
\left(\frac{\partial w}{\partial y} \right)_{y=b/2} + \left(\frac{\partial w_1}{\partial y} + \frac{\partial w_2}{\partial y} \right)_{y=b/2} = 0.
\]

同样地，对于边缘 \(x = \pm a/2 \) 有

\[
\left(\frac{\partial w}{\partial x} \right)_{x=a/2} + \left(\frac{\partial w_1}{\partial x} + \frac{\partial w_2}{\partial x} \right)_{x=a/2} = 0.
\]

如将式 (b) 和 (i) 代入方程 (m)，并且将包含共同因子 \(\cos(i\pi x/a) \) 的项合并在一起，则，由于方程 (m) 对于任意 \(x \) 值都成立，可知对于每一 \(i \) 值，乘有因子 \(\cos(i\pi x/a) \) 的系数一定等于零。这样，我们就得到下列计算系数 \(E \) 和 \(F \) 并包含无穷多个线性方程的方程组：

\[
\frac{4q a^2}{\pi^3} \frac{1}{i^4} \left(\frac{\alpha_i}{\cosh^2 \alpha_i} - \tanh \alpha_i \right) = \frac{E_i}{i} \left(\tanh \alpha_i + \frac{\alpha_i}{\cosh^2 \alpha_i} \right) - \frac{8ia}{\pi b} \sum_{m=1, 3, 5, \ldots}^{\infty} \frac{F_m}{m^3} \frac{1}{\left(\frac{a^2}{b^2} + \frac{i^2}{m^2} \right)^2} = 0.
\]

由方程 (n)，也可得到一类似的方程组。在每一特殊情况中，可用逐次逼近法由这两个方程组求出系数 \(E_1, E_3, \ldots, F_1, F_3, \ldots \)。为了说明这个方法，我们考虑方形板的情形。在这样的情形中，正方形四边上的弯矩分布是相同的，所以 \(E_i = F_i \) 并且上述两个方程组是等同的。这些方程的形式是：

\[
E_i \left(\tanh \alpha_i + \frac{\alpha_i}{\cosh^2 \alpha_i} \right) + \frac{8i}{\pi} \sum_{m=1, 3, 5, \ldots}^{\infty} \frac{E_m}{m^3} \frac{1}{\left(1 + \frac{i^2}{m^2} \right)^2} = \frac{4q a^2}{\pi^3} \frac{1}{i^4} \left(\frac{\alpha_i}{\cosh^2 \alpha_i} - \tanh \alpha_i \right).
\]

代入系数的数值到此式中，并且只考虑头四项系数，得到下列具有

1）认为 (l) 式中求和的顺序是可交换的。

* 211 *
四个未知数 E_1, E_1, E_5 和 E_7 的四个方程的方程组:

$$
\begin{align*}
1.8033E_1 + 0.0764E_3 + 0.0188E_5 + 0.0071E_7 = 0.6677K, \\
0.0764E_3 + 0.4045E_1 + 0.0330E_5 + 0.0159E_7 = 0.01232K, \\
0.0188E_5 + 0.0330E_3 + 0.2255E_1 + 0.0163E_7 = 0.00160K, \\
0.0071E_5 + 0.0159E_7 + 0.0163E_3 + 0.1558E_1 = 0.00042K.
\end{align*}
$$

其中 $K = -4q a^2/x^2$。可以看到，对角线上各项的系数最大。因此，在方程组 (p) 的左端只考虑黑线左侧的项，就得到了系数 E_1, \cdots, E_7 的首次近似。用这种方法，由第一个方程得到 $E_1 = 0.3700K$，把它代入第二个方程，得到 $E_3 = -0.0395K$。把 E_1 和 E_3 代入第三个方程，求得 $E_5 = -0.0180K$。由最后一个方程得到 $E_7 = -0.0083K$。把这些首次近似值代入方程 (p) 中黑线右侧的项，就能计算第二次近似，它们是 $E_1 = 0.3722K, E_3 = -0.0380K, E_5 = -0.0178K, E_7 = -0.0085K$。再次重复这种计算，则得第三次近似，等等。

将计算所得的系数 E_1, E_3, \cdots 的值代人级数 (c)，就得到板的夹支边上的弯矩。这些弯矩的最大值 (绝对值) 在正方形四边的中点。根据所取的四个方程 (p)，得到此值为:

$$
|M|_{y=\pm a, x=0} = |E_1 - E_3 + E_5 - E_7| = 0.0517qa^2.
$$

这个结果与布帕诺夫 (Bybnof) 的表 [由与方程组 (p) 相似，但方程数目大得多的方程组计算得到的] 所作的比较表明，只取四个方程 (p)，所得到的最大弯矩的误差小于百分之一。可以看出，对于弯矩我们得到的是一个正负号相同的级数，其误差的大小决定于最后计算所得的系数 E_1, E_3, \cdots 的值。

将 E_1, E_3, \cdots 的值代入式 (d)，就得到板沿边缘 $y = \pm b/2$ 分布的弯矩所产生的挠度。对于板的中心 $(x = y = 0)$ 此挠度为:

$$
(\omega)_{x=y=0} = \frac{a^2}{2\pi^2D} \sum_{m=1,3,5,\cdots} E_m(1)^{(m-1)/2} \alpha_m \frac{\tanh \alpha_m}{m^2 \cosh \alpha_m}
= -0.00140 \frac{q a^4}{D}.
$$
为了把沿边界 \(x = \pm a/2 \) 分布的弯矩的作用考虑进去，应将以上结果乘以 2。将这个弯矩与简支方形板中心的弯矩（表 8）相加，便得到承受均匀载荷的简支方形板的中心的挠度：

\[
(w)_{max} = (0.00406 - 0.00280) \frac{qa^4}{D} = 0.00126 \frac{qa^4}{D}.
\]

对于任意长宽比的矩形板，可以进行类似的计算。在表 35 中列出了这些计算的结果。

表 35 承受均匀载荷的简支矩形板的挠度与弯矩（图 91）

\(v = 0.3 \)

<table>
<thead>
<tr>
<th>(b/a)</th>
<th>((w)_{x=0, \ y=0})</th>
<th>((M_x)_{x=a/2, \ y=0})</th>
<th>((M_y)_{x=0, \ y=a/2})</th>
<th>((M_z)_{x=a/2, \ y=0})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>0.00126qa^4/D</td>
<td>-0.0513qa^4</td>
<td>-0.0513qa^4</td>
<td>0.0231qa^4</td>
</tr>
<tr>
<td>1.1</td>
<td>0.0015qa^4/D</td>
<td>-0.0581qa^4</td>
<td>-0.0598qa^4</td>
<td>0.0264qa^4</td>
</tr>
<tr>
<td>1.2</td>
<td>0.00172qa^4/D</td>
<td>-0.0639qa^4</td>
<td>-0.0554qa^4</td>
<td>0.0299qa^4</td>
</tr>
<tr>
<td>1.3</td>
<td>0.0019qa^4/D</td>
<td>-0.0687qa^4</td>
<td>-0.0563qa^4</td>
<td>0.0327qa^4</td>
</tr>
<tr>
<td>1.4</td>
<td>0.00207qa^4/D</td>
<td>-0.0726qa^4</td>
<td>-0.0568qa^4</td>
<td>0.0349qa^4</td>
</tr>
<tr>
<td>1.5</td>
<td>0.0022qa^4/D</td>
<td>-0.0757qa^4</td>
<td>-0.0570qa^4</td>
<td>0.0368qa^3</td>
</tr>
<tr>
<td>1.6</td>
<td>0.0024qa^4/D</td>
<td>-0.0780qa^4</td>
<td>-0.0571qa^4</td>
<td>0.0381qa^4</td>
</tr>
<tr>
<td>1.7</td>
<td>0.00238qa^4/D</td>
<td>-0.0799qa^4</td>
<td>-0.0571qa^4</td>
<td>0.0392qa^4</td>
</tr>
<tr>
<td>1.8</td>
<td>0.00245qa^4/D</td>
<td>-0.0812qa^4</td>
<td>-0.0571qa^4</td>
<td>0.0401qa^4</td>
</tr>
<tr>
<td>1.9</td>
<td>0.00249qa^4/D</td>
<td>-0.0822qa^4</td>
<td>-0.0571qa^4</td>
<td>0.0401qa^4</td>
</tr>
<tr>
<td>2.0</td>
<td>0.00254qa^4/D</td>
<td>-0.0829qa^4</td>
<td>-0.0571qa^4</td>
<td>0.0412qa^4</td>
</tr>
<tr>
<td>(\infty)</td>
<td>0.0026qa^4/D</td>
<td>-0.0834qa^4</td>
<td>-0.0571qa^4</td>
<td>0.0417qa^4</td>
</tr>
</tbody>
</table>

承受静水压力的板，将依照图 92 分布的压力的强度写成如下形式：

\[
q = \frac{q_0}{2} + \frac{q_0}{2} \frac{x}{a},
\]

我们知道，项 \(q_0/2 \) 对板挠度的影响已经由前节的解给出。这样，留下要考虑的是压力 \(q_0x/2a \)。承受这种载荷的简支板的挠度曲面，可以立即从第 42 节中式 (a) 和式 (k) 迭加而得到。在式 (a) 中令 \(q = -q_0/2 \)，并用式 (a) 和 (k) 中用 \(x + a/2 \) 代替 \(x \) 以适

1) 此表是 T. H. Evans 计算的；见 J. Appl. Mechanics, 第 6 卷, 第 A-7 页, 1939 年。

* 213 *
合于新坐标，我们得到对 x 轴对称，对 y 轴反对称的挠度曲面：

$$
u = \frac{2q_{0}a^{4}}{D} \sum_{m=2,4,6,\ldots}^{\infty} \left(\frac{m^{2}+1}{m^{2}} \right) \left(2 - \frac{2 + \alpha_{m} \tanh \alpha_{m}}{\cosh \alpha_{m}} \right) \cosh \frac{m \pi y}{a}$$

$$+ \frac{1}{\cosh \alpha_{m}} \sinh \frac{m \pi y}{a} \sin \frac{m \pi x}{a}.$$

因此，为了消去板边界上的斜度，应当作用有下列形式的边缘力矩：

$$(M_{x})_{y=\pm b/2} = \pm \sum_{m=1,3,5,\ldots}^{\infty} (-1)^{(m-1)/2} E_{m} \cos \frac{m \pi y}{b},$$

$$(M_{y})_{y=\pm b/2} = \sum_{m=1,3,5,\ldots}^{\infty} (-1)^{m/2-1} F_{m} \sin \frac{m \pi x}{a}.$$

同承受均匀分布载荷的情况一样，可由一线性方程组计算系数 E_{m} 与 F_{m}. 最后，必须将同时作用着的载荷 $q_{0}b/2a$ 及弯矩 (s) 所产生的挠度与承受强度为 $q_{0}/2$ 的均匀载荷的夹支板的挠度相加。在表 36 中给出了用这种方法所得到的数字结果。

承受中心载荷的板 作为第三个例子，考虑承受集中于中心的载荷 P 的夹支矩形板的弯曲（图 93）。仍然首先考虑简支板的情况。在式 (146) 中，以 $a/2$ 代入 ξ，以 $x + a/2$ 代入 x，我们

表 36 承受静水压力载荷的矩形板的挠度与弯矩（图 92）

\(\nu = 0.3 \)

<table>
<thead>
<tr>
<th>(b/a)</th>
<th>(r = 0, \quad y = 0)</th>
<th>(x = s/2, \quad y = 0)</th>
<th>(x = -a/2, \quad y = 0)</th>
<th>(x = 0, \quad y = \pm b/2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(w = \alpha \frac{q_0 a^4}{D} \alpha)</td>
<td>(\beta_1)</td>
<td>(\beta_2)</td>
<td>(\gamma_1)</td>
<td>(\gamma_2)</td>
</tr>
<tr>
<td>0.5</td>
<td>0.000080</td>
<td>0.00198</td>
<td>0.00515</td>
<td>-0.0115</td>
</tr>
<tr>
<td>2/3</td>
<td>0.000217</td>
<td>0.00451</td>
<td>0.00817</td>
<td>-0.0187</td>
</tr>
<tr>
<td>1.0</td>
<td>0.00063</td>
<td>0.0115</td>
<td>0.0115</td>
<td>-0.0334</td>
</tr>
<tr>
<td>1.5</td>
<td>0.00110</td>
<td>0.0184</td>
<td>0.0102</td>
<td>-0.0462</td>
</tr>
<tr>
<td>(\infty)</td>
<td>0.00130</td>
<td>0.0208</td>
<td>0.0063</td>
<td>-0.0500</td>
</tr>
</tbody>
</table>

图 93

得到挠度曲面（对 \(y > 0 \) 有效）

\[
w = \frac{P a^2}{2 \pi^2 D} \sum_{m=1, 3, 5, \ldots} \frac{1}{m^3} \cos \frac{m \pi y}{a} \left[\left(\frac{\tanh \alpha_m - \alpha_m}{\cosh^2 \alpha_m} \right) \cosh \frac{m \pi y}{a} \right. \\
- \left. \sinh \frac{m \pi y}{a} - \frac{m \pi y}{a} \tanh \alpha_m \sinh \frac{m \pi y}{a} + \frac{m \pi y}{a} \cosh \frac{m \pi y}{a} \right].
\]

沿边缘 \(y = b/2 \)，转角为

\[
\left(\frac{\partial \omega}{\partial y} \right)_{y=b/2} = -\frac{P a}{2 \pi^2 D} \sum_{m=1, 3, 5, \ldots} \frac{1}{m^2} \cos \frac{m \pi x}{a} \frac{\alpha_m \tanh \alpha_m}{\cosh \alpha_m}.
\]

计算夹支边上弯矩所用的方法同承受均布载荷的情况一样，并且得到相同的二方程组 (m) 和 (n)。\(\omega_1 \) 和 \(\omega_2 \) 的表达式也因此均布载荷的情况相同，需要改变的只是这些方程的第一项。以式 (t) 代...
替方程 (m) 中的 \((\partial w / \partial y)_{y=b/2}\)，方程 (n) 中的 \((\partial w / \partial x)_{x=a/2}\) 也
以一个相应式子代替。

对于方形板的特殊情形，限于取四个方程，我们发现各方程的
左端与方程 (p) 相同。右端由式 (i) 求得，于是有

\[
1.8033E_1 + 0.0764E_3 + 0.0188E_5 + 0.0071E_7 = -0.1828P, \\
0.0764E_1 + 0.4045E_3 + 0.0330E_5 + 0.0159E_7 = +0.00299P, \\
0.0188E_1 + 0.0330E_3 + 0.2255E_5 + 0.0163E_7 = -0.000081P, \\
0.0071E_1 + 0.0159E_3 + 0.0163E_5 + 0.1558E_7 = +0.000005P.
\]

同以前一样，用逐次逼近法解此方程组，求得

\[
E_1 = -0.1025P, \quad E_3 = 0.0263P, \\
E_5 = 0.0042P, \quad E_7 = 0.0015P.
\]

将这些值代入式 (e)，就能得到边缘 \(y = b/2\) 中点的弯矩。更精
确的计算\(^1\)给出

\[
(M_y)_{y=b/2, x=0} = -0.1257P.
\]

将此结果与承受均匀载荷的方形板比较，可知均匀载荷在四边中
点所生的弯矩小于数值相同、集中于中心的载荷所产生的弯矩
之半。

有了夹支边上的弯矩，我们就能应用式 (d) 计算其相应的挠
度。将这些弯矩所产生的挠度与简支板的挠度迭加，便得到固支
板的挠度。用同样的迭加法，可得到有关承受中心集中载荷的固
支板挠度的其他资料\(^2\)。假如载荷 \(P\) 均匀分布在很小的圆或矩形
面上，受载面积中心 \(x = y = 0\) 的弯矩可以由迭加简支板的中

\[^{1}\) 这个计算所用的方程不是以上所取的四个，而是七个。
^{2}\) 这是 Dana Young 计算的，见 J. Appl. Mechanics, 第 6 卷，第 A-114 页，
1939 年。为了使计算所用的弯矩精确到四位数字，需要在方程 (m) 和 (n) 中应
用七个系数 \(F\) 和七个系数 \(F\)，进一步解此问题，为 H. Marcus 所给出，"Die
Theorie elastischer Gewebe", 第二版，第 155 页，柏林，1932 年；J. Bartz, Z.
Mechanics, 第 6 卷，第 A-168 页，1939 年；C. J. Thorne 和 J. V. Atanasoff,
Iowa State Coll. J. Sci., 第 14 卷，第 333 页，1940 年，R. G. Sturte 和 R.
L. Moore 以实验研究此问题，见 J. Appl. Mechanics, 第 1 卷，第 A-75
页，1937 年。\]
心弯矩 | 见式 (157) 和 (167) | 和某些附加弯矩

\[m_x = \beta_1 P, \quad m_y = \beta_2 P \]

而得到。在表 37 中给出了这些弯矩的值，同时也给出了板的最大挠度及最大夹支弯矩（绝对值）的数据。如第 202 页所述，在可移或荷的情况下，最大夹支弯矩的值可达到 \(-P/\pi = -0.3183P\)。

表 37 中心受载的四点矩形板中心的挠度和附加弯矩以及长边中点的弯矩 (图 93)

\[\nu = 0.3 \]

<table>
<thead>
<tr>
<th>b/a</th>
<th>((w)_{x=y=0\text{;}}\alpha = \frac{P\alpha^2}{D})</th>
<th>((M_y)_{x=0\text{;}y=b/2;} = \gamma P)</th>
<th>校正弯矩</th>
<th>((m_x)_{x=0\text{;}y=b;} = \beta_1 P)</th>
<th>((m_y)_{x=0\text{;}y=b;} = \beta_2 P)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>0.00561 \text{;h}</td>
<td>-0.1237 \text{;h}</td>
<td>-0.0536 \text{;h}</td>
<td>-0.0536 \text{;h}</td>
<td>-0.0536 \text{;h}</td>
</tr>
<tr>
<td>1.2</td>
<td>0.00647 \text{;h}</td>
<td>-0.1490 \text{;h}</td>
<td>-0.0578 \text{;h}</td>
<td>-0.0526 \text{;h}</td>
<td>-0.0526 \text{;h}</td>
</tr>
<tr>
<td>1.4</td>
<td>0.00691 \text{;h}</td>
<td>-0.1604 \text{;h}</td>
<td>-0.0618 \text{;h}</td>
<td>-0.0517 \text{;h}</td>
<td>-0.0517 \text{;h}</td>
</tr>
<tr>
<td>1.6</td>
<td>0.00712 \text{;h}</td>
<td>-0.1651 \text{;h}</td>
<td>-0.0653 \text{;h}</td>
<td>-0.0510 \text{;h}</td>
<td>-0.0510 \text{;h}</td>
</tr>
<tr>
<td>1.8</td>
<td>0.00720 \text{;h}</td>
<td>-0.1667 \text{;h}</td>
<td>-0.0683 \text{;h}</td>
<td>-0.0504 \text{;h}</td>
<td>-0.0504 \text{;h}</td>
</tr>
<tr>
<td>2.0</td>
<td>0.00722 \text{;h}</td>
<td>-0.1674 \text{;h}</td>
<td>-0.0710 \text{;h}</td>
<td>-0.0500 \text{;h}</td>
<td>-0.0500 \text{;h}</td>
</tr>
<tr>
<td>\infty</td>
<td>0.00725 \text{;h}</td>
<td>-0.168 \text{;h}</td>
<td>-0.0742 \text{;h}</td>
<td>-0.0484 \text{;h}</td>
<td>-0.0484 \text{;h}</td>
</tr>
</tbody>
</table>

45. 一边或二邻边简支而其余边固支的矩形板

我们首先讨论边缘 \(y = 0 \) 简支、其他边缘夹支的板（图 94）。不论载荷在所
给的板 $ssst$ 上如何分布，我们总能够把这个板作作为承受对于线 ss 反对称的载荷，四边夹支的板 $sstst$ 的一半。在上面 ss 上，挠度与弯矩为零。这样，所讨论的问题就化成了第 44 节中已经解决的问题。表 38 中给出了两种载荷分布情况下的挠度与弯矩的数据。在第 256 页上给出了更详细的弯矩值的表以供设计无梁楼板之用。

<table>
<thead>
<tr>
<th>载荷类型</th>
<th>b/a</th>
<th>$(w)_{x=a, y=b}/b$</th>
<th>$(M_x)_{x=a, y=b}$</th>
<th>$(M_y)_{x=a, y=b}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>均匀载荷 q</td>
<td>0.5</td>
<td>0.00449qb^4/D</td>
<td>-0.0786qb^4</td>
<td>-0.1148qb^4</td>
</tr>
<tr>
<td></td>
<td>0.75</td>
<td>0.00286qb^4/D</td>
<td>-0.0730qb^4</td>
<td>-0.0838qb^4</td>
</tr>
<tr>
<td></td>
<td>1.0</td>
<td>0.00157qb^4/D</td>
<td>-0.060qb^4</td>
<td>-0.0551qb^4</td>
</tr>
<tr>
<td></td>
<td>4/3</td>
<td>0.00215qb^4/D</td>
<td>-0.0751qb^4</td>
<td>-0.0571qb^4</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0.00257qb^4/D</td>
<td>-0.0837qb^4</td>
<td>-0.0571qb^4</td>
</tr>
<tr>
<td>静水压力 q_0y/b</td>
<td>0.5</td>
<td>0.00202q_0b^4/D</td>
<td>-0.0368q_0b^4</td>
<td>-0.0623q_0b^4</td>
</tr>
<tr>
<td></td>
<td>0.75</td>
<td>0.00132q_0b^4/D</td>
<td>-0.0344q_0b^4</td>
<td>-0.0484q_0b^4</td>
</tr>
<tr>
<td></td>
<td>1.0</td>
<td>0.00074q_0b^4/D</td>
<td>-0.0287q_0b^4</td>
<td>-0.0347q_0b^4</td>
</tr>
</tbody>
</table>

同样地，可将二邻边 $x = 0$ 和 $y = 0$ 为简支、其他二边夹支的矩形板 $rsst$（图 95）看成以 $x = \pm a, y = \pm b$ 为界，四边固支的板的四分之一。

考虑所给板的面积 $rsst$ 上分布有均匀载荷的情况）。如图 95 所示，分布于面积 $2a \times 2b$ 上的模版式（国际象棋）载荷使沿直线 $x = 0$ 和 $y = 0$ 上产生了简支边的状况。这样，二邻边简支、其余二边夹支的板的弯曲问题化成了已在第 44 节中解决了的四

边固支的板的问题。计算表明，最大弯矩（绝对值）是在板的长边的中点附近。当 \(b/a = 0.5 \) 时，证明此弯矩的值为 \(-0.1180q b^4\)，而当 \(b/a = 1.0 \) 时，为 \(-0.0694q b^2\)。在方形板中心附近的最大弯矩的值为 \(0.0534qa^2\)（设 \(v = 0.3 \)），相应的挠度为 \(0.0023qa^4/D\)。有关这个问题的弯矩的其他数据在表 54 中给出。

46. 一对边简支 第三边自由 第四边固支或简支的矩形板

假设图 96 中的边缘 \(x = 0 \) 和 \(x = a \) 简支，边缘 \(y = b \) 自由，边缘 \(y = 0 \) 固支。在此情况下，边界条件为：

当 \(x = 0 \) 和 \(x = a \) 时， \(w = 0, \frac{\partial^2 w}{\partial x^2} = 0; \) \((a) \)

当 \(y = 0 \) 时， \(w = 0, \frac{\partial w}{\partial y} = 0; \) \((b) \)

而沿自由边的边界条件为[见方程 (112)，(113)]：

\[
\left(\frac{\partial^2 w}{\partial y^2} + \nu \frac{\partial^2 w}{\partial x^2} \right)_{y=b} = 0, \quad \left[\frac{\partial^2 w}{\partial y^3} + (2 - \nu) \frac{\partial^2 w}{\partial x^2 \partial y} \right]_{y=b} = 0. \quad (c)
\]

在均匀分布载荷的特殊情形中，我们像在第 30 节中那样假设总挠度由下列二部分组成：

1）这个问题是 ВУШОВ 所讨论的；参阅他的论文，Trans. Inst. Naval Arch., 第 44 卷，第 15 页，1902 年，以及他的“船箱结构理论（俄文）”，第二卷，第 93 页，圣彼得堡，1914 年。曾对此问题进行讨论的还有 K. Goriup, Ing.-Arch., 第 16 卷，第 77 页，1947 年，以及 V. Богоюновић，“On the Bending of a Rectangular Plate with One Edge Free”，贝尔格莱德，1933 年。
\[\omega = \omega_1 + \omega_2, \]

其中 \(\omega_1 \) 代表承受均匀载荷, 长度为 \(a \) 的简支梁板的挠度, 它可用下列级数表示:

\[\omega_1 = \frac{4qa^4}{\pi^2D} \sum_{m=1,3,5,\ldots} \frac{1}{m^2} \sin \frac{m\pi x}{a}, \quad (d) \]

\(\omega_1 \) 由级数

\[\omega_1 = \sum_{m=1,3,5,\ldots} Y_m \sin \frac{m\pi x}{a}, \quad (e) \]

表示, 式中:

\[Y_m = \frac{q a^4}{D} \left(A_m \cosh \frac{m\pi y}{a} + B_m \frac{m\pi y}{a} \sinh \frac{m\pi y}{a} \right. \]

\[+ C_m \sinh \frac{m\pi y}{a} + D_m \frac{m\pi y}{a} \cosh \frac{m\pi y}{a} \right). \quad (f) \]

级数 (d) 和 (e) 满足边界条件 (a), 在决定 (f) 式中的四常数时,应使边界条件 (b) 和 (c) 得到满足。应用条件 (b), 得到

\[A_m = -\frac{4}{\pi^2 m^3}, \quad C_m = -D_m. \quad (g) \]

由其余二条件 (c), 求得

\[B_m = \frac{4}{\pi^2 m^5}, \]

\[\frac{(3 + \nu)(1 - \nu) \cosh^2 \beta_m + 2\nu \cosh \beta_m}{(3 + \nu)(1 - \nu) \cosh^2 \beta_m + (1 - \nu) \beta_m \cosh \beta_m - (1 - \nu)^2} \frac{\nu(1 - \nu) \beta_m \cosh \beta_m - (1 - \nu)^2 \beta_m}{(3 + \nu)(1 - \nu) \sinh \beta_m \cosh \beta_m + \nu(1 + \nu) \sinh \beta_m - \nu(1 - \nu) \beta_m \cosh \beta_m - (1 - \nu)^2 \beta_m} \quad (h) \]

式中 \(\beta_m = m\pi h/a \)。将常数 (g) 和 (h) 代入式 (f), 并利用级数 (e)和 (d), 就得到了挠度曲面的表达式。在此情形中, 最大挠度是在自由边的中点。如长度 \(b \) 比 \(a \) 大很多, 也就是说, 自由边离固定支边很远, 那么自由边的挠度和承受均匀载荷, 长度为 \(a \) 的简支梁板...
的挠度乘上常数因子 \((3 - \nu)(1 + \nu)/(3 + \nu)\) 后所得的值相同。由于存在这个因子，最大挠度比条板的最大挠度大百分之 6.4（设 \(\nu = 0.3\)）。如果我们注意到，在自由边附近，板的挠度曲面为一互反曲面，那么这个事实就能立即得到解释。

研究另一极端情况：\(a\)与\(b\)比较为很小，显然，此板的最大挠度与承受均匀载荷、长度为\(b\)、一端固定而另一端自由的条板的最大挠度相同。在表 39 中列出了对于各种不同比值 \(b/a\) 计算所得的最大挠度的值。此表还给出了弯矩的最大值，它们可由挠度曲面的表达式立即算出。计算表明，\((M_x)_{\text{max}}\) 是在自由边的中点。弯矩 \(M_x\) 的最大值（绝对值）是在固定边的中点。

表 39 承受均匀载荷、- 对边简支，第三边自由、
第四边固支的矩形板的挠度与弯矩（图 96）
\(\nu = 0.3\)

<table>
<thead>
<tr>
<th>(b/2)</th>
<th>(\omega_{\text{max}})</th>
<th>(x = a/2, \ y = b)</th>
<th>(x = a/2, \ y = 0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.175 (qb^4/D)</td>
<td>0</td>
<td>-0.500 (qb^4)</td>
</tr>
<tr>
<td>1/3</td>
<td>0.094 (qb^4/D)</td>
<td>0.0078 (qa^4)</td>
<td>-0.429 (qb^4)</td>
</tr>
<tr>
<td>1/2</td>
<td>0.0582 (qb^4/D)</td>
<td>0.0293 (qa^4)</td>
<td>-0.319 (qb^4)</td>
</tr>
<tr>
<td>2/3</td>
<td>0.0335 (qb^4/D)</td>
<td>0.0558 (qa^4)</td>
<td>-0.227 (qb^4)</td>
</tr>
<tr>
<td>1</td>
<td>0.0113 (qb^4/D)</td>
<td>0.0972 (qa^4)</td>
<td>-0.119 (qb^4)</td>
</tr>
<tr>
<td>3/2</td>
<td>0.0141 (qa^4/D)</td>
<td>0.123 (qa^4)</td>
<td>-0.124 (qa^4)</td>
</tr>
<tr>
<td>2</td>
<td>0.0150 (qa^4/D)</td>
<td>0.131 (qa^4)</td>
<td>-0.125 (qa^4)</td>
</tr>
<tr>
<td>3</td>
<td>0.0152 (qa^4/D)</td>
<td>0.133 (qa^4)</td>
<td>-0.125 (qa^4)</td>
</tr>
<tr>
<td>(\infty)</td>
<td>0.0152 (qa^4/D)</td>
<td>0.133 (qa^4)</td>
<td>-0.125 (qa^4)</td>
</tr>
</tbody>
</table>

依照线性规律 \(q(1 - y/b)\) 分布的静水压力载荷的情况可与前述情况同样地处理。将挠度写成如下形式:

\[
\omega = \frac{4q(1 - y/b)a^4}{\pi^2 D} \sum_{m=1,3,5,...} \frac{1}{m^5} \sin \frac{m\pi x}{a} \\
+ \sum_{m=1,3,5,...} Y_m \sin \frac{m\pi x}{a},
\] \(i\)

1) 此表是 Бубнов 计算的，参看前引论文。

* 221 *
式中 \(Y_m \) 形式与 (1) 相同，只是以常数 \(q_0 \) 代替 \(q \)。同以前一样计算，我们根据边界条件 (a), (b) 和 (c) 求得四常数 \(A_m, B_m, C_m, D_m \)。

如果板受沿自由边分布载荷的弯曲作用，而不是分布在板面上的载荷，那么，边界条件 (c) 的第二式必须作修改：在方程的右端用沿自由边分布的载荷的强度来代替零值，很长板的自由边上的作用有集中力的特殊情况已经研究过了 (图 97)。

结果是自由边上的挠度可用如下公式表示：

\[
(w)_{x=b} = \alpha \frac{Pb^{3}}{D}
\]

当离载荷作用点 \(A \) 的距离增大时，因子 \(\alpha \) 很快地减小。在表 40 中给出了若干这个因子的值。表 41 中给出了作用于有限长 \(a \) 的板的自由边中点集中载荷所生产的集中弯矩的值值 (绝对值)。

承受均匀载荷、三边简支、边缘 \(y = b \) 自由的矩形板 (图 98)

<table>
<thead>
<tr>
<th>(x)</th>
<th>0</th>
<th>(b/4)</th>
<th>(b/2)</th>
<th>(b)</th>
<th>(2b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\alpha)</td>
<td>0.168</td>
<td>0.150</td>
<td>0.121</td>
<td>0.088</td>
<td>0.016</td>
</tr>
</tbody>
</table>

2) 这个表是 V. Bogunović 所计算的，是附引之论文，也可参考本书第 78 节。
表 41 作用于边缘 \(x = 0, y = b \) 的载荷 \(P \)，在边缘 \(x = \pm a/2 \) 为简支的板上，边缘 \(x = 0, y = 0 \) 所产生的弯矩 \(M = \beta P \)（图 97）

\[
\nu = 0.3
\]

<table>
<thead>
<tr>
<th>(\frac{b}{a})</th>
<th>4</th>
<th>2</th>
<th>1.5</th>
<th>1</th>
<th>2/3</th>
<th>0.5</th>
<th>1/3</th>
<th>0.25</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\beta)</td>
<td>−0.000039</td>
<td>−0.0117</td>
<td>−0.0455</td>
<td>−0.163</td>
<td>−0.366</td>
<td>−0.436</td>
<td>−0.498</td>
<td>−0.507</td>
<td>−0.509</td>
</tr>
</tbody>
</table>

问题可与以前边缘 \(y = 0 \) 固支的情况同样地处理，只需要用条件

\[
\left(\frac{\partial^2 w}{\partial y^2} \right) + \nu \left(\frac{\partial^2 w}{\partial x^2} \right) \bigg|_{y = 0} = 0
\]

代替边界条件 (b) 的第二式。我们在这里不作推导，仅给出对此情况所得到的最后数字结果。最大挠度是在自由边的中点。弯矩 \(M_y \) 的最大值也在同一点上。在表 41 的第二和第三列中给出了这些挠度

\(w_{\text{max}} \) 和 \((M_y)_{\text{max}} \) 的值。最后二列给出了板中心的弯矩值。

相似地，在表 43 中列出了静水

压力载荷在板的自由边中点及板的中心所产生

的挠度与弯矩的值。

47. 三边固支一边自由的矩形板

矩形容器的壁板及挡土墙可视为具有这种边界条件的板，因此在这问题中必须首先考虑

均分布载荷及静水压力载荷。

设板的边界在边缘 \(y = 0 \) 和 \(x = \pm a/2 \) 是夹支，边缘 \(y = b \) 是自由（图 100）。首先考虑强度为 \(q \) 的均匀分布载荷，可将挠度

的表达式写成

\[
w = w_1 + w_2 + w_3.
\]

1) 这个表以及表 43 是 B. G. Балеркин 所计算的；见 Build. Polytech. Inst., 第 26 卷, 第 124 页，圣彼得堡，1915 年。
表 42 承受均匀载荷, 三边简支, 第四边自由的矩形板的挠度与弯矩 (图 98)

\(\nu = 0.3 \)

<table>
<thead>
<tr>
<th>(b/a)</th>
<th>(x = a/2, \quad y = b)</th>
<th>(x = a/2, \quad y = b/2)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(w_{\max})</td>
<td>((M_x)_{\max})</td>
</tr>
<tr>
<td>1/2</td>
<td>0.00710qa^2/D</td>
<td>0.060qa^2</td>
</tr>
<tr>
<td>2/3</td>
<td>0.00968qa^2/D</td>
<td>0.083qa^2</td>
</tr>
<tr>
<td>1/1.4</td>
<td>0.01023qa^2/D</td>
<td>0.088qa^2</td>
</tr>
<tr>
<td>1/1.3</td>
<td>0.01052qa^2/D</td>
<td>0.094qa^2</td>
</tr>
<tr>
<td>1/1.2</td>
<td>0.01158qa^2/D</td>
<td>0.107qa^2</td>
</tr>
<tr>
<td>1/1.1</td>
<td>0.01232qa^2/D</td>
<td>0.107qa^2</td>
</tr>
<tr>
<td>1</td>
<td>0.01286qa^2/D</td>
<td>0.112qa^2</td>
</tr>
<tr>
<td>1.1</td>
<td>0.01341qa^2/D</td>
<td>0.117qa^2</td>
</tr>
<tr>
<td>1.2</td>
<td>0.01384qa^2/D</td>
<td>0.120qa^2</td>
</tr>
<tr>
<td>1.3</td>
<td>0.01417qa^2/D</td>
<td>0.124qa^2</td>
</tr>
<tr>
<td>1.4</td>
<td>0.01462qa^2/D</td>
<td>0.126qa^2</td>
</tr>
<tr>
<td>1.5</td>
<td>0.01462qa^2/D</td>
<td>0.128qa^2</td>
</tr>
<tr>
<td>2</td>
<td>0.01507qa^2/D</td>
<td>0.132qa^2</td>
</tr>
<tr>
<td>3</td>
<td>0.01520qa^2/D</td>
<td>0.133qa^2</td>
</tr>
<tr>
<td>(\infty)</td>
<td>0.01522qa^2/D</td>
<td>0.133qa^2</td>
</tr>
</tbody>
</table>

表 43 承受静水压力载荷, 三边简支, 第四边自由的矩形板的挠度与弯矩 (图 99)

\(\nu = 0.3 \)

<table>
<thead>
<tr>
<th>(b/a)</th>
<th>(x = a/2, \quad y = b)</th>
<th>(x = a/2, \quad y = b/2)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(w)</td>
<td>(M_x)</td>
</tr>
<tr>
<td>1/2</td>
<td>0.00130qa^2/D</td>
<td>0.0197qa^2</td>
</tr>
<tr>
<td>2/3</td>
<td>0.00304qa^2/D</td>
<td>0.0265qa^2</td>
</tr>
<tr>
<td>1</td>
<td>0.00368qa^2/D</td>
<td>0.0325qa^2</td>
</tr>
<tr>
<td>1.5</td>
<td>0.00347qa^2/D</td>
<td>0.0308qa^2</td>
</tr>
<tr>
<td>2.0</td>
<td>0.00291qa^2/D</td>
<td>0.0258qa^2</td>
</tr>
<tr>
<td>(\infty)</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
（a）式中所含有的 w_1 和 w_2 的表达式为:

$$w_1 = \frac{4qa^4}{\pi^2D} \sum_{m=1, 3, 5, \ldots}^{\infty} (-1)^{(m-1)/2} \frac{Y_m(-1)^{(m-1)/2} \cos \frac{m\pi x}{a}}{m^2}.$$ (b)

及

$$w_2 = \sum_{m=1, 3, 5, \ldots}^{\infty} Y_m(-1)^{(m-1)/2} \cos \frac{m\pi x}{a}.$$ (c)

与前节的式（d）和（c）完全相同（如果注意到新坐标原点的位置）。

由于边缘 $x = \pm a/2$ 上增加的约束所产生的附加挠度 w_1 的合适的形式为$$w_1 = \frac{q a^4}{D} \sum_{n=1, 3, 5, \ldots}^{\infty} \left(F_n \gamma_n \tanh \gamma_n \cosh \frac{n\pi y}{2b} - F_n \frac{n\pi x}{2b} \sinh \frac{n\pi x}{2b} \right)$$

$$\times \sin \frac{n\pi y}{2b} + \frac{q a^4}{D} \sum_{m=1, 3, 5, \ldots}^{\infty} \left(G_m \sinh \frac{m\pi y}{a} + H_m \frac{m\pi y}{a} \cosh \frac{m\pi y}{a} \right) \cos \frac{m\pi x}{a},$$ (d)

式中 F_n, \cdots, I_n 为常数，$\gamma_n = n\pi a/4b$。

当 $y = 0, x = \pm a/2$ 时，$w_1 = 0$，因此挠度（d）还需要满足的边界条件为：

1）解 w_1 的方法基本上是由 Goriup 得到的。见 Ingr.-Arch., 第 17 卷，第 153 页，1948 年。也可参看 W. J. Van der Eer, Ingenieur, 第 26 卷，第 31 页，1950 年。

* 225 *
\[
\left(\frac{\partial^2 \omega_z}{\partial y^2} + \frac{1}{v} \frac{\partial^2 \omega_z}{\partial x^2}\right)_{y=b} = 0, \quad \left[\frac{\partial^2 \omega_z}{\partial y^2} + (2-v) \frac{\partial^2 \omega_z}{\partial x^2 \partial y}\right]_{y=b} = 0,
\]
\[
\left(\frac{\partial \omega_z}{\partial y}\right)_{y=0} = 0, \quad \left[\frac{\partial (\omega_1 + \omega_2 + \omega_3)}{\partial x}\right]_{x=\pm a/2} = 0.
\]

现在将（113）式中所包含的全部 x 的非圆函数展开成级数 $\sum a_m \cos x \left(m \pi x / a\right)$ 的形式，全部 y 的非圆函数展开成级数 $\sum b_n \sin \left(m \pi y / 2b\right)$ 的形式。从而可由条件（e）立即得到求解方程 F_z, G_z, H_m, I_m 的四个线性方程组。解这些方程，我们就能用已知的 A_m, \cdots, D_n 的值来表示未知常数 F_z, \cdots, I_m（见第 220 页）。

在依据图 101 作用有静水压力的情况下，应当将前节的解（i）和本节形式（d）的解迭加，然后依照以上所述方法求出未知常数。

不论何种载荷，用有限差分法也可解决这个问题（参阅第 83 节）1)。表 44 和 45 的数值基本上是依照这种方法计算的。

48. 对边简支另二边自由或弹性支的矩形板

考虑边缘 $x = 0$ 和 $x = a$ 为简支，其他二边支承于弹性梁上的情况（图 102）。假设载荷是均匀分布，二梁完全相同，则板的挠度面称于 x 轴，因此只需要考虑边缘 $y = b/2$ 上的条件。假设梁只是抵抗垂直平面内的弯曲，对扭转没有抵抗作用，于是，应用（114）式，边缘 $y = b/2$ 上的边界条件为

![图 101](image1)

![图 102](image2)

1) 参阅 A. СНТРУ, “承受依菱形规律分布载荷的板的解（俄文）” 莫斯科，1936 年。

226
<table>
<thead>
<tr>
<th>b / a</th>
<th>$x = 0, \ y = b$</th>
<th>$x = 0, \ y = b/2$</th>
<th>$x = a/2, \ y = b$</th>
<th>$x = a/2, \ y = b/2$</th>
<th>$x = 0, \ y = 0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\omega = a_1 \frac{qa^2}{D}$</td>
<td>$M_x = \beta_1 qa^2$</td>
<td>$M_y = \beta_2 qa^2$</td>
<td>$M_1 = \beta_3 qa^2$</td>
<td>$V_x = \beta_4 qa^2$</td>
<td>$V_1 = \beta_5 qa^2$</td>
</tr>
<tr>
<td>x_1</td>
<td>β_1</td>
<td>β_2</td>
<td>β_3</td>
<td>β_4</td>
<td>β_5</td>
</tr>
<tr>
<td>0.6</td>
<td>0.06271</td>
<td>0.0336</td>
<td>0.00129</td>
<td>0.0168</td>
<td>0.0074</td>
</tr>
<tr>
<td>0.7</td>
<td>0.00292</td>
<td>0.0371</td>
<td>0.00159</td>
<td>0.0212</td>
<td>0.0097</td>
</tr>
<tr>
<td>0.8</td>
<td>0.00308</td>
<td>0.0401</td>
<td>0.00185</td>
<td>0.0252</td>
<td>0.0116</td>
</tr>
<tr>
<td>0.9</td>
<td>0.00323</td>
<td>0.0425</td>
<td>0.00209</td>
<td>0.0287</td>
<td>0.0129</td>
</tr>
<tr>
<td>1.0</td>
<td>0.00333</td>
<td>0.0444</td>
<td>0.00230</td>
<td>0.0317</td>
<td>0.0138</td>
</tr>
<tr>
<td>1.25</td>
<td>0.00345</td>
<td>0.0467</td>
<td>0.00269</td>
<td>0.0374</td>
<td>0.0142</td>
</tr>
<tr>
<td>1.5</td>
<td>0.00355</td>
<td>0.0451</td>
<td>0.00290</td>
<td>0.0402</td>
<td>0.0118</td>
</tr>
<tr>
<td>$x = 0$, $y = 0$</td>
<td>$x = a/2$, $y = b/2$</td>
<td></td>
</tr>
<tr>
<td>-----------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td></td>
</tr>
<tr>
<td>$M_x = \beta_3 \theta_1 a^2$</td>
<td>$M_x = \beta_4 \theta_1 a^2$</td>
<td>$M_x = \beta_5 \theta_1 a^2$</td>
<td>$M_x = \beta_6 \theta_1 a^2$</td>
<td>$M_x = \beta_7 \theta_1 a^2$</td>
<td></td>
</tr>
<tr>
<td>$M_1 = \beta_8 \theta_1 a^2$</td>
<td>$M_1 = \beta_9 \theta_1 a^2$</td>
<td>$M_1 = \beta_{10} \theta_1 a^2$</td>
<td>$M_1 = \beta_{11} \theta_1 a^2$</td>
<td>$M_1 = \beta_{12} \theta_1 a^2$</td>
<td></td>
</tr>
<tr>
<td>$V_1 = \gamma_1 \theta_1 a^2$</td>
<td>$V_1 = \gamma_2 \theta_1 a^2$</td>
<td>$V_1 = \gamma_3 \theta_1 a^2$</td>
<td>$V_1 = \gamma_4 \theta_1 a^2$</td>
<td>$V_1 = \gamma_5 \theta_1 a^2$</td>
<td></td>
</tr>
<tr>
<td>$\gamma_1 = 0.394$</td>
<td>$\gamma_2 = 0.394$</td>
<td>$\gamma_3 = 0.394$</td>
<td>$\gamma_4 = 0.394$</td>
<td>$\gamma_5 = 0.394$</td>
<td></td>
</tr>
<tr>
<td>$\theta_1 = 0.136$</td>
<td>$\theta_2 = 0.0131$</td>
<td>$\theta_3 = 0.107$</td>
<td>$\theta_4 = 0.0172$</td>
<td>$\theta_5 = 0.0172$</td>
<td></td>
</tr>
<tr>
<td>$\beta_1 = 0.0062$</td>
<td>$\beta_2 = 0.0067$</td>
<td>$\beta_3 = 0.0074$</td>
<td>$\beta_4 = 0.0078$</td>
<td>$\beta_5 = 0.0083$</td>
<td></td>
</tr>
<tr>
<td>$\beta_6 = 0.0090$</td>
<td>$\beta_7 = 0.0100$</td>
<td>$\beta_8 = 0.0110$</td>
<td>$\beta_9 = 0.0120$</td>
<td>$\beta_{10} = 0.0130$</td>
<td></td>
</tr>
<tr>
<td>$\beta_{11} = 0.0140$</td>
<td>$\beta_{12} = 0.0150$</td>
<td>$\beta_{13} = 0.0160$</td>
<td>$\beta_{14} = 0.0170$</td>
<td>$\beta_{15} = 0.0180$</td>
<td></td>
</tr>
</tbody>
</table>

表45 系列静水压力载荷，三面固定，第四边自由的矩形板的挠度，弯矩及反力（图101）
\[
\left(\frac{\partial^2 w}{\partial y^4} + \nu \frac{\partial^2 w}{\partial x^2} \right)_{y=b/2} = 0, \quad (a)
\]

\[
D \left[\frac{\partial^2 w}{\partial y^4} + (2 - \nu) \frac{\partial^4 w}{\partial x^2 \partial y^2} \right]_{y=b/2} = \left(EI \frac{\partial^4 w}{\partial x^2} \right)_{y=b/2},
\]

其中 \(EI \) 代表支承梁的弯曲刚度。同第 46 节一样，将挠度曲面写成:

\[
w = w_1 + w_2, \quad (b)
\]

其中

\[
w_1 = \frac{4qa^4}{\pi^5 D} \sum_{m=1,3,5,\ldots}^\infty \frac{1}{m^5} \sin \frac{m\pi x}{a}, \quad (c)
\]

\[
w_2 = \sum_{m=1,3,5,\ldots}^\infty Y_m \sin \frac{m\pi x}{a}, \quad (d)
\]

由对称性可知, 在第 46 节的式 (c) 中必须令 \(C_m = D_m = 0 \), 因此取

\[
Y_m = \frac{qa^4}{D} \left(A_m \cosh \frac{m\pi y}{a} + B_m \frac{m\pi y}{a} \sinh \frac{m\pi y}{a} \right), \quad (e)
\]

余下的两组常数 \(A_m \) 和 \(B_m \) 由边界条件 (a) 求出，引用符号

\[
\frac{m\pi b}{2a} = \alpha_m, \quad \frac{EI}{aD} = \lambda_s
\]

得到:

\[
A_m(1 - \nu) \cosh \alpha_m + B_m \left[2 \cosh \alpha_m + (1 - \nu) \alpha_m \sinh \alpha_m \right]
\]

\[
= \frac{4\nu}{m^5 \pi^5} - A_m \left[(1 - \nu) \sinh \alpha_m + m\pi \lambda \cosh \alpha_m \right]
\]

\[+ B_m \left[(1 + \nu) \sinh \alpha_m - (1 - \nu) \alpha_m \cosh \alpha_m \right]
\]

\[- m\pi \lambda \alpha_m \sinh \alpha_m \right] = \frac{4\lambda_s}{m^4 \pi^4}.
\]

解这些方程, 即得

\[
A_m = \frac{4}{m^5 \pi^5} \left[\nu(1 + \nu) \sinh \alpha_m - \nu(1 - \nu) \alpha_m \cosh \alpha_m \right.
\]

\[- m\pi \lambda \left(2 \cosh \alpha_m + \alpha_m \sinh \alpha_m \right) \right] \right] \left[(3 + \nu) \right.
\]

\[\times \left. (1 - \nu) \sinh \alpha_m \cosh \alpha_m - (1 - \nu)^2 \alpha_m \right]
\]

\[+ 2m\pi \lambda \cosh^2 \alpha_m \right], \quad (f)
\]

-229.
将这些常数的值代入下式:

\[
\omega = \omega_l + \omega_t = \frac{q a^2}{4} \sum_{m=1, 3, 5, \ldots} \left(\frac{4}{m^2 \pi^2} + A_m \cosh \frac{m \pi y}{a} \right) \sin \frac{m \pi x}{a} + B_m \frac{m \pi y}{a} \sinh \frac{m \pi y}{a} \sin \frac{m \pi x}{a}.
\] (b)

就能求得板的挠度曲面。假如支承架是绝对刚性的, 则在式 (f) 和 (g) 中 \(\lambda = \infty \)。从而 \(A_m \) 和 \(B_m \) 的值与第 30 节中对四边刚性支承的板所求得的值相同。

在式 (f) 与 (g) 中代入 \(\lambda = 0 \), 就得到了二边简支，另一边自由的板的挠度表达式级数 (b) 中的系数值。

除了 \(\lambda \) 值很小的情况外, 最大挠度与最大弯矩是在板的中心, 在表 46）中给出了若干最大挠度与最大弯矩的值, 它们是对于具有不同 \(\lambda \) 值的方形板计算得到的。

\(\lambda = 0 \), 即一对对边简支, 另二边自由的板的特殊情况值得考虑。如表 47）所指出, 承受均匀载荷的这种板的挠度及最大弯矩同弯曲成柱形面的板的挠度及弯矩相差很少。

49. 四边弹性支或四点支四边自由的矩形板 考虑受有均匀压力、沿边界以四弹性梁支承的板。假设所有的梁在板角上具有刚性支点，并设相 互平行的梁具有相同的弯曲刚度 (图 108)。

1) 此表系 K. A. Чахышин 所计算的，见 Известия Института инженеров путей сообщения, 圣彼得堡, 1914 年。后来 E. Müller 讨论过这个问题，Ingr.- Arch., 第 2 卷, 第 606 页, 1932 年。在这篇论文中计算了非对称情况下最大挠度与最大弯矩的表。V. F. Jensen 讨论了各种由弹性梁支承的矩形板和连续板, 见 Univ. Illinois Bull., 81, 1938 年。

表 46 承受均载荷、二边简支、另二边以弹性条支承的

方形板中心的挠度与弯矩（图 102）

\(\nu = 0.3 \)

<table>
<thead>
<tr>
<th>(\lambda = EI/\alpha D)</th>
<th>(w_{\text{max}})</th>
<th>((M_{x})_{\text{max}})</th>
<th>((M_{y})_{\text{max}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\infty)</td>
<td>0.00406qa/D</td>
<td>0.0479qa²</td>
<td>0.0479qa²</td>
</tr>
<tr>
<td>100</td>
<td>0.00409qa/D</td>
<td>0.0480qa²</td>
<td>0.0477qa²</td>
</tr>
<tr>
<td>30</td>
<td>0.00416qa/D</td>
<td>0.0486qa²</td>
<td>0.0473qa²</td>
</tr>
<tr>
<td>10</td>
<td>0.00434qa/D</td>
<td>0.0500qa²</td>
<td>0.0465qa²</td>
</tr>
<tr>
<td>6</td>
<td>0.00454qa/D</td>
<td>0.0514qa²</td>
<td>0.0455qa²</td>
</tr>
<tr>
<td>4</td>
<td>0.00472qa/D</td>
<td>0.0523qa²</td>
<td>0.0447qa²</td>
</tr>
<tr>
<td>2</td>
<td>0.00529qa/D</td>
<td>0.0571qa²</td>
<td>0.0419qa²</td>
</tr>
<tr>
<td>1</td>
<td>0.00624qa/D</td>
<td>0.0646qa²</td>
<td>0.0376qa²</td>
</tr>
<tr>
<td>0.5</td>
<td>0.00756qa/D</td>
<td>0.0744qa²</td>
<td>0.0315qa²</td>
</tr>
<tr>
<td>0</td>
<td>0.01309qa/D</td>
<td>0.1225qa²</td>
<td>0.0271qa²</td>
</tr>
</tbody>
</table>

表 47 承受均载荷、边缘 \(x = 0, x = \alpha \) 简支、另二边自由的

矩形板的挠度与弯矩（图 102）

\(\nu = 0.3 \)

\[x = \alpha/2, \ y = 0 \]

\[x = \alpha/2, \ y = \pm b/2 \]

<table>
<thead>
<tr>
<th>(b/a)</th>
<th>(w = \alpha_1 qa/D)</th>
<th>(M_x = \beta_1 qa^2)</th>
<th>(M_y = \beta'_1 qa^2)</th>
<th>(w = \alpha_1 qa/D)</th>
<th>(M_x = \beta_1 qa^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0.5)</td>
<td>0.01377</td>
<td>0.1235</td>
<td>0.0102</td>
<td>0.01473</td>
<td>0.1259</td>
</tr>
<tr>
<td>(1.0)</td>
<td>0.01309</td>
<td>0.1225</td>
<td>0.0271</td>
<td>0.01509</td>
<td>0.1318</td>
</tr>
<tr>
<td>(2.0)</td>
<td>0.01289</td>
<td>0.1235</td>
<td>0.0364</td>
<td>0.01521</td>
<td>0.1329</td>
</tr>
<tr>
<td>(\infty)</td>
<td>0.01302</td>
<td>0.1250</td>
<td>0.0375</td>
<td>0.01522</td>
<td>0.1339</td>
</tr>
</tbody>
</table>

![图 103](image-url)
将挠度写成如下形式:

$$
\omega = \frac{q}{384D(\gamma + \delta)} \left[\gamma (15x^4 - 24a^4x^2 + 5a^4) + \delta (16y^4 - 24b^4y^2 + 5b^4) \right] \\
+ \sum A_n \cosh \frac{\pi nx}{a} \cos \frac{\pi nx}{b} + \sum B_n \cosh \frac{\pi nx}{b} \cos \frac{\pi ny}{b} \\
+ \sum C_n \sinh \frac{\pi nx}{a} \cos \frac{\pi nx}{b} + \sum D_n \sinh \frac{\pi nx}{b} \cos \frac{\pi ny}{b},
$$

式中 γ/δ 及 A_n, \cdots, D_n 为常数，$n = 1, 3, 5, \cdots$，我们使板的微分方程 $\Delta^2 \omega = q/D$ 以及对称条件得到满足。其次将式 (a) 中所包含的代数函数及双曲函数展开成余弦函数的级数，然后，对于 $x = a/2$ 和 $y = b/2$ 应用与上节的条件 (a) 相似的边界条件，就能得到决定式 (a) 中常数 A_n, \cdots, D_n 的方程组。

对于 $\delta/\gamma = 0, E \mu b = \infty$ 的特殊情况，则得到已知第 48 节中讨论过的问

题的解。

现在考虑由四根完全相同的梁支承的方形板 ($a = b$) 的弯曲。于是，根据对称性有 $\delta/\gamma = 1, A_n = B_n, C_n = D_n$。令边缘弯矩为零，消去未知系数 A_n，然后，在级数 (a) 中只取四项 ($n = 1, 3, 5, 7$)，得到对于 C_1, C_3, C_5, C_7 的四个线性方程。在表 48 中给出了以这种方法得到的数值计算结果。

在 $E \mu = 0$ 的特殊情况，我们得到承受均匀分布载荷，仅在四角支承的方形板。ν 的值对于板中心的挠度和弯矩只有很小的影响，它对边缘弯矩的影响要大得多。例如，当 $\nu = 0.3$ 时，对 $\nu = 0.13$ 所得到在表 48 的最末一行中的各值应当分别用 0.240, 0.1099, 0.1408 代替。

中心受载，仅在四角固定的方形板的弯曲问题也曾讨论过。如载荷 p 均匀分布在很小的矩形或圆形面积上，则可求出受载面积中心的弯矩的表达式，以正方形受载面积 $a \times a$ 为例，设 $\nu = 0.3$，此二弯矩可用下式表

1) 这个求解方法是 B. G. Галёркин 提出的; 参见他的“论文集(俄文)”, 第 2 卷, 第 15 页, 莫斯科, 1933 年。这里考虑的边界条件很容易实现，因此适合于用试验来检验结论。参看 N. Dimitrov, Bauingenieur, 第 32 卷, 第 359 页, 1957 年。
3) 参看上面 Marcus 的论文。
4) 参看 S. Wolowowsky-Trieger, Ingr.-Arch., 第 23 卷, 第 349 页, 1955 年。

* 232 *
表 48 四边弹性支的方形板的挠度与弯矩（图 103）
\(\nu = 0.25 \)

<table>
<thead>
<tr>
<th>(y = \frac{E_1}{aD})</th>
<th>(\alpha)</th>
<th>(M_x = M_y = \beta \cdot qa^2)</th>
<th>(\beta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\infty)</td>
<td>(0.00406)</td>
<td>(0.0460)</td>
<td>—</td>
</tr>
<tr>
<td>100</td>
<td>(0.00412)</td>
<td>(0.0462)</td>
<td>—</td>
</tr>
<tr>
<td>50</td>
<td>(0.00418)</td>
<td>(0.0463)</td>
<td>—</td>
</tr>
<tr>
<td>25</td>
<td>(0.00429)</td>
<td>(0.0467)</td>
<td>0.0032</td>
</tr>
<tr>
<td>10</td>
<td>(0.00464)</td>
<td>(0.0477)</td>
<td>0.0024</td>
</tr>
<tr>
<td>5</td>
<td>(0.00519)</td>
<td>(0.0494)</td>
<td>0.0065</td>
</tr>
<tr>
<td>4</td>
<td>(0.00546)</td>
<td>(0.0502)</td>
<td>0.0085</td>
</tr>
<tr>
<td>3</td>
<td>(0.00588)</td>
<td>(0.0515)</td>
<td>0.0117</td>
</tr>
<tr>
<td>2</td>
<td>(0.00668)</td>
<td>(0.0539)</td>
<td>0.0177</td>
</tr>
<tr>
<td>1</td>
<td>(0.00873)</td>
<td>(0.0601)</td>
<td>0.0332</td>
</tr>
<tr>
<td>0.5</td>
<td>(0.01174)</td>
<td>(0.0691)</td>
<td>0.0599</td>
</tr>
<tr>
<td>0</td>
<td>(0.0257)</td>
<td>(0.1109)</td>
<td>0.1527</td>
</tr>
</tbody>
</table>

示:
\[M_x = M_y = \left(0.1034 \log \frac{a}{u} + 0.129 \right) P. \]
(b)

有了这个解，也有了承受均匀载荷的角支方形板的解，则图 104a 所示的问题就能以求解之法来处理。显然，如边缘自由的方形板以均匀分布的反力支承，那么板中心的弯矩由式 (b) 减去值 \(M_x = M_y = 0.1090 qa^2 \) 而得到；0.1090 qa^2 这个值是以上对于承受均匀载荷，\(\nu = 0.3 \) 角支方形板给出的。用这个方法，得到
\[M_x = M_y = \left(0.1034 \log \frac{a}{u} + 0.029 \right) P, \]
(c)

此式适用于 \(\nu = 0.3 \)。在图 104b 上，画出了 \(u/a = 0.1 \) 和 \(u/a = 0.2 \) 时这种情况板的中线的弯矩分布。途径上刚性很大的人行道板，可以认为有均匀的压力分布。关于那种压力分布规律的更一般假设将在第八章作出。

50. 承受均匀压力的半无限矩形板

靠近矩形板短边的挠度曲面与应力分布，实际上和图 105 所示在半无限板端部的情况相同。因此需要研究无限板的简单理论。设载荷均匀分布于整个板的面积上，并设边缘 \(x = \)
板的挠度曲面可以表示成
\[w = w_1 + w_2 \]
式中:
\[w_1 = \frac{q}{24D} (x^4 - 2ax^2 + x^2a) = \frac{4q a^4}{\pi^2 D} \sum_{m=1,3,5,\ldots} \frac{1}{m^4} \sin \frac{m\pi x}{a} \]
为方程 \(\Delta w = \frac{q}{D} \) 的解，\(q \) 是载荷强度；而
\[w_2 = \frac{4q a^4}{\pi^2 D} \sum_{m=1,3,5,\ldots} \left(A_m + B_m \frac{m\pi y}{a} \right) e^{-m\pi y/a} \sin \frac{m\pi x}{a} \]
为方程 \(\Delta w = 0 \) 的一个解，在 \(y = \infty \) 处，它所给出的挠度为零。我们需要找出系数 \(A_m \) 和 \(B_m \)，在决定这些系数时应满足板边缘 \(y = 0 \) 处的各个条件。现考虑下列三种情形。

边缘 \(y = 0 \) 为简支（图 105a）对于 \(y = 0 \) 应当满足的特殊条件为 \(w = 0 \) 和 \(\partial w / \partial y = 0 \)。将级数所表示的 \(w = w_1 + w_2 \) 代入此二条件，则得系数的值：
\[A_m = -l/m^4, \quad B_m = A_m/2 \]
这样，就得到了挠度曲面:
\[w = w_1 - \frac{4q a^4}{\pi^2 D} \sum_{m=1,3,5,\ldots} \left(1 + \frac{m\pi y}{2a} \right) e^{-m\pi y/a} \sin \frac{m\pi x}{a} \]
式中 \(w_1 \) 由式 (b) 给出。

特别有意义的是板的弯矩 \(M_y \)。在板的中线 \(x = a/2 \) 上，根据微分，有
\[M_y = \frac{vq a^3}{8} + \frac{4q a^4}{\pi^2} \sum_{m=1,3,5,\ldots} \left[(1-v) \frac{m\pi y}{2a} - v \right] e^{-m\pi y/a} (-1)^{m-5/2} \]
利用条件 \(\partial M_y / \partial y = 0 \)，并且只考虑上面这个迅速收敛的级数的第一项，可得 \(M_y \) 在
\[y = \frac{a}{\pi} \left[1 + \frac{1}{\nu} \right] \]
时为最大，图 49 给出了弯矩的最大值，同时也给出了边缘反力 \(V_y \) 的最大值以及作用于板角方向向下的力 \(R \)。

应当前注，在泊松比相同的条件下，值 0.03644a² 比无限长板最大弯矩 \(M_y \) 的值 0.0250qa² 大百分之 45。

1) 对此问题的下列解是 L. Nádai 提出来的。参阅他的著作 "Elastische Platten"。第 22 页，柏林，1925 年。
表49 承受均匀载荷的全部边界简支的半无限板的
最大弯矩及反力（图105a）

<table>
<thead>
<tr>
<th>ν</th>
<th>((M_x)_{max})</th>
<th>((M_y)_{max})</th>
<th>((V_y)_{max})</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2</td>
<td>0.125a/q/a², (x = \frac{a}{2}, y = \infty)</td>
<td>0.036a/q/a², (x = \frac{a}{2}, y = 0.48a)</td>
<td>0.52a/q/a, (x = \frac{a}{2}, y = 0)</td>
<td>0.1085q/a²</td>
</tr>
<tr>
<td>0.3</td>
<td>0.125a/q/a², (x = \frac{a}{2}, y = \infty)</td>
<td>0.044a/q/a², (x = \frac{a}{2}, y = 0.59a)</td>
<td>0.502q/a², (x = \frac{a}{2}, y = 0)</td>
<td>0.0949q/a²</td>
</tr>
</tbody>
</table>

边缘 \(y = 0\) 为固支（图105b） 依照以上所述的一般方法推导，但现在用边界条件：当 \(y = 0\) 时，\(ω = 0\)，\(\partial ω / \partial y = 0\) 代入式 (d) 得到的结果是：

\[
ω = ω_1 - \frac{4qa^4}{π²D} \sum_{m=1,2,3,...} \left(1 + \frac{mπy}{a}\right) \frac{e^{-mπy/a}}{m^3} \sin \frac{mπx}{a}, \quad (f)
\]

式中 \(ω_1\) 依然为式 (b) 给出，相应的弯矩为：

\[
M_y = \frac{νqα^2}{8} + \frac{4qα^2}{π²} \sum_{m=1,2,3,...} \left[1 - ν \left(\frac{mπy}{a} - 1 - ν\right) \frac{e^{-mπy/a}}{m^3} \sin \frac{mπx}{a}\right], \quad (g)
\]

在点 \(x = a/2, y = 2a/π(1 - ν)\) 它是最大。假设 \(ν = 0.3\)，则得 \(y = 0.91a\)，于是 \((M_y)_{max} = 0.0427qα^2\)；但是设 \(ν = 0.2\)，得到的值分别是 \(y = 0.80a\)，

\((M_y)_{max} = 0.0387qα^2\)。还可以证明，沿板的短边 \(y = 0\) 夹角弯矩的变化服从简单的规律：

\[
(M_y)_{y=0} = -\frac{q}{2} (ax - x^2).
\]

注意到，当 \(y\) 是大值时，板的挠度曲面可以认为是柱形的，因此在这里有

\[
M_x = \frac{q}{2} (ax - x^2) , \quad M_y = ν \frac{q}{2} (ax - x^2).
\]

由此可知，边缘力矩 \((σ)\) 的分布与 \(y = \infty\) 时弯矩 \(M_y\) 在板横截面上的分布相同，但正负号相反。

边缘 \(y = 0\) 为自由（图105c） 如果将边缘 \(y = 0\) 处的条件写为

\[
ν \frac{∂^2 ω}{∂x^2} + \frac{∂^2 ω}{∂y^2} = 0, \quad \frac{∂^2 ω}{∂y^2} + (2 - ν) \frac{∂^2 ω}{∂x^2 \partial y} = 0,
\]

那么，利用式 (a)，(b) 和 (c)，我们得到挠度曲面：

\[
ω = ω_1 + \frac{qα^4}{(3 + ν)π²} \sum_{m=1,2,3,...} \left(\frac{1 + ν}{1 - ν} - \frac{mπy}{a}\right) \frac{e^{-mπy/a}}{m^3} \sin \frac{mπx}{a}. \quad (h)
\]

* 236 *
挠度与弯矩 M_y 在自由边的中点最大，可以证明：

$$ (w)_{x=0} = \frac{3 - \nu}{(1 - \nu)(3 + \nu)} w'_{1,3} $$

和

$$ (M_y)_{x=0} = \frac{(3 - \nu)(1 + \nu)}{3 + \nu} (M_y)_{1,1} $$

式中，w' 和 (M_y) 是无限长简支板的挠度和弯矩。所以有

$$ (M_y)_{\text{max}} = \frac{(3 - \nu)(1 + \nu)}{3 + \nu} \frac{q a^4}{8} $$

作为最后一例（得出了不同形式的解），我们考虑均匀受载、边界 $y = 0$ 简支，边界 $x = \pm a/2$ 固支的半无限板（图 106）。将 $b = \infty$ 代人边界 $y = 0, b$ 简支和边界 $x = \pm a/2$ 固支的有限矩形板的挠度的相应表达式，就能得到解，这里省去推导，只写出所得结果：

$$ w = \frac{4 q a^4}{\pi D} \int_0^\infty \left[\frac{1}{2} - \frac{\left(\sinh \frac{\beta}{2} + \frac{\beta}{2} \cosh \frac{\beta}{2} \right) \cosh \frac{\beta x}{a} - \frac{\beta x}{a} \sinh \frac{\beta}{2} \sinh \frac{\beta x}{a}}{\sinh \beta + \beta} \right] \sin \frac{\beta y}{a} d\beta. \tag{1} $$

将 (1) 式微分，并且注意到

$$ \int_0^\infty \sin \frac{\beta y}{a} d\beta = \frac{\pi}{2}, \quad y > 0 $$

即得

$$ \Delta \Delta w = \frac{2 q}{\pi D} \int_0^\infty \sin \frac{\beta y}{a} d\beta = \frac{q}{2D}. $$

由此可见，板的弯曲微分方程是满足的。可以证明，解 (1) 也满足边界 $y = 0$ 和 $x = \pm a/2$ 上所要求的边界条件。

板的弯矩表达式中也包含无穷积分，但可以求出它的值来，有意义的还是弯矩 M_y，例如，设 $\nu = 0.2$，我们得到最大弯矩值 $(M_y)_{\text{max}} = 0.0174 qa^3$，它发生在 $y = 0.3a$；然而在相同的 ν 值下，无限长板的弯矩 $M_y = vqa^4/24$ 不超过 $0.00833 qa^2$。

应当注意，半无限板的性质可用作计算有限矩形板（其边缘为任意组合
的简支边或同支边)挠度与弯短的基础。

51. 承受集中载荷的半无限矩形板 假设板的边缘 \(x = 0 \) 和 \(x = a \)是简支，关于第三边 (\(y = 0 \))，我们考虑两种情况：(1) 边缘 \(y = 0 \) 是简支，
(2) 边缘 \(y = 0 \) 是铰支。

边缘 \(y = 0 \) 是简支 (图107)
设载荷 \(P \) 作用于点 \(x = \xi, y = \eta \) (图107)，首先考虑仅在边缘 \(x = 0 \) 和 \(x = a \)
是简支的无限板。为了运用解在法 (见156页)，假设有第二个载荷 \(-P \) 作用于
无限板的点 \(x = \xi, y = -\eta \)。于是，直线 \(y = 0 \) 成为板的挠度曲面的
节线。因此，将两个集中载荷所产生的无限板的挠度 [见 (148) 式] 连加，
就能得到所需求的半无限板的弯曲。用这方法，我们得到挠度曲面

\[
\omega_{y} = \frac{Pa}{2\pi^{2}D} \sum_{m=1}^{\infty} \frac{1}{m^{3}} \left[1 + \frac{m^{2}a^{2}}{a} (\eta - y) \right] \sin \frac{m\pi y}{a} \sin \frac{m\pi x}{a} \\
- \frac{Pa}{2\pi^{2}D} \sum_{m=1}^{\infty} \frac{1}{m^{3}} \left[1 + \frac{m^{2}a^{2}}{a} (\eta + y) \right] \sin \frac{m\pi y}{a} \sin \frac{m\pi x}{a}
\]

将各项重排，即得:

\[
\omega_{y} = \frac{Pa}{2\pi^{2}D} \sum_{m=1}^{\infty} \frac{1}{m^{3}} \left[1 + \frac{m^{2}a^{2}}{a} (\eta - y) \right] \sin \frac{m\pi y}{a} \sin \frac{m\pi x}{a} \\
\times \sin \frac{m\pi x}{a} \sin \frac{m\pi y}{a}, \tag{a}
\]

此式对于 \(0 \leq y \leq \eta \) 有效，当 \(y = 0 \) 时，\(\omega_{y} = 0 \)，\(\partial^{2}\omega_{y}/\partial y^{2} = 0 \)。在 \(y > \eta \)的
范围内，可用类似的方法得到挠度。

如将单一载荷分布在小面积上，则受载面积中心的弯矩 \(M_{x} \) 及相应的挠度，比在 \(y = 0 \) 处无限近边缘的无限板要小。但弯矩 \(M_{y} \) 依然是例外。将此弯
矩写成形式 \(M_{y} = M_{y0} + M_{y} \)，其中 \(M_{y0} \) 是无限板的弯矩。在图107 中代表
载荷 \(-P \) 的影响的校正项 \(M_{y} \)，可以利用 (151) 中的第二式立即求出。例

1) 研究矩形板理论的这种方法请参考 W. Koepeke, Ing.-Arch., 第 18 卷，第
106 页，1930 年。
设 $v = 0.3$，得到校正项的最大值为 $m_v = 0.0065p$；与此相应的载荷位于 $\xi = \sigma/2$，$v = 0.453\sigma$。

边缘 $y = 0$ 为固定 (图 108)。我们首先计算弹性曲面 (a) 在 $y = 0$ 处的
斜度，由微分得到：

$$
\left(\frac{\partial \omega_1}{\partial y} \right)_{y=0} = \frac{p \eta}{\pi D} \sum_{m=-\infty}^{\infty} \frac{e^{-m\pi y/a}}{m} \sin \frac{m\pi \xi}{a} \sin \frac{m\pi x}{a}.
$$

(b)

其次，在简支半无限板上施加沿边缘 $y = 0$ 以如下规律分布的力矩：

$$(M_y)_{y=0} = f(x) = \sum_{m=1}^{\infty} F_m \sin \frac{m\pi x}{a}.
$$

其相应的挠度在 $y = \infty$ 处为零，我们可以写为：

$$
\omega_y = \sum_{m=-\infty}^{\infty} (A_m + B_m y) e^{-m\pi y/a} \sin \frac{m\pi x}{a}.
$$

(c)

此式中的系数 A_m 和 B_m 可由下列条件立即求出：

$$
(A_y)_{y=0} = 0, \quad -D \left(\frac{\partial^2 \omega_y}{\partial y^2} \right)_{y=0} = f(x).
$$

(d)

由此得到 $A_m = 0, B_m = F_m \sigma/2m\pi D$；最后，有

$$
\omega_1 = \frac{ay}{2\pi D} \sum_{m=1}^{\infty} \frac{F_m e^{-m\pi y/a}}{m} \sin \frac{m\pi x}{a}.
$$

(e)

由于必须消去斜度 (b)，边界条件为：

$$
\left(\frac{\partial \omega_1}{\partial y} \right)_{y=0} + \left(\frac{\partial \omega_2}{\partial y} \right)_{y=0} = 0.
$$

(f)

将式 (b) 和 (e) 代入方程 (f)，则得：

$$
F_m = -\frac{2p\eta}{a} e^{-m\pi y/a} \sin \frac{m\pi \xi}{a}.
$$

将式 (e) 相应地化为：

$$
\omega_1 = -\frac{p\eta}{\pi D} \sum_{m=1}^{\infty} \frac{e^{-m\pi y/a}}{m} \sin \frac{m\pi \xi}{a} \sin \frac{m\pi x}{a}.
$$

(g)

于是，边缘 $y = 0$ 处夹支的半无限板的挠度曲面由下式给出：

$$
\omega = \omega_1 + \omega_2.
$$

(h)

其中 ω_1 代表式 (a)，至于级数 (g)，它可以写成有限形式。只需要将 (a) 中
所包含的正弦函数用指数函数

$$
e^{x (m \pi \xi/a)} \quad \text{及} \quad e^{x (m \pi x/a)}
$$

即可求出。
来表示，并且注意到展开式

\[\log(1 \pm e^x) = \pm e^x - \frac{e^{2x}}{2} \pm \frac{e^{3x}}{3} - \cdots \]

（x）式最后就能化成更简单的形式:

\[
\nu = \frac{P\eta}{4\pi D} \log \left(\frac{\cosh \frac{\pi}{a} (y + \eta) - \cos \frac{\pi}{a} (x - \xi)}{\cosh \frac{\pi}{a} (y + \eta) - \cos \frac{\pi}{a} (x + \xi)} \right).
\]

（i）

当\(\eta = 0 \) 处夹紧的弯矩值由对式 (i) 的微分立即得到，其结果为：

\[
(M_y)_{y=0} = -\frac{P\eta}{2a} \sinh \frac{\pi\eta}{a} \left(\frac{1}{\cosh \frac{\pi\eta}{a} - \cos \frac{\pi}{a} (x - \xi)} - \frac{1}{\cosh \frac{\pi\eta}{a} - \cos \frac{\pi}{a} (x + \xi)} \right).
\]

（j）

当集中载荷近于固支边 \(y = 0 \) 时，在一般情况下，式 (i) 所给出的值趋近于零。然而，如 \(\xi = x \) 及 \(\eta \) 同时趋近于零，则式 (i) 给出：

\[
(M_y)_{y=0} = -\lim_{\eta \to 0} \left(\frac{P\eta}{2a} \coth \frac{\pi\eta}{a} \left(\frac{1 - \cos \frac{2\pi x}{a}}{\cosh \frac{\pi\eta}{a} - \cos \frac{2\pi x}{a}} \right) \right) = -\frac{P}{\pi}.
\]

（k）

最后，如果 \(\eta = 0 \)，则弯矩 \(M_y \) 为零。

在本节结束，让我们考虑令单一载荷 \(P \) 均匀分布于长度为 \(a \) 的直线段上（图 109）。这种载荷在固支边中点所产生的弯矩可利用式 (i) 立即求出。在此式中代入 \(x = a/2 \)，并以 \(Pd\xi/a \) 代替 \(P \)，然后积分，就得到所求的弯矩:

![图 109](image)

- 240 -
\[(M_y)_{max/a,\eta=a} = -\frac{2P\eta}{a} \sinh \frac{\pi \eta}{a} \int_{(s-x)/a}^{(s+x)/a} \frac{\sin \frac{\pi \xi}{a} d\xi}{\cosh \frac{2\pi \eta}{s} + \cos \frac{2\pi \xi}{a}} \]

\[= -\frac{2P\eta}{\pi a} \arctan \frac{\sin \frac{\pi u}{2a}}{\sinh \frac{\pi \eta}{a}} \]

表 50 给出了不同比值 \(u/a\) 下产生最大弯矩（绝对值）的截荷位置以及此弯矩的值。

表 50 由于单一截荷分布在长度 \(u\) 的直线段上而在 \(x = a/2\) 处所产生的最大弯矩（图 109）

<table>
<thead>
<tr>
<th>(u/a)</th>
<th>0</th>
<th>0.1</th>
<th>0.2</th>
<th>0.4</th>
<th>0.6</th>
<th>0.8</th>
<th>1.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\eta/a)</td>
<td>0</td>
<td>0.147</td>
<td>0.203</td>
<td>0.272</td>
<td>0.324</td>
<td>0.321</td>
<td>0.343</td>
</tr>
<tr>
<td>(M_y/P)</td>
<td>-0.318</td>
<td>-0.296</td>
<td>-0.275</td>
<td>-0.237</td>
<td>-0.224</td>
<td>-0.172</td>
<td>-0.143</td>
</tr>
</tbody>
</table>
第七章
连续矩形板

52. 简支连续板 房屋建筑上所用的楼板，除了由外墙支承外，往往还有中间支承，支承的形式为梁与间隔或者柱。在第一种情况下，我们需要讨论一定形式的连续板问题。在无中间梁的柱支情况下，我们需要讨论无梁板的问题。楼板通常被支承划分为若干节间。本章只是研究具有矩形节间的连续板。

我们首先讨论一种情况，利用上章已经用过的方法能得到它的严格解。如图110所示，宽度为 \(b \), 长度为 \(a_1 + a_2 + a_3 \), 沿边缘支承，同时也沿中间线 \(ss \) 和 \(tt \) 支承的矩形板，形成一个三跨度的简支连续板。假定中间支承既不因横向压力而变形，也不阻止板对于 \(ss \) 轴与 \(tt \) 轴的旋转。有了这些假设，每一跨度的弯曲可用下述方法直接求解：迭加承受均勾横向载荷的简支矩形板的已知解和沿边缘分布有弯矩的矩形板的弯曲的已知解。
首先考虑对称的情形，即

\[u_1 = a_2 = a_3 = a, \]

并设中间跨度承受均布载荷，两边的跨度不受载荷（图 110b）。将中间跨度视为简支矩形板，应用第 44 节的式 (b)，可得边缘 \(x_2 = a/2 \) 上挠度曲面的斜度为:

\[
\left(\frac{\partial w}{\partial x_2} \right)_{x_2 = a/2} = \frac{2gb^3}{\pi^4 D} \sum_{m=1, 3, 5, \ldots}^{\infty} \frac{(-1)^{(m-1)/2} \cos m\pi y}{m^4} \times \left(\frac{\beta_m}{\cosh^2 \beta_m} - \tanh \beta_m \right), \tag{a}
\]

式中 \(\beta_m = m\pi a/2b \)。由于板的连续性，可知沿边缘 \(x_2 = \pm a/2 \) 分布有弯矩 \(M_x \)。由对称性可知，这些弯矩可用下列级数表示:

\[
(M_x)_{x_2 = \pm a/2} = \sum_{m=1, 3, 5, \ldots}^{\infty} (-1)^{(m-1)/2} E_m \cos \frac{m\pi y}{b}. \tag{b}
\]

这些弯矩所产生的挠度 \(w_1 \) 可由式 (173) 得到，同时沿边缘 \(x_2 = a/2 \) 的相应斜度为 [见 209 页式 (c)]

\[
\left(\frac{\partial w_1}{\partial x_1} \right)_{x_1 = a/2} = -b \frac{2}{\pi^2 D} \sum_{m=1, 3, 5, \ldots}^{\infty} E_m \frac{(-1)^{(m-1)/2}}{m^2} \cos \frac{m\pi y}{b} \times \left(\tanh \beta_m + \frac{\beta_m}{\cosh^2 \beta_m} \right). \tag{c}
\]

根据连续条件，表示沿直线 \(x_2 = a/2 \) 上板的斜度的式 (a) 与 (c) 之和，必须等于相邻跨度内板的挠度曲面在同一直线上的斜度。将此相邻跨度看作沿边缘 \(x_2 = -a/2 \) 受有分布弯矩 (b) 的弯曲作用的简支矩形板，利用式 (176)（见第 194 页），求得板的相应挠度 \(w_1 \) 为

\[
w_1 = \frac{b^4}{4\pi^2 D} \sum_{m=1, 3, 5, \ldots}^{\infty} E_m \cos \frac{m\pi y}{b} \left(\frac{(-1)^{(m-1)/2}}{m^2} \right) \times \left[\frac{1}{\cosh \beta_m} \left(\beta_m \tanh \beta_m \cosh \frac{m\pi x_2}{b} - m\pi x_2 \sinh \frac{m\pi x_2}{b} \right) \right.

\left. - \frac{1}{\sinh \beta_m} \left(\beta_m \coth \beta_m \sinh \frac{m\pi x_2}{b} - m\pi x_2 \cosh \frac{m\pi x_2}{b} \right) \right]. \tag{d}
\]
在边界 \(x_1 = -a/2 \) 上，相应的斜率为：

\[
\left(\frac{\partial \omega_2}{\partial x_1} \right)_{x_1 = -a/2} = \frac{b}{4\pi D} \sum_{m=1,3,5,\ldots}^{\infty} \frac{E_m}{m} (-1)^{(m-1)/2} \cosh \frac{m\pi y}{b} \times \left(\tanh \beta_m + \coth \beta_m + \frac{\beta_m}{\cosh^2 \beta_m} - \frac{\beta_m}{\sinh^2 \beta_m} \right). \tag{e}
\]

计算系数 \(E_m \) 的方程为：

\[
\left(\frac{\partial \omega_2}{\partial x_2} \right)_{x_2 = a/2} + \left(\frac{\partial \omega_1}{\partial x_1} \right)_{x_1 = a/2} = \left(\frac{\partial \omega_1}{\partial x_1} \right)_{x_1 = -a/2}.
\]

此方程对于任何 \(y \) 值都成立，因此对于每一 \(m \) 值得到如下方程：

\[
\frac{2q b^2}{\pi^4 D m^4} \left(\frac{\beta_m}{\cosh^3 \beta_m} - \tanh \beta_m \right) - \frac{b}{2\pi D} \frac{E_m}{m} \left(\tanh \beta_m + \frac{\beta_m}{\cosh^2 \beta_m} \right) = \frac{b}{4\pi D} \frac{E_m}{m} \left(\tanh \beta_m + \coth \beta_m + \frac{\beta_m}{\cosh^2 \beta_m} - \frac{\beta_m}{\sinh^2 \beta_m} \right). \tag{f}
\]

由此，

\[
E_m = \frac{8q b^2}{\pi^3 m^3} \frac{\beta_m - \tanh \beta_m \cosh \beta_m}{3\tanh \beta_m \cosh^2 \beta_m + \coth \beta_m \cosh^2 \beta_m + 3\beta_m - \beta_m \coth^2 \beta_m}.
\tag{g}
\]

可以看到，当 \(m \) 增大时，\(E_m \) 迅速减小，并且趋近于值 \(-2q b^2/\pi^2 m^3\)。有了由 (g) 计算的系数 \(E_m \)，就能由式 (b) 得到直线 \(s \) 上弯矩 \(M_s \) 的值。当 \(y = 0 \)，也就是在板宽的中点，这个弯矩的值为：

\[
(M_s)_{x_1 = \pm a/2, y = 0} = \sum_{m=1,3,5,\ldots}^{\infty} E_m (-1)^{(m-1)/2}.
\]

例如，设 \(b = a \)，则有 \(\beta_m = m \pi/2 \)，而公式 (g) 给出：

\[
E_1 = -\frac{8q a^2}{\pi^3} 0.1555, \quad E_3 = -\frac{8q a^2}{\pi^3} 0.0092, \quad E_5 = -\frac{8q a^2}{\pi^3} 0.0020; \quad (M_s)_{x_1 = \pm a/2, y = 0} = -0.0381 qa^3.
\]

中间跨度中心的弯矩可用迭加法直接得到：迭加受均匀荷载弯曲的简支板的弯矩以及与挠度 \(\omega_1 \) 相对应的弯矩。例如，取 \(b = a \)，以及适用于混凝土的泊松比 \(\nu = 0.2 \)，我们得到简支板的弯矩。
值：

\[(M_x)_0 = (M_y)_0 = 0.0479 \times \frac{1.2}{1.3} qa^2 = 0.0442qa^2\]

（见 125 页，表 8），以及边缘弯矩所产生的弯矩值

\[(M_x)_1 = -0.0067qa^2, \quad (M_y)_1 = -0.0125qa^2.\]

所以，

\[\begin{align*}
(M_x)_{x=0, y=0} &= 0.0375qa^2, \\
(M_y)_{x=0, y=0} &= 0.0317qa^2.
\end{align*}\]

假定如图 110c 所示，一个端的弯度满足均匀载荷，则挠度曲面不再与板的垂直对称轴对称，并且沿 ss 和 tt 线的弯矩分布也不相同。令：

\[(M_x)_{x=a/2} = \sum_{m=1, 3, 5, \ldots}^{\infty} (-1)^{(m-1)/2} E_m \cos \frac{m\pi y}{b}, \tag{h}\]

\[(M_x)_{x=a/2} = \sum_{m=1, 3, 5, \ldots}^{\infty} (-1)^{(m-1)/2} F_m \cos \frac{m\pi x}{b}.\]

为了计算系数 \(E_m\) 和 \(F_m\)，要根据板的挠度曲面在 ss 和 tt 线的连续条件导出一组方程。考虑承受载荷的弯度，应用式 (a) 和 (e)，求得支线上 ss 上挠度曲面的斜度为（设 \(a_1 = a_2 = a_3 = a\)）

\[\begin{align*}
\left(\frac{\partial w}{\partial x}\right)_{x=a/2} &= \frac{2qD}{\pi^2 a^4} \sum_{m=1, 3, 5, \ldots}^{\infty} \frac{(-1)^{(m-1)/2}}{m^4} \cos \frac{m\pi y}{b} \left(\frac{\beta_m}{\cosh^2 \beta_m} - \tanh \beta_m \right) \\
&+ \frac{b}{4\pi D} \sum_{m=1, 3, 5, \ldots}^{\infty} E_m \frac{(-1)^{(m-1)/2}}{m} \cosh \frac{m\pi y}{b} \times \left(\tanh \beta_m + \coth \beta_m + \frac{\beta_m}{\sinh^2 \beta_m} - \frac{\beta_m}{\cosh^2 \beta_m}\right). \tag{i}\end{align*}\]

现在将中间弯度看作一矩形板，沿 ss 和 tt 线受有按级数 (h) 分布的弯矩 \(M_x\) 的弯度作用，利用式 (175)（见 193 页）求得：

\[\begin{align*}
\left(\frac{\partial w}{\partial x}\right)_{x=a/2} &= \frac{b}{4\pi D} \sum_{m=1, 3, 5, \ldots}^{\infty} \frac{(-1)^{(m-1)/2}}{m} \cos \frac{m\pi y}{b} \left[(E_m + F_m) \right. \\
&\left. \times \left(\frac{\beta_m}{\cosh^2 \beta_m} + \tanh \beta_m\right) + (F_m - F_m) \left(\coth \beta_m - \frac{\beta_m}{\sinh^2 \beta_m}\right)\right]. \tag{j}\end{align*}\]
由式 (i) 和 (i)，得到下列计算系数 E_m 和 F_m 的方程组:

$$A_m \left(\frac{8qa^4}{\pi^2 m^3} + E_m (B_m + C_m) \right) = -E_m (E_m + F_m)$$

$$-C_m (E_m - F_m),$$

式中采用了下列符号:

$$A_m = \frac{\beta_m}{\cosh^2 \beta_m} - \tanh \beta_m, \quad B_m = \left(\frac{\beta_m}{\cosh^2 \beta_m} + \tanh \beta_m \right),$$

$$C_m = \frac{\beta_m}{\sinh^2 \beta_m} - \coth \beta_m.$$

应用式 (i)，中间跨度的挠度曲面在子线 tt 上的斜度为

$$\left(\frac{\partial w}{\partial x} \right)_{x_z = a/2} = - \frac{b}{4 \pi D} \sum_{m=1, 3, 5, \ldots} \frac{(-1)^{(m-1)/2}}{m} \cos \frac{mn \pi y}{b} \left[E_m (E_m + F_m) \right.$$

$$\times \left(\frac{\beta_m}{\cosh^2 \beta_m} + \tanh \beta_m \right) + (F_m - E_m) \left(\coth \beta_m - \frac{\beta_m}{\sinh^2 \beta_m} \right) \left. \right].$$

这个斜度必须等于相邻不受载跨度的斜度。在式 (c) 中代入 F_m 代替 E_m 就能得到后者。用这种方法，我们找到第二组方程，利用符号 (l)，它们可写成下列形式:

$$B_m (E_m + F_m) + C_m (F_m - E_m) = - (B_m + C_m) F_m.$$

由此方程得到:

$$F_m = E_m \frac{C_m - B_m}{2(B_m + C_m)}.$$

代入方程 (k)，则得:

$$E_m = A_m \left(\frac{8qa^4}{\pi^2 m^3} \frac{2(B_m + C_m)}{(C_m - B_m)^2 - 4(B_m + C_m)^2} \right).$$

在每一特殊问题中，代入由式 (l) 所得到的 A_m, B_m 和 C_m 的数值，就能求出系数 E_m 和 F_m；然后，由式 (h) 求得子线 ss 和 tt 上的弯矩。例如，取 $b = a$。此时 $\beta_m = mx/2$，于是，由式 (l) 得到:

$$A_1 = -0.6677, \quad B_1 = -1.1667, \quad C_1 = -0.7936,$$

$$A_2 = -0.9983, \quad B_1 = -1.0013, \quad C_2 = -0.9987.$$

对大于 3 的 m，取

$$A_m = B_m = C_m = -1$$
是足够精确的。将这些值代入式 (1)，可得：

\[E_1 = - \frac{8ga^2}{\pi^3} 0.1720, \quad E_1 = - \frac{8ga^2}{\pi^3} 0.2496, \]

\[E_5 = - \frac{8ga^2}{\pi^3} 0.2500. \]

对支点 s5 中点的弯矩为：

\((M_x)_{x_s = \frac{a}{2}, y = \frac{a}{2}} = E_1 - E_3 + E_5 - \cdots = -0.0424 q a^4. \)

对支点 s3 的中点，得到：

\((M_x)_{x_s = \frac{a}{2}, y = \frac{a}{2}} = E_1 - E_3 + E_5 - \cdots = 0.0042 q a^4. \)

有了沿支点的弯矩，就使得截面产生的挠度和弯矩所产生的挠度迭加，就能立刻得到每一跨度板的挠度。

连续板每节间的弯矩可用类似的方法得到。例如，计算中间跨度中心的弯矩，取 \(\nu = 0.2 \)，得到：

\((M_x)_{x_s = \frac{a}{2}, y = \frac{a}{2}} = -0.0039 q a^4, \)

\((M_y)_{x_s = \frac{a}{2}, y = \frac{a}{2}} = -0.0051 q a^4. \)

对三个跨度板所得的方程可以一般化而推广到任意个跨度的情形。用这种方法，可得到一个与连续梁的三弯矩方程相同的方程。我们考虑长度分别为 \(a_i \) 和 \(a_{i+1} \) 的相邻跨度 \(i \) 和 \(i + 1 \)（图 111）。函数 (1) 的相应值用 \(A_i^m, B_i^m, C_i \) 和 \(A_{i+1}^m, B_{i+1}^m, C_{i+1}^m \) 表示。

1) Б. Г. Галёркин 讨论这个问题的方法有所不同；参看他的 "Сборник сочинений" 第 3 卷，第 410 页，莫斯科，1953 年。
在相接的三支线上的弯矩可用级数表示:

\[M_{x}^{i-1} = \sum_{m=1, 3, 5, \ldots}^{\infty} (-1)^{(m-1)/2} E_{m-1}^{i} \cos \frac{m\pi y}{b}, \]

\[M_{y}^{i} = \sum_{m=1, 3, 5, \ldots}^{\infty} (-1)^{(m-1)/2} E_{m}^{i} \cos \frac{m\pi y}{b}, \]

\[M_{x+y}^{i+1} = \sum_{m=1, 3, 5, \ldots}^{\infty} (-1)^{(m-1)/2} E_{m}^{i+1} \cos \frac{m\pi y}{b}. \]

考虑跨度 \(i + 1 \) 时，用式 (a) 和 (j)，可得:

\[
\left(\frac{\partial \omega}{\partial x_{i+1}} \right)_{x_{i+1}=-\frac{a_{i+1}}{2}} = -\frac{2q_{i+1}b^{3}}{\pi^{2}D} \sum_{m=1, 3, 5, \ldots}^{\infty} \frac{(-1)^{(m-1)/2}}{m^{4}} \cos \frac{m\pi y}{b} \times A_{m}^{i+1} - \frac{b}{4\pi D} \sum_{m=1, 3, 5, \ldots}^{\infty} \frac{(-1)^{(m-1)/2}}{m} \cos \frac{m\pi y}{b} \times [(E_{m}^{i} + E_{m}^{i+1})B_{m}^{i+1} - (E_{m}^{i+1} + E_{m}^{i})C_{m}^{i+1}]. \tag{p}
\]

同样地，考虑跨度 \(i \) 时，则得:

\[
\left(\frac{\partial \omega}{\partial x_{i}} \right)_{x_{i}=-\frac{a_{i}}{2}} = \frac{2q_{i}b^{3}}{\pi^{2}D} \sum_{m=1, 3, 5, \ldots}^{\infty} \frac{(-1)^{(m-1)/2}}{m^{4}} \cos \frac{m\pi y}{b} \times A_{m}^{i} + \frac{b}{4\pi D} \sum_{m=1, 3, 5, \ldots}^{\infty} \frac{(-1)^{(m-1)/2}}{m} \cos \frac{m\pi y}{b} \times [(E_{m}^{i-1} + E_{m}^{i})B_{m}^{i} + (E_{m}^{i} - E_{m}^{i-1})C_{m}^{i}]. \tag{q}
\]

根据连续条件，可得:

\[
\left(\frac{\partial \omega}{\partial x_{i+1}} \right)_{x_{i+1}=-(a_{i+1}/2)} = \left(\frac{\partial \omega}{\partial x_{i}} \right)_{x_{i}=a_{i}/2}.
\]

将式 (p) 和 (q) 代入此式，并且注意到它应当对任意 \(y \) 值都得到满足，即得计算 \(E_{m}^{i-1} \)，\(E_{m}^{i} \) 和 \(E_{m}^{i+1} \) 的下列方程:

\[
E_{m}^{i-1}(B_{m}^{i} - C_{m}^{i}) + E_{m}^{i}(B_{m}^{i} + C_{m}^{i} + B_{m}^{i+1} + C_{m}^{i+1}) + E_{m}^{i+1}(B_{m}^{i+1} - C_{m}^{i+1}) = -\frac{8b^{2}}{x^{2}m^{3}} (q_{i+1}A_{m}^{i+1} + q_{i}A_{m}^{i}). \tag{177}
\]

以前得到的方程 (k) 和 (m) 是这个方程的特殊情况。中间支线有多少个方程 (177)，如果板的二端简支，则计算所有中间支线上的弯矩并无困难。方程 (177) 的左端不仅对均匀载荷成立，并且对于在每一跨度内对 \(x \) 和 \(y \) 轴对称的任意一种载荷
也成立。然而，同架的三弯矩方程一样，方程 (177) 的右端对于每一种载荷有不同的值。

承受若干单一载荷的连续板问题可用类似的方法处理。在等跨度的数目无限而只是一个跨度的任一点上作用着一个单一载荷的特殊情况下，将未知系数 E_n 视为上标 i 的函数，解 E_n 的有限差分方程，就能求得板的挠度 η。

如果各中间支承是弹性的，则系数 E_n 的大小由五项方程 (每方程中含有五个 E_n 的系数) 决定，这些方程与连续梁理论的三弯矩方程相类似。支承梁的抗扭刚度能减小板在载荷处的旋转，在研究连续板的弯曲时也能将此抗扭刚度考虑进去。

作为承受一个集中载荷的连续板的最简单例子，我们考虑沿边线 $x = 0$，$x = a$ 简支的无限长板，它在直线 $y = 0$ 上连续，并在某一点 $x = \xi$，$y = \eta$ 作用有一个集中载荷 P (图 112a)，将图 112b 和图 112c 所示的情况迭加，就能立刻满足所考虑问题的载荷与强度条件。在图 112b 的情况下，板的每一节间的弯曲 $\varphi = 0$ 是简支，其弹性弯曲方程由式 $\pm w_1/2$ 给出，式中符号应根据 φ 大于零还是小于零来选择，w_1 代表第 51 节的挠度 (a)，并且 $|\varphi| < |\eta|$。在图 112c 所示的情况下，板的每一节间的边缘 $y = 0$ 是夹支，其相应的挠度为 $w/2$，w 代表第 51 节的式 (b) 给出。所以有:

当 $\eta > y > 0$ 时，$w = w_1 + w_2/2$。

当 $y < 0$ 时，$w = w_1/2$。

3) 参看 K. Girkmann, “Flächentragwerke”, 第 4 版，第 274 页，维也纳，1956 年。
因此边缘 \(y = 0 \) 上的弯矩等于一边固支的半无限板的夹支弯矩的一半。后者是第 51 节的式 (i) 所给出的。

53. 等跨度连续板的近似设计

楼板的布置往往不仅象第 52 节中所设的那样在一个方向连续，而是在二垂直方向连续的。在图 113 中表示了一个这种类型的连续板。板的跨度与厚度对所有的矩形节间是相等。每个节间可以承受一静载荷 \(q_0 \)，并且可能承受一动载荷 \(p \)，此二载荷都是在节间的面积上均匀分布的。最大载荷强度为 \(q = q_0 + p \)。

我们首先计算楼板在各中间支承处的弯矩。计算表明，这些弯矩主要决定于二相邻节间上的载荷，更远的受载节间的影响可忽略不计，所以，根据载荷 \(q \) 均匀分布在各个楼板上的假设来计算支承上的弯矩是合理的（图 114a）。首先忽略板在各中间支承处的旋转，因此图 114a 中每个节间的状况与沿各中间支线夹支、沿楼板的外边界简支的矩形板相同。

具有这种边界条件的板的最大弯矩已列表表示（见表 51-56）。在这些表的头上注明了矩形板简支边和固支边的六种可能组合。楼板的每个节间中坐标轴 \(x \) 和 \(y \) 的方向必须依照图 115-120 来选择；跨度 \(a \) 应当分别在各节间的 \(x \) 轴方向量度，跨度 \(b \) 在

1）以下所述的方法基本上是依据 H. Marcus 的方法。参阅他的著作 "Die vereinfachte Berechnung biegsmacher Platten", 柏林，1929 年。但是，表 51 到 56 的系数是根据本书第六章中所研究的解以及按松比的值 \(\nu = 0.2 \)，而 Marcus 对于这个问题应用了矩形板的简化理论并且假设 \(\nu = 0 \)。
γ 方向弯矩。图 114—121 所示的六种情况编成号码 1—6，并在表 51—56 的各系数下标以相应的下标。

为了说明表的应用，计算支线 \(t w \) 中点的弯矩（图 113）。为此，计算与此支线相邻的两个节间的夹支弯矩。对于节间 2 应当用公式

\[
\bar{M}_{x_2} = \delta_2 q l^3
\]

和表 52，\(l \) 是该节间的跨度 \(a \) 和 \(b \) 中较小的跨度。同样，应用表 56，由式

\[
\bar{M}_{x_5} = \gamma q l^4
\]

可得节间 6 的夹支弯矩。对现在的问题，弯矩用

\[
M_{tw} = \frac{1}{2} (\bar{M}_{x_2} + \bar{M}_{x_5})
\]

表示是足够精确的，其他各支线上的弯矩用类似的方法求得。

应当注意，式 (c) 除了以最简单的形式表示弯矩分布外，并不说明别的什么东西，亦即在这方法中，由于其他支承所产生的“传递”弯矩，以及相邻节间刚度值的差异都是忽略不计的。在连续板的情况下采用这种简化方法比连续梁的情况下用这种方法要合理得多。

其次，我们考虑节间 6（图 113）中心的弯矩作为例子。将图 114b 和 114c 所示的载荷迭加，就能得到一种对弯矩最不利的载荷。
表 51 承受均匀荷载的板的弯矩（情况 1）

\[\nu = 0.2, \quad l = \text{跨度} \quad a \quad \text{和} \quad b \quad \text{中的较小值} \]

<table>
<thead>
<tr>
<th>(b/a)</th>
<th>板中心</th>
<th>因子</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\frac{M_x}{\alpha_1 q l^2})</td>
<td>(\frac{M_y}{\beta_1 q l^2})</td>
<td>(q b^2)</td>
</tr>
<tr>
<td>0</td>
<td>0.0250**</td>
<td>0.1250</td>
</tr>
<tr>
<td>0.5</td>
<td>0.0367</td>
<td>0.0999</td>
</tr>
<tr>
<td>0.6</td>
<td>0.0406</td>
<td>0.0868</td>
</tr>
<tr>
<td>0.7</td>
<td>0.0436</td>
<td>0.0742</td>
</tr>
<tr>
<td>0.8</td>
<td>0.0446</td>
<td>0.0627</td>
</tr>
<tr>
<td>0.9</td>
<td>0.0449</td>
<td>0.0526</td>
</tr>
<tr>
<td>1.0</td>
<td>0.0442</td>
<td>0.0442</td>
</tr>
<tr>
<td>1.1</td>
<td>0.0517</td>
<td>0.0449</td>
</tr>
<tr>
<td>1.2</td>
<td>0.0592</td>
<td>0.0449</td>
</tr>
<tr>
<td>1.3</td>
<td>0.0660</td>
<td>0.0444</td>
</tr>
<tr>
<td>1.4</td>
<td>0.0723</td>
<td>0.0439</td>
</tr>
<tr>
<td>1.5</td>
<td>0.0784</td>
<td>0.0426</td>
</tr>
<tr>
<td>1.6</td>
<td>0.0836</td>
<td>0.0414</td>
</tr>
<tr>
<td>1.7</td>
<td>0.0885</td>
<td>0.0402</td>
</tr>
<tr>
<td>1.8</td>
<td>0.0927</td>
<td>0.0391</td>
</tr>
<tr>
<td>1.9</td>
<td>0.0966</td>
<td>0.0378</td>
</tr>
<tr>
<td>2.0</td>
<td>0.0999</td>
<td>0.0367</td>
</tr>
<tr>
<td>(\infty)</td>
<td>0.1250</td>
<td>0.0250**</td>
</tr>
</tbody>
</table>

* \(M_{max} = 0.0364 q b^2 \) 是在短边 0.48b 处。
** \(M_{max} = 0.0364 qa^2 \) 是在短边 0.48a 处。
表 52 承受均匀载荷的板的弯矩(情况 2)

\(v = 0.2, \ i = \) 跨度 \(s \) 和 \(b \) 中的较小值

<table>
<thead>
<tr>
<th>(b/s)</th>
<th>板中心</th>
<th>固支边中点</th>
<th>因子</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(M_x = \alpha_1 q l^2)</td>
<td>(M_y = \beta_1 q l^2)</td>
<td>(M_x = \delta_1 q l^2)</td>
</tr>
<tr>
<td>0</td>
<td>0.0125</td>
<td>0.0625</td>
<td>-0.1250</td>
</tr>
<tr>
<td>0.5</td>
<td>0.0177</td>
<td>0.0595</td>
<td>-0.1210</td>
</tr>
<tr>
<td>0.6</td>
<td>0.0214</td>
<td>0.0562</td>
<td>-0.1156</td>
</tr>
<tr>
<td>0.7</td>
<td>0.0249</td>
<td>0.0514</td>
<td>-0.1086</td>
</tr>
<tr>
<td>0.8</td>
<td>0.0272</td>
<td>0.0465</td>
<td>-0.1009</td>
</tr>
<tr>
<td>0.9</td>
<td>0.0294</td>
<td>0.0415</td>
<td>-0.0922</td>
</tr>
<tr>
<td>1.0</td>
<td>0.0307</td>
<td>0.0367</td>
<td>-0.0840</td>
</tr>
<tr>
<td>1.1</td>
<td>0.0378</td>
<td>0.0391</td>
<td>-0.0916</td>
</tr>
<tr>
<td>1.2</td>
<td>0.0451</td>
<td>0.0404</td>
<td>-0.0983</td>
</tr>
<tr>
<td>1.3</td>
<td>0.0525</td>
<td>0.0415</td>
<td>-0.1040</td>
</tr>
<tr>
<td>1.4</td>
<td>0.0594</td>
<td>0.0418</td>
<td>-0.1104</td>
</tr>
<tr>
<td>1.5</td>
<td>0.0661</td>
<td>0.0418</td>
<td>-0.1184</td>
</tr>
<tr>
<td>1.6</td>
<td>0.0722</td>
<td>0.0414</td>
<td>-0.1148</td>
</tr>
<tr>
<td>1.7</td>
<td>0.0780</td>
<td>0.0408</td>
<td>-0.1172</td>
</tr>
<tr>
<td>1.8</td>
<td>0.0831</td>
<td>0.0399</td>
<td>-0.1189</td>
</tr>
<tr>
<td>1.9</td>
<td>0.0879</td>
<td>0.0390</td>
<td>-0.1204</td>
</tr>
<tr>
<td>2.0</td>
<td>0.0921</td>
<td>0.0382</td>
<td>-0.1216</td>
</tr>
<tr>
<td>(\infty)</td>
<td>0.1250</td>
<td>0.0250*</td>
<td>-0.1250</td>
</tr>
</tbody>
</table>

* \(M_{\text{max}} = 0.0387 q a^2 \) 是在离固支边 0.80a 处。

* 253 *
表 53 承受均匀载荷的板的弯矩（情况 3）

\(\nu = 0.2, \ l = \text{厚度} a \) 和 \(b \) 中的较小值

<table>
<thead>
<tr>
<th>(b/a)</th>
<th>板 中 心</th>
<th>固支边中点</th>
<th>因 子</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(M_x = \alpha, q l^2)</td>
<td>(M_y = \beta, q l^2)</td>
<td>(\bar{M}_x = \delta, q l^2)</td>
</tr>
<tr>
<td>0</td>
<td>0.0083*</td>
<td>0.0417</td>
<td>-0.0843</td>
</tr>
<tr>
<td>0.5</td>
<td>0.0109</td>
<td>0.0418</td>
<td>-0.0842</td>
</tr>
<tr>
<td>0.6</td>
<td>0.0121</td>
<td>0.0410</td>
<td>-0.0834</td>
</tr>
<tr>
<td>0.7</td>
<td>0.0152</td>
<td>0.0393</td>
<td>-0.0814</td>
</tr>
<tr>
<td>0.8</td>
<td>0.0173</td>
<td>0.0371</td>
<td>-0.0785</td>
</tr>
<tr>
<td>0.9</td>
<td>0.0194</td>
<td>0.0344</td>
<td>-0.0743</td>
</tr>
<tr>
<td>1.0</td>
<td>0.0216</td>
<td>0.0316</td>
<td>-0.0697</td>
</tr>
<tr>
<td>1.1</td>
<td>0.0276</td>
<td>0.0349</td>
<td>-0.0787</td>
</tr>
<tr>
<td>1.2</td>
<td>0.0314</td>
<td>0.0372</td>
<td>-0.0868</td>
</tr>
<tr>
<td>1.3</td>
<td>0.0414</td>
<td>0.0391</td>
<td>-0.0938</td>
</tr>
<tr>
<td>1.4</td>
<td>0.0482</td>
<td>0.0405</td>
<td>-0.0998</td>
</tr>
<tr>
<td>1.5</td>
<td>0.0554</td>
<td>0.0411</td>
<td>-0.1049</td>
</tr>
<tr>
<td>1.6</td>
<td>0.0620</td>
<td>0.0413</td>
<td>-0.1090</td>
</tr>
<tr>
<td>1.7</td>
<td>0.0683</td>
<td>0.0412</td>
<td>-0.1122</td>
</tr>
<tr>
<td>1.8</td>
<td>0.0741</td>
<td>0.0408</td>
<td>-0.1152</td>
</tr>
<tr>
<td>1.9</td>
<td>0.0795</td>
<td>0.0401</td>
<td>-0.1174</td>
</tr>
<tr>
<td>2.0</td>
<td>0.0846</td>
<td>0.0394</td>
<td>-0.1191</td>
</tr>
<tr>
<td>(\infty)</td>
<td>0.1250</td>
<td>0.0250**</td>
<td>-0.1250</td>
</tr>
</tbody>
</table>

* \(M_{\text{max}} = 0.0174q b^3 \) 是在第 3 度边界 0.18b 处。
** \(M_{\text{max}} = 0.0387q a^2 \) 是在第 3 度边界 0.80a 处。

* 254 *
表 54 承受均匀载荷的板的弯矩(情况 4)*

\(\gamma = 0.2 \), 为跨度 \(a \) 和 \(b \) 中的较小值

<table>
<thead>
<tr>
<th>(\frac{b}{a})</th>
<th>板中心</th>
<th></th>
<th>固支边中点</th>
<th>在 (\frac{x=0.1}{y=0.1}) 处</th>
<th>因子</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>0.0191</td>
<td>0.0574</td>
<td>-0.0787</td>
<td>-0.1180</td>
<td>0.0662</td>
</tr>
<tr>
<td>0.6</td>
<td>0.0228</td>
<td>0.0522</td>
<td>-0.0781</td>
<td>-0.1099</td>
<td>0.0570</td>
</tr>
<tr>
<td>0.7</td>
<td>0.0257</td>
<td>0.0460</td>
<td>-0.0787</td>
<td>-0.0991</td>
<td>0.0580</td>
</tr>
<tr>
<td>0.8</td>
<td>0.0275</td>
<td>0.0406</td>
<td>-0.0787</td>
<td>-0.0882</td>
<td>0.0430</td>
</tr>
<tr>
<td>0.9</td>
<td>0.0282</td>
<td>0.0356</td>
<td>-0.0715</td>
<td>-0.0755</td>
<td>0.0383</td>
</tr>
<tr>
<td>1.0</td>
<td>0.0281</td>
<td>0.0281</td>
<td>-0.0678</td>
<td>-0.0678</td>
<td>0.0305</td>
</tr>
<tr>
<td>1.1</td>
<td>0.0330</td>
<td>0.0283</td>
<td>-0.0766</td>
<td>-0.0709</td>
<td>0.0358</td>
</tr>
<tr>
<td>1.2</td>
<td>0.0376</td>
<td>0.0279</td>
<td>-0.0845</td>
<td>-0.0736</td>
<td>0.0407</td>
</tr>
<tr>
<td>1.3</td>
<td>0.0416</td>
<td>0.0279</td>
<td>-0.0915</td>
<td>-0.0754</td>
<td>0.0452</td>
</tr>
<tr>
<td>1.4</td>
<td>0.0451</td>
<td>0.0260</td>
<td>-0.0875</td>
<td>-0.0765</td>
<td>0.0491</td>
</tr>
<tr>
<td>1.5</td>
<td>0.0481</td>
<td>0.0248</td>
<td>-0.1028</td>
<td>-0.0772</td>
<td>0.0524</td>
</tr>
<tr>
<td>1.6</td>
<td>0.0507</td>
<td>0.0236</td>
<td>-0.1068</td>
<td>-0.0778</td>
<td>0.0553</td>
</tr>
<tr>
<td>1.7</td>
<td>0.0529</td>
<td>0.0224</td>
<td>-0.1104</td>
<td>-0.0782</td>
<td>0.0586</td>
</tr>
<tr>
<td>1.8</td>
<td>0.0546</td>
<td>0.0213</td>
<td>-0.1134</td>
<td>-0.0785</td>
<td>0.0608</td>
</tr>
<tr>
<td>1.9</td>
<td>0.0561</td>
<td>0.0202</td>
<td>-0.1159</td>
<td>-0.0786</td>
<td>0.0636</td>
</tr>
<tr>
<td>2.0</td>
<td>0.0574</td>
<td>0.0191</td>
<td>-0.1189</td>
<td>-0.0787</td>
<td>0.0662</td>
</tr>
</tbody>
</table>

* 作者感谢加拿大国立研究院允许使用它的资料，这大大有助于本表的计算。
表 55 承受均匀载荷的板的弯矩（情况 5）

\(\nu = 0.2, \ i = \) 跨度 \(a \) 和 \(b \) 中的较小值

<table>
<thead>
<tr>
<th>(b/a)</th>
<th>板中心</th>
<th>固支边中点</th>
<th>因子</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(M_x = \alpha q l^2)</td>
<td>(M_z = \beta q l^2)</td>
<td>(M_x = \gamma q l^2)</td>
</tr>
<tr>
<td>0.5</td>
<td>0.0206</td>
<td>0.0554</td>
<td>(-0.0783)</td>
</tr>
<tr>
<td>0.6</td>
<td>0.0245</td>
<td>0.0481</td>
<td>(-0.0773)</td>
</tr>
<tr>
<td>0.7</td>
<td>0.0268</td>
<td>0.0409</td>
<td>(-0.0749)</td>
</tr>
<tr>
<td>0.8</td>
<td>0.0277</td>
<td>0.0335</td>
<td>(-0.0708)</td>
</tr>
<tr>
<td>0.9</td>
<td>0.0274</td>
<td>0.0271</td>
<td>(-0.0657)</td>
</tr>
<tr>
<td>1.0</td>
<td>0.0261</td>
<td>0.0213</td>
<td>(-0.0600)</td>
</tr>
<tr>
<td>1.1</td>
<td>0.0294</td>
<td>0.0204</td>
<td>(-0.0659)</td>
</tr>
<tr>
<td>1.2</td>
<td>0.0323</td>
<td>0.0192</td>
<td>(-0.0705)</td>
</tr>
<tr>
<td>1.3</td>
<td>0.0346</td>
<td>0.0179</td>
<td>(-0.0743)</td>
</tr>
<tr>
<td>1.4</td>
<td>0.0364</td>
<td>0.0165</td>
<td>(-0.0770)</td>
</tr>
<tr>
<td>1.5</td>
<td>0.0378</td>
<td>0.0154</td>
<td>(-0.0788)</td>
</tr>
<tr>
<td>1.6</td>
<td>0.0390</td>
<td>0.0143</td>
<td>(-0.0803)</td>
</tr>
<tr>
<td>1.7</td>
<td>0.0398</td>
<td>0.0133</td>
<td>(-0.0815)</td>
</tr>
<tr>
<td>1.8</td>
<td>0.0405</td>
<td>0.0125</td>
<td>(-0.0825)</td>
</tr>
<tr>
<td>1.9</td>
<td>0.0410</td>
<td>0.0118</td>
<td>(-0.0831)</td>
</tr>
<tr>
<td>2.0</td>
<td>0.0414</td>
<td>0.0110</td>
<td>(-0.0823)</td>
</tr>
<tr>
<td>(\infty)</td>
<td>0.0417</td>
<td>0.0083</td>
<td>(-0.0833)</td>
</tr>
</tbody>
</table>

* 此表数据基本上是取自 F. Czerny, Bau techn. Arch., 第 11 卷, 第 33 页 W. Ernst & Sohn, 柏林, 1955 年。*
表 56 承受均匀载荷的板的弯矩（情况 0）

\(\nu = 0.2 \), \(l = \) 跨度 \(s \) 和 \(b \) 中的较小值

<table>
<thead>
<tr>
<th>(b/a)</th>
<th>板中心</th>
<th>圆弧边中点</th>
<th>因子</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0)</td>
<td>0.0083</td>
<td>0.0417</td>
<td>-0.0571</td>
</tr>
<tr>
<td>0.5</td>
<td>0.0118</td>
<td>0.0408</td>
<td>-0.0571</td>
</tr>
<tr>
<td>0.6</td>
<td>0.0150</td>
<td>0.0381</td>
<td>-0.0571</td>
</tr>
<tr>
<td>0.7</td>
<td>0.0178</td>
<td>0.0344</td>
<td>-0.0569</td>
</tr>
<tr>
<td>0.8</td>
<td>0.0198</td>
<td>0.0299</td>
<td>-0.0559</td>
</tr>
<tr>
<td>0.9</td>
<td>0.0209</td>
<td>0.0252</td>
<td>-0.0540</td>
</tr>
<tr>
<td>1.0</td>
<td>0.0213</td>
<td>0.0213</td>
<td>-0.0513</td>
</tr>
<tr>
<td>1.1</td>
<td>0.0248</td>
<td>0.0210</td>
<td>-0.0581</td>
</tr>
<tr>
<td>1.2</td>
<td>0.0284</td>
<td>0.0203</td>
<td>-0.0639</td>
</tr>
<tr>
<td>1.3</td>
<td>0.0313</td>
<td>0.0193</td>
<td>-0.0687</td>
</tr>
<tr>
<td>1.4</td>
<td>0.0337</td>
<td>0.0181</td>
<td>-0.0726</td>
</tr>
<tr>
<td>1.5</td>
<td>0.0358</td>
<td>0.0169</td>
<td>-0.0757</td>
</tr>
<tr>
<td>1.6</td>
<td>0.0372</td>
<td>0.0157</td>
<td>-0.0780</td>
</tr>
<tr>
<td>1.7</td>
<td>0.0385</td>
<td>0.0146</td>
<td>-0.0799</td>
</tr>
<tr>
<td>1.8</td>
<td>0.0395</td>
<td>0.0136</td>
<td>-0.0812</td>
</tr>
<tr>
<td>1.9</td>
<td>0.0402</td>
<td>0.0126</td>
<td>-0.0822</td>
</tr>
<tr>
<td>2.0</td>
<td>0.0408</td>
<td>0.0118</td>
<td>-0.0829</td>
</tr>
<tr>
<td>(\infty)</td>
<td>0.0417</td>
<td>0.0083</td>
<td>-0.0833</td>
</tr>
</tbody>
</table>
分布，亦即在这种分布载荷的作用下这些弯矩最大。

用表 56，可得均匀分布载荷 \(q_0 + \frac{p}{2} \) 所产生的弯矩:

\[
M'_{6x} = \alpha_6 \left(q_0 + \frac{p}{2} \right) l, \quad M'_{6y} = \beta_6 \left(q_0 + \frac{p}{2} \right) l, \quad (d)
\]

\(l \) 代表节间 6 中较小的跨度。

现在考虑图 114 c 所示棋盘形载荷的影响。此时每个节间的
边缘条件和简支板相同，因而节间 6 中心的弯矩可直接用情况 1
的表 51 计算。作用于节间 6 上的载荷 + \(p/2 \) 产生

\[
M''_{6x} = \frac{\alpha_6 p}{2} l^2, \quad M''_{6y} = \frac{\beta_6 p}{2} l^2, \quad (e)
\]

因此节间 6 中心的最大弯矩为

\[
M_{6x} = M'_{6x} + M''_{6x},
M_{6y} = M'_{6y} + M''_{6y}.
\]

(f)

如果要计算该点的最大负弯矩，只需改变图 114 c 中载荷的正负号，仍然应用结果 (d) 和 (e)，就有

\[
M'_{6x} = M''_{6x} - M''_{6x},
M'_{6y} = M''_{6y} - M''_{6y}.
\]

(g)

作为应用此近似方法的第 2 个例子，我们计算图 115 所示连续板的弯矩。在第 52 节中这问题时严格地处理的。

首先根据图 116 和 117 来选择 \(x \) 轴和 \(y \) 轴的方向。其次假设载荷 \(q = q_0 + p \) 均匀分布在整个板面上（图 121 b），并且应用对于情况 2 和 3 的表 52
和 53 所给出的系数（取 \(b/a = 1 \），得到支铰 \(x \) 中点的弯矩

\[
M_{1x} = - \frac{0.0849 + 0.0697}{2} (q_0 + p) a^2 = -0.0769(q_0 + p) a^2, \quad (h)
\]

其计算方法与上一例子 [式 (c)] 相同。用严格解，可知 \(x \) 线上数值最大的弯矩是由图 121 c 所示的载荷分布产生的。将第 244 页上所得的弯矩和第 247
页上计算所得的弯矩迭加，可知弯矩 \(M_{1x} \) 的精确最小值为:

\[
M_{1x} = - (0.0805q_0 + 0.0763p)a^2,
\]

即

\[
M_{1x} = - (0.0805q_0 + 0.0763p)a^2. \quad (i)
\]

例如设 \(q_0 = q/3, \quad p = 2q/3 \)，式 (i) 的结果为 \(-0.0777qa^2 \)，可将此值与近似方法所得的值 \(-0.0769qa^2 \) 相比。

- 258 -
最后，计算中间轴中心的最大弯矩，不利的载荷分布为图 121d 所示。依照图 121e 和 121f 来施加载荷，并应用表 53 和 51 的系数 α 和 β，就得到这些弯矩的下列式子:

$$M_x = \left[0.0216 \left(\frac{a_0 + p}{2} \right) + 0.0442 \frac{p}{2} \right] a' = (0.0216 \alpha_0 + 0.0439 \beta) a', \quad (1)$$

$$M_y = \left[0.0316 \left(\frac{a_0 + p}{2} \right) + 0.0442 \frac{p}{2} \right] a' = (0.0316 \alpha_0 + 0.0379 \beta) a'. \quad (2)$$

利用第 245 页和第 247 页上所得到的结果来验证上述近似值是很有意义的。还是如图 121d 所示那样来分布载荷，同时在上述结果中将下标 x 和 y 互换，有

$$M_x = 0.0317 \left(a_0 + p \right) a' - (0.0051 + 0.0051) \beta_0 a'$$

$$= (0.0215a_0 + 0.0317\beta) a', \quad (3)$$

$$M_y = 0.0375 \left(a_0 + p \right) a' - (0.0039 + 0.0039) \beta_0 a'$$

$$= (0.0297a_0 + 0.0375\beta) a', \quad (4)$$
再设 \(q_0 = q/3, \rho = 2q/3 \), 得到弯矩的精确值分别为 0.0283 \(qa^2 \) 和 0.0349 \(qa^2 \)。对此同向式（1）给出的近似值是 0.0291 \(qa^2 \) 和 0.0358 \(qa^2 \)。

近似方法的误差在很大程度上是由于最大正弯矩不经常发生在节间中心而产生的。特别是在十分长的矩形节间的情况下，最大正弯矩的作用点与节间中心相距更远。例如 \(h \) 比 \(a \) 大得多，最大弯矩 \(M_2 \) 发生在矩形板的短边附近，这些最大弯矩的若干值在各表的脚注中给出，不管比值 \(b/a \) 如何，应当将它们看作为对应列中的最小可能值。

最后，还应当注意，在非对称的情况中，\(M_x \) 和 \(M_y \) 都不是板中心的最大弯矩。但是表 54 表明，\(M_{max} \) 同 \(M_x \) 和 \(M_y \) 中最大值之间的差不超过后者的百分之十，因此第 251 页上所阐述的一般方法对于情况 4 也是可用的。

为了设计非连续的各孤立节间（图 118），表 54 中列出了作用于 \(x = 0.1a, y = 0.1b \) 的最大弯矩 \(M_{max} \) 的值；对矩形板，\(\alpha_{max} \) 的方向认为就是弯矩的方向，对矩形板，\(\sigma_{max} \) 的方向是对角线 \(x = -y \) 的方向。为了更安全，这些 \(M_{max} \) 的值也可用于计算长矩形的连续节间。

假如跨度、弯曲刚度或载荷密度在连续板的各个节间之间稍有不同，则本书给出的方法仍然可用。如差别较大，就应当用更精确的方法。

但是应当注意，将严格方法用于设计连续楼板往往引起繁重的计算，而且由于许多大大小小无法确定地影响板弯矩值的各种因素，这样所得到的精确性是虚假而无意义的。这样的因素有，例如，支承架的柔性及抗震刚度，周围外墙的约束作用，板本身的各向异性，以及估计活荷载比 \(v \) 等常数值时的不精确性。

而然，将代表板中的弯矩的富里埃（Fourier）级数用于只取首项，或者将板沿某支线上的弯矩或弯度的实际值用它们的平均值来代替，或者利用弯矩分布法，我们就能简化计算步骤。

54. 散行等距柱支板的弯曲——（无梁板） 如板的长度与宽度比柱间的距离 \(a \) 和 \(b \) 大很多（图 122），并且侧向载荷均匀分布，则能肯定，不靠近板边缘的所有节间的弯曲可认为完全相同，所以我们可将问题限于仅仅一个节间的弯曲。将坐标轴取成与柱

行平行，并将原点取在为一节间的中心。我们可以把这个节间看成承受均匀载荷，边长为 a 和 b 的矩形板。由对称性可知，该板的挠度曲面就如图 122b 中的虚线所示。最大挠度是在板的中心，角上的挠度为零。为了使问题简化，假设柱的横截面尺寸很小，在考虑板中心的挠度和弯矩时可忽略不计。于是，得到一承受均匀载荷四角支承的矩形板，并且由对称性可知，除了四角以外，在板边缘所有的点上，剪力及挠度曲面在边界法线方向内的斜度为零。

象简支板的情况（第 30 节）那样，将总挠度 w 取成如下形式：

$$w = w_1 + w_2$$

式中

$$w_1 = \frac{q b^4}{384 D} \left(1 - \frac{4 y^2}{b^2}\right)^2$$

代表承受均匀载荷，二端 $y = \pm b/2$ 夹支的板条，它满足板的微分方程 (103) 以及边界条件

2）若边界扭矩 M_y, 等于零是根据边界法线方向内的斜度为零这个事实。
\[
\left(\frac{\partial w_1}{\partial x} \right)_{x=\pm a/2} = 0,
\]

\[
(Q_y)_{x=\pm a/2} = -D \frac{\partial}{\partial x} \left(\frac{\partial^2 w_1}{\partial x^2} + \frac{\partial^2 w_1}{\partial y^2} \right)_{x=\pm a/2} = 0.
\]

挠度 \(w_2\) 取成级数的形式：

\[
w_2 = A_0 + \sum_{m=1}^{\infty} Y_m \cos \frac{m\pi x}{a}, \tag{d}
\]

级数的每一项满足条件 (c)。在选择函数 \(Y_m\) 时，必须使齐次方程

\[
\Delta^2 w_0 = 0
\]

得到满足，并且使挠度 \(w\) 满足边缘 \(y = \pm b/2\) 的边界条件。将级数 (d) 取成形式：

\[
w_2 = A_3 + \sum_{m=1}^{\infty} \left(A_m \cosh \frac{m\pi y}{a} \right) \cos \frac{m\pi x}{a}
+ B_m \frac{m\pi y}{a} \sinh \frac{m\pi y}{a} \right) \cos \frac{m\pi x}{a}, \tag{f}
\]

方程 (e) 及对称条件就可满足。式 (f) 中的常数 \(A_3, A_m\) 和 \(B_m\) 由边缘 \(y = b/2\) 上的边界条件来决定。根据关于斜度的条件，即

\[
\left(\frac{\partial w}{\partial y} \right)_{y=b/2} = \left(\frac{\partial w_1}{\partial y} + \frac{\partial w_2}{\partial y} \right)_{y=b/2} = 0,
\]

立即求得

\[
B_m = -A_m \tanh \frac{\alpha_m}{\alpha_m + \tanh \alpha_m}, \tag{g}
\]

如同以前，式中

\[
\alpha_m = \frac{m\pi b}{2a}. \tag{h}
\]

现在考虑关于剪力的边界条件。可以看到，在板无限靠近边界 \(y = b/2\) 的正截面 \(nn\) 上 (图 122b)，除了柱附近的点外，所有点的剪力 \(Q_y\) 等于零；而在柱附近的这些点上，由于要在无限小的距离 \((x = a/2 - c到 x = a/2 + c)\) 内将有限载荷 \(\frac{qab}{2}\) 传递给柱 (图 122c)，剪力 \(Q_y\) 必须是无穷大。用三角级数表示 \(Q_y\)，由对称性。
它的形式为:

\[Q_y = C_0 + \sum_{m=2, 4, 6, \ldots}^\infty C_m \cos \frac{m\pi x}{a}, \quad (i) \]

并且注意到

当 \(0 < x < \frac{a}{2} - \varepsilon \) 时， \(Q_y = 0 \),

及

\[\int_{a/2-\varepsilon}^{a/2} Q_y dx = -\frac{qab}{4}, \]

就能用一般的计算方法求得:

\[C_0 = -\frac{qab}{2a} = -\frac{P}{2a} \]

和

\[C_m = \frac{4}{a} \int_0^{a/2} Q_y \cos \frac{m\pi x}{a} \, dx = -\frac{P}{a} (-1)^{m/2}, \]

式中 \(P = qab \) 是板的一个节间的总载荷。将系数 \(C_0 \) 和 \(C_m \) 的这些值代入级数 \((i)\), 所需要的边界条件具有如下形式:

\[(Q_y)_{x=b/2} = -D \left(\frac{\partial^2 w}{\partial y^2} + \frac{\partial^2 w}{\partial x \partial y} \right)_{y=b/2} = -\frac{P}{a} \]

\[\times \sum_{m=2, 4, 6, \ldots}^\infty (-1)^{m/2} \cos \frac{m\pi x}{a} - \frac{P}{2a}. \]

将 \(w \) 的表达式 \((a)\) 代入, 并且注意到由于边界条件 \(\partial w/\partial y = 0 \), 圆括弧中的第二项为零, 得到

\[-D \left(\frac{\partial^2 w}{\partial y^2} \right)_{y=b/2} = -\frac{P}{a} \sum_{m=2, 4, 6, \ldots}^\infty (-1)^{m/2} \cos \frac{m\pi x}{a}, \]

由此，应用式 \((f)\) 可得:

\[D \frac{m^3 \pi^3}{a^3} \left[(A_m + 3B_m) \sinh \alpha_m + B_m \alpha_m \cosh \alpha_m \right] = \frac{P}{a} (-1)^{m/2}. \quad (i) \]

对于常数 \(A_m \) 和 \(B_m \) 求解方程 \((g)\) 和 \((i)\)，即得

\[A_m = -\frac{Pa^2}{2m^3 \pi^2 D} (-1)^{m/2} \frac{\alpha_m + \tanh \alpha_m}{\sinh \alpha_m \tanh \alpha_m}, \]

\[B_m = \frac{Pa^2}{2m^3 \pi^2 D} (-1)^{m/2} \frac{1}{\sinh \alpha_m}. \quad (k) \]
板的挠度可写成如下形式:

\[w = \frac{q b^4}{384 D} \left(1 - \frac{4y^4}{b^4} \right) + A_0 + \frac{q a^3 b}{2 \pi^3 D} \sum_{m=1,4,6,\ldots}^{\infty} \left(\frac{(-1)^{m/2}}{m^3} \frac{\csc \frac{m \pi x}{a}}{\sinh \frac{m \pi y}{a}} - (\alpha_m + \tanh \alpha_m) \cosh \frac{m \pi y}{a} \right) \times \left[\tanh \alpha_m \frac{m \pi y}{a} \sinh \frac{m \pi y}{a} - (\alpha_m + \tanh \alpha_m) \cosh \frac{m \pi y}{a} \right]. \] (1)

现在常数 \(A_0 \) 可由板角上挠度为零的条件决定，所以

\[(w)_{x=a/2, y=b/2} = 0, \]

从而

\[A_0 = -\frac{q a^3 b}{2 \pi^3 D} \sum_{m=1,4,6,\ldots}^{\infty} \frac{1}{m^3} \left(\alpha_m - \frac{\alpha_m + \tanh \alpha_m}{\tanh^2 \alpha_m} \right). \] (m)

板在任意点上的挠度可以用式 (e) 和 (m) 来计算。显然，最大挠度是在板的中心，其值为:

\[(w)_{x=0, y=0} = \frac{q b^4}{384 D} - \frac{q a^3 b}{2 \pi^3 D} \sum_{m=1,4,6,\ldots}^{\infty} \frac{(-1)^{m/2}}{m^3} \frac{\alpha_m + \tanh \alpha_m}{\sinh \alpha_m \tanh \alpha_m} \]

\[-\frac{q a^3 b}{2 \pi^3 D} \sum_{m=1,4,6,\ldots}^{\infty} \frac{1}{m^3} \left(\alpha_m - \frac{\alpha_m + \tanh \alpha_m}{\tanh^2 \alpha_m} \right). \] (n)

在表 57 中给出了对于若干比值 \(b/a \) 计算所得的此最大挠度的值。表中还给出了利用式 (101) 和挠度表达式 (l) 计算所得的弯矩

<table>
<thead>
<tr>
<th>(b/a)</th>
<th>(w = \frac{a q b^4}{D})</th>
<th>(M_x = \beta q b^4)</th>
<th>(M_y = \beta q b^4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.00581</td>
<td>0.0331</td>
<td>0.0331</td>
</tr>
<tr>
<td>1.1</td>
<td>0.00487</td>
<td>0.0261</td>
<td>0.0352</td>
</tr>
<tr>
<td>1.2</td>
<td>0.00428</td>
<td>0.0210</td>
<td>0.0263</td>
</tr>
<tr>
<td>1.3</td>
<td>0.00387</td>
<td>0.0175</td>
<td>0.0375</td>
</tr>
<tr>
<td>1.4</td>
<td>0.00358</td>
<td>0.0149</td>
<td>0.0384</td>
</tr>
<tr>
<td>1.5</td>
<td>0.00337</td>
<td>0.0131</td>
<td>0.0387</td>
</tr>
<tr>
<td>2.0</td>
<td>0.00292</td>
<td>0.0092</td>
<td>0.0411</td>
</tr>
<tr>
<td>(\infty)</td>
<td>0.00260</td>
<td>0.0083</td>
<td>0.0417</td>
</tr>
</tbody>
</table>

* 264 *
$$(M_x)_{x=a/2, y=b/2} = M_0 - \frac{qab}{4} \left[\frac{v}{3} + (1 - \nu) \sum_{n=1}^{\infty} \frac{1}{\sinh^2 \frac{m\pi b}{a}} \right],$$

$$(M_y)_{x=a/2, y=b/2} = M_0 + \frac{qab}{4} \left[-\frac{1}{3} + (1 - \nu) \sum_{n=1}^{\infty} \frac{1}{\sinh^2 \frac{n\pi b}{a}} \right] + (1 - \nu) \frac{a}{\pi b}.$$ \hfill (a)

在此二式中:

$$M_0 = -\frac{qab}{4\pi} \left[(1 + \nu) \log \frac{a}{2\pi r(1 - q^2)^2(1 - q^3)^2 \cdots} + 1 \right],$$

$q = e^{-\pi b/a}$, ϵ 代表支柱的圆半径，并设 ϵ 与节间跨度 a 和 b 比较小，进行运算，可将式 (a) 化成如下形式:

$$(M_x)_{x=a/2, y=b/2} = -\frac{qab}{4\pi} \left[(1 + \nu) \log \frac{a}{\epsilon} - (\alpha + \beta \nu) \right],$$

$$(M_y)_{x=a/2, y=b/2} = -\frac{qab}{4\pi} \left[(1 + \nu) \log \frac{a}{\epsilon} - (\beta + \alpha \nu) \right].$$ \hfill (p)

在表 58 中给出了若干比值 b/a 下系数 α 和 β 的值。

<table>
<thead>
<tr>
<th>b/a</th>
<th>1</th>
<th>1.1</th>
<th>1.2</th>
<th>1.3</th>
<th>1.4</th>
<th>1.5</th>
<th>2.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>0.811</td>
<td>0.822</td>
<td>0.829</td>
<td>0.833</td>
<td>0.835</td>
<td>0.836</td>
<td>0.838</td>
</tr>
<tr>
<td>β</td>
<td>0.811</td>
<td>0.698</td>
<td>0.586</td>
<td>0.481</td>
<td>0.374</td>
<td>0.268</td>
<td>-0.256</td>
</tr>
</tbody>
</table>

1) 此结果是 A. Nadai 给出的，见 "Elastische Platten", 第 154 页，柏林，1925 年。
计算对应于矩形柱柱中心的弯矩时，也可假设反作用力均匀分布在图 123 中有阴影线的矩形上，这些矩形相当于柱的横截面。在方形截面和方形柱的情况下，有 \(u/a = v/b = k \)，并且柱柱中心和节间中心的弯矩由下列式子给出：

\[
(M_x)_{x=y=a/2} = (M_y)_{x=y=a/2} = -\frac{(1 + \nu)qa^2}{4}
\]

\[
\times \left[\frac{(1 - k)(2 - k)}{12} + \frac{1}{\pi^3 k^2} \sum_{m=1}^{\infty} \frac{2}{m^3 \sinh m \pi} \right] \times \sinh \frac{m \pi k}{2} \cosh \frac{\pi(2 - k)}{2} \sin m \pi k \right],
\]

\[
(M_x)_{x=y=0} = (M_y)_{x=y=0} = \frac{(1 + \nu)qa^2}{4} \left[\frac{1 - k^2}{12} + \frac{1}{\pi^3 k^2} \right]
\]

\[
\times \sum_{m=1}^{\infty} (-1)^{m+1} \frac{\sinh m \pi k \sin m \pi k}{m^3 \sinh m \pi} \right].
\]

在表 59 中给出了对于不同 \(k \) 值和 \(\nu = 0.2 \) 计算所得的这些弯矩的值，表中还给出了由同样的解得到的柱间距离中点的弯矩值。

![图 123](image)

<table>
<thead>
<tr>
<th>(n/d = k)</th>
<th>(M_{x=r} = \frac{\beta_1 q a^2}{\beta_2})</th>
<th>(M_{x=z} = \frac{\beta_1 q a^2}{\beta_3})</th>
<th>(M_{y=e} = \frac{\beta_1 q a^2}{\beta_4})</th>
<th>(M_{y=e} = \frac{\beta_1 q a^2}{\beta_5})</th>
<th>(Q_{max} = \gamma q a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(-\infty)</td>
<td>0.0331</td>
<td>-0.0185</td>
<td>0.0512</td>
<td>(\infty)</td>
</tr>
<tr>
<td>0.1</td>
<td>-0.196</td>
<td>0.0529</td>
<td>-0.0182</td>
<td>0.0508</td>
<td>2.73</td>
</tr>
<tr>
<td>0.2</td>
<td>-0.0131</td>
<td>0.0321</td>
<td>-0.0178</td>
<td>0.0489</td>
<td>(\infty)</td>
</tr>
<tr>
<td>0.3</td>
<td>-0.0033</td>
<td>0.0098</td>
<td>-0.0170</td>
<td>0.0468</td>
<td>0.842</td>
</tr>
<tr>
<td>0.4</td>
<td>-0.0078</td>
<td>0.0289</td>
<td>-0.0158</td>
<td>0.0415</td>
<td>(\infty)</td>
</tr>
<tr>
<td>0.5</td>
<td>-0.00487</td>
<td>0.0265</td>
<td>-0.0140</td>
<td>0.0361</td>
<td>0.419</td>
</tr>
</tbody>
</table>

可以看到，支柱处的弯矩比节间中心的弯矩大得多，它们的值随支柱横截面的尺寸而定。在比例系数大于 0.2 时，节间中心的弯矩实际上保持为常数。所以，以前根据反作用力集中于节间角上的假设所得到的解，对于节间的中心部分是足够精确的。

利用式（p），也可对式（q）以级数形式给出的弯矩进行近似计算。为此，应用第 37 节的式（c），将
\[
\epsilon = \frac{\pi}{2} - \frac{e^{\sqrt{2}}}{2} = 0.57\pi,
\]
即与所给正方形面积 \(n \times n \) 的等价圆的半径，代入式（p）。在方形节间的特殊情况下，用此法所得的数字结果与表 59 第二列所给出的数字只有很小的差异。

剪力的最大值在支柱边缘的中点，即在图 123 的 b 点。在方形节间的情况下，此值决定于比值 \(\kappa \)，可用公式 \(Q = r q a^2 \) 表示。在表 59 中给出了因子 \(\gamma \) 的若干数值。值得注意，这些值与支柱总载荷 \(q a^2(1 - k^2) \) 除以支柱横截面周长 \(4ka \) 所得到的平均值只有百分之十的差。

[-] 全板承受均匀载荷对于支柱最不利。为了求一个节间中心的最大弯矩，载荷必须分布于图 124a 的投影面积上。将图 124b 所示强度为 \(q/2 \) 的均匀分布载荷与图 124c 所示各相邻跨度上正负相间的载荷 \(q/2 \) 迭加，就能立即得到这个问题的解。图 124c 所示情况的挠度曲面显然与承受均匀载荷、二端简支、长度为 a 的板条相同。以方形节间的情况为例，用表 57 中的值，对于一个节间的
中心 (图 124a) 求得

\[(w)_{x=y=0} = \frac{1}{2} q \cdot 0.00581 \frac{a^4}{D} + \frac{5}{384} \frac{q}{2} \frac{a^4}{D} = 0.00942 \frac{q a^4}{D},\]

\[(M_x)_{x=y=0} = \frac{1}{2} q \cdot 0.0331 a^2 + \frac{1}{16} q a^2 = 0.0791qa^2,\]

\[(M_y)_{x=y=0} = \frac{1}{2} q \cdot 0.0331 a^2 + \frac{0.2}{16} q a^2 = 0.0291qa^2.\]

由表 59, 可进一步得到:

\[(M_x)_{x=0, y=b/2} = \frac{1}{2} q \cdot 0.0512a^2 + \frac{1}{16} qa^2 = 0.0881qa^2.\]

上述结果是假设板在各支承点可自由旋转而得到的。通常支撑与板是固定的, 因此在图 124 所示载荷分布的情况下, 支撑不仅产生垂直反力, 并且产生弯矩, 对于板间的弯曲起限制作用。所以, 为了得到交替载荷作用下更精确的弯矩值, 需要将无梁板与柱当作一联合结构进行构架分析。

1) 其应用方法在若干书刊中讨论过; 例如参看 H. Marcus, "Die Theorie elas-
tischer Gewebe", 第 310 页, 柏林, 1932 年。
一节间承受均匀载荷，而四相邻节间不受载荷的情形，可由迭加均匀载荷 $q/2$ 和图 125 所示正负号间的载荷 $q/2$ 得到。在后一情形中，每节间的情况与简支板相同，所有关于弯曲问题的必需数据均可由表 8 取得。考虑方形节间的情况，对于节间中心求得

$$
(\omega)_{x-y=0} = \frac{1}{2} q \cdot 0.00581 \frac{a^4}{D} + \frac{1}{2} q \cdot 0.00406 \frac{a^4}{D}
$$

$$
= 0.00494 \frac{qa^4}{D},
$$

$$
(M_y)_{x=y=0} = (M_y)_{x=y=0} = \frac{1}{2} q \cdot 0.0331 \alpha^2
$$

$$
+ \frac{1}{2} q \cdot 0.0479 \cdot \frac{1.2}{1.3} \alpha^2 = 0.0387 q \alpha^2.
$$

在每一节间中心承受相等的集中载荷的无限大板的问题，基本上可用前述问题的方法处理，即利用板挠度的双周期性。

具有斜形节间的无梁板，在均匀载荷作用下的弯曲问题也已经进行了讨论。

55. 九节间无梁板及二边自由的无梁板
到现在为止，我们总是假设无梁板无限大，现在考虑由外墙简支（外墙形成板的正方形边缘），并具有四中间支柱的板（图 126），由对称性可知，强度为 q 的均匀分布载荷，产生相等的支柱反力 R，它们可视为给定结构中的冗余力。移去所有支柱，得到只承受所给载荷 q 的简支方形板。此载荷在各柱的中心所产生的挠度 w_0 可用第五章中的给定的理论很容易地算出。然后，移去载荷 q，在每一块面积 $u \times u$ 上均匀地分布载荷 $R = 1$ （方向向下），得到

1) V. Lewe 在他的著作中讨论过这个问题：“Pfunddecken und andere trägerlose Rissen verpflanzen.” 柏林，1926 年；R. Ponzati 也讨论过此问题，Rev. Math. Univ. Pavia，第 2 卷，第 123 页，1951 年。

2) 参阅 B. H. Блок，Доклады АН СССР，第 73 卷，第 45 页，1950 年。
与以上相同的各点 \(x = \pm a/2, \ y = \pm a/2 \) 的某些新挠度 \(\omega_i \)。根据实际情况中这些点不能有挠度的条件，可得 \(\omega_0 - R \omega_i = 0 \)，从而 \(R = \omega_0/\omega_i \)。现在，余下的工作只是将均匀载荷 \(q \) 的作用和四已知反力对于边长为 \(3a \times 3a \) 的方形板弯矩的作用迭加。

在图 126b 和 126c 所示部分受载的情况下，应当将以上所得的弯矩之半与承受均匀分布载荷 \(\pm q/2 \)，面积为 \(a \times 3a \) 的简支板。
的弯矩叠加。马库斯（Marcus）进行了这种计算，得到了表 60 中所给出的弯矩值。在此情况下，柱的反力为 $R = 1.196qa^2$。对于不仅沿二平行边支承，而且还有行或数行等距距支承的无限板的弯曲，也可用类似的方法推导。

仅有二行平行等距距支承的长矩形板的弯曲问题（图 127），在

<table>
<thead>
<tr>
<th>点</th>
<th>x/a</th>
<th>y/b</th>
<th>载荷 a</th>
<th>载荷 b</th>
<th>载荷 c</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M_x</td>
<td>M_y</td>
<td>M_x</td>
<td>M_y</td>
<td>M_x</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0.021</td>
<td>0.021</td>
<td>-0.048</td>
</tr>
<tr>
<td>2</td>
<td>0.5</td>
<td>0</td>
<td>-0.040</td>
<td>0.038</td>
<td>-0.020</td>
</tr>
<tr>
<td>3</td>
<td>1.0</td>
<td>0</td>
<td>0.069</td>
<td>0.025</td>
<td>0.093</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0.5</td>
<td>0.038</td>
<td>-0.046</td>
<td>-0.036</td>
</tr>
<tr>
<td>5</td>
<td>0.5</td>
<td>0.5</td>
<td>-0.140</td>
<td>-0.140</td>
<td>-0.070</td>
</tr>
<tr>
<td>6</td>
<td>1.0</td>
<td>0.5</td>
<td>0.074</td>
<td>-0.004</td>
<td>0.092</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>1.0</td>
<td>0.025</td>
<td>0.069</td>
<td>-0.028</td>
</tr>
<tr>
<td>8</td>
<td>0.5</td>
<td>1.0</td>
<td>-0.034</td>
<td>0.074</td>
<td>-0.002</td>
</tr>
<tr>
<td>9</td>
<td>1.0</td>
<td>1.0</td>
<td>0.053</td>
<td>0.053</td>
<td>0.056</td>
</tr>
</tbody>
</table>

图 127

1) "Die Theorie elastischer Gewebe"，也可参看前引 Lewe 的著作。具有中间支承的方板问题，见 N. J. Nielsen 讨论的，见 "Bestimmung der Spandanger 1 Plader"，第 217 页，哥本哈根，1920 年。

2) K. Grein 曾讨论过这个问题，"Pilzdecken"，柏林，1948 年。
数种受载情况下，也可毫不困难地解决。我们首先讨论板受下列级数所表示的弯矩 M_y 的弯曲情况：

$$ (M_y)_{y = \pm b/2} = M_0 + \sum_{m=1,4,6, \ldots} E_m \cos \frac{m \pi y}{a}, \quad (a) $$

因为没有侧向载荷，板的挠度曲面可取成如下级数的形式：

$$ w = A_0 + A_1 \left(y' - \frac{b^2}{4}\right) + \sum_{m=1,4,6, \ldots} \left(A_m \cosh \frac{m \pi y}{a}
ight. \\
+ B_m \frac{m \pi y}{a} \sinh \frac{m \pi y}{a}) \cos \frac{m \pi x}{a}, \quad (b) $$

其系数由下列边界条件：

$$ -D \left(\frac{\partial^2 w}{\partial y^2} + \nu \frac{\partial^2 w}{\partial x^2}\right)_{y = \pm b/2} = M_0 + \sum_{m=1,4,6, \ldots} E_m \cos \frac{m \pi x}{a}, \quad (c) $$

$$ D \left[\frac{\partial^2 w}{\partial y^3} + (2 - \nu) \frac{\partial^2 w}{\partial y \partial x^2}\right]_{y = \pm b/2} = 0, $$

以及支承处挠度为零的条件决定。将级数 (b) 代入方程 (c)，求得：

$$ A_1 = -\frac{M_0}{2D}, $$

$$ A_m = -\frac{a^2 E_m}{\pi^2 m^2 D} \frac{(1 + \nu) \sinh \alpha_m - (1 - \nu) \cosh \alpha_m}{(3 + \nu)(1 - \nu) \sinh \alpha_m \cosh \alpha_m - \alpha_m(1 - \nu)^2}, \quad (d) $$

$$ B_m = -\frac{a^2 E_m}{\pi^2 m^2 D} \frac{\sinh \alpha_m}{(3 + \nu) \sinh \alpha_m \cosh \alpha_m - \alpha_m(1 - \nu)}. $$

把这个解和第 54 节的解 (l) 迭加，我们就能研究图 127 a 所示的板在均匀分布载荷作用下的弯曲问题。为此，利用公式 (101) 由式 (l) 计算弯矩 M_y，得到

$$ (M_y)_{y = \pm b/2} = -\frac{q b^2}{12} - \frac{q a b}{2\pi} \sum_{m=1,4,6, \ldots} \frac{(-1)^{m/2}}{m} $$$$ \times \left[\frac{1 + \nu}{\tanh \alpha_m} - \frac{\alpha_m(1 - \nu)}{\sinh \alpha_m}\right] \cos \frac{m \pi x}{a}. \quad (e) $$

令此弯矩与取负号的弯矩 (a) 相等，得到 M_0 和 E_m 的值，将它们代入常数 A_1, A_m 和 B_m 的式子 (d)，并将这些常数代入式 (b)。把这些数值的式 (b) 和第 54 节的式 (l) 相加，我们就得到图
127a 所示的板在均匀载荷作用下的解。

把这个解与承受均匀载荷、二端简支、长度为 b 的板条的挠度迭加，就能得到图 127b 所示的板受沿板边均匀分布载荷作用的弯曲问题的解。该板条的挠度已知为

\[w = -\frac{q}{24D} \left(\frac{b^4}{4} - y^3 \right) \left(\frac{5}{4} b^4 - y^4 \right). \]

56. 固结的支柱对无梁板的弯矩的影响

在以上讨论无梁板的弯曲时，总是假设支柱反力集中于某些点上，或者均匀分布在某些面积上，这些面积相当于支柱的横截面或柱头面积。但是，通常混凝土板是与支柱固连的，如图 128 所示。

在讨论这种刚性结点处的弯矩时，我们首先考虑圆环支柱的情况，并设其横截面的半径为 e，用第 54 节中的式 (1) 来计算弯矩。计算表明 1，在值 e/a 很小的方形节间 (a = b) 的情况下，沿半径 e = 0.22a 的圆的径向弯矩实际上等于零 (图 122a)。因此，在此圆内支柱周围的那部分板处于环形板的状态，该环形板沿圆 r = 0.22a 简支，沿圆 r = e 夹支，其中的一个圆相对于另一圆有横向位移。所以，利用以前对环形板推导所得的公式 (75)（见第 64 页），并且将图 36 中的情况 3 和 8 迭加，就能得到支柱周围的最大弯矩力。

托尔克 (F. Tölke) 对于同样的问题作了更精细的讨论 2。托尔克对于 e/a = 0.1 的方形板 (图 129) 所得到的数值结果在表 61 中给出，表中同时列出了用惯用的理论对同一问题计算所得的弯矩值。可以看见，无梁板与支柱间的刚性连结会使支柱处的弯矩数值增大，同时减小板的正弯矩。

表 61 中还给出了与正方形截面的支柱固连的无梁板的弯矩 3（图 130）。

1) 这种计算是 A. Nádai 作出的；参阅他的著作 "Elastische Platten"，第 156 页，柏林，1925 年。
2) F. Tölke, Ingr.-Arch., 第 5 卷，第 187 页，1934 年。
在此情况下，支柱角上所产生的无限大应力是高度局部性的。实际上，由于混凝土受拉而断裂以及钢筋的局部屈服，它们不能无限大。

由此讨论可知：(1) 在支柱处无梁板的实际弯矩值，与表61中对于固连情况给出的值之间的值，与普通理论所给出的值之间；(2) 圆形支柱的固支弯矩分布比方形支柱的支柱均匀。

<table>
<thead>
<tr>
<th>弯矩</th>
<th>位置</th>
<th>圆形支柱（图129）</th>
<th>方形支柱（图130）</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>与支柱刚性连接</td>
<td>普通理论</td>
</tr>
<tr>
<td>$M_x = M_y$</td>
<td>$x = a/2$, $y = a/2$</td>
<td>0.0292</td>
<td>0.0323</td>
</tr>
<tr>
<td>M_x</td>
<td>$x = a/2$, $y = 0$</td>
<td>0.0399</td>
<td>0.0494</td>
</tr>
<tr>
<td>M_y</td>
<td>$x = a/2$, $y = 0$</td>
<td>-0.0161</td>
<td>-0.0179</td>
</tr>
<tr>
<td>M_z</td>
<td>$x = 0$, $y = 0$</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>M_z</td>
<td>$x = a/2$, $y = 0$</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>M_y</td>
<td>$x = a/2$, $y = a/2$</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

第八章
弹性基支板

57. 中心对称弯曲 承受侧向载荷的板可能是承受下弹性基础上的，例如混凝土道路，机场跑道，或者其他建筑物地面。在开始讨论这样的问题时，我们首先作最简单的假设：路基的反作用力强度和板的挠度成正比。因而此反作用力强度为 $k\omega$。常数 k 叫作基础模数，它表示单位挠度所产生的单位面积上的反作用力强度。单位为公斤/厘米2/厘米。此系数的值在很大程度上决定于基础的性质。在路面平板或张力较大的建筑物底板的情况下，这个值可利用表620估计。

我们首先考虑承受中心对称分布载荷的圆形板问题。应用方程 (58) 时，在所给的侧向载荷 σ 上选加由基础反作用力所产生的载荷别 $k\omega$，于是，可得受弯板的微分方程：

$$
\left(\frac{d}{d\varphi} \right)^3 + \frac{1}{r} \left(\frac{d}{dr} \right)^2 \left(\frac{d^2 \omega}{d\varphi^2} + \frac{1}{r} \frac{d\omega}{dr} \right) = \frac{\sigma - k\omega}{D}.
$$

在板的中心承受载荷 P 的特殊情况下，除了中心以外，整个板面上 σ 等于零。引入符号

$$
\frac{k}{D} \equiv \frac{1}{\delta^3},
$$

2) 这个问题是由 H. Hertz 所讨论的。Wiedemann’s Ann. Phys., u. Chem., 第 22 卷，第 249 页，1891 年；也可参阅他的 “Gesammelte Werke”, 第 1 卷，第 288 页，1895 年，以及 A. Föppl, “Vorlesungen über technische Mechanik”, 第 5 卷，第 103 页，1922 年。值得注提到，Hertz 研究的求解方法，而不是弹性基支板的问题。在 Hertz 研究的问题中，δ 为常数的假设是满足的，δ 是液体的比重。
表 62 基础模数的值

<table>
<thead>
<tr>
<th>模数 k (公斤/厘米³/厘米)</th>
<th>2.76</th>
<th>4.15</th>
<th>5.52</th>
<th>6.9</th>
<th>13.8</th>
<th>22.1</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>一般的基础分为格基，底基或型基</th>
<th>最坏模基</th>
<th>坏模基</th>
<th>好模基</th>
<th>良级模基</th>
<th>好底基层</th>
<th>好基层</th>
<th>最好基层</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

注：表中：G——卵石，S——沙，M——“MO”优质沙，沉水泥，C——粘土，H——好的，小于 0.1 厘米的材料，O——有机的，H——高级配好的，P——高级配差的，L——低级到中级可压缩性，H——高级可压缩性。

方程 (178) 化为：

$$
(l^2 \left(\frac{d^2}{dr^2} + \frac{1}{r} \frac{d}{dr} \right) \left(\frac{d^2 \psi}{d\psi^2} + \frac{1}{r} \frac{d\psi}{dr} \right) + \psi = 0 \quad (b)
$$

k 的单位是公斤/厘米³，D 的单位是公斤·厘米，因此 l 具有长度的单位。为了使以下的讨论简化，引入无量纲的变数

$$
\frac{\psi}{l} = z, \quad \frac{r}{l} = x. \quad (c)
$$

于是，方程 (b) 化为：

$$
\left(\frac{d^2}{dx^2} + \frac{1}{x} \frac{d}{dx} \right) \left(\frac{d^2 z}{dx^2} + \frac{1}{x} \frac{dz}{dx} \right) + z = 0. \quad (d)
$$

用符号 Δ 表示

$$
\frac{d^2}{dx^2} + \frac{1}{x} \frac{d}{dx},
$$

方程 (b) 可写成

$$
\Delta \Delta z + z = 0. \quad (e)
$$

这是四阶线性微分方程，其通解可用下式表示：

$$
z = A_1X_1(x) + A_2X_2(x) + A_3X_3(x) + A_4X_4(x), \quad (f)
$$
式中，A_1, \ldots, A_4 为积分常数，X_1, \ldots, X_4 为方程 (e) 的四个独立解。

现在我们试求方程 (e) 项级数形式的解。设 $a_n x^n$ 是这级数的一项。于是，由微分可得：

$$
\Delta(a_n x^n) = n(n-1)a_n x^{n-1} + na_n x^n - a_{n-1} x^{n-1} = n^2 a_n x^{n-1},
$$

和

$$
\Delta\Delta(a_n x^n) = n^2(n-2)^2 a_n x^{n-1}.
$$

为了满足方程 (e)，此级数中的每一项 $a_n x^n$ 必须有一对应项 $a_{n-1} x^{n-1}$，使得

$$
n^2(n-2)^2 a_n x^{n-1} + a_{n-1} x^{n-1} = 0, \quad (g)
$$

根据这个条件，在将此级数代入方程 (e) 时，所有各项都消掉；所以，如级数收敛，它就是方程 (e) 的特解。由方程 (g) 可得：

$$
a_n = -\frac{a_{n-1}}{n^2(n-2)^2}, \quad (h)
$$

同时注意到

$$
\Delta\Delta(a_0) = 0, \quad \Delta\Delta(a_1 x^2) = 0, \quad (i)
$$

由此可知，有二项级数满足方程 (e)，即

$$
X_1(x) = 1 - \frac{x^4}{2^2 \cdot 4^2} + \frac{x^5}{2^2 \cdot 4^2 \cdot 6^2 \cdot 8^2} - \frac{x^{12}}{2^2 \cdot 4^2 \cdot 6^2 \cdot 8^2 \cdot 10^2 \cdot 12^2} + \cdots,
$$

和

$$
X_2(x) = x^2 - \frac{x^6}{4^2 \cdot 6^2} + \frac{x^{10}}{4^2 \cdot 6^2 \cdot 8^2 \cdot 10^2} - \frac{x^{11}}{4^2 \cdot 6^2 \cdot 8^2 \cdot 10^2 \cdot 12^2 \cdot 14^2} + \cdots. \quad (i)
$$

由符号 (c) 可以看出，如距离 r 是小值，即，对于载荷 P 作用点附近的各点，量 x 是小值，而此级数 (i) 收敛得很快。还可看到，级数 (i) 的各阶导数在载荷的作用点 ($x = 0$) 保持为有限值。这表明，仅仅此二项级数不足以表示载荷作用点的应力状态，因为由以前讨论过的问题可知，它在载荷作用点，弯距为有限大。
由于这个原因，将方程 (e) 的特解 \(X_j \) 取成如下形式:

\[
X_j = X_1 \log x + F_3(x),
\]

式中 \(F_3(x) \) 是 \(x \) 的函数，它仍可用幂级数表示，由微分可得

\[
\Delta \Delta X_j = \frac{4}{x} \frac{d^3 X_1}{dx^3} + \log x \Delta \Delta X_1 + \Delta \Delta F_3(x);
\]

并且在方程 (e) 中用 \(X_1 \) 代替 \(x \)，得到

\[
\frac{4}{x} \frac{d^3 X_1}{dx^3} + \log x (\Delta \Delta X_1 + X_1) + \Delta \Delta F_3(x) + F_3(x) = 0.
\]

\(X_1 \) 满足方程 (c)，并且可用式 (i) 中的第一个级数表示，因此可得如下决定 \(F_3(x) \) 的方程:

\[
\Delta \Delta F_3(x) + F_3(x) = -\frac{4}{x} \frac{d^3 X_1}{dx^3} = -4 \left(-\frac{2 \cdot 3 \cdot 4}{2^2 \cdot 4^2} + \frac{6 \cdot 7 \cdot 8 \cdot x^4}{2^2 \cdot 4^2 \cdot 6^2 \cdot 8^2} - \frac{10 \cdot 11 \cdot 12 \cdot x^8}{2^2 \cdot 4^2 \cdot 6^2 \cdot 8^2 \cdot 10^2 \cdot 12^2} + \cdots \right).
\]

将 \(F_3(x) \) 取成级数形式:

\[
F_3(x) = b_4 x^4 + b_8 x^8 + b_{12} x^{12} + \cdots,
\]

并且将此级数代入方程 (1)，由所得方程必须满足这个条件来决定系数 \(b_4, b_8, b_{12}, \cdots \)。注意到

\[
\Delta \Delta (b_4 x^4) = 4^1 \cdot 2^2 \cdot b_4,
\]

令不含有 \(x \) 的各项之和等于零，可得:

\[
4^2 \cdot 2^2 \cdot b_4 = 4 \cdot \frac{2 \cdot 3 \cdot 4}{2^2 \cdot 4^2},
\]

或

\[
b_4 = \frac{2 \cdot 3 \cdot 4^2}{2^4 \cdot 4^4} = \frac{3}{128}.
\]

令含有 \(x^2 \) 的各项之和等于零，则得:

\[
b_8 = -\frac{25}{1,769,472}.
\]

一般表达式为:

\[
b_n = (-1)^{n/2-1} \frac{1}{n^2(n-2)^2} \left[b_{n-4} + \frac{n(n-1)(n-2)}{2^2 \cdot 4^2 \cdot 6^2 \cdots n^2} \right].
\]

于是，方程 (e) 的第三个特解为:

\[\star 278 \star\]
\[X_i = X \log x + \frac{3}{128} x^4 - \frac{25}{1,769,472} x^8 + \cdots. \] (n)

方程 (e) 的第四个特解 \(X_i \) 可用类似方法。由取
\[X_i = X_i \log x + F_i(x) = X_i \log x + 4 \frac{4 \cdot 5 \cdot 6}{4^4 \cdot 6^4} x^6 \]
\[- \frac{1}{10^2 \cdot 8^2} \left(4 \cdot \frac{4 \cdot 5 \cdot 6}{4^4 \cdot 6^4} + \frac{10 \cdot 9 \cdot 8}{4^2 \cdot 6^2 \cdots 10^2} \right) x^{10} + \cdots, \] (e)
而得到。

将特解 (i), (n) 和 (o) 代入式 (i)，即得方程 (e) 的通解:
\[
\begin{align*}
\pi &= A_1 \left(1 - \frac{x^4}{2^2 \cdot 4^2} + \frac{x^8}{2^2 \cdot 4^2 \cdot 6^2 \cdot 8^2} - \cdots \right) \\
&\quad + A_2 \left(x^2 - \frac{x^6}{4^2 \cdot 6^2} + \frac{x^{10}}{4^2 \cdot 6^2 \cdot 8^2 \cdot 10^2} - \cdots \right) \\
&\quad + A_3 \left[\left(1 - \frac{x^4}{2^2 \cdot 4^2} + \frac{x^8}{2^2 \cdot 4^2 \cdot 6^2 \cdot 8^2} - \cdots \right) \log x \\
&\quad + \frac{3}{128} x^4 - \frac{25}{1,769,472} x^8 + \cdots \right] \\
&\quad + A_4 \left[\left(x^2 - \frac{x^6}{4^2 \cdot 6^2} + \frac{x^{10}}{4^2 \cdot 6^2 \cdot 8^2 \cdot 10^2} - \cdots \right) \log x \\
&\quad + \frac{5}{3,456} x^4 - \frac{1,054 \cdot 10^{-1}}{442 \cdot 368} x^{10} + \cdots \right].
\end{align*}
\] (p)

现在的问题是在每一特殊情况下决定积分常数 \(A_1, \cdots, A_4 \) 以满足边界条件。

现在考虑半径为 \(a \) 的圆形板的边缘完全自由的情况，利用径向应力的表达式 (52) 和径向剪力 \(O_r \) 的表达式 (55)，可将边界条件写成:
\[
\begin{align*}
\left(\frac{d^2 w}{dr^2} + \nu \frac{1}{r} \frac{dw}{dr} \right)_{r=a} &= 0, \\
\frac{d}{dr} \left(\frac{d^2 w}{dr^2} + \frac{1}{r} \frac{dw}{dr} \right)_{r=a} &= 0.
\end{align*}
\] (q)

除这两个条件之外，我们还有板中心所应成立的二条件；即：板中心的挠度必须有限，由板中心截取的无限小圆柱体侧面上所分布
的剪力之和必须与集中力 P 平衡。由第一个条件可知，通解 (p) 中的常数 A_i 为零。第二个条件给出

$$\left(\int_0^{2\pi} \frac{Q}{r} r d\theta \right)_{r=1} + P = 0, \quad (r)$$

或用符号 (s)，

$$- k l^4 \frac{d}{dr} \left(\frac{d\omega}{d r^2} + \frac{1}{r} \frac{d\omega}{dr} \right)_{r=1} + 2\pi \varepsilon + P = 0, \quad (s)$$

其中 ε 是无限小圆柱的半径。这个方程中的 ω 用 $l\omega$ 代入, 并应用 π 的表达式 (p), 我们求得, 对 x 等于 ε/l 的无限小值, 方程化为:

$$- k l^4 \frac{4 A_4}{l \varepsilon} 2 \pi \varepsilon + P = 0.$$ 由此即得

$$A_4 = \frac{P}{8\pi kl^3}. \quad (t)$$

有了常数 A_4 和 A_i 的值, 其余二常数 A_i 和 A_j 可由方程 (q) 求得。如板的尺寸和弹性模数, 以及基础的模数均为已知, 则方程 (q) 化成 A_i 和 A_j 的线性方程。例如, 考虑半径 $a = 5$ 厘米的板, 其刚度满足如下关系式:

$$l = \sqrt{\frac{D}{k}} = 5$$ 厘米。

在板的中心作用一载荷 P, 使得

$$A_4 = \frac{P}{8\pi kl^3} = 102 \cdot 10^{-5}.$$ 用此 A_4 值, 并且用 $l\omega$ 代替 ω, 则利用式 (p), 同时取 $x = a/l = 1$, 方程 (q) 给出:

$$0.500 A_i + 0.250 A_i = 4.062 A_i = 4.062 \cdot 102 \cdot 10^{-5};$$

$$0.687 A_i - 8.483 A_i = 11.09 A_i = 11.09 \cdot 102 \cdot 10^{-5}.$$ 由此二方程可得:

$$A_i = 86 \cdot 10^{-4}, \quad A_i = -64 \cdot 10^{-4}.$$ 将 A_i, A_4, A_j 的值代入式 (p), 并且仅保留 x 的幂次不大于 4 的项, 即得如下挠度表达式:
\[w = l_2 = 5 \left[86 \cdot 10^{-5} \left(1 - \frac{x^6}{2^2 \cdot 4^2} \right) - 64 \cdot 10^{-5} x^4 + 102 \cdot 10^{-5} x^4 \log x \right]. \]

因此，板中心 \((x = 0)\) 的挠度为：
\[w_{max} = 45 \cdot 10^{-3} \text{ 厘米}, \]

边界 \((x = 1)\) 上的挠度为
\[w_{min} = 39.1 \cdot 10^{-3} \text{ 厘米}. \]

这两个挠度的差比较小，因此基础上的压力分布情况和均匀分布相差不多。

如取半径大一倍 \((a = 10 \text{ 厘米})\) 的板，但刚度 \(D\) 和 \(k\) 的值与前相同，则在边界上 \(x\) 应等于 \(2\)。方程 (a) 化为：
\[0.825D_4 + 1.980D_2 = 1.208D_4, \]
\[2.665D_4 - 5.745D_2 = 16.37D_4. \]

比二方程解出：
\[A_1 = 3.93D_4 = 400 \cdot 10^{-4}, \quad A_2 = -1.03D_4 = -105 \cdot 10^{-4}. \] (a)

挠度由式 (b) 得到：
\[w = l_2 = 5 \left[400 \cdot 10^{-4} \left(1 - \frac{x^4}{2^2 \cdot 4^2} \right) - 105 \cdot 10^{-4} \left(x^3 - \frac{x^6}{2^5} \right) \right] \]
\[+ 102 \cdot 10^{-5} \left[\log x \left(x^2 - \frac{x^5}{4^2 \cdot 6^2} \right) + \frac{5}{3 \cdot 4 \cdot 6} x^8 \right] \]

板的中心和边缘的挠度分别为：
\[w_{max} = 2 \cdot 10^{-3} \text{ 厘米}, \quad w_{min} = 0.88 \cdot 10^{-3} \text{ 厘米}. \]

由此看到，如板的半径比 \(1\) 的倍大一倍，则基础上的压力分布已非均匀的了。应变能法在弹性基础板弯曲问题上的应用将在第 80 节中阐述。

58. 贝塞尔函数在圆形板问题上的应用 上节中的方程 (c) 的一般解 (i) 也可以用贝塞尔函数表示。为此，我们在方程 (c) 中引入新的变数
\[\xi = x \sqrt{x}; \]
于是，得到方程：
\[\Delta \Delta \xi - \xi = 0. \] (a)

式中符号 \(\Delta\) 表示：
\[\frac{d^2}{d\xi^2} + \frac{1}{\xi} \frac{d}{d\xi}. \]

方程 (a) 和方程
\[\Delta' \left(\Delta' \xi + \xi \right) - \left(\Delta' \xi + \xi \right) = 0 \] (b)

等价，同时与方程
\[\Delta' \left(\Delta' \xi - \xi \right) + \left(\Delta' \xi - \xi \right) = 0 \] (c)

等价。所以，贝塞尔微分方程

\[\Delta \Delta \xi - \xi = 0. \]
\[
\Delta' \varepsilon + \varepsilon = \frac{d^2 \varepsilon}{d^2 \xi} + \frac{1}{\xi} \frac{d \varepsilon}{d \xi} + \varepsilon = 0, \quad (d)
\]

的解及方程

\[
\Delta' \varepsilon - \varepsilon = \frac{d^2 \varepsilon}{d^2 \xi} + \frac{1}{\xi} \frac{d \varepsilon}{d \xi} - \varepsilon = 0 \quad (e)
\]

的解都是满足方程 (a)。用 \(\xi' \) 代替 \(\xi' \)，方程 (e) 就能转换成方程 (d)。于是，方程 (d) 和 (e) 的解的线性组合可写为:

\[
\varepsilon = B_1 I_0(x \sqrt{i}) + B_2 I_2(x \sqrt{i}) + B_3 K_0(x \sqrt{i}) + B_4 K_2(x \sqrt{i}), \quad (f)
\]

其中，\(I_0, K_0 \) 分别是自变量为虚数的第一类和第二类贝塞尔函数，而 \(B_1, \ldots, B_4 \) 为任意常数，自变量为实数。因此式 (f) 中包含的所有函数都是以复数形式出现的。为了区分的实部，需要引人四个别的函数，它们是开普勒首次应用的，其定义由下列表式给定

\[
I_0(x \sqrt{\pm i}) = \text{ber} x \pm \text{bei} x, \quad K_0(x \sqrt{\pm i}) = \text{ker} x \pm \text{kei} x, \quad (g)
\]

进一步，设

\[
B_1 + B_2 = C_1 l, \quad B_1 - B_2 = -C_2 l, \\
B_3 + B_4 = C_3 l, \quad B_3 - B_4 = -C_4 l
\]

式中新的常数 \(C_1, C_2, \ldots \) 为实数，从而得到下列板的挠度表达式:

\[
\nu = C_1 \text{ber} x + C_2 \text{bei} x + C_3 \text{kei} x + C_4 \text{ker} x \quad (h)
\]

这里所有函数都是列表的函数，对于自变量的实数值为实数。

如自变量为小值时，则有

\[
\begin{align*}
\text{ber} x &= 1 - x^2/64 + \cdots, \\
\text{bei} x &= x^3/4 - x^6/2304 + \cdots, \\
\text{ker} x &= -\log x + \log 2 - \tau + \pi x^2/16 + \cdots, \\
\text{kei} x &= -(x^3/4) \log x - x^2/4 + (1 + \log 2 - \tau)x^3/4 + \cdots
\end{align*} \quad (i)
\]

1) 参考 C. N. Watson, "Theory of Bessel Functions", 第 81 页，剑桥，1948 年。

2) 参阅 "Tables of Bessel Functions, I_0(\xi) and I_1(\xi) for Complex Arguments", Columbia University Press, 纽约, 1948 年，以及 "Tables of Bessel Functions Y_0(\xi) and Y_1(\xi) for Complex Arguments", Columbia University Press, 纽约, 1950 年。我们有

\[
\begin{align*}
\text{ber} x &= \text{Re}[I_0(xe^{i\pi/4})], \quad \text{bei} x = -\text{Im}[I_0(xe^{i\pi/4})], \\
\text{ker} x &= -\frac{\pi}{2} \text{Re}[Y_0(xe^{i\pi/4})] - \frac{\pi}{2} \text{Im}[I_0(xe^{i\pi/4})], \\
\text{kei} x &= \frac{\pi}{2} \text{Im}[Y_0(xe^{i\pi/4})] - \frac{\pi}{2} \text{Re}[I_0(xe^{i\pi/4})].
\end{align*}
\]

* 282 *
式中 \(r = 0.5772157 \ldots \) 为欧拉常数，\(\log 2 - r = 0.11593 \ldots \) 如自变量是
大值，则下式渐近式
\[
\begin{align*}
\hbox{er} x & \sim \frac{e^{-x}}{\sqrt{2\pi x}} \cos \left(\sigma - \frac{\pi}{8} \right), \\
\hbox{ei} x & \sim \frac{e^{x}}{\sqrt{2\pi x}} \sin \left(\sigma - \frac{\pi}{8} \right), \\
\hbox{ker} x & \sim -\frac{e^{-x}}{\sqrt{2\pi x}} \cos \left(\sigma + \frac{\pi}{8} \right), \\
\hbox{kei} x & \sim -\frac{e^{x}}{\sqrt{2\pi x}} \sin \left(\sigma + \frac{\pi}{8} \right),
\end{align*}
\]
得到成立。式中 \(\sigma = x/\sqrt{2} \).

一般解 (k) 可用来分析弹性基材的有孔或无孔圆形板的任何对称弯曲。在最一般的情况下，四个常数 \(C \) 对应于四个边界条件，它们必须在每一特殊
问题中决定。

我们仅限于考虑在点 \(x = 0 \) 承受单一载荷 \(F \) 的无限大板的情况。在构
成解 (h) 的四个函数中，依据式 (i)，头两个函数随着自变量的增大而趋于
无穷大；由式 (i) 可知，函数 \(\hbox{ker} x \) 在原点为无穷大，因此，令 \(C_1 = C_2 = C_4 = 0 \)，解 (h) 化为
\[
\omega = C_3 \hbox{kei} x. \tag{k}
\]
为了决定常数 \(C_3 \)，利用式 (i) 计算剪力 [见式 (193)]
\[
Q_x = -\frac{D}{l^2} \frac{d}{dx} \left(\frac{d^2 \omega}{dx^2} + \frac{1}{x} \frac{d \omega}{dx} \right) = \frac{C_3 D}{l^2} \left(\frac{1}{x} - \frac{\pi}{8} + \cdots \right).
\]
当 \(x \) 减小时，\(Q_x \) 的值趋近于 \(C_3 D/l^2 x = C_3 D/l^2 r \)。另一方面，由于载荷 \(F \) 均匀
分布在半径为 \(r \) 的圆周上，有 \(Q_x = -F/2\pi r \)。令这两个 \(Q_x \) 的表达式相等，即得
\[
C_3 = -\frac{Fl^2}{2\pi D}. \tag{1}
\]
将 \(C_3 \) 代入式 (k)，最后可得赫兹 (Hertz) 问题的全解：
\[
\omega = -\frac{F l^2}{2\pi D} \hbox{kei} x, \tag{179}
\]
相应的基础反作用力为 \(p = k \omega = \frac{\omega D}{l^2} \)。这些量在板挠度曲面的午午线上

1) 这个问题的许多特殊解是 F. Schleicher 在他的著作中给出的，见 "Kreisplatten
auf elastischer Unterlage"，柏林，1926 年，书中还含有函数 \(Z(x) = \hbox{er} x \)，\(Z_0(x) = -\hbox{ei} x \)，\(Z_2(x) = -(2/\pi) \hbox{kei} x \)，\(Z_4(x) = -(2/\pi) \hbox{ker} x \)，以及这些
函数的一阶导数的表。本书第 118 节中给出了函数 \(Z \) 和它们的一阶导数的简要
的表，在那里它们用符号 \(\frac{d}{dx} \) 表示。
* 弹性基支理论; ** 赫兹理论

图 131
的变化规律如图 131 所示，图上还给出了以第 61 节所讨论的理论为基础的类似曲线。

在原点，

\[k_1 x = -\pi / 4 \]

载荷作用点的挠度为

\[u_{\text{max}} = \frac{P l^2}{8 D} \tag{180} \]

该点的基础反作用力为

\[P_{\text{max}} = -\frac{P}{8 l^3} \tag{181} \]

如取一无限大板，其刚度与受载情况和第 280 页上所讨论的问题相同，则载荷作用点的挠度为:

\[u_{\text{max}} = \frac{P l^2}{8 D} - \frac{P}{8 k l^5} = \pi f D = (3.14)(5)(102 \cdot 10^{-4}) = 0.016 \text{ 厘米}, \]

它比半径 \(a = 2l \) 的有限圆形板的最大挠度 0.02 厘米小 21%。

集中载荷所产生的弯矩分布如图 131c 所示。可以看到，在载荷作用点的某些距离以外，径向弯矩为负，其最大数值约为 1.02\(P \)。在原点，正弯矩为无穷大，但在离载荷作用点的距离是小值的点，将函数 \(k_1 x \) 取成 (i) 的形式，就很容易地计算出它们。将公式 (52) 和 (53) 应用于式 (179)，即得结果:

\[
M_r = \frac{P}{4\pi} \left[(1 + \nu) \left(\log \frac{2l}{r} - \nu \right) - \frac{1}{2} (1 - \nu) \right],
\]

\[
M_t = \frac{P}{4\pi} \left[(1 + \nu) \left(\log \frac{2l}{r} - \nu \right) + \frac{1}{2} (1 - \nu) \right]. \tag{182}
\]

将以上二式与式 (90)，(91) 所作的比较表明，在赫兹的理论中，除了应当在圆形板的弯矩上迭加弯矩值 \(M_r = M_t = -\frac{F}{8\pi} (1 - \nu) \) 以外，载荷作用点的应力状态与半径 \(a = 2l e^{-\nu} = 1.123 l \) 的简支圆形板完全相同。

现在考虑载荷 \(P \) 分布于半径为 \(r \) 的圆面积上的情况，\(r \) 较之于 \(l \) 为小数。在承受这种载荷的圆形板的中心，弯矩为

\[
M_r = M_t = \frac{F}{4\pi} \left[(1 + \nu) \log \frac{a}{r} + 1 \right]. \tag{m}
\]

这个结果是式 (83) 中忽略不计 \(P \) 较小的项 \(a^3 / a^3 \) 而得到的。将 \(a = 2l e^{-\nu} \) 代入式 (m)，并加上弯矩 \(-\frac{F}{8\pi} (1 - \nu)\)，就能得到无限大板承受载荷的圆面积中心的弯矩:

\[1) \text{与特征长} \ l = \sqrt{D / k} \text{ 比较。} \]
\[M_{\text{max}} = \frac{(1 + \nu)P}{4\pi} \left(\log \frac{2l}{c} - \gamma + \frac{1}{2} \right), \quad (n) \]

即
\[M_{\text{max}} = \frac{(1 + \nu)P}{4\pi} \left(\log \frac{l}{c} + 0.61\varepsilon \right). \quad (183) \]

在高度集中载荷的情况下，由式 (183) 计算所得的应力必须用厚板理论修正。这种修正后的应力公式在第 292 页上给出。

如载荷均匀分布于小矩形面积上，我们可如第 37 节所说明的那样来作。特别是，与正方形面积等价的是一个圆，此时，相等的边上长 (参看第 170 页)。将它代入式 (183)，即得
\[M_{\text{max}} = \frac{1 + \nu}{4\pi} P \left(\log \frac{l}{u} + 1.177 \right). \quad (o) \]

任何一组集中载荷对无限大板挠度的作用，可由叠加每一载荷单独作用所产生的挠度而得到。

59. 弹性基片连续矩形板

支承于弹性基片上，同时沿矩形边界有支承的板的一例如图 132 所示。它表示矩形板状截面的横板被一系列载荷 P 均匀弹性基础。梁的底板承受基础的弹性反作用力，支承它的则是将的垂直边和横向隔板（在图中用虚线表示）。仍然假设底板任一点上反作用力的强度 p 与该点的挠度 w 成正比。所以
\[p = kw, \quad k \text{ 为基础系数} \]

根据这个假设，直角坐标中的挠度微分方程为
\[
\frac{\partial^4 w}{\partial x^4} + 2 \frac{\partial^4 w}{\partial x^2 \partial y^2} + \frac{\partial^4 w}{\partial y^4} = \frac{q}{D} - \frac{kw}{D}, \quad (a)
\]

同以前一样，式中 q 为侧向载荷的强度。

我们首先讨论图 132 所示的情况。若用 \(w_0 \) 代表底板边缘的挠度，w 代表板的相对于边界平面的挠度，则任一点的基底反作用力的强度为 \(k(w_0 - w) \)，方程 (a) 化成

\[M_{\text{max}} = \frac{(1 + \nu)P}{4\pi} \left(\log \frac{2l}{c} - \gamma + \frac{1}{2} \right), \quad (n) \]

即
\[M_{\text{max}} = \frac{(1 + \nu)P}{4\pi} \left(\log \frac{l}{c} + 0.61\varepsilon \right). \quad (183) \]

在高度集中载荷的情况下，由式 (183) 计算所得的应力必须用厚板理论修正。这种修正后的应力公式在第 292 页上给出。

如载荷均匀分布于小矩形面积上，我们可如第 37 节所说明的那样来作。特别是，与正方形面积等价的是一个圆，此时，相等的边上长 (参看第 170 页)。将它代入式 (183)，即得
\[M_{\text{max}} = \frac{1 + \nu}{4\pi} P \left(\log \frac{l}{u} + 1.177 \right). \quad (o) \]

任何一组集中载荷对无限大板挠度的作用，可由叠加每一载荷单独作用所产生的挠度而得到。

59. 弹性基片连续矩形板

支承于弹性基片上，同时沿矩形边界有支承的板的一例如图 132 所示。它表示矩形板状截面的横板被一系列载荷 P 均匀弹性基础。梁的底板承受基础的弹性反作用力，支承它的则是将的垂直边和横向隔板（在图中用虚线表示）。仍然假设底板任一点上反作用力的强度 p 与该点的挠度 w 成正比。所以
\[p = kw, \quad k \text{ 为基础系数} \]

根据这个假设，直角坐标中的挠度微分方程为
\[
\frac{\partial^4 w}{\partial x^4} + 2 \frac{\partial^4 w}{\partial x^2 \partial y^2} + \frac{\partial^4 w}{\partial y^4} = \frac{q}{D} - \frac{kw}{D}, \quad (a)
\]

同以前一样，式中 q 为侧向载荷的强度。

我们首先讨论图 132 所示的情况。若用 \(w_0 \) 代表底板边缘的挠度，w 代表板的相对于边界平面的挠度，则任一点的基底反作用力的强度为 \(k(w_0 - w) \)，方程 (a) 化成
\[\Delta \Delta \omega = \frac{k}{D} (\omega_0 - \omega). \]

(\text{b})

将坐标轴取成如图所示，并假设平行于 \(y \) 轴的二板边是简支，其它二边是夹支，则边界条件为

\[(\omega)_{x=0, x=a} = 0, \quad (\frac{\partial^2 \omega}{\partial x^2})_{x=0, x=a} = 0. \]

(\text{c})

\[(\omega)_{y=\pm b/2} = 0, \quad (\frac{\partial \omega}{\partial y})_{y=\pm b/2} = 0. \]

(\text{d})

挠度 \(\omega \) 可取成级数的形式:

\[\omega = \frac{4k \omega_0}{D} \sum_{n=1,3,5, \ldots} \left(\sin \frac{m\pi x}{a} \right) + \sum_{m=1,3,5, \ldots} \text{Y}_m \sin \frac{m\pi x}{a}. \]

(\text{e})

右端第一个级数是方程 (b) 的一个特解，它相当于弹性基础上的简支板条的挠度，第二个级数是齐次方程

\[\Delta \Delta \omega + \frac{k}{D} \omega = 0 \]

(\text{f})

的解。所以，函数 \(Y_m \) 必须满足常微分方程

\[Y_m^{(4)} - 2 \frac{m^4 \pi^4}{a^4} Y_m + \left(\frac{m^4 \pi^4}{a^4} + \frac{k}{D} \right) Y_m = 0. \]

(\text{g})

使用符号

\[\frac{m\pi}{a} = \mu_m, \quad \frac{k}{D} = \lambda_m. \]

(\text{h})

\[2\beta_m^2 = \sqrt{\mu_m^4 + \lambda_m^4} + \mu_m^2, \quad 2\gamma_m^2 = \sqrt{\mu_m^4 + \lambda_m^4} - \mu_m^2, \]

(\text{i})

并将方程 (g) 的解取成 \(e^{\nu} \) 的形式，对于 \(\nu \) 我们求得下列四个根:

\[\beta + i\gamma, \quad -\beta + i\gamma, \quad \beta - i\gamma, \quad -\beta - i\gamma. \]

相应地，方程 (g) 的四个独立的特解为:

\[e^{\nu_m x} \cos \gamma_m y, \quad e^{-\nu_m x} \cos \gamma_m y, \quad e^{\nu_m x} \sin \gamma_m y, \quad e^{-\nu_m x} \sin \gamma_m y. \]

(\text{i})

它们也可写成下列形式:

\[\cosh \beta_m y \cos \gamma_m y, \quad \sinh \beta_m y \cos \gamma_m y, \quad \cosh \beta_m y \sin \gamma_m y, \quad \sinh \beta_m y \sin \gamma_m y. \]

(\text{k})
由对称性可知，在我们的问题中 Y_m 是 y 的偶函数。所以，应用积分 (k)，可得

$$Y_m = A_m \cosh \beta_m y \cos \gamma_m y + B_m \sinh \beta_m y \sin \gamma_m y,$$

于是，板的挠度为

$$u = \sum_{m=1,3, \ldots}^{\infty} \sin \frac{m \pi x}{a} \left[\frac{4k w_0}{D \pi} \frac{1}{m \left(\frac{m^4 \pi^4}{a^4} + \frac{k}{D} \right)} + A_m \cosh \beta_m b \cos \frac{\gamma_m b}{2}
+ B_m \sinh \beta_m b \sin \frac{\gamma_m b}{2} \right].$$

(1)

这个式子满足边界条件 (c)。要满足边界条件 (d)，我们必须选择常数 A_m 和 B_m，以使下列方程得到满足：

$$\frac{4k w_0}{D \pi} \frac{1}{m \left(\frac{m^4 \pi^4}{a^4} + \frac{k}{D} \right)} + A_m \cosh \beta_m b \cos \frac{\gamma_m b}{2}
+ B_m \sinh \beta_m b \sin \frac{\gamma_m b}{2} = 0,$$

$$(A_m \beta_m + B_m \gamma_m) \sinh \beta_m b \cos \gamma_m b
- (A_m \gamma_m - B_m \beta_m) \cosh \beta_m b \sin \gamma_m b = 0.$$

(m)

将这些 A_m 和 B_m 的值代入式 (1)，就能得到所求的板的挠度。

四边简支的弹性基支板问题可用方程 (a) 求解。将坐标轴取成如图 59（第 110 页）所示，并且应用纳维学解，则板的挠度为

$$u = \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} A_{mn} \sin \frac{m \pi x}{a} \sin \frac{n \pi y}{b}.$$

(n)

类似地，用级数

$$q = \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} a_{mn} \sin \frac{m \pi x}{a} \sin \frac{n \pi y}{b}.$$

(o)

表示给定的载荷分布，级数

$$p = k w = \sum \sum k A_{mn} \sin \frac{m \pi x}{a} \sin \frac{n \pi y}{b}.$$

(p)

表示基础的反作用力。将级数 (n) 代入方程 (a) 的左端，(o) 和

.288.
（p）代入方程（a）的右端，可得

\[A_{mn} = \frac{4P \sin \frac{m\pi x}{a} \sin \frac{n\pi y}{b}}{\pi^4 D \left(\frac{m^2}{a^2} + \frac{n^2}{b^2} \right)^2 + k} \] (q)

作为例子，我们考虑板在某点（ξ, η）上承受集中力 P 的弯曲问题。在这样的情况下，由第 117 页上的式（b）可知

\[a_{mn} = \frac{4P}{ab} \sin \frac{m\pi x}{a} \sin \frac{n\pi y}{b} \] (r)

将式（q）和（r）代入方程（a），最后可得

\[u = \frac{4P}{ab} \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac{\sin \frac{m\pi x}{a} \sin \frac{n\pi y}{b}}{\pi^4 D \left(\frac{m^2}{a^2} + \frac{n^2}{b^2} \right)^2 + k} \] (s)

有了一个集中力所产生的挠度，用迭加法就能得到任何一种侧向载荷所产生的挠度，例如，考虑强度为 q 的均匀分布载荷的情况。在式（s）中，以 q dξ dη 代替 P，并且在积分限 c 到 a 和 c 到 b 之间进行积分，即得

\[u = \frac{15q}{\pi^2} \sum_{m=1,3,5,\ldots} \sum_{n=1,3,5,\ldots} \frac{\sin \frac{m\pi x}{a} \sin \frac{n\pi y}{b}}{\left[\pi^4 D \left(\frac{m^2}{a^2} + \frac{n^2}{b^2} \right)^2 + k \right]} \] (t)

当 k 等于零时，这个挠度式就化成了承受均匀载荷的矩形板的纳维埃解（131）^1。

现在考虑图 133 所示的情况：一个大板支承于弹性基础上，并沿 x 轴承受等距离载荷 P^2。将坐标轴取成如图所示，由于没有侧向分布载荷，因此可应用方程（t）。考虑这个方程的解如下列级

1) 在...相对边上有以木所述的挠度和弯矩，在其它二边上具有各种边界条件的矩形板的...1952 年。在该论文中提出了许多图。
2) H. M. Westergaard 讨论到这个问题：见 Ingeniersen，第 32 卷，第 513 页，1923 年。讨论将这个问题的解实际应用于混凝土的...1926 年；第 10 卷，第 65 页，1929 年；及第 14 卷，第 185 页，1935 年。
数形式：

\[w = w_0 + \sum_{m=2, 4, 6, \ldots} Y_m \cos\frac{m\pi x}{a} \] \hspace{1cm} (u)

其中第一项

\[w_0 = \frac{P\lambda}{2\sqrt{2aK}} e^{-2y/\sqrt{2}} \left(\cos\frac{\lambda y}{\sqrt{2}} + \sin\frac{\lambda y}{\sqrt{2}} \right) \]

代表与y轴平行的单位宽无限长板条在y = 0的点上承受载荷P/a时所产生的挠度，参看式(283)，第507页1。级数的其它各项满足对称的要求：在载荷的作用点以及二载荷的中点，挠度曲面在x方向内的切线的斜度为零。对于函数Y_m，我们取那形的特殊积分(i)，它们在y等于无穷大时为零。所以，

\[Y_m = A_m e^{-\gamma_m y} \cos\gamma_m y + B_m e^{-\gamma_m y} \sin\gamma_m y. \]

为了对称条件(∂w/∂y)_{y=0} = 0，在上式中必须取

\[B_m = \frac{\beta_m A_m}{\gamma_m}. \]

所以，引入新的常数A_m = A_m/\gamma_m，可将挠度(u)写成如下形式：

\[w = w_0 + \sum_{m=2, 4, 6, \ldots} A_m \cos\frac{m\pi x}{a} e^{-\gamma_m y} \left(\gamma_m \cos\gamma_m y + \beta_m \sin\gamma_m y \right). \] \hspace{1cm} (v)

为了用诸载荷P的大小来表示常数A_m，考虑通过x轴的板的正截面上所作用的剪力Q_y。由对称性可知，除了载荷P的作用点上剪力等于-P/2之外，在所有其它点上剪力为零。对第54节中类似的剪力分布的讨论表明(见第263页)，此剪力可用如下级数表示：

* 290 *
\[Q_y = - \frac{P}{2a} - \frac{P}{a} \sum_{m=2, 4, 6, \cdots} \frac{(-1)^{m/2} \cos \frac{m\pi x}{a}}{m^{3/2}} \]

如根据式 (v) 计算，则此剪力为:

\[Q_y = -D \frac{\partial}{\partial y} \left(\frac{\partial^2 w}{\partial x^2} + \frac{\partial^2 w}{\partial y^2} \right) \bigg|_{y=0} \]

\[= - \frac{P}{2a} - 2D \sum_{m=2, 4, 6, \cdots} A_m \beta_m \gamma_m \left(\beta_m^2 + \gamma_m^2 \right) \cos \frac{m\pi x}{a} \]

比较这两个剪力表达式, 可得:

\[A_m' = \frac{P(-1)^{m/2}}{2aD \beta_m \gamma_m (\beta_m^2 + \gamma_m^2)^2} \]

或者，用符号 (i),

\[A_m' = \frac{P(-1)^{m/2}}{aD \lambda \sqrt{\lambda_m^4 + \mu_m^4}} \]

将它代入式 (v), 我们最后得到:

\[\omega = \omega_0 + \frac{P \lambda^2}{2a k} \sum_{m=2, 4, 6, \cdots} \frac{(-1)^{m/2} \cos \frac{m\pi x}{a}}{\sqrt{\lambda^4 + \mu_m^4}} e^{-\beta_m y} \]

\[(\gamma_m \cos \gamma_m y + \beta_m \sin \gamma_m y) \]

（w）

最大挠度显然是在载荷 P 的各作用点, 在式 (w) 中代入 \(x = a/2 \),

\[y = 0 \]

就可得到

\[\omega_{\max} = \frac{P \lambda}{2\sqrt{2} \pi k} + \frac{P \lambda^2}{2a k} \sum_{m=2, 4, 6, \cdots} \frac{\gamma_m}{\sqrt{\lambda^4 + \mu_m^4}} \]

（184）

在无限大的板上作用一个孤立载荷 P 的特殊情况下, 其挠度也可在公式 (184) 中令 \(a = \infty \) 而得到。在这样的问题中, 式中的第一项等于零, 用符号 (i), 可得

\[\omega_{\max} = \frac{P \lambda^2}{2\sqrt{2} \pi k} \sum_{m=2, 4, 6, \cdots} \frac{2\pi}{\sqrt{\lambda^4 + \mu_m^4}} \frac{1}{\sqrt{\lambda^4 + \mu_m^4}} \]

\[= \frac{P \lambda^2}{2\sqrt{2} \pi k} \int_0^\infty \sqrt{\lambda^4 + \mu^4 - \mu^2} d\mu \]

应用代换

\[\frac{\mu^2}{\lambda^2} = \frac{1}{2\mu^2 \sqrt{\mu^2 + 1}} \]
即得

\[w_{\text{max}} = \frac{P\lambda^2}{2\sqrt{2}\pi k} \int_0^\infty \frac{1}{\sqrt{x^2 + 1}} \frac{du}{u^2} = \frac{P\lambda^2}{8k}, \]

(185)

这和式(180)的结果一致。由这个挠度值，可得弹性基上的最大压力为

\[(p)_{\text{max}} = k w_{\text{max}} = \frac{P\lambda^2}{8} = \frac{P}{8} \sqrt{\frac{k}{D}}. \]

(186)

最大拉应力是在板底部载荷的作用点处。以上建立的理论给出了该点的弯矩为无穷大，所以应当求助于厚板理论（见第26节）。在上述威斯特加德（Westergaard）所作的研究中，利用厚板理论，就能建立下列公式来计算板底部的最大拉应力：

\[(\sigma_x)_{\text{max}} = 0.275(1 + \nu) \frac{P}{h^2} \log_{10} \left(\frac{Eh^3}{kb^4} \right). \]

(18)

这里 \(h \) 代表板的厚度，并且

当 \(c < 1.724h \) 时， \(b = \sqrt{1.6c^2 + h^2} - 0.675k \),

当 \(c > 1.724h \) 时， \(b = c \),

式中 \(c \) 是一个圆的半径，并假设载荷 \(P \) 均匀分布在该圆面积上。当 \(c = 0 \) 时，就得到集中载荷的情况。

在方形受载面积 \(a \times a \) 的情况下，必须用 0.57\(a \) 来代替 \(c \)（参见第170页）。

如图134所示，沿半无限板的边缘承受等载荷 \(P \) 的情况，也可用类似的方法处理。如果距离 \(a \) 很大，则载荷作用处板底部的最大拉应力由下式给出：

\[(\sigma_x)_{\text{max}} = 0.529(1 + 0.54\nu) \frac{P}{h^2} \left[\log_{10} \left(\frac{Eh^3}{kb^4} \right) - 0.71 \right], \]

(19)

式中 \(b \) 的计算与前一情况相同，\(c \) 是这半圆的半径，并假设载荷 \(P \) 均匀分布于该半圆形面积上。公式 (18) 和 (19) 在混凝土道路的设计中证明十分有用。在此情况下，半径为 \(c \) 的圆相当于轮胎和路面
的接触面积

图 135

60. 承载截面等距板

作为最后一例，我们考虑支承于弹性基础上的无限板，它承载相等的距离并沿大小相等的载荷，如图 135 所示，每一载荷均匀分布在 \(a \times b \) 的矩形面积上。这种“侧支无架楼板”的偶数问题，可用以上讨论的威斯特加德的解，即用单级数来求解。然而，除了高度集中载荷的情况以外，更简单得多，同时也是合用的解是利用纳维埃尔方法得到的二重级数形式的解。

对称条件要求我们将按所产生的侧向载荷表示成余弦级数的形式：

\[
q = \sum_{m=1}^{\infty} \sum_{n=0}^{\infty} (2m+1) \cos \frac{2m\pi x}{a} \cos \frac{2n\pi y}{b} .
\]

所受载荷的强度如图 135 在打阴影线的矩形内等于 \(P/\pi a b \)，在其余地方等于

2) 参看 W. Müller，Ingr.-Arch.，第 20 卷，第 278 页，1952 年，以及 Öster. Ingr.-Arch.，第 6 卷，第 404 页，1952 年。
零。因此，根据常用的方法，即，将式 (a) 乘上\(\cos \frac{2m\pi x}{a} \cos \frac{2n\pi y}{b} \) \(dxdy \)，

并且对 \(x \) 在积分限 \(-a/2 \) 和 \(+a/2 \) 之间，对 \(y \) 在 \(-b/2 \) 和 \(+b/2 \) 之间进行积分，有

\[
\varepsilon_{mn} = \frac{4P \varepsilon_{mn}}{\pi^2 mn \nu} \sin \frac{m\pi x}{a} \sin \frac{n\pi y}{b}, \quad (b)
\]

式中

- 当 \(m \neq 0, \ n \neq 0 \) 时，\(\varepsilon_{mn} = \frac{1}{4} \).
- 当 \(m = 0, \ n \neq 0 \) 或 \(m \neq 0, \ n = 0 \) 时，\(\varepsilon_{mn} = \frac{1}{2} \).
- 当 \(m = n = 0 \) 时，\(\varepsilon_{mn} = 1 \).

在 \(m = 0 \) 或 \(n = 0 \) 的特殊情况下，系数本身可用作为式 (b) 的极限值而立即得到。

现在，根据方程 (a)，将挠度取成级数

\[
\nu = \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \alpha_{mn} \cos \frac{2m\pi x}{a} \cos \frac{2n\pi y}{b}, \quad (c)
\]

系数 \(\alpha_{mn} \) 和 \(\beta_{mn} \) 之间的关系式很容易用和以前相同的推理方法（见第 289 页）建立。所以，利用符号

\[
\alpha_{m} = \frac{2m\pi}{a}, \quad \beta_{m} = \frac{2n\pi}{b}, \quad \rho_{mn} = \alpha_{m} + \beta_{m}, \quad (d)
\]

得到

\[
\alpha_{mn} = \frac{\rho_{mn}}{D\rho_{mn}^2 + k}. \quad (e)
\]

将它代入级数 (c)，同时注意到式 (b)，即得最后结果

\[
\nu = \frac{4P}{\pi^2 \nu} \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \varepsilon_{mn} \sin \frac{m\pi x}{a} \sin \frac{n\pi y}{b} \cos \alpha_{m} x \cos \beta_{m} y \frac{\cos \alpha_{m} x \cos \beta_{m} y}{mn(D\rho_{mn}^2 + k)}. \quad (f)
\]

现在，板的弯矩可用通常的微分求得，板和基础之间的压力分布可由式 (f) 乘上模数 \(k \) 而得到。

\(k = 0 \) 的特殊情况相当于均匀分布的基础反作用力，即承受均匀载荷 \(q = p/ab \) 的“倒置无梁楼板”的情形。从式 (f) 可以看到，模数 \(k \) 的存在有减小板的挠度和弯矩的趋势。

1) 这个结果是由 V. Lewe 得到的，Eingenieur，第 3 卷，第 453 页，1923 年。

* 294 *
哈帕尔（H. Happel）讨论了承受一集中载荷的弹性基支有限矩形板。已用米兹法（参看第 363 页）来求解这种板的挠度，并且在承受中心载荷的方形板的特例中，证明代表挠度的级数收敛得很快，只要取级数的前边少数几项就能足够精确地算出挠度。

61. 半无限弹性基支板的弯曲

在以上的讨论中，我们假设基础表面某点的下沉与该点板和基础之间的压力或正比，而与其它各点的压力无关。在拉普所考虑的浮板问题中（见第 275 页），这假设是正确的；但是对于有凝聚力的基础，这样的假设只是粗糙地近似于基础的实际性质；在某些问题中，基于下列假设进行分析能得到更好的近似：

1. 基础具有半无限弹性体的性质；
2. 板无摩擦地支承于基础上；
3. 在相互间压力为负的情况下，板和基础之间也存在着完全接触。

最后一个假设似乎是不能成立的；但实际上，板的重量多少补偿了板和基础之间的负压力。

如设基础是各向同性的，则弹性基础的弹性性质可用杨氏模数 E_0 和泊松比 ν 描述。在表 63 中给出了此二常数的近似值，它们随基础的性质而变，并且基于动力试验的结果而得到。表中还给出了常数值：

<table>
<thead>
<tr>
<th>基础</th>
<th>E_0 (公斤/厘米2)</th>
<th>ν_0</th>
<th>k_0 (公斤/厘米2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>粘土</td>
<td>(770)770</td>
<td>0.17</td>
<td>400</td>
</tr>
<tr>
<td>黄土和粘土</td>
<td>910</td>
<td>0.42</td>
<td>553</td>
</tr>
<tr>
<td>中粗砂</td>
<td>980～1300</td>
<td>0.33～0.23</td>
<td>553～686</td>
</tr>
<tr>
<td>砂和碎石</td>
<td>2800</td>
<td>0.33</td>
<td>1540</td>
</tr>
<tr>
<td>塑性粘土</td>
<td>2860</td>
<td>0.44</td>
<td>1645</td>
</tr>
<tr>
<td>石灰（空气中离解的）</td>
<td>1150～13300</td>
<td>0.32～0.38</td>
<td>6440～7700</td>
</tr>
<tr>
<td>砂子</td>
<td>112000</td>
<td>0.29</td>
<td>60200</td>
</tr>
</tbody>
</table>

1) Math. Z., 第 6 卷，第 203 页，1920 年。也可参阅 F. Halbritter, Bauentechnik, 第 26 卷，第 181 页，1949 年。
3) 这些数字值由 E. Schulze 和 H. Muhs 所得，“Bodenuntersuchungen für Ingenieurbauten”。柏林，1950 年。也可参看 Veröff. Degebo, 第 4 卷，第 37 页，1936 年。
\[k_0 = \frac{E_0}{2(1 - \nu_0^2)} \]

它在下面要用。

在以下讨论中，我们仅限于考虑轴对称的无限大板。用极坐标 \(r, \theta \)，可将板的方程写为

\[D \Delta \Delta w(r) = q(r) - p(r), \]

式中 \(q(r) \) 表示所受的面载荷，\(p(r) \) 表示基础的反作用力。

设 \(K_0(r, \rho, \varphi) \) 为作用于基础表面上点 \((\rho, \varphi)\) 的单位正压力使基础表面在点 \((r, 0)\) 所产生的挠度。“影响系数” \(K_0 \) 的形式仅仅决定于基础的性质。利用贝赛尔函数的某些性质，可证明下式：

\[w(r) = \int_0^\infty \frac{Q(\alpha)K(\alpha)J_0(\alpha r)\alpha d\alpha}{1 + D\alpha^2K(\alpha)} \]

满足方程 (b)。在式 (c) 中，\(J_0 \) 表示零阶贝赛尔函数；由基础性质确定的项为

\[K(\alpha) = \int_0^\infty 2\pi sK_0(s)J_0(\alpha s)ds, \]

\(K_0 \) 的形式由

\[K_0(s) = K_0[\left(s^2 + \rho^2 - 2\rho s \cos \varphi \right)^{1/2}] \]

定义，为点 \((r, 0)\) 和 \((\rho, \varphi)\) 之间的距离。最后，

\[Q(\alpha) = \int_0^\infty q(\rho)J_0(\alpha \rho)\rho d\rho \]

是由 \(q(\rho) \) 所决定的项，\(q(\rho) \) 是在 \(r = \rho \) 的圆上对称载荷的强度。

在载荷 \(P \) 沿半径为 \(c \) 的圆周上均匀分布的特殊情况下，有

\[Q(\alpha) = \frac{P}{2\pi} J_0(\alpha c), \]

如载荷 \(P \) 均匀分布在该圆的面积上，则式 (e) 给出

\[Q(\alpha) = \frac{P}{\pi c \alpha} J_1(\alpha c), \]

式中贝赛尔函数是一阶的。最后，当载荷集中于原点 \((\rho = 0)\) 时，由式 (f) 可得

\[Q(\alpha) = \frac{P}{2\pi}. \]

至于反作用压力的分布，其相应的函数 \(p(r) \) 是由方程 (b) 得到的，这项

\[q(r) = \int_0^\infty Q(\alpha)J_0(\alpha r)\alpha d\alpha \]

如在前面所表示的那样是通过富里埃-贝塞尔转换（c）被表示出来。这样，
我们得到

$$\rho(r) = \frac{1}{\kappa} \int \frac{Q_0(\alpha) J_0(\alpha r) \, d\alpha}{1 + \alpha^2 k_0^2}.$$ (i)

现在考虑两种具有特殊物理属性的基础的情况。对于浮板（第 57 节），
除了单位载荷的作用点 \(r = 0 \) 以外，影响函数 \(K_0(\alpha) \) 处处为零。于是，根据
式（d），\(K(\alpha) \) 的值一定是一个常数。按照基础模数的定义，\(\omega(r) = \rho(r)/k_0 \)
为了由式（c）求出 \(\omega(r) \) 的表达式，必须设 \(K_0(\alpha) = 1/k_0 \)。应用以前的符号
\(\kappa = D/k_0 \)（第 271 页），由式（c）得到挠度表达式

$$\omega(r) = \frac{1}{k_0} \int \frac{Q_0(\alpha) J_0(\alpha r) \, d\alpha}{1 + \alpha^2 k_0^2},$$ (k)

它实际满足浮板的微分方程（178）。

在各向同性半无限介质的情况下，根据保辛纽斯克（Bousinesq）的结果，有
\(K_0(\alpha) = (1 - v^2_0)/\pi E_0 \)，并且由式（d），\(K(\alpha) = 2(1 - v^2_0)/E_0 \)，即

$$K(\alpha) = \frac{1}{k_0} \alpha^2 \kappa,$$

其中 \(k_0 \) 为式（a）所定义的弹性常数。为了简单，写成

$$\frac{k_0}{D} = \frac{E_0}{2D(1 - v^2_0)} = \frac{1}{k_0},$$ (1)

最后，得到解（c）表示成比较特殊形状*)

$$\omega(r) = \frac{1}{k_0} \int \frac{Q_0(\alpha) J_0(\alpha r) \, d\alpha}{1 + \alpha^2 k_0^2}.$$ (m)

在载荷集中于原点的特殊情况下，由式（m）和式（b），可得

$$\omega = \frac{P_0^2}{2 \pi D} \int \frac{J_0(\lambda r) \, d\lambda}{1 + \lambda^2}.$$ (187)

式中 \(\lambda \) 表示 \(\lambda r \)，由此，载荷作用点的挠度为：

$$\omega_{\text{max}} = \frac{P_0^2}{2 \pi D} \int \frac{d\lambda}{1 + \lambda^2} = \frac{P_0^2 \sqrt{3}}{9 D} = 0.192 \frac{P_0^2}{D},$$ (188)

1）例如，参看 S. Timoshenko 和 J. N. Goodier, “Theory of Elasticity”, 第二
版，第 365 页，纽约，1951 年。
2）关于这个结果，也可参看 S. Woinowsky-Krieger, ing.-Arch., 第 3 卷，第 250
页，1932 年，以及第 17 卷，第 142 页，1949 年；K. Marguerre, Z. angew.
25 卷，第 576 页，1938 年。
这与赫兹的结果 $0.125P^{1/3}/D$ 是有差异的。压力分布可立即由一般表达式 (i)
求得。在任一点上，有

$$
\rho = \frac{P}{2\pi l_0^2} \int_0^\infty J_0 \left(\frac{\lambda r}{l_0} \right) \frac{2d\lambda}{1 + \lambda^2},
$$

(189)

而在载荷的作用点，

$$
\rho_{\max} = \frac{P}{2\pi l_0^2} \int_0^\infty \frac{2d\lambda}{1 + \lambda^2} = \frac{P\sqrt{3}}{9l_0^2} = 0.192 \frac{P}{l_0^2},
$$

(190)

试与赫兹所得到的值 $0.125P/l_0^3$ 作一比较。如设在这两种情况下 ρ_{\max} 的值
相等，则公式 (190) 所给出的 ρ_{\max} 值是赫兹的公式 (181) 所给出的 2.37 倍。在这种情况下，关系式 $I = 1.24l_0$ 应当成立。在图 131a 中画出了分别
由式 (179) 和 (187) 计算所得的挠度，类似地，图 131b 画出了压力的变化；
此时，为了得到在二种情况下相等的 ρ_{\max} 值，必须设 $I = 0.805l_0$。

最后，可以证明，对于这二种基础上的板，如果将集中载荷附近的弯矩值
分别表示成无量纲自变数 $x = r/l$ 和 $x = r/l_0$ 的函数，则此二弯矩表达式是
相同的。由此可知，如果用 l_0 代替 l，则如式 (183) 所给出的弯矩表达式也
c可用于承在各向同性弹性介质上的板。这样，利用威斯特加德的应力公
式(4)(第 292 页)，可得公式

$$
\sigma_{\max} = 0.366(1 + \nu) \frac{P}{h^3} \left[\log_{10} \left(\frac{EA^2}{k_0 h^5} \right) - 0.266 \right],
$$

(11)

其中 k_0 由式 (4) 给出，h 的这个量与第 292 页上所说明的一样。

由有限圆形板的弯曲问题，可导出一组线性方程，这方程数目是无限的，它们决定了表示这种板挠度的级数的系数 3。

在解决有限圆形板问题时，也应考虑应用有限差分法4。

支承在一弹性层上，而此弹性层又支承在绝对刚性基础上的无限板的弯

1) П. Борговица, Ингр.-Арх., 第 10 卷, 第 113 页, 1939 年; А. Г.
 Начкова, Доклады АН СССР, 第 56 卷, 第 129 页, 1947 年; С. Pickett, F.
 H. Jung 讨论了将承受中心载荷的板的外部边缘的影响，
 Ингр.-Арх., 第 18 卷, 第 8 页, 1952 年。关于弹性基础矩形板的弯曲问题可参照
 M. И. Горбунов-Посадов, Приклад. Мат. Мех., 第 4 卷, 第 68 页, 1940 年。

2) A. Habe, Bauingenieur, 第 18 卷, 第 188 页, 1937 年; 对于矩形板的应用，参
 看 C. Pickett, W. C. Jants, M. E. Raville, 和 F. J. McCormick, Kansas

* 298 *
曲问题"，以及半无限面积平板的问题"也都曾经讨论过。

高度集中的表面载荷所产生的应力应当根据厚板的一般理论进行修正。但是，弹性支承厚板的特殊理论也已经建立了"。

1) A. H. A. Hogg, *Phil. Mag.*, 第 35 卷, 第 265 页, 1944 年。
第九章
杂 形 板

62. 板弯曲的极坐标方程 在讨论圆形板的对称弯曲时已经用过极坐标（第三章），在圆形板的一般弯曲问题中采用极坐标也是有利的。

如图136a所示，r和θ为所取的坐标，则极坐标与笛卡儿坐标的关系用下列式子表示：

\[r^2 = x^2 + y^2, \quad \theta = \arctan \frac{y}{x}, \quad (a) \]

由此可得

\[\frac{\partial r}{\partial x} = \frac{x}{r} = \cos \theta, \quad \frac{\partial r}{\partial y} = \frac{y}{r} = \sin \theta, \]

\[\frac{\partial \theta}{\partial x} = -\frac{y}{r^2} = -\frac{\sin \theta}{r}, \quad \frac{\partial \theta}{\partial y} = \frac{x}{r^2} = \frac{\cos \theta}{r}, \quad (b) \]

用这些式子，得到板的挠度曲面在x方向内的斜度为：

\[\frac{\partial w}{\partial x} = \frac{\partial w}{\partial r} \frac{\partial r}{\partial x} + \frac{\partial w}{\partial \theta} \frac{\partial \theta}{\partial x} = \frac{\partial w}{\partial r} \cos \theta - \frac{1}{r} \frac{\partial w}{\partial \theta} \sin \theta. \quad (c) \]

对于y方向内的斜度可写出类似的式子。为了得到极坐标中的曲
首先表达式，需求得二阶导数。将式 (c) 所示的运算旋转一次，可得
\[
\frac{\partial^2 w}{\partial x^2} = \left(\frac{\partial}{\partial r} \cos \theta - \frac{1}{r} \sin \theta \frac{\partial}{\partial \theta} \right) \left(\frac{\partial w}{\partial r} \cos \theta - \frac{1}{r} \frac{\partial w}{\partial \theta} \sin \theta \right)
\]
\[
= \frac{\partial^2 w}{\partial r^2} \cos^2 \theta - 2 \frac{\partial^2 w}{\partial \theta \partial r} \frac{\sin \theta \cos \theta}{r} + \frac{\partial w}{\partial r} \sin \theta
\]
\[
+ 2 \frac{\partial w}{\partial \theta} \frac{\sin \theta \cos \theta}{r^2} + \frac{\partial^2 w}{\partial \theta^2} \sin^2 \theta \cdot (d)
\]

用同样方法，可得
\[
\frac{\partial^2 w}{\partial y^2} = \frac{\partial^2 w}{\partial r^2} \sin^2 \theta + 2 \frac{\partial^2 w}{\partial \theta \partial r} \frac{\sin \theta \cos \theta}{r} + \frac{\partial w}{\partial r} \cos \theta
\]
\[
- 2 \frac{\partial w}{\partial \theta} \frac{\sin \theta \cos \theta}{r^2} + \frac{\partial^2 w}{\partial \theta^2} \cos^2 \theta \cdot (e)
\]

\[
\frac{\partial^2 w}{\partial x \partial y} = \frac{\partial^2 w}{\partial r \partial \theta} \sin \theta \cos \theta + \frac{\partial^2 w}{\partial r \partial \theta} \frac{\cos 2 \theta}{r} - \frac{\partial w}{\partial \theta} \frac{\cos 2 \theta}{r^2}
\]
\[
- \frac{\partial w}{\partial r} \frac{\sin \theta \cos \theta}{r^2} - \frac{\partial^2 w}{\partial \theta^2} \frac{\sin \theta \cos \theta}{r^2} \cdot (f)
\]

用这样的坐标变换，可得
\[
\Delta w = \frac{\partial^2 w}{\partial x^2} + \frac{\partial^2 w}{\partial y^2} = \frac{\partial^2 w}{\partial r^2} + \frac{1}{r} \frac{\partial w}{\partial r} + \frac{1}{r^2} \frac{\partial^2 w}{\partial \theta^2} \cdot (g)
\]

将此运算旋转二次，承受侧向载荷的板的挠度曲面微分方程 (103)
在极坐标中变换成如下形式:
\[
\Delta \Delta w = \left(\frac{\partial^2}{\partial r^2} + \frac{1}{r} \frac{\partial}{\partial r} + \frac{1}{r^2} \frac{\partial^2}{\partial \theta^2} \right)
\]
\[
\times \left(\frac{\partial^2 w}{\partial r^2} + \frac{1}{r} \frac{\partial w}{\partial r} + \frac{1}{r^2} \frac{\partial^2 w}{\partial \theta^2} \right) = \frac{q}{D} \cdot \text{(191)}
\]

当载荷分布对于板的中心为对称时，挠度 \(w \) 与 \(\theta \) 无关，方程 (191)
和在承受对称载荷的圆板情况下得到的方程 (58)（见第 55 页）
完全相同。

考虑由板中切出一单元，此单元的侧面是夹角为 \(d \theta \) 的二相相邻
径向平面以及半径分别为 \(r \) 和 \(r + dr \) 的二圆柱面（图 136b）。用
\(M_r, M_I, \) 和 \(M_{ri} \) 代表作用于此单元单位长上的弯矩和扭矩，其正方
向如图所示。在用板的挠度 w 表示这些力矩时，设 x 轴和半径 r 重合。于是，在同一点上，力矩 M_r, M_t, M_{rt} 的值和力矩 M_x, M_y, M_{xy} 相同，将 $\theta = 0$ 代入式 (d), (e) 和 (f), 得到:

$$
M_r = -D \left(\frac{\partial^2 w}{\partial x^2} + \nu \frac{\partial^2 w}{\partial y^2} \right)_{\theta = 0} = -D \left[\frac{\partial^2 w}{\partial r^2} + \nu \left(\frac{1}{r} \frac{\partial w}{\partial r} + \frac{1}{r^2} \frac{\partial^2 w}{\partial \theta^2} \right) \right],
$$

$$
M_t = -D \left(\frac{\partial^2 w}{\partial y^2} + \nu \frac{\partial^2 w}{\partial r^2} \right)_{\theta = 0} = -D \left(\frac{1}{r} \frac{\partial w}{\partial r} + \frac{1}{r^2} \frac{\partial^2 w}{\partial \theta^2} + \nu \frac{\partial^2 w}{\partial r^2} \right), \quad (192)
$$

$$
M_{rt} = (1 - \nu) D \left(\frac{\partial^2 w}{\partial x \partial y} \right)_{\theta = 0} = (1 - \nu) D \left(\frac{1}{r} \frac{\partial w}{\partial r} \frac{\partial^2 w}{\partial \theta^2} - \frac{1}{r^2} \frac{\partial^2 w}{\partial \theta^2} \right).
$$

1同理，由公式 (108)，可得剪力的表达式

$$
Q_r = -D \frac{\partial}{\partial r} (\Delta w), \quad Q_t = -D \frac{\partial (\Delta w)}{r \partial \theta}, \quad (193)
$$

式中 Δw 如式 (g) 表示。

在简支边情况下，半径为 a 的圆形板的边界条件为

$$(\omega)_{r=a} = 0, \quad \left(\frac{\partial \omega}{\partial r} \right)_{r=a} = 0, \quad (h)
$$

在简支边情况下:

$$(\omega)_{r=a} = 0, \quad (M_r)_{r=a} = 0, \quad (i)
$$

在自由边情况下（参考第 91 页）:

$$(M_r)_{r=a} = 0, \quad \nu = \left(Q_r - \frac{\partial M_{rt}}{r \partial \theta} \right)_{r=a} = 0. \quad (j)
$$

同以前一样，方程 (191) 的一般解可取成和的形式:

$$
\omega = \omega_0 + \omega_1,
$$

式中 ω_0 为方程 (191) 的一个特解，ω_1 为齐次方程：

1. 图 136b 中 Q_r 的方向与图 28 中所用的相反，这就解释了方程 (193) 中的负号。
\[
\left(\frac{\partial^2}{\partial r^2} + \frac{1}{r} \frac{\partial}{\partial r} + \frac{1}{r^2} \frac{\partial^2}{\partial \theta^2} \right) \times \left(\frac{\partial^2 \omega_1}{\partial r^2} + \frac{1}{r} \frac{\partial \omega_1}{\partial r} + \frac{1}{r^2} \frac{\partial^2 \omega_1}{\partial \theta^2} \right) = 0
\]
(194)

的解, 将后一解取成下列级数的形式

\[
\omega_i = R_0 + \sum_{m=1}^{\infty} R_m \cos m\theta + \sum_{m=1}^{\infty} R_m' \sin m\theta,
\]
(195)

其中 \(R_0, R_1, \ldots, R_i, R_i', \ldots\) 是和向距离 \(r\) 的函数, 将此级数代入方程(194), 对于每一个这种函数可得下列形式的常微分方程:

\[
\left(\frac{d^2}{dr^2} + \frac{1}{r} \frac{d}{dr} - \frac{m^2}{r^2} \right) \left(\frac{d^2 R_m}{dr^2} + \frac{1}{r} \frac{dR_m}{dr} - \frac{m^2 R_m}{r^2} \right) = 0.
\]

当 \(m > 1\) 时, 这个方程的一般解为

\[
R_m = A_m r^m + B_m r^{-m} + C_m r^{m+2} + D_m r^{-m+2}.
\]

对 \(m = 0\) 和 \(m = 1\), 一般解为:

\[
R_0 = A_0 + B_0 r^2 + C_0 \log r + D_0 r^2 \log r,
\]

和

\[
R_1 = A_1 r + B_1 r^3 + C_1 r^{-1} + D_1 r \log r.
\]

对于函数 \(R_m'\) 可写出类似的表达式. 将这些函数 \(R_m\) 和 \(R_m'\) 的表达式代入级数 (195), 就得到方程 (194) 的一般解. 在每一特殊情况下, 常数 \(A_m, B_m, \ldots, D_m\) 应当由边界条件决定. 解 \(R_0\) 与角 \(\theta\) 无关, 代表圆形容板的对称弯曲. 在第三章中已经讨论过几个这一类的特殊情况.

63. 承受线形变化载荷的圆形容板 如圆形容板承受如图 137 所示

1) 这个解为 A. Clebsch 所给出, 参看他的著作 "Theorie der Elasticität fester Körper", 1862 年.
示的分布载荷，则此载荷总可分成三部分：(1) 强度为 \(\frac{1}{2} (p_2 + p_1) \) 的均匀分布载荷，(2) 线形变化的载荷，其在板的直径 \(CD \) 上的强度为零，在直径 \(AB \) 两端 \(A \) 和 \(B \) 的强度为 \(-p \) 和 \(+p \)。在第三章中已经讨论过承受均匀载荷的问题，这里只需要考虑由图137中有划线的两个三角形表示的非均匀载荷。

坐标为 \(r \) 和 \(\theta \) 的任意一点上，载荷强度 \(q \) 为

\[q = \frac{p r \cos \theta}{a} \quad \text{(a)} \]

因此方程 (191) 的特解可取成如下形式：

\[w_0 = A \frac{p r^2 \cos \theta}{a} \]

将它代入方程 (191)，可得

\[A = \frac{1}{192 D} \]

所以

\[w_0 = \frac{p r^2 \cos \theta}{192 a D} \quad \text{(b)} \]

至于齐次方程 (194) 的解，我们仅取级数 (195) 中含有函数 \(R_1 \) 的那项，并设

\[w_1 = (A_1 r + B_1 r^3 + C_1 r^{-1} + D_1 r \log r) \cos \theta \quad \text{(c)} \]

用无量纲的量运算比较方便，因此引人比

\[\rho = \frac{r}{a} \]

以代替 \(r \)。用这个新符号，板的挠度化为：

\[w = w_0 + w_1 = \frac{p a^4}{192 D} (A \rho + B \rho^3 + C \rho^{-1} + D \rho \log \rho) \cos \theta \quad \text{(d)} \]

式中 \(\rho \) 的变化范围为 0 到 1，其常数 \(A, B, \cdots \) 应当由边界条件决定。

我们首先讨论简支板的情况（图137），在这种情况下，挠度 \(w \)

\[\]

1) W. Flügge 曾讨论过这个问题，见 Bauingenieur, 第 10 卷, 第 221 页, 1929 年。
和弯矩 M_r 在边界上为零，即

$$ (w)_{\rho=1} = 0, \quad (M_r)_{\rho=1} = 0. \quad (e) $$

在板的中心 ($\rho = 0$)，挠度 w 和弯矩 M_r 必须是有限值。由此立即可知，式 (d) 中的常数 C 和 D 等于零。其余的两个常数 A 和 B 就可由方程 (e) 求得，它们给出:

$$ (w)_{\rho=1} = \frac{pa^4}{192D} (1 + A + B) + \cos \theta = 0. $$

$$ (M_r)_{\rho=1} = -\frac{pa^4}{192} \left[4(5 + \nu) + 2(3 + \nu)B \right] \cos \theta = 0. $$

这两个式子对于任何 θ 值都应成立，因此 $\cos \theta$ 前的因子必须为零，亦即:

$$ 1 + A + B = 0, $$

$$ 4(5 + \nu) + 2(3 + \nu)B = 0, $$

由此得到:

$$ B = -\frac{2(5 + \nu)}{3 + \nu}, \quad A = \frac{7 + \nu}{3 + \nu}. $$

将此二值代入式 (d)，我们得到板的挠度 w 为如下形式:

$$ w = \frac{pa^4 \rho (1 - \rho^2)}{192(3 + \nu)D} \left[7 + \nu - (3 + \nu)\rho^2 \right] \cos \theta. \quad (f) $$

对计算弯矩和剪力，将式 (f) 代入式 (192) 和 (193) 即得

$$ M_r = \frac{pa^3}{48} (5 + \nu)\rho (1 - \rho^2) \cos \theta, $$

$$ M_s = \frac{pa^2}{48(3 + \nu)} \rho [(5 + \nu)(1 + 3\nu) $$

$$ - (1 + 5\nu)(3 + \nu)\rho^2] \cos \theta, \quad (g) $$

$$ Q_r = \frac{pa}{24(3 + \nu)} \left[2(5 + \nu) - 9(3 + \nu)\rho^2 \right] \cos \theta, $$

$$ Q_s = -\frac{pa}{24(3 + \nu)} \rho [2(5 + \nu) - 3(3 + \nu)\rho^2] \sin \theta. \quad (h) $$

可以看到，$(M_r)_{\text{max}}$ 发生于 $\rho = 1/\sqrt{3}$，并等于

$$ (M_r)_{\text{max}} = \frac{pa^2 (5 + \nu)}{72\sqrt{3}}. $$
M_i的最大值发生于
$$
\rho = \sqrt{(5 + \nu)(1 + 3\nu)/\sqrt{3(1 + 5\nu)(3 + \nu)}}.
$$
它等于
$$(M_i)_{max} = \frac{pa^2(5 + \nu)(1 + 3\nu)}{72(3 + \nu)}.$$
在边界上垂直反力的强度值为
$$-v = -Q, + \frac{\partial M_{ii}}{r \partial \theta} = \frac{pa}{4} \cos \theta.$$
此反力对于板的直径 CD（图 137）的力矩为
$$4 \int_0^{\pi/2} \frac{pa}{4} \cos \theta \rho^2 \cos \theta d\theta = \frac{\pi a^3 p}{4}.$$
这个力矩与板上的分布载荷对于同一直径的力矩相平衡。

作为第二个例子，我们考虑自由边圆形板的情况，对于支承烟囱的圆形基础平板问题就是这种情况。由于风压的结果，会有弯矩 M 传递到板上（图 138）。假设对应于此弯矩的反作用力依照如图所示的线性规律分布，我们就能得到与前一问题相同的载荷，因此一般解可取为与以前相同的等式 (d)。板的外边界不受力，其边界条件为：

$$(M_r)_{r=1} = 0, \quad (\nu)_{r=1} = \left(Q - \frac{\partial M_{ii}}{r \partial \theta} \right)_{r=1} = 0, \quad (i)$$
半径为 b 的板的里面部分看成绝对刚体，还假设板的边缘沿半径为 b 的圆是夹支。所以对 $\rho = b/\alpha = \beta$，下列边界条件必须满足：

$$\left. \left(\frac{\partial \nu}{\partial \rho} \right) \right|_{\rho=\beta} = \left. \left(\frac{\nu}{\rho} \right) \right|_{\rho=\epsilon}. \quad (j)$$
将式 (d) 代入方程 (i) 和 (j)，得到下列决定常数的方程：

$$4(5 + \nu) + 2(3 + \nu)B + 2(1 - \nu)C + (1 + \nu)D = 0,$$
$$4(17 + \nu) + 2(3 + \nu)B + 2(1 - \nu)C - (3 - \nu)D = 0,$$
$$4\beta^4 + 2\beta^2B - 2\beta^{-2}C + D = 0.$$

1) 方向向上的反作用力取为正。
由这些方程可得:

$$B = -2 \frac{4(2 + \nu) + (1 - \nu)\beta^2(3 + \beta^4)}{(3 + \nu) + (1 - \nu)\beta^4},$$

$$C = -2 \frac{4(2 + \nu)\beta^4 - (3 + \nu)\beta^2(3 + \beta^4)}{(3 + \nu) + (1 - \nu)\beta^4}, \quad D = 12.$$

将这些值代入式 (d)，并应用式 (192) 和 (193)，就能得到弯矩和剪力的值。常数 A 在这些式子中不出现，式 (d) 中相应的项表示板象刚体那样相对于平面上的旋转。如已知基础模数，则此转角可由所受弯矩 M 和基础反力的平衡条件计算得到。

用式 (d)，承受中心弯矩 M 的简支圆形板问题 (图 139a) 可迅速求解。在此情况下，应当略去代表分布载荷的含有 \(\rho' \) 的项。为了消除中心处的无限大挠曲，常数 C 必须取为零。这样，式 (d) 就化为

$$w = (A \rho + B \rho^3 + D \rho \log \rho) \cos \theta. \quad (k)$$

现在，三常数 A, B, C 由下列边界条件来决定：

$$(w)_{\theta = 0} = 0, \quad (M_r)_{\rho = 1} = 0,$$

$$-a \int_{-\pi}^{+\pi} (M_r)_{\theta = 0} \sin \theta \, d\theta + a^2 \int_{-\pi}^{+\pi} (Q_r)_{\theta = 0} \cos \theta \, d\theta + M = 0. \quad (l)$$

这些方程的头两个代表简支边缘的条件，最后一个说明作用于板边缘的诸力与弯矩和外加弯矩 M 的平衡条件。由方程 (l) 得到:

$$A = -\frac{1 + \nu}{3 + \nu} \frac{Ma}{8\pi D}, \quad B = \frac{1 + \nu}{3 + \nu} \frac{Ma}{8\pi D}, \quad D = -\frac{Ma}{4\pi D}.$$

所以

$$w = -\frac{Ma}{8\pi D(3 + \nu)} \rho \left[(1 + \nu)(1 - \rho^2) \right]$$
$+ 2(3 + \nu) \log \rho \cos \theta$. (m)

由于方括号中的对数项，从式 (m) 计算所得的挠度曲面的斜度为无限大。为了消除这个困难，半径为 b 的板中心部分可以视为绝对刚体1。假设板沿内边界为夹支，内边界在弯矩 M 的作用下旋转 (图 139b)，即可求得：

$$
\omega = \frac{Ma}{8\pi D[(3 + \nu) + (1 - \nu)\beta^4]} \left\{ -[(1 + \nu) \\
+ (1 - \nu)\beta^4] \rho^2 + (1 + \nu)(1 - \beta^2) \rho \\
+ 2[(3 + \nu) + (1 - \nu)\beta^4] \rho \log \rho \\
- \beta^2[(1 + \nu)\beta^2 - (3 + \nu)] \rho^{-3} \right\} \cos \theta.
$$ (n)

式中 $\beta = b/a$。当 β 等于零时，式 (n) 化成了以前所得的式 (m)。将式 (n) 代入式 (192)，就能计算弯矩 M_r 和 M_s。

板的外边界为夹支的情形 (图 139c) 可用类似方法讨论。关于弹性线荷轴时，这问题是具有实际意义的2。对于这问题，内外边界上的最大径向应力以及中心刚性部分的转角 φ 为：

$$
(\sigma_r)_{a=\varphi} = \frac{M}{a} E \varphi, \quad (\sigma_r)_{a=\varphi} = \alpha_1 \frac{h}{a} E \varphi, \quad \varphi = \frac{M}{\\alpha_2 Eh^3},
$$

其中系数 α, α_1 和 α_2 的值在表 64 中给
出。

<table>
<thead>
<tr>
<th>$\beta = b/a$</th>
<th>α</th>
<th>α_1</th>
<th>α_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>14.17</td>
<td>7.10</td>
<td>12.40</td>
</tr>
<tr>
<td>0.6</td>
<td>19.54</td>
<td>12.85</td>
<td>28.48</td>
</tr>
<tr>
<td>0.7</td>
<td>36.25</td>
<td>25.65</td>
<td>77.90</td>
</tr>
<tr>
<td>0.8</td>
<td>82.26</td>
<td>65.50</td>
<td>314.00</td>
</tr>
</tbody>
</table>

64. 承受集中载荷的圆形板 板

中心作用集中载荷的情况已在第 19 节中讨论过。在本节中假设载荷 p 作

1) R. J. Roark 作过关于这种板的实验，见 Univ. Wisconsin Bull. 74, 1932 年。
2) H. Reissner, Ing.-Arch., 第 1 卷, 第 72 页, 1929 年。
用于离板中心\(O\)的距离为\(b\)的点（图140）。用半径为\(b\)的圆柱截面（在图中用虚线表示）将板分成两部分，我们可对每一部分应用解（195）。如果角\(\theta\)从半径\(OA\)量起，则只需要保留含有\(\cos m\theta\)的项。所以对于外面部分板，得到

\[
\omega = R_0 + \sum_{m=1}^{\infty} R_m \cos m\theta, \tag{a}
\]

式中

\[
R_0 = A_0 + B_0 r + C_0 \log r + D_0 r^2 \log r,
\]

\[
R_1 = A_1 r + B_1 r^2 + C_1 r^{-1} + D_1 r \log r,
\]

\[
R_m = A_m r^m + B_m r^{-m} + C_m r^{-m+1} + D_m r^{-m+1}. \tag{b}
\]

对于里面部分板所写挠度表达式中的函数\(R_0, R_1, R_m\)也可写出类似的式子。用符号\(A'_m, B'_m, \ldots\)代替\(A_m, B_m, \ldots\)作为里面部分板的常数，由挠度：斜度和弯曲在板中心必须是有限的条件，可得

\[
C'_0 = D'_0 = 0,
\]

\[
C'_1 = D'_1 = 0,
\]

\[
B'_m = D'_m = 0.
\]

所以，对于外面部分板，在级数\((a)\)的每一项中需要决定四个常数，对于里面部分板，需要决定两个常数。

决定这些常数所需要的六个方程，可由板边缘处的边界条件及半径为\(b\)的圆上的连续条件得到。如设板的外边缘为铰支，则对应的边界条件为

\[
(\omega)_{x=a} = 0, \quad \left(\frac{\partial \omega}{\partial r} \right)_{x=a} = 0. \tag{c}
\]

用 w_r 表示内部圆板的挠度，并且注意到在半径为 b 的圆上没有外力矩作用，因此就能将此圆周上的连续条件写成:

$$\text{当 } r = b \text{ 时， } \ w = w_1, \quad \frac{\partial w}{\partial r} = \frac{\partial w_1}{\partial r}, \quad \frac{\partial^2 w}{\partial r^2} = \frac{\partial^2 w_1}{\partial r^2}. \quad (d)$$

最后一式是由考虑沿此分界圆上的剪力 Q, 而得到的。除 A 点外剪力在圆的所有点上都是连续的，在 A 点上由于作用有集中力 P, 剪力是不连续的。对此集中力用级数表达式:

$$\frac{P}{\pi b} \left(\frac{1}{2} + \sum_{m=1}^{\infty} \cos m\theta \right), \quad (e)$$

对剪力用 (193) 的第九式, 即得:

$$D \frac{\partial}{\partial r} \left(\Delta w \right)_{m=0} = D \frac{\partial}{\partial r} \left(\Delta w_1 \right)_{m=0} = \frac{P}{\pi b} \left(\frac{1}{2} + \sum_{m=1}^{\infty} \cos m\theta \right), \quad (f)$$

由 (c), (d), (f) 六个方程, 可算出六个常数, 因此函数 R_n 和 R'_n 可表示成下列形式:

$$R_s = \frac{P}{8\pi D} \left[(r^2 + b^2) \log \frac{r}{a} + \frac{(a^2 + b^2)(a^2 - r^2)}{2a^3} \right],$$

$$R_a = \frac{P}{8\pi D} \left[(r^2 + b^2) \log \frac{b}{a} + \frac{(a^2 + r^2)(a^2 - b^2)}{2a^3} \right],$$

$$R_1 = -\frac{Pb^3}{16\pi D} \left[\frac{1}{r} \left(\frac{1}{a^2} + \frac{2(a^2 - b^2)r}{a^2 b^2} - \frac{(2a^2 - b^2)r^2}{a^2 b^2} \right) \right.$$

$$\left. - \frac{4r \log \frac{a}{r}}{b^2} \right],$$

$$R'_i = -\frac{Pb^3}{16\pi D} \left[\frac{2(a^2 - b^2)r}{a^2 b^2} + \frac{(a^2 - b^2)r^2}{a^2 b^2} - \frac{4r \log \frac{a}{b}}{b^2} \right],$$

$$R'_m = \frac{Pb^3}{8m(m-1)\pi D} \left[\frac{r^m}{a^{2m}} \left(\frac{m-1}{m+1} b^2 - ma^2 + (m-1) r^2 \right) \right.$$

$$\left. - \frac{m(m-1)}{m+1} \frac{b^2 r^2}{a^2} \right] + \frac{1}{r^m} \left(\frac{r^m - \frac{m-1}{m+1} b^2}{a^2} \right),$$

$$R''_m = \frac{Pb^3}{8m(m-1)\pi D} \left[\frac{r^m}{a^{2m}} \left(\frac{m-1}{m+1} b^2 - ma^2 + \frac{a^m}{b^{2m-2}} \right) \right.$$

$$\left. + (m-1) \frac{r^m r^2}{a^{2m}} \left(1 - \frac{m}{m+1} \frac{b^2}{a^2} \right) - \frac{1}{m+1} \left(\frac{a}{b} \right)^m \right].$$

1) 这个级数与连续板问题中所用的级数类似(见第 263 页)。
应用这些函数，得到集中载荷作用点的挠度:

\[(\omega)_{r=b, \theta=0} = \frac{P}{16\pi D} \frac{(a^2 - b^1)^2}{a^2}.\]

(196)

当 \(b = 0\) 时，这个公式与中心受载板的式 (92) 重合。边缘简支的板的问题可用类似方法处理。

沿内边 \(r = b\) 夹支的圆环形板在外边界上承受集中载荷 \(P\) 的问题（图 141）也能利用级数 \((a)\) 求解。在此情况下，夹支内边的边界条件为

\[(\omega)_{r=b} = 0, \quad \left(\frac{\partial \omega}{\partial r}\right)_{r=b} = 0.\]

(g)

外边界只是一点承受载荷，其边界条件为:

\[(M_r)_{r=a} = 0, \quad (V)_{r=a} = \frac{P}{\pi a} \left(\frac{1}{2} + \sum_{n=1}^{\infty} \cos mn\right).\]

(h)

对一特殊情况 \(b/a = 2/3\) 所作的计算表明，内边的最大弯矩 \(M\) 为:

![图 142](image)

1) H. Reissner, 第 308 页参考.
沿内边缘以及沿半径 \(r = 5 a / 6 \) 的圆的弯矩变化表示在图 142 中。可以看出，当板载荷作用点量起的角 \(\theta \) 增加时，这些弯矩迅速地趋于零。

形式 (a) 的一般解可成功地用来处理承受一组对称分布的若干单一载荷的圆形板与环形板问题\(^1\)。对于只承受一个偏心载荷的无孔圆形板，用复变数的方法\(^2\)，或者，当板为夹支时用反演法\(^3\)，能得到更简单的解。在夹支的情况下，得到板的挠度曲面方程:

\[
\omega = \frac{P a^4}{16 \pi D} \left[(1 - x^2) (1 - \xi^2) + (x^2 + \xi^2 - 2 x \xi \cos \theta) \log \frac{x^2 + \xi^2 - 2 x \xi \cos \theta}{1 + x^2 \xi^2 - 2 x \xi \cos \theta} \right], \quad (197)
\]

式中 \(x = r / a \)，\(\xi = b / a \) (图 140)。式 (197) 在整个板上都是成立的。对于点 \(x = \xi, \theta = 0 \)，即载荷作用点，由此式得到以前用级数方法得到的值 (196)。

65. 沿边界有若干点支的圆形板 考虑载荷对于板中心为对称分布的情形，可将挠度曲面的一般表达式取成如下形式\(^4\)

\[
\omega = \omega_0 + \omega_1, \quad (a)
\]

其中 \(\omega_0 \) 为沿整个边界简支的板的挠度，\(\omega_1 \) 满足齐次微分方程

1) 将这种反作用载荷与给定的均匀载荷合在一起，我们可解决圆形单纯板问题；参阅 K. Hujac-Konyi, “Berechnung von kreisförmig begrenzten Plattendicken,” 柏林，1929 年。

\[\Delta \Delta \omega_i = 0. \quad (b) \]

用 \(N_i, N_i', \cdots, N_i'' \) 代表支点 1, 2, \cdots, \(i \) 的集中作用力，并且用上节的级数 (b) 表示诸集中作用力，则对每一反力 \(N_i \) 有表达式

\[\frac{N_i}{r^a} \left(\frac{1}{2} + \sum_{m=1}^{\infty} \cos m\theta_i \right), \quad (c) \]

式中

\[\theta_i = \theta - \gamma_i, \]

\(\gamma_i \) 为支点 \(i \) 位置的角 (图 143)，于是，边界上任一点的反作用力强度由下式给出:

\[\sum_i \frac{N_i}{r^a} \left(\frac{1}{2} + \sum_{m=1}^{\infty} \cos m\theta_i \right), \quad (d) \]

式中求和是对所有集中反力 (e) 而言的。

齐次方程 (b) 的一般解由式 (195) 给出于第 299 页。假设板为刚体，并略去中心的挠度与弯矩为无限小的项，则由式 (195) 可得:

\[\omega_i = A_0 + B\phi^2 + \sum_{n=1}^{\infty} \left(A_n r^m + C_n r^{m+1} \right) \cos m\theta \]

\[+ \sum_{n=1}^{\infty} \left(A_n r^m + C_n r^{m+1} \right) \sin m\theta. \quad (e) \]

我们用下列边界条件来决定常数:

\[(M_r)_{r=a} = -D \left[\frac{\partial^2 \omega}{\partial \phi^2} + \frac{1}{r} \frac{\partial \omega}{\partial r} + \frac{1}{r^2} \frac{\partial^2 \omega}{\partial \phi^2} \right]_{r=a} = 0, \]

\[(V)_{r=a} = \left(\frac{\partial M_r}{\partial \theta} \right)_{r=a} = -\sum_i \frac{N_i}{r^a} \left(\frac{1}{2} + \sum_{m=1}^{\infty} \cos m\theta_i \right), \quad (f) \]

式中 \(M_r \) 和 \(V \) 由式 (192) (193) 给出。

我们考虑一特殊情况：板在一直径的两端点支。从此直径开始量角 \(\theta \) 的大小，则

\[\omega = \omega_0 + \frac{Pa^2}{2\pi(1 + \nu)D} \left\{ 2 \log 2 - 1 + \frac{1 + \nu}{1 - \nu} \left(2 \log 2 - \frac{\pi^2}{12} \right) \right. \]

\[- \sum_{m=2}^{\infty} \left[\frac{1}{m(m-1) \nu} + \frac{2(1 + \nu)}{(1 - \nu)(m-1)m^2} \right. \]

\[- \frac{\rho^2}{m(m+1)} \left\} \rho^m \cos m\theta \right\} \quad (g) \]
式中 \(w \) 为承受对称载荷的简支板的挠度；\(P \) 为板上的总载荷，\(\rho = r/a \)。如载荷作用于中心，设 \(\rho = 0.25 \)，由式(8) 可得：
\[
\langle w \rangle_{\rho = 0} = 0.116 \frac{Pa^4}{D},
\]
\[
\langle w \rangle_{\rho = 1, \theta = \pi/2} = 0.118 \frac{Pa^4}{D}.
\]

对于承受均匀载荷的板，则得：
\[
\langle w \rangle_{\rho = 0} = 0.269 \frac{qa^4}{D},
\]
\[
\langle w \rangle_{\rho = 1, \theta = \pi/2} = 0.371 \frac{qa^4}{D}.
\]

将两个（8）那样的解迭加，也可得到图 144 所示的情况。

如圆形板由相距 120° 的三点支撑，则当载荷作用于中心时，板中心所产生的挠度为
\[
\langle w \rangle_{\rho = 0} = 0.0570 \frac{Pa^4}{D}.
\]

当载荷为均匀分布时，中心的挠度为
\[
\langle w \rangle_{\rho = 0} = 0.0362 \frac{Pa^4}{D},
\]
式中 \(P = \pi a^2 q \)。

三点支承的圆形板问题曾用玻璃板进行过实验研究。这些实验与理论的结果是十分令人满意的，一致。

66. 扇形板 对圆形板推导所得的一般解（第 62 节）也可用于沿直线边缘简支的扇形板问题。

以沿直径 \(AB \) 简支的半圆形板承受均匀载荷为例（图 145）。显然，这个板的挠度与虚线所表示的圆形板

1) 这些实验是 Neldoi 作的，参看第 312 页注。
2) Nádai 讨论了类似的问题。Z. Ver. deut. Ing., 第 59 卷，第 169 页，1915 年。

也可参阅 B. G. Галёркин， "Сборник сочинений"，第 2 册，第 320 页，莫斯科-列宁格勒，AII CCCP，1953 年，书中给出了这种问题的数值表，
在图145b所示载荷作用下的挠度相同。在这种情况下，分布载荷可用如下级数表示:

$$ q = \sum_{m=1}^{\infty} \frac{4q}{m\pi} \sin m\theta. $$

因此挠度曲面的积分方程为

$$ \triangle \triangle \omega = \frac{1}{D} \sum_{m=1}^{\infty} \frac{4q}{m\pi} \sin m\theta. $$

这个方程满足沿直径AB上的边界条件的特解为

$$ \omega_n = \sum_{m=1}^{\infty} \frac{4q r^4}{\pi m(16 - m^2)(4 - m^2)D} \sin m\theta. $$

齐次微分方程(194)满足沿直径AB上的条件的解为

$$ \omega_n = \sum_{m=1}^{\infty} (A_m r^m + B_m r^{m+n}) \sin m\theta. $$

将式(33)和式(34)相加，就得到半圆形板挠度ω的完全表达式。在每一特殊情况下，常数A_m和B_m由板沿圆形边界上的条件决定。

在简支板的情况下，有

$$ (\omega)_{n=0} = 0 $$

$$ \left[\frac{\partial^2 \omega}{\partial r^2} + \nu \left(\frac{1}{r} \frac{\partial \omega}{\partial r} + \frac{1}{r^2} \frac{\partial^2 \omega}{\partial \theta^2} \right) \right]_{n=0} = 0. $$

将代表挠度ω的级数(33)和(34)的代入此二方程，可得下列计算A_m和B_m的方程:

$$ A_m r^m + B_m r^{m+n} = -\frac{4q r^4}{m\pi(16 - m^2)(4 - m^2)D}, $$

$$ A_m r^m \left[m(m-1) - \nu m(m-1) \right] + B_m r^{m+n} \left(m+2 + \nu(2-m) \right) $$

$$ = -\frac{4q r^4 [12 + \nu(4 - m^2)]}{m\pi(16 - m^2)(4 - m^2)D}. $$

由这些方程，

$$ A_m = \frac{qa^4(m + 5 + \nu)}{a^m m\pi(16 - m^2)(2 + m)\left[m + \frac{1}{2}(1 + \nu) \right]D}, $$

$$ B_m = -\frac{qa^4(m + 3 + \nu)}{a^{m+2} m\pi(4 + m)(4 - m^2)\left[m + \frac{1}{2}(1 + \nu) \right]D}. $$

有了这些常数的值，板的挠度表达式化为

$$ \omega = \frac{qa^4}{D} \sum_{m=1}^{\infty} \left(\frac{4r^4}{a^4 \pi(16 - m^2)(4 - m^2)} \right) $$

$$ \cdot \sin m\theta. $$

• 315 •
\[
\omega = \alpha \frac{a^a}{D}, \quad M_r = \beta q a^i, \quad M_z = \beta_1 q a^i,
\]

式中 \(\alpha, \beta \) 和 \(\beta_1 \) 为数值因子。在表65中对于扇形对称轴上的点给出了这些因子的若干值。

<table>
<thead>
<tr>
<th>(\pi/k)</th>
<th>(r/a = 1/4)</th>
<th>(r/a = 1/2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\pi/4)</td>
<td>0.00046</td>
<td>-0.0015</td>
</tr>
<tr>
<td>(\pi/3)</td>
<td>0.00019</td>
<td>-0.0025</td>
</tr>
<tr>
<td>(\pi/2)</td>
<td>0.00092</td>
<td>0.0036</td>
</tr>
<tr>
<td>(\pi)</td>
<td>0.00569</td>
<td>0.0692</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(\pi/k)</th>
<th>(r/a = 3/4)</th>
<th>(r/a = 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\pi/4)</td>
<td>0.01049</td>
<td>0.0161</td>
</tr>
<tr>
<td>(\pi/3)</td>
<td>0.00092</td>
<td>0.0243</td>
</tr>
<tr>
<td>(\pi/2)</td>
<td>0.0203</td>
<td>0.0381</td>
</tr>
<tr>
<td>(\pi)</td>
<td>0.00560</td>
<td>0.0617</td>
</tr>
</tbody>
</table>

沿圆周边缘夹支沿直线边缘简支的扇形板问题, 可用前述问题中所用的求解方法处理。对于扇形板对称轴上的点, 系数 \(\alpha \) 和 \(\beta \) 的值在表66中给出。

可以看到, 在这个情况下最大弯曲应力发生在扇形板圆周边缘的点上。

如承受均匀载荷的扇形板的圆周边缘完全自由, 则最大挠度发生在这自
表66 对于不同夹角 π/k 在沿圆周边缘夹支，沿直线边缘简支的圆环板，系数 α 和 β 的值

<table>
<thead>
<tr>
<th>π/k</th>
<th>$r/a = 1/4$</th>
<th>$r/a = 1/2$</th>
<th>$r/a = 3/4$</th>
<th>$r/a = 1$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>α</td>
<td>β</td>
<td>α</td>
<td>β</td>
</tr>
<tr>
<td>$\pi/4$</td>
<td>0.00095</td>
<td>-0.0008</td>
<td>0.00026</td>
<td>0.0087</td>
</tr>
<tr>
<td>$\pi/3$</td>
<td>0.00017</td>
<td>-0.0006</td>
<td>0.00057</td>
<td>0.0143</td>
</tr>
<tr>
<td>$\pi/2$</td>
<td>0.00083</td>
<td>0.0088</td>
<td>0.00047</td>
<td>0.0123</td>
</tr>
<tr>
<td>π</td>
<td>0.00293</td>
<td>0.0473</td>
<td>0.00357</td>
<td>0.0446</td>
</tr>
</tbody>
</table>

由圆周边缘的中点上，对于 $\pi/k = \pi/2$ 的情况，有

$$\kappa_{nm} = 0.0633 \frac{qa^4}{D}$$

在同一点上弯矩为

$$Mt = 0.1331 qa^4$$

在受弯板的径向边缘夹支或自自由的一般情况下，必须应用近似方法。但承受侧向载荷的板受弯问题能够严格求解(见第78节)。另一些精确求解的问题是沿二圆弧夹支的板的弯曲问题。在此问题中必须引用双极坐标。在表67中给出了特殊情况夹支半圆板的数据。

表 67 沿边界夹支半圆形板的因子 \(\alpha, \beta \) 和 \(\beta \) [式 (f)] 的值（图 145a）

\[\nu = 0.3 \]

<table>
<thead>
<tr>
<th>载荷分布</th>
<th>(r/a = 0)</th>
<th>(r/a = 0.483)</th>
<th>(r/a = 0.485)</th>
<th>(r/a = 0.525)</th>
<th>(r/a = 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>载荷强度 (q)</td>
<td>-0.0731</td>
<td>-0.0395</td>
<td>0.00202</td>
<td>0.0194</td>
<td>-0.0584</td>
</tr>
<tr>
<td>静水压力载荷 (qy/s)</td>
<td>-0.0276</td>
<td>......</td>
<td>......</td>
<td>......</td>
<td>-0.0355</td>
</tr>
</tbody>
</table>

双极坐标也可成功地应用于承受一个单一载荷、沿一外圆和一内圆（偏心圆）夹支板的情况。

67. 变厚度圆形板

在机器零件的设计中有时会遇到变厚度圆形板，例如蒸汽涡轮的导叶隔板和往复式发动机的活塞。这种板的厚度往往是径向距离的函数，所受的载荷对于板中心对称。在以下的讨论中我们仅限于考虑这种对称情形。

如第 15 节中说明的那样推演。应用该节的符号，由图 28（第 53 页）所示单元的平衡条件给出如下方程:

\[M_r + \frac{dM_r}{dr} - M_t + Q_r = 0; \] (a)

如同以前，式中

\[M_r = D \left(\frac{d\varphi}{dr} + \frac{\nu}{r} \varphi \right), \]

\[M_t = D \left(\frac{\varphi}{r} + \nu \frac{d\varphi}{dr} \right). \] (b)

其中

\[\varphi = - \frac{d\varphi}{dr}, \] (c)

而 \(Q \) 是半径为 \(r \) 的圆周截面单位长上的剪力。在实心板的情况下，\(Q \) 由下式给出:

\[Q = \frac{1}{2\pi r} \int_0^r q2\pi r dr, \] (d)

式中 \(q \) 为侧向载荷的强度。

将式 (b)，(c) 和 (d) 代入方程 (a)，并且注意到抗弯刚度 \(D \) 不再是常数，而是随径向距离 \(r \) 变化的函数，就得到如下方程：

1) Н. В. Кудрявцев讨论了这个问题，Доклады АН СССР，第 53 卷，第 203 页，1946 年。
\[D \frac{d}{d \tau} \left(\frac{d \varphi}{d \tau} + \varphi \right) + \frac{dD}{d \tau} \left(\frac{d \varphi}{d \tau} + \nu \frac{\varphi}{r} \right) = - \frac{1}{r} \int_S q r d \tau. \] (e)

这样，承受对称载荷圆形板的弯曲问题归结为求解变系数的二阶微分方程 (e)。为了将此方程写成无量纲形式，引人下列符号:

\(a = \) 板的外半径，
\(h = \) 板上任一点的厚度，
\(h_0 = \) 板中心的厚度；
\[\frac{r}{a} = \xi, \quad \frac{h}{h_0} = \eta. \] (f)

因此假设载荷均匀分布。应用符号
\[\varphi = \frac{6(1 - \nu^2)s^2g}{Eh_0}. \] (g)

于是，方程 (e) 化为:
\[\frac{d^2 \varphi}{d \xi^2} + \left(\frac{1}{\xi^2} + \nu \frac{d \log \eta}{d \xi} \right) \frac{d \varphi}{d \xi} - \left(\frac{1}{\xi^2} - \nu \frac{d \log \eta}{d \xi} \right) \varphi = - \frac{g s^2}{Eh_0}. \] (198)

在许多情况下，板厚的变化可用方程
\[y = e^{-\beta s^2}. \] (h)

图 146

<table>
<thead>
<tr>
<th>(\beta = -4)</th>
<th>(\beta = -3)</th>
<th>(\beta = -2)</th>
<th>(\beta = -1)</th>
<th>(\beta = 0)</th>
<th>(\beta = 1)</th>
<th>(\beta = 2)</th>
<th>(\beta = 3)</th>
<th>(\beta = 4)</th>
</tr>
</thead>
</table>

足够精确地表示，其中 \(\beta \) 为常数。在每一特殊情况下选择它时，应当尽可能地接近于板的实际情况。在图 146 中表示了对应于常数 \(\beta \) 的不同值的厚度沿板上一个直径的变化。将式 (h) 代入方程 (198)，得到
\[\frac{d^2 \varphi}{d \xi^2} + \left(\frac{1}{\xi^2} - \beta \xi \right) \frac{d \varphi}{d \xi} - \left(\frac{1}{\xi^2} + \nu \beta \right) \varphi = - \frac{g s^2}{Eh_0}. \] (i)

1) 最早研究变厚度圆形板弯曲问题的是 H. Holzer，Z. ges. Turbinenwesen，第 15 卷，第 21 页，1918 年。这里所给出的结果系取自 O. Pichler 的博士论文，“Die Biegung Kreissymmetrischer Platten von veränderlicher Dicke,” 柏林，1928 年。也可参阅 R. Gran Olsson 的论文，Ingr.-Arch.，第 8 卷，第 81 页，1937 年。
可立即证明，

$$\varphi = \frac{p}{(3 - \nu)\beta}\theta e^{-t}$$ \hspace{1cm} (i)

为方程 (i) 的特解。与方程 (i) 对应的齐次方程的两个解中的一个，可取成

$$\varphi = e^{t}\left[x + \sum_{n=1}^{\infty} \frac{\beta^{n}(1 + \nu)(3 + \nu)(3 - 1 + \nu)}{2 \cdot 4 \cdot 4 \cdot 6 \cdot \cdots \cdot 2n \cdot 2n(2n + 2)} t^{n-1}\right]$$ \hspace{1cm} (k)

式中 e 为一任意常数。该方程的第二个解在板中心，即 $x = 0$，为无穷大，
因此在中心无孔的板不应考虑这个解，作解 (i) 和 (k) 的线性组合，对于
实心板方程 (i) 的通解就能写成如下形式:

$$\varphi = p \left[C\varphi + \frac{x}{(3 - \nu)\beta}\theta e^{-t}\right].$$ \hspace{1cm} (l)

常数 C 应当在每一特殊问题中由板的边界条件决定。级数 (k) 是均匀收敛，
因此可以微分，从而代入式 (b) 就能得到弯矩的表达式。挠度可由式 (c) 得到。

在板边夹支的情况下，边界条件为

$$（w）_{x=0} = 0，(\varphi)_{x=0} = 0,$$

因此解 (l) 中的常数 C 为

$$C = \frac{e^{\beta t}}{(3 - \nu)\beta(\varphi)_{x=0}}.$$ \hspace{1cm} (a)

β 决定板径向截面的形状（参看图 146）。为了得到对所给 β 值的 C 的数值，
必须计算级数 (k) 在 $x = 1$ 时的和。在前述皮奇勒 (Pichler) 的论文中给出了
这种计算的结果。这篇论文还给出了级数 (k) 的微分和积分的数值，用它们
们就能计算出板的弯矩和挠度。

板中心的挠度可用如下公式表示:

$$w_{\text{max}} = e^{\alpha \rho} = \frac{6(1 - \nu^{2})s^{4}q}{Eb^{3}}$$ \hspace{1cm} (v)

式中 α 为数值因子，它决定于常数 β 的值。对 $\nu = 0.3$ 计算所得的这个因子

| 表68 计算变厚度圆形板中心挠度用的数值因子 α 和 α' |
|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| β | 4 | 3 | 2 | 1 | 0 | -1 | -2 | -3 | -4 |
| α | 0.0301| 0.0639| 0.0505| 0.0398| 0.0313| 0.0246| 0.0197| 0.0152| 0.01195|
| α'| 0.2233| 0.1944| 0.1692| 0.1471| 0.1273| 0.1098| 0.0937| 0.0791| 0.06605|

• 320 •
的若干值在表 68 的第行中给出。

在不同径向距离的点上，其最大弯曲应力可用以下公式表示：

$$(\sigma_r)_{\text{max}} = \pm r \frac{3q\alpha^2}{h_0^2}, \quad (\sigma_z)_{\text{max}} = \pm r_1 \frac{3q\alpha^2}{h_1^2}.$$ \quad (p)

对于不同尺寸大小的板和不同的值 $x = r/a$，数值因子 r 和 r_1 的值分别由图 147 和 148 中的曲线表示。当 $\beta = 0$ 时，这些曲线所给出的应力值与以前对等厚度板所得到的值（第 58 页，图 29）相同。

在板边简支的情况下，边界条件为

$$(w)_{x=1} = 0, \quad (M_r)_{x=1} = 0.$$ \quad (q)

图 147

图 148
研究表明，其挠度与最大应力仍可用类似于式（1）和（2）的式子表示。式中的常数用符号 α, γ 和 γ' 表示，以代替夹支板中所用的 α, γ 和 γ'. α' 的值在表 68 的最后一行中给出，γ' 和 γ' 的值分别为图 149 和图 150 中的曲线表示。

图 149

图 150

在计算一已知变厚板的挠度和应力时，首先要由图 146 的曲线选择常数 β 的适宜值。如 β 值已经决定，边界条件为已知，我们就能用表 68 的值计算板中心的挠度。用图 147，148 或 149，150 中的曲线计算最大应力。如果所给板的径向截面的形状不能用图 146 中的一般曲线精确地表示，则总可应用求解此问题的近似方法。此方法的关键是用同心圆将板分成若干环，并对每一环使用对于等厚度环形板所建立的公式。计算的方法与格拉梅尔（R. Grammel）所提出的方法在方法方法相似。

68. 线性变厚度环形板 考虑有中心孔，厚度变化如图 151 所示的圆

...322...
形板。板承受均匀分布的面载荷 q_0，以及沿孔的边缘承受均匀分布的线载荷 $p = p/2\pi b_0$。在 $r = b$ 处板的抗弯刚度为 $D_o = E h^3/12(1 - \nu^2)$，因此在离中心任何距离 r 的地方，有

$$ D = \frac{D_o r^2}{b^2}. \quad (a) $$

将此式代入第 67 节的方程 (c)，并且将边缘载荷所产生的附加剪力 $p/2\pi r$ 考虑进去，即得如下微分方程:

$$ r^2 \frac{d^2 \varphi}{dr^2} + 4r \frac{d \varphi}{dr} + (3\nu - 1) \varphi = -\frac{q_0 b^3}{2D_o} \left(1 - \frac{b^2}{r^2} \right) - \frac{p b^3}{2\pi D_o r^2}. \quad (b) $$

对应于方程 (b) 的齐次方程的解，可立即用 $\varphi = r^2 \sin \alpha$ 代人求得。将此解与方程 (b) 的一特解组合起来，即得

$$ \varphi = A r^2 \sin \alpha_1 + B r^2 \sin \alpha_2 + \frac{q_0 b^3}{2D_o(1 - 3\nu)} - \frac{q_0 b^3}{6(1 - \nu) D_o r^2} $$

$$ + \frac{p b^3}{6\pi(1 - \nu) D_o r^2}. \quad (c) $$

式中

$$ \alpha_1 = -1.5 + \sqrt{3.25 - 3\nu}, \quad \alpha_2 = -1.5 - \sqrt{3.25 - 3\nu}. \quad (d) $$

在 $\nu = \frac{1}{3}$ 的特殊情况下，式 (c) 必须用下式代替:

$$ \varphi = A + \frac{B}{r^2} - \frac{q_0 b^3 \log r}{6D_o b} - \frac{q_0 b^3}{4D_o r^2} + \frac{p b^3}{4\pi D_o r^2}. \quad (e) $$

任意常数 A 和 B 应当由板的边界条件决定。为了简化写法，将 φ, $\varphi = \frac{1}{2}$ 写

1) H. D. Conway 曾讨论过此问题，J. Appl. Mechanics, 第 15 卷，第 1 页，1948 年。表 69 中所给的数字结果系取自该论文。
或 \(\varphi_k \) (\(\lambda \)) 再写为 \(M_k \)，同样地，还有 \(\varphi_a, M_a \)。表 69 的最后一列包括了六种不同情况的边界条件以及所设 \(q \) 和 \(p \) 的特定值。此表列出了用解 (e) 计算所得的系数 \(k \) 和 \(k_1 \) 的值，有了 \(k \) 和 \(k_1 \) 的值，根据下列公式就能算出板的最大应力（绝对值）和最大挠度：

\[
(\sigma_r)_{\max} = k \frac{qa^2}{Eh^3} \quad \text{或} \quad (\sigma_x)_{\max} = k \frac{P}{h_1^3}, \]

\[
\omega_\max = k_1 \frac{qa^2}{Eh_1^3} \quad \text{或} \quad \omega_\max = k_1 \frac{P_0}{Eh_1^3}. \tag{f}
\]

相似的等厚度板的数字结果已在表 3 中给出。

表 69 不同比值 \(a/b \) 下式 (f) 中的系数的值（图 151）

\(\nu = 1/3 \)

<table>
<thead>
<tr>
<th>情 况</th>
<th>系数</th>
<th>(a/b)</th>
<th>边界条件</th>
</tr>
</thead>
<tbody>
<tr>
<td>(数字对应于表 3)</td>
<td>(k)</td>
<td>1.25</td>
<td>1.5</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>0.249</td>
<td>0.638</td>
</tr>
<tr>
<td></td>
<td>(k_1)</td>
<td>0.00372</td>
<td>0.0453</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>0.149</td>
<td>0.991</td>
</tr>
<tr>
<td></td>
<td>(k_1)</td>
<td>0.00551</td>
<td>0.0564</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>0.1275</td>
<td>0.515</td>
</tr>
<tr>
<td></td>
<td>(k_1)</td>
<td>0.00185</td>
<td>0.0115</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>0.159</td>
<td>0.396</td>
</tr>
<tr>
<td></td>
<td>(k_1)</td>
<td>0.00174</td>
<td>0.0112</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>0.153</td>
<td>0.333</td>
</tr>
<tr>
<td></td>
<td>(k_1)</td>
<td>0.00816</td>
<td>0.0583</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>0.0785</td>
<td>0.208</td>
</tr>
<tr>
<td></td>
<td>(k_1)</td>
<td>0.00092</td>
<td>0.008</td>
</tr>
</tbody>
</table>

* 式中 \(Q = \pi q(a^2 - b^2) \)。
69. 线性变厚度圆形板

在讨论图152所示圆形板的弯曲时，我们必须分别考虑板的两个部分：

图152

1. 环形区域 $b < r < a$。如 $
u
eq 1/3$，则斜度 φ 仍然由第68节的式 (c) 给出，但是需要去掉倒数第二项；

2. 内部区域 $r < b$。这里 $dD/dr = 0$，因此第67节的式 (c) 化为

$$
\frac{d^2 \varphi_i}{dr^2} + \frac{d \varphi_i}{dr} - \varphi_i = -\frac{qr^3}{2D_0} - \frac{Fr}{2\pi D_0}, \tag{a}
$$

式中下标 i 代表板的里面部分。方程 (a) 的通解为：

$$
\varphi_i = A_i r + B_i - \frac{qr^4}{16D_0} - \frac{Fr}{8\pi D_0} (2 \log r + 1). \tag{b}
$$

第68节的式 (c) 中的常数 A_i, B_i 以及上式 (b) 中的常数 A, B，可由边界条件

$$
(\varphi)_r = 0
$$

和连续条件

$$
(\varphi)_r = 0, \quad (\varphi - \varphi_i)_r = 0, \quad \left(\frac{d \varphi}{dr} - \frac{d \varphi_i}{dr}\right)_r = 0
$$

求得。

表70和71给出了两种受弯情况下板的挠度 w_{max} 和弯矩值。为了计算中心载荷 P 情况下板中心的弯矩，可设载荷均匀分布于半径为 c 的小圆形面

表 70 承受均匀载荷的央支圆形板的挠度和弯矩（图 152a）

<table>
<thead>
<tr>
<th>b/a</th>
<th>$u_{max} = \alpha \frac{qa^2}{EI_0}$</th>
<th>$M_x = \beta qa^2$</th>
<th>$M_z = \beta_1 qa^2$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>α</td>
<td>$r = 0$</td>
<td>$r = b$</td>
</tr>
<tr>
<td>0.2</td>
<td>0.008</td>
<td>0.0122</td>
<td>0.0040</td>
</tr>
<tr>
<td>0.4</td>
<td>0.042</td>
<td>0.0332</td>
<td>0.0007</td>
</tr>
<tr>
<td>0.6</td>
<td>0.054</td>
<td>0.0543</td>
<td>0.0088</td>
</tr>
<tr>
<td>0.8</td>
<td>0.148</td>
<td>0.0709</td>
<td>0.0591</td>
</tr>
<tr>
<td>1.0</td>
<td>0.176</td>
<td>0.0781</td>
<td>0.125</td>
</tr>
</tbody>
</table>

表 71 承受中心载荷的央支圆形板的挠度和弯矩（图 152b）

<table>
<thead>
<tr>
<th>b/a</th>
<th>$u_{max} = \alpha \frac{pa^2}{EI_0}$</th>
<th>$M_x = M_y$</th>
<th>$M_x = \beta P$</th>
<th>$M_z = \beta_1 P$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>α</td>
<td>$r = 0$</td>
<td>$r = b$</td>
<td>$r = a$</td>
</tr>
<tr>
<td>0.2</td>
<td>0.031</td>
<td>-0.114</td>
<td>-0.034</td>
<td>-0.129</td>
</tr>
<tr>
<td>0.4</td>
<td>0.093</td>
<td>-0.051</td>
<td>-0.040</td>
<td>-0.112</td>
</tr>
<tr>
<td>0.6</td>
<td>0.155</td>
<td>-0.021</td>
<td>-0.050</td>
<td>-0.096</td>
</tr>
<tr>
<td>0.8</td>
<td>0.203</td>
<td>-0.005</td>
<td>-0.063</td>
<td>-0.084</td>
</tr>
<tr>
<td>1.0</td>
<td>0.224</td>
<td>0</td>
<td>-0.080</td>
<td>-0.080</td>
</tr>
</tbody>
</table>

* 式 (c) 中的系数。

积上。于是，$r = 0$ 处的弯矩 $M_x = M_y$, 可表示成下式:

$$M_{max} = M_\theta - \frac{p}{2\pi} \left(1 - \frac{r^2}{2a^2} \right) + \gamma_1 P.$$ (c)

在此式中，M_θ 由适用于简支等厚板的式 (83) 给出；第二项代表边沿弯矩的作用，第三项是由于板厚的不均匀所产生，由表 71 给出。

在高度集中载荷的情况下，需要应用厚板理论。板的下表面中心的应力由下式给出:

$$\sigma_{max} = \sigma_\theta + \frac{6pr_{21}}{a^2}.$$ (d)

式中 σ_θ 可用式 (97) 计算。

其次，假设板的抗弯刚度依据如下规律变化:

$$D = D_0 \left(1 - \frac{r}{a} \right)^n.$$ (e)
式中 q_0 代表一长度，至少等于板的半径；一般来说我们能得到以月几何函数表示的斜度 q_0^{11}. 但在假设 $m = 1/\nu$ 的特殊情况下，可得封闭形式的解。此外，如果还取 $\nu = 1/3$，则又回到了线性变厚度板的情况21.

如图 153 所示的板的对称变形，也可用类似于第 39 节所述的参数法研究。用这种方法所得到的某些数字结果21在表 72 和 73 中给出。

中心截荷 P (图 153b) 作用下的弯矩和拉应力可用类似于式 (e) 和 (d) 的表达式表示：

$$M_{\text{max}} = M_0 + \gamma \rho P, \quad (f)$$

和

$$\sigma_{\text{max}} = \sigma_0 + \frac{\gamma \rho^2}{h_0^2}. \quad (q)$$

M_0 仍然由式 (83) 给出，σ_0 代表用式 (96) 计算所得的值，γ 在表 73 中给出。

有实际意义的还是图 153a 和 153b 所示两种受载情况的叠加。取 $q = -P/\pi a^2$，我们就得到了承受中心截荷 P，同时作用有均匀分布底土反力的圆形基础板(图 153c)的平衡状态。关于这种情况的某些数据，特别是公式 (f) 和 (q) 中所需用的因子 γ, ν 的值，在表 74 中给出11.

1) R. Gran Olson, Ingr.-Arch., 第 8 卷, 第 270 页, 1937 年。
2) 特别参看 H. D. Conway, J. Appl. Mechanics, 第 13 卷, 第 110 页, 1951 年及第 20 卷, 第 564 页, 1953 年。
表 72 承受均匀载荷的简支受载的挠度和弯矩(图 153a)

$$v = 0.25$$

<table>
<thead>
<tr>
<th>h_1</th>
<th>$w_{max} = \frac{q5a^4}{ES^4}$</th>
<th>$M_z = \beta q5a^3$</th>
<th>$M_z = \beta_1 q5a^3$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>α</td>
<td>$r = a/2$</td>
<td>β_1</td>
</tr>
<tr>
<td>1.00</td>
<td>0.738</td>
<td>0.203</td>
<td>0.152</td>
</tr>
<tr>
<td>1.50</td>
<td>1.26</td>
<td>0.257</td>
<td>0.176</td>
</tr>
<tr>
<td>2.33</td>
<td>2.04</td>
<td>0.304</td>
<td>0.196</td>
</tr>
</tbody>
</table>

表 73 承受中心载荷的简支圆形板的挠度和弯矩(图 153b)

$$v = 0.25$$

<table>
<thead>
<tr>
<th>h_1</th>
<th>$w_{max} = \frac{Pa^4}{ES^4}$</th>
<th>$M_z = \alpha P$</th>
<th>$M_z = \beta P$</th>
<th>$M_z = \beta_1 P$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>α</td>
<td>$r = a/2$</td>
<td>β_1</td>
<td>$r = a$</td>
</tr>
<tr>
<td>1.00</td>
<td>0.582</td>
<td>0</td>
<td>0.069</td>
<td>0.129</td>
</tr>
<tr>
<td>1.50</td>
<td>0.93</td>
<td>0.029</td>
<td>0.088</td>
<td>0.129</td>
</tr>
<tr>
<td>2.33</td>
<td>1.39</td>
<td>0.059</td>
<td>0.102</td>
<td>0.116</td>
</tr>
</tbody>
</table>

表 74 具有中心载荷及均匀分布应力的圆柱

基础板的弯矩(图 153c)

$$v = 0.25$$

<table>
<thead>
<tr>
<th>h_1</th>
<th>h_1</th>
<th>$M_z = M_z$</th>
<th>$M_z = \beta P$</th>
<th>$M_z = \beta_1 P$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>$r = 0$</td>
<td>$r = a/2$</td>
<td>$r = a$</td>
</tr>
<tr>
<td>1.00</td>
<td>0.065</td>
<td>0.024</td>
<td>0.073</td>
<td>0.030</td>
</tr>
<tr>
<td>1.50</td>
<td>0.053</td>
<td>0.032</td>
<td>0.068</td>
<td>0.016</td>
</tr>
<tr>
<td>2.33</td>
<td>0.038</td>
<td>0.040</td>
<td>0.063</td>
<td>0.007</td>
</tr>
</tbody>
</table>

70. 圆形板弯曲的非线性问题

由板的弯曲理论可知，如板的支持条件或受载情况随着板的挠度变化而变化，则此挠度不再与载荷成正比，从而迭加原理不能再应用。在板的弯曲问题中也

1) S. Timoshenko 的著作中讨论了此问题的一个例子，"Strength of Materials", part II. 第 3 版，第 69 页，1956 年。
会遇到类似的问题，图 154 表示了这类问题的一个简单例子。它是半径为 a 的圆形板支于绝对刚性的水平基础上并承受均匀荷载 q 的压力。如沿板边作用有强度为 M_0 的弯矩，则板的环形部分将弯曲成如图所示的情形，而半径为 b 的中间部分仍保持为平面。带有液体的圆柱形容器的细板的弯曲就是一例。在此情况下，弯矩 M_0 相当于容器侧壁的作用，容器的底部发生局部弯曲。对底板的环形部分应用承受均匀载荷的圆形板的已知解[见第 62 节的式 (m)]，可得挠度

$$w = C_0 + C_1 \log r + C_2 r^2 + C_3 r^3 \log r + \frac{q r^4}{64 D} \tag{a}$$

为了决定积分常数 C_0, \ldots, C_3，在边缘上有下列边界条件:

$$(w)_{r=a} = 0, \quad (M_r)_{r=a} = -M_0 \tag{b}$$

沿半径为 b 的圆上，挠度与弯矩为零。由于板的里面部分保持为平面，因此沿这个圆上弯矩 M_0 也必须为零。所以，在半径为 b 的圆上应满足条件:

$$(w)_{r=b} = 0, \quad \left(\frac{d w}{d r}\right)_{r=b} = 0, \quad (M_r)_{r=b} = 0 \tag{c}$$

对式 (a) 应用条件 (b) 和 (c)，即得下列五个方程:

$$C_0 + C_1 \log a + C_2 a^2 + C_3 a^3 \log a = -\frac{q a^4}{64 D}$$

$$C_0 + C_2 \log b + C_3 b^2 + C_3 b^3 \log b = -\frac{q b^4}{64 D}$$

$$C_2 \frac{1}{a^2} + C_3 2(\nu + 1) + C_4 (3 + 2 \log a + 2 \nu \log a + \nu)$$

\[- \frac{qa^2}{16D} (3 + \nu) + \frac{M_d}{D}, \]

\[C_2 \frac{\nu - 1}{b^3} + C_3 2(\nu + 1) + C_4 (3 + 2 \log b + 2\nu \log b + \nu) \]

\[= - \frac{qb^3}{16D} (3 + \nu), \]

由这些方程消去常数 \(C_1, \ldots, C_4\) 得到一连串 \(M_a\) 和比 \(b/a\) 的方程，由此方程可算出每一给定 \(M_a\) 值所对应的板的平面部分的半径 \(b\)。有了这个 \(b\) 值，积分常数便可算出，从而由式 (a) 可得板的挠度表达式。用式

\[M_a = \alpha \frac{qa^2}{32}, \quad \varphi_a = \beta \frac{qa^3}{32D} \]

表示板边缘的弯矩 \(M_a\) 和转角 \(\varphi_a\)，并且对弯矩 \(M_a\) 的若干值重复上述计算，我们就能用如图 155 所示用曲线（对于 \(\nu = 0\) 的特殊情况）表示常数因子 \(\alpha\) 和 \(\beta\) 之间的关系。由此图上可以看出，\(\beta\) 不和 \(\alpha\) 成正比，随着比 \(b/a\) 的减小，对板边缘旋转的抵抗减弱。这种情况一直到 \(\alpha = 5\) 时还成立。当 \(\alpha = 5\) 时，\(\beta = 1\)，\(b/a = 0\)，如图 154b 所示，板只是在中心处接触到基础。对于更大的 \(\alpha\) 值，即弯矩大于 \(M_a = 5qa^2/32\) 时，板不接触到基础，并且 \(\alpha\) 和 \(\beta\) 之间的关系是用直线 \(AB\) 表示的。\(M_a = 5qa^2/32\) 是这样的值：弯矩 \(M_a\) 所产生的板中心的挠度在数值上等于边缘简支承受均匀载荷的板的挠度[参看式 (68)]。

1）这种情况是在前边所引 Hotmann 的论文中讨论的。
图 156 表示了同一类型问题的另一例子。它是承受均匀载荷的圆形板,沿边缘为简支,并且其中央支于一绝对刚性的基础上。外半径为 a,内半径为 b 的板的环形部分仍可当作承受均匀载荷的板来处理,因此可应用解 (a)。比 b/a 决定于挠度 δ 和载荷强度 q。

图 156

图 157

71. 椭圆形板 承受均匀载荷的夹支椭圆形板 取如图 157 所示的坐标,板边界的方程为

\[\frac{x^2}{a^2} + \frac{y^2}{b^2} - 1 = 0. \] \hspace{1cm} (a)

将挠度 w 取为 \(w_0\)

\[w = w_0 \left(1 - \frac{x^2}{a^2} - \frac{y^2}{b^2}\right)^2, \] \hspace{1cm} (b)

则微分方程

\[\Delta \Delta w = \frac{q}{D}, \] \hspace{1cm} (c)

及夹支边的边界条件

\[w = 0, \quad \frac{\partial w}{\partial n} = 0 \] \hspace{1cm} (d)

就能得到满足。注意到,由于式 (a), 那么式 (b) 以及它对 x 和 y 的一阶导数在边界处为零。将式 (b) 代入方程 (c), 则可看到, 如

\[w_0 = \frac{q}{D \left(\frac{24}{a^4} + \frac{24}{b^4} + \frac{16}{a^2 b^2}\right)}, \] \hspace{1cm} (199)

方程 (c) 是满足的。因此，由于式 (b) 满足方程 (c) 和边界条件，它就是承受均匀载荷的夹支椭圆形板的严格解。将 \(x = y = 0 \) 代入式 (b)，可知式 (199) 所给出的 \(\omega_0 \) 就是板中心的挠度。如 \(a = b \)，此挠度化为以前对于夹支圆形板推导所得的挠度值 [第 57 页，式 (62)]。如 \(a = \infty \)，则挠度 \(\omega_0 \) 变成等于承受均匀载荷、二端夹支、
跨度为 \(2b \) 的板条的挠度。弯矩和扭矩由式 (b) 代入式 (101) 和 (102) 而得到。用此方法求得

\[
M_x = -D \left(\frac{\partial^2 \omega}{\partial x^2} + \nu \frac{\partial^2 \omega}{\partial y^2} \right) = -4 \nu D \left[\frac{3x^2}{a} \right.

\left. + \frac{y}{a^2 b^2} - \frac{1}{a^2} + \nu \left(\frac{x^2}{a^2 b^2} + \frac{3y^2}{b^4} \right) \right]. \tag{c}
\]

对于板的中心和水平轴的二端分别得到:

\((M_x)_{x=0, y=0} = 4 \nu D \left(\frac{1}{a^2} + \frac{\nu}{b^2} \right), \quad (M_x)_{x=a, y=0} = -\frac{8 \nu D}{a^2}. \tag{f} \)

同理，对于板中心和垂直轴二端的弯矩 \(M_y \) 分别求得为

\((M_y)_{x=0, y=0} = 4 \nu D \left(\frac{1}{b^2} + \frac{\nu}{a^2} \right), \quad (M_y)_{x=0, y=b} = -\frac{8 \nu D}{b^2}. \tag{g} \)

可以看出，最大弯曲应力是在椭圆形的二端。有了力矩 \(M_x, M_y \) 和 \(M_{xy} \)，将等式

\[
\cos \alpha = \frac{dy}{dx} = \frac{b^2 x}{\sqrt{a^2 y^2 + b^2 x^2}}, \quad \sin \alpha = -\frac{dx}{ds} = \frac{a^2 y}{\sqrt{a^2 y^2 + b^2 x^2}}, \tag{h}
\]

代入式 (c)（第 22 节，第 91 页），就能求得边界上任一点的弯矩 \(M_x \) 和扭矩 \(M_{xy} \)。

任一点的剪力 \(Q_x \) 和 \(Q_y \) 由式 (b) 代入式 (106) 和 (107) 而得到。在边界上剪力 \(Q_x \) 由式 (d)（第 22 节，第 91 页）求得，而反力 \(V_x \) 由该节的式 (g) 得到。用此方法求出，反力强度是在椭圆形的二端为最大，其绝对值为

\[
(V_x)_{\text{max}} = \frac{x^2 b (3a^2 + b^2) q}{3a^4 + 3b^4 + 2a^2 b^2} \quad (\text{设} a > b). \tag{i}
\]

\(V_x \) 的最小值（绝对值）是在椭圆长轴的二端，其值为

* 332 *
\[(V_n)_{\text{min}} = \frac{ab^2(a^4 + 3b^4)q}{3a^6 + 3b^6 + 2a^2b^2} \]

如为圆，\(a = b \)，即得 \((V_n)_{\max} = (V_n)_{\min} = qa/2 \)。

承受线性变化压力的简支椭圆形板

设 \(q = \delta_s \)，取

\[\nu = \frac{\delta_s}{24D} \frac{(1 - \frac{x^4}{a^4} - \frac{y^4}{b^4})^2}{\frac{x^2}{a^6} + \frac{y^2}{b^6}} \]

方程 (c) 和边界条件 (d) 就都能满足。边界上的弯矩和反力可由此式计算，
其方法可同上例一样。

承受均匀载荷的简支椭圆形板

这个问题的解比长方形情况下的解复杂得多，所以这里只是给出一些最后的数字结果。设 \(a/b > 1 \)，用公式:

\[(u)_{x=\pm a} = \alpha \frac{ab^4}{a^6} \]

\[M_x = \beta q b^3 \]

\[M_y = \beta q b^4 \]

来表示板中心的挠度和弯矩。在表 75 中给出了 \(\nu = 0.3 \) 时在不同比值 \(a/b \)
下常数因子 \(\alpha, \beta, \beta_t \) 的值。

<table>
<thead>
<tr>
<th>(a/b)</th>
<th>1</th>
<th>1.1</th>
<th>1.2</th>
<th>1.3</th>
<th>1.4</th>
<th>1.5</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>(\infty)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\alpha)</td>
<td>0.70</td>
<td>0.83</td>
<td>0.96</td>
<td>1.07</td>
<td>1.17</td>
<td>1.26</td>
<td>1.58</td>
<td>1.88</td>
<td>2.02</td>
<td>2.10</td>
<td>2.28</td>
</tr>
<tr>
<td>(\beta)</td>
<td>0.206</td>
<td>0.215</td>
<td>0.219</td>
<td>0.223</td>
<td>0.223</td>
<td>0.222</td>
<td>0.216</td>
<td>0.188</td>
<td>0.184</td>
<td>0.179</td>
<td>0.150</td>
</tr>
<tr>
<td>(\beta_t)</td>
<td>0.206</td>
<td>0.235</td>
<td>0.261</td>
<td>0.282</td>
<td>0.303</td>
<td>0.321</td>
<td>0.379</td>
<td>0.433</td>
<td>0.465</td>
<td>0.489</td>
<td>0.500</td>
</tr>
</tbody>
</table>

将这些数值与以前对矩形板得到的数值（第 125 页, 表 6）作比较表明，
对于矩形板的长短轴之比和椭圆形板的长短半轴之比 \(a/b \) 相等的两种板，
中心的挠度与弯矩的值相差不大。椭圆形板的问题也曾有人研究过。

2) B. G. Galerkin, Messenger Math., 第 52 卷, 第 99 页, 1923 年。有关椭圆形
 板在集中力作用下的弯曲问题可参阅 H. L. N. p. e. l, Math. Z., 第 6 卷, 第
 41 卷, 第 163 页, 1949 年, 和第 43 卷, 第 123 页, 1950 年; 在后一论文的内容内
 包含有关前一论文的修正。利用曲线坐标, B. Sen 得到了承受均匀载荷的某
 些其他曲线形常支的解, 见 Phil. Mag., 第 33 卷, 第 294 页, 1942 年。
72. 三角形板

简支等边三角形板沿边界承受均匀分布力矩 M_n 的这种三角形板的弯曲问题已经讨论过（见第 98 页）。经证明，在此情况下，板的挠度曲面和均匀受载的均匀伸张薄膜相同，可用下式表示：

$$
\omega = \frac{M_n}{4aD} \left[x^3 - 3y^2x - a(x^2 + y^2) + \frac{4}{27} a^3 \right],
$$

式中 a 代表三角形的高，坐标轴取成如图 158 所示。

在承受均匀载荷的情况下，三角形板的挠度为

$$
\omega = \frac{q}{64aD} \left[x^3 - 3y^2x - a(x^2 + y^2) + \frac{4}{27} a^3 \right] \left(\frac{4}{9} a^2 - x^2 - y^2 \right)
$$

(201)

对此式微分，则有

$$
\Delta \omega = -\frac{q}{4aD} \left[x^3 - 3y^2x - a(x^2 + y^2) + \frac{4}{27} a^3 \right].
$$

(202)

由式 (201) 和 (b) 可知板面的微子在边界处等于零，因此边界的挠度和弯矩为零。再微分一次，则得

$$
\Delta \Delta \omega = \frac{q}{D}.
$$

(203)

所以挠度曲面的微分方程也是满足的，并且式 (201) 就是问题的解。有了挠度的表达式，弯矩和剪力的表达式就立即得到。最大弯矩发生在三角形的分角线上，取 $v = 0.3$，考虑 x 轴上的点，求得：

当 $x = 0.062a$，$(M_x)_{max} = 0.0248qa^2$，

当 $x = 0.129a$，$(M_y)_{max} = 0.0259qa^2$。

(202)

1) 等边三角形板的这个弯曲问题是 S. Woinowsky-Krieger 解决的，Ingr.-Arch., 第 4 卷，第 254 页，1933 年。
在板的中心，

\[M_x = M_y = (1 + \nu) \frac{q d^2}{54}. \tag{203} \]

板上作用着集中力的情况可用叠加法（见第156页）来解。我们取以载荷作用点位于板的中心A这种情况为例（图159）。将图中黑线所表示的三角形板看成宽度为a的无限长矩形板的一部分，并施加如图所示假想的正负相间的载荷P。这种载荷所产生的挠度曲面的节线，显然将此无限长板分为若干等长三角形，每一个这样的三角形与我们所讨论的三角形板的情况完全相同。这样，问题就化为承受二行等距载荷 +P 和 −P 的无限长矩形板的弯剪问题，对一个集中载荷的解是已知的（见第36节）。于是用叠加法，A点的挠度和A点附近的应力可立即计算出，这是因为假想力对弯剪的影响随着它们离A点距离的增大而迅速减小。用这种方法求得A点的挠度为

\[\omega_0 = 0.00575 \frac{Pa^2}{D}. \tag{204} \]

在离A点的距离ε很小处的弯剪由下列式子给出:

\[M_x = \frac{(1 + \nu)P}{4\pi} \left(\log \frac{a \sqrt{3}}{\pi c} - 0.379 \right) - \frac{(1 - \nu)P}{8\pi}, \]

\[M_y = \frac{(1 + \nu)P}{4\pi} \left(\log \frac{a \sqrt{3}}{\pi c} - 0.379 \right) + \frac{(1 - \nu)P}{8\pi}. \tag{205} \]

对于承受中心载荷半径为a_0的简支圆形板，在离中心的距离为ε的点上，径向弯剪和切向弯剪分别为（见第71页）

\[M_x = \frac{(1 + \nu)P}{4\pi} \log \frac{a_0}{c}, \]

和

\[M_y = \frac{(1 + \nu)P}{4\pi} \log \frac{a_0}{c} + \frac{(1 - \nu)P}{4\pi}. \tag{d} \]
由此可知，式 (205) 右端第一项等于半径为

$$a_0 = \frac{a \sqrt{3}}{\pi} e^{-0.379}$$

的圆形板的诸对数项。因此载荷作用点附近的局部应力可用对于圆形板所建立的厚板理论 (见第 19 节) 计算。

![图 160](image)

二边夹支或三边夹支的等边三角形板。三角形板有时用作煤库及粮库的底板。在这样的场合下，每一三角形板的二斜边是刚性夹支，第三边，即水平边，是弹性夹支 (图 160)。若均布载荷与静水压力分布载荷才有实际意义。板的最大弯矩和固支边中点的局方弯矩可用下式表示：

$$M = \beta_1 q a^3 \quad M = \beta_2 q a^3 \quad M = \beta_3 q a^3$$

在表 75 中给出了用有限差分法得到的系数 β 和 β_2 的值的值

<table>
<thead>
<tr>
<th>表 76</th>
<th>等边三角形板的式 (f) 中的因子 β，β_2 的值 (图 160)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\nu = 0.10$</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>载荷类型</th>
<th>边缘 $y = 0$ 简支</th>
<th>边缘 $y = 0$ 夹支</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M_{x_1}</td>
<td>M_{y_1}</td>
</tr>
<tr>
<td>均匀分布载荷 ...</td>
<td>β_1 0.01</td>
<td>0.014</td>
</tr>
<tr>
<td>静水压力载荷 ...</td>
<td>β_2 0.005</td>
<td>0.003</td>
</tr>
</tbody>
</table>

1）参阅 A. A. Смогров，“Решение плит, нагруженных сплошной нагрузкой по закону трапеции。莫斯科—列宁格勒, ОНТИ, 1936年。“

336
最后应当注意，顶角为 $\pi/2$, $\pi/3$, $\pi/6$，周缘简支的三角形板可视为承受对轴反对称载荷的等边三角形板 (图 158) 的一半。这种板的弯曲问题可用数种方法——例如源象法——求解）

简支等腰直角三角形板 这种板可视为图 161 中虚线表示的方形板的一半，因此应采用以前对矩形板推导所得的方法）。如载荷 P 作用于 A 点，其坐标为 ξ, η (图 161)，设在假想载荷 $-P$ 作用于 A' 点，A' 点为 A 点对应于 BC 线的影象。显然，在此二载荷所产生的方形板的挠曲面中，对角线 BC 为节线。于是，方形板的 OBC 部分的情况与简支三角形板 OBC 完全相同。考虑载荷 $+P$ 并应用方形板的弹性理论解 (第 117 页)，可得挠度

$$
\omega_1 = \frac{4Pa^2}{\pi^2D} \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac{\sin \frac{m\pi \xi}{a} \sin \frac{n\pi \eta}{a}}{(m^2 + n^2)^2} \sin \frac{m\pi x}{a} \sin \frac{n\pi y}{a}.
$$

同理考虑载荷 $-P$ 并以 $a - \eta$ 代替 ξ, $a - \xi$ 代替 η，则得

$$
\omega_2 = -\frac{4Pa^2}{\pi^2D} \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} (-1)^{m+n} \frac{\sin \frac{m\pi \eta}{a} \sin \frac{n\pi \xi}{a}}{(m^2 + n^2)^2} \sin \frac{m\pi x}{a} \sin \frac{n\pi y}{a}.
$$

三角形板的总挠度由式 (g) 和式 (h) 加和得到

$$
\omega = \omega_1 + \omega_2.
$$

为了求得强度为 Q 的均匀分布载荷对该三角形板所产生的挠度，我们以 $Q \delta \eta$ 代替 P 并将式 (i) 在三角形 OBC 的面积上积分。用这种方法求得

2) 这个求解方法是 A. Nádai 提出的，“Elastische Pfatten,” 第 178 页，1925 年。解决同样问题的另一种方法是 B. G. Галёркин 给出的，Бюллетень Российской Академии наук，第 223 页，1919 年，及 Бюллетень Политехнического института，第 24 卷，第 1 页，圣彼得堡，1919 年。
\[
\omega = \frac{16qa^4}{\pi^4 D} \left[\sum_{m=1, \pm 1, \pm 3, \pm 5, \pm 7, \ldots} n \sin \frac{m \pi x}{a} \sin \frac{n \pi y}{a} \frac{1}{m^2 - n^2} \right] \\
+ \sum_{m=1, \pm 1, \pm 3, \pm 5, \pm 7, \ldots} \sum_{n=1, \pm 1, \pm 3, \pm 5, \pm 7, \ldots} \frac{m \sin \frac{m \pi x}{a} \sin \frac{n \pi y}{a}}{m(m^2 - n^2)(m^2 + n^2)^2}
\]

这是一个收敛很快的级数，可以用来计算各点的挠度与弯矩。以图 161 中的三角形的对称轴为 x 轴，用公式

\[
\omega = \alpha \frac{qa^4}{Eh^3}, \quad M_{x_1} = \beta qa^3, \quad M_{y_1} = \beta_1 qa^3
\]

表示此轴上的挠度 \(\omega \) 和弯矩 \(M_x, M_y \)，数值因子 \(\alpha, \beta \) 和 \(\beta_1 \) 的值在图 162 和图 163 中给出。将这些结果与表 8 中所给出的均质受载方形板的结果比较，可知，在相同的 \(a \) 值下，三角形板的最大弯矩比方形板的最大弯矩之半小。
一些。

要简化挠度与弯矩的计算，二重级数 (i) 可变换成单级数 (ii)。为此，我们利用已知级数

\[
U_m(x) = \sum_{n=-\infty}^{\infty} \frac{\cos nx}{(n^2 + m^2)^2} = -\frac{2}{na} + \frac{\pi}{2m^2} \frac{\cosh \left(\frac{\pi(2-x)}{2m} \right)}{\sinh \frac{\pi m}{2}}
\]

\[
+ \frac{\pi^2}{4m^2} \frac{\cosh mx}{\sinh^3 \frac{\pi m}{2}} + \frac{\pi x}{2m^2} \frac{\sinh \left(\frac{\pi(2-x)}{2m} \right)}{\sinh \frac{\pi m}{2}}.
\]

此级数可写成如下形式:

\[
U_m(x) = (\alpha_m + \beta_m x) \cosh mx + (\gamma_m + \delta_m x) \sinh mx - \frac{2}{mx}.
\]

现在考虑级数

\[
V_m(x) = \sum_{n=-\infty}^{\infty} \frac{\cos nx}{(n^2 + m^2)^2(n^2 - m^2)},
\]

可得

\[
\frac{dV_m}{dx} = -\sum_{n=-\infty}^{\infty} \frac{n \sin nx}{(n^2 + m^2)^2(n^2 - m^2)},
\]

以及

\[
\frac{d^2V_m}{dx^2} + m^2V_m = -\sum_{n=1}^{\infty} \frac{\cos nx}{(n^2 + m^2)^2} = -U_m.
\]

将式 (p) 积分，则得

\[
V_m = A_m \cos mx + B_m \sin mx + \frac{1}{m} \int_{0}^{\pi} U_m(\xi) \sin m(\xi - x) d\xi,
\]

\[
\frac{dV_m}{dx} = -mA_m \sin mx + mB_m \cos mx - \int_{0}^{\pi} U_m(\xi) \cos m(\xi - x) d\xi.
\]

常数 \(A_m \) 和 \(B_m \) 可用下列由级数 (0) 和 (n) 得到的条件

\[
\left(\frac{dV_m}{dx} \right)_{x=0} = 0, \quad V_m(0) = V_m(\pi)
\]

决定。有了这些常数值，式 (c) 给出级数 (0) 的和，它将式 (i) 中的二重级数化为单级数。

73. 斜形板

近年来已经将斜的平行四边形板用作斜桥的铺板。这

1) 这个变换是 J. V. Uspensky 告诉著者的。
种板通常沿着和桥墩的边简支，而其他二边自由，或者由前墙（或梁）弹性支承。

在最一般的情况下，建议使用依据所选斜度去选择斜坐标系，以便在一定的特殊情形中，用直角坐标系处理斜简板问题也是有效的，一般而论，这时用有限差分法看来是最有效的，承受均匀载荷的斜简板的下列数据就是用有限差分法得到的

在四边简支的斜简板中心（图164a），令

$$ w = a^2 \frac{q a^2}{D}, \quad M_{\text{max}} = \beta q a^2, \quad (a) $$

弯矩 M_{max} 的作用方向十分接近于板的的短跨度方向。

如边缘 $y = 0$ 和 $y = a$ 自由，另两边的板（图164b），则板的中点部分的单独方向与斜板垂直，分别用 w_0 和 $(M_0)_{\text{max}}$ 表示板中心的挠度和弯矩，$(w_1)_{\text{max}}$ 和 $(M_1)_{\text{max}}$ 表示自由边上的最大挠度和最大弯矩，我们可将这些量写成下列形式:

$$ w_0 = a^2 \frac{q a^2}{D}, \quad (M_0)_{\text{max}} = \beta q a^2, \quad (b) $$

$$(w_1)_{\text{max}} = a^2 \frac{q a^2}{D}, \quad (M_1)_{\text{max}} = \beta q a^2.$$

系数的数值在表77中给出。

表 77 均匀受载斜形板的挠度和弯矩式 (a) 和 (b) 中的系数值

<table>
<thead>
<tr>
<th>φ°</th>
<th>m</th>
<th>n</th>
<th>图 164a 所示的板</th>
<th>图 164b 所示的板</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>α0</td>
<td>β0</td>
<td>α1</td>
<td>β1</td>
</tr>
<tr>
<td>0</td>
<td>2</td>
<td>2</td>
<td>0.01013</td>
<td>0.0999</td>
</tr>
<tr>
<td>30</td>
<td>2.02</td>
<td>1.75</td>
<td>0.01046</td>
<td>0.0968</td>
</tr>
<tr>
<td>30</td>
<td>1.92</td>
<td>1.67</td>
<td>0.00938</td>
<td>0.0892</td>
</tr>
<tr>
<td>45</td>
<td>2</td>
<td>1.414</td>
<td>0.00938</td>
<td>0.0892</td>
</tr>
<tr>
<td>60</td>
<td>2</td>
<td>1</td>
<td>0.00796</td>
<td>0.0772</td>
</tr>
<tr>
<td>75</td>
<td>2</td>
<td>0.518</td>
<td>0.00949</td>
<td>0.0335</td>
</tr>
</tbody>
</table>

74. 孔周围的应力分布

要研究孔周围的应力分布，最简单的方法是考虑一个非常大的板。只要孔径较小于板的整个尺寸为小量，这样所得到的结果用于任何形状的板都不会有明显的误差。

例如，我们考虑一处于均匀应力状态的无限大板，决定这应力状态的是弯矩

\[M_x = M_y = 0, \quad (a) \]

此弯矩对应着挠度曲面

\[\omega = \frac{M_x (x^2 - \nu y^2)}{2D(1 - \nu^2)} = -\frac{M_0 r^2}{4D(1 - \nu^2)} \times [1 - \nu + (1 + \nu) \cos 2\theta]. \quad (b) \]

为了得到半径为 \(a \) 的圆孔对于这种纯弯矩状态所产生的扰动 (图 165)，假设移去圆周内部的物质。于是，我们必须用外力矩和外力

\[(M'_x)_{aw} = \frac{M_0}{2} (1 + \cos 2\theta), \]

\[(M'_r)_{aw} = \frac{M_0}{a} \cos 2\theta \]

(c)
代替孔周界上原来应力的作用。依据式(192)，式(c)可立即由式(b)的微分得到。

现在我们在原来的应力状态上迭加一附加的应力状态，它应当使(1) 在 $r = a$ 的圆上，合力矩和合力为零；(2) 所迭加的应力本身在无穷远处 ($r = \infty$) 为零。

将附加挠度选成如下形式:

$$
\psi'' = -\frac{M_0a^2}{2D} \left[A \log r + \left(B + C \frac{a}{r^2} \right) \cos 2\theta \right], \quad (d)
$$

上述二条件就都能满足。此式也满足齐次微分方程(194)，并在孔周界上产生下列的合力

$$
(M_\theta)_{r=a} = -\frac{M_0}{2} \{(1 - \nu)A + [4\nu B - 6(1 - \nu)C] \cos 2\theta\},
$$

$$
(V_\theta)_{r=a} = \frac{M_0}{a} [(6 - 2\nu)A + 6(1 - \nu)C] \cos 2\theta. \quad (e)
$$

M_θ 的表达式(c)和(e)含有与系数以及一与 $\cos 2\theta$ 成正比的项，而 V_θ 的两个表达式都只有一项，因此需要有三个方程来满足孔周界上所要满足的条件 $M_\theta'' + (M_\theta)_{r=a} = 0, V_\theta' + (V_\theta)_{r=a} = 0$. 对于未知系数 A, B, C 求解这些方程，就能得到最终的挠度 $\psi = \psi' + \psi''$，以及板孔周界上的合力:

$$
M_\theta = M_0 \left[1 - \frac{2(1 + \nu)}{3 + \nu} \cos 2\theta \right],
$$

$$
Q_\theta = \frac{4M_0}{(3 + \nu)a} \sin 2\theta. \quad (f)
$$

当 $\theta = \pi/2, \theta = \pi/4$，我们分别有

$$
(M_\theta)_{\text{max}} = \frac{5 + 3\nu}{3 + \nu} M_0,
$$

$$
(Q_\theta)_{\text{max}} = \frac{4}{(3 + \nu)a} M_0. \quad (g)
$$

通常将局部扰动所产生的应力分量的最大值写成如下形式:

$$
\sigma_{\text{max}} = k\sigma, \quad (h)
$$

式中 σ 代表同一截面内相应分量的平均值，k 就是所谓的应力集
中系数。知道了孔周界的最大弯曲应力，我们也能将 k 写成
$$ k = \frac{M_x}{M_0} = \frac{\sigma_{max}}{\sigma_{max}} = \frac{5 + 3\nu}{3 + \nu}, \quad (i) $$
对于钢 ($\nu = 1/3$)，它约等于 1.80。

各种均匀应力状态的，以及非圆形孔的应力集中系数也可用类似方法求得①。然而，由于下列理由，所有这样所得结果的值都比较小。

弯曲应力(仅限于以上所讨论的情况)不超过值 $\sigma_{max} = 6M_0/k^2/h^3$，但对应于剪应力的最大值由下式给出：
$$ \tau_{max} = \frac{3}{2h} Q_{max} = \frac{6M_0}{(3 + \nu)h} \frac{\sigma_{max}}{\nu} \frac{k}{a}. \quad (i) $$
因此，减小比值 a/h，就能随意增大比值 τ_{max}/σ_{max}。这样，很快就能使横向剪应力到这样的大小程度：它们对于板形的影响与力矩的影响来比较将不再是可以忽略不计的。所以，如要保证孔周围应力分布的可靠结果，我们必须考虑到剪切变形的特殊理论来。

用莱斯纳的理论②(见第 39 节)所得到的应力集中系数在图 166 中用曲线表示，横坐标为比值 a/h。曲线 k_r 适用于以上考虑的纯弯曲情形；曲线 k_f 给出了初始应力状态中的力矩 $M_x = M_0, M_y = -M_0$ 所产生的均匀扭转情况下的应力集中。常用的理论对于以上二情况所给出的值为 $k_r = 1.80, k_f = 1.60$，如作图，则

为直线，当比值 a/h 无限增大时，莱氏纳理论所得之曲线分别逐渐逼近于此直线。由图可以看出，即使孔径只是板厚的三倍，采用一般理论造成的误差超过 m，实际值的百分之十。这也是值得注意的：孔径为零时，纯弯曲中应力集中系数的极限值 $k_b = 3$，与单方向均匀拉伸时平面应力的应力集中系数相等。

如果孔（图165）中充满着与板材料不同的弹性材料，我们就必须考虑“弹性填料”。中空的孔与刚性填料可视为弹性填料的极限情况，其充填物的杨氏模数分别为零与无穷大。下面简单地考虑刚性填料的作用。

和孔的情况一样，必须将初应力状态与附加应力组合在一起；但现在圆 $r = a$ 的周界上所应满足的条件（在对称的情况下）为

$$
\begin{align*}
(w)_{r=a} &= 0, \\
\left(\frac{\partial w}{\partial r}\right)_{r=a} &= 0,
\end{align*}
$$

式中 w 是板的挠度。由应力合力的表达式 (192) 可立即得出，在填料的周界上必须成立关系式 $M_r = \nu M_z$ 以及在周界上 M_r 为零。

在第44页上所讨论的纯弯曲的情况下，可得刚性填料周围的径向弯矩
分布 13:

\[M_r = M_0 \left(\frac{1}{1 + \nu} + \frac{2 \cos 2\theta}{1 - \nu} \right) \]

对应的应力集中系数等于 \(k = (3 + \nu)/(1 - \nu^2) \)，对于钢，它等于 3.63。但是，这个结果中不包含横向剪切变形的影响，因此只适用于比 \(a/k \) 是大值的情况。

可以看出，在刚性填料的邻近，径向力矩 \(M_r \) 远大于切向力矩 \(M_t \)；这和孔周围的应力状态（力矩 \(M_t \) 大于力矩 \(M_r \)）恰好相反。如图 167 所示，在弹性填料的情况下，此二力矩的值是很好地平衡的。图中 \(F_1 \) 代表板材料的杨氏模数，\(F_2 \) 代表填堵物的杨氏模数。

孔中的弹性填料可用环形的弹性加劲环来代替，其对板的作用不会有重大改变。所以，用适当选择的加劲环加劲一孔，可大大减低孔周围板材料中的应力集中 13。

2) 有关此情况的应力分析及其数据，可参考前引 桑尼 的著作。
第十章
板理论中的特殊方法和近似方法

75. 板弯曲的奇点 如果在点 \((x_0, y_0)\) 的任一应力分量都变为无限大，我们说板中的应力状态在 \((x_0, y_0)\) 有一奇点。从力矩和剪力的表达式 (101), (102) 和 (108) 可以看出，只要挠度 \(\omega(x, y)\) 及其直到四阶的导数都是 \(x\) 和 \(y\) 的连续函数，就不可能产生奇点。

奇点通常发生在集中力和集中力矩的作用点上。在某些情况下，由反力引起的奇点也能发生在板的角上而与表面载荷的分布无关。

在以下的讨论中，我们把坐标原点取在板中产生奇点的点上。由下面给出的挠度表达式可算出应力（经适当的微分运算后），如 \(x\) 和 \(y\) 是小值，则它们比作用在别处的载荷或边缘反力所产生的应力要大得多。

板内一点上的单一力 如果此点与边界和别的集中载荷之间的距离是充分地大，则可近似地认为在单一载荷 \(P\) 的周围，板处于轴对称状态。由此可知，在离载荷 \(P\) 距离为 \(r\) 的点，径向力为

\[
Q_r = -\frac{P}{2\pi r}.
\]

注意到有了 \(Q_r\) 的表达式 (193)，可立即证明其相应挠度为

\[
\omega_0 = -\frac{P}{8\pi D} r^2 \log \frac{r}{a},
\]

式中 \(a\) 为任一长度。当比值 \(r/a\) 保持小值时，其相应的项 \(r^2 \log a\) 所产生的应力可忽略不计。

1）严格地说，当点 \((x_0, y_0, z)\)。

• 346 •
板内一点上的单一力矩 设 M_1 为已知力矩，并在原点上作用一个单一力 $-M_1/\Delta x$，和在点 $(-\Delta x, 0)$ 上作用一个单一力 $+M_1/\Delta x$。由前述结果 [式(206)] 可知，在此二力的联合作用下，挠度为：

$$w = \frac{M_1}{8\pi D} \left[(x + \Delta x)^2 + y^2 \right] \log \left[\frac{(x + \Delta x)^2 + y^2}{a} \right] \quad \frac{\Delta x}{8\pi D} \left[x^2 + y^2 \log \left(\frac{x^2 + y^2}{a^2} \right)^{\frac{1}{2}} \right]$$

当 Δx 趋于零时，就得到原点上有集中力矩 M_1 的情况 (图168a)，其挠度为

$$w_1 = \lim_{\Delta x \to 0} [w]_{\Delta x} = \frac{M_1}{P} \frac{\partial w_0}{\partial x}$$

式中 w_0 是式 (206) 所给出的挠度，进行微分，即得

$$w_1 = \frac{M_1 x}{8\pi D} \left(\log \frac{x^2 + y^2}{a^2} + 1 \right).$$

如果去掉不产生应力的第二项 $M_1 x / 8\pi D_0$ 并且采用极坐标，则上式化为

$$w_1 = \frac{M_1}{4\pi D} \cdot r \log \frac{r}{a} \cos \theta.$$ \tag{207}

在力矩 M_1 如图168b 所示的情况下，只要在以上公式中用 $\theta + x/2$ 代替 θ，就能得到相应的挠度。

板内一点上的双力矩 下面我们考虑在相距为 Δx 的二平行

图 168
平面内联合作用有大小相等方向相反的两个力矩，如图169所示。令 \(M_1 \Delta x = H_1 \)，并固定 \(H_1 \) 的值，我们用与以前所述实际相同的方法，可得挠度

\[
\omega_z = \frac{H_1}{M_1} \frac{\partial \omega_z}{\partial x} = \frac{H_1}{P} \frac{\partial^2 \omega_z}{\partial x^2},
\]

此挠度由于奇点的阶数要比一个力矩所对应的奇点的阶数为高。代入式（206），在微分时先采用直角坐标，就能得到挠度：

\[
\omega_z = \frac{H_1}{8 \pi D} \left(2 \log \frac{r}{a} + 2 + \cos 2\theta \right).\tag{208}
\]

在两边自由的楔形板的角上作用一力矩的情况下，以及在半无限板沿自由边的某一点上作用一横向力或力矩的情况下，也可得到包含一奇点的挠度表达式”

作用于固支边邻近的单一载荷（图170）在点 \((\xi, \eta)\) 承受单一载荷 \(P\) 的半无限悬臂板的挠度由下式给出：

图 169

图 170

1）为了说明这种载荷的性质，我们假设一跨度 \(L\) 和刚度 \(EI\) 的简支梁，具有对称于梁的中心的矩形力矩图 \(M_1\) 对 \(\Delta x\)，并设此力矩图是由两个相距为 \(A\) 力矩 \(M_1\) 产生成的。图169与图170相似，亦即令 \(\Delta x \rightarrow 0\)。但固定 \(H = M_1 \Delta x\) 的值，就能得到集中于梁的中点而大小为 \(H\) 的力矩图。引人假想的中心载荷 \(H/4E\)，并应用莫尔的方法，我们还能得到梁的三角形挠度图，其最大挠度为 \(HL/4EI\)，作用在完全柔韧的弦的中点的载荷可产生与此相似的挠度图。

2）参看 A. Niedai, “Elastische Platten”, 第203页，柏林，1925年。
\[
\omega = \frac{P}{16\pi D} \left[4x\xi - r^2 \log \frac{(x+\xi)^2 + (y-\eta)^2}{r_1^2} \right], \quad (d)
\]

式中 \(r_1^2 = (x-\xi)^2 + (y-\eta)^2 \)。我们限于考虑原点处的弯矩。如 \(\xi \) 和 \(\eta \) 不同时为零，则对式 (d) 作适当的微分，可得 \(x = y = 0 \) 点的弯矩

\[
M_x = -\frac{P}{\pi} \cos^3 \varphi. \quad (209)
\]

可以看到，一般说来弯矩 \(M_x \) 仅仅决定于比值 \(\eta/\xi \)。但是如 \(\xi = \eta = 0 \)，则弯矩 \(M_x \) 为零，因此证明了函数 \(M_x(\xi, \eta) \) 在原点不连续。

不论板在其他部分如何支撑，只一刚性夹支或弹性夹支边缘附近的单一弯荷的作用有相似性质。当板的边界为夹支或者是连续的，这个性质也可得出了对这弯矩的弯矩的影响面的特征形状（参看图 171 和 173）。

对于图 170 中作用于点 \(x = y = 0 \) 的剪力或反力，可用类似的方法得到

\[
Q_\varphi = \frac{2P}{\pi} \cos^3 \varphi, \quad (210)
\]

式中 \(r^2 = \xi^2 + \eta^2 \)。

76. 影响面在板设计中的应用 在第 29 节我们考虑过影响函数 \(K(x, y, \xi, \eta) \)，它给出弯矩形板在点 (\(\xi, \eta \)) 作用着单位弯荷时该板在点 (\(x, y \)) 的挠度。对于任意别的边界条件和任意形状的板可建立类似的函数。我们也可用等高线的方法由图解表示对于某固定点 (\(x, y \)) 的挠度的影响面。将迭加原理运用到一组作用于诸点 (\(\xi_i, \eta_i \)) 的 \(n \) 个单一线荷 \(P_i \)，就能得到点 (\(x, y \)) 的总挠度

\[
\omega = \sum_{i=1}^{n} P_i K(x, y, \xi_i, \eta_i). \quad (a)
\]

类似地，强度为 \(p(\xi, \eta) \)，作用于板表面的面积 \(A \) 上的分布线荷产生挠变。
\[w = \int_\Delta \rho(\xi, \eta) K(x, y, \xi, \eta) d\xi d\eta \]

根据马克斯威尔的互易定律，有对称关系式

\[K(x, y, \xi, \eta) = K(\xi, \eta, x, y) \]

亦即，对于点 \((x, y)\) 的挠度的影响面可以由作用于 \((x, y)\) 点上单位截荷所产生的挠度曲面 \(w(\xi, \eta)\) 而得到，所以曲面 \(w(\xi, \eta)\) 由微分方程 \(\Delta \Delta w(\xi, \eta) = 0\) 给出。此方程的解不仅必须满足边界条件，而且必由方程 (206) 所表示的并在点 \(\xi = x, \eta = y\) 上的一个奇点。

特别有意思的是由 \(w(\xi, \eta)\) 对 \(x\) 和 \(y\) 的偏导数的组合所给出的合力影响面\(^1\)。例如，我们考虑对于量

\[-D \frac{\partial^2 w}{\partial x^2} = -D \frac{\partial^2}{\partial x^2} K(x, y, \xi, \eta) \]

的影响面。根据第 75 节的结果\(^2\)，从而可得到以下为坐标挠度曲面的纵坐标，并在 \(\xi = x, \eta = y\) 有一奇点，这一奇点是由作用于该点（如图 169 所示）的大小为 \(H = 1\) 的“双力矩”所产生的。

影响面的建立过程和应用可以用下列例子说明\(^3\)。

对于夹支圆形板边缘力矩的影响面\(^4\)（图 171），将第 308 页的挠度（197）表示成 \(w = PK(x, 0, \xi, \theta)\) 的形式，我们可将 \(K\) 看作为对于点 \((x, 0)\) 的挠度的影响函数，其单位截荷的瞬时位置为 \((\xi, \theta)\)。当 \(x = x/a = 1, y = 0\) 处的边缘力矩 \(M\) 时，我们注意到，除了下面这一项外，（192）中对应各式的所有项在夹支边 \(x = 1\) 上为零，唯一保留的项产生

\[M = \frac{D}{a^2} \left(\frac{\partial^2 K}{\partial x^2} \right)_{x=1} = -\frac{\eta}{4\pi} \frac{(1 - \xi')^2}{\xi' - 2\xi \cos \theta + 1} . \]

为简化此式，令 \(\xi' = 2\xi \cos \theta + 1 - \eta',\) 并进一步引入角 \(\varphi\)（图 171a），于是有 \(\xi' = 1 - 2\eta \cos \varphi + \eta',\) 从而

\[\text{1) H. M. Wesergaard 最先应用了这样的影响面，Public Roads，第 11 卷，1930 年。也参看 F. M. Baron，J. Appl. Mechanics，第 8 卷，第 4-3 页，1941 年。}

\[\text{2) 关于所谓奇点的详细内容，可参看 A. Fuchs，Ingr.-Arch.，第 12 卷，第 76 页，1941 年。}

\[\text{3) 关于关于夹支圆形板影响面是由 M. El-Hashimy 给出的 "Ausgewählte Plattenprobleme"，苏黎世，1956 年。} \]

\[M_r = -\frac{1}{4\pi} (2\cos \varphi - \eta)^3 \]

\(\eta\) 的值可忽略不计时, 上式即与式 (209) 一致。力矩 \(M_r\) 的影响面用图 171b 中的等高线图表示, 图中纵坐标轴要乘以 \(4\pi\).

对于简支方形板中心弯矩 \(M_r\) 的影响面 \(^1\) 为了用方程 (101) 求得最终结果, 对于量 \(M_{y0} = -\frac{\partial^2 w}{\partial x^2}\) 和 \(M_{y0} = -\frac{\partial^2 w}{\partial y^2}\) 应用影响面是方

\[
\text{系数 } \frac{1}{8\pi} = 0.0398 \quad \text{对于均匀分布载荷 } M_r = 0.0359 \text{ qa}^2
\]

图 172

\(^1\) 对于具有各种边界条件的矩形板, A. Fuchs 作出了各种各样的影响面, 参看 "Einflusfelder elastischer Platten", 第二版, 维也纳, 1958 年, 也可参看他发表于 "Federhofer-Girckmann-Festschrift" 中的论文, 第 303 页, 维也纳, 1950 年。关于连续板的影响面, 参看 G. Hoelander, Ingr.-Arch., 第 24 卷, 第 124 页, 1956 年。
便的。

对于 \(M_{w0} \) 的影响面可根据图 76 来建立。作用于点 \(O \) 的单一载荷 \(P = 1 \)
的符号由 (151) 的第一式及式 (152) 给出。式 (152) 中还包含着所需的
位于点 \(O \) 的奇点, 此奇点属式 (206) 所给出的那种形式。其他载荷的影响
可用 (149) 中第一个方程的方法来计算, 此级数收敛得很快。影响面如图
172 所示。图中的纵坐标值要乘以 \(8\pi \)。

现在对于彼此相隔固定距离 0.25 \(a \) 的二集中载荷 \(P_1 \) 和 \(P_1 \) (\(P_1 \leq P_1') \) 计算
弯矩 \(M_w \), 此二载荷都是均匀分布在面积 0.1 \(a \times 0.1 \) \(a \) 上, 在这两块面积之
外, 板可承受一强度为 \(q < P_1/0.01a^2 \) 的均匀分布活载荷。

影响面 (图 172) 是对 \(M_{w0} \) 作出的, 产生 \(M_{w0} \) 的最大值载荷分布, 在图中
用实线表示。由于存在奇点, 在板中心曲线的纵坐标为无限大; 所以用方程
(163) 和 (165) 加上表 26 和 27 单独计算载荷 \(P_1 \) 的影响是最简便的。对于
这个情形我们有 \(v = 0, v/a = k = 1, \varphi = 1.5708, \theta = 0, \lambda = 2.669, \mu = 0 \), 由此可得到 \(N = 0 \), 以及下面将要计算的 \(M \) 值。至于载荷 \(P_1 \) 的影
响, 可以认为它与影响面在受载面积中心的纵坐标 2.50 成正比。在计算时
只考虑此两个单一载荷超过与 \(q \) 对应的诸载荷的部分, 因此需要将下列各项
相加以得到 \(M_{w0} \) 的值:

1. 载荷 \(P_1 \):
 根据式 (163), (165), 令 \(\xi = a/2, \eta = 0.1 \sqrt{2} a \), 有
 \[
 M_{w0} = M = \frac{P_1 - 0.01qa^2}{8\pi} \left(\frac{4}{0.1\pi \sqrt{2}} + 2.669 - 1.571 \right)
 = 0.219(P_1 - 0.01qa^2).
 \]

2. 载荷 \(P_1' \):
 \[
 M'_{w0} = \frac{1}{8\pi} \frac{2.30(P_1 - 0.01qa^2)}{P_1'} = 0.092(P_1 - 0.01qa^2).
 \]

3. 均匀分布载荷: 由图 172 上的数据, 有
 \[
 M_{w0}'' = 0.0369qa^2.
 \]

所以
\[
M_{w0} = 0.219P_1 + 0.092P_1' + 0.0369qa^2.
\]

由于板是正方形的, 并且边界条件是对称的, 我们可以用同一个影响面
来求 \(M_{w0} \) 的值。载荷 \(P_1 \) 的位置 (对应于以前作 \(M_{w0} \) 由面时所取的位置) 用虚
线表示, \(P_1 \) 所引起的弯矩值现在等于 \(M_{w0}' = 0.035(P_1 - 0.01qa^2) \), 而 \(P_1 \) 和

1) 利用与下一例中所用的影响线类似的方法, 或者利用表 20 也可以计算中 心 载
载荷的影响。
q 所引起的剪矩值同以前一样，M_{y0} 的总值为

$$M_{y0} = 0.219P_1 + 0.035P_2 + 0.0344qa^3.$$

例如设 $v = 0.2$，可得最终结果

$$M_x = M_{y0} + 0.2M_{y0} = 0.263P_1 + 0.099P_2 + 0.0407qa^3.$$

对于在 $y = ±b/2$ 简支，在 x 方向连续的板在两个主梁支承的桥梁的支座处的剪矩影响面。在设计中许多桥梁及两个主梁支承的桥梁时会遇到这种情况。假设所有支承梁的挠度及抗扭刚度可忽略不计，我们得到图 173 所示的影响面。

在公路桥梁的情况下，每一轮子的载荷均匀分布在某一矩形面积 $a \times b$ 上。对于沿桥梁中心线 $y = 0$ 移动的载荷，图中画出了一组有五条的曲线，适用于 $v/b = 0.05$ 到 0.40，并且给出了它们的最大纵坐标，由此我们不难确定载荷的最不利位置。在作影响面和影响线时纵坐标都乘上了 8π.

计算举例 设 $a = b = 7.2$ 米；并且对于后轮取 $P_1 = 7250$ 公斤，$a = 45$ 厘米，$v = 75$ 厘米，对于前轮取 $P_2 = 1812.5$ 公斤，$b = 45$ 厘米，$v = 37.5$ 厘米。桥梁面及桥板的厚度对于各个单一载荷分布的影响可以包括在以上所取的 a 和 b 的值中。

对于后轮有 $v/b ≈ 0.10$，对于前轮，有 $v/k ≈ 0.05$。假设后轮的位置相等地由横坐标 $x = 0.20a，0.25a，0.30a，0.35a，0.40a$ 给出，对应的前轮位置也就由距 4.2 米 = 0.583 a 确定，受载的每一特殊位置的影响面给出了一个系列的剪矩值。在图 173 中，用一曲线表示出了弯矩与其对应位置的关系。此曲线表明最大值是在 $x = 0.30a$ 附近。计算的过程可以只对 $x = 0.30a$ 位置加以说明。

标以 0.10 和 0.05 的影响线分别给出了中心载荷 (在 $y = 0$) 的作用等

$$-(7250 \cdot 3.24 + 1812.5 \cdot 1.32) = -29523 \text{ 公斤}.$$

并且影响面给出了其余六个载荷的作用为

$$-7250(1.66 + 2.25 + 0.44) - 1812.5(1.59 + 2.25 + 0.41) = -39.364 \text{ 公斤}.$$

最后，考虑前面所说的乘子 $1/8\pi = 0.0398$，可得结果

$$(M_x)_{\text{max}} = -0.0398(65100 + 86600) = -2740 \text{ 公斤} \cdot \text{米/米}.$$

均匀分布在矩形面积上的载荷所产生的最大弯矩。这种类型的载荷，其

1) 关于它的建立方法可参考第 52 节所给的文献。
对于具有方形螺栓的受力结构，计算公式为：

$$ P = \frac{M}{2} \cdot \frac{L}{r} $$

其中，$ P $ 为力，$ M $ 为弯矩，$ L $ 为长度，$ r $ 为半径。
作用位置紧挨着无限悬臂板的固支边，用虚线表示在图170中。这个问题也是在桥面板的设计中遇到的。利用(210)的结果，并应用迭加原理，可得

\[(Q_x)_{\text{max}} = \frac{2P}{nu} \int_0^\infty d \xi \int_{-\eta/\xi}^{\eta/\xi} \frac{\xi^2}{(\xi^2 + \eta^2)^2} d\eta. \]

此式给出

\[(Q_x)_{\text{max}} = \sigma \frac{P}{w}. \] \hspace{1cm} (f)

式中

\[\sigma = \frac{1}{n} \left[\frac{v}{u} \log \left(\frac{4uv^2}{v^2 + 1} \right) + 2\arctan \frac{u}{2v} \right]. \] \hspace{1cm} (g)

因子\(\sigma \)的数值在表78中给定。由于其值对于\(Q_x \)的影响通常可忽略不计，因此不需要作出对于\(Q_x \)的影响。公式(f)可以足够精确地应用于有限悬臂板，并且也可应用于弹性夹支边缘而给出最大可能值。

表78 式(f)中因子\(\sigma \)的值

<table>
<thead>
<tr>
<th>(\frac{v}{u})</th>
<th>(\sigma)</th>
<th>(\frac{v}{u})</th>
<th>(\sigma)</th>
<th>(\frac{v}{u})</th>
<th>(\sigma)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>0.223</td>
<td>1.2</td>
<td>0.852</td>
<td>0.6</td>
<td>0.662</td>
</tr>
<tr>
<td>0.2</td>
<td>0.357</td>
<td>1.4</td>
<td>0.884</td>
<td>0.7</td>
<td>0.708</td>
</tr>
<tr>
<td>0.3</td>
<td>0.459</td>
<td>1.6</td>
<td>0.594</td>
<td>0.8</td>
<td>0.747</td>
</tr>
<tr>
<td>0.4</td>
<td>0.541</td>
<td>1.8</td>
<td>0.927</td>
<td>0.9</td>
<td>0.780</td>
</tr>
<tr>
<td>0.5</td>
<td>0.607</td>
<td>2.0</td>
<td>0.941</td>
<td>1.0</td>
<td>0.807</td>
</tr>
</tbody>
</table>

77. 影响函数和特征函数 指出受弯曲板的影响函数[或格林(Green)函数]与板的自由横向振动问题之间的紧密联系是有意义的。后者是由如下微分方程决定的：

\[\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \right) W = -\frac{P}{D} \frac{\partial^2 W}{\partial t^2}, \] \hspace{1cm} (a)

式中 \(W(x, y, t) \) 是挠度，\(P \) 是板单位面积的质量，\(t \) 是时间。假设

\[W = w(x, y) \cos \omega t, \]

对于函数\(w \) 可得微分方程

\[D \Delta \Delta w - \lambda w = 0, \] \hspace{1cm} (b)

式中 \(\lambda = P^2 \mu \)。在某些特定的边界条件下，方程(b)的解只是对于参数\(\lambda \)中一组确定值 \(\lambda_1, \lambda_2, \ldots, \lambda_k, \ldots \) 才存在，这些值就是所谓本问题的特征值（或本征值）。对应的各个解形成一特征函数组 \(w_1(x, y), w_2(x, y), \ldots, w_k(x, y), \ldots \)。这些函数是相互正交的，即当 \(\lambda = \lambda_k \) 时，有

- 356 -
\[
\iint_A w_s(x, y)w_h(x, y)dx\,dy = 0, \quad (c)
\]
积分在整个板面上进行。由于函数 \(w_s(x, y) \) 除了一个常数因子外是完全确定的，因此我们能通过选择此因子使之满足条件
\[
\iint_A w_s^2(x, y)dx\,dy = a\,b, \quad (d)
\]
而使这些函数“规范化”。式 (d) 右端所选的常数适用于边长为 \(a \) 和 \(b \) 的矩形板情况，但不论板的外形如何，必须保证 \(w_s \) 具有长度单位。一组数 \(\lambda_h \) 以及对应的一组规范化函数 \(w_s(x, y) \) 建立后，可以证明 \(^1\) 板的影响函数能展成如下级数：
\[
\kappa(x, y, \xi, \eta) = \frac{1}{a\,b^2} \sum_{h=1}^{\infty} \frac{w_s(x, y)}{\lambda_h} \frac{w_s(\xi, \eta)}{\lambda_h}, \quad (e)
\]
其中所有特征函数都满足板的边界条件。

将上节的式 (a) 和 (b) 应用到结果 (c)，可以知道：不论载荷的分布如何，板的挠度总是能用其特征函数的线性组合表示。

今以简支矩形板为例（图 59）。满足方程 (b) 及边界条件 \(w = \Delta w = 0 \)，并且满足条件 (d) 的特征函数为
\[
w_s = 2\sqrt{ab} \sin \frac{m\pi x}{a} \sin \frac{n\pi y}{b}, \quad (f)
\]
式中 \(m \) 和 \(n \) 是两个任意的整数，由方程 (b) 可得对应的本征值为
\[
\lambda_h = \pi^2 b \left(\frac{m^2 a^2 + n^2 b^2}{a^2 \, b^2} \right)^2, \quad (g)
\]
将此式代入展开式 (e) 立即可得结果 (124)。对于只有两对边简支，其它两边边界条件为任意的矩形板，影响函数可用类似的方法得到。但是在这样的情况下，根据对应的振型频率方程进行 \(\lambda_h \) 值的初步计算就变成必需的了。能得到展开式的影响函数的另一例子是圆形板的情况，用贝塞尔函数表示的圆形板的振动方式是众所周知的。

78. 无限积分和变换的应用

处理板弯曲问题的另一方法是应用各种交换 \(^1\)。在本书中将讨论几种这样的变换。

富里埃积分

在二平行边缘上具有任意种边界条件的无限或半无限板

\(^1\) 例如参看 R. Courant 和 D. Hilbert 的 “Methods of Mathematical Physics”，第一卷，第 370 页，纽约，1953 年，此书有中译本，“数学物理方法”，钱敏等译，科学出版社，1958 年。

\(^2\) 有关它们的理论及应用可参阅 L. N. Sneddon, “Fourier Transforms”, 纽约，1951 年。

- 357 -
条的情况下，可以应用第30节所述的列维的方法，但是在这样做的时候，富里埃级数必须用相应的无限积分代替。除了第50节中所考虑的例题外外，承受集中载荷的无限悬臂板（图174）问题也可以用这种方法求解

设宽度 $AC = a$ 的板的一部 AB 的挠度为 w_1，一部分 BC 的挠度为 w_1'. 因此我们必须满足边界条件：

在 $x = 0$ 上，$w_1 = 0, \quad \frac{\partial w_1}{\partial x} = 0$.

在 $x = a$ 上，$\frac{\partial^2 w_1}{\partial x^2} + \nu \frac{\partial^2 w_1}{\partial y^2} = 0, \quad \frac{\partial^2 w_2}{\partial x^2} + (2 - \nu) \frac{\partial^2 w_2}{\partial x \partial y} = 0$.

(a)

以及连续条件：

在 $x = \xi$ 上，$w_1 = w_2, \quad \frac{\partial w_1}{\partial x} = \frac{\partial w_1}{\partial x}, \quad \Delta w_1 = \Delta w_2$.

(b)

单一载荷 P 可以均匀分布在长度 ν 上，我们知道 ν 的任何偶函数均可用富里埃积分表示：

$$f(\nu) = \frac{2}{\pi} \int_0^{\pi} \cos \alpha \nu \int_0^{\pi} f(\eta) \cos \alpha \eta \, d\eta.$$ (c)

由于载荷强度在 $-\nu/2 < \eta < \nu/2$ 时给它为 $f(\eta) = P/\nu$, 其他地方为 $f(\eta) = 0$，因此有

$$f(\nu) = \frac{2P}{\pi \nu} \int_0^{\pi} \sin \frac{\alpha \nu}{2} \cos \alpha \int_0^{\pi} \, d\alpha.$$ (d)

另一方面，函数 \(f(y) \) 等于截面 \(x = \xi \) 两边剪力 \(Q_x \) 的差。所以根据方程 (108)，在 \(x = \xi \) 上有

\[
D \frac{\partial}{\partial x} (\Delta \omega_i - \Delta \omega_j) = f(y).
\]

（e）

根据式 (d)，可用下列积分表示挠度 \(\omega_1 \) 和 \(\omega_2 \):

\[
\omega_i = \int_0^\infty X_i(x, \alpha) \cos ay dx, \quad i = 1, 2.
\]

（f）

式中函数

\[
X_i(x, \alpha) = (A_i + B_i x) \cosh \alpha x + (C_i + D_i x) \sinh \alpha x
\]

与第 120 页上的函数 \(Y_\alpha \) 形式相同。

现在还需要将式 (f) 代入方程 (a)，(b)，(e)，以决定系数 \(A_i, B_i, \ldots, D_i \)。它们与 \(y \) 无关，但是随 \(\alpha \) 而变。

从以上的解而计算所得沿固支边的弯矩分布如图 175 所示。这计算是

对 \(\nu = 0, \nu = 0.3 \)，和对单一线荷的各种位置作出的。

梅林 (Mellin) 变换 这种变换适用于沿边缘 \(\theta = 0 \) 和 \(\theta = \alpha \) 具有任意

均匀边界条件的楔形板情况（图 176）。例如考虑边缘 \(\theta = 0 \) 是夹支，边缘
\[W(s) = r^{-1} \theta(\theta, s), \] (8)

式中 \(s \) 是一参数，并且
\[
\theta(\theta, s) = A(s) \cos \theta + B(s) \sin \theta \\
+ C(s) \cos (s + 2) \theta + D(s) \sin (s + 2) \theta.
\] (h)

如果
\[
[W(s)]_{\theta=0} = 0, \quad \frac{1}{r^2} \left[\frac{\partial W(s)}{\partial \theta} \right]_{\theta=0} = 0,
\] (i)

则夹支边上的挠度和转角为零。自由边上的弯矩 \(M_i \) 为零。
\[
\left[v \frac{\partial^2 W(s)}{\partial s^2} + \frac{1}{r} \frac{\partial W(s)}{\partial r} + \frac{1}{r^2} \frac{\partial^2 W(s)}{\partial \theta^2} \right]_{\theta=0} = 0.
\] (j)

现在，函数 \(f(r) \) 可以用如下的梅林公式表示：
\[
f(r) = \frac{1}{2\pi i} \int_{\sigma-\omega} r^{-1} ds \int_0^\infty \rho^{\sigma-1} f(\rho) d\rho,
\] (k)

式中 \(\sigma \) 为服从于某些极限条件的常数。特别是在 \(r = r_0 \) 的集中力 \(P \) 可得：
\[
f(r) = \frac{P}{2\pi i} \int_{\sigma-\omega} \left(\frac{r}{r_0} \right)^{-\sigma+1} ds.
\] (l)

此式表示板的挠度为下列形式：

\[
\nu = \frac{1}{2\pi i} \oint_{\gamma_{a,\theta}} r^{\nu} r^{-\nu}(\theta, s) ds.
\]

沿边域 \(\theta = a \) 作用方向向下的反力，由下式给出：

\[
(V_r)_{\theta=a} = \left(Q_r - \frac{\partial M_r}{\partial \theta} \right)_{\theta=a}.
\]

利用 \(Q_r \) 和 \(M_r \) 的适当表达式（参见第 302 页）以及式 (m)，上式给出

\[
(V_r)_{\theta=a} = -\frac{D}{2\pi i} \int_{\gamma_{a,\theta}} \left[\frac{\partial^2 \theta}{\partial \theta^2} + \left(r^2 + (1 - \nu)(s + 1)(s + 2) \right) \frac{\partial \theta}{\partial \theta} \right] ds
\]

最后使式 (i) 和 (o) 相等，我们得到除了方程 (i) 和 (j) 以外的第四个条件，用以决定函数 \(A(s), B(s), C(s), \) 和 \(D(s) \)。将这些系数代入式 (h) 和 (m)，并且引入新的变量 \(u = -(s + 1)i \)，其中 \(i = \sqrt{-1} \)，即得板的挠度表达式：

\[
u = \frac{2Pr_0}{\pi D} \int_0^\infty \frac{G \cos \left(u \log \frac{r + r_0}{r_0} \right) + \frac{H \sin \left(u \log \frac{r + r_0}{r_0} \right)}{Ne(1 + a^2)}}{Na(1 + a^2)} du.
\]

式中 \(G \) 和 \(H \) 是 \(a, \theta, u \) 的函数，\(N \) 是 \(a \) 和 \(u \) 的函数。

在 \(a = \pi/4 \) 和 \(a = \pi/2 \) 两种特殊情况下，挠度沿自由边的变化以及弯矩 \(M_r \) 在边缘 \(\theta = 0 \) 的分布如图 177 所示。

韩克尔变换

设半径为 \(a \) 的圆形板被对称分布载荷 \(q(r) \) 弯曲成旋转曲面。设这种板的微分方程 \(\Delta \Delta w = q/D \) 乘上 \(r J_0(\lambda r)dr \) 并且在 \(r = 0 \) 和 \(r = \infty \) 之间作部分积分。如 \(r > a \) 时 \(\nu = 0 \)，则结果为

\[
\lambda^2 \int_0^\infty \nu(r) r J_0(\lambda r)dr = g(\lambda),
\]

式中：

\[
g(\lambda) = (C_1 + \lambda^2 C_1) J_0(\lambda a) + (\lambda C_2 + \lambda^2 C_2) J_1(\lambda a)
\]

\[
+ \frac{1}{D} \int_0^a q(\rho) \rho J_1(\lambda \rho) d\rho.
\]

\(J_0 \) 和 \(J_1 \) 是零阶和一阶的贝塞尔函数，\(C_i \) 是常数。将韩克尔变换应用到方程 (q)，可得

\[
\nu = \int_{\lambda_0}^\infty g(\lambda) \frac{1}{\lambda^2} J_0(\lambda a) d\lambda.
\]

现在常数 \(C_i \) 可由板边缘 \(r = a \) 上的条件，以及函数 \(g(\lambda)/\lambda^2 \) 必须有限的条
件得到。在环形板情况下，式 (r) 应当加修正。这种形式 (s) 的解，应用于弹性支承板问题的例子，已在第 61 节中给出。

正弦变换。在矩形板情况下，我们应用了如下形式的解：

$$ w(x, y) = \sum (y, \alpha) \sin \alpha x $$

而在扇形板情况下，应用了如下形式的解：

1) 关于韩克尔变换法的理论基础及其应用所需要的很多变换表，参看 H. Jung

\[w(r, \theta) = \sum R(r, \theta) \sin \beta \theta. \]

分别对于 \(x \) 和 \(\theta \) 所作的函数 \(w \) 的有限正弦变换，如果与 \(w \) 的导数的变换式和板的微分方程的变换式同时应用，则在根据板的已知边界条件计算函数 \(y \) 和 \(k \) 的常数时证明有限正弦变换很有用。\(^1\)

79. 复数法 对于独立的自由量取 \(z = x + iy \) 和 \(\bar{z} = x - iy \)，板的弯曲微分方程 (104) 变成:

\[\frac{\partial^4 w}{\partial x^2 \partial y^2} = \frac{1}{16D} q(x, \bar{z}). \]

设 \(w = w_0 + w_1 \)，其中 \(w_1 \) 是方程

\[\frac{\partial^4 w_1}{\partial x \partial y \partial z} = 0 \]

的通解，\(w_0 \) 是方程 (a) 的一般解。于是我们有\(^2\)

\[w_1 = \mathcal{R}[\varphi \phi(x) + \chi(x)], \]

式中 \(\varphi \) 和 \(\chi \) 是在所考虑的区域内的解析函数。通常导数 \(\psi = \partial \chi / \partial z \) 和 \(\chi \) 一起引入。

在集中载荷 \(p \) 作用于 \(x_0 = x_0 + iy_0 \) 的情况下，特解 \(w_0 \) 可选成如下形式:

\[w_0 = \frac{p}{16\pi D} (z - z_0)(\bar{z} - \bar{z}_0) \log[(z - z_0)(\bar{z} - \bar{z}_0)], \]

在本质上此式与式 (205) 等价。对于均匀载荷，

\[w_0 = \frac{\alpha z \bar{z}^2}{64D} \]

是一合适的特解。

如板的外边界或内边界是一圆，我们总是能用一单位圆 \(z = e^{i\theta} \)，或简简单地写作 \(z = \sigma \)，来代替该圆。\(z = \sigma \) 上的边界条件也必须表示成复数形式。函数 \(\varphi \) 和 \(\phi \) 可取成幂级数的形式，如果需要的话，这些函数要增加一些具有依赖于板的内边缘上的合应力值的附加项。将边界条件乘以 \[2 \pi (\sigma - z)]^{-1} d\sigma \] 并且沿 \(z = \sigma \) 积分，即得所需要的函数 \(\psi \) 和 \(\phi^* \)。

\(^1\) 正弦变换法的应用是 L. I. Diverall 和 C. J. Tohne 提出的，参看 J. Appl. Mechanics, 第 18 卷，第 152，359 页，1951 年。

\(^2\) \(\mathcal{R} \) 表示解的实部。抽烟和方程解的这种形式是 E. Goursart 提出的，参看 Bull. Soc. Math. France, 第 26 卷，第 236 页，1898 年。

* 关于柯西 (Cauchy) 型积分的计算包括在这一步骤中，参看 Мусхелишвилли Н. И., “Некоторые основные задачи математической теории упругости”，莫斯科-列宁格勒 Нзд. AH СССР，1949 年。

363
如边界不是圆，则可利用映射函数 \(z = \phi(\xi) = \phi(\rho e^{i\xi}) \) 将所给的边界曲线映射到单位圆 \(\xi = e^{i\varphi} = \sigma \) 上。从 \(\xi = \sigma \) 的边界条件去决定函数 \(\varphi_1(\xi) = \varphi(\xi) \) 和 \(\varphi_2(\xi) = \varphi(\xi) \) 可以化成已经考虑过的问题。以上所述的穆赫里士维里（Мускенишвили）法对于有关孔周围应力分布问题特别有效1; 在此情况下函数 \(\omega(\xi) \) 应将板的无限区域映射到单位圆的内部。

用复变数法，我们还能将各种边界条件圆形板的格林函数表示成封闭形式2。在其他情况下，例如支支方形板，我们必须依靠格林函数的近似求法3。

如果板的变形可以用一重三角级数表示，则利用椭圆函数的双周期性，该变形还可以表示成更简单的形式。对于满足位势方程 \(\Delta(\Delta w) = 0 \) 的量 \(\Delta w \)，这样的表示方法特别方便，因为对表达式 \(\Delta w \) 的格林函数与将所给板的区域映射到单位圆的映射函数之间有密切联系4。决定了 \(\Delta w \) 之后，根据式 (108)，板的剪力可立即由 \(\Delta w \) 的导数得到。

80. 应变能法对计算挠度的应用 我们再次考虑简支矩形板问题。从第 28 节中的讨论可以看到，这种板（图 59）的挠度总是能表示成一重三角级数的形式5。

\[
\omega = \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} a_{mn} \sin \frac{m\pi x}{a} \sin \frac{n\pi y}{b}.
\] (a)

系数 \(a_{mn} \) 可以认为是决定挠度曲面形状的坐标，求这些系数可以

5) 这个级数的各项就是所考虑的板的特征函数（参考第 77 节）。

364
应用虚位移原理，应用此原理时，我们需要应变能的表达式(参看第92页):

\[\nu = \frac{1}{2} D \int_0^a \int_0^b \left\{ \left(\frac{\partial^2 \omega}{\partial x^2} + \frac{\partial^2 \omega}{\partial y^2} \right)^2 \right\} \, dx \, dy - 2(1 - \nu) \int_0^a \int_0^b \left[\frac{\partial^2 \omega}{\partial x^2} \frac{\partial^2 \omega}{\partial y^2} - \left(\frac{\partial^2 \omega}{\partial x \partial y} \right)^2 \right] \, dx \, dy, \quad (b)\]

对于\(\omega\)以级数(\(a\))代入，式(\(b\))中积分号下的第一项化为

\[\frac{1}{2} D \int_0^a \int_0^b \left\{ \sum_{m=1}^\infty \sum_{n=1}^\infty a_{mn} \left(\frac{m^2 \pi^2}{a^2} \right)^2 + \frac{n^2 \pi^2}{b^2} \right\} \sin \frac{m \pi x}{a} \sin \frac{n \pi y}{b} \, dx \, dy. \quad (c)\]

注意到，如 \(m \equiv m', n \equiv n'\)，则有

\[\int_0^a \sin \frac{m \pi x}{a} \sin \frac{m' \pi x}{a} \, dx = \int_0^b \sin \frac{n \pi y}{b} \sin \frac{n' \pi y}{b} \, dy = 0.\]

由此可知，在计算积分 (\(c\)) 时，需考虑的只是方括弧中无穷级数的各项的平方。应用公式

\[\int_0^a \int_0^b \sin^2 \frac{m \pi x}{a} \sin^2 \frac{n \pi y}{b} \, dx \, dy = \frac{a b}{4},\]

积分 (\(c\)) 给出

\[\frac{\pi^4 a b}{8} D \sum_{m=1}^\infty \sum_{n=1}^\infty a_{mn} \left(\frac{m^2}{a^2} + \frac{n^2}{b^2} \right)^2.\]

根据以下事实:

\[\int_0^a \int_0^b \sin^2 \frac{m \pi x}{a} \sin^2 \frac{n \pi y}{b} \, dx \, dy = \int_0^a \int_0^b \cos^2 \frac{m \pi x}{a} \cos^2 \frac{n \pi y}{b} \, dx \, dy = \frac{a b}{4},\]

可以得到结论：式 (\(b\)) 中积分号下的第二项在积分后为零。所以在这个情形中应变能由式 (\(c\)) 给出，它等于

\[\nu = \frac{\pi^4 a b}{8} D \sum_{m=1}^\infty \sum_{n=1}^\infty a_{mn} \left(\frac{m^2}{a^2} + \frac{n^2}{b^2} \right)^2. \quad (d)\]

我们考虑垂直于板并作用于点 \(x = \xi, y = \eta\) 的集中力 \(P\)所产生
在板上的挠度（图59）。为了得到满足边界条件的位移，给级数（a）的任一系数
$a_{m' n'}$ 以无限小变分 $\delta a_{m' n'}$。其结果是挠度（a）得到变分

$$\delta w = \delta a_{m' n'}, \sin \frac{m' \pi x}{a} \sin \frac{n' \pi y}{b},$$

集中载荷 P 产生虚功

$$P \delta a_{m' n'}, \sin \frac{m' \pi \xi}{a} \sin \frac{n' \pi \eta}{b}.$$

由位移原理可知，此虚功必须等于变分 $\delta a_{m' n'}$ 所引起的势能（d）的变化，所以

$$P \delta a_{m' n'}, \sin \frac{m' \pi \xi}{a} \sin \frac{n' \pi \eta}{b} = \frac{\partial V}{\partial a_{m' n'}} \delta a_{m' n'},$$

式中的 V 以表达式（d）代入，得到

$$P \delta a_{m' n'}, \sin \frac{m' \pi \xi}{a} \sin \frac{n' \pi \eta}{b} = \pi a b D a_{m' n'} \left(\frac{m'^2}{a^2} + \frac{n'^2}{b^2} \right) \delta a_{m' n'},$$

由此可得

$$a_{m' n'} = \frac{4 P \sin \frac{m' \pi \xi}{a} \sin \frac{n' \pi \eta}{b}}{\pi a b D \left(\frac{m'^2}{a^2} + \frac{n'^2}{b^2} \right)}.$$ (1)

将此式代入式（a），我们再次得到（133）的结果。

在计算挠度表达式（a）中的系数 a_{mn} 时，我们用系统总能量的考虑来代替使用位移原理也能得到相同的结果。如系统处于稳定平衡状态，其总能量为极小值。将此原理应用于研究板的弯曲，我们注意到在这样的情况下总能量由两部分组成：式（b）所给出的弯曲应变能和分布在板上的载荷的势能。载荷单元 $q dx dy$ 的位置由水平面 xy 的垂直距离 w 来定义，对应的势能可取成等于 $-w q dx dy$。于是总载荷的势能为

$$-\int \int w q dx dy.$$ (g)

因此系统的总能量为

866
$$I = \iint \left[\left(\frac{D}{2} \left(\frac{\partial^2 \omega}{\partial x^2} + \frac{\partial^2 \omega}{\partial y^2} \right) \right)^2 - 2(1 - \nu) \left(\frac{\partial^2 \omega}{\partial x^2} \frac{\partial^2 \omega}{\partial y^2} - \left(\frac{\partial^2 \omega}{\partial x \partial y} \right)^2 \right) \right] - \omega q \right] \, dx \, dy. \quad (h)$$

板的弯曲问题化成了在每一个别情况下求得 x 和 y 的函数 ω 的问题，这函数要满足所给出的边界条件，并且以积分 (h) 为极小。如果用变分法来解这个问题，对于 ω 我们得到偏微分方程 (104); 它是以前由考虑板单元的平衡导出的。但是积分 (h) 可很有力地应用在板弯曲的近似研究中。为此，我们应用某一函数的极小值问题来代替变分法问题，其方法是假设挠度 ω 可表示成级数形式:

$$\omega = a_1 \varphi_1(x, y) + a_2 \varphi_2(x, y) + a_3 \varphi_3(x, y) + \cdots + a_n \varphi_n(x, y), \quad (211)$$

式中函数 $\varphi_1, \varphi_2, \cdots, \varphi_n$ 选择成适合于挠曲面 ω 的表达式 1)，同时满足边界条件。将式 (211) 代入积分 (h)，在积分后可得一具有系数 a_1, a_2, \cdots 的二次函数。现在必须选择这些系数使积分 (h) 取极小值，由此可得:

$$\frac{\partial I}{\partial a_1} = 0, \quad \frac{\partial I}{\partial a_2} = 0, \cdots, \quad \frac{\partial I}{\partial a_n} = 0. \quad (i)$$

这是一组以 a_1, a_2, \cdots, a_n 为未知量的 n 个线性方程，在每一特殊问题中可立即计算出这些量。如果函数 φ 属于这样的类型，使得级数 (211) 能代表板边界内部的任一函数 2)，则当级数的项数 n 增大时，这个计算挠度 ω 的方法的精确性越来越高，当取 n 为无限大时，即得问题的精确解。

如把此方法应用到简支矩形板的情况，我们将挠度取成三角

1) 由经验我们通常能知道挠度曲面的近似形状。在选择适当的函数 φ 时，应利用这种知识作指引。

2) 我们已经知道，二重三角级数 (a) 对于简支矩形板的挠度 ω 而言具有这个性质。所以二重三角级数 (a) 能用来求得问题的精确解。用积分 (h) 解板弯曲问题的方法是 W. Ritz 提出来的；参看 J. reine angew. Math., 第 135 卷，1908 年；及 Ann. Physik, ser. 4, 第 28 卷，第 737 页，1509 年。
级数（a）的形式。因此，使用应变能的表达式（d），积分（b）可表示成如下形式：

\[I = \frac{\pi^4 a b D}{8} \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \frac{a_{mn}^2}{\left(m^2 a^2 + n^2 b^2 \right)^2} \]

\[- \int_0^a \int_0^b q \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} a_{mn} \sin \frac{m\pi x}{a} \sin \frac{n\pi y}{b} \, dx \, dy, \] \hspace{1cm} (i)

而方程组（i）的形式为

\[\frac{\pi^4 a b D}{4} a_{mn} \left(m^2 a^2 + n^2 b^2 \right)^2 - \int_0^a \int_0^b q \sin \frac{m\pi x}{a} \sin \frac{n\pi y}{b} \, dx \, dy = 0. \] \hspace{1cm} (k)

如载荷 \(P \) 作用于坐标为 \(\xi, \eta \) 的点，则载荷的强度 \(q \)，除了点 \(\xi, \eta \) 外，在所有点上为零，而在该点上应当令 \(q dx dy = P \)。这样，方程（k）与以前用虚位移原理推导所得的方程（e）是一致的。为了实际应用，应当指出，对于在边界上刚性夹支的板，式（b）和式（h）中所包含的积分

\[\iint \left[\left(\frac{\partial^2 w}{\partial x^2} \right)^2 + \left(\frac{\partial^2 w}{\partial y^2} \right)^2 - \left(\frac{\partial^2 w}{\partial x \partial y} \right)^2 \right] \, dx \, dy \] \hspace{1cm} (l)

为零。对于多边形板，如果边界条件之一是 \(w = 0 \) 或 \(\partial w / \partial n = 0 \) (其中 \(n = \) 垂直于边缘的方向)\(^1\)，可作相同的简化。

如果用极坐标代替直角坐标，同时假设载荷与变形是轴对称的，则式（h）需变换为

\[I = \iint \left\{ \frac{D}{2} \left[\left(\frac{\partial^2 w}{\partial r^2} + \frac{1}{r} \frac{\partial w}{\partial r} \right)^2 \right. \right. \]

\[\left. \left. - \frac{2(1 - \nu)}{r} \frac{\partial w}{\partial r} \frac{\partial^2 w}{\partial r \partial^2} \right] \right\} \, r \, dr \, d\theta. \] \hspace{1cm} (m)

对于沿边缘夹支的板，包含因子 \(1 - \nu \) 的项依然为零。

应变能法也可应用于计算弹性基支圆形板的挠度。例如，为了得到粗略的近似，对于挠度取表达式

\[w = A + Br^2, \] \hspace{1cm} (n)

式中 \(A \) 和 \(B \) 为常数，应根据在稳定平衡状态下系统的总能量为极小值这个

1) 例如参看 E. R. Berge, Österr. ing.-Arch., 第 7 卷, 第 41 页, 1953 年。
条件决定。

半径为 \(a \) 的板的应力能，由式（m）可知为

\[V_1 = 4B^2 D x a^3 (1 + \nu). \]

变形后，弹性基的应力能为

\[V_1 = \int_0^1 \int_0^\pi \frac{kr^2}{2} r dr d\theta = \pi k \left(\frac{1}{2} A^2 a^2 + \frac{1}{2} A B a^3 + \frac{1}{6} B^2 a^4 \right). \]

对于载荷 \(P \) 作用于其中央的情况，系统的总应力能为:

\[V = 4B^2 D x a^3 (1 + \nu) + \pi k \left(\frac{1}{2} A^2 a^2 + \frac{1}{2} A B a^3 + \frac{1}{6} B^2 a^4 \right) = P a. \]

将此式对 \(A \) 和 \(B \) 取导数，并且令它们等于零，可得:

\[A + 2 B a^2 \left[\frac{2}{3} + \frac{16D(1 + \nu)}{k a^2} \right] = 0, \quad A + \frac{1}{2} B a^2 = \frac{P}{\pi k a^3}. \]

根据第 280 页上的数字例子，取

\[l = a, \quad \frac{D}{k a^2} = 1, \quad \frac{P}{8\pi k a^3} = 102 \times 10^{-3}, \]

即得

\[w_{\text{max}} = A = 41.3 \times 10^{-3} \text{ 厘米}. \]

这个结果比根据弹性基支撑的微分方程所得到的结果 43.10^{-3} 厘米小百分之 3。如欲得到更高的精确度，式 (a) 中应取更多的项。

如果除了挠度外还要求集中荷载附近的应力分布，这时根据这里所需要的奇点类型【参看式 (206)】，在式 (a) 中应包含如下形式的一项:

\[\frac{P}{8\pi D} \frac{r^3}{\log r}. \]

在用极坐标时，积分 (b) 在最一般的情况下为如下形式:

\[I = \frac{D}{2} \left[\left(\frac{\partial^2 w}{\partial \rho^2} + \frac{1}{\rho} \frac{\partial w}{\partial \rho} + \frac{1}{\rho^2} \frac{\partial^2 w}{\partial \theta^2} \right) - 2 (1 - \nu) \frac{\partial^2 w}{\partial \rho^2} \left(\frac{1}{\rho} \frac{\partial w}{\partial \rho} \right) \right] - \omega g \right) r dr d\theta. \]

81. 应变能法的另一应用形式 式 (211) 应当满足的不是问题的微分方程，而是边界条件，不需要实际确定系统的势能，式 (211) 的系数 \(a_1, a_2, \cdots, a_n \) 也可以计算出来。

假设板具有挠度 \(\delta w \)，我们就能计算荷载 \(\eta \) 的对应虚功，其计算方法是直接利用积分

\[(\delta V)_t = -\iint q \delta w dxdy, \]

\[\bullet 369 \]

\[(\delta V)_2 = \iiint D\Delta\Delta\omega \delta w \, dx \, dy. \quad (b)\]

如 \(\omega\) 是板的微分方程 \(D\Delta\omega = q\) 的精确解，则式 (a) 和 (b) 恒等。对于式 (211) 所表示的近似解，情况当然不是这样。但是对于一组特殊的虚挠度，即对于 \(\delta w_1 = \varphi_1 \delta a_1, \delta w_2 = \varphi_2 \delta a_1, \ldots, \delta w_n = \varphi_n \delta a_n\)，我们就能成功地使上述两个虚功表达式相等。相继地将这些虚挠度表达式代入方程 \((\delta V)_1 = (\delta V)_2\)，也就是代入下方程:

\[
\iiint q \delta w \, dx \, dy = \iiint D\Delta\Delta\omega \delta w \, dx \, dy, \tag{c}
\]

我们得到下列方程组\(^8\):

\[
\begin{align*}
\iiint (\Delta\Delta\omega - \frac{q}{D}) \varphi_1 \, dx \, dy &= 0, \\
\iiint (\Delta\Delta\omega - \frac{q}{D}) \varphi_2 \, dx \, dy &= 0, \\
\vdots & \quad \vdots \\
\iiint (\Delta\Delta\omega - \frac{q}{D}) \varphi_n \, dx \, dy &= 0.
\end{align*}
\tag{d}
\]

现在只需要将式 (211) 代入方程组 (d)，并对于未知系数 \(a_1, a_2, \ldots, a_n\) 求解。这样就能得到最终的挠度表达式 (211)。

为了说明此方法的应用，我们考虑承受均匀载荷的四边固支矩形板（图 91）。为了简化写法，令 \(2x/a = u, 2y/b = v\)，并引入下列表达式:

\[
U_1 = u^4 - 2u^2 + 1, \quad V_1 = v^4 - 2v^2 + 1, \\
U_2 = u^6 - 2u^4 + u^2, \quad V_2 = v^6 - 2v^4 + v^2. \tag{e}
\]

于是函数组

\[
\varphi_1 = U_1V_1, \quad \varphi_2 = U_1V_2, \quad \varphi_3 = U_2V_1, \quad \varphi_4 = U_2V_2 \tag{f}
\]

满足所要求的条件:

1）这一原理导致的方程叫伽利略 (Галёркин) 方程，推导它们的原理是 W. Ritz 提出的；参见 "Gesammelte Werke," 第 228 页，1911 年。

370
在 \(\nu = \pm 1 \) 上， \(w = \frac{\partial w}{\partial \nu} = 0 \),

在 \(\nu = \pm 1 \) 上， \(w = \frac{\partial w}{\partial \nu} = 0 \).

今对于方形板的特殊情况下，由于 \(x \) 和 \(y \) 是可互换的，我们有 \(a_x = a_y \)，并且因此

\(\varphi_2 = \varphi_1 = U_1V_1 + U_2V_2 \).

令 \(qa^2/16D = N \)，将式 (21) 取成如下形式:

\[
\omega = a_1U_1V_1 + a_2(U_1V_1 + U_1V_1) + a_4U_2V_3,
\]

(9)

将此式相继代入具有因子 \(\varphi_1, \varphi_2 \) 和 \(\varphi_1 \) 的方程 (d)，注意到符号 (e)，在积分限 \(n = \pm 1, e = \pm 1 \) 之间对方程 (d) 进行积分。于是我们得到下列方程组:

\[
\begin{align*}
6.687345a_1 + 1.215879a_2 + 0.0675488a_4 &= 0.1422221N, \\
1.215879a_1 + 2.743523a_2 + 0.218275a_4 &= 0.0406349N, \\
0.0675488a_1 + 0.218275a_2 + 0.00590462a_4 &= 0.00290249N,
\end{align*}
\] (h)

作为一级近似，有

\[
a_1 = \frac{0.1422222}{6.687345} N = 0.02127 N.
\]

解出整个方程组 (h) 的三级近似，我们得到:

\[
a_1 = 0.02023 N, \quad a_2 = 0.00535 N, \quad a_4 = 0.00625 N.
\]

通过式 (g) 求得的中心速度，中心弯矩 \(M_x = M_y \) 和在 \(x = s/2, y = 0 \) 处的弯矩 \(M_0 \)，其数字结果分别为

一级近似: \(0.001329qa^2/D, 0.0276qa^2, -0.0425qa^2 \);

三级近似: \(0.001329qa^2/D, 0.0228qa^2, -0.0512qa^2 \).

为了便于比较，表 35 给出值:

\[
0.001329qa^2/D, 0.0228qa^2, -0.0513qa^2.
\]

板中心的弯矩是对于 \(\nu = 0.3 \) 计算的。

可以看出，虽然一级近似不够精确，但三级近似已经十分精确了，即使对于弯矩也是如此。

82. 各种近似法 联合法1) 上节所述的方法也可以限制到一个变量，例如 \(y \)，这样对于另一个变量 \(x \) 就得到一个常微分方程。我们再次考虑承受

1) 这个方法是 Л. В. Каптерович提出的, Нзв. АН СССР, No. 5, 1933年。
均匀截荷方形夹支板的弯矩 (图 91)。

由于考虑一级近似，我们即取
\[w = \varphi(x) \psi(y) = \varphi(x)(a^2 - 8a'y^2 + 16y^4), \] (a)
因此 \(y = \pm a/2 \) 上的边界条件 \(w = \partial w/\partial y = 0 \) 由函数 \(\psi(y) \) 所满足。现在我们试图将变分换成如下形式来满足第 81 节的条件 (c):
\[\delta w = \psi(y) \delta \varphi(x). \] (b)
将此式代入上节的方程 (c)，得到
\[\int \int \left(\Delta \Delta w - \frac{q}{D} \right) \psi(y) dy \] (c)
如
\[\int_{-a/2}^{a/2} \left(\Delta \Delta w - \frac{q}{D} \right) \psi(y) dy = 0, \] (d)
则方程 (c) 成立。

现在将式 (a) 代入方程 (d)，即得未知函数 \(\varphi(x) \) 的微分方程:
\[\frac{a^2}{504} \frac{d^4 \varphi}{dx^4} - \frac{a'}{21} \frac{d^4 \varphi}{dx^4} + \varphi = \frac{q}{384D} \] (c)
这个方程的一个明显解是 \(\varphi = \frac{q}{384D} \)。对于 \(q = 0 \) 时由方程 (c) 所得的齐次方程，可设 \(\varphi = e^{\lambda x/a} \)。由此可得 \(\lambda = \pm a \pm \beta i \)，其中 \(a = 4.1503, \beta = 2.2858 \)。由于挠度曲面对于 \(y \) 轴是对称的，方程 (c) 的解必须是 \(x \) 的偶函数，因此有
\[\varphi = \frac{q}{384D} \left(1 + C_1 \cosh \frac{a x}{a} \cos \frac{\beta y}{a} + C_2 \sinh \frac{a x}{a} \sin \frac{\beta y}{a} \right) \] (f)
为了计算常数 \(C_1 \) 和 \(C_2 \)，我们利用 \(y = \pm a/2 \) 上的边界条件 \(\varphi = \partial \varphi/\partial y = 0 \)，由此可得 \(C_1 = -0.92027, C_2 = -0.04396 \) 它们完全确定了函数 (f) 的形式和解 (a)。

对于板的中心，由所求得的解 (e) 可推出下列数字结果: \(w = 0.001296 \) \(qa^2/D \)，以及 (对于 \(v = 0.3 \)) \(M_x = 0.0241qa^2, M_y = 0.0261qa^2 \)。

由于部分应用了微分方程，一级近似的结果比第 81 节中用纯粹的应变能法所得到的结果更精确。为了进一步提高精确度，应当设
\[w = \varphi_1(x) \psi_1(y) + \varphi_2(x) \psi_2(y) + \cdots, \] (g)
其中所有的函数 \(\psi(y) \) 都必须满足 \(y = \pm a/2 \) 上的边界条件。此时将方程 (e) 连续地变分 \(\delta w_i = \psi_i \delta \varphi_i, \delta w_j = \varphi_i \delta \varphi_j \) 来使用，可以导出对函数 \(\varphi_1(x), \varphi_2(x), \cdots \) 的一组常系数线性微分方程。求解这样的微分方程组在原理上很简单，但对于高次近似可能变为很麻烦；然而对于绝大多数实际问
隧，二级近似就够合适。

反演法 仅仅满足问题边界条件的解 (211) 也可以按以下方式应用，代
替由已知载荷分布去用微分方程 (103) 来计算挠度的方法，我们用同
方程，而计算由试验的挠度表达式 (211) 所对应的载荷

\[\bar{q} = D \Delta \Delta \omega. \] (h)

根据假设，式 (211) 并不代表问题的严格解，所以载荷 (h) 永远不会与所给
的载荷 \(q \) 一致。但我们能选择式 (211) 中的参数 \(a_1, a_2, \ldots \)，使函数 \(q \) 和 \(\bar{q} \)
在板的某部分面积上的平均值相等。

例如考虑边界条件与载荷分布
对于 x 轴和 y 轴都是对称的矩形板 (图 178)。将板分成 16 个相等的小矩形，由于对称，我们考虑的只是 4 个这样的部分面积，例如 \(A_1, A_2, A_3, \) 与 \(A_4) 。因此式 (211) 可限制
为四项，即

\[\omega = q_1 \varphi_1 + q_2 \varphi_2 + q_3 \varphi_3 + q_4 \varphi_4. \] (i)

现在令 \(q \) 和 \(\bar{q} \) 在每一部分面积中满
足条件

\[\int \int_{A_n} (q - \bar{q}) dxdy = 0, \quad n = 1, 2, 3, 4. \] (j)

上式给出了决定参数 \(a_n \) 的四个线
性方程，这些方程的解将确定了式 (i) 的最终形式"。

逼近边界条件法 如果我们成功地找到了一解，它满足微分方程 (103)，
并且满足一个边界条件，则第二个给定的边界条件可通过一组适当选择的参
数的确定而得到满足。在解决第 44 节的问题时，表示板的边缘力矩变化的两
个三角级数的系数就可作为这样的参数而引入。在边界上应用斜度 \(\partial \omega / \partial N \)
的富里埃尔级数展开式，从而使此斜度为零以满足问题的要求。利用这个条
件就能计算参数。为了近似地满足边界条件，也可使用某种极小值原理，例

1) 说明此方法应用的例子可在如下著作中找到：C. E. Brezina 和 R. Grammel，
"Technische Dynamik", 第二版，第一卷，第 147 页，柏林，1973 年。

2) A. Nádai 应用了在一边缘上正交的和更一般的函数组来满足一个边界条件；
参看 "Elastische Platten", 第 180 页，柏林，1925 年。

373
如最小二乘法，如需同时满足二个边界条件，则应用这种原理时需要作更详尽的考虑。在应用只是满足问题的微分方程的解时，有时最简单的作法是仅仅在边界上适当选择的一组点子上满足边界条件。如果板的变形是对称的，在这些点上时应考虑此对称性。为了满足个点子上的所有边界条件，我们应引人两m个未知参数。

在最一般的情况下，我们可采用一全度表达式。它既不满足板的弯曲微分方程，也不满足问题的边界条件。此时在板的边界上和边界内应选一组点，例如个，在这些点上须严格地满足微分方程，所以为了得到问题的解，需要有总数为m+n的参数。

威因斯坦（Weinstein）法在具体板的情形下，我们可首先求微分方程
\[\Delta \Delta w = q/D \]
的解，这个解对于所给荷载q及边界条件 \(w_i = 0 \)，\(\Delta w = 0 \) 是成立的，而非对实际边界条件是成立。在第44节中已证明，此方法与相辅地解两个受载薄膜的平衡问题等价。

实际问题的解可取成如下形式：
\[w = w_1 + \sum_{k=1}^{m} a_k \varphi_k \quad (k) \]
其中，\(a_k \) 为系数，\(\varphi_k \) 为z，y的函数，它们在边界上等于零，同时服从微分方程
\[\Delta \varphi_k = 0 \]
边界上所要求的条件 \(\partial w/\partial N \) (N垂直于边界) 可用格林定理加以变换，得到参数 \(a_k \) 为m个的一组线性方程：

\[
\begin{align*}
\int \int -\frac{q}{D} dx dy + \sum_{k=1}^{m} a_k \int \int \Delta \varphi_k \Delta \varphi_k dx dy &= 0, \\
\int \int \frac{q}{D} dx dy + \sum_{k=1}^{m} a_k \int \int \Delta \varphi_k \Delta \varphi_k dx dy &= 0,
\end{align*}
\]

其中所有的积分都是在整个板面积上作的。如用边界条件 \(w = 0, \Delta w = 0 \) 所得到的问题之解比用实际边界条件 \(w = 0, \partial w/\partial N = 0 \) 简单得多，因此用这个方法是有优点的。

1) E. Berger 对这个问题有一重要贡献，参看前引论文的第39页。
2) 这个方法是 C. J. Thorne 和 J. V. Annasiff 所讨论的，参看 Iowa State Coll., J. Sci., 第14卷，第333页，1940年。
3) A. Weinstein 和 D. H. Rock, Quart. Appl. Math., 第2卷，第262页，1944年。*374*
83. 有限差分法在简支板弯曲上的应用

在以前的讨论中，板弯曲的微分方程可用两个方程代替，每一个都有均匀伸张薄膜的挠度方程的形式。我们还提到，后者用有限差分方程代替是可得到十分精确的解。为了说明这个解法，首先考虑承受均匀载荷的长矩形板的情况。在距离板的短边相当远的地方，这个情况的挠度曲面可认为是长形的。因此将 x 轴取成与板的短边平行，微分方程 (120) 化为

$$
\frac{\partial^2 M}{\partial x^2} = q, \quad \frac{\partial^2 w}{\partial x^2} = -\frac{M}{D}.
$$

(2)

这两个方程的形式都与拉紧的承受侧向载荷的柔韧索的挠度方程相同。

![图 179](image)

今用 AB (图 179) 代表以 S 拉紧并承受强度为 q 的均匀垂直载荷的索的挠度曲线。在推导这个曲线的方程时，我们考虑一无限小单元 mn 的平衡。点 m 和 n 的张力方向就是这些点上的挠
度曲线的切线方向，因此将张力及载荷 $q dx$ 投影在 z 轴上，可得

$$-S \frac{dw}{dx} + S \left(\frac{dw}{dx} + \frac{\partial^2 w}{\partial x^2} \right) + q dx = 0,$$

由此可得

$$\frac{\partial^2 w}{\partial x^2} = -\frac{q}{S}.$$ (c)

这个方程和对于无限长板推导所得的方程 (a) 形式相同。现在，挠度曲线可由方程 (c) 的积分得到，它给出抛物线

$$w = \frac{4\delta x (a-x)}{a^2},$$ (d)

在两端满足条件 $w = 0$，在中点具有挠度 δ。

这个问题也能用图解法求解：以一组等距离的集中载荷 $q \Delta x$ (Δx 是两相邻力间的距离) 代替均匀载荷，建立对于这些力的索多边形，如 A 图 179 为此索多边形的一顶点，S_{k-1} 和 S_k 为索多边形两相邻力的张力，则这些力的水平投影等于 S，而垂直投影之和与载荷 $q \Delta x$ 相平衡。由此可得：

$$-S \frac{w_k - w_{k-1}}{\Delta x} + S \frac{w_{k+1} - w_k}{\Delta x} + q \Delta x = 0.$$ (e)

在这个方程中 w_{k-1}, w_k, w_{k+1} 是索多边形相邻三顶点的纵坐标，$(w_k - w_{k-1})/\Delta x$ 和 $(w_{k+1} - w_k)/\Delta x$ 是索多边形两相邻边的斜率。方程 (e) 可用来计算索多边形的各纵坐标 w_1, w_2, …, w_{k-1}, w_k, w_{k+1}, …, w_n。为此我们列出表 (f):

<table>
<thead>
<tr>
<th>Δx</th>
<th>w_0</th>
<th>Δw_0</th>
</tr>
</thead>
<tbody>
<tr>
<td>w_1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>w_2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>w_{k-1}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>w_k</td>
<td></td>
<td></td>
</tr>
<tr>
<td>w_{k+1}</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

376
表的第一列是跨度各相邻分点的横坐标。第二列是相应横坐标各相邻点的纵坐标。作各相邻纵坐标之差，诸如 \(w_1 - w_0, \ldots, w_k - w_{k-1}, w_{k+1} - w_k, \ldots \)，即得用 \(\Delta w_0, \ldots, \Delta w_{k-1}, \Delta w_k, \ldots \) 表示的所谓一阶差分，我们将它们列在表的第三列中。二阶差分是由第三列中各相邻值的差而得到的。例如对于横坐标为 \(k \Delta x \) 的点 \(k \)，二阶差分为：

\[
\Delta^2 \omega_k = \Delta w_k - \Delta w_{k-1} = w_{k+1} - w_k - (w_k - w_{k-1}) = w_{k+1} - 2w_k + w_{k-1}.
\]

用此符号，方程 (e) 可写成如下形式：

\[
\frac{\Delta^2 \omega}{\Delta x^2} = -\frac{q}{S},
\]

这是有限差分方程，它对应着微分方程 (e)，当跨度分点的数目增大时，它逐渐趋近于微分方程 (e)。

类似地，微分方程 (a) 可用下列有限差分方程代替：

\[
\frac{\Delta^2 M}{\Delta x^2} = -q, \quad \frac{\Delta^2 \omega}{\Delta x^2} = -\frac{M}{D}.
\]

为了说明这些方程在计算板挠度时的应用，我们将跨度分成，例如八等分，亦即令 \(\Delta x = (1/8)a \)，于是方程 (i) 变为

\[
\Delta^2 M = -\frac{qa^4}{64}, \quad \Delta^2 \omega = -\frac{Ma^2}{64D}.
\]

根据式 (g)，对于各相邻分点 \(w_1, w_2, w_3 \) 和 \(w_4 \) 作二阶差分，并且注意到在此情形中 \(w_0 = 0, M_0 = 0 \)，同时由于对称性，\(w_3 = w_5 \) 和 \(M_3 = M_5 \)，我们能得到下列两组线性方程：

\[
M_1 - 2M_2 + M_3 = -\frac{qa^2}{64}, \quad w_2 - 2w_1 = -\frac{Ma^2}{64D},
\]

\[
M_2 - 2M_3 + M_4 = -\frac{qa^2}{64}, \quad w_3 - 2w_2 + w_1 = -\frac{Ma^2}{64D},
\]

\[
M_3 - 2M_4 + M_5 = -\frac{qa^2}{64}, \quad w_4 - 2w_3 + w_2 = -\frac{Ma^2}{64D},
\]

\[
M_4 - 2M_5 + M_6 = -\frac{qa^2}{64}, \quad w_5 - 2w_4 + w_3 = -\frac{Ma^2}{64D}.
\]
解出第一组方程，得到 M 的下列值:

$$M_1 = \frac{7}{2} \frac{a^3}{64}, \quad M_2 = 6 \frac{a^3}{64}, \quad M_3 = \frac{15}{2} \frac{a^3}{64}, \quad M_4 = 8 \frac{a^3}{64}. \quad \text{(k)}$$

这些值与由已知的方程

$$M = \frac{qa}{2} x - \frac{qx^2}{2}$$

计算所得的均匀受载板条的弯矩值完全一致。将弯矩值 (k) 代入 (j) 的第二组方程，得到:

$$\omega_2 - 2\omega_1 = -\frac{7}{2} N, \quad \omega_3 - 2\omega_2 + \omega_1 = 6N, \quad \omega_4 - 2\omega_3 + \omega_2 = \frac{15}{2} N, \quad \omega_2 - 2\omega_4 + \omega_3 = -8N,$$

式中

$$N = \frac{qa^4}{64^2 D}.$$

解出这些方程，即得各分点处的挠度:

$$\omega_1 = 21N, \quad \omega_2 = 38.5N, \quad \omega_3 = 50N, \quad \omega_4 = 54N.$$ \quad \text{(1)}

为了比较，我们列出这些挠度的精确值:

$$\omega_1 = 20.7N, \quad \omega_2 = 38N, \quad \omega_3 = 49.4N, \quad \omega_4 = 53.3N;$$

它们是由长度为 a 的均匀受载板条的已知挠度方程

$$\omega = \frac{qa}{24D} (a^3 - 2ax^2 + x^3)$$

求得的。可以看到，将跨度分成八等分，由有限差分方程 (i) 所得到的最大挠度值的误差约为百分之 1.25。增加分点的数目，计算的精确度能随之提高；但这需要更大的工作量，因为随分点数目的增加，方程组 (j) 中方程的数目也增加了。

下面我们考虑有限长的矩形板。在此情况下，挠度是 x 和 y 二者的函数，因此方程 (a) 必须用一般方程 (120) 代替。在用有限差分方程代替方程 (120) 时，应当考虑与坐标 x 和 y 的变化相
对应的差分，我们用下列符号表示坐标为 $mΔx$ 和 $nΔy$ 的点 A_{mn} 处的一阶差分，代表相邻各点的符号表示在图 180 中:

$$
\begin{align*}
\Delta_x w_{m-1,n} &= w_{mn} - w_{m-1,n}, \\
\Delta_x w_{mn} &= w_{m+1,n} - w_{mn}, \\
\Delta_y w_{m,n-1} &= w_{mn} - w_{m,n-1}, \\
\Delta_y w_{mn} &= w_{m,n+1} - w_{mn}.
\end{align*}
$$

有了一阶差分，我们能作下列二种二阶差分:

$$
\begin{align*}
\Delta_{xx} w_{mn} &= \Delta_x w_{mn} - \Delta_x w_{m-1,n} \\
&= w_{m+1,n} - 2w_{mn} + w_{m-1,n}, \\
\Delta_{yy} w_{mn} &= \Delta_y w_{mn} - \Delta_y w_{m,n-1} \\
&= w_{m,n+1} - 2w_{mn} + w_{m,n-1}, \\
\Delta_{xy} w_{mn} &= \Delta_x w_{mn} - \Delta_y w_{m-1,n} \\
&= w_{m,n+1} - 2w_{mn} + w_{m,n-1}.
\end{align*}
$$

用这些符号，微分方程 (120) 可用下列差分方程代替:

$$
\begin{align*}
\frac{\Delta_{xx} M}{\Delta x^2} + \frac{\Delta_{yy} M}{\Delta y^2} &= -q, \\
\frac{\Delta_{xx} w}{\Delta x^2} + \frac{\Delta_{yy} w}{\Delta y^2} &= -\frac{M}{D}.
\end{align*}
$$

在简支矩形板的情况下，M 和 w 在边界上等于零，因此我们能毫无困难地相继解出方程 (n)。

为了说明计算弯矩和挠度的过程，我们考虑承受均匀载荷方形板这个非常简单的情况 (图 181)。
板分成如图所示的16个小正方形，并在方程（n）中取
\[\Delta x = \Delta y = a/4, \] 可得对于M和ω的粗略近似。由对称性显然可知，计算只需要在板的八分之一面积（如图中阴影线的三角形）上进行，在这个面积内我们只需要对M和ω不等于零的三点0, 1, 2作出计算就行了。在其余的点3, 4, 5上，根据边界条件，这些量为零。由方程（n）的第一式开始，考虑板的中心点0，利用式（m）及对称性条件，我们求得对于此点的下列二阶差分值：
\[\Delta_{xx}M_0 = 2M_1 - 2M_0, \]
\[\Delta_{yy}M_0 = 2M_1 - 2M_0, \]
式中M_1和M_0分别为M在点1和0的值。类似地，对于点1可得
\[\Delta_{xx}M_1 = M_3 - 2M_1 + M_0 = -2M_1 + M_0, \]
\[\Delta_{yy}M_1 = 2M_2 - 2M_1. \]
点2的二阶差分可用同样方法计算，将这些二阶差分的表达式代入方程（n）的第一式，我们对于点0, 1, 2得出下列三方程:
\[4M_1 - 4M_0 = -\frac{qa^2}{16}, \]
\[2M_1 - 4M_1 + M_0 = -\frac{qa^2}{16}, \]
\[-4M_2 + 2M_1 = -\frac{qa^2}{16}. \]
由此可解得:
\[M_0 = \frac{9}{2}\frac{qa^2}{64}, \quad M_1 = \frac{7}{2}\frac{qa^2}{64}, \quad M_2 = \frac{11}{4}\frac{qa^2}{64}. \]
将这些弯矩值代入方程（n）的第二式，我们得到下列计算挠度ω_0, ω_1, ω_2的三个方程:
\[4\omega_1 - 4\omega_0 = \frac{9}{2}N, \]
\[2\omega_2 - 4\omega_1 + \omega_0 = \frac{7}{2}N, \]
\[-4\omega_2 + 2\omega_1 = -\frac{11}{4}N, \]
式中

\[N = \frac{qa^4}{16 \cdot 64D} \]

由这些方程可求得下列挠度值:

\[\omega_0 = \frac{66}{16} N, \quad \omega_1 = \frac{48}{16} N, \quad \omega_2 = \frac{35}{16} N. \]

对于板中心的挠度，有

\[\omega_0 = \frac{66}{16} N = \frac{66qa^4}{16 \cdot 16 \cdot 64D} = 0.00403 \frac{qa^4}{D}. \]

将此值与表8中所给出的值 0.00406q\(a^4\)/D 作比较，可知这样计算所得最大挠度的误差小于百分之1，对于板中心的弯矩，有

\[M_x = M_y = M_0(1 + v) = \frac{1.3}{2} \frac{9}{2} \frac{qa^2}{64} = 0.0457q\(a^2\). \]

比精确值 0.0479q\(a^2\) 约小百分之4.5。可以看出，在这个问题中把板分为主数不多的正方形，就能得到对于实际应用有足够精确的解。如切分次数增加一倍，亦即令

\[\Delta x = \Delta y = \frac{1}{8} a, \]

则所得弯矩值与精确值的差小于百分之1。

作为第二个问题，我们考虑承受强度为\(a\)的均匀载荷简支斜形板(图182)的弯矩。在此情形中，将板分成 \(\Delta x = b/6\), \(\Delta y = b/3\)，所以方程 (m) 的第一式可写成

\[4 \Delta x^M + \Delta y^M = -\frac{q6^2}{9}. \] (o)

将此方程相等应用到点1至点8，并且使用差分表达式 (n)，可得到下列线性方程组；
\[-10M_1 + 4M_2 = -\frac{q b^2}{9},\]
\[4M_1 - 10M_2 + M_3 + 4M_4 = -\frac{q b^1}{9},\]
\[M_2 - 10M_3 + 4M_4 = -\frac{q b^2}{9},\]
\[4M_3 - 10M_4 + M_5 + 4M_6 = -\frac{q b^1}{9},\]
\[4M_5 + M_6 - 10M_7 + M_8 = -\frac{q b^2}{9},\]
\[M_7 - 10M_8 + 4M_9 = -\frac{q b^1}{9},\]
\[4M_9 - 4M_7 - 10M_7 + M_8 = -\frac{q b^1}{9},\]
\[8M_8 + 2M_7 - 10M_7 = -\frac{q b^2}{9}.

这个方程组的解为:

\begin{align*}
M_1 &= 0.29942 \frac{q b^2}{9}, & M_4 &= 0.66191 \frac{q b^1}{9}, \\
M_2 &= 0.49854 \frac{q b^2}{9}, & M_5 &= 0.39387 \frac{q b^1}{9}, \\
M_3 &= 0.41462 \frac{q b^1}{9}, & M_6 &= 0.56920 \frac{q b^2}{9}, \\
M_4 &= 0.59329 \frac{q b^2}{9}, & M_7 &= 0.74337 \frac{q b^1}{9}.
\end{align*}

方程(i)的第二式现在化为:

\[4 \Delta_{kk} w + \Delta_{kk} w = -\frac{M b^k}{g D}.

考虑到结果(q)，上述方程给出第二个线性方程组:

\[\begin{align*}
-10w_1 + 4w_2 &= -0.29942N, \\
4w_1 - 10w_2 + w_3 + 4w_4 &= -0.49854N, \\
w_2 - 10w_3 + 4w_4 &= -0.41462N, \\
4w_3 - 10w_4 + w_5 + 4w_6 &= -0.59329N, \\
4w_6 + w_4 - 10w_7 + w_8 &= -0.66191N, \\
w_5 - 10w_6 + 4w_7 &= -0.39387N, \\
4w_7 + 4w_6 - 10w_7 + w_8 &= -0.56920N, \\
8w_6 + 2w_7 - 10w_7 &= -0.74337N,
\end{align*}\]
式中

\[N = \frac{q h^2}{81 D}. \]

解出 (s)，即得挠度:

\[
\begin{align*}
\omega_1 &= 0.13176N, & \omega_2 &= 0.38549N, \\
\omega_3 &= 0.25455N, & \omega_4 &= 0.20293N, \\
\omega_5 &= 0.22111N, & \omega_6 &= 0.31249N, \\
\omega_7 &= 0.32469N, & \omega_8 &= 0.44523N.
\end{align*}
\]

应当指出，在这个问题中用分析法求板的弯曲微分方程的积分会相当大的困难。

为了计算板的中点处的弯矩，需用式 (161) 和 (102)，式中的导数应为用对应的差分代替。这样，利用式 (m)，并且用挠度值 (t)，取 \(\nu = 0.2 \)，得到:

\[
\begin{align*}
(M_x)_d &= -D \left(\frac{\omega_1 - 2\omega_3 + \omega_7}{\Delta y^3} + \nu \frac{\omega_1 - 2\omega_3 + \omega_7}{\Delta y^3} \right) = 0.0590 \cdot 10^{5} \cdot b^2, \\
(M_y)_d &= -D \left(\frac{\omega_2 - 2\omega_5 + \omega_8}{\Delta x^3} + \nu \frac{\omega_2 - 2\omega_5 + \omega_8}{\Delta x^3} \right) = 0.0401 \cdot 10^{5} \cdot b^2, \\
(M_{xy})_d &= (1 - \nu)D \frac{\omega_1 - \omega_7}{4 \Delta x \Delta y} = 0.0108 \cdot 10^{5} \cdot b^2.
\end{align*}
\]

用莫尔圆 (图 183)，可得点 8 的主弯矩:

\[
\begin{align*}
M_{\max} &= \frac{M_x + M_y}{2} + \sqrt{\left(\frac{M_x - M_y}{2} \right)^2 + M_{xy}^2} = 0.0639 \cdot 10^{5} \cdot b^2, \\
M_{\min} &= \frac{M_x + M_y}{2} - \sqrt{\left(\frac{M_x - M_y}{2} \right)^2 + M_{xy}^2} = 0.0352 \cdot 10^{5} \cdot b^2
\end{align*}
\]

此二弯矩所产生的应力方向相对于坐标轴 x 和 y 是由下式给出:

1) 对于 \(\Delta x = \Delta y \) 的特殊情况，也请参看图 184 中的图解。
2) 注意图 183 和图 22 中符号的差别。在图 183 中主弯矩用 \(M_{\max} \) 和 \(M_{\min} \) 表示。

还需要注意，如在此二图中圆上的点沿顺时针方向转动，则对应截面的法线将沿同一方向转动。
\[\alpha = \frac{1}{2} \arctan \frac{n_{xy}}{M_y - M_x} = 24^\circ 25'. \]

图 182 可以看出，板中心的弯矩 \(M_{x,y} \) 所产生的应力几乎精确地作用在板的短边方向上。
图182中的板的形状是如此取得：使用能应用具有边长Δx和Δy为常数的矩形网络。在一般情况下，必须用三角形网络来分析斜形板。有限差分法也可应用于具有支点或自由端，以及具有混合边界条件的板。由于在一般情况下，N的主要在边界上是不固定的，因此用N的优点就很小，挠度w可利用与板的弯曲微分方程ΔΔw = q/D等价的差分方程直接计算。为了方便，在图184中表示了算子ΔΔ(⋯)以及其他有效算子的等效有限差分。该图解基于假设Δx = Δy = λ，每一数代同样以代表相应点k的挠度符号w_k，然后将这种乘积之和除以各标题中给出的系数。

![图185](image)

为了表示给出一边缘的挠度为零的边界条件，我们对于与边缘邻接的内点7（图185）建立一差程。应用算子ΔΔ(⋯)，有

$$[w_1 + w_8 + w_{15} + 2(w_2 + w_3 + w_{16} + w_{13}) - 8(w_3 + w_6 + w_8 + w_{11}) + 20w_7] \frac{1}{\lambda^4} = \frac{q}{D},$$

式中w_2 = w_3 = w_6 = 0。现在我们必须消除将网络延顶至板边缘外而得到

1. V. P. Jensen 作出了这样的网络的各种应用。参看 Univ. Illinois Bull., 332, 1941年。上一个数字例子就是引自该论文。
2. 许多这种数字例子可在 H. Marcus 的书中找到：“Die Theorie elastischer Gewebe”，第二版，柏林，1932年；也可参阅 N. J. Nielsen，“Bestemmelse af Spændinger i Flader”，哥本哈根，1920年。
的设想点 1 的挠度 \(w_1 \)。利用以下关系式可立时作到：如板在点 3 为短支，则 \(w_1 = -w_2 \)；如板为固支，则 \(w_1 = w_2 \)。这样，在方程（u）中留下的只是该内点的挠度，因此这种未知挠度的总数不会超过我们所处理的（u）型的方程数。

在自由边缘的情况下，这种差分方程将增加，其增加的数目为边界上的点 2, 3, 4, …的数目，在这样的点上挠度不等于零。现在各个算子 \(\Delta \Delta w \) 必须扩展到距离自由边为 \(\lambda \) 和 \(2 \lambda \) 的外点上，对应着每一对这样的未知挠度 \(w_x, w_y \)，将有三个边界条件

\[
\frac{\partial^2 w}{\partial x^2} + \nu \frac{\partial^2 w}{\partial y^2} = 0, \quad \frac{\partial^2 w}{\partial x^2} + (2 - \nu) \frac{\partial^2 w}{\partial x \partial y} = 0.
\]

它们可以把对于与外点 0 和 1 相对的点 3 表示成差分方程的形式。所以方程的总数仍然与未知挠度的数目相同。

当在板内部的 M 值不再与揉度 \(w \) 无关时，揉度的差分方程比前述二例的情况更加复杂。在这样的方程时，有时可以很有效地利用张驰法。

84 实验法 对于形状不规则的板、不规则的变厚度板，以及被许多孔减弱了的板，实验研究方法比纯分析法更为有效。常用的仪器，诸如电测应变仪以及其他各种变形计，可用来测定受弯曲的板的应变。下列简短的叙述仅限于在弹性板板弯曲的特殊条件下适用的各种方法。

光弹性法 这个方法通常应用于平面应力问题，如应用在板的弯曲问题中，则应将这方法作些更改以适应需要。实际上，在受弯曲的薄板中，对于板中面为对称的正应力，大小相等方向相反。因此，在受拉区域中所产生的以及通过板的偏振光束的影响，被受压区域中所产生的相反影响抵

2) W. Andrä, F. Leonhardt 和 R. Krieger 使用了一种电动法来测量受弯曲平板的曲率，参看 Bauingenieur，第 33 卷，第 407 页，1958 年。
3) 例如参看 T. Timoshenko, Goodier 的著作，第 131 页。

* 386 *
消了。

受压区域的影响可用如下方法消除：将两个完全相同的光弹性材料的板胶合在一起，中间夹以一金属的反射箔。一个板的内表面或两个板的内表面镀以银也能达到同样的目的。计算表明，如果厚度为 $h/2$ 的单层板处于平面应力状态，并且应力值等于受弯板表面纤维的应力，则上述厚度为 h 的夹心板的光学效应与这种厚度为 $h/2$ 的单层板差不多相同。

另一种使受弯的板在光弹性上有效的方法是将具有不同弹性性质的二光弹性材料的板胶合在一起。在这样的板中，弯曲应力的分布规律不再是线性的，所以，在受到弯曲时，板对于偏振光束产生一光学作用。

按照第三种方法，光弹性材料薄片被粘在任意弹性材料和任意尺寸的板的反射面上。这样的片在通过偏振光束时能给出受试验板的表面纤维中的应变的所有数据。此方法允许我们研究做为实际结构一部分的平板的应变，并承受实际的载荷，而不是仅限于平板模型。

反射光法变大形的板的反射面对于二相邻光束的方向的影响，可以用计算表面的曲率 $\delta^2 \omega / \delta x^2$, $\delta^2 \omega / \delta y^2$, $\delta^2 \omega / \delta x \delta y$, 从而也就计算板的弯矩和扭矩值，为了达到同样的目的，也可利用投射在原来为平面的板表面上的发光矩形的扭曲。特别有价值的是用这个方法对于弹性基板所得到的结果，这种板的力学性质不可能用分析方法完全表示出来。

干涉法相等于在架上决定泊松比所用的经典方法，干涉法也已被用来测量受弯板的挠度。

5) 参看 R. Landwehr 和 G. Garbert, Ing.-Arch., 第 18 卷, 第 1 页, 1950 年。
平面应力和板弯曲之间的比拟

在仅有边缘力作用的特殊情况下，板的挠度由微分方程 \(\Delta \Delta \omega = 0 \) 所决定，此挠度与满足方程 \(\Delta \Delta \varphi = 0 \) 的艾瑞应力函数 \(\varphi \) 之间可作比拟。函数 \(\omega \) 可给出变形后的板的曲率，而艾瑞函数给出弹性体中平面应力的各分量 \(\sigma_x = \partial^2 \varphi / \partial y^2, \sigma_y = \partial^2 \varphi / \partial x^2, \tau_{xy} = - \partial^2 \varphi / \partial x \partial y \)。

如果此二情况中的周界，例如 \(f(x, y) = 0 \)，是相同的，则可令

\[
\frac{\partial^2 \omega}{\partial x^2} = K \sigma_y, \quad \frac{\partial^2 \omega}{\partial y^2} = K \sigma_x, \quad \frac{\partial^2 \omega}{\partial x \partial y} = - K \tau_{xy},
\]

式中 \(K \) 是任一常数，它应使曲率保持为小量。

如果在板的边界及弹性体的边界上满足一定的比拟条件，则测量所得的挠度 \(\omega \) 可用来计算平面应力的各分量，反之亦然。

第十一章
各向异性板的弯曲

85. 板的弯曲微分方程 在以前的讨论中，我们假定板材料的弹性在所有方向都相同。然而在许多情形中，如果想使板的理论同实验一致，则必须假设材料是各向异性的。今假定板的材料有三个弹性性质的对称平面。取这些面为坐标面，则对于 xy 平面中的平面应力问题，应力分量与应变分量之间的关系能用下列方程表示：

$$
\sigma_x = E'_x \varepsilon_x + E'' \varepsilon_y, \\
\sigma_y = E'_y \varepsilon_y + E'' \varepsilon_x, \\
\tau_{xy} = G \gamma_{xy},
$$

可以看到，在平面应力情形中，表征一种材料的弹性性质需要四个常数：E'_x, E'_y, E'' 和 G。

考虑这种材料制成的板的弯曲，同以前一样，假定弯曲前垂直于板中面（xy 平面）的直线单元在弯曲后仍为直线，并垂直于板的挠度曲面。因此对于应变分量能用以前的式子：

$$
\varepsilon_x = -z \frac{\partial^2 w}{\partial x^2}, \quad \varepsilon_y = -z \frac{\partial^2 w}{\partial y^2}, \quad \gamma_{xy} = -2z \frac{\partial^2 w}{\partial x \partial y},
$$

由式（a）可知相应的应力分量为：

1) J. Boussingault 讨论了各向异性材料板的问题，J. Math., Ser. 3, 第 5 卷，1879 年。也可参看 Saint Venant 翻译的 A. Clebsch 的书：“Théorie de l'élasticité des corps solides” note 73，第 693 页。

2) 这样的板有时称为“正交各向异性板”，C. G. レンツィディ讨论了具有更一般弹性性质的板的弯曲，参看他的著作“各向异性板”，胡海昌译，科学出版社，1963 年。

3) K. Girkmann 和 R. Beer，考虑了各向异性情形中横向剪切的影响，见 Ösierl. Ingr.-Arch., 第 12 卷，第 101 页，1958 年。
\[\sigma_x = -z \left(E' \frac{\partial^2 w}{\partial x^2} + E'' \frac{\partial^3 w}{\partial y \partial x^2} \right), \]

\[\sigma_y = -z \left(E'_y \frac{\partial^2 w}{\partial y^2} + E'' \frac{\partial^3 w}{\partial x \partial y^2} \right), \]

\[\tau_{xy} = -2Gz \frac{\partial^2 w}{\partial x \partial y}. \]

用这些式子表示应力分量时，弯矩和扭矩为:

\[M_x = \int_{-h/2}^{h/2} \sigma_x z dz = -\left(D_z \frac{\partial^2 w}{\partial x^2} + D_1 \frac{\partial^3 w}{\partial y^2} \right), \]

\[M_y = \int_{-h/2}^{h/2} \sigma_y z dz = -\left(D_y \frac{\partial^2 w}{\partial y^2} + D_1 \frac{\partial^3 w}{\partial x^2} \right), \]

\[M_{xy} = -\int_{-h/2}^{h/2} \tau_{xy} z dz = 2D_{xy} \frac{\partial^2 w}{\partial x \partial y}, \] (212)

式中

\[D_z = \frac{E_z h^3}{12}, \quad D_y = \frac{E'_y h^4}{12}, \quad D_1 = \frac{E'' h^3}{12}, \quad D_{xy} = \frac{G h^3}{12}. \] (d)

将式(212)代入平衡微分方程(100)，便得到下列各向异性板的方程:

\[D_z \frac{\partial^4 w}{\partial x^4} + 2(D_1 + 2D_{xy}) \frac{\partial^4 w}{\partial x^2 \partial y^2} + D_y \frac{\partial^4 w}{\partial y^4} = q. \]

引用符号

\[H = D_1 + 2D_{xy}, \] (e)

即得

\[D_z \frac{\partial^4 w}{\partial x^4} + 2H \frac{\partial^4 w}{\partial x^2 \partial y^2} + D_y \frac{\partial^4 w}{\partial y^4} = q. \] (213)

从板单元的平衡条件（图48）和前述的力矩表达式，立即就能得到相应的剪力表达式。因此，有

\[Q_x = -\frac{\partial}{\partial x} \left(D_z \frac{\partial^2 w}{\partial x^2} + H \frac{\partial^3 w}{\partial y^2} \right), \]

\[Q_y = -\frac{\partial}{\partial y} \left(D_y \frac{\partial^2 w}{\partial y^2} + H \frac{\partial^3 w}{\partial x^2} \right). \] (214)
在各向同性的特殊情形中有

\[E'_x = E'_y = \frac{E}{1 - \nu^2}, \quad E'' = \frac{\nu E}{1 - \nu^2}, \quad G = \frac{E}{2(1 + \nu)} \]

因此

\[D_x = D_y = \frac{Fh^3}{12(1 - \nu^2)^2} \]

\[H = D_1 + 2D_{xy} = \frac{h^2}{12} \left(\frac{\nu E}{1 - \nu^2} + \frac{E}{1 + \nu} \right) = \frac{Fh^3}{12(1 - \nu^2)} \quad (f) \]

方程 (213) 就化成了以前的方程 (103).

方程 (213) 能用来研究各向异性材料，甚至非均匀材料的板的弯曲，如钢筋混凝土板，它在两个互相垂直的方向有不同的抗弯刚度。

86. 在各种特殊情形中刚度的决定

上节表示刚度的式 (d) 需要依据所用材料的性质作些微小的修正。特别是，基于纯理论考虑的所有抗弯刚度的数值均应视为一近似。为了获得模数 C 的更可靠的数值，应进行如图 25c 所示的直接试验。对一些有实际意义的情形，刚度的常用数值在下面给出。

钢筋混凝土板 令 \(E_c \) 为钢的杨氏模数，\(E_e \) 为混凝土的杨氏模数，\(\nu \) 为混凝土的泊松比，\(E_e / E_c = n \)。使用 85 节所引人的弹性常数。我们近似地得到

\[\nu_e = E'' / \sqrt{E_1 E_2} \]

对于 \(x \) 和 \(y \) 两个方向都有钢筋加强的板可设

\[D_x = \frac{E_c}{1 - \nu_e^2} \left[I_{xx} + (n - 1)I_{xy} \right] \]

\[D_y = \frac{E_c}{1 - \nu_e^2} \left[I_{yy} + (n - 1)I_{xy} \right] \]

\[D_1 = \nu_e \sqrt{D_x D_y}, \quad \]

\[D_{xy} = \frac{1 - \nu_e}{2} \sqrt{D_x D_y}. \]

在这些式子中，\(I_{xx} \) 和 \(I_{xy} \) 分别为混凝土板和钢筋对于截面 \(x = \) 常数的
中性轴所取的惯性矩，而 I_x 和 I_y 分别为混凝土板和钢筋对于截面 $y = \text{常数}$ 的中性轴所取的惯性矩。

利用所给 D_{yx} 的表达式（也是 Huber 推荐的），即得

$$H = \sqrt{D_xD_y}$$

和微分方程

$$D_x \frac{\partial^4 \omega}{\partial x^4} + 2\sqrt{D_xD_y} \frac{\partial^4 \omega}{\partial x^2 \partial y^2} + D_y \frac{\partial^4 \omega}{\partial y^4} = q,$$

引入 $y_1 = y \sqrt{D_x/D_y}$ 作为新变量，此方程能立即化为 (103) 的形式。

显然，数值 (a) 与混凝土的状态有关。例如，x, y 方向内钢筋加强情况的任何差异对于比值 D_x/D_y 将有影响，这种影响在混凝土断裂后比断裂前要大得多。

表 79 胶合板的弹性常数

<table>
<thead>
<tr>
<th>材料类型</th>
<th>E_x</th>
<th>E_y</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>枫木五层板</td>
<td>13</td>
<td>11.6</td>
<td>3.1</td>
</tr>
<tr>
<td>阿法拉木 (Afara) 三层板</td>
<td>137</td>
<td>42</td>
<td>5.1</td>
</tr>
<tr>
<td>加布恩木 [Gaboone (Okoumé)] 三层板</td>
<td>90</td>
<td>11.6</td>
<td>3.1</td>
</tr>
<tr>
<td>自桦木三层板或五层板</td>
<td>149</td>
<td>7.7</td>
<td>6.0</td>
</tr>
<tr>
<td>用白氏胶膜粘合的自桦木层板</td>
<td>119</td>
<td>6.0</td>
<td>7.7</td>
</tr>
</tbody>
</table>

** C. G. Летников, "Анизотропные пластиники", 第 40 页, 莫斯科, 1947 年。

波纹板 令 E 和 v 为板材料的弹性常数，h 为板厚，

$$z = f \sin \frac{\pi x}{l}$$

为波纹形状，x 为半个波的弧长 (图 186)。于是有 1)

$$D_x = \frac{l}{\pi} \frac{Eh^3}{12(1-v^2)}$$
$$D_y = Eh.$$
图 186

\[D_1 \sim 0, \]

\[H = 2D_{12} = \frac{Eh^3}{12(1 + \nu)}, \]

式中近似地

\[s = l \left(1 + \frac{\pi^2 \mu}{4^{1/2}} \right), \]

\[l = \frac{\sqrt{h}}{2} \left[1 - \frac{0.81}{1 + 2.5 \left(\frac{l}{2l} \right)^2} \right]. \]

在一方向有等距加劲杆的板 对于如图 187 所示，对称于中面加劲的板，可取 1)

\[D_1 = H = \frac{Eh^3}{12(1 - \nu^2)}, \]

\[D_2 = \frac{Eh^3}{12(1 - \nu^2)} + \frac{E' l}{4}, \]

式中 E 和 μ 是板材料的弹性常数，E' 是加劲杆的杨氏模数，l 是加劲杆对板截面中间轴的惯性矩。

用两组等距加劲杆垂直加劲的板 若加劲依然对称于板，则有

$D_x = \frac{Eh^3}{12(1 - \nu^2)} + \frac{E'l}{b_i}$

$D_y = \frac{Eh^3}{12(1 - \nu^2)} + \frac{E'l}{a_i}$

$H = \frac{Eh^3}{12(1 - \nu^2)}$

式中 l_i 是在 x 方向一个加劲杆的惯性矩和 l_i 是在 y 方向一个加劲杆的惯性矩，b_i 和 a_i 是在 x 方向和 y 方向的杆加劲距离。

用一组等距离肋加劲的板 在图 188 所示的情形中，85 节所建立的理论只能给出板的应力和应变实际情况的粗略概念。令 E 为材料（如混凝土）的杨氏模数，l 为宽度 a_i 的 T 形截面的惯性矩，$h_i = a_i$。于是我们可设

$D_x = \frac{Ea_ih_{i}^3}{12(a_i - i + a'x)}$

$D_y = \frac{El}{a_i}$

$D_1 = 0$。

在这些公式中横向收缩效应忽略不计。最后，抗扭刚度可用式

$D_{xy} = D_{xy} + \frac{C}{2a_i}$

计算。式中 D_{xy} 是没有肋的板的抗扭刚度，而 C 是一条肋的抗扭刚度。

87. 各向异性板理论对于网格板计算的应用 方程 (213) 也

1) 关于在一个方向或两个方向有加劲肋的更精确的理论，和由此理论所导出一个八阶的抛物线分数方程，可参阅 K. Trenk，Bauingenieur，卷 29，第 372 页，1954 年；也可参看 A. Pfleger，ingr.-Arch.，卷 16，第 111 页，1947 年。
能用到图189所示的网格板上。它由在\(x, y \)方向间距相等，在交点处刚性连接的两组平行梁系组成。这些梁二端简支，载荷垂直于\(xy \)平面。如果梁的间距\(a, \frac{b}{a} \)较之于网格板的长宽\(a, b \)为少量，并且\(x \)方向的梁的抗弯刚度都等于\(B_1 \)，而\(y \)方向的梁的抗弯刚度均为\(B_2 \)，则能在方程（213）中代入

\[
D_x = \frac{B_1}{b_1}, \quad D_y = \frac{B_2}{a_1}.
\]

图189

在此情形中, \(D_1 \) 等于零，而 \(D_{xy} \) 能用 \(x \) 和 \(y \) 方向的梁的抗弯刚度 \(C_1 \) 和 \(C_2 \) 表示。为此考虑图189b所示单元体的扭转，即得扭矩和扭转\(\partial^2 w / \partial x \partial y \)间的关系式:

\[
M_{xy} = \frac{C_1}{b_1} \frac{\partial^2 w}{\partial x \partial y}, \quad M_{yx} = -\frac{C_2}{a_1} \frac{\partial^2 w}{\partial x \partial y}.
\]

将此二式代入第84页的平衡方程（c）中，我们求得图189a所示系统的挠曲曲面方方程:

\[
\frac{B_1}{b_1} \frac{\partial^4 w}{\partial x^4} + \left(\frac{C_1}{b_1} + \frac{C_1}{a_1} \right) \frac{\partial^4 w}{\partial x^3 \partial y} + \frac{B_2}{a_1} \frac{\partial^4 w}{\partial y^4} = q, \quad (215)
\]

它和方程（213）形式相同。

为了得到每条肋的弯矩和扭矩的最终表达式，还必须将式（212）所给出的并且适用于网格板单位宽度的弯矩和扭矩乘以肋的间距。弯矩和扭矩\(M_x, M_{xy} \)在点\(m - 1 \)和\(m + 1 \)之间的变化可假设为抛物线，图上画有数目部
分的面积（图190）便是分配在x方向的肋（m）上的力矩。故引用（212）式就得到肋（m）的弯矩和扭矩的下列近似公式：

\[M_x = -\frac{B_i}{24} \left[\left(\frac{\partial^3 \omega}{\partial x^3} \right)_{m-1} + 22 \left(\frac{\partial^5 \omega}{\partial x^5} \right) + \left(\frac{\partial^3 \omega}{\partial x^3} \right)_{m+1} \right], \]

\[M_{xy} = \frac{C_i}{24} \left[\left(\frac{\partial^3 \omega}{\partial x \partial y} \right)_{m-1} + 22 \left(\frac{\partial^5 \omega}{\partial x \partial y} \right) + \left(\frac{\partial^3 \omega}{\partial x \partial y} \right)_{m+1} \right]. \]

图 190

对于y方向的诸肋，只要在上述公式中互换x和y，分别用B，和C，代替B，和C，；此时（m-1），（m），和（m+1）指的是在x方向的一肋上的三个相邻连接点。

在计算中经常使用，并在很大程度上决定网格板的弹性性质的两个参数是：

\[\lambda = \sqrt{\frac{B_i b_i}{B_i a_i}}, \quad \mu = \frac{C_i}{b_i} + \frac{C_i}{a_i}. \]

参数λ乘以宽长比a/b（图189），可得矩形网格板在y方向和x方向的承载能力之比；参数μ说明了网格板抗扭刚度与抗弯刚度之比。

在研究桥梁有横向连续的梁架结构的主梁，且在主梁之间的任何位置上作用有集中载荷的分布时，方程（215）得到了广泛的应用。

矩形板的弯曲

如各向异性矩形板系四边简支，则可使用在各向同性板情形中所用的方法解方程 (213)。今应用纳维埃方程 (参看 28 节)，假设板均匀受载。取如图 59 所示的坐标轴，并以二重三角级数的形式表示载荷，则微分方程 (213) 化为

\[
D_x \frac{\partial^4 w}{\partial x^4} + 2H \frac{\partial^4 w}{\partial x^2 \partial y^2} + D_y \frac{\partial^4 w}{\partial y^4} = \frac{16q_0}{\pi^6} \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac{1}{mn} \sin \frac{m\pi x}{a} \sin \frac{n\pi y}{b}.
\]

满足边界条件的这个方程的解可取为二重三角级数的形式:

\[
w = \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} a_{mn} \sin \frac{m\pi x}{a} \sin \frac{n\pi y}{b}.
\]

将此级数代入方程 (a)，即得系数 \(a_{mn}\) 的表达式:

\[
a_{mn} = \frac{16q_0}{\pi^6} \frac{1}{mn} \left(\frac{m^4}{a^4} D_x + \frac{2m^2n^2}{a^2b^2} H + \frac{n^4}{b^4} D_y \right).
\]

所以方程 (a) 的解为:

\[
w = \frac{16q_0}{\pi^6} \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac{\sin \frac{m\pi x}{a} \sin \frac{n\pi y}{b}}{mn} \left(\frac{m^4}{a^4} D_x + \frac{2m^2n^2}{a^2b^2} H + \frac{n^4}{b^4} D_y \right),
\]

如果材料各向同性，\(D_x = D_y = H = D\)，此解即与第 115 页所给出的解重合。

我们进一步考虑已在第 392 页上提到过的 \(H = \sqrt{D_x D_y}\) 的特殊情况。比较式 (c) 和适用于各向同性板的相应式 (131)，可得结论：对于边长为 \(a, b\)，刚度为 \(D_x, D_y\) 的这种正交异性板，它的周长的挠度与边长为 \(a_0 = a \sqrt{D/D_x}, b_0 = b \sqrt{D/D_y}\)，则刚度为 \(D\) 的各向同性板相同。同样地，正交异性板的曲率也可用适当的各向同性板的曲率表示。这样得到的正交异性板中心的挠度和弯矩可用下列公式表示:

\[
w = a \frac{q_0 b^4}{D_y},
\]
\[M_x = \left(\beta_1 + \beta_2 \frac{E''}{E_x} \sqrt{\frac{D_x}{D_y}} \right) q_0 a^4, \]
\[M_y = \left(\beta_1 + \beta_2 \frac{E''}{E_y} \sqrt{\frac{D_x}{D_y}} \right) q_0 b^3, \]

式中 \(\alpha, \beta_1 \) 和 \(\beta_2 \) 是数字系数，由表 80 给出，并且

\[\varepsilon = \frac{a}{b} \frac{\sqrt{D_y}}{D_x}. \]

表 80 \(H = \sqrt{D_y D_x} \) 的简支矩形正交异性板的常数 \(\alpha, \beta_1 \) 和 \(\beta_2 \).

<table>
<thead>
<tr>
<th></th>
<th>(\varepsilon)</th>
<th>(\alpha)</th>
<th>(\beta_1)</th>
<th>(\beta_2)</th>
<th>(\varepsilon)</th>
<th>(\alpha)</th>
<th>(\beta_1)</th>
<th>(\beta_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.00107</td>
<td>0.0368</td>
<td>0.0368</td>
<td>1.8</td>
<td>0.00932</td>
<td>0.0214</td>
<td>0.0884</td>
<td></td>
</tr>
<tr>
<td>1.1</td>
<td>0.00488</td>
<td>0.0359</td>
<td>0.0447</td>
<td>1.9</td>
<td>0.00974</td>
<td>0.0191</td>
<td>0.0929</td>
<td></td>
</tr>
<tr>
<td>1.2</td>
<td>0.00565</td>
<td>0.0344</td>
<td>0.0524</td>
<td>2.0</td>
<td>0.01013</td>
<td>0.0174</td>
<td>0.0964</td>
<td></td>
</tr>
<tr>
<td>1.3</td>
<td>0.00639</td>
<td>0.0324</td>
<td>0.0597</td>
<td>2.5</td>
<td>0.01150</td>
<td>0.0099</td>
<td>0.1100</td>
<td></td>
</tr>
<tr>
<td>1.4</td>
<td>0.00709</td>
<td>0.0303</td>
<td>0.0665</td>
<td>3</td>
<td>0.01223</td>
<td>0.0055</td>
<td>0.1172</td>
<td></td>
</tr>
<tr>
<td>1.5</td>
<td>0.00772</td>
<td>0.0280</td>
<td>0.0728</td>
<td>4</td>
<td>0.01282</td>
<td>0.0015</td>
<td>0.1230</td>
<td></td>
</tr>
<tr>
<td>1.6</td>
<td>0.00831</td>
<td>0.0257</td>
<td>0.0785</td>
<td>5</td>
<td>0.01297</td>
<td>0.0004</td>
<td>0.1245</td>
<td></td>
</tr>
<tr>
<td>1.7</td>
<td>0.00884</td>
<td>0.0235</td>
<td>0.0837</td>
<td>(\infty)</td>
<td>0.01302</td>
<td>0</td>
<td>0.1250</td>
<td></td>
</tr>
</tbody>
</table>

作为第二个例子，考虑一无限长板（图 74），并设载荷按正弦关系分布在 \(x \) 轴上:

\[q = q_0 \sin \frac{m \pi x}{a}. \]

在此情况下，对于板不受载荷的部分，方程 (213) 变成

\[D_x \frac{\partial^4 w}{\partial x^4} + 2H \frac{\partial^4 w}{\partial x^2 \partial y^2} + D_y \frac{\partial^4 w}{\partial y^4} = 0. \]

此方程在平行于 \(y \) 轴的二边上满足边界条件的解可取如下形式:

\[\omega = Y_m \sin \frac{m \pi x}{a}, \quad (h) \]

式中 \(Y_m \) 是 \(y \) 的函数。将此式代入方程 (g)，即得下列决定函数 \(Y_m \) 的方程：

\[D_y Y_m^{(4)} - 2H \frac{m^2 \pi^2}{a^2} Y_m^{(2)} + D_x \frac{m^4 \pi^4}{a^4} Y_m = 0. \quad (i) \]

相应特征方程的根为:

\[r_{1,2,3,4} = \pm \frac{m \pi}{a} \sqrt{\frac{H}{D_y}} \pm \sqrt{\frac{H^2}{D_y^2} - \frac{D_x}{D_y}}. \quad (j) \]

按照第 87 节的式 (d) 并用符号

\[\lambda = \sqrt{\frac{D_x}{D_y}}, \quad \mu = \frac{H}{\sqrt{D_x D_y}}, \quad (k) \]

我们必须考虑下列三种情形:

情形 1, \(\mu > 1 \):

\[H^2 > D_x D_y; \]

情形 2, \(\mu = 1 \):

\[H^2 = D_x D_y; \quad (l) \]

情形 3, \(\mu < 1 \):

\[H^2 < D_x D_y. \]

在情形 1 中，方程 (j) 中所有的根都是实根。只考虑板上 \(y \) 为正的部分，并注意到在远离载荷的地方挠度 \(w \) 及其导数应趋于零，因而可以只保留负根。引用符号

\[\alpha = \frac{a \lambda}{\pi} \sqrt{\mu + \sqrt{\mu^2 - 1}}, \quad (m) \]

\[\beta = \frac{a \lambda}{\pi} \sqrt{\mu - \sqrt{\mu^2 - 1}}. \]

方程 (i) 的积分化为:

\[Y_m = A_m e^{-\alpha y} + B_m e^{-\beta y}, \]

而式 (h) 可表示成如下形式:

\[\omega = (A_m e^{-\alpha y} + B_m e^{-\beta y}) \sin \frac{m \pi x}{a}. \]
由对称性可知，在x轴上

\[\left(\frac{\partial \omega}{\partial y} \right)_{y=0} = 0, \]

由此可得

\[B_m = - \frac{B}{\alpha} A_m, \]

而

\[\omega = A_m \left(e^{-my/\alpha} - \frac{\beta}{\alpha} e^{-my/\beta} \right) \sin \frac{m\pi x}{a}, \quad (n) \]

系数A_m从有关剪力Q_y在x轴上的条件求得。此条件给出方程

\[- \frac{\partial}{\partial y} \left(D_y \frac{\partial^2 \omega}{\partial y^2} + H \frac{\partial \omega}{\partial x} \right) = - \frac{q_0}{2} \sin \frac{m\pi x}{a}.\]

代入w的表达式(n)，即得:

\[A_m = \frac{q_0 \alpha^2 \beta^1}{2m^2 D_y (\alpha^2 - \beta^2)} = \frac{\alpha q_0 \alpha^4}{2\pi^2 m^2 D_y (\alpha^2 - \beta^2)}, \]

而挠度的最终表达式(n)化为:

\[\omega = \frac{q_0 \alpha^4}{2\pi^2 m^2 D_y (\alpha^2 - \beta^2)} \left(\alpha e^{-my/\alpha} - \beta e^{-my/\beta} \right) \sin \frac{m\pi x}{a}.\quad (o) \]

在(l)的情形2中，特征方程有两对二重根，函数Y_m的形式与各向同性板情形中的相同(第36节)。对于(l)的情形3，引用符号

\[\alpha' = \frac{a \lambda}{\pi} \sqrt{\frac{2}{1 - \mu}}, \]

\[\beta' = \frac{a \lambda}{\pi} \sqrt{\frac{2}{1 + \mu}}, \quad (p) \]

即得解

\[\omega = \frac{q_0 \alpha^2}{4\pi^2 m^3 \sqrt{D_y D_z}} \left(\alpha' \sin \frac{my}{\alpha'} + \beta' \cos \frac{my}{\alpha'} \right) e^{-m\pi/\beta'} \sin \frac{m\pi x}{a}. \quad (q) \]

用复数关系式

\[\frac{1}{\alpha} = \frac{1}{\beta'} - i \frac{1}{\alpha'}. \]
\[\frac{1}{\beta} = \frac{1}{\beta'} + i \frac{1}{\alpha'} \] (r)

也可将情形 1 转化为情形 2.

有了正弦形壁荷 (f) 作用下的挠度曲面，便可将沿 x 轴上的任何其他种荷荷展成级数

\[q = \sum_{m=1}^{\infty} a_m \sin \frac{m \pi x}{a}, \]

并对此级数的每一项应用到对于壁荷 (f) 的解，从而得到此种荷荷作用下的挠度。例如荷荷 P 集中作用在无限长条板的点 \(x = \xi \), \(y = 0 \) 上 (图 72)，则下列各式成立:

情形 1, \(\mu > 1 \):

\[w = \frac{Pa^4}{\pi^4 D_x c^2 - \beta^2} \sum_{m=1}^{\infty} \frac{1}{m^3} \left(\alpha e^{-m \pi^2 / a} - \beta e^{-m \pi^2 / b} \right) \sin \frac{m \pi \xi}{a} \sin \frac{m \pi x}{a}; \] (s)

情形 2, \(\mu = 1 \):

\[w = \frac{Pa^4}{2 \pi^3 D_x \lambda} \sum_{m=1}^{\infty} \frac{1}{m^3} \left(1 + \frac{m \pi y}{a \lambda} \right) e^{-m \pi^2 / b} \sin \frac{m \pi \xi}{a} \sin \frac{m \pi x}{a}; \] (t)

情形 3, \(\mu < 1 \):

\[w = \frac{Pa}{2 \pi^3 \sqrt{D_x D_y}} \sum_{m=1}^{\infty} \frac{1}{m^3} \left(\alpha' \sin \frac{m y}{a'} + \beta' \cos \frac{m y}{a'} \right) e^{-m \pi^2 / b} \sin \frac{m \pi \xi}{a} \sin \frac{m \pi x}{a}. \] (u)

和 35 节中对各向同性板所用的方法相似，可以得到单行荷荷所产生的弯矩的封闭形式表达式\(^1\).

如我们在各向同性板情形中指出的那样，有了这个解，圆面积上分布荷荷所引起的板的挠度便可用积分求得 (参考第 35 节)。运用散度法，对无限长板求得的解可用来研究长度宽度有限的板的

* 401 *
弯曲\(^1\)。

89. 圆形和椭圆形板的弯曲 对于边缘夹支\(^2\)，承受强度为\(q\)的均匀载荷的椭圆板，能得到方程（213）的一个简单解。设正交异性材料的主方向\(x\)及\(y\)平行于椭圆的主轴（图157），则式

\[
u = w_0 \left(1 - \frac{x^2}{a^2} - \frac{y^2}{b^2}\right)^{\frac{1}{2}}
\]

满足方程（213）和所需的边界条件，式中

\[
w_0 = \frac{q}{24D_{xy} + \frac{16H}{a^2} + \frac{24D_y}{b^2}}
\]

板的弯矩可立即由式（212）求得。在夹支圆形板（\(a = b\））的特殊情形中，有下列结果：

\[
w = -\frac{q(a^2 - r^2)^3}{64D'}
\]

\[
M_x = \frac{q}{16D'} \left[(D_x + D_y)(a^2 - r^2) - 2(D_y + D_y)(a^2 + D_y x^2)\right],
\]

\[
M_y = \frac{q}{16D'} \left[(D_y + D_y)(a^2 - r^2) - 2(D_y y^2 + D_y x^2)\right],
\]

\[
M_{xy} = \frac{q}{4D'} D_{xy} xy,
\]

\[
Q_x = -\frac{q_x}{8D'} (3D_x + H),
\]

\[
Q_y = -\frac{q_y}{8D'} (3D_y + H),
\]

式中

\[
r = \sqrt{x^2 + y^2}, \quad D' = \frac{1}{8} (3D_x + 2H + 3D_y).
\]

由于沿边缘没有扭转，因而支边的反作用力是剪力\(Q_x\)和\(Q_y\)的边界值的线性组合（参看第91页）。

在正交异性椭圆板的纯弯曲或纯扭转变形下，也能得到直接的解。设此板承受均匀力矩：\(M_x = M_1, M_y = M_1, M_{xy} = M_3\)，将挠度取成如下形式：

\[\text{1)}\text{ M. T. Huber 在下列书中出了几个这种例子："Theory Plyt," Lvov, 1922年，及 "Probleme der Statik technisch wichtiger orthotroper Platten", 华沙，1929年。}

\[\text{2)}\text{ 短枕椭圆板的弯曲参看 Y. Ohasi, Z. angew. Math. u. Phys., 卷5, 第212页，1952年。}

\[\text{402}\]
$$w = Ax^4 + Bxy + Cy^4,$$

它显然满足微分方程 (213)。常数 A, B, C 由式 (212) 得到的下列线性方程组决定：

$$D_x A + D_y C = -\frac{1}{2} M_1,$$
$$D_y A + D_x C = -\frac{1}{2} M_1,$$
$$D_{xy} B = \frac{1}{2} M_1.$$

圆柱形各向异性的问题解答也为讨论过。如果除了弹性对称以外，所给的载荷分布也对称于板的中心，则受弯曲板的常数方程只包含两个参数：径向的和切向的。对任何边界条件都可简单地求得此方程的合理解；但是对材料的弹性常数的选择需要谨慎考虑，因为这些常数的某些假设，即使在连续分布载荷的情况下也会导致板中心的弯矩为无限大。

解各向同性板弯曲问题所采用的大多数特殊方法 (第 10 章)，在作了一些修正后也一样地能用来解各向异性板的弯曲问题。

比如，取复变数方法证明这解的形式与 79 节中所考虑的有所不同。可以知道，此解依赖于特征方程

$$D_x \rho^4 + 2H \rho^2 + D_\rho = 0$$

的根 $\rho_1, \rho_2, -\rho_1, -\rho_2$，它们或为虚根，或为复根。这些根确定后，齐次方程

$$D_x \frac{\partial^4 w}{\partial x^4} + 2H \frac{\partial^4 w}{\partial x^2 \partial y^2} + D_y \frac{\partial^4 w}{\partial y^4} = 0$$

的解便可以用下式

$$w = \mathcal{A}[\varphi_i(Z) \mp \varphi_i(Z)],$$

表示，如果 $\rho_i \approx \rho_2$；或者用

$$w = \mathcal{A}[\varphi_i(Z) + \gamma \varphi_i(Z)],$$

1) G. F. Carrier, *J. Appl. Mechanics*, 卷 11, 第 1-29 页, 1944 年, 及

表示，如果 $p_1 = p_2$。在此二式中 $ϕ_1$ 和 $ϕ_2$ 是复变数 $z_1 = x + p_1y$ 及 $z_2 = x + p_2y$ 的任意解析函数。

在应用李兹法时，80 节的应变能表示式 (b) 要用下式代替：

\[
\nu = \frac{1}{2} \int \int [D_x \left(\frac{\partial^2 \omega}{\partial x^2} \right)^2 + 2D_y \left(\frac{\partial^2 \omega}{\partial x \partial y} \right)^2 \\
+ D_y \left(\frac{\partial^2 \omega}{\partial y^2} \right)^2 + 4D_{xy} \left(\frac{\partial^2 \omega}{\partial x \partial y} \right)^2] \, dx \, dy,
\]

其他步骤与各向同性板情形一样。
第十二章
板在侧向载荷和中面力联合作用下的弯曲

90. 拐度曲面的微分方程
 在以前的讨论中，总是假设板仅受侧向载荷的弯曲作用。如果除侧向载荷外，还有外力作用在板的中面内，这些力对于板的弯曲可能有很大的影响，因此在推导相应的挠度曲面微分方程时必须考虑它们的作用。和承受侧向载荷的情况一样（见第21节，第82页），我们考虑一小单元体的平衡，此小单元体是用与xz和yz轴线平行的两对平面从板中截取的（图191）。除第21节中所讨论的力以外，现在还有作用在板中面的力。如图所示，用N_x，N_y，和$N_{xy} = N_{yx}$表示长度上这些力的大小。将这些力投影在x和y轴上，并假设没有体力，也没有板面方向内的切向力，我们得到下列平衡方程:

$$\frac{\partial N_x}{\partial x} + \frac{\partial N_{xy}}{\partial y} = 0, \tag{216}$$

$$\frac{\partial N_{xy}}{\partial x} + \frac{\partial N_x}{\partial y} = 0.$$

这两个方程和第21节中所考虑的三个平衡方程完全无关。因此可以分别研究，这将在第92节中说明。

讨论图191所示的力在z轴上的投影时，必须考虑板的弯曲，以及由弯曲所产生的单元体对边上的作用力N_x之间和N_y之间的微小夹角。由于弯曲的结果，法向力N_x在z轴上的投影为:
\[-N_xdy \frac{\partial w}{\partial x} + \left(N_x + \frac{\partial N_x}{\partial x} \right) \left(\frac{\partial w}{\partial x} + \frac{\partial^2 w}{\partial x^2} dx \right) dy,\]

经过简化，忽略不计高于二阶的小量，此投影化成
\[N_x \frac{\partial^2 w}{\partial x^2} dxdy + \frac{\partial N_x}{\partial x} \frac{\partial w}{\partial x} dxdy.\] \hspace{1cm} (a)

同理，法向力 \(N_y\) 在 \(z\) 轴上的投影为:
\[N_y \frac{\partial^2 w}{\partial y^2} dxdy + \frac{\partial N_y}{\partial y} \frac{\partial w}{\partial y} dxdy.\] \hspace{1cm} (b)

关于剪力 \(N_{xy}\) 在 \(z\) 轴上的投影，我们注意到，在单元体的两个对边上，挠度曲面在 \(y\) 方向的斜度分别为 \(\partial w/\partial y\) 和 \(\partial w/\partial y + (\partial^2 w/\partial x\partial y) dx\)。因此剪力在 \(z\) 轴上的投影等于:
\[N_{xy} \frac{\partial^2 w}{\partial x\partial y} dxdy + \frac{\partial N_{xy}}{\partial x} \frac{\partial w}{\partial x} dxdy.\]

对于剪力 \(N_{yx} = N_{xy}\) 在 \(z\) 轴上的投影，可得相似的式子。从而，全部剪力在 \(z\) 轴上的投影可写成:
\[2N_{xy} \frac{\partial^2 w}{\partial x\partial y} dxdy + \frac{\partial N_{xy}}{\partial x} \frac{\partial w}{\partial x} dxdy + \frac{\partial N_{xy}}{\partial y} \frac{\partial w}{\partial y} dxdy.\] \hspace{1cm} (c)

将式 (a), (b), (c) 和作用于单元体上的载荷 \(qdxdy\) 相加，并应用方程 (216)，我们得到下列平衡方程以代替方程 (100) (第 84 页)
\[\frac{\partial^2 M_x}{\partial x^2} - 2 \frac{\partial^2 M_{xy}}{\partial x\partial y} + \frac{\partial^2 M_y}{\partial y^2} = - \left(q + N_x \frac{\partial^2 w}{\partial x^2} + N_y \frac{\partial^2 w}{\partial y^2} + 2N_{xy} \frac{\partial^2 w}{\partial x\partial y} \right).\]

将 \(M_x, M_y, M_{xy}\) 的表达式 (101) 和 (102) 代入，即得:
\[\frac{\partial^4 w}{\partial x^4} + 2 \frac{\partial^4 w}{\partial x^2\partial y^2} + \frac{\partial^4 w}{\partial y^4} = \frac{1}{D} \left(q + N_x \frac{\partial^2 w}{\partial x^2} + N_y \frac{\partial^2 w}{\partial y^2} + 2N_{xy} \frac{\partial^2 w}{\partial x\partial y} \right).\] \hspace{1cm} (217)

如果除两侧向载荷外还有中面力，则在决定板的挠度时，应当用这个方程代替方程 (103)。
如在板的中面内作用有体力1，或在板的表面上分布有切向力，则如图
191 所示单元体的平衡微分方程变为:

$$
\frac{\partial N_x}{\partial x} + \frac{\partial N_y}{\partial y} + \chi = 0, \\
\frac{\partial N_y}{\partial x} + \frac{\partial N_y}{\partial y} + \gamma = 0.
$$
(218)

这里 χ 和 γ 代表体力的两个分量，或板的中面单位面积上的切向力的两个分量。

用方程 (218) 代替方程 (216)，得到如下的挠度曲面微分方程1:

$$
\frac{\partial^4 w}{\partial x^4} + 2 \frac{\partial^4 w}{\partial x^2 \partial y^2} + \frac{\partial^4 w}{\partial y^4} = \frac{1}{D} \left(q + X \frac{\partial^2 w}{\partial x^2} + Y \frac{\partial^2 w}{\partial y^2} \\
+ 2 N_{xy} \frac{\partial^2 w}{\partial x \partial y} - X \frac{\partial w}{\partial x} - Y \frac{\partial w}{\partial y} \right).
$$
(219)

方程 (217) 或 (219) 连同同边界条件（参看第 22 章，第 86 页）一起，决定了承受侧向载荷和中面力作用的板的挠度。

91. 均匀侧向载荷和均匀拉力

联合作用下的简支矩形板

如图 192 所示，假设板在 x 的方向受有均匀侧向载荷 q 可用三角级数表示（见第 114 页）:

$$
q = \frac{16q}{\pi^2} \sum_{m=1,3,5,\ldots} \sum_{n=1,3,5,\ldots} \frac{1}{mn} \sin \frac{m \pi x}{a} \sin \frac{n \pi y}{b}.
$$
(a)

于是方程 (217) 变成:

$$
\frac{\partial^4 w}{\partial x^4} + 2 \frac{\partial^4 w}{\partial x^2 \partial y^2} + \frac{\partial^4 w}{\partial y^4} - \frac{N_x}{D} \frac{\partial^2 w}{\partial x^2} = \frac{16q}{D \pi^2} \sum_{m=1,3,5,\ldots} \sum_{n=1,3,5,\ldots} \frac{1}{mn} \sin \frac{m \pi x}{a} \sin \frac{n \pi y}{b}.
$$
(b)

如将挠度 w 取成如下级数形式:

$$
1) \text{作用在板中面内的体力的一例，如垂直放置的板情况下的重力。}
2) \text{这个微分方程是 Saint Venant 在他所著 Clebsch 的著作中导出的，见}
\text{"Théorie de l'élasticité des corps solides"，后注 73，第 704 页，1883 年。}
$$
\[w = \sum \sum a_{mn} \sin \frac{m \pi x}{a} \sin \frac{n \pi y}{b}, \quad (c) \]

则方程 (b) 和简支边的边界条件都能满足。将此级数代入方程 (b)，求得系数 \(a_{mn} \) 的值为:

\[a_{mn} = \frac{16q}{D \pi^6 \left(\frac{m^2}{a^2} + \frac{n^2}{b^2} \right)^2 + \frac{N_x m^4}{\pi^2 D a^4}}, \quad (d) \]

式中 \(m \) 和 \(n \) 是奇数 1, 3, 5, \cdots, 如 \(m \) 和 \(n \) 中的一个为偶数，或两个都是偶数，则 \(a_{mn} = 0 \)。因此，板的挠度曲面为:

\[\omega = \frac{16q}{x^6 D} \sum_{m=1,3,5,\cdots} \sum_{n=1,3,5,\cdots} \frac{1}{mn} \left(\frac{m^2}{a^2} + \frac{n^2}{b^2} \right)^2 + \frac{N_x m^4}{\pi^2 D a^4} \sin \frac{m \pi x}{a} \sin \frac{n \pi y}{b}. \quad (e) \]

将此结果与解 (131) (第 115 页) 作比较，由于在分母的括弧中出现了项 \(N_x m^4 / \pi^2 D a^4 \)，可知拉力 \(N_x \) 的作用减小了一些板的挠度。这正在我们预料之中。

用莱维的方法（参看第 30 书），可得一单级数的解，它和式 (e) 等价，但是对于数字计算比较方便。用这个方法求得的最大挠度与最大弯矩值3 (设 \(v = 0.3 \)) 可表示成下列公式:

\[\omega_{\text{max}} = \alpha \frac{q b^4}{E h^3}, \quad (M_x)_{\text{max}} = \beta q b^2, \quad (M_y)_{\text{max}} = \beta_1 q b^2. \quad (f) \]

- 常数 \(\alpha, \beta \) 和 \(\beta_1 \) 依赖于比值 \(a/b \) 及参数

\[\gamma = \frac{N_x b^2}{4 \pi^2 D}. \]

它们的值在图 193、194 和 195 中用曲线表示。

如果中面力是压力，而不是拉力，则 N_x 为负，因此挠度 (e) 比仅受侧向载荷的板的挠度大。还可以看到，在此情况下，当压力 N_x 为某些定值时，级数 (e) 中某一项的分母可为零。这说明，当 N_x 为这样的值时，板不需要任何侧向载荷即可侧向屈曲。

图 193

92. 能量法的应用 以前讨论板受侧向载荷的弯曲问题时用过能量法（参看第 80 节，第 364 页），这方法也能用在侧向载荷与中面力联合作用的问题中。为了建立与中面力对应的应变能的表达式，假设这些力最初作用于板没弯曲的平面内。这样，我们得

409
到一个可用弹性力学方法处理的二维问题。假设这个问题已经解决，在板的每一点上，力 N_x, N_y 和 N_{xy} 为已知，则板中面的应变分量可由胡克定律的熟知公式得到:

$$
\varepsilon_x = \frac{1}{hE} (N_x - \nu N_y), \quad \varepsilon_y = \frac{1}{hE} (N_y - \nu N_x)
$$

$$
\gamma_{xy} = \frac{N_{xy}}{hG}
$$

因此，由于板中面伸张所引起的应变能为：

$$V_1 = \frac{1}{2} \iint (N_x \varepsilon_x + N_y \varepsilon_y + N_{xy} \gamma_{xy}) dxdy$$

$$= \frac{1}{2hE} \iint \left[N_x^2 + N_y^2 - 2\nu N_x N_y + 2(1+\nu)N_{xy}^2 \right] dxdy, \ (220)$$

式中积分号遍及整个板面。

现在施加以侧向载荷。这个载荷使板弯曲，并使中面产生附加应变。在以前讨论板的弯曲时，这个附加应变总是忽略不计的。但是这里必须考虑，因为这个小应变与有限力 N_z, N_y, N_{xy} 在一起，可使应变表达式增加几个与弯曲应变能同阶的项。当板弯曲时，板中面内的一点所产生的微小位移在 x, y 和 z 方向的分
量，分别用 u,v,w 表示。考虑 x 方向内的一中面线性单元 AB，由图 196 可以看出，由于位移 u 所产生在该单元的伸长等于 $\left(\frac{\partial u}{\partial x} \right) dx$。比较图 196 中单元 A_1B_1 的长度及其在 x 轴上的投影长度，可以看出，位移 w 使该单元产生的伸长为 $1/2 \left(\frac{\partial w}{\partial x} \right)^2 dx$。因此，在中面内所取的单元在 x 方向内的总单位伸长为:

$$
\varepsilon_x = \frac{\partial u}{\partial x} + \frac{1}{2} \left(\frac{\partial w}{\partial x} \right)^2.
$$

（221）

类似地，y 方向内的应变为

$$
\varepsilon_y = \frac{\partial v}{\partial y} + \frac{1}{2} \left(\frac{\partial w}{\partial y} \right)^2.
$$

（222）

![图 196](image)

![图 197](image)

现在考虑由于弯曲所产生的中面剪应变，同以前一样（参看图 23），可知由于位移 u,v 所产生的剪应变为 $\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x}$。为了决定位移 w 所产生的剪应变，在 x 和 y 方向内取二个无限小线性单元 OA 和 OB，如图 197 所示。由于 z 方向的位移，此二单元的位置移至 O_1A_1 和 O_1B_1。角 $\pi/2$ 和角 $A_1O_1B_1$ 之间的差就是对应于位移 w 的剪应变。为了求出此差值，考虑直角 $B_2O_1A_1$，其中 B_2O_1 和 BO 相平行，将平面 $B_2O_1A_1$ 绕 O_1A_1 轴旋转一角度 $\frac{\partial w}{\partial y}$，于是平面 $B_2O_1A_1$ 与平面 $B_1O_1A_1$ 重合，而点 B_1 落到 C 的位置。位移 B_2C 等于 $(\frac{\partial w}{\partial y}) dy$，与垂直 B_2B_1 的夹角为 $\frac{\partial w}{\partial x}$。所以 B_1C

1）角 $\frac{\partial w}{\partial y}$ 和 $\frac{\partial w}{\partial x}$ 对应着板的挠度，因此被认为是小量。
\[\gamma'_{xy} = \frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} + \frac{\partial w}{\partial x} \frac{\partial w}{\partial y}. \]

式（221）, (222), (223) 代表板的中面由于小挠度所产生的附加应变分量。考虑到它们与推导式（220）时所用的应变分量 \(\varepsilon_x, \varepsilon_y, \gamma_{xy} \) 相比较要小得多，因此可假设在弯曲时，力 \(N_x, N_y, N_{xy} \) 保持不变。有了这个假设，由于弯曲产生的中面应变所引起的板的附加应变为：

\[V_z = \iint (N_x \varepsilon_x + N_y \varepsilon_y + N_{xy} \gamma_{xy}) \, dx \, dy. \]

代入 \(\varepsilon_x, \varepsilon_y, \gamma_{xy} \) 的表达式（221），（222），（223），最后可得：

\[V_z = \iint \left[N_x \frac{\partial u}{\partial x} + N_y \frac{\partial v}{\partial y} + N_{xy} \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \right) \right] \, dx \, dy
+ \frac{1}{2} \iint \left[N_x \left(\frac{\partial u}{\partial x} \right)^2 + N_y \left(\frac{\partial u}{\partial y} \right)^2 + 2N_{xy} \frac{\partial u}{\partial x} \frac{\partial u}{\partial y} \right] \, dx \, dy. \]

(224)
此式右端的第一个积分，显然等于作用在板边缘 \(x = 0 \) 和 \(x = a \)上的诸力在弯曲时所作的功。类似地，第二个积分等于作用在边缘 \(y = 0 \) 和 \(y = b \)上的诸力所作的功。根据方程(218)，最后的两个积分等于作用在板内的诸力在弯曲时所作的功，如果不存在这些力，则其相应的积分为零。

将式(220)，(224)和弯曲应变能[见方程(117)，第92页]相加，我们就得到侧向载荷与中面力联合作用下受弯板的总应变能。这个总应变能等于侧向载荷在板弯曲时所作的功 \(T_e \) 加上作用在板的中面内的诸力所作的功 \(T_a \)。由于中面力所作的功等于应变能 \(V_a \)，加上式(224)第一个积分所表示的应变能，因此可知诸侧向力所产生的功为:

\[
T_e = \frac{1}{2} \iint \left[N_x \left(\frac{\partial w}{\partial x} \right)^2 + N_y \left(\frac{\partial w}{\partial y} \right)^2 \right. \\
+ 2N_{xy} \frac{\partial w}{\partial x} \frac{\partial w}{\partial y} \right] dxdy + \frac{D}{2} \iint \left\{ \left(\frac{\partial^2 w}{\partial x^2} + \frac{\partial^2 w}{\partial y^2} \right)^2 \right\} dxdy.
\]

(225)

现在应用虚位移原理，作挠度 \(w \) 的变分 \(\delta w \)，由式(225)可得

\[
\delta T_e = \frac{1}{2} \delta \iint \left[N_x \left(\frac{\partial \delta w}{\partial x} \right)^2 + N_y \left(\frac{\partial \delta w}{\partial y} \right)^2 \right. \\
+ 2N_{xy} \frac{\partial \delta w}{\partial x} \frac{\partial \delta w}{\partial y} \right] dxdy + \frac{D}{2} \delta \iint \left\{ \left(\frac{\partial^2 \delta w}{\partial x^2} + \frac{\partial^2 \delta w}{\partial y^2} \right)^2 \right\} dxdy.
\]

(226)

此式左侧表示侧向载荷在虚位移上所作的功，右端是板应变能的相应变化。在下一节中，将用若干例子说明这个式子的应用。

93. 侧向载荷和中面力联合作用下的简支矩形板 我们首先考虑在 \(x \) 方向均匀拉伸（图192），并在点 \((\xi, \eta)\) 承受一集中载荷 \(P \) 的简支矩形板。满足边界条件的一般挠度表达式为

\[
w = \sum_{m=1, 2, 3, \ldots} \sum_{n=1, 2, 3, \ldots} a_{mn} \sin \frac{m\pi x}{a} \sin \frac{n\pi y}{b}.
\]

(3a)
我们利用普遍方程 (226) 来求在这级数中的系数 a_{mn}. 在本问题中，$N_y = N_{xy} = 0$，因此式 (225) 右端第一个积分在代入表示 ω 的级数 (a) 以后，化成

$$
\frac{1}{2} \int_0^a \int_0^b \frac{N_x}{N} \left(\frac{\partial \omega}{\partial x} \right)^2 \, dx \, dy = \frac{ab}{8} N_x \sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} a_{mn}^2 \frac{m^2 \pi^2}{a^2}.
$$

(b)

相当于式 (225) 中第二个积分的弯曲应变能为 [见式 (d)，第 365 页]

$$
V = \frac{x^4 ab}{8} D \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} a_{mn}^2 \left(\frac{m^2}{a^2} + \frac{n^2}{b^2} \right)^2.
$$

(c)

为了得到挠曲 $\delta \omega$，作系数 a_{mn} 的增量 δa_{mn}，板的相应挠变为:

$$
\delta \omega = \delta a_{mn} \sin \frac{m \pi x}{a} \sin \frac{n \pi y}{b}.
$$

为了减少挠曲 $\delta \omega$，作系数 a_{mn} 的增量 δa_{mn}，板的相应挠变为:

$$
P \delta a_{mn} \sin \frac{m \pi x}{a} \sin \frac{n \pi y}{b}.
$$

(d)

相应的应变能变化由二项组成，它们是

$$
\frac{1}{2} \delta \int_0^a \int_0^b \frac{N_x}{N} \left(\frac{\partial \omega}{\partial x} \right)^2 \, dx \, dy
$$

$$
= \frac{ab}{8} N_x \frac{\partial}{\partial a_{mn}} \left(\sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} a_{mn}^2 \frac{m^2 \pi^2}{a^2} \right) \delta a_{mn},
$$

$$
= \frac{ab}{4} N_x a_{mn} \frac{m^2 \pi^2}{a^2} \delta a_{mn},
$$

(e)

和

$$
\delta V = \frac{\partial V}{\partial a_{mn}} \delta a_{mn} = \frac{x^4 ab}{4} D a_{mn} \left(\frac{m^2}{a^2} + \frac{n^2}{b^2} \right)^2 \delta a_{mn},
$$

将式 (d) 和 (e) 代入方程 (225)，得到:

$$
P \delta a_{mn} \sin \frac{m \pi x}{a} \sin \frac{n \pi y}{b} = \frac{ab}{4} N_x a_{mn} \frac{m^2 \pi^2}{a^2} \delta a_{mn},
$$

$$
+ \frac{x^4 ab}{4} D a_{mn} \left(\frac{m^2}{a^2} + \frac{n^2}{b^2} \right) \delta a_{mn},
$$

415
由此式可得：

$$a_{m,n} = \frac{4P \sin \frac{m_1 \pi x}{a} \sin \frac{n_1 \pi y}{b}}{a b \pi^4 D \left[\left(\frac{m_1^2}{a^2} + \frac{n_1^2}{b^2} \right)^2 + \frac{m_1^2 N_x}{\pi^4 a^2 D} \right]}.$$ (f)

将这些系数 $a_{m,n}$ 的值代入式 (a)，就得到板的挠度：

$$w = \frac{4P}{a b \pi^4 D} \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac{\sin \frac{m \pi x}{a} \sin \frac{n \pi y}{b}}{\left(\frac{m^2}{a^2} + \frac{n^2}{b^2} \right)^2 + \frac{m^2 N_x}{\pi^4 a^2 D}} \sin \frac{m \pi x}{a} \sin \frac{n \pi y}{b}. \quad (g)$$

如果不是拉力 N_x，而是同样大小的压力，则用 $-N_x$ 代替式 (g) 中的 N_x，就能得到板的挠度。这样的代替给出

$$w = \frac{4P}{a b \pi^4 D} \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac{\sin \frac{m \pi x}{a} \sin \frac{n \pi y}{b}}{\left(\frac{m^2}{a^2} + \frac{n^2}{b^2} \right)^2 - \frac{m^2 N_x}{\pi^4 a^2 D}} \sin \frac{m \pi x}{a} \sin \frac{n \pi y}{b}. \quad (h)$$

使式 (h) 有一个项的分母为零时的 N_x 的最小值是压力 N_x 的临界值。显然，这个临界值可由取 $a = 1$ 得到。所以

$$(N_x)_c = \frac{\pi^2 a^2 D}{m^2} \left(\frac{m^2}{a^2} + \frac{1}{b^2} \right)^2 = \frac{\pi^2 D}{b^2} \left(\frac{m b}{a} + \frac{a}{m b} \right)^2, \quad (227)$$

式中 m 应选成使式 (227) 的值为最小。对于比值 a/b 作因子

$$\kappa = \left(\frac{m b}{a} + \frac{a}{m b} \right)^2$$

的曲线图，对不同的 m 值，我们得到图 198 所示的一组曲线。在决定 κ 时所需要用的曲线部分由实线表示。可以看出，对于方形板以及任何可分成整数个边长为 b 的正方形的板，其因子 κ 等于 4。我们还可看出，对于很长的板 κ 实际上保持为 4\(4/4)\)。由于对长方形板，式 (227) 中 m 的值可以不等于 1，因此这种板在侧向载荷与压力的联合作用下，在板的长边方向内一般并不弯曲成半波形

1) 在 S. Timoshenko 的 "Theory of Elastic Stability" 中对这个问题作了更详尽的讨论。（"弹性稳定理论," 第 321 页，张福万译，科学出版社，1958 年。）
式。例如，在 $a/b = 2, 4, \cdots$ 时，它们的弹性曲面对中线 $x = a/2$ (图 192) 是明显地不对称的，特别是当 N_x 的值接近于临界值 $(N_x)_c$ 时更是如此。

有了一集中载荷所产生的挠度 w，用叠加法可得到任意侧向载荷所产生的挠度。例如，假设板承受强度为 q 的均匀载荷，我们用 $q d\xi d\eta$ 代替式 (g) 中的 P，并将此式在整个板的面积上积分，这样就得到均匀载荷作用下板的挠度表达式，这个式子与已经用别的方法推演的结果相同（参看第 408 页）。

如果承受侧向载荷 P 的板在中面内受到均匀分布压力 N_x 和 N_y 的作用，同以前一样，我们有:

$$w = \frac{4P}{ab^4D} \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \left[\frac{\sin \frac{m\pi \xi}{a} \sin \frac{n\pi \eta}{b}}{\sin \frac{m\pi \xi}{a} \sin \frac{n\pi \eta}{b}} \right] \left(\frac{m^2}{a^2} + \frac{n^2}{b^2} \right) - \frac{m^2 N_x}{\pi^2 a^4 D} - \frac{n^2 N_y}{\pi^2 b^2 D} \times \sin \frac{m\pi x}{a} \sin \frac{n\pi y}{b}.$$ (i)

1) K. Girkmann 考虑了这种变形的若干例子，Stahlbau，第 15 卷，第 57 页，1942 年。
压力 N_x 和 N_y 的临界值由条件

$$
\frac{m^2(N_x)_{cr}}{\pi^2 a^4 D} + \frac{n^2(N_y)_{cr}}{\pi^2 b^4 D} = \left(\frac{m^2}{a^2} + \frac{n^2}{b^2}\right)^2
$$

(1)

求得，式中 m 和 n 应这样选择：对于某一给定的比较 N_x/N_y, N_x 和 N_y 为最小值。在圆板内有均匀压力 p 作用的方形板情况下，有 $a = b$, $N_x = N_y = p$. 于是式 (1) 给出

$$
\rho_{cr} = \frac{\pi^2 D}{a^2} \left(m^2 + n^2 \right)_{\text{min}}.
$$

(2)

取 $m = n = 1$, 就得到 p 的临界值:

$$
\rho_{cr} = \frac{2 \pi^2 D}{a^2}.
$$

(228)

在简支等边直角三角形板的情况下 (图 161)，满足所有边界条件的扭曲板的挠度曲面为

$$
\omega = a \left(\sin \frac{\pi x}{a} \sin \frac{2\pi y}{b} + \sin \frac{2\pi y}{a} \sin \frac{\pi x}{a} \right).
$$

因此，在式 (2) 中代入 $m = 1$, $n = 2$ 或 $m = 2$, $n = 1$, 就得到荷载的临界值:

$$
\rho_{cr} = \frac{5 \pi^2 D}{a^2}.
$$

(229)

94. 侧向载荷和拉力 (或压力) 联合作用下的圆形板

考虑一圆形板 (图 199)，同时作用有对称的侧向载荷与板中心的均匀压力 $N_x = N_y = N$. 由于变形后板的斜度 φ （图 27），径向压力 N 产生一横向分量 $N d\varphi/dr$. 我们必须将它与侧向载荷所产生的剪力 Q (图 28) 相加，因此微分方程 (54) 化为形式变成

1) 在 Timoshenko 的 "Theory of Elastic Stability" 中对这个问题作了完整的

研究，见中译本第 327 页。

2) 这是方板以对角线为基线的固有振动的形式。
\[
\frac{d^2 \varphi}{dr^2} + \frac{1}{r} \frac{d\varphi}{dr} + \left(\frac{k^2}{a^2} - \frac{1}{r^2} \right) \varphi = -\frac{Q}{D},
\]
式中，
\[
k^2 = \frac{Nd^2}{D}.
\]
在无孔圆形板的情况下，方程 (a) 的解为
\[
\varphi = C_i J_0 \left(\frac{kr}{a} \right) + \varphi_o,
\]
式中 \(J_0 \) 是零阶贝塞尔函数，\(\varphi_0 \) 是方程 (a) 的一特解，它随 \(Q \) 而变，\(C_i \) 是由板的边界条件所决定的常数。

我们以承受强度为 \(q \) 的均匀载荷的刚性夹支板为例。用
\[
\varphi_0 = -\frac{qra}{2kD} = -\frac{q}{2N}
\]
作为特解，所以
\[
\varphi = \frac{d\varphi}{dr} = C_i J_0 \left(\frac{kr}{a} \right) - \frac{qra^2}{2kD},
\]
进行积分，即得
\[
\varphi = \frac{C_i a}{k} J_0 \left(\frac{kr}{a} \right) - \frac{qra^2}{4N} + C_2,
\]
式中 \(J_0 \) 是零阶贝塞尔函数，\(C_2 \) 是另一常数，由边界条件：当 \(r = a \) 时 \(\varphi = 0 \)，算出 \(C_2 \)，由边界条件：当 \(r = a \) 时 \(w = 0 \)，算出 \(C_2 \)，就得到最后的解
\[
\varphi = \frac{qra^2 \left[J_0 \left(\frac{kr}{a} \right) - J_0(k) \right]}{2k^2 J_1(k) D} - \frac{qra^2(a^2 - r^2)}{4k^2 D}.
\]
当 \(J_i(k) = 0 \) 时，挠度 (e) 变为无穷大。用 \(i, i_2, i_3, \ldots \) 表示函数 \(J_i \) 的零点，其顺序是由小到大，可以看到，条件 \(k = i \) 决定了压应力 \(N \) 的最小临界值：
\[
N_{cr} = \frac{Dj_i^2}{a^2}.
\]

1) 如板有同心的圆孔，则在式 (c) 中应加上与第二类贝塞尔函数成正比的一项。此时内边界应作用有相同压力 \(N \)，否则由于应力 \(N \) 和 \(N_1 \) 不是常数，问题就变得更加复杂了。
2) H. Reismann 讨论了无横向载荷弹性约束的情况， 见 J. Appl. Mechanics，第 19 卷，第 167 页，1952 年。
3) 这个结果可在 A. Nadri 的著作中找到；“Elastische Platten”，第 235 页，柏林，1925 年。
那么对于函数 $J_i(k)$ 可表示成：

$$J_i(k) = \frac{k}{2} \left(1 - \frac{k^2}{i^2}\right) \left(1 - \frac{k^2}{i^2}\right) \cdots$$ (h)

式中 $i_1 = 3.83171$, $i_2 = 7.01559$, \cdots. 当 $k < i_1$ 时，从第二个括号开始的各项 k^2/i^2 可忽略不计，进一步指出

$$\frac{k^4}{i^4} = \frac{N}{N_a}.$$

根据式 (b) 和 (k) 近似地有

$$J_i(k) = \frac{k}{2} (1 - \alpha).$$ (i)

式中

$$\alpha = \frac{N}{N_a}.$$ (i)

利用式 (i)，可得近似式

$$w = \frac{w_q}{1 - \alpha}.$$

其中 w_q 是载荷 q 单独作用时所产生的挠度，其它边界条件及其他侧向载荷分布规律的问题可用类似的方法求解。在对称侧向载荷与压力联合作用的一般情况下，对于板的中心 ($r = 0$)，可近似地写成

$$w_q = \left(\frac{d^2 w}{dr^2}\right)_0 = \frac{1 + \varepsilon_0 \varepsilon}{1 - \alpha} \left(\frac{d^2 w}{dr^2}\right)_0.$$ (k)

而在边界上 ($r = a$)，可近似地写成

$$\left(\frac{d w}{dr}\right)_a = \frac{1 + \varepsilon' \varepsilon}{1 - \alpha} \left(\frac{d w}{dr}\right)_a;$$

$$\left(\frac{d^2 w}{dr^2}\right)_a = \frac{1 + \varepsilon'' \varepsilon}{1 - \alpha} \left(\frac{d^2 w}{dr^2}\right)_a;$$ (l)

式中 w_q 是板在所给侧向载荷单独作用下的挠度，$\alpha = N/N_a$ 的值为：

对于简支板： $\alpha = \frac{N_{a1}}{4.28D}$;

对于夹式板： $\alpha = \frac{N_{a1}}{14.68D}$;

上述数值适用于 $\nu = 0.3$。常数 c_0, c' 和 c'' 的值在表 81 中给出。

表 81 近似式 (k) 和 (l) 中各常数的值，$\nu = 0.3$

<table>
<thead>
<tr>
<th>情况</th>
<th>载荷分布</th>
<th>边界条件</th>
<th>常数值</th>
</tr>
</thead>
</table>
| 1 | 均匀边缘力矩 | 简支 | $c_0 = 0.305$
$c' = -0.270$
$c'' = -1.219$ |
| 2 | 均匀侧向载荷 | 简支 | $c_0 = 0.0452$
$c' = c'' = -0.0327$ |
| 3 | 均匀分布于半径为 a 的面积上的中心载荷 | 夹支 | $c_0 = 0.308$
$c'' = -0.473$ |
| 4 | 均匀分布于半径为 a 的面积上的中心载荷 | 简支 | $c_0 = -1 + \frac{2.153}{1 - 1.31a}$
$c' = c'' = 0.205$ |
| 5 | 均匀分布于半径为 a 的面积上的中心载荷 | 夹支 | $c_0 = -1 - \frac{1.308}{1.31a}$
$c'' = 0.0539$ |

如果圆形板承受有侧向载荷与均匀拉力 N 的联合作用，则近似地有

$$(\omega)_{nm} = \frac{(\omega_0)_{nm}}{1 + \alpha},$$

式中 α 为 N/N_{cr} 的绝对值。至于曲率，应当在式 (k) 和 (l) 中用因子

$$\frac{1}{1 + (1 + \alpha)\alpha}$$

来代替因子 $(1 + \alpha)/(1 - \alpha)$，常数 c 分别代表 c_0, c' 和 c''。

95. 具有微小初始曲率的板的弯曲

假设板的中面有些初始弯曲，从而板上任一点都有初始挠度 ω_0，它与板的厚度比较为小量。如果这种板承受横载荷的作用，则将产生新的挠度 ω_1，因此板的中面任一点的总挠度为 $\omega_0 + \omega_1$。在计算挠度 ω_1 时，我们使用对于平板推导所得的方程(103)。如初始挠度 ω_0 很小，这种做法是合理的，因为可以认为初始挠度是一假想的载荷所产

1) 参看 S. Timoshenko, Известия института инженеров путей сообщения，第 89 卷，圣彼得堡，1915 年。
生的，所以可运用叠加原理。假如除侧向载荷外，还有作用于中面内的诸力，则这些力对于弯曲的作用不仅决定于 \(w_1 \)，而且也决定于 \(w_0 \)。为了将这个情况考虑到去，在应用方程 (217) 时，我们在方程的右端用总挠度 \(w = w_0 + w_1 \)。应当记住，该方程的左端是由板的弯矩表达式得到的。由于这些弯矩不决定于总曲率，而只是决定于板的曲率改变量，因此在将方程应用于所考虑的问题时，方程的左端应当用挠度 \(w_1 \) 来代替 \(w \)。所以，对于有初始曲率的板，方程 (217) 变为：

\[
\frac{\partial^4 w_1}{\partial x^4} + 2 \frac{\partial^4 w_1}{\partial x^2 \partial y^2} + \frac{\partial^4 w_1}{\partial y^4} = \frac{1}{D} \left[q + N_x \frac{\partial^2 (w_0 + w_1)}{\partial x^2} + \frac{\partial^2 (w_0 + w_1)}{\partial y^2} + 2 N_{xy} \frac{\partial^2 (w_0 + w_1)}{\partial x \partial y} \right],
\]

(230)

可以看到，初始曲率对于挠度的影响与强度为：

\[
N_x \frac{\partial^2 w_0}{\partial x^2} + N_y \frac{\partial^2 w_0}{\partial y^2} + 2 N_{xy} \frac{\partial^2 w_0}{\partial x \partial y}
\]

的假设侧向载荷的影响相同。因此，如果板有初始曲率，仅有在 \(xy \) 平面内作用的诸力将产生弯曲。

以矩形板的情况 (图 192) 为例，假设板的初始挠度由式

\[
w_0 = a \sin \frac{\pi x}{a} \sin \frac{\pi y}{b}
\]

来定义。如均匀分布的压力 \(N_x \) 作用于板的边界上，则方程 (230) 化为

\[
\frac{\partial^4 w_1}{\partial x^4} + 2 \frac{\partial^4 w_1}{\partial x^2 \partial y^2} + \frac{\partial^4 w_1}{\partial y^4} = \frac{1}{D} \left(N_x \frac{\pi^2 x^2}{a^2} \sin \frac{\pi x}{a} \sin \frac{\pi y}{b} - N_x \frac{\partial^2 w_0}{\partial x^2} \right),
\]

(230)

将这个方程的解取成如下形式：

\[
w_1 = A \sin \frac{\pi x}{a} \sin \frac{\pi y}{b}.
\]

(230)

1) 在大挠度的情况下，挠度值不再与载荷成正比，因此不能应用叠加原理。

* 122 *
代入方程 (b)，得到:

\[A = \frac{a_{11}N_x}{\pi^2D \left(1 + \frac{a^2}{b^2} \right)^2 - N_x} \]

有了这个 A 的值，式 (c) 就给出了压力 N_x 所产生的板的挠度。把这个挠度与初始挠度 (a) 相加，我们得到下列板的总挠度表达式:

\[w = w_0 + w_1 = \frac{a_{11}}{1 - \alpha} \sin \frac{x}{a} \sin \frac{y}{b}; \]

式中

\[\alpha = \frac{N_x}{\pi^2D \left(1 + \frac{a^2}{b^2} \right)^2} \]

最大挠度在板的中心，等于

\[w_{\text{max}} = \frac{a_{11}}{1 - \alpha}. \]

这个公式与用于具有初始曲率的杆的公式\(^1\)相似。

在更一般的情况下，可将矩形板的初始挠度曲面取成如下级数的形式:

\[w_1 = \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} a_{mn} \sin \frac{m\pi x}{a} \sin \frac{n\pi y}{b}. \]

将这个级数代入方程 (230)，求得板上任一点的附加挠度为

\[w_1 = \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} b_{mn} \sin \frac{m\pi x}{a} \sin \frac{n\pi y}{b}, \]

式中

\[b_{mn} = \frac{a_{mn}N_x}{\pi^2D \left(m + \frac{n^2}{a^2} \right)^2 - N_x}. \]

可以看到，所有系数 b_{mn} 随着 N_x 的增大而增大。因此当 N_x 趋近于临界值时，级数 (h) 中对应于板的侧向屈曲形式的项 [参看式

远大于其它项。这里的情况与具有初始曲率的杆在压力作用下的弯曲情况完全相似。

如果在板的中面内作用的不是压力，而是张力，则可用相同的方法求解此问题。在这种情况下，只需要改变以上各式中 N_x 的符号。如果不仅有力 N_x，而且有力 N_y 和 N_z 均匀分布在板的边缘上，我们也能毫不困难地求得这个情况的挠度。
第十三章
板的大挠度

96. 沿边缘承受均匀分布力矩的圆形板的弯曲

在以前讨论圆形板的纯弯曲时已经证明（参照第48页），如挠度较之于板厚为小量，则板的中面应变可忽略不计。在挠度较之于板厚不再为小量，但较之于板的其它尺寸仍为小量的情况下，分析问题时就必须把板的中面应变考虑进去。1)

假设圆形板受到沿板边缘均匀分布的力矩\(M_0\)的弯曲作用（图200a）。在此情况下，挠度曲面对称于中心\(O\)，板中面内一点的位移可分解成两个分量：径向分量\(u\)，垂直于板平面的分量\(w\)。象以前在图198（第412页）中所指出的那样进行推演，可得径向应变为2)

\[
\varepsilon_r = \frac{du}{dr} + \frac{1}{2} \left(\frac{dw}{dr} \right)^2.
\] \(\text{(a)}\)

切向应变显然为

\[
\varepsilon_t = \frac{u}{r}.
\] \(\text{(b)}\)

用\(N_r\)和\(N_t\)表示相应的单位长上的拉力，并且应用胡克定律，则得：

1) S. Timoshenko 讨论了这个问题；参看：Izvestia instituta imjenerov putej soobshcheniya，第89卷，圣彼得堡，1915年。
2) 在挠度很大的情况下，有

\[
\varepsilon_r = \frac{du}{dr} + \frac{1}{2} \left(\frac{du}{dr} \right)^2 - \left(\frac{dw}{dr} \right)^2,
\]

\[
N_r = \frac{E h}{1 - \nu^2} (\varepsilon_r + \nu \varepsilon_\theta) = \frac{E h}{1 - \nu^2} \left[\frac{du}{dr} + \frac{1}{2} \left(\frac{d\omega}{dr} \right)^2 + \nu \frac{u}{r} \right], \\
N_\theta = \frac{E h}{1 - \nu^2} (\varepsilon_\theta + \nu \varepsilon_r) = \frac{E h}{1 - \nu^2} \left[\frac{u}{r} + \nu \frac{du}{dr} + \frac{1}{2} \left(\frac{d\omega}{dr} \right)^2 \right].
\]

在推导图 200b 和 200c 所示板内一单元的平衡方程时，必须把这些力考虑进去。对作用在这一单元上所有力的径向投影取和，可得

\[
r \frac{dN_r}{dr} d\theta d\theta + N_r d\theta d\theta - N_r d\theta d\theta = 0,
\]

由此式，有

\[
N_r - N_\theta + r \frac{dN_r}{dr} = 0.
\]

与推导方程 (55) 时所用的方法相同 (参看第 54 页)，将所有的力对于与半径垂直的轴取力矩，就能得到这单元的第 二 个 平 衡 方 程：

图 200

1）Q_\theta 的方向与图28中所画的相反，这就是方程 (c) 取负号的原因。
剪力 \(Q_r \) 的大小是由考虑半径为 \(r \) 的内圆部分的平衡而得到的(图 200a)，这样的考虑给出关系式

\[
Q_r = -N_r \frac{dw}{dr}.
\]

将此剪力表达式代入方程 (e)，并应用 \(N_r \) 和 \(N_i \) 的表达式 (c)，就能把平衡方程 (d) 和 (e) 写成下列形式:

\[
\frac{d^2 w}{dr^2} = -\frac{1}{r} \frac{du}{dr} + \frac{u}{r^2} - \frac{1 - \nu}{2} \left(\frac{dw}{dr} \right)^2 - \frac{dw}{dr} \frac{d^2 w}{dr^2}.
\]

\[
\frac{d^3 w}{dr^3} = -\frac{1}{r} \frac{d^3 w}{dr^2} + \frac{1}{r^2} \frac{dw}{dr} + \frac{12}{r^3} \frac{dw}{dr} \left[\frac{du}{dr} + \nu \frac{u}{r} + \frac{1}{2} \left(\frac{dw}{dr} \right)^2 \right].
\]

这两个非线性方程可以作数值积分：由板的中心开始，并在半径方向内取微小的增量向前进行，对于半径 \(r \) 很小的在中心处的圆形单元，设取一定的径向应变

\[
e_\theta = \left(\frac{du}{dr} \right)_{r=0}.
\]

及一定的均匀曲率

\[
\frac{1}{\rho_0} = -\left(\frac{d^2 w}{dr^2} \right)_{r=0}.
\]

已知在中心处的径向应变与曲率的值，可对于 \(r = c \) 计算径向位移 \(u \) 和斜度 \(dw/dr \)。因此方程(231)右端所有的量都是已知的，从而可对 \(r = c \) 计算 \(d^2 u/dr^2 \) 和 \(d^3 w/dr^3 \) 的值。知道了这些值，立即就能作出另一长度为 \(c \) 的径向增量，并能对于 \(r = 2c \) 计算出方程 (231) 右端所出现的全部量，其下以此类推。已知任一区间端

点的φ和φ'以及它们的导数的值，力N_1和N_2的值就可从式（c）计算，弯矩M_1和M_2就可从式（52）和（53）（第52页）计算。经过这样的重复计算，我们到达径向距离$r = a$，在这里径向力N_e为零。这样，我们得到半径为a并承受沿边缘有均匀分布弯矩M_e的弯曲作用的圆形板。改变中心的ε_0和$1/\rho_0$的数值，可得不同的外半径值和不同的边缘弯矩值的板。

![图201](image)

图201用曲线表示对于

$$ a \approx 23h \text{ 和 } (M_e)_{r=a} = M_0 = 2.93 \times 10^{-3} \frac{D}{h} $$

的板所得的结果。可以看出，板的最大挠度是$0.55h$，比忽略板的中面应变的初等理论所给出的挠度φ_0小百分之9左右。在板的中间部分，力N_1和N_2都是正的。在板的外部分，力N_1变为负的；即切线方向内存在压力。边缘上的最大切向压应力约为最大弯矩应力$6M_0/h^2$的百分之18。弯矩M_1和M_2所产生弯曲应力值比初等理论所给出的应力值$6M_0/h^2$小一些；它在中心最小，在该点

- 428 -
初等理论的误差可达百分之 12 左右。从这个数字例子可以看出，当挠度的数量级为 $0.5\ h$ 时，初等理论所给出的最大挠度和最大应力的误差是相当大。为了得到更精确的结果，必须把中面的应力考虑进去。

97. 承受均匀载荷的大挠度圆形板的近似公式

上节所用的方法也可应用于板的侧向受载情况。但是这个方法不实用，因为每一特殊问题中求挠度和应力都需要大量数字计算。用能量法可得到更有用的近似计算挠度的公式$^1)$. 设半径为 a 的圆形板的边缘是夹板并承受强度为 q 的均匀分布载荷。假设挠度曲面的形状可以用小挠度情况所用的同一方程表示，我们取

$$w = w_0 \left(1 - \frac{r^2}{a^2}\right)^2. \quad (a)$$

根据式 (m) (第 368 页)，其相应的弯曲应变能为：

$$V = \frac{D}{2} \int_0^a \int_0^{2\pi} \left[\left(\frac{\partial^2 w}{\partial r^2} \right)^2 + \frac{1}{r^2} \left(\frac{\partial w}{\partial r} \right)^2 + \frac{2v}{r} \frac{\partial w}{\partial r} \frac{\partial^2 w}{\partial r^2} \right] r dr d\theta$$

$$= \frac{32\pi}{3} \frac{a^3}{a^2} D. \quad (b)$$

对于径向位移，我们取表达式：

$$u = r(a - r)(C_1 + C_2 r + C_3 r^2 + \cdots), \quad (c)$$

其中每一项都满足边界条件：在板的中心和边缘处 u 必须为零。由位移的表达式 (a) 和 (c)，可计算上节所示的中面应变分量 e_r 和 e_t，并可用式：

$$V_1 = 2\pi \int_0^a \left(\frac{N_r e_r}{2} + \frac{N_t e_t}{2} \right) r dr$$

$$= \frac{\pi E h}{1 - v^2} \int_0^a \left(e_r^2 + e_t^2 + 2ve_r e_t \right) r dr. \quad (d)$$

计算由中面拉伸所产生的应变能。仅取级数 (c) 中的头两项，则得：

\ldots

$1)\ $ 参看 S. Timoshenko, "Vibration Problems," 第 452 页。关于近似公式也可参看本书表 82。
\[V_1 = \frac{\pi E h a^4}{1 - v^2} \left(0.250 C_1 a^4 + 0.1167 C_2 a^4 + 0.300 C_1 C_2 a^4 - 0.00846 C_1 a^2 \frac{8 \mu_0^2}{a^2} + 0.00682 C_2 a^2 \frac{8 \mu_0^2}{a^2} + 0.00477 \frac{64 \mu_0^4}{a^4} \right). \] (c)

现在常数 \(C_1 \) 和 \(C_2 \) 可由板的总应变能在平衡位置为极小值这一条件决定。因此，有

\[\frac{\delta V_1}{\delta C_1} = 0 \quad \text{和} \quad \frac{\delta V_1}{\delta C_2} = 0. \] (f)

代入 \(V_1 \) 的表达式 (e)，可得决定 \(C_1 \) 和 \(C_2 \) 的两个线性方程。由此二方程，求得：

\[C_1 = 1.185 \frac{\mu_0^2}{a^4} \quad \text{和} \quad C_2 = -1.75 \frac{\mu_0^2}{a^4}. \]

于是，由式 (e) 得到

\[V_1 = 2.59 \pi D \frac{\mu_0^2}{a^2 h^2}. \] (g)

将这个由中面的 Buzz 产生的应变能与弯曲应变能 (b) 相加，我们得到总的应变能：

\[V + V_1 = \frac{32}{3} \pi D \frac{\mu_0^2}{a^2} \left(1 + 0.244 \frac{\mu_0^2}{h^2} \right). \] (h)

括弧中的第二项相当于板的中面应变能所引起的修正。显然，如板中心的挠度 \(\mu_0 \) 与板厚 \(h \) 比较小量，则此修正很小，并可忽略不计。

由表达式 (b) 已知应变能，应用虚假移原理就能得到板的挠度。根据此原理，有

\[\frac{d(V + V_1)}{d \mu_0} \delta \mu_0 = 2 \pi \int_0^a q \delta \omega \rho v dr = 2 \pi q a \mu_0 \int_0^a \left(1 - \frac{r^2}{a^2} \right) r dr. \]

将式 (h) 代入上式，可得一决定 \(\mu_0 \) 的三次方程。此方程可写成如下形式：

\[\mu_0 = \frac{qa^4}{64D} \frac{1}{1 + 0.488 \frac{\mu_0^2}{h^2}}. \] (232)

1) 在此计算中假设 \(v = 0.3 \).
右端的后一因子代表中面拉伸对挠度的影响。由于这样的影响，挠度 w_0 不再与载荷强度 q 成正比，并且板的刚度随着挠度的增加而增大。例如取 $w_0 = \frac{1}{2}h$，由方程（232）得到：

$$w_0 = 0.89 \frac{qa^4}{64D}.$$

这说明，这此情况下挠度比忽略不计中面拉伸所得的值小 11%。

到此为止，我们总是假设在板的边缘上径向角位移为零。另一种假设是设边线可在半径方向内自由移动。此时式（232）必须用

$$w_0 = \frac{qa^4}{64D} \frac{1}{1 + 0.146 \frac{\omega_0}{h}}$$ (233)

代替，上式说明，在后一假设下板的拉伸影响比前一假设小得多。例如设 $w_0 = \frac{1}{2}h$，可得 $w_0 = 0.965(\frac{qa^4}{64D})$，拉伸的影响仅为 3.5%，而不是前一假设下所得的为 11%。

由第 96 节的式（b）和（c）进一步可知，如在边缘上 $N_r = 0$，则 N_r 的边缘值为 $N_r = Ehe_r = Eh h/r$，也就是负的。因此我们可以预期，对于一定的侧向载荷的临界值，板的边缘区域是不稳定的。

本节问题的近似解的另一方法是纳达义（A. Nádasy）所提出的。他从相似于方程（231）的平衡方程出发。为了推导这些方程，我们只需要改变上节的式（f），以适合于强度为 q 的侧向载荷情况。作了这样的改变后，剪力的表达式显然变成：

$$Q_r = -N_r \frac{d\omega}{dr} - \frac{1}{r} \int_0^r qr dr.$$ (i)

象上节所用式（f）那样，应用式（i），我们得到下列相当于方程

1) 这是根据第 100 节所述的方法得到的。
2) А. Ю. Панов и В. И. Феносов研究了这种情况下所发生的不稳定，见《Прикл. Мат. Мех.》第 12 卷，第 389 页，1948 年。
3) 参看纳达义的著作 "Elastische Platten," 第 288 页，1925 年。
(231) 的方程组:

\[
\frac{d^2u}{dr^2} + \frac{1}{r} \frac{du}{dr} - \frac{u}{r^2} = -\frac{1 - \nu}{2r} \left(\frac{dw}{dr} \right)^2 - \frac{d\omega}{dr} \frac{d^2\omega}{dr^2},
\]

\[
\frac{d^2\omega}{dr^2} + \frac{1}{r} \frac{d^2\omega}{dr^2} - \frac{1}{r^2} \frac{d\omega}{dr} = \frac{12}{h^2} \frac{d\omega}{dr} \frac{du}{dr} + \nu \frac{u}{r}
+ \frac{1}{2} \left(\frac{d\omega}{dr} \right)^2 + \frac{1}{Dr} \int_0^r q rdr.
\]

(234)

为了求解这个问题的近似解，须取一适当的挠度 \(\omega \) 的表达式作为第一近似。将它代入式 (234) 中第一个方程的右端，得到一个 \(u \) 的线性方程，用它可积分出 \(u \) 的第一近似。将 \(u \) 和 \(\omega \) 的第一近似代入式 (234) 中第二个方程的右端，得到一个 \(\omega \) 的线性微分方程，用它可积分出 \(\omega \) 的第二近似。重复相同的一系列运算，可用此第二近似来求 \(u \) 和 \(\omega \) 的更高的近似。

在讨论承受均匀载荷的夹芯圆形板的弯曲时，纳达又从导数 \(d\omega/dr \) 开始，并且以

\[
\frac{d\omega}{dr} = C \left[\frac{r}{a} - \left(\frac{r}{a} \right)^n \right]
\]

作为第一近似式，它在 \(r = 0 \) 和 \(r = a \) 时为零，与固支边的边界条件相一致。于是，式 (234) 的第一个方程给出 \(u \) 的第一近似。如将这些 \(u \) 和 \(d\omega/dr \) 的第一近似代入式 (234) 中第二个方程中，并对 \(q \) 解此方程，我们决定式 (i) 中的常数 \(C \) 和 \(n \)，使 \(q \) 尽可能地接近于常数。用这种方法得到了下列计算中心挠度的方程：

1) (设 \(\nu = 0.25 \))

\[
\frac{\omega_0}{h} + 0.583 \left(\frac{\omega_0}{h} \right)^3 = 0.176 \frac{q}{E} \left(\frac{a}{h} \right)^4.
\]

(235)

在板较薄的情况下，挠度 \(\omega_0 \) 可能比 \(h \) 大得多。此时板对于弯曲的抵抗可以忽略不计，并且可作为柔韧薄膜来处理。将方程 (234) 中第二式的左端用零代替，就得到了这种薄膜的一般方程。

1) K. Federhofer 提出了另一种近似求解方程 (234) 的方法，Eisenbaue，第 9 卷，第 152 页，1918 年；也可参考 Forschungsarb. VDI，第 7 卷，第 148 页，1936 年。他决定 \(\omega_0 \) 的方程与方程 (235) 的差别仅在于系数的数值，亦即当 \(\nu = 0.25 \) 时，其值为 0.523 而非 0.583。
所得方程的近似解可由忽略式 (235) 左端第一项而得到，因为这一项较之于第二项为小项，由此可得:

$$0.583 \left(\frac{w_0}{h} \right)^3 \approx 0.176 \frac{q}{E} \left(\frac{a}{h} \right)^4, \quad w_0 = 0.665a \sqrt[3]{\frac{qa}{Eh}}.$$

对这问题作更完整的研究"，给出

$$w_0 = 0.662a \sqrt[3]{\frac{qa}{Eh}}. \quad (236)$$

这个公式与实验十分一致"，它表明挠度不与载荷强度成正比，而是与载荷强度的立方根成正比。关于薄膜中心和边缘上的拉应力，这个解分别给出

$$\left(\sigma_r \right)_{r=a} = 0.423 \sqrt[3]{\frac{Eqa^2}{h^2}} \quad \text{和} \quad \left(\sigma_r \right)_{r=0} = 0.328 \sqrt[3]{\frac{Eqa^2}{h^2}}.$$

在各种测量仪器中常常要求挠度与压力成正比，为了具备这种性质，应当采用图 202 所示的波纹薄膜"。由于波纹的结果，薄膜的变形主要是在于弯曲，因此与压力成正比^4。如波纹(图 202) 的形式

为正弦曲线，并且沿直径的波的数目足够大 (n > 5)，则应用图 186 的符号，可得下列对 w_0 = (w)_{max} 的表达式^5:

![图 202](image)

3) 这种薄膜的挠曲理论是 K. Stange 所讨论的，Ingr.-Arch., 第 2 卷，第 47 页，1931 年。

4) 论述测量仪器中所用的隔膜的文献索引可参阅 M. D. Hersey 的论文，NACA Rept., 165, 1923 年。

5) A. C. Вольфир. "Гибкие пластинки и оболочки," 第 214 页，莫斯科，1936 年。("柔韧板与柔韧壳,"卢文达等译，科学出版社，1959 年。) 该书还附有关于板和壳的大挠度问题的广泛的文献。
\[8 \left(\frac{w_0}{h} \right) \left[\frac{2}{3(1-n^2)} + \left(\frac{f}{h} \right)^3 \right] + \frac{9}{7} \left(\frac{w_0}{h} \right)^3 = \frac{q}{E} \left(\frac{a}{h} \right)^4. \]

98. 承受均匀载荷的夹支圆形板的精确解
为了得到对于承受均匀载荷夹支圆形板的大挠度问题的更令人满意的解，必须求解方程 (234)。为此目的，我们首先将这两个方程改写成另外不同的形式。由第 96 节中对这两个方程所作的推导可以看出，第一个方程等价于方程

\[N_r - N_i + r \frac{dN_r}{dr} = 0. \] (237)

由第 96 节的式 (c) 和第 97 节的式 (i) 也可看出，第二个方程能写成如下形式：

\[D \left(\frac{d^3w}{dr^3} + \frac{1}{r} \frac{d^2w}{dr^2} - \frac{1}{r^2} \frac{dw}{dr} \right) = N_r \frac{dw}{dr} + q \frac{r}{2}. \] (238)

从径向和切向应变的一般表达式（第 425 页）可得

\[\varepsilon_r = \varepsilon + r \frac{de_r}{dr} + \frac{1}{2} \left(\frac{dw}{dr} \right)^2. \]

将

\[\varepsilon_r = \frac{1}{hE} (N_r - \nu N_i) \quad \text{和} \quad \varepsilon_i = \frac{1}{hE} (N_r - \nu N_i) \]

代入以上式子，并应用方程 (237)，即得

\[r \frac{d}{dr} (N_r + N_i) + \frac{hE}{2} \left(\frac{dw}{dr} \right)^2 = 0. \] (239)

现在可用包含三个未知函数 N_r, N_i, 和 w 的三个方程 (237), (238) 和 (239) 来解决所考虑的问题。我们首先引入下列符号：

\[p = \frac{q}{E}, \quad \xi = \frac{r}{h}, \quad S_r = \frac{N_r}{hE}, \quad S_i = \frac{N_i}{hE}, \] (240)

并将这三个方程变换成无量纲的形式。用了这些符号后，方程 (237), (238) 和 (239) 分别化为

\[\frac{d}{d\xi} (\xi S_r) - S_i = 0, \] (241)

1) 这个解是由 S. Way 得出。Trans. ASME, 第 56 辑, 第 627 页, 1934 年。
\[
\frac{1}{12(1 - \nu^2)} \frac{d}{d\xi} \left[\frac{1}{\xi} \frac{d}{d\xi} \left(\xi \frac{dw}{dr} \right) \right] = \frac{\nu \xi}{2} + S_r \frac{dw}{dr}, \tag{242}
\]

\[
\xi \frac{d}{d\xi} (S_r + S_r) + \frac{1}{2} \left(\frac{dw}{dr} \right)^2 = 0. \tag{243}
\]

这个问题中的边界条件要求径向位移 \(u \) 和斜度 \(dw/dr \) 在边界上等于零。用第 96 节的式 (b) 表示位移 \(u \)，并应用虎克定律，这些条件就能写成

\[
(u)_{r=a} = r(S_r - \nu S_r)_{r=a} = 0, \tag{244}
\]

\[
\left(\frac{dw}{dr} \right)_{r=a} = 0. \tag{a}
\]

假设 \(S_r \) 是 \(\xi \) 的对称函数，\(dw/dr \) 是 \(\xi \) 的反对称函数，则可用下列幂级数表示此二函数：

\[
S_r = B_0 + B_2 \xi^2 + B_4 \xi^4 + \cdots, \tag{b}
\]

\[
\frac{dw}{dr} = \sqrt{8} \left(C_2 \xi^2 + C_4 \xi^4 + C_6 \xi^6 + \cdots \right), \tag{c}
\]

其中 \(B_0, B_2, \cdots \) 和 \(C_2, C_4, \cdots \) 是以后要决定的常数。将第一个级数代入方程 (241)，有

\[
S_i = B_0 + 3B_2 \xi^2 + 5B_4 \xi^4 + \cdots. \tag{d}
\]

由式 (c) 的积分和微分，分别得到：

\[
\frac{\nu}{h} = \sqrt{8} \left(C_2 \frac{\xi^2}{2} + C_4 \frac{\xi^4}{4} + C_6 \frac{\xi^6}{6} + \cdots \right), \tag{e}
\]

\[
\frac{d}{d\xi} \left(\frac{dw}{dr} \right) = \sqrt{8} \left(C_2 + 3C_4 \xi^2 + 5C_6 \xi^4 + \cdots \right). \tag{f}
\]

显然，如果知道了常数 \(B_0, B_2, \cdots, C_2, C_4, \cdots \)，则我们需要的所有量都能求得。将级数 (b)，(c) 和 (d) 代入方程 (242) 和 (243)，并且注意到这两个方程必须对任何 \(\xi \) 值都成立，就能得到常数 \(B \) 和 \(C \) 之间的关系式：

\[
B_k = -\frac{4}{\lambda(k + 2)} \sum_{m=1, 3, 5, \cdots}^{k-1} C_m C_{k-m}, k = 2, 4, 6, \cdots, \tag{g}
\]

\[
C_k = \frac{12(1 - \nu^2)}{k^2 - 1} \sum_{m=0, 2, 4, \cdots}^{k-3} B_m C_{k-2-m}, k = 5, 7, 9, \cdots. \tag{h}
\]

\[\text{435}\]
可以看到，如果常数 B_0 和 C_1 的值已确定，则所有其他的常数均可以关系式 (g) 决定。然后用级数 (b), (d) 和 (c) 求板中所有点上 S_r, S_t 和 dv/dr 的值。从级数 (b) 和 (f) 可知，固定 B_0 和 C_1 等于选定板中心的 S_r 和曲率的值。”

为了得到计算各种特殊情形中挠度和应力值的曲线，所用方法的步骤是：对于给定的 ν 和 $p = q/E$ 以及选定的 B_0 和 C_1 的值，计算大量的数字例子。然后决定板满足边界条件 (a) 的半径值。对所有这些板，计算了边界上的 S_r 和 S_t 值，并且决定了边界上的径向位移 $u_{r=0}$ 的值。由于所有计算都是用任意假设的 B_0 和 C_1 的值进行的，边界条件 (244) 并不满足。然而用内插法，可能得到条件 (244) 和 (a) 都得到满足的板上所有的必要数据。这些计算

图 203

1) 这些数万的选择，已经在讨论圆板承受沿边缘均匀分布力矩的弯曲时遇到过（参见第 427 页）。
2) Way 计算了十九个特例，参见第 434 页的附注。
的结果在图 203 中用曲线表示。如由此图找到了板的挠度，则相应的应力可用图 204 的曲线求得。在图 204 中，曲线给出的是对于板的中心和边缘计算所得的薄膜应力

$$\sigma_r = \frac{N_r}{h}$$

和弯曲应力

$$\sigma' = \frac{6M_r d}{h^2}.$$ 将 σ_r 和 σ' 相加，就能得到板在中心和边缘处总的应力。为了便于比较，图 203 和图 204 中也画出了直线，它们代表根据中面应

1) 这些应力是以无量纲形式给出的。
变忽略不计的初等理论所得到的结果。要注意，初等理论的误差随着载荷与挠度的增加而增加。

99. 承受均匀载荷的简支圆形板 这个问题的精确解可用类似于上节所用的级数方法求得。

由于轴对称，在 \(r = 0 \) 时，依然有 \(dw/dr = 0 \) 和 \(N_s = N_t \)。因为径向力距在边界上必须为零，因此有另一边界条件

\[
\left[\frac{d}{dr} \left(\frac{dw}{dr} \right) + \frac{v}{r} \frac{dw}{dr} \right]_{r=0} = 0.
\] \(\text{(a)} \)

关于板中面内的应力和应变，可以考虑两种边界条件：

1. 假设边缘不可移动，由式 (244) 有 \(S_{r} - \nu S_{\theta} = 0 \)，根据方程 (237)，此条件等价于

\[
S_{r}(1 - \nu) + r \frac{dS_{r}}{dr} = 0.
\] \(\text{(b)} \)

2. 假设边缘在径距方向内可以移动，则有

\[
(S_{r})_{r=R} = 0.
\] \(\text{(c)} \)

函数 \(S_{r} \) 和 \(dw/dr \) 依然可表示成级数的形式：

\[
S_{r} = \frac{h^{2}}{12(1-\nu^{2})a^{2}\rho} (B_{1}\rho + B_{5}\rho^{5} + B_{9}\rho^{9} + \cdots),
\] \(\text{(d)} \)

\[
\frac{dw}{dr} = \frac{h}{2a\sqrt{3}} (C_{1}\rho + C_{5}\rho^{5} + C_{9}\rho^{9} + \cdots).
\] \(\text{(e)} \)

式中 \(\rho = r/a \)。将这两个级数应用于方程 (241)，(242)，(243) 不难由这些方程消去 \(S_{r} \)，得到常数 \(B \) 和 \(C \) 之间的下列关系式：

\[
B_{k} = -\frac{1 - \nu^{2}}{2(k^{2} - 1)} \sum_{m=1,2,3,\ldots}^{k-2} C_{m}C_{k-m-1}, \quad k = 3, 5, \ldots
\] \(\text{(f)} \)

\[
C_{k} = \frac{1}{k^{2} - 1} \sum_{m=1,2,3,\ldots}^{k-2} C_{m}B_{k-m-1}, \quad k = 5, 7, \ldots
\] \(\text{(g)} \)

\[
8G_{2} - B_{1}C_{1} + 12 \sqrt{3}(1 - \nu^{2}) \frac{ba^{4}}{k^{4}} = 0,
\] \(\text{(h)} \)

式中 \(\rho = q/E_{r} \)。是载荷的强度。

如同以前，所有的常数都可很容易地用常数 \(B_{1} \) 和 \(C_{1} \) 表示，此外还有两

个从边界条件得到的补充关系式应当成立：在情形1中，有

\[\sum_{k=1,3,5,\ldots} B_k(k-\nu) = 0, \quad \sum_{k=1,3,5,\ldots} C_k(k+\nu) = 0, \quad (i) \]

在情形2中，有

\[\sum_{k=1,3,5,\ldots} B_k = 0, \quad \sum_{k=1,3,5,\ldots} C_k(k+\nu) = 0. \quad (i) \]

在开始求上述方程组的解时，可根据近似解来选取 \(B \) 和 \(C \) 的适当值。满足条件（a）的这种近似解可取成，例如

\[\frac{du}{dr} = C(\beta \rho^n - \rho), \quad (k) \]

式中 \(C \) 为常数，\(\beta = \frac{1 + \nu}{n + \nu} \)（\(n = 3, 5, \ldots \））。将此式代入方程 (241) 和 (243)，其中 \(\delta \) 必须用 \(\rho \beta / h \) 代替，并且消去 \(S_\nu \)，得到

\[S_\nu = c_1 + c_2 \frac{C_1}{\beta^2} - \frac{C_1}{2} \left(\beta^2 - 2\beta \frac{\beta^4}{n_1} + \frac{1}{8} \right). \quad (1) \]

式中 \(c_1 \) 和 \(c_2 \) 是积分常数，并有

\[n_1 = 4n(n+1), \quad n_2 = (n+1)(n+3). \]

例如，假设情形2的边界条件成立。于是可得

\[c_1 = \frac{C_1}{2} \left(\beta^2 - 2\beta + \frac{1}{8} \right), \quad c_2 = 0. \quad (m) \]

最后，常数 \(C \) 可用某种变能法（例如，第100节所述的）来决定。在应用那里的式（m）或式（o）时，其中的 \(\delta \rho / dr = \text{rHE} \)，和 \(dw/dr \)，我们只需要用以上所给的近似式（k）和（1）代入。

费得荷丁（Federhofer）和艾格（Egger）由精确解得的挠度和总应力的最大值在图205（情形1）和图206（情形2）中给出。在计算时设 \(\nu = 0.25 \)。

表82对于中心挠度 \(w_0 \) 的近似计算是很有用的，它由如下形式的方程给出

\[\frac{w_0}{h} + A \left(\frac{w_0}{h} \right) = B \frac{d}{E} \left(\frac{w_0}{h} \right). \quad (n) \]

表82还可用来近似计算中面应力，由下式给出

\[\sigma_\tau = \alpha E \frac{w_0^2}{\delta^2}, \quad \sigma_\nu = \alpha \frac{w_0^2}{\delta^2}. \quad (o) \]

以及表面纤维内的弯曲应力，由下式给出11）

\[1) \text{如板的底部受压，则取负号。} \]

439
表82 计算承受均匀载荷板的挠度 w_0 和应力近似值
所需的参数 ($\nu = 0.3$)

<table>
<thead>
<tr>
<th>边界条件</th>
<th>A</th>
<th>B</th>
<th>中心</th>
<th>边缘</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>α</td>
<td>β</td>
<td>α</td>
<td>β</td>
</tr>
<tr>
<td>夹支板</td>
<td>0.471</td>
<td>0.171</td>
<td>0.976</td>
<td>2.86</td>
</tr>
<tr>
<td>不可移动的边缘</td>
<td>0.471</td>
<td>0.171</td>
<td>0.976</td>
<td>2.86</td>
</tr>
<tr>
<td>可移动的边缘</td>
<td>0.146</td>
<td>0.171</td>
<td>0.500</td>
<td>2.86</td>
</tr>
<tr>
<td>简支板</td>
<td>1.852</td>
<td>0.696</td>
<td>0.905</td>
<td>1.778</td>
</tr>
<tr>
<td>不可移动的边缘</td>
<td>1.852</td>
<td>0.696</td>
<td>0.905</td>
<td>1.778</td>
</tr>
<tr>
<td>可移动的边缘</td>
<td>0.262</td>
<td>0.696</td>
<td>0.295</td>
<td>1.778</td>
</tr>
</tbody>
</table>
\[\sigma' = \beta E \frac{\omega h}{a}, \quad \sigma'_t = \beta E \frac{\omega h}{a^2}. \] (p)

100. 中心圆载的圆板
利用第 81 节中所述的方法可得到这个问题的近似解。

对应于应变的变量 \(\delta \varepsilon_r, \delta \varepsilon_t \)，内力所作的功是:

\[\delta V = -2\pi \int_0^a (N_r \delta \varepsilon_r + N_t \delta \varepsilon_t) r dr. \]

应用第 96 节的式 (a) 和 (b)，我们有

\[\delta V = -2\pi \int_0^a \left\{ N_r \varepsilon \left[\frac{du}{dr} + \frac{1}{2} \left(\frac{d\omega}{dr} \right)^2 \right] + N_t \varepsilon \left(\frac{u}{r} \right) \right\} r dr. \] (a)
其次，我们假设中线内的径向位移在边界上等于零，或者假设径向力 N_r 在边界上等于零。于是，对式 (c) 作部分积分，并设 $r = a$ 时 $\delta u = 0$ 或 $N_r = 0$，可得：

$$\delta V_1 = 2\pi \int_0^a \left[\frac{d}{dr} (rN_r) - N_r \right] \delta u \, r \, dr - 2\pi \int_0^a rN_r \, \frac{d\delta w}{dr} \delta \left(\frac{d\delta w}{dr} \right) \, dr. \quad (b)$$

相似地，弯距 M_r 和 M_t 对于曲率的变分 $\delta \left(-d^2\omega/dr^2\right)$ 和 $\delta \left(-1/r \, d\omega/dr\right)$ 所作的功是

$$\delta V_2 = 2\pi \int_0^a \left[M_r \delta \left(\frac{d\delta w}{dr} \right) + M_t \delta \left(\frac{1}{r} \frac{d\delta w}{dr} \right) \right] r \, dr. \quad (c)$$

现在假设径向弯距 M_r，或者假设斜度 $\delta (d\omega/dr)$ 在边界上等于零。于是，对式 (c) 所作的部分积分给出

$$\delta V_r = 2\pi \int_0^a r \delta \omega r \, dr,$$

最后，外力的功为

$$\delta V_r = 2\pi \int_0^a q \delta u \, dr,$$

或者，设

$$\phi = \frac{1}{r} \int_0^r q \, dr, \quad q = \frac{1}{r} \frac{d}{dr} (r \phi), \quad (e)$$

则有

$$\delta V_r = 2\pi \int_0^a \frac{d}{dr} (r \phi) \delta \omega r \, dr.$$

如果在边界上 $\delta \omega = 0$，可得

$$\delta V_r = -2\pi \int_0^a r \phi \delta \left(\frac{d\omega}{dr} \right) \, r \, dr. \quad (f)$$

现在，条件 $\delta(V_1 + V_r + V_2) = 0$ 给出方程

$$\int_0^a \left[D \frac{d}{dr} (\Delta \omega) - \phi - N_r \frac{d\omega}{dr} \right] \frac{d}{dr} (\delta \omega) \, r \, dr$$

$$+ \int_0^a \left[\frac{d}{dr} (rN_r) - N_t \right] \delta u \, dr = 0. \quad (g)$$

在下一步，我们可设变分 $\delta \omega$ 和 δu 都是任意的。由此可得微分方程 (234) 中的第二式和第 96 节的方程 (d)，其中 N_r 用第 96 节的式 (c) 表示。如果我们假设只有此平衡方程 (d) 是成立的，则还需要满足条件

* 原书印刷有误，已改正——译者注。
\[
\int_0^r \left[D \frac{d}{dr} (\Delta w) - \phi - \frac{1}{r} \frac{df}{dr} \frac{dw}{dr} \right] \frac{d}{dr} (\theta w) \, r \, dr = 0, \tag{h}
\]
式中 \(f \) 是定义为
\[
N_r = \frac{1}{r} \frac{df}{dr}, \quad N_i = \frac{df}{dr^3} \tag{i}
\]
的应力函数，它是方程 (239) 得到的微分方程:
\[
\frac{d}{dr} (\Delta f) = - \frac{Eh}{2r} \left(\frac{dw}{dr} \right)^2, \tag{j}
\]
再次对式 (h) 作部分积分，即得
\[
\int_0^r \left[D \Delta \Delta w - q - \frac{1}{r} \frac{d}{dr} \left(\frac{df}{dr} \frac{dw}{dr} \right) \right] \delta w \, r \, dr = 0. \tag{k}
\]
为了应用第 81 节中所述的方法，我们将挠度取成如下形式:
\[
\omega = a_0 \varphi_0 (r) + a_1 \varphi_1 (r) + \cdots + a_n \varphi_n (r). \tag{l}
\]
与式 (211) 相同，每个函数 \(\varphi_i (r) \) 必须满足两个对挠度而言的边界条件。将式 (l) 代入方程 (h)，或代入方程 (k)，并应用第 81 节中的推理方法，我们得到如下形式的一组方程:
\[
\int_0^r X \frac{d}{dr} \varphi_i \, r \, dr = 0, \quad i = 1, 2, \ldots, n, \tag{m}
\]
式中
\[
X = D \frac{d}{dr} (\Delta w) - \phi - \frac{1}{r} \frac{df}{dr} \frac{dw}{dr}, \tag{n}
\]
或者是如下形式的一组方程:
\[
\int_0^r Y \varphi_i \, r \, dr = 0, \quad i = 1, 2, \ldots, n, \tag{o}
\]
式中
\[
Y = D \Delta \Delta w - q - \frac{1}{r} \frac{d}{dr} \left(\frac{df}{dr} \frac{dw}{dr} \right). \tag{p}
\]
现在考虑承受集中于 \(r = 0 \) 的载荷 \(P \) 的夹支圆形板。我们将挠度表达式 (l) 限于其第一项而取成如下形式:
\[
\omega = \omega_0 \left(1 - \frac{r^2}{a^2} + 2 \frac{r^2}{a^2} \log \frac{r}{a} \right), \tag{q}
\]
此式对于小挠度板是严格成立的，由方程 (i) 的积分可得:
\[
\frac{df}{dr} = - \frac{Eh \omega_0 r^3}{a^3} \left(\log \frac{r}{a} - \frac{3}{8} \log \frac{r}{a} + \frac{7}{8} \right) + C_1 r + \frac{C_2}{r}. \tag{r}
\]

* 原文印刷有误，已改正——译者注。
假设在边界上可有自由径向位移。于是，积分常数 C_1 和 C_2 由两个条件决定。第一个条件，即

$$ (N_r)_{r=a} = 0 , $$

可写成

$$ \left(\frac{1}{r} \frac{d}{dr} \right)_{r=a} = 0 , \quad (a) $$

第二个条件是

$$ \left(\frac{d}{dr} \right)_{r=a} = 0 . \quad (b) $$

为了让式 (i) 所给出的应力 N_r 在 $r = a$ 时等于限定的值，第二个条件是必须要求上。这样就得到

$$ C_1 = \frac{7}{8} \frac{E h w_0}{a^2} , \quad C_2 = 0 . $$

在这个问题中，载荷函数的形式为

$$ \phi = \frac{P}{2 \pi r} , $$

而式 (c) 和 (r) 给出

$$ X = D \left(\frac{8 \omega_0}{a^2} \right) - \frac{P}{2 \pi r} + \frac{4 E h w_0}{a^3} \left(\frac{r^2}{a^2} \ln \frac{r}{a} - \frac{7}{8} \frac{r}{a} \ln \frac{r}{a} \right) - \frac{3}{2} \frac{r^2}{a^2} \ln \frac{r}{a} + \frac{7}{8} \frac{r}{a} \ln \frac{r}{a} - \frac{7}{8} \frac{r}{a} \ln \frac{r}{a} , \quad (u) $$

同时 ϕ_1 就是式 (q) 的中子。将 X 代入方程 (m)，我们得到关系式

$$ 16 B w_0 + \frac{191}{64} E h w_0 = \frac{P a^2}{\pi} . \quad (v) $$

对应于挠度 (q) 的表面纤维弯曲应力的一般表达式由式 (101) 得到

$$ \sigma'' = \frac{2 E h w_0}{(1 - \nu^2) a^2} \left[(1 + \nu) \log \frac{a}{r} - 1 \right] , \quad (w) $$

$$ \sigma'' = \frac{2 E h w_0}{(1 - \nu^2) a^2} \left[(1 + \nu) \log \frac{a}{r} - \nu \right] . $$

当 r 趋近于零时，这两个式子所给出的应力值为无穷大。然而，假设载荷 P 均匀分布于半径 $r = a$ 很小的圆面积上，我们就能应用对于圆柱面板成立的一个简单关系式，这个关系式将这个圆面积中心的应力 $\sigma'' = \sigma''$ 与作用于一点 $r = a$ 的相同载荷 P 在 $r = a$ 处所产生的应力 $\sigma'' = \sigma''$ 连系起来。根据纳氏建议的结果，该关系式可写为

$$ 1) \quad A. \text{Nádai,}\ "\text{Plastische Platten,}\" \text{第63页，柏林，1925年。} $$
\[\sigma_\nu = \sigma'_\nu = \sigma_\nu + \frac{3}{2} \frac{P}{\pi h^2}. \]

将此式应用于大挠度板, 在半径为 \(c \) 的受载面积中心有近似公式

\[\sigma_\nu = \sigma_\nu - \frac{2Eh\mu_0}{(1 - \nu^2)a^2} \left[(1 + \nu)\log \frac{a}{c} + 1 \right] + \frac{3}{2} \frac{P}{\pi h^2}. \] \((x)\)

上述结果适用于边缘不可移动的矩形板。引入别种边界条件, 可得决定 \(w \) 的方程

\[\frac{w_0}{h} + A \left(\frac{w_0}{b} \right)^b = B \frac{Pa^2}{Eh^3}, \] \((y)\)

它是方程 \((x)\) 的推广, 常数 \(A \) 和 \(B \) 的值在表 83 中给出。表 83 还包含有计算作用于板中面内的应力

\[\sigma_r = \alpha_j E \frac{w_0}{a^2}, \quad \sigma_z = \alpha_j E \frac{w_0}{a^2} \] \((z)\)

以及表面纤维弯曲应力

\[\sigma'_r = \beta_j E \frac{w_0}{a^2}, \quad \sigma'_z = \beta_j E \frac{w_0}{a^2} \] \((z')\)

所需要的各个系数的值 \(^1\)。前者是用式 \((i)\) 计算的，后者是用弯矩式 \((101)\) 计算的，如果被的底部受压，则取值为负 \(^1\)。

| 表 83 计算承受中心载荷板的挠度 \(w \) 和应力近似值所必要的数据 \((\nu = 0.3)\) |
|-------|---|---|---|---|---|---|
| | \(A \) | \(B \) | 中心 | 边缘 | | |
| | \(\alpha_r = \alpha_z \) | \(\alpha_r = \alpha_z \) | \(\beta_r = \beta_z \) | \(\beta_r = \beta_z \) |
| 夹板 | 0.443 | 0.217 | 1.232 | 0.357 | 0.107 | -2.198 | -0.659 |
| | 0.209 | 0.217 | 0.875 | 0 | -0.250 | -2.198 | -0.659 |
| 简板 | 1.430 | 0.552 | 0.895 | 0.488 | 0.147 | 0 | 0.606 |
| | 0.272 | 0.552 | 0.407 | 0 | -0.341 | 0 | 0.606 |

1) 表 82 和 83 中的全部数据都是取自 A. C. 勃尔曼的“弯矩板与切力壳”。

101. 大挠度的板的一般方程

在讨论板的大挠度的一般情况时，我们采用方程（219），它是考虑板的单元在与板垂直方向内的平衡而推导的。现在力 N_x, N_y 和 N_{xy} 不仅决定于作用在 xy 平面内的诸外力，而且决定于弯曲所产生的中面应变。假设 xy 平面内没有体力，并设荷重垂直于板，则 xy 平面内的一个单元的平衡方程为

$$
\frac{\partial N_x}{\partial x} + \frac{\partial N_y}{\partial y} = 0,
$$

$$
\frac{\partial N_{xy}}{\partial x} + \frac{\partial N_y}{\partial y} = 0. \tag{a}
$$

决定三个变量 N_x, N_y, N_{xy} 所必须的第三个方程是由考虑板在弯曲时的中面应变而得到的。相应的应变分量 [参看式 (221), (222) 和 (223)] 为

$$
\varepsilon_x = \frac{\partial u}{\partial x} + \frac{1}{2} \left(\frac{\partial^2 w}{\partial x^2} \right),
$$

$$
\varepsilon_y = \frac{\partial v}{\partial y} + \frac{1}{2} \left(\frac{\partial^2 w}{\partial y^2} \right), \tag{b}
$$

$$
\gamma_{xy} = \frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} + \frac{\partial w}{\partial x} \frac{\partial w}{\partial y}. \tag{c}
$$

取这些式子的二阶导数，并将所得结果合并在一起，则得

$$
\frac{\partial^2 \varepsilon_x}{\partial y^2} + \frac{\partial^2 \varepsilon_y}{\partial x^2} - \frac{\partial^2 \gamma_{xy}}{\partial x \partial y}
$$

$$
= \left(\frac{\partial^2 w}{\partial x^2} \frac{\partial^2 w}{\partial y^2} \right) \quad \text{and} \quad \frac{\partial^2 w}{\partial x^2} \frac{\partial^2 w}{\partial y^2}. \tag{d}
$$

用等价的式子

$$
\varepsilon_x = \frac{1}{kE} (N_y - \nu N_x),
$$

$$
\varepsilon_y = \frac{1}{kE} (N_x - \nu N_y),
$$

$$
\gamma_{xy} = \frac{1}{kG} N_{xy}, \tag{d}
$$

代入方程 (c)，就得到以 N_x, N_y 和 N_{xy} 表示的第三个方程。
引人应力函数1可大大简化对这三个方程的求解。可以看出，

\[N_x = h \frac{\partial^2 F}{\partial y^2}, \quad N_y = h \frac{\partial^2 F}{\partial x^2}, \quad N_{xy} = -h \frac{\partial^2 F}{\partial x \partial y}, \quad (c) \]

可使方程（a）变成恒等式，在式（c）中F是x和y的函数。如将这些力的表达式代入式（d），则应变分量化为:

\[\varepsilon_x = \frac{1}{E} \left(\frac{\partial^2 F}{\partial y^2} - \nu \frac{\partial^2 F}{\partial x^2} \right), \]

\[\varepsilon_y = \frac{1}{E} \left(\frac{\partial^2 F}{\partial x^2} - \nu \frac{\partial^2 F}{\partial y^2} \right), \]

\[\gamma_{xy} = -\frac{2(1 + \nu)}{E} \frac{\partial^2 F}{\partial x \partial y}. \]

将这些式子代入方程（c），则得:

\[\frac{\partial^4 F}{\partial x^4} + 2 \frac{\partial^4 F}{\partial x^2 \partial y^2} + \frac{\partial^4 F}{\partial y^4} = E \left[\left(\frac{\partial^2 w}{\partial x \partial y} \right)^2 - \frac{\partial^4 w}{\partial x^2 \partial y^2} \right]. \tag{245} \]

决定F和w所需要的第二个方程是将式（e）代入方程（217）而得到的，即:

\[\frac{\partial^4 w}{\partial x^4} + 2 \frac{\partial^4 w}{\partial x^2 \partial y^2} + \frac{\partial^4 w}{\partial y^4} = \frac{h}{D} \left(\frac{h}{h} \frac{\partial^2 F}{\partial y^2} + \frac{\partial^2 F}{\partial x^2} + \frac{\partial^2 F}{\partial x \partial y} - 2 \frac{\partial^2 F}{\partial x^2} \frac{\partial^2 w}{\partial x \partial y} \right). \tag{246} \]

方程（245）和（246）与边界条件一起，共同决定了两个函数F和w^2。有了应力函数F，我们能用式（e）决定板中面内的诸应力。根据确定板的挠度曲面的函数w，应用小挠度板情况下所用的相同公式[参看式（101）和（102）]，就能求得弯曲应力和剪应力。这样，研究板的大挠度归结为求解两个非线性微分方程（245）和（246）。在一般情况下，这两个方程的解没有求得，然而，这个

1）参看 S. Timoshenko 和 J. N. Goodier, “Theory of Elasticity,” 第二版，第 26 页，1951 年。

问题的某些近似解是已知的，它们将在下一节中讨论。

在板被弯曲成柱形曲面的轴与 y 轴平行的特殊情况下，方程 (245) 和 (246) 简化了，这是由于在此情况下，ω 只是 x 的函数，并且 $\partial^4 F / \partial x^4$ 和 $\partial^2 F / \partial y^2$ 为常数。于是，方程 (245) 成为恒等式，方程 (246) 化为：

$$
\frac{\partial^4 \omega}{\partial x^4} = \frac{q}{D} + \frac{N_x}{D} \frac{\partial^2 \omega}{\partial x^2}.
$$

这类问题在第一章中已经充分地讨论过了。

在圆柱形板的情况下极坐标更方便，如果用这种坐标，则方程 (245) 和 (246) 化为如下形式：

$$
\Delta \Delta \bar{F} = -\frac{F}{2} L(\omega, \omega),
$$

$$
\Delta \Delta \omega = \frac{h}{D} L(\omega, \bar{F}) + \frac{q}{D}.
$$

式中

$$
L(\omega, \bar{F}) = \frac{\partial^2 \omega}{\partial r^2} \left(\frac{1}{r} \frac{\partial F}{\partial r} + \frac{1}{r^2} \frac{\partial^2 F}{\partial \theta^2} \right) + \left(\frac{1}{r} \frac{\partial \omega}{\partial r} + \frac{1}{r^2} \frac{\partial^2 \omega}{\partial \theta^2} \right) \frac{\partial^4 F}{\partial r^4} - 2 \frac{\partial}{\partial r} \left(\frac{1}{r} \frac{\partial F}{\partial \theta} \right) \frac{\partial}{\partial r} \left(\frac{1}{r} \frac{\partial \omega}{\partial \theta} \right),
$$

而 $L(\omega, \omega)$ 是在上式中用 ω 代替 F 而得到的。

如果板很薄，它的挠度可能比厚度大许多倍，板对弯曲的抵抗可忽略不计；即抗弯刚度 D 可取成等于零，于是问题化成求一柔韧薄膜的挠度。方程 (245) 和 (246) 化为

$$
\frac{\partial^4 F}{\partial x^4} + 2 \frac{\partial^4 F}{\partial x^2 \partial y^2} + \frac{\partial^4 F}{\partial y^4} = E \left(\left(\frac{\partial^2 w}{\partial x \partial y} \right)^2 - \frac{\partial^2 w}{\partial x^2} \frac{\partial^2 w}{\partial y^2} \right),
$$

$$
\frac{q}{h} + \frac{\partial^2 F}{\partial y^2} \frac{\partial^2 \omega}{\partial x^2} + \frac{\partial^2 F}{\partial x^2} \frac{\partial^2 \omega}{\partial y^2} - 2 \frac{\partial^2 F}{\partial x \partial y} \frac{\partial^2 \omega}{\partial x \partial y} = 0. \quad (247)
$$

2) 这些方程是 A. Föppl 得到的，“Vorlesungen über Technische Mechanik,” 第 5 卷，第 132 页，1907 年。
亨茨基（H. Hencky）讨论了用有限差分法求这个方程组的数值解。

能量法提供了求薄膜挠度近似解的另一种方法。薄膜的应变能仅仅是由于中面的拉伸而产生的，它由下式给出：

\[V = \frac{1}{2} \int \int (N_x \varepsilon_x + N_y \varepsilon_y + N_{xy} \gamma_{xy}) \, dx \, dy \]

\[= \frac{Eh}{2(1-\nu^2)} \int \int [\varepsilon_x^2 + \varepsilon_y^2 + 2\nu \varepsilon_x \varepsilon_y] \, dx \, dy, \]

\[+ \frac{1}{2} (1-\nu) \gamma_{xy}^2 \, dx \, dy. \] (248)

代入应变分量 \(\varepsilon_x, \varepsilon_y, \gamma_{xy} \) 的表达式 (221), (222), (223)，则得：

\[V = \frac{Eh}{2(1-\nu^2)} \int \int \left\{ \left(\frac{\partial u}{\partial x} \right)^2 + \frac{\partial u}{\partial x} \left(\frac{\partial w}{\partial x} \right) + \left(\frac{\partial v}{\partial y} \right)^2 \right\} \]

\[+ \frac{\partial v}{\partial y} \left(\frac{\partial w}{\partial y} \right)^2 + \frac{1}{4} \left[\left(\frac{\partial w}{\partial x} \right)^2 + \left(\frac{\partial w}{\partial y} \right)^2 \right] \]

\[+ 2\nu \left[\frac{\partial u}{\partial x} \frac{\partial v}{\partial y} + \frac{1}{2} \frac{\partial v}{\partial y} \left(\frac{\partial w}{\partial x} \right)^2 + \frac{1}{2} \frac{\partial u}{\partial x} \left(\frac{\partial w}{\partial y} \right)^2 \right] \]

\[+ \frac{1-\nu}{2} \left[\left(\frac{\partial u}{\partial y} \right)^2 + 2 \frac{\partial u}{\partial y} \frac{\partial v}{\partial x} + \left(\frac{\partial v}{\partial y} \right)^2 \right] \]

\[+ 2 \frac{\partial u}{\partial y} \frac{\partial w}{\partial x} \frac{\partial w}{\partial y} + 2 \frac{\partial v}{\partial x} \frac{\partial w}{\partial x} \frac{\partial w}{\partial y} \right\} \, dx \, dy. \] (249)

在用能量法时，我们必须在每一特殊情况下假设位移 \(u, v, w \) 以适当的表达式。当然，这些形式必须满足边界条件，同时包含若干任意参数，参数的大小需要用虚位移原理决定。为了说明这个方法，考虑边长为 2a 的均匀受载方形薄膜（图 207）。

在这个问题中，位移 \(u, v, w \)

2) 此问题的计算是在 August 和 Ludwig Föppl 的书 "Drang und Zwang" 中给出的。卷 1, 第 226 页, 1924 年; 也可参阅前引 Hencky 的论文。
在边界上必须为零。此外，由对称性可知，\(\omega \) 是 \(x \) 和 \(y \) 的偶函数，而 \(u \) 和 \(v \) 分别为 \(x \) 和 \(y \) 的奇函数。将位移取成下列式子：

\[
\omega = \omega_0 \cos \frac{\pi x}{2a} \cos \frac{\pi y}{2a},
\]

\[
u = c \sin \frac{\pi x}{a} \cos \frac{\pi y}{2a},
\]

\[
u = c \sin \frac{\pi y}{a} \cos \frac{\pi x}{2a}
\]

其中包含两个参数 \(\omega_0 \) 和 \(c \)，则所有上述要求都能满足。将式 (g) 代入方程 (249)，可得（设 \(\nu = 0.25 \)）

\[
V = \frac{E h}{7.5} \left[\frac{5}{64} \frac{5 \pi^4 \omega_0^4}{a^2} - \frac{17}{6} \frac{c \omega_0^4}{a} + c^2 \left(\frac{35}{4} \frac{4}{9} + \frac{80}{9} \right) \right].
\]

虚位移原理给出下列二方程1)

\[
\frac{\partial V}{\partial c} = 0,
\]

\[
\frac{\partial V}{\partial \omega_0} \delta \omega_0 = \int_{-a}^{+a} \int_{-a}^{+a} q \delta \omega_0 \cos \frac{\pi x}{2a} \cos \frac{\pi y}{2a} \, dx \, dy.
\]

代入 \(V \) 的表达式 (h)，由方程 (i) 得到：

\[
c = 0.147 \frac{\omega_0^2}{a},
\]

由方程 (j) 得到：

\[
\omega_0 = 0.802a \sqrt[3]{\frac{a^2}{E h}}.
\]

这一中心挠度比以前对于均匀受载圆形薄膜所求得的值 (236) 大一些。薄膜中心的拉应变由式 (g) 求得，等于：

\[
\varepsilon_x = \varepsilon_y = \frac{\pi c}{a} = 0.462 \frac{\omega_0^2}{a^2},
\]

其相应的拉应力为：

\[
\sigma = \frac{E}{1 - \nu} \frac{0.462 \omega_0^2}{a^2} = 0.616 \frac{E \omega_0^2}{a^2} = 0.396 \sqrt[3]{\frac{q^2 E a^2}{h^2}}.
\]

1) 方程 (i) 的右端为零，因为参数 \(c \) 的变分仅产生水平位移，垂直载荷不产生功。
这些结果对于研究薄板大挠度问题的某些应用将在下节中说明。

102. 承受均弯载荷的矩形板的大挠度 我们首先讨论的支板的情况。为了求得这个问题的近似解，可用能量法。板的总应变能 V 是弯曲应变能[式 (117)，第 92 页]和中面应变能[式 (249)，第 449 页]的和。虚位移原理给出如下方程:

$$
\delta V - \delta \int qw \, dx \, dy = 0,
$$

(2)

此式适用于位移 u, v, w 的任何变分。求出 V 的变分，我们就能由方程 (a) 导出方程组 (245) 和 (246)，它们精确解是未知的。为了求这个问题的近似解，我们将 u, v, w 设成三个函数，它们满足支边所要求的边界条件，同时包含若干参数，这些参数将由方程 (a) 决定。对于边长为 $2a$ 和 $2b$ 以及坐标的如图 207 所示的矩形板，可将位移取成下列形式:

$$
u = (a^2 - x^2)(b^2 - y^2)\left(\delta_{00} + \delta_{01}y^2 + \delta_{10}x^2 + \delta_{11}x^2y^2\right),$$

(3)

$$
u = (a^2 - x^2)(b^2 - y^2)\left(\epsilon_{00} + \epsilon_{01}y^2 + \epsilon_{10}x^2 + \epsilon_{11}x^2y^2\right),$$

(4)

$$
u = (a^2 - x^2)(b^2 - y^2)\left(\gamma_{00} + \gamma_{01}y^2 + \gamma_{10}x^2 + \gamma_{11}x^2y^2\right).$$

这些式子中的头两个式子代表板中面内的位移 u 和 v，分别为 x 和 y 的奇函数，并且在边界上等于零。w 的表式是 x 和 y 的偶函数，在边界上为零，它们的一阶导数在边界上也为零，因此支支边所要求的边界条件都满足。

式 (b) 包含有 11 个参数 δ_{00}, δ_{01}, δ_{10}, δ_{11}, ϵ_{00}, ϵ_{01}, ϵ_{10}, ϵ_{11}, γ_{00}, γ_{01}, γ_{10}, γ_{11}。现在用方程 (a) 来决定它们。方程 (a) 对于每一个参数的任何变分都必须满足，这样就能得到 11 个方程，其中三个的形式为

$$
\frac{\partial}{\partial a_{mn}} \left(V - \int qw \, dx \, dy\right) = 0,
$$

(3)

其余 8 个的形式为

$$
\frac{\partial V}{\partial \delta_{mn}} = 0 \quad \text{或} \quad \frac{\partial V}{\partial \epsilon_{mn}} = 0.
$$

(4)

与小挠度的情况不同(参看第 369 页)，这些方程对于参数 a_{mn}, b_{mn} 和 c_{mn} 不是线性的。形式为 (c) 的三个方程包含有参数 a_{mn} 的三次项。形式为 (d) 的

方程对于参数 b_{nm} 和 c_{nm} 是线性的，对于参数 a_{nm} 是二次的。求解这组方程的方法是解方程 (d)，以 a_{nm} 表示 b_{nm} 和 c_{nm}，并将解出的这些表达式代入方程 (c)。这样就得到了仅含参数 a_{nm} 的三个三次方程。从而在每一特殊情况下，可用逐次逼近法求出这些方程的数值解。

假设 $\nu = 0.3$，对于不同的载荷强度 q，以及三种不同的板形，即 $b/a = 1$, $b/a = 2/3$ 和 $b/a = 1/2$，所有这些参数的值都已算得。

由 w 的表达式可以看到，如已知常数 a_{00}，则可立即求出板中心的挠度。这些挠度由图 208 中的曲线表示，其纵横坐标为 w_{max}/h 和 $q b^4/D h$。为便于比较，图中也作出了代表应用小挠度理论计算所得挠度的直线。在图中还含有对应于 $b/a = 0$ 的曲线，它代表无限长板的挠度，其计算是用第 3 节所说明的方法进行的（参看第 10 页）。可以看到，$b/a < 2/3$ 的有限长板的挠度与无限长板很相近。

知道了式 (a) 所给出的位移，我们就能根据上节的式 (b) 计算中面应力及相应的薄膜应力。弯曲应力可由弯矩和扭矩的表达式 (101) 和 (102) 求出。将薄膜应力和弯曲应力相加，即得总应力。此应力的最大值是在板长边的中点。它们由图 209 中的曲线给出。为便于比较，图中也作出了代表用小挠度理论计算所得应力的直线，以及代表无限长板的应力的曲线 $b/a = 0$。对于任意载荷值，$b/a = 0$ 的板的总应力要比 $b/a = \frac{1}{2}$ 的板为大，这是理所
当然的。但是我们看到，$b/a = 0$ 的曲线在 $b/a = \frac{1}{2}$ 和 $b/a = \frac{2}{3}$ 的曲线下面。这可能是由于在能量法中用有限数目的常数所造成解的近似性的结果。这说明，所计算的应力的误差是偏于安全的，也就是说太小。当 $b/a = \frac{1}{2}$ 时，误差约为百分之 10。

能量法也可应用于简支矩形板的挠度问题。然而，如前所述关于情况的讨论可以看到，这种方法的应用需要大量的计算。为了得到简支矩形板的近似解，可采用一简单方法，也就是将小挠度理论和薄膜理论所给出的已知

1) 这个方法是 Reiss 者推荐的；参看 "Drang und Zwang." 第 345 页。
解组合起来，现在用方形板的简单例子来说明这个方法。假设载荷 q 可以这样分解成两部分 q_1 和 q_2，其中 q_1 由用小挠度理论所计算得到的弯曲应力和剪应力去平衡，q_2 由薄膜应力去平衡。对于边长为 $2a$ 的方形板，用小挠度理论计算所得的中心挠度为

$$
\omega_0 = 0.730 \frac{q_1 a^4}{E h^3}.
$$

由此可知

$$
q_1 = 0.730 \frac{E h^3}{\omega_0 a^4},
$$

（e）

将板视为薄膜，用公式 (250)，可得

$$
\omega_0 = 0.802 a \sqrt{\frac{q_2 a}{E h^2}},
$$

由此可知

$$
q_2 = \frac{\omega_0^2 E h}{0.516 a^2},
$$

（f）

现在挠度 ω_0 可由如下方程求出：

$$
q = q_1 + q_2 = \frac{\omega_0^2 E h^3}{0.730 a^4} + \frac{\omega_0^2 E h}{0.516 a^2},
$$

即

$$
q = \frac{\omega_0^2 E h^3}{a^4} \left(1.37 + 1.94 \frac{\omega_0^2}{h^2} \right),
$$

（252）

从这个方程解出挠度 ω_0 后，载荷 q_1 和 q_2 就能由式 (e) 和 (f) 求得。与 q_1 对应的应力用小挠度理论（参照第 30 节）计算，与 q_2 对应的应力用式 (251) 计算，总应力是载荷 q_1 和 q_2 所产生的应力的和。

另一种有实际意义的近似方法是以考虑板的中间拉伸应变能表达式 (248) 为基础的。此表达式可写成如下形式：

$$
\nu = \frac{E h}{2(1 - \nu^2)} \left(\int \left[e^2 - 2(1 - \nu) e_1 \right] dxdy \right),
$$

（g）

式中

$$
e = e_x + e_y, \quad e_1 = e_x e_y - \frac{1}{4} \gamma_{xy}^2.
$$

1）系数 0.730 是将表 8 所给的数字 0.040406 和 16 及 12（1 - ν^2）= 11.25 相乘而得到的。

2）H. M. Berger, J. Appl. Mechanics, 第 22 卷，第 465 页，1955 年。
在极坐标中可写出类似的表达式，在轴对称的情况下，ε1 等于 εθθ。自然，要得到板的总应变能，应对应变能 (ε) 和弯曲应变能相加。但是考察第 98 节中所述的精确解，可知由于式 (9) 中 ε1 项的存在而在微分方程中所产生的各项，对于最后结果并无多大影响。

实际上，含有 ε1 的项较之于 ε2 可忽略不计，从这个假设出发，我们得到

$$\Delta \Delta \omega - \alpha^2 \Delta \omega = \frac{q}{D}, \quad (b)$$

可以证明式中的系数

$$\alpha^2 = \frac{12}{h^4} \left[\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{1}{2} \left(\frac{\partial \omega}{\partial x} \right)^2 + \frac{1}{2} \left(\frac{\partial \omega}{\partial y} \right)^2 \right] \quad (i)$$

为常数。于是由第 101 节的式 (b) 可知，在受弯板的整个中面上伸缩 ε = εx + εy 保持为常数。因此，这样简化后的问题与第十二章中所讨论的问题类似。

对于承受对称载荷的圆形板，式 (i) 应当改写成

$$\alpha^2 = \frac{12}{h^4} \left[\frac{du}{dr} + \frac{u}{r} + \frac{1}{2} \left(\frac{d\omega}{dr} \right)^2 \right]. \quad (i)$$

在此情况下，适当选择方程 (b) 的积分常数和常数 α，就能满足板的所有边界条件。但是，如果由挠度更精确地计算薄膜应力 N1 和 N2，则应当用 (231) 中第一式代替关系式 (i)。

计算矩形板中的薄膜应力是比较麻烦的。但是从整体来看，这个方法还是比较精确的。方程 (245)，(246) 的求解要简单得多，并且在至今所讨论的问题中，所得结果在工程应用上是足以精确的。然而应用这个方法也有某些限制，这是很自然的，因为作为方法的基础的假设，缺乏足够的力学解释。

103. 简支矩形板的抗弯计算 在上一节中讨论了这个问题的近似解，从方程组 (245)，(246) 出发，可以求得这个问题的精确解。板（图 59）的挠度可求成纳维埃解的形式：

$$w = \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} w_{mn} \sin \frac{m\pi x}{a} \sin \frac{n\pi y}{b}.$$ \hspace{1cm} \text{(a)}$$

对于任意的，现在还未知的系数 w_{mn} 值，式 (a) 能满足有关挠度和弯矩的边界条件。所受的侧向压力可展成二重富里埃级数:

$$q = \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} q_{mn} \sin \frac{m\pi x}{a} \sin \frac{n\pi y}{b}.$$ \hspace{1cm} \text{(b)}$$

艾雷 (Airy) 应力函数的适当的表达式为:

$$F = \frac{P_x}{2bh} + \frac{P_y}{2ah} + \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} t_{mn} \cos \frac{m\pi x}{a} \cos \frac{n\pi y}{b},$$ \hspace{1cm} \text{(c)}$$

式中 P_x 和 P_y 分别代表作用于边 $x = 0, a$ 和边 $y = 0, b$ 的总拉伸载荷。将式 (a) 和式 (c) 代入方程 (245)，可得此二级数的系数之间的下列关系式:

$$t_{mn} = \frac{E}{4(a^2 + b^2)} \sum b_{r_1 s_1} w_{r_1} w_{s_1}.$$ \hspace{1cm} \text{(d)}$$

求和号中包括了对于 $r \pm p = m, s \pm q = n$ 的所有乘积。系数 $b_{r_1 s_1}$ 由下式给出:

$$b_{r_1 s_1} = 2\pi s_1 b_{r_1 s_1} \pm (p^2 q^2 + s^2 p^2).$$ \hspace{1cm} \text{(e)}$$

如 $r + p = m, s + q = n$, 或者 $r - p = m, s + q = n$, 则式中符号为正，否则为负。对于方形板为例 ($a = b$)，有

$$t_{11} = \frac{E}{1600} (-4 w_{11} w_{11} + 36 w_{11} w_{15} + 36 w_{11} w_{11} + 64 w_{12} w_{16} + \cdots).$$

还需要建立一个挠度、应力函数与侧向载荷之间的关系式。将式 (a), (b) 和 (c) 代入方程 (246)，我们得到方程:

$$q_{mn} = Dw_{mn} \left(\frac{m^2}{a^2} + \frac{n^2}{b^2} \right) + P_x w_{mn} \frac{m^2 \pi^2}{a^2 b}$$

$$+ P_y w_{mn} \frac{n^2 \pi^2}{a^2 b} + \frac{h \pi^2}{4a^2 b^2} \sum C_{r_1 s_1} w_{r_1} w_{s_1}.$$ \hspace{1cm} \text{(f)}$$

这次求和号中仍是包括对于 $r \pm p = m, s \pm q = n$ 的所有乘积，而系数是由下式给出的:

$$C_{r_1 s_1} = \pm (r^2 q^2 + s^2 p^2) \text{ (设 } r \neq 0, s \neq 0).$$ \hspace{1cm} \text{(g)}$$

如 r 和 s 中有一个为零，则式将上式乘以 2。如 $r - p = m$, 或者 $s - q = n$ (但非同时)，则第一个符号为正，否则为负。如 $r + p = m, s - q = n$, 或者 $r - p = m, s + q = n$, 则第二个符号为正，否则为负。例如

*原文印刷有误，已改正——译者注。
\[
q_{11} = Dw_{11} \left(\frac{1}{a^2} + \frac{9}{b^2} \right) + P_x w_{11} \frac{\pi^4}{a^4} + P_y w_{11} \frac{\pi^4}{b^4} \\
+ \frac{bh^4}{4a^4b^4} \left(-8f_0 w_{11} - 8f_1 w_{11} - 100f_2 w_{21} - 64f_3 w_{31} + \cdots \right).
\]

根据飞机结构中的实际情况，可以认为板具有刚性框架，因此所有的边缘在变形后保持为直线。由此可知，板的伸长，比如在 \(x \) 方向内，就与 \(y \) 无关。根据第 101 节的式 (b) 和式 (f)，它的值等于

\[
\varepsilon_x = \int_0^a \varepsilon_n \, dx = \int_0^a \left[\frac{1}{E} \left(\frac{\partial F}{\partial y} - \nu \frac{\partial F}{\partial x} \right) - \frac{1}{2} \left(\frac{\partial \omega}{\partial x} \right)^2 \right] \, dx. \tag{h}
\]

应用级数 (a) 和级数 (c)，上式可写成:

\[
\varepsilon_x = \frac{P_x a}{b h E} - \nu \frac{P_y}{h E} - \frac{\pi^4}{8a} \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac{m^2 \omega_{mn}}{b E a^4} \tag{i}
\]

图 210

1）在第 449 页脚注所引 Kaiser 的论文中，有的解不受这个限制。
即实际上不包含 \(y \) 式子。类似地，有

\[
\delta_y = \frac{P_y b}{hE} - \frac{\nu P_y}{hE} - \pi \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \alpha^m \omega_{mn}^y
\]

(1)

关于边界条件，我们仍然考虑两种情况：

1. 所有边缘都不可移动。因此 \(\delta_x = \delta_y = 0 \)，根据式 (i) 和式 (i)，系数 \(\omega_{mn} \) 为\(P_x \) 和 \(P_y \)。

2. 在板平面内，边缘上的外载荷为零。因此有简单的表达式 \(P_x = P_y = 0 \)。

其次，我们必须将级数 (a) 和 (b) 中的项数取成有限个，且将与此对应的式 (d) 代入方程 (f)，这样就得到了 \(\omega_{mn} \) 的二次方程组。方程的个数与所设未知系数 \(\omega_{mn} \) 的个数相等。解出了这些方程后，我们就能计算系数 (d)，并且能够从级数 (a) 和 (c) 求数所有与板的应力和应变有关的数据。通过引人计算的系数 \(\omega_{mn} \) 的数目逐步增长时所得结果随的变化，观察就能判断解的精确性。在图 219 和图 211 中给出了具有不可移动边缘的均匀受载方形板的情况下，用这种方法计算所得关于弯曲应力和薄膜应力的若干数据。

图 211
第十四章
壳体的无弯曲变形

104. 定义和符号 在以下讨论壳体的变形和应力时，所用一系列的符号与讨论板时所用的相同，我们以 h 表示壳的厚度，这个量与壳的其他尺寸和曲率半径相比较经常被认为是小量。平分壳厚度的曲面叫作中面。在壳的每一点上确定了中面形状和壳的厚度，这壳在几何上就完全确定了。

为了分析诸内力，我们从壳中切出一无限小单元体，它由垂直于壳中面的两对相邻平面形成，并且包含中面的主曲率（图212a）。

图212
如图所示，我们取坐标轴 x 和 y 与主曲率线相切于点 O，z 轴垂直于中面。位于 xz 和 yz 平面内的主曲率半径分别用 \(r_x \) 和 \(r_y \) 表示。作用在这单元体各平面上的应力可以分解在各坐标轴的方向上，应力分量可用以前的符号 \(\sigma_x, \sigma_y, \tau_{xy} = \tau_{yx}, \tau_{xx}, \tau_{zz} \) 表示。用这些符号，图 212b 所示正截面的每单位长上的合力为

\[
N_x = \int_{-h/2}^{+h/2} \sigma_x \left(1 - \frac{z}{r_y} \right) dz,
N_y = \int_{-h/2}^{+h/2} \sigma_y \left(1 - \frac{z}{r_z} \right) dz, \quad (a)
\]

\[
N_{xy} = \int_{-h/2}^{+h/2} \tau_{xy} \left(1 - \frac{z}{r_y} \right) dz, \quad N_{yx} = \int_{-h/2}^{+h/2} \tau_{yx} \left(1 - \frac{z}{r_x} \right) dz, \quad (b)
\]

\[
Q_z = \int_{-h/2}^{+h/2} \tau_{xz} \left(1 - \frac{z}{r_y} \right) dz, \quad Q_y = \int_{-h/2}^{+h/2} \tau_{yz} \left(1 - \frac{z}{r_x} \right) dz. \quad (c)
\]

在式 (a), (b), (c) 中出现有小量 \(z/r_y \) 和 \(z/r_y \)，这是因为如图 212a 所示由于壳的曲率单元的侧面为梯形。因此虽然关系 \(\tau_{xy} = \tau_{yx} \) 仍然存在，但剪力 \(N_{xy} \) 和 \(N_{yx} \) 一般并不彼此相等。在进一步讨论时，我们经常假设厚度 \(h \) 比曲率半径 \(r_x, r_y \) 小得多，因此在式 (a), (b), (c) 中略去项 \(z/r_x \) 和 \(z/r_y \)。于是 \(N_{xy} = N_{yx} \)，合剪力可用板情形中的表达式（参看第 21 节）表示。

正截面的每单位长上的弯矩与扭矩由下列表达式给出：

\[
M_x = \int_{-h/2}^{+h/2} \sigma_x z \left(1 - \frac{z}{r_y} \right) dz, \quad M_y = \int_{-h/2}^{+h/2} \sigma_y z \left(1 - \frac{z}{r_x} \right) dz. \quad (d)
\]

\[
M_{xy} = -\int_{-h/2}^{+h/2} \tau_{xy} z \left(1 - \frac{z}{r_y} \right) dz, \quad (e)
\]

\[
M_{yx} = \int_{-h/2}^{+h/2} \tau_{yx} z \left(1 - \frac{z}{r_x} \right) dz,
\]

式中决定力矩方向所用的规则与板情形中的相同。在以下进一步讨论时，我们仍然忽略不计由壳的曲率所引起的小量 \(z/r_x \) 和 \(z/r_y \)，因此所用的力矩表达式与讨论板时所用的相同。

在考虑壳的弯曲时，假设原来垂直于壳中面的直线单元，如 \(AD \) 和 \(BC \) (图 212a)，保持为直线，并且变成垂直于壳变形后的

1）在旋转面的情形中，这单元体位置由角 \(\theta \) 和 \(\varphi \) 决定（参看图 213），应力、合力和合力矩符号中的下标 \(x \) 和 \(y \) 用下标 \(\theta \) 和 \(\varphi \) 代替。
中面。我们首先考虑一简单情形：在弯曲时，单元体 $ABCD$ 的各侧面，仅仅绕它们与中面的交线旋转。设 r_x' 和 r_y' 为变形后曲率半径的值，则离开中面距离为 z 的一薄层（图 212a）的单位伸长为:

$$
\varepsilon_x = -\frac{z}{1 - \frac{z}{r_x}} \left(\frac{1}{r_x'} - \frac{1}{r_x} \right), \quad \varepsilon_y = -\frac{z}{1 - \frac{z}{r_y}} \left(\frac{1}{r_y'} - \frac{1}{r_y} \right). \tag{f}
$$

如果除旋转外，由于中面的伸长，单元体的侧面还作平行于自身的位移，并且中面在 x 和 y 方向内的相应单位伸长分别以 ε_1 和 ε_2 表示，则由图 212c 可以看出，上述薄层的伸长 ε_x 为:

$$
\varepsilon_x = \frac{l_2 - l_1}{l_1}
$$

代人

$$
l_1 = ds \left(1 - \frac{z}{r_x} \right), \quad l_2 = ds \left(1 + \varepsilon_1 \right) \left(1 - \frac{z}{r_x} \right),
$$

则得

$$
\varepsilon_x = \frac{\varepsilon_1}{1 - \frac{z}{r_x}} - \frac{z}{1 - \frac{z}{r_x}} \left[\frac{1}{\left(1 - \varepsilon_1 \right) r_x'} - \frac{1}{r_x} \right]. \tag{g}
$$

对于伸长 ε_y 可得类似的表达式。在以下进一步讨论时，经常假设壳厚 h 较之于曲率半径为小量。在这样的情况下，量 z/r_x 和 z/r_y 较之于 1 可忽略不计。我们还将略去伸长 ε_1 和 ε_2 对应于曲率的影响。所以代替 (g) 这样的式子，得到

$$
\varepsilon_x = \varepsilon_1 - z \left(\frac{1}{r_x'} - \frac{1}{r_x} \right) = \varepsilon_1 - \chi_x z,
$$

$$
\varepsilon_y = \varepsilon_1 - z \left(\frac{1}{r_y'} - \frac{1}{r_y} \right) = \varepsilon_1 - \chi_y z,
$$

式中 χ_x 和 χ_y 代表曲率的变化。应用薄层应变分量的这些表达式，并假设薄层之间没有正应力 ($\sigma_z = 0$)，即得下列应力分量表达

1) 在细长弯曲的弯曲理论中通常也作类似的简化。在该情形中能证明，如截面的厚度 h 较之于半径 r 为小量，例如 $h/r < 0.1$，则此作法是恰当的；参看 S. Timoshenko, "Strength of Materials", part I, 第三版，第 370 页。1955 年。
式：
\[
\sigma_x = \frac{E}{1 - \nu^2} [\varepsilon_x + \nu \varepsilon_y - \nu (\chi_x + \nu \chi_y)],
\]
\[
\sigma_y = \frac{E}{1 - \nu^2} [\varepsilon_y + \nu \varepsilon_x - \nu (\chi_y + \nu \chi_x)].
\]

将这两个式子代入式 (a) 和 (d)，并且忽略不计较之于 1 为小量的 \(\varepsilon/r \) 和 \(\chi/r\)，即得:
\[
N_x = \frac{Eh}{1 - \nu^2} (\varepsilon_x + \nu \varepsilon_y), \quad N_y = \frac{Eh}{1 - \nu^2} (\varepsilon_y + \nu \varepsilon_x),
\]
\[
M_x = -D (\chi_x + \nu \chi_y), \quad M_y = -D (\chi_y + \nu \chi_x), \tag{253}
\]
式中 \(D\) 的意义与板情形中的 \(D\) [参看式 (3)] 相同，代表壳的抗弯刚度。

如除正应力外还有剪应力作用于图 212 所示单元体的侧面，则可得这单元体变形的更一般情况。用 \(\gamma\) 代表壳中间的剪应力，用 \(\chi_{xy} dx\) 代表 BC 边相对于 Ox 绕 x 轴的旋转 (图 212a)，并且象板情况下那样进行推演(参看式 (42))，求得
\[
\tau_{xy} = (\gamma - 2xx_{xy}) G.
\]
将此式代入式 (b) 和 (c)，并使用前述简化，即得
\[
N_{xy} = N_{yx} = \frac{\gamma y h E}{2 (1 + \nu)},
\]
\[
M_{xx} = - M_{yy} = D (1 - \nu) x_{xy}. \tag{254}
\]
由此可知，如受在壳弯曲时，原来垂直于中面的直线单元保持为直线，并且变成垂直于变形后的中面，我们就能以六个量表示每单位长度上的合力 \(N_x, N_y, N_{xy}\) 和力矩 \(M_x, M_y, M_{xy}\)。这六个量是壳中面的三个应力分量 \(\varepsilon_x, \varepsilon_y, \gamma\)，以及代表中面的曲率和扭转的变化的三个量 \(\chi_x, \chi_y, \chi_{xy}\)。

在许多壳的变形问题中，弯曲应力可以忽略不计，需要考虑的只 是由壳的中面应变所得到的应力。例如受垂直于壳面的均匀分布内压力作用的薄壁球形容器。在这样的作用下，壳的中面具有均匀应变，并且由于壳的厚度为小量，可以假设拉应力均匀分布在壳厚上。另一个类似的例子是薄壁圆柱形容器，用沿柱轴自由移动
的活塞压入一种气体或液体。在均匀内压力的作用下，此圆柱形壳中所产生的环箍应力均匀分布在壳厚上。如果圆柱二端沿边缘是固定，则壳在侧向不再能自由膨胀，在内压力作用时，固支边附近必然会产些弯曲。然而，更周密的研究表明（参看第114节），这个弯曲是局部性的，壳在离二端有相当距离的部分继续穿保持为柱形，并且仅有中间应变而无显著的弯曲。

如果壳的情况允许忽略弯剪，则应力分析问题大大简化，因为合力矩（d）、（e）和剪力（c）等于零，所以仅有的未知数是三个量 $N_x, N_y, N_{xy} = N_{yx}$，它们可由如图212所示的单元体的平衡条件决定。因此如所有作在壳上的力为已知，则此问题是静定的。这样得到的力 N_x, N_y, N_{xy} 有时叫作薄膜力，以弯剪应力的省略为基础的壳体理论叫作薄膜理论。这个理论对于各种特殊情况的应用将在本章以下各节讨论。

105. 承受轴对称载荷的旋转面形壳

旋转面形壳在各种容器、箱及圆屋顶中有广泛的应用。旋转面是由一平面曲线绕与此曲线共面的一轴旋转而成。此曲线叫作经线，其平面叫作经线面。如图213a所示，用二相邻经线及二平行圆截取壳的一个单元体。经线的位置由从某一基准经线面量起的角度 θ 决定；平行圆的位置由壳面的垂线和旋转轴所夹的角度 ϕ 决定。经线面和垂直于经线的平面是旋转面某一上点的主曲率面，其相应的曲率半径分别用 r_1 和 r_2 表示；平行圆的半
径用 \(r_0 \) 代表。因此如图所示，单元体相交于 \(O \) 的二边之长为 \(r_1 d\varphi \) 和 \(r_0 d\theta = r_2 \sin \varphi d\theta \)。这单元体的表面积为 \(r_1 r_2 \sin \varphi d\varphi d\theta \)。

根据所假设的载荷与变形的对称性可以知道：在单元体的侧面上没有剪力作用。如图所示，法向力在每单位长度上的大小用 \(N_\varphi \) 和 \(N_\theta \) 表示。作用在经线平面内的外载荷的强度在对称情况下可分解为平行于坐标轴的两个分量 \(Y \) 和 \(Z \)。将这两个分量乘上面积 \(r_1 r_2 \sin \varphi d\varphi d\theta \)，即得作用在单元体上的外载荷的分量。

在写单元体的平衡方程时，我们从经线上切线方向的力开始。在单元体的上边缘作用着力

\[
N_\varphi r_0 d\theta = N_\varphi r_1 \sin \varphi d\theta. \tag{a}
\]

单元体下边缘上相应的力为：

\[
\left(N_\varphi + \frac{dN_\varphi}{d\varphi} d\varphi \right) \left(r_0 + \frac{dr_0}{d\varphi} d\varphi \right) d\theta. \tag{b}
\]

由式 (a) 和 (b)，忽略不计二阶小量，求得 \(Y \) 方向的合力等于：

\[
N_\varphi \frac{d r_0}{d\varphi} d\varphi d\theta + \frac{dN_\varphi}{d\varphi} r_0 d\varphi d\theta = \frac{d}{d\varphi} (N_\varphi r_0) d\varphi d\theta. \tag{c}
\]

在该方向上外力的分量为：

\[
N_\varphi r_1 \cos \varphi d\varphi d\theta. \tag{d}
\]

作用在单元体侧向边缘上的力等于 \(N_\theta r_1 d\varphi \)，其合力在平行圆的半径方向内，等于 \(N_\theta r_1 d\phi d\theta \)。这个合力在 \(Y \) 方向内的分量（图 213b）为

\[
- N_\theta r_1 \cos \varphi d\varphi d\theta. \tag{e}
\]

将力 (c)，(d) 和 (e) 相加，即得经线上切线方向的平衡方程

\[
\frac{d}{d\varphi} (N_\varphi r_0) - N_\theta r_1 \cos \varphi + Y r_1 r_0 = 0. \tag{f}
\]

第二个平衡方程由求各力在 \(Z \) 方向内的投影之和而得到。作用在单元体的上下两边缘上在 \(Z \) 方向内的力的合力等于

\[
N_\varphi r_0 d\theta d\varphi. \tag{g}
\]

作用在单元体侧向边缘上在平行圆的半径方向内的力的合力等于

\[
N_\theta r_1 d\phi d\theta, \tag{h}
\]

它在 \(Z \) 方向内的分量值为：

\[464 \]

作用在单元体上的外载荷在该方向内具有分量:

\[N_{\theta} r_{1} \sin \varphi d\theta d\varphi. \] \hfill (h)

\[Z r_{1} r_{0} d\theta d\varphi. \] \hfill (i)

将力 (g), (h) 和 (i) 相加，即得第二个平衡方程

\[N_{\theta} r_{0} + N_{\theta} r_{1} \sin \varphi + Z r_{1} r_{0} = 0. \] \hfill (j)

如果在每一特殊情形中已知半径 \(r_{0} \) 和 \(r_{1} \)，以及外载荷强度的分量 \(Y \) 和 \(Z \)，则由二方程 (i) 和 (j) 便计算力 \(N_{\theta} \) 和 \(N_{\varphi} \)。

代替单元体的平衡，也可以考虑角 \(\varphi \) 所确定的平行面以上这一部分壳 (图 214) 的平衡。

如以 \(R \) 表示这部分壳上的总载荷的合力，则平衡方程为:

\[2\pi r_{0} N_{\rho} \sin \varphi + R = 0. \] \hfill (255)

这个方程可用来代替微分方程 (f)，由 (f) 的积分就能得到它。将方程 (j) 除以 \(r_{1} r_{0} \)，可写成

\[\frac{N_{\theta}}{r_{1}} + \frac{N_{\theta}}{r_{0}} = - Z. \] \hfill (256)

可以看到，当 \(N_{\varphi} \) 由方程 (255) 求得后，力 \(N_{\theta} \) 就能由方程 (256) 计算得到，所以在每一特殊情形中壳膜应力问题能立即求解。此二方程的某些应用将在下一节中讨论。

106. 旋转面形壳的特殊情况

球形屋顶

假设一球形壳 (图 215a) 承受自身重量的作用，每单位面积的重量值是常数，等于 \(q \)。用 \(a \) 代表球的半径，则有 \(r_{0} = a \sin \varphi \)，并且

\[R = 2\pi \int_{0}^{\pi} a^{2} q \sin \varphi d\varphi = 2\pi a^{2} q (1 - \cos \varphi). \]

于是方程（255）和（256）给出：

\[
N_\varphi = - \frac{aq(1 - \cos \varphi)}{\sin^2 \varphi}, \quad N_\theta = \frac{aq}{1 - \cos \varphi - \cos \varphi}.
\]

（257）

显然力 \(N_\theta \) 通常是负的。因此沿经线受有压力，其值随角 \(\varphi \) 的增大而增大。对于 \(\varphi = 0 \)，有 \(N_\varphi = -aq/2 \)；对于 \(\varphi = \pi/2 \)，有 \(N_\varphi = -aq \)。对于小角 \(\varphi \)，力 \(N_\theta \) 也是负的。当

\[
\frac{1}{1 + \cos \varphi - \cos \varphi} = 0,
\]

亦即 \(\varphi = 51^\circ 50' \) 时，\(N_\theta \) 等于零。\(\varphi \) 继续增大时，\(N_\theta \) 就变成正的。这表明当角 \(\varphi \) 大于 \(51^\circ 50' \) 时，在垂直于经线的方向内有拉应力存在。

如果壳的支承是使诸反力与经线相切的那样类型（图 215a），则由（257）计算所得的应力很精确地代表了壳中的实际应力。通常的设计是这样的：支座仅有垂直反力作用在屋顶上，力 \(N_\theta \) 的水平分量传在支环上（图 215b）。此支环承受一均匀的周向拉伸。由

![Diagram](image)

图 215

1）由于中面应变所产生的小弯曲应力将在第 16 章中讨论。
于此拉伸通常不同于由式(257)计算所得的沿壳体平行圆的应变，因此在支环附近壳将发生一弯曲。此弯曲的研究表明，在薄壳的情况下，这样的弯曲是非常局部性的，离支环一定的距离，方程 (257) 就足够精确地继续代表壳中的应力状况。

如图 215c 所示，球形壁顶的上部常常被移去，并且使用一上部加强环来支承上部结构。如 2q0 为与此开口对应的角，P 为上部加强环在单位长上的垂直荷载，则对应于角 q 的合力 R 为：

\[R = 2\pi \int_{\phi_0}^{\phi} a^2 q \sin \phi d\phi + 2\pi Pa \sin \phi_0. \]

于是由方程 (255) 和 (256) 求得：

\[N_\phi = -aq \cos \phi_0 \cos \phi \sin^2 \phi + \frac{P \sin \phi_0}{\sin^2 \phi}, \]

\[N_\theta = aq \left(\frac{\cos \phi_0 - \cos \phi}{\sin^2 \phi} - \cos \phi \right) + \frac{P \sin \phi_0}{\sin^2 \phi}. \]

作为球形壳的另一例子，我们考虑沿一平行圆 MA 支承 (图 216)，盛有比重为 \(\gamma \) 的液体的球形箱。对于任一角 \(\phi \) 其内压力由

\[\frac{2a^2 \gamma}{3 \sin^2 \phi_0}. \]

\[\frac{2a^2 \gamma}{3 \sin^2 \phi_0}. \]

图 216

下式给出\(^1\):

\[
p = - Z = \gamma a(1 - \cos \varphi).
\]

角度\(\varphi\)所定出的那部分壳所受压力的合力\(R\)为

\[
R = - 2 \pi a^2 \int_0^\theta \gamma a(1 - \cos \varphi) \sin \varphi \cos \varphi \, d\varphi
\]

\[
= - 2 \pi a^2 \gamma \left[\frac{1}{6} - \frac{1}{2} \cos^2 \varphi \left(1 - \frac{2}{3} \cos \varphi\right)\right].
\]

代入方程(255)，得到:

\[
N_\varphi = \frac{\gamma a^2}{6 \sin^2 \varphi} \left[1 - \cos^2 \varphi(3 - 2 \cos \varphi) \right]
\]

\[
= \frac{\gamma a^2}{6} \left(1 - \frac{2 \cos^3 \varphi}{1 + \cos \varphi} \right), \quad (259)
\]

而由方程(260)可求得:

\[
N_\vartheta = \frac{\gamma a^2}{6} \left(5 - 6 \cos \varphi + \frac{2 \cos^2 \varphi}{1 + \cos \varphi} \right). \quad (260)
\]

式(259)和(260)对于\(\varphi < \varphi_0\)成立。对于更大的\(\varphi\)值，亦即对于箱的下部，计算合力\(R\)时，我们必须不仅考虑内压力，而且考虑沿支环\(AA\)作用的垂直反应的和。此和显然等于液体的总重量

\[
4 \pi a^3 \gamma / 3.
\]

所以

\[
R = - \frac{4}{3} \pi a^3 \gamma - 2 \pi a^3 \gamma \left[\frac{1}{6} - \frac{1}{2} \cos^2 \varphi \left(1 - \frac{2}{3} \cos \varphi\right)\right].
\]

代入方程(255)，得到

\[
N_\varphi = \frac{\gamma a^2}{6} \left(5 + \frac{2 \cos^3 \varphi}{1 - \cos \varphi} \right), \quad (261)
\]

而由方程(260)可得

\[
N_\vartheta = \frac{\gamma a^2}{6} \left(1 - 6 \cos \varphi + \frac{2 \cos^2 \varphi}{1 - \cos \varphi} \right). \quad (262)
\]

将式(259)和(261)作比较，我们看到沿支环\(AA\)的力\(N_\varphi\)有突变，突变的量等于\(2 \gamma a^2 / 3 \sin^2 \varphi_0\)。如考虑支环\(AA\)的单位长度上的

\[
1) \text{ 在球形壳内产生均匀拉伸的均匀压力可毫不显著地迭加在这个压力上。}
\]

468.
垂直反力，并将它分解成两个分量（图 216b）：一个在经线的切线方向内，另一个在水平方向内，也能得到上述突变量。此二分量中的第一个等于上述 \(N_\phi \) 值的突变量；水平分量代表作用在支环上的反力，它在支环内产生一均匀压缩。如果与经线相切方向的支承代替图 216a 所示的垂直支承，这个压缩就能消除。由式 (260) 和 (262) 可以看出，当 \(N_\phi \) 在圆 \(AA \) 处发生一突变，这表明在平行圆 \(AA \) 的两边存在一周期膨胀的突变。因此薄膜理论在圆 \(AA \) 处不满足连续条件，并且我们可以预料到支环附近有些局部弯曲发生。

锥形壳 在这个情形中，一定的薄膜应力可由作用于锥顶的一力产生。如有一力 \(P \) 作用于锥轴方向，则应力分布是对称的，由图 217 可得：

\[
N_\phi = -\frac{P}{2\pi r_0 \cos \alpha}.
\]
(a)

此时方程 (256) 给出 \(N_\theta = 0 \)。一力作用于锥顶母线方向内的情况将在第 110 节中讨论，壳体承受自重载荷的情况将在第 133 节中讨论。

如侧向载荷对称地分布在锥面上，用方程 (255) 和 (256) 可计算其薄膜应力。因为在圆锥的情况下经线的方向是均匀的，即 \(r_1 = \infty \)，因此我们能将上述二方程写成下列形式：

\[
N_\phi = -\frac{R}{2\pi r_0 \sin \varphi},
\]

\[
N_\theta = -r_0 \frac{Z}{\sin \varphi}.
\]
(b)

假如载荷分布为已知，则合力 \(N_\phi \) 和 \(N_\theta \) 中每一个可独立地计算。今以图 218 所示盛有比重为 \(r \) 的液体的锥形形为例。由箱底至距离 \(y \)，并且用 \(d \) 表示箱中液体的总深度，则任一平行圆 \(mn \) 处的压力为

\[
p = -Z = \gamma (d - y).
\]
对于这样的锥形箱还有 \(\varphi = (\pi/2) + \alpha \), \(r_0 = y \tan \alpha \)。将这些式子代入 (b) 中的第二式，即得

\[
N_y = \frac{\gamma (d - y) y \tan \alpha}{\cos \alpha}.
\]

此力的最大值显然是在 \(y = d/2 \) 处，亦即

\[
(N_y)_{\text{max}} = \frac{\gamma d^2 \tan \alpha}{4 \cos \alpha}.
\]

在计算力 \(N_y \) 时我们注意到，方程 (b) 的第一式中的载荷 \(R \) 在数值上等于锥形部分 \(mno \) 和柱形部分 \(mnti \) 的液体重量之和，所以

\[
R = -\pi \gamma y^2 \left(d - y + \frac{1}{3} y \right) \tan \alpha,
\]

从而得到:

\[
N_y = \frac{\gamma y \left(d - \frac{2}{3} y \right) \tan \alpha}{2 \cos \alpha}.
\]

当 \(y = \frac{3}{4} d \) 时，此力为最大，亦即:

\[
(N_y)_{\text{max}} = \frac{3}{16} \frac{d^2 \gamma \tan \alpha}{\cos \alpha}.
\]

如果箱的支承力是在母线方向内，如图 218 所示，图 (c) 和 (d) 高度精确地代表壳中的应力状态。通常沿箱的上边缘有一加强环。这个环承担了力 \(N_y \) 的水平分量；该力的垂直分量造成了支承这容器的反力，在这样的情况下，可发现加强环处发生有壳的局部弯曲。

旋转椭球形壳　这样的壳常常用在柱形蒸汽锅炉的两端。在这种情况下，用的是如图 219 所示的半个椭球体。对于半轴为 \(a \) 和 \(b \) 的椭圆所形成的椭球体，其主曲率半径由下列公式给出:
\[r_1 = \frac{a^2 b^2}{(a^2 \sin^2 \phi + b^2 \cos^2 \phi)^{1/2}} \]

\[r_2 = \frac{a^2}{(a^2 \sin^2 \phi + b^2 \cos^2 \phi)^{1/2}} \]

或者用如图所示的直角坐标 \(x \) 和 \(y \)，为

\[r_1 = r_2 \frac{b^2}{a^2}, \quad r_2 = \frac{(a^4 y^2 + b^4 x^2)^{1/2}}{b^2}. \]

如主曲率已由式 (e) 或 (f) 决定，则力 \(N_\phi \) 和 \(N_\theta \) 可由方程 (255) 和 (256) 立即求出。设 \(\rho \) 为锅炉内的均匀蒸汽压力。因此对于半径为 \(r_0 \) 的平行圆有 \(R = -\pi \rho r_0^2 \)，于是方程 (255) 给出

\[N_\phi = \frac{\rho r_0}{2 \sin \phi} = \frac{\rho r_2}{2}. \]

代入方程 (256)，求得

\[N_\theta = r_2 \rho - \frac{r_2}{r_1} N_\phi = \rho \left(r_2 - \frac{r_2^2}{2r_1} \right). \]

在壳顶（点 \(O \)）有 \(r_1 = r_2 = a^2 / b \)，由式 (263) 和 (264) 可得

\[N_\phi = N_\theta = \frac{\rho a^2}{2 b}. \]

在赤道 \(AD \) 则有 \(r_1 = b^2 / a \) 和 \(r_2 = a \)，由此可得：

\[N_\phi = \frac{\rho a}{2}, \quad N_\theta = \rho a \left(1 - \frac{a^2}{2b^2} \right). \]

可以看到，力 \(N_\phi \) 总是正的，如

\[a^2 > 2b^2, \]

则在赤道处，力 \(N_\theta \) 变为负的。在球的特殊情况下，\(a = b \)，于是求得在所有的点上 \(N_\phi = N_\theta = \rho a / 2 \).

圆环形壳 如一圆环形壳是由半径为 \(a \) 的圆绕一垂直轴旋转而成（图 220），则力 \(N_\phi \) 可由考虑图中黑线 \(AB \) 所表示壳的环形部分的平衡而得到。由于沿 \(BB \) 平行圆的力 \(N_\phi \) 是水平方向的，因此在讨论垂直方向的平衡时，我们需要考虑的只是沿 \(AD \) 圆的力和作用在此环上的外力。假设此壳承受均匀内压力 \(\rho \) 的作用，则得平衡方程：

\[\cdot 471 \cdot \]
由此可得

$$N_\varphi = \frac{p(r_0^2 - b^2)}{2r_0 \sin \varphi} = \frac{pa(r_0 + b)}{2r_0}. \quad (265)$$

将此式代入方程 (256)，即得

$$N_\theta = \frac{pr_0(r_0 - b)}{2r_0} = \frac{pa}{2}. \quad (266)$$

椭圆形截面的环形壳可用类似的方法处理。

107. 等强度壳 作为等强度壳的第一个例子，我们来考虑改变载荷自身重量所对应的壳的重量是 γh，此重量沿坐标轴的两个分量为

$$Y = \gamma h \sin \varphi, \quad Z = \gamma h \cos \varphi. \quad (a)$$

在等强度壳的情况下，经线的形状是这样决定的：在中间的压应力为常数，在所有方向都等于 σ，因此

$$N_\varphi = N_\theta = -\sigma h.$$ 代入方程 (256)，可得

$$\sigma h \left(\frac{1}{r_1} + \frac{1}{r_2} \right) = \gamma h \cos \varphi, \quad (b)$$

进一步代入 $r_1 = r_0 \sin \varphi$，并对 r_1 求解，则得

1) 然而，研究壳的变形表明，虽然在壳面形状或载荷分布中没有任何变点，但在壳顶 $r_0 = b$ 附近必然不可能避免地产生弯曲应力。参看 W. R. Dean, Phil. Mag., ser. 7, 第 28 卷, 第 452 页, 1939 年, 也可参看前引 Flügge 的著作, 第 81 页。
\[
\frac{r_t}{r_0} = \frac{r}{\sigma r_0 \cos \varphi - \sin \varphi}.
\]

根据图 213b，有

\[
r_t \, d\varphi = \frac{dr_0}{\cos \varphi}.
\]

因此方程（e）可表示成如下形式:

\[
\frac{dr_0}{d\varphi} = \frac{r_0 \cos \varphi}{\sigma r_0 \cos \varphi - \sin \varphi}.
\]

在圆屋顶的顶点 \(\varphi = 0 \)，此方程的右端变为无穷大。为了消除这个困难，我们将利用方程（b）。由于顶点的对称性条件，\(r_t = r_1 \)，可知:

\[
r_1 = r_t = \frac{2\sigma}{\gamma}, \quad dr_0 - r_1 \, d\varphi = \frac{2\sigma}{\gamma} \, d\varphi.
\]

因此，对于屋顶的顶点有

\[
\frac{dr_0}{d\varphi} = \frac{2\sigma}{\gamma}.
\]

用方程（e）和（d），由数值积分得到经线的形状。作数值积分时由屋顶的顶点开始，对角 \(\varphi \) 的每一增量 \(\Delta \varphi \)，计算半径 \(r_0 \) 的每一对应增量 \(\Delta r_0 \)。为了找到完好的变化，必须使用第 105 节的方程（f）。将 \(N_\varphi = N_\theta = -\sigma h \) 代入此方程，并且注意到 \(\sigma \) 是常数，可得:

\[
- \frac{d}{d\varphi} (hr_0) + hr_0 \cos \varphi + \frac{\gamma}{\sigma} r_r r_0 \sin \varphi = 0.
\]

代入 \(r_1 \) 的表达式（e），则得如下方程:

\[
\frac{d}{d\varphi} (hr_0) = hr_0 \cos \varphi + \frac{\gamma}{\sigma} \frac{r_0 \sin \varphi}{r_0 \cos \varphi - \sin \varphi}.
\]

对于 \(\varphi = 0 \)，由方程（f）可得

\[
\frac{d}{d\varphi} (hr_0) \approx hr_1 = h \frac{dr_0}{d\varphi}.
\]

我们看到，对于角 \(\varphi \) 的第一个增量 \(\Delta \varphi \)，可对 \(h \) 取任意数值。然后对于经线上的其他点，厚度可由方程（g）的数值积分求得。在图 221 中表示了这样计算所得的结果”。可见条件

1) 这个例子是 Flügge 计算的，参看他的“Statik und Dynamik der Schalen.”第 38 页。
不仅决定了圆屋顶中面的形状，而且决定了圆屋顶厚度沿经线的变化规律。

如考虑等强度笼，其中盛满液体，在顶点 A 的压力为 γd （图 222），则我们必须找到这样的经线形状，使得等于 γz 的内压力会在壳体的所有点上生产力 $N_\theta = N_\phi = \text{常数}$。

在求落下在水平面上的液滴形状时，会遇到类似的问题。由于表面张力，形成了一层均匀张紧的薄膜膜，它包住了液体，并且阻止液体流散在平面上。这两个问题在数学上是完全相同的。

1) 这个问题的数学讨论是 C. Runge 和 H. König 在他们的书中给出的。"Vorlesungen über numerisches Rechnen," 第 320 页，柏林，1924 年。
在这样的问题中，方程 (256) 给出

\[N_\varphi \left(\frac{1}{r_1} + \frac{1}{r_2} \right) = r \]

取如图所示的直角坐标系，我们有

\[r_1 = \frac{x}{\sin \varphi}, \quad r_2 \, d\varphi = ds = \frac{dx}{\cos \varphi}. \]

所以

\[\frac{1}{r_1} = \frac{\sin \varphi}{x}, \quad \frac{1}{r_2} = \frac{\cos \varphi \, d\varphi}{dx} = \frac{d \sin \varphi}{dx}, \]

从而方程 (h) 给出

\[\frac{d \sin \varphi}{dx} + \frac{\sin \varphi}{x} = \frac{r_2}{N_\varphi}. \]

注意到

\[\tan \varphi = \frac{dx}{dz}, \quad \sin \varphi = \frac{\tan \varphi}{\sqrt{1 + \tan^2 \varphi}}, \]

我们就能由方程 (i) 中消去 \sin \varphi，从而得到 \(x \) 的函数 \(z \) 的微分方程。这样得到的微分方程非常复杂，解这个问题比较简单的办法是引入一个新的变量 \(u = \sin \varphi \)。在方程 (i) 和 (j) 中作此代换，可得

\[\frac{du}{dx} + \frac{u}{x} = \frac{r_2}{N_\varphi}, \]

\[\frac{dz}{dx} = \frac{u}{\sqrt{1 - u^2}}, \]

这两个方程可以分别的顶点 \(A \) 开始作数值积分。根据对称性，在顶点 \(r_1 = r_2 \) 我们由方程 (h) 求得

\[r_1 = \frac{2N_\varphi}{\gamma d}. \]

引入符号

\[\frac{N_\varphi}{\gamma} = a^2, \]

可写成

\[r_1 = \frac{2a^2}{d}. \]

用这个半径，我们作对应于小角 \(\Delta \varphi \) 的经线曲线的第一个单元 \(r_1 \Delta \varphi = \Delta x \)。

如对一个圆的一小段圆弧相同，在这段弧的终点有

\[s \approx d + r_1 \left(\frac{\Delta \varphi}{2} \right)^2 = d + \frac{\Delta x^2}{2r_1} = d \left[1 + \frac{(\Delta x)^2}{4d^2} \right]. \]

* 475 *
当 u 和 z 的值已由式 (n) 求得后，对于同一点上 du/dx 和 dz/dx 的值可由方程 (k) 和 (l) 求得。有了这两个导数值，我们就能在一个区间的终点处算出 x 和 u 的值，余以此类推。这样的计算可毫不困难地继续下去，直到角 φ 等于，例如，50°，此时 u 的值近似地等于 0.75。从这点开始到 $\varphi = 140^\circ$，z 的增量比相应的 x 的增量大得多，因此不用 x 而用 u 作独立变量是有利的。当 $\varphi > 140^\circ$ 时，又必须以 x 作独立变量，并且计算可继续到点 B。在该点经线具有水平切线 BC。在圆面积 BC 上，箱具有与基础接触的水平面，而压力 $r(d + d')$ 由基础的反力平衡。

用这个方法设计的箱，只有当 z 点的压力为在计算所设的值时才是等强度的。对于这个压力的任一其他值，力 N_θ 和 N_φ 不再为常数，而是沿经线变化的。它们的值可用一般方程 (255) 和 (256) 计算。还可发现，箱的平衡要求有垂直剪力作用在平行线 BC 上。这表明，在这个圆附近必然会发生箱壁的局部弯曲。

108. 承受对称载荷的旋转面形壳的位移

在壳对称变形的情况下，一点的小位移可分解成两个分量：经线的切线方向内的 v 和中面法线方向内的 w。考虑经线的一单元 AB (图 223)，我们看到，经线二端的切向位移 v 和 $v + (dv/d\varphi)d\varphi$ 所引起的这单元长度的增量为 $(dv/d\varphi)d\varphi$。

由于点 A 和 B 的径向位移 w，这单元的长度减小了 $wd\varphi$。点 A 和 B 的径向位移之差所引起的这单元长度的变化，可作为高阶小量而忽略不计。因而变形所引起的单元 AB 长度的总变化量为

$$\frac{dv}{d\varphi}d\varphi = wd\varphi.$$
将此式除以单元的初始长度 $r_1\, d\varphi$，我们求得在经线方向内壳的应变

$$
\epsilon_\varphi = \frac{1}{r_1} \frac{d\nu}{d\varphi} - \frac{\omega}{r_1}.
$$

(a)

考虑一平行圆的单元，可以看到（图223）由于位移 ν 和 ω，该圆的半径 r_0 的增量为:

$$
\nu \cos \varphi - \omega \sin \varphi.
$$

平行圆周长的增量与半径的增量成正比，所以

$$
\epsilon_\theta = \frac{1}{r_0} (\nu \cos \varphi - \omega \sin \varphi),
$$

(b)

或者代入 $r_0 = r_2 \sin \varphi$，有

$$
\epsilon_\theta = \frac{\nu}{r_2} \cot \varphi - \frac{\omega}{r_2}.
$$

由方程 (a) 和 (b) 消去 ω，对于 ν 可得微分方程:

$$
\frac{d\nu}{d\varphi} - \nu \cot \varphi = r_1 \epsilon_\varphi - r_2 \epsilon_\theta.
$$

(c)

用胡克定律，应变分量 ϵ_φ 和 ϵ_θ 可用力 N_φ 和 N_θ 表示:

$$
\epsilon_\varphi = \frac{1}{Eh} (N_\varphi - \nu N_\theta),
$$

$$
\epsilon_\theta = \frac{1}{Eh} (N_\theta - \nu N_\varphi).
$$

(d)

代入方程 (c)，则得

$$
\frac{d\nu}{d\varphi} - \nu \cot \varphi = \frac{1}{Eh} \left[N_\varphi (r_1 + \nu r_2) - N_\theta (r_2 + \nu r_1) \right].
$$

(267)

在每一特殊情况下，力 N_φ 和 N_θ 可由受载情况求得，从而位移 ν 就能由微分方程（267）的积分得到。将此微分方程的右端用 $f(\varphi)$ 代表，可写成

$$
\frac{d\nu}{d\varphi} - \nu \cot \varphi = f(\varphi).
$$

这个方程的通解为:

$$
\nu = \sin \varphi \left[\int \frac{f(\varphi)}{\sin \varphi} \, d\varphi + C \right],
$$

(e)
式中 C 是积分常数，应由边界条件决定。

今以承受自重载荷的等厚度球形壳为例（图 215a），在这样的情况下 $r_1 = r_2 = a$，N_φ 和 N_θ 由式 (257) 给出，因而方程 (267) 变为

$$
\frac{dv}{d\varphi} - \nu \cot \varphi = \frac{a^2 q(1 + \nu)}{Eh} \left(\cos \varphi - \frac{2}{1 + \cos \varphi} \right).
$$

通解 (e) 化为：

$$
v = \frac{a^2 q(1 + \nu)}{Eh} \left[\sin \varphi \log (1 + \cos \varphi) \right.
$$

$$
- \frac{\sin \varphi}{1 + \cos \varphi} \left] + C \sin \varphi. \right) \tag{f}
$$

现在常数 C 可由 $\varphi = \alpha$ 时位移 v 为零（图 215a）这个条件决定。由此条件，即得：

$$
C = \frac{a^2 q(1 + \nu)}{Eh} \left[\frac{1}{1 + \cos \alpha} - \log (1 + \cos \alpha) \right]. \tag{g}
$$

将此常数代入式 (f)，即得位移 v。位移 w 可由方程 (b) 立即得到。在支承处 $v = 0$，位移 w 可无需求解 (f) 而直接由方程 (b) 计算。由 (d) 的第二个方程求出 ε_θ 的值，然后代入方程 (b)。

109. 承受非对称载荷的旋转面形壳 再次考虑以二相邻经线与二平行圆从壳中截取的一单元体（图 224），在一般情况下，不仅有法向力 N_φ 和 N_θ，而且有剪力 $N_{\varphi \theta} = N_{\theta \varphi}$ 作用在单元体的四边上。取作用在单元体上的所有力在 y 方向的投影的和时，我们必须在第 105 节中所考虑的各力上再加上力：

$$
\frac{\partial N_{\varphi \theta}}{\partial \theta} r_1 d\theta d\varphi, \tag{a}
$$

它代表作用在单元体侧边上的剪力之差。所以，代替第 105 节中的方程 (f)，得到如下方程：

$$
\frac{\partial}{\partial \varphi} (N_\varphi r_0) + \frac{\partial N_{\varphi \theta}}{\partial \theta} r_1 - N_{\theta r_1} \cos \varphi + Y r_1 r_1 = 0. \tag{268}
$$

考虑 x 方向的力，我们必须将下列各力包括进去：作用在单元体的上下二边上剪力之差：

* 474 *
力 N_θ 的变化所引起的力

$$ \frac{\partial N_\theta}{\partial \theta} r_i d\theta d\varphi, \quad (c) $$

以及作用在单元体侧边上的剪力 $N_{\theta\varphi}$ 之间的小夹角 $\cos \varphi d\theta$ 所引起的力

$$ N_{\theta\varphi} r_i \cos \varphi d\theta d\varphi. \quad (d) $$

作用在单元体上的外载荷在 x 方向的分量为

$$ X r_0 r_i d\theta d\varphi, \quad (e) $$

将所有这些力相加，得到方程

$$ \frac{\partial}{\partial \varphi} (r_0 N_{\theta\varphi}) + \frac{\partial N_\theta}{\partial \theta} r_i + N_{\theta\varphi} r_i \cos \varphi + X r_0 r_i = 0. \quad (269) $$

第三个平衡方程由将各力投影在 z 轴上而得到，由于诸剪力在 z 轴上的投影为零，第三个平衡方程与对于对称载荷推导而得的方程（256）是一致的。

决定非对称载荷作用下的薄膜应力的问题化成了对于给定的
外载荷强度分量 X, Y, Z 的值来求解方程 (268), (269), (256) 的问题。这些方程对于壳体承受风压情况下的应用将在下一节中讨论。

110. 风压产生的应力

作为上述推导所得一般平衡方程应用的特例，我们来考虑风压在壳上的作用。假设风的方向是在经线平面 $\theta = 0$ 内，并且压力垂直于壳面，则可取

$$X = Y = 0, \quad Z = p \sin \varphi \cos \theta.$$ \hspace{1cm} (a)

于是平衡方程化为

$$\frac{\partial}{\partial \varphi} (r_0 N_\varphi) + \frac{\partial N_\theta}{\partial \theta} r_1 - N_\theta r_1 \cos \varphi = 0,$$

$$\frac{\partial}{\partial \varphi} (r_0 N_\varphi \theta) + \frac{\partial N_\theta}{\partial \theta} r_1 + N_\theta r_1 \cos \varphi = 0,$$ \hspace{1cm} (b)

$$N_\varphi r_1 + N_\theta r_1 \sin \varphi = -pr_0 r_1 \sin \varphi \cos \theta.$$

利用这些方程中的最后一个式消去力 N_θ，我们得到决定 N_φ 和 $N_\theta = N_\varphi \theta$ 的两个一阶微分方程：

$$\frac{\partial N_\varphi}{\partial \varphi} + \left(\frac{1}{r_0} \frac{dr_0}{d\varphi} + \cot \varphi\right) N_\varphi + \frac{r_1}{r_0} \frac{\partial N_\theta}{\partial \theta} = -pr_1 \cos \varphi \cos \theta,$$

$$\frac{\partial N_\theta}{\partial \varphi} + \left(\frac{1}{r_0} \frac{dr_0}{d\varphi} + \frac{r_1}{r_2} \cot \varphi\right) N_\theta + \frac{1}{\sin \varphi} \frac{\partial N_\varphi}{\partial \theta} = -pr_1 \sin \theta,$$ \hspace{1cm} (c)

我们来考虑球形壳的特殊情况，其中 $r_1 = r_2 = a$，将方程组

2) 在研究风压应力时使用应力函数的是 A. Pucher, “Pubis. Intern. Assoc. Bridge Structural Engrs.,” 第 5 卷，第 275 页，1938 年；也可参阅本节第 113 节。
式中 S_φ 和 $S_\theta \varphi$ 只是 φ 的函数，代入方程 (c)，就能得到决定这两个函数的常微分方程：

\[
\frac{dS_\varphi}{d\varphi} + 2\cot \varphi S_\varphi + \frac{1}{\sin \varphi} S_\theta \varphi = -\rho_a \cos \varphi,
\]

\[
\frac{dS_\theta \varphi}{d\varphi} + 2\cot \varphi S_\theta \varphi + \frac{1}{\sin \varphi} S_\varphi = -\rho_a .
\]

将这两个方程相加和相减，并且引入符号：

\[
U_1 = S_\varphi + S_\theta \varphi, \quad U_2 = S_\varphi - S_\theta \varphi,
\]

我们得到下列两个常微分方程，每一个只包含一个未知数：

\[
\frac{dU_1}{d\varphi} + \left(2\cot \varphi + \frac{1}{\sin \varphi}\right) U_1 = -\rho_a (1 + \cos \varphi),
\]

\[
\frac{dU_2}{d\varphi} + \left(2\cot \varphi - \frac{1}{\sin \varphi}\right) U_2 = \rho_a (1 - \cos \varphi).
\]

应用积分一阶微分方程的一般法则，得到：

\[
U_1 = \frac{1 + \cos \varphi}{\sin^3 \varphi} \left[c_1 + \rho_a \left(\cos \varphi - \frac{1}{3} \cos^3 \varphi \right) \right],
\]

\[
U_2 = \frac{1 - \cos \varphi}{\sin^2 \varphi} \left[c_2 - \rho_a \left(\cos \varphi - \frac{1}{3} \cos^3 \varphi \right) \right].
\]

式中 C_1 和 C_2 是积分常数。代入式 (f)，并且应用式 (d)，最后得到：

\[
N_\varphi = \frac{\cos \varphi}{\sin^3 \varphi} \left[\frac{C_1 + C_2}{2} + \frac{C_1 - C_2}{2} \cos \varphi \right.
\]

\[
+ \rho_a \left(\cos \varphi - \frac{1}{3} \cos^3 \varphi \right) \left. \right],
\]

\[
N_\theta \varphi = \frac{\sin \theta}{\sin^3 \varphi} \left[\frac{C_1 - C_2}{2} + \frac{C_1 + C_2}{2} \cos \varphi \right.
\]

\[
+ \rho_a \left(\cos \varphi - \frac{1}{3} \cos^3 \varphi \right) \left. \right].
\]

为了决定积分常数 C_1 和 C_2，我们考虑半个球形壳，并在式 (i) 中令 $\varphi = \pi/2$。于是得到沿壳体赤道的力为

*

[481]
\[N_\varphi = \frac{C_1 + C_2 \cos \theta}{2}, \quad N_{\theta \varphi} = \frac{C_1 - C_2 \sin \theta}{2}. \quad (i) \]

由于球的每一点上的压力都是在半径方向，因此风力对于垂直于平面 \(\theta = 0 \) 的球直径的力矩等于零。利用这一事实，并用（i）中的第一式，可得
\[
\int_0^{2\pi} N_\varphi a^2 \cos \theta d\theta = a^2 \frac{C_1 + C_2}{2} \int_0^{2\pi} \cos^2 \theta d\theta = 0,
\]
此式给出
\[
C_1 = -C_2. \quad (k)
\]
取所有作用在半球上的力在平面 \(\theta = 0 \) 内水平直径方向的分力之和，就能得到决定 \(C_1 \) 和 \(C_2 \) 所需要的第二个方程。由此可得
\[
\int_0^{2\pi} N_{\theta \varphi} a \sin \theta d\theta = -\int_0^{\pi/2} \int_0^{2\pi} \rho \sin \varphi \cos \theta - a^2 \sin \varphi \sin \varphi \cos \theta d\varphi d\theta,
\]
或者
\[
a^2 \frac{C_1 - C_2}{2} = -\rho a^2 \frac{2}{3} \pi.
\]
由方程（k）和 (l)，即得:
\[
C_1 = -\frac{2}{3} a \rho, \quad C_2 = \frac{2}{3} a \rho.
\]
将此二常数值代入式（i），同时还应用（b）中的第三个方程，即得:
\[
N_\varphi = -\frac{\rho a}{3} \frac{\cos \theta \cos \varphi}{\sin^3 \varphi} (2 - 3 \cos \varphi + \cos^3 \varphi),
\]
\[
N_\theta = \frac{\rho a}{3} \frac{\cos \theta}{\sin^3 \varphi} (2 \cos \varphi - 3 \sin^2 \varphi - 2 \cos^4 \varphi), \quad (m)
\]
\[
N_{\theta \varphi} = -\frac{\rho a}{3} \frac{\sin \theta}{\sin^3 \varphi} (2 - 3 \cos \varphi + \cos^3 \varphi).
\]
用这三个表达式，壳上任一点的风压应力就能立即计算出来。如果壳是半球形的，由于 \((N_\varphi)_{\varphi=\pi/2} = 0 \)，因此沿壳的边缘并无法向力作用。边缘上的剪力 \(N_{\theta \varphi} \) 不等于零，它等于风压的水平合力，但方向相反。诸剪力的最大数值是在与平面 \(\theta = 0 \) 相垂直的直径的
二端,在这两点上剪力等于 $\pm 2\rho a/3$。

作为方程 (c) 应用的第二例, 我们来考虑在顶点有一支柱支承的圆锥壳情况(图 225)。在此情况下 r_1 为无穷大。对于经线的单元 dy, 可写成 $dy = r_1 d\varphi$, 所以

$$\frac{d}{d\varphi} = r_1 \frac{d}{dy}.$$

此外还有

$$r_2 = y \sin \alpha, \quad \frac{dr_2}{dy} = \sin \alpha, \quad r_2 = y \tan \alpha.$$ 代入方程 (c)，我们得到承受风压 $Z = \rho \sin \varphi \cos \theta$ 的圆锥壳的微分方程:

$$\frac{\partial N_\theta}{\partial y} + \frac{N_\theta}{y} + \frac{1}{y \sin \alpha} \frac{\partial N_{\theta \varphi}}{\partial \varphi} = -\rho \sin \alpha \cos \theta,$$

$$\frac{\partial N_{\theta \varphi}}{\partial y} + \frac{\partial N_{\theta \varphi}}{y} = -\rho \sin \theta.$$

第二个方程能立即积分, 给出:

$$N_{\theta \varphi} = -\frac{1}{y^2} \left(\frac{2y^3}{3} + C \right) \sin \theta.$$

壳的边缘 $y = l$ 不受力, 所以式 (o) 中的积分常数为:

$$C = -\frac{bl^3}{3},$$

我们最后得到:
\[N_{\theta \varphi} = \frac{p}{3} \frac{p^2 - y^3}{y^2} \sin \theta. \] (p)

将此结果代入方程组 (n) 中第一式，可得:

\[\frac{\partial N_{\varphi}}{\partial y} + \frac{N_{\varphi}}{y} = - \left(\frac{p}{3} \frac{p^3 - y^3}{y^2 \sin \alpha} + p \sin \alpha \right) \cos \theta. \]

此方程的积分给出:

\[N_{\varphi} = \frac{p \cos \theta}{\sin \alpha} \left(\frac{p^3 - y^3}{3y^2} - \frac{p - y^3 \cos^2 \alpha}{2y} \right), \] (q)

它在边缘 \(y = l \) 处为零。这是应当的。力 \(N_{\theta} \) 可由 (b) 中的第三个方程得到:

\[N_{\theta} = -py \sin \alpha \cos \theta. \] (r)

对于风压在图225所示圆锥壳上所产生的应力，式 (p)，(q) 和 (r) 给出了完全的解。在顶点 (\(y = 0 \)) 力 \(N_{\varphi} \) 和 \(N_{\theta \varphi} \) 变成无穷大。为了消除这个困难，我们必须在一定有限的 \(y \) 值处取一平行圆，锥形壳沿此圆固定于这一支柱上，分布在这个圆上的力 \(N_{\varphi}, N_{\theta \varphi} \) 平衡了作用于锥形壳上的风压。显然，如圆的半径不够大，则这些力可以是很大。

在作用于锥顶的横向载荷 \(Q \) (图 226a) 的情况下，令

\[N_{\varphi} = \frac{Q \cos \theta}{\pi y \sin \alpha}, \quad N_{\theta \varphi} = 0, \quad N_{\theta \theta} = 0, \] (s)

方程 (n) 的右端为零的条件就能满足。

![图 226](https://example.com/image.png)

用积分立即证明：由任一垂直于圆锥轴的截面上的应力 \(N_{\varphi} \) 所引起的剪力等于 \(Q \)，并且这些应力对于此截面上的轴 \(\theta = \pi/2 \) 的力矩等于载荷的力矩。
\(\Omega \cos \alpha \)。至于应力分量 \(N_r \)，它们在整个壳上都等于零，由方程组 (b) 的第三式可到这个结论，在该方程中应令 \(r_1 = \infty \), \(\rho = 0 \)。

如果荷 \(S \) 作用在圆锥的母线方向（图 226b），我们必须将它的两个分量 \(P = S \cos \alpha \)（图 217）和 \(\Omega = S \sin \alpha \) 对 \(N_\varphi \) 的影响相加。

其结果为

\[
N_\varphi = \frac{S}{2 \pi r_0} (2 \cos \theta - 1),
\]

它的极值在 \(\theta = 0 \) 和 \(\theta = \pi \) 处，分别等于 \(\frac{S}{2 \pi r_0} \) 和 \(-\frac{3S}{2 \pi r_0} \)。

111. 若干点支柱形壳 1)

我们从旋转面形壳的一般情况开始，并且考虑外力仅沿壳的边缘作用的情况，因此 \(X = Y = Z = 0 \)。于是上节的一般方程 (b) 化为:

\[
\begin{align*}
\frac{\partial}{\partial \rho} (r_0 N_\varphi) + \frac{\partial}{\partial \theta} N_\theta = N_\varphi r_1 \cos \varphi = 0, \\
\frac{\partial}{\partial \varphi} (r_0 N_\theta) + \frac{\partial}{\partial \theta} N_\varphi = N_\theta r_1 \cos \varphi = 0, \\
N_\varphi r_0 + N_\theta r_1 \sin \varphi = 0.
\end{align*}
\]

我们将这些方程的改写为下列形式:

\[
N_\varphi = S_{\varphi \theta} \cos \theta, \\
N_\theta = S_{\theta \varphi} \cos \theta, \\
N_{\theta \varphi} = S_{\theta \varphi} \sin \theta.
\]

式中 \(S_{\varphi \theta}, S_{\theta \varphi}, S_{\theta \varphi} \) 只是 \(\phi \) 的函数，\(n \) 是整数。将式 (b) 代入方程 (a)，可得

\[
\begin{align*}
\frac{d}{d \varphi} (r_0 S_{\varphi \theta}) + nr_1 S_{\theta \varphi} - r_1 S_{\theta \varphi} \cos \varphi = 0, \\
\frac{d}{d \varphi} (r_0 S_{\theta \varphi}) - nr_1 S_{\theta \varphi} + r_1 S_{\theta \varphi} \cos \varphi = 0, \\
S_{\varphi \theta} + \frac{r_1}{r_2} S_{\theta \varphi} = 0.
\end{align*}
\]

利用这些方程中的第三式，我们就能消去函数 \(S_{\theta \varphi} \)，从而得到:

\[
\begin{align*}
\frac{d S_{\varphi \theta}}{d \varphi} + \left(\frac{1}{r_0} \frac{d r_0}{d \varphi} + \cot \varphi \right) S_{\varphi \theta} + n \frac{r_1}{r_2} \frac{S_{\varphi \theta}}{\sin \varphi} = 0, \\
\frac{d S_{\theta \varphi}}{d \varphi} + \left(\frac{1}{r_0} \frac{d r_0}{d \varphi} + \cot \varphi \right) S_{\theta \varphi} + \frac{n S_{\varphi \theta}}{\sin \varphi} = 0.
\end{align*}
\]

1) 参考前引 Flügge 的著作。关于应力函数对于求解这种问题的应用，参看前引 Peachey 的论文。
在球形壳的特殊情况下 \(r_1 = r_2 = \alpha, \ r_3 = \alpha \sin \varphi \)，因此方程 (d) 化为下列简单形式:

\[
\frac{dS_{\varphi \varphi}}{d\varphi} + 2 \cot \varphi S_{\varphi \varphi} + \frac{n}{\sin \varphi} \cdot S_{\varphi \varphi} = U_{\varphi},
\]

\[
\frac{dS_{\theta \varphi \varphi}}{d\varphi} + 2 \cot \varphi S_{\theta \varphi \varphi} + \frac{n}{\sin \varphi} \cdot S_{\varphi \varphi} = 0.
\]

作上节的同样演算，取方程 (e) 的和与差，并且引人符号

\[U_{1n} = S_{\varphi \varphi} + S_{\theta \varphi \varphi}, \quad U_{2n} = S_{\varphi \varphi} - S_{\theta \varphi \varphi} \]

即得

\[
\frac{dU_{1n}}{d\varphi} + \left(2 \cot \varphi + \frac{n}{\sin \varphi} \right) U_{1n} = 0,
\]

\[
\frac{dU_{2n}}{d\varphi} + \left(2 \cot \varphi - \frac{n}{\sin \varphi} \right) U_{2n} = 0.
\]

此二方程的解为

\[U_{1n} = C_{1n} \left(\frac{\cot \varphi}{2} \right)^n, \quad U_{2n} = C_{2n} \left(\frac{\tan \varphi}{2} \right)^n. \]

于是由式 (i) 得到:

\[S_{\varphi \varphi} = \frac{U_{1n} + U_{2n}}{2} = \frac{1}{2 \sin^2 \varphi} \left[C_{1n} \left(\frac{\cot \varphi}{2} \right)^n + C_{2n} \left(\frac{\tan \varphi}{2} \right)^n \right], \]

\[S_{\theta \varphi \varphi} = \frac{U_{1n} - U_{2n}}{2} = \frac{1}{2 \sin^2 \varphi} \left[C_{1n} \left(\frac{\cot \varphi}{2} \right)^n - C_{2n} \left(\frac{\tan \varphi}{2} \right)^n \right]. \]

如果壳顶无开口，则对于 \(\varphi = \theta \)，式 (i) 必须为有限值。这要求积分常数 \(C_{1n} = 0 \)。将此结果代入式 (i)，并应用式 (b)，即求得:

\[N_\varphi = -N_\theta = \frac{C_{1n}}{2 \sin^2 \varphi} \left(\frac{\tan \varphi}{2} \right)^n \cos \theta, \]

\[N_{\theta \varphi} = -\frac{C_{2n}}{2 \sin^2 \varphi} \left(\frac{\tan \varphi}{2} \right)^n \sin \theta. \]

对于 \(\varphi \) 代入与球形壳边缘对应的角 \(\varphi_0 \)，可得分布在壳边缘上的法向力和剪力，从而在壳中产生力 (i)。今取 \(\varphi_0 = \pi/2 \)，亦即半球形壳的情况为例，白式 (i) 得到:

\[(N_\varphi)_{\varphi=\pi/2} = \frac{C_{1n}}{2} \cos n\theta, \]

\[(N_{\theta \varphi})_{\varphi=\pi/2} = -\frac{C_{2n}}{2} \sin n\theta. \]

已知作用于边缘并分别与 \(\cos n\theta \) 和 \(\sin n\theta \) 成正比的法向力和剪力在球形
亮中所产生的应力，我们就能处理边缘上任一法向力分布的问题。其方法是
用三三角级数代表该分布，级数中的每一项是类似于解 (1) 的一个解。今
以只承受自重 (q 公斤/厘米)，由四个对称排列的柱支承，半径为 a 的半球
形屋顶为例。如这屋顶支承在连续基础上，则力 N_φ 沿边缘均匀分布，如图
227a 所示，图中每单位长度上的 aN_φ 的强度是对角度 θ 作出的，在等距
柱支的情况下，反响分布如图 227b 所示，图中 2c 代表与每支柱所支承的周
向距离所对应的角度。从图 227b 的分布中减去图 227a 的力分布，我们得
到图 227c 的分布。它表示一平衡力系。这个分布可以表示成级数形式：

\[
(aN_\phi)_{\phi=\pi/2} = \sum_{n=-\infty}^{\infty} A_n \cos n\Theta,
\]

图 227

式中需要考虑的只是 n = 4, 8, 12, \ldots 的项，因为图 227c 的分布以 \pi/2 为
周期。并在 2\pi 角内有四个全周期。应用级数 (1) 中系数的一般方法，求
得:

\[
A_n = \frac{2qa^2}{\pi n^2} \sin (n\pi/2).
\]

1) 在用级数 \[N_\phi = \frac{1}{2} \sum_{n=1}^{\infty} C_n \cos n\Theta \] 代表法向力时，我们得到对称于直径 \theta =
0 的法向力分布。在一般情况下，级数不仅包含余弦项，而且包含有正弦项。
对于正弦项的解的求法与讨论余弦项时所用的方法完全相同，只需要在方程
(b) 中互换 \cos n\Theta 和 \sin n\Theta 的位置而已。

* 原书公式有误，已改正——译者注。
所以图 227c 所示的分布由如下级数表示：

\[
(aN_\theta)_{\varphi \neq 0, \pi} = -\frac{2qa}{c} \sum_{n=1, 2, 3, \ldots} \frac{\sin n\varphi}{n} \cos n\theta.
\]

将这个级数中的每一项与 (k) 的第一式作比较，即得：

\[
C_\varphi = \frac{4qa}{c} \frac{\sin n\varphi}{n}.
\]

现在对于级数 (m) 的每一项取一个相应的 (j) 形式的解，然后将这些解迭加，就能得到力 (m) 在壳中所产生的应力。用这样的方法我们得到：

\[
N_\varphi = -N_\theta = -\frac{2qa}{c \sin^2 \varphi} \sum_{n=1, 2, 3, \ldots} \frac{\sin n\varphi}{n} \left(\tan \frac{\varphi}{2} \right)^n \cos n\theta,
\]

\[
N_{\theta\varphi} = \frac{2qa}{c \sin^2 \varphi} \sum_{n=1, 2, 3, \ldots} \frac{\sin n\varphi}{n} \left(\tan \frac{\varphi}{2} \right)^n \sin n\theta.
\]

将此解与上节对于沿边缘均匀分布反力支持的圆屋顶 (图 215a) 所求得的解 (257) 迭加，就能得到四柱支架圆屋顶对应力的计算公式。然而必须指出，上述迭加法给出所需要的如图 227b 所示反力 N_\varphi 的分布，同时还引入了剪力 N_{\theta\varphi}。它在圆屋顶的边缘上不等于零。因此我们的解并不满足该问题的全部条件。实际上，只是局限于薄膜理论，我们就没有足够多的常数来满足全部条件，因此也就不可能得到问题的完全解。在实际构造中，通常沿壳的边缘置一加强环以承担剪力 N_{\theta\varphi}。在这样的情况下，迭加解 (257) 和 (n) 所得到的解充分精确地表示了四柱支承球形屋顶中所产生的内力。如欲得到这个问题更精确的解，则必须应用壳的弯曲理论。

本节所述讨论的方法也能应用于非球形圆屋顶的情况。在这样的情况下，必须采用方框图 (d)，它们能用数值积分法充分精确地求解。

112. 柱壳的薄膜理论

在讨论柱壳时（图 228a）时，我们假设壳的母线是水平的，并且平行于 x 轴。单元体是用二相邻母线和二垂直于 x 轴的横截面内壳中截取，其位置由坐标 x 和角 \varphi 决定。作用在单元体各边上的力表示在图 228b 中。此外，还有载

1) A. Aas-Jacobsen 的论文中给出了这样的解的一个例子，Ingr.-Arch., 第 8 卷，第 275 页，1937 年。
2) 在前引 Flügge 的书中给出了这种数值积分的一个例子。在该书第 51 页上还讨论了自重在圆筒壳中所产生的薄膜力的计算问题，有关复杂数法对于球形壳应力分析的应用，参看 F. Martin, Ingr.-Arch., 第 17 卷，第 167 页，1949 年；也可参看 V. Z. Blandov, Ирики, Mat. Mex. 第 11 卷，第 397 页，1947 年。
荷分布在单元体的表面上，载荷强度的分量同以前一样用 X, Y, Z 表示。考虑单元体的平衡，将 x 方向的各力相加，可得：

$$
\frac{\partial N_x}{\partial x} r d\varphi dx + \frac{\partial N_{x\varphi}}{\partial \varphi} d\varphi dx + X r d\varphi dx = 0. \tag{a}
$$

类似地，将法向横截面的切线方向，即 y 方向的力相加，可得相应的平衡方程：

$$
\frac{\partial N_{xy}}{\partial x} r d\varphi dx + \frac{\partial N_{y\varphi}}{\partial \varphi} d\varphi dx + Y r d\varphi dx = 0. \tag{b}
$$

考虑作用在壳的法线方向，即 z 方向的力，可得方程

$$
N_{z\varphi} d\varphi dx + Z r d\varphi dx = 0. \tag{c}
$$

经过简化，这三个平衡方程能写成下列形式：

\[
\begin{align*}
\frac{\partial N_x}{\partial x} + \frac{1}{r} \frac{\partial N_{x\varphi}}{\partial \varphi} &= -X, \\
\frac{\partial N_{xy}}{\partial x} + \frac{1}{r} \frac{\partial N_{y\varphi}}{\partial \varphi} &= -Y,
\end{align*}
\tag{270}
\]
\[N_\varphi = -Zr. \]

在每一特定情况下，我们能立即求得 \(N_\varphi \) 的值。将 \(N_\varphi \) 的值代入第二个方程，进行积分就能得到 \(N_\varphi \)。再将这样得到的 \(N_\varphi \) 的值代入第一个方程，进行积分就能求得 \(N_r \)。

作为方程组 (270) 应用的一例，我们来考虑一支承于二端并充满液体的水平圆管。角 \(\varphi \) 的弧度如图 229b 所示，并且用 \(p_0 \) 代表管轴处的压力，因此管内任一点的压力为 \(p = p_0 - \gamma a \cos \varphi \)。所以我们有

\[X = Y = 0, \quad Z = -p_0 + \gamma a \cos \varphi, \quad (d) \]

代入方程组 (270)，即可求得

\[N_\varphi = p_0 a - \gamma a^2 \cos \varphi, \quad (e) \]

\[N_{\varphi - \varphi} = -\int \gamma a \sin \varphi dx + C_1(\varphi) = -\gamma ax \sin \varphi + C_1(\varphi), \quad (f) \]

\[N_x = \int \gamma \cos \varphi dx - \frac{1}{a} \int \frac{dC_1(\varphi)}{dp} dx + C_2(\varphi) \]

\[= \gamma \frac{x^2}{2} \cos \varphi - \frac{x}{a} \frac{dC_1(\varphi)}{dp} + C_2(\varphi). \quad (g) \]

现在应当由边界条件来决定函数 \(C_1(\varphi) \) 和 \(C_2(\varphi) \)。

我们首先假设管的两端没有力 \(N_x \) 作用，亦即

\[(N_x)_{x=0} = 0, \quad (N_x)_{x=l} = 0. \]

取

1) 讨论这个问题的是 D. Thoma, "ges. Turbinenwesen", 第 17 卷, 第 49 页, 1920 年。
\[C_2(\varphi) = 0, \quad C_1(\varphi) = \frac{a\gamma l}{2} \sin \varphi + C, \]

就能满足上述二条件。由式（f）可看到，常数 C 代表均匀分布的圆管边缘的力 \(N_x \)，这相当于圆管承受扭转的情况。如果没有扭矩作用，则须取 \(C = 0 \)。所以在此特殊情况下，方程组（270）的解为

\[N_x = p_x a - \gamma a^2 \cos \varphi, \]
\[N_{x\varphi} = \gamma a \left(\frac{l}{2} - x \right) \sin \varphi, \]
\[(271) \]
\[N_x = -\frac{\gamma}{2} x(l - x) \cos \varphi. \]

可以看到，\(N_{x\varphi} \) 和 \(N_x \) 分别与跨距为 \(l \) 的均匀受载梁的弯矩和弯矩的正比。将梁的公式应用到承受均匀分布载荷的圆管而载荷强度在每单位管长为 \(\pi a^2 \gamma \)1，就能得到 \(N_{x\varphi} \) 和 \(N_x \) 的值。

适当地选择函数 \(C_1(\varphi) \)，我们也能得到二端固定圆盘形壳问题的解。在这样的情况下，母线的长度保持不变，因此我们有条件：

\[\int_0^l (N_x - \nu N_{x\varphi}) dx = 0. \]

代入

\[N_x = -\frac{\gamma}{2} x(l - x) \cos \varphi + C_1(\varphi), \quad N_{x\varphi} = p_x a - \gamma a^2 \cos \varphi, \]

可得

\[C_1(\varphi) = \nu p_x a + \left(\frac{l^2}{12} - \nu a^2 \right) \gamma \cos \varphi, \]

从而

\[N_x = -\frac{\gamma x}{2} (l - x) \cos \varphi + \nu p_x a + \left(\frac{l^2}{12} - \nu a^2 \right) \gamma \cos \varphi. \] (272)

由于力 \(N_{x\varphi} \) 和 \(N_x \) 的作用，在管端会有一定量的周向应变，这和我们的固支边假设是矛盾的。这表明，在管的二端有些局部弯曲，但

1) 在此讨论中，管的重量忽略不计。
弯曲在薄膜理论中是不考虑的。只有同时考虑薄膜应力和弯曲应力，才能得到此问题更完全的解；这将在下一章中讨论。

如图 230 所示柱形壳的一部分，有时用作各种结构的外壳。这些壳往往仅在两端支承，而边缘 AB 和 CD 是自由。在计算这种壳的薄膜应力时，方程 (270) 仍然可用。今以承受自重载荷的半圆形截面的壳为例，假设重量均匀分布在壳面上。在这样的情况下，我们有

$$ X = 0, \quad Y = p \sin \varphi, \quad Z = p \cos \varphi. $$

图 230

方程组 (270) 中第三式给出：

$$ N_\varphi = -p a \cos \varphi, \quad (h) $$

它在边缘 AB 和 CD 上等于零，这与假设相符合。可以看到，如果用的不是半圆而是别的曲线，只要在边缘上 $\varphi = \pm \pi/2$，则此条件也是满足的。将式 (h) 代入方程组 (270) 中第二式，可得

$$ \frac{1}{u} N_{xp} = -2px \sin \varphi + C_1(\varphi). \quad (i) $$

令坐标原点在跨度的中点，并设壳的四端 $x = \pm l/2$ 具有相同的边界条件，则由对称性可知 $C_1(\varphi) = 0$。所以

$$ N_{xp} = -2px \sin \varphi. \quad (j) $$

可以看到这个解在边缘 AB 和 CD 上不等于零，这和自由边的条件不相符。然而在实际结构中，边缘通常用纵向加劲杆加强，它们足以抵抗剪力 (j) 所产生的拉伸。将式 (j) 代入方程组 (270) 的
第一式，可得：

\[
N_x = \frac{R^2 \cos \varphi}{4} + C_2(\varphi).
\] (k)

如果壳的二端这样支承：反力作用在二端横截面平面内，则力 \(N_x\) 在二端应当为零。所以 \(C_2(\varphi) = -(\rho l^2 \cos \varphi)/4a\)，从而有

\[
N_x = -\frac{R \cos \varphi}{4a} \left(l^2 - 4x^2 \right).
\] (l)

式 (h), (j), (l) 代表对于图 230 所示特殊情况下方程 (270) 的解，它们满足二端的条件以及边界 \(AB\) 和 \(CD\) 上的条件之一。边界 \(AB\) 和 \(CD\) 上第二个关于剪力 \(N_{xy}\) 的条件，仅仅应用薄膜应力是不能满足的。在实际应用中，假设力 \(N_{xy}\) 由加强边缘的纵向加劲杆承受。可以预期，这个假设在壳的长度不很大（例如 \(l \leq 2a\)）的情形中将是令人满意的，并且在这样的情形中，薄膜理论将给出应力分布的近似情况。对于较长的壳，只有同时考虑薄膜应力和弯曲应力才能得到令人满意的解。这个问题将在下一章中讨论（参看第 124 和 126 节）。

113. 应力函数对计算壳体薄膜的应力

在各点的方程 \(z = f(x, y)\) 所给出的壳的一般情况下，运用决定所有三个应力分量的应力函数①可能是方便的。我们考虑壳的单元体，它所承受在平面 \(xy\) 内单位面积上的外截荷由分量 \(X, Y, Z\) 给出（图 231）。单元体的静力平衡可用下列方程表示：

\[
\frac{\partial N_x}{\partial x} + \frac{\partial N_{xy}}{\partial y} + X = 0,
\]

\[
\frac{\partial N_{xy}}{\partial x} + \frac{\partial N_y}{\partial y} + Y = 0,
\]

\[
\frac{\partial}{\partial x} \left(N_x \frac{\partial}{\partial x} + N_{xy} \frac{\partial}{\partial y} \right) + \frac{\partial}{\partial y} \left(N_{xy} \frac{\partial}{\partial x} + N_{xy} \frac{\partial}{\partial y} \right) + Z = 0,
\] (b)

在方程中用了下列符号：

\[N_x = \overline{N}_x \cos \theta / \cos \varphi, \quad N_y = \overline{N}_y \cos \varphi / \cos \theta, \quad N_{xy} = \overline{N}_{xy}. \] \hspace{1cm} (c)

其中 \(\tan \varphi = \delta x / \delta z, \tan \theta = \delta y / \delta z \)。进行方程 (b) 中的数分运算，并且应用方程 (a)，可得：

\[\overline{N}_x \frac{\partial^2 z}{\partial x^2} + 2 \overline{N}_{xy} \frac{\partial^2 z}{\partial x \partial y} + \overline{N}_y \frac{\partial^2 z}{\partial y^2} = -Z + x \frac{\partial z}{\partial x} + y \frac{\partial z}{\partial y}. \] \hspace{1cm} (d)

引人应力函数 \(F(x, y) \)，使得：

\[\overline{N}_x = \frac{\partial^2 F}{\partial y^2} - \int x \, dx, \quad \overline{N}_y = \frac{\partial^2 F}{\partial x^2} - \int y \, dy, \quad \overline{N}_{xy} = -\frac{\partial^2 F}{\partial x \partial y}, \] \hspace{1cm} (e)

我们能满足方程组 (a) 中的两个方程。式 (e) 中的积分下限和上限分别为 \(x_0, y_0 \) 和 \(y \)，其中 \(x_0 \) 和 \(y_0 \) 是定值的。将式 (e) 代入方程 (d)，即得下列决定应力函数 \(F \) 的微分方程：

\[\frac{\partial^2 F}{\partial x^2} \frac{\partial^2 z}{\partial y^2} - 2 \frac{\partial^2 F}{\partial x \partial y} \frac{\partial^2 z}{\partial x \partial y} + \frac{\partial^2 F}{\partial y^2} \frac{\partial^2 z}{\partial x^2} = g_z \] \hspace{1cm} (f)

式中使用了如下简写符号：

\[g = -Z + x \frac{\partial z}{\partial x} + y \frac{\partial z}{\partial y} + \int x \, dx + \frac{\partial^2 z}{\partial y^2} \int y \, dy. \] \hspace{1cm} (g)

如已知壳体边界上的薄膜力，则其相应的边界条件可立即利用式 (e) 的方法表示。特别是，如果边缘与抗弯刚度可忽略不计的垂直壁连接，或者边
边缘自由，则垂直于边上单元 ds 并与 $\frac{\partial^2 F}{\partial x^2}$ 成正比的边界力必须等于零。所以应力函数沿这样一边缘的变化必须是线性的。

椭圆抛物面壳

为了说明应力函数法的应用，我们考虑椭圆抛物面壳（图 232），其中面为

$$z = \frac{x^2}{h_1} + \frac{y^2}{h_2},$$ \hspace{1cm} (h)

![图 232](image)

式中 h_1 和 h_2 是正的常数。截面 $x = $ 常数和截面 $y = $ 常数给出两组抛物线，而水平曲线为椭圆。假设只有垂直载荷均匀分布在壳的底面上，则应用方程 (f) 和 (g)，可得:

$$\frac{1}{h_1} \frac{\partial^2 F}{\partial x^2} + \frac{1}{h_2} \frac{\partial^2 F}{\partial y^2} = - \frac{p}{2},$$ \hspace{1cm} (i)

式中 $p = z$ 为载荷强度。

假设壳由四垂直壁 $x = \pm a/2$, $y = \pm b/2$ 支承，其支承方式使得边界上垂直于各壁的反力等于零。因此函数 F 的边界条件是：在 $x = \pm a/2$ 上 $\frac{\partial^2 F}{\partial y^2} = 0$；在 $y = \pm b/2$ 上 $\frac{\partial^2 F}{\partial x^2} = 0$。所以在边界上 F 可为 x 和 y 的线性函数。由于 x 或 y 的线性项对于应力没有影响（参看式 (e)），所以这个边界条件与整个边界上 $F = 0$ 这个条件等价。

将 F 取为

$$F = \frac{p h_1}{4} \left(\frac{b^2}{4} - y^2 \right) + \sum_{h=1}^{m} A_h \cos \frac{n_x \pi x}{c} \cos \frac{n_y \pi y}{b},$$ \hspace{1cm} (j)

式中 $c = b \sqrt{h_1/h_2}$，可满足方程 (i)，并且使边界 $y = \pm b/2$ 上 $F = 0$。为
了满足其余一个条件：边界 \(x = \pm a/2 \) 上 \(F = 0 \)，我们首先将式 (i) 中的代数项展成富里埃级数:

\[
\frac{p b_1}{4} \left(\frac{b^2}{4} - y^2 \right) = \frac{2p b_1 b^2}{\pi^3} \sum_{n=1,3,5,\cdots} \frac{1}{n} (-1)^{n-1/2} \cos \frac{n \pi y}{b}.
\] \hspace{1cm} (k)

将此级数代入式 (i)，取 \(x = \pm a/2 \)，并令所得之式等于零，则对于每个 \(n = 1, 3, 5, \cdots \)，我们得到下列方程:

\[
\frac{2p b_1 b^2}{\pi^3} (-1)^{n-1/2} + \alpha_n \cosh \frac{n \pi a}{2c} = 0.
\] \hspace{1cm} (1)

由这组方程求出系数 \(\alpha_n \) 的值，即得最后的解

\[
F = \frac{pb_1}{4} \left[\frac{b^2}{4} - y^2 + \frac{8b^2}{\pi^3} \sum_{n=1,3,5,\cdots} (-1)^{n+1/2} \frac{1}{n} \frac{\cosh \frac{n \pi x}{c}}{\cosh \frac{n \pi a}{2c}} \cos \frac{n \pi y}{b} \right].
\] \hspace{1cm} (m)

如欲求薄膜力，则需根据式 (e) 将式 (m) 两端，并且利用关系式 (e)。其结果为

\[
N_x = -\frac{p b_1}{2} \sqrt{\frac{h_1^2 + 4y^2}{h_1^2 + 4x^2}} \left[1 + \frac{4}{\pi} \sum_{n=1,3,5,\cdots} (-1)^{n+1/2} \frac{1}{n} \frac{\cosh \frac{n \pi x}{c}}{\cosh \frac{n \pi a}{2c}} \cos \frac{n \pi y}{b} \right],
\] \hspace{1cm} (n)

\[
N_y = \frac{p b_1}{h_1} \sqrt{\frac{h_1^2 + 4y^2}{h_1^2 + 4x^2}} \sum_{n=1,3,5,\cdots} (-1)^{n+1/2} \frac{1}{n} \frac{\cosh \frac{n \pi x}{c}}{\cosh \frac{n \pi a}{2c}} \cos \frac{n \pi y}{b},
\] \hspace{1cm} (n)

\[
N_{xy} = 2 \frac{p b_1}{\pi} \sum_{n=1,3,5,\cdots} (-1)^{n+1/2} \frac{1}{n} \frac{\sinh \frac{n \pi x}{c}}{\cosh \frac{n \pi a}{2c}} \sin \frac{n \pi y}{b}.
\] \hspace{1cm} (n)

所有以上得到的级数都是收敛的，唯一的例外是最后一个级数，它在 \(x = \pm a/2, y = \pm b/2 \) 这些点上发散。这一事实在于所考虑的由一平面曲面平移而得到的壳面的特性。这种曲面的单元体对于任何倾转都没有抵抗，因此薄膜力 \(N_y \) 对于壳的垂直载荷的传递不起任何作用。力 \(N_x \) 和 \(N_y \) 在壳的节点等于零，因此在这些点附近的剪力 \(N_y \) 必须单独承担载荷的传递。由于壳面的扭转倾曲为零，这些剪力在趋近壳的角时无限大。实际上，如果边界条件 \(N_x = 0, N_y = 0 \) 严格满足，则角的附近会出现弯矩和横向剪力。
双曲抛物面壳

应用蒲歇 (Pucher) 方法具有优点的另一情况是中间由方程:

$$s = -\frac{xy}{c}$$ \((o) \)

给出的壳，式中 \(c = a^2/h \) (图 233)。由平面的方程 \((o) \)，有

$$\frac{\partial z}{\partial x} = -\frac{y}{c}, \quad \frac{\partial z}{\partial y} = -\frac{x}{c}, \quad \frac{\partial^2 z}{\partial x^2} = \frac{\partial^2 z}{\partial y^2} = 0, \quad \frac{\partial^2 z}{\partial x \partial y} = -\frac{1}{c}. \quad (p)$$

图 233

如果我们需要处理的仅仅是垂直载荷，则微分方程 \((f)\) 化为:

$$\frac{2}{c} \frac{\partial^2 z}{\partial x \partial y} = -Z_y \quad (q)$$

它给出结果

$$N_{xy} = \frac{Zc}{2} \quad (r)$$

我们首先要考虑强度为 \(Z = q \) 的载荷，它是均匀分布在边界不承受法向力的壳体的水平投影面上，因此有

$$N_{xy} = \frac{qc}{2}, \quad N_x = N_y = 0. \quad (s)$$

现在考虑壳体自身重量的作用，其强度 \(q_s = \) 常数，是壳面单位面积的重量。此面积对应着壳的水平投影面上的面积:

\[
\cos \theta = \frac{c}{\sqrt{x^2 + y^2 + c^2}}.
\]

因此

\[
Z = \frac{q_0}{c} \sqrt{x^2 + y^2 + c^2},
\]

式（6.1）给出：

\[
N_{x,y} = \frac{q_0}{2} \sqrt{x^2 + y^2 + c^2}.
\]

将此式对 \(y \) 微分，然后将微分结果对 \(x \) 积分，或者积分和积分的顺序相反，根据式（6.1），可得：

\[
\bar{N}_x = -\frac{q_0 y}{2} \log \frac{\sqrt{x^2 + y^2 + c^2}}{\sqrt{y^2 + c^2}},
\]

\[
\bar{N}_y = -\frac{q_0 x}{2} \log \frac{\sqrt{x^2 + y^2 + c^2}}{\sqrt{x^2 + c^2}}.
\]

真正的力 \(N_x \) 和 \(N_y \) 可由式（6.1）得到，式中角 \(p, \theta \) 由 \(\tan \phi = -y/c, \tan \theta = -x/c \) 给出。

若干这种类型的壳可以组合成屋顶，如图 234 所示。然而应当注意，不论是这样的屋顶所需要的屋脊的静载荷，还是部分载荷—例如雪所产生的载荷—都不能仅仅用薄膜力来传递，因此必然会产生弯曲应力。

劈锥形壳也是具有实际意义和值得提到的。这种壳有时用在悬臂屋顶和堤坝的设计中。具有曲母线而非直母线的这种类型的屋顶壳也已用在实际结构中了。

2) E. Torroja 精心地研究了劈锥形壳的理论, Riv. Ing., 第 9 卷, 第 29 页, 1941 年。也可参看 M. Soare, Bauingenieur, 第 9 卷, 第 256 页, 1958 年, 以及前引 Flügge 的著作第 127 页。

3) 参看 I. Doganoff, Bauwissenschaft, 第 34 卷, 第 232 页, 1957 年。
第十五章
柱形壳的一般理论

114. 承受轴对称载荷的圆柱形壳
在实际应用中，我们常常遇到承受对于柱轴有对称分布力作用的圆柱形壳问题。受有蒸汽压力作用的圆柱形锅炉中的应力分布，受有内部液体压力而垂直柱轴的圆柱形容器中的应力，以及均匀内压力作用下圆形容管中的应力，都是这样问题的例子。

![图 235](image)

为了建立解这些问题所需要的方程，我们考虑图 228a 和图 235 所示的单元体并考虑其平衡方程。由对称性可知，在此情况下薄膜剪力 $N_{x0} = N_{y0}$ 为零，力 N_{q} 沿圆周为常数。关于横剪力，由对称性亦可知，只有力 Q_{x} 不等于零。考虑作用在图 235 所示单元体上的各力矩，我们也可由对称性得知，扭矩 $M_{xq} = M_{yq}$ 为零，弯矩 M_{q} 沿圆周为常数。在这样的对称条件下，单元体六个
平衡方程中的三个是恒等满足的，我们只需要考虑其余三个平衡方程。亦即将各力向轴和轴投影以及将各力对于轴取力矩所得到的方程。假设外力仅为垂直于表面的压力，则此三平衡方程为：

$$\frac{dN_x}{dx} \ dx \ dq = 0,$$

$$\frac{dQ_x}{dx} \ dx \ dq + N_q \ dx \ dq + Z \ dx \ dq = 0, \quad (a)$$

$$\frac{dM_x}{dx} \ dx \ dq - Q_x \ dx \ dq = 0.$$

第一个方程说明力 N_x 为常数”，在进一步讨论时可取其值等于零。如果此力不等于零，则与这样的常数力对应的变形和应力能够容易地计算出来，并且可迭加在侧向载荷所产生的变形和应力上。其余两个方程可写成下列简化形式：

$$\frac{dQ_x}{dx} + \frac{1}{a} N_x = - Z, \quad (b)$$

$$\frac{dM_x}{dx} - Q_x = 0.$$

这两个方程含有三个未知量：N_x，Q_x 和 M_x。为了解决这个问题，我们必须考虑壳中面上各点的位移。

由对称性可知，周向位移分量 ν 等于零。因此我们只需要分别考虑 x 和 φ 方向的分量 u 和 w。于是应变分量的表达式为：

$$\varepsilon_x = \frac{du}{dx}, \quad \varepsilon_{\varphi} = - \frac{w}{a}. \quad (c)$$

所以，应用胡克定律可得：

$$N_x = \frac{Eh}{1 - \nu^2} (\varepsilon_x + \nu \varepsilon_{\varphi}) = \frac{Eh}{1 - \nu^2} \left(\frac{du}{dx} - \nu \frac{w}{a} \right) = 0, \quad (d)$$

$$N_{\varphi} = \frac{Eh}{1 - \nu^2} (\varepsilon_{\varphi} + \nu \varepsilon_x) = \frac{Eh}{1 - \nu^2} \left(- \frac{w}{a} + \nu \frac{du}{dx} \right).$$

1) 在此讨论中，这些力对于弯曲的影响是忽略不计的。

* 500 *
由第一式可推出
\[\frac{du}{dx} = \nu \frac{w}{a} , \]
而第二式给出
\[N_\phi = - \frac{E h w}{a} . \]
在考虑弯矩时，由对称性可知在圆周方向的曲率没有变化。x 方向的曲率等于 \(-d^2 w / d x^2\)。应用如板所用的同样式子，有
\[M_x = \nu M_{xx} , \]
\[M_{xx} = -D \frac{d^2 w}{d x^2} . \]
式中
\[D = \frac{E h^3}{12(1 - \nu^2)} \]
是壳的抗弯刚度。

现在回到方程组 (b)，从该二方程中消去 \(Q_x\)，可得
\[\frac{d^2 M_x}{d x^2} + \frac{1}{a} N_x = -Z , \]
应用式 (c) 和 (f)，就能由此方程推得:
\[\frac{d^2}{d x^2} \left(D \frac{d^2 w}{d x^2} \right) + \frac{E h}{a^2} w = Z . \] (273)
这样，圆柱形壳对称变形的所有问题都归结成为方程 (273) 的积分。

这个方程的最简单应用是等厚度壳的情况。在这样的情况下，方程 (273) 化为
\[D \frac{d^4 w}{d x^4} + \frac{E h}{a^2} w = Z . \] (274)
使用符号
\[\beta^4 = \frac{E h}{4 a^4 D} = \frac{3(1 - \nu^2)}{a^4 h^2} \] (275)
方程 (274) 能表示成简化的形式:
\[\frac{d^4 w}{d x^4} + 4 \beta^4 w = \frac{Z}{D} . \] (276)
这个方程与承受强度为 Z 的载荷、抗弯强度为 D 的连续弹性基支
简柱形杆的方程\(^1\) 相同。这个方程的通解为:

$$
\omega = e^{\beta x} \left(C_1 \cos \beta x + C_2 \sin \beta x \right) + e^{-\beta x} \left(C_3 \cos \beta x + C_4 \sin \beta x \right) + f(x) \tag{277}
$$

式中 $f(x)$ 是方程 (276) 的特解，C_1, \ldots, C_4 是积分常数，它们
应当在每一特定情况下由柱形壳两端
的条件决定。

今以承受沿边缘 $x = 0$ 均匀分布
的弯矩 M_0 和剪力 Q_0 作用的长圆形管
(图 236) 为例。在此情况下，没有压
力 Z 分布在壳面上，因此在通解 (277) 中
$f(x) = 0$。作用在管端 $x = 0$ 的诸力
产生一局部弯曲，当离受载端的距离
x 增大时，此弯矩迅速地消失。因而我
们可知式 (277) 右端第一项必须等于零\(^2\)。所以 $C_1 = C_2 = 0$，于是有

$$
\omega = e^{-\beta x} \left(C_3 \cos \beta x + C_4 \sin \beta x \right). \tag{g}
$$

现在两个常数 C_3 和 C_4 能根据受载端的边界条件决定，这些条件
可写成

$$(M_x)_{x=0} = -D \left(\frac{d^2 \omega}{dx^2} \right)_{x=0} = M_0, \tag{h}$$

$$
(Q_x)_{x=0} = \left(\frac{dM_x}{dx} \right)_{x=0} = -D \left(\frac{d^2 \omega}{dx^2} \right)_{x=0} = Q_0.
$$

代入 ω 的表达式 (g)，我们由此二边界条件得到

$$
C_3 = -\frac{1}{2\beta^3 D} (Q_0 + \beta M_0), \quad C_4 = \frac{M_0}{2\beta^3 D}. \tag{i}
$$

1) 参看 S. Timoshenko, “Strength of Materials,” part II, 第三版，第 2 页，
1956 年。

2) 考虑如下事实：作用于管端的力系是平衡力系，并且管的长度可以随机增
长。此结论也可由 Saint-Venant 原理推得。例如参看 S. Timoshenko, J.
N. Goodier, “Theory of Elasticity,” 第二版，第 33 页，1951 年。
因此 ω 的最后表达式为

$$
\omega = \frac{e^{-\beta x}}{2\beta^3 D} \left[\beta M_0 (\sin \beta x - \cos \beta x) - Q_0 \cos \beta x \right].
$$

（278）

最大挠度是在受载端，在该处

$$(\omega)_{x=0} = -\frac{1}{2\beta^3 D} (\beta M_0 + Q_0).
$$

（279）

挠度的负号是由于向着柱轴的 ω 取为正。受载端的挠度可由式（278）的微分得到:

$$
\left(\frac{d\omega}{dx} \right)_{x=0} = \frac{e^{-\beta x}}{2\beta^3 D} \left[2\beta M_0 \cos \beta x + Q_0 (\cos \beta x + \sin \beta x) \right]_{x=0}
$$

$$
= \frac{1}{2\beta^3 D} (2\beta M_0 + Q_0).
$$

（280）

引入符号

$$
\varphi(\beta x) = e^{-\beta x} (\cos \beta x + \sin \beta x),
$$

$$
\psi(\beta x) = e^{-\beta x} (\cos \beta x - \sin \beta x),
$$

$$
\theta(\beta x) = e^{-\beta x} \cos \beta x,
$$

$$
\zeta(\beta x) = e^{-\beta x} \sin \beta x.
$$

（281）

挠度表达式及其各阶导数能够表示成下列简化的形式:

$$
\omega = -\frac{1}{2\beta^3 D} [\beta M_0 \varphi(\beta x) + Q_0 \theta(\beta x)],
$$

$$
\frac{d\omega}{dx} = \frac{1}{2\beta^3 D} \left[2\beta M_0 \theta(\beta x) + Q_0 \psi(\beta x) \right],
$$

$$
\frac{d^2\omega}{dx^2} = -\frac{1}{2\beta^3 D} \left[2\beta M_0 \psi(\beta x) + 2Q_0 \zeta(\beta x) \right],
$$

$$
\frac{d^3\omega}{dx^3} = \frac{1}{D} \left[2\beta M_0 \zeta(\beta x) - Q_0 \varphi(\beta x) \right].
$$

（282）

函数 $\varphi(\beta x)$, $\psi(\beta x)$, $\theta(\beta x)$ 和 $\zeta(\beta x)$ 的数值在表 84 中给出。函数 $\varphi(\beta x)$ 和 $\psi(\beta x)$ 还用曲线表示在图 237 中。这些曲线和表 84 可以看出，当 βx 的值变大时，给出决定壳的弯曲的函数趋近于零。

1) 这个表中的数字取自 H. Zimmermann 所写的书 "Die Berechnung des Eisenbahnbauberandes", 柏林, 1888 年。
<table>
<thead>
<tr>
<th>βx</th>
<th>ψ</th>
<th>φ</th>
<th>θ</th>
<th>ζ</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.0000</td>
<td>1.0000</td>
<td>1.0000</td>
<td>0</td>
</tr>
<tr>
<td>0.1</td>
<td>0.9907</td>
<td>0.8100</td>
<td>0.9003</td>
<td>0.0903</td>
</tr>
<tr>
<td>0.2</td>
<td>0.9631</td>
<td>0.6398</td>
<td>0.8024</td>
<td>0.1627</td>
</tr>
<tr>
<td>0.3</td>
<td>0.9267</td>
<td>0.4888</td>
<td>0.7077</td>
<td>0.2199</td>
</tr>
<tr>
<td>0.4</td>
<td>0.8784</td>
<td>0.3564</td>
<td>0.6174</td>
<td>0.2610</td>
</tr>
<tr>
<td>0.5</td>
<td>0.8231</td>
<td>0.2415</td>
<td>0.5323</td>
<td>0.2908</td>
</tr>
<tr>
<td>0.6</td>
<td>0.7628</td>
<td>0.1431</td>
<td>0.4530</td>
<td>0.3099</td>
</tr>
<tr>
<td>0.7</td>
<td>0.6997</td>
<td>0.0599</td>
<td>0.3798</td>
<td>0.3199</td>
</tr>
<tr>
<td>0.8</td>
<td>0.6354</td>
<td>-0.0093</td>
<td>0.3131</td>
<td>0.3223</td>
</tr>
<tr>
<td>0.9</td>
<td>0.5712</td>
<td>-0.0657</td>
<td>0.2527</td>
<td>0.3185</td>
</tr>
<tr>
<td>1.0</td>
<td>0.5083</td>
<td>-0.1108</td>
<td>0.1988</td>
<td>0.3096</td>
</tr>
<tr>
<td>1.1</td>
<td>0.4476</td>
<td>-0.1457</td>
<td>0.1510</td>
<td>0.2967</td>
</tr>
<tr>
<td>1.2</td>
<td>0.3899</td>
<td>-0.1716</td>
<td>0.1091</td>
<td>0.2807</td>
</tr>
<tr>
<td>1.3</td>
<td>0.3355</td>
<td>-0.1897</td>
<td>0.0729</td>
<td>0.2626</td>
</tr>
<tr>
<td>1.4</td>
<td>0.2849</td>
<td>-0.2011</td>
<td>0.0419</td>
<td>0.2430</td>
</tr>
<tr>
<td>1.5</td>
<td>0.2384</td>
<td>-0.2068</td>
<td>0.0158</td>
<td>0.2226</td>
</tr>
<tr>
<td>1.6</td>
<td>0.1959</td>
<td>-0.2077</td>
<td>-0.0059</td>
<td>0.2018</td>
</tr>
<tr>
<td>1.7</td>
<td>0.1576</td>
<td>-0.2047</td>
<td>-0.0235</td>
<td>0.1812</td>
</tr>
<tr>
<td>1.8</td>
<td>0.1234</td>
<td>-0.2085</td>
<td>-0.0376</td>
<td>0.1610</td>
</tr>
<tr>
<td>1.9</td>
<td>0.0932</td>
<td>-0.1899</td>
<td>-0.0484</td>
<td>0.1415</td>
</tr>
<tr>
<td>2.0</td>
<td>0.0667</td>
<td>-0.1794</td>
<td>-0.0563</td>
<td>0.1230</td>
</tr>
<tr>
<td>2.1</td>
<td>0.0439</td>
<td>-0.1675</td>
<td>-0.0618</td>
<td>0.1057</td>
</tr>
<tr>
<td>2.2</td>
<td>0.0244</td>
<td>-0.1548</td>
<td>-0.0652</td>
<td>0.0893</td>
</tr>
<tr>
<td>2.3</td>
<td>0.0080</td>
<td>-0.1416</td>
<td>-0.0668</td>
<td>0.0748</td>
</tr>
<tr>
<td>2.4</td>
<td>-0.0056</td>
<td>-0.1282</td>
<td>-0.0669</td>
<td>0.0613</td>
</tr>
<tr>
<td>2.5</td>
<td>-0.0166</td>
<td>-0.1149</td>
<td>-0.0658</td>
<td>0.0492</td>
</tr>
<tr>
<td>2.6</td>
<td>-0.0254</td>
<td>-0.1019</td>
<td>-0.0636</td>
<td>0.0383</td>
</tr>
<tr>
<td>2.7</td>
<td>-0.0320</td>
<td>-0.0895</td>
<td>-0.0608</td>
<td>0.0287</td>
</tr>
<tr>
<td>2.8</td>
<td>-0.0369</td>
<td>-0.0777</td>
<td>-0.0573</td>
<td>0.0204</td>
</tr>
<tr>
<td>2.9</td>
<td>-0.0408</td>
<td>-0.0666</td>
<td>-0.0534</td>
<td>0.0132</td>
</tr>
<tr>
<td>3.0</td>
<td>-0.0423</td>
<td>-0.0563</td>
<td>-0.0493</td>
<td>0.0071</td>
</tr>
<tr>
<td>3.1</td>
<td>-0.0431</td>
<td>-0.0469</td>
<td>-0.0450</td>
<td>0.0019</td>
</tr>
<tr>
<td>3.2</td>
<td>-0.0431</td>
<td>-0.0383</td>
<td>-0.0407</td>
<td>-0.0024</td>
</tr>
<tr>
<td>3.3</td>
<td>-0.0422</td>
<td>-0.0306</td>
<td>-0.0364</td>
<td>-0.0058</td>
</tr>
<tr>
<td>3.4</td>
<td>-0.0408</td>
<td>-0.0237</td>
<td>-0.0323</td>
<td>-0.0085</td>
</tr>
<tr>
<td>βy</td>
<td>φ</td>
<td>φ</td>
<td>θ</td>
<td>ζ</td>
</tr>
<tr>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>--------</td>
</tr>
<tr>
<td>3.5</td>
<td>-0.0389</td>
<td>-0.0177</td>
<td>-0.0283</td>
<td>-0.0106</td>
</tr>
<tr>
<td>3.6</td>
<td>-0.0366</td>
<td>-0.0124</td>
<td>-0.0245</td>
<td>-0.0121</td>
</tr>
<tr>
<td>3.7</td>
<td>-0.0341</td>
<td>-0.0079</td>
<td>-0.0210</td>
<td>-0.0131</td>
</tr>
<tr>
<td>3.8</td>
<td>-0.0314</td>
<td>-0.0040</td>
<td>-0.0177</td>
<td>-0.0137</td>
</tr>
<tr>
<td>3.9</td>
<td>-0.0286</td>
<td>-0.0008</td>
<td>-0.0147</td>
<td>-0.0140</td>
</tr>
<tr>
<td>4.0</td>
<td>-0.0258</td>
<td>0.0019</td>
<td>-0.0120</td>
<td>-0.0139</td>
</tr>
<tr>
<td>4.1</td>
<td>-0.0231</td>
<td>0.0040</td>
<td>-0.0095</td>
<td>-0.0136</td>
</tr>
<tr>
<td>4.2</td>
<td>-0.0204</td>
<td>0.0057</td>
<td>-0.0074</td>
<td>-0.0131</td>
</tr>
<tr>
<td>4.3</td>
<td>-0.0179</td>
<td>0.0070</td>
<td>-0.0054</td>
<td>-0.0125</td>
</tr>
<tr>
<td>4.4</td>
<td>-0.0155</td>
<td>0.0079</td>
<td>-0.0038</td>
<td>-0.0117</td>
</tr>
<tr>
<td>4.5</td>
<td>-0.0132</td>
<td>0.0085</td>
<td>-0.0024</td>
<td>-0.0108</td>
</tr>
<tr>
<td>4.6</td>
<td>-0.0111</td>
<td>0.0089</td>
<td>-0.0011</td>
<td>-0.0100</td>
</tr>
<tr>
<td>4.7</td>
<td>-0.0092</td>
<td>0.0090</td>
<td>0.0001</td>
<td>-0.0091</td>
</tr>
<tr>
<td>4.8</td>
<td>-0.0075</td>
<td>0.0089</td>
<td>0.0007</td>
<td>-0.0082</td>
</tr>
<tr>
<td>4.9</td>
<td>-0.0059</td>
<td>0.0087</td>
<td>0.0014</td>
<td>-0.0073</td>
</tr>
<tr>
<td>5.0</td>
<td>-0.0046</td>
<td>0.0081</td>
<td>0.0019</td>
<td>-0.0065</td>
</tr>
<tr>
<td>5.1</td>
<td>-0.0033</td>
<td>0.0080</td>
<td>0.0023</td>
<td>-0.0057</td>
</tr>
<tr>
<td>5.2</td>
<td>-0.0023</td>
<td>0.0075</td>
<td>0.0026</td>
<td>-0.0049</td>
</tr>
<tr>
<td>5.3</td>
<td>-0.0014</td>
<td>0.0069</td>
<td>0.0028</td>
<td>-0.0042</td>
</tr>
<tr>
<td>5.4</td>
<td>-0.0006</td>
<td>0.0064</td>
<td>0.0029</td>
<td>-0.0035</td>
</tr>
<tr>
<td>5.5</td>
<td>0.0000</td>
<td>0.0058</td>
<td>0.0029</td>
<td>-0.0029</td>
</tr>
<tr>
<td>5.6</td>
<td>0.0005</td>
<td>0.0052</td>
<td>0.0029</td>
<td>-0.0023</td>
</tr>
<tr>
<td>5.7</td>
<td>0.0010</td>
<td>0.0046</td>
<td>0.0028</td>
<td>-0.0018</td>
</tr>
<tr>
<td>5.8</td>
<td>0.0013</td>
<td>0.0041</td>
<td>0.0027</td>
<td>-0.0014</td>
</tr>
<tr>
<td>5.9</td>
<td>0.0015</td>
<td>0.0036</td>
<td>0.0026</td>
<td>-0.0010</td>
</tr>
<tr>
<td>6.0</td>
<td>0.0017</td>
<td>0.0031</td>
<td>0.0024</td>
<td>-0.0007</td>
</tr>
<tr>
<td>6.1</td>
<td>0.0018</td>
<td>0.0026</td>
<td>0.0022</td>
<td>-0.0004</td>
</tr>
<tr>
<td>6.2</td>
<td>0.0019</td>
<td>0.0022</td>
<td>0.0020</td>
<td>-0.0002</td>
</tr>
<tr>
<td>6.3</td>
<td>0.0019</td>
<td>0.0018</td>
<td>0.0018</td>
<td>+0.0001</td>
</tr>
<tr>
<td>6.4</td>
<td>0.0018</td>
<td>0.0015</td>
<td>0.0017</td>
<td>0.0003</td>
</tr>
<tr>
<td>6.5</td>
<td>0.0018</td>
<td>0.0012</td>
<td>0.0015</td>
<td>0.0004</td>
</tr>
<tr>
<td>6.6</td>
<td>0.0017</td>
<td>0.0009</td>
<td>0.0013</td>
<td>0.0005</td>
</tr>
<tr>
<td>6.7</td>
<td>0.0016</td>
<td>0.0006</td>
<td>0.0011</td>
<td>0.0006</td>
</tr>
<tr>
<td>6.8</td>
<td>0.0015</td>
<td>0.0004</td>
<td>0.0010</td>
<td>0.0006</td>
</tr>
<tr>
<td>6.9</td>
<td>0.0014</td>
<td>0.0002</td>
<td>0.0008</td>
<td>0.0006</td>
</tr>
<tr>
<td>7.0</td>
<td>0.0013</td>
<td>0.0001</td>
<td>0.0007</td>
<td>0.0006</td>
</tr>
</tbody>
</table>
这表明壳中所产生的弯矩是局部性的，这一点在开始计算积分常数时已提过过。

如弯矩 M_x 和挠度 ω 已由式 (282) 求得，则弯矩 M_ϕ 可由 (l) 中第一式得到，力 N_ϕ 的值可由式 (c) 得到。这样，计算壳中应力所需的全部资料就都能找到了。

115. 对称变形的圆柱形壳的特殊情况

在圆截面有均匀分布荷载的长圆柱形壳的弯曲（图 238）。如果荷载离壳的两端足够远，则对于每一半壳可采用解 (278)。由对称性可知，在此情况下 Q_0 等于 $-P/2$。因此对于右半部分壳得到

$$\omega = \frac{e^{-\beta z}}{2\beta D} \left[\beta M_\phi (\sin \beta x - \cos \beta x) + \frac{P}{2} \cos \beta x \right], \quad (a)$$

式中 x 从荷载作用的横截面量起。为了计算出式 (a) 中的力矩 M_ϕ，我们利用在 $x = 0$ 处给出的斜度式 (280)。在现在讨论的问题中，由于对称，此斜度为零。所以

![图 238]

・506・
\[2\beta M_0 - \frac{p}{2} = 0, \]

由此即得

\[M_0 = \frac{p}{4\beta}. \] \hspace{1cm} (b)

将此值代人式 (a)，壳的挠度化为:

\[w = \frac{P e^{-\beta x}}{8\beta^2 D} (\sin \beta x + \cos \beta x) = \frac{P}{8\beta^2 D} \phi(\beta x), \] \hspace{1cm} (283)

并且由微分可得:

\[\frac{dw}{dx} = -2\beta \frac{P}{8\beta^2 D} e^{-\beta x} \sin \beta x = -\frac{P}{4\beta^2 D} \zeta(\beta x), \]

\[\frac{d^2 w}{dx^2} = 2\beta^2 \frac{P}{8\beta^2 D} e^{-\beta x} (\sin \beta x - \cos \beta x) = -\frac{P}{4\beta D} \phi(\beta x), \] \hspace{1cm} (c)

\[\frac{d^3 w}{dx^3} = 4\beta^3 \frac{P}{8\beta^3 D} e^{-\beta x} \cos \beta x = \frac{P}{2D} \Theta(\beta x). \]

由上节的式 (b) 和 (f) 可知:

\[M_x = -D \frac{d^2 w}{dx^2}, \quad Q_x = -D \frac{d^3 w}{dx^3}. \]

我们最后可得下列弯矩和剪力的表达式:

\[M_x = \frac{P}{4\beta} \phi(\beta x), \quad Q_x = -\frac{P}{2} \Theta(\beta x). \] \hspace{1cm} (284)

所得结果全部用曲线表示在图 239 中。可以看到最大挠度是在载荷 \(P \) 作用点，其值由式 (283) 给出为

\[w_{\text{max}} = \frac{P}{8\beta^2 D} = \frac{Pa^2\beta}{2Eh}. \] \hspace{1cm} (285)

最大弯矩也在载荷作用点，其值由式 (284) 决定为:

\[M_{\text{max}} = \frac{P}{4\beta}. \] \hspace{1cm} (286)

剪力的最大绝对值显然等于 \(P/2 \)。所有这些值在离载荷有一定距离的点上的值，利用表 84 就能立即得到。从表 84 和图 239 我们看到，当 \(x > \pi/\beta \) 时，所有决定壳的弯曲的量都是小量。这个事
实说明弯曲是局部性的，同时指出中点受载及长度为 \(l = 2\pi / \beta \) 的壳的最大挠度及最大应力实际上和非常长的壳相等。

对于载荷集中在圆形横截面上的情况有了解，运用叠加原理，我们能够立即解出圆柱在一定长度上有分布载荷的问题。例如我们来考虑强度为 \(q \) 的载荷均匀分布
在柱长 \(l \) 上的情况（图 240）。假设载荷离圆柱二端的距离相当远，我们就能用解（283）来计算挠度。距离 \(A \) 点为 \(\xi \)，强度为 \(q d\xi \) 的环形载荷元在 \(A \) 点所产生的挠度可由式（283）得到（式中 \(P \) 用 \(qd\xi \) 代入，\(x \) 用 \(\xi \) 代入）为

\[
\frac{q d\xi}{8\beta^3 D} e^{-\beta \xi}(\cos \beta \xi + \sin \beta \xi).
\]

因此由分布在长度 \(l \) 上的总载荷所产生的在 \(A \) 点的挠度为

1） \(qd\xi \) 是周长单位长度上的载荷。
\[
\omega = \int_0^l \frac{q d \xi}{8 \beta^3 D} \ e^{-\beta \xi} (\cos \beta \xi + \sin \beta \xi) + \int_0^c \frac{q d \xi}{8 \beta^3 D} \ e^{-\beta \xi} (\cos \beta \xi - \sin \beta \xi) = \frac{qa}{2Eh} (2 - e^{-\beta h} \cos \beta h - e^{-\beta c} \cos \beta c).
\]

A 点的弯矩可用类的迭加法计算得到。

承受均匀内压力的圆柱形壳（图 241）

如果壳的边缘是自由的，则内压力 \(p \) 产生的只是一环箍应力:

\[
\sigma_t = \frac{pa}{h},
\]

同时圆柱半径的增加量为:

\[
\delta = \frac{a \sigma_t}{E} = \frac{pa^2}{Eh}.
\]

（d）

如果壳的两端是固支，如图 241a 所示，则壳端不能向外移动，因此在边缘发生局部弯曲。如壳的长度 \(l \) 足够大，我们就能用解（278）来研究此弯曲，弯矩 \(M_0 \) 和剪力 \(Q_0 \) 由固支边 \(x = 0 \) 上挠度和斜度为零（图 241a）这两个条件决定。根据这两个条件，上述的式（279）和（280）化为

\[
-\frac{1}{2 \beta^3 D} (2 \beta M_0 + Q_0) = \delta,
\]

\[
\frac{1}{2 \beta^3 D} (2 \beta M_0 + Q_0) = 0.
\]

其中 \(\delta \) 由式 (d) 给出。

对于 \(M_0 \) 和 \(Q_0 \) 求解，即得:
\[M_0 = 2\beta^2 D\delta = \frac{p}{2\beta}, \quad Q_0 = -4\beta^3 D\delta = -\frac{p}{\beta}. \quad (287) \]

因此我们得到一正的弯矩和负的剪力，其作用方向如图241a所示。

将这两个值代入式 (282)，离端点任一距离的点上的挠度和弯矩值就可立即用表84 计算得到。

如果边缘不是固支的，而是如图241b所示的简支边，则在边缘上挠度和弯矩等于零，即 \(M_0 = 0 \)，同时用式 (279) 可得

\[Q_0 = -2\beta^3 D\delta. \]

将这些值代入解 (278)，就能计算离端点任一距离的点上的挠度值。

在以上的讨论中，假设壳的长度很大。如果情况不是这样，则不能认为一端的弯曲与另一端的情况无关，因此必须求助于含有四个积分常数的通解 (277)。对于均匀载荷 \(Z = -p \) 的情况，方程 (276) 的特解为 \(-p/4\beta^4D = -p\alpha^2/Eh \)。因此引用双曲函数代替指数函数，通解 (277) 就能写成如下形式

\[w = -\frac{p\alpha^2}{Eh} + C_1 \sin \beta x \sinh \beta x + C_2 \sin \beta x \cosh \beta x \]

\[+ C_3 \cos \beta x \sinh \beta x + C_4 \cos \beta x \cosh \beta x. \quad (c) \]

如果如图241b 所示，将坐标原点取在柱的中点，则式 (e) 必须是 \(x \) 的偶函数，所以

\[C_2 = C_3 = 0. \quad (f) \]

现在应根据适合壳二端的边界条件来选择常数 \(C_1 \) 和 \(C_4 \)。如二端是简支，则挠度和弯矩 \(M_x \) 在二端必须等于零，于是有

\[(w)_{x=\pm l} = 0, \quad \left(\frac{d^2 w}{dx^2} \right)_{x=\pm l} = 0. \quad (g) \]

将式 (e) 代入这两个式中，并注意到 \(C_2 = C_3 = 0 \)，可得

\[-\frac{p\alpha^2}{Eh} + C_1 \sin \alpha \sinh \alpha + C_4 \cos \alpha \cosh \alpha = 0, \quad (h) \]

\[C_1 \cos \alpha \cosh \alpha - C_4 \sin \alpha \sinh \alpha = 0. \]

为了简化写法，式中使用了符合

\[\frac{\beta^2}{2} = \alpha. \quad (i) \]
从这两个方程我们得到：

\[C_1 = \frac{\rho a^2 \sin \alpha \cosh \alpha}{E h \sin^2 \alpha \sinh^2 \alpha + \cos^2 \alpha \cosh^2 \alpha} \]

\[= \frac{\rho a^2}{E h} \cdot \frac{2 \sin \alpha \sinh \alpha}{\cos 2\alpha + \cosh 2\alpha} \tag{i} \]

\[C_2 = \frac{\rho a^2 \cos \alpha \cosh \alpha}{E h \sin^2 \alpha \sinh^2 \alpha + \cos^2 \alpha \cosh^2 \alpha} \]

\[= \frac{\rho a^2}{E h} \cdot \frac{2 \cos \alpha \cosh \alpha}{\cos 2\alpha + \cosh 2\alpha} \tag{j} \]

将常数值 (i) 和 (j) 代入式 (e)，并且根据式 (275)

\[\frac{E h}{a^4} = 4D\beta^4 = \frac{64\alpha^4 D}{l^4}, \tag{k} \]

即得

\[w = -\frac{\rho l^4}{64D\alpha^4} \left(1 - \frac{2 \sin \alpha \sinh \alpha}{\cos 2\alpha + \cosh 2\alpha} \sin \beta x \sinh \beta x \right. \]

\[- \frac{2 \cos \alpha \cosh \alpha}{\cos 2\alpha + \cosh 2\alpha} \cos \beta x \cosh \beta x \right). \tag{l} \]

在每一特殊情况，如壳的尺寸已知，则重量纲量 \(\alpha \) 可用符号 (i) 和式 (275) 计算。将 \(\alpha \) 值代入式 (l)，壳中任一点的挠度就能求得。

对于壳的中点，将 \(x = 0 \) 代入式 (l)，我们得到

\[(w)_{x=0} = -\frac{\rho l^4}{64D\alpha^4} \left(1 - \frac{2 \cos \alpha \cosh \alpha}{\cos 2\alpha + \cosh 2\alpha} \right). \tag{m} \]

如壳很长，则 \(\alpha \) 变大，式 (m) 括弧中的第二项就变小，因此挠度趋近于对自由端情况计算所得的值 (d)。这说明在长壳的情况下，端点支承情况对于中点挠度的影响可忽略不计。考虑另一极端情况，即 \(\alpha \) 是十分小的情况，将三角函数和双曲函数展成幂级数，我们就能证明式 (m) 括弧中的式子趋近于值 \(5\alpha^4/6 \)。挠度 (l) 趋近于长度为 \(l \) 和抗弯刚度为 \(D \) 的均匀受载简支梁的挠度。

将式 (1) 微分两次并乘上 \(D \)，即得弯矩

\[M_x = -D \frac{d^2 w}{dx^2} = -\frac{\rho l^2}{4\alpha^2} \left(\frac{\sin \alpha \sinh \alpha}{\cos 2\alpha + \cosh 2\alpha} \cos \beta x \cosh \beta x \right) \]

\[\cdot \]

\[\cdot 511 \cdot \]
在壳的中点，这个弯矩等于：

\[
(M_x)_{x=0} = -\frac{P \beta^3}{4 \alpha^2} \frac{\sin \alpha \sinh \alpha}{\cos \alpha + \cosh \alpha}.
\]

可以看到，对于 \(\sigma \) 的大值，亦即对于长壳，中点弯矩是可以忽略不计的小量，在所有的实际问题中可以认为壳的中间部分只是承受环箍应力 \(P \alpha / h \)。

两端固支柱形壳的情况（图 241a）能用类似的方法处理。我们直接写出最后结果：沿固支边缘作用的弯矩 \(M_0 \) 为

\[
M_0 = \frac{P}{2 \beta^3} \frac{\sin 2 \alpha - \sin 2 \alpha}{\sinh 2 \alpha + \sin 2 \alpha} = \frac{P}{2 \beta^3} \chi_2(2 \alpha),
\]

式中

\[
\chi_2(2 \alpha) = \frac{\sinh 2 \alpha - \sin 2 \alpha}{\sinh 2 \alpha + \sin 2 \alpha}.
\]

在长壳的情况下 \(\alpha \) 为大值，式 (288) 中的因子 \(\chi_2(2 \alpha) \) 趋近于 1，\(M_0 \) 的值趋于 (287) 中第一式所给出的值。对于较短的壳，(288) 中因子 \(\chi_2(2 \alpha) \) 的值可在表 85 选取。

承受沿边缘分布的力和力矩的弯曲作用的圆柱形壳。在上节讨论这个问题时假设壳较长，每一端能独立处理。如壳较短，则必须用具有四个积分常数的解 (e) 同时考虑两端。同前述各情况一样推演，就能得到下列结果。对于受均匀分布剪力 \(Q_0 \) 的弯曲情况（图 242a），两端的挠度和斜度为：

\[
(\omega)_{x=0,x=l} = -\frac{2 Q_0 \beta^3}{E h} \frac{\cosh 2 \alpha + \cos 2 \alpha}{\sinh 2 \alpha + \sin 2 \alpha}
\]

\[
= -\frac{2 Q_0 \beta^3}{E h} \chi_1(2 \alpha),
\]

1) 典型和固支两种情况在 \(И. \ Г. \) \(著 \) 作中的著作中都有详尽讨论，“Строительная механика корабля？”，第二卷，第 368 页，圣彼得堡，1913 年。该书还备有数字表，用以简化弯矩和挠度的计算。

* 512 *
表 85

<table>
<thead>
<tr>
<th>2α</th>
<th>$\chi_i(2\alpha)$</th>
<th>$\chi_0(2\alpha)$</th>
<th>$\chi_3(2\alpha)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2</td>
<td>5.000</td>
<td>0.0068</td>
<td>0.100</td>
</tr>
<tr>
<td>0.4</td>
<td>2.502</td>
<td>0.0268</td>
<td>0.200</td>
</tr>
<tr>
<td>0.6</td>
<td>1.674</td>
<td>0.0601</td>
<td>0.300</td>
</tr>
<tr>
<td>0.8</td>
<td>1.267</td>
<td>0.1065</td>
<td>0.400</td>
</tr>
<tr>
<td>1.0</td>
<td>1.033</td>
<td>0.1670</td>
<td>0.500</td>
</tr>
<tr>
<td>1.2</td>
<td>0.890</td>
<td>0.2370</td>
<td>0.596</td>
</tr>
<tr>
<td>1.4</td>
<td>0.803</td>
<td>0.3170</td>
<td>0.689</td>
</tr>
<tr>
<td>1.6</td>
<td>0.755</td>
<td>0.4080</td>
<td>0.775</td>
</tr>
<tr>
<td>1.8</td>
<td>0.735</td>
<td>0.5050</td>
<td>0.855</td>
</tr>
<tr>
<td>2.0</td>
<td>0.738</td>
<td>0.6000</td>
<td>0.925</td>
</tr>
<tr>
<td>2.5</td>
<td>0.802</td>
<td>0.8220</td>
<td>1.045</td>
</tr>
<tr>
<td>3.0</td>
<td>0.893</td>
<td>0.9770</td>
<td>1.090</td>
</tr>
<tr>
<td>3.5</td>
<td>0.966</td>
<td>1.0500</td>
<td>1.085</td>
</tr>
<tr>
<td>4.0</td>
<td>1.005</td>
<td>1.0580</td>
<td>1.050</td>
</tr>
<tr>
<td>4.5</td>
<td>1.017</td>
<td>1.0400</td>
<td>1.027</td>
</tr>
<tr>
<td>5.0</td>
<td>1.017</td>
<td>1.0300</td>
<td>1.008</td>
</tr>
</tbody>
</table>

\[
\left(\frac{d\Psi}{dx} \right)_{x=0, z=l} = \pm \frac{2Q_0 \beta^2 \alpha^2}{Eh} \frac{\sinh 2\alpha - \sin 2\alpha}{\sinh 2\alpha + \sin 2\alpha} \\
= \pm \frac{2Q_0 \beta^2 \alpha^2}{Eh} \chi_i(2\alpha). \tag{289}
\]

在受弯矩 M_0 的弯曲情况下（图 242b），可得
\[(w)_{x=0, x=l} = -\frac{2M_0 \theta^2 a^2}{Eh} \frac{\sinh 2\alpha - \sin 2\alpha}{\sinh 2\alpha + \sin 2\alpha} \]
\[= -\frac{2M_0 \theta^2 a^2}{Eh} \chi_1(2\alpha), \]
\[\left(\frac{d\omega}{dx} \right)_{x=0, x=l} = \pm \frac{4M_0 \theta^2 a^2}{Eh} \frac{\cosh 2\alpha - \cos 2\alpha}{\sinh 2\alpha + \sin 2\alpha} \]
\[= \pm \frac{4M_0 \theta^2 a^2}{Eh} \chi_3(2\alpha). \]

在长壳的情况下，式 (289) 和 (290) 中的因子 \(\chi_1, \chi_2, \chi_3 \) 接近于 1，所得结果与式 (279) 和 (280) 所给出的结果一致。为了简化较短壳的计算，在表 85 中给出了函数 \(\chi_1, \chi_2 \) 和 \(\chi_3 \) 的值。

利用解 (289) 和 (290)，就可以立即讨论承受均匀内压力 \(P \) 作用的和用等距环加轴的长管 (图 243) 中的应力。

首先假设没有环，于是，在内压力 \(P \) 的作用下将产生环箍应力 \(\sigma_t = P a/h \)，并且管的半径将增大，其值为:

\[\delta = \frac{Pa^2}{Eh}. \]

现在将环考虑进去，并且假设它是绝对刚体，则管和每一环之间将产生反作力。管周界每单位长上的力用 \(P \) 代表。\(P \) 的大小由如下条件决定：力 \(P \) 在加强环处所产生的管道挠度等于内压力 \(P \) 所引起的膨胀 \(\delta \)。在计算这个挠度时，我们注意到相邻二环之间的那部分管可以认为是图 242a 和图 242b 所示的壳。在此情况下 \(Q_0 = -\frac{1}{2} P \)，而加强环处弯矩 \(M_0 \) 的值可由在该点 \(d\omega/dx = 0 \) 这个条件决定。所以由式 (289) 和 (290) 可得:

\[-\frac{P \theta^2 a^2}{Eh} \chi_2(2\alpha) + \frac{4M_0 \theta^2 a^2}{Eh} \chi_3(2\alpha) = 0. \]
由此即得
\[M_0 = \frac{P \chi_1(2\alpha)}{4\beta \chi_3(2\alpha)}. \] \hspace{1cm} (p)

如果环间距 \(l \) 是大值，则量
\[2\alpha = \beta l = \frac{1}{\sqrt{a\bar{h}}} \sqrt{3(1 - \nu^2)} \]

也是大值。函数 \(\chi_2(2\alpha) \) 和 \(\chi_3(2\alpha) \) 趋近于 1，弯矩 \(M_0 \) 趋近于值 (286)。为了计算出现在式 (p) 中的力 \(P \)，必须应用式 (289) 和 (290) 所给出的挠度表达式，此二表达式给出
\[\frac{P\beta a^2 \chi_1(2\alpha)}{E\bar{h}} - \frac{P\beta a^2 \chi_3(2\alpha)}{2E\bar{h}} = \sigma = \frac{Pa^2}{E\bar{h}}, \]

亦即
\[P\beta \left[\chi_1(2\alpha) - \frac{1}{2} \frac{\chi_3(2\alpha)}{\chi_1(2\alpha)} \right] = \frac{\beta h}{a^2} = \rho. \hspace{1cm} (291) \]

如 \(2\alpha \) 为大值，此式化为
\[\frac{P\beta a^2}{2E\bar{h}} = \sigma, \]

与式 (285) 一致。当 \(2\alpha \) 不大时，反力 \(P \) 的值可用表 85 由式 (291) 计算。由式 (291) 解出 \(P \)，并将 \(P \) 的表达式代入式 (p)，即得:
\[M_0 = \frac{P}{2\beta^4} \chi_1(2\alpha). \hspace{1cm} (292) \]

此式和以前对于固支壳所得到的式 (288) 一致。

考虑环的伸长，我们注意到反力 \(P \) 在环中产生拉力 \(Pa \)，环的内半径的相应拉大率为
\[\delta_1 = \frac{Pa^2}{AE^2}, \]

式中 \(A \) 是环的横截面面积。将此伸长考虑在内，式 (291) 中的 \(\sigma \) 应当用 \(\delta - \delta_1 \) 代入，于是有:
\[P\beta \left[\chi_1(2\alpha) - \frac{1}{2} \frac{\chi_3(2\alpha)}{\chi_1(2\alpha)} \right] = \rho - \frac{P\beta}{A}. \hspace{1cm} (293) \]

1) 对于 \(\nu = 0.3 \), \(2\alpha = 1.285l/\sqrt{a\bar{h}} \).
2) 假设环的横截面尺寸较之于半径 \(a \) 为小量。
由此方程，用表 85 就能立即求得 P；在式 (292) 中用 $p - (Ph/A)$ 代替 p 就能得到弯矩 M_a。

如压力 p 不仅作用在圆柱形壳上，而且作用于二端，则壳中产生纵向力：

$$N_x = \frac{pa}{2}.$$

于是柱壳半径的伸长为：

$$\delta' = \frac{pa^2}{Eh} \left(1 - \frac{1}{2} \nu\right),$$

在式 (292) 和 (293) 中必须用 $p \left(1 - \frac{1}{2} \nu\right)$ 代替 p。

在均匀外压力的情况下，如果环与壳中的压应力与发生屈曲的临界应力 ν 相差足够大时，则式 (293) 和 (291) 也适用。这个情况在潜水艇的设计中很重要，曾有若干著作作过讨论 ν。

116. 受压容器

上节各例所说明的方法也能用来对承受内压力作用的柱形容器中应力 ν 进行分析。在讨论“薄膜理论”时曾一再说明此理论不能表示靠近边缘那部分壳中的真实应力，因为仅仅考虑薄膜应力通常不能完全满足边缘的条件。在柱形受压容器内柱部分和容器端部的连接处，有类似情况薄膜理论不适用。在这些连接处，薄膜应力通常和对柱轴对称分布的局部弯曲应力同时发生。这些局部应力可用第 114 节的解 (278) 计算。

我们从具有半球形端部的柱形容器 ν（图 244）这个简单情况

1) 环与柱形壳的屈曲在作者的“弹性稳定理论”中有讨论，科学出版社，1958 年。
2) 参看 K. von Sanden 和 K. Günther 的论文，“Werft und Reederei”，第 1 卷，1929 年，第 163—168, 189—198, 216—221 页，以及第 2 卷，1921 年，第 505—510 页。
4) 这个情况是 E. Meissner 讨论的，Schweiz. Bauztg., 第 86 卷, 第 1 页, 1925 年。
开始。在距离连接线 m_1n 和 m_1a_1 充分远的点，薄膜理论是足够精确的，对于半径为 a 的柱形部分它给出

$$N_x = \frac{p a}{2}, \quad N_z = p a,$$ \hspace{1cm} (a)

式中 p 代表内压力。

对于球形端部薄膜理论给出均匀拉力

$$N = \frac{p a^2}{2}.$$ \hspace{1cm} (b)

在力 (a) 的作用下，柱形壳半径的伸长为

$$\delta_1 = \frac{p a^2}{E h} \left(1 - \frac{\nu}{2}\right),$$ \hspace{1cm} (c)

球形端半径的伸长为

$$\delta_1 = \frac{p a^2}{2 E h} (1 - \nu).$$ \hspace{1cm} (d)

比较式 (c) 和 (d) 可知，假如仅仅考虑薄膜应力，在连接处就会得到图 244b 所示的不连续情况。这说明在连接处必然作用着沿圆周均匀分布的剪力 Q_0 和弯矩 M_0，其大小应恰好消除此不连续。这些力所产生的应力有时叫作不连续应力。

在计算 Q_0 和 M_0 的值时，我们假设弯曲是局部性的，因此解 (278) 可充分精确地用来讨论柱形部分的弯曲。研究球形端部的弯曲是比较复杂的问题，将在第十六章中充分讨论。这里我们求

\[517\]
这个问题的近似解，即假设弯曲仅在球形壳靠近连接线的区域内比较重要，而这个区域可以当作半径为 a 的长柱形壳的一部分来处理。如果这个容器的球形部分和柱形部分的厚度相同，则力 Q_0 使连接处的二部分边缘产生相等的旋转（图 244b）。这说明 M_0 等于零，仅仅 Q_0 就足以消除这个不连续。现在根据如下条件来决定 Q_0 的大小：两部分边缘的挠度数值之和必须等于薄膜理论所给出的半径增大之差 $\delta_1 - \delta_2$。应用挠度表达式 (279)，可得：

$$\frac{Q_0}{\beta D} = \delta_1 - \delta_2 = \frac{pa^2}{2Eh}.$$

应用符号 (275)，就能由上式得到：

$$Q_0 = \frac{pa^2 \beta D}{2Eh} = \frac{p}{8\beta}.$$

得到了力 Q_0 的值以后，任一点的挠度和弯矩就能用公式 (282) 计算。这些公式给出：

$$\omega = \frac{Q_0}{2\beta D} \theta(\beta x),$$

$$M_x = - D \frac{d^2 \omega}{dx^2} = - \frac{Q_0}{\beta} \zeta(\beta x).$$

将 Q_0 的表达式 (e) 和 β 的表达式 (275) 代入 M_x 的公式，即得：

$$M_x = \frac{- \frac{a \rho} {8\sqrt{3(1 - \nu^2)}} \zeta(\beta x).}$$

这个弯矩在距离 $x = \pi/4\beta$ 处达到最大值，由 (282) 中的第四式可以看出，在该点弯矩的导数等于零。

将 M_x 所产生的最大弯矩应力和薄膜应力叠加，可得：

$$a\rho \frac{2h}{2h} + \frac{3}{4} \frac{a \rho}{h \sqrt{3(1 - \nu^2)}} \zeta \left(\frac{\pi}{4}\right) = 1.293 \frac{a \rho}{2h}.$$

作用在柱形壳外表面上的这个应力比轴向作用的薄膜应力约大 30%。在计算周向应力时，除了薄膜应力 pa/h 外，挠度 ω 所引起

1) E. Meissner 在上页提到的论文中证明了对于半球形薄膜由这样的近似解计算所得的弯曲应力值的误差是小值，如 $a/h > 30$，则误差小于百分之 1。
2) 注意图 244 中 Q_0 的方向和图 236 中 Q_0 的方向相反。
的环箍应力和力矩 \(M_\varphi = \nu M_z \) 所产生的弯曲应力也必须考虑。这样，我们求得柱形壳外表面的周向应力为:

\[
\sigma_\varphi = \frac{aP}{h} - \frac{E\omega}{a} - \frac{6}{h^2} M_z \\
= \frac{aP}{h} \left[1 - \frac{1}{4} \theta(\beta x) + \frac{\nu}{4\sqrt{3}(1 - \nu^2)} \zeta(\beta x) \right].
\]

取 \(\nu = 0.3 \)，并应用表 84，即得:

当 \(\beta x = 1.85 \)， \((\sigma_\varphi)_{\max} = 1.032 \frac{aP}{h} \). (h)

由于薄膜应力在端部比在柱形壳中小，因此球壳端中的最大应力总是小于计算所得的应力 (h)，所以应力 (h) 是容器设计中的决定因素。

计算不连续应力的这一方法也可用于二端为旋转椭圆球壳的情况。在此情况下，薄膜应力由式 (263) 和 (264) 求得（参看第 467 页）。在相当于椭圆壳赤道的连接线 \(mn \) 上（图 245），经线方向和赤道方向的应力分别为:

\[
\sigma_\varphi = \frac{P a}{2 h}, \quad \sigma_\theta = \frac{P a}{h} \left(1 - \frac{a^2}{2 b^2} \right).
\]

(1)

赤道半径的伸长为:

\[
\delta^*_z = \frac{a}{E} (\sigma_\theta - \nu \sigma_\varphi) = \frac{P a^2}{E h} \left(1 - \frac{a^2}{2 b^2} - \frac{\nu}{2} \right).
\]

用这个量代替以前计算剪力 \(Q_0 \) 的式中的 \(\delta^*_z \)，可得

\[
\delta_t - \delta^*_z = \frac{P a^2}{E h} \frac{a^2}{2 b^2},
\]

替代式 (e)，我们得到

\[
Q_0 = \frac{P}{8 \beta} \frac{a^2}{b^2}.
\]

可以看到，在椭圆球形端的情况下，剪力 \(Q_0 \) 比半球形端的情况大，二者的比值为 \(a^2/b^2 \)。不连续应力显然以相同的比例增大。例如取
\[a/b = 2, \text{由式} (g) \text{和} (h) \text{得到:} \]
\[
\left(\sigma_x\right)_{max} = \frac{4P}{2h} + \frac{3aP}{2h\sqrt{3(1 - \nu^2)}} \left(\frac{x}{4}\right) = 2.172 \frac{aP}{2h},
\]
\[
\left(\sigma_t\right)_{max} = 1.128 \frac{aP}{h}.
\]
\[\left(\sigma_t\right)_{max} \text{仍然是最大应力,因此是设计中的决定因素}^{1)}\].

117. 等壁厚圆柱形箱

如果圆柱形箱承受液体压力的作用，如图 246 所示，则壁中的应力可用方程 (276) 分析。将

\[Z = -\gamma(d - x) \quad (a) \]

代入此方程，式中 \(\gamma \) 是液体单位体积的重量，即得

\[
\frac{d^2w}{dx^4} + 4\beta^4w = -\frac{\gamma(d - x)}{D}. \quad (b)
\]

这个方程的一个特解是

\[w_1 = -\frac{\gamma(d - x)}{4\beta^4D} = -\frac{\gamma(d - x)a^2}{Eh}. \quad (c) \]

此式表示具有自由边的柱形壳在环箍应力作用下半径的伸长。式 (277) 中的 \(f(x) \) 用式 (c) 代入，我们得到方程 (b) 的完全解

\[
w = e^{\beta x}(C_1 \cos \beta x + C_2 \sin \beta x)
+ e^{-\beta x}(C_3 \cos \beta x + C_4 \sin \beta x) - \frac{\gamma(d - x)a^2}{Eh}.
\]

在绝大多数实际问题中，壁厚 \(h \) 较之于箱的半径 \(a \) 和深度 \(d \) 为小量，并且可将壳视为无限长，于是常数 \(C_1 \) 和 \(C_2 \) 等于零，我们有

\[w = e^{-\beta x}(C_3 \cos \beta x + C_4 \sin \beta x) - \frac{\gamma(d - x)a^2}{Eh}. \quad (d) \]

现在常数 \(C_3 \) 和 \(C_4 \) 可由箱底的条件求得。假设壁的下部边缘固定

1) 关于端部为椭圆球形的蒸汽锅炉的应力分析的较详尽资料可在 Hohn 的书中找到：“Über die Festigkeit der gewölbten Böden und der Zylinderschale”, 苏黎士，1927 年。书中也包含了不连续应力的实验研究结果，这些结果和近似解很一致。也可参看 F. Schultz-Grunow, Ingr.- Arch., 第 4 卷，第 545 页，1933 年。
在绝对刚性的基础上，边界条件为

\[(w)_{x=0} = C_4 - \frac{r a^3 d}{E h} = 0, \]

\[\left(\frac{d^2 w}{dx^2} \right)_{x=0} = \left[-\beta C_5 e^{-\beta x} (\cos \beta x + \sin \beta x) + \beta C_4 e^{-\beta x} (\cos \beta x - \sin \beta x) + \frac{r a^3 d}{E h} \right]_{x=0} \]

\[= \beta (C_3 - C_4) + \frac{r a^3 d}{E h} = 0. \]

由这两个方程可得:

\[C_3 = \frac{r a^3 d}{E h} \quad C_4 = \frac{r a^3 d}{E h} \left(d - \frac{1}{\beta} \right) \]

于是式 (d) 化为:

\[w = -\frac{r a^3 d}{E h} \left\{ d - x - e^{-\beta x} \left[d \cos \beta x + \left(d - \frac{1}{\beta} \right) \sin \beta x \right] \right\}, \]

利用式 (281) 的符号，上式可写成:

\[w = -\frac{r a^3 d}{E h} \left[1 - \frac{x}{d} - \theta (\beta x) - \left(1 - \frac{1}{\beta d} \right) \zeta (\beta x) \right]. \quad (e) \]

由此表达式，任一点的挠度就能立即用表 84 计算。周向力 \(N_\varphi \) 为

\[N_\varphi = -\frac{E h w}{a} = r a d \left[1 - \frac{x}{d} - \theta (\beta x) \right. \]

\[\left. - \left(1 - \frac{1}{\beta d} \right) \zeta (\beta x) \right]. \quad (f) \]

由式 (e) 的二阶导数可得弯矩:

\[M_x = -D \frac{d^2 w}{dx^2} = \frac{2 \beta^2 r a^3 D d}{E h} \left[-\zeta (\beta x) + \left(1 - \frac{1}{\beta d} \right) \theta (\beta x) \right] \]

\[= \frac{r a d h}{\sqrt{12(1 - \nu^2)}} \left[-\zeta (\beta x) + \left(1 - \frac{1}{\beta d} \right) \theta (\beta x) \right]. \quad (g) \]

有了式 (f) 和 (g)，就可立即在每一特殊情况下计算任一点的最大应力。弯矩的最大值是在底部，它等于:

\[(M_x)_{x=0} = M = \left(1 - \frac{1}{\beta d} \right) \frac{r a d h}{\sqrt{12(1 - \nu^2)}}. \quad (h) \]
用解 (279) 和 (280) 能得到相同的结果。假设壳的下部边缘完全自由，由式 (c) 可得：

\[
(\omega_1)_{x=0} = - \frac{\gamma a^2 d}{E h}, \quad \left(\frac{d\omega_1}{dx}\right)_{x=0} = \frac{\gamma a^2}{E h}.
\] (i)

为了消去边缘的这个位移和旋转以满足箱底的边界条件，必然有如图 246 所示的剪力 \(Q_0 \) 和弯矩 \(M_0 \) 作用着。令式 (279) 和 (280) 与式 (i) 的负值相等，就能求出 \(Q_0 \) 和 \(M_0 \) 的值。于是有

\[
-\frac{1}{2 \beta^2 d} (\beta M_0 + Q_0) = + \frac{\gamma a^2 d}{E h},
\]

\[
\frac{1}{2 \beta^2 d} (2 \beta M_0 + Q_0) = - \frac{\gamma a^2}{E h}.
\]

由这两个方程，可求得 \(M_0 \) 的表达式仍为 (h)，而剪力为

\[
Q_0 = - \frac{\gamma a d h}{\sqrt{12(1 - \nu^2)}} \left(2 \beta - \frac{1}{d}\right).
\] (i)

例如取 \(a = 9.15 \) 米，\(d = 7.93 \) 米，\(h = 3.56 \) 米，\(\gamma = 0.001 \) 公斤/厘米³，\(\nu = 0.25 \)，可求得 \(\beta = 0.00718 \) 厘米⁻¹，\(\beta d = 5.691 \)。对于这样的 \(\beta d \) 值，假设壳无限长能得到弯矩和剪力的确切值，由式 (b) 和 (i) 我们得到：

\(M_0 = 53.38 \) 公斤·米/米，\(Q_0 = 19.074 \) 公斤/米。

在制造箱体时，往往使用若干不同厚度的钢板，如图 247 所示。对于每一等厚部分应用解 (c)，可知沿着连接线 \(nn \) 和 \(m_1 n_1 \) 的厚度差会引起位移 \(\omega_1 \) 的不连续。

这些不连续以及线 ab 处的位移，都可以通过外加弯矩和剪力的作用而除去。假设每一部分的高度有足够大，应用无限长壳的公式是合理的，我们就能同以前一样计算不连续弯矩和剪力：用式 (279) 和 (280)，并且在每一连接线上应用两个条件，亦即在壳的二相邻部分具有相等的挠度和公共切线。如果对于无限长壳推导所得的公式 (279) 和 (280) 不适用，则必须对于箱的每一等厚部分应用含有四个积分常数的通解。在这样

1）负号说明 \(Q_0 \) 具有图 246 所示的方向，它与推导式 (279) 和 (280) 时在图 236 中所用的方向相反。
的条件下决定常数要复杂得多，这是因为每一连接线不能再独立地处理，而
必须解一组联立方程。这个问题能用近似方法求解。

118. 弯壁圆柱形容箱 在弯壁厚
箱的情况下，由于抗弯刚度D和厚度h不
再是常数而是x的函数，问题的解要求将
方程（273）积分。因此我们需处理一变系数
的微分线性方程。作为一例，我们来
考虑壁厚是坐标x的线性函数的情况。
取坐标原点如图248所示，则对于壁厚和
抗弯刚度我们有表达式：

\[h = ax, \quad D = \frac{Ea^3}{12(1 - \nu^2)} x^2 \quad (a) \]

而方程（273）化为：

\[\frac{d^2}{dx^2} \left(x \frac{d^2w}{dx^2} \right) + \frac{12(1 - \nu^2)}{Ea^2} x w = -\frac{12(1 - \nu^2) \nu (x - x_0)}{Ea^2}. \quad (b) \]

这个方程的特解为：

\[w_1 = -\frac{\gamma_0 x - x_0}{Ea}. \quad (c) \]

这个解代表具有自由边的壳内压力r(x - x_0)作用下的径向伸长。作为位
移(c)的结果，圆柱母线发生一定量的弯曲，对应的弯矩为

\[M_x = -D \frac{d^2w_1}{dx^2} = -\frac{\gamma_0 x - x_0}{5(1 - \nu^2)}. \quad (d) \]

1) C. Range 给出了解这个问题的一个近似方法，Z. Math. Physik, 第 51 卷, 第
254 页, 1904 年。K. Girkmann 将这个方法应用于大型焊接箱的设计中，参
看 Stahlbau, 第 4 卷, 第 25 页, 1931 年。

关于与柱形箱箱有不同形状的箱体，参看 K. Federhofer, Österr. Bauzeit-
schrifts, 第 6 卷, 第 149 页, 1951 年; 关于厚度按二次函数规律变化的箱体，参
看 Federhofer, Österr. Ing.-Arch., 第 6 卷, 第 43 页, 1952 年。H. Faure
Mech. Brussels, 第 6 卷, 第 297 页, 1957 年。在下列著作中可找到许多有关水
箱设计的数据: W. S. Gray, “Reinforced Concrete Reactors and Tanks”,
伦敦, 1954 年; V. Lewe, “Handbuch für Eisenbetonbau”, 第 9 卷, 柏林, 1934 年。
此弯矩与 x 无关，在所有实际问题中，它的值小到通常可忽略不计它的作用。

为了得到方程 (b) 的完全解，特解 (c) 应与齐次方程：

$$\frac{d^2}{dx^2} \left(x^2 \frac{d^2 \omega}{dx^2} \right) + \frac{12(1 - \nu^4)}{a^4} \omega = 0$$

的解相加。此方程除以 x 后也可写为：

$$\frac{1}{x} \frac{d^2}{dx^2} \left(x^{3} \frac{d^2 \omega}{dx^2} \right) + \frac{12(1 - \nu^4)}{a^4} \omega = 0.$$ (e)

如果注意到

$$\frac{1}{x} \frac{d^2}{dx^2} \left(x^3 \frac{d^3 \omega}{dx^3} \right) = \frac{1}{x} \frac{d}{dx} \left\{ x^3 \frac{d}{dx} \left(\frac{1}{x} \frac{d}{dx} \left(x^3 \frac{d \omega}{dx} \right) \right) \right\},$$

则四阶方程 (c) 的解可化为两个二阶方程的解。为了简化写法，我们引人下列符号

$$L(\omega) = \frac{1}{x} \frac{d}{dx} \left(x^3 \frac{d \omega}{dx} \right),$$ (f)

$$\rho^s = \frac{12(1 - \nu^4)}{a^4}.$$ (g)

于是方程 (c) 化为：

$$L[L(\omega)] + \rho^s \omega = 0.$$ (h)

并且可写成下列二形式之一：

$$L[L(\omega) + i \rho^s \omega] - i \rho^s [L(\omega) + i \rho^s \omega] = 0,$$

$$L[L(\omega) - i \rho^s \omega] + i \rho^s [L(\omega) - i \rho^s \omega] = 0.$$ (i)

式中 $i = \sqrt{-1}$.

我们看到，二阶方程：

$$L(\omega) + i \rho^s \omega = 0,$$ (j)

$$L(\omega) - i \rho^s \omega = 0$$ (k)

的解满足方程 (h)。假设

$$\omega_1 = \varphi_1 + i \varphi_2, \quad \omega_2 = \varphi_3 + i \varphi_4$$ (l)

是方程 (j) 的两个独立线性解，则可看出:

$$\omega_3 = \varphi_1 - i \varphi_2, \quad \omega_4 = \varphi_3 - i \varphi_4$$ (m)

是方程 (k) 的解。所有四个解 (l) 和 (m) 就是方程 (h) 的完整独立的解系。应用解 (l) 与 (m) 的和与差，方程 (h) 的通解可表示成如下形式：

$$\omega = C_1 \varphi_1 + C_2 \varphi_2 + C_3 \varphi_3 + C_4 \varphi_4.$$ (n)

1）这个简化是 G. Kirchhoff 所提出的，"Berliner Monatsberichte"。第 815 页。1879 年；也可参阅 I. Todhunter 和 K. Pearson，"A History of the Theory of Elasticity"。第 2 卷，第 2 部，第 92 页。

* 524 *
其中 C_1,\cdots,C_r 是任意常数，因此问题变成了求四个函数 $\varphi_1,\cdots,\varphi_r$，如果已知方程 (i) 或方程 (k) 的完全解，这四个函数就能全部得到。

考虑方程 (i)，其中 $L(\omega)$ 代入式 (i) 代入，即有

$$
\dd{\omega}{\xi} + 2\dd{\omega}{\xi} + i\phi^3\omega = 0.
$$

引人新的变量

$$
\eta = 2\rho\sqrt{t x}, \quad \xi = \omega \sqrt{x},
$$

方程 (o) 化为

$$
\eta^3 \frac{d^3 \xi}{d\eta^3} + \eta \frac{d^2 \xi}{d\eta^2} + (\eta^2 - 1)\xi = 0.
$$

我们取幂级数

$$
\xi = a_0 + a_1\eta + a_2\eta^2 + \cdots
$$

作为这个方程的一个解，将此级数代入方程 (r)，并令 η 的每一系数的系数等于零，就得到级数 (s) 的系数之间的下列关系式

$$
(\eta^2 - 1)a_n + a_{n-1} = 0.
$$

将方程 (i) 应用于头两个系数，并且取 $a_0 = a_1 = 0$，我们求得 $a_2 = 0$，a_3 可取任一常数。继续用方程 (i) 计算系数，求得级数 (s) 为

$$
\xi = C_1 \frac{\eta}{2} \left(1 - \frac{\eta^2}{2 \cdot 4} + \frac{\eta^4}{2 \cdot 4 \cdot 6} - \frac{\eta^6}{2 \cdot (4 \cdot 6)^2} + \cdots \right) = C_1 J_1(\eta),
$$

式中 $J_1(\eta)$ 是阶第一类贝塞尔函数。为了便于进一步的讨论，应用关系式

$$
J_1(\eta) = - \frac{d}{d\eta} \left[1 - \frac{\eta^2}{2^2} + \frac{\eta^4}{(2 \cdot 4)^2} - \frac{\eta^6}{(2 \cdot 4 \cdot 6)^2} + \cdots \right] = - \frac{dJ_0}{d\eta},
$$

式中用 J_0 表示的方括弧中的系数是零阶的第一类贝塞尔函数，相当于 $J_1(\eta)$ 的级数中的 η 用 $2\rho\sqrt{t x}$ 代入 [参看符号 (p)]，并将实数项和虚数项分别归并起来，即得

$$
J_1(\eta) = \psi_1(2\rho\sqrt{t x}) + i\psi_1(2\rho\sqrt{t x}),
$$

式中

$$
\psi_1(2\rho\sqrt{t x}) = 1 - \frac{(2\rho\sqrt{t x})^2}{(2 \cdot 4)^2} + \frac{(2\rho\sqrt{t x})^4}{(2 \cdot 4 \cdot 6 \cdot 8)^2} + \cdots,
$$
\[\psi_s(2\rho \sqrt{x}) = -\frac{(2\rho \sqrt{x})^2}{2^2} + \frac{(2\rho \sqrt{x})^4}{(2 \cdot 4 \cdot 6)^2} - \frac{(2\rho \sqrt{x})^6}{(2 \cdot 4 \cdot 6 \cdot 8 \cdot 10)^2} + \cdots. \] \hfill (294)

于是解 (a) 给出：

\[\xi_s = -C(\psi_s'(2\rho \sqrt{x}) + i\psi_s(2\rho \sqrt{x})), \] \hfill (a')

式中 \(\psi_s \) 和 \(\psi_s' \) 代表函数 (294) 对于变量 \(2\rho \sqrt{x} \) 的导数。

方程 (c) 的第二个积分的形式更加复杂。我们不作推导，仅仅写出解的形式：

\[\xi_s = C'(\psi_s'(2\rho \sqrt{x}) + i\psi_s(2\rho \sqrt{x})), \] \hfill (b')

式中 \(\psi_s \) 和 \(\psi_s' \) 是下列函数对于变量 \(2\rho \sqrt{x} \) 的导数：

\[\psi_s(2\rho \sqrt{x}) = \frac{1}{2} \psi_s(2\rho \sqrt{x}) - \frac{2}{\pi} [R_1 \]

\[+ \log \frac{\rho \sqrt{x}}{2} \psi_s(2\rho \sqrt{x})], \]

\[\psi_s(2\rho \sqrt{x}) = \frac{1}{2} \psi_s(2\rho \sqrt{x}) + \frac{2}{\pi} [R_2 \]

\[+ \log \frac{\rho \sqrt{x}}{2} \psi_s(2\rho \sqrt{x})], \] \hfill (295)

式中

\[R_1 = \left(\frac{2\rho \sqrt{x}}{2} \right)^2 - \frac{S(3)}{(3 \cdot 2)^2} \left(\frac{2\rho \sqrt{x}}{2} \right)^4 \]

\[+ \frac{S(5)}{(5 \cdot 4 \cdot 3 \cdot 2)^2} \left(\frac{2\rho \sqrt{x}}{2} \right)^6 - \cdots, \]

\[R_2 = \frac{S(2)}{2^2} \left(\frac{2\rho \sqrt{x}}{2} \right)^2 - \frac{S(4)}{(4 \cdot 3 \cdot 2)^2} \left(\frac{2\rho \sqrt{x}}{2} \right)^4 \]

\[+ \frac{S(6)}{(6 \cdot 5 \cdot 4 \cdot 3 \cdot 2)^2} \left(\frac{2\rho \sqrt{x}}{2} \right)^6 - \cdots, \]

\[S(n) = 1 + \frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{n}, \]

\[\log \beta = 0.57722. \]

有了方程 (c) 的解 (a') 和 (b')，我们就能将方程 (e) 的通解 (a) 写成：

* 526 *
\[
\omega = \frac{5}{\sqrt{x}} = \frac{1}{\sqrt{x}} \left[C, \psi_i'(2 \rho \sqrt{x}) + C, \psi_i'(2 \rho \sqrt{x}) \right] \\
+ C, \psi_i'(2 \rho \sqrt{x}) + C, \psi_i'(2 \rho \sqrt{x}) \right].
\]

函数 \(\psi_1, \ldots, \psi_4\) 及其一阶导数的数值在表 86 中给出。函数 \(\psi_1, \ldots, \psi_4\) 的图解表示在图 249 中。可以看到，这些函数的值随着离箱端距离的增大而迅速增大或减小。这说明在计算解 \((c')\) 中的积分常数时，我们往往像处理函数 \((281)\) 那样来进行，亦即，将柱形壳视为无限长，在每一边界只应用解 \((c')\) 的四个常数中的两个。

在将一般理论应用于特殊情况时，如果利用下列关系式：
\[
\psi_i'(\xi) = \psi_i(\xi) - \frac{1}{\xi} \psi_i(\xi), \\
\psi_i'(\xi) = -\psi_i(\xi) - \frac{1}{\xi} \psi_i(\xi), \\
\psi_i'(\xi) = \psi_i(\xi) - \frac{1}{\xi} \psi_i(\xi), \\
\psi_i'(\xi) = -\psi_i(\xi) - \frac{1}{\xi} \psi_i(\xi),
\]

图 249

1）这个表是 P. Schliecher 所计算的；参阅 "Kreisplatten auf elatischer Unterlage"，柏林，1926 年。著名的开尔文函数可用来代替函数 \(\phi\)，其关系如下：
\[
\phi_i(\xi) = \text{ber} \, \xi, \phi_i'(\xi) = -\text{bei} \, \xi, \phi_i(\xi) = -(2/\pi) \text{kei} \, \xi, \phi_i = -(2/\pi) \text{ker} \, \xi.
\]
关于所考虑的各函数的更精确的表可参看本书第 283 页。
<table>
<thead>
<tr>
<th>x</th>
<th>$\phi_1(x)$</th>
<th>$\phi_2(x)$</th>
<th>$\frac{d\phi_1(x)}{dx}$</th>
<th>$\frac{d\phi_2(x)}{dx}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.30</td>
<td>+1.000000</td>
<td>0.000000</td>
<td>0.000000</td>
<td>0.000000</td>
</tr>
<tr>
<td>0.10</td>
<td>+1.000000</td>
<td>-0.0025</td>
<td>-0.0001</td>
<td>-0.0500</td>
</tr>
<tr>
<td>0.20</td>
<td>+1.000000</td>
<td>-0.0100</td>
<td>-0.0005</td>
<td>-0.1000</td>
</tr>
<tr>
<td>0.30</td>
<td>+0.99999</td>
<td>-0.0225</td>
<td>-0.0017</td>
<td>-0.1500</td>
</tr>
<tr>
<td>0.40</td>
<td>+0.9996</td>
<td>-0.0400</td>
<td>-0.0040</td>
<td>-0.2000</td>
</tr>
<tr>
<td>0.50</td>
<td>+0.9990</td>
<td>-0.0625</td>
<td>-0.0078</td>
<td>-0.2499</td>
</tr>
<tr>
<td>0.60</td>
<td>+0.9980</td>
<td>-0.0900</td>
<td>-0.0135</td>
<td>-0.2998</td>
</tr>
<tr>
<td>0.70</td>
<td>+0.9962</td>
<td>-0.1224</td>
<td>-0.0214</td>
<td>-0.3496</td>
</tr>
<tr>
<td>0.80</td>
<td>+0.9936</td>
<td>-0.1599</td>
<td>-0.0320</td>
<td>-0.3991</td>
</tr>
<tr>
<td>0.90</td>
<td>+0.9898</td>
<td>-0.2023</td>
<td>-0.0455</td>
<td>-0.4485</td>
</tr>
<tr>
<td>1.00</td>
<td>+0.9844</td>
<td>-0.2496</td>
<td>-0.0624</td>
<td>-0.4974</td>
</tr>
<tr>
<td>1.10</td>
<td>+0.9771</td>
<td>-0.3017</td>
<td>-0.0831</td>
<td>-0.5458</td>
</tr>
<tr>
<td>1.20</td>
<td>+0.9676</td>
<td>-0.3587</td>
<td>-0.1078</td>
<td>-0.5955</td>
</tr>
<tr>
<td>1.30</td>
<td>+0.9554</td>
<td>-0.4204</td>
<td>-0.1370</td>
<td>-0.6403</td>
</tr>
<tr>
<td>1.40</td>
<td>+0.9401</td>
<td>-0.4867</td>
<td>-0.1709</td>
<td>-0.6860</td>
</tr>
<tr>
<td>1.50</td>
<td>+0.9211</td>
<td>-0.5576</td>
<td>-0.2100</td>
<td>-0.7302</td>
</tr>
<tr>
<td>1.60</td>
<td>+0.8979</td>
<td>-0.6327</td>
<td>-0.2545</td>
<td>-0.7727</td>
</tr>
<tr>
<td>1.70</td>
<td>+0.8700</td>
<td>-0.7120</td>
<td>-0.3048</td>
<td>-0.8131</td>
</tr>
<tr>
<td>1.80</td>
<td>+0.8367</td>
<td>-0.7953</td>
<td>-0.3512</td>
<td>-0.8509</td>
</tr>
<tr>
<td>1.90</td>
<td>+0.7975</td>
<td>-0.8821</td>
<td>-0.4238</td>
<td>-0.8857</td>
</tr>
<tr>
<td>2.00</td>
<td>+0.7515</td>
<td>-0.9723</td>
<td>-0.4931</td>
<td>-0.9170</td>
</tr>
<tr>
<td>2.10</td>
<td>+0.6987</td>
<td>-1.0654</td>
<td>-0.5690</td>
<td>-0.9442</td>
</tr>
<tr>
<td>2.20</td>
<td>+0.6377</td>
<td>-1.1610</td>
<td>-0.6520</td>
<td>-0.9661</td>
</tr>
<tr>
<td>2.30</td>
<td>+0.5880</td>
<td>-1.2585</td>
<td>-0.7420</td>
<td>-0.9836</td>
</tr>
<tr>
<td>2.40</td>
<td>+0.4898</td>
<td>-1.3575</td>
<td>-0.8392</td>
<td>-0.9944</td>
</tr>
<tr>
<td>2.50</td>
<td>+0.4000</td>
<td>-1.4572</td>
<td>-0.9436</td>
<td>-0.9983</td>
</tr>
<tr>
<td>2.60</td>
<td>+0.3091</td>
<td>-1.5569</td>
<td>-1.0532</td>
<td>-0.9943</td>
</tr>
<tr>
<td>2.70</td>
<td>+0.1887</td>
<td>-1.6557</td>
<td>-1.1737</td>
<td>-0.9815</td>
</tr>
<tr>
<td>2.80</td>
<td>+0.0651</td>
<td>-1.7529</td>
<td>-1.2933</td>
<td>-0.9589</td>
</tr>
<tr>
<td>2.90</td>
<td>-0.0714</td>
<td>-1.8472</td>
<td>-1.4315</td>
<td>-0.9256</td>
</tr>
<tr>
<td>x</td>
<td>$\phi_1(x)$</td>
<td>$\phi_2(x)$</td>
<td>$\frac{d\phi_1(x)}{dx}$</td>
<td>$\frac{d\phi_2(x)}{dx}$</td>
</tr>
<tr>
<td>------</td>
<td>------------</td>
<td>------------</td>
<td>--------------------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>3.00</td>
<td>-0.2214</td>
<td>-1.9376</td>
<td>-1.5698</td>
<td>-0.8804</td>
</tr>
<tr>
<td>3.10</td>
<td>-0.3855</td>
<td>-2.0228</td>
<td>-1.7141</td>
<td>-0.8223</td>
</tr>
<tr>
<td>3.20</td>
<td>-0.5644</td>
<td>-2.1016</td>
<td>-1.8636</td>
<td>-0.7499</td>
</tr>
<tr>
<td>3.30</td>
<td>-0.7584</td>
<td>-2.1723</td>
<td>-2.0177</td>
<td>-0.6621</td>
</tr>
<tr>
<td>3.40</td>
<td>-0.9680</td>
<td>-2.2334</td>
<td>-2.1755</td>
<td>-0.5577</td>
</tr>
<tr>
<td>3.50</td>
<td>-1.1936</td>
<td>-2.2832</td>
<td>-2.3361</td>
<td>-0.4353</td>
</tr>
<tr>
<td>3.60</td>
<td>-1.4353</td>
<td>-2.3199</td>
<td>-2.4983</td>
<td>-0.2956</td>
</tr>
<tr>
<td>3.70</td>
<td>-1.6933</td>
<td>-2.3413</td>
<td>-2.6608</td>
<td>-0.1315</td>
</tr>
<tr>
<td>3.80</td>
<td>-1.9674</td>
<td>-2.3454</td>
<td>-2.8221</td>
<td>+0.0526</td>
</tr>
<tr>
<td>3.90</td>
<td>-2.2576</td>
<td>-2.3300</td>
<td>-2.9808</td>
<td>+0.2596</td>
</tr>
<tr>
<td>4.00</td>
<td>-2.5534</td>
<td>-2.2927</td>
<td>-3.1346</td>
<td>+0.4912</td>
</tr>
<tr>
<td>4.10</td>
<td>-2.8843</td>
<td>-2.2309</td>
<td>-3.2819</td>
<td>+0.7482</td>
</tr>
<tr>
<td>4.20</td>
<td>-3.2195</td>
<td>-2.1422</td>
<td>-3.4199</td>
<td>+1.0318</td>
</tr>
<tr>
<td>4.30</td>
<td>-3.5679</td>
<td>-2.0236</td>
<td>-3.5465</td>
<td>+1.3433</td>
</tr>
<tr>
<td>4.40</td>
<td>-3.9283</td>
<td>-1.8726</td>
<td>-3.6587</td>
<td>+1.6833</td>
</tr>
<tr>
<td>4.50</td>
<td>-4.2991</td>
<td>-1.6860</td>
<td>-3.7536</td>
<td>+2.0526</td>
</tr>
<tr>
<td>4.60</td>
<td>-4.6784</td>
<td>-1.4610</td>
<td>-3.8280</td>
<td>+2.4520</td>
</tr>
<tr>
<td>4.70</td>
<td>-5.0639</td>
<td>-1.1946</td>
<td>-3.8782</td>
<td>+2.8818</td>
</tr>
<tr>
<td>4.80</td>
<td>-5.4331</td>
<td>-0.8837</td>
<td>-3.9006</td>
<td>+3.3422</td>
</tr>
<tr>
<td>4.90</td>
<td>-5.8429</td>
<td>-0.5251</td>
<td>-3.8910</td>
<td>+3.8330</td>
</tr>
<tr>
<td>5.00</td>
<td>-6.2301</td>
<td>-0.1160</td>
<td>-3.8454</td>
<td>+4.3542</td>
</tr>
<tr>
<td>5.10</td>
<td>-6.6107</td>
<td>-0.3467</td>
<td>-3.7589</td>
<td>+4.9046</td>
</tr>
<tr>
<td>5.20</td>
<td>-6.9803</td>
<td>+0.8858</td>
<td>-3.6270</td>
<td>+5.4835</td>
</tr>
<tr>
<td>5.30</td>
<td>-7.3344</td>
<td>+1.4443</td>
<td>-3.4446</td>
<td>+6.0893</td>
</tr>
<tr>
<td>5.40</td>
<td>-7.6674</td>
<td>+2.0845</td>
<td>-3.2063</td>
<td>+6.7193</td>
</tr>
<tr>
<td>5.50</td>
<td>-7.9736</td>
<td>+2.7890</td>
<td>-2.9070</td>
<td>+7.3729</td>
</tr>
<tr>
<td>5.60</td>
<td>-8.2466</td>
<td>+3.5597</td>
<td>-2.5409</td>
<td>+8.0453</td>
</tr>
<tr>
<td>5.70</td>
<td>-8.4794</td>
<td>+4.3986</td>
<td>-2.1024</td>
<td>+8.7336</td>
</tr>
<tr>
<td>5.80</td>
<td>-8.6644</td>
<td>+5.3068</td>
<td>-1.5856</td>
<td>+9.4332</td>
</tr>
<tr>
<td>5.90</td>
<td>-8.7937</td>
<td>+6.2854</td>
<td>-0.9844</td>
<td>+10.1394</td>
</tr>
<tr>
<td>6.00</td>
<td>-8.8583</td>
<td>+7.3347</td>
<td>-0.2931</td>
<td>+10.3462</td>
</tr>
<tr>
<td>x</td>
<td>$\phi_1(x)$</td>
<td>$\phi_2(x)$</td>
<td>$\frac{d\phi_3(x)}{dx}$</td>
<td>$\frac{d\phi_4(x)}{dx}$</td>
</tr>
<tr>
<td>--------</td>
<td>--------------</td>
<td>--------------</td>
<td>--------------------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>0.00</td>
<td>+0.5000</td>
<td>$-\infty$</td>
<td>0.0000</td>
<td>$-\infty$</td>
</tr>
<tr>
<td>0.10</td>
<td>+0.4946</td>
<td>-1.5409</td>
<td>-0.0929</td>
<td>+6.3413</td>
</tr>
<tr>
<td>0.20</td>
<td>+0.4826</td>
<td>-1.1034</td>
<td>-0.1419</td>
<td>+3.1340</td>
</tr>
<tr>
<td>0.30</td>
<td>+0.4667</td>
<td>-0.8513</td>
<td>-0.1746</td>
<td>+2.0498</td>
</tr>
<tr>
<td>0.40</td>
<td>+0.4480</td>
<td>-0.6765</td>
<td>-0.1970</td>
<td>+1.4974</td>
</tr>
<tr>
<td>0.50</td>
<td>+0.4275</td>
<td>-0.5449</td>
<td>-0.2121</td>
<td>+1.1585</td>
</tr>
<tr>
<td>0.60</td>
<td>+0.4058</td>
<td>-0.4412</td>
<td>-0.2216</td>
<td>+0.9273</td>
</tr>
<tr>
<td>0.70</td>
<td>+0.3834</td>
<td>-0.3574</td>
<td>-0.2268</td>
<td>+0.7582</td>
</tr>
<tr>
<td>0.80</td>
<td>+0.3606</td>
<td>-0.2883</td>
<td>-0.2265</td>
<td>+0.6286</td>
</tr>
<tr>
<td>0.90</td>
<td>+0.3377</td>
<td>-0.2308</td>
<td>-0.2276</td>
<td>+0.5258</td>
</tr>
<tr>
<td>1.00</td>
<td>+0.3151</td>
<td>-0.1825</td>
<td>-0.2243</td>
<td>+0.4422</td>
</tr>
<tr>
<td>1.10</td>
<td>+0.2929</td>
<td>-0.1419</td>
<td>-0.2193</td>
<td>+0.3730</td>
</tr>
<tr>
<td>1.20</td>
<td>+0.2713</td>
<td>-0.1076</td>
<td>-0.2129</td>
<td>+0.3149</td>
</tr>
<tr>
<td>1.30</td>
<td>+0.2504</td>
<td>-0.0786</td>
<td>-0.2054</td>
<td>+0.2656</td>
</tr>
<tr>
<td>1.40</td>
<td>+0.2302</td>
<td>-0.0542</td>
<td>-0.1971</td>
<td>+0.2235</td>
</tr>
<tr>
<td>1.50</td>
<td>+0.2119</td>
<td>-0.0337</td>
<td>-0.1882</td>
<td>+0.1873</td>
</tr>
<tr>
<td>1.60</td>
<td>+0.1926</td>
<td>-0.0166</td>
<td>-0.1788</td>
<td>+0.1560</td>
</tr>
<tr>
<td>1.70</td>
<td>+0.1752</td>
<td>-0.0023</td>
<td>-0.1692</td>
<td>+0.1250</td>
</tr>
<tr>
<td>1.80</td>
<td>+0.1588</td>
<td>+0.0094</td>
<td>-0.1594</td>
<td>+0.1056</td>
</tr>
<tr>
<td>1.90</td>
<td>+0.1433</td>
<td>+0.0189</td>
<td>-0.1496</td>
<td>+0.0854</td>
</tr>
<tr>
<td>2.00</td>
<td>+0.1289</td>
<td>+0.0265</td>
<td>-0.1399</td>
<td>+0.0679</td>
</tr>
<tr>
<td>2.10</td>
<td>+0.1153</td>
<td>+0.0325</td>
<td>-0.1304</td>
<td>+0.0527</td>
</tr>
<tr>
<td>2.20</td>
<td>+0.1026</td>
<td>+0.0371</td>
<td>-0.1210</td>
<td>+0.0397</td>
</tr>
<tr>
<td>2.30</td>
<td>+0.0911</td>
<td>+0.0405</td>
<td>-0.1120</td>
<td>+0.0285</td>
</tr>
<tr>
<td>2.40</td>
<td>+0.0804</td>
<td>+0.0429</td>
<td>-0.1032</td>
<td>+0.0189</td>
</tr>
<tr>
<td>2.50</td>
<td>+0.0705</td>
<td>+0.0444</td>
<td>-0.0948</td>
<td>+0.0109</td>
</tr>
<tr>
<td>2.60</td>
<td>+0.0614</td>
<td>+0.0451</td>
<td>-0.0868</td>
<td>+0.0039</td>
</tr>
<tr>
<td>2.70</td>
<td>+0.0531</td>
<td>+0.0452</td>
<td>-0.0792</td>
<td>-0.0018</td>
</tr>
<tr>
<td>2.80</td>
<td>+0.0455</td>
<td>+0.0447</td>
<td>-0.0719</td>
<td>-0.0066</td>
</tr>
<tr>
<td>2.90</td>
<td>+0.0387</td>
<td>+0.0439</td>
<td>-0.0650</td>
<td>-0.0105</td>
</tr>
<tr>
<td>x</td>
<td>$\psi_3(x)$</td>
<td>$\psi_4(x)$</td>
<td>$\frac{d\psi_3(x)}{dx}$</td>
<td>$\frac{d\psi_4(x)}{dx}$</td>
</tr>
<tr>
<td>----</td>
<td>-------------</td>
<td>-------------</td>
<td>----------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>3.00</td>
<td>+0.0326</td>
<td>+0.0427</td>
<td>-0.0586</td>
<td>-0.0137</td>
</tr>
<tr>
<td>3.10</td>
<td>+0.0270</td>
<td>+0.0412</td>
<td>-0.0526</td>
<td>-0.0161</td>
</tr>
<tr>
<td>3.20</td>
<td>+0.0220</td>
<td>+0.0394</td>
<td>-0.0469</td>
<td>-0.0180</td>
</tr>
<tr>
<td>3.30</td>
<td>+0.0176</td>
<td>+0.0376</td>
<td>-0.0417</td>
<td>-0.0194</td>
</tr>
<tr>
<td>3.40</td>
<td>+0.0137</td>
<td>+0.0356</td>
<td>-0.0369</td>
<td>-0.0204</td>
</tr>
<tr>
<td>3.50</td>
<td>+0.0102</td>
<td>+0.0335</td>
<td>-0.0325</td>
<td>-0.0210</td>
</tr>
<tr>
<td>3.60</td>
<td>+0.0072</td>
<td>+0.0314</td>
<td>-0.0284</td>
<td>-0.0213</td>
</tr>
<tr>
<td>3.70</td>
<td>+0.0045</td>
<td>+0.0293</td>
<td>-0.0246</td>
<td>-0.0213</td>
</tr>
<tr>
<td>3.80</td>
<td>+0.0022</td>
<td>+0.0271</td>
<td>-0.0212</td>
<td>-0.0210</td>
</tr>
<tr>
<td>3.90</td>
<td>+0.0003</td>
<td>+0.0251</td>
<td>-0.0180</td>
<td>-0.0206</td>
</tr>
<tr>
<td>4.00</td>
<td>-0.0014</td>
<td>+0.0230</td>
<td>-0.0152</td>
<td>-0.0230</td>
</tr>
<tr>
<td>4.10</td>
<td>-0.0028</td>
<td>+0.0211</td>
<td>-0.0127</td>
<td>-0.0193</td>
</tr>
<tr>
<td>4.20</td>
<td>-0.0039</td>
<td>+0.0192</td>
<td>-0.0104</td>
<td>-0.0185</td>
</tr>
<tr>
<td>4.30</td>
<td>-0.0049</td>
<td>+0.0174</td>
<td>-0.0083</td>
<td>-0.0177</td>
</tr>
<tr>
<td>4.40</td>
<td>-0.0056</td>
<td>+0.0156</td>
<td>-0.0065</td>
<td>-0.0168</td>
</tr>
<tr>
<td>4.50</td>
<td>-0.0062</td>
<td>+0.0140</td>
<td>-0.0049</td>
<td>-0.0158</td>
</tr>
<tr>
<td>4.60</td>
<td>-0.0066</td>
<td>+0.0125</td>
<td>-0.0035</td>
<td>-0.0148</td>
</tr>
<tr>
<td>4.70</td>
<td>-0.0069</td>
<td>+0.0110</td>
<td>-0.0023</td>
<td>-0.0138</td>
</tr>
<tr>
<td>4.80</td>
<td>-0.0071</td>
<td>+0.0097</td>
<td>-0.0012</td>
<td>-0.0129</td>
</tr>
<tr>
<td>4.90</td>
<td>-0.0071</td>
<td>+0.0085</td>
<td>-0.0003</td>
<td>-0.0119</td>
</tr>
<tr>
<td>5.00</td>
<td>-0.0071</td>
<td>+0.0073</td>
<td>+0.0005</td>
<td>-0.0109</td>
</tr>
<tr>
<td>5.10</td>
<td>-0.0070</td>
<td>+0.0063</td>
<td>+0.0012</td>
<td>-0.0100</td>
</tr>
<tr>
<td>5.20</td>
<td>-0.0069</td>
<td>+0.0053</td>
<td>+0.0017</td>
<td>-0.0091</td>
</tr>
<tr>
<td>5.30</td>
<td>-0.0067</td>
<td>+0.0044</td>
<td>+0.0022</td>
<td>-0.0083</td>
</tr>
<tr>
<td>5.40</td>
<td>-0.0065</td>
<td>+0.0037</td>
<td>+0.0025</td>
<td>-0.0075</td>
</tr>
<tr>
<td>5.50</td>
<td>-0.0062</td>
<td>+0.0029</td>
<td>+0.0028</td>
<td>-0.0067</td>
</tr>
<tr>
<td>5.60</td>
<td>-0.0059</td>
<td>+0.0023</td>
<td>+0.0030</td>
<td>-0.0060</td>
</tr>
<tr>
<td>5.70</td>
<td>-0.0056</td>
<td>+0.0017</td>
<td>+0.0032</td>
<td>-0.0053</td>
</tr>
<tr>
<td>5.80</td>
<td>-0.0053</td>
<td>+0.0012</td>
<td>+0.0033</td>
<td>-0.0047</td>
</tr>
<tr>
<td>5.90</td>
<td>-0.0049</td>
<td>+0.0008</td>
<td>+0.0033</td>
<td>-0.0041</td>
</tr>
<tr>
<td>6.00</td>
<td>-0.0046</td>
<td>+0.0004</td>
<td>+0.0033</td>
<td>-0.0036</td>
</tr>
</tbody>
</table>
则ψ各阶导数的计算可简化。式中用符号δ代替了20νλν。由式（e’）我们得到：

\[N_0 = \frac{Eh}{\alpha} \omega = -\frac{Ea}{\alpha} \sqrt{x} \left[C_1 \psi_1(\xi) + C_2 \psi_2(\xi) \right] + C_3 \psi_3(\xi) + C_4 \psi_4(\xi) \]

\(e' \)

\[\frac{d\omega}{dx} = \frac{1}{2x \sqrt{x}} \left[C_1 [\xi \psi_2(\xi) - 2\psi_1(\xi)] - C_2 [\xi \psi_1(\xi) + 2\psi_2(\xi)] \right] + C_3 [\xi \psi_3(\xi) - 2\psi_2(\xi)] - C_4 [\xi \psi_2(\xi) + 2\psi_3(\xi)] \]

\(f' \)

\[M_x = -D \frac{d^2\omega}{dx^2} = -\frac{Ea^3}{48(1 - \nu^2)^{3/2}} \sqrt{x} \left[C_1 [(\xi)^2 \psi_1(\xi) - 4(\xi) \psi_1(\xi) + 8\psi_2(\xi)] - C_2 [(\xi)^2 \psi_2(\xi) - 4(\xi) \psi_2(\xi) + 8\psi_3(\xi)] \right. \]

\[\left. - C_3 [(\xi)^2 \psi_3(\xi) - 4(\xi) \psi_3(\xi) + 8\psi_4(\xi)] - C_4 [(\xi)^2 \psi_4(\xi) - 4(\xi) \psi_4(\xi)] \right] \]

\(g' \)

\[\frac{dM_x}{dx} = \frac{Ea^3 \rho^2}{24(1 - \nu^2)^{3/2}} \sqrt{x} \left[C_1 [\xi \psi_3(\xi) + 2\psi_2(\xi)] \right. \]

\[+ C_2 [\xi \psi_4(\xi) - 2\psi_3(\xi)] + C_3 [\xi \psi_5(\xi) + 2\psi_4(\xi)] \]

\[\left. + C_4 [\xi \psi_6(\xi) - 2\psi_5(\xi)] \right] \]

\(h' \)

假设常数C₁，⋯，C₄由边界条件决定，则利用这些公式就能计算任一点的挠度与应力。如20νλν ≤ 6，则函数ψ₁，⋯，ψ₄及其次导数的值可由表85选取。对于更大的自变量值，下列表近似是足够精确的：

\[\psi_1(\xi) \approx \frac{1}{\sqrt{2\pi \xi}} e^{i/\sqrt{2}} \cos \left(\frac{\xi}{\sqrt{2}} - \frac{\pi}{8} \right), \]

\[\psi_2(\xi) \approx -\frac{1}{\sqrt{2\pi \xi}} e^{i/\sqrt{2}} \sin \left(\frac{\xi}{\sqrt{2}} - \frac{\pi}{8} \right), \]

\[\psi_3(\xi) \approx \frac{1}{\sqrt{2\pi \xi}} e^{i/\sqrt{2}} \cos \left(\frac{\xi}{\sqrt{2}} + \frac{\pi}{8} \right), \]

\[\psi_4(\xi) \approx -\frac{1}{\sqrt{2\pi \xi}} e^{i/\sqrt{2}} \sin \left(\frac{\xi}{\sqrt{2}} + \frac{\pi}{8} \right), \]

\[\psi_5(\xi) \approx \sqrt{\frac{2}{\pi \xi}} e^{-i/\sqrt{2}} \sin \left(\frac{\xi}{\sqrt{2}} + \frac{\pi}{8} \right), \]

\[\psi_6(\xi) \approx -\sqrt{\frac{2}{\pi \xi}} e^{-i/\sqrt{2}} \cos \left(\frac{\xi}{\sqrt{2}} + \frac{\pi}{8} \right), \]
\[
\psi_1(\xi) \approx -\sqrt{\frac{2}{\pi \xi}} e^{-\frac{1}{2} \xi^2} \sin \left(\frac{\xi}{\sqrt{2}} - \frac{\pi}{8}\right),
\]
\[
\psi_1(\xi) \approx \sqrt{\frac{2}{\pi \xi}} e^{-\frac{1}{2} \xi^2} \cos \left(\frac{\xi}{\sqrt{2}} - \frac{\pi}{8}\right).
\]

（296）

作为一例，考虑外形尺寸与上节所用例子（第522页）相同的柱形箱，假设壁厚由底部的35.6毫米变化到顶部的8.9毫米。在此情况下，从箱底到坐标原点的距离（图248）为：

\[
d + x_0 = \frac{4}{3} d = 10.57 \text{ 米}.
\]

所以 \((2\rho \sqrt{x})_{x=x_0+d} = 21.45\)。对于这样大的自变量值，函数 \(\psi_1, \ldots, \psi_4\) 及其一阶导数可用它们的渐近式（296）代替。与特解 (c) 对应的箱底处的挠度与斜度为：

\[
(w)_{x=x_0+d} = -\frac{\gamma a^4}{EA} \frac{d}{d + x_0},
\]

\[
\left(\frac{d w}{d x}\right)_{x=x_0+d} = -\frac{\gamma a^2}{EA} \frac{x_0}{(x_0 + d)^2}.
\]

（i'）

认为柱形壳的轴向长度很大，我们对解 (c') 中的常数 \(C_1\) 和 \(C_2\)，取成等于零，而常数 \(C_1\) 和 \(C_2\)，根据壳底处的挠度和斜度等于零这个条件决定。这两个条件给出下列二方程

\[
\frac{1}{\sqrt{x}} \left[C_1 \psi_1(2\rho \sqrt{x}) + C_2 \psi_1'(2\rho \sqrt{x}) \right]_{x=x_0+d} = -\frac{\gamma a^4}{EA} \frac{d}{d + x_0},
\]

\[
-\frac{1}{2 \sqrt{x}} \left[C_1 [2\rho \sqrt{x} \psi_1(2\rho \sqrt{x}) - 2\psi_1'(2\rho \sqrt{x})] - C_2 [2\rho \sqrt{x} \psi_1(2\rho \sqrt{x}) + 2\psi_1'(2\rho \sqrt{x})] \right]_{x=x_0+d}
\]

\[
= \frac{\gamma a^2}{EA} \frac{x_0}{(d + x_0)^2}.
\]

（i'）

由渐近公式（296）计算函数 \(\psi_1, \psi_1'\) 及其导数的值，并将求得的值代入方程 (i')，即得

\[
C_1 = -269 \frac{\gamma a^4}{EA} \frac{1}{\sqrt{d + x_0}} \ast N,
\]

\[
C_2 = -299 \frac{\gamma a^2}{EA} \frac{1}{\sqrt{d + x_0}} \ast N,
\]

式中

\[
N = \left(e^{-\rho \sqrt{2/\xi}} \sqrt{2\pi \xi} \right)_{\xi=2\.85}.
\]

533
将这些常数值代入式(31)，求得箱底的弯曲值

\[M_0 = 0.311 \text{ 公斤} \cdot \text{米}/\text{米} \]

同样，应用式(31)，求得箱底的剪应力值

\[G_0 = -0.5400 \text{ 公斤}/\text{米} \]

这些结果与前面对于等厚箱形所得的值（第522页）相差不大。

119. 柱形壳的热应力

均匀温度分布

边缘自由的柱形壳承受均匀温度变化时不产生热应力。但是如边缘较厚或夹板，壳的自由膨胀受到了阻止，在边缘处就会产生局部弯曲应力。已知壳在边缘自由时的热膨胀，将对于任何一种对称简支，边缘处的反作用力矩和力可立即用式(279)和(280)求得。正像图241所示情况下作过的那样。

半径方向的温度梯度

假设 \(t_1 \) 和 \(t_2 \) 分别为柱形壳壁内外表面上的均匀温度，并且在壁厚上温度变化是线性的。在这样的情况下，在距离壳端相当远的点上不存在弯曲，因此热应力可用对于夹支板推导所得的式(51)（参看第51页）计算。所以外表面和内表面上的应力为

\[\sigma_x = \sigma_y = \pm \frac{E\alpha(t_1 - t_2)}{2(1 - \nu)} \] \(\text{(a)} \)

式中前面的正号指外表面，说明当 \(t_1 > t_2 \) 时外表面上作用着拉应力。

靠近端部壳通常有些弯曲，将应力(a)与满足边界条件所需的应力迭加，可得总的热应力。例如考虑自由边的条件，在此情况下应力 \(\sigma_x \) 在壳端必须等于零。计算这个情况下的应力和变形时，我们注意到应力(a)在边缘形成均匀分布力矩 \(M_0 \)（图250a），其值为

\[M_0 = -\frac{E\alpha(t_1 - t_2)h^2}{12(1 - \nu)} \] \(\text{(b)} \)

为了得到自由边，必须迭加大小相等方向相反的力矩（图250b）。所以自由边上的应力是在应力(a)上迭加由各力矩 \(-M_0\)（图250b）所产生的应力而得到的。后一应力可立即用

\[\cdot 534 \cdot \]
解 (278) 计算，由此解可得:

\[
(M_\ell)_{x=0} = \frac{E\alpha(t_1 - t_2)h^2}{12(1 - \nu)},
\]

\[
(M_q)_{x=0} = \nu(M_\ell)_{x=0} = \frac{\nu E\alpha(t_1 - t_2)h^2}{12(1 - \nu)},
\] (c)

\[
(N_q)_{x=0} = -\frac{Eh}{a} (\omega)_{x=0} = \frac{Eh}{a} \frac{M_0}{2\beta^2D}
\]

\[
= \frac{Eh\alpha(t_1 - t_2)}{2\sqrt{3}(1 - \nu)} \sqrt{1 - \nu^2}.
\] (d)

可以看到，在自由边缘上最大热应力作用在周向，其值可由叠加应力 (a) 与力矩 M_q 和力 N_q 所产生的应力而得到。假设 $t_1 > t_2$，我们得到

\[
(\sigma_\ell)_{\text{max}} = \frac{E\alpha(t_1 - t_2)}{2(1 - \nu)} \left(1 - \nu + \frac{\sqrt{1 - \nu^2}}{\sqrt{3}}\right).
\] (e)

当 $\nu = 0.3$ 时，这个应力比对距离端部足够远的点计算所得的应力 (a) 约大百分之一点五。由此可知，如果脆性材料 (例如玻璃) 由于温度差 $t_1 - t_2$ 而产生裂缝，则裂缝将从边缘开始，并且沿轴向扩展。在边缘夹层或简文的情况下，也能用类似的方法计算应力^1。

轴向的温度梯度 如果温度在壁厚方向是常数，但是沿轴向有变化，则此问题可容易化成方程 (274) 的求解^2。令 $t = F(x)$ 为这壳从一定的均匀初温度开始的温度增量。假设壳被垂直于 x 轴的平面分成无限多的薄环，并用 a 代表壳的半径，则由于温度变化而锈环所产生的径向膨胀为 $\alpha a F(x)$. 如有强度为 Z 的外压力作用，使得

\[
\frac{a^2Z}{Eh} = \alpha a F(x),
\]

亦即

\[
Z = \frac{Fh\alpha}{a} F(x),
\] (f)

1) 在 C. H. Kent 的论文中讨论了这种问题的若干例子，Trans. ASME，第 53 卷，第 167 页，1931 年。

2) 参看 Timoshenko, Lesselle, "Applied Elasticity," 第 146 页，1925 年。
则此膨胀就能消除，壳能回到原来的直径。这个强度的载荷完全限制了壳的热膨胀，它在壳中产生的只是周向应力，其值为

$$
\sigma_p = -\frac{aZ}{h} = -E_\alpha F(x).
$$

为了得到总的热应力，我们必须将应力 (g) 与强度为 -Z 的载荷在壳中所产生的应力迭加。为了消除式 (f) 所给出的外载荷以使壳的侧面自由，必须外加上一载荷。载荷 -Z 在壳中所产生的应力可由微分方程 (276) 的积分得到，在此情况下，该方程化为：

$$
\frac{d^4w}{dx^4} + 4\beta_1 w = -\frac{E_hC_s}{Da} F(x).
$$

作为这个方程应用的例子，我们考虑图 251a 所示的长柱形壳，并且假设横截面 mn 右方的壳的温度为常数 t_0，同时左方的温度依照关系式：

$$
t = t_0 - \left(\frac{t_0 - t_1}{b}\right)x
$$

线性地降低到 $x = b$ 端的温度 t_1。因此，在这部分内的一点上，温度的变化量为：

$$
F(x) = t - t_0 = -\left(\frac{t_0 - t_1}{b}\right)x.
$$

将此温度变化的表达式代入方程 (h)，我们求得该方程的特解为：

$$
\omega_1 = \frac{a\alpha}{b} (t_0 - t)x.
$$

与这个特解对应的位移表示在图 251b 中，该图表明在截面 mn 有一不连续角，其大小为：

$$
\frac{\alpha_1}{x} = \frac{a\alpha}{b} (t_0 - t_1).
$$

为了消除这个不连续角，必须加上荷力矩 M_0. 由于与特解 (i) 对应的应力 σ_p 抵消应力 (g)，可知由力矩 M_0 所产生的应力就是上
述温度降低所产生的总热应力。如果从壳端到横截面 \(mn \) 的距离是大值时，则力矩 \(M_0 \) 可立即由式（280）代入

\[
Q_0 = 0, \quad \left(\frac{d\omega_1}{dx} \right)_{x=0} = -\frac{\alpha a}{2b} (t_0 - t_1)
\]

而得到

\[M_0 = -\beta D \frac{\alpha a}{2b} (t_0 - t_1). \] (1)

将式（275）所表示的 \(\beta \) 值代入上式，并取 \(\nu = 0.3 \)，我们求得最大热应力为:

\[(\sigma_x)_{\text{max}} = \frac{\sigma M_0}{b^2} = 0.353 \frac{Ea}{b^2} \sqrt{h} (t_0 - t_1). \] (m)

在此计算中，假设截面 \(mn \) 到壳端的长度 \(b \) 为大值。如果情况不是这样，则必须依照上述方法对于力矩（1）进行修正。在无限长的壳中，力矩 \(M_0 \) 在距离 \(x = b \) 处产生一力矩和一剪力（图 251c）2），其值可由通解（282）求得:

\[M_x = -D \frac{d^2 \omega}{dx^2} = M_0 \varphi (\beta b), \] (n)

\[Q_x = -D \frac{d^3 \omega}{dx^3} = -2 \beta M_0 \xi (\beta b). \]

由于在距离 \(x = b \) 处有自由端，为了消除力（n），在该处必须作用有大小为:

\[-M_x = -M_0 \varphi (\beta b), \quad -Q_x = 2 \beta M_0 \xi (\beta b) \] (o)

的力矩和力（图 251c）。

力（o）在横截面 \(mn \) 处所产生的力矩就是所要求对于力矩（1）上的修正 \(\Delta M_0 \)。它的值可由（282）中的第三式求得，式中 \(M_0 \) 应当用 \(-M_0 \varphi (\beta b) \) 代入，\(Q_0 \) 用 \(-2 \beta M_0 \xi (\beta b) \) 代入。这样就得到:

1）如果 \(t_0 - t_1 \) 为正，像我们在推导中所假设的那样，则 \(M_0 \) 为负，其方向如图 251b 所示。
2）如果 \(x \) 轴的方向如图 251a 所示，则图 251c 所示的 \(M_\xi \) 和 \(Q_\xi \) 的方向为正。
3）这里所用的符号与式（o）的符号相反，因为在推导式（282）时所取的 \(x \) 轴的方向与图 251a 所示的方向相反。
\[\Delta M = -D \frac{d^2\varphi}{dx^2} = -M_0[\varphi(\beta b)]^2 - 2M_0[\zeta(\beta b)]^2. \]

作为数字例子，考虑一铸铁的柱形壳，其尺寸如下：\(a = 246\) 毫米，\(b = 35\) 毫米，\(\alpha = 108\) 毫米，\(\alpha = 101 \cdot 10^{-3}\)，\(E = 9.1 \cdot 10^4\)公斤/厘米\(^2\)，\(\xi_0 = \xi_1 = 180\)℃。

因此公式（m）给出

\[\sigma_{\text{max}} = 656\ \text{公斤/厘米}^2. \]

在计算修正量（p）时，有

\[\beta = \sqrt{\frac{3(1-v^2)}{a^2 h^2}} = \frac{1}{7.21}\ \text{厘米}^{-1}, \beta b = 1.50. \]

于是，由表 84，可得：

\[\varphi(\beta b) = 0.238, \quad \zeta(\beta b) = 0.223. \]

所以，由式（p），有

\[\Delta M = -M_0(0.238^2 + 2 \cdot 0.223^2) = -0.156M_0. \]

此式说明，为了得到正确的最大热应力的值，以上计算所得的最大应力（q）必须减小 15.6%。

这里所说明的在非线性温度梯度（i）情况下热应力的计算方法也能容易地应用于 \(F(x) \) 不是线性函数的情况。

120. 非胀大变形的圆柱形壳

如果薄壁圆柱形壳的二端自由，并且载荷不对称于柱轴，则变形主要是弯曲。在这样的情况下，完全忽略不计壳中间的应变而求得的挠度仍然是足够精确的。在图 252 中表示了这样受载情况的一例，仅考虑壳的弯曲，假设中间不能胀大，就能很精确地求得力 \(P \) 作用方向的直径的缩短。

图 252

我们首先考虑如果柱形壳是横胀大变形的，其各位移分量所受到的限制。在点O取一壳中间的单元，将坐标轴的方向取成如图258所示，并用\(u, v, w \)表示O点位移在\(x, y, z \)方向上的分量。

因此\(x \)方向的应变为

\[
\varepsilon_x = \frac{\partial u}{\partial x}.
\] (a)

在计算周向应变时可用式(a)(第108节第477页)。所以

\[
\varepsilon_\varphi = \frac{1}{\alpha} \frac{\partial v}{\partial \varphi} - \frac{w}{\alpha}.
\] (b)

中面的剪应变可以表示成

\[
\gamma_{x\varphi} = \frac{\partial u}{\partial \varphi} + \frac{\partial v}{\partial x}.
\] (c)

除了用\(ad\varphi \)代替\(dy \)外，此式与板的小挠度情况下的剪应变表达式相同。然而变形非胀大的条件下要求中面的三个应变分量必须等于零，亦即

\[
\frac{\partial u}{\partial x} = 0, \quad \frac{1}{\alpha} \frac{\partial v}{\partial \varphi} - \frac{w}{\alpha} = 0, \quad \frac{\partial u}{\partial \varphi} + \frac{\partial v}{\partial x} = 0.
\] (d)

如将位移取成如下形式:

\[
u_1 = 0,
\]

\[
v_1 = a \sum_{n=1}^{\infty} (a_n \cos n\varphi - a'_n \sin n\varphi),
\]

\[
w_1 = -a \sum_{n=1}^{\infty} n(a_n \sin n\varphi + a'_n \cos n\varphi),
\]

上述要求就能满足。式中\(a \)是壳中面的半径，\(\varphi \)是中心角，\(a_n \)和\(a'_n \)是常数，它们必须对每一种特定的受载情况进算法计算。位移(e)代表壳的所有横截面的变形是相同的。在这些位移上，我们可迭加下列级数所表示的位移:

\[
\varepsilon_2 = -a \sum_{n=1}^{\infty} \frac{1}{n} (b_n \sin n\varphi + b'_n \cos n\varphi),
\]

\[
\nu_2 = x \sum_{n=1}^{\infty} (b_n \cos n\varphi - b'_n \sin n\varphi),
\]

\[
\cdot 539 \cdot
\]
\[\omega_i = -\pi \sum_{n=1}^\infty (b_n \sin n\varphi + b'_n \cos n\varphi). \] (f)

其中两个是沿柱长有变化的。将式 (f) 代入方程 (d)，可立即证明这些式子也满足非膨胀的条件。所以柱壳的非膨胀大变形中，位移的一般表达式为:

\[u = u_1 + u_2, \quad v = v_1 + v_2, \quad w = w_1 + w_2. \] (g)

在计算柱壳在已知力系作用下的非膨胀大变形时，用能量法是有效的。为了建立所要求的壳体弯曲变能表达式，我们从计算壳中面的曲率变化量开始，母线方向的曲率变化等于零，因为由式 (c) 和 (f) 能导出，母线保持为直线。将变形前的向量单元 \(mn \) 的曲率与变形后的相对应单元 \(m_1n_1 \) 的曲率作比较（图 254），可得周向曲率的变化。在变形前周向曲率为

\[\frac{\partial \phi}{\partial s} = \frac{\partial \phi}{\partial \varphi} = \frac{1}{a}. \]

在变形后单元 \(m_1n_1 \) 的曲率为

\[\frac{\partial \phi_1}{\partial s_1} \approx \frac{d\phi + \frac{\partial^2 \omega}{\partial s^2} ds}{(a - w) d\phi}. \]

所以曲率的变化为

\[\chi_\varphi = \frac{d\phi + \frac{\partial^2 \omega}{\partial s^2} ds}{(a - w) d\phi} = \frac{1}{a^2} \left(\omega + \frac{\partial^2 \omega}{\partial \varphi^2} \right). \]

利用方程组 (d) 中的第二式，我们也可写成

\[\chi_\varphi = \frac{1}{a^2} \left(\frac{\partial v}{\partial \varphi} + \frac{\partial^2 w}{\partial \varphi^2} \right). \] (h)

产生这个曲率变化的弯矩为:

\[M_\varphi = -\frac{D}{a^2} \left(\frac{\partial v}{\partial \varphi} + \frac{\partial^2 w}{\partial \varphi^2} \right). \]
其对应的每单位面积上的弯曲应变能可如讨论板的弯曲应变能那样计算（参看第 47 页），它等于：

$$\frac{D}{2a^4} \left(\frac{\partial^2 w}{\partial \varphi^2} + \frac{\partial^2 w}{\partial \varphi \partial x} \right)^2 = \frac{D}{2a^4} \left(w + \frac{\partial^2 w}{\partial \varphi^2} \right)^2.$$ \hspace{1cm} (i)

除弯曲外，如图 253 所示位于 O 点的每一单元，还有扭转。在计算这个扭转时，我们注意到在变形时，每一母线单元绕 γ 轴旋转的角度等于 \(- \frac{\partial w}{\partial x} \)，绕 x 轴旋转的角度等于 \(\frac{\partial \nu}{\partial x} \)。考虑离第一个母线单元的周向距离为 \(a \varphi \) 的类似的母线单元，由于位移 \(w\) 的结果，此单元绕 γ 轴的旋转为

$$- \frac{\partial w}{\partial x} - \frac{\partial^2 w}{\partial \varphi \partial x} d \varphi.$$ \hspace{1cm} (j)

同一单元在与壳相切的平面内的旋转为

$$\frac{\partial \nu}{\partial x} + \frac{\partial \left(\frac{\partial \nu}{\partial x} \right)}{\partial \varphi} d \varphi.$$

由于此二单元之间夹有中心角 \(d \varphi\)，后者的旋转角分量，等于是

$$- \frac{\partial \nu}{\partial x} d \varphi.$$ \hspace{1cm} (k)

由结果 (j) 和 (k) 可知，在所考虑的此二单元间，总扭转载荷为

$$- \chi \cdot \nu = \frac{\partial^2 w}{\partial \varphi^2} + \frac{\partial \nu}{\partial x} \right) d \varphi.$$

因此扭转载荷在单位面积上的应变能为（参看第 48 页）

$$\frac{D(1 - \nu)}{a^2} \left(\frac{\partial^2 w}{\partial \varphi^2} + \frac{\partial \nu}{\partial x} \right)^2.$$ \hspace{1cm} (1)

将式 (i) 和式 (1) 相加，并且在壳面上积分，即得非胀大变形柱形壳的总应变能为

$$V = \frac{D}{2a^4} \left[\left(\frac{\partial^2 w}{\partial \varphi^2} + \frac{\partial^2 w}{\partial \varphi \partial x} \right)^2 + 2(1 - \nu) \left(\frac{\partial^2 w}{\partial \varphi \partial x} + \frac{\partial \nu}{\partial x} \right)^2 \right] d \varphi d x.$$

1）用右手螺旋法则决定旋转的符号。
2）在此表达式中略去了二阶小量。
将 ω 和 ν 的表达式 (g) 代入并进行积分，我们求得长度为 $2l$ 的柱形壳 (图 252) 的下列应变能表达式:

$$
V = \pi D l \sum_{n=2}^{\infty} \left(\frac{n^2 - 1}{a^3} \right)^2 \left[n^2 (a_n^1 + a_n^2) + \frac{1}{3} \frac{a}{a} (\beta_n^1 + \beta_n^2) \right]
+ 2(1 - \nu) a^2 (\beta_n^1 + \beta_n^2) \]
$$

(297)

此式不包含 $n = 1$ 的项，因为其对应的位移

$$
v_n = a (a_n \cos \varphi - a_n' \sin \varphi),
\omega_n = -a (a_n \sin \varphi + a_n' \cos \varphi)
$$

代表圆在其自身平面内的刚体位移。这个位移的垂直和平水平分量可由式 (m) 代入 $\varphi = \pi/2$ 而求得:

$$(v_n)_{\varphi = \pi/2} = -a a_n', \quad \omega_n)_{\varphi = \pi/2} = -a a_n.
$$

这样的位移对于应变能没有影响。

关于式 (i) 中 $n = 1$ 的诸项所表示的位移也能作出相同的结论。

现在我们将应变能表达式 (297) 应用于计算图 252 所示柱形壳的变形，此变形是由沿截面中线通过截面 c 的直径作用有两个大小相等方向相反的力 p 所产生的。只有在这些力的作用点，即 $x = c$, $p = 0$ 和 $x = c$, $p = \pi$, 有半径方向的位移 ω 时，这些力才产生力。又因在 v_n 和 ω_n 的表达式中[参看式 (e) 和 (i)], 系数 a_n 和 a_n' 的诸项在这些点上等于零，因此在变形的表达式中仅出现系数为 a_n 和 b_n 的诸项。利用虚位移原理，可得计算系数 a_n 和 b_n 的方程:

$$
\frac{\delta V}{\delta a_n} = -na a_n' (1 + \cos \varphi) p,
$$

$$
\frac{\delta V}{\delta \beta_n} = -na \delta \beta_n' (1 + \cos \varphi) p.
$$

代入 V 的表达式 (297)，对于 n 为偶数的情况，可得:

$$
a_n' = -\frac{a p}{n(n^2 - 1)^2} \pi D l,
$$

1) R. S. Levy 讨论了用弹性环加强的柱形壳的情况，其中沿每一环的直径上作用着两个反向力，参看 J. Appl. Mechanics, 第 15 卷, 第 30 页, 1948 年。
\[h' = -\frac{\rho Pa^4}{(n^2 - 1)^2 \pi Dl \left[\frac{1}{3} n^2 l^2 + 2(1 - \nu) a^2 \right]^3}. \]

（n）

如 \(n \) 为奇数，则得：

\[a'_n = b'_n = 0. \]

（o）

所以在此问题中，由式（e）和（f）可得：

\[u = \frac{P_a^3}{\pi Dl} \sum_{n=1,4,9,12, \ldots} \frac{nc \cos \varphi}{(n^2 - 1)^2 \left[\frac{1}{3} n^2 l^2 + 2(1 - \nu) a^2 \right]^3} \sin n\varphi, \]

（p）

\[v = \frac{P_a^3}{\pi Dl} \sum_{n=1,4,9,12, \ldots} \frac{1}{n(n^2 - 1)^2} \sin n\varphi, \]

\[w = \frac{P_a^3}{\pi Dl} \sum_{n=1,4,9,12, \ldots} \frac{nc \sin \varphi}{(n^2 - 1)^2 \left[\frac{1}{3} n^2 l^2 + 2(1 - \nu) a^2 \right]^3} \cos n\varphi. \]

如力 \(P \) 作用在中间，则 \(\epsilon = 0 \)，壳的垂直直径的缩短为：

\[\delta = (\omega)_{\varphi=\pi} + (\omega)_{\varphi=\pi} = \frac{2P_a^3}{\pi Dl} \sum_{n=1,4,9,12, \ldots} \frac{1}{(n^2 - 1)^2}, \]

\[= 0.149 \frac{P_a^3}{2Dl}. \]

（q）

水平直径的增长为：

\[\delta_1 = -\left[(\omega)_{\varphi=\pi/2} + (\omega)_{\varphi=3\pi/2} \right] = \frac{2P_a^3}{\pi Dl} \sum_{n=1,4,9,12, \ldots} \frac{(-1)^{n/2}}{(n^2 - 1)^2}, \]

\[= 0.137 \frac{P_a^3}{2Dl}. \]

（r）

任何其他直径的长度变化也能立即计算出来。如 \(\epsilon \) 不等于零，也能作出同样的计算，其挠度随着离中间横截面的距离 \(x \) 而变。

解（p）不满足壳的自由边的边界条件，因为自由边要求有弯矩分布 \(M \) = \(\nu M \) 以阻止相邻平面内的任何弯曲。然而这个弯矩是局部性的，对于挠度（q）和（r）没有实际的影响，它们与试验有令人满意地一致。

上述分析柱形壳非膨胀大变形的方法也能用来计算柱形壳的一部分的变形，即求计算用角为 \(\alpha \) 的二轴向截面由半径为 \(\alpha \) 的完整的柱形壳中截取的
这一部分的变形（图255）。例如将位移取成级数

\[u = -\frac{ac}{\pi} \sum b_n \sin \frac{n\pi y}{\alpha} \]

\[v = a \sum a_n \cos \frac{n\pi y}{\alpha} + x \sum b_n \cos \frac{n\pi y}{\alpha} \]

\[w = -\frac{ac}{\alpha} \sum n b_n \sin \frac{n\pi y}{\alpha} - \frac{c}{\alpha} \sum n b_n \sin \frac{n\pi y}{\alpha} \]

可得壳的非线性变形，其位移和w以及弯矩M在边线mm和m,n,上等于零，如果壳由两个方向的杆支承于点m,n,m1,n1,并且在对称面内承受载荷P，就能得到这样的条件，此载荷P所产生的挠度可由位移原理求得。

121. 柱形壳变形的一般情况

在建立定义壳体变形的位移 \(u, v, w \) 的微分方程时，我们的推演方法和在板的情况下推演方法相同。用二相邻轴向截面和二垂直于柱轴的相邻截面从柱形壳中截取一单元体（图253），我们从研究此单元体的平衡方程开始。变形后对应的壳单元面单元如图256a和256b所示。在图256a

切线方向和壳中面的法线方向内。假设变形很小，在变形后这些方向稍有变化。此时我们将 z 轴取得垂直于变形后的中面，x 轴在母线（可能已成曲线）的切线方向内，y 轴垂直于 xz 平面。合力的方向相应地也稍有变化，在写单元体 $OABC$ 的平衡方程时必须将这些变化考虑进去。

我们首先建立单元体的 BC 边对于 OA 边以及 AB 边对于 OC 边的角位移公式。在此计算中，我们认为位移 u, v, w 很小，计算由这些位移的每一个位移所产生的角位移，然后用迭加法得到合角位移。我们从 BC 边对于 OA 边的旋转开始，这个旋转可以分解成三个对于 x, y, z 轴的旋转分量。OA 边和 BC 边对于 x 轴的旋转是由位移 v 和 w 引起的。因位移 v 代表 OA 边和 BC 边的周向运动（图 253），因此如柱形壳中面的半径为 a，则 OA 边对于 x 轴的相应旋转为 v/a，而 BC 边的旋转为

$$
\frac{1}{a} \left(v + \frac{\partial v}{\partial x} \right) dx.
$$

所以由位移 v 所产生的，BC 边对于 OA 边所绕 x 轴的相对角位移为

$$
\frac{1}{a} \frac{dv}{dx} dx. \tag{a}
$$

由于位移 w，OA 边绕 x 轴的旋转角为 $\partial w/(a \partial \varphi)$，而 BC 边的旋转角为

$$
\frac{\partial w}{a \partial \varphi} + \frac{\partial}{\partial x} \left(\frac{\partial w}{a \partial \varphi} \right) dx.
$$

所以由位移 w 所产生的相对旋转角为

$$
\frac{\partial}{\partial x} \left(\frac{\partial w}{a \partial \varphi} \right) dx. \tag{b}
$$

将（a）和（b）相加，BC 边对于 OA 边所绕 x 轴的相对角位移为

$$
\frac{1}{a} \left(\frac{\partial v}{\partial x} + \frac{\partial^2 w}{\partial x \partial \varphi} \right) dx. \tag{c}
$$

BC 边对于 OA 边所绕 y 轴的旋转是母线在轴向平面内的弯曲所
产生的，它等于
\[- \frac{\partial^2 \omega}{\partial x^2} \, dx. \] (d)

BC 边对于 OA 边所绕 x 轴的旋转是由母线在切向平面内的弯曲所产生的，它等于
\[\frac{\partial^2 \nu}{\partial x^2} \, dx. \] (e)

这样，公式 (e), (d), (e) 给出了 BC 边对于 OA 边的三个旋转分量。

现在来推导 AB 边对于 OC 边的角位移的相应公式。由于柱形壳的曲率，单元体 OABC 的这些侧边间的初始夹角为 \(d\varphi \)。但由于位移 \(\nu \) 和 \(\omega \)，这个角度有变化。侧边 OC 绕 \(x \) 轴的旋转为
\[\frac{\nu}{a} + \frac{\partial \omega}{a \, d\varphi}. \] (f)

对于侧边 AB 的相应旋转为:
\[\frac{\nu}{a} + \frac{\partial \omega}{a \, d\varphi} + \frac{d}{d\varphi} \left(\frac{\nu}{a} + \frac{\partial \omega}{a \, d\varphi} \right) \, d\varphi. \]

所以现在我们必须用下列表达式代替初始夹角 \(d\varphi \):
\[d\varphi + d\varphi \left(\frac{\partial \nu}{a \, d\varphi} + \frac{\partial^2 \omega}{a \, d\varphi^2} \right) \] (g)

在计算 AB 边对于 OC 边所绕 y 轴的旋转角时，我们应用上节的扭转表达式（参看第 541 页），由此可得所要求的角位移
\[- \left(\frac{\partial^2 \omega}{\partial \varphi \partial x} + \frac{\partial \nu}{\partial x} \right) \, d\varphi. \] (h)

AB 边对于 OC 边所绕 y 轴的旋转是由位移 \(\nu \) 和 \(\omega \) 所产生的。位移 \(\nu \) 所产生的 OC 边的旋转角为 \(\partial \nu / \partial x \)，AB 边的旋转角为:
\[\frac{\partial \nu}{\partial x} + \frac{\partial}{a \, d\varphi} \left(\frac{\partial \nu}{\partial x} \right) \, ad\varphi, \]

因此相对角位移为:
\[\frac{\partial}{a \, d\varphi} \left(\frac{\partial \nu}{\partial x} \right) \, ad\varphi. \] (i)
由于位移 w, AB 边在轴向平面内的旋转角为 $\partial w / \partial x$, 这个旋转对于 z 轴的分量为:

$$ - \frac{\partial w}{\partial x} \, d\varphi. \quad (i) $$

将 (i) 和 (j) 相加, AB 边对于 OC 边所绕 z 轴的相对角位移为:

$$ \left(\frac{\partial^2 v}{\partial \varphi \partial x} - \frac{\partial w}{\partial x} \right) \, d\varphi. \quad (k) $$

有了上述转角公式1, 就能将所有的力投影在 x, y, z 轴上, 从而得到单元体 $OABC$ (图 256) 的三个平衡方程。首先考虑与合力 N_x 和 $N_{x\varphi}$ 平行的各力, 将它们投影在 x 轴上, 可得:

$$ \frac{\partial N_x}{\partial x} \, dx \, d\varphi, \quad \frac{\partial N_{x\varphi}}{\partial \varphi} \, d\varphi \, dx. $$

由于式 (k) 所表示的旋转角, 与 N_x 平行的力作出 x 方向的分量, 等于:

$$ - N_x \left(\frac{\partial^2 v}{\partial \varphi \partial x} - \frac{\partial w}{\partial x} \right) \, d\varphi \, dx. $$

由于式 (e) 所表示的旋转角, 与 $N_{x\varphi}$ 平行的力也作出 x 方向的分量, 等于:

$$ - N_{x\varphi} \frac{\partial^2 v}{\partial x^2} \, dx \, d\varphi. $$

最后, 由于式 (d) 和 (h) 所表示的转角, 与 Q_x 和 $Q_{y\varphi}$ 平行的诸力作出 x 方向的分量, 等于

$$ - Q_x \frac{\partial^2 w}{\partial x^2} \, dx \, d\varphi - Q_{y\varphi} \left(\frac{\partial^2 w}{\partial \varphi \partial x} + \frac{\partial v}{\partial x} \right) \, d\varphi \, dx. $$

至于作用在单元体上的外力, 假设只有强度为 q 的正压力, 它在 x 轴和 y 轴上的投影为零。

将以上计算的所有投影相加, 可得:

$$ \frac{\partial N_x}{\partial x} \, dx \, d\varphi + \frac{\partial N_{x\varphi}}{\partial \varphi} \, d\varphi \, dx - N_x \left(\frac{\partial^2 v}{\partial \varphi \partial x} - \frac{\partial w}{\partial x} \right) \, d\varphi \, dx $$

1 对于柱形壳, 这些公式可由 A. E. H. Love 在他的著作 "Elasticity" 中所给出的一般公式得到, 参看该书第四版, 第 523 页, 1927 年。

\[- N_{x \varphi} \frac{\partial^3 \nu}{\partial x^3} d\varphi dx d\varphi - Q_x \frac{\partial^3 \omega}{\partial x^3} d\varphi dx = 0, \]

用同样方法，能写出其他两个平衡方程。经简化后，所有三个方程可写成下列形式：

\[- N_{x \varphi} \frac{\partial^3 \nu}{\partial x^3} \frac{\partial \omega}{\partial x} - N_{\varphi x} \frac{\partial^3 \nu}{\partial x \partial \varphi} - \frac{\partial \omega}{\partial x} \frac{\partial^3 \nu}{\partial x^2} \frac{\partial \varphi}{\partial x} = 0, \]

\[- Q_{x \varphi} \left(\frac{\partial \nu}{\partial \varphi} + \frac{\partial^3 \omega}{\partial x \partial \varphi} \right) - \frac{\partial \nu}{\partial \varphi} \frac{\partial^3 \nu}{\partial x^2} \frac{\partial \varphi}{\partial x} = 0, \]

\[- Q_{\varphi x} \left(\frac{\partial \omega}{\partial \varphi} + \frac{\partial^3 \nu}{\partial x \partial \varphi} \right) - \frac{\partial \omega}{\partial \varphi} \frac{\partial^3 \nu}{\partial x^2} \frac{\partial \varphi}{\partial x} = 0. \]

\[\left(298 \right)\]

\[a \frac{\partial Q_{x \varphi}}{\partial x} + \frac{\partial Q_{\varphi x}}{\partial \varphi} + N_{x \varphi} \left(\frac{\partial \nu}{\partial x} + \frac{\partial^3 \omega}{\partial x^2} \frac{\partial \varphi}{\partial x} \right) + \frac{\partial \nu}{\partial \varphi} \frac{\partial^3 \nu}{\partial x^2} \frac{\partial \varphi}{\partial x} = 0, \]

\[N_{\varphi x} \left(1 + \frac{\partial \nu}{\partial \varphi} + \frac{\partial^3 \nu}{\partial x^2} \frac{\partial \varphi}{\partial x} \right) + q a = 0. \]

现在来建立三个对于 \(x, y, z \) 轴的力矩方程 (图 256b)，考虑到 \(BC \) 边对于 \(OA \) 边和 \(AB \) 边对于 \(OC \) 边的微小角位移，可得下列方程

\[a \frac{\partial M_{x \varphi}}{\partial x} - \frac{\partial M_{\varphi x}}{\partial \varphi} + a M_x \frac{\partial^4 \nu}{\partial x^4} \frac{\partial \varphi}{\partial x} \left(\frac{\partial^3 \nu}{\partial x \partial \varphi} - \frac{\partial \omega}{\partial x} \right) = 0, \]

\[\left(299 \right)\]

\[a \frac{\partial M_{x \varphi}}{\partial x} + \frac{\partial M_{\varphi x}}{\partial \varphi} + a M_{x \varphi} \frac{\partial^4 \nu}{\partial x^4} \frac{\partial \varphi}{\partial x} - \frac{\partial \omega}{\partial \varphi} \frac{\partial^3 \nu}{\partial x^2} \frac{\partial \varphi}{\partial x} = 0, \]

\[M_x \left(\frac{\partial \nu}{\partial x} + \frac{\partial^3 \omega}{\partial x \partial \varphi} \right) + a M_{x \varphi} \frac{\partial^4 \nu}{\partial x^4} \frac{\partial \varphi}{\partial x} + M_{\varphi x} \left(1 + \frac{\partial \nu}{\partial \varphi} + \frac{\partial^3 \nu}{\partial x^2} \frac{\partial \varphi}{\partial x} \right) = 0. \]

\[\cdots 549 \cdots \]
\[-M_\varphi \left(\frac{\partial v}{\partial x} + \frac{\partial^2 w}{\partial x \partial \varphi} \right) + a(N_{x\varphi} - N_{\varphi x}) = 0.\]

利用这些方程中的头两个方程，我们可以从方程 (298) 中消去 Q_x 和 Q_{φ}，这样就得到了包含合力 N_x, N_φ, $N_{x\varphi}$ 和力矩 M_x, M_φ, $M_{x\varphi}$ 的三个方程。利用第 104 节的公式 (253) 和 (254)，所有这些量都能用中间的三个应变分量 ε_x, ε_φ, $\gamma_{x\varphi}$ 和三个曲率变化量 χ_x, χ_φ, $\chi_{x\varphi}$ 表示。利用上节的结果，应变分量和曲率变化量可用位移 u, v, w 表示成下列形式：

$$
\varepsilon_x = \frac{\partial u}{\partial x}, \quad \varepsilon_\varphi = \frac{\partial v}{\partial \varphi} - \frac{w}{a}, \quad \gamma_{x\varphi} = \frac{\partial u}{\partial \varphi} + \frac{\partial v}{\partial x}, \\
\chi_x = \frac{\partial^2 w}{\partial x^2}, \quad \chi_\varphi = \frac{1}{a^2} \left(\frac{\partial v}{\partial \varphi} + \frac{\partial^2 w}{\partial \varphi^2} \right), \quad \chi_{x\varphi} = \frac{1}{a} \left(\frac{\partial v}{\partial x} + \frac{\partial^2 w}{\partial x \partial \varphi} \right).
$$

(300)

因此我们最后得到了决定位移 u, v, w 的三个微分方程。

在推导方程 (298) 和 (299) 时将单元体 $OABC$ 的曲率变化考虑了进去。如果力 N_x, N_φ, $N_{x\varphi}$ 较之于这壳发生侧向屈曲时的临界值不是小量，这个作法是必需的。如果这些力是小量，它们对于弯曲的影响可忽略不计，因此我们能将方程 (298) 和 (299) 中所有包含合力或合力矩与小位移 u, v, w 的导数的项积的所有项略去。在这样的情况下，三个方程 (298) 和方程组 (299) 中的头两个方程可写成下列简化形式：

$$
a \frac{\partial N_x}{\partial x} + \frac{\partial N_{x\varphi}}{\partial \varphi} = 0, \\
\frac{\partial N_\varphi}{\partial \varphi} + a \frac{\partial N_{x\varphi}}{\partial x} - Q_\varphi = 0.
$$

1) 为了满足第三个方程，必须像第 104 节所提到的那样，考虑单元体 $OABC$ 的各边是椭形。(W. Flügge 讨论了这个方程，“Statik und Dynamik der Schalen.” 第二版，第 148 面，柏林，1957 年。)

2) 由于忽略不计中间应变对于曲率的影响，这里所用的曲率变化量的表达式与上节相同。

3) 椭形壳的屈曲问题在著者的“弹性稳定理论”中作了讨论，故在这里不再考虑。

* 550 *
\[
\begin{align*}
\frac{a}{\partial x} \frac{\partial Q_x}{\partial x} + \frac{\partial Q_x}{\partial \varphi} + N_x + q a &= 0, \\
a \frac{\partial M_{xy}}{\partial x} - \frac{\partial M_x}{\partial \varphi} + a Q_x &= 0, \\
\frac{\partial M_{xy}}{\partial \varphi} + a \frac{\partial M_x}{\partial x} - a Q_x &= 0.
\end{align*}
\tag{301}
\]

消去剪力 \(Q_x \) 和 \(Q_\varphi \)，我们最后得到下列三个方程:

\[
\begin{align*}
a \frac{\partial N_x}{\partial x} + \frac{\partial N_x}{\partial \varphi} &= 0, \\
\frac{\partial N_x}{\partial \varphi} + a \frac{\partial N_x}{\partial x} + \frac{\partial M_{xy}}{\partial x} - \frac{1}{a} \frac{\partial M_{xy}}{\partial \varphi} &= 0, \\
N_x + \frac{\partial^2 M_{xy}}{\partial x \partial \varphi} - a \frac{\partial^2 M_x}{\partial x^2} - \frac{\partial^2 M_x}{\partial x \partial \varphi} + \frac{1}{a} \frac{\partial^2 M_x}{\partial \varphi^2} + q a &= 0.
\end{align*}
\tag{302}
\]

利用式(253)，(254)和(300)，这些方程中的所有未知量均可用位移 \(u, v, w \) 表示，从而得到:

\[
\begin{align*}
\frac{\partial^2 u}{\partial x^2} + \frac{1 - \nu}{2a^2} \frac{\partial^2 u}{\partial \varphi^2} + \frac{1 + \nu}{2a} \frac{\partial^2 u}{\partial x \partial \varphi} - \frac{\nu}{a} \frac{\partial w}{\partial x} &= 0,
\end{align*}
\tag{303}
\]

\[
\begin{align*}
\frac{1 + \nu}{2} \frac{\partial^2 u}{\partial x \partial \varphi} + a \frac{1 - \nu}{2} \frac{\partial^2 v}{\partial x^2} + \frac{1}{a} \frac{\partial^2 v}{\partial \varphi^2} - \frac{1}{a} \frac{\partial w}{\partial \varphi} \\
+ \frac{h^2}{12a} \left(\frac{\partial^2 w}{\partial x^2 \partial \varphi} + \frac{\partial^2 w}{a^2 \partial \varphi^2} \right) + \frac{h^2}{12a} \\
\left[\left(1 - \nu \right) \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{a^2 \partial \varphi^2} \right] &= 0,
\end{align*}
\tag{303}
\]

\[
\begin{align*}
v \frac{\partial u}{\partial x} + \frac{\partial v}{a \partial \varphi} - \frac{\omega}{a} + \frac{h^2}{12} \left(\frac{a \frac{\partial^4 \omega}{\partial x^4} + 2 \frac{a \frac{\partial^4 \omega}{\partial x^2 \partial \varphi^2} + \frac{\partial^4 \omega}{a^2 \partial \varphi^4}} \right) \\
- \frac{h^2}{12} \left(\frac{2 - \nu}{a} \frac{\partial^2 \omega}{\partial x^2 \partial \varphi} + \frac{\partial^2 \omega}{a^2 \partial \varphi^2} \right) &= - \frac{a q (1 - \nu)}{E h}.
\end{align*}
\]

夏周密的研究表明\(^1\)，(303) 中第二个方程左端的最后二项和第三个方程左端的最后一项，与以前假设应力在壳厚是线性分布和忽略壳中间面拉伸时所略去的项（参看第 461 页），为同阶小量在

\(^1\) 参看前引 Власов 的著作，第 316 页；关于更严格的方程，参看该书第 257 页。

* 551 *
这样的情况下，略去上述各项，在分析薄壁柱形壳时应用下列简化方程组是符合逻辑的：

$$
\frac{\partial^2 u}{\partial x^2} + \frac{1 - \nu}{2a^2} \frac{\partial^2 u}{\partial \varphi^2} + \frac{1 + \nu}{2a} \frac{\partial^2 v}{\partial x \partial \varphi} - \frac{v}{a} \frac{\partial w}{\partial x} = 0,
$$

$$
\frac{1 + \nu}{2} \frac{\partial^2 u}{\partial x \partial \varphi} + \frac{1 - \nu}{2} \frac{\partial^2 v}{\partial x^2} + \frac{1}{a} \frac{\partial^2 v}{\partial \varphi^2} - \frac{1}{a} \frac{\partial w}{\partial \varphi} = 0,
$$

$$
\nu \frac{\partial u}{\partial x} + \frac{\partial v}{\partial \varphi} - \frac{w}{a} = \frac{h^2}{12} \left(a \frac{\partial^4 w}{\partial x^4} + 2 \frac{\partial^4 w}{a \partial x^2 \partial \varphi^2} + \frac{\partial^4 w}{a^3 \partial \varphi^4} \right)
$$

$$
= \frac{aq(1 - \nu^2)}{Eh}.
$$

与壳各位移间的简化关系式（304）相适应的应力合力的简化表达式将在125节中给出。

由上可见，承受侧向载荷的柱形壳问题化成了在每一特殊情况下求解一组三个微分方程。这些方程的若干应用将在以下几节中说明。

122. 简支柱形壳

今考虑图257所示二端简支、承受内部液体压力的柱形壳情况。如将位移分量取成下列级数的形式：

$$
u = \sum \sum A_{mn} \cos m \varphi \cos \frac{m \pi x}{l},$$

$$w = \sum \sum B_{mn} \sin m \varphi \sin \frac{m \pi x}{l},$$

1）参考前者的“Теория Упругости”，第2卷，第385页，圣彼得堡，1916年。

- 552 -
\[\omega = \sum \sum C_{mn} \cos n \varphi \sin \frac{mn \pi}{l}. \] \hspace{1cm} (a)

式中 \(l \) 是壳的长度, \(\varphi \) 是如图 257 所示的角, 则支承端的边界条件及变形的对称性条件都能得到满足1).

载荷强度 \(q \) 用下列式子表示:

当 \(\varphi < \alpha \) 时 \(q = - \gamma a (\cos \varphi - \cos \alpha) \), \hspace{1cm} (b)

当 \(\varphi \geq \alpha \) 时 \(q = 0 \).

式中 \(\gamma \) 是液体的比重, 角 \(\alpha \) 定出液体的水平面, 如图 257b 所示, 载荷 \(q \) 可用如下级数表示:

\[q = \sum \sum D_{mn} \cos n \varphi \sin \frac{mn \pi}{l}, \] \hspace{1cm} (c)

式中系数 \(D_{mn} \) 可立即用通常方法由式 (6) 计算得到。这些系数用下列式子表示:

\[D_{mn} = - \frac{8 \gamma a}{m \pi n (n^2 - 1)} \left(\cos \alpha \sin n \alpha - n \cos n \alpha \sin \alpha \right), \] \hspace{1cm} (d)

式中 \(m = 1, 3, 5, \cdots \), \(n = 2, 3, 4, \cdots \), 而

\[D_{m0} = - \frac{4 \gamma a}{m \pi} \left(\sin \alpha - a \cos \alpha \right), \] \hspace{1cm} (e)

\[D_{m1} = - \frac{2 \gamma a}{m \pi} \left(2 \alpha - \sin 2 \alpha \right). \] \hspace{1cm} (f)

在完全装满液体的柱形壳的情况下, 我们用 \(\gamma d \) 表示柱轴处的压力2; 因此

\[q = - \gamma (d + a \cos \varphi), \] \hspace{1cm} (g)

代替式 (d), (e), (f), 我们得到:

\[D_{mn} = 0, \quad D_{m0} = - \frac{4 \gamma d}{m \pi}, \quad D_{m1} = - \frac{4 \gamma a}{m \pi}. \] \hspace{1cm} (h)

为了得到壳的变形, 我们将式 (a) 和 (c) 代入方程 (304). 这样, 我们对于每一对 \(m \) 和 \(n \) 的值得到了一组三个线性方程的方程

1) 将式 (a) 代入方程 (300) 即能证明拉力 \(N_x \) 和弯矩 \(M_x \) 在二端等于零; 但剪力不等于零, 因为 \(T_x \) 和 \(M_x \) 在二端不等于零。

2) 在封闭柱形容器中, 这个压力可能大于 \(a \gamma \).

1. 553 •
组，由它能计算对应的系数 A_{mn}, B_{mn} 和 C_{mn} 的值。考虑 $d = a$
的特殊情况，我们发现对于 $n = 0$, $m = 1, 3, 5, \cdots$, 这些方程特别简单，可得：

$$B_{m0} = 0, \quad C_{m0} = -\frac{m\pi}{\lambda\nu},$$

$$A_{m0} = \frac{\pi N}{3m\left[\frac{\lambda^2(1 - \nu^2)}{\nu} + \frac{3}{l}m^2\pi^2\right]}.$$

式中

$$N = \frac{2\gamma a l^2 h}{\pi^2 D}, \quad \lambda = \frac{l}{a}, \quad \eta = \frac{h}{2l}.$$

对于 $n = 1$, 系数的表达式比较复杂。为了说明 m 增大时这些系数减少的快，我们对于 $a = 50$ 厘米, $l = 25$ 厘米, $h = 7$ 厘米, $\nu = 0.3$, $\alpha = x$ 的特殊情况在表 87 中列出了各系数的数值。

<table>
<thead>
<tr>
<th>m</th>
<th>$A_{m0} \frac{2 \cdot 10^3}{Nh}$</th>
<th>$C_{m0} \frac{2 \cdot 10^2}{Nh}$</th>
<th>$A_{m1} \frac{2 \cdot 10^3}{Nh}$</th>
<th>$B_{m1} \frac{2 \cdot 10^2}{Nh}$</th>
<th>$C_{m1} \frac{2 \cdot 10^2}{Nh}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>57.88</td>
<td>-1212</td>
<td>49.18</td>
<td>-56.26</td>
<td>-1183</td>
</tr>
<tr>
<td>3</td>
<td>0.1073</td>
<td>-6.742</td>
<td>0.1051</td>
<td>-0.0452</td>
<td>-6.704</td>
</tr>
<tr>
<td>5</td>
<td>0.00503</td>
<td>-0.526</td>
<td>0.00499</td>
<td>-0.00122</td>
<td>-0.525</td>
</tr>
</tbody>
</table>

可以看到，当 m 增大时系数迅速地减小。所以，只用表中所给出的那些系数，我们就能足够精确地得到壳的变形。

123. 柱形壳截体的挠度　上节所用的方法也可应用于圆柱形壳的截体，它四边简支，承受垂直于壳面的均匀分布载荷 q 的作用（图 258）。我们将位移函数取成级数形式：

$$u = \sum_{m} \sum_{n} A_{mn} \sin \frac{m\pi y}{a} \cos \frac{n\pi x}{l}.$$

2) 参看著者的 "Теория Упругости", 第 2 卷，第 386 页，1916 年。
\[v = \sum \sum B_{mn} \cos \frac{n \pi \varphi}{\alpha} \sin \frac{m \pi x}{l}, \]

\[w = \sum \sum C_{mn} \sin \frac{n \pi \varphi}{\alpha} \sin \frac{m \pi x}{l}, \quad (a) \]

式中 \(\varphi \) 是壳所张的中心角, \(l \) 是壳的长度。将式 (a) 代入方程 (300), 就能证明将位移取成式 (a) 的形式可满足边界条件：要求在边缘 \(\varphi = 0 \) 和 \(\varphi = \alpha \) 上挠度 \(w \), 力 \(N_\varphi \) 和力矩 \(M_\varphi \) 等于零，在边缘 \(x = 0 \) 和 \(x = l \) 上，挠度 \(w \), 力 \(N_x \) 和力矩 \(M_x \) 等于零。垂直载荷的强度 \(q \) 也可用级数表示：

\[q = \sum \sum D_{mn} \sin \frac{n \pi \varphi}{\alpha} \sin \frac{m \pi x}{l}. \quad (b) \]

将级数 (a) 和 (b) 代入方程 (304), 可得下列计算系数 \(A_{mn}, B_{mn} \) 和 \(C_{mn} \) 的一簇线性代数方程组：

\[A_{mn} \pi \left[\left(\frac{a m}{l} \right)^2 + \frac{(1 - \nu) n^2}{2 a^2} \right] + B_{mn} \pi \frac{(1 + \nu) a m n}{2 a l} \]

\[+ C_{mn} \frac{\nu a m}{l} = 0, \]

\[A_{mn} \pi \frac{(1 + \nu) a m n}{2 a l} + B_{mn} \pi \left[\frac{(1 - \nu) a^2 m^4 + \frac{n^2}{\alpha^2}}{2 l^2} \right] \]

\[+ C_{mn} \frac{n}{\alpha} = 0. \]
\[A_{mn} \nu_n \frac{a m}{l} + B_{mn} \frac{n \pi}{\alpha} + C_{mn} \left[1 + \frac{n^2 h^2}{12a^2 \left(\frac{a^2 m^2}{l^2} + \frac{n^2}{a^2} \right)} \right] = D_{mn} \frac{a^2 (1 - v^2)}{E h} \]

(c)

为了说明这些方程的应用，我们来考虑承受均匀分载荷，具有小张角 \(\alpha \) 和小厚度 \(f = a [1 - \cos (\alpha/2)] \) 的柱形壳截体的情况。在这个特殊情况下，式 (b) 化为

\[q = \sum_{1,3,5,\ldots} \sum_{1,3,5,\ldots} \frac{16q}{\pi^2 m^2} \sin \frac{m \pi x}{l} \sin \frac{n \pi \varphi}{\alpha} \]

(d)

系数 \(D_{mn} \) 由下列式子给出：

\[D_{mn} = \frac{16q}{mn^2} \]

(e)

将这些值代入方程 (c)，就能计算系数 \(A_{mn}, B_{mn} \) 和 \(C_{mn} \)。在 \(\alpha a = l \) 的特殊情况下，对于若干比值 \(f/h \) 所作的计算表明，如果这个比值较小，则级数 (a) 迅速收敛，前面少数几项就给出足够精确的位移值。

计算也表明，力矩 \(M_x \) 和 \(M_y \) 所产生的最大弯曲应力值随着 \(f/h \) 增大而迅速减小。在 \(f/h \) 值较大的情况下，这些应力的计算非常繁杂，因为表示力矩的级数变成收敛得较慢，必须取较多的项数。

本节所用的方法与计算简支矩形板弯曲的纳维埃方法相似。如图 258 所示壳中只有直线边缘 \(\varphi = 0 \) 和 \(\varphi = \alpha \) 简支，其他边缘固支或自由，则可应用与矩形板情况下的纳维埃方法相似的解（参看第 119 页）。对于位移分量，我们采用下列级数：

\[u = \sum V_m \sin \frac{m \pi \varphi}{\alpha}, \quad v = \sum V_m \cos \frac{m \pi \varphi}{\alpha}, \quad w = \sum W_m \sin \frac{m \pi \varphi}{\alpha}. \]

(f)

式中 \(V_m \)、\(V_m \) 和 \(W_m \) 只是 \(x \) 的函数。将这些级数代入方程 (304)，对于 \(U_m, V_m \) 和 \(W_m \) 可得三个常系数的常数分方程，这些方程能用指数函数积分。对于闭柱

1) 假设载荷的作用方向指向柱轴，
形所作的这种类型的分析表明，解非常复杂，适合实际应用的解只有引入简化假设后才能得到。可以证明，对于每一个假设的 η 值，函数组 U_m, V_m, W_m 包含八个积分常数，因此在每条边缘 $x = \text{常数}$ 上我们须处理四个条件。我们在下列三种情况下列出这些条件。

通常认为这样的支持是完全刚性的，因此边界条件为：

$$
\begin{align*}
\sigma_{xx} &= 0, & \sigma_{yy} &= 0, & \sigma_{yx} &= 0, & \frac{\partial \sigma_{yy}}{\partial x} &= 0.
\end{align*}
$$

然而，如果边缘上的壳面在 x 方向可自由运动，则上述条件的第一个应当用条件 $N_u = 0$ 代替。

这样的铰接边缘不能传递保证实现条件 $\partial \sigma_{yy} / \partial x = 0$ 所需要的力矩 M_x，仍然假设 x 方向没有边缘阻力，得边界条件：

$$
\begin{align*}
\sigma_{yy} &= 0, & \sigma_{yx} &= 0, & M_x &= 0, & N_u &= 0.
\end{align*}
$$

然而位移 u 和应力合力 N_{xy}, M_{xy}, Q_x 在边缘上不等于零。

简支边的反作用力（图 259a）需要简短地考虑一下。边缘单元 $ABCD$ 上的矩应力 $M_{xy}ds$ 的作用在静力学上等价于图 259b 所示三个力的作用。径向力 M_{xy} 沿边缘的变化恰如板的情况（图 50），产生强度为 $-\partial M_{xy}/\partial s$ 的附加剪力，因此总剪力（图 259c）为

图 259

1）参看 K. Miesel 的论文，*Ingr.-Arch.*，第 1 卷，第 29 页，1929 年。在该论文中说明了此理论对于潜水平面壳应力计算的应用。
\[T_x = \Omega_s - \frac{\partial M_{\omega \varphi}}{\partial \varphi} \tag{i} \]

另一分量 \(M_{x \varphi \varphi} \) (图 259b) 可以看作强度为 \(M_{x \varphi \varphi} / ds = M_{x \varphi} / a \) 的附加薄膜力，因此边缘切线方向的总薄膜力为:

\[S_x = N_{x \varphi} + \frac{M_{x \varphi}}{a} \tag{j} \]

自由边 令所有应力合力在边缘上等于零，就能得到表征自由边的四个条件:

\[N_x = 0, \quad M_x = 0, \quad S_x = 0, \quad T_x = 0, \tag{k} \]

其中 \(S_x \) 和 \(T_x \) 分别由式 (i) 和 (j) 给出。

124. 柱形壳弯曲的近似分析 由上节的讨论可以看出，即使在最简单的情况下，柱形壳弯曲的一般理论在应用上也需要非常复杂的计算。为了使此理论适用于解决实际问题，必须在此理论中作某些进一步的简化。在讨论柱形壳的薄膜理论时曾说明过，对于壳上离边缘相当远的部分，这个理论给出满意的结果，但是它不能满足所有边界条件。因此以薄膜理论所提供的解作为一次近似，只是在边缘处用更周密的弯曲理论以满足边界条件是合理的。在应用弯曲理论时，必须假设没有外荷或分布在壳上，只有满足边界条件所需要的力和力矩作用在边缘上。在使方程组 (303) 中的载荷等于零后，就能用该方程组研究这样的力所产生的弯曲。

在结构工程中所遇到的应用有，壳的两端 \(x = 0 \) 和 \(x = l \) (图 260) 的支承方式将使位移 \(u \) 和 \(w \) 在两端等于零。实验表明，在这样的壳中轴向平面内的弯曲可忽略不计，因

图 260

1) 关于根据 L. H. Donnells 的简化微分方程得到的弯曲问题的解，参看 N. J. Hoff, J. Appl. Mechanics, 第 21 卷，第 343 页，1954 年；也可参看该书第 125 节。

2) 近年来钢材混凝土的加劲薄壁柱形壳已经成功地应用在大厦的房顶结构中。某些这种结构的资料可在 F. Dischinger 的文章中找到，“Handbuch für Eisenbetonbau?，第三版，第 12 卷，柏林，1928 年；也可参看 F. Dischinger 和 U. Finsterwalder 的论文，Bauingenieur, 第 9 卷，1928 年，以及本书第 126 节。
此在平衡方程 (301) 中我们可假设 $M_x = 0$, $Q_x = 0$. 把矩 $M_{x\varphi}$ 也可忽略不计. 用这些假设, 方程组 (301) 可大大地简化, 并且各合力和各位移的分量均可用弯矩 M_φ 表示

$$Q_\varphi = \frac{1}{a} \frac{\partial M_\varphi}{\partial \varphi}. \quad (a)$$

将此式代入该方程组的第三个方程, 对于 $q = 0$ 可得:

$$N_\varphi = \frac{\partial Q_\varphi}{\partial \varphi} = -\frac{1}{a} \frac{\partial^2 M_\varphi}{\partial \varphi^2}. \quad (b)$$

因此 (301) 第一个和第二个方程给出:

$$\frac{\partial N_{x\varphi}}{\partial x} = \frac{1}{a} \left(Q_\varphi - \frac{\partial N_p}{\partial x} \right) = \frac{1}{a} \left(\frac{\partial M_\varphi}{\partial \varphi} + \frac{\partial^2 M_\varphi}{\partial \varphi^2} \right), \quad (c)$$

$$\frac{\partial^2 N_{x\varphi}}{\partial x^2} = -\frac{1}{a} \frac{\partial^2 N_{x\varphi}}{\partial \varphi \partial x} = -\frac{1}{a} \left(\frac{\partial^2 M_\varphi}{\partial \varphi^2} + \frac{\partial^4 M_\varphi}{\partial \varphi^4} \right). \quad (d)$$

各位移分量也可用 M_φ 及其导数表示. 我们从下列已知的关系式 [参照式 (253) 和 (254)] 开始:

$$s_t = \frac{\partial u}{\partial x} = \frac{1}{Eh} \left(N_x - v N_\varphi \right),$$

$$\gamma_{x\varphi} = \frac{\partial u}{\partial \varphi} + \frac{\partial v}{\partial x} = \frac{2(1 + v)}{Eh} N_{x\varphi}, \quad (e)$$

$$\varepsilon_\varphi = \frac{\partial v}{\partial \varphi} \frac{\partial u}{\partial x} = \frac{1}{Eh} \left(N_\varphi - v N_x \right),$$

由这些等式可得:

$$\frac{\partial u}{\partial x} = \frac{1}{Eh} \left(N_x - v N_\varphi \right),$$

$$\frac{\partial^2 u}{\partial x^2} = \frac{1}{Eh} \left[\frac{2(1 + v)}{Eh} \frac{\partial N_{x\varphi}}{\partial x} - \frac{1}{a} \left(\frac{\partial N_x}{\partial \varphi} - v \frac{\partial N_\varphi}{\partial \varphi} \right) \right],$$

$$\frac{\partial^2 \varepsilon_\varphi}{\partial x^2} = \frac{1}{Eh} \left[a \left(\frac{\partial^2 N_x}{\partial \varphi^2} - \frac{\partial^2 N_{x\varphi}}{\partial \varphi \partial x} \right) + \frac{2(1 + v)}{Eh} \frac{\partial^2 N_{x\varphi}}{\partial x^2} \right],$$

$$-\frac{1}{a} \left(\frac{\partial^2 M_\varphi}{\partial \varphi^2} - v \frac{\partial^2 N_\varphi}{\partial \varphi^2} \right). \quad (f)$$

利用这些表达式及方程 (b), (c), (d), 并且用弯矩表达式

$$M_\varphi = -\frac{D}{a} \left(\frac{\partial v}{\partial \varphi} + \frac{\partial^2 \varepsilon_\varphi}{\partial \varphi^2} \right), \quad (g)$$

1）柱形壳弯曲的这个近似理论是 U. Fünsterwald 提出的；参照 Ingr.-Arch.,
第 4 卷, 第 43 页, 1933 年.

* 原文有误, 已改正。——译者注

* 559 *
我们最后得到下列决定 M_Φ 的八阶微分方程：

$$
\frac{\partial^8 M_\Phi}{\partial \Phi^8} + (2 + \nu) a^2 \frac{\partial^6 M_\Phi}{\partial x^2 \partial \Phi^6} + 2 \frac{\partial^4 M_\Phi}{\partial x^4 \partial \Phi^4} + (1 + 2\nu) a^4 \frac{\partial^2 M_\Phi}{\partial x^8 \partial \Phi^2} + 2(2 + \nu) a^2 \frac{\partial^4 M_\Phi}{\partial x^2 \partial \Phi^2} + \frac{\partial^4 M_\Phi}{\partial \Phi^4} + \nu a^6 \frac{\partial^6 M_\Phi}{\partial x^8 \partial \Phi^6} + (1 + \nu) a^2 \frac{\partial^6 M_\Phi}{\partial x^4 \partial \Phi^2} + (2 + \nu) a^4 \frac{\partial^4 M_\Phi}{\partial x^4 \partial \Phi^4} + 12(1 - \nu) a^2 \frac{\partial^2 M_\Phi}{\partial x^8 \partial \Phi^2} = 0. \tag{8}
$$

此方程的一解为：

$$
M_\Phi = A_\Phi \sin \frac{m_\pi x}{l}, \tag{i}
$$

把它代入方程 (8)，并应用符号

$$
\frac{m_\pi a}{l} = \lambda, \tag{j}
$$

即得计算 α 的下列代数方程：

$$
\alpha^8 + [2 - (2 + \nu) \lambda^4] \alpha^6 + [(1 + 2\nu) \lambda^4 - 2(2 + \nu) \lambda^2 + 1] \alpha^4 + [-\nu \lambda^4 + (1 + \nu) \lambda^2 - (2 + \nu) \lambda^2] \alpha^2 + 12(1 - \nu) \frac{a^2}{\lambda^2} \lambda^2 = 0. \tag{k}
$$

这个方程的八个根可写成：

$$
a_1, a_2, a_3, a_4 = \pm (\gamma_i \pm i\beta_i), \quad a_5, a_6, a_7, a_8 = \pm (\gamma_i \pm i\beta_i). \tag{l}
$$

首先考虑边缘 $\Phi = 0$，假设力矩 M_Φ 随着 Φ 的增大而迅速减小，我们只用 (l) 中满足这个要求的四个根。因此将四个对应的解 (i) 组合起来，可得：

$$
M_\Phi = \left[e^{-i\gamma_1} (C_1 \cos \beta_1 \phi + C_2 \sin \beta_1 \phi) + e^{-i\gamma_2} (C_3 \cos \beta_2 \phi + C_4 \sin \beta_2 \phi) \right] \sin \frac{m_\pi x}{l}. \tag{m}
$$

对于 $\Phi = 0$ 上式给出：

$$
M_\Phi = (C_3 - iC_4) \sin \frac{m_\pi x}{l}. \tag{n}
$$

如果我们取的不是单项 (i) 而是三角级数：

$$
M_\Phi = \sum A_\alpha \alpha^\alpha \sin \frac{m_\pi x}{l}, \tag{n}
$$

就能得到弯矩 M_Φ 在边缘 $\Phi = 0$ 上的任何分布。有了 M_Φ 的表达式，合力 C_Φ, N_Φ, $N_{\Phi\Phi}$ 可由方程 (a), (b), (c) 求得。
如果在某一特殊情况下, 已知弯矩 M_φ 和合力 $Q_\varphi, N_\varphi, N_x, N_y$ 在边缘 $\varphi = 0$ 上的分布, 则可用正弦级数表示这些分布。这四个级数中含有 $\sin (m\pi x/l)$ 的项的四个系数值可用来计算解 (1) 中的四个常数 C_1, \cdots, C_4; 这样就能得到对于已知外力分布的问题的完全解。

如果利用方程组 (1) 得到了用 M_φ 表示的 ν, ψ, ω 的表达式, 则当给出的是边缘 $\varphi = 0$ 上的位移及有静力, 我们就能用所得到的表达式解此问题。这类问题的例子可在以前提到过的芬氏特的论文"1) 中找到, 他证明上述近似方法可成功地用来解决重要的结构问题。

125. 应变和应力函数的应用：在柱形壳弯曲的一般情况下, 其比值 l/a (图 260) 不一定是大值时, 力矩 M_x 和 M_y 的影响不能不予以考虑。另一方面, 位移之间的关系式的简化形式 (方程 (304)) 允许引人决定壳的应变和应力状态的函数 $F(x, \varphi)$。使用符号

$$
\varepsilon^1 = \frac{\lambda}{12a} \left(\frac{x}{a} \right)^2, \quad \Delta = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial \varphi^2},
$$

我们可将方程组 (304) 写成下列包括所有三个外载荷分数 X, Y 和 Z 的形式:

$$
\frac{\partial^2 u}{\partial \xi^2} + \frac{1}{2} \frac{\partial^2 u}{\partial \varphi^2} + \frac{1}{2} \frac{\partial^2 \nu}{\partial \xi \partial \varphi} - \nu \frac{\partial \omega}{\partial \xi} = - \left(1 - \nu^2 \right) \frac{a^2}{Eh} X,
$$

$$
\frac{1 + \nu}{2} \frac{\partial^2 u}{\partial \xi^2} + \frac{\partial^2 \nu}{\partial \varphi^2} + \frac{1}{2} \frac{\partial^2 \nu}{\partial \xi \partial \varphi} - \frac{\partial \omega}{\partial \varphi} = - \left(1 - \nu^2 \right) \frac{a^2}{Eh} Y
$$

$$
\nu \frac{\partial u}{\partial \xi} + \frac{\partial \nu}{\partial \varphi} - \omega - \varepsilon^1 \Delta \omega = - \left(1 - \nu^2 \right) \frac{a^2}{Eh} Z
$$

令

$$
\nu = \frac{\partial^1 F}{\partial \xi \partial \varphi^2} - \nu \frac{\partial^1 F}{\partial \xi^2} + u_0,
$$

$$
\nu = - \frac{\partial^2 F}{\partial \varphi^2} - (2 + \nu) \frac{\partial^2 F}{\partial \xi^2 \partial \varphi} + v_0
$$

$$
\omega = - \Delta \Delta F + w_0,
$$

联立方程组 (305) 可化成一个微分方程。式中 u_0, v_0, w_0 是非齐次方程组 (305) 的一组解。至于应变和应力函数 $F(x, \varphi)$, 它必须满足微分方程:

$$
\Delta \Delta \Delta \Delta F + \frac{1 - \nu^2}{\varepsilon^1} \frac{\partial^4 F}{\partial \xi^4} = 0,
$$

1) 参看第 559 页上的注。
2) 穆 Blacos 提出，参看他的"壳体的理论"。L. H. Donnell 没有采用应力函数，得到了几乎相同的结果，NACA Rept. 479, 1933 年。也可参看 N. J. Hoff, J. Appl. Mechanics, 第 21 卷, 第 343 页, 1954 年。
如 \(X = Y = Z = 0 \)，此方程等价于方程组 (305) \(^1\)。能够证明：在 \(X = Y = Z = 0 \) 的情况下，不仅函数 \(F \)，而且所有的位移和应变分量，以及壳的应力合力都满足微分方程 (307)。

对于壳中面的伸长、剪应变及曲率变化，式 (300) 仍然成立。应力合力可以用位移表示，或者直接通过函数 \(F \) 表示。根据推导方程组 (304) 时所作的简化，位移 \(u \) 和 \(v \) 对于弯矩和扭力的影响必须认为可以忽略不计。因此，使用符号

\[
K = \frac{Eh}{1 - \nu^2}, \quad D = \frac{Eh^3}{12(1 - \nu^2)},
\]

即得下列表达式：

\[
N_u = \frac{K}{a} \left[\frac{\partial u}{\partial \xi} + \nu \left(\frac{\partial v}{\partial \varphi} - w \right) \right] = \frac{Eh}{a} \frac{\partial^2 F}{\partial \xi^2},
\]

\[
N_v = \frac{K}{a} \left(\frac{\partial v}{\partial \varphi} - w + \nu \frac{\partial u}{\partial \xi} \right) = \frac{Eh}{a} \frac{\partial^2 F}{\partial \varphi^2}, \quad (309)
\]

\[
N_{\varphi} = \frac{K(1 - \nu)}{2a} \left(\frac{\partial u}{\partial \varphi} + \frac{\partial v}{\partial \xi} \right) = -\frac{Eh}{a} \frac{\partial^2 F}{\partial \xi \partial \varphi},
\]

\[
M_u = -\frac{D}{a^2} \left(\frac{\partial^2 u}{\partial \xi^2} + \nu \frac{\partial^2 u}{\partial \varphi^2} \right) = \frac{D}{a^2} \left(\frac{\partial^2 F}{\partial \xi^2} + \nu \frac{\partial^2 F}{\partial \varphi^2} \right) \Delta \Delta F,
\]

\[
M_v = -\frac{D}{a^2} \left(\frac{\partial^2 v}{\partial \varphi^2} + \nu \frac{\partial^2 v}{\partial \xi^2} \right) = \frac{D}{a^2} \left(\frac{\partial^2 F}{\partial \varphi^2} + \nu \frac{\partial^2 F}{\partial \xi^2} \right) \Delta \Delta F, \quad (310)
\]

\[
M_{\varphi} = -K_{x\varphi} = -\frac{D(1 - \nu)}{a^2} \frac{\partial^2 F}{\partial \xi \partial \varphi} = -\frac{D}{a^2} (1 - \nu) \frac{\partial^2 F}{\partial \xi \partial \varphi} \Delta \Delta F,
\]

\[
Q_x = -\frac{D}{a^2} \frac{\partial}{\partial \xi} \Delta \omega = \frac{D}{a^2} \frac{\partial}{\partial \xi} \Delta \Delta F,
\]

\[
Q_{\varphi} = -\frac{D}{a^2} \frac{\partial}{\partial \varphi} \Delta \omega = \frac{D}{a^2} \frac{\partial}{\partial \varphi} \Delta \Delta F. \quad (311)
\]

将微分方程 (307) 表示成如下形式：

\[
(\Delta \Delta)^4 F + 4\nu^4 \frac{\partial^4 F}{\partial \xi^4} = 0, \quad (b)
\]

式中

\[
\nu = \sqrt{\frac{3(1 - \nu^2) a^2}{h^2}}, \quad (c)
\]

1) 脱落 引入了进一步的应力函数 \(F_x, F_y, F_z \)，分别表示 \(X, Y \) 或 \(Z \) 不等于零时方程组 (305) 的特殊积分；参看其前引著作。
我们看到，方程 (307) 也等价于四个方程的方程组：
\[\Delta F_x \pm \gamma (1 \pm i) \frac{\partial F_x}{\partial \bar{\xi}} = 0, \tag{d} \]
式中, \(i = \sqrt{-1}, \alpha = 1, 2, 3, 4 \)，令
\[
F_1 = e^{-\frac{1}{2} \gamma (1 + i)x}, \quad \Phi_1,
F_2 = e^{-\frac{1}{2} \gamma (1 - i)x}, \quad \Phi_2,
F_3 = e^{\frac{1}{2} \gamma (1 - i)x}, \quad \Phi_3,
F_4 = e^{\frac{1}{2} \gamma (1 + i)x}. \quad \Phi_4. \tag{e}
\]
对于这四个新函数 \(\Phi \)，可得四个方程的方程组：
\[\Delta \Phi + \mu \Phi = 0, \tag{f} \]
式中的常数 \(\mu \)，我们必须假设
\[
\mu_1 = \mu_2 = -\frac{a}{\bar{\beta}} \sqrt{3(1 - \nu^2)} ,
\mu_3 = \mu_4 = \frac{a}{\bar{\beta}} \sqrt{3(1 - \nu^2)}. \tag{g}
\]
(f) 中每个方程的形式与薄板振动方程可比拟。与方程 (d) 相比较，方程 (f) 的优点是对于壳柱面上的坐标变换对它不变。

126. 圆形屋顶壳的应力分析

三种典型的屋顶布置如图 261 和图 265 所示。壳可以在 x 方向连续，也可以仅在两个平面，例如平面 x = 0 和 x = 2 内支承。我们仅限于讨论后一种情况。我们假设这等效结构对于作用在壳面平面上 x = 常数内的诸力是刚性的，但对于横向载荷是完全柔性的。在图 261a 中，\(\varphi = \varphi_0 \) 处的抗推构件是柔性的，然而于图 261b 和图 265 所示的壳是用刚度相当大（特别是在垂直平面内）的梁加强的。

壳面上的任一荷载分布可将其三个分量值用级数形式来表示：

\begin{align*}
X &= \sum_{m=1}^{\infty} X_m(\phi) \cos \frac{\lambda_m x}{a}, \\
Y &= \sum_{m=1}^{\infty} Y_m(\phi) \sin \frac{\lambda_m x}{a}, \\
Z &= \sum_{m=1}^{\infty} Z_m(\phi) \sin \frac{\lambda_m x}{a},
\end{align*}

(a)

式中

\begin{equation}
\lambda_m = \frac{mn\pi}{l}.
\end{equation}

(b)

同样地，我们将式 (306) 中的特解 \(u_0, v_0, w_0 \) 表示成下列形式：

\begin{align*}
u_0 &= \sum_{m=1}^{\infty} U_{0m}(\phi) \cos \frac{\lambda_m x}{a}, \\
v_0 &= \sum_{m=1}^{\infty} V_{0m}(\phi) \sin \frac{\lambda_m x}{a}, \\
w_0 &= \sum_{m=1}^{\infty} W_{0m}(\phi) \sin \frac{\lambda_m x}{a}.
\end{align*}

(c)

利用式 (309) 和 (310) （式中 \(\xi = x/a \)），由这些级数所得到的应力合力 \(N_x \) 和 \(M_x \) 的表达式表明，第 123 节中对于铰接边缘的条件 (h) 在支承 \(x = 0 \) 和 \(x = l \) 处是满足的。

为了得到

\[X = Y = Z = 0 \]

情况下位移的一般表达式，我们利用对函数 \(F \) 的求解 (第 125 节)。首先将此
函数取成如下形式：

$$F_m = e^{\alpha_1} \sin \frac{\lambda_m x}{a}.$$

(d)

将此表达式代入微分方程 (307)，可得下列对于 α 的特征方程：

$$(\alpha^2 - \lambda_m^2) + \frac{1 - \nu^2}{c^2} \lambda_m = 0,$$

(e)

式中 $c^2 = \frac{E}{1 - \nu^2}$，这个方程的八个根可表示成下列形式：

$$\alpha_1 = r_1 + i\beta_1, \quad \alpha_2 = -\alpha_1,$$
$$\alpha_3 = r_1 - i\beta_1, \quad \alpha_4 = -\alpha_3,$$
$$\alpha_5 = r_2 + i\beta_2, \quad \alpha_6 = -\alpha_5,$$
$$\alpha_7 = r_2 - i\beta_2, \quad \alpha_8 = -\alpha_7.$$

(f)

其中 r 和 β 为实值。使用符号

$$\rho = \sqrt{\lambda_m^2 - \frac{1 - \nu^2}{c^2}}, \quad \sigma = \frac{\lambda_m}{\rho^2}.$$

(g)

即得：

$$r_1 = \frac{\rho}{\sqrt{2}} \sqrt{\frac{1 + \sigma \sqrt{2}}{1 + 1 + \rho \sqrt{2}}} = 1,$$
$$r_2 = \frac{\rho}{\sqrt{2}} \sqrt{\frac{1 - \sigma \sqrt{2}}{1 + 1 - \rho \sqrt{2}}} = -1.$$

(h)

$$\beta_1 = \frac{\rho^2}{r_1 \sqrt{2}}, \quad \beta_2 = \frac{\rho^2}{r_2 \sqrt{2}}.$$

回到解的级数形式，我们得到应力函数的一般表达式为：

$$F = \sum_{m=1}^{\infty} f_m(\varphi) \sin \frac{\lambda_m x}{a}.$$

(i)

式中：

$$f_m(\varphi) = C_{1m}e^{r_1 \varphi} + C_{2m}e^{r_2 \varphi} + \cdots + C_{nm}e^{r_n \varphi},$$

(i)

C_{1m}, C_{2m}, \ldots 为任意常数。

现在我们能用关系式 (306) 计算各个位移。在由式 (i) 所得的结果上加上解 (c)，即得壳中间的总位移的表达式：

$$u = \sum_{m=1}^{\infty} \left(\lambda_m j_m' + \nu \lambda_m j_m + U_m \right) \cos \frac{\lambda_m x}{a},$$

$$v = \sum_{m=1}^{\infty} \left[\left(\frac{c^2}{c^2} \lambda_m \right) j_m' - j_m'' + V_m \right] \sin \frac{\lambda_m x}{a},$$

(306)

$$\nu = \sum_{m=1}^{\infty} \left[\frac{c^2}{c^2} \lambda_m j_m' - j_m'' + V_m \right] \sin \frac{\lambda_m x}{a},$$

(306)
\[w = \sum_{n=1}^{\infty} \left(2 \pi_m f_m' - f_m'' - \lambda_m f_m + W_m \right) \sin \frac{\lambda_m x}{a}, \quad (k) \]

式中 "'" 表示对 \(\varphi \) 求一次微分。

现在各应力和应力分量可用式 (300), (309), (310) 和 (311) 得到，在载荷分布的最一般情况下，在各边缘 \(\varphi = \pm \psi_0 \) 上的四个条件对于计算常数 \(C_m, \cdots, C_n (m = 1, 2, 3, \cdots) \) 是必要和充分的。

作为一例，我们考虑均匀分布在壳面上的垂直载荷的情况，由第 492 页，有

\[X = 0, \quad Y = p \sin \varphi, \quad Z = p \cos \varphi. \quad (l) \]

所以级数 (a) 的系数由下列式子决定：

\[X_m = \frac{2}{l} \int_0^l X \cos \frac{\lambda_m x}{a} \, dx = 0, \quad (m) \]

\[Y_m = \frac{2}{l} \int_0^l Y \sin \frac{\lambda_m x}{a} \, dx = \frac{4p}{m\pi} \sin \varphi, \]

\[Z_m = \frac{2}{l} \int_0^l Z \sin \frac{\lambda_m x}{a} \, dx = \frac{4p}{m\pi} \cos \varphi, \]

式中 \(m = 1, 3, 5, \cdots \)。下列式子给出了一适当的解 (c)：

\[U_m = A_m \cos \varphi, \quad V_m = B_m \sin \varphi, \quad W_m = C_m \cos \varphi, \quad (n) \]

系数 \(A_m, B_m \) 和 \(C_m \) 可立即由式 (c), (n) 和 (m) 代入方程组 (305) 而得到。

满足于经线平面 \(\varphi = 0 \) 的狄拉克条件，函数 (i) 的适当形式为

\[f_m(\varphi) = A_m \sin \beta_1 \varphi \cosh \gamma_1 \varphi + A_m \sin \beta_2 \varphi \sinh \gamma_2 \varphi + A_m \cos \beta_1 \varphi \cosh \gamma_1 \varphi + A_m \sin \beta_2 \varphi \sinh \gamma_2 \varphi, \quad (o) \]

式中 \(\beta_1, \beta_2, \gamma_1, \gamma_2 \) 由式 (h) 决定，\(m = 1, 3, 5, \cdots \)。

为了用最简单的方法立出 \(\varphi = \pm \psi_0 \) 上的边界条件，我们写出边界位移及边界上的诸薄板力这二种垂直和水平分量的表达式 (图 262)：

![图 262](image-url)
\[\eta = \nu \sin \varphi_0 + \omega \cos \varphi_0, \quad (p_1) \]
\[\delta = \nu \cos \varphi_0 - \omega \sin \varphi_0, \quad (p_2) \]
\[\nu = N_\varphi \sin \varphi_0 + \left(Q_\varphi + \frac{\partial M_{\alpha z}}{\partial x} \right) \cos \varphi_0, \quad (p_3) \]
\[H = N_\varphi \cos \varphi_0 - \left(Q_\varphi + \frac{\partial M_{\alpha z}}{\partial x} \right) \sin \varphi_0. \quad (p_4) \]

最后，壳对于边缘的旋转由下式表示
\[\chi = x + \frac{\partial \omega}{\partial \varphi}. \quad (p_5) \]

在上述各式右端的直线项中需要 \(\varphi = \varphi_0 \)。可以分别考虑下列三种边界条件。

具有完全柔韧壁的半身（图261a）由于许多互相连接的震度形成屋顶，此屋顶的变形可认为对于通过中间边缘 \(p = \pm \varphi_0 \) 的垂直平面为对称，在边界 \(\varphi = \pm \varphi_0 \) 上位移 \(\delta \) 和旋转 \(\chi \) 必须等于零，因此在 \(\varphi = \varphi_0 \) 上
\[\nu \cos \varphi_0 - \nu \sin \varphi_0 = 0, \quad (q_1) \]
\[\nu + \frac{\partial \omega}{\partial \varphi} = 0. \quad (q_2) \]

设 \(Q_\varphi \) 为单位长拉杆的重量，由式 (p_5) 我们有进一步的条件
\[2\nu = Q_\varphi. \quad (q_3) \]

如 \(Q_\varphi \) 为常数，它可展成如下级数:
\[Q_\varphi = \sum_{m=1,2,3, \ldots}^{\infty} \frac{1}{n} \sin \frac{m\pi x}{a}. \quad (p_6) \]

最后，壳在边缘 \(\varphi = \varphi_0 \) 上的伸长 \(\varepsilon \) 必须等于抗拉构件的伸长，如以 \(A_0 \) 表示抗拉构件的横截面面积，\(F_0 \) 表示其相应的杨氏模量；则对于 \(\varphi = \varphi_0 \) 有
\[\frac{1}{E_0 A_0} \int_0^a 2N_\varphi dx = \frac{\delta \varepsilon}{\delta \varphi}. \quad (q_4) \]

式中积分代表杆的拉力。

以后的步骤如下所述，对于每个 \(m = 1, 3, 5, \ldots \)，由条件 (q_1), \ldots, (q_4) 计算四个系数 \(A_{m1}, \ldots, A_{m8} \)。而在应力函数 \(\varphi \) 可由式 (o) 和 (i) 决定。而各位移由式 (306) 或 (k) 给出。最后，利用式 (309) 和 (311)，从已知的位移出发，或者对于解部分直接从应力函数 \(\varphi \) 出发，我们可得到的应力合力。

1) 如抗拉构件系两种材料组成，比如说钢与混凝土，则必须取所替换的横截面面积。
用梁加强的单跨屋顶（图 265）

\[\varphi = \varphi_0 \] 上的对称条件

\[v \cos \varphi_0 - \omega \sin \varphi_0 = 0 \quad (c_1) \]

及

\[v + \frac{\partial \omega}{\partial \varphi} = 0 \quad (c_2) \]

与前一情况相同。为了建立第三个条件，设 \(Q_0 \) 为单位长度梁的已知重量，

\(h_0 \) 为其高度，\(E_0 l_0 \) 为梁在垂直平面内的抗弯刚度，\(A_0 \) 为横截面面积，于是梁的挠度 \(\gamma \) 的微分方程为

\[E_0 l_0 \frac{d^2 \gamma}{dx^2} = Q_0 - 2V + 2 \frac{h_0}{2} \frac{\partial N_{\psi x}}{\partial x}, \quad (c_3) \]

函数 \(\eta, V \) 和 \(Q_0 \) 分别由式 \((p_1), (p_2), (p_3)\) 给出。方程 \((c_3)\) 中的最后一项是壳的边缘和梁的轴线之间的水平差所引起的。至于梁的顶部纤维的伸长 \(\varepsilon_\text{sx} \)，它不仅决定于拉力，而且决定于梁的曲率。由于曲率 \(d^2 \gamma / dx^2 \) 的影响，则得条件

\[\frac{2}{E_0 A_0} \int_{0}^{x} N_{\psi x} dx - \frac{h_0}{2} \frac{\partial^2 \eta}{\partial x^2} = \frac{\varepsilon_\text{sx}}{2}, \quad (c_4) \]

来代替方程 \((q_1)\)，以后的分析步骤与前一情况实际相同。

对于由三个相同跨度组成的屋顶的中跨度所得到的薄膜力和弯矩 \(M_0 \) 的分布表示在图 263 中。在水平方向，壳的跨度 \(l = 41 \) 米，面载荷 \(p = 253 \) 公斤/米²，壳的重量 \(Q_0 = 667 \) 公斤/米，仅用薄膜理论所得到的应力合力用虚线表示。

用梁加强的单跨屋顶（图 265）

在这样的情况下，我们不仅要考虑由于边缘位移 \(\eta \) 和 \(\delta \) 所给出的梁的挠度，而且要考考虑梁的旋转 \(\chi \)（图 264）。此时梁的垂直挠度的微分方程为

\[E_0 l_0 \frac{d^2 \gamma}{dx^2} = Q_0 - \nu + \frac{h_0}{2} \frac{\partial N_{\psi x}}{\partial x}, \quad (c_5) \]

式中所用的符号与前一情况相同。类似地，水平挠度由如下方程决定:

\[E_0 l_0 \frac{d^4 \chi}{dx^4} \left(\sigma - \chi \frac{h_0}{2} \right) = - H, \quad (c_6) \]

式中 \(E_0 l_0 \) 表示梁在水平面内的抗弯刚度，而 \(\sigma, \chi \) 和 \(H \) 由式 \((p_1), (p_2), (p_3)\) 给出。

1) 此结果见 Finsterwalder (参照前引论文) 用第 124 节中所述方法得到; 也可参看 Proc. Intern. Assoc. Bridge Structural Engrs., 第 1 卷, 第 127 页, 1932 年。
作用在梁的单元上并对于梁轴所取各力矩的平衡条件（图264）给出如下方程：

\[\frac{dM_i}{dx} - \frac{H k_0}{2} + M_\varphi = 0 \] \hspace{1cm} (t)

式中 \(M_i \) 是梁的扭矩，现在，梁的扭矩 \(M_i \)，扭转 \(\theta = \partial \varphi / \partial x \) 及抗扭刚度 \(C_0 \) 之间的关系式为

\[M_i = C_0 \frac{d^2 \varphi}{dx^2}. \] \hspace{1cm} (u)

将此式代入方程 (t)，即得第三个边界条件

\[C_0 \frac{d^2 \varphi}{dx^2} - \frac{H k_0}{2} + M_\varphi = 0. \] \hspace{1cm} (s)

式中 \(\varphi \) 由式 (p) 给出且 \(\varphi = \varphi_0 \).

挠度 \(\delta \) 所产生的梁顶部纤维的伸长 \(\theta_0 \) 可忽略不计，在梁的厚度上 \(\theta_0 \) 的平均值等于零。所以，前一情况的条件 (c) 可写成如下形式：

\[\frac{1}{E_0 A_0} \int_0^x N_{xy} dx + \frac{h_0}{2} \frac{d^2 \eta}{dx^2} = \frac{\partial n}{\partial x}. \] \hspace{1cm} (s)

仍然是，应力分析的其余步骤归结为由方程 (s) 对每一个 \(m = 1, 3, 5, \cdots \) 来决定常数 \(A_1, A_3, \cdots, A_{1m}, \) 以及用各自的级数去计算各应力。

图265 表示了 \(\lambda = 29.5 \) 土，\(\varphi_0 = 45^\circ \) 的弯情况中的应力分布。特别是可以看出，由铀和弯杆所组成整个梁的高度上，薄板应力 \(\sigma_0 \) 的分布远非线性，然而引入 \(\delta \) 作为边界条件以代替条件 (s)，就能得到几乎线性的应力分布曲线。如果除此以外还假设旋转 \(\varphi \) 也等于零，则可得到曲线3 犹如所给出的应变分布1)。

在上述相当复杂的应力计算步骤中能引人各种简化。

这样，如果比值 \(l/\lambda \) 是充分地大，然后第 124 节所说明的，应力合力 \(M_x, Q_x \) 和 \(M_y \) 可不予考虑。特解 (c) 可再次以直接应用柱形壳薄膜理论（第112-节）得到的解所代替。建立边界条件所需要的相应位移由方程 (309) 得到。如果在表示应变和应力分量所需要的全部对 \(\varphi \) 的导数中只保留最高阶的项，第 124 节所讨论的方法就能更进一步地简化2)。

1) 关于计算的详细情况，参阅 K. Girkermann, "Flächentragwerke," 第四版，第 499 页，Springer-Verlag，维也纳，1956 年。图265 和 263 的曲线是由该书复制的。

2) 参明 H. Schorer, Proc. ASCE, 第61卷，第181页，1935年。
另一方面，利用柱形壳的边缘力所产生的应变和应力分量的特征表，应力计算的步骤就能大大的简化。在壳的应力分析中也有人使用了迭代法。\[1\]

1) 这样的表（设 $\nu = 0.2$）是 H. Lundgren 在他的书 "Cylindrical Shell" 第 I 卷中给出的，哥本哈根，1949 年。对于 I. H. Donnell 所作出的以简化微分方程为基础的表，可参看 D. Rodiger 和 J. Urban, "Kreiszylinerichalen," 萨比尔，1955 年。也可参考本书第 263 页脚注所列之文献。

2) A. Aus-Jakobsen, Eauingenieur, 第 20 册，第 301 页，1939 年。

* 571 *
和有限差分法”。

如果壳的支承 \(z = 0, z = l \) 上的边界条件不同于第 563 页上所假设的，则由附加边缘力所产生的应力扰动需要特别研究”。假如 \(l/a \) 不是小量，则屋頂壳也可另当架来考虑”。这种架的各种设计方法是以关于薄膜力 \(N \)、在梁高度上的分布的不同假设为基础的。例如，一个可能的方法是根据弹性理论将薄膜力分布在壳的周界上，并且根据架的初始理论将薄膜力分布在母线上。在很短的多跨连续屋頂壳的情况下，\(\varphi = \pm \varphi_0 \) 上的边界条件变成次要的。应力分析的进一步简化证明是可能的”

至今只是考虑了圆柱形壳；现在我们来考虑任意对称形状的柱形壳（图 766），给定一个仅随角 \(\varphi \) 而变化的垂直载荷，我们总能建立通过母线 \(A, B, C \) 的压力柱面。例如载荷均匀分布在于壳的底面上，则索曲线 \(dCB \) 为抛物线。现在假设壳的中面与对于已知载荷的压力曲面重合，因此载荷由壳从壳的边缘 \(A \) 和 \(B \) 最后由整个壳长上的边梁承传。否则如果我们要使载荷由薄膜力 \(N \) 和 \(N_{\varphi} \) 的作用传递到壳端支承，则须将壳的围线选成在素（压力线）曲线之上（图 266）。

由关系式 \(N_{\varphi} = -2a [\text{参看方程 (270) }] \) 也可知，对于垂直载荷，亦即对于 \(z = r \cos \varphi \)，我们有 \(N_{\varphi} = -r \alpha \cos \varphi \)，其中 \(\alpha \) 是载荷的强度。因此边缘上的周向力 \(N_{\varphi} \)，仅当 \(\varphi = \pi/2 \) 亦即当壳的围线的切线在边缘 \(A \) 和 \(B \) 处垂直时，等于零，满足这个条件的围线有半圆、半椭圆、线段等)。这些曲线全都在对于均匀分布载荷的压力线之上。

2) 应用 Miesse 的理论，Ingr.-Arch., 第 1 卷，第 20 号，1929 年；或者用 Fünsterwald 的近似方法，Ingr.-Arch., 第 4 卷，第 43 号，1933 年。
3) 特别是 A. Aas-Jakobsen 应用了这个方法，参看第 79 页注释。
5) 关于这种壳中的薄膜应力，例如参看 F. Girkmann 的著作，以及 A. Pfüger。 “Elementare Schalenstatik,” 柏林，1957 年。考虑半椭圆形壳弯曲的是 A. Aas-Jakobsen, Genie civil., 第 275 页，1937 年。关于其他形状的柱形屋顶，参看 E. Wiedemann, Ingr.-Arch., 第 8 卷，第 301 页，1937 年。
第十六章
承受轴对称载荷的旋转面形壳

127. 平衡方程 我们考虑用二相邻经线平面和二垂直于经线的截面从壳中截取一单元体的平衡条件（图 267）。由对称条件可知，单元体经线平面内的边上仅作用有正应力。这些应力可归结成合力 $N_\theta r_1 d\varphi$ 和合力矩 $M_\theta r_1 d\varphi$，N_θ 和 M_θ 与决定经线位置的角 θ 无关。单元体上垂直于经线的边的位置由角 φ 决定（图 267），其上作用有正应力与剪应力。此正应力归结成力 $N_\theta r_2 \sin \varphi d\theta$ 和力矩 $M_\theta r_2 \sin \varphi d\theta$；剪应力归结成与壳垂直的力 $Q_\varphi r_2 \sin \varphi d\theta$。作用在单元体上的外载荷如同以前可分解成两个分量：与经线相切的分量 $Y r_1 r_2 \sin \varphi d\varphi d\theta$，与壳相垂直的分量 $Z r_1 r_2 \sin \varphi d\varphi d\theta$。假

图 267

1) 这里所用的曲率半径和角度的符号与图 213 中的符号相同。
设薄膜力 N_φ 和 N_θ 不接近于临界值1，在建立平衡方程时我们可忽略不计曲率的变化，并象第 105 节所说明的那样进行推导。该节将各力投影在经线的切线上所得到的方程 (i)，现在必须在左端加上一项 $-Q_\varphi r_0$. 将各力投影在壳的法线上所得到的方程 (i)，也必须在左端加上一附加项 $d(Q_\varphi r_0)/d\varphi$. 第三个方程是考虑作用在单元体上所有力对于平行圆切线的力矩的平衡而得到的2:

\[
\left(M_\varphi + \frac{dM_\varphi}{d\varphi} \right) \left(r_0 + \frac{dr_0}{d\varphi} \right) d\theta = M_\varphi r_0 d\theta
\]

\[-M_\theta = \varphi_1 \cos \varphi d\varphi d\theta - Q_\varphi r_2 \sin \varphi r_1 d\varphi d\theta = 0.\]

经简化后的这个方程以及按照以上所述修正过的第 105 节的两个方程给出了下列平衡方程组:

\[
\frac{d}{d\varphi} \left(N_\varphi r_0 \right) - \theta \theta r_1 \cos \varphi - r_0 Q_\varphi + r_0 r_1 Y = 0,
\]

\[
N_\varphi r_0 + \theta \theta r_1 \sin \varphi + \frac{d(Q_\varphi r_0)}{d\varphi} + Z r_1 r_0 = 0, \quad (312)
\]

\[
\frac{d}{d\varphi} \left(M_\varphi r_0 \right) - M_\theta r_1 \cos \varphi - Q_\varphi r_0 r_0 = 0.
\]

在这三个平衡方程中有五个未知数：三个合力 $N_\varphi, N_\theta, Q_\varphi$ 及两个合力矩 M_φ, M_θ. 如果用位移分量 ν 和 ω 表示薄膜力 N_φ, N_θ 及力矩 M_φ, M_θ, 未知数的数目就能减少为三个。在第 108 节中讨论薄膜应力所产生的变形时，对于中面的应变分量我们得到了表达式:

\[
\varepsilon_\varphi = \frac{1}{r_1} \frac{d\nu}{d\varphi} - \frac{\omega}{r_1}, \quad \varepsilon_\theta = \frac{\nu}{r_2 \cot \varphi} - \frac{\omega}{r_2}.
\]

应用胡克定律，由上式可得:

\[
N_\varphi = \frac{E h}{1 - \nu^2} \left[\frac{1}{r_1} \left(\frac{d\nu}{d\varphi} - \omega \right) + \frac{\nu}{r_2} \left(\nu \cot \varphi - \omega \right) \right], \quad (313)
\]

\[
N_\theta = \frac{E h}{1 - \nu^2} \left[\frac{1}{r_2} \left(\nu \cot \varphi - \omega \right) + \frac{\nu}{r_1} \left(\frac{d\nu}{d\varphi} - \omega \right) \right].
\]

1 球形壳的屈曲问题在著者的《弹性稳定理论》中有讨论，第 491 页，1936 年。
2 在此推导中我们注意到力矩 M_θ 所作用的二平面之间的夹角等于 $\cos \varphi d\theta$.

* 574 *
为了得到力矩 \(M\phi \) 和 \(M_\theta \) 的类似表达式，我们考虑图 267 所示壳的单元体的曲率变化。考虑这单元体的上边和下边，我们看到这二个边之间的初始角是 \(d\phi \)。由于沿经线的位移 \(\nu \)，单元体的上边相对于经线平面的法线旋转一角度 \(\nu/\rho_1 \)。由于位移 \(\nu \) 的结果，该边绕同一根轴进一步旋转 \(d\omega/(\rho_1 d\phi) \)。因此单元体上边的总旋转为:

\[
\frac{\nu}{\rho_1} + \frac{d\omega}{\rho_1 d\phi}.
\]

(a)

对于单元体的下边，此旋转为:

\[
\frac{\nu}{\rho_1} + \frac{d\omega}{\rho_1 d\phi} + \frac{d}{d\phi} \left(\frac{\nu}{\rho_1} + \frac{d\omega}{\rho_1 d\phi} \right) d\phi.
\]

因此经线的曲率变化为

\[
\chi_\phi = \frac{1}{\rho_1} \frac{d}{d\phi} \left(\frac{\nu}{\rho_1} + \frac{d\omega}{\rho_1 d\phi} \right).
\]

(b)

为了求得垂直于经线的平面内的曲率变化，我们注意到由于变形的对称性，壳单元体（图 267）的每一侧边在其经线平面内旋转一个式 (a) 所给出的角度。由于这单元体右侧边的法线与经线的切线（y 轴）形成角 \((\pi/2) - \cos \phi d\theta \)，右侧边在其自身平面内的旋转具有一绕 y 轴的旋转分量，等于

\[
- \left(\frac{\nu}{\rho_1} + \frac{d\omega}{\rho_1 d\phi} \right) \cos \phi d\theta.
\]

这将造成一曲率变化:

\[
\chi_\theta = \left(\frac{\nu}{\rho_1} + \frac{d\omega}{\rho_1 d\phi} \right) \cos \phi = \left(\frac{\nu}{\rho_1} + \frac{d\omega}{\rho_1 d\phi} \right) \cot \phi.
\]

(c)

于是应用式 (b) 和 (c)，可得:

\[
M_\phi = -D \left[\frac{1}{\rho_1} \frac{d}{d\phi} \left(\frac{\nu}{\rho_1} + \frac{d\omega}{\rho_1 d\phi} \right) + \nu \left(\frac{\nu}{\rho_1} + \frac{d\omega}{\rho_1 d\phi} \right) \cot \phi \right],
\]

\[
M_\theta = -D \left[\left(\frac{\nu}{\rho_1} + \frac{d\omega}{\rho_1 d\phi} \right) \cot \phi + \frac{\nu}{\rho_1} \frac{d}{d\phi} \left(\frac{\nu}{\rho_1} + \frac{d\omega}{\rho_1 d\phi} \right) \right].
\]

(314)

将式 (313) 和 (314) 代入方程 (312)，我们得到含有三个未知

1）弯曲的应变忽略不计，曲率的变化是由弧长 \(\rho_1 d\phi \) 除角度的变化而得到的。
量 ν, w 和 Ω 的三个方程。这些方程的讨论留在下一节进行。

我们还能利用式 (314) 建立一个关于第十四章中所讨论的薄膜理论的精度度的重要结论。在第 108 节中建立了计算位移 ν 和 w 的方程。将这些方程所给出的位移代入式 (314)，就能计算弯矩和弯曲应力。这些应力在薄膜理论中是忽略不计的，将它们的值与薄膜应力值作比较，就能作出关于薄膜理论的精度度的结论。

我们以自身重量作用下的球形壳 (第 466 页) 作为一特例。如果支承情况如图 215a 所示，则由方程 (e) 和 (b) (第 108 节)，薄膜理论所给出的位移为:

\[
ν = \frac{a^2 q (1 + ν)}{Eh} \left(\frac{1}{1 + \cos α} - \frac{1}{1 + \cos φ} \right)
\]

\[
+ \log \frac{1 + \cos φ}{1 + \cos α} \sin φ ,
\]

\[
ν = ν \cot φ - \frac{a^2 q}{Eh} \left(\frac{1 + ν}{1 + \cos φ} - \cos φ \right).
\]

将此二表达式代入弯矩公式 (314)，即得

\[
M_a = M_φ = \frac{q a^2}{12} \frac{2 + ν}{1 - ν} \cos φ.
\]

在壳的表面上，其相应的弯曲应力在数值上等于

\[
\frac{q}{2 \frac{2 + ν}{1 - ν} \cos φ}.
\]

将此应力与薄膜理论所给出的压应力 σ [参看方程 (257)] 相除，可得

\[
\frac{q}{2 \frac{2 + ν}{1 - ν} \cos φ} \frac{a q}{h (1 + \cos φ)} = \frac{2 + ν}{2(1 - ν)} \frac{h}{a} (1 + \cos φ) \cos φ.
\]

这个比的最大值是在壳的顶点，这里 φ = 0，当 ν = 0.3 时其值等于:

\[
3.29 \frac{h}{a}.
\]
可以看到，在薄壳的情况下，弯曲应力与薄膜应力的比值（f）为小量，因此如表所示情况表图 215a 所表明的那样使壳能自由膨胀，薄膜理论可给出满意的结果。将弯矩表达式（c）代人方程（312），可得薄膜力 N_φ 和 N_ψ 的更好的近似值。这些结果与解（257）的差别仅为小量，其中以比值 h^2/a^2 作为因子。

由此讨论可知，在计算承受对称截荷的壳的应力时，我们可取薄膜理论所给的解作为一次近似，再用方程（312）计算其修正。如果壳的边缘可自由膨胀，这样修正后的应力值是足够精确的。如果边缘不是自由的，则应有附加力作用在边缘上以满足边界条件。这些力所产生的应力的计算将在下一节中讨论。

128. 平衡方程化为两个二阶微分方程

由上节的讨论可知，应用式（313）和（314）我们能由方程组（312）得到含有三个未知量 ν, ω, Q_φ 的三个方程。利用这些方程中的第三个，剪力 Q_φ 可立即消去，于是三个方程化为含有未知量 ν 和 ω 的两个方程。这两个方程是壳弯曲的第一批研究者使用的1。引入新的变量，此二方程可大大地简化2。我们以经线上切线的旋转角作为第一个新变量。用 U 代表这个角，由上节的式（a）可得

$$U = \frac{1}{r_1} \left(\nu + \frac{d\omega}{d\varphi} \right). \quad (a)$$

我们以量

$$U = r_2 Q_\varphi. \quad (b)$$

作为第二个新变量。

为了使方程变换到新变量的运算得到简化，我们用类似于方程（255）（参看第 465 页）的方程代替（312）中的第一个方程，考虑壳上角 φ 所定出的平行圆以上部分的平衡（图 267），就能得到

2 这个分析壳中应力的方法是 H. Reissner 对于球形壳情况提出的，"Müller-Breslau-Festschrift," 第 181 页，莱比锡，1912 年；E. Meissner 将此方法推广，并且应用到各种特殊情况，Physik. Z., 第 14 巻，第 343 页，1913 年；及 Vier-

这个方程。假设壳上没有外载荷作用，这个方程给出

\[2\pi r_0 N_\varphi \sin \varphi + 2\pi r_1 Q_\varphi \cos \varphi = 0, \]

由此可得

\[N_\varphi = -Q_\varphi \cot \varphi = -\frac{1}{r_2} U \cot \varphi. \tag{c} \]

将此式代入方程组 (312) 的第二式，对于 \(Z = 0 \)，可得

\[r_1 N_\theta \sin \varphi = -N_\varphi r_0 - \frac{d(Q_\varphi r_0)}{d\varphi}, \]

注意到 \(r_0 = r_1 \sin \varphi \)，得：

\[N_\theta = -\frac{1}{r_1} \frac{d}{d\varphi} (Q_\varphi r_2) = -\frac{1}{r_1} \frac{dU}{d\varphi}, \tag{d} \]

这样，薄膜力 \(N_\varphi \) 和 \(N_\theta \) 都可用随剪力 \(Q_\varphi \) 而变的量 \(U \) [参看符号 (b)] 表示。

为了建立连系 \(V \) 和 \(U \) 的第一个方程，我们应用式 (313)。由此立即得到：

\[\frac{dv}{d\varphi} = \omega = \frac{r_1}{Eh} (N_\varphi - \nu N_\theta), \tag{e} \]

\[\nu \cot \varphi - \omega = \frac{r_2}{Eh} (N_\theta - \nu N_\varphi). \tag{f} \]

从这两个方程消去 \(\omega \)，有：

\[\frac{dv}{d\varphi} - \nu \cot \varphi = -\frac{1}{Eh} \left[(r_1 + \nu r_2)N_\varphi - (r_2 + \nu r_1)N_\theta \right]. \tag{g} \]

方程 (f) 的微分给出：

\[\frac{dv}{d\varphi} \cot \varphi = \frac{\nu}{\sin^2 \varphi} - \frac{d\omega}{d\varphi} = \frac{dv}{d\varphi} \left[\frac{r_2}{Eh} (N_\theta - \nu N_\varphi) \right]. \tag{h} \]

导数 \(dv/d\varphi \) 可立即由方程 (g) 和 (h) 消去，从而得到：

\[\nu + \frac{d\omega}{d\varphi} = r_1 V = \frac{\cot \varphi}{Eh} \left[(r_1 + \nu r_2)N_\varphi - (r_2 + \nu r_1)N_\theta \right] \]

\[- \frac{d}{d\varphi} \left[\frac{r_2}{Eh} (N_\theta - \nu N_\varphi) \right]. \]

1) 在这个推导中假设壳的厚度 \(h \) 可变化，因此我们考虑的是一般情况。
将 N_ϕ 和 N_θ 的表达式 (c) 和 (d) 代入上式，我们最后得到下列连系 U 和 V 的方程:

$$
\frac{r_2}{r_1} \frac{d^2U}{d\varphi^2} + \frac{1}{r_1} \left[\frac{d}{d\varphi} \left(\frac{r_2}{r_1} \right) + \frac{r_2}{r_1} \cot \varphi \right] \frac{dU}{d\varphi} - \frac{1}{r_1} \left[\frac{r_1}{r_2} \cot^2 \varphi - \nu - \frac{r_1}{r_2} \frac{dh}{d\varphi} \cot \varphi \right] U = E_h V. \quad (315)
$$

将 M_ϕ 和 M_θ 的表达式 (314) 代入 (312) 的第三个方程，并且使用符号 (a) 和 (b)，可得下列 U 和 V 的第二个方程:

$$
\frac{r_2}{r_1} \frac{d^2V}{d\varphi^2} + \frac{1}{r_1} \left[\frac{d}{d\varphi} \left(\frac{r_2}{r_1} \right) + \frac{r_2}{r_1} \cot \varphi + 3 \frac{r_2}{r_1} \frac{dh}{d\varphi} \right] \frac{dV}{d\varphi} - \frac{1}{r_1} \left(\nu - \frac{3r_2}{r_1} \cot \varphi \frac{dh}{d\varphi} + \frac{r_1}{r_2} \cot^2 \varphi \right) V = - \frac{U}{D}. \quad (316)
$$

这样，在边缘平行圆上承受均匀分布力和力矩的旋转面形壳的弯曲问题化成了两个二阶方程 (315) 和 (316) 的积分问题。

如果壳的厚度为常数，则含有因子 $dh/d\varphi$ 的项等于零，这两个方程中的未知量 U 和 V 的导数具有相同的系数。引入符号:

$$
L(\cdots) = \frac{r_2}{r_1} \frac{d^2(\cdots)}{d\varphi^2} + \frac{1}{r_1} \left[\frac{d}{d\varphi} \left(\frac{r_2}{r_1} \right) + \frac{r_2}{r_1} \cot \varphi \right] \frac{d(\cdots)}{d\varphi} - \frac{r_1}{r_2} \cot^2 \varphi (\cdots), \quad (i)
$$

此二方程可表示成下列简化形式:

$$
L(U) + \frac{\nu}{r_1} U = E_h V, \quad (317)
$$

$$
L(V) - \frac{\nu}{r_1} V = - \frac{U}{D}.
$$

由这两个独立二阶微分方程组，我们对于每个未知量立即得到一个四阶方程。为了做到这点，我们在 (317) 的第一个方程上作符号 $L(\cdots)$ 所表示的运算，它给出:

$$
L L(U) + \nu L \left(\frac{U}{r_1} \right) = E_h L(V).
$$

由 (317) 的第二个方程代入:
$$L(V) = \frac{v}{r_1} V - \frac{U}{D} = \frac{v}{r_1 E h} \left[L(U) + \frac{v}{r_1} U \right] - \frac{U}{D},$$

即得:

$$L L(U) + v L \left(\frac{U}{r_1} \right) - \frac{v}{r_1} L(U) - \frac{v^2}{r_1^2} U = -\frac{E h}{D} U.$$ \hspace{1cm} (318)

同理，我们也能求得第二个方程:

$$L L(V) - v L \left(\frac{V}{r_1} \right) + \frac{v}{r_1} L(V) - \frac{v^2}{r_1^2} V = -\frac{E h}{D} V.$$ \hspace{1cm} (319)

如曲率半径 r_1 为常数，例如球形壳或锥形壳的情况，或如图220所示的环形壳情况，方程(318)和(319)可以进一步简化。因为在此情况下

$$L \left(\frac{U}{r_1} \right) = \frac{1}{r_1} L(U),$$

使用符号

$$\mu = \frac{E h}{D} - \frac{v^2}{r_1^2}.$$ \hspace{1cm} (i)

这两个方程都能化成形式

$$L L(U) + \mu U = 0,$$ \hspace{1cm} (320)

此方程可写成下列二形式之一:

$$L \left[L(U) + i \mu^2 U \right] - i \mu^2 \left[L(U) + i \mu^2 U \right] = 0,$$

或

$$L \left[L(U) - i \mu^2 U \right] + i \mu^2 \left[L(U) - i \mu^2 U \right] = 0.$$

此二方程表明，二阶方程

$$L(U) \pm i \mu^2 U = 0$$ \hspace{1cm} (321)

的解也是方程(320)的解。象第118节中所说明的那样推演，能够证明方程(320)的完全解可由方程(321)之一的解得到。方程(321)对于特殊情况的应用将在以下几节中讨论。

129. 等厚度球形壳 在等厚度球形壳的情况下 $r_1 = r_1 = a$。上节的符号 (i) 为:

$$L(\cdots) = \frac{1}{a} \left[\frac{d^2}{d \varphi^2} (\cdots) + \cot \varphi \frac{d}{d \varphi} (\cdots) - \cot^2 \varphi (\cdots) \right].$$ \hspace{1cm} (a)

以量 $a Q_\varphi$ 代替 U 作为进一步讨论中的未知量之一，并且引入由式...

* * * 580 * * *
\[\rho^2 = \frac{am^2}{2} = \sqrt{\frac{3a^3(1 - v^2)}{h^2} - \frac{v^2}{4}} \] \hspace{1cm} (b)

所定义的新的常数 \(\rho \) 以代替常数 \(m \)，我们可取正号的方程 (321) 表示成如下形式:

\[\frac{d^2Q_\varphi}{d\varphi^2} + \cot \varphi \frac{dQ_\varphi}{d\varphi} - \cot^2 \varphi Q_\varphi + 2i\rho^2Q_\varphi = 0, \] \hspace{1cm} (322)

引入新变量:\(^{13}\)

\[x = \sin^2 \varphi, \]
\[z = \frac{Q_\varphi}{\sin \varphi}, \] \hspace{1cm} (c)

可进一步简化，用这两个变量，方程 (322) 化为

\[x(x - 1) \frac{d^2z}{dx^2} + \left(\frac{5}{2}x - 2 \right) \frac{dz}{dx} + \frac{1 - 2i\rho^2}{4}z = 0. \] \hspace{1cm} (d)

这个方程属于形状为:

\[x(1 - x)y'' + [\gamma - (\alpha + \beta + 1)x]y' - \alpha \beta y = 0 \] \hspace{1cm} (e)

的一种已知的二阶微分方程。于是令:

\[\gamma = 2, \quad \alpha = \frac{3 \pm \sqrt{5 + 8i\rho^2}}{4}, \quad \beta = \frac{3 \pm \sqrt{5 + 8i\rho^2}}{4}, \] \hspace{1cm} (f)

则方程 (d) 和 (e) 完全相同。

方程 (e) 的解可取成幂级数的形式:

\[y = A_0 + A_1x + A_2x^2 + A_3x^3 + \cdots, \] \hspace{1cm} (g)

将此级数代人方程 (e)，并令 \(x \) 的每次幂的系数等于零，可得各系数之间的下列关系式:

\[A_1 = \frac{\alpha \beta}{1 \cdot \gamma} A_0, \quad A_2 = \frac{(\alpha + 1)(\beta + 1)}{2(\gamma + 1)} A_1, \]

\[\ldots \]

\[A_n = A_{n-1} \frac{(\alpha + n - 1)(\beta + n - 1)}{n(\gamma + n - 1)}, \]

\[\ldots \]

1) 方程的这个解是 Meissner 给出的，参看第 577 页的脚注。
用了这些关系式，级数 (g) 变为:

\[
y = A_0 \left[1 + \frac{\alpha \beta}{1 \cdot \gamma} x + \frac{\alpha(\alpha + 1)\beta(\beta + 1)}{1 \cdot 2 \cdot \gamma(\gamma + 1)} x^2 + \frac{\alpha(\alpha + 1)(\alpha + 2)\beta(\beta + 1)(\beta + 2)}{1 \cdot 2 \cdot 3 \cdot \gamma(\gamma + 1)(\gamma + 2)} x^3 + \ldots \right].
\]

这是所谓的超几何级数，此级数对于所有比 1 小的 \(x \) 值为收敛，因此可用来代表方程 (d) 的一个积分。将 \(\alpha, \beta, \gamma \) 的值 (f) 代入，并且使用符号

\[
\delta^2 = 5 + 8i \rho^2 = 5 + 4i \sqrt{\frac{1 - \nu^2}{h^2} - \nu^2},
\]

即得方程 (d) 的解

\[
z_1 = A_0 \left[1 + \frac{3^2 - \delta^2}{16 \cdot 1 \cdot 2} x + \frac{(3^2 - \delta^2)(7^2 - \delta^2)}{16^2 \cdot 1 \cdot 2 \cdot 2 \cdot 3} x^2 + \ldots \right],
\]

其中含有一个任意常数 \(A_0 \).

推导方程 (d) 的第二个积分更复杂 \(^1\). 这个积分可写成如下形式:

\[
z_2 = z_1 \log x + \frac{1}{x} \varphi(x),
\]

式中 \(\varphi(x) \) 是幂级数，对于 \(|x| < 1\) 是收敛。对于 \(x = 0 \)，亦即在球的顶点 (图 267)，这第二个解变为无限大，因此在球顶无孔的情况下不必考虑这个解。

如果我们仅于研究球顶无孔的情况，则只需考虑解 (j)。将 \(\delta^2 \) 的值 (i) 代入，并将级数 (j) 分成实部和虚部，可得:

\[
z_1 = S_1 + i S_2,
\]

其中 \(S_1 \) 和 \(S_2 \) 是幂级数，当 \(|x| < 1\) 时它们收敛。因此 (321) 第一个方程的相应解为:

\[
U_1 = az_1 \sin \varphi = I_1 + i I_2,
\]

其中 \(I_1 \) 和 \(I_2 \) 是两个级数，它们可由级数 \(S_1 \) 和 \(S_2 \) 立即得到。

\(^{1}\) 用超几何级数解常分方程在 "Riemann-Weber, Die partiellen Differential-Gleichungen" 中有讨论，第 2 卷，第 29 页，1901 年。也可参阅 E. Kamke, "Differentialgleichungen," 第 1 卷，第 465 页，1943 年。
(321) 第二个方程所需要的积分可用同样的级数 I_1 和 I_2 表示（参看第 524 页）。因此，对于球顶无孔的球形壳情况，四阶微分方程 (320) 的一般解可表示成如下形式：

$$ U = a Q_\varphi = A I_1 + B I_2, \quad \text{(a)} $$

式中 A 和 B 是常数，应由球形壳边缘上的两个边界条件决定。

有了 U 的表达式 (a)，我们能立即求得第二个未知量 V。首先将式 (m) 代入具有正号的方程 (321) 中，可得

$$ L(I_1 + i I_2) = -i \mu^2 (I_1 + i I_2). $$

所以

$$ L(I_1) = \mu^2 I_2, \quad L(I_2) = -\mu^2 I_1. \quad \text{(o)} $$

将式 (o) 代入 (317) 的第一个方程，并且应用式 (o)，即得：

$$ E h a V = a L(U) + \nu U = (A v - B a \mu^2) I_1
+ (A a \mu^2 + B v) I_2. \quad \text{(p)} $$

可以看到，第二个未知量 V 也是用级数 I_1 和 I_2 表示的。

有了 U 和 V 的表达式，就能得到所有的力、力矩和位移。力 N_φ 和 N_θ 由上节的式 (c) 和 (d) 求得。弯矩 M_φ 和 M_θ 由式 (314) 求得。注意到在球形壳情况下 $r_1 = r_2 = a$，并使用符号 (a)，即得

$$ M_\varphi = -\frac{D}{a} \left(\frac{dV}{d\varphi} + \nu \cot \varphi V \right), $$

$$ M_\theta = -\frac{D}{a} \left(\nu \frac{dV}{d\varphi} + \cot \varphi V \right). \quad \text{(q)} $$

在计算位移分量 ν 和 ω 时，我们应用中面应变的表达式:

$$ \epsilon_\varphi = \frac{1}{E h} \left(N_\varphi - \nu N_\theta \right), \quad \epsilon_\theta = \frac{1}{E h} \left(N_\theta - \nu N_\varphi \right). $$

代入用 U 和 V 表示 N_φ 和 N_θ 的表达式，我们得到 ϵ_φ 和 ϵ_θ 的表达式，它们能被用来计算 ν 和 ω，如第 108 节的所说明的。

在实际应用中，平行圆平面内的位移 θ 往往很重要。此位移可由位移分量 ν 和 ω 投影在该平面上得到 (图 267):

$$ \delta = \nu \cos \varphi - \omega \sin \varphi. $$

如果注意到 δ 代表平行圆半径 r_0 的增大值，就立即得到这个位移

* 583 *
用函数 U 和 V 表示的表达式。所以:

$$
\delta = a \sin \varphi \epsilon_\theta = \frac{a \sin \varphi}{Eh} \left(N_\theta - vN_\varphi \right)
$$

$$
= -\frac{\sin \varphi}{Eh} \left(\frac{dU}{dq} - vU \cot \varphi \right). \quad (r)
$$

由上可知，挠度沿边缘均匀分布的力和力矩作用下的球壳弯曲的所有量都能用两个级数 I_1 和 I_2 表示。

实际应用这个分析时的简易与否，决定于级数 I_1 和 I_2 收敛性的快与慢。此收敛性主要决定于量

$$
\rho = \sqrt[4]{3 \frac{a^2}{h^2} (1 - \nu^2) - \frac{\nu^2}{4}} \quad (s)
$$

的大小。如果 ν^2 较之于 1 可忽略不计，则 ρ 化为

$$
\rho \approx 4 \sqrt[3]{3} \sqrt[4]{\frac{a}{h}}.
$$

计算表明，当 $\rho < 10$ 时，级数的收敛性是令人满意的，对于各种边界条件，所有需要的量都能不很困难地求得。

我们以承受均匀正压力 p 作用的球形壳为例（图 268）。在此情况下，薄膜应力为

$$
\sigma_\varphi = \sigma_\theta = -\frac{pa}{2h}, \quad (t)
$$

使壳维持平衡的相应的薄膜力为

$$
(N_\varphi)_\varphi = -\frac{pa}{2}. \quad (u)
$$

在薄膜力上选加沿壳的边缘上均匀分布的水平力

$$
H = \frac{pa}{2} \cos \alpha,
$$

我们得到图 268 所表示的情况，这个承受载荷的壳由水平面的诸垂直反力支承。在此情况下，应力由迭加薄膜应力 (t) 和水平力 H 所产生的应力得到。应用通解 (u) 和 (p)，并且根据边界条件

$$
(N_\varphi)_\varphi = H \cos \alpha, \quad (M_\varphi)_\varphi = 0
$$

1) 这样的计算系 L. Bolle 所作。Schweiz. Bauzeit., 第 66 卷。第 105 页。1915 年。

- 584 -
决定这些解中的常数 A 和 B 就能得到 H 所产生的应力。用这种方法对于

\[a = 143 \text{ 厘米}, \ h = 6 \text{ 厘米}, \ \alpha = 39^\circ, \ p = 20 \text{ 公斤/厘米}', \ \nu = 0.2 \]

的特殊情

况所得到的应力表示在图 259 中。

在薄膜力 (t) 上叠加沿边缘均匀分布的水平力 H, 和弯矩 M_ϕ, 我们也能

得到圆柱壳的情况（图 268b）。在这种情况，叠加薄膜应力 (t) 和力 H, 及力

矩 M_ϕ 在壳中所产生的应力而得到。后者, 如同以前, 由通解 (a) 和 (p) 得到，

其中常数 A 和 B 根据边界条件

\[(e_\theta)_{\phi=0} = 0, \ (\nu)_{\phi=0} = 0 \]

d 决定。用这种方法对于以上所列数据例于所得到的总应力表示在图 270 中。

![Graph](image)

图 270

对于承受均匀正压力 p 作用的各种大小的壳所计算的最大压应力和最大拉应力发现。这些应力的值主要决定于量

\[\frac{a^2 \sin^4 \alpha}{h^2} \]

的大小, 因此可用比较简单的公式表示。对于图 268a 所表示的情况，数值上

\[\frac{a}{h} \sin^4 \alpha \]

1) 参考前引 Bolle 的论文。

. 586 .
最大的应力的公式为

当 \(\frac{a}{h} \sin^2 \alpha < 1.2 \) 时，
\[
\sigma = -1.24p \left(\frac{a \sin \alpha}{h} \right)^2 \cos \alpha.
\]

当 \(1.2 < \frac{a}{h} \sin^2 \alpha < 12 \) 时，
\[
\sigma = \frac{ap}{2h} \left\{ (1.6 + 2.44 \sin \alpha \sqrt{\frac{a}{h}}) \cos \alpha - 1 \right\}.
\]

对于图 268b 所表示的情况，其公式为:

当 \(\frac{a \sin^2 \alpha}{h} < 3 \) 时，
\[
\sigma = -p \left(\frac{a \sin \alpha}{h} \right)^2 \
\times \left\{ 0.75 - 0.038 \left(\frac{a \sin \alpha}{h} \right)^2 \sin^2 \alpha \right\}.
\]

当 \(3 < \frac{a \sin^2 \alpha}{h} < 12 \) 时，
\[
\sigma = -1.2 \frac{ap}{h}.
\]

在以上的讨论中假设壳顶无孔。如果有这样的孔，则必须同时满足壳的
上下边缘的边界条件，这就要求同时考虑方程(d) 的积分(i) 和 (k)（参看第
582 页），最后归结为方程(320) 的少许同数的解，这些常数须在每一特
殊情况下根据上下边缘上的边界条件来确定。这种计算表明，如果角 \(\alpha \) 不
是小量，则沿上边缘分布的力对于下边缘上的应力大小只有很小的影响。这
样，由于通常最重要的是下边缘的应力，因此采用对于无孔壳所推导的公式
来计算最大应力。我们就能得到有孔壳设计所需要的资料。

本书所讨论的计算球形壳中应力的方法也可用来计算热应力。假设球
形壳内外表面的温度是常数，但在半径方向具有一线性的温度变化。如 \(\varepsilon \) 为
内外表面的温度差，则此温度差所产生的壳的弯矩可由下所常数弯矩完全
阻止（参照第 14 节）:

\[
M_p = M_\theta = \frac{\alpha \varepsilon D(1 + \nu)}{h}.
\]

在整个球形壳的情况下，这些弯矩实际存在，所产生的弯矩应力的最大值
为:

\[
(\sigma_p)_{max} = (\sigma_\theta)_{max} = \frac{6\alpha \varepsilon D(1 + \nu)}{h^2} = \frac{\alpha \varepsilon E}{2(1 - \nu)}.
\]

如果我们有的只是球形壳截面，其支撑情况如图 268a 所示，边缘可自由旋
转，则其总的热应力可由点应力 \(w \) 和沿边缘均匀分布的弯矩

\[
M_w = -\frac{\alpha \varepsilon D(1 + \nu)}{h}
\]

1) 参考前引 Boile 的论文。
在壳中所生的应力而得到。后——应力可用本节所讨论的方法求得，当图
268b 所示的情况下，如壳中厚度未保持不变，则应力由公式 (w) 给
出，否则，必须在应力 (w) 上添加因力 M 和力矩 μ 所生的应力，而 M
和 μ 需在每一特殊情况下使边界条件得到满足来决定。

130. 球形壳应力分析的近似法 在上节已经指出，球形壳
应力的严格解的适用决定于解中所出现的级数的收敛速度。随着
比值 a/h 增大，亦即随着壳的厚度较之于半径愈来愈小，级数收敛
变慢，因此级数中必须计算的项数愈来愈多。对于这样的壳已发
展了近似解法。对于 a/h 的大值，此解法十分精确。

求解此问题的近似方法之一是断近积分法，从方程 (320) 出
发，引入量

\[z = Q_e \sqrt{\sin \varphi}, \] \((a) \)

以代替切力 Q_e，我们得到方程:

\[x' + a_2 x'' + a_1 x' + (\beta^4 + a_0) x = 0, \] \((b) \)

式中

\[a_0 = \frac{63}{16 \sin^4 \varphi} + \frac{9}{8 \sin^2 \varphi} + \frac{9}{16}, \quad a_1 = \frac{3 \cos \varphi}{\sin^2 \varphi}, \]

\[a_1 = -\frac{3}{2 \sin^2 \varphi} + \frac{5}{2}, \quad 4\beta^4 = (1 - \nu^4) \left(1 + \frac{12 a^2}{\beta^2}\right). \] \((c) \)

可以看到，对于 a/h 为大数的薄壳，如果角 ϕ 不是小量，则量 4\beta^4 比
之于系数 a_0, a_1 和 a_1 是很大的数。由于在以下讨论中我们感兴趣
的是边界外的应力（在边侧 ϕ = a, α 不是小量，参看图 268），
因此我们可忽略不计方程 (b) 中以 a_0, a_1 和 a_1 为系数的项，这样，
我们得到方程

\[x' + 4\beta^4 z = 0. \] \((d) \)

1) G. Eichelberg 讨论了壳的应力，Forschungsarb., no. 263, 1923 年，对于
任意厚度的壳，亦可参考 E. L. McDowell 和 E. Sternberg. J. Appl. Me-
chanics, 第 24 卷, 第 376 页, 1957 年。

2) J. E. Ekström 所作的计算表明，当 a/h = 62.5 时，这些级数至少要取 18 项。
参看 Ing. Vetenskaps. Akad., 第 121 卷, 斯德哥尔摩, 1933 年。

3) 参看 O. Blumenthal 的论文，Rep. Fifth Intern. Congr. Math., 剑桥，
1912 年，也可参看他发表在 Z. Math. Physik 上的论文，第 62 卷，第 3-13 页,
1914 年。

* 588 *
这个方程与研究圆柱壳对称变形时所用的方程（276）相似，应用方程（d）的通解以及符号（a），可得

\[Q_\psi = \frac{1}{\sqrt{\sin \phi}} \left[e^{\beta \phi} \left(C_1 \cos \beta \phi + C_2 \sin \beta \phi \right)
+ e^{-\beta \phi} \left(C_3 \cos \beta \phi + C_4 \sin \beta \phi \right) \right]. \tag{e} \]

由以前对于柱形壳弯曲的研究可知，随着离边缘距离的增大，沿边缘均匀分布的力所产生的弯曲应力迅速减小。在薄壁球形壳的问题中存在着类似的情况。注意到当角 \(\phi \) 减小时，解（e）中的头两项减小，第三和第四项增大，可知在顶上无孔的球形壳的情况下，仅取解（e）中头两项是允许的，亦即假设

\[Q_\psi = \frac{e^{\beta \phi}}{\sqrt{\sin \phi}} \left(C_1 \cos \beta \phi + C_2 \sin \beta \phi \right). \tag{f} \]

有了这个 \(Q_\psi \) 的表达式，应用第 128 节的关系式（b），（c），（d）及第 129 节的关系式（p），（q），（r），所有决定壳体弯曲的量都能计算，而常数 \(C_1 \) 和 \(C_2 \) 可由边界条件决定。这个方法可毫无困难地应用于各特殊问题中，对于薄壳可给出很精确的解）。

我们可以不用四阶微分方程（320），而以（317）的两个方程作为球形壳弯曲的近似分析基础）。在我们的问题中，此二方程可写成下列形式：

\[\frac{d^2 Q_\psi}{dq^2} + \cot \phi \frac{d Q_\psi}{dq} - (\cot^2 \phi - v) Q_\psi = E h V, \tag{g} \]

\[\frac{d^2 V}{dq^2} + \cot \phi \frac{d V}{dq} - (\cot^2 \phi + v) V = - \frac{\alpha^2 Q_\psi}{D}. \]

式中 \(Q_\psi \) 是剪力, \(V \) 是第 128 节中由（a）所定义的径线上切线的旋转。在壳壁十分薄的情况下，如果角 \(\phi \) 不是小量，则当离边缘的距

1) S. Timoshenko 给出了近似积分法的一个应用的例子，参看 Бюлетень Обоза Инженеров Технологов，第彼得堡，1913年，在以前提到的 Blumenthal 的两篇论文中，给出了用进一步的近似计算改进近似解的方法。

2) 这个方法是 R. W. Geckeler 提出的，参看 Forschungsarb., 第 276, 柏林，1926年，也可参看 И. Я. Штейнман, Бюлетень Киевского Политехн, Им-та, 1924年，关于其推广参看 Ю. Н. Работников, Доклады АН СССР, Новая Серия, 第 47卷, 第 329页, 1945年。
离增大时，量 Q_φ 和 V 迅速地减小，并且具有与函数 (ϕ) 相同的振荡特性。由于在薄壳的情况下 β 是大值，因此函数 (ϕ) 的导数较之于函数本身为大值，二阶导数较之于一阶导数为大值。这说明，忽略不计方程 (g) 左端含有函数 Q_φ 和 V 以及它们的一阶导数的项，能够得到令人满意的近似。这样，方程组 (g) 就能用下列简化方程组代替：

$$
\frac{d^2 Q_\varphi}{d \varphi^2} = E h V, \\
\frac{d^2 V}{d \varphi^2} = - \frac{a^2}{D} Q_\varphi.
$$

从这两个方程中消去 V，可得：

$$
\frac{d^4 Q_\varphi}{d \varphi^4} + 4 \lambda^4 Q_\varphi = 0,
$$

式中

$$
\lambda^4 = 3(1 - \nu^2) \left(\frac{a}{h} \right)^2.
$$

这个方程的通解是：

$$
Q_\varphi = C_1 e^{\lambda \phi} \cos \lambda \varphi + C_2 e^{\lambda \phi} \sin \lambda \varphi + C_3 e^{-\lambda \phi} \sin \lambda \varphi + C_4 e^{-\lambda \phi} \cos \lambda \varphi.
$$

考虑顶上无孔 (图 271a)，承受沿边缘均匀分布的力和力矩而使弯曲的壳，我们需要考虑的只是通解 (k) 中随着 φ 角的减小而减小

![Diagram](image)

图 271

1) 问题的这个简化等价于靠近边缘的那部分用相切的锥形壳代替，并且对于这个锥形壳使用对圆柱壳推导所得的方程 (第 114 节)；参看 F. Meissner, "A Stodola Festchrift," 第 106 页，苏黎世，1929 年。
的头两项。因此

$$Q_\phi = C_1 e^{i\phi} \cos \lambda \phi + C_2 e^{i\phi} \sin \lambda \phi.$$ \hspace{1cm} (1)

两个常数 C_1 和 C_2 需在每一特殊情况下由边缘 $\phi = \alpha$ 处的条件决定。在讨论边界条件时，引入角 $\phi = \alpha - \varphi$ 是有利的。(图 271). 在式 (1) 中用 $\alpha - \phi$ 代替 φ，并且采用新的常数 C 和 γ，我们可将解 (1) 表示成如下形式:

$$Q_\phi = C e^{i(\alpha - \phi)} \sin (\lambda \phi + \gamma).$$ \hspace{1cm} (m)

现在用第 128 节的式 (b), (c), (d), 可得:

$$N_\phi = -Q_\phi \cot \varphi = -\cot (\alpha - \phi) C e^{i(\alpha - \phi)} \sin (\lambda \phi + \gamma),$$

$$N_\theta = - \frac{dQ_\phi}{d\varphi} = -\sqrt{2} \lambda C e^{i(\alpha - \phi)} \sin \left(\lambda \phi + \gamma - \frac{\pi}{4}\right).$$ \hspace{1cm} (323)

由 (b) 的第一个方程，可得转角的表达式:

$$\nu = \frac{1}{E h} \frac{d^2 Q_\phi}{d\varphi^2} = -\frac{2\lambda^2}{E h} C e^{i(\alpha - \phi)} \cos (\lambda \phi + \gamma).$$ \hspace{1cm} (324)

弯矩可由上节的式 (q) 决定。忽略不计此二式中含有 ν 的项，求得:

$$M_\phi = -D \frac{dV}{d\varphi} = \frac{a}{\lambda \sqrt{2}} C e^{-i(\alpha - \phi)} \sin \left(\lambda \phi + \gamma + \frac{\pi}{4}\right),$$

$$M_\theta = \nu M_\phi = \frac{a \nu}{\lambda \sqrt{2}} C e^{-i(\alpha - \phi)} \sin \left(\lambda \phi + \gamma + \frac{\pi}{4}\right).$$ \hspace{1cm} (325)

最后，由上节的式 (r) 求得位移的水平分量为

$$\delta \approx -\frac{\sin \varphi}{E h} \frac{dU}{d\varphi} = -\frac{a}{E h} \sin (\alpha - \phi) \lambda \sqrt{2} C e^{-i(\alpha - \phi)} \times \sin \left(\lambda \phi + \gamma - \frac{\pi}{4}\right).$$ \hspace{1cm} (326)

借助于公式 (323) 到 (326)，就能立即处理各种特殊情况。

今以图271b所示的情况为例。边界条件为

$$(M_\phi)_{\varphi=\alpha} = M_\alpha, \quad (N_\phi)_{\varphi=\alpha} = 0.$$ \hspace{1cm} (n)

在 (323) 的第一式中代入 $\phi = 0$，可知取常数 C 等于零，边界条件 (n) 的第二式就能得到满足。在 (325) 的第一式中代入 $\gamma = 0$ 和

+ 391 +
\[\varphi = 0 \text{，可知要满足条件 (n) 的第一式，我们必须有} \]
\[M_\varphi = \frac{a}{2\lambda} C ; \]

此式给出
\[C = \frac{M_\varphi 2\lambda}{a} . \]

将这样所得的常数 \(\gamma \) 和 \(C \) 的值代入式 (324) 和 (326)，并取 \(\varphi = 0 \)，我们得到边缘的旋转和水平位移：
\[(V)_{\varphi=0} = -\frac{4\lambda^2 M_\varphi}{Ea}, \quad (\delta)_{\varphi=0} = \frac{2\lambda^2 \sin \alpha}{Eh} M_\varphi . \quad (327) \]

在图 271：所示的情况下，边界条件为
\[(M_\varphi)_{\varphi=\alpha} = 0, \quad (N_\varphi)_{\varphi=\alpha} = -H \cos \alpha . \quad (328) \]

为了满足此二条件中的第一个，我们必须取 \(\gamma = -\pi/4 \)。为了满足第二个边界条件，我们应用 (323) 的第一式，此式给出
\[-H \cos \alpha = C \cot \alpha \sin \frac{\pi}{4} , \quad (329) \]
由此式可得
\[C = -\frac{2H \sin \alpha}{\sqrt{2}} . \]

将常数 \(\gamma \) 和 \(C \) 的值代入 (324) 和 (326)，即得
\[(V)_{\varphi=0} = \frac{2\lambda^2 \sin \alpha}{Eh} H, \quad (\delta)_{\varphi=0} = -\frac{2\alpha \lambda \sin^2 \alpha}{Eh} H . \quad (328) \]

可以看到，(327) 的第二个公式中 \(M_\alpha \) 的系数与 (328) 的第一个公式中 \(H \) 的系数相同。这一点由互易定律可立即得到。

公式 (327) 和 (328) 可立即用来解决各种特殊问题，今以承受均匀正压力 \(\rho \) 作用的圆柱壳形壳 (图 272a) 为例。首先考虑相应的薄膜问题 (图 272b)，我们求得壳的均匀压缩：
\[N_\varphi = N_\theta = -\frac{\rho a}{2} . \]
这个壳的边缘不发生旋转，但发生水平位移
\[\delta = \frac{a \sin \alpha}{Eh} (N_\theta - \nu N_\varphi) = -\frac{\rho a(1-\nu)}{2Eh} \sin \alpha . \quad (p) \]

• 392 •
为了得到所给问题的解，我们在图272b的薄膜力上加上图272c所示沿边缘
均匀分布的力和力矩。这些力和力矩的值应当使其对应的水平位移与位移
(p) 大小相等方向相反，并且使其对应的边缘旋转等于零。这样，应用公式
(327) 和 (328)，可得下列决定 M_α 和 H 的方程：

$$\frac{4}{Eh} \frac{\alpha^2}{2\lambda} M_\alpha + \frac{2\lambda \sin \alpha}{Eh} H = 0,$$

$$\frac{2\lambda \sin \alpha}{Eh} M_\alpha - \frac{2\lambda \sin \alpha}{Eh} H = \frac{p \alpha^2}{2Eh} (1 - \nu) \sin \alpha,$$

由此可得：

$$M_\alpha = -\frac{p \alpha^2 (1 - \nu)}{4 \lambda} = -\frac{p \alpha^2}{4} \sqrt{\frac{1 - \nu}{3(1 + \nu)}},$$

$$H = \frac{2\lambda}{\alpha \sin \alpha} M_\alpha = -\frac{p \alpha (1 - \nu)}{2 \lambda \sin \alpha}. \quad (a)$$

负号表明 M_α 和 H 的方向与图271所示的方向相反。

近似方程 (b) 是在精确方程 (a) 中忽略不计未知函数 Q_0 和 V_0 以及它们
的一阶导数而得到的。如果引入新的变量 1)

$$Q_1 = Q_0 \sqrt{\sin \varphi}, \quad V_1 = V \sqrt{\sin \varphi},$$

则可得到更好的近似，将

$$Q_0 = \frac{Q_1}{\sqrt{\sin \varphi}}, \quad V = \frac{V_1}{\sqrt{\sin \varphi}}$$

代入方程 (a)，我们发现含有 Q_1 和 V_1 的一阶导数的项为零。因此为了得到
类似于方程组 (b) 的简化方程组，我们只需要与含有 Q_0 和 V_0 的二阶导数的
项比较而忽略不计含有 Q_1 和 V_1 的项。这样的简化给出

1）这就是 O. Blumenthal 所用过的同一个变换：参看本节中式 (a)（第540 页）
此二方程的解可用方程组 4 情况下所用的同一方法得到，回到原变量 \(\phi \) 和 \(\nu \) 我们得出的不是式 (m) 和 (224)，而是下列解 1)

\[
\begin{align*}
\phi &= C \frac{e^{-1\nu}}{\sqrt{\sin(\alpha - \phi)}} \sin(\lambda \phi + \gamma), \\
\nu &= -\frac{2\nu}{Eh} C \frac{e^{-1\nu}}{\sqrt{\sin(\alpha - \phi)}} \cos(\lambda \phi + \gamma).
\end{align*}
\]

现在完全象前面的讨论一样地推演，我们得出下列表示式以代替公式 (323)，(325) 和 (326):

\[
\begin{align*}
N_\phi &= -\cot(\alpha - \phi) C \frac{e^{-1\nu}}{\sqrt{\sin(\alpha - \phi)}} \sin(\lambda \phi + \gamma), \\
N_\nu &= C \frac{2\nu e^{-1\nu}}{2 \sqrt{\sin(\alpha - \phi)}} \left[2 \cos(\lambda \phi + \gamma) \right. \\
&\quad - (k_1 + k_2) \sin(\lambda \phi + \gamma) \\
M_\nu &= \frac{a}{2\lambda} C \frac{e^{-1\nu}}{\sqrt{\sin(\alpha - \phi)}} \left[k_1 \cos(\lambda \phi + \gamma) + \sin(\lambda \phi + \gamma) \right], \\
M_\phi &= \frac{a}{4\nu \lambda} C \frac{e^{-1\nu}}{\sqrt{\sin(\alpha - \phi)}} \left[(1 + \nu^2) (k_1 + k_2) \right. \\
&\quad - 2k_1 \cos(\lambda \phi + \gamma) + 2\nu^2 \sin(\lambda \phi + \gamma) \right], \\
\delta &= \frac{a}{Eh} C \frac{\nu e^{-1\nu}}{\sqrt{\sin(\alpha - \phi)}} \left[\cos(\lambda \phi + \gamma) \right. \\
&\quad - k_2 \sin(\lambda \phi + \gamma) \right],
\end{align*}
\]

式中

\[
\begin{align*}
k_1 &= 1 - \frac{1 - 2\nu}{2\lambda} \cot(\alpha - \phi), \\
k_2 &= 1 - \frac{1 + 2\nu}{2\lambda} \cot(\alpha - \phi).
\end{align*}
\]

将公式 (330) 应用到以前讨论的如图 271b 和 271c 所示的特殊情况，代替公式 (327) 和 (328)，我们得到下表的近似解:

\[
\begin{align*}
(V)_\nu = -\frac{4\lambda^2 M_\nu}{Eh k_1}, \\
(\delta)_\nu = \frac{2\nu^2 \sin \alpha}{Eh k_1} M_\alpha.
\end{align*}
\]

1) 这个较好的近似是 M. H. Posenyi 得到的，参看 Public. Intern. Assoc. Bridge Structural Engrs., 第 5 卷，第 173 页，1938 年。进一步讨论中所用的数据例子系取自此论文。
\[
(V)_{\phi=0} = \frac{2\lambda \sin \alpha}{Eh k_t} H, \quad (\theta)_{\phi=0} = -\frac{\lambda a \sin \alpha}{Eh} \left(k_2 + \frac{1}{k_1} \right) H. \quad (332)
\]

将这些公式应用到图 272a 所示的特殊情况，可立即得到反作用力矩 M_ϕ 和反作用力 H 的二次近似。
为了将一次近似和二次近似与精确解作比较，我们考虑 \(a = 2280 \) 毫米，
\(h = 76 \) 毫米，\(\alpha = 35^\circ \)，\(\rho = 0.07 \) 公斤/厘米\(^3\)，\(\nu = 1/6 \) 的数字例子。\(M_\varphi \) 的
一次和二次近似值分别用 (225) 的第一式和 (330) 的第二式计算，其结果用
图 273 中的虚线表示。为了比较，精确解也用上节的级数作出了计算。精确解
用图 273 中的实线表示。在图 274 中表示了对于同一数字例子计算所得的力 \(N_\varphi \)。
由此二图可得出结论：二次近似的精确性是十分令人满意的。注意到在我们的例子中，比值 \(s/h \) 仅为 30，并且角 \(\alpha = 35^\circ \) 是比较小，可得出结论：二次近似能足够精确地应用于近代结构实际中所遇到的绝大多数问题
(1)。

131. 具有边环的球形壳

为了减小圆顶的推力作用对于支承结构的影响，有时使用边环（图 275a 和 276a）。在以下的分析中，连续支承或若干点支的边环的垂直推力可忽略不计。

我们来考虑承受某些对称分布荷载的圆顶边缘 \(\varphi = \alpha \) 上的条件。根据
式 (c) (第 584 页) 这个荷载产生的薄膜力 \(N_\theta \), \(N_\varphi \) 将使半径 \(r_0 = a \sin \alpha \) 增大，
这增大的量等于

\[
\delta_0 = \frac{r_0}{E_h} (N_\theta - \nu N_\varphi) \eta_0. \tag{a}
\]

根据第 578 题上所得的结果，这个位移将伴随有边缘切线的旋转

\[
V_\varphi = \frac{1}{a} \left(\nu + \frac{d\omega}{d\varphi} \right) \eta_0 = \frac{1}{E_h} \left[\cot \varphi (1 + \nu) (N_\varphi - N_\theta) \right.
\]

\[
- \frac{d}{d\varphi} (N_\theta - \nu N_\varphi) \bigg|_{\varphi = \alpha} \tag{b}
\]

及推力

\[
H_\varphi = - \cot \alpha (N_\varphi) \eta_0. \tag{c}
\]

1) 在此情况下，为了得到充分精确的解，在级数中需取十项。

2) 在角 \(\alpha \) 是小量，而解 (329) 不是足够精确的情况下，壳可认为是"扁"的，并且可
用相应的方法处理（参阅第 32 节）。F. Panemak 将有限差分方程应用于同
一问题，Z. angew. Math. Mech., 第 6 期，第 1 期，1926 年。F. Steuernann
考虑了各向异性壳的情况，Z. angew. Math. Mech., 第 5 期，第 1 期，1925 年。
M. F. Spott 讨论了变厚度球形壳的一个特殊情
况，J. Appl. Mechanics (Trans. ASME), 第 61 期，1939 年；F. Tölke 也讨论了这个特殊情况，
Ingr. Arch., 第 9 期，第 282 页，1938 年。关于集中荷载的影响，参看 F.
Martin, Ingr.-Arch., 第 17 期，第 107 页，1949 年，以及本书第 132 节。A.
Havers 考虑了球形壳的非对称弯矩问题，Ingr.-Arch., 第 6 期，第 282 页，
1935 年。A. Aus. Jaksensen 将同一问题连系着柱支球形圆顶的应力分析作了
进一步的讨论，Ingr.-Arch., 第 8 期，第 275 页，1937 年。
边环内的相应拉力为 $H_0 r_0$ 伸长为 $\varepsilon_0 = \frac{H_0 r_0^2}{E bd}$，式中 E 代表边环材料的杨氏模量。H_0 的作用所产生的半径 r_0 的增大为

$$\varepsilon_0 = \frac{H_0 r_0^2}{E bd}.$$ \hspace{1cm} (d)

为了使壳的边缘变形与环的变形一致，我们在环面和环面施加应力为 M_a 的均匀分布力矩和强度为 H 的均匀分布径向力（图 275b）。应用结果 (327) 和 (328)，我们得到边缘水平位移 δ 及旋转 ν 的表达式：

$$\delta = \frac{2 \lambda^3 \sin \alpha}{E h} M_a - \frac{2a \lambda^3 \sin^2 \alpha}{E h} H_0,$$

$$\nu = -\frac{4 \lambda^3}{E hs} M_a + \frac{2 \lambda^3 \sin \alpha}{E h} H_0.$$ \hspace{1cm} (e)

式中

$$\lambda^3 = 3(1 - \nu^2) \left(a/h\right)^3.$$

M_a 和 H 在环上的作用与在静力上力矩

$$T = M_a + H e$$ \hspace{1cm} (f)

及作用在环截面形心上水平线上的力 H（图 275c）的联合作用等价。根据式 (d)，力 H 所产生在环上的径向位移等于

$$\delta_0 = \frac{H_0 r_0^2}{E bh}.$$ \hspace{1cm} (g)

![Diagram](image_url)
但是它不产生旋转。

考虑的是力矩 T 所产生的环的变形。长度为 $ds = r_0 d\theta$ 的环上单元
由力矩 $Td\theta$ 和两个弯矩 $M_x = Td\theta / d\theta = T_r$, 的作用保持平衡 (参见图 275d, 图中所有三个力矩都用等价矢量代表)。因此，力矩 T 所产生在环中的最大
环刚应力为

$$\sigma = \pm \frac{6Me}{bd^2} = \pm \frac{6Tr_r}{Ebd}. $$

可以看到，环的顶部纤维和底部纤维的对应的单位伸长分别为 $\varepsilon = \pm \frac{6Tr_r}{Ebd}$。
因此环的横截面的旋转为

$$V_2 = \frac{2r_2}{d} \varepsilon = \frac{12Tr_1}{Ebd} = \frac{12r_1^2}{Ebd} (M_x + Hr), \quad (b)$$

式中 $|\varepsilon|$ 代表最大单位伸长的绝对值。

壳边缘的总水平位移必须等于环的总水平位移，对于旋转也是如此，由此可得下列关系式：

$$\sigma_r + \sigma = \sigma_x + \sigma_z + P_1 \varepsilon, \quad (i)$$
$$V_2 + V = V_1, \quad (i)$$

式中项 $P_1 \varepsilon$ 代表旋转对于在壳边缘水平面上的环的径向位移的影响。将位移
和旋转的表达式 (a) 到 (b) 代入 (i) 和 (i)，我们得到未知数 M_1 和 H 的两个
线性方程。此二值决定了第 130 节中所说明的近似解的积分常数。因此壳
的总应力合力与总挠度可由纯加薄膜力的作用和弯曲的作用而得到。此
弯曲作用可由，例如式 (323), (324) 和 (325) 表示。

作为说明的例子，我们来考虑球形圆顶 (图 276a)，其中 $a = 23$ 米，$r_2 = 40\%$, $r_1 = 14.8$ 米，$h = 5.8$ 米，环的横截面尺寸为 $b = 0.59$ 米，$d = 0.49$
米，$e = d/2$；弹性模量 E 对于壳和环相同，常数 v 设等于零。圆顶承受单位
圆顶面积自重 $\rho = 206$ 公斤/米2 的作用，这个载荷所产生的薄膜力由式
(257) 给出，而由以上说明的计算方法可得下列边缘力的值1

$$M_x = -110$$ 公斤/米，
$$H = -170$$ 公斤/米。

其弯矩 M_r 的对应值表示在图 276b 中。

在以上讨论中利用了第 130 节的简化微分方程 (i) 来决定边缘力的影
响。然而，如用更精确的微分方程，其推理和计算过程仍基本相同。

598

1）计算的详细情况可在 K. Girkmann 的“Flächentragwerke” 中找到。第四版，
第 442 页，Springer-Verlag, 维也纳, 1956 年。图 276b 系承 K. Girkmann 教授
和维也纳 Springer-Verlag 出版社惠允而复制的。
132. 扁球壳的对称弯曲 设球形壳（图277a）的中面由下式给出：

$$z = \sqrt{a^2 - r^2} - (a - x_0).$$ (a)

如果我们研究的是“扁”球形壳，则可令

$$\frac{dz}{dr} = -\frac{r}{\sqrt{a^2 - r^2}} \approx -\frac{r}{a},$$

图 276
对于对称的\(^{19}\) 载荷分布，可取半径 \(r\) （图 277a）作为唯一的独立变量。因此，平衡微分方程（312）化为：

\[
\frac{d(rN_r)}{dr} - N_\theta - \frac{r}{a}Q_r + rp_r = 0, \tag{b}
\]

\[
\frac{d(rQ_r)}{dr} + \frac{r}{a}(N_r + N_\theta) + rp = 0, \tag{c}
\]

\[
\frac{d(rM_r)}{dr} - M_\theta - rQ_r = 0, \tag{d}
\]

式中 \(p\) 和 \(p_r\) 分别代表法线方向和径向方向的载荷强度。应力合力，应变分量，以及位移 \(w\) 和 \(v\) （在 \(p\) 和 \(p_r\) 的方向内）之间的关系式为：

\[
s_r = \frac{1}{Eh} (N_r - \nu N_\theta) = \frac{d\nu}{dr} - \frac{w}{a}, \tag{e}
\]

\[
s_\theta = \frac{1}{Eh} (N_\theta - \nu N_r) = \frac{\nu}{r} - \frac{w}{a}, \tag{e}
\]

\[
M_r = -D(x_r + \nu x_\theta) = -D \left(\frac{d^2w}{dr^2} + \frac{\nu}{r} \frac{dw}{dr} \right), \tag{e}
\]

\[
M_\theta = -D(x_\theta + \nu x_r) = -D \left(\frac{1}{r} \frac{dw}{dr} + \nu \frac{d^2w}{dr^2} \right), \tag{e}
\]

式中

* 600 *
\[D = \frac{Eh^3}{12(1-\nu^2)}. \]

现在我们将如下事实考虑进去：在扁壳的情况下，方程（b）中横免剪力 \(Q_s\) 对于薄壳的影响可忽略不计。进一步假设载荷项 \(p\)，

由载荷方程 \(Q(p, - dQ/dr)\) 导出，我们可得

\[N_r = \frac{dF}{dr} + Q_s, \]

\[N_\theta = \frac{d^2F}{dr^2} + Q_s, \quad \text{(h)} \]

使方程（b）得以满足，式中 \(F\) 为应力函数。容易证明，应变分量和位移分量之间的关系式（c）满足协调方程:

\[\frac{1}{r} \frac{d}{dr} \left(r \frac{d\delta_q}{dr} \right) - \frac{1}{r} \frac{d\delta_r}{dr} + \frac{1}{a} \Delta u = 0, \quad \text{(i)} \]

其中 \(\Delta = d^2/dr^2 + (1/r)(d/dr)\).

将方程（c）和（i）合在一起，我们得到下列 \(F\) 和 \(w\) 的基本方程:

\[\Delta \Delta F + \frac{Eh}{a} \Delta w = -(1-\nu)\Delta Q. \quad \text{(i)} \]

为了得到此二函数之间的二个基本关系式，我们将 \(Q_s\) 从（d）中解出并代入方程（c），得到:

\[\frac{d}{dr} \left[\frac{d(rM_s)}{dr} - M_\theta \right] + \frac{r}{a} (N_r + N_\theta) + rp = 0. \quad \text{(k)} \]

现在将式（f）和（h）引方程（k），可得:

\[\Delta \Delta w - \frac{1}{D_s} \Delta F = \frac{p}{D} + \frac{2Q}{D_s}. \quad \text{(i)} \]

最后，我们来写出垂直剪力 \(Q_s\) 和水平位移 \(r\) 的表达式，这两个式子在建立壳的边界条件时可以采用。我们有

\[Q_s = Q_r + \frac{r}{a} N_r, \quad \delta = \nu - \frac{r}{a} w, \quad \text{(m)} \]

式中横向力的表达式:

\[Q_r = -D \frac{d}{dr} (\Delta w) \quad \text{(n)} \]

与板的理论中的形式相同。

在 \(p = Q = 0\) 的情况下，将方程（i）乘上因子 \(-\lambda\)，并将所求结果与方程（l）相加，就能进行联立方程（i）和（l）的积分。此运算给出:

\[\Delta \Delta (w - \lambda F) - \lambda (Eh/a) \Delta (w + F/\lambda hDE) = 0, \quad \text{(a)} \]
令 $\lambda = -1/\lambda_{AE}$，亦即

$$
\lambda = \frac{i}{EA} \sqrt{\frac{12}{(1 - \nu^2)}},
$$

式中 $i = \sqrt{-1}$，由 (o) 我们得到单个函数 $w = \lambda F$ 的方程。我们再引入由关系式 $EA/a = \lambda F$ 所定义的特征长 l，因此

$$
l = \frac{\sqrt{\lambda A}}{\sqrt{12} (1 - \nu^2)}.
$$

于是，微分方程 (o) 化为如下形式：

$$
\frac{\partial^2}{\partial x^2} (w - \lambda F) - \frac{i}{l^2} \frac{\partial}{\partial x} (w - \lambda F) = 0.
$$

其次，设

$$
w - \lambda F = \phi + \varphi,
$$

可知 ϕ 和 φ 是下列方程的通解：

$$
\frac{\partial^2}{\partial x^2} \phi = 0, \quad \frac{\partial}{\partial x} \phi = 0.
$$

此二解的形式为

$$
\phi = A_1 + A_2 \log x,
$$

$$
\varphi = A_3 [\phi_1(x) + i\phi_2(x)] + A_4 [\phi_3(x) + i\phi_4(x)],
$$

其中

$$
x = \frac{r}{l}.
$$

A_1 是任意的复常数；$\phi_1(x), \ldots, \phi_4(x)$ 是第 525 页上所定义的函数，并在表 86 中列出。应用解 (u) 和 (v) 以及一组实常数 C_1, C_2，并在载荷后将式 (s) 分成实部与虚部，我们能得到法向度数 w 及应力函数 F 的下列一般表达式：

$$
w = C_4 \phi_4(x) + C_2 \phi_2(x) + C_3 \phi_3(x) + C_4 \phi_4(x) + C_5,
$$

$$
F = - \frac{EA}{12 (1 - \nu^2)} [C_1 \phi_1(x) + C_2 \phi_2(x) + C_3 \phi_3(x) + C_4 \phi_4(x) + C_5 \log x] + C_6 \phi_6(x) + C_7 \phi_7(x) + C_8 \phi_8(x) + C_9 \phi_9(x) + C_{10} \phi_{10}(x).
$$

为了说明以上结果的应用，我们来考虑在顶点 $x = 0$ 承受一定载荷 P 并且半径非常大的圆环。

在这样的情况下，我们应满足显而易知的条件

$$
Q_x = - \frac{P}{2\pi r} = - \frac{P}{2\pi l}.
$$

1. 能够证明，在式 (x) 中应去掉项 $C_2 \log x$，而在式 (y) 中常数项 C_1 由于实际上不起作用，可被略去。

+ 302 +
而 \(\omega, d\omega/dr, N, \) 和 \(N_0 \) 在 \(r = 0 \) 处必须为有限，同时 \(\omega, M, \) 和 \(M_0 \) 对于 \(r = \infty \)必须为零。应用 (m) 的第一式以满足方程 (x)，可得：

\[
C_0 = \frac{P a \sqrt{12(1 - \nu^2)}}{2 \pi E h^3},
\]

对于其它常数，可得下列值：

\(C_4 = 0, \quad C_3 = \frac{\pi}{2} C_0, \quad C_1 = C_2 = C_3 = 0. \)

因此，最后结果为

\[
\omega = \frac{\sqrt{3(1 - \nu^2)}}{2} \frac{P a}{E h^2} \phi_3(x),
\]

\[
F = \frac{P a}{4} \left[\phi_3(x) - \frac{2}{\pi} \log x \right].
\]

由于 \(\phi_3(0) = 0.5 \)，对于壳在载荷作用点的挠度我们得到值：

\[
\omega_0 = \frac{\sqrt{3(1 - \nu^2)}}{4} \frac{P a}{E h^2}.
\]

薄膜应力 \(\sigma = N/r, \sigma_0 = N_0/r \) 和弯曲应力 \(\sigma_0^c = \frac{b}{h} M_0/r, \sigma_0^b = \frac{6 M_0}{h^2} \) 在壳的上表面（对于上表面必须取上面一符号）上的分布表示在图 278 中。

如中心载荷 \(P \) 均匀分布在很小半径 \(c \) 的圆面积上，则在受载面积的中心 \(r = 0 \) 上，下列结果是成立的：

\[
\omega_0 = \frac{\sqrt{12(1 - \nu^2)}}{\pi} \frac{P a}{E h^4} \left[\frac{1}{\mu^2} - \frac{\pi}{2 \mu} \phi_3(\mu) \right],
\]

\[
\sigma_r = \sigma_0 = -\frac{\sqrt{12(1 - \nu^2)}}{2\pi} \frac{P}{h^2} \left[\frac{1}{\mu^2} - \frac{\pi}{2 \mu} \phi_3(\mu) \right],
\]

\[
\sigma_0^c = \sigma_0^b = \pm \frac{3(1 + \nu)}{2} \frac{P}{h^2} \frac{\phi_3(\mu)}{\mu},
\]

式中

\[
\mu = \frac{c_i}{i} = \frac{\sqrt{12(1 - \nu^2)}}{\sqrt{a h}}.
\]

由于式 (x) 和 (y) 总共含有六个任意常数，因此壳的中心和外边缘上的任何对称条件都能满足。

也应注意，关于弯曲的情况，扁球壳有点象弹性基支板。这时这特征长由式 (q) 给出，而不是在板情况下第 275 页上的式 (a)。因此，如式 (q) 所定

* 603 *
图 278

图 279
义的 l 与边缘的半径比较小量，则此扁球壳应认为等价与刚度十分大的基础上的薄板。这种壳的中心的挠度与弯矩很少受外边缘上各种情况的影响，这些情况仅仅决定壳的边缘区域的状态\(^1\).

133. 㒸形壳 为了将第 128 节的一般方程应用于㒸形壳的特殊情况 (图 279a)。我们引人确定于㒸顶点距离的新变量 φ 以代替变量 φ。代替以前所用的 $r d \varphi$。现在经线无限小单元的长度是 dy。由于这样改换变量的结果，对 φ 的导数的下列变换是需要的:

\[
\frac{d}{d \varphi} = r \frac{d}{dy}, \quad \frac{d^n}{d \varphi} = \frac{d}{dy} \left(r \frac{d}{dy} \right) = r^2 \frac{d^2}{dy^2} + \frac{d}{dy} \frac{dr}{dy} \frac{d}{dy}.
\]

用了这些变换，第 128 节中的符号 (1) 化为

\[
L(\cdots) = r \frac{d^2}{dy^2} L(\cdots) + \left(\frac{d}{dy} + r \frac{d}{dy} \frac{dr}{dy} \right) \frac{d}{dy} L(\cdots) - \frac{1}{r} \frac{d}{dy} \frac{d}{dy} L(\cdots). \tag{a}
\]

注意到对于一体面壳的角 φ 为常数，因此用符号 α 表示 $\pi/2 - \varphi$ (图 279)，可得:

\[
\tan \alpha = y \tan \alpha, \quad \frac{dr}{dy} \frac{d}{dy} = \tan \alpha.
\]

将此二式代入 (a)，令 $r = \infty$，符号 $L(\cdots)$ 化为:

\[
L(\cdots) = \tan \alpha \left[y \frac{d^2}{dy^2} L(\cdots) + \frac{d}{dy} L(\cdots) - \frac{1}{y} L(\cdots) \right].
\]

因此第 128 节的方程 (321) 为:

\[
\tan \alpha \left(y \frac{d^2U}{dy^2} + \frac{dU}{dy} - \frac{U}{y} \right) \pm i \mu^2 U = 0,
\]

或者用 $U = r Q_\varphi = y \tan \alpha Q_\varphi^\prime$，则为:

\[\tag{321}
\]

\[\]

使用第 128 节的符号 (i)，并引入新的符号：

$$\lambda^i = \frac{\mu^i}{\cot^2 \alpha} = \frac{E h}{D} \cot^3 \alpha = \frac{12 (1 - \nu^2)}{h^4} \cot^2 \alpha,$$

我们最后得到

$$y \frac{d^2(y \Omega)}{dy^2} + \frac{d(y \Omega)}{dy} - \Omega_y + i \lambda^i y \Omega_y = 0.$$

考虑此二方程中的第一个，通过引入新变量

$$\eta = 2 \lambda \sqrt{i} \sqrt{y},$$

以代替 γ 可将它变换成已知的贝塞尔方程：

$$\frac{d^2(y \Omega_y)}{d\eta^2} + \frac{1}{\eta} \frac{d(y \Omega_y)}{d\eta} + \left(1 - \frac{4}{\eta^2}\right) (y \Omega_y) = 0.$$

在研究非等厚度椎形壳时（第 118 节）已讨论过与此类似的方程。那时引人的函数 ϕ_1, \ldots, ϕ，（其数值在表 86 中给出）也可在现在的问题中应用。因此满足 (e) 的两个方程时 $y \Omega_y$ 的通解可表示成如下形式 2):

$$y \Omega_y = C_1 \left[\phi_1(\xi) + \frac{2}{\xi} \phi'_1(\xi) \right] + C_2 \left[\phi_2(\xi) - \frac{2}{\xi} \phi'_2(\xi) \right]$$

$$+ C_3 \left[\phi_3(\xi) + \frac{2}{\xi} \phi'_3(\xi) \right] + C_4 \left[\phi_4(\xi) - \frac{2}{\xi} \phi'_4(\xi) \right].$$

式中 $\xi = 2 \lambda \sqrt{i} \sqrt{y}$，符号 “” 表示对于 ξ 求导。由以前的讨论及表 86 的值可知，函数 ϕ_1, \ldots, ϕ_4 及其导数 ϕ'_1, \ldots, ϕ'_4 有这样的振荡特性：当距离 y 减小时振荡迅速消失。此二函数应当用来研究沿边缘 $y = l$ 均匀分布的力和力矩所产生的柔性壳上的弯曲。函数 ϕ_2, ϕ_3, ϕ_4 及其导数 $\phi'_2, \phi'_3, \phi'_4$ 也是振荡性的，但当距离 y 减小时它们的振荡增大。因此如研究的是整锥形壳，则解 (f) 中包含此二函数及其导数的第三项和第四项应被略去。留下的二常数 C_1 和 C_2 应当在每一特殊情况下由边缘 $y = l$ 上的边界条件决定。

在截锥形壳的情况下有一上边缘和一下边缘，因此必须考虑通解 (f) 中

的所有四个常数 c_1, \cdots, c_4，以满足此二边界的所有条件，计算表明，对于工程上通常用的薄壳，如角 α 不是接近于 $\pi/2$，则作用在一边缘上的力和力矩对于另一边缘的应力和位移只有很小的影响。这一事实使问题得以简化，因为我们可用只有两个常数的解。在考虑壳的下边缘时，使用通解 (c) 中含有常数 c_1 和 c_2 的项；在考虑壳的上边缘的条件时，使用含有常数 c_3 和 c_4 的项。

为了在每一特殊情况下计算这些常数，我们需要旋转角 ψ，力 N_y 和 N_x，力矩 M_y 和 M_x 的表达式。由第 128 节的式 (c) 和 (d)，有:

$$N_y = -Q_y \tan \alpha,$$

$$N_x = -\frac{dU}{dy} = -\frac{d(r Q_y)}{dy} = -\frac{d(y Q_y)}{dy} \tan \alpha. \quad (g)$$

由 (317) 中的第一个方程可得旋转:

$$V = \frac{1}{Eh} L(U) = \frac{\tan \alpha}{Eh} \left[y \frac{d^2(y Q_y)}{dy^2} + \frac{d(y Q_y)}{dy} - Q_y \right]. \quad (h)$$

由式 (314) 求得弯矩为:

$$M_y = -D \left(\frac{dV}{dy} + \frac{y}{y} V \right),$$

$$M_x = -D \left(\frac{V}{y} + \frac{dV}{dy} \right). \quad (i)$$

在第 129 节的式 (c) 中以 $y \tan \alpha$ 代替 a，可得

$$\sigma = \frac{y \sin \alpha \tan \alpha}{Eh} \left[-\frac{d(y Q_y)}{dy} + \nu \frac{dV}{dy} \right]. \quad (j)$$

因此确定锥形壳弯曲的所有量可用通解 (f) 所给出的剪力 Q_y 表示。对于 $\xi < 6$，系数 ϕ_1, \cdots, ϕ_4 及它们的一阶导数在表 88 中给出，对于更大的 ξ 值，应用这些函数的渐近表达式 (296) (第 533 页) 就足够精确。

我们以图 279a 所示情况为例，假设壳只承受自身重量的载荷，并设壳的边缘 ($y = l$) 可自由旋转，但不能在侧向移动，首先考虑其对应的薄膜问题（图 279b），求得:

$$N_x = -\frac{dV}{dy} \tan \alpha,$$

$$N_y = -\frac{y Q_y}{2 \cos \alpha}. \quad (k)$$

\[1\) 对于 $\alpha \approx 84^\circ$，F. Dabot 在研究锥形壳中的应力分布特性与中心有孔的圆形板相同。这表明对于具有这样的顶角的锥形壳，必须同时考虑作用在两个边缘上的力和力矩。\]
式中 ξ 是单位面积壳的重量。由于这些力的结果，壳的边缘将有指向压缩，其值为：

$$
\xi_0 = \frac{1}{Eh} (N_0 - \nu N_y) = -\frac{q^1}{2 \cos \alpha \, Eh} \left(2 \sin^2 \alpha - \nu \right).
$$

(1)

为了满足实际问题的边界条件（图 179a），我们须将式 (k) 所给出的薄膜应力与水平力 N_y (图 179c) 在壳中所产生的应力迭加。N_y 的大小根据消除压缩 (l) 的条件来决定。解此问题，我们可用解 (i) 的头两项，取：

$$
\nu Q_y = C_1 \left[\psi_1(\xi) + \frac{2}{\xi} \psi_1'(\xi) \right]
+ C_2 \left[\psi_2(\xi) - \frac{2}{\xi} \psi_2'(\xi) \right].
$$

(2)

常数 C_1 和 C_2 可由下列边界条件决定：

$$
(M_y)_{t=1/\sqrt{h}} = 0,
$$

$$
(\delta)_{t=1/\sqrt{h}} = -\delta_5 \sin \alpha = \frac{q^1 \sin \alpha}{2 \, Eh} \left(2 \sin^2 \alpha - \nu \right),
$$

(3)

其中 $M,$ 和 δ 须用式 (i) 和 (2) 代入。在引入 νQ_y 的表达式 (2) 后，式 (i) 和 (2) 化为：

$$
M_y = \frac{2}{\xi^2} \left\{ C_1 \left[-\xi \psi_1'(\xi) + 2(1 - \nu) \psi_1(\xi) - \frac{4(1 - \nu)}{\xi} \psi_1'(\xi) \right]
+ C_2 \left[\xi \psi_1'(\xi) - 2(1 - \nu) \psi_1(\xi) - \frac{4(1 - \nu)}{\xi} \psi_1'(\xi) \right] \right\},
$$

(4)

$$
\delta = \frac{\nu \sin \alpha}{Eh} (N_0 - \nu N_y) = -\frac{\sin \alpha \tan \alpha}{2 \, Eh} \left\{ C_1 \left[\xi \psi_1'(\xi) - 2 \psi_1(\xi)
- \frac{4}{\xi} \psi_1'(\xi) \right] + C_2 \left[\xi \psi_1'(\xi) - 2 \psi_1(\xi) + \frac{4}{\xi} \psi_1'(\xi) \right] \right\}
+ \frac{\nu \sin \alpha \tan \alpha}{Eh} \left\{ C_1 \left[\psi_1(\xi) + \frac{2}{\xi} \psi_1'(\xi) \right] + C_2 \left[\psi_1(\xi) - \frac{2}{\xi} \psi_1'(\xi) \right] \right\}
$$

(5)

在式 (4) 和 (5) 中以 $2 \lambda \sqrt{1}$ 代入 $\xi,$ 并利用表 06 其渐近式 (296)，我们可得方程 (3) 的左端。因此如载荷 q 和壳的尺寸已知，则由此二方程就能计算 C_1 和 $C_2.$ 计算表明，对于工程实际中通常用的比例的壳，即 ξ 大于 $\varepsilon,$ 因此对于式 (4) 和 (5) 中所出现的各函数可近似取渐近式 (296)。与上节对于球形壳所给出的近似解相似，锥形壳的近似解也可立即推得。

壁厚与由锥顶的距离 γ 成正比的锥形壳的情况也可严格地处理，其解

* 608 *
比等厚度情况的解答简单

134. 旋转形壳的一般情况

第128节中所得到的解薄壳问题的一般方法也可应用于图220所示的环形壳。用这个方法可讨论图280a所示环的变形。将若干个这种环组合起来，就能研究图280b所示波纹管的受压问题。将若干个锥形壳组合起来，

图 280

可得图280c所示的波纹管。这种管的受压问题可由上节对于锥形壳所推得的解来研究。如壁厚按一定的方式变化，则更一般的旋转面形壳也可应用第128节的方法，将一般方程(315)和(316)化为(317)的形式1。此方程的解如果能得到，通常是复杂的，不能直接用来解实际问题。

同时，所有已知的解表明，对于不是小量的薄壳，沿边缘均匀分布的力和力矩所产生的应力是局部性的，当离开边缘的距离增大时，这些应力迅速地趋近于零。这一事实提供了在更一般的这类问题中应用球形壳情况下所讨论的近似解。从一般方程(315)和(316)(第597页)出发，将此二方程左端的函数U, V及其一阶导数同二阶导数作比较时，则前者可忽略不计2。由此可得下列简化方程组：

\[
\frac{r_2}{r_1} \frac{d^2 U}{dq^2} = E h V,
\]

\[
\frac{r_2}{r_1} \frac{d^2 V}{dq^2} = -\frac{U}{D}.
\]

1）参看前引Meissner的论文。

将此二方程中的第一个微分二次，即得：

$$\frac{d^2}{d\varphi^2} \left(\frac{r_2}{r_1^2} \frac{d^2U}{d\varphi^2} \right) = \frac{d^2}{d\varphi^2} \left(E \frac{r_2}{r_1^2} \frac{dV}{d\varphi} \right). \quad (b)$$

如果在微分后，我们仍然只保留方程二端含有函数 U 和 V 的最高阶导数的一项，则得：

$$\frac{r_2}{r_1^2} \frac{d^4U}{d\varphi^4} = E \frac{d^2V}{d\varphi^2} = - \frac{Ehr_1^2}{r_2^2} \frac{U}{D}. \quad (c)$$

引入符号：

$$\lambda^4 = \frac{1}{4} \frac{Ehr_1^2}{r_2^2D} = 3(1 - \nu^2) \frac{r_1^4}{r_2^2}. \quad (d)$$

方程 (c) 化为

$$\frac{d^4U}{d\varphi^4} + 4\lambda^4 U = 0. \quad (e)$$

这个方程与第 130 节中对于球形壳所得到的方程 (i) 形式相同。此二方程之间的差别仅仅在于式 (d) 所给出的因子 λ 在一般情况下不再是常数，而是随着角 φ 变化的。由于离边缘的距离增大时函数 U 迅速地趋近于零，因此用一定的平均值常数代替 λ，我们能得到方程 (e) 的足够近似的解。所以以前对于球形壳所得到的近似解可以直接应用到这里。

为了得到更好的近似，可用平行圆将壳分成若干部分。对于每一部分用一个 λ 的平均值常数。从壳边缘处的第一部分开始，通过解 (329) 中的二常数可用对于球形壳所说明的相同方法由边界条件求得。于是确定这部分的形变应力的总量都可由式 (330) 得到。这些量在第一部分末段的值给出对于第二部分这相同量的起始值。因此，改用第二部分 λ 的数值，再次应用通解 (329)，我们可继续计算1。

如因子 λ 可用下式表示：

$$\lambda = a \frac{a}{b + \varphi},$$

1 这个方法运用与计算受压容器内液体的应力是在 W. M. Coates 的论文中给出的， *Trans. ASME, 1 12* 卷，第 117 页，1930 年。
式中 \(a \) 和 \(b \) 为常数，则可得方程 (c) 的严格解\(^1\)。但由于方程 (c) 只是一个近似关系式，因此这样的严格解与前述的近似计算作比较显然很少有优点\(^2\)。
