THEORY OF
PLATES AND SHELLS

S. TIMOSHENKO

Professor Emeritus of Engineering Mechanics
Stanford University

S. WOINOWSKY-KRIEGER

Professor of Engineering Mechanics
Laval University

Seconp Epition

McGRAW-HILL BOOK COMPANY

Auckland Bogota Guatemala Hamburg Lisbon
London Madrid Mexico New Delhi Panama Paris San Juan
Sdo Paulo Singapore Sydney Tokyo



THEORY OF PLATES AND SHELLS
International Edition 1959

Exclusive rights by McGraw-Hill Book Co.-- Singapore for
manufacture and export. This book cannot be re-exported
from the country to which it is consigned by McGraw-Hill.

Copyright © 1959 by McGraw-Hill, Inc.

All rights reserved. Except as permitted under the United States Copyright
Act of 1976, no part of this publication may be reproduced or distributed in
any form or by any means, or stored in a data base or retrieval system,
without the prior written permission of the publisher.

40 09 08 07 06 05 04 03 02
20 09 08 07 06 05 04 03 02 01
PMP BIE

Library of Congress Catalog Card Number 58-59675

When ordering this title use ISBN 0-07-085820-9

Printed in Singapore



PREFACE

Since the publication of the first edition of this book, the application
of the theory of plates and shells in practice has widened considerably,
and some new methods have been introduced into the theory. To take
these facts into consideration, we have had to make many changes and
additions. The principal additions are (1) an article on deflection of
plates due to transverse shear, (2) an article on stress concentrations
around a circular hole in a bent plate, (3) a chapter on bending of plates
resting on an elastic foundation, (4) a chapter on bending of anisotropic
plates, and (5) a chapter reviewing certain special and approximate
methods used in plate analysis. We have also expanded the chapter on
large deflections of plates, adding several new cases of plates of variable
thickness and some numerical tables facilitating plate analysis.

In the part of the book dealing with the theory of shells, we limited
ourselves to the addition of the stress-function method in the membrane
theory of shells and some minor additions in the flexural theory of shells.

The theory of shells has been developing rapidly in recent years, and
several new books have appeared in this field. Since it was not feasible
for us to discuss these new developments in detail, we have merely referred
to the new bibliography, in which persons specially interested in this field
will find the necessary information.

8. Timoshenko
S. Woinowsky-Krieger
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NOTATION

Rectangular coordinates

Polar coordinates

Radii of curvature of the middle surface of a plate in zz and yz planes,
respectively

Thickness of a plate or a shell

Intensity of a continuously distributed load

Pressure

Single load

Weight per unit volume

Normal components of stress parallel to z, y, and z axes

Normal component of stress parallel to n direction

Radial stress in polar coordinates

Tangential stress in polar coordinates

Shearing stress

Shearing stress components in rectangular coordinates

Components of displacements

Unit elongation

Unit elongations in z, y, and z directions

Radial unit elongation in polar coordinates

Tangential unit elongation in polar coordinates

Unit elongations of a shell in meridional direction and in the direction
of parallel circle, respectively

Shearing strain components in rectangular coordinates

Shearing strain in polar coordinates

Modulus of elasticity in tension and compression

Modulus of elasticity in shear

Poisson’s ratio

Strain energy

Flexural rigidity of a plate.or shell

Bending moments per unit length of sections of a plate perpendicular
to z and y axes, respectively

Twisting moment per unit length of section of a plate perpendicular
to z axis

Bending and twisting moments per unit length of a section of a plate
perpendicular to n direction

Shearing forces parallel to z axis per unit length of sections of a plate
perpendicular to x and y axes, respectively

Shearing force parallel to z axis per unit length of section of a plate
perpendicular to n direction

Normal forces per unit length of sections of a plate perpendicular to
z and y directions, respectively

xiii
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NOTATION

Shearing force in direction of y axis per unit length of section of a plate
perpendicular to z axis

Radial, tangential, and twisting moments when using polar coordinates
Radial and tangential shearing forces

Normal forces per unit length in radial and tangential directions

Radii of curvature of a shell in the form of a surface of revolution in
meridional plane and in the normal plane perpendicular to meridian,
respectively

Changes of curvature of a shell in meridional plane and in the plane
perpendicular to meridian, respectively

Twist of a shell

Components of the intensity of the external load on a sheli, parallel to
z, y, and 2 axes, respectively

Membrane forces per unit length of principal normal sections of a shell
Bending moments in a shell per unit length of meridional section and a
section perpendicular to meridian, respectively

Changes of curvature of a cylindrical shell in axial plane and in a plane
perpendicular to the axis, respectively

Membrane forces per unit length of axial section and a section perpen-
dicular to the axis of a cylindrical shell

Bending moments per unit length of axial section and a section perpen-
dicular to the axis of a cylindrical shell, respectively

Twisting moment per unit length of an axial section of a cylindrical
shell

Shearing forces parallel to z axis per unit length of an axial section and
a section perpendicular to the axis of a cylindrical shell, respectively
Natural logarithm

Common logarithm
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INTRODUCTION

The bending properties of a plate depend greatly on its thickness as
compared with its other dimensions. In the following discussion, we
shall distinguish between three kinds of plates: (1) thin plates with small
deflections, (2) thin plates with large deflections, (3) thick plates.

Thin Plates with Small Deflection. 1If deflections w of a plate are small
in comparison with its thickness A, a very satisfactory approximate theory
of bending of the plate by lateral loads can be developed by making the
following assumptions:

1. There is no deformation in the middle plane of the plate. This
plane remains neutral during bending.

2. Points of the plate lying initially on a normal-to-the-middle plane
of the plate remain on the normal-to-the-middle surface of the plate after
bending.

3. The normal stresses in the direction transverse to the plate can be
disregarded.

Using these assumptions, all stress components can be expressed by
deflection w of the plate, which is a function of the two coordinates in
the plane of the plate. This function has to satisfy a linear partial
differential equation, which, together with the boundary conditions, com-
pletely defines w. Thus the solution of this equation gives all necessary
information for calculating stresses at any point of the plate.

The second assumption is equivalent to the disregard of the effect of
shear forces on the deflection of plates. This assumption is usually satis-
factory, but in some cases (for example, in the case of holes in a plate)
the effect of shear becomes important and some corrections in the theory
of thin plates should be introduced (see Art. 39).

If, in addition to lateral loads, there are external forces acting in the
middle plane of the plate, the first assumption does not hold any more,
and it is necessary to take into consideration the effect on bending of the
plate of the stresses acting in the middle plane of the plate. This can be
done by introducing some additional terms into the above-mentioned
differential equation of plates (see Art. 90).

1



2 THEORY OF PLATES AND SHELLS

Thin Plates with Large Deflection. The first assumption is completely
satisfied only if a plate is bent into a developable surface. In other cases
bending of a plate is accompanied by strain in the middle plane, but
calculations show that the corresponding stresses in the middle plane are
negligible if the deflections of the plate are small in comparison with its
thickness. If the deflections are not small, these supplementary stresses
must be taken into consideration in deriving the differential equation of
plates. In this way we obtain nonlinear equations and the solution of the
problem becomes much more complicated (see Art. 96). In the case of
large deflections we have also to distinguish between immovable edges
and edges free to move in the plane of the plate, which may have a con-
siderable bearing upon the magnitude of deflections and stresses of the
plate (see Arts. 99, 100). Owing to the curvature of the deformed middle
plane of the plate, the supplementary tensile stresses, which predominate,
act in opposition to the given lateral load; thus, the given load is now
transmitted partly by the flexural rigidity and partly by a membrane
action of the plate. Consequently, very thin plates with negligible
resistance to bending behave as membranes, except perhaps for a narrow
edge zone where bending may occur because of the boundary conditions
imposed on the plate.

The case of a plate bent into a developable, in particular into a cylindri-
cal, surface should be considered as an exception. The deflections of
such a plate may be of the order of its thickness without necessarily pro-
ducing membrane stresses and without affecting the linear character of
the theory of bending. Membrane stresses would, however, arise in such
a plate if its edges are immovable in its plane and the deflections are
sufficiently large (see Art. 2). Therefore, in “plates with small deflec-
tion” membrane forces caused by edges immovable in the plane of the
plate can be practically disregarded.

Thick Plates. The approximate theories of thin plates, discussed
above, become unreliable in the case of plates of considerable thickness,
especially in the case of highly concentrated loads. In such a case the
thick-plate theory should be applied. This theory considers the prob-
lem of plates as a three-dimensional problem of elasticity. The stress
analysis becomes, consequently, more involved and, up to now, the prob-
lem is comvletely solved only for a few particular cases. Using this
analysis, the necessary corrections to the thin-plate theory at the points of
application of concentrated loads ean be introduced.

The main suppositions of the theory of thin plates also form the basis
for the usual theory of thin shells. There exists, however, a substantial
difference in the behavior of plates and shells under the action of external
loading. The static equilibrium of a plate element under a lateral load
is only possible by action of bending and twisting moments, usually
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accompanied by shearing forces, while a shell, in general, is able to trans-
mit the surface load by ‘“membrane” stresses which act parallel to the
tangential plane at a given point of the middle surface and are distributed
uniformly over the thickness of the shell. This property of shells makes
them, as a rule, a much more rigid and a more economical structure than
a plate would be under the same conditions.

In principle, the membrane forces are independent of bending and are
wholly defined by the conditions of static equilibrium. The methods of
determination of these forces represent the so-called ‘“membrane theory
of shells.” However, the reactive forces and deformation obtained by
the use of the membrane theory at the shell’s boundary usually become
incompatible with the actual boundary conditions. To remove this dis-
crepancy the bending of the shell in the edge zone has to be considered,
which may affect slightly the magnitude of initially calculated membrane
forces. This bending, however, usually has a very localized! character
and may be calculated on the basis of the same assumptions which were
used in the case of small deflections of thin plates. But there are prob-
lems, especially those concerning the elastic stability of shells, in which
the assumption of small deflections should be discontinued and the “large-
deflection theory”’ should be used.

If the thickness of a shell is comparable to the radii of curvature, or
if we consider stresses near the concentrated forces, a more rigorous
theory, similar to the thick-plate theory, should be applied.

1 There are some kinds of shells, especially those with a negative Gaussian curva-
ture, which provide us with a lot of exceptions. In the case of developable surfaces
such as cylinders or cones, large deflection without strain of the middle surface is
possible, and, in some cases, membrane stresses can be neglected and consideration
of the bending stresses alone may be sufficient.



CHAPTER 1

BENDING OF LONG RECTANGULAR PLATES TO A
CYLINDRICAL SURFACE

1. Differential Equation for Cylindrical Bending of Plates. We shall
begin the theory of bending of plates with the simplie problem of the
bending of a long rectangular plate that is subjected to a transverse load
that does not vary along the length of the plate. The deflected surface
of a portion of such a plate at a considerable distance from the ends!
can be assumed cylindrical, with the axis of the cylinder parallel to the
length of the plate. We can therefore restrict ourselves to the investi-
gation of the bending of an elemental strip cut from the plate by two
planes perpendicular to the length of the plate and a unit distance (say
1 in.) apart. The deflection of this strip is given by a differential equa-

tion which is similar to the deflection

N [y . equation of a bent beam.
L To obtain the equation for the de-
=t flection, we consider a plate of uni-

: form thickness, equal to 4, and take
the zy plane as the middle plane of
the plate before loading, i.e., as the
plane midway between the faces of
the plate. Let the y axis coincide with one of the longitudinal edges
of the plate and let the positive direction of the z axis be downward,
as shown in Fig. 1. Then if the width of the plate is denoted by [, the
elemental strip may be considered as a bar of rectangular cross section
which has a length of [ and a depth of A. In calculating the bending
stresses in such a bar we assume, as in the ordinary theory of beams,
that cross sections of the bar remain plane during bending, so that they
undergo only a rotation with respect to their neutral axes. If no normal
forces are applied to the end sections of the bar, the neutral surface of
the bar coincides with the middle surface of the plate, and the unit
elongation of a fiber parallel to the z axis is proportional to its distance z

1 The relation between the length and the width of a plate in order that the maxi-
mum stress may approximate that in an infinitely long plate is discussed later; see
pp. 118 and 125.

4



BENDING TO A CYLINDRICAL SURFACE 5

from the middle surface. The curvature of the deflection curve can be
taken equal to —d?w/dz?, where w, the deflection of the bar in the z
direction, is assumed to be small compared with the length of the bar L.
The unit elongation e, of a fiber at a distance z from the middle surface
(Fig. 2) is then ~—z d*w/dz>%

Making use of Hooke’s law, the unit elonga-
tions ¢, and ¢, in terms of the normal stresses
o. and o, acting on the element shown shaded
in Fig. 2a are

e = Oz 1/0',,
z = E - ’F' -] B
(1) -} > Ox
=2 _Y:_y ] "
E E < T
where E is the modulus of elasticity of the Fr G(b;

material and » is Poisson’s ratio. The lateral
strain in the y direction must be zero in order to maintain continuity
in the plate during bending, from which it follows by the second of the
equations (1) that o, = vo,. Substituting this value in the first of the
equations (1), we obtain
—_— 2
o = 1= 7
E
2,
and o, = Ee.  _ Ez dw @

N T T 1 = drt

If the plate is submitted to the action of tensile or compressive forces
acting in the z direction and uniformly distributed along the longitudinal
sides of the plate, the corresponding direct stress must be added to the
stress (2) due to bending.

Having the expression for bending stress ¢,, we obtain by integration
the bending moment in the elemental strip:

. [ _ (¥ B2 dw, Eb  dw
M= /_mmdz = /_h/zl —r & T TR = A &t

Introducing the notation

Eh?

30— = P @

we represent the equation for the deflection curve of the elemental strip
in the following form:
d*w

in which the quantity D, taking the place of the quantity EI in the case



6 THEORY OF PLATES AND SHELLS

of beams, is called the flexural rigidity of the plate. It is seen that the
calculation of deflections of the plate reduces to the integration of Eq. (4),
which has the same form as the differential equation for deflection of
beams. If there is only a lateral load acting on the plate and the edges
are free to approach each other as deflection occurs, the expression for
the bending moment M can be readily derived, and the deflection curve
is then obtained by integrating Eq. (4). In practice the problem is more
complicated, since the plate is usually attached to the boundary and its
edges are not free to move. Such a method of support sets up tensile
reactions along the edges as soon as deflection takes place. These reac-
tions depend on the magnitude of the deflection and affect the magnitude
of the bending moment M entering in Eq. (4). The problem reduces to
the investigation of bending of an elemental strip submitted to the action
of a lateral load and also an axial force which depends on the deflection
of the strip.! In the following we consider this problem for the particular
case of uniform load acting on a plate and for various conditions along
the edges.

2. Cylindrical Bending of Uniformly Loaded Rectangular Plates with
Simply Supported Edges. Let us consider a uniformly loaded long rec-
tangular plate with longitudinal edges which are free to rotate but can-
not move toward each other during bending. An elemental strip cut out

Fi6. 3

from this plate, as shown in Fig. 1, is in the condition of a uniformly
loaded bar submitted to the action of an axial force S (Fig. 3). The
magnitude of S is such as to prevent the ends of the bar from moving
along the z axis. Denoting by ¢ the intensity of the uniform load, the
bending moment at any cross section of the strip is

_e

2—Sw

M=q§lx

tIn such a form the problem was first discussed by I. G. Boobnov; see the English
translation of his work in Trans. Inst. Naval Architects, vol. 44, p. 15, 1902, and his
“Theory of Structure of Ships,” vol. 2, p. 545, St. Petersburg, 1914. See also the
paper by Stewart Way presented at the National Meeting of Applied Mechanics,
ASME, New Haven, Conn., June, 1932; from this paper are taken the curves used in
Arts. 2 and 3,
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Substituting in Eq. (4), we obtain

& D~ 2D 2D @

= u? (5)

the general solution of Eq. (@) can be written in the following form:

2ux I U A
w=C, smh—+ C» cosh —~ + 82D ~ 83w2D — 164D )
The constants of integration C; and C; will be determined from the
conditions at the ends. Since the deflections of the strip at the ends are
zero, we have
w=0 forx =0andz =1 (c)

Substituting for w its expression (b), we obtain from these two conditions

gl* 1 — cosh 2u C, = qlt
16u*D  sinh 2u ™ 16u'D

Cl=

and the expression (b) for the deflection w becomes

- q* (1 — cosh2u . 2ux 2ur g’z g’z
w= 16u4D< Smhow  Sph = 4 cosh T * 8D ~ 8u'D
Substituting

cosh 2u = cosh? u + sinh? % sinh 2u = 2 sinh u cosh u
cosh?u = 1 + sinh? u

we can represent this expression in a simpler form:

. — sinh u sinh 2uz + cosh u cosh g}f_
w = 2 l l + ql’x (- 1)
16u*D cosh u u:D
gl cosh u (1 ~ 2l—x) ol
or ¥ = 16uiD cosh u + 8uD ¢ —2) 6)

Thus, deflections of the elemental strip depend upon the quantity u,
which, as we see from Eq. (5), is a function of the axial force S. This
force can be determined from the condition that the ends of the strip
(Fig. 3) do not move along the r axis. Hence the extension of the strip
produced by the forces S is equal to the difference between the length of
the arc along the deflection curve and the chord length I. This difference
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for small deflections can be represented by the formula!

A= % ﬂ (%")2 dz e

In calculating the extension of the strip produced by the forces S, we
assume that the lateral strain of the strip in the y direction is prevented
and use Eq. (2). Then

S(1 —»)l 1 [ fdw\?
“=T:§ﬁ(d7>dx @)

Substituting expression (6) for w and performing the integration, we
obtain the following equation for calculating S:
S(1 — ) _ ¢ _5_tanhu+_1tanh2u 5 + 1
hE D 384u!

256w 256 u®  256ub

or substituting S = 4u2D/1?, from Eq. (5), and the expression for D,
from Eq. (3), we finally obtain the equation

E?h? _ 135tanhu | 27 tanh’u _ 135 I 9
a -k 16 16 u8 16ud '~ 8uf

For a given material, a given ratio h/l, and a given load ¢ the left-hand
side of this equation can be readily calculated, and the value of u satis-
fying the equation can be found by a trial-and-error method. 7To simplify
this solution, the curves shown in Fig. 4 can be used. The abscissas of
these curves represent the values of u and the ordinates represent the
quantities logie (104 v/ Usy), where U, denotes the numerical value of the
right-hand side of Eq. (8). /U, is used because it is more easily calcu-
lated from the plate constants and the load; and the factor 10* is intro-
duced to make the logarithms positive. In each particular ease we begin
by calculating the square root of the left-hand side of Eq. (8), equal to
ERh*/(1 ~ »%)gl*, which gives v/ U, The quantity logio (10 v/Uy) then
gives the ordinate which must be used in Fig. 4, and the corresponding
value of « can be readily obtained from the curve. Having u, we obtain
the value of the axial force S from Eq. (5).

In calculating stresses we observe that the total stress at any cross
section of the strip consists of a bending stress proportional to the bend-
ing moment and a tensile stress of magnitude S/h which is constant along
the length of the strip. The maximum stress occurs at the middle of the
strip, where the bending moment is a maximum. From the differential
equation (4) the maximum bending moment is

dw
Muwe = =D (W),_m

L See Timoshenko, ‘“Strength of Materials,” part I, 3d ed., p. 178, 1955.

®
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Substituting expression (6) for w, we obtain
9
‘Mmax = § \I/O(u) (9)
1 — sech u
where Yo = —a (e)
2

The values of ¥, are given by curves in Fig. 5. It is seen that these
values diminish rapidly with increase of u, and for large « the maximum
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bending moment is several times smaller than the moment ¢i2/8 which
would be obtained if there were no tensile reactions at the ends of the
strip.

The direct tensile stress ¢y and the maximum bending stress ¢, are now
readily expressed in terms of u, ¢, and the plate constants as follows:
S _ 4D Eu? (LL)?

NERT TR T30 = 5
o= =34 (LY v a1
L ¥ 11\n) ¥

The maximum stress in the plate is then

(10)

=2

OTmax = 01 + a2

To show how the curves in Figs. 4 and 5 can be used in calculating
maximum stresses, let us take a numerical example and assume that a
long rectangular steel plate 50 in. wide and 4 in. thick carries a uniformly
distributed load ¢ = 20 psi. We start with a computation of v/U,:

~ _ E  (R\*_ 30-10° 1 _
VU“‘(T—‘?Z)‘Q(?) = @ - o3nz010° ~ 001648

Then, from tables,
logio (].04 A\ Uo) = 2.217

From the curve A in Fig. 4 we find u = 3.795, and from Fig. 5 we obtain
Yo = 0.1329.
Now, computing stresses by using Eqs. (10) and (11), we find
. 6 . 2
m WAOBTR L g
oz = $+20-10*-0.1329 = 19,930 psi
Omax = 01 + g3 = 35,760 pSi

In calculating the maximum deflection we substitute z = I/2 in Eq. (6)
of the deflection curve. In this manner we obtain

Sql*
Waax = 5475 Jo(4)

2
sechu—l+%

T
24

(12)

where folu) =

To simplify calculations, values of fo(u) are given by the curve in Fig. 5.
If there were no tensile reactions at the ends of the strip, the maximum
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deflection would be 5¢i*/384D. The effect of the tensile reactions is given
by the factor fo(u), which diminishes rapidly with increasing u.

Using Fig. 5 in the numerical example previously discussed, we find
that for v = 3.795 the value of fo(u) is 0.145. Substituting this value in
Eq. (12), we obtain

Woex = 4.74 - 0.145 = 0.688 in.

1t is seen from Eq. (8) that the tensile parameter u depends, for a
given material of the plate, upon the intensity of the load ¢ and the

60,000

I | |

Stresses in steel plotes with
simply supported edges

50,000

.40,000

n.

30,000

Stress in Ib per sq

20,000

10,000
% Ratio width: thickness = L/h
0

20
Lood in Ib per sq in.
F1c. 6

ratio I/h of width to thickness of the plate. From Egs. (10) and (11)
we see that the stresses ¢; and ¢, are also functions of u, ¢, and I/h.
Therefore, the maximum stress in the plate depends only on the load ¢
and the ratio I[/h. This means that we can plot a set of curves giving
maximum stress in terms of ¢, each curve in the set corresponding to a
particular value of [/h. Such curves are given in Fig. 6. It is seen that
because of the presence of tensile forces S, which increase with the load,
the maximum stress is not proportional to the load ¢; and for large values
of ¢ this stress does not vary much with the thickness of the plate. By
taking the curve marked I/h = 100 and assuming ¢ = 20 psi, we obtain
from the curve the value o.,, calculated before in the numerical example.
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3. Cylindrical Bending of Uniformly Loaded Rectangular Plates with
Built-in Edges. We assume that the longitudinal edges of the plate are
fixed in such a manner that they cannot rotate. Taking an elemental
strip of unit width in the same manner as before (Fig. 1) and denoting by
M, the bending moment per unit length acting on the longitudinal edges
of the plate, the forces acting on the strip will be as shown in Fig. 7.
The bending moment at any cross section of the strip is

2
M=g—lx—g—--—Sw+Mo

2 2
Substituting this expression in Eq. (4), we obtain
dw S g, @@* M,
& DY~ "2pt2D D @

The general solution of this equation, using notation (5), will be repre-
sented in the following form:

Ml?

qldx qlx? 14
7 4u?D (b)

. 4 2uzx 2ux
w = Cysinh ==+ Cacosh == + 2055 ~ 8wiD ~ Tou'D

+

Observing that the deflection curve is symmetrical with respect to the
middle of the strip, we determine the constants of integration Cy, Cs, and

1
Mo Mo
s/ M s .
oLy Ry Yy
L 47
2 2
z

Fre. 7
the moment M, from the following three conditions:

dw
dx
w =0 forz =0

=0 forzx =0and x =

DO} e

(0

Substituting expression (b) for w, we obtain from these conditions

_ ql4 B ql4
%wD = TowD ¥

I ek
Mo= 4w~ & = - h® 1s)

3(u — tanh w)
u? tanh u

Cl=

]

|
o
2
=
e

]

where vi(u) =
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The deflection w is therefore given by the expression

w= _gt 2“ + it coth u cosh 2uz

~ 16u 3D 16u*D l
+ ql’z gi’z* gl
8uw’D ~ 8u!D  16u’D

This can be further simplified and finally put in the following form:

. cosh [u (1 _2%
ql [ l )] + ql? (l g )z (14)

1643 D tanh u cosh u D

For calculating the parameter u we proceed as in the previous article
and use Eq. (d) of that article. Substituting in it expression (14) for w
and performing the integration, we obtain

Sa-wp_gr( 8 1 1.1
hE ~ D? 256u® tanh v 256u?sinh?u ' 64u® ' 384u?

Substituting S from Eq. (5) and expression (3) for D, the equation for
calculating u finally becomes

E2h? - _ 81 _ 27 + 27 + 9
1 — »?)2%e 1647 tanh v 16u® sinh? w ° 4u® ° 8u®

To simplify the solution of this equation we use the curve in Fig. 8, in
which the parameter u is taken as abscissa and the ordinates are equal
to logie (10¢ v/U;) ,where U; denotes the right-hand side of Eq. (15).
For any given plate we begin by calculating the square root of the left-
hand side of Eq. (15), equal to Eh¢/[(1 — »2)ql4], which gives us v/U..
The quantity logy (10* +/U,;) then gives the ordinate of the curve in
Fig. 8, and the corresponding abscissa gives the required value of u.

Having u, we can begin calculating the maximum stresses in the plate.
The total stress at any point of a cross section of the strip consists of the
constant tensile stress oy and the bending stress. The maximum bending
stress o, will act at the built-in edges where the bending moment is the
largest. Using Eq. (10) to calculate ¢y and Eq. (13) to calculate the
bending moment M,, we obtain

coth u

w =

(15)

oy = 3(1E_1fzy2) (’l"L'>2 (16)

To simplify the calculation of the stress ¢, the values of the function
#1(u) are given by a curve in Fig. 5.
The maximum deflection is at the middle of the strip and is obtained by
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substituting * = I/2 in Eq. (14), from which
ql*
Wmax = moe S1{U 18
24 fu? u u
where ==+ == ——
Fiw) ut (2 + sinh ¥  tanh u)

The function f,(u) is also given by a curve in Fig. 5.
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The use of the curves in Figs. 5 and 8 will now be illustrated by a
numerical example. A long rectangular steel plate has the dimensions
1=50in., h = }in,and ¢ = 10 psi. In such a case we have

— E R\* 30 - 106 _
VU = = (z‘) = T 03910 1o+ ~ 0032966
logye 104 /U, = 2.5181

From Tig. 8 we now find u = 1.894; and from Fig. 5, ¢, = 0.8212. Sub-
stituting these values in Eqgs. (16) and (17), we find
30 - 105 - 1.8942 .
g = R(T—O—gzm_“ = 3,940 psi1
oy = %10 - 10 - 0.8212 = 41,060 psi
Grme = 01 + 03 = 45,000 psi

Comparing these stress values with the maximum stresses obtained for
a plate of the same size, but with twice the load, on the assumption of

60,000
s 'S) O‘ l
foe o Lol o I
SX.E X \\\\' 20
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simply supported edges (see page 11), it can be concluded that, owing to
clamping of the edges, the direct tensile stress decreases considerably,
whereas the maximum bending stress increases several times, so that
finally the maximum total stress in the case of clamped edges becomes
larger than in the case of simply supported edges.
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Proceeding as in the previous article it can be shown that the maxi-
mum stress in a plate depends only on the load ¢ and the ratio /A, and
we can plot a set of curves giving maximum stress in terms of ¢, each
curve in the set corresponding to a particular value of [/h. Such curves
are given in Fig. 9. It is seen that for small values of the intensity of
the load ¢, when the effect of the axial force on the deflections of the
strip is small, the maximum stress increases approximately in the same
ratio as ¢ increases. But for larger values of q the relation between the
load and the maximum stress becomes nonlinear.

In conclusion, we give in Table 1 the numerical values of all the fune-
tions plotted in Figs. 4, 5, and 8. This table can be used instead of the
curves in calculating maximum stresses and maximum deflections of long,
uniformly loaded rectangular plates.

4. Cylindrical Bending of Uniformly Loaded Rectangular Plates with
Elastically Built-in Edges. Let us assume that when bending occurs,
the longitudinal edges of the plate rotate through an angle proportional
to the bending moment at the edges. In such a case the forces acting on
an elemental strip will again be of the type shown in Fig. 7, and we shall
obtain expression (b) of the previous article for the deflections w. How-
ever, the conditions at the edges, from which the constants of integration
and the moment M, are determined, are different; v:z., the slope of the
deflection curve at the ends of the strip is no longer zero but is propor-
tional to the magnitude of the moment M,, and we have

dw
(%)z=0 = "ﬁMo (a)

where g is a factor depending on the rigidity of restraint along the edges.
If this restraint is very flexible, the quantity 8 is large, and the conditiona
at the edges approach those of simply supported edges. If the restraint
is very rigid, the quantity 8 becomes small, and the edge conditions
approach those of absolutely built-in edges. The remaining two end
conditions are the same as in the previous article. Thus we have

dw . dw _
(a?c->z=0 = —BMo ((E)z—_-w =0 ®
(W)zao = 0

Using these conditions, we find both the constants of integration and the
magnitude of M, in expression (b) of the previous article. Owing to
flexibility of the boundary, the end moments M, will be smaller than
those given by Eq. (13) for absolutely built-in edges, and the final result
can be put in the form

Mo= —v Q} i) (19)
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TaBiE 1

u  |logio 104 4/Us{logio 10* A/ Ui {logio 104 v/ Us|fo(u} | fru) | dolw) | ¥1(w) | u

0 o ) © 1.000{1.000{1.00011.000| O

0.5 3.889 3.217 3.801 0.908(0.976/ 0.905!0.984| 0.5
406 331 425

1.0 3.483 2.886 3.376 0.711{0.909(0.704{0.939; 1.0
310 223 336

1.5 3.173 2.663 3.040 0.532/0.817/0.511)0.876( 1.5
262 182 292

2.0 2.911 2.481 2.748 0.380(0.715/0.367 [ 0.806| 2.0
227 161 257

2.5 2.684 2.320 2.491 0.281/0.617/0.26810.736| 2.5
198 146 228

3.0 2.486 2.174 2.263 0.213{0.529{0.200 | 0.672| 3.0
175 134 202

3.5 2.311 2.040 2.061 0.166]0.453|0.1530.614| 3.5
156 124 180

4.0 2.155 1.916 1.881 0.132]0.388/0.1200.563| 4.0
141 115 163

4.5| 2.014 1.801 1.718 0.107/0.335/0.097 (0.519| 4.5
128 107 148

5.0 1.886 1.694 1.570 0.088i0.291/0.079|0.480}| 5.0
118 100 135

5.56| 1.768 1.594 1.435 0.074/0.254|0.066 | 0.446 5.5
108 93 124

6.0 1.660 1.501 1.311 0.063/0.223/0.055|0.417 6.0
100 88 115

6.5 1.560 1.413 1.196 0.054/0.197{0.047{0.3911| 6.5
93 82 107

7.0 1.467 1.331 1.089 0.04710.175{0.04110.367| 7.0
87 78 100

7.5 1.380 1.253 0.989 0.041/0.156{0.036 [ 0.347 7.5
82 74 94

8.0 1.208 1.179 0.895 0.036/0.141,0.0310.328| 8.0
77 70 89

8.5 1.221 1.109 0.806 0.032/0.127/0.02810.311| 8.5
73 67 83

9.0 1.148 1.042 0.723 0.029/0.115/0.025]0.296| 9.0
69 63 80

9.5 1.079 0.979 0.643 0.026/0.105/0.0220.283| 9.5
65 61 75

10.0 1.014 0.918 0.568 0.024/0.096( 0.020 | 0.270{10.0
63 58 72

10.5| 0.951 0.860 0.496 0.021(0.088(0.018|0.259110.5
59 55 69

11.0{ 0.892 0.805 0.427 0.020;0.081{0.0170.248(11.0
57 54 65

11.5] 0.835 0.751 0.362 0.0180.075/0.015[0.238(11.5
55 51 63

12.0] 0.780 0.700 0.299 0.0160.0690.01410.2291(12.0
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where v is a numerical factor smaller than unity and given by the formula
tanh u

2TB Du + tanh u

It is seen that the magnitude of the moments My at the edges depends
upon the magnitude of the coefficient 8 defining the rigidity of the
restraint. When 8 is very small, the coefficient v approaches unity,
and the moment M, approaches the value (13) calculated for absolutely
built-in edges. When 8 is very large, the coefficient v and the moment
M, become small, and the edge conditions approach those of simply
supported edges.

The deflection curve in the case under consideration can be repre-
sented in the following form:

cosh [u(l — %>]
gl tanh v — y(tanh v — u) l 1

Y= T6w'D tanh u cosh u

+ & -2 @0
8utD

For v = 1 this expression reduces to expression (14) for deflections of a
plate with absolutely built-in edges. For ¥ = 0 we obtain expression (6)
for a plate with simply supported edges.

In calculating the tensile parameter u we proceed as in the previous
cases and determine the tensile force S from the condition that the exten-
sion of the elemental strip is equal to the difference between the length of
the arc along the deflection curve and the chord length I. Hence

SQA =)l _ 1 (! /dw\?
FE 32 ﬁ (d:c) dz
Substituting expression (20) in this equation and performing the inte-

gration, we obtain

E*pt
where Uy and U, denote the right-hand sides of Egs. (8) and (15), respec-
tively, and

=0 =Us+ vUi — (1 - U, 2y

_ 27 (u — tanh u)?
T 16 u®tanh’u

The values of logo (10¢ v/ U,) are given in Table 1. By using this table,
Eq. (21) can be readily solved by the trial-and-error method. For any
particular plate we first calculate the left-hand side of the equation and,

U, (v tanh? ¥ — u + tanh u)
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by using the curves in Figs. 4 and 8, determine the values of the parame-
ter u (1) for simply supported edges and (2) for absolutely built-in edges.
Naturally u for elastically built-in edges must have a value'intermediate
between these two. Assuming one such value for u, we calculate U,, Uy,
and U; by using Table 1 and determine the value of the right-hand side
of Eq. (21). Generally this value will be different from the value of the
left-hand side calculated previously, and a new trial calculation with a
new assumed value for u» must be made. Two such trial calculations
will usually be sufficient to determine by interpolation the value of u
satisfying Eq. (21). Assoon as the parameter u is determined, the bend-
ing moments M, at the ends may be calculated from Eq. (19). - We can
also calculate the moment at the middie of the strip and find the maxi-
mum stress. This stress will occur at the ends or at the middle, depend-
ing on the degree of rigidity of the constraints at the edges.

5. The Effect on Stresses and Deflections of Small Displacements of
Longitudinal Edges in the Plane of the Plate. It was assumed in the
previous discussion that, during bending, the longitudinal edges of the
plate have no displacement in the plane of the plate. On the basis of this
assumption the tensile force S was calculated in each particular case.
Let us assume now that the edges of the plate undergo a displacement
toward each other specified by A. Owing to this displacement the
extension of the elemental strip will be diminished by the same amount,
and the equation for calculating the tensile force S becomes

SIL =) L [tfdw\:,

At the same time Eqgs. (6), (14), and (20) for the deflection curve hold
true regardless of the magnitude of the tensile force S. They may be
differentiated and substituted under the integral sign in Eq. (a). After
evaluating this integral and substituting S = 4u®D/I?, we obtain for
simply supported edges

, , 3la
Ere U T
g1 — »®)UE w? = Uo (22)
and for built-in edges
3la
258 u® + Y
E*h Ll U, (23)

q2(1 —_ vy2)2l8 u?
If A is made zero, Eqgs. (22) and (23) reduce to Egs. (8) and (15), obtained
previously for immovable edges.

The simplest case is obtained by placing compression bars between the
longitudinal sides of the boundary to prevent free motion of one edge of
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the plate toward the other during bending. Tensile forces S in the plate
produce contraction of these bars, which results in a displacement A pro-
portional to S.* If k is the factor of proportionality depending on the
elasticity and cross-sectional area of the bars, we obtain

S =kA
or, substituting S = 4u?D/[?, we obtain
A= 1 Eu®®
T k321 — )
u? 4+ :Elé v
and - ____h_. =1 + ._..E;h__
u? kIl — v?)

Thus the second factor on the left-hand side of Eqgs. (22) and (23) is a
constant that can be readily calculated if the dimensions and the elastic
properties of the structure are known. Having the magnitude of this
factor, the solution of Egs. (22) and (23) can be accomplished in exactly
the same manner as used for immovable edges.

o e

.

nn

Fie. 10

In the general case the second factor on the left-hand side of Eqs. (22)
and (23) may depend on the magnitude of the load acting on the struc-
ture, and the determination of the parameter « can be accomplished only
by the trial-and-error method. This procedure will now be illustrated
by an example that is encountered in analyzing stresses in the hull of a
ship when it meets a wave. The bottom plates in the hull of a ship are
subjected to a uniformly distributed water pressure and also to forces in
the plane of the plates due to bending of the hull as a beam. Let b be
the width of the ship at a cross section mn (Fig. 10) and [ be the frame
spacing at the bottom. When the hollow of a wave is amidships (Fig.
11b), the buoyancy is decreased there and increased at the ends. The
effect of this change on the structure is that a sagging bending moment
is produced and the normal distance I between the frames at the bottom
is increased by a certain amount. To calculate this displacement accu-
rately we must consider not only the action of the bending moment M
ou the hull but also the effect on this bending of a certain change in

* The edge support is assumed to be such that A is uniform along the edges.
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Hogging

Sagging

Fia. 11

tensile forces S distributed along the edges mn and mn, of the bottom
plate mnmm, (Fig. 10), which will be considered as a long rectangular
plate uniformly loaded by water pressure. Owing to the fact that the

D

Centroid Aq. |

Centroid A-~

- - -~
|-~ 0 -~

7

(b}
Fre. 12

plates between the consecutive
frames are equally loaded, there
will be no rotation at the longitu-
dinal edges of the plates, and they
may be considered as absolutely
built in along these edges.

To determine the value of A,
which denotes, as before, the dis-
placement of the edge mn toward
the edge min,; in Fig. 10 and which
is produced by the hull bending
moment M and the tensile reactions
S per unit length along the edges
mn and mn; of the bottom plate, let
us imagine that the plate mnmn, is
removed and replaced by uniformly
distributed forces S so that the to-
tal force along mn and mn, is Sb
(Fig. 12a). We can then say that
the displacement A of one frame
relative to another is due to the
bending moment M and to the

eccentric load Sb applied to the hull without bottom plating.
If A, I, and ¢ are the cross-sectional area, the centroidal moment of
inertia, and the distance from the bottom plate to the neutral axis of the
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complete hull section, and if Aj, I, and ¢, are the corresponding quanti-
ties for the hull section without bottom plates, the latter set of quantities
can be derived from the former by the relations

A1=A—bh
_4c
&= )

I, =TI — bhe? — Ay(er — ©)?

The relative displacement A, produced by the eccentrically applied forces
Sb is
_ i1 —»?) (8b , Sbei
& =""g (A1 T )

in which the factor 1 — »2 must be introduced if one neglects the lateral
strain. The displacement due to the bending moment M is

— MCll
8= =71,
Hence the total displacement is
_ _ A=) [8b  Sbey  Me
A_A1+A2—T[_A_1+ Iy 11(1—1'2)] ©

Substituting in this expression
4utD _ FEuh®

8= =spa—»
we finally obtain
_wh (b | bef\ Ml
A= (A1 + 11> ET, @

This quantity must be substituted in Eq. (23) for determining the tensile
parameter u.

Let us apply this theory to a numerical example. Assume b = 54 ft,
I =1,668 ft, A = 135 ft2, ¢ = 12.87 ft, h = 0.75 in. = 0.0625 ft,
l =45 1in. = 3.75 ft, ¢ = 10 psi, M = 123,500 ft-tons. From Egs. (b)
we obtain

A; = 13.5 — 0.0625 - 54 = 10.125 ft?
13.5 - 12.87

I, = 1,668 — 559.0 — 10.125(17.16 — 12.87)2 = 922.7 ft¢

Substituting these values in expression (d), we calculate A and finally

obtain
3Al

S i 1.410u% — 11.48
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Equation (23) then becomes
E?h® u? + 1.410u? — 11.48 _

(1 — )28 ul U,
1.552Eh* u? — 4.763 Y
or gl — »H)i* u2 = VU

Substituting numerical values and taking logarithms of both sides,

we obtain
2 3
3.597 + loguo 4 f%@ = loguo (10¢ VT

Using the curve in Fig. 8, this equation can be readily solved by the
trial-and-error method, and we obtain u = 2.187 and, from Fig. 5,
Y1(u) = 0.780. The maximum stress is now calculated by using Egs.
(16) and (17), from which
30108 - 4.783 . .

g = —m = 14,()00 pst

o2 = 410602 0.780 = 14,040 psi
= 01 + gg = 28,640 pSl

T max

If the bending stress in the plate due to water pressure were neglected
and if the bottom plate stress were calculated from the formulae = Me¢/1,
we would arrive at a figure of only 13,240 psi.

6. An Approximate Method of Calculating the Parameter u. In calcu-
lating the parameter u for plates in which the longitudinal edges do not
move in the plane of the plate, we used the equation

SiL =) 1 [ {dw\
T RE ‘5[)(%) dz @

which states that the extension of an elemental strip produced by the
forces S is equal to the difference between the length of the arc along the
deflection curve of the strip and the chord length I. In the particular
cases considered in the previous articles, exact expressions for the deflec-
tions w were derived, and numerical tables and curves for the right-hand
side of Eq. (a) were given. When such tables are not at hand, the solu-
tion of the equation becomes complicated, and to simplify the problem
recourse should be had to an approximate method. From the discussion
of bending of beams it is known! that, in the case of simply supported
ends with all lateral loads acting in the same direction, the deflection
curve of an elemental strip produced by a combination of a lateral load
and an axial tensile force S (Fig. 3) can be represented with sufficient

! See Timoshenko, “Strength of Materials,” part II, 3d ed., p. 52, 1956.
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accuracy by the equation
_ Wo . 1_I'£
w-—-————l_I_asml b)
in which w, denotes the deflection at the middle of the strip produced by
the lateral load alone, and the quantity « is given by the equation

_s_se ©
= S.. =D
Thus, « represents the ratio of the axial force S to the Euler critical load
for the elemental strip.
Substituting expression (b) in Eq. (a) and integrating, we obtain
Si(1 — »?) m2w}
hE T 40 + )t

Now, using notation (¢) and substituting for D its expression (3), we
finally obtain

a(l + @) = -h—; (24)

From this equation the quantity « can be calculated in each particular
case, and the parameter u is now determined from the equation

w=2-T2 @

To show the application of the approximate Eq. (24) let us take a
numerical example. A long rectangular steel plate with simply sup-
ported edges and of dimensions I = 50 in. and A = £ in. is loaded with a
uniformly distributed load ¢ = 20 psi. In such a case

o = B0
384 D
and, after substituting numerical values, Eq. (24) becomes
a(l + a)? = 269.56
The solution of the equation can be simplified by letting

l+a==z (e)
Then x® — 2?2 = 269.56

1.e., the quantity z is such that the difference between its cube and its
square has a known value. Thus z can be readily determined from a
slide rule or a suitable table, and we find in our case

z = 6.8109 and a = 5.8109
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Then, from Eq. (d)
u = 3.7865

and from the formula (e) (see page 9)
Yo = 0.13316

For calculating direct stress and maximum bending stress we use Eqs.
(10) and (11). In this way we find

¢1 = 15,759 psi
oy = 19,974 psi
Omax = 01 + 02 = 35,733 psi

The calculations made in Art. 2 (page 11) give, for this example,
Gmax = 35,760 psi

Thus the accuracy of the approximate Eq. (24) is in this case very high.
In general, this accuracy depends on the magnitude of w. The error
increases with increase of u. Calculations show that for v = 1.44 the
error in the maximum stress is only 0.065 of 1 per cent and that for
u = 12.29, which corresponds to very flexible plates, it is about 0.30 of
1 per cent. These values of « will cover the range ordinarily encountered
in practice, and we conclude that Eq. (24) can be used with sufficient
accuracy in all practical cases of uniformly loaded plates with simply
supported edges.

It can also be used when the load is not uniformly distributed, as in
the case of a hydrostatic pressure nonuniformly distributed along the
elemental strip. If the longitudinal force is found by using the approxi-
mate Eq. (24), the deflections may be obtained from Eq. (b), and the
bending moment at any cross section may be found as the algebraic sum
of the moment produced by the lateral load and the moment due to the
longitudinal force.!

In the case of built-in edges the approximate expression for the deflec-
tion curve of an elemental strip can be taken in the form

_w Mo
w—1+a/42<1 cos l) o

in which w, is the deflection of the built-in beam under the lateral load
acting alone and « has the same meaning as before. Substituting this
expression in Eq. (a¢) and integrating, we obtain for determining « the
equation

! More accurate values for the deflections and for the bending moments can be
obtained by substituting the approximate value of the longitudinal force in Eq. (4)
and integrating this equation, which gives Eqs. (12) and (9).
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a\? 3w}
a (1 + 71) = -}79 (25)

which can be solved in each particular case by the method suggested for
solving Eq. (24).

When o is found, the parameter u is determined from Eq. (d); the
maximum stress can be calculated by using Eqs. (16) and (17); and the
maximum deflection, by using Eq. (18).

If, during bending, one edge moves toward the other by an amount A,

the equation
Si(1 —») 1 [tfdw\*,
RE T2 ﬁ <<%> dz =4 @

must be used instead of Eq. (a). Substituting expression (b) in this
equation, we obtain for determining « in the case of simply supported

edges the equation

Al
a(l + a)? e

a s
In the case of built-in edges we use expression (f). Then for determin-
ing a we obtain

(26)

Al
a\r ¥ + 12 w2h? 3w}

a(1+71>_a—~_? 27)
If the dimensions of the plate and the load ¢ are given, and the displace-
ment A is known, Eqs. (26) and (27) can both be readily solved in the
same manner as before. If the displacement A is proportional to the
tensile force S, the second factor on the left-hand sides of Eqs. (26) and
(27) is a constant and can be determined as explained in the previous
article (see page 21). Thus again the equations can be readily solved.

7. Long Uniformly Loaded Rectangular Plates Having a Small Initial
Cylindrical Curvature. It is seen from the discussions in Arts. 2 and 3
that the tensile forces 8 contribute to the strength of the plates by
counteracting the bending produced by lateral load. This action
increases with an increase in deflection. A further reduction of maxi-
mum stress can be accomplished by giving a suitable initial curvature
to a plate. The effect on stresses and deflections of such an initial curva-
ture can be investigated! by using the approximate method developed in
the previous article.

Let us consider the case of a long rectangular plate with simply sup-
ported edges (Fig. 13), the initial curvature of which is given by the
equation

1 See 8. Timoshenko’s paper in ‘‘Festschrift zum siebzigsten Geburtstage August
Foppls,” p. 74, Berlin, 1923.
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wy = § sin 1rl_a: (a)
If tensile forces S are applied to the edges of the plate, the initial
deflections (a) will be reduced in the ratio 1/(1 + o), where « has the
same meaning as in the previous article! (page 25). The lateral load in
combination with the forces S will produce deflections that can be
expressed approximately by Eq. (b) of the previous article. Thus the
total deflection of the plate, indicated in Fig. 13 by the dashed line, is

@ . WX we . wx _ 8+ wo . wx
—1+asml+ =

w TFa T T 7 ®)

Assuming that the longitudinal edges of the plate do not move in the
plane of the plate, the tensile force S is found from the condition that
the extension of the elemental strip produced by the forces S is equal to

qt \\\;_ _\_,// ﬂ
z W T T 2

Fie. 13

the difference between the length of the arc along the deflection curve
of the elemental strip and the initial length of the strip. This difference,
in the case of small deflections, is given by the equation

_ 1 [tfdw\ 1 [t (dw\
e G

Substituting expressions (¢) and (b) for w and w; and integrating, we

obtain
_ w3 wo) _
=T () -

Putting A\ equal to the extension of the strip SI(1 — »?)/hE, we finally
obtain.

a(l + )2 =

2 2 o 2

3(d -;L-zwo) 3 (lh;l- ) 28)

If we take & = 0, this equation reduces to Eq. (24) for a plate without
initial curvature.

To show the effect of the initial curvature on the maximum stress in a

plate, let us apply Eq. (28) to a numerical example. Assume that a

steel plate having [ = 45 in. and h = § in. is submitted to the action of

1 See Timoshenko, ‘‘Strength of Materials,” part II, 3d ed., p. 52, 1956.
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a uniformly distributed load ¢ = 10 psi. If there is no initial deflection,
8 = 0 and Eq. (28) becomes

a(l + )2 = 290
from which

a=597 and u=gv2=&%

From Eq. (10) we then obtain

a1 = 11,300 psi
and from Eq. (11)
o, = 14,200 psi

The maximum stress in the plate is
Tmax — 01 + g2 = 25,500 pSi

Let us now assume that there is an initial deflection in the plate such that
8 =h = 4in. In such a case Eq. (28) gives

a(l + a)? = 351.6 — 3(1 4+ «)?

Letting
l4+a==z
we obtain
z® + 22% = 351.6
from which
=645 o=545 u=’§'x/2=367

The tensile stress, from Eq. (10), is
ey = 10,200 psi

In calculating the bending stress we must consider only the change in
deflections
ke ad . mx

sin

Wo .
T+ T 157 )

w—w =

The maximum bending stress, corresponding to the first term on the
right-hand side of Eq. (d), is the same as for a flat plate with v = 3.67.
From Table 1 we find ¢, = 0.142 and from Eq. (11)

= 15,300 psi

The bending moment corresponding to the second term in Eq. (d) is

-D a sin — 1rx = ox’ 8D sin — ‘n
dr? 1 + T F e
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This moment has a negative sign, and a corresponding maximum stress of

6 an?éD .
"o 9 =
RO F b 9,500 psi
must be subtracted from the bending stress o; calculated above. Hence
the maximum stress for the plate with the initial deflection is

Fmsx = 10,200 + 15,300 — 9,500 = 16,000 psi

Comparison of this result with that obtained for the plane plate shows
that the effect of the initial curvature is to reduce the maximum stress
from 25,500 to 16,000 psi. This result is obtained assuming the initial
deflection equal to the thickness of the plate. By increasing the initial
deflection, the maximum stress can be reduced still further.

8. Cylindrical Bending of a Plate on an Elastic Foundation. Let us consider the
problem of bending of a long uniformly loaded rectangular plate supported over the
entire surface by an elastic foundation and rigidly supported along the edges (Fig. 14).

Cutting out from the plate an elemental strip, as before, we may consider it as a beam
on an elastic foundation. Assuming that the reaction of the foundation at any point
is proportional to the deflection w at that point, and using Eq. (4), we obtain by double
differentiation of that equation!
dw

D ik B kw (29)
where ¢ is the intensity of the load acting on the plate and & is the reaction of the
" foundation per unit area for a deflection equal to unity. Introducing the notation

k

l
B=35ip (30)

the general solution of Eq. (29) can be written as follows:

2, 28z 2
l% +Clsln—?— smhggE + Cssin %co hﬁ:+Cgcos—f—smhﬂ

2
+ Cycos f cosh -—?—:f (a)
The four constants of integration must now be determined from the conditions at the
ends of the strip. In the case under consideration the deflection is symmetrical with
respect to the middle of the strip. Thus, taking the coordinate axes as shown in Fig.

1 Ibid., p. 21. .
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14, we conclude! that C; = C; = 0. The constants C: and C, are found from the
conditions that the deflection and the bending moment of the strip are zero at the end
=[/2). Hence
W)tz = 0

dww
(d?)z-lm =0 (b)

Substituting expression (a) for w and observing that C; = C; = 0, we obtain

%+Clsinﬁsinh8+C4cosﬁcoshﬁ=0 ©

Cicos Bcosh 8 — Cysin Bsinh 8 =0
from which we find

sin 8 sinh 8 _ g 2 sin 8 sinh 8
G = k sin? 8 sinh? 8 - cos? 8 cosh? 8 - k cos 28 4 cosh 28
Cr = q cos 8 cosh 8 1 2 cos 8 cosh 8
*T 7 ksint 8 sinh? 8 + cos? 8 cosh? B k cos 28 + cosh 28

Substituting these values of the constants in expression (a) and using Eq. (30), we
finally represent the deflection of the strip by the equation

qlt ( 2sin Bsinh 8 2/33: 28z

W= GaDp\' " cos 28 +ooshze " 1 SRR
2 cos 8 cosh 8 2491: 28z
P bt B = d
cos 28 + cosh 28 e osh l ) @

The deflection at the middle is obtained by substituting z = 0, which gives

(w)zmo = 384D vp(ﬂ) €29

where o(B) = 6 i — 2 cos B cosh 8
584 cos 28 + cosh 28
To obtain the angles of rotation of the edges of the plate, we differentiate expression
(d) with respect to z and put z = —1/2. In this way we obtain
dw ql3
( - ),-_m = 5 0® (32)

where o®) = i sinh 28 — sin 28

48% cosh 28 + cos 28
The bending moment at any cross section of the strip is obtained from the equation
M= -D dw
dz?

Substituting expression (d) for w, we find for the middle of the strip

l2
(M)py = ‘% #2(8) (33)

2 sinh Bsin g
h =2 PP
where ox(f) B2 cosh 28 4 cos 28

! It is seen that the terms with coefficients C» and C; change sign when z is replaced
by —z.
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To simplify the calculation of deflections and stresses, numerical values of functions
@, ¢1, and g; are given in Table 2. For small values of 8, that is, for a yielding founda-
tion, the functions ¢ and ¢ do not differ greatly from unity. Thus the maximum
deflection and bending stresses are close to those for a simply supported strip without
an elastic foundation. With an increase in 8, the effect of the foundation becomes
more and more important.

P z |4
A S DYS SR
o 7 »ré 7 > l
——— Y
S S USSR TUSUSISI &
A W %
F16. 15

Conditions similar to those represented in Fig. 14 are obtained if a long rectangular
plate of width [ is pressed into an elastic foundation by loads uniformly distributed
along the edges and of the amount P per unit length (Fig. 15). The plate will be

TarLE 2
8 ¢ o1 o2 8 ¢ ot 2
0.1 1.000 1.000 1.000 1.6 0.186 0.200 0.164
0.2 0.999 0.999 0.999 1.7 0.151 0.166 0.129
0.3 0.996 0.995 0.995 1.8 0.124 0.138 0.101
0.4 0.984 0.983 0.983 1.9 0.102 0.116 0.079
0.5 0.961 0.961 0.959 2.0 0.084 0.099 0 062
0.6 0.921 0.923 0.919 2.2 0.058 0.072 0.037
0.7 0.863 0.866 0.859 2.4 0.042 0.055 0.021
0.8 0.787 0.791 0.781 2.6 0.029 0.043 0.011
0.9 0.698 0.702 0.689 2.8 0.022 0.034 0.005
1.0 0.602 0.609 0.591 3.0 0.016 0.028 0.0C2
1.1 0.508 0.517 0.494 3.2 0.012 0.023 0.000
1.2 0.421 0.431 0.405 3.4 0.010 0.019 -0.001
1.3 0.345 0.357 0.327 3.6 0.007 0.016 —-0.002
1.4 0.281 0.294 0.262 3.8 0.006 0.014 -0.002
1.5 0.228 0.242 0.208 4.0 0.005 0.012 —-0.002

pressed into the elastic foundation and bent, as shown by the dashed line. If sdenotes
the deflection at the edges of the plate, the reaction of the foundation at any point is

k(6 — w) = ké — kw

where w is give.. by Eq. (d) with ¢ = k5. The magnitude of 3 is then obtained from
the condition that tl.e load is balanced by the reaction of the foundation. Hence

ksl 1/2
=——Ic/ wdzx
2 0

Plates on elastic foundation with other conditions at the longitudinal edges can
also be discussed in a similar manner.



CHAPTER 2

PURE BENDING OF PLATES

9. Slope and Curvature of Slightly Bent Plates. In discussing small
deflections of a plate we take the middle plane of the plate, before bend-
ing occurs, as the zy plane. During bending, the particles that were in
the zy plane undergo small displacements w perpendicular to the zy plane
and form the middle surface of the plate. These displacements of the
middle surface are called deflections of a plate in our further discussion.
Taking a normal section of the plate parallel
to the "zz plane (Fig. 16a), we find that the /r‘mt}:_‘;uf—"‘

1 ~ |

slope of the middle surface in the z direction +T————P

. Y ' /dW
ist; = dw/dz. . In the same manner the slope l \'\J‘,L
in the y direction is ¢, = dw/dy. Taking ]
. . . . m z (a)
now any direction an in the zy plane (Fig. 0
16b) making an angle « with the z axis, we find x
that the difference in the deflections of the two dx
adjacent points a and a, in the an direction is m o 4
%4 N
dw ow X\
= v ow )
dw e dz + 3y dy n
y (b
and that the corresponding slope is Fic. 16
ow _odwdr | dwdy _ dw dw .
on  drdn ' dydn oz cosa+6ysma (@)

To find the direction a; for which the slope is a maximum we equate to
zero the derivative with respect to a of expression (a) In this way we
obtain

ow fow

tan ay = —a‘g 5; (b)

Substituting the corresponding values of sin «; and cos «; in (a), we obtain
for the maximum slope the expression

/ 6w> \/ aw)2 (aw>’
). =G + (G ©
By setting expression (@) equal to zero we obtain the direction for which
33
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the slope of the surface is zero. The corresponding angle a, is deter-
mined from the equation

dw /ow
tanaz——a—x/@ (d)
From Egs. (b) and (d) we conclude that

tan «; tan as = —1

which shows that the directions of zero slope and of maximum slope are
perpendicular to each other.

In determining the curvature of the middle surface of the plate we
observe that the deflections of the plate are very small. In such a case
the slope of the surface in any direction can be taken equal to the angle
that the tangent to the surface in that direction makes with the zy plane,
and the square of the slope may be neglected compared to unity. The
curvature of the surface in a plane parallel to the zz plane (Fig. 16) is
then numerically equal to

L_ o (m)_ _ow ©
Tz Iz \ 8x dx?
We consider a curvature positive if it is convex downward. The minus
sign is taken in Eq. (e), since for the deflection convex downward, as

shown in the figure, the second derivative d%*w/dz? is negative.
In the same manner we obtain for the curvature in a plane parallel to

the yz plane
1 9 [ow w
Fe ) ?

These expressions are similar to those used in discussing the curvature
of a bent beam.

In considering the curvature of the middle surface in any direction an
(Fig. 16) we obtain

1__ 9 (ow
r.  On\9n
Substituting expression (a) for dw/dn and observing that
a a aJa .
In —acosa+@sma
we find
1 2 a . ow ow .
"= -—(—a—xcos:x+5§sma)(a cos«x+£sma>
_ 2w . iw . ?tw .,
= (6:1:2 cos?a + 2 3z 9y sin « ¢os a + 3 sin a)
1,1 1.,
= - costa— - sm2a+rsma ()

* *y v
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It is seen that the curvature in any direction » at a point of the middle
surface can be calculated if we know at that point the curvatures

1__ow 1 _ ow
r» 0zt 1, 9y
and the quantity
1 w
T OOy (h)

which is called the twist of the surface with respect to the x and y axes.
If instead of the direction an (Fig. 16b) we take the direction af per-

pendicular to an, the curvature in this new direction will be obtained from

expression (g) by substituting /2 + « for . Thus we obtain

1 1 .
= = —s1n2a+—s1n 2a-|-—cos2 @)
e Tz rzy lI

Adding expressions (g) and (z), we find

1 1 1 1
RtRTn T @9
which shows that at any point of the middle surface the sum of the
curvatures in two perpendicular directions such as n and ¢ is independent
of the angle «. This sum is usually called the average curvature of the
surface at a point.
The twist of the surface at a with respect to the an and at directions is

1 d(dv
rne  dt\dn

In calculating the derivative with respect to ¢, we observe that the
direction at is perpendicular to an. Thus we obtain the required deriva-
tive by substituting 7/2 + « for « in Eq. (¢). In this manner we find

1 9 i) ow w
E—<axcosa+—-?;sma><—-a—sma+ ycosa)

sin2a<———+ )+cos2a

02w
dx? dx dy

. 1 1 .
= g sin 2a<E——r—u)+cos 2aTy )]

In our further discussion we shall be interested in finding in terms of «
the directions in which the curvature of the surface is a maximum or a
minimum and in finding the corresponding values of the curvature. We
obtain the necessary equation for determining « by equating the deriva-
tive of expression (g) with respect to a to zero, which gives

1. 2 1. _
Esm2a+;—cos2a—;sm2a—0 &)

2y v
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whence
2

tan 2a = — ~ITL1' (35)

Tz Ty

I'rom this equation we find two values of «, differing by /2. Substitut-
ing these in Eq. (g) we find two values of 1/r,, one representing the
maximum and the other the minimum curvature at a point a of the sur-
face. These two curvatures are called the principal curvatures of the
surface; and the corresponding planes naz and faz, the principal planes of
curvature.

Observing that the left-hand side of Eq. (k) is equal to the doubled
value of expression (j), we conclude that, if the directions an and at (Fig.
16) are in the principal planes, the corresponding twist 1/r,; is equal to
zZero.

We can use a circle, similar to Mohr’s circle representing combined
stresses, to show how the curvature and the twist of a surface vary with
the angle a.* To simplify the discussion we assume that the coordinate
planes xz and yz are taken parallel to the principal planes of curvature
at the point a. Then

1

Tay

i

™ and we obtain from Egs. (g) and (j)
for any angle «

A rl=%cos2a+r—lsin2a
L it u v 36
o RN VN R
Fia. 17 Tat 2\r; v )

Taking the curvatures as abscissas and the twists as ordinates and con-
structing a circle on the diameter 1/r, — 1/r,, as shown in Fig. 17, we see
that the point A defined by the angle 2« has the abscissa

OC+CB=_

1 1 1/1 1 .
2<E+;;)+§<;—-;”)0052a

1 1 .
= costa + — sin? a
Te ry

OB

and the ordinate

2\r. 1,
Comparing these results with formulas (36), we conclude that the coordi-
* See 8. Timoshenko, !‘Strength of Materials,” part I, 3d ed., p. 40, 1955.

:4—B=l(_1__1>sm2a



PURE BENDING OF PLATES 37

nates of the point A define the curvature and the twist of the surface for
any value of the angle o. It is seen that the maximum twist, represented
by the radius of the circle, takes place when a = /4, i.c., when we take
two perpendicular directions bisecting the angles between the principal
planes.

In our example the curvature in any direction is positive; hence the
surface is bent convex downward. If the curvatures 1/r, and 1/r, are
both negative, the curvature in any direction is also negative, and we have
a bending of the plate convex upward. Surfaces in which the curvatures
in all planes have like signs are called synclastic. Sometimes we shall
deal with surfaces in which the two principal curvatures have opposite
signs. A saddle is a good example. Such surfaces are called anticlastic.
The circle in Fig. 18 represents a particular case of such surfaces when

My
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Fic. 18 Fig. 19
1/r, = —1/r,. It is seen that in this case the curvature becomes zero

for @« = x/4 and for @ = 3x/4, and the twist becomes equal to +1/r..
10. Relations between Bending Moments and Curvature in Pure
Bending of Plates. In the case of pure bending of prismatic bars a
rigorous solution for stress distribution is obtained by assuming that
cross sections of the bar remain plane during bending and rotate only
with respect to their neutral axes so as to be always normal to the deflec-
tion curve. Combination of such bending in two perpendicular directions
brings us to pure bending of plates. Let us begin with pure bending of a
rectangular plate by moments that are uniformly distributed along the
edges of the plate, as shown in Fig. 19. We take the xy plane to coincide
with the middle plane of the plate before deflection and the x and y axes
along the edges of the plate as shown. The z axis, which is then per-
pendicular to the middle plane, is taken positive downward. We denote
by M, the bending moment per unit length acting on the edges parallel
to the y axis and by M, the moment per unit length acting on the edges
parallel to the z axis. These moments we consider positive when they
are directed as shown in the figure, 7.e., when they produce compression
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in the upper surface of the plate and tension in the lower. The thickness
of the plate we denote, as before, by k and consider it small in comparison
with other dimensions.

Let us consider an element cut out of the plate by two pairs of planes
parallel to the zz and yz planes, as shown in Fig. 20. Since the case shown
in Fig. 19 represents the combination of two uniform bendings, the stress
conditions are identical in all elements, as shown in Fig. 20, and we have

a uniform bending of the plate. Assuming
~%o-mdx--—>  that during bending of the plate the lateral

d,y,_/v : sides of the element remain plane and rotate
2 about the neutral axes nn so as to remain nor-
2 ¢ mal to the deflected middle surface of the
b plate, it can be concluded that the middle
2
b plane of the plate does not undergo any ex-

tension during this bending, and the middle
surface is therefore the neutral surface.! Let
1/r, and 1/r, denote, as before, the curva-
tures of this neutral surface in sections parallel to the xz and yz planes,
respectively. Then the unit elongations in the x and y directions of an
elemental lamina abed (Fig. 20), at a distance z from the neutral surface,
are found, as in the case of a beam, and are equal to

z 2
&= €y =7‘_v (@)

Using now Hooke’s law [Eq. (1), page 5], the corresponding stresses in

the lamina abed are
Ez 1 1
0z = 7 vz('r:-*- V;y)

(®)
o) = _Ez_(_lJ” 1)

1 —»\r, Tz

These stresses are proportional to the distance z of the lamina abed from
the neutral surface and depend on the magnitude of the curvatures of the
bent plate.

The normal stresses distributed over the lateral sides of the element in
Fig. 20 can be reduced to couples, the magnitudes of which per unit
length evidently must be equal to the external moments M and M,. In
this way we obtain the equations

h/2

/ oz dyde = M, dy
e ()
h/2

[ o2dzdz = M, dz
—h/2

1 1t will be shown in Art. 13 that this conclusion is accurate enough if the deflections
of the plate are small in comparison with the thickness A.
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Substituting expressions (b) for ¢, and ¢, we obtain
1 1 % %
w= (g +r2) = -2 (5 + ) @D
1 1 %w 9w

where D is the flexural rigidity of the plate defined by Eq. (3), and w
denotes small deflections of the plate in the z direction.

Let us now consider the stresses acting on a section of the lamina
abed parallel to the z axis and inclined to the z and y axes. If acd (Fig. 21)
represents a portion of the lamina cut by such a section, the stress acting
on the side ac can be found by means of the equations of statics. Resolv-
ing this stress into a normal component ¢, and a shearing component 7,

b3
’< -------- dx ——m e
Oy
e 1
T
]
H
dy .‘_No(,
L_ Tt Ngp
s Mt
M, n
(a}
Fie. 21

the magnitudes of these components are obtained by projecting the forces
acting on the element acd on the n and ¢ directions respectively, which
gives the known equations

o, = 0y €082 a + ¢, sin? «
3oy — 0,) sin 2

@

Il

Tnt

in which « is the angle between the normal n and the r axis or between
the direction ¢ and the y axis (Fig. 21a). The angle is considered positive
if measured in a clockwise direction.

Considering all laminas, such as acd in Fig. 21b, over the thickness of
the plate, the normal stresses o, give the bending moment acting on the
section ac of the plate, the magnitude of which per unit length along ac
is
/2
—h/2

M, = onzdz = M, cos? a + M, sin? « (39)

The shearing stresses r,; give the twisting moment acting on the section
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ac of the plate, the magnitude of which per unit length of ac is
My = = [1% ruzde = g sin 2a(M. — M) (40)

The signs of M, and M, are chosen in such a manner that the positive
values of these moments are represented by vectors in the positive direc-
tions of n and ¢ (Fig. 21a) if the rule of the right-hand screw is used.
When « is zero or =, Eq. (39) gives M,, = M,. Fora = v/2 or 3n/2, we
obtain M, = M,. The moments M,, become
zero for these values of @. Thus we obtain
the conditions shown in Fig. 19.

Equations (39) and (40) are similar to Eqs.
(36), and by using them the bending and
twisting moments can be readily calculated
for any value of @. We can also use the
graphical method for the same purpose and
find the values of M, and M, from Mohr’s
circle, which can be constructed as shown in the previous article by tak-
ing M, as abscissa and M, as ordinate. The diameter of the circle will
be equal to M, — M,, as shown in Fig. 22. Then the coordinates OB and
AB of a point A, defined by the angle 2«, give the moments M, and M.,
respectively.

Let us now represent M, and M,, as functions of the curvatures and
twist of the middle surface of the plate. Substituting in Eq. (39) for
M. and M, their expressions (37) and (38), we find

1 1. 1. 1
M, = D(r_ cos? a + - sin? a) + D (— sin? a 4 - cos? a)

Mnt A
Fic. 22

z v Tz v

Using the first of the equations (36) of the previous article, we conclude
that the expressions in parentheses represent the curvatures of the middle
surface in the n and ¢ directions respectively. Hence

1 1 w 9w

To obtain the corresponding expression for the twisting moment M,,,
let us consider the distortion of a thin lamina abed with the sides ab and
ad parallel to the n and ¢ directions and at a distance z from the middle
plane (Fig. 23). During bending of the plate the points @, b, ¢, and d
undergo small displacements. The components of the displacement of
the point @ in the n and ¢ directions we denote by u and » respectively.
Then the displacement of the adjacent point d in the n direction is
u + (du/dt) di, and the displacement of the point b in the ¢ direction is
v 4+ (8v/9n) dn. Owing to these displacements, we obtain for the shear-
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ing strain
ou i
Tt = oy + n (e)
The corresponding shearing stress is
du o
Tnt"G<§+5;'l (f)

From Fig. 23b, representing the section of the middle surface made by
the normal plane through the » axis, it may be seen that the angle of
rotation in the counterclockwise direction of an element pg, which
initially was perpendicular to the zy plane, about an axis perpendicular
to the nz plane is equal to —dw/dn. Owing to this rotation a point of the

x
\“/4 . .n
V) /\\\ %& q. _Q_w.
/9 ™ _on
F AR
. 7 // n n
L~ b “ (b)
.‘/ \| l«)‘ Q"
t/ 7 M %
’
y uvllat
(a) ©
Fia. 23

element at a distance z from the neutral surface has a displacement in the
n direction equal to
U = —z %

Considering the normal section through the ¢ axis, it can be shown that
the same point has a displacement in the ¢ direction equal to

ow
3t

v = —z

Substituting these values of the displacements « and v in expression (f),
we find

w
Tat = —2GZ bn—at (42)
and expression (40) for the twisting moment becomes
12 Gh? 3w 9%w
ﬂ[nt = = /—h/21'ntz dz = —6— aT'a—t = D(l - V)aTa—t (43)
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It is seen that the twisting moment for the given perpendicular directions
n and ¢ is proportional to the twist of the middle surface corresponding to
those directions. When the n and ¢ directions coincide with the z and
y axes, there are only bending moments M. and M, acting on the sections
perpendicular to those axes (Fig. 19). Hence the corresponding twist is
zero, and the curvatures 1/r, and 1/7, are the principal curvatures of the
middle surface of the plate. They can readily be calculated from
Eqgs. (37) and (38) if the bending moments M, and M, are given. The
curvature in any other direction, defined by an angle «, can then be
calculated by using the first of the equations (36), or it can be taken from
Fig. 17.

Regarding the stresses in a plate undergoing pure bending, it can be
concluded from the first of the equations (d) that the maximum normal
stress acts on those sections parallel to the zz or yz planes. The magni-
tudes of these stresses are obtained from Eqs. (b) by substitutingz = h/2
and by using Eqgs. (37) and (38). In this way we find

6M. 6
(0';) max — 7e (o'y) max = he Y (44)

If these stresses are of opposite sign, the maximum shearing stress acts in
the plane bisecting the angle between the 2z and yz planes and is equal to

1 (M, — M,
Tmax = § (Uz - a'y) = —(—h—z—)' (45)

If the stresses (44) are of the same sign, the maximum shear acts in the
plane bisecting the angle between the zy and xzz planes or in that bisecting
the angle between the zy and yz planes and is equal t0 4(6})max OF 3(02) max,
depending on which of the two principal stresses (0y)msx OF (02)max 18
greater.

11, Particular Cases of Pure Bending. In the discussion of the previ-
ous article we started with the case of a rectangular plate with uniformly
distributed bending moments acting along the edges. To obtain a gen-
eral case of pure bending of a plate, let us imagine that a portion of any
shape is cut out from the plate considered above (Fig. 19) by a cylindrical
or prismatic surface perpendicular to the plate. The conditions of bend-
ing of this portion will remain unchanged provided that bending and
twisting moments that satisfy Eqs. (39) and (40) are distributed along the
boundary of the isolated portion of the plate. Thus we arrive at the
case of pure bending of a plate of any shape, and we conclude that pure
bending is always produced if along the edges of the plate bending
moments M, and twisting moments M, are distributed in the manner
given by Eqgs. (39) and (40).

Let us take, as a first example, the particular case in which

M.=M,=M



PURE BENDING OF PLATES 43

It can be concluded, from Egs. (39) and (40), that in this case, for a plate
of any shape, the bending moments are uniformly distributed along the
entire boundary and the twisting moments vanish. From Egs. (37) and
(38) we conclude that

— == (46)
i.e., the plate in this case is bent to a spherical surface the curvature of

which is given by Eq. (46).
In the general case, when M, is different from M,, we put

Mz = M1 and M,, = Mz
Then, from Eqgs. (37) and (38), we find
02w _ M1 - VMz

9zt D — #)
6_’1_0 _ M2 bl VMl (a)
3y DU — )
and in addition
2w
dx dy 0 )

Integrating these equations, we find

__MI_VMZ 2_M2“"1'M1
Y= Tepa=-m® A=Y TOtwt G (@

where C,, C,;, and C; are constants of integration. These constants
define the plane from which the deflections w are measured. If this
plane is taken tangent to the middle surface of the plate at the origin,
the constants of integration must be equal to zero, and the deflection
surface is given by the equation

Ml—ng 9 Mg—le

= - - _ T a2
Y= —spa =% Tapa =Y )
In the particular case where M, = M, = M, we get from Eq. (d)
- M@+ y)
Y= T SDA T ©

i.e., a paraboloid of revolution instead of the spherical surface given by
Eq. (46). The inconsistency of these results arises merely from the use
of the approximate expressions d2w/dz? and d%w/dy? for the curvatures
1/r, and 1/r, in deriving Eq. (¢). These second derivatives of the
deflections, rather than the exact expressions for the curvatures, will be
used also in all fuirther considerations, in accordance with the assump-
tions made in Art. 9. This procedure greatly simplifies the fundamental
equations of the theory of plates.
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Returning now to Eq. (d), let us put M, = —M,. In this case the
principal curvatures, from Eqgs. (a), are

1__1_ _sw_ M
Pl e T ) 0
and we obtain an anticlastic surface the equation of which is
= - .____M_l___ 2 92

Straight lines parallel to the = axis become, after bending, parabolic
curves convex downward (Fig. 24), whereas straight lines in the y direc-
tion become parabolas convex upward. Along the lines bisecting the
angles between the x and y axes we have x = y, or £ = —y; thus deflec-
tions along these lines, as seen from Eq. (g), are zero. All lines parallel
to these bisecting lines before bending remain straight during bending,
rotating only by some angle. A rectangle abed bounded by such lines
will be twisted as shown in Fig. 24.
Imagine normal sections of the plate
along lines ab, bec, ¢d, and ad. From
Egs. (39) and (40) we conclude that
bending moments along these sections
are zero and that twisting moments
along sections ad and bc are equal to
M, and along sections ab and cd are
equal to —M;. Thus the portion abed of the plate is in the condition of
a plate undergoing pure bending produced by twisting moments uni-
formly distributed along the edges (Fig. 25a). These twisting moments
are formed by the horizontal shearing stresses continuously distributed
over the edge [Eq. (40)]. This horizontal stress distribution can be
replaced by vertical shearing forces which produce the same effect as
the actual distribution of stresses. To show this, let the edge ab be
divided into infinitely narrow rectangles, such as mnpq in Fig. 25b. If
A is the small width of the rectangle, the corresponding twisting couple
is MA and can be formed by two vertical forces equal to M, acting along
the vertical sides of the rectangle. This replacement of the distributed
horizontal forces by a statically equivalent system of two vertical forces
cannot cause any sensible disturbance in the plate, except within a distance
comparable with the thickness of the plate,! which is assumed small.
Proceeding in the same manner with all the rectangles, we find that all
forces M, acting along the vertical sides of the rectangles balance one
another and only two forces M, at the corners a and d are left. Making

Fic. 24

1 This follows from Saint Venant’s principle; see 8. Timoshenko and J. N. Goodier,
“Theory of Elasticity,” 2d ed., p. 33, 1951.
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the same transformation along the other edges of the plate, we conclude
that bending of the plate to the anticlastic surface shown in Fig. 25a can
be produced by forces concentrated at the corners! (Fig. 25¢). Such an
experiment is comparatively simple to perform, and was used for the
experimental verification of the theory of bending of plates discussed
above.? Inthese experiments the deflections of the plate along the line bod
(Fig. 24) were measured and were found to be in very satisfactory agree-
ment with the theoretical results obtained from Eq. (g). Some dis-
crepancies were found only near the edges, and they were more pro-

M
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M, {b) ©
My 2M,
F1a. 25

nounced in the case of comparatively thick plates, as would be expected
from the foregoing discussion of the transformation of twisting couples
along the edges.

As a last example let us consider the bending of a plate (Fig. 19) to &
cylindrical surface having its generating line parallel to the y axis. In
such a case 9%w/dy? = 0, and we find, from Eqgs. (37) and (38),

2, 2,

M,=—D%—;‘; M, = —vD%—:; *)
It is seen that to produce bending of the plate to a cylindrical surface
we must apply not only the moments M, but also the moments M,.
Without these latter moments the plate will be bent to an anticlastic
surface.? The first of equations (k) has already been used in Chap. 1 in
discussing the bending of long rectangular plates to a cylindrical surface.
Although in that discussion we had a bending of plates by lateral loads
and there were not only bending stresses but also vertical shearing stresses

1 This transformation of the force system acting along the edges was first suggested
by Lord Kelvin and P. G. Tait; see “Treatise on Natural Philosophy,” vol. 1, part 2,
p. 203, 1883.

2 Buch experiments were made by A. N4dai, Forschungsard., vols. 170, 171, Berlin,
1915; see also his book “Elastische Platten,” p. 42, Berlin, 1925.

3 We always assume very small deflections or else bending to a developable surface.
The case of bending to a nondevelopable surface when the deflections are not small
will be discussed later: see p. 47
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acting on sections perpendicular to the z axis, it can be concluded from a
comparison with the usual beam theory that the effect of the shearing
forces is negligible in the case of thin plates, and the equations developed
for the case of pure bending can be used with sufficient accuracy for
lateral loading.

12. Strain Energy in Pure Bending of Plates. If a plate is bent by
uniformly distributed bending moments M, and M, (Fig. 19) so that the
xz and yz planes are the principal planes of the deflection surface of the
plate, the strain energy stored in an element, such as shown in Fig. 20,
is obtained by calculating the work done by the moments M, dy and M, dx
on the element during bending of the plate. Since the sides of the ele-
ment remain plane, the work done by the moments M, dy is obtained by
taking half the product of the moment and the angle between the corre-
sponding sides of the element after bending. Since — d%w/dz? represents
the curvature of the plate in the xz plane, the angle corresponding to the
moments M, dy is — (3%w/dx?) dz, and the work done by these moments is

1 w

An analogous expression is also obtained for the work produced by the
moments M, dz. Then the total work, equal to the strain energy of the
element, is

1
dV——§< 3x2+M )d:cdy

Substituting for the moments their expressions (37) and (38), the strain
energy of the elements is represented in the following form:

6""w w\* | , 0w dw
Since in the case of pure bending the curvature is constant over the
entire surface of the plate, the total strain energy of the plate will be

obtained if we substitute the area 4 of the plate for the elementary area
dx dy in expression (a). Then

3w w\? ?w 0w

V=2 DA [(ax?) + (6—:(/2) + 2v Wa—y?] (47)

If the directions # and y do not coincide with the principal planes of
curvature, there will act on the sides of the element (Fig. 20) not only
the bending moments M. dy and M, dz but also the twisting moments
M., dy and M, dx. The strain energy due to bending moments is repre-
sented by expression (). In deriving the expression for the strain energy
due to twisting moments M., dy we observe that the corresponding angle
of twist is equal to the rate of change of the slope dw/dy, as x varies,



PURE BENDING OF PLATES 47

multiplied with dz; hence the strain energy due to M., dy is

which, applying Eq. (43), becomes

—D(l - (a ay) dz dy

The same amount of energy will also be produced by the couples M. dz,
so that the strain energy due to both twisting couples is

D@ - ») <a ay> dz dy ®)

Since the twist does not affect the work produced by the bending
moments, the total strain energy of an element of the plate is obtained by
adding together the energy of bending (a) and the energy of twist (b).
Thus we obtain

1 *w\? *w\? *w d%w

62
+ D — ») (a 6y> dz dy
or

1 ?w | *w\? 9%w 9w 9w \?
(48)

The strain energy of the entire plate is now obtained by substituting
the area A of the plate for the elemental area dxz dy. Expression (48)
will be used later in more complicated cases of bending of plates.

13. Limitations on the Application of the Derived Formulas. In dis-
cussing stress distribution in the case of pure bending (Art. 10) it was
assumed that the middle surface is the neutral surface of the plate. This
condition can be rigorously satisfied only if the middle surface of the bent
plate is a developable surface. Considering, for instance, pure bending of
a plate to a cylindrical surface, the only limitation on the application of
the theory will be the requirement that the thickness of the plate be
small in comparison with the radius of curvature. In the problems of
bending of plates to a cylindrical surface by lateral loading, discussed in
the previous chapter, it is required that deflections be small in compari-
son with the width of the plate, since only under this condition will the
approximate expression used for the curvature be accurate enough.

If a plate is bent to a nondevelopable surface, the middle surface
undergoes some stretching during bending, and the theory of pure bend-



48 THEORY OF PLATES AND SHELLS

ing developed previously will be accurate enough only if the stresses
corresponding to this stretching of the middle surface are small in com-
parison with the maximum bending stresses given by Egs. (44) or, what
is equivalent, if the strain in the middle surface is small in comparison
with the maximum bending strain h/2r.,. This requirement puts an
additional limitation on deflections of a plate, viz., that the deflections w
of the plate must be small in comparison with its thickness h.

To show this, let us consider the bending of a circular plate by bend-
ing couples M uniformly distributed along the edge. The deflection sur-
face, for small deflections, is spherical with radius  as defined by Eq. (46).
Let AOB (Fig. 26) represent a diametral section of the bent circular plate,
a its outer radius before bending, and 5 the deflection at the middle. We
assume at first that there is no stretching of the middle surface of the
plate in the radial direction. In such a case the arc OB must be equal to
the initial outer radius a of the plate. The angle ¢ and the radius b of
the plate after bending are then given by the following equations:

a .
== b=rsine
It is seen that the assumed bending of the plate implies a compressive

strain of the middle surface in the circumferential direction. The magni-
tude of this strain at the edge of the plate is

e___a—-b=r<o-—rsm(a (@)
a ro
For small deflections we can take
3
sin g = ¢ — %
which, substituted in Eq. (@), gives
2
=% ()

To represent this strain as a function of the maximum deflection 8, we

observe that
2

6=r(1—cos¢)zr—g—

2=g_6.

Hence
e @ -

Substituting in Eq. (b), we obtain

(49)

=3
T3
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This represents an upper limit for the circumferential strain at the edge
of the plate. It was obtained by assuming that the radial strain is zero.
Under actual conditions there is some radial strain, and the circumfer-
ential compression is somewhat smaller! than that given by Eq. (49).

From this discussion it follows that the equations obtained in Art. 10,
on the assumption that the middle surface of the bent plate is its neutral
surface, are accurate provided the strain given by expression (49) is small
in comparison with the maximum bending strain h/2r, or, what is equiva-
lent, if the deflection & is small in comparison with the thickness A of the
plate. A similar conclusion can also be obtained in the more general
case of pure bending of a plate when the two principal curvatures are
not equal.? Generalizing these conclusions we can state that the equa-
tions of Art. 10 can always be applied with sufficient accuracy if the
deflections of a plate from its initial plane or from a true developable
surface are small in comparison with the thickness of the plate.

14. Thermal Stresses in Plates with Clamped Edges. Equation (46)
for the bending of a plate to a spherical surface can be used in calculating
thermal stresses in a plate for certain cases of nonuniform heating.
Assume that the variation of the temperature through the thickness of
the plate follows a linear law and that the temperature does not vary in
planes parallel to the surfaces of the plate. In such a case, by measuring
the temperature with respect to that of the middle surface, it can be
concluded that temperature expansions and contractions are proportional
to the distance from the middle surface. Thus we have exactly the same
condition as in the pure bending of a plate to a spherical surface. If the
edges of the nonuniformly heated plate are entirely free, the plate will
bend to a spherical surface.® Let a be the coefficient of linear expansion
of the material of the plate, and let ¢ denote the difference in temperature
of the upper and lower faces of the plate. The difference between the
maximum thermal expansion and the expansion at the middle surface is
at/2, and the curvature resulting from the nonuniform heating can be
found from the equation

t h
7% (@
from which
1 at
TSR (50)

This bending of the plate does not produce any stresses, provided the

1 This question is discussed later; see Art. 96.

2 See Kelvin and Tait, op. cit., vol. 1, part 2, p. 172.

31t is assumed that deflections are small in comparison with the thickness of the
plate.
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edges are free and deflections are small in comparison with the thickness
of the plate.

Assume now that the middle plane of the plate is free to expand but
that the edges are clamped so that they cannot rotate. In such a case
the nonuniform heating will produce bending moments uniformly dis-
tributed along the edges of the plate. The magnitude of these moments
is such as to eliminate the curvature produced by the nonuniform heat-
ing [Eq. (50)], since only in this way can the condition at the clamped
edge be satisfied. Using Eq. (46) for the curvature produced by the
bending moments, we find for determining the magnitude M of the
moment per unit length of the boundary the equation!

M _a
DA+ h
from which
M = @_(174'_") ()

The corresponding maximum stress can be found from Egs. (44) and is
equal to
6M  6atD(1 + »)

Umnx = h2 h3

Substituting for D its expression (3), we finally obtain
atE

Omax = m

(51)

It is seen that the stress is proportional to the coefficient of thermal
expansion «, to the temperature difference ¢t between the two faces of
the plate, and to the modulus of elasticity E. The thickness h of the
plate does not enter into formula (51); but since the difference ¢ of tem-
peratures usually increases in proportion to the thickness of the plate, it
can be concluded that greater thermal stresses are to be expected in thick
plates than in thin ones.

1 The effect of pure bending upon the curvature of the entire plate thus is equivalent
but opposite in sign to the effect of the temperature gradient. Now, if the plate
remains, in the end, perfectly plane, the conditions of a built-in edge are evidently
satisfied along any given boundary. Also, since in our case the bending moments are
equal everywhere and in any direction, the clamping moments along that given
boundary are always expressed by the same Eq. (b).



CHAPTER 3

SYMMETRICAL BENDING OF CIRCULAR PLATES

15. Differential Equation for Symmetrical Bending of Laterally Loaded
Circular Plates.! If the load acting on a circular plate is symmetrically
distributed about the axis perpendicular to the plate through its center,
the deflection surface to which the middle plane of the plate is bent will
also be symmetrical. In all points equally distant from the center of
the plate the deflections will be the same, and it is sufficient to consider
deflections in one diametral section through the axis of symmetry (Fig.
27). Let us take the origin of coordinates
O at the center of the undeflected plate and B
denote by r the radial distances of points
in the middle plane of the plate and by w
their deflections in the downward direction.
The maximum slope of the deflection sur-

face at any point A is then equal to —dw/dr, N ol

and the curvature of the middle surface of . 0

the plate in the diametral section rz for Liw

small deflections is L A "/\
1 dw _de dr r
Pl = Sl (@ Fre. 27

where ¢ is the small angle between the normal to the deflection surface
at A and the axis of symmetry OB. From symmetry we conclude that
1/r. is one of the principal curvatures of the deflection surface at A.
The second principal curvature will be in the section through the normal
AB and perpendicular to the rz plane. Observing that the normals, such
as AB, for all points of the middle surface with radial distance r form a
conical surface with apex B, we conclude that the length A B is the radius
of the second principal curvature which we denote by 7. Then, from
the figure, we obtain

S= =t ®

t The solution of these problems of bending of circular plates was given by Poisson;
see ‘‘Memoirs of the Academy,” vol. 8, Paris, 1829.

51
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Having expressions (e) and (b) for the principal curvatures, we can obtain
the corresponding values of the bending moments assuming that relations
(37) and (38), derived for pure bending, also hold between these moments
and the curvatures.! Using these relations, we obtain

d?w |, vdw) _ de v ;
D(Wﬁ&?)‘”(ﬂﬁ*’) (52)
_p(idw, dw\ _ (e de '
D(rdr ”W)‘D<F+"EF) (53)
where, as before, M. and M, denote bending moments per unit length.
The moment M, acts along circumferential sections of the plate, such as
the section made by the conical surface with the apex at B, and M, acts
along the diametral section rz of the plate.
Equations (52) and (53) contain only one variable, w or ¢, which can

be determined by considering the equilibrium of an element of the plate
such as element abed in Fig. 28 cut out

M,

M.

M LdMp ir A(u.::-’i'-gd,— from the plate by two eylindrical sec-
rdr visy M h tions ab and ¢d and by two diametral
r l 7 ~—x >0 sectionsad and be. The couple acting

S QJ X on the side ¢d of the element is
edr oo e g M. do (e

The corresponding couple on the side
ab is

(M, + dfl'f : dr> r+dr)de (d)

The couples on the sides ad and be of the element are each M, dr, and they
give a resultant couple in the plane rOz equal to

M, dr de (e)

From symmetry it can be concluded that the shearing forces that may
act on the element must vanish on diametral sections of the plate but
that they are usually present on cylindrical sections such as sides ¢d and
ab of the element. Denoting by @ the shearing force per unit length of

1 The effect on deflections of shearing stresses acting on normal sections of the plate
perpendicular to meridians, such as the section cut by the conical surface with the
apex at B, is neglected here. Their effect is slight in the case of plates in which the
thickness is small in comparison with the diameter. Further discussion of this subject
will be given in Art. 20. The stresses perpendicular to the surface of the plate are
also neglected, which is justifiable in all cases when the load is not highly concentrated
(see p. 69).
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the cylindrical section of radius r, the total shearing force acting on the
side cd of the element is Qr d8, and the corresponding force on the side ab is

[Q + (0(’1—?) dr] (r + dr) do

Neglecting the small difference between the shearing forces on the two
opposite sides of the element, we can state that these forces give a couple
in the rz plane equal to

Qr do dr )]

Summing up the moments (c), (d), (¢), and (f) with proper signs and
neglecting the moment due to the external load on the element as a
small quantity of higher order, we obtain the following equation of
equilibrium of the element abed:

(

from which we find, by neo'lecting a small quantity of higher order,

M dr> (r+dr)dd — Murdo — M,drdé + Qrdédr =0

M, +Qr=0 ()

Substituting expressions (52) and (563) for M, and M., Eq. (g) becomes

d?p __Q
Poylle e (54
or, in another form,
dw  l1dw 1dw @
@ TT@E T RE D (55)
In any particular case of a symmetrically loaded circular plate the
shearing force @ can easily be calculated by dividing the load distributed
within the circle of radius r by 2xr; then Eq. (54) or (55) can be used to
determine the slope ¢ and the deflection w of the plate. The integration

of these equations is simplified if we observe that they can be put in the

following forms:
d
Fig0a]-- (56)

dr I::' Zr( dr)] =D (57)

If Q is represented by a function of r, these equations can be integrated
without any difficulty in each particular case.

Sometimes it is advantageous to represent the right-hand side of Eq.
(57) as a function of the intensity ¢ of the load distributed over the plate.
For this purpose we multiply both sides of the equation by 2xr. Then,

Fy bl@

o
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observing that
Q2nr = ﬁ) qQ2xr dr

ar|rar\& )| =D ) !

Differentiating both sides of this equation with respect to r and dividing
by r, we finally obtain

1d dld/ dw _q
;zr{ra[;%(ri.l?)]‘ =D (58)
This equation can easily be integrated if the intensity of the load ¢ is
given as a function of r.
16. Uniformly Loaded Circular Plates. If a circular plate of radius a
carries a load of intensity ¢ uniformly distributed over the entire surface

of the plate, the magnitude of the shearing force @ at a distance r from
the center of the plate is determined from the equation

we obtain

2xrQ = arlq
from which
=7
=2 (@
Substituting in Eq. (57), we obtain
df1d/ dw\]| _ ¢r
m[;d‘r(ﬁ)] =2D ®)
By one integration we find
Ld [ dw\ ¢
m(fﬁ)"nﬁcl ©

where C, is a constant of integration to be found later from the conditions
at the center and at the edge of the plate. Multiplying both sides of
Eq. (¢) by r, and making the second integration, we find

dw _ Cﬂ'
"o T 16D ta T
3
and dZi}r—v = lqﬁrD + = Clr (39)
The new integration then gives
C
64D+ ir? + Calog - + C (60)

Let us now calculate the constants of integration for various particular
cases.
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Circular Plate with Clamped Edges. In this case the slope of the deflec-
tion surface in the radial direction must be zero for r = 0 and r = a.
Hence, from Eq. (59),

Cﬂ‘ _
(16D T3 >,=o =0

3
(1%TD+Q+CZ>=,,=O

From the first of these equations we conclude that C; = 0. Substituting
this in the second equation, we obtain

94

8D

With these values of the constants, Eq. (59) gives the following expres-
sion for the slope:

Ci =~

o= = g2y (61)

Equation (60) gives
ot ga
64D 32D

At the edge of the plate the deflection is zero. Hence,

+ Cs )

w =

g0t _ -
81D ~ 30D 5+ Ci= 0
and we obtain
-
Cs = 64D

Substituting in Eq. (d), we find
w =g D (a? — r?)? (62)

The maximum deflection is at the center of the plate and, from Eq. (62),
is equal to
qa*
84D (e)
This deflection is equal to three-eighths of the deflection of a uniformly
loaded strip with built-in ends having a flexural rigidity equal to D, a
width of unity, and a length equal to the diameter of the plate.

Having expression (61) for the slope, we obtain now the bending
moments M, and M, by using expressions (52) and (53), from which
we find

Wmax =

M, = % [a2(1 + ») — 723 + »)] (63)

M, = a1 + ) — 1°(1 + 3»)) (64)
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Substituting » = @ in these expressions, we find for the bending moments
at the boundary of the plate

- 1) = — "%
(M)uo = 3 (M )rma = g (65)
At the center of the plate where r = 0,
M.=M =L+ (66)

From expressions (65) and (66) it is seen that the maximum stress is at
the boundary of the plate where

(0 ) max = "7 =17[{ (f)
The variation of stresses g, and ¢, at the lower face of the plate along the
radius of the plate is shown in Fig. 29.
O Ot
—

!
3(1+v)qa®
8h2
I

0y

Fia. 29

Circular Plate with Supported Edges. In calculating deflections for this
case we apply the method of superposition. It was shown that in the
case of clamped edges there are negative bending moments M, = —ga?/8
acting along the edge (Fig. 30a). If this case is combined with that of
pure bending shown in Fig. 30b, the bending moments M, at the edge
will be eliminated, and we obtain the bending of a plate supported at the
edge. ‘The deflection surface in the case of pure bending by the moments
ga?/8, from Eq. (46) or Eq. (¢) on page 43, is

-9 _
BT R

Adding this to the deflections (62) of the clamped plate, we find for the
plate with a simply supported edge

w
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@t =5+ ,
v="5p \it,% r2> (67)

Substituting r = 0 in this expression we obtain the deflection of the plate
at the center:

b5 + »)qo?
64(1 4+ »)D
For » = 0.3 this deflection is about four times as great as that for the
plate with clamped edge.

(68)

wmnx =

0.577a>]
wi( r & )_q_aﬁ
-------- [P It = -a
(a)
R

2 2
a0 ) s

(b)

Fic. 30

In calculating bending moments in this case we must add the constant
bending moment qa?/8 to the moments (63) and (64) found above for the
case of clamped edges. Hence in the case of supported edges

M, = & @+ 9@ —r) (69)
M, = (@3 + %) ~ r(1 + 3)] (70)
The maximum bending moment is at the center of the plate where
- _3+v
M,=M, = 6 %

The corresponding maximum stress is

M, 3(3 2
(Ur)mx = (O't)max = 6h2 = —(‘—g—-h‘:)ﬂ' (71)

To get the maximum stress at any distance r from the center we must
add to the stress calculated for the plate with clamped edges the con-
stant value
6 qa®
s
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corresponding to the pure bending shown in Fig. 30b. The same stress is
obtained also from Fig. 29 by measuring the ordinates from the horizontal
axis through O;. It may be seen that by clamping the edge a more
favorable stress distribution in the plate is obtained.

17. Circular Plate with a Circular Hole at the Center. Let us begin
with a discussion of the bending of a plate by the moments M, and M,

lememmmamem A eeeee- )‘
M M M M
2 \l P | >2
(ry AT
AN %
N
Fia. 31

uniformly distributed along the inner and outer boundaries, respectively
(Fig. 31). The shearing force @ vanishes in such a case, and Eq. (57)

becomes
dlld( dwy|l_,
drlrdr\  dr)j

By integrating this equation twice we obtain
I +—=— (a)

Integrating again, we find the deflection

_ 017'2
4

w = —-Czlog£+Ca (®
The constants of integration are now to be determined from the condi-
tions at the edges. Substituting expression (a) into Eq. (52), we find
_ Ci C; C,, C, :
Mr—D[7 T v(—2—+72—>] ()
This moment must be equal to M, for »r = b and equal to M, for r = a.
Hence equations for determining constants C, and C are

C C» _
D[§(1+y)—ﬁ(1—v)] = M,

D{%(l—l—v) —%(1 — v)] =M.
from which

2((12M2 bl szl)

_ aﬁbz(Mg - Ml)
“ A F D@ =)

@ @ = »D(@® = b @

Cy =

To determine the constant C; in Eq. (b), the deflections at the edges
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of the plate must be considered. Assume, for example, that the plate in
Fig. 31 is supported along the outer edge. Then w = 0 for r = @, and
we find, from (b),

Cla,2 az(azMz - b2M1)

& T 20 ¥ D@ = b))

In the particular case when M, = 0 we obtain

C; =

Cr = — 262 M, o e — a2 M,
YT T U F 9D =y T T =)D -
O = a?b*M,
s = —

2(1 + »)D(a® — b?)

and expressions (a) and (b) for the slope and the deflection become

dw a®hbM, 1 1—9wvr
&~ DA = (e =5 (‘ T e 72)
_ b2M1 _ a2b2M1 r
Y= i@ = @ T T AT D — ey 8 (™

As a second example we consider the case of bending of a plate by
shearing forces Qo uniformly distributed along the inner edge (Fig. 32).
The shearing force per unit length of a

circumference of radius r is 4 ,l"b """ o -oee- ’!‘
_eh_ P e
r 2xr & i *
Qo I Qo
where P = 27bQ, denotes the total load Fra. 32

applied to the inner boundary of the
plate. Substituting this in Eq. (57) and integrating, we obtain

dw Pr Cr C,
#ap (Clen-1) -G - ©
Pr? Cyr? r

and w=8ﬂ_—D<log£—l>— ir -—C’zlogé—I-Cs W

The constants of integration will now be calculated from the boundary
conditions. Assuming that the plate is simply supported along the outer
edge, we have

+ -

7 dr Je—e

(W)rea = 0 —D(

ﬁu v dw
dr?

=0 @

For the inner edge of the plate we have

v dw
- (dr2 T3 r dr),_,b =0 ()
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Substituting expressions (e¢) and (f) in Eqs. (g) and (&), we find

C—L l—v_ 2b? lob
YT Lp\iFy -, %8
(1 + »)P a2b2 b

C2= — @ =D a7 — 5 %8, @

Pa? 11—» B b
C“‘SD(1+21+ 2—b21°g6>

With these values of the constants substituted in expressions (¢) and (f),
we find the slope and the deflection at any point of the plate shown in
Fig. 32. For the slope at the inner edge, which will be needed in the
further discussion, we obtain

dw Pb b 1—»
(W),_,, sD[“’ I

+ 2 g log £ (H—a 1—}—)] ()

v

In the limiting case where b is infinitely small, b2 log (b/a) approaches
zero, and the constants of integration become

i1—» P Pq?
ST &mp =0 G- 8D(1+21—I—

v

Cy

Substituting these values in expression (f), we obtain
w=8—§D[2?1+V)(a — r%) + 7% log ~ J (k)
This coincides with the deflection of a plate without a hole and loaded at
the center {see Eq. (89), page 68]. Thus a very small hole at the center
does not affect the deflection of the plate.
Combining the loadings shown in Figs. 31
and 32, we can obtain the solution for the
case of a plate built in along the inner edge
and uniformly loaded along the outer edge
(Fig. 33). Since the slope at the built-in
edge is zero in this case, using expressions
(72) and (7), we obtain the following equation for determining the bending
moment M at the built-in edge:

a®h?’M, 1, 1—»5» Pb b
(o 12) - Byt

T DA = (e - b%) 14 »a? 8D

1—», 2 a?14
“T¥y taonlgg (+b21—v)]
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from which

2
My = — £ [(1—»)(‘;—2—1)+2<1+v)%510g%]

41r|:(1+v)z—:+l—v]

(74)

Having this expression for the moment M, we obtain the deflections of
the plate by superposing expression (73) and expression (f), in which the
constants of integration are given by expressions (z).

By using the same method of superposition we can obtain also the
solution for the case shown in Fig. 34, in which the plate is supported
along the outer edge and carries a uniformly distributed load. In this
case we use the solution obtained in the previous article for the plate
without a hole at the center. Considering the section of this plate cut by
the cylindrical surface of radius b and perpendicular to the plate, we find
that along this section there act a shearing force @ = mgb?/2xb = ¢b/2
and a bending moment of the inten-

sity [see Eq. (69)] & a e
¥ b
_ 49
M, =156+ ) apiibiiil | iyl
N A
Hence to obtain the stresses and de- Fia. 34

flections for the case shown in Fig. 34,

we have to superpose on the stresses and deflections obtained for the plate
without a hole the stresses and deflections produced by the bending
moments and shearing forces shown in Fig. 35. These latter quantities
are obtained from expressions (72), (73), (e), and (f), with due attention
being given to the sign of the applied shears and moments.

b Several cases of practical importance
DI PR ;l rqb are represented in Fig. 36. In all these
N T cases the maximum stress is given by a
) IQL A formula of the type
V2 (340)(a2-b?) 2
Fre. 3 '|56 Omax = k qhiz or Omax = %12—) 75

depending on whether the applied load is uniformly distributed over the
surface or concentrated along the edge. The numerical values of the
factor k, calculated!® for several values of the ratio a¢/b and for Poisson’s
ratio » = 0.3, are given in Table 3.

! The calculations for cases 1 to 8 inclusive were made by A. M. Wahl and G. Lobo,
Trans. ASME, vol. 52, 1930. Further data concerning symmetrically loaded circular
plates with and without a hole may be found in K. Beyer, “Die Statik im Stahlbe-
tonbau,” 2d ed., p. 652, Berlin, 1948.
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TasLE 3. COEFFICIENTS k AND k; IN Egs. (75) AND (76) For THE TEN
Cases SmownN 1IN Fig. 36

a/b =

1.25

1.5

Case

ky k

ki

ky

Ky

ky

k1

Ot e GO B =

[=R =10 - o]

I

1.10
0.66
0.135
0.122
0.090

0.115
0.592
0.227
0.194
0.105

0.341 [1.26
0.202 [1.19
0.00231/0.410
0.00343/0.336
0.00077]0.273

0.00129;0.220
0.184 10.976
0.00510]0.428
0.00504(0.320
0.00199/0.259

0.519
0.491
0.0183
0.0313
0.0062

0.0064
0.414

0.0249
0.0242
0.0139

1.48
2.04
1.04
0.74
0.71

0.405
1.440
0.753
0.454
0.480

0.672
0.902
0.0938
0.1250
0.0329

0.0237
0.664

0.0877
0.0810
0.0575

0.734
1.220]
0.293
0.291
0.110

0.062
0.824
0.209
0.172
0.130]

2.17
4.30
2.99
1.45
2.23

0.933
2.08

1.514
1.021
0.710

0.724
1.300
0.448
0.417
0.179

0.092
0.830
0.293
0.217
0.162

2.34
5.10
3.69
1.59
2.80

1.13
2.19
1.745

0.704
1.310
0.564
0.492
0.234

0.114
0.813
0.350

1.305
0.730,

0.238
0.175
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The maximum deflections in the same cases are given by formulas of
the type
qa* Pa?

Whax = kl—E—h—s or Wax = kl Ehs

(76)
The coefficients k; are also given in Table 3.

When the ratio a/b approaches unity, the values of the coefficients k and
k1 in Egs. (75) and (76) can be obtained with sufficient accuracy by con-
sidering a radial strip as a beam with end
conditions and loading as in the actual plate. l <b
The effect of the moments M; on bending is 1\ ! 4\
then entirely neglected. TanT

18. Circular Plate Concentrically Loaded. | (@
We begin with the case of a simply supported ¢ ) C 4
plate in which the load is uniformly distrib- * N

uted along a circle of radius b (Fig. 37a). o of M
Dividing the plate into two parts as shown M | M
in Fig. 37b and ¢, it may be seen that the ) ()
inner portion of the plate is in the condition Fic. 37

of pure bending produced by the uniformly

distributed moments M and that the outer part is bent by the moments
M, and the shearing forces @,. Denoting by P the total load applied,
we find that

P

& = b (a)

The magnitude of the moment M, is found from the condition of con-
tinuity along the circle r = b, from which it follows that both portions
of the plate have, at that circle, the same slope. Using Eqs. (72) and
(7) of the preceding article, we find the slope for the inner boundary of
the outer portion of the plate equal to

dw ahM, + 1—»b
dr ).o = DI = 9)(a® — b T+va

Pb b 1 —-v»
tap|2les "1

202 a’l + v
rarplet(1+515)] ©

The inner portion of the plate is bent to a spherical surface, the curvature
of which is given by expression (46). Therefore the corresponding slope

at the boundary is
dw _ Mib (
&)= T DO T 2
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Equating expressions (b) and (c), we obtain

b
_ (1 —»P -t (L + »)Plog

My 8ma? - 4r @

Substituting this expression for M in Eq. (73), we obtain deflections of
the outer part of the plate due to the moments M;. The deflections due
to the forces @, are obtained from Eq. (f) of the preceding article. Add-
ing together both these deflections, we obtain for the outer part of the
plate

w—8—7rp—[(a2—rz)< ;}_—*__yaa;b>+(b2+r2)log] (77)

Substituting r = b in this expression, we obtain the following deflection
under the load:

Whrms = [(az - (1 +3ir > S b2> + 2b% log g] €)

To find the deflections of the inner portion of the plate, we add to the
deflection (¢) the deflections due to pure bending of that portion of the
plate. In this manner we obtain

P o 11—va?— b s b
w= sor_[(“2 b)< 21+vT>+2bl°gE]

b
+ 2 — 12 | (1 — »)P(a® — b?) (1 + )P log 5]

2D + ) 8ra? - 4r
_ P é s g2 2_2(3—|-v)a’—(1—v)b2
_m[(b2+72)loga+r b2+ (a r?) 0 T 9
_ P b s _py B+ »at— (1 — »rt
= %D [(b2 r?) log a + (a b?) 230 F »)a (78)
If the outer edge of the plate is built
== === a-—-->| in, the deflections of the plate are ob-
(é | [<-b ‘j E) tained by superposing on the deflec-
tions (77) and (78) the deflections
M2 - M2 produced by the bending moments
Fra. 38 M, uniformly distributed along the

outer edge of the plate (Fig. 38) and
of such a magnitude that the slope of the deflection surface at that edge
is equal to zero. From expression (77) the slope at the edge of a simply
supported plate is

&)= T LDIE a )
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The slope produced by the moments M is

dw _ M @
(E? e DA+ 7) g

Equating the sum of expressions (f) and (g) to zero, we obtain

_Pa -

T 4r  a?

M.

Deflections produced by this moment are

M, r*—a P a? — b?
Y= DPO0+»n 2 " &DOA+» &

(r* — a?) ()
Adding these deflections to the deflections (77) and (78) we obtain for the
outer portion of a plate with a built-in edge

2 2
w=gpl@-mEE el )

and for the inner portion,

P b 2 _ (g + b2
w=81r—D[(b2+r’)loga+r’—b2+(a i )]

P b 2+ 2 a2_b2
= 8D [(b2 + %) log _ + (@ "2)22 )]

(80)

Having the deflections for the case of a load uniformly distributed
along a concentric circle, any case of bending of a circular plate sym-
metrically loaded with respect to the center can be solved by using the
method of superposition. Let us consider, for example, the case in which
the load is uniformly distributed over the inner portion of the plate

-~ G~

A
9

%ﬁ.‘%ég _____ J

Fic. 39

bounded by a circle of radius ¢ (Fig. 39). Expression (77) is used to
obtain the deflection at any point of the unloaded portion of the plate
(@ > r > ¢). The deflection produced by an elementary loading dis-
tributed over a ring surface of radius b and width db (see Fig. 39) is
obtained by substituting P = 2wbgq db in that expression, where ¢ is the
intensity of the uniform load. Integrating the expression thus obtained
with respect to b, we obtain the deflection
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_q [c _ 3+ r
w~4D/;) [(a2 r2)————2(1+y)+r210ga

. r (1 =@ —rH

_ gc 3+ 2 2 2 r
[2(1+ )(a r)+rlog
qct r_1—v a®—1t
+ 16D [log PR) R S ]
or, denoting the total load wc2q by P,

_ P (34w
~ 16xD [T+ »

(a® — r2)+2r210g~
T L—v @ —1?
+02[1°ga“m+—y)7—]} (81

Expression (78) is used to obtain the deflection at the center. Substi-
tuting » = 0 and # = 27bq db in this expression and integrating, we find

q 3+
4—1)/ [b2log Il <1+ )]bdb

_ P 3+ 74 3v
_—167rD[ T a2+0210g ——~4(1+v)c2] (82)

(w) r=0

where P = =c?q.

The maximum bending moment is at the center and is found by using
expression (d). Substituting 2xbg db for P in this expression and inte-
grating, we find

_ ¢ 1~—va2—b2_1+v b
me—qﬁ( i 7 3 loga>bdb

=£[(1+,)10g%+1_(1_11)9_2] (83)

4q?

where, as before, P denotes the total load mc2q.*

Expression (81) is used to obtain the bending moments M, and M, at
any point of the unloaded outer portion of the plate. Substituting this
expression in the general formulas (52) and (53), we find

Q4+ 9P (l—u)Pc2 1
= B o § 4 520 (- ) B
P 1 —»)Pc?f1 1

* This expression applies only when ¢ is at least several times the thickness . The
case of a very small ¢ is discussed in Art. 19.
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The maximum values of these moments are obtained at the circle r = ¢,
where

(1 + v) P a , (1 —v)P(a®— ¢?»
log c + 167a®

M,———[(1+v)log +1 - ]—

M, = (86)

(1 — »)P(a® + c?)

16ra?

(87)

The same method of calculating deflections and moments can be used also
for any kind of symmetrical loading of a circular plate.

The deflection at the center of the plate can easily be calculated also for
any kind of unsymmetrical loading by using the following consideration.

Owing to the complete symmetry of the plate and of its boundary con-
ditions, the deflection produced at its center by an isolated load P depends
only on the magnitude of the load and on its radial distance from the
center. This deflection remains unchanged if the load P is moved to
another position provided the radial distance of the load from the center
remains the same. The deflection remains unchanged also if the load P
is replaced by several loads the sum of which is equal to P and the radial
distances of which are the same as that of the load P. From this it
follows that in ealculating the deflection of the plate at the center we can
replace an isolated load P by a load P uniformly distributed along a circle
the radius of which is equal to the radial distance of the isolated load.
For the load uniformly distributed along a circle of radius b the deflection
at the center of a plate supported at the edges is given by Eq. (78) and is

Whes = g5 | ey (0" — ) — v 1og § ®
This formula gives the deflection at the center of the plate produced by
an isolated load P at a distance b from the center of the plate. Having
this formula the deflection at the center for any other kind of loading
can be obtained by using the method of superposition.! It should be
noted that the deflections and stresses in a circular plate with or without
a hole can be efficiently reduced by reinforcing the plate with either con-
centric? or radial ribs. In the latter case, however, the stress distribution
is no longer symmetrical with respect to the center of the plate.

19. Circular Plate Loaded at the Center. The solution for a concen-
trated load acting at the center of the plate can be obtained from the

1 This method of calculating deflections at the center of the plate was indicated by
Saint Venant in his translation of the “Théorie de V'élasticité des corps solides,” by
Clebsch, p. 363, Paris, 1883. The result () can also be obtained by applying Max-
well’s reciprocal theorem to the circular plate.

2 This case is discussed by W. A. Nash, J. 4dppl. Mechanics, vol. 15, p. 25, 1948,
See also C. B. Biezeno and R. Grammel,  Technische Dynamik,” 2d ed., vol. 1, p. 497,
1953.
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discussion of the preceding article by assuming that the radius ¢ of the

circle within which the load is distributed becomes infinitely small,

whereas the total load P remains finite. Using this assumption, we find

that the maximum deflection at the center of a simply supported plate,
by Eq. (82), is

o = (3 + »)Pa*

mx o 16r(1 + »)D

The deflection at any point of the plate at a distance r from the center,
by Eq. (81), is

(88)

Y= D | T+

The bending moment for points with » > ¢ may be found by omitting
the terms in Eqs. (84) and (85) which contain ¢2. This gives

Lil [3 T (a* — 72 + 2r2 log g} (89)

M, = 5(1 +9) log & (90)
M=2la+)i0g%+1 91
t = i (14 og;+ i 4 (91)

To obtain formulas for a circular plate with clamped edges we differ-
entiate Eq. (89) and find for the slope at the boundary of a simply sup-
ported plate

@ﬁ%‘@ ~(@F)wwin ©

My M2 The bending moments M uniformly dis-

2 tributed along the clamped edge (Fig. 40)

Fia. 40 produce a bending of the plate to a spher-

ical surface the radius of which is given by Eq. (46), and the correspond-
ing slope at the boundary is

]‘rlga
~TE WD ()

Using (a) and (b), the condition that the built-in edge does not rotate
gives
My =My = - L ©
( r)r=a - 2 = 47r
Deflections produced by moments M, by Eq. (k) of the preceding article
are
P(r* —a?)
8rD(1 + v)

Superposing these deflections on the deflections of a simply supported
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plate in Eq. (89), we obtain the following expression for the deflections
of a clamped plate loaded at the center:
- P log ~
~ 8D %,
Adding Eq. (c) to Eqgs. (90) and (91) for a simply supported plate, we
obtain the following equations for the bending moment at any point not
very close to the load:

M,=£[(1+y) log%—l] (93)

w + 1o @ = 19 ©92)

M,=£[(1+v) log%—v] (94)

When r approaches zero, expressions (90), (91), (93), and (94) approach
infinity and hence are not suitable for calculating the bending moments.
Moreover, the assumptions that serve as the basis for the elementary
theory of bending of circular plates do not hold near the point of appli-
cation of a concentrated load. As the radius ¢ of the circle over which
P is distributed decreases, the intensity P/wc? of the pressure increases
till it can no longer be neglected in comparison with the bending stresses
as is done in the elementary theory. Shearing stresses which are also
disregarded in the simple theory likewise increase without limit as ¢
approaches zero, since the cylindrical surface 2rch over which the total
shear force P is distributed approaches zero.

Discarding the assumptions on which the elementary theory is based, we may obtain
the stress distribution near the point of application of the load by considering that
portion of the plate as a body all three dimensions of which are of the same order of
magnitude. To do this imagine the central
loaded portion separated from the rest of the
plate by a cylindrical surface whose radius b is M
several times as large as the thickness & of the - y
plate, as shown in Fig. 41. It may be assumed h %EL - c Ké
that the elementary theory of bending is accur- . B
ate enough at a distance b from the point of |
application of the load P and that the corre- k- b *‘* '''' b 'l
sponding stresses may be calculated by means Fia. 41
of Eq. (90). The problem of stress distribu-
tion near the center of the plate is thus reduced to the problem of a symmetrical
stress distribution in a cireular cylinder of height A and radius b acted upon by a
load P distributed over a small circle of radius ¢ and by reactions along the lateral
boundary.? The solution of this problem shows that the maximum compressive

1 Several examples of symmetrical stress distribution are discussed in 8. Timo-
shenko and J. N. Goodier, “Theory of Elasticity,” 2d ed., p. 384, 1951. The case
shown in Fig. 41 was studied by A. N4dai (see his book ‘‘Elastische Platten,”’ p. 308)
and also by S. Woinowsky-Krieger (see his paper in Ingr.-Arch., vol. 4, p. 305, 1933).
The results given here are from the latter paper.
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stress at the center A of the upper face of the plate can be expressed by the follow-
ing approximate formula:!

o =0t =01 — —
wc? 2

P [1 +2 0+ y)a] 95)

in which o, is the value of the compressive bending stress? obtained from the approxi-
mate theory, say, by using Eq. (83) for the case of a simply supported plate, and a is a
numerical factor depending on 2¢/k, the ratio of the diameter of the loaded area to the

04 e
L
03 -
g d
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—2c
h
Fic. 42

thickness of the plate. Several values of this factor are given in Table 4. Its varia-
tion with the ratio 2¢/h is shown also in Fig. 42. When ¢ approaches zero, the stress
calculated by Eq. (95) approaches infinity.

TABLE 4. VALUES OF Facror « 1IN Eq. (95)

2c/h = 0.10 0.25 0.50 0.75 1.00 1.50 | 2.00 | 2.50

a = 0.0106 | 0.0466 | 0.1234 | 0.200 | 0.263 | 0.348 | 0.386 | 0.398

The maximum tensile stress occurs at B, the center of the lower surface of the plate
(Fig. 41). When c is very small, i.e., for a strong load concentration, this tensile
stress is practically independent of the ratio 2c/k and for a simply supported plate is
given by the following approximate formula:?

Cmax = h—lz [(1 + ) (0.485 log % + 0.52) + 0.48] (96)

in which a is the outer radius.

To obtain the compressive stresses o, and o, at the center of the upper surface of a
clamped plate, we must decrease the value of the compressive stress ¢, in Eq. (95)
by an amount equal to

e @

1 When c is very small, the compressive stress P/rc? becomes larger than the value
of omax given by Eq. (95) (see Fig. 43).

2 This quantity should be taken with negative sign in Eq. (95).

3 See Woinowsky-Krieger, op. cit.
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on account of the action of the moments M, = —P/4x. The maximum tensile
stress at the center of the lower surface of a clamped plate for a strong concentration
of the load (¢ = 0) is found by subtracting Eq. (d) from Eq. (96). This stress is

P a
Fmex = 13 a4+y» (0.485 log % + 0.52) 97)

The stress distribution across a thick circular plate (k/a = 0.4) with built-in edges
is shown in Fig. 43. These stresses are calculated for ¢ = 0.1g and » = 0.3. For this
case the maximum compressive stress o, normal to the surface of the plate is larger than
the maximum compressive stress in bending given by Eq. (95). The maximum
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Fia. 43

tensile stress is smaller than the tensile stress given by the elementary theory of bend-
ing. The value of the latter across the thickness of the plate is shown in the figure
by the dashed line. It was calculated from the equation for bending moment

4a?

obtained by adding the moment M, = —P/4r to Eq. (83).

In determining the safe dimensions of a circular plate loaded at the center, we can
usually limit our investigations to the calculation of the maximum tensile bending
stresses at the bottom of the plate by means of Eqs. (96) and (97). Although the
compressive stresses at the top of the plate may be many times as large as the tensile
stresses at the bottom in the case of a strong concentration of the load, they do not
represent a direct danger because of their highly localized character. The local
yielding in the case of a ductile material will not affect the deformation of the plate in
general if the tensile stresses at the bottom of the plate remain within safe limits.
The compressive strength of a brittle material is usually many times greater than its
tensile strength, so that a plate of such a material will also be safe if the tensile stress
at the bottom is within the limit of safety.

The local disturbance produced by a concentrated load in the vicinity of its point of
application must also be considered if we want an exact description of the deflection
of the plate. This disturbance is mainly confined to a cylindrical region of radius
several times , and thus its effect on the total deflection becomes of practical impor-
tance when the thickness of the plate is not very small compared with its radius. As
an illustration there are shown in Fig. 44 the deflections of circular plates with built-in
edges and a central concentrated load for which the ratio of thickness to radius h/a

Mone = 2 [(1 + ) log 2 ——(1_—”)—°3] ©8)
47 ¢
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is 0.2, 0.4, and 0.6.! The deflection given by the elementary theory [Eq. (92)] is
shown by the dashed line. It may be seen that the discrepancy between the elementary
theory and the exact solution diminishes rapidly as the ratio h/a diminishes. In the
next article we shall show that this discrepancy is due principally to the effect of shear-
ing forces which are entirely neglected in the elementary theory.

20. Corrections to the Elementary Theory of Symmetrical Bending of
Circular Plates. The relations (37) and (38) between bending moments
and curvatures, which were derived for the case of pure bending, have
been used as the basis for the solution of the various problems of sym-
metrical bending of circular plates which have been discussed. The effect
that shearing stresses and normal pressures on planes parallel to the sur-
face of the plate have on bending has not been taken intoaccount. Hence

1.81

249

Fic. 44

only the solution for a plate bent to a spherical surface and the solution
for the annular plate loaded with moments uniformly distributed along
the inner and outer boundaries (Fig. 31) are rigorous. In all other cases
discussed, the formulas obtained are approximate, and their accuracy
depends on the ratio of the thickness of the plate to its outer radius.
More accurate formulas may be obtained by considering in an approxi-
mate manner? the effect of shearing stresses and lateral pressures on
deflections.

Let us consider first a circular plate without a hole supported along its
edge and uniformly loaded. The shearing force @ per unit length of are

1 The curves in Fig. 44 are the results of the exact solution of Woinowsky-Krieger,
loc. cit.

2 A rigorous theory of plates was originated by Saint Venant in his translation of
Clebsch’s “Théorie de 1’élasticité des corps solides,” p. 337. A valuable criticism of
this work is given in ‘“History of the Theory of Elasticity,” by I. Todhunter and
K. Pearson, vol. 2, part 1, p. 217. Further development of the theory is due to J. H.
Michell, Proc. London Math. Soc., vol. 31, p. 100, 1900, and to A. E. H. Love, ‘*Mathe-
matical Theory of Elasticity,” 4th ed., p. 465. A list of references on this subject is
given by Woinowsky-Krieger, op. cit., p. 203. Some examples of rigorous theory are
given in Art. 26 (see p. 98).
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along a circle of radius r is
Q = 4¢gr

From the exact solution for plates whose thickness is not assumed to be
small,! it is known that the shearing stresses 7., vary across the thickness
of the plate according to the parabolic law in the same way as in beams of
narrow rectangular cross section. Hence the maximum shearing stress is
at the middle surface of the plate. and its magnitude is

_ 3
(Trz)mx = Q‘ '2- (a)
The corresponding shearing strain is
dw, _ _ 3 qr
@ = T 23Gh ®

where w; is the additional deflection of the middle surface of the plate
due to the shearing stress. By integration the deflections produced by
the shearing stresses are found to be

o =5 @) (©)

(wl)mx = 2 AGh (d)

The lateral pressure acting on the plate produces a positive curvature,
convex downward, similar to that which occurs in a uniformly loaded
beam.? The pressure ¢ per unit area produces a radial elongation of
vq/E at the upper surface of the plate. At the middle surface of the
plate this elongation is vq/2E, and at the bottom of the plate it is zero.
Assuming a straight-line relation to hold, an approximate value of the
radius of curvature R can be found from the equation

ra _ b
2E 2R
from which
1 _
2R = 2hE
and the negative deflection is
____1_ 2 e = 2 2 2
We = 2R (a T) - 2hE (a' I') (6)

1 Timoshenko and Goodier, op. ¢it., p. 351.
2 See thid., p. 43.
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Adding Eqs. (¢) and (e) to Eq. (67), a more exact expression for deflec-
tion is found to be

= 4 s _ a2 X ., ’ 3+ 2 _ g2
w=ap @ ")(1+y“ ")t spea—m @
At the center of the plate this becomes
_gat 54y 434y R
w"‘“_64D(1+v+31—v2a2) el

The second term in Eq. (f) represents the correction for shearing stresses
and lateral pressure. This correction is seen to be small when the ratio
of the thickness of the plate to its radius is small. The value of this
correction given by the exact solution is!

qa428+v+v2h_2 @
64D5 1 — »* at g

For v = 0.3 the exact value is about 20 per cent less than that given by
Eq. ().

In a uniformly loaded circular plate with clamped edges the negative
deflection w, due to pressure cannot occur, and hence only the deflection
wy due to shear need be considered. Adding this deflection to Eq. (62),
we obtain as a more accurate value of the deflection

w=ghp|@ =t @ -] *)

It is interesting to note that this coincides with the exact solution.?

Consider next the deflections produced by shearing stresses in the
annular plate loaded with shearing forces uniformly distributed along
the inner edge of the plate as shown in Fig. 32. The maximum shearing
stress at a distance r from the center is

P

2xrh

™o W

(Trz)max =

where P denotes the total shear load. The corresponding shear strain is?

dw1 _ 3 P o
G = T 29 ®

Integrating, we obtain for the deflection produced by shear
w=§__1)_.10 .CE:__ﬂz___log (')
VIG5 T &A= D %7 J

L See Love, op. cit., p. 481.

2 See ibid., p. 485.

3 If the plate has no hole, the right-hand side of Eq. (7) should be multiplied by a
factor (1 — »)/(1 + »), in accordance with the result (f) given below.
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This deflection must be added to Eq. (k) on page 60 to get a more
accurate value of the deflection of the plate shown in Fig. 32. When
the radius b of the hole is very small, the expression for the total deflec-
tion becomes

P[3+v Ph

r 2 a
’”=§n3iaifawz‘”)+”“ga]+§ﬁffﬁﬁ“¥; ()

The deflection at the edge of the hole is

2 2
wm=Pa[3+u +11 hlog%] o

8D |2(1 + ») —va?

The second term in this expression represents the correction due to shear.
It increases indefinitely as b approaches zero, as a consequence of our
assumption that the load P is always finite. Thus when b approaches
zero, the corresponding shearing stress and shearing strain become
infinitely large.

The term in Eq. (!) which represents the correction for shear cannot be applied to a
plate without a hole. The correction for a plate without a hole may be expected to be
somewhat smaller because of the wedging effect produced by the concentrated load P
applied at the center of the upper surface of the plate. Imagine that the central
portion of the plate is removed by means of a cylindrical section of small radius b and
that its action on the remainder of the plate is replaced by vertical shearing forces
equivalent to P and by radial forces S representing the wedging effect of the load and

S$S
- K
! Il . uldn
I b L : =
Y - »}P — ' el N
bl () {b)
Fig. 45 Fia. 46

distributed along the upper edge of the hole as shown in Fig. 45. It is evident that the
latter forces produce stretching of the middle surface of the plate together with some
deflection of the plate in the upward direction. This indicates that we must decrease
the correction term in expression (k) to make it apply to a plate without a hole. To
get an idea of the magnitude of the radial forces S, let us consider the plate under the
two loading conditions shown in Fig. 46. In the first case the plate is compressed by
two equal and opposite forces P acting along the axis of symmetry z. In the second
case the plate is subjected to uniform compression in its plane by a pressure p uni-
formly distributed over the cylindrical surface bounding the plate. As a result of
lateral expansion these pressures produce an increase of the thickness of the plate by
the amount

2vp
Ah = —h
E
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We can now obtain from this expression the increase Ar in the radius r of the plate due
to the action of the forces P (Fig. 46a) by applying the reciprocal theorem to the two
conditions of loading shown in Fig. 46. This gives

P Ak = 2zrhp Ar
from which

2
r=£_‘}.’i__vp (m)

2nrhp " E 2ar
Let us compare this radial expansion with the radial expansion produced in a thick-
walled cylinder by an internal pressure p;. If the inner radius b of the cylinder is very
small compared with the outer radius r, the increase in the outer radius by Lamé’s
formula! is

1+ v p?
E r

Ar = (n)
Comparing expressions (m) and (n), we conclude that the radial expansion which the
forces P in Fig. 46a produce in the plate has the same magnitude as the radial expansion
produced in a plate with a small cylindrical hole at the center (Fig. 45) by internal
pressure p; whose magnitude is given by the equation

2vP _ 1 4 v pb?
E2xr E r

From this we obtain
vP

T U+ b ©

pi

Returning to the case of one concentrated force at the center of the upper surface of
the plate, the action of which is illustrated by Fig. 45, we conclude that the force S per
unit length of the circumference of the hole must be equal to the pressure p:h/2.
Using the value of p; from Eq. (o), we obtain

vPh

S=oa 7t »)abi

These forces applied in the upper plane of the plate produce upward deflections w;,
the magnitude of which is found by substituting

2
M, = *?ﬁ = _fi_
2 4(1 + »)xb?

in Eq. (73) and neglecting b2 in comparison with a®. In this manner we obtain

vPh? a? — r? vPh? lo o
8x(1 + D & 41 — »=D B;

w =

(»

Adding this to expression (k), we obtain the following more accurate formula for the
deflection of a plate without a hole and carrying a load P concentrated at the center
of the upper surface of the plate:

! 8ee 8. Timoshenko, ‘‘Strength of Materials,”” part II, 3d ed., p. 210, 1956.
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_ P 3+» . . r Ph? a
w_sw[z(1+y) @ =) +rtlogl | + o D %8,
wPhE gt -1t

“&a+nD & @

This equation can be used to calculate the deflection of all points of the plate that
are not very close to the point of application of the load. When r is of the same order
of magnitude as the thickness of the plate, Eq. (¢) is no longer applicable; and to
obtain a satisfactory solution the central portion of the plate must be considered, as
explained in the preceding article. We can get an approximate value of the deflection
of this central portion considered as a plate of small radius b by adding the deflection
due to local disturbance in stress distribution near the point of application of the load
to the deflection given by the elementary theory.! The deflection due to local dis-
turbance near the center is affected very little by the conditions at the edge of the
plate and hence can be evaluated approximately by means of the curves in Fig. 44.
The dashed-line curve in this figure is obtained by using Eq. (92). The additional
deflections due to local stress disturbance are equal to the differences between the
ordinates of the full lines and those of the dashed line.

As an example, consider a plate the radius of the inner portion of which is b = 5h.
The deflection of the inner portion calculated from Eq. (92) and taken as unity in
Fig. 44 is

Ph? .
% = 16xD 167D h)
Using the curve h/a = 0.2 in Fig. 44, the additional deflection due to local stress
disturbance is

P
= 0. =021 —— 2
52 = 0.215; = 0 T, (5k) n

If we consider a plate for which b = 2.5k and use the curve for h/a = 0.4 in Fig. 44,
we obtain

8 = 0. 81 (2 5h)? (8)

which differs only slightly from that given in expression (r) for b = 5k. It will be
unsatisfactory to take b smaller than 2.5k, since for smaller radii the edge condition
of the thick plate becomes of importance and the curves in Fig. 44, calculated for a
built-in edge, may not be accurate enough for our case.

Finally, to obtain the deflection of the plate under the load we calculate the deflec-
tion by means of Eq. (g), putting r = 0 in the first term and r = b = 2.5 in both
other terms. To this deflection we add the deflection of the central portion of the
plate due to the shear forces as given by expression (s).

In the particular case of » = 0.3 the deflections of simply supported circular plates
may also be obtained by a simple superposition of the curves plotted in Fig. 44,* with
the deflection

P(at — r?)
8xD(1 + »)
1In the case under consideration this deflection can be calculated by using the first

term in expression (g) and substituting b for a.
* Figure 44 was calculated for » = 0.3.
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due to the pure bending by radial moments P/4x applied along the boundary of the
plate.

It should be noted also that, for small values of the ratio r/a, the effect of the
shearing force P/2xr upon the deflection is represented mainly by the second term
on the right-hand side of Eq. (¢). To this term corresponds a slope

dw, 31--» P

dr T 21 + » 20hG ®

Comparing this result with the expression (¢), we conclude that the factor

31 —»
k==
21 +4+»

if introduced into Eq. (3) instead of k = §, would give a more accurate value of the
deformation due to shear in the case of a plate without a hole.

All preceding considerations are applicable only to circular plates bent to a surface
of revolution. A more general theory of bending taking into account the effect of the
shear forces on the deformation of the plate will be given in Arts. 26 and 39.

(u)



CHAPTER 4

SMALL DEFLECTIONS OF LATERALLY LOADED PLATES

21. The Differential Equation of the Deflection Surface. We assume
that the load acting on a plate is normal to its surface and that the
deflections are small in comparison with the thickness of the plate (see
Art. 13). At the boundary we assume that the edges of the plate are
free to move in the plane of the plate; thus the reactive forces at the
edges are normal to the plate. With these assumptions we can neglect
any strain in the middle plane of the plate during bending. Taking, as

gy
My +g—§1¥ oy~ _ - ,'Mx+%$ dx
Myx+8gf(dy"'""\4\/ ~Mxy+%¥dx
Q +'%§-Ldy--~4-,/___‘ “‘Qx+%%&dx
Fia. 47

before (see Art. 10), the coordinate axes z and y in the middle plane of
the plate and the z axis perpendicular to that plane, let us consider an
element cut out of the plate by two pairs of planes parallel to the zz and
yz planes, as shown in Fig. 47. In addition to the bending moments M.
and M, and the twisting moments M, which were considered in the pure
bending of a plate (see Art. 10), there are vertical shearing forces! acting
on the sides of the element. The magnitudes of these shearing forces
per unit length parallel to the y and z axes we denote by @. and @Q,,
respectively, so that

/! %
Q,=/_“ Tar d2 Qyzj“’ Tye d2 (@)

—~h/2

Since the moments and the shearing forces are functions of the coordi-
nates z and y, we must, in discussing the conditions of equilibrium of the
element, take into consideration the small changes of these quantities
when the coordinates x and y change by the small quantities dz and dy.

t There will be no horizontal shearing forces and no forces normal to the sides of the

element, since the strain of the middle plane of the plate is assumed negligible.
79
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The middle plane of the element is represented in Fig. 48a and b, and the
directions in which the moments and forces are taken as positive are
indicated.

We must also consider the load distributed over the upper surface of
the plate. The intensity of this load we denote by ¢, so that the load
acting on the element! is ¢ dz dy.

MY‘ . oM
r{'\ }&”#dx
. My
|' Mly+7dx
Y ~ _}’_
dy dy Myxt
(a)
Qy
Q T
¢ x
1
|
}
1 3 0+ Lo
Qy"'Tyxdy
Y b
{b)
Fia. 48

Projecting all the forces acting on the element onto the z axis we obtain
the following equation of equilibrium:

and dy+aQ”dydz+qudy =0

from which

Qs

an
. T, 1= (99)

Taking moments of all the forces acting on the element with respect to
the z axis, we obtain the equation of equilibrium

aM., oM, _
—bx—dxdy—- ayAdydx+Q,,dxdy—0 ®)

! Bince the stress component o, is neglected, we actually are not able to apply the
load on the upper or onthe lower surface of the plate. Thus, every transverse single
load considered in the thin-plate theory is merely a discontinuity in the magnitude of
the shearing forces, which vary according to the parabolic law through the thickness
of the plate. Likewise, the weight of the plate can be included in the load ¢ without
affecting the accuracy of the result. If the effect of the surface load becomes of
special interest, thick-plate theory has to be used (see Art. 19).
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The moment of the load g and the moment due to change in the force @,
are neglected in this equation, since they are small quantities of a higher
order than those retained. After simplification, Eq. (b) becomes

oM.,

oM, _
gt =0 ©

In the same manner, by taking moments with respect to the y axis, we
obtain
M, , M,

Yy +6x

Since there are no forces in the z and y directions and no moments
with respect to the 2 axis, the three equations (99), (¢), and (d) com-
pletely define the equilibrium of the element. Let us eliminate the
shearing forces Q. and @, from these equations by determining them from
Eqgs. (¢) and (d) and substituting into Eq. (99). In this manner we obtain

M, , *M,. | °M, M. _
ot T o 3y + oyt ooy ¢ )

Observing that M,. = —M,,, by virtue of r,, = 7., we finally represent
the equation of equilibrium (¢) in the following form:
P*M, | M, M,
32t *aE " Zamay - ¢

(100)

To represent this equation in terms of the deflections w of the plate,
we make the assumption here that expressions (41) and (43), developed
for the case of pure bending, can be used also in the case of laterally
loaded plates. This assumption is equivalent to neglecting the effect on
bending of the shearing forces Q. and @, and the compressive stress o,
produced by the load ¢. We have already used such an assumption in
the previous chapter and have seen that the errors in deflections obtained
in this way are small provided the thickness of the plate is small in com-
parison with the dimensions of the plate in its plane. An approximate
theory of bending of thin elastic plates, taking into account the effect of
shearing forces on the deformation, will be given in Art. 39, and several
examples of exact solutions of bending problems of plates will be dis-
cussed in Art. 26.

Using 2 and y directions instead of n and ¢, which were used in Eqgs.
(41) and (43), we obtain

— _pnf%w 9w _ 9w %w

M, = _M”.-:D(l_,,)fi‘_’t

dx 3y (102)
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Substituting these expressions in Eq. (100), we obtain!

tw dtw F*w _ g
Eys + 2 3% ay? + E)) (103)
This latter equation can also be written in the symbolic form
saw =L (104)
D
w . w
where Aw = s + 3 (105)

It is seen that the problem of bending of plates by a lateral load ¢
reduces to the integration of Eq. (103). If, for a particular case, a solu-
tion of this equation is found that satisfies the conditions at the bounda-
ries of the plate, the bending and twisting moments can be calculated
from Egs. (101) and (102). The corresponding normal and shearing
stresses are found from Eq. (44) and the expression

6M.
(T.ru) max — h 22”

Equations (¢) and (d) are used to determine the shearing forces Q. and
Q,, from which

_ My M, 3 [(Pw | dw
=", 1% = Pz (aﬁ + ay2) (106)
_ oM, oM. _ 8 (dw 3w
Q = 9y dr D dy (c‘h:? + W) (107)
or, using the symbolic form,
a3 a
Q.= —-D e (Aw) Q,=-D 3y (Aw) (108)

The shearing stresses 7. and 7,, can now be determined by assuming
that they are distributed across the thickness of the plate according to
the parabolic law.? Then

3¢y

Q- _3
}_l (T.l/z)max - 2h

(redoae = 5

1 This equation was obtained by Lagrange in 1811, when he was examining the
memoir presented to the French Academy of Science by Sophie Germain. The
history of the development of this equation is given in I. Todhunter and K. Pearson,
‘“History of the Theory of Elasticity,” vol. 1, pp. 147, 247, 348, and vol. 2, part 1, p.
263. See also the note by Saint Venant to Art. 73 on page 689 of the French transla-
tion of “Théorie de I'élasticité des corps solides,” by Clebsch, Paris, 1883.

2Tt will be shown in Art. 26 that in certain cases this assumption is in agreement
with the exact theory of bending of plates.
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It is seen that the stresses in a plate can be calculated provided the
deflection surface for a given load distribution and for given boundary
conditions is determined by integration of Eq. (103).

22. Boundary Conditions. We begin the discussion of boundary con-
ditions with the case of a rectangular plate and assume that the z and
y axes are taken parallel to the sides of the plate.

Bugilt-in Edge. If the edge of a plate is built in, the deflection along
this edge is zero, and the tangent plane to the deflected middle surface
along this edge coincides with the initial position of the middle plane of
the plate. Assuming the built-in edge to be given by z = a, the bound-
ary conditions are

aw
(@W)ee = 0 (6—%)== -0 (109)

Simply Supported Edge. If the edge z = a of the plate is simply sup-
ported, the deflection w along this edge must be zero. At the same time
this edge can rotate freely with respect to the edge line; 7.e., there are no

bending moments M, along this edge. This

kind of support is represented in Fig. 49. The
analytical expressions for the boundary condi-
Y/ v

\

tions in this case are
A

92 92
(W)oa = 0 (% + @l")= -0 (110)

FiG. 49

Observing that %w/8y* must vanish together with w along the rectilinear
edge = = a, we find that the second of the conditions (110) can be
rewritten as 8%w/dx® = 0 or also Aw = 0. Equations (110) are there-
fore equivalent to the equations

(Wema =0 (AW)gua = 0 (111)

which do not involve Poisson’s ratio ».

Free Edge. If an edge of a plate, say the edge z = a (Fig. 50), is
entirely free, it is natural to assume that along this edge there are no
bending and twisting moments and also no vertical shearing forces, 7.e.,
that

(Mz)zma =0 (ﬂfzy)z=a =0 (Qz)x=a =0

The boundary eonditions for a free edge were expressed by Poisson! in
this form. But later on, Kirchhoff? proved that three boundary con-
ditions are too many and that two conditions are sufficient for the com-
plete determination of the deflections w satisfying Eq. (103). He showed

! Bee the discussion of this subject in Todhunter and Pearson, op. cit., vol. 1, p. 250,

and in Saint Venant, loc. cit.
?8ee J. Crelle, vol. 40, p. 51, 1850.
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also that the two requirements of Poisson dealing with the twisting
moment M., and with the shearing force Q. must be replaced by one
boundary condition. The physical significance of this reduction in the
number of boundary conditions has been explained by Kelvin and Tait.!
These authors point out that the bending of a plate will not be changed
if the horizontal forces giving the twisting couple M., dy acting on an
element of the length dy of the edge x = a are replaced by two vertical
forces of magnitude M., and dy apart, as shown in Fig. 50. Such a
replacement does not change the magnitude of twisting moments and
produces only local changes in the stress distribution at the edge of the
plate, leaving the stress condition of the rest of the plate unchanged.

We have already discussed a par-
Mxy

o0t -], M ticular case of such a transforma-

. ,/”- {1 ":(xy + aa_yx‘ydy tion of the boundary force system

o S—— in considering pure bending of a

s . . plate to an anticlastic surface (see

4 4 Art. 11). Proceeding with the

= Mxy foregoing replacement of twisting

y T Mxy + %"g’—‘l dy couples along the edge of the plate
Fic. 50 and considering two adjacent ele-

ments of the edge (Fig. 50), we
find that the distribution of twisting moments M., is statically equiva-
lent to a distribution of shearing forces of the intensity

;. [M4y
Qz - < ay )z-:a

Hence the joint requirement regarding twisting moment M., and shear-
ing force Q. along the free edge * = a becomes

v, - (Qz - %‘i—)_ -0 @

Substituting for Q. and M, their expressions (106) and (102), we finally
obtain for a free edge * = a:

d*w F*w
ow —) L = 2
[ax"' + -0y 6y2],=,, 0 (112)

The condition that bending moments along the free edge are zero requires

9%w 9w
(5? + 37),_ =0 (113)

t See “Treatise of Natural Philosophy,” vol. 1, part 2, p. 188, 1883. Independ-
ently the same question was explained by Boussinesq, J. Maih., ser. 2, vol. 16, pp.
125-274, 1871: ser. 3, vol. 5, pp. 329-344, Paris, 1879.
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Equations (112) and (113) represent the two necessary boundary con-
ditions along the free edge z = a of the plate.

Transforming the twisting couples as explained in the foregoing dis-
cussion and as shown in Fig. 50, we obtain not only shearing forces Q. dis-
tributed along the edge x = a but

also two concentrated forces at the ,1- ....... O —erenev Mxydiz oy =0
ends of that edge, as indicated in b x
Fig.51. The magnitudes of these £~ (Myx)

x=o;y=b

forces are equal to the magnitudes
of the twisting couple! M., at the y My o yeb Mxy) _, y=b
corresponding corners of the plate.
Making the analogous transforma-
tion of twisting couples M, along the edge ¥ = b, we shall find that in
this case again, in addition to the distributed shearing forces @, there
will be concentrated forces M, at the corners. This indicates that a
rectangular plate supported in some way along the edges and loaded
laterally will usually produce not only reactions distributed along the
boundary but also concentrated reactions at the corners.

Regarding the directions of these concentrated reactions, a conclusion
can be drawn if the general shape of the deflection surface is known.
Take, for example, a uniformly loaded square plate simply supported
along the edges. The general shape of the deflection surface is indicated
in Fig. 52a by dashed lines representing the section of the middle surface

of the plate by planes parallel to the zz

,i‘------- a------- v' and yz coordinate planes. Considering
Ky % these lines, it may be seen that near the
— corner A the derivative dw/dz, repre-
senting the slope of the deflection sur-

Y ? (@) face in the z direction, is negative and
decreases numerically with increasing y.
R R Hence 8%w/dz dy is positive at the cor-

A ner A. From Eq. (102) we conclude

R (b R that M., is positive and M, is negative
at that corner. From this and from

the directions of M,, and M,. in Pig.

48a it follows that both concentrated forces, indicated at the point x = a,
y = bin Fig. 51, have a downward direction. From symmetry we conclude
also that the forces have the same magnitude and direction at all corners
of the plate. Hence the conditions are as indicated in Fig. 52b, in which

Fic. 51

Fic. 52

62
B = 2(Ma)smssme = 2D(1 = %) <5§%)§>
=@, ym=a

L The couple M., is a moment per unit length and has the dimension of a force.



86 THEORY OF PLATES AND SHELLS

It can be seen that, when a square plate is uniformly loaded, the
corners in general have a tendency to rise, and this is prevented by the
concentrated reactions at the corners, as indicated in the figure.
T S Elastically Supported and Elasti-

’1 cally Built-in Edge. Iftheedgexz = a

x of arectangular plate is rigidly joined

/ to a supporting beam (Fig. 53), the

£ deflection along this edge is not zero

and is equal to the deflection of the

Fic. 53 beam. Also, rotation of the edge is

equal to the twisting of the beam.

Let B be the flexural and C the torsional rigidity of the beam. The pres-

sure in the 2 direction transmitted from the plate to the supporting beam,
from Eq. (a), is

_ (g M\ _pofdw 0w
v (0=t R e )L

and the differential equation of the deflection curve of the beam is

dw 8 Tow ow
5 (W)M =Dg [5? +@2-» 5y_2],=a (114)

This equation represents one of the two boundary conditions of the plate
along the edge z = a.

To obtain the second condition, the twisting of the beam should be
considered. The angle of rotation! of any cross section of the beam is
— (0w/9x) 2ma, and the rate of change of this an-
gle along the edge is

_ 2w
0% Y Jrma

Hence the twisting moment in the beam is
—C(8*w/0x 3Y)s=s. This moment varies along ¥
the edge, since the plate, rigidly connected with
the beam, transmits continuously distributed
twisting moments to the beam. The magni-
tude of these applied moments per unit length Fie. 54

is equal and opposite to the bending moments

M in the plate. IHence, from a consideration of the rotational equilib-
rium of an element of the beam, we obtain

a [ w
._.CI 3—y<a—‘—x ay>z_a - _(Mz):—a

! The right-hand-screw rule is used for the sign of the angle.
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or, substituting for M, its expression (101),

a [ o*w
_C@(a—x 6y>,=a = ( + VT)M (115)

This is the second boundary condition at the edge = a of the plate.

In the case of a plate with a curvilinear boundary (Fig. 54), we take
at a point A of the edge the coordinate axes in the direction of the
tangent ¢{ and the normal »n as shown in the figure. The bending and
twisting moments at that point are

/2 h/2
M, = f_m 2o, dz M., = — f—h/z 2T d2 ®)

Using for the stress components o, and 7., the known expressions?!

o: c0s? a + oy 8in? o + 27, SIn @ €OS @
T2y(c08? @ — sin? &) + (o, — ;) sin « coS «

Tn

Tat
we can represent expressions (b) in the following form:

M, = M,cos?a+ M, sin? a — 2M,, sin « cos a
M. = M.,(cos? @« — sin? a) + (M, — M,) sin a cos a

©

The shearing force Q. at point A of the boundary will be found from the
equation of equilibrium of an element of the plate shown in Fig. 54b,
from which

Qnds = dey - dex
or Q. = Qs cos & + Q, sin « (d)

Having expressions (¢) and (d), the boundary condition in each particular

case can be written without difficulty.
If the curvilinear edge of the plate is built in, we have for such an edge

dw
w =10 %—0 (e)

In the case of a simply supported edge we have
w=0 M,=0 )

Substituting for M, its expression from the first of equations (¢) and
using Egs. (101) and (102), we can represent the boundary conditions (f)
in terms of w and its derivatives.

If the edge of a plate is free, the boundary conditions are

aM”
‘=0 )

M,=0 = Q. —

! The z and y directions are not the principal directions as in the case of pure bend-
ing; hence the expressions for M, and M, will be different from those given by Eqs.
(39) and (40)
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where the term —dM,,/ds is obtained in the manner shown in Fig. 50
and represents the portion of the edge reaction which is due to the dis-
tribution along the edge of the twisting moment M,. Substituting
expressions (¢) and (d) for M,, M., and @, and using Egs. (101), (102),
(106), and (107), we can represent boundary conditions (g) in the follow-
ing form:

2
_ 2 5 =
vAw + (1 — »v) (cos a +sm aa 3 +s1n 2aa 8y> 0

8
€oS a — Aw - sin «

8
% 3y Aw + (I — ») = [cos 200 —— 3230 ay (116)
1 . Pw  w
+§sm 2(!(5—1‘72‘— (9—252-)] =90
where, as before,
Aw = 9w &U
T oax? o8yt

Another method of derivation of these conditions will be shown in the
next article.

23. Alternative Method of Derivation of the Boundary Conditions. The differential
equation (104) of the deflection surface of a plate and the boundary conditions can be
obtained by using the principle of virtual displacements together with the expression
for the strain energy of a bent plate.! Since the effect of shearing stress on the defiec-
tions was entirely neglected in the derivation of Eq. (104), the corresponding expres-
sion for the strain energy will contain only terms depending on the action of bending
and twisting moments as in the case of pure bending discussed in Art. 12. Using
Eq. (48) we obtain for the strain energy in an infinitesimal element

1 o W 3 62w atp \?
dV ==Di{l—+—]) — 20 - — - Iz di
2 !(01’ + c')yz) ( ») [ ax? 6y2 (az 6,1,-) :H dr e @

The total strain energy of the plate is then obtained by integration as follows:

a a 2 2, N ” 2
V= —D o L BN g o,y | S (oW dedy (117)
3zt 0;/2 az? ay? dxr dy

where the integration is extended over the entire surface of the plate.

Applying the principle of virtual displacements, we agssume that an infinitely small
variation &w of the deflections w of the plate is produced. Then the corresponding
change in the strain energy of the plate must be equal to the work done by the external
forces during the assumed virtual displacement. In calculating this work we must
consider not only the lateral load ¢ distributed over the surface of the plate but also
the bending moments M, and transverse forces Q. — (8M,;/3s) distributed along the
boundary of the plate. Hence the general equation, given by the principle.of virtual
displacements, is

1 This is the method by which the boundary conditions were satisfactorily estab-
lished for the first time; see G. Kirchhoff in J. Crelle, vol. 40, 1850, and also his
Vorlesungen iiber Mathematische Physik, Mechanik, p. 450, 1877. Lord Kelvin took
an interest in Kirchhoff’s derivations and spoke with Helmholtz about them; see the
biography of Kelvin by Sylvanus Thompson, vol. 1, p. 432.
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9 dw M
6V=/:/q6wdxdy—/MuIds+-/‘(n— as)BU’ds (b}

The first integral on the right-hand side of this equation represents the work of the
lateral load during the displacement dw. The second, extended along the boundary
of the plate, represents the work of the bending moments due to the rotation 3(sw)/an
of the edge of the plate. The minus sign follows from the directions chosen for M, and
the normal n indicated in Fig. 54. The third integral represents the work of the
transverse forces applied along the edge of the plate.

In the calculation of the variation 5V of the strain energy of the plate we use certain
transformations which will be shown in detail for the first term of expression (117)
The small variation of this term is

azwa Gw
PG -a Jf 525
r} 3.
-2 9 __@aaw _6_1_4_:68w da dy
Iz \9z2 oz oz? oz
a [ 0w 3 dw 3 [ dw otw
=2 ==} -={= — ow | dad
// [é)x(ax’ 6:7:) 63:(013 6w>+61:4 w] wdy (€

In the first two terms after the last equality sign in expression (¢) the double integra-
tion can be replaced by simple integrals if we remember that for any function F of x
and y the following formulas hold:

oF
/ a—dzdy=/Fc05ads

x

oF @)
/ —dxdy=/Fsinads

ay

In these expressions the simple integrals are extended along the boundary, and « is the
angle between the outer normal and the z axis, as shown in Fig. 54. Using the first
of formulas (d), we can represent expression (¢) as follows:

dw I dw  Pw
/:[(a 2) dr dy = 2//——mdxdy+2/(a~ﬂTx——&;Bw)cosads (e)

Advancing along the boundary in the direction shown in Fig. 54, we have

9w 66wdn+66wds 3 sw 3 dw
_— — = ——¢osa — —sin
dz én dzx s dzx on « as s«

With this transformation, expression (¢) becomes

//(a) dody = f——awdzdy

+2 w3 dw d 2 ds
322 \om —— cO8 a % sm a)cosads — — 8w cos a )

Integrating by parts, we have
a9 dw

—SlnaCOSa—— =
s

M 9 [ o
ax—’smacOSan -/a—s(azsmacos:x)&wds
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The first term on the right-hand side of this expression is zero, since we are integrating
along the closed boundary of the plate. Thus we obtain

a9 dw 6 o%w
——51nac03a——ds=— —sin e cos @ ) w ds
as dax?

Substituting this result in Eq. (f), we finally obtain the variation of the first term in the
expression for the strain energy in the following form:

2
6/:/‘<@> de dy = U—&vdxdy—!—Z/—cos’a. 8w
ax?
6 FBw
42 ™ olenacosa —-—a—z-—cosa swds (g)

Transforming in a similar manner the variations of the other terms of expression (117),

we obtain
axw\’
] — ) dzxdy —5wd:cdy+2 ———sm’a—ds
Jy?
63
~—2/[—<—~sxnac03a>+———wsma]8wds (h)
ds \ay? ays
A Ow 3w
=2 sw dx d
//axzayz i //azayﬁ-"’ v
2w 9* a3 & 9% w
+/(wcos2a+é$—?sin2a>a—:ds—/ {ﬁsin +0 o cos a
+i o _ Pw in dwds (7)
s | ez o sin « cos a wds (2

At 6 ot .
+2 sin « cos a —_— ds + (sin? & — cos? o)
oz oy on as dzx dy

FPw Bw | .
————cosa ————sina; wds (j)
Iz dy? ax? dy

ds

By using these formulas the variation of the potential energy will be represented in the
following form:

8V = D(//AAw&wdzdy
02 . Nw . a3 é
+ 1 - —cosza+2 wsxnacos,a+—31n2a + v Aw —wds
ox dy Iy? on
a | [ LY ' 92 .
+/ {(] — y)é ,:(a—:; - 6yz>sma<:OSc»¢ - axt; (cos? a —smza)]

FPw FBw FBw 8w
- (6_:53 + W) cos a — (0—1/3 + pyr 0y> sin a} Sw ds) (118)

Substituting this expression in Eq. (b) and remembering that sw and 9(sw)/on are
arbitrary small quantities satisfying the boundary conditions, we conclude that Eq. (b)
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will be satisfied only if the following three equations are satisfied:

/:/ (DAAMw — g) bwdz dy =0 (k)
2
/{ [(1—u)(—cos’a+2 T:ysmacoz’,a—i-iy—u;sin’a)—f-vAw]

+M}—ds—0 ()]
/(Dl(l—v)—[(%—i?)smacma—:%;

z
Fw d%w Pw Pw . oM.,
- — 4+ cosa—{ —+——])sina; - [ Qn — ) )owds =0 (m)
dx® = 9z dy? oy’ = dx? dy s

The first of these equations will be satisfied only if in every point of the middle surface
of the plate we have

(cos? & — sin? «)

DAAw — ¢ =0

i.e., the differential equation (104) of the deflection surface of the plate. Equations
(1) and (m) give the boundary conditions.

If the plate is built in along the edge, 3w and 8(éw)/n are zero along the edge; and
Eqgs. () and (m) are satisfied. In the case of a simply supported edge, sw = 0 and
M. = 0. Hence Eq. (m) is satisfied, and Eq. (I) will be satisfied if

(1 —v)<—cos’a + 2 o

3w
sinaecosa +—sin?a | +rvaw =0 (n)
oz 9y ay?

In the particular case of a rectilinear edge parallel to the y axis, @ = 0; and we obtain
from Eq. (n)
P o

‘dx? ay2
as it should be for a simply supported edge.
If the edge of a plate is entirely free, the quantity sw and 4(sw)/on in Eqgs. (I) and

(m) are arbitrary; furthermore, M, = 0 and @, — (dMa.;/3s) = 0. Hence, from
Eqs. () and (m), for a free edge we have

92w 9w
— ihad 2 2
(l 11) (6 3 cos? o + 3z 9y

I} ot w\ .
1 -=v)— — — — ]sin ¢ cos a —
2 dx 3y

w Pw Pw w .
—{—+——)ecosa—{— f+——)sina=0
az® Oz Iy? oy®  9x? oy
These conditions are in agreement with Eqs. (116) which were obtained previously

(see page 88). In the particular case of a free rectilinear edge parallel to the y axis,
a = 0, and we obtain

. A .
sinacosa +—sin?a )+ vAw =0
y?

(cos® « — sin? @)

67~w 9w
=0
Bx’ + ay?
dw Pw
== —_ =0
ax? +E =9 o oy?

These equations coincide with Eqs. (112) and (113) obtained previously.
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In the case when given moments M, and transverse forces @, — (9M:/ds) are dis-
tributed along the edge of a plate, the corresponding boundary conditions again can
be easily obtained by using Eqs. {I) and (m).

24. Reduction of the Problem of Bending of a Plate to That of Deflec-
tion of a Membrane. There are cases in which it is advantageous to
replace the differential equation (103) of the fourth order developed for

a plate by two equations of the second order which represent the deflec-
tions of a membrane.! For this purpose we use form (104) of this

equation:
9? a\ [%w | *w) _ ¢
(s + ) G+ 5) = 5 @
and observe that by adding together the two expressions (101) for bend-
ing moments (see page 81) we have

Pw | w
M.+ M, = —D(1 + v) (5‘52-4”37/2) (b)
Introducing a new notation
_ M.+ M, (Pw | 9w
the two Egs. (a) and (b) can be represented in the following form:
oM PM_
dx? 3y
tw_ w_ _ M (120
2 " 9y: D

Both these equations are of the same kind as that obtained for a uni-
formly stretched and laterally loaded membrane.?
The solution of these equations is very much simplified in the case of
a simply supported plate of polygonal shape, in which case along each
rectilinear portion of the boundary we have d%*w/ds* = 0 since w = 0 at
the boundary. Observing that M, = 0 at a simply supported edge, we
conclude also that 9%w/on® = 0 at the boundary. Hence we have [see
Eq. (34)] . , .
w | w  d%w |, w
witm~a T~ "D~ ©
at the boundary in accordance with the second of the equations (111).
It is seen that the solution of the plate problem reduces in this case to
the integration of the two equations (120) in succession. We begin with

t This method of investigating the bending of plates was introduced by H. Marcus
in his book ‘‘ Die Theorie elastischer Gewebe,” 2d ed., p. 12, Berlin, 1932.
* See 8, Timoshenko and J. N. Goodier, “Theory of Elasticity,”” 2d ed., p. 269, 1951,



SMALL DEFLECTIONS OF LATERALLY LOADED PLATES 93

the first of these equations and find a solution satisfying the condition
M = 0 at the boundary.! Substituting this solution in the second equa-
tion and integrating it, we find the deflections w. Both problems are of
the same kind as the problem of the deflection of a uniformly stretched
and laterally loaded membrane having zero deflection at the boundary.
This latter problem is much simpler than the plate problem, and it can
always be solved with sufficient accuracy by using an approximate
method of integration such as Ritz’s or the method of finite differences.
Some examples of the application of these latter methods will be dis-
cussed later (see Arts. 80 and 83). Several applications of Ritz's method
are given in discussing torsional problems.?

A simply supported plate of polygonal shape, bent by moments M,
uniformly distributed along the boundary, is another simple case of the
application of Eqs. (120). Equations (120) in such a case become

M | M

FER
w | w M (21)
W taE - "D

Along a rectilinear edge we have again 9?w/8s*> = 0. Hence

*w
Mn = - D ’a—ﬁ—z
and we have at the boundary
w_ dw _dw_ M. M
9rt " 9yt an® D D

This boundary condition and the first of the equations (12!) will be
satisfied if we take for the quantity M the constant value M = M,
at all points of the plate, which means that the sum of the bending
moments M, and M, remains constant over the entire surface of the
plate. The deflections of the plate will then be found from the second
of the equations (121),® which becomes

P*w | I*w M, .

5 TaF =T D @
It may be concluded from this that, in the case of bending of a simply
supported polygonal plate by moments M, uniformly distributed along
the boundary, the deflection surface of the plate is the same as that of

1 Note that if the plate is not of a polygonal shape, M generally does not vanish at
the boundary when M, = 0.

2 See Timoshenko and Goodier, op. cit., p. 280.

# This was shown first by 8. Woinowsky-Krieger, Ingr.-Arch., vol. 4, p. 254, 1933.
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a uniformly stretched membrane with a uniformly distributed load.

There are many cases for which the solutions of the membrane problem

are known. These can be immediately applied in discussing the corre-

sponding plate problems.

oo q e Take, for example, a simply sup-

ported equilateral triangular plate

(Fig. 55) bent by moments M,

uniformly distributed along the

boundary. The deflection surface

C x of the plate is the same as that of

a uniformly stretched and uni-

formly loaded membrane. The

(a) latter can be easily obtained ex-

R perimentally by stretching a soap

() gy film on the triangular boundary

Fia. 55 and loading it uniformly by air
pressure.!

The analytical expression of the deflection surface is also comparatively

simple in this case. We take the product of the left-hand sides of the

equations of the three sides of the triangle:

2a x 2a
<x+ >(\/3+y 3V§>(V—§ Y 3\/§>
= 3y’ a(x® + yh) + 4a?
3 3 327

(=:)

This expression evidently becomes zero at the boundary. Hence the
boundary condition w = 0 for the membrane is satisfied if we take for
deflections the expression

2* = 3y'r _ a(a® + ¥ 40t
3 3~ T3 27] ©)

w=n|

where N is a constant factor the magnitude of which we choose in such a
manner as to satisfy Eq. (d). In this way we obtain the required solution:

Y. [x3 =3y — a(@® + ) + 55 as] o)

w= 40D

Substituting * = y = 0 in this expression, we obtain the deflection at the
centroid of the triangle
M,a?
Wo = 55 @

1 8uch experiments are used in solving torsional problems, see Timoshenko and
Goodier, op. cit., p. 289.
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The expressions for the bending and twisting moments, from Egs. (101)
and (102), are

M.,
M, ———2—[1+V—(1—v)—]
M~]£[1-I— +(1—u)—] (k)
31 — »M,y

Moy = — 2a

Shearing forces, from Eqgs. (106) and (107), are
Qz = Qu =0

Along the boundary, from Eq. (d) of Art. 22, the shearing force @, = 0,
and the bending moment is equal to M,. The twisting moment along
the side BC (Fig. 55) from Eqs. (c) of Art. 22 is

i = 20— V3

The vertical reactions acting on the plate along the side BC (Fig. 55) are

BM nt 3(1 - V) R

=@ — 3~ T T a9a M, (@

From symmetry we conclude that the same uniformly distributed reac-

tions also act along the two other sides of the plate. These forces are

balanced by the concentrated reactions at the corners of the triangular

plate, the magnitude of which can be found as explained on page 85 and
is equal to

R = 2(Mnt)z—§u,y=0 = (1 - ") ’\/§ Mﬂ (J)

The distribution of the reactive forces along the boundary is shown in
Fig. 55b. The maximum bending stresses are at the corners and act on
the planes bisecting the angles. The magnitude of the corresponding
bending moment, from Eqs. (h), is

(M )re = (My)ege = MoB 22 (®)

This method of determining the bending of simply supported polygonal
plates by moments uniformly distributed along the boundary can be
applied to the calculation of the thermal stresses produced in such plates
by nonuniform heating. In discussing thermal stresses in clamped plates,
it was shown in Art. 14 [Eq. (b)] that nonuniform heating produces uni-
formly distributed bending moments along the boundary of the plate
which prevent any bending of the plate. The magnitude of these
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moments is!
atD(lh + ») 0

M, =
To obtain thermal stresses in the case of a simply supported plate we
need only to superpose on the stresses produced in pure bending by the
moments (I) the stresses that are produced in a plate with simply sup-
ported edges by the bending moments —atD(1 + »)/h uniformly dis-
tributed along the boundary. The solution of the latter problem, as was
already explained, can be obtained without much difficulty in the case of
a plate of polygonal shape.?

Take again, as an example, the equilateral triangular plate. If the
edges of the plate are clamped, the bending moments due to nonuniform
heating are

M=M= atD(1 + ») (m)
h
To find the bending moments M. and M, for a simply supported plate
we must superpose on the moments (m) the moments that will be obtained
from Egs. (k) by letting M, = —atD(1 + »)/h. In this way we finally
obtain

M. = adD(1 + v)  atD(l + »)
= h 2h

1+v—(1—v)-3‘-1§

atEh? 3z
=51 (1 + ‘J)

_atD(1 4+ v) oD+ ») 3z
_ otEh? 1_3_x
- T 24 o
1at
My =32 a’-‘/

1Tt is assumed that the upper surface of the plate is kept at a higher temperature
than the lower one and that the plate thus has the tendency to bend convexly upward.
* SBee dissertation by J. L. Maulbetsch, J. Appl. Mechanics, vol. 2, p. 141, 1935.
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The reactive forces can now be obtained from Egs. () and (j) by substi-
tution of M, = —atD(1 + v)/h. Hence we find
M _ atER? _ _ V3atER

ds  8a k= 12

Vn=Qn_

The results obtained for moments and reactive forces due to nonuniform
heating are represented in Fig. 56a and b, respectively.

25. Effect of Elastic Constants on the Magnitude of Bending Moments. It is seen
from Eqgs. (101) and (102) that the magnitude of the bending and twisting moments
in a plate is considerably affected by the numerical value of Poisson’s ratio ». On the
other hand, it can be easily shown that in the case of a transverse load the magnitude
of the quantity Dw is independent of both constants E and » if the plate is either
simply supported at rectilinear edges or clamped along some edges, whether rectilinear
or not.

Assuming such boundary conditions in any combination, let us consider the follow-
ing problem. Some values of the bending moments M. and M, being given numeri-
cally for an assumed numerical value of », these moments must be computed for a new
value, say »', of the same elastic constant. Let M_ and M ,', be the new values of the
bending moments. Writing Eqs. (101) first for », then for #', eliminating from them
the curvatures d%w/dx? and 8%w/dy?, and solving the resulting equations for M. and
M ;, we obtain

M, =L - M+ o = My
1 — 2
M= L1 =M, + & — M)

v 1 — 2

(122)

Thus M, and M ; can be readily calculated if M. and M, are known.

If the constant » is implied in some of the given boundary conditions, as in the case
of a free edge [Eq. (112)], Egs. (122) do not hold any more.

If the plate is elastically supported or elastically clamped, the moments also depend
on the flexural rigidity D of the plate with respect to the stiffness of its restraint.

The thermal stresses, finally, are affected not only by all the above-mentioned
factors, but also by the absolute value of the rigidity D of the plate.

Average values of » for some materials are given in Table 5. The last value of the
table varies widely, depending on the age of the concrete, on the type of aggregate,
and on other factors.!

TABLE 5. AVERAGE VALUEs oF PorssoN’s RaTio »

Material 4
Steel............... 0.30
Aluminum.......... 0.30
Glass.............. 0.25
Concrete........... 0.15-0.25

1The German Coq? (DIN 4227) gives values of » which approximately can be
expressed by » = /. '7./350, 1’ being the compressive strength of concrete at 28 days
in pounds per square inch. See also J. C. Simmons, Mayg. of Concrete Research, vol.
8, p. 39, 1956.



98 THEORY OF PLATES AND SHELLS

26. Exact Theory of Plates. The differential equation (103), which, together with
the boundary conditiens, defines the deflections of plates, was derived (see Art. 21) by
neglecting the effect on bending of normal stresses o, and shearing stresses .. and ..
This means that in the derivation each thin layer of the plate parallel to the middle
plane was considered to be in a state of plane stressin which only the stress components
oz, 0y, and 7z, may be different from zero. One of the simplest cases of this kind is that
of pure bending. The deflection surface in this case is a second-degree function in x
and y [see Eq. (¢), Art. 11] that satisfies Eq. (103). The stress components o, gy,
and 7., are proportional to z and independent of z and y.

There are other cases of bending in which a plane stress distribution takes place and
Eq. (103) holds rigorously. Take, for example, a circular plate with a central circular
hole bent by moments M, uniformly distributed along the boundary of the hole (Fig.
57). Each thin layer of the plate cut out by two adjacent planes parallel to the middle
plane is in the same stress condition as a thick-walled cylinder subjected to a uniform
internal pressure or tension (Fig. 57b). The sum ¢, 4 o of the two principal stresses
is constant in such a case,! and it can be concluded that the deformation of the layer in
the 2 direction is also constant and does not interfere with the deformation of adjacent
layers. Hence we have again a planar stress distribution, and Eq. (103) holds.

Let us discuss now the general question regarding the shape of the deflection surface
of a plate when bending results in a planar stress distribution. To answer this ques-
tion it is necessary to consider the three differential equations of equilibrium together
with the six compatibility conditions. If body forces are neglected, these equations
are”

6_0,2 072y 9732 .

0
oxr Yy oz
da 01 ar
L Ak WAL L) (a)
8y o 92
3o + 07z + B7yz -0
a4z x ay
1 9%
Aoy = — —_—
1 + v Jx2
1 820
Ay = — r b
10y 1+ » oy ®)
Ao, = 1 o%
e = 1 + v 922
1 520
Aytzy = —
1+ »dx dy
1 828
AiTze = — ¢
e 1+ vdzxoz ©
A _ 1 a0
TS T I Y ayer
in which
=0, +o, + o
a2 9% 9%
and A = —

ozt T oy e

1 See Timoshenko and Goodier, op. cit., p. 60.
2 See tbid., pp. 229, 232.
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Adding Eqgs. (b), we find that
%0 920 920
pyr + P + Frin A0 =0 (d)

i.e., the sum of the three normal stress components represents a harmonic function.
In the case of a planar stress 7., = 7. = o, = 0, and it can be concluded from the last
two of the equations (¢) and the last of the equations (b) that /32 must be a constant,
say 8. Hence the general expression for 6 in the case of planar stress is

0 = 6o + Bz (e
where 6 is a plane harmonic function, i.e.,
%00 920,

— = Ay =0
ox? + dy? ¢

We see that in the case of planar stress the function 6 consists of two parts: 6
independent of 2 and Bz proportional to z. The first part does not vary through the
thickness of the plate. It depends on deformation of the plate in its own plane and
can be omitted if we are interested only in bending of plates. Thus we can take in our
further discussion

6 =Bz )]
Equations of equilibrium (a) will be satisfied in the case of a planar stress distribution
if we take
) 320 L
ox oy

)

where ¢ is the stress function. Let us consider now the general form of this function.
Substituting expressions {(g) in Eq. (f), we obtain

e %

— 4 = = h

Pt (h)
Furthermore, from the first of the equations (b) we conclude that

a2 a2
Ay f_0 or — A =0
ay? oy?

which, by using Eq. (h), can be put in the following form:

92 [ 3% X
P (7) =0 ®

In the same manner, from the second and the third of the equations (b), we find

a? (3% a2 A%p .
— | —])=0 —}=0
dx? (az’> oz 9y <3z2) @

From Eqgs. (¢) and (j) it follows that 9%¢/92% is a linear function of z and y. This fune-
tion may be taken to be zero without affecting the magnitudes of the stress components
given by expressions (g). Insuch a case the general expression of the stress function is

¢ = 9o+ o2



100 THEORY OF PLATES AND SHELLS
where ¢o is a plane harmonic function and ¢, satisfies the equation

ey | Bl
Jz? ay?

=8 (k)

Since we are not interested in the deformations of plates in their plane, we can omit
¢o in our further discussion and take as a general expression for the stress function

¢ = o1z 0]

Substituting this in Eqgs. (g), the stress components can now be calculated, and the
displacements can be found from the equations

du 1 o 1 dw v
£=E(‘7:_V‘7u) a—y=E(¢u—Wz) %= gt -
m
u o 1 o dw 0 - dw
8y oz TG T 8z oz az oy
For the displacements w perpendicular to the plate we obtain in this way?
= — i 2 2 2 .! + d
w = 2E(x + ¥+ we?) + TR
and the deflection of the middle surface of the plate is
o= B 2 2 1 + v
w=—on@ )+ n)
The corresponding stress components, from Eqgs. (g) and (1), are
32y e 321
o =2 oy =2 Toy = —2
ay? a2 dr Y
and the bending and twisting moments are
h/2 13 32 h/2 h3 92
s = o2dz = — Lt M, = a',,zd2=—‘-¢:
—r/2 12 oy? —r/2 12 ax?
/2 B 9%y (0)
M.y = — T2 dz = —
—h/2 12 3z 9y
For the curvatures and the twist of a plate, we find, from Eq. (n)
6"'w_ B 1 + » 3% B’w_ E 1+u8_’& 0"'w_1+v62<p1
a* E E ox? y? E E a3y oz oy E ozxzay
from which, by using Eqgs. (k) and (o), we obtain
dtw n w ! — 2ol M,
ozt ¥ yr E oy D
w 3w 1 — »? 9% M
___2+,,._=_____v_ﬂ=__.._" (»
Ay az? E 9z D
B’w _ 1 + 1 4 32401 sz

axdy E oxdy (1 —»D

1 Several examples of caleulating u, », and w from Egs. (m) are given in ¢bid.
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From this analysis it may be concluded that, in the case of bending of plates resulting
in a planar stress distribution, the deflections w [see Eq. (n)] rigorously satisfy Eq.
(103) and also Eqs. (101) and (102) representing bending and twisting moments. Ifa
solution of Eq. (k) is taken in the form of a function of the second degree in x and y, the
deflection surface (n) is also of the second degree which represents the deflection for

2 .
Vzzd ) (|{—F /
g v N

(@)

X

®
P

oy

(b)
Fig. 57

pure bending. Generally we can conclude, from Eq. (k), that the deflection of the
plate in the case of a planar stress distribution is the same as that of a uniformly
stretched and uniformly loaded membrane. The plate shown in Fig. 57 represents a
particular case of such bending, »iz., the case for which the solution of Eq. (k), given
in polar coordinates, is

¢1=Art 4+ Blogr + C

where A, B, and C are constants that must be chosen so as to satisfy the boundary
conditions.

Plates of a polygonal shape simply supported and bent by moments uniformly
distributed along the boundary (see Art. 24) represent another example of bending in

/X.

Y -~
-7 Q
P B\

7 i

Fic. 58

which the deflection surface has a form satisfying Eq. (r), and Egs. (101), (102), and
(103) hold rigorously. In all these cases, as we may see from Egs. (k) and (o}, we have

B (e 3 Bk
M, =— ({228
Mo+ My 12(3:;2 + ayz) 12

i.e., the sum of the bending moments in two perpendicular directions remains constant
over the entire plate.
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Let us consider now the case in which bending of a plate results in a generalized
planar stress distribution, i.e., one in which the normal stress component o is zero at
all points of the plate and the shearing stress components r., and r,. are zero on the
surfaces z = +h/2 of the plate. The deflection of a rectangular plate clamped along
one edge and uniformly loaded along the opposite edge (Fig. 58) represents an example
of such bending. From the theory of bending of rectangular beams we know that
in this case o, = 0 at all points of the plate and 7., is zero on the surfaces of the plate
and varies along the depth of the plate according to the parabolic law

w5 )
xz 13 - -

Using again the general equations (a), (b), and (c) and proceeding as in the preceding
case of a planar stress distribution, we find? that the general expression for the deflec-
tion surface in this case has the form

11 h2
w=g [T” + 1+ V)m] @

in which ¢ is a planar harmonic function of z and y, and ¢, satisties the equation

o 9%p: 11—

awt T ayr . 1447

It can be concluded that in this case again the differential equation (103) holds with
qg=0.
The equations for the bending and twisting moments and for the shearing forces in

this case are
a a2
M,=_D(2’Lv+,iv)+8+” a—ysz

dr? ay? 40
2 a4 8
sl B bl
Y AT (123)
M., = D(1 — Dh? A
w=D0 = 40 azay "

3 9
Q: = —D— Aw Qy = —D— Aw
ax dy

Hence the expressions for the shearing forces coincide with expressions (108) given by
the approximate theory, but the expressions for moments are different, the second
terms of those expressions representing the effect of the shearing forces.

These correction terms can be obtained in an elementary way by using the same
reasoning as in the case of bending of beams. Considering the curvature in the xz
plane, we can state that the total curvature is produced by two factors, the bending
moments M, M, and the shearing force @;. The curvature produced by the bending

t The rigorous solution for this case was given by Saint Venant; see his translation
of Clebsch’s ““Théorie de V’élasticité des corps solides,” p. 337. A general discussion
of the rigorous theory of bending of plates was given by J. H. Michell, Proc. London
Math. Soc., vol. 31, p. 100, 1900. See also A. E. H. Love, ‘“ The Mathematical Theory
of Elasticity,” p. 473, 1927. The results given in our further discussion are taken
from the latter book.
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moments is obtained by subtracting from the total curvature —a%w/dx? the portion
—3(kQ./M3)/dx produced by the shearing force.! Substituting

) 109_)
_w \KG)
dx? oz

and —(0%w/dy?) + 8(kQ,/hG)/3y for —o%w/ox* and —ad%w/oyt in Eqs. (101) and
using the last two equations of the system (123), we find for the bending moments the

expressions
% 3w kDh? ot
M.,=—-D{— — — — A
<az2 + ”ayZ) + 6 Jy? v
% 3w kDh? 92
M,=-D|— — — A
v <6y2 + y(‘):t’) + 6 Jx? v
These equations coincide with the first two equations of the system (123) if we take
k_8+w
6 40

For » = 0.3 this gives k = 1.245.

From the theory of bending of beams we know that the correction due to the action
of the shearing force is small and can be neglected if the depth k is small in comparison
with the span of the beam. The same conclusion also holds in the case of plates.

The exact expressions for stress components are

Ez w I E h2z 2—-;'3 92

“=‘1_yz(a+”a—m TTTa\T T )t
_ E: 3hw ot E h?z 2 — v . a2

=i o\eye T ) T a\T T e Pt

E: ow E (h’z 2~y 3> Py @
Toy = —T—— —— — — | — — z Aw

14voxdy 1—r2\ 4 6 ax Iy

E(h — 42%) @ E(he — 42%) 9
T TR — w T TR w0

The second terms on the right-hand sides of the equations for ¢:, s,, and 7,4 are the
corrections due to the effect of shearing forces on bending. It is seen that the stresses
o1, 0y, and 7, are no longer proportional to the distance z from the middle plane but
contain a term proportional to 23. Shearing stresses 7., and 7,, vary according to the
same parabolic law as for rectangular beams. In the case of a plane stress distribu-
tion, Aw is a constant, and formulas (r) coincide with those given by the approximate
theory.

The problem of a uniforinly loaded plate can also be treated rigorously in the same
way. Thus it can be shown that the general expression for deflections in this case is
obtained by adding to expression (¢) the term

_]_'_g 2 2 2 2 2h2
@ap“ +y)(x Ty -1 (®

1 k is a numerical factor that in the case of beams depends on the shape of the cross
section.
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which again satisfies Eq. (103) of the approximate theory. The equations for bending
moments do not coincide with Eqgs. (101) of the approximate theory but contain some
additional correction terms. If the thickness of the plate is small in comparison with
the other dimensions, these terms are small and can be neglected.

In all previous cases general solutions of plate bending problems were discussed
without considering the boundary conditions. There are also rigorous solutions of
several problems in which boundary conditions are considered.! These solutions
indicate that, provided the plate can be considered ‘“‘thin,” the customary theory is
accurate enough for practical purposes except (1) in the vicinity of a highly con-
centrated transverse load and (2) in narrow edge zones, especially near the corners of
plates and around holes with a diameter of the order of magnitude of the plate thick-
ness itself.

In the first of these two cases the stress components ¢. and the transverse shearing
stresses must be considered equally important in their effect on the deformation of the
plate. In obtaining the necessary correction to the stresses given by the approximate
theory (see page 70) the boundary conditions can be eliminated from consideration.
In such circumstances the thick-plate theory proves most convenient for the solution
of the problem.

In the second case the effect of the stress components o, on the deformation becomes
secondary as compared with the effect of the transverse shearing stresses 7., and r,..
Primarily taking into acecount this latter effect, several modified thin-plate theories
have been developed recently (see Art. 39). These theories are better suited for the
analysis of the stress distribution in the edge zone of the plates than the more rigorous
thick-plate theory.

! In recent times the rigorous theory of plates has attracted the interest of engineers,
and several important papers in this field have been published. We shall mention
here the following: S. Woinowsky-Krieger, Ingr.-Arch., vol. 4, pp. 203 and 305, 1933.
B. Galerkin, Compt. rend., vol. 190, p. 1047; vol. 193, p. 568; vol. 194, p. 1440. G. D.
Birkhoff, Phil. Mag., vol. 43, p. 953, 1922. C. A. Garabedian, Trans. Am. Math. Soc.,
vol. 25, p. 343, 1923; Compl. rend., vols. 178 (1924), 180 (1925), 186 (1928), 195 (1932).
R. Archie Higdon and D. L. Holl, Duke Math. J., vol. 3, p. 18, 1937. A. C. Stevenson,
Phil. Mag., ser. 7, vol. 33, p. 639, 1942; R. Ohlig, Ingr.-Arch., vol. 13, p. 155, 1942;
I. N. Sneddon, Proc. Cambridge Phil. Soc., vol. 42, p. 260, 1946; L. Leibenson, *“ Works,”
vol. 1, p. 111, Moscow, 1951; H. Jung, Z. angew. Math. Mech., vol. 32, p. 57, 1952;
E. Koppe, Z. angew. Math. Mech., vol. 37, p. 38, 1957. For thermal stresses see K.
Marguerre, Z. angew. Math. Mech., vol. 15, p. 369, 1935; and I. S. Sokolnikoff and
E. 8. Sokolnikoff, Trans. Am. Math. Soc., vol. 45, p. 235, 1939.



CHAPTER 5

SIMPLY SUPPORTED RECTANGULAR PLATES

27. Simply Supported Rectangular Plates under Sinusoidal Load.
Taking the coordinate axes as shown in Fig. 59, we assume that the load
distributed over the surface of the plate is given by the expression

¢ = ¢o sin —a— sin 7%” (a)

in which g, represents the intensity of the load at the center of the plate.
The differential equation (103) for the deflection

X NN o et [= IEEEEE >
surface in this case becomes ~ x
*w d'w Fw _ g . wr . wY E
£4+2ax2—ay2+ay4—5§ln‘a‘sln'y (b) ?

The boundary conditions for simply supported Y
edges are
w =20 M,=0 fort =0andx =a y
=0 M,=0 fory=0and y = b Fie. 59

Using expression (101) for bending moments and observing that, since
w.= 0 at the edges, ?w/9z? = 0 and #*w/dy? = O for the edges parallel
to the x and y axes, respectively, we can represent the boundary condi-~
tions in the following form:

2
(1) w=0 (2)3—;—;’=0 forz =0andz = a

*w )
B)w=20 (4)5—1/—2=0 fory=0andy =%

It may be seen that all boundary conditions are satisfied if we take for
deflections the expression

w = C sin = sin L ()
in which the constant C must be chosen so as to satisfy Eq. (b). Substi-

tuting expression (d) into Eq. (b), we find

1
1l'4< + bz) C = —D—
105
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and we conclude that the deflection surface satisfying Eq. (b) and bound-
ary conditions (c) is

w = o . BT . TY (e)

——————1——2 sin -; sin ?
AD + b2

Having this expression and using Egs. (101) and (102), we find

Moo= Qo 1 LE )
M . 4(1 1) ( -+ b2> sin — sin b
|l =

@y
- 9 (v 1N T Y
M, i N a2+b2>smasm b )
“\atm
M,,,=—q;£%cosa—cos—5‘q
“@+Q

It is seen that the maximum deflection and the maximum bending
moments are at the center of the plate. Substituting z = a/2, y = b/2
in Egs. (¢) and (f), we obtain

Wowe = —— (29
"m(m+59

- % 1.

(Mz)max"' ) 1 1 2<a2+ 2>
“\@& T

- Q@ (v 1

(Mu)mx—‘ \ 1 1 2(a2+b2)
T\at T

In the particular case of a square plate, a = b, and the foregoing
formulas become

(125)

ot 1 4+ v)qoa?
Wmax = 4?II'_AD (Mz)max = (My)nusx = (47% (126)

We use Eqs. (106) and (107) to calculate the shearing forces and obtain

=_ P s ™in™
Q. I 1 cos — sin
“\a T @
g
Q,,=—q+sinﬁcosr—g/
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To find the reactive forces at the supported edges of the plate we pro-
ceed as was explained in Art. 22. For the edge z = a we find

_ _ oM., _ qo Ty
Ve = (Qz W)z—a =~ 77 v (a2 + b2 ) sin 3= (k)
wa a—2 + B2

In the same manner, for the edge y = b,

=y 1 2 - . .
(Qv %)y# = — %_2 (17_2 + _aTV) sin 7% (O]
b ( ——)

prR s

Hence the pressure distribution follows a sinusoidal law. The minus sign
indicates that the reactions on the plate act upward. From symmetry
it may be concluded that formulas (h) and (¢) also represent pressure dis-
tributions along the sides # = 0 and y = O, respectively. The resultant
of distributed pressures is

2q0 1 2~ b wy
—(1—1)2[5( s+ g )[) sm—l;—dy
=

a2 b2
1/1 2—» LI 7 4qoab 8qo(l — ») .
+z(‘zﬁ+T>ﬂs‘“'a‘d’”]= =l q°(1 e @
2ab( -{-b2

4qoab / / Qo sin ™% sin T Y dx dy k)

it can be concluded that the sum of the distributed reactions is larger
than the total load on the plate given by expression (k). This result can
be easily explained if we note that, proceeding as described in Art. 22,
we obtain not only the distributed reactions
but also reactions concentrated at the cor-
ners of the plate. These concentrated re-
actions are equal, from symmetry; and their
magnitude, as may be seen from Fig. 51, is

1,1V
m’ab < + bz) Fia. 60

The positive sign indicates that the reactions act downward. Their sum
is exactly equal to the second term in expression (j). The distributed
and the concentrated reactions which act on the plate and keep the load,
defined by Eq. (a), in equilibrium are shown graphically in Fig. 60. It
may be seen that the corners of the plate have a tendency to rise up

Observing that

R = 2(M2v)1=a.y-b =
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under the sction of the applied load and that the concentrated forces R
must be applied to prevent this.

The maximum bending stress is at the center of the plate. Assuming
that @ > b, we find that at the center M, > M.. Hence the maximum
bending stress is

— 6(Mv)mn.x — qu _Z_ l
(O'y)mnx = R - v 1 1 2\ g2 + b2
w2h e + B
The maximum shearing stress will be at the middle of the longer sides of
the plate. Observing that the total transverse force V, = Q, — ag{v’”

is distributed along the thickness of the plate according to the parabolie
law and using Eq. (¢), we obtain

3 1 2~
(Tyedmex = —*—lqo——l—z (b—2 + —a—2>

If the sinusoidal load distribution is given by the equation

g = qo sin mTr sin 7—”;—?/ (m)
where m and n are integer numbers, we can proceed as before, and we
shall obtain for the deflection surface the following expression:

SN U E— - sin 7L in MY
m? n? a b
(5 + )

from which the expressions for bending and twisting moments can be
readily obtained by differentiation.

28. Navier Solution for Simply Supported Rectangular Plates. The
solution of the preceding article can be used in calculating deflections
produced in a simply supported rectangular plate by any kind of loading
given by the equation

w =

(127)

q = f(z,y) (@)

For this purpose we represent the function f(z,y) in the form of a double
trigonometric series:!

flzy) = Z Z Qmn SID @;L sin 7%/ (128)

m=1n=1

! The first solution of the problem of bending of simply supported rectangular plates
and the use for this purpose of double trigonometric series are due to Navier, who
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To calculate any particular coefficient @..-»’ of this series we multiply both
sides of Eq. (128) by sin (n'my/b) dy and integrate from 0 to . Observing

that
b
Sln m Sln y d O When n o n,
0 b b
b onwy . n'my b .,
/;sm———b——sm—b—dy—-—z— when n = n
we find in this way
b . o

m=1

Multiplying both sides of Eq. (b) by sin (m’zz/a) dz and integrating from
0 to a, we obtain

/ / f(z,y) sin 27 gin 2TY wry dx dy -® Qu'n’
b 4
Y gx dy (129)

O = / / fy) sin = b

Performing the integration indicated in expression (129) for a given load
distribution, 7.e., for a given f(z,y), we find the coefficients of series (128)
and represent in this way the given load as a sum of partial sinusoidal
loadings. The deflection produced by each partial loading was discussed
in the preceding article, and the total deflection will be obtained by sum-
mation of such terms as are given by Eq. (127). Hence we find

from which

sm

®

_ 1 ::jﬂ: G . MAT . NwY
=5 — n2>2 sin —— sin — (130)

m=1 n=1 a? b*

Take the case of a load uniformly distributed over the entire surface
of the plate as an example of the application of the general solution (130).
In such a case

f@y) = o
where gy is the intensity of the uniformly distributed load. ¥rom formula
(129) we-obtain

4qo mrx nwy _ 160
s - / / sm—— sin —= 3 dz dy o oy (¢)

presented a paper on this subject to the French Academy in 1820. The abstract of the
paper was published in Bull. soc. phil.-math., Paris, 1823. The manuseript is in the
library of I’Ecole des Ponts et Chaussées.
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where m and n are odd integers. If m or n or both of them are even
numbers, a.., = 0. Substituting in Eq. (130), we find
mrx . nwy

1640 sin == sin ==

7D A Y
m=1 n=1 mn( + b2>

wherem = 1,3,5, . . .andn =1, 3, 5, .

In the case of a uniform load we have a deflection surface symmetrical
with respect to the axes x = a/2, y = b/2; and quite naturally all terms
with even numbers for m or n in series (131) vanish, since they are
unsymmetrical with respect to the above-mentioned axes. The maxi-
mum deflection of the plate is at its center and is found by substituting
x = a/2, y = b/2in formula (131), giving

(131)

16(10 (—1) 2

Waax = —57 ey
n D m2 n2

m=1 n=1 mn (a2 + ﬁ)

This is a rapidly converging series, and a satisfactory approximation is
obtained by taking only the first term of the series, which, for example,
in the case of a square plate gives

(132)

_ 4qat qoa*
Wnex = =535 = 0.00416 —— o

or, by substituting expression (3) for D and assuming » = 0.3,

qoat!
Wear = 0.0454 == S
This result is about 2} per cent in error (see Table 8).

From expression (132) it may be seen that the deflections of two plates
that have the same thickness and the same value of the ratio a/b increase
as the fourth power of the length of the sides.

The expressions for bending and twisting moments can be obtained
from the general solution (131) by using Eqgs. (101) and (102). The
series obtained in this way are not so rapidly convergent as series (131),
and in the further discussion (see Art. 30) another form of solution will be
given, more suitable for numerical calculations. Since the moments are
expressed by the second derivatives of series (131), their maximum values,
if we keep ¢qo and D the same, are proportional to the square of linear
dimensions. Since the total load on the plate, equal to geab, is also pro-
portional to the square of the linear dimensions, we conclude that, for
two plates of equal thickness and of the same value of the ratio a/b, the
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maximum bending moments and hence the maximum stresses are equal
if the total loads on the two plates are equal.!

29. Further Applications of the Navier Solution. From the discussion
in the preceding article it is seen that the deflection of a simply supported
rectangular plate (Fig. 59) can always be represented in the form of a
double trigonometric series (130), the coefficients a,, being given by
Eq. (129).

Let us apply this result in the case of a single load P uniformly dis-
tributed over the area of the rectangle shown in Fig. 61. By virtue of
Eq. (129) we have

E+u/2 n4v/2 s mrx
mn = sin _1r L dy
abuv f—u/2 Jn—v/2 b

or Amn = 16P sin mr sin 277 sin 7% gin nry (a)
T wimnuy a b 2a 2b

If, in particular, £ = a/2,9 = b/2, 4 = a, and
v = b, Eq. (a) yields the expression (¢) obtained
in Art. 28 for the uniformly loaded plate. ke~ U =]

Another case of practical interest is a single ;.
load concentrated at any given pointz = £,y = g v
of the plate. Using Eq. (a) and letting » and v r
tend to zero we arrive at the expression - £ =]

[ e = o3 e m ]

_ 4P mrf . nwy
Gmn = —p sin —= 5 sin—= )

and, by Eq. (130), at the deflection

w mrk nwy
sin — sin —
4P a b . mwrx . nmy

—_ ———————— sin — sin —~°
wiabD m?  n2\? a b
m=1 n=1 a? + Ix

The series converges rapidly, and we can obtain the deflection at any
point of the plate with sufficient accuracy by taking only the first few
terms of the series. Let us, for example, calculate the deflection at the
middle when the load is applied at the middle as well. Then we have
(=2 =a/2, 7 =y = b/2, and the series (133) yields

ke = m § === =]

Fic. 61

(133)

4P 1

xiabD m: a2\’
m=1 n=1 (a_2 + F)

1 This conclusion was established by Mariotte in the paper ‘“Traité du mouvement
des eaux,” published in 1686. See Mariotte’s scientific papers, new ed., vol. 2, p. 467,
1740.

(¢)

wmax =
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wherem = 1,3,5,...andn =1,3,5, . ... Inthecaseofasquare
plate, expression (¢) becomes

4:Pa2 Z 2
Wmax = (mz + n?)?

Taking the first four terms of the series we find that

_ 0.01121Pa?
Wmax = D

which is about 3} per cent less than the correct value (see Table 23,
page 143).

As for the series (128) representing the intensity of the concentrated
load it is divergent at = £, y = 4, and so also are the series expressing
the bending moments and shearing forces at the point of application of
the load.

Let us consider now the expression

mwé nwy mrx . Ny

1 sin T sin '—b— sin —— 2 s T
w = K(xvyygy'”) = m‘D m2 n\2
m=1 n=1 <_ 77—2>

(134)

which; by virtue of Eq. (132), represents the deflection due to a unit load
P = 1 and for which the notation K(x,y,£,9) is introduced for brevity.

Regarding z and y as the variables, w = K(x,y,£,9) is the equation of
the elastic surface of the plate submitted to a unit load at a fixed point
x=§ y =19 Now considering £ and 7 as variable, Eq. (134) defines
the influence surface for the deflection of the plate at a fixed point z, ¥,
the position of the traveling unit load being given by £ and 5. If, there-
fore, some load of intensity f(£,n) distributed over an area A is given, the
corresponding deflection at any point of the plate may easily be obtained.
In fact, applying an elementary load f(&n) dédn at x = £ y = 9 and
using the principle of superposition, we arrive at the deflection

w = L [ femK @y, didn (135)

the double integral being extended over the loaded area and K(x,y,{n)
being given by Eq. (134).

The function K(z,y,£,) is sometimes called Green’s function of the plate. When
given as by Eq. (134), this function is associated with the boundary conditions of the
simply supported rectangular plate. Many properties of Green’s function, however,
are independent of those restrictions. An example is the property of symmetry,
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expressed by the relation
K(a:;yyg:ﬂ) = K(E;’lrx)y)

which follows from the well-known reciprocal theorem of Maxwell! and is easy to
verify in the particular case of the function (134).

As the last example in the application of Navier’s solution let us consider the case of
as ingle load P uniformly distributed over the area of a circle with radius ¢ and with
center at = = £, y = n. Introducing polar coordinates p, 6 with the origin at the
center of the loaded area and replacing the elementary area dr dy in Eq. (129) by the
area p dp d6, we have, by this latter equation,

2x
= / / in mn (¢ + p cos 0) n1r(17 + p gin 6) o dp db @
ab wc? a

Provided that the circle p = ¢ remains entirely inside the boundary of the plate the
evaluation of the integral (d) gives the expression?
mw§ . nwy

aboyay J1(ymne) sin =7 sin 5= ©

Cmn =

in which ymn = = \/ (m/a)? 4+ (n/b)? and J1(vyanc) is the Bessel function of order one,
with the argument yn..c. The required deflection now is obtainable by substitution
of the expression (¢) into Eq. (130).

It is seen that the form of the Navier solution remains simple even in
relatively complex cases of load distribution. On the other hand, the
double series of this solution are not convenient for numerical computa-
tion especially if higher derivatives of the function w are involved. So,
another form of solution for the bending of the rectangular plate, more
suitable for this purpose, will be discussed below.

30. Alternate Solution for Simply Supported and Uniformly Loaded
Rectangular Plates. In discussing problems of bending of rectangular
plates that have two opposite edges simply supported, M. Lévy® sug-
gested taking the solution in the form of a series

@

w = 2 Y, sin 272 (136)

m=1

where Y, is a function of y only. It is assumed that the sides z = 0 and
z = a (Fig. 62) are,simply supported. Hence each term of series (136)
satisfies the boundary conditions w = 0 and 92w/dx* = 0 on these two
sides. It remains to determine Y., in such a form as to satisfy the bound-

! Bee, for instance, 8. Timoshenko and D. H. Young, “Theory of Structures,” p.
250, 1945.

? See S. Woinowsky-Krieger, Ingr.-Arch., vol. 3, p. 240, 1932.

3 See Compt. rend., vol. 129, pp. 535-539, 1899. The solution was applied to several
particular cases of bending of rectangular plates by E. Estanave, ““Théses,” Paris,
1900; in this paper the transformation of the double series of the Navier solution to the
simple series of M. Lévy is shown.
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ary conditions on the sides ¥ = +b/2 and also the equation of the deflec-
tion surface
'w 'w Fw ¢
5t T2 T o T D @
In applying this method to uniformly loaded and simply supported
i‘ _____ o o rectangular plates, a furthersimplification can be
] made by taking the solution of Eq. (@) in the form!

w=w1+w2 (b)

Nio

and letting

w = 24-% (z* — 202% + a’x) (¢)

-l

bt~

i.e., wy represents the deflection of a uniformly
loaded strip parallel to the z axis. It satisfies Eq.
4 (a) and also the boundary conditions at the edges
F16. 62
z=0and z = a.
The expression w; evidently has to satisfy the equation
34102 64’11)2 04wz

9zt +2 9zt 3y? + 71/—4 =0 (137)

and must be chosen in such a manner as to make the sum (b) satisfy all
boundary conditions of the plate. Taking w, in the form of the series
(186) in which, from symmetry, m = 1, 3, 5, . . . and substituting it
into Eq. (137), we obtain

2 2.2 4
Z(Y:,y—z"“’ Y:;+%Ym)sinm7”=o

a2
m=1
This equation can be satisfied for all values of z only if the function Y,
satisfies the equation
m? mirt

w2
i+ 2y, =0 ()

vy - 253

The general integral of this equation can be taken in the form?

mwy

4
Y, = & (Am cosh ™Y + B, ™Y ginh
D a a

+ Cn sinh ™ 4 D, ™Y gosh M) (138)
a a a
t This form of solution was used by A. Nédai, Forschungsarb., nos. 170 and 171,
Berlin, 1915; see also his book “Elastische Platten,” Berlin, 1925.
2 A somewhat different form for Y., more convenient to satisfy some particular
boundary conditions, has been suggested by P. F. Papkovitch, Priklad. Mat. Mekh.,
vol. 5, 1941.
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Observing that the deflection surface of the plate is symmetrical with
respect to the z axis (Fig. 62), we keep in the expression (138) only even
functions of y and let the integration constants C.. = D,, =

The deflection surface (b) is then represented by the following
expression:

= L (gt — g 3
w 24D(x 2ax® + a’x)

g0’ mwy mwy . ., mwy\ . mwT
+ D E (A,,, cosh = + B, = sinh = ) sin —— (e)
m=1

which satisfies Eq. (@) and also the boundary conditions at the sides
z =0and z = a. It remains now to adjust the constants of integration
A~ and B, in such a manner as to satisfy the boundary conditions

9w
on the sides y = +b/2. We begin by developing expression (¢) in a
trigonometric series, which givest!

w0 *

9 e 2 s — g0t 1, M
24D($ 2ax® + a’c) =D 5 sin —
m=1
where m = 1, 3,5, . ... The deflection surface (¢) will now be repre-
sented in the form
qa* m1ry . . mwEy\ . max
w =" 5 ( 5m5+A cosh —= + B, - nh—a—>sm—a— (9)
m=1
wherem = 1,3,5, . . .. Substituting this expression in the boundary
conditions (f) and using the notation
mard
20 T ®)

we obtain the following equations for determining the constants A4, and
B,.:

+ A, cosh a,, + amB. sinh a,, = 0

5m5
(A 4+ 2B,,) cosh an + anB, sinh a,, = 0
from which
A, = — 2(an, tanh a,, + 2) B, = 2 @

w5m5 cosh a,, m5m5 cosh am

! 8ee 8. Timoshenko, “Strength of Materials,”” 3d ed., part II, p. 50, 1956.
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Substituting these values of the constants in Eq. (g), we obtain the
deflection surface of the plate, satisfying Eq. (a) and the boundary con-
ditions, in the following form:

w©

_ A_Lq_a_‘ 1 _ am tanh «,, + 2 20y
Y= D md (1 2 cosh a,, cosh b
m=135,...
Oy 2y ., 20my\ . mmz
-+ Tooshan b sinh 3 ) sin — (139)

from which the deflection at any point can be caleulated by using tables
of hyperbolic functions.! The maximum deflection is obtained at the
middle of the plate (x = a/2, y = 0), where

_ 4qa* (—1)mni2 (1 __ an tanh o, 4 2) 5

w = ———
mx T wg8D mb 2 cosh a,,
m=135,..

Disregarding the second term in the parentheses, this series represents the
deflection of the middle of a uniformly loaded strip. Hence we can
represent expression (j) in the following form:

5 qa* 4qat (= 1)o0/% 4 tanh o, + 2

Ymx = 383D ~ 75D mb 2 cosh a,, (140)

The series in this expression converges very rapidly,? and sufficient accu-
racy is obtained by taking only the first term. Taking a square plate as
an example, we know from Eq. (k) that

=T =3
ay = 2 ag = 2
and Eq. (140) gives
D oget 48 o eoneo C) = ga*
Wanx = 327 ]y =D (0.68562 — 0.00025 + 0.00406 )

It is seen that the second term of the series in parentheses is negligible

! See, for example, “Tables of Circular and Hyperbolic Sines and Cosines,” 1939,
and “Table of Circular and Hyperbolic Tangents and Cotangents,” 1943, Columbia
University Press, New York; also British Association for the Advancement of Science,
“ Mathematical Tables,” 3d ed., vol. 1, Cambridge University Press, 1951; finally,
F. Loésch, “Siebenstellige Tafeln der elementaren transzendenten Funktionen,”
Berlin, 1954.

* We assume that b 2 a, as in Fig. 62.
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and that by taking only the first term the formula for deflection is
obtained correct to three significant figures.

Making use of the formula (140), we can represent the maximum
deflection of a plate in the form

4
Wer = @ % (141)

where « is a numerical factor depending on the ratio b/a of the sides of
the plate. Values of « are given in Table 8 (page 120).

The bending moments M, and M, are calculated by means of expres-
sion (¢). Substituting the algebraic portion of this expression in Eqgs.
(101), we find that

M= qx(a2— x) M= qz(az— z) ()

The substitution of the series of expression (¢) in the same equations gives

(1 — »)ga®s? Z m? [A,,, cosh mT-:ry

Ml/ =
m=1
+ B, (mry sinh %Y _ 2 cosh M)] sin 7%
a 1 - a a
g ®
M, = —(1 — »)qa*r? 2 m? [A,,, cosh k)
m=1
+ B, (mﬂ-y nh —= m1ry 2 cosh w)] sin 72%
a 1—v a a

The total bending moments are obtained by summation of expressions
(k) and (I). Along the z axis the expression for the bending moments
becomes

©

(M) ymo = ﬁ(lz—“l_) — ga’r? m2[2vB,, — (1 — ) An] sin %

I

m=135,...

3

(M )ymo = v(&z——x) — qalr? m¥2B, + (1 — »)A,] sin __;r_:c

m=13,35,...

Both series converge rapidly and the moments can readily be computed
and represented in the form

(M2)ymo = B'qa®  (My)ym0 = Biga? (m)

The numerical values of the factors 8’ and §; are given in Table 6.
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The bending moments acting along the middle line x = @/2 can be
computed in a similar manner and represented in the form
(M) smasz = B"qa® (M) zmas2 = BYqa? (n)
Values of 8”7 and §{ are given in Table 7.
The maximum values of these moments,
(M2)max = Bga? (M) e = B1ga? (@

are at the center of the plate (z = a/2, y = 0), and the corresponding
factors B and 8; are found in Table 8. The distribution of the moments
in the particular case of a square plate is shown in Fig. 63.

TaBLE 6. NuMERIcAL FacToRrs 8’ AND B', FOR BENDING MOMENTS OF SIMPLY
SuPPORTED RECTANGULAR PLATEs UNDER UNIFORM PRESSURE ¢
v=03,b>a

M. =pqa%y =0 M, = Biqat,y =0

b/a

z=lz=|z=|z=|zg=|2z2= 2= |z=]|2z=|c=
0.la | 02a | 0.3a¢ | 0.4c | 0.5a | 0.1a | 0.2¢ | 0.3a | 0.4a | 0.5a

0.0209]|0.034310.0424|0.0466/0.0479]0.0168|0.0303{0.0400(0.0459(0.0479
0.0234]0.0389|0.0486(0.0541{0.0554/0.0172(0.0311]0.0412/0.0475|0.0493
0.0256(0.0432|0.0545|0.0607|0.0627|0.0174/0.0315|0.0417|0.0480(0.0501
0.027710.0472(0.0599(0.0671|0.0694/0.0175(0.0316/0.0419(0.0482(0.0503
0.0297|0.0509|0.0649;0.0730/0.0755{0.0175(0.0315{0.0418/0.0481{0.0502

b et ek etk
W=
OOO_C

1.5 0.0314/0.0544(0.0695|0.0783|0.0812|0.0173|0.0312|0.0415|0.0478)0.0498
1.6 0.0330(0.0572(0.0736|0.0831)0.0862|0.0171|0.0309{0.0411|0.0472)0.0492
1.7 0.0344|0.0599(0.077310.0874/0.0908|0.0169|0.0306(0.0405/0 . 0466(0.0486
1.8 0.0357|0.0623|0.0806(0.0913|0.0948/0.0167(0.0301/0.0399/0.0459(0.0479
1.9 0.0368/0.0644/0.0835/|0.0948,0.0985/0.0165/0.0297|0.0393/0.0451)0.0471

2.0 0.0378|0.0663/0.0861/0.0978/0.1017)0.0162;0.0292/0.0387,0.0444/0.0464
2.5 0.0413(0.072910.095210.1085{0.1129|0.0152]0.0272|0.0359(0.0412|0.0430
3.0 0.0431{0.0763{0.1000(0. 1142{0.1189{0.0145|0.0258/0.0340,0.0390{0.0406
4.0 0.0445|0.0791(0.1038;0.11850.12350.0138|0.0246|0.0322|0.0369|0.0384

) 0.0450(0.0800{0.1050(0.1200{0.1250/0.0135!0.0240/0.0315(|0.03600.0375

From Table 8 it is seen that, as the ratio b/a increases, the maximum
deflection and the maximum moments of the plate rapidly approach the
values calculated for a uniformly loaded strip or for a plate bent to a
cylindrical surface obtained by making b/a = «. For b/a = 3 the dif-
ference between the deflection of the strip and the plate is about 64 per
cent. For b/a = 5 this difference is less than } per cent. The differ-
ences between the maximum bending moments for the same ratios of
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TaBLE 7. NuMERICcAL FacTors 8 AND B'l' rorR BENDING MOMENTS OF SIMPLY
SuPPORTED RECTANGULAR PLATEs UNDER UNIFORM PRESSURE ¢
y=03,b>a

b/a

M, =8"¢a%, z = a/2

M, = gqa, z = a/2

y=
0.3a

y =
0.2a

y=
0.1a

y=20

Yy =
0.4a

y =
0.3a

Yy =
0.2a

y=20

e
W=D

—
[[=Iv B - |

e Q0 B DN
[ =]

0.0168
0.0197
0.0225
0.0252
0.0275

0.0302
0.0324
0.0348
0.0371
0.0392

0.0413
0.0505
0.0586
0.0723
0.1250

0.0303
0.0353
0.0401
0.0447
0.0491

0.0532
0.0571
0.0607
0.0641
0.0673

0.0703
0.0828
0.0923
0.1054

0.1250

0.0400
0.0465
0.0526
0.0585
0.0639

0.0690
0.0737
0.0780
0.0819
0.0854

0.0887
0.1012
0.1092
0.1180
0.1250

0.0459
0.0532
0.0600
0.0667
0.0727

0.0781
0.0832
0.0877
0.0917
0.0953

0.0986
0.1102
0.1168)
0.1224

0.1250

0.0479
0.0554
0.0627
0.0694
0.0755

0.0812
0.0862
0.0908
0.0948
0.0985

0.1017
0.1129
0.1189
0.1235
0.1250

0.0209
0.0225
0.0239
0.0252
0.0263

0.0275
0.0288
0.0295
0.0304
0.0314

0.0322
0.0360
0.0389
0.0426
0.0375

0.0343
0.0363
0.0379
0.0391
0.0402

0.0410
0.0417
0.0423
0.0428
0.0433

0.0436
0.0446
0.0447
0.0436
0.0375

0.0424
0.0442
0.0454
0.0462
0.0468

0.0470
0.0471
0.0470
0.0469
0.0467

0.0464
0.0447
0.0431
0.0406
0.0375

0.0466
0.0481
0.0490
0.0494
0.0495

0.0493
0.0489
0.0484
0.0478
0.0472

0.0465
0.0435
0.0413
0.0389
0.0375

0.0479
0.0493
0.0501
0.0503
0.0502

0.0498
0.0492
0.0486
0.0479
0.0471

0.0464
0.0430
0.0406
0.0384
0.0375

-Vy = Qy

M,y

ax
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b/a are 5 and } per cent, respectively. It may be concluded from this
comparison that for.b/a > 3 the calculations for a plate can be replaced
by those for a strip without substantial error.

TaBLE 8. NuMERICAL FACTORS a, 8, v, 3, n FOR UNIFORMLY LOADED AND
SiMPLY SUPPORTED RECTANGULAR PLATES

v =03
Wmax
mqa4 (M) max | (My)max | (Qe)max | (@)max | (V)max | (Vy)max R
bla | =« o 1= Bga? | = pga?| =yga | = yiga | = 8qa | = diga | = nga®
[ 8 B1 Y Y1 ] 31 n

1.0 | 0.00406 | 0.0479 | 0.0479 | 0.338 0.338 0.420 0.420 0.065
1.1 | 0.00485 | 0.0554 | 0.0493 | 0.360 0.347 0.440 0.440 0.070
1.2 { 0.00564 | 0.0627 } 0.0501 [ 0.380 0.353 0.455 0.453 0.074
1.3 | 0.00638 | 0.0694 | 0.0503 | 0.397 0.357 0.468 0.464 0.079
1.4 | 0.00705 | 0.0755 | 0.0502 | 0.411 0.361 0.478 0.471 0.083
1.5 §0.00772 | 0.0812 | 0.0498 | 0.424 0.363 0.486 0.480 | 0.085
1.6 | 0.00830 | 0.0862 | 0.0492 | 0.435 0.365 0.491 0.485 0.086
1.7 | 0.00883 | 0.0908 | 0.0486 | 0.444 0.367 0.496 0.488 0.088
1.8 | 0.00931 | 0.0948 | 0.0479 | 0.452 0.368 0.499 0.491 0.090
1.9 { 0.00974 | 0.0985 | 0.0471 | 0.459 0.369 0.502 0.494 0.091
2.0 { 0.01013 | 0.1017 | 0.0464 | 0.465 0.370 0.503 0.496 0.092
3.0 | 0.01223 ; 0.1189 | 0.0406 { 0.493 0.372 0.505 0.498 0.093
4.0 | 0.01282 | 0.1235 | 0.0384 | 0.498 0.372 0.502 0.500 0.094
5.0 | 0.01297 ) 0.1246 | 0.0375 | 0.500 0.372 0.501 0.500 0.095
0 0.01302 | 0.1250 | 0.0375 | 0.500 0.372 0.500 0.500 0.095

Expression {¢) can be used also for calculating shearing forces and
reactions at the boundary. Forming the second derivatives of this
expression, we find

_ 0w 9w _ gr(a —2) , 2rx%a’ . mry . mwx
Aw—gﬁ+w—— 5D + D mB,,.cosh————a sin —-=
=1

Substituting this in Eqgs. (106) and (107), we obtain

Q. = ﬂa_;_%_) -~ 27%a z m?B,, cosh "—Zﬂ cos %

m=1
«©

mr2

—2n%qa 2 m3B,, sinh ﬂ’aly sin

Q

m=1
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For the sides x = 0 and y = —b/2 we find

(@2)zm0 = 229 — 27%qa 2 m3B,, cosh 7%/

m=1
mmr
cosh 22%¥
qe 4qa a
2 w2 m? cosh o
m=13,5,...
«
. . MAL
(@) ym—ss2 = 27%a E m?B,, sinh a,, sin e
m=1
«
4qa tanh o, . mwx
=3 3 SIh——
T m
m=13,5,...

These shearing forces have their numerical maximum value at the middle
of the sides, where

@

e N1 _
(Q)emoimo = 5 — —5 z m? cosh a1
_m=135... (»)
4 a —_— 1 (m—1)/2
(@) oma s = ;qi_ (_an— tanh o, = 7190
m=13.5,...

The numerical factors v and v, are also given in Table 8.
The reactive forces along the side z = 0 are given by the expression

© mwry
cosh —=
V:=(Qz_aM,y) O_qa 4qa a

oy 2 w2 m? cosh a,,
m=135,...
+ 2(1 — »)qa 1
? m? cosh? oy,
m=135,...
(a,,. sinh a,, cosh zzr_y - @;r—y cosh an, sinh m_;rg)

The maximum numerical value of this pressure is at the middle of the
side (y = 0), at which point we find

®

1 4 1
(Va)amoiymo = ga [§ 5 2 m? cosh am

m=13,5,...
«©

+21-9) z an sinh a,,,] — s (@)

T m? cosh? a,,
m=135,...
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where § is a numerical factor depending on » and on the ratio b/a, which
can readily be obtained by summing up the rapidly converging series
that occur in expression (¢). Numerical values of & and of §;, which
corresponds to the middle of the sides parallel to the z axis, are given in
Table 8. The distribution of the pressures (¢) along the sides of a square
plate is shown in Fig. 63. The portion of the pressures produced by the

0.15
0%
4/ 8
0.10
vV
/]
1
)
10
0.05
\\ Bt
0
1.0 1.5 2.0 2.5 3.0 3.5 40
Ratio %
Fic. 64

twisting moments M,, is also shown. These latter pressures are bal-
anced by reactive forces concentrated at the corners of the plate. The
magnitude of these forces is given by the expression

w
R = 2(M=y)z==a,v=b/2 = 2D(1 b V) 613_65 a2

401 — »)ga? 1 .
D 77 cosh an. [(1 4+ an tanh a,,) sinh o,
m=135 ...
— @, cosh a,] = nga® (1)

The forces are directed downward and prevent the corners of a plate
from rising up during bending. The values of the coefficient » are given
in the last column of Table 8.
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The values of the factors «, 8, 81, § as functions of the ratio b/a are
represented by the curves in Fig. 64.

In the presence of the forces R, which act downward and are by no means small,
anchorage must be provided at the corners of the plate if the plate is not solidly joined
with the supporting beams.

In order to determine the moments arising at the corner let us consider the equi-
librium of the element abe of the plate next to its corner (Fig. 65) and let us introduce,
for the same purpose, new coordinates 1, 2 at an angle of 45° to the coordinates z, y in
Fig. 59. We can then readily verify that the bending moments acting at the sides ab
and cb of the element are M, = —R/2 and M, = +R/2, respectively, and that the
corresponding twisting moments are zero. In fact, using Eq. (39), we obtain for the
side ac, that is, for the element of the edge,
given by & = —45° the bending moment

M, =M,cos?a + Mzsin?a =0 M
1

\\N.z

. . . M
in accordance with the boundary condi- 2 .

tions of a simply supported plate. The c fase }5’3/] X
magnitude of the twisting moment applied I — =
at the same edge element is obtained in like
manner by means of Eq. (40). Putting
a = —45° we have b,

1 R
M"‘ =§sin2a(M1—Mg) =§ Fia. 65

according to Eq. (r). Thus, the portion of the plate in the vicinity of the corner is
bent to an anticlastic surface, the moments +R/2 at the corner itself being of the
same order of magnitude as the bending moments at the middle of the plate (see
Table 8). -

The clamping effect of the corners of a simply supported plate is plainly illustrated
by the distribution of the bending moments M, and M, of a square plate (Fig. 63).
If the corners of the rectangular plate are not properly secured against lifting, the
clamping becomes ineffective and the bending moments in the center portion of the
plate increase accordingly. The values of (M:)max and (My)max given in Table 8
must then be multiplied by some factor ¥ > 1. The approximate expression!

at — T%azbz 4+ b4

k= al_%a2b2+b4

may be used for that purpose.

It should be noted that in the case of a polygonal plate with simply supported edges
no single reactive forces arise at a corner point provided the angle between both
adjacent sides of the plate is other than a right angle.?

Even in rectangular plates, however, no corner reactions are obtained if the trans-
verse shear deformation is taken into account. In view of the strongly concentrated

! Recommended by the German Code for Reinforced Concrete (1943) and basod
on a simplified theory of thin plates due to H. Marcus; see his book * Die vereinfachte
Berechnung biegsamer Platten,” 2d ed., Berlin, 1925.

* For a simple proof see, for example, H. Marcus, “Die Theorie elastischer Gewebe,”
2d ed., p. 46, Berlin, 1932.
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reactive forces this shear deformation obviously is no longer negligible, and the
customary thin-plate theory disregarding it completely must be replaced by a more
exact theory. The latter, which will be discussed in Art. 39, actually leads to a dis-
tribution of reactive pressures which include no forces concentrated at the corners of
the plate (see Fig. 81).

31. Simply Supported Rectangular Plates under Hydrostatic Pressure.
Assume that a simply supported rectangular plate is loaded as shown in
Fig. 66. Proceeding as in the case of a uniformly distributed load, we
take the deflection of the plate in the form!

W= w; + e (a)
in which
=00 (35 g 4 7asr) = 2000 (=ym+
wy = 360D( 2 10ax® 4 7a’z Db e sin— )]
m=123,...
—go represents the deflection of a strip under the tri-
- angular load. This expression satisfies the differ-
Qo *  ential equation
2t Qg a8 ahw a4
¥ oW _w =2 _ 9
L dxt +2 dx? 9y D aD (e)
z and the boundary condltlons
x 2
0 w=0 6_w=0 forz =0andz = a
b ax?
The part w; is taken in the form of a series
PR
Y N 'w2=zY sin 222 (@)
Fia. 66 a

ma=1

where the functions Y,, have the same form as in the preceding article,

andm = 1,2 3,.... Substituting expressions (b) and (d) into Eq.
(a), we obtain
4 —_ m+ y
w=mz[—2L-1)—+A coshmwy+B nh"—mﬁ]sinw
D wom a a
m=1
(e
where the constants 4., and B, are to be determined from the conditions
9w _ . b
w = i 0 fory = + 5

1 This problem was discussed by E. Estanave, op. ¢it. The numerical tables of
deflections and moments were calculated by B. G. Galerkin, Bull. Polytech. Inst., 8t.
Petersburg, vols. 26 and 27, 1918.
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From these conditions we find

2—(%%):: + A, cosh ey + Bnan sinh @, =0

(2B + Am) cosh an + Bnay sinh an = 0

In these equations we use, as before, the notation

- mad
= 2
Solving them, we find
_ (2 + on tanh am)(— 1)+ (—1)»tr

Ap = Bn= 55— ()

wm® cosh an =m® cosh an

The deflection of the plate along the z axis is
4 2(—1)m+t . mmx
(w)y—o = % Z [_ﬁ_)_ + A,,.] sin T"-

1r5m5
m=1

For a square plate a = b, and we find

4
(W)ymo = L& <0.002055 sin 2 — 0.000177 sin Z—Z’f

D
+ 0.000025 sin %’;E .. ) @
The deflection at the center of the plate is
(1) 2mapramo = 0.00203 1 ®

which is one-half the deflection of a uniformly loaded plate (see page 116)
as it should be. By equating the derivative of expression (g) to zero, we
find that the maximum deflection is at the point x = 0.557a¢. This maxi-
mum deflection, which is 0.00206 gea¢/ D, differs only very little from the
deflection at the middle as given by formula (k). The point of maximum
deflection approaches the center of the plate as the ratio b/a increases.
For b/a = o, as for a strip [see expression (b)], the maximum deflection
is at the point x = 0.5193a. When b/a < 1, the point of maximum
deflection moves away from the center of the plate as the ratio b/a
decreases. The deflections at several points along the x axis (Fig. 66)
are given in Table 9. It is seen that, as the ratio b/a increases, the
deflections approach the values calculated for a strip. For b/a = 4 the
differences in these values are about 1} per cent. We can always calcu-
late the deflection of a plate for which b/a > 4 with satisfactory accu-
racy by using formula (b) for the deflection of a strip under triangular
load. The bending moments M, and M, are found by substituting
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TasLE 9. NuMERICAL FACTOR @ FOR DEFLECTIONS OF A SIMPLY SUPPORTED
REcTaNGULAR PLATE UNDER HYDROSTATIC PRESSURE ¢ = ¢oz/a
b>a
w = agea!/D,y =0

b/a z =025 | £ =050a | x =060a | z = 0.75a
1 0.00131 0.00203 0.00201 0.00162
1.1 0.00158 0.00243 0.00242 0.00192
1.2 0.00186 0.00282 0.00279 0.00221
1.3 0.00212 0.00319 0.00315 0.00248
1.4 0.00235 0.00353 0.00348 0.00273

0.00257 0.00386 0.00379 0.00296
0.00277 0.00415 0.00407 0.00317
0.00296 0.00441 0.00432 0.00335
0.00313 0.00465 0.00455 0.00353
0.00328 0.00487 0.00475 0.00368

e
L= B I

0.00342 0.00506 0.00494 0.00382
0.00416 0.00612 0.00592 0.00456
0.00437 0.00641 0.00622 0.00477
0.00441 0.00648 0.00629 0.00483
0.00443 0.00651 0.00632 0.00484

Qo W N
cooo

8

expression (¢) for deflections in Eqs. (101). Along the z axis (y = 0)
the expression for M, becomes

2(—=D»H | max
Orms = gt ), 2 sn 22

m=1
©

+ goatn? z mH(1 — v)Am — 2vB,) sian” )

m=1
The first sum on the right-hand side of this expression represents the
bending moment for a strip under the action of a triangular load and is

equal to (go/6)(ax — z%/a). Using expressions (f) for the constants A.
and B, in the second sum, we obtain

_ qola*z — 1%)

(M2)ymo = -
2 —1)m+t R .
- q:: r_n(?—cog—h&: [2 + (1 - ”)am tanh a,,,] sin .T;r_ (])
m=1

The series thus obtained converges rapidly, and a sufficiently accurate
value of M, can be realized by taking only the first few terms. In this
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TaBLE 10. NuMERICAL FACTORS 8 AND 1 FOR BENDING MOMENTS OF SIMPLY
SurroRTED RECTANGULAR PLaTEs UNDER Hyprostatic PRESSURE ¢ = guz/a

vy =03, >a
M. = Ba%q, y =0 M, = pia’q, =0

b/a

z = z = x = z = z = z = z = x =

0.25a 0.50a 0.60a 0.75a 0.25a 0.50a 0.60a 0.75a
1.0 | 0.0132 | 0.0239 | 0.0264 | 0.0259 | 0.0149 | 0.0239 | 0.0245 | 0.0207
1.1 | 0.0156 | 0.0276 | 0.0302 | 0.0289 | 0.0155 | 0.0247 | 0.0251 | 0.0211
1.2 0.0179 | 0.0313 { 0.0338 | 0.0318 | 0.0158 { 0.0250 | 0.0254 { 0.0213
1.3 0.0200 | 0.0346 { 0.0371 | 0.0344 | 0.0160 | 0.0252 | 0.0255 | 0.0213
1.4 0.0221 | 0.0376 | 0.0402 | 0.0367 | 0.0160 | 0.0253 | 0.0254 | 0.0212
1.5 10.0239 | 0.0406 | 0.0429 { 0.0388 | 0.0159 | 0.0249 | 0.0252 | 0.0210
L.6 0.0256 | 0.0431 | 0.0454 | 0.0407 | 0.0158 | 0.0246 | 0.0249 | 0.0207
1.7 {0.0272 | 0.0454 | 0.0476 | 0.0424 | 0.0155 | 0.0243 | 0.0246 | 0.0205
1.8 | 0.0286 | 0.0474 | 0.0496 | 0.0439 | 0.0153 | 0.0239 | 0.0242 | 0.0202
1.9 0.0298 |-0.0492 | 0.0513 | 0.0452 | 0.0150 | 0.0235 | 0.0238 | 0.0199
2.0 0.0309 | 0.0508 | 0.0529 | 0.0463 | 0.0148 | 0.0232 | 0.0234 | 0.0197
3.0 | 0.0369 | 0.0594 | 0.0611 | 0.0525 | 0.0128 | 0.0202 | 0.0207 | 0.0176
4.0 0.0385 | 0.0617 | 0.0632 | 0.0541 | 0.0120 | 0.0192 | 0.0196 | 0.0168
5.0 0.0389 | 0.0623 | 0.0638 | 0.0546 | 0.0118 | ©0.0187 | 0.0193 | 0.0166
0 0.0301 | 0.0625 | 0.0640 | 0.05347 | 0.0117 | 0.0187 | 0.0192 | 0.0165

way the bending moment at any point of the x axis can be represented
by the equation

(M.)y=0 = Bgoa? (k)

where § is a numerical factor depending on the abscissa x of the point.
In a similar manner we get

(My)ymo = B1gea® 0]

The numerical values of the factors 8 and 8, in formulas (k) and (I) are
given in Table 10. It is seen that for b £ 44 the moments are very close
to the values of the moments in a strip under a triangular load.

Equations (106) and (107) are used to calculate shearing forces. From
the first of these equations, by using expression (j), we obtain for points
on the z axis

9 [*w | dw
(QZ)v-O = —D 5 (W + a_yz),,_o

— (@ — 329 _ 2qa NV (=L)mt oz

—— €08
6a 7l m? cosh a,, a
m=1
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The general expressions for shearing forces @, and Q, are

hd — 1ym+1 mry
Q: = gola® — 3% _ 2gea (=1)m* cosh a mrz
* 6a 7l m? cosh ap, cos =5 (m)
m=1
had —1ym+1 o} Y
2w (—=1)"*!sinh . mrz
@ =- “wt m? cosh am M g ()

The magnitude of the vertical reactions V. and V, along the boundary
is obtained by combining the shearing forces with the derivatives of the
twisting moments. Along the sides z = 0 and z = a these reactions can
be represented in the form

oM,
Vz = <Qz . Wl[)mﬂ.z—a - iaqoa (O)

TasLe 11. NUMERICAL FACTORS & AND &; FOR REACTIONS OF SIMPLY
SuPPORTED RECTANGULAR PLaTBS UNDER HyDROSTATIC PRESSURE ¢ = qoz/a

vy =03,b>a
Reactions 8qoa Reactions 8:1gqeb
b/a z=0 z=a y = xb/2
_ y = _ y = = x = z = z =

¥=01 005 | ¥=0| 025 | 0250 | 0.50a | 0.60a | 0.75a
£.0 | 0.126 | 0.008 | 0.204 | 0.256 | 0.115 | 0.210 | 0.234 | 0.239
1.1 | 0.136 | 0.107 | 0.304 | 0.267 | 0.110 | 0.199 | 0.221 | 0.224
1.2 | 0.144 | 0.114 | 0.312 | 0.276 | 0.105 | 0.189 | 0.208 | 0.209
1.3 | 0.150 | 0.121 | 0.318 | 0.284 | 0.100 | 0.178 | 0.196 | 0.196
1.4 | 0.155 | 0.126 | 0.323 | 0.292 | 0.005 | 0.160 | 0.185 | 0.184
1.5 | 0.159 | 0.132 | 0.327 | 0.297 | 0.090 | 0.160 | 0.175 | 0.174
1.6 | 0.162 | 0.136 | 0.330 | 0.302 | 0.086 | 0.151 | 0.166 | 0.164
1.7 | 0.164 | 0.140 | 0.332 | 0.306 | 0.082 { 0.144 | 0.157 | 0.155
1.8 | 0.166 | 0.143 | 0.333 | 0.310 | 0.078 | 0.136 | 0.149 | 0.147
1.9 | 0.167 | 0.146 | 0.334 | 0.313 | 0.074 | 0.130 | 0.142 | 0.140
2.0 | 0.168 | 0.149 | 0.335 | 0.316 | 0.071 | 0.124 | 0.135 | 0.134
3.0 | 0.160 | 0.163 | 0.336 | 0.331 | 0.048 | 0.083 | 0.091 | 0.089
4.0 | 0.168 | 0.167 | 0.334 | 0.334 | 0.036 | 0.063 | 0.068 | 0.067
5.0 | 0.167 | 0.167 | 0.334 | 0.335 | 0.020 | 0.050 { 0.055 | 0.054
o | 0.167 | 0.167 | 0.333 | 0.333
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and al-ng the sides ¥ = +b/2 in the form

v, = (@, — M= — Foud ®)
0 Jymibs2

in which & and 8, are numerical factors depending on the ratio b/a and
on the coordinates of the points taken on the boundary. Several values
of these factors are given in Table 11.

The magnitude of concentrated forces that must be applied to prevent
the corners of the plate rising up during bending can be found from the
values of the twisting moments M., at the corners. Since the load is not
symmetrical, the reactions B, at z = 0 and y = +b/2 are different from
the reactions By at t = aand y = +b/2. These reactions can be repre-
sented in the following form:

Ry = nigoad R: = nayqoab (@
The values of the numerical factors n, and n. are given in Table 12.
TaBLE 12. NUMERICAL FacTORs n; aND ns IN Egs. (¢) For REAcTIVE ForcEs

R, aND R; AT THE CORNERS OF SiMPLY SUPPORTED RECTANGULAR PLATES
UNDER HyYDROSTATIC PRESSURE ¢ = goz/a

v=103,b>a
b/a 1.0 )11 |12 (13 1415 |16 |17 ]118 19|20 30 40 50
n 0.026[0.026|0.026(0.026/0.025(0.024]0.023{0.022(0.021/0.021[0.020]0.014(0.010/0.008
na 0.039]0.038!0.037|0.03610.035/0.033/0.032(0.030|0.029/0.028|0.026/0.018{0.014/0.011

Since a uniform load ¢o is obtained by superposing the two triangular
loads ¢ = qoz/a and qe(a — x)/a, it can be concluded that for correspond-
ing values of b/a the sum 7, + n; of the factors given in Table 12 multi-
plied by b/a must equal the corresponding value of n, the last column in
Table 8.

If the relative dimensions of the plate are such that a in Fig. 66 is
greater than b, then more rapidly converging series will be obtained by
representing w, and w: by the following expressions:

1

wy = L8 s 16yt — 24byy + 5b) )

Wy = Xom—1 COS £_2_n_1;;_1)_1ry (S)
m=1

The first of these expressions is the deflection of a narrow strip parallel to
the y axis, supported at y = +b/2 and carrying a uniform!ly distributed
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TaBLE 13. NUMERIGAL FACTORS « FOR DEFLECTIONS OF SIMPLY SUPPORTED
RECTANGULAR PLaTES UNDER HYDROSTATIC PRESSURE ¢ = ¢oz/a

b<a
w = ageb?/D,y =0

a/b | x=025ea | £ =050a | 2 = 0.60a | x = 0.75a
) 0.00325 0.00651 0.00781 0.00976
5 0.00325 0.00648 0.00778 0.00965
4 0.00325 0.00641 0.00751 0.00832
3 0.00321 0.00630 0.00692 0.00707
2 0.00288 0.00506 0.00542 0.00492
1.9 0.00281 0.00487 0.00518 0.00465
1.8 0.00270 0.00465 0.00491 0.00434
1.7 0.00261 0.00441 0.00463 0.00404
1.6 0.00249 0.00415 0.00432 0.00372
1.5 0.00234 0.00386 0.00399 0.00339
1.4 0.00218 0.00353 0.00363 0.00304
1.3 0.00199 0.00319 0.00325 0.00269
1.2 0.00179 0.00282 0.00286 0.00234
1.1 0.00153 0.00243 0.00245 0.00199
1.0 0.00131 0.00202 0.00201 0.00162

load of intensity gqor/a.

This expression satisfies the differential equa-

tion (c¢) and also the boundary conditions w = 0 and d?w/dy? = 0 at

ettt

<—% ->' |

do
A

2 (a)

*x

k——-a ~—]

g (B
Fi16. 67

y = +b/2. Expression (s) represents an in-
finite series each term of which also satisfies
the conditions at the edgesy = +b/2. The
functions Xsm-—1 of z are chosen in such a
manner that each of them satisfies the homo-
geneous equation (137) of the preceding arti-
cle (see page 114) and so that expression (a)
satisfies the boundary conditions at the edges
z =0and z = a. Since the method of de-
termining the functions Xsm_; is similar to
that already used in determining the func-
tions Y,,, we shall limit ourselves to giving
only the final numerical results, which are
represented by Tables 13, 14, 15, and 16.
The notation in these tables is the same as

in the foregoing tables for the hydrostatic pressure.
32. Simply Supported Rectangular Plate under a Load in the Form of

a Triangular Prism.

Assume that the intensity of the load is represented
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TaBLe 14. NuMERICAL FACTORS 8 AND 8 FOR BENDING MOMENTS IN SimrLY
SuPPORTED RECTANGULAR PraTEs unpER HYDROsTATIC PRESSURE ¢ = quz/a

y=03,b<a
M. = Bb¥qe, y =0 M, = Bib%o, y =0

a/b

z = z = T = z = z = z = z = z =

0.25a 0.50a 0.60a 0.75a 0.25a 0.50a 0.60c 0.75a
) 0.0094 | 0.0187 | 0.0225 | 0.0281 | 0.0312 | 0.0625 | 0.0750 | 0.0937
5.0 | 0.0094 | 0.0187 ; 0.0230 | 0.0309 | 0.0312 | 0.0623 | 0.0742 | 0.0877
4.0 | 0.0094 | 0.0192 | 0.0237 | 0.0326 { 0.0312 | 0.0617 | 0.0727 | 0.0820
3.0 ] 0.0096 | 0.0202 | 0.0256 | 0.0345 [ 0.0309 | 0.0594 | 0.0678 | 0.0715
2.0 [ 0.0108 | 0.0232 | 0.0285 | 0.0348 | 0.0284 | 0.0508 | 0.0554 | 0.0523
1.9 | 0.0111 | 0.0235 | 0.0288 | 0.0345 | 0.0278 | 0.0492 | 0.0533 | 0.0498
1.8 | 0.0115 | 0.0239 | 0.0291 | 0.0341 | 0.9269 | 0.0474 | 0.0509 | 0.0470
1.7 10.0117 | 0.0243 | 0.0293 | 0.0337 | 0.0261 | 0.0454 | 0.0485 | 0.0442
1.6 | 0.0120 | 0.0246 | 0.0294 | 0.0331 | 0.0251 | 0.0431 | 0.0457 | 0.0412
1.5 {0.0123 | 0.0249 | 0.0294 ) 0.0324 | 0.0239 | 0.0406 | 0.0428 | 0.0381
1.4 | 0.0126 | 0.0253 | 0.0292 | 0.0315 | 0.0225 | 0.0376 | 0.0396 | 0.0348
1.3 | 0.0129 | 0.0252 | 0.0290 | 0.0304 | 0.0209 | 0.0346 | 0.0360 | 0.0314
1.2 1 0.0131 | 0.0250 | 0.0284 | 0.0291 | 0.0192 ] 0.0313 | 0.0323 | 0.0279
1.1 | 0.0134 | 0.0247 | 0.0276 | 0.0276 | 0.0169 | 0.0276 | 0.0285 | 0.0245
1.0 { 0.0132 | 0.0239 | 0.0264 | 0.0259 { 0.0149 | 0.0239 | 0.0245 | 0.0207

by an isosceles triangle as shown in Fig. 67a. The deflection surface can
again be represented in the form

w = w + ws (@)

in which w, represents the deflection of a simply supported strip parallel
to the x axis, and w, has the same form as in the preceding article [Eq. (d)].
To represent the deflection w, in the form of a trigonometric series we
observe that the deflection produced by a concentrated force P applied
at a distance £ from the left end of a strip ist

2bat z L o T gy 0 ®)

Dt a

Substituting ¢d¢ for P and using ¢ = 2¢et/a for ¢ < a/2 and
g = 2q0(a — §)/a for ¢ > a/2, the deflection of the strip by an ele-
mental load is obtained. The deflection produced by the total load on

1 See Timoshenko, “Strength of Materials,”” part II, 3d ed., p. 49, 1956.
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TaBLE 15. NUMERICAL FACTORS & AND &, FOR REACTIONS IN SIMPLY SUPPORTED
RECTANGULAR PraTEs UNDER HYDROSTATIC PRESSURE ¢ = ¢oz/a

v=03,b<a
Reactions sgea Reactions 8:gob
a/b z2=0 t=a y = +b/2
_ - _ _ z = z = z = z =

y=01y=0b/41 y=0 1y =b/4 405, | 0500 | 0.60a | 0.75a
[ e S O 0.125 0.250 0.300 0.375
5.0 0.008 0.006 0.092 0.076 0.125 0.250 0.301 0.379
4.0 0.013 0.010 0.112 0.093 0.125 0.251 0.301 0.377
3.0 0.023 0.018 0.143 0.119 0.125 0.252 0.304 0.368
2.0 0.050 0.038 0.197 0.166 0.127 0.251 0.296 0.337
1.9 0.055 0.041 0.205 0.172 0.127 0.251 0.294 0.331
1.8 0.060 0.045 0.213 0.179 0.128 0.249 0.291 0.325
1.7 | 0.066 | 0.050 | 0.221 | 0.187 { 0.127 | 0.248 | 0.288 | 0.318
1.6 0.073 0.055 0.230 0.195 0.127 0.245 0.284 0.311
1.5 0.080 0.060 0.240 0.204 0.127 0.243 0.279 0.302
1.4 0.088 0.067 0.250 0.213 0.126 0.239 0.273 0.292
1.3 0.097 0.074 0.260 0.223 0.124 0.234 0.266 0.281
1.2 | 0.106 | 0.081 | 0.271 | 0.233 | 0.122 | 0.227 | 0.257 | 0.269
1.1 0.116 0.090 0.282 0.244 0.120 0.220 0.247 0.255
1.0 0.126 0.098 0.294 0.256 0.115 0.210 0.234 0.239

the strip is now obtained by integration in the following form:

_ 4qea? . a/2 ° .
w 1%‘:_14 zm4 m”[jo 551n-"—11r§d£+/a/2(a—£)51n"—%:—£d£]

8qoa* —1)==D2 | may
m=1,35,...
Substituting this in Eq. () and using Eq. (d) of the preceding article,
we obtain

goa [g(_l)m—mz

w =
D woms

m=13,35,...

mry Y sinh ™Y | gip ™%
+ A cosh a + B, 2 sinh a ]sm p @)

This expression satisfies Eq. (103) and also the boundary conditions at
the edges x = 0 and # = a. The constants A,, and B,. can be found
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from the conditions along the edges y = +b/2, which are the same as in
the preceding article and which give

—1)m—D/2
g(,’rls)—rnsg + Am cosh am + B.om sinh am =0

(2B + A,) cosh o, + Bnay, sinh a, = 0

(@

where, as before, we use the notation

Solving Eqgs. (e}, we find
4. — — 42+ an tanh an) (1)
" °m® cosh om
4(—1)tm—niz )
™ x5mS cosh ay,

To obtain the deflection of the plate along the x axis we put y = 0 in

TaBLE 16. NuMmericaL Facrors n; aND 72 IN Eqs. (¢) (ART. 31) FoR REACTIVE
Forces R, anp R; AT THE CoORNERS OF SiMPLY SUPPORTED RECTANGULAR
PLaTEs UNDER HYDROSTATIC PRESSURE ¢ = qor/a

y=03,b<a
a/b 5 | 4|3 |2 |wel18|t7|16]15 {1413 121110
e 0.002/0.004]0.006/0.0130.014/0.016(0.017[0.018{0.0200.021[0.023/0.024(0.025(0.026
nt 0.017/0.020/0.025(0.03310.034[0.035/0.036(0.037|0.037 0.038/0.039(0. 039(0.039{0. 039
expression (d). Then
8(—1)tm—ni2 . mwx
W)y—o = —— A, |sin —
( )ﬂ 3y [ %ms + m a
m=135,.

The maximum deflection is at the center of the plate, where

= 185 [ B (-]

m=135,...
It can be represented in the form
4
D = 2 2
in which « is a numerical factor depending on the magnitude of the ratio
b/a. Several values of this factor are given in Table 17.1
! The tables are taken from the paper by Galerkin, loc. cit.
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TaBLE 17. NUMERICAL FACTORS «, 8, v, 5, n FOR SIMPLY SUPPORTED
RECTANGULAR PLATES UNDER A Loap 1IN FORM OF A TRIANGULAR PRism

v=03,b>a
Wmax
qoai (Mz)mx (Mv)mx (Qz) max (Qv)mx (V:)mx (Vv)max R
b/a | = “3|= Bgoat| = B1geaY = vqoa | = yigob | = dgos | = 8190b | = ngoad
a B / ¥ Y1 3 & n
1.0 | 0.00263 | 0.0340 | 0.0317 | 0.199 0.315 0.147 0.250 0.038
1.1 [ 0.00314 | 0.0390 | 0.0326 | 0.212 0.297 0.161 0.232 0.038
1.2 | 0.00364 | 0.0436 | 0.0330 | 0.222 0.280 0.173 0.216 0.037
1.3 | 0.00411 | 0.0479 | 0.0332 } 0.230 0.265 0.184 0.202 0.036
1.4 | 0.00455 | 0.0518 | 0.0331 | 0.236 0.250 0.193 0.189 0.035
1.5 1 0.00496 | 0.0554 | 0.0329 | 0.241 0.236 0.202 0.178 0.034
1.6 1 0.00533 | 0.0586 | 0.0325 | 0.246 0.224 0.208 0 168 0.033
1.7 | 0.00567 | 0.0615 { 0.0321 | 0.247 0 212 0.214 0.158 0.031
1.8 {1 0.00597 § 0.0641 | 0.0316 | 0.249 0.201 0.220 0.150 0.030
1.9 | 0.00625 | 0.0664 | 0.0311 | 0.251 0.191 0.224 0.142 0.029
2.0 | 0.00649 | 0.0685 | 0.0306 | 0.252 0.183 0.228 0.135 0.028
3.0 | 0.00783 | 0.0794 | 0.0270 | 0.253 0.122 0.245 0.090 0.019
o 0.00833 | 0.0833 | 0.0250 | 0.250 0.250

Using expression (d) and proceeding as in the preceding article, we can
readily obtain the expressions for bending moments M, and M,. The
maximum values of these moments in this case are evidently at the center
of the plate and can be represented in the fol-
lowing form:

(Mz)mx = ﬂq«ﬂz (My)mnx = ﬂlqoaz

The values of the numerical factors 8 and 8, are
also given in Table 17. This table also gives
numerical factors 4, v1, 8, 81, and n for calculating (1) shearing forces
(Q2)maz = Y900, (Q)max = 71900 at the middle of the sides z = 0 and
y = —b/2 of the plate, (2) reactive forces

ks -l

-%_,I

Fia. 68

Vz=(Qz—agsz”) = aqoa
V” = (Qu _ ag{izy)m“ = 51¢]ob

at the same points, and (3) concentrated reactions R = ngwab at the
corners of the plate which are acting downward and prevent the corners
of the plate from rising. All these values are given for b > a. When
b < a, a better convergency can be obtained by taking the portion w,
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TaBLE 18. NuMERIcAL FACTORS «, 8, v, 8, n FOR SIMPLY SUPPORTED
RECTANGULAR PLATES UNDER A Loap IN ForM OF A TRIANGULAR PrisM

y=03,b<a
"’““;ob, (M)max | (M)max | (@)max | @mox | (V)unx | (Vs | R
afp | =e 1= Baob? | = Bigeb®| = vgea | = migob | = dgoa | = Sigob | = ngoab
o 8 61 Y 7 s & n
© |0.01302 |0.0375 | 0.1250 | ..... 0.500 | ..... 0.500
3.0 | 0.00868 | 0.0387 | 0.0922 | 0.045 | 0.442 | 0.027 | 0.410 | 0.010
2.0 | 0.00686 | 0.0392 | 0.0707 | 0.091 | 0.412 | 0.057 | 0.365 | 0.023
1.9 | 0.00656 | 0.0392 | 0.0681 | 0.098 | 0.407 | 0.062 | 0.358 | 0.024
1.8 { 0.00624 | 0.0391 | 0.0651 | 0.106 | 0.402 | 0.098 | 0.350 | 0.026
1.7 | 0.00583 | 0.0390 | 0.0609 | 0.115 | 0.396 | 0.074 | 0.342 | 0.028
1.6 | 0.00549 | 0.0388 | 0.0585 | 0.124 | 0.389 | 0.081 | 0.332 | 0.029
1.5 | 0.00508 | 0.0386 | 0.0548 | 0.135 | 0.381 | 0.090 | 0.322 | 0.031
1.4 0.004§4 0.0382 | 0.0508 | 0.146 | 0.371 | 0.099 | 0.311 | 0.033
1.3 | 0.00408 |'0.0376 | 0.0464 | 0.158 | 0.360 | 0.109 | 0.298 | 0.035
1.2 | 0.00367 | 0.0368 | 0.0418 | 0.171 | 0.347 | 0.120 | 0.284 | 0.036
1.1 | 0.00316 | 0.0356 | 0.0369 | 0.185 | 0.332 | 0.133 | 0.268 | 0.037
1.0 | 0.00263 | 0.0340 | 0.0317 | 0.199 | 0.315 | 0.147 | 0.250 | 0.038

of the deflection of the plate in the form of the deflection of a strip

parallel to the y direction. We omit the derivations and give only the

numerical results assembled in Table 18.

Combining the load shown in Fig. 67a with
the uniform load of intensity go, the load
shown in Fig. 68 is obtained. Information
regarding deflections and stresses in this lat-
ter case can be obtained by combining the
data of Table 8 with those of Table 17 or 18.

33. Partially Loaded Simply Supported
Rectangular Plate. Let us consider a sym-
metrical case of bending in which a uniform
load ¢ is distributed over the shaded rectan-
gle (Fig. 69) with the sides « and ».

>

b___

e — =
(=]

_b__,

We begin by developing the load in the series

3

2 . maz [TV g
—Z sin — qsm—’rédf
a ¢ Jie-w a

m=1

4q (—1)om=nr2

T m
m=13,5,...

fe—>te->1

roi< | ok

.omru .
sSin —5— Sin ——
a

Fi16. 69

2a

mn ( \

a,
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which represents the load for the portion prst of the plate. The corre-
sponding deflection of this portion of the plate is governed by the differ-
ential equation (103), which be¢omes

»

d'w *w Mw _ 4q (=12 . myu . mmx )

o T 257ap Yoyt = 7D 2 Tm Sgg ST

m=1,35, ..
Let us again take the deflection in the form
w=w; + we (©

where w, is a particular solution of Eq. (b), independent of the variable y,
that is, satisfying the equation

0w,  4q \ (=12 gy ., mwzx

_— = = ~——  sin —— sin
drt xD m 2a 4
m=135...

Integrating this latter equation with respect to z, we obtain

®
4qat —1)m=D2 | mpu . mwz

2 (——)— sin —— sin —- )
xD mb 2a a

m=135,...

w =

Then w, must be a solution of Eq. (137) (page 114). Choosing the form
(136) for this solution and keeping in the expression (138) for Y, only
even functions of y, because of the symmetry of the deflection surface
with respect to the x axis, we have, by Eq. (¢),

B mmy mry . . mwy\ . mwx
w = 2 (a,,. + A, cosh o + B, = sinh = > sin —= (e)
m=135,...
in which, this time,
4qat . mru
= —2 __ (—=1)m—-DJ2 —
Gm = TomsD (=1 S 5 0

Equation (e) represents deflections of the portion prst of the plate.
Considering now the unloaded portion of the plate below the line ¢s
we can take the deflection surface in the form

o = E (A;. cosh ™Y 4 pr MY oy My
a a a
m=13,5,...

y ey. MAY s MY b T g S
+ C,, sinh - + D, a osh ) sin — @

It is now necessary to choose the constants A., Bn, . . . , D in the
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series (¢) and (g) in such a manner as to satisfy the boundary conditions
at y = b/2 and the continuity conditions along the line ts. To repre-
sent these conditions in a simpler form, let us introduce the notation

mrb mmwy
"% "™ 4 ®)

The geometric conditions along the line fs require that

dw _ uw' v .
and 3~ oy fory = 3 @)
Furthermore, since there are no concentrated forces applied along the
line ts, the bending moments M, and the shearing forces @, must be
continuous along this line. Observing Eqs. (¢) these latter conditions
can be written down in the form

Pw 0w Pw 9w v .

w T M T VT2 2
Substituting expressions (e) and (g) in Egs. (¢) and (j) and using notation
(h), we can represent these equations in the following form:

(Apm — AL) cosh 2y, + (Bn — Bl)2v,, sinh 2y,
~ C} sinh 2v,, — D! 2~v,, cosh 2v,, + @, = 0
(Am - A:n) sinh 2y, + (Bm - B:n) (Sinh 29m + 27vm cosh 27m)

— C/, cosh 2v,, — D, (cosh 2v,, + 2v, sinh 2v,) = 0

(Am — A!) cosh 2y + (Bw — B.)(2 cosh 2y, -+ 2y, sinh 2v,,) (k)
— (! sinh 2v,, — D}, (2 sinh 2v,, + 2v,, cosh 2v,) = 0
(An — AL) sinh 2v,, 4+ (Bn — B.)(3 sinh 2v,, + 2vn cosh 2v.,)
— (! cosh 2v,, — D.(3 cosh 2y, 4+ 2y, sinh 2v,) = 0
From these equations we find
A, — A, = an(vn sinh 2y, — cosh 2v,,)
Bn. — B, = “2—"' cosh 2v,.
C!. = an(vm cosh 2v,, — sinh 2v,) ®
D, = “—2'2 sinh 2y,
To these four equations, containing six constants A., . . . , Dy, we add

two equations representing the boundary conditions at the edge y = b/2.
Substituting expression (g) in the conditions w’ = 0, 9*w’/dy? = 0 at
Yy = b/2 we obtain
A! cosh a, + B.e,, sinh a, + C,, sinh a, + D, a cosh an = 0 (m)
B,, cosh a,, + Dj, sinh a, = 0
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Equations (m), together with Eqgs. ({), yield the constants

am
Ap = —
" cosh a.,

B . _ sinh 2v,,
[cosh (@m — 2vm) + Ym sinh (am — 2vn) + am 2 cosh am] (n)

B, = cosh (am — 29m)

2 cos h
Substituting these and expression (f) in Eq. (e), we obtain

mry
4qat (—1)m-0i2 | gy cosh ==
w = Dr® mb 2a ~ “eosh U
m=13,5,... inh
cosh (an — 2vn) + vm sinh (@n — 2vn) + am %]
cosh (am — 2vn) mry mry| . mrx
+ 2 cosh a,, a sinh a Sy (142)

From this equation the deflection at any point of the loaded portion of
the plate can be calculated.

In the particular case where u = a and v = b we have, from Eqs. (h),
¥m = am/2. Expressions (n) become

Cm Qm _ Am
Am = — cosh e, (1 3 tanh a’") Bn = 2 cosh a,,
and Eq. (142) coincides with Eq. (139) (page 116) derived for a uni-
formly loaded rectangular plate.
The maximum deflection of the plate is at the center and is obtained
by substituting ¥y = 0, £ = a/2 in formula (142), which gives

£

Wmax = 4qa* L sin %1y — 1
5T Daeb ms 2a cosh a,

m=1.3,5,...
. sinh 2y,
[cosh (am — 2Ym) + vm sinh (am — 2Ym) + am 5 eosh am:” (143)

As a particular example let us consider the case where u = a and v is
very small. This case represents a uniform distribution of load along
the x axis. Considering v, as small in Eq. (143) and retaining only small
terms of the first order, we obtain, using the notation qv = g,

3 - 1Y(n—~1)/2
Winax = g:, Z (——ll—<tanh Ol — —9‘—"‘—) (144)

m cosh? a
m=135, ..,
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For a square plate this equation gives

Wnax = 0.00674 D

In the general case the maximum deflection can be represented in the form

goa®

'w:nu=a—z)— fora<b
3
=a% fora > b

Several values of the coefficient « are given in Table 19.

TasLE 19. DEFLECTIONS OF SIMPLY SUPPORTED RECTANGULAR PLATES
UNIFORMLY LOADED ALONG THE AXIs OF SYMMETRY PARALLEL TO
THE DIMENSION @

Wmax = agoa®/D

b/a 2 1.5 1.4 1.3 1.2 1.1 1.0
o 0.00987 | 0.00911 | 0.00882 | 0.00844 | 0.00799 | 0.00742 | 0.00674

a/b 1.1 1.2 1.3 1.4 1.5 2.0 ©
a 0.00802 | 0.00926 | 0.01042 | 0.01151 | 0.01251 | 0.01629 | 0.02083

Returning to the general case where v is not necessarily small and »
may have any value, the expressions for the bending moments M, and
M, can be derived by using Eq. (142). The maximum values of these

TaBLE 20. COEFFICIENTS 8 FOR (M.:)max IN SIMPLY SUPPORTED PARTIALLY
LoabpEp SqUARE PLATES

vy =03

ufa =| 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
v/a Coefficients 8 in the expression (M ;)max = BP

0 o [0.32110.251{0.209/0.180(0.158|0.141{0.125]|0.112(0.102{0.092
0.1 10.378(0.284|0.232(0.197|0.170{0.150!0.134)|0.120{0.108(0.0980.088
0.2 (0.308(0.254(0.214)|10.184{0.161}0.142{0.127|0.114(0.103|0.093 | 0.084
0.3 10.26210.225]0.195|0.168|0.151[0.134[0.120|0.108(0.098(0.088}0.080
0.4 10.23210.203}0.179{0.158|0.141|0.126;0.113|0.102{0.092(0.08410.076
0.5 |0.208{0.185]/0.164[0.146(0.131}/0.116(0.106|0.096|0.087{0.079|0.071
0.6 10.188(0.168/0.150}0.135(0.121}0.109(0.099{0.090|0.081{0.0740.067
0.7 {0.170{0.153|0.137]0.124(0.112]0.101|{0.091{0.083 }0.076 |0.069 | 0.062
0.8 |0.155{0.140(0.126[0.114(0.103 {0.094 |0.085|0.0770.070|0.063 | 0.057
0.9 10.141{0.127{0.115|0.104{0.094|0.0860.078(0.070]|0.064{0.058(0.053
1.0 {0.12710.115|0.105{0.095(0.086|0.078{0.07110.064]0.058]0.053 }0.048




140 THEORY OF PLATES AND SHELLS

TaBLE 21. COEFFICIENTS 8 AND f1 FOR (M;)msx AND (M )max IN PARTIALLY
LoapEp RECTANGULAR PLaTES WiTH b = l.4a
v = 0.3

u/a = 0 |02)|04)|06)08] 10 0 02]04|06|08]| 10

Coeflicient g in the expression Coeflicient 8, in the expression
(M )nax = BP (M) mex = 8P

N
~
=)

o 10.276|0.208/0.163|0.134/0.110] « |0.299(|0.230]0.183|0.1510.125
0.332(0.239/0.186(0.152{0.125/0.103/0.246(0.208/0.175/0.147/0.124/0.102
0.261/0.207)0.168]0.138/0.115|0.095/0.177(0.157,0.138/0.119/0.1010.083
0.219}0.181}0.151{0.126{0. 105!0.086/0.13810.125(0.111/0.097}0.083/0.069
0.187|0.1580.134(0.112(0.094/0.0780.112(0.102(0.091(0.080(0.069(0.058
0.162]0.139{0.118|0. 100{0.084{0.070/0.093/0.085[{0.077/0.068)0.058/0.049
0.141]0.122{0.104{0.089}0.075/0.062/0.079{0.072(0.065{0.058{0.050;0.042
0.123(0.1060.091(0.077(0.065{0.054,0.068(0.062{0.056{0.050{0.043,0.036

~Fee,OO OO0
N O N

:

22, COEFFICIENTS 8 AND i FOR (M;)}max AND (B )max IN PARTIALLY
LoapED REcTANGULAR PLATES WiTH b = 2¢
vy = 0.3

ufa = 0 |02|04|06 ;08|10 0 020406 08|10

Coeflicient 8 in expression Coefficient 8, in expression

v/a (M)max = BP (M) unx = BiP

w 10.289/0.220/0.175(0.144{0.118] « (0.294{0.225/0.179/0.14810.122
0.347|0.252|0.199|0.163/0.1350.111j0.242/0.203|0.170(0.143|0.120|0.099
0.275|0.221]0.181)0.150(0.125{0.103|0.172/0.152(0.133|0.114{0.097/0.081
0.233(0.195(0.164/0.138|0.115(0.095/0.133(0.120/0. 106/0.093{0.079/0.066
0.203/0.174{0.148)0.126(0. 106/0.088/0.107)0.097(0.087,0.076(0.065/0.054
0.179|0.155/0.134|0.115|0.097|0.080]0.089(0.081,0.073|0.064|0.055[0.046

(=3 -~

0.16110.141(0.122/0.105/0.089/0.074/0.074/0.0680.061/0.054/0.046/0.039
0.144/0.127j0.111|0.096{0.081}0.068/0.064/|0.058|0.052|0.046/0.040|0.033
0.130{0.115(0.101|0.087(0.074{0.062|0.056|0.051{0.046(0.040{0.035/0.029
0.118(0.104;0.091{0.079/0.067(0.056{0.049/0.045/0.041/0.036/0.031(0.026
0.107|0.094/0.083/0.072/0.061)0.051|0.044]0.041|0.037)0.032|0.028/0.023

DO b b
S0 SN

moments occur at the center of the plate and can be represented by the
formulas

(Mo)max = Buvg = BP (M) ez = Bruvg = B1P

where P = wuvg is the total load. The values of the numerical factors g
for a square plate and for various sizes of the loaded rectangle are given
in Table 20. The coefficients 8 can also be obtained from this table by
interchanging the positions of the letters u and v.



Next Page| SIMPLY SUPPORTED RECTANGULAR PLATES 141

The numerical factors 8 and 8; for plates with the ratios b = 1.4a and
b = 2a are given in Tables 21 and 22, respectively.!

34, Concentrated Load on a Simply Supported Rectangular Plate.
Using Navier’'s method an expression in double-series form has been
obtained in Art. 29 for the deflection of a plate carrying a single load P
at some given point r = §, ¥y = ¢ (Fig. 70). To obtain an equivalent
solution in the form of a simple series we begin by representing the Navier
solution (133) in the following manner:

4Pb* \ N — T
-— z Sp sin __1r§ sin —  (a) 7 i |
T°a a _l y ;
m= 1‘ ) ¢ s t')
the coefficient S,, being given by —l :
% i
sin %’ sin 'n%y |
Sm = —2—‘_—7‘ (b) b =~ q ————-
2 m?b? 2
n=1 ( az + n) y
Introducing the notation F1c. 70
- nx(y — ) - nr(n + y)

Cos cos

E B P N N
HEFew) T O
we can also represent expression (b) in the form

Sp = 38 — 8.) @

To evaluate the sums (¢} we use the known series

S = ©

cosmz _ 1 | =x cosha(r—2) )
at +n? 2a? ' 2a sinh 7 ¢
n=1
which holds for 0 < z < 2r and which we regard, first of all, as a func-
tion S(a) of a. Differentiation of the left-hand side of Eq. (¢) with
respect to a gives

GS(a) cos nz
da 2@ 21 @ o &

After differentiating also the right-hand side of Eq. (¢) and substituting

1 The values of M. and M, for various ratios a/b, u/a, and v/b are also given in the
form of curves by G. Pigeaud, Ann. ponis et chaussées, 1929. See also Art. 37 of this
book.
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The numerical factors 8 and 8; for plates with the ratios b = 1.4a and
b = 2a are given in Tables 21 and 22, respectively.!

34, Concentrated Load on a Simply Supported Rectangular Plate.
Using Navier’'s method an expression in double-series form has been
obtained in Art. 29 for the deflection of a plate carrying a single load P
at some given point r = §, ¥y = ¢ (Fig. 70). To obtain an equivalent
solution in the form of a simple series we begin by representing the Navier
solution (133) in the following manner:

4Pb* \ N — T
-— z Sp sin __1r§ sin —  (a) 7 i |
Ta a !
m=1 ¢ _l y '
the coefficient S,, being given by A—l t:’
% i
sin %’ sin 'n%y |
Sm = —2—‘_—7‘ (b) b =~ q ————-
2 m?b? 2
n=1 ( az + n ) y
Introducing the notation F1c. 70
"4 cos ""_(1/1):_’72 = cos T EY)

e = Y @
m?2b? : " m2b? 2

n=1 < a2 + n2> n=1 ( aZ + nz)

we can also represent expression (b) in the form

Sm = $(S5, — S3) @

To evaluate the sums (¢} we use the known series

8, =

cosmz _ 1 | =x cosha(r—2) )
at +n? 2a? ' 2a sinh 7 ¢
n=1
which holds for 0 < z < 2r and which we regard, first of all, as a func-
tion S(a) of a. Differentiation of the left-hand side of Eq. (¢) with
respect to a gives

GS(a) cos nz
da 2@ 21 @ o &

After differentiating also the right-hand side of Eq. (¢) and substituting

1 The values of M. and M, for various ratios a/b, u/a, and v/b are also given in the
form of curves by G. Pigeaud, Ann. ponis et chaussées, 1929. See also Art. 37 of this
book.
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the result in Eq. (f), we conclude that

®©

cosnz 1 38(a) 1 cosh a(r — 2)
@+ "% da 2t 4ot  sinhwa
n=l
_w(lr —z) sinha(r —2) + % cosh a(r — 2) cosh 7a @)
4 sinh ra 4a? sinh? 7o g

Now, to obtain the values of the sums (¢) we have to put, in Eq. (g),
firstz = (x/b)(y — n), thenz = (x/b)(y + #) and, in addition, & = mb/a.
Using these values for substitution in Eqgs. (d) and (a) we arrive, finally,
at the following expression for the deflection of the plate:

Pa2 Bm ﬂm 67»17 ﬁm
=5 E (1 + B coth B — S22 coth 228 — Bxl coth T")
sinh == B sinh By in maré sin T
b b a a
m? sinh B8,

(145)

in which

ﬁm=7—nalb ni=>b-—y and y2n

fe---0-~--> In the case of ¥ <  the quantity y, must be
replaced by y and the quantity n by 71 = b — 9, in
i using expression (145).

“f’l ) Let us consider more closely the particular case
o] A ®  of a load P concentrated at a point 4 on the axis
ol of symmetry of the plate, which may be used as the
z axis (Fig. 71). With n = b/2 and the notation

mrb  Ba
= 70 _ bm h
Fie. 71 * 2a 2 *)

the general expression (145) for the deflection of the plate becomes

3

2
= 2—% z [(1 + a, tanh a,,) sinh %ﬂ (b — 2y)
m=1
mr§ . mwr
o @ sin T sin _a, =
- wemnFo-w| it o

which is valid for y > 0, that is, below the z axis in Fig. 71. Putting,
in particular, y = 0 we obtain the deflection of the plate along the = axis
in the form



SIMPLY SUPPORTED RECTANGULAR PLATES 143

© . mwé . mwx
Pa? o \SR g SR
(0)ymo = 273D (tanh om = Cosh? am) m? @
m=1

This series converges rapidly, and the first few terms give the deflections
with sufficient accuracy. In the case of a load P applied at the center of
the plate, the maximum deflection, which is at the center, is obtained by
substituting x = £ = a/2 in expression (). In this way we arrive at the
result

Pq? 1 am _ Pa?
)] Z s (“a"h o = m) =ep 14D
m=1
Values of the numerical factor « for various values of the ratio b/a are
given in Table 23.

TABLE 23. FACTOR a« FOR DEFLECTION (147) oF o CENTRALLY LOADED
RECTANGULAR PrLATE

b/a=| 1.0 l 1.1 | 1.2 | 1.4 I 1.6 l 1.8 | 2.0 l 3.0 l I

« = |0.01160/0.01265/0.01353/0.01484]0.01570|0.01620/0.01651]0.01690]0. 01695

It is seen that the maximum deflection rapidly approaches that of an
infinitely long plate! as the length of the plate increases. The compari-
son of the maximum deflection of a square plate with that of a centrally
loaded circular plate inscribed in the square (see page 68) indicates that
the deflection of the circular plate is larger than that of the corresponding
square plate. This result may be attributed to the action of the reactive
forces concentrated at the corners of the square plate which have the
tendency to produce deflection of the plate convex upward.

The calculation of bending moments is discussed in Arts. 35 and 37.

36. Bending Moments in a Simply Supported Rectangular Plate with
a Concentrated Load. To determine the bending moments along the
central axis y = 0 of the plate loaded according to Fig. 71 we calculate
the second derivatives of expression (146), which become

 sin "7E
9w - -2 —2 (tanh ap — —om Y sin 222
dr® J,o 2D« m ™~ cosh? a, a
1

m=
©

mré

o' _P sin % (tanh 4+ —om Vi mrx
% ),  2Dx m &m T Cosh? o ) " a

m=1

! The deflection of plates by a concentrated load was investigated experimentally
by M. Bergstriisser; see Forschungsarb., vol. 302, Berlin, 1928; see also the report of
N. M. Newmark and H. A. Lepper, Univ. Illinois Bull., vol. 36, no. 84, 1939.
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Substituting these derivatives into expressions (101) for the bending
moments, we obtain

- sin mmg
(MJ)ymo = 25; E a [(1 + ) tanh an — (1—‘&"—"] sin %‘
m=1

m cosh? a,,

(@)

N\ i ™E
(M) ymo = 25 _S_ , —2 [(1 + ») tanh am + (1_—M] sin T
T a
m=1

m cosh? oy,

When b is very large in comparison with a, we can put

[ -
tanh Ay, = 1 C—OShz—am ~ O
1 P 1 . . g
Then (My)y—o = (My)y—0 = (—iz;li« 2 — sin n%r_é sin % (b
m=1

This series does not converge rapidly enough for a satisfactory calcu-
lation of the moments in the vicinity of the point of application of the
load P, so it is necessary to derive another form of representation of the
moments near that point. From the discussion of bending of a circular
plate by a force applied at the center (see Art. 19) we know that the

shearing forces and bending moments become infi-
A nitely large at the point of application of the load.
We have similar conditions also in the caseof a rec-
tangular plate. The stress distribution within a
- { - circle of small radius with its center at the point of
0 . « application of the load is substantially the same as
that near the center of a centrally loaded circular
plate. The bending stress at a point within this cir-
cle may be considered as consisting of two parts: one

S is the same as that in the case of a centrally loaded
e g o] circular plate of radius ¢, and the other represents the
difference between the stresses in a circular and those

Fie. 72 in a rectangular plate. As the distance r between

the point of application of the load and the point
under consideration becomes smaller and smaller, the first part of the
stresses varies as log (a/r) and becomes infinite at the center, whereas
the second part, representing the effect of the difference in the boundary
conditions of the two plates, remains continuous.
To obtain the expressions for bending moments in the vicinity of the
point of application of the load we begin with the simpler case of an
infinitely long plate (Fig. 72). The deflection of such a plate can readily
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be derived from expression (146) by increasing the length of the side b,
and consequently the quantity a., = mwrb/2a, indefinitely, 7.e., by putting

tanh a, =~ 1 cosh a,, =~ e

sinh 2 3 ™ (b — 2y) =~ cosh & 3 = (b — 2y) =~ %e‘“m"”“"zw

Substituting this into Eq. (146) the required deflection of the simply
supported strip carrying a concentrated load P at ¢ = £, y = 0 becomes?!

»

_ Pa? 1 . mrf . mmz MIYY _revlo
W =5-p 3 Sin == sin <1 + > v (148)
m=1

which holds for y > 0, that is, below the z axis (Fig. 72).

The corresponding expressions for the bending moments and the twist-
ing moment are readily obtained by means of Eqs. (101) and (102). We
have

M, = P 2 lslny—%;—"—fsln mﬂ.x[l +vr+ (01— m‘n'y] —mzyla

2r m
m=1
P 1 . .
M, = 3 Z 7 S0 Ln?:—zs mﬂ:[l +r—(1A - mry] e~ (149)
m=1
oy = — %:—ly(l - ) z sianﬂcosr—nage'"‘W’“
m=1

Once again using the quantity M = (M, + M,)/(1 + ») introduced
on page 92, we have

62w 2w mwx
woep (e ) £ h e o
m=1

The moments (149) can be expressed now in terms of the funetion M in
the following simple manner:

1 aM
M=y - a - 3]
M, =k [(1 M+ (1 -y %"ﬂ (151)
M., = --(1 v)y%lg

! This important case of bending of a plate has been discussed in detail by A. Néddai;
see his book “Elastische Platten,’” pp. 78-109, Berlin, 1925.
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Summing up the series (150), we obtain the expression!
cosh ¥ — cos @+ §
a a

152
) (152)
a

ks
cosh T ¢
a

and, using Eqs. (151), we are able now to represent the moments of the
infinitely long plate in a closed form. Observing, furthermore, that
AAw = 0 everywhere, except at the point (x = £ y = 0) of the appli-
cation of the load, we conclude that the function M = — D Aw satisfies
(except at the above-mentioned point) the equation AM = 0. By virtue
of the second of the equations (111) the boundary condition M = 0 along
the edges ¢ = 0 and « = a is also satisfied by the function M.

For the points along the z axis Eqgs. (151) yield M. = M, and therefore

1+V

(M2)ymo = (My)ymo = (M)ymo — 5 (©

Using Eqgs. (¢) and Eq. (152) in the particular case of a load applied at
the center axis of the strip, £ = a/2, we obtain

P4y, 1+sn %”
(Mz)ymo = (My)ymo = S log e (d)
1 — sin -

a result which also can be obtained by summation of the series (b).

Now let us return to the calculation of bending moments for points
which are close to the point of application of the load but not necessarily
on the z axis. In this case the quantities (x — £) and y are small and,
using expression (152), we can put

2

Os”(x__‘f_)zl__w coshwy~1+

a 2a? 2a2
Thus we arrive at the result

2r
- P log i cos — p

T ir w2yt T («'c - 5)2

14+ 55 St -1+ —F53

. wE\? . w&
4r wr 2 r

1 See, for instance, W. Magnus and F. Oberhettinger, *‘ Formein und Sitze fur die
speziellen Funktionen der mathematischen Physik,” 2d ed., p. 214, Berlin, 1948.
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in which
r=VE—§8+y
represents the distance of the point under consideration from the point
of application of the load P. Now, using expression (153) for substi-
tution in Eqs. (151) we obtain the following expressions, valid for points
in the vicinity of the concentrated load:
2a sin mé
1 P a 1 - v)Pyz}
M. = 2 IVU +) 2r log wr + 27r?

1 P 2a sin %‘E a — »Py?
M, = 5 a1+ » o log — o

wr

(154)

It is interesting to compare this result with that for a centrally loaded,
simply supported circular plate (see Art. 19). Taking a radius r under
an angle « to the z axis, we find, from Egs. (90) and (91), for a circular
plate

2
M,=M,,cos2a+M,sin2a=£(1+v)log%+(1 —v)g%

()
. P P z?
M, = M, sin® « + M, cos? =E(1+v)log%+(1-v)4—1r—2;—2

The first terms of expressions (154) and (e) will coincide if we take the
outer radius of the circular plate equal to

20 . =
—sm—g
a

Under this condition the moments M. are the same for both cases. The
moment M, for the long rectangular plate is obtained from that of the
circular plate by subtraction of the constant quantity! (1 — »)P/4r.
From this it can be concluded that in a long rectangular plate the stress
distribution around the point of application of the load is obtained by
superposing on the stresses of a centrally loaded circular plate with
radius (2a/r) sin (rv£{/a) a simple bending produced by the moments
M, = —1 — v)P/4r.

It may be assumed that the same relation between the moments of
circular and long rectangular plates also holds in the case of a load P
uniformly distributed over a circular area of small radius ¢. In such a
case, for the center of a circular plate we obtain from Eq. (83), by neg-
lecting the term containing c¢?,

P
Mo = 1 [(1 + ) 1og‘—c‘+ 1]

! We observe that 22 = r2 — y2,
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Hence at the center of the loaded circular area of a long rectangular
plate we obtain from Eqs. (154)

2asm—g
M,——— (1+u)log——a+1

wE
2a sin —
a _a-»r
kP

From this comparison of a long rectangular plate with a circular plate
it may be concluded that all information regarding the local stresses at
the point of application of the load P, derived for a circular plate by
using the thick-plate theory (see Art. 19), can also be applied in the case
of a long rectangular plate.

When the plate is not very long, Egs. (a) should be used instead of
Eq. (b) in the calculation of the moments M, and M, along the x axis.
Since tanh o, approaches unity rapidly and cosh «, becomes a large
number when m increases, the differences between the sums of series (a)
and the sum of series (b) can easily be calculated, and the moments M,
and M, along the z axis and close to the point of application of the load
can be represented in the following form:

~4a 2;)1)2”‘51 maESI m-i- P

(155)

M, = ——[(1 + ») log

'ix
m=1
20 sin ¢
=P(1+u)log‘asm 4
ir Y4 (156)
o= U400 B Lyt g e
m=1
2asin1’£-
_ P+ ' a P
= yom log +’Yz41r

in which v, and v, are numerical factors the magnitudes of which depend
on the ratio b/a and the position of the load on the r axis. Several values
of these factors for the case of central application of the load are given in
Table 24.

Again the stress distribution near the point of application of the
load is substantially the same as for a centrally loaded circular plate
of radius (2a/x7) sin (x£/a). To get the bending moments M. and M,
near the load we have only to superpose on the moments of the



SIMPLY SUPPORTED RECTANGULAR PLATES 149

TaBLE 24. FAcTORS 741 AND v: IN Egs. (156)

b/a 1.0 1.2 1.4 1.6 1.8 2.0 o

7 --0.565 -0.350 —0.211 —0.125 —0.073 —~0.042 0
RZ) +0.135 +0.115 +0.085 +0.057 -+0.037 +0.023 0

circular plate the uniform bending by the moments M, = vP/4r and
M, = —(1—»—y3)P/4nr. Assuming that this conclusion holds also
when the load P is uniformly distributed over a circle of a small radius ¢,
we obtain for the center of the circle

P 2asin7% P
M= | (4 5) log ——= +1 + 1=
T B ; (157)
‘ g e
M =-Lla+vi m+1 U —r—yE
VT 4y v) 08 wC 7241r

Just as in the case of a distributed load, reactive forces acting down-
ward and considerable clamping moments are produced by concentrated
loads at the corners of a rectangular plate. The corner reactions

R = nP o

due to a central load P are given in Table 25 by the numerical values of
the factor n, whereas the clamping moments have the value of —R/2
(see page 85). The computation of the values of R has been carried out
by a simple method which will be described in Art. 36.

TaBLE 25. NUMERICAL FAcTOR n FOR REACTIVE FomrcEs R AT THE CORNERS
OF SIMPLY SUPPORTED RECTANGULAR PraTes UNDER CENTRAL Loap

vy =03
b/a = ‘ 1.0 I 1.2 I 1.4 ‘ 1.6 i 1.8 ] 2.0 ' 3.0 [ ©
n = { 0.1219 | 0.1162 l 0.1034 | 0.0884 l 0.0735 | 0.0600 l 0.0180 | 0

The distribution of the bending moments and reactive pressures in the
particular case of a square plate with a central load is shown in Fig. 73.
The dashed portion of the curves holds for a uniform distribution of the
load P over the shadowed circular area with a radius of ¢ = 0.05a.

36. Rectangular Plates of Infinite Length with Simply Supported
Edges. In our foregoing discussions infinitely long plates have been
considered in several cases. The deflections and moments in such plates
were usually obtained from the corresponding solutions for a finite plate
by letting the length of the plate increase indefinitely. In some cases
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it is advantageous to obtain solutions for an infinitely long plate first
and combine them in such a way as to obtain the solution for a finite
plate. Several examples of this method of solution will be given in this
article. We begin with the case of an infinitely long plate of width a
loaded along the z axis as shown in Fig. 74. Since the deflection surface
is symmetrical with respect to the  axis, we need consider only the por-
tion of the plate corresponding to positive values of ¥ in our further dis-
cussion. Since the load is distributed only along
the z axis, the deflection w of the plate satisfies the
¢ equation

O
b
x®

w Hw o*w
¥ T o T2 Toge =0

We take the solution of this equation in the form

(@)

y w = Y., sin m_;ra_: )

Fia. 74 m=1
which satisfies the boundary conditions along the simply supported
longitudinal edges of the plate. To satisfy Eq. (@), functions ¥, must

be chosen so as to satisfy the equation

min?
a2

4
Y,;'+’LZZLY,,=0

Yo—-2
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Taking the solution of this equation in the form

Y = A emwy/a + B em‘n//u + C’ e—mﬂl/“ + D m"ry

e—mry/a (C)
and observing that the deflections and their derivatives approach zero
at a great distance from the x axis, it may be concluded that the con-
stants A, and B, should be taken equal to zero. Hence solution (b)
can be represented as follows:

w = E ( Co 4 D, mr?/) e—mrule gin ﬂ;ﬁ‘f (d)

m=1

From the condition of symmetry we have

dw _
(5—?7)1/=0 0

This condition is satisfied by taking C, = D, in expression (d). Then

@

W= Z (1 + mﬂy) emrvla gin m_;r:g (e)

m=1

The constants C,, can be readily calculated in each particular case pro-
vided the load distribution along the x axis is given.

As an example, assume that the load is uniformly distributed along
the entire width of the plate. The intensity of loading can then be
represented by the following trigonometric series:

4 1 sjn MTE
= Zqq - i
g L ¢ m a
m=13,5,...

in which ¢q is the load per unit length. Since the load is equally divided
between the two halves of the plate, we see that

_ 9 (*w | w 2 1 . mrz

(@)y=o = Day <ax2 + W)FO == z 5 sin—="(f)
m=135...

Substituting expression (¢) for w, we obtain

3

L
2Drx3 . mwx _ 2qe 1 . mmrx
Cum® sin 20 = 240 = gin 228
3
a a T m a

m=1 m=135,...

from which

Ccn = 2%

= Drtmi where m = 1, 3, 5,
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®

a’ mw mnx
Hence w = 1%2—D E (1 + y) ~meate sin o2 )

m=1305,.

The deflection is a maximum at the center of the plate (z = /2,y = 0),
where
_ gt (—1)D72  5rgea?
(W = 755 m = 1,536D (h)

m=13,45,...

The same result can be obtained by setting tanh o, = 1 and cosh a,, = =
in Eq. (144) (see page 138).

As another example of the application of solution (e), consider a load
of length v uniformly distributed along a portion of the  axis (Fig. 74).
Representing this load distribution by a trigonometric series, we obtain

4qo 1 mwk mru . mwx
qg= sin — sin —— sin —=
T m a 2a a
m=1
where qo is the intensity of the load along the loaded portion of the x axis.
The equation for determining the constants C,, corresponding to Eq. (f),
is
?w | %w _ 2qo 1 mrf . mwu . mwx
Day (6:0’ + 6—y§>,,=o == 2 p” sin 0 sin g St —

m=1

Substituting expression (e) for w, we obtain

3

2D7r 2 T mmru . mwx
C,,,m3 sin TTE _ <qe — — sin TS sin —— sin —~

T 2a a

m=1

from which

3
0@ . m1r£ mru
C, =2 sin — sin ———
™ xt Dm* a 2a

Expression (¢) for the deflections then becomes

3
qoa z — sin m_1r$ ";'ru (1 + mnry) e~mrvla gin m_;ra_: ®)

The particular case of a concentrated force applied at a distance £ from
the origin is obtained by making the length u of the loaded portion of the
x axis infinitely small. Substituting
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mwu __ mwu
qou = P and sin - e

in Eq. (7), we obtain

= Pa? L m1r£ TZ“IQ —mzyla 1_n1r_x
w_szSIHT(I+ . ) v/e gin 2 (158)
m=1

an expression that coincides with expression (148) of the preceding article.
We can obtain various other cases of loading by
integrating expression (z) for the deflection of a long
plate under a load distributed along a portion u of the
z axis. As an example, consider the case of a load H
of intensity ¢ uniformly distributed over a rectangle 0 [FEZA= |
with sides equal to w and » (shown shaded in Fig. 75). o] <
Taking an infinitesimal element of a load of magni- 2
tude qu dn at a distance 5 from the x axis, the corre-
sponding deflection produced by this load at points
with y > 5 is obtained by substituting ¢ dx for ¢o and Fia. 75
y — 9 for y in expression (). The deflection pro-
duced by the entire load, at points for which y = »/2, is now obtained by
integration as follows:

\
4 [€ Mol

Fa.
d\
N
ol

b - == ~== ]

w

ga’ 1 mm§ . mau sin ML

iy — > gin n
=D mia © 2a ! a
m=l /2 w=n
v, mxly—1n
mar(y — _mr(y—n)
/ [1+——”(y ")]e = dy
—2/2 a

qa* . mwf . mru . mwxx
= —, siIn —— sin sin ——
m a 2a a

_mn(2y—v) _ma(2y+v)
Tom g (gt

mr

By a proper change of the limits of integration the deflection at points
with y < »/2 can also be obtained. Let us consider the deflection along
the z axis (Fig. 75). The deflection produced by the upper half of the
load is obtained from expression (7) by substituting the quantity »/4 for
y and for v/2. By doubling the result obtained in this way we also take
into account the action of the lower half of the load and finally obtain

4
(whomo = 21 Z L in 7 i 7T i m_a@[ (1 n M) Wmm]

(k)



154 THEORY OF PLATES AND SHELLS

When v = , the load, indicated in Fig. 75, is expanded along the entire
length of the plate, and the deflection surface is eylindrical. The corre-
sponding deflection, from expression (k), is

mnru mrx

4
(W)ymo = qa z o sin 778 sm “Sa sin ~a ()]

Making ¢ = u/2 = a/2 in this expression, we obtain

o

4
(W)yms = 222 L sin 272

m=13,5,...

which represents the deflection curve of a uniformly loaded strip.

The following expressions for bending moments produced by the load
uniformly distributed along a portion « of the z axis are readily obtained
from expression (z) for deflection w:

i . (m)

[1 +r—(1—-» 7?8‘""”’/“}

These moments have their maximum values on the z axis, where
(MZ)H—O = (My)y=o
- qoa(l + v) 2 L mru . mwx

—~—sm—sm— n
sin 2a a ()

m=1

In the particular case when ¢ = u/2 = a/2, that is, when the load is
distributed along the entire width of the plate,

0
goa(l 4+ ») 1 . mrx
—_— — sin ——
T m a
m=1335,...

(M2)1/=0 = (Mv)v=0 =

The maximum moment is at the center of the plate where
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(M)max = (My)ax = q—""w z %ﬁﬂm = 0.0928g0a(l + »)

m=13,5,...

When « is very small, .e., in the case of a concentrated load, we put
sin — =~ ——— and gou = P

Then, from expression (n), we obtain

PQ B .
(Modymo = (U)o = ZEE2) z Lo MrE g T2

m=1

which coincides with expression (b) of the preceding article and can be
expressed also in a closed form (see page 146).

In the case of a load ¢ uniformly distributed over the area of a rec-
tangle (Fig. 75), the bending moments for the portion of the plate for
which y = v/2 are obtained by integration of expressions (m) as follows:

x? m? a 2a a
m=1
+v/2 _ _mn{y—mn)
/ [1+,,+(1_,,)7_”1"(l__1>]e s dy
—v/2 a
a 1 . met . mou . mmzx
=;2 Wsm—a—sm2—asm7—
m=1
2 v _mxQy—v)
{[m-r =) ( - 5)] ¢ (159)
2 v\] -2xetn
[ ra-a(oe))]
a
M, = 4_1_2 1 sin mwt sin 7% gin T
m? a 2
m=1

mx(2y —v)

2 0-a(-9) %
2va p\] -meutn
[ (vrg)]

The moments for the portion of the plate for which ¥y < v/2 can be calcu-
lated in a similar manner. To obtain the moments along the x axis, we
have only to substitute »/2 for » and »/4 for y in formulas (159) and
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double the results thus obtained. Hence

__ 4qa® 1 mwf . mru . MwT

(M2)ymo = 5 i sin — Sin - sin —=
m=1

o[ o))
» (160)

_ 4qa? 1 mar§ mwru mrx

(M,,)y,o = T z m3 sin T sin —2?1- sin —'a—'
m=1

b [r—a-nmm)o®)

If values of the moments at the center of the loaded rectangular area are
required, the calculation may also be carried out by means of expressions
(167), which will be given in Art. 37. When v is very small, Eqs. (160)
coincide with Eq. (n) if we observe that ¢gv must be replaced in such a
case by go. When v is very large, we have the deflection of the plate to a
cylindrical surface, and Eqgs. (16Q0) become

(M2)ymo = iqi 2 — sin n_z_1r_£ sin 7% in _m;ra:

2a

(M y)ymo = 4vqa Z el 1n —= sin ";—Zu sin Znalx
m L P The expressions for the deflections
A'I— _;‘_ TTF -~  andbending moments in a plate of finite
0 I A b— length can be obtained from the corre-
= A +—- ; - —-% - i; sponding quantities in an infinitely long
e '{ ——b= plate by using the method of Tmages.?
5 X —}—EFL—- Let us begin with the case of a concen-
i —_— trated force P applied on the axis of
o P __E._____*_P,é symmetry z of the rectangular plate
S (T Y N with sides ¢ and b in Fig. 76a. If we
:—'T et BRSNS S J L now imagine the plate prolonged in both
the positive and the negative y direc-
Y © ) y tions and loaded with a series of forces
Fre. 76 P applied along the line mn at a dis-

tance b from one another and in alter-
nate directions, as shown in Fig. 76b, the deflections of such an infinitely

1 This method was used by A. Nddai (see Z. angew. Math. Mech., vol. 2, p. 1, 1922)
and by M, T. Huber (see Z. angew. Math. Mech., vol. 6, p. 228, 1926).



SIMPLY SUPPORTED RECTANGULAR PLATES 157

long plate are evidently equal to zero along the lines A.B,, AB, CD,
CiDy, . . .. The bending moments along the same lines are also zero,
and we may consider the given plate ABCD as a portion of the infinitely
long plate loaded as shown in Fig. 76b. Hence the deflection and the
stresses produced in the given plate at the point of application O of the
concentrated force can be calculated by using formulas derived for infi-
nitely long plates. From Eq. (158) we find that the deflection produced at
the x axis of the infinitely long plate by the load P applied at the point O is

Pa? sin ! m1r£ sin ™%
W1 = 27D m“ a

m=1

The two adjacent forces P applied at the distances b from the point O
(Fig. 76b) produce at the z axis the deflection

2
wy = Pa Z —; sin mr_f (1 + 2an)e~%= sin @gg
in which, as before,
_ mwb
m = g

The forces P at the distance 2b from the point O produce at the z axis
the deflection

£

Pq? 1 . mrt —tan mrx
1r3_D — sSin ’a— (1 + 4a,,.)e sin T

m=1]

w; =

and so on. The total deflection at the z axis will be given by the
summation

w=w + w + ws+ - (27)
Observing that
tanh an, = 1= et 1 — 2e~%am 4 2g=dam - . .
1 + e—2am
1 _ 4 4g—2an

cosh? an (e 4 eom)2 (1 + ¢ Tam)?
= 46—2a,.(1 — Q¢—%m 4 Jg—dam — fo~8am | . . )

we can bring expression (p) into coincidence with expression (146) of
Art. 34.

Let us apply the method of images to the calculation of the reactive force

R =-2M,,
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acting at the corner D of the rectangular plate ABCD (Fig. 76) and produced by a load
P at the center of this plate. Using Eqs. (151) and (152), we find that the general
expression for the twisting moment of an infinitely long plate in the case of a single
load becomes

1 oM
M., = "5(1 - ")y_a;“
sin w(x — §) sin =z + 8
- P(1 — »)y a _ a @
cosh ™ cos 1r—(z;£—) cosh o _ cos w
a a a a

Hence a load P concentrated at © = £ = a/2, y = 0 produces at z = 0 the twisting
moment

Pl —» y
Mey = — P a— )
a Y
cosh —
a
Now, putting y = b/2, 3b/2, 5b/2, . . . consecutively, we obtain the twisting

moments produced by the loads +P acting above the line DC. Taking the sum of
these moments we obtain
Pb(1 — 1 3 5

xb 3nb
h = h o= o
cos %2 cos 5 cosh %

sz =

To take into account the loads acting below the line DC we have to double the
effect (s) of loads acting above the line DC in order to obtain the effect of all given
loads. Thus we arrive at the final result

Pb(1 — » m
—_ _(____2 (_ 1)(m—1)/2 ———— (t)
4a marb
cosh —
m=1335,... 2a

M.y =

As for the reactive force acting downward at the point D, and consequently at the
other corners of the plate, it is equal to B = —2M,,, M., being given by Eq. (¢).

The method of images can be used also when the point of application of P is not on
the axis of symmetry (Fig. 77a). The deflections and moments can be calculated by
introducing a system of auxiliary forces as shown in the figure and using the formulas
derived for an infinitely long plate. If the load is distributed over a rectangle, for-
mulas (167), which will be given in Art. 37, can be used for calculating the bending
moments produced by actual and auxiliary loads.

87. Bending Moments in Simply Supported Rectangular Plates under a Load
Uniformly Distributed over the Area of a Rectangle. Let us consider once more the
practically important case of the loading represented in Fig. 78. If we proceed as
described in Art. 33, we find that for small values of u/a and v/b the series representing
the bending moments at the center of the loaded area converge slowly and become
unsuitable for numerical computation.

In order to derive more convenient formulas! in this case let us introduce, in exten-
sion of Eq. (119), the following notation:

1 See S. Woinowsky-Krieger, Ingr.-Arch., vol. 21, p. 331, 1953.
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M.+ M dw  dw
et (2, 2
14
M M %  w (161)
z vo_ cgw _o%¥
N-= 1—» b (81:* ay2>
Hence M. =301+ vM + 31 —»N (162)

M, = %(1 + M — %(1 - »N

At first let us consider a clamped circular plate of a radius ao with a central load,
distributed as shown in Fig. 78. The bending

:{_’:—j e moments at the center of such a plate can be
I L obtained by use of the Michell solution, for an
! _bZP eccentric single load. If u and v are small in
I G NI o
ﬁ D %
T X |
gl 10 X z / P .Q[(\.l je——§ >
; ! } T
{32 |I i o =iy 7 ,
X T ————r i S|y
| b alN u,l u
2 ‘I a-tant-ta
- <5 : 22
Fep——— - —— J= ¥y
by
o e — — — r a
y (a) (b y
Fig. 77 F16. 78

comparison with ao, the result, evaluated by due integration of expression (197) (p.
293), can be put in the form

M=£—r<2+2log2%0—¢)
N=£¢ @
47
in which
o=k a,rctzml + l arctan k
ko k
1 1
v =k a.rctanz - Earctan k (163)

k= and d=Vu:+v

v
U

For a simply supported circular plate with the same radius ao as before, we have to
add a term P/4r to M, and M, (see p. 68), i.e., a term P/2x(1 + ») to M and nothing
to N, so that these latter quantities become

®)
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Finally, to obtain the corresponding expressions for an infinite strip (Fig. 75),
we must assume a, = 2a/r sin (r¢/a) and introduce an additional moment
M, = ~(1 — »)P/4r (see p. 147). This latter operation changes the quantity
M by —(1 — »)P/4x(1 + ») and the quantity N by +P/4x. Introducing this in
Eqs. (b) we arrive at the result

4a sin ¢

a
wa T3 (164)

M=4—I:r 2 log

P
N=—QQ+¥
4

The values of the factors ¢ and ¢, depending only on the ratio v/u, are given in
Table 26.

Considering now the case of a rectangular plate (Fig. 78), we have only to take into
account the effect of the auxiliary loads! +P (Fig. 77) and to add this effect to the
values (164) of M and N. The final result, in the case shown in Fig. 78, can then be
put in the form

P 4q sin —
M=—\21 A -
w\PE g troe (165)
P
o (s +¥)
where ¢, ¢, d are given by expressions (163) and Table 26, and
—a,
AN=3-4 Z ¢ sin’ﬁ#—E
cosh am a
m=l (166)
2xb 1 . . mw¢
"= —_— — 2 ———
a cosh? am
m=1

with am = mxb/2a. The terms X and u, expressed by rapidly convergent series, are
wholly independent of the dimensions u and » (and even the shape) of the loaded area.
Their numerical values are given in Table 27.

From Eqs. (162) we obtain the expressions for the bending moments

P 4asin%E
M,=—|\2log——— + A~/ A +») +@+HA — »)
87 xd
(167)
p 4asin%E
M, =—i\2log —— +r—eJA+» —(+H{1 -
87l' 1l'd

acting at the center of the loaded area (Fig. 78). Expressions (165) and (167) are also
applicable to the calculation of moments of a simply supported infinite strip as a
particular case.

1Tt is permissible to regard them as concentrated provided u and v are small.
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TaBLE 26. VALUES OF THE FACTOR ¢ AND ¢ DEFINED BY Eqs. (163)

RECTANGULAR PLATES

k=v/u
@ ¥ @ ¥ k € 14
0 1.000 | —-1.000] 1.0 1.571 | 0.000 2.5 1.427 | 0.475
0.05 1.075 | —0.923 | 1.1 1.569 | 0.054 3.0 1.382 | 0.549
0.1 1.144 | —0.850} 1.2 1.564 | 0.104 4.0 1.311 | 0.648
0.2 1.262 | —0.712}§ 1.3 1.556 | 0.148 5.0 1.262 | 0.712
0.3 1.355 | —0.588 | 1.4 1.547 | 0.189 6.0 1.225 | 0.757
0.4 1.427 | —0.475| 1.5 1.537 | 0.227 7.0 1.197 | 0.789
0.5 1.481 | —0.3714| 1.6 1.526 | 0.261 8.0 | 1.176 | 0.814
0.6 1.519 | —0.282 1.7 1.515 | 0.293 9.0 1.158 | 0.834
0.7 1.545 | —0.200 ) 1.8 1.504 } 0.322 10 1.144 | 0.850
0.8 1.560 | —0.127 § 1.9 1.492 | 0.349 § 20 1.075 | 0.923
0.9 .568 | —0.060§ 2.0 1.481 | 0.374 ) 1.000 | 1.000
TaBLE 27. VALUES OF THE FacTors A AND u (Eq. 166) rFor SiMPLY SuPPORTED

A for ¢/a = wfor ¢/a =
0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5

0.5 (2.792 |2.352 11.945 |1.686 ({1.599 10.557 [—0.179 {—0.647 |—0.852 |—0.906
0.6 |2.861 [2.545 (2.227 (2.011 |1.936 [0.677 0.053 {—0.439 |—0.701 |—0.779
0.7 {2.904 |2.677 [2.433 |{2.259 |2.198 [0.758 0.240 | —0.229 | —-0.514 |—0.605
0.8 12.933 |2.768 |12.584 [2.448 {2.399 [0.814 0.391 {—0.031 {—0.310 |—0.404
0.9 |2.952 [2.832 [2.694 |2.591 |2.553 {0.856 0.456 0.148 [-0.108 [—~0.198
1.0 |2.966 [2.879 {2.776 |2.698 [{2.669 |0.887 0.611 0.304 0.080 0.000
1.2 (2.982 (2.936 |2.880 {2.836 (2.820 |0.931 0.756 0.551 0.393 0.335
1.4 |2.990 |2.966 (2.936 |2.912 [2.903 [0.958 0.849 0.719 0.616 0.578
1.6 (2.995 [2.982 |2.966 [2.953 [2.948 |0.975 0.908 | 0.828 0.764 0.740
1.8 2.997 {2.990 [2.982 |2.975 [2.972 |0.985 0.945 0.897 0.858 0.843
2.0 12.999 (2.995 [2.990 |2.987 |2.985 [0.991 0.968 0.939 0.915 0.906
3.0 {3.000 |3.000 (3.000 )2.999 [2.999 |0.999 0.998 0.996 0.995 0.994

3.000 |3.000 {3.000 {3.000 |3.000 {1.000 1.000 1.000 1.000 1.000
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Extending the integration over circular, elliptic, and other areas, the corresponding
expressions for M and N for these loadings are readily found. Taking, for instance,
a circular loaded area (Fig. 79) we obtain for its center

— 2a sin —

" P a
H = — _— A—2

.oiN e on M o 2 log - + (168)
! % P

% ) @/ x Ve
1

Sles these expressions being equivalent to the result (157).

Comparing (168) with expressions (165) for k = 1, we
may conclude that a circular and a square loaded area
hem—— - [ — > are equivalent with respect to the bending moments they
produce at the center of the area, if

D —

u2 el = 0.57u or u=088X2 (¢)

It should be noted that, as the load becomes more and more concentrated, the
accuracy of the approximate logarithmic formulas for the bending moments, such as
given by Eqs. (157) and (167), increases while the convergence of the customary series
representing these moments becomes slower. Numerical caleulations! show also that
the accuracy of those approximate formulas is entirely sufficient for practical purposes.

38. Thermal Stresses in Simply Supported Rectangular Plates. Let
us assume that the upper surface of a rectangular plate is kept at a higher
temperature than the lower surface so that the plate has a tendency to
bend convexly upward because of nonuniform heating. Because of the
constraint along the simply supported edges of the plate, which prevents
the edges from leaving the plane of the supports, the nonuniform heat-
ing of the plate produces certain reactions along the boundary of the
plate and certain bending stresses at a distance from the edges. The
method described in Art. 24 will be used in calculating these stresses.?
We assume first that the edges of the plate are clamped. In such a case
the nonuniform heating produces uniformly distributed bending moments
along the boundary whose magnitude is (see page 50)

M, = atD(1h+ v) (@)

where ¢ is the difference between the temperatures of the upper and the
lower surfaces of the plate and « is the coefficient of thermal expansion.

! See 8. Woinowsky-Krieger, Ingr.-Arch., vol. 3, p. 340, 1932; and Ingr.-Arch., vol.
21, pp. 336, 337, 1953.

2 See paper by J. L. Maulbetsch, J. Appl. Mechanics, vol. 2, p. 141, 1935; see also
E. Melan and H. Parkus, “ Warmespannungen infolge stationarer Temperaturfelder,’
Vienna, 1953, which includes a bibliography on thermal stresses. For stresses due to
assemblage errors in plates, see W. Nowacki, Bull. acad. polon. sci., vol. 4, p. 79, 1956.
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To get the bending moments M, and M, for a simply supported plate
(Fig. 62), we must superpose on the uniformly distributed moments given
by Eq. (a) the moments that are produced in a simply supported rec-
tangular plate by the moments M, = —atD(1 4 »)/h uniformly dis-
tributed along the edges. We shall use Eqs’ (120) (see page 92) in dis-
cussing this latter problem. Since the curvature in the direction of an
edge is zero in the case of simply supported edges, we have M, = vM/,.
Hence at the boundary

M.+ M, _M,+M _ D1+ b)
1+» 14+ h (

Thus the first of equations (120) is satisfied by taking M constant along
the entire plate and equal to its boundary value (b). Then the second
of equations (120) gives

Pw , dw  at(l 4 »)

ar? ' oyt = h ()
Hence the deflection surface of the plate produced by nonuniform heat-
ing is the same as that of a uniformly stretched and uniformly loaded
rectangular membrane and is obtained by finding the solution of Eq. (¢)
that satisfies the condition that w = 0 at the boundary.

Proceeding as before, we take the deflection surface of the plate in the

form

M=

w=w + w, (d)

in which w, is the deflection of a perfectly flexible string loaded uni-
formly and stretched axially in such a way that the intensity of the load
divided by the axial force is equal to —af(1 4 »)/h. In such a case the
deflection curve is a parabola which can be represented by a trigonometric
series as follows:

_ at(l + v) (e — x)

w1 = h p)
- sin mrz
_at(l + v) 4a® a ©)
h s m3
m=13,5,...

This expression satisfies Eq. (c). The deflection w,, which must satisfy
the equation

82w2 62W2 _
can be taken in the form of the series
wy = z Y, sin "—n;'—x @
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in which Y,, is a function of y only. Substituting (¢) in Eq. (f), we find

202
Y- V.=0
a
Hence Yn = A, sinh ’—”gﬂ + B, cosh ’i‘gﬂ (h)

From the symmetry of the deflection surface with respect to the « axis
it may be concluded that Y, must be an even function of y. Hence the
constant 4, in the expression (h) must be taken equal to zero, and we
finally obtain

©

2
w= w4+ w, = 2 Sinr%c[_a_t(li-_v_)éia +B,,.cosh7$]

h 7*m?

m=1305,...
@)
This expression satisfies the boundary conditions w = 0 at the edges
z = 0andz = a. To satisfy the same condition at the edgesy = +b/2,
we must have

mrb _ at(l + v) 4a® _
B,, cosh 7 E w =0

Substituting the value of B, obtained from this equation in Eq. (9),
we find that

at(l + v)da® N sin ? cosh %
U o 1-— @

w°h m? cosh oy,

m=135,...
in which, as before, a,, = m#xb/2a.
Having this expression for the deflections w, we can find the corre-
sponding values of bending moments; and, combining them with the
moments (a), we finally obtain

M, = atD(;+ ) D(az_w N a2w>

a7 7 Vay?
in T Coch ™Y
_ 4Dai(l — ) sin == cosh =
- wh m cosh oy,
m=135,... (k)
_atD(1 4+ ») %w o2
My = ~—‘——h D a_yz‘ + v 6_272-

. mmx mwy
at(l = v)D  4Dat(l — »?) s = cosh ==
h wh m cosh a,,

m=135,...
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The sum of the series that appears in these expressions can be readily
found if we put it in the following form:

. mwx mri
sin 7% cosh 7Y
a
m cosh oy,
m=13,5,...
® . mwrx mr . mxx
sin 72 cosh Y gmvte gin AT
_ a a a
m cosh am mesn

m=13,5,...

emvls mgx
in
me=
m=13,5,...

-+

The first series on the right-hand side of this equation converges rapidly,
since cosh (mwy/a) and cosh a, rapidly approach e®=v/s and e*~ as m
increases. The second series can be represented as follows.!

hnd . mnx . T
emmvie gin —-—a sin —

T am 1 aretan —— — (m)
me*n 2 ] b -
m=135,... sinh % " @

The bending moments M. and M, have their maximum values at the
boundary. These values are

1
(Mo = M)omtoms = HLZ O et )

1t is seen that these moments are obtained by multiplying the value of
M, in formula (@) by (1 — »). The same conclusion is reached if we
observe that the moments M, which were applied along the boundary
produce in the perpendicular direction the moments

’ atD(1 4+ »)

M, = vM, = — 5

which superposed on the moment (a) give the value (n)

39. The Effect of Transverse Shear Deformation on the Bending of
Thin Plates. We have seen that the customary theory of thin elastic
plates leads to a differential equation (103) of the fourth order for the

1See W. E. Byerly, “Elementary Treatise on Fourier Series and Spherical, Cylin-
drical and Ellipsoidal Harmonics,” p. 100, Boston, 1893. The result can be easily
obtained by using the known series

2z sin . a® z°
I f=xsm<p+—3-sm3¢+gsm5¢+~--

lartn
— arcta
2
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deflection and, accordingly, to two boundary conditions which can and
must be satisfied at each edge. For a plate of a finite thickness, how-
ever, it appears more natural to require the fulfillment of three boundary
conditions than of two. The formal reason for the impossibility of satis-
fying more than two conditions by the customary theory has been the
order of the basic equation of this theory; physically this reason lies in
the fact that the distortion of the elements of the plate due to transverse
forces such as Q (page 52), Q., and @, (page 79) has been neglected in
establishing the relations between the stresses and the deflection of the
plate. The disregard of the deformation due to the transverse stress
component obviously is equivalent to the assumption of a shearing
modulus G, = « ; proceeding in this way we replace the actual material
of the plate, supposed to be isotropic, by a hypothetic material of no
perfect isotropy. Owing to the assumption G, = « the plate does not
respond to a rotation of some couple applied at the cylindrical surface
of the plate, if the vector of the couple coincides with the normal to this
surface. This enables us to identify
the variation M ,,/dy of twisting cou-
¥ ples due to horizontal shearing stresses
™ d x and acting along an edge x = a with

the effect of vertical forces Q. applied
at the same edge, thus reducing the
number of the edge conditions from

ICIdxdy

e PO} =2 = | -P‘
\
N
SL =<
~ i

Ty _ ¥ ox three to two (page 83). The stress

P Ir——/ e analysis of the elastic plates is greatly

L -x e, 80 simplified by this reduction.. On the
I1G.

other hand, in attributing some purely
hypothetic properties to the material of the plate we cannot expect com-
plete agreement of the theoretical stress distribution with the actual one.
The inaccuracy of the customary thin-plate theory becomes of practical
interest in the edge zones of plates and around holes that have a diameter
which is not large in comparison with the thickness of the plate.

The generalization of the customary theory with respect to the effect
of shear deformation is substantially due to E. Reissner.!

Let us consider an element of the plate submitted to the external
transversal load ¢ dz dy and to a system of stress components (Fig. 80).
In accordance with E. Reissner’s theory we assume a linear law for the
distribution of the stress components o, o, and 7, through the thickness
of the plate. By equations of equilibrium (a) on page 98 the distribu-

1 See J. Math. and Phys., vol. 23, p. 184, 1944; J. Appl. Mechanics, vol. 12, p. A-68,
1945; Quart. Appl. Math., vol. 5, p. 55, 1947. For the history of this question going
back to a controversy between M. Lévy and Boussinesq, see L. Bolle, Bull. tech. Suisse
romande, October, 1947.
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tion of the components 7., and r,, then follows a parabolic law. As for
the stress component o, it is readily obtained from the third of equations
of equilibrium (a) if one takes into account the conditions

(“’t):a—bli = —q (0.)smts2 = 0

at the upper and lower surface of the plate. We arrive, in this manner,
at the following expressions for the stress components in terms of their
resultants and the coordinate z:

12M 2 12M, 12M
e i e
_ 3.0, _ (%) 3@, _ (2Y @
Te T on k T T 2 ®
- 32 _2 172\
o = 4[3 A h)] ®)

Except for Eq. (b) the foregoing system of equations coincides with the
corresponding relations of the customary theory. In like manner we can
rewrite the following conditions of equilibrium of the stress resultants
(see pages 80, 81):

Q- | 3Q, _

ax+—@+€1—0 (c)
oM. oM., _

oz oy =0 @
M, _ M, _

Y dz v

Assuming an isotropic material and supposing the displacements u,, o,
wy of any point of the plate to be small as compared with its thickness A,
we make use of the general stress-strain relations

T Lo = vloy + )]
% = %v[«ry — o + 0.)]
T (@)
in which @ = E/2(1 4+ »). We do not use the sixth relation
owe

3? = %[’8 — »(os + a'u)]
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however, since this latter proves to be in contradiction with the assumed
linear law for the distribution of the stresses o, oy, 74

Next,! we introduce some average value w of the transverse displace-
ment, taken over the thickness of the plate, as well as some average values
¢ and ¢, of the rotation of the sections £ = constant and y = constant,
respectively. We define these quantities by equating the work of the
resultant couples on the average rotations and the work of the resultant
forces on the average displacement to the work of the corresponding
stresses on the actual displacements ue, vo, and wp in the same section;
1.¢., we put

h/2 h/2
/ i oo dz = Mo, - f a2 Talo dz2 = M0,
h/2 h/2
,[—h/2 alo dz = Z‘/I,,go,, - /—h/2 Tayllo dz = sz‘P: (f)
h/2 h/2
f_m TeWo d2 = Q.w f_m T Wodz = Qu

Now, substituting expressions (@) for the stresses in Egs. (f), wearriveat
the following relations between the average and the actual displacements:

3 (w2 22\
w = ﬁ/_h/z’l,l)o[l - (-‘h—) ]dz

12 (22 yez
¢z =37 _/—h/2 H dz @
_ 12 e 2% dz
fy = hE —n/2 h

Using Eqs. (¢) and observing Eq. (b), we are also able to express the
stress components a,, oy, and 7., in terms of the actual displacements;
we find?

E duo o 3qv 2 2z 1[22\*
Gy = —o [ 220 20y 94T 12 _ 22 (&
: 1—y2(ax+”ay w-»3 " n T3z
E e duo 3qv 2 2z 122\
”v——"l—vz(sy““”% -3 wt3\x)| ®
S A L + 90
21+ v)\oy ' oz
! E. Reissner, in his treatment of the subject, makes use of Castigliano’s principle of
least work to introduce the conditions of compatibility in the analysis. The method
here followed and leading to substantially the same results is due to A. E. Green,
Quart. Appl. Math., vol. 7, p. 223, 1949. See also M. Schifer, Z. angew. Math. Mech.,
vol. 32, p. 161, 1952.
2 Terms with z% do not actually occur in the following expressions for ¢, and o,

since they are canceled out by identical terms with opposite sign contained in duo/dx
and dv,/dy.
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Substituting this in Egs. (@), multiplying the obtained equations by
12z dz/h?, integrating between z = —h/2 and z = h/2, and observing
relations (g), we arrive at the expressions

6v(1 + »)

O 9oy
M, D[ax+”ay+ 5Eh q]

_ d¢y d¢ps | 6r(1 + ») .
My—D[ay +Vax + “EER q] )
_ _ DU =) (3., 30,
Mz = 2 (6y + ax)

in which D is defined, as before, by Eq. (3). In like manner, substituting
expressions (a) for the stress components 7., and 7, in the last two equa-
tions (e), multiplying the result by $[1 — (2z/h)% dz/h, and integrating
between the limits z = +A/2, we obtain

o 12145
== t5Em ¢ G
ow 1214 » J)

o= T5 m ¥

Now, eight unknown quantities, namely M., M,, M., Q., Q,, w, ¢, and
¢y, are connected by two equations (j), three equations (z), and, finally,
by three equations of equilibrium (¢) and (d).

In order to transform this set of equations into a form more convenient
for analysis we eliminate the quantities ¢. and ¢, from Egs. (7) and (2),
and, taking into account Eq. (¢), we obtain

__p(Tw, ), B g v

M. = D(ax2+”ay2)+5 ax  1W01—7
o fw , aw\ , haQ, gkt

M, = D(@r*%ﬁ)+33; 01> )
oy 8wkt (3Q. | 8Q,

M= (1 p)Daac{:)y m<6y+6x)

Substitution of these expressions in Eqs. (d) yields, if one observes Eq.
(¢), the result

R, pdw) R ag
®-1549:-= P “pag = o= o
R a(aw) B ag

Q- i@ =-D 9y 101 — ») dy

in which, as before, the symbol A has the meaning (105). In the par-
ticular case of A = 0, that is, of an infinitely thin plate, the foregoing
set of five equations, expressions (k) and (I), gives Eqgs. (101) and (102)
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for the moments and Eqgs. (108) for the shearing forces of the customary
thin-plate theory.

To obtain the more complete differential equation for the deflection
of the plate we only have to substitute expressions (I) in Eq. (c); thus
we obtain
R22 —»

Aq (169)
We can satisfy this equation by taking w, that is, the “average deflection”
at (z,y), in the form

w=w + w’ (m)

s
in which w’ is a particular solution of the equation

ht2 —»
/ = — ——
Dasw' = g 01 qu (n)

and w” is the general solution of the equation
AAw" =0 (0)

Therefore, using Eq. (169), we are able, just as in the ordinary thin-plate
theory, to satisfy four boundary conditions in all. We can obtain a sup-
plementary differential equation, however, by introducing into consider-
ation the shearing forces @, and Q,. Equation of equilibrium (c) is
satisfied, in fact, if we express these forces in a form suggested by the
form of Eqgs. (), i.e.,

oo (p)
_ _pdaw) ¥
& =-D dy oz
or Q. = Q;—Da(?;;) ) (;—‘Z
' @
Y a(aw') 3y
Qy - Q,, —~ D ay ”Tt

In these expressions ¥ denotes some new stress function, whereas @, and
@, must satisfy the relations

_pdaw) Ry

ox 10(1 — ») 9z (r)
a(aw") Rt 9q

9y 10(1 — ») dy

PR P
Q:_IGAQz—

h2
Q, — TﬁAQ',’ = —-D

as we can conclude from Eqs. (I) and (n). Differentiating the foregoing
equations with respect to z and y, respectively, and adding the results
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we arrive at the condition of equilibrium

9Q. , 99,
o + Y

+q¢=0 (s)

To establish a differential equation for the stress function ¢ we substitute
expressions (¢) in Egs. (I) with the result

a h? d h?
a—-y(¢—i—0A¢)=—%(¢—mA¢)=0 ®

from which we conclude that the expressions in parentheses are con-
stants. Making these constants equal to zero we have the relation

AY — lh—?,p -0 (170)

which, still assuming that k > 0, yields a second fundamental equation
of the generalized theory of bending, in addition to Eq. (169).

Having established two differential equations, one of which is of the
fourth and the other of the second order, we now are able to satisfy three
conditions, instead of only two, on the edge of the plate. Considering
the general case of an element of the cylindrical boundary of the plate
given by the directions of the normal » and the tangent ¢ (Fig. 54) we can,
for instance, fix the position of the element by the equations

W=10 Pu==0n O =P (%)

Herein 1% is the given average deflection and @, and @, are the given
average rotations of the element with respect to the axes ¢ and n respec-
tively. In the particular case of a built-in edge the conditions are w = 0,
¢ =0, and ¢, = 0. Instead of displacements some values @,, M.,
M, of the resultants may be prescribed on the boundary, and the corre-
sponding edge conditions would be

Qﬂ = Qﬂ Mﬂ = Mn Mnt = Mnt (v)

Hence the conditions along a free edge are expressed by equations @, = 0,
M, =0, M, = 0, and for a simply supported edge the conditions are
w=0 M, =0, M, = 0. Inthe latter case we obtain no concentrated
reactions at the corners of the plate, which act there according to the
customary theory and are in obvious contradiction to the disregard of
the shear deformation postulated by this theory.

As an illustration of the refined theory let us consider a plate in form of a semi-
infinite rectangle bounded by two parallel edges y = 0, ¥y = a and the edge z = 0.
We assume that there is no load acting on the plate, that the deflections w and the
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bending moments M, vanish along the edges y = 0, y = a, and that the edge z = 0
is subjected to bending and twisting moments and to shearing forces given by

o .
M, = Mysin Y
a

M., = H; cos n——? (w)
Qz = Qo sin 'ﬂ
a

where Mo, Hq, Qo are constants and = is an integer. Then, in view of ¢ = 0, we have
w’ = 0 by Eq. (n) andw = w”’ by Eq. (m). We can satisfy Eq. (o) and the condition
of vanishing deflections at + = « by taking

. nwy nrx e nrela
w=uw"' =sin— |4+ —B
a a D

A and B being any constants. Next, assuming for ¢ a solution of the form
n
y=X cosﬂ
a
where X is a function of « alone, and substituting this in Eq. (170) we obtain

¢ = Ce~F cos ﬁ?

nix? 10
b=\ T
and C is a constant. From Eqs. () we have Q. = Q,', = 0 and Eqgs. (¢) give
3
— [23 <ﬂ) e~nTzla | CE e—zﬂ] sin nry
a a a
3
[23 (n_7r> e—nizla + CBe"""] o8 —Yﬂ
a a

Finally, Eqs. (k) yield the following expressions for moments acting along the edge
z =0

In this last expression

Q-

&

2j,2 B2 2
(M)omo = | —41 = ») + 281 + BB | pBob? | nia® Py
5a? Snr | a® a

2. 2h2 2 2 23 F
(Msy)eco = [—A(l—v)+B<1 —y+g’“"‘)+c<“— +"T>]ﬁcosﬂ
5 a2 a?

Equating these expressions, together with the expression for the shearing force

(Q)sm0 = — [23 ("_"2)a + CE] sin 2Y
a a a

to the expressions (w), respectively, we obtain a set of three equations sufficient to
calculate the unknown constants 4, B, and C. In this way, by using the refined plate
theory, all three conditions at the edge x = 0 are satisfied.
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Considering now the edges y = 0 we see that w vanishes along those edges, and M,
also vanishes there, as can be proved by substituting the expression for @, into
the second of equations (k).

Another theory of plates that takes into aceount the transversal shear deformation
has been advanced by A. Kromm.! This theory neglects the transverse contraction
¢; but, in return, does not restrict the mode of distribution of bending stresses across
the thickness of the plate to a linear law. Applying this theory to the case of a
uniformly loaded, simply supported square plate with a/h = 20, Kromm found the
distribution of shear forces acting along the edge as shown in Fig. 81. For comparison
the results of customary theory (Fig. 63) are also shown by the dashed line and the

b e e - Q--mmmm e —— -
0.5qa
/—:'\
o
7, [ NS
/ < \\
\,
=4 0
R R=0.065q0%
-0.5qa
-1.0qa
-1.5qo
Fic. 81

forces B. We see that, as soon as-the transversal shear deformation is taken into
account, no concentrated reaction is obtained at the corner point of the plate. The
corresponding negative forces are distributed instead over a small portion of the
boundary adjacent to the corner, yielding at the corner itself a finite pressure acting
downward. The moments M., on the four sides of the plate are zero in that solution.

Still another approach to the theory of shear deformation can be found in a paper
of H. Hencky.?

40. Rectangular Plates of Variable Thickness.? In deriving the differential equa-
tion of equilibrium of plates of variable thickness, we assume that there is no abrupt
variation in thickness so that the expressions for bending and twisting moments
derived for plates of constant thickness apply with sufficient accuracy to this case also.

Then
*w w 8w o
M.=-D{— — = - —-— —
az? + l'0;4/’) M, D(ay’ + y&y’)
(@)
9w
Mz = -M,. =D(1 —
v v D( v) 3z 3y

YA. Kromm, Ingr.-Arch., vol. 21, p. 266, 1953; Z. angew. Math. Mech., vol. 35, p.
231, 1955.

t Ingr.-Arch., vol. 16, p. 72, 1947,

# This problem was discussed by R. Gran Olsson, Ingr.-Arch., vol. 5, p. 363, 1934;
see also E. Reissner, J. Math. and Phys., vol. 16, p. 43, 1937.
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Substituting these expressions in the differential equation of equilibrium of an element
{Eq. (100), page 81},
aM, o My M,

dz? oz Iy oy

= —q ®

and observing that the flexural rigidity D is no longer a constant but a function of the
coordinates « and y, we obtain

aD 9 aD o
DAdw + 2 — — Aw + 2— —
ox a

Aw
ox Y Oy

3D 9w D w 3D o%w
AD Aw — (1 — _— = —_—t— ] = 171
+ v ( ) (a:c’ oy? 2 dx dy 9z Iy ay? a:c’> ¢ a7

where, as before, we employ the notation

a 2
A=—+—
ax? + ayz
As a particular example of the application of Eq. (171) let us consider the case in
which the flexural rigidity D is a linear function of y expressed in the form

D= Do + Dly (C)
where Dy and D, are constants.

b === e = a ----- >
x x
b
v

Y

Fie. 82

In such a case Eq. (171) becomes

9
(Do + Dwy)asw + 2D, P Aw =g
or Al(Do + D) Aw] = ¢ (172)

Let us consider the case in which the intensity of the load g is proportional to the
flexural rigidity D. We shall assume the deflection of the plate (Fig. 82) in the form

w=w + w:

and let w, equal the deflection of a strip parallel to the z axis cut from the plate and

loaded with a load of intensity
D,
= 14+ = (d,
q q:w( +D. y) (d)
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This deflection can be represented, as before, by the trigonometric series

Dy B -
o (l + 3; y) ot 1 | mwrz  4qat 1 . mrx
W1=W por ) et (e)
m=13,5,... m=13,5,...

By substitution we can readily show that this expression for w; satisfies Eq. (172).
It satisfies also the boundary conditions w, = 0 and 8%w,;/9z? = 0 along the supported
edgesz = Qand z = a.

The deflection wz: must then satisfy the homogeneous equation

Al(Do + Dyy) Awe] = 0 6}

We take it in the form of a series

ws = Y'm sin m—;" )
m=13,5,...
Substituting this series in Eq. (f), we find that the functions Y, satisfy the following
ordinary differential equation:

2wV o+ D) (V2 -T2y, | - )
ay? a? a?

Using the notation

mr?
fn = (Dy + D) (Y’,; -— Ym) — =an @)
a a
we find, from Eq. (&),
Im = Amenv + B,e %y
Then, from Eq. (z), we obtain

A pme®nt 4 Be %y

Yo~ ah¥n = j
* Do + Dwy @

The general solution of this equation is
Yo = Cmea"'y + Dpe %y + gm (k)

in which g, is a particular integral of Eq. (j). To find this particular integral we use
the Lagrange method of variation of constants; 7.e., we assume that g, has the form

gmn = Eme“mfl + Fpe=omv (l)
in which E,, and F,, are functions of y. These functions have to be determined from
the following equations:!

E, et + Fheony = 0
Ape®nv 4+ Boo %V
an(Do + Dyy)

LB, and F., in these equations are the derivatives with respect to y of E. and F,..

’ . _
E % — F e %t =
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from which
y A, + Bre 2wy
™ 2am(Do + D)
Amez"'"‘” - Bm
P, o= — Attt B
2am(Do + Dyy)
Integrating these equations, we find

Ay + Bpe 2%av A
En = d
/ 2D + D) Y ™ Ben, %8, (Do D)

SwnD =2am(Do+D1y)
Bm a£| : / 4 D d[2am(D0 + Dl?/)]

e

2amDy 2am(De + Diy)
Anme®@mv + B, B,
Fm = — ——d ~——log — (D D
/ Zan(Do + D) Y T T ZanD: °g , (Dot Dw)

sunD 2an(Dot Diy)
_ An e—_g:"_" e D d2an(Dy + Diy)|
YamD, 2am(Do + D)y)

Substituting these expressions in Eqgs. (/) and (k) and using the notation!

u "] u "
E;(u)=/ Z—du Bi(—w) = /f—du

we represent functions Y, in the following form:

2(!7»
, 2am ——(Do+D1y) Qam(D D
Y = A, {log com (Do + Diy) — e v E; 2am(Do + Dy) oS
D, D,
—2am
——(Do+D ) 20m —2am{(Ds D
- B, ‘e D, 1y ,0‘_ (Do + D) — E: [L])’—{_—wj“ ey
1

+ Cpe®t + Dye—onv  (m)

The four constants of integration A, B,, Cm, D. are obtained from the boundary
conditions along the sides y = 0 and y = b. In the case of simply supported edges

these are
82w
(‘lD)y-o =0 (a—yz =0

%
(w0)y—s = 0 (—) =0
Y2 J yb

The numerical results for a simply supported square plate obtained by taking only the
first two terms of the series (¢) are shown in Fig. 83.2 The deflections and the
moments M, and M, along the line z = a/2 for the plate of variable thickness are
shown by full lines; the same quantities calculated for a plate of constant flexural
rigidity D = $(Do + Db) are shown by dashed lines. It was assumed in the caleula-
tion that Dib = 7Doand » = 0.16.

! The integral E;(u) is the so-called exponential integral and is a tabulated function;
see, for instance, Jahnke-Emde, “Tables of Functions,” 4th ed., pp. 1 and 6, Dover
Publications, 1945; or “Tables of Sine, Cosine and Exponential Integrals,” National
Bureau of Standards, New York, 1940.

2 These results are taken from R. Gran Olsson, loc. cii.
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Finally, let us consider the case in which the thickness of the plate is a linear function
of y alone and the intensity of the load is any funetion of y (Fig. 82). Denoting the
thickness of the plate along the line y = b/2 by ko and the corresponding flexural
rigidity by

SIMPLY SUPPORTED RECTANGULAR PLATES

Ehj
Do = ——%—
*TRa - ™
we have at any point of the plate
h3
D= Doh’ and k= [1 + )\(Zby - 1>]ho (0)

where X is some constant. This yieldsh = (1 — Mhoaty = 0and h = (1 + Nhgat
y=b.
4q°a2 Mo Haoa 4qqat
s AT X' 55D,
0/082 0.04/9 10,0220 - 0.0163
(00735) 00770) 0.0/48) y==
/
08676 05935 1] |oz072 [/ =075
(0.6800) / 0.781)) // [0.7526) // y==
/ / /
12683 Jj 12071, 03095] | - 0335
(ii521) Ji (13187) 0.2575) l, [
i
14778 1663 032 _
(i5756) ’ (6259 : 05154 y =049
|
(15116) | Y7613 | 02787 -
(igs17) | 5804 az960)) y=0653
\
\ \ \
12277 \ 13965 \\ 07834 \\ 0812
(14787) 121900 N, fo2228) \ |
\\ \ A\
0.2754 N\ [02787 00307
(63510) (WILZI] L035A] y =0972
Moment My,  MomentMx  Deflection
Fia. 83

T?le folllowing method! introducing the quantity A as & parameter proves to be most
efficient in handling the present problem. Considering the deflection w as s function
of the variables z, y, and )\, we can express w(z,y,\) in form of the power series

oo

w WnA™

m=0

(]

in which m is an integer and the coefficients w,, are merely functions of z and y.

*See H. Favre and B. Gilg, Z. angew. Math. u. Phys., vol. 3, p. 354, 1952.
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Substituting expressions (o) and (p) in Eq. (171) and equating to zero the coeffi-
cients of successive powers of ), we obtain a sequence of differential equations

AAwy = Bq—o

Adw, = —3 [% a—t:-/ Awo + (—25 - 1) AAwo]

Adw, = —3 [i; aiy Awy + (%y - 1) AAw,] (@
-3 {b—sa [A'wo -1 =) 6;:20]

We assume the edges z = 0 and x = a to be simply supported, and we shall restrict
the problem to the case of a hydrostatic load

g= % {r)

Using the method of M. Lévy we take the solution of Egs. (¢) in the form

z : .. nax
wo = Y,u sin — (s)
a

n=1,3,
o
. nax
w) = Yia sin— . . . )
a
n=13 ...
0
nrx
W = S‘ Yon 8in i (u)
Lef a
n=13
the coefficients Yma (m = 0, 1, 2, . . .) being some functions of y. We can, finally,
represent the load (r) in analogous manner by putting
4 1 nwrr
q = ) 2 —sin = (v)
b n a
a=13,...

Substitution of expressions (s) and (v) in the first of the equations (q) enables us to
determine the functions Y,., the boundary conditions being Yen = 0, Y,, = 0 at
y = O0and y = b if these edges are simply supported. The substitution of expressions
(s) and (¢) in the second of the equations (g) yields the function Yi.. In like manner
any function w,. is found by substitution of wo, w1, . . . , Wm—1 in that differential
equation of the system (¢) which contains w. at the left-hand side. The procedure
remains substantially the same if the edges y = 0, b are built-in or free instead of being
simply supported.
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g0’
My: goo2 <— My: qoa2<— w:"To -~
0.03 0 0.03 0 0003 0
/ //
/
/ )/ 7/
/ / %
L —o.2s f—o2s f—o.25
// [/ /
/ y/
/
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/] / |
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Numerical results obtained by H. Favre and B. Gilg! for the deflections and the
bending moments along the center line z = a/2 of a simply supported plate with
A = 0.2 and » = 0.25 under hydrostatic pressure (r) are shown in Fig. 84. Full lines
give results obtained by taking three terms in the series (p), while the dashed lines
hold for the result of the first approximations.

1 Ibid.



CHAPTER 6

RECTANGULAR PLATES WITH VARIOUS
EDGE CONDITIONS

41. Bending of Rectangular Plates by Moments Distributed along the
Edges. Let us consider a rectangular plate supported along the edges
and bent by moments distributed along the edges y = +b/2 (Fig. 85)
The deflections w must satisfy the homogeneous differential equation

dw dw dHw

5z T2 aray Ty =0 @

and the following boundary conditions:

2
w=20 %;—f=0 forz=0andz=a ()
w =0 fory = + g (¢)
?%w
()0 P e @
tofx) in which f; and f, represent the bending

moment distributions along the edges

w_\,’. y'= £b/2.
0 Ky We take the solution of Eq. (@) in the
t,(x) 9, ri
4 oo v(: A :&\, form of the series

Ay ) T
/1. _______ [s TR -x-,/ - mnrx

y w = Y sin — (e)
Fic. 85 el a

each term of which satisfies the boundary conditions (b). The functions

Y.. we take, as before, in the form

mr y mwy

YVm = An sinh + B.. cosh + Cn —2 sinh

+ Dn " cosh L ()

which satisfies Eq. (a).
180
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To simplify the discussion let us begin with the two particular cases:
1. The symmetrical case in which (M,)yms2 = (My)ym—bs2
2. The antisymmetrical case in which (M,)yeps2 = — (M) y——s/2
The general case can be obtained by combining these two particular cases.
In the case of symmetry Y. must be an even function of y, and it is
necessary to put A, = D, = 0in expression (f). Then we obtain, from

Eq. (e),
w= 2(3 cosh ™Y 4 ¢, T*Y h—) inﬂaﬂ‘ (9

m=1
To satisfy the boundary condition (¢) we must put
B, cosh a,, + Cpay sinh o, = 0

where, as before,
_ m=b

2a
Hence B, = —CLa, tanh o,

and the deflection in the symmetrical case is

w = EC,,.( ™Y si h——y—amtanhamcosh—>sinw (h)
a a a a

m=1

We use the boundary conditions (d) to determine the constants C,.
Representing the distribution of bending moments along the edges
y = +b/2 by a trigonometric series, we have in the case of symmetry

fil@) = folz) = 2 E,. sin -"—%rf )
m=1

where the coefficients E, can be calculated in the usual way for each
particular case. For instance, in the case of a uniform distribution of
the bending moments we have (see page 151)

M 1. .
(My)ymsys = =2 z — sin mwa %)
m=1305,...

Substituting expressions (k) and (¢) into conditions (d), we obtain

© w0

mir? mrzx mrx
-2D 2 Py Cn cosha,,.sm~a—= Z E, smT

ma=] m=1
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from which
2
Cp = — L
2Dm?r? cosh o,
and
i . mnx
a? s mry  mwy mmy
w = 21r2D m? oosh o Em (am tanh 279 cosh T - T sinh T)
m=1

(173)

In the particular ecase of uniformly distributed moments of intensity M,
we obtain, by using expression (7),

2
w = 2Moa 2 S (a,,, tanh o, cosh mTwy

D m3 cosh ay,
m=13.5, ...

mnry . mry .. Mmwrxr
- sinh % sin

The deflection along the axis of symmetry (y = 0) is

() _ 2M ya? 1 an tanh a,, g T (k)
v=0" "D m®  cosh o a
m=1305,...

When a is very large in comparison with b, we can put tanh a, = a,
and cosh a,, = 1. Then, by using series (j), we obtain

(W)y_0 = M gb? 1 sin 7T _ 1 Mob?
=" 92D m e« 8 D

m=1305,...

This is the deflection at the middle of a strip of length b bent by two
equal and opposite couples applied at the ends.

When a is small in comparison with b, cosh a. is a large number, and
the deflection of the plate along the z axis is very small.

For any given ratio between the lengths of the sides of the rectangle
the deflection at the center of the plate, from expression (&), is

o

M oab 1 tanh «,

W), —_ -1 (m—1)/2 —_—
(0)yev,emarz 2D (=1 m? cosh am,

m=135,...

Having expression (173) for deflections, we can obtain the slope of the
deflection surface at the boundary by differentiation, and we can calcu-
late the bending moments by forming the second derivatives of w.
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Some values of the deflections and the bending moments computed in
this way are given in Table 28. It is seen, for example, that the deflec-
tion of a strip of a width a is about 3} times that of a square plate of
dimensians a. While the transverse section at the middle of a strip
transmits the entire moment M, applied at the ends, the bending moment
M, at the center of the plate decreases rapidly as compared with M,,
with an increasing ratio b/a. This is due to a damping effect of the edges

= 0 and z = a not exposed to couples.

TABLE 28. DEFLECTIONS AND BENDING MOMENTS AT THE CENTER OF
RECTANGULAR PLATES SIMPLY SUPPORTED AND SUBJECTED TO
CourLEs UNIFORMLY DISTRIBUTED ALONG THE EbGEs y = +b/2 (Fra. 85)

vy = 0.3

b/a w M. M,

0 0.1250M ob2/D 0.300M, 1.000M,
0.50 0.0964M b2/D 0.387M, 0.770M,
0.75 0.0620M b2/D 0.424M, 0.476 M,
1.00 0.0368M a%/D 0.394M, 0.256M,
1.50 0.0280M¢a2/D 0.264M, 0.046M,
2.00 0.0174M pa2/D 0.153M, —0.010M,

Let us consider now the antisymmetrical case in which

@

J1@) = —fale) = 2 E sin ©0

In this case the deflection surface is an odd function of y, and we must
put B, = C, = 0 in expression (f). Hence,

®

w = 2<A sinh 7Y —I—D m1ry shm) sin 772
a a
m=1
From the boundary conditions (c) it follows that
A, sinh «,, + D,a, cosh a,, = 0
whence D, = — L tanh a,A

Qm

and

w = 2 Am(sinhm—”—/—lta h o, —2 mry oshw>sinm—m
a a a a a

m=1
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The constants A.. are obtained from conditions (d), from which it follows
that

2
%D Anm -—smh an tanh an, sm——::—z = z E. smmg-x

mm=1 m=1
a? E Ao
2r2D "™ m? sinh a,, tanh a,,

Hence A, =

and

w

m7ry mry mary
2ﬂ_2 D 2 po smh - (a,,. coth a,, sinh —= - = cosh = )

m=1

sin mTﬂ (174)

We can obtain the deflection surface for the general case represented
by the boundary conditions (d) from solutions (173) and (174) for the
symmetrical and the antisymmetrical cases. For this purpose we split
the given moment distributions into a symmetrical moment distribution
M, and an antisymmetrical distribution M;’, as follows:

(M) ymsss = (M) ymsiz = 3 N1(x) + fo(o)]
MYtz = — (M) ez = 3 fr(x) — fol2)]

These moments can be represented, as before, by the trigonometric series

®

(M) ymbr2 = 2 E!, sin @:—x

m:l (l)
(M) ymra = Z B sin 2%

m=1

and the total deflection is obtained by using expressions (173) and (174)
and superposing the deflections produced by each of the two foregoing
moment distributions (I). Hence

©

. maT
a’ Sy E! mrx
m
- [ ol o, tanh a, cosh —=
W= 2x2D m? [cosh a,,,( ™ " a

m=1

!
— Zn_;ﬂ! sin w) + T Em (a,,, COth O Sinh ”%

a sinh a,,
— 7Y cosh m__-;ry)] (175)
a a
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If the bending moments M, = z E,. sin (mxz/l) are distributed only
m=1
along the edge y = b/2, we have fx(z) = 0, E,, = Ej; = }En; and the
deflection in this case becomes

a’ B sin 7_’%9_«‘ 1 mxy
Y = 47D m? [cosh ¥ (a"' tanh oy, cosh ==

m=1]

— " Ginh lnly) + L (a,,. coth a, sinh
a sinh a,,

a
~ ™ cosh m—”y)] (176)
a a

mwy

Solutions (173) to (176) of this article will be applied in the investigation
of plates with various edge conditions.

Moments M, distributed along only one edge, say y = b/2, would pro-
duce, at the center of the plate, one-half the deflections and bending
moments given in Table 28. In case of a simultaneous action of couples
along the entire boundary of the plate, the deflections and moments can
be obtained by suitable superposition of the results obtained above for a
partial loading.?

42. Rectangular Plates with Two Opposite Edges Simply Supported
and the Other Two Edges Clamped. Assume that the edges z = 0 and
z = a of the rectangular plate, shown in Fig. 86,

are simply supported and that the other two edges l T ‘:
are clamped. The deflection of the plate under —F
any lateral load can be obtained by first solving &

the problem on the assumption that all edges are je
simply supported and then applying bending 9 X
moments along the edges y = +b/2 of such a ol
magnitude as to eliminate the rotations produced

along these edges by the action of thelateral load.

In this manner many problems can be solved by [ 0 .

combining the solutions given in Chap. 5 with the Fia. 86
solution of the preceding article.

Uniformly Loaded Plates.? Assuming that the edges of the plate are
simply supported, the deflection is [see Eq. (139), page 116]

! Bending by edge couples was also discussed by H. Bay, Ingr.-Arch., vol. 8, p. 4,
1937, and by U. Wegner, Z. angew. Math. Mech., vol. 36, p. 340, 1956.

¢ Extensive numerical data regarding rectangular plates with uniform load and sides
simply supported or clamped in any combination may be found in a paper by F.
Czerny; see Bautech.-Arch., vol. 11, p. 33, Berlin, 1955.



186 THEORY OF PLATES AND SHELLS

__ 4qa* 1 . mrz an tanh a, + 2 mwy
Y=%D ms o (1 2 cosh a,, cosh a

1 mwy . . mwzy
+ 5oosh o a sinh T) (a)

and the slope of the deflection surface along the edge y = b/2 is

dw = L sin m1rx _
(_>y=m D 23 [om — tanh an(l + an tanh an)]

dy
®

To eliminate this slope and thus to.satisfy the actual boundary conditions
we distribute along the edges y = +b/2 the bending moments M, given
by the series

0

(M) ymgpre = 2 E, sin ﬂ’al,x (¢)

m=1

and we determine the coeflicients E,, so as to make the slope produced
by these moments equal and opposite to that given by expression (b).
Using expression (173)! for the deflection produced by the moments, we
find that the corresponding slppe along the edge y = b/2 is

it .. mwx

s ——
a

2xD

m=135,...

E,.[tanh am(en tanh @ — 1) — a,] ()

Equating the negative of this quantity to expression (b), we find that

4qa® an — tanh an(l + a, tanh a,) ©)

En = w3m? a, — tanh an(on, tanh a, — 1)

Hence the bending moments along the built-in edges are

- sin 2% _
4qa? a a, —'tanh a,(1 + an tanh o) ()

m?  a, — tanh a,(a, tanh «, — 1)

(Mv)u=d:b/2 =

m=135,...

The maximum numerical value of this moment occurs at the middle of
the sides, where x = a/2. Series (f) converges rapidly, and the maxi-
mum moment can be readily calculated in each particular case. For

! From the symmetry of the deflection surface produced by the uniform load it can
be concluded that only odd numbers 1, 3, 5, . . . must be taken for m in expression
(173).
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.xample, the first three terms of series (f) give —0.070ga? as the maxi-
mum moment in a square plate. In the general case this moment can be
represented by the formula yqa?, where v is a numerical factor the magni-
tude of which depends on the ratio a/b of the sides of the plate. Several
values of this coefficient are given in Table 29.

Substituting the values (e) of the coefficients E, in expression (173),
we obtain the deflection surface produced by the moments M, distributed

TaABLE 29. CONSTANTS a, Bi, B2, v FOR A RECTANGULAR PLATE wiTH Two
Epces SiMpLY SupPPorRTED AND Two EpceEs CrLamprep (Fig. 86)

vy =03
b<a
z=2 y = a a a b
a 2" N x=§1y=0 z=§;y=0 z=§ry=§
b Wmax = a‘% M. = Bigb? | M, = Bgb? M, = vygb?
o B B2 Y
© 0.00260 0.0125 0.0417 —0.0833
2 0.00260 0.0142 0.0420 —0.0842
1.5 0.00247 0.0179 0.0406 —0.0822
1.4 0.00240 0.0192 0.0399 —0.0810
1.3 0.00234 0.0203 0.0388 —0.0794
1.2 0.00223 0.0215 0.0375 —-0.0771
1.1 0.00209 0.0230 0.0355 —-0.0739
b>a
qa’ z=g,y= z=g,y=0 z=g,y=9
b Wmax = QT 2 2 2 2
e M. = Biga* | M, = Byga* | M, = 1qa?
« 1) 2 ¥
1 0.00192 0.0244 0.0332 —0.0697
1.1 0.00251 0.0307 0.0371 ~-0.0787
1.2 0.00319 0.0376 0.0400 —0.0868
1.3 0.00388 0.0446 0.0426 —0.0938
1.4 0.00460 0.0514 0.0448 —0.0998
1.5 0.00531 0.0585 0.0460 —0.1049
1.6 0.00603 0.0650 0.0469 —0.1090
1.7 0.00668 0.0712 0.0475 —0.1122
1.8 0.00732 0.0768 0.0477 —0.1152
1.9 0.00790 0.0821 0.0476 —0.1174
2.0 0.00844 0.0869 0.0474 —-0.1191
3.0 0.01168 0.1144 0.0419 —0.1246
o 0.01302 0.1250 0.0375 —0.1250
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along the edges.

®

sin mre
w 2¢a* a
= = e -
8D m? cosh a,
m=13.5,...

an — tanh an(l + a, tanh a,) fmry . h Y
an — tanh au(a, tanh a, — 1)\ a s

— ay, tanh @, cosh %) (9)

The deflection at the center is obtained by substituting ¢ = a/2, y = 0
in expression (g). Then

_ 2qat (—=1)D12 4 tanh a,
(W1)mar = 5D mb cosh o,

m=135,...
a, — tanh an(l + an tanh a,,)
a, — tanh a,(a, tanh a, — 1)

This is a rapidly converging series, and the deflection can be obtained
with a high degree of accuracy by taking only a few terms. In the case
of a square plate, for example, the first term alone gives the deflection
correct to three significant figures, and we obtain

4

wy = 0.00214 &5

Subtracting this deflection from the deflection produced at the center by

the uniform load (Table 8, page 120), we obtain finally for the deflection

of a uniformly loaded square plate with two simply supported and two
clamped edges the value

4

w = 0.00192 %5

In the general case the deflection at the center can be represented by the

formula
4
w=a q—g—
Several values of the numerical factor « are given in Table 29.
Substituting expression (g) for deflections in the known formulas (101)
for the bending moments, we obtain
i T
2qa® S an — tanh an(l + an tanh am)

M. = - e m3 cosh o, an — tanh an(om tanh an — 1)

m=1,3,5,...

{(1 =) ‘n%rg Sinh%—y— — [2» + (1 — v)au, tanh a,] cosh ﬁ:—yl (h)
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i, AT
M. = 2qa? St am — tanh an(l + an tanh a,,)
L m? cosh am am — tanh a,(e, tanh a, — 1)
m=1,3,05,.
{(1 L m’”f ’"’ry +[2 = (1 — ¥)an tanh e} cosh =¥ m"y ®)

The values of these moments at the center of the plate are

®

2 —1)Yim—1)/2
a, = 2 E (=1)

s m? cosh a,,
m=135,...

— tanh an(l + a, tanh o)

an — tanh an(a. tanh o, — 1) (27 + (1 — ¥)aun tanh o]

2qa2 (_1)(m—1)/2
'l m? cosh an
m=13,5,...
a, — tanh a,(1 + a, tanh o)

a, — tanh a,(an tanh an — 1) (2 = (1 = v)an tanh an]

These series converge rapidly so that sufficiently accurate values for the
moments are found by taking only the first two terms in the series.
Superposing these moments on the moments in a simply supported plate
(Table 8), the final values of the moments at the center of the plate can
be represented as follows:

M. = Bga? M, = Bwxa® )

where 8, and 8, are numerical factors the magnitude of which depends on
the ratio b/a. Several values of these coefficients are given in Table 29.

Taking the case of a square plate, we find that at the center the
moments are

M. = 0.0244¢ga> and M, = 0.0332¢a?

They are smaller than the moments M, = M, = 0.0479qa? at the center
of the simply supported square plate. But the moments M, at the
middle of the built-in edges are, as we have seen, larger than the value
0.0479ga?. Hence, because of the constraint of the two edges, the magni-
tude of the maximum stress in the plate is increased. When the built-in
sides of a rectangular plate are the longer sides (b < a), the bending
moments at the middle of these sides and the deflections at the center of
the plate rapidly approach the corresponding values for a strip with
built-in ends as the ratio b/a decreases.

Plates under Hydrostatic Pressure (Fig. 87). The deflection surface of
a simply supported rectangular plate submitted to the action of a hydro-



190 THEORY OF PLATES AND SHELLS

static pressure, as shown in Fig. 66 (Art. 31), is

4 —_ m+1
qoa z ( 1) < 2 + a, tanh a, cosh ﬂ;r_y

cosh an,

L mmy sinh m____wy) sin 7% (k)
cosh e, @ a a

The slope of the deflection surface along the edge y = b/2 is

() -z Co
ay y=b/2 D m#

m=1

[@m — tanh am(l + am tanh a)] sin ”% @

This slope is eliminated by distributing the moments M, given by series
(c) along the edges y = +b/2 and determining the coefficients E,, of that
series so as to make the slope produced by the moments equal and oppo-
site to that given by expression (I). In this way we obtain

2qea?(—1)™*! @, — tanh an(l + an tanh @)

Em =
3m? a, — tanh an{a, tanh a, — 1)

Substituting this in series (¢), the expression for bending moments along
the built-in edges is found to be

%
i . ot (—1)™1 sin mry
(M) ymsrz = e a
— v/ y=2b/ ) ms
.nicu —
0 —x am — tanh an(l + a, tanh a.) (m)
o;’N an — tanh a.{a, tanh a, — 1)
2
The terms in series (m) for which m is even vanish
[ 0----- > at the middle of the built-in sides where x = a/2,

and the value of the series, as it should, becomes
equal to one-half that for a uniformly loaded plate
[see Eq. (f)]. The series converges rapidly, and the value of the bending
moment at any point of the edge can be readily obtained. Several values
of this moment together with those of the bending moments along the
middle line y = 0 of the plate are given in Table 30.

Concentrated Force Acting on the Plate.' In this case again the deflec-
tion of the plate is obtained by superposing on the deflection of a simply
supported plate (Art. 34) the deflection produced by moments distributed

Fic. 87

1 8ee 8. Timoshenko, Bauwingenieur, 1922, p. 51.
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TaBLE 30. BENDING MOMENTS IN RECTANGULAR PraTEs witH HyprostaTiC
Loap, Two EpGes SimpLy SupPoRTED AND Two Epces Cramprep (Fie. 87)

v =03

z=a/2,y=0 z=3a/4,y=0 |r=a/2,y =b/2ix =3a/4,y =b/2
b/a

M. M, M, M, M, M,
0.50/0.007geb2% | 0.021gob? | 0.018geb? | 0.029qcb? —0.042¢eb? —0.062¢0b?
0.75/0.011¢¢b2% | 0.020g0b? | 0.018gob2 | 0.021qb? —0.040gcb? —0.045¢qb?
1.00/0.013g0a? |0.017g0a?|0.017ga? |0.015q0a —0.035q0a? —0.035q0a2
1.25;0.021¢0a?|0.021g0a2|0.024¢0a2{0.019¢.a? —0.045g002 —0.043q.a2
1.50{0.030g0a?}0.023q0a?|0.031ga? |0.020g0a? —0.051q0a? —0.048g0a?
2 0.043q0a2| 0.024g0a? | 0.042g0a? | 0.020g.a? —0.060g0a? —0.053¢g0a?

w |0.063¢ea?|0.019¢.a?|0.055¢.az]0.017qa? —0.063g0a? —0.055¢a?

along the clamped edges. Taking the case of a centrally loaded plate and
assuming that the edges y = +b/2 are clamped, we obtain the following
expression for the deflection under the load:

©

e S e
Ymex = 53D | B2 m3 \"2 ¥ T Cosh? ann

m=123,5,...

_ ‘Lr_2 _1_ tanh? ., ()
4 m sinh o, cosh an + an
m=135,...

The first sum in the brackets corresponds to the deflection of a simply
supported plate [see Eq. (147), page 143], and the second represents the
deflection due to the action of the moments along the clamped edges.
For the ratios b/a = 2, 1, 4, and  the values of the expression in the
brackets in Eq. (n) are 0.238, 0.436, 0.448, and 0.449, respectively.

To obtain the maximum stress under the load we have to superpose on
the stresses calculated for the simply supported plate the stresses pro-
duced by the following moments:

m. = —P i tanh o,
“ 4q sinh a,, cosh am + am

m=13,5,...
2y + (1 — v)am tanh ay)

o (o)
m, = —P Z b tanh a,,

4a sinh a,, cosh am + am

m=135,...
2 — (1 - v)an tanh a,]
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TasLE 31. CorRECTION BENDING MOMENTS AT z = ¢/2, y = 0, Due To
CONSTRAINT AT 3y = £b/2 IN CasE oF o CENTRAL Loap P (Fia. 71)

vy = 0.3
b/a m, = B3P my = P b/a m, = gP my = PP
B1 B2 £1 B2
0 —0.0484 —0.0742 1.0 —0.0505 —0.0308
0.5 —0.0504 —0.0708 1.2 —0.0420 —0.0166
0.6 —-0.0524 —0.0656 1.4 —0.0319 —0.0075
0.7 —0.0540 —0.0580 1.6 —0.0227 —0.0026
0.8 —0.0544 —0.0489 1.8 —0.0155 —0.0002
0.9 —0.0532 —0.0396 2.0 —0.0101 +0.0007
Putting those correction moments equal to
m, = B,P my = BP (»)

the numerical factors 81 and 8; for various values of the ratio b/a are
given in Table 31. When the central load P is distributed over the area
of a small circle or rectangle, we have only to add the moments (p) to
bending moments obtained for the simply supported plate by means of
the logarithmical expressions (157) and (167), respectively. The moment
M, at the middle of the clamped edges of a square plate is

M, = —0.166P

The calculations show that this moment changes only slightly as the
length of the clamped edges increases. It becomes equal to —0.168P

when b/a = 0.5 and drops to the value of —0.155P when b/a = 1.2.*
It should be noted that the clamping moment with the numerically
largest possible value of —P/r = —0.3183P is

Tl ——i’- produced by a load concentrated near the built-in
x edge of the plate rather than by a central load (see

Art. 51). 1In the case of several movable loads the

o influence surface for the clamping moment may be

0 used to obtain its maximum value with certainty
(see Art. 76).

43. Rectangular Plates with Three Edges Sim-
ply Supported and One Edge Built In. Let us
e consider a rectangular plate built in along the edge
Fie. 88 y = b/2 and simply supported along the other edges

(Fig. 88). The deflection of the plate under any
lateral load can be obtained by combining the solution for the plate with

E3

* For further data regarding the plate with two opposite edges built in, see A.
Pucher, Ingr.-Arch., vol. 14, p. 246, 1943-1944.
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all sides simply supported, with solution (176) for the case where bending
moments are distributed along one side of the plate.
Uniformly Loaded Plates. The slope along the edge y = b/2 produced
by a uniformly distributed load is
) _ 20 z RN
Y Jymors m?
{am — tanh an(l 4+ an tanh a,)] (@)

The moments M, = ZE,, sin (mrz/a) distributed along the side y = b/2
produce the slope! [see Eq. (176)]

oWy =92 1 . ‘mrz .
(W)u=b/2 " 4D E - Sin —= En(an tanh® an

m=135,...
— tanh a, 4+ a, coth? a,, — coth a,, — 2a,) (D)

From the condition of constraint these two slopes are equal in magnitude
and of opposite signs. Hence
B o= 8qga® an — tanh a,(1 + an, tanh a;,)

" **m3? a,, tanh? a,, — tanh a,, + a, coth? @, — coth a, — 2,

©

and the expression for the bending moments along the side y = b/2 is
8ga? 1 . mrx
(Mﬂ)M/Z = o mh sin o
m=1305,...
an — tanh an(l 4+ a, tanh o)
2a,, — tanh a,(ay, tanh o, — 1) — coth an(an coth a, — 1)

(@

Taking a square plate, as an example, the magnitude of the bending
moment at the middle of the built-in edge from expression (d) is found
to be

(M) yebi2.0mar2 = —0.084ga?

This moment is numerically larger than the moment —0.070ga? which
was found in the preceding article for a square plate with two edges built
in. Several values of the moment at the middle of the built-in side for
various values of the ratio a/b are given in Table 32.

Substituting the values (¢) of the constants E,. into expression (176),
we obtain the deflection surface produced by the moments of constraint,
from which the deflection at the center of the plate is

at -2 F o "
(1) omaf2mo = 4*D ( 12nz 305?2},: -

(@

m=135,...

! Only odd numbers must be taken for m in this symmetrical case.
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TaBLE 32, DEFLECTIONS AND BENDING MOMENTS IN A RECTANGULAR PLATE
with ONE EpGe Buirr IN aAND THE THREE OTHERS SiMPLY SUPPORTED

(Fig. 88)
vy =03
b/a (W)zcarziy=0 (M) zeatziy=biz (M 2)zmaroiy=o (M) zmatziymo

o 0.0130qa*/D —0.125¢a? 0.125qa? 0.037qa?
2 0.0093qa*/D —0.122¢a? 0.094qa? 0.047ga?
1.5 0.0064ga*/D —0.112¢a2 0.069¢a? 0.048¢a?
1.4 0.0058¢a*/D —0.109ga? 0.063¢a? 0.047¢a?
1.3 0.0050ga*/D —0.104ga2 0.056ga? 0.045qa?
1.2 0.0043¢a*/D —0.098¢a? 0.049¢ga? 0.044qa?
1.1 0.0035¢ga*/D —0.092¢a? 0.041¢a? 0.042ga*
1.0 0.0028ga‘/D —0.084ga? 0.034ga? 0.039¢a?
1/1.1 0.0032¢b4/D —0.092¢b2 0.033¢b? 0.043¢b?
1/1.2 0.0035¢b*/D —0.098¢b? 0.032¢b? 0.047¢b?
1/1.3 0.0038¢b*/D —0.103¢b? 0.031¢b2 0.050¢b2
1/1.4 0.0040¢b%/D —0.108¢b? 0.030gb? 0.052¢b?
1/1.5 0.0042¢b4/D —0.111¢b2 0.0284¢b2 0.054¢b?
0.5 0.0049¢b4/D —0.122¢b2 0.023¢b? 0.060¢b?
0 0.0052qb%/D —0.125¢b? 0.019¢b? 0.062¢b?

For a square plate the first two terms of this series give

4

(W1)zmarzmo = 0.00127 L5

Subtracting this deflection from the deflection of the simply supported
— square plate (Table 8), we find that the deflec-

g  tion at the center of a uniformly loaded square

¥ plate with one edge built in is
a4
I (@)amarzamo = 0.00279 25

Values of deflection and bending moments for
several other values of the ratio a/b obtained in a
similar way are given in Table 32.

e R > Plates under Hydrostatic Pressure. 1f the plate
is under a hydrostatic pressure, as shown in Fig.
89, the slope along the edge y = b/2, in the case
of simply supported edges, is (see page 190)

Fic. 89

dw gt (=1)m+1 _ _ . . mwx
(&7),,:5/2 =D i (em — tanh am — amtanh?a,,) sin a 6}
m=1
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The slope produced by bending moments distributed along the edge
y=10b/2is

dwy _ e 1 . mazx .
<6—y)m,z T~ D z - sin == E(an tanh? a, — tanh an

m=l
+ an coth? a,, — coth am — 2a) (9)
From the condition of constraint along this edge, we find by equating
expression (g) to expression (f) with negative sign
4qa2 (___ 1)m+l
T m?

E. =

am — tanh an(1 + an tanh a.,)
a,, tanh? a,, — tanh a,, + am coth? a,, — coth a,, — 2a,,

Hence the expression for the bending moment M, along the edge y = b/2
is

4qoa’ - max
(M,,),,_b/z = 3_3 Z ( m)3 sin —a
m=1

an — tanh a,(l1 + an tanh a,,) )
2a,, — tanh a,(a. tanh o, — 1) — coth an(am coth a, — 1)

This series converges rapidly, and we can readily calculate the value of
the moment at any point of the built-in edge. Taking, for example, a
square plate and putting z = a/2, we obtain for the moment at the middle
of the built-in edge the value

(M) ymbs2,z=ar2 = —0.042¢0a%

This is equal to one-half the value of the moment in Table 32 for a
uniformly loaded square plate, as it should be. Values of the moment
(M) —ss2 for several points of the built-in edge and for various values of
the ratio b/a are given in Table 33. It is seen that as the ratio b/a
decreases, the value of M, along the built-in edge rapidly approaches the

TaBLE 33. VaLues oF THE MoMENT M, ALONG THE BuiLrT-IN EDGE y = b/2
oF RECTANGULAR PraTEs unDER Hybprostatic Loap ger/a (Fia. 89)

b/a z = a/4 z =a/2 z =4a
o | —0.039g0a? | —0.062qez* | —0.055ga?
2 | —0.038gaat | —0.06lgea® | —0.053¢a?
3 | —0.034ga | —0.056qa? | —0.050gea?
I | —0.02500! | —0.042q08® | —0.040gea?
2 | —0.030gb* | —0.056g0b* | —0.060geb?
1 | —0.031gb* | —0.061geb? | —0.073¢eb?
0 —0.031geb? —0.062g0b* —0.094¢gb?
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value —gob%r/8a, which is the moment at the built-in end of a strip of
length b uniformly loaded with a load of intensity goz/a.
Now let us consider a plate subjected to a hydrostatic load just as
before, this time, however, having the edge x = a built in (Fig. 90).
In applying the method of M..Lévy to this case we take the deflection
surface of the plate in the form

= r
90
= 3% — 24p22 4
fi[[[]:[]:a__i w = gorp (16y* — 24b%* + 5b%)

3

]
0 o + 2 X cos m;_rg @)
* m=13,5,...
o 1n which
mmr mrx . mrmx’
SR PO Xm = An cosh 3 + B, 5 sinh -
y Fic. 90 + Cn sinh‘ﬂb’r-jf + D, %ﬁ cosh Ln%r_g:

Expression (7) satisfies the differential equation of the bent plate and the
edge conditions at y = +b/2 as well. Expanding the expression in
parentheses in Eq. (¢) in the series

w©

1,536b* (m—pyj2 L mry
- (= 1)m=wit 25 cos ==
m=13,5,...
we obtain the coefficients A, Bm, . . . from the conditions on both other

edges; 1.e.,

(U))z—l] =0 (g';:l—f)’:*o = 0 (w)zaa = 0 (%)z—a = O (])

Substitution of the coefficients in expression () makes the solution com-
plete. Deflections and bending moments obtained from the latter equa-
tion are given in Table 34.

TaBLE 34. DEFLECTIONS AND BENDING MOMENTS IN RECTANGULAR PLATES
CLAMPED AT = a AND CaRRrYING HyprOsTaTIC Loap (F1a. 90)

v =03

b/a' (’w):-a/z.y—o (Mz)z-alzvu-o (ﬂ{v)z-ulz.y-o (Mz)z-a.y-o

o 0.0024g0at/D 0.029qca? 0.009¢.a? —0.067q.a?
2 0.0023g0a*/D 0.029¢.a® 0.011gea? —0.063¢ga?
1.5 0.0019goat/D 0.026¢0a? 0.013¢goa? —0.061¢ga?
1.0 0.0013geat/D 0.019q.a? 0.016q.a? —0.048¢oa?
4 0.0030gqb*/D 0.028qb? 0.034qb? —0.071¢cb?
0.5 0.0045q.b*/D 0.024q0b? 0.046q¢¢b? —0.084¢g,b?
0 0.0065q0b*/D 0.019¢0b? 0.062q0b? —0.125q0b?
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44, Rectangular Plates with All Edges Built In.! In discussing this
problem, we use the same method as in the cases considered previously.
We start with the solution of the problem for a simply supported rec-
tangular plate and superpose on the deflection of such a plate the deflec-
tion of the plate by moments distributed along
the edges (see Art. 41). These moments we TTITTT —“;"
adjust in such a manner as to satisfy the con- —F
dition dw/dn = 0 at the boundary of the
clamped plate. The method can be applied to

J

b
2

any kind of lateral loading, 0 -

Uniformly Loaded Plates. To simplify our ol
discussion we begin with the case of a uniformly 73
distributed load. The deflections and the mo- o o |
ments in this case will be symmetrical with H 2"

respect to the coordinate axes shown in Fig. 91.
The deflection of a simply supported plate, as
given by Eq. (139) (page 116), is represented for the new coordinates in
the following form:

1 — (m—1)/2
_ 4q0 (-1 cos Y (1 _ an tanh o, 4 2

w = SR
x8D mb 2 cosh am,
m=1.35,...

mmy

osh

1 mwry . . mwy
+ 2cosh o, @ sinh a ) (@)
1For the mathematical literature on this subject see ‘“Encykiopidie der mathe-~
matischen Wissenschaften,” vol. 4, art. 25 (Tedone-Timpe), pp. 165 and 186. Other
references on this subject are given in the paper by A. E. H. Love, Proc. London Math.
Soc., vol. 29, p. 189. The first numerical results for calculating stresses and deflections
in clamped rectangular plates. were obtained by B. M. Koyalovich in his doctor’s
dissertation, St. Petersburg, 1902. . .Further progress was made by I. G. Boobnov, who
calculated the tables for deflections and moments in uniformly loaded rectangular
plates with clamped edges; see his “ Theory of Structures of Ships,” vol. 2, p. 465, St.
Petersburg, 1914, and “Collected Papers on the Theory of Plates,” p. 144, Moscow,
1953. The same problem was discussed also by H. Hencky in his dissertation ‘Der
Spannungszustand in rechteckigen Platten,” Miinich, 1913. Hencky’s method was
used by I. A. Wojtaszak, J. Appl. Mechanics, vol. 4, p. 173, 1937, 'The numerical
results obtained by Wojtaszak in this way for a uniformly loaded plate coincide with
the values given in Boobnov’s table. Further solutions for the same plate and various
cases of loading are due to H. Leitz, Z. Math. Phys., vol. 64, p. 262, 1917; A. Nédai,
Z. angew. Math. Mech., vol. 2, p. 14, 1922; A, Weinstein and D. H. Rock, Quart. Appl.
Math., vol. 2, p. 262, 1944; P. Funk and E. Berger, ““Federhofer-Girkmann-Fest-
schrift,” p. 199, Vienna, 1950; G. A. Grinberg, Doklady Akad. Nauk. 8.8.8.R., vol. 76,
p. 661, 1951; K. Girkmann and E. Tung), Osterr. Bauzestschrift, vol. 8, p. 47, 1953.
An experimental investigation of the problem is due to B. C. Laws, Phil. Mag., vol.
24, p. 1072, 1937. Our further discussion makes use of the method developed by
8. Timoshenko, Proc. Fifth Intern. Congr. Appl. Mech., Cambridge, Mass., 1938; the
method is more general than most of those previously mentioned; it can be applied to
any kind of loading, including the case of a concentrated load.
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where a, = mab/2a. The rotation at the edge y = b/2 of the plate is

Ay =D mt
m=1305,...

3 —_— (m—1)/2
(8w) _ 2qa (-1 cos T
y=b/2 a

[am — tanh an(l + a, tanh a,)]

L]
2qa® (—1)m-niz max O
D 1 €os - cosh? a.
T m a \cosh? a,
m=135,...

— tanh an ) (b)

Let us consider now the deflection of the plate by the moments dis-
tributed along the edges y = +b/2. From considerations of symmetry
we conclude that the moments can be represented by the following series:

(Mv)v=j;b/2 = ( 1)(-—-1)/2 E,, cos ll:_x (c)

m=135,...

The corresponding deflection w; is obtained from expression (173) by sub-

stituting z + a/2 for z and takingm = 1,3,5, . . . . Then
_ a® , (—1)tm—ni2 mrxx (mry . , m=xy
V1= " 58Dp z Em ot cosh an % Ta g Sinh =

m=13,5,...

— am tanh ay, cosh 7Y d)
a

The rotation at the edge y = b/2, corresponding to this deflection, is

) o PR il m-n;(
(W)y.m =~ %D z cos ™= ( tanh an
m=13,5,.
X
+ cosh? a,,,) (€)

In our further discussion we shall need also the rotation at the edges
parallel to the y axis. Forming the derivative of the expression (d) with
respect to  and putting x = a/2, we obtain

dw, . a 1 mxy . , mwy
(—6}_),=,,,2 "~ 2D 2 B o cosh a.,.( o Snh =g

m=13,5,...
L

3 mryy _ _ 1 __En
ans tanh o, cosh a ) ry)) z cosh? o
m= 1,3,.5, P

(b sinh a, cosh m_;-g — 2y cosh a,, sinh m_:g) 02
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The expression in parentheses is an even function of y which vanishes
at the edgesy = +b/2. Such a function can be represented by the series

o

A,' [0 ] f%—y (g)

$=135,...

in which the coefficients A; are calculated by using the formula

+b/2 .
A; = 2 b sinh a,, cosh mry _ 2y cosh ay, sinh 7YY cos Y dy
b —b/2 a a b

from which it follows that
_ 16za(—1)¢—1/2 p? 1

mix? a? (p2r
ot T

Substituting this in expressions (g) and (f), we obtain

A; 5 cosh? o,

dw, _ A4y E : E, (= 16D iy
(Ec—),,_an = T *Da m 2 7 2\ cos = (h)
m=135,... i=135,... \ 42 + me

In a similar manner expressions can be obtained for the deflections w.
and for the rotation at edges for the case where moments M, are dis-
tributed along the edges + = +a/2. Assuming a symmetrical distribu-
tion and taking

(M)emsars = (= 1)w-12F,, cos " G

m=1305,...

we find for this case, by using expressions (¢) and (h), that

0w, - b (=12 mmy
(ax e—as2 - 2D Fm m €O0s b tanh ﬂm
m=13,5,...
Bm .
+ cosh? ﬁ,,,) ()
where 8,, = mxa/2b, and that
w, __ 4a F, 1(—1)E-ns2 % g4
<W)v—b/2 - «*Db m? e oV Xa (k)
m=135,... i=135,...\ )2 + m2

When the moments {c) and (7) act simultaneously, the rotation at the
edges of the plate is obtained by the method of superposition. Taking,
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for example, the &dge y = b/2, we find

(é)—zgl o = -5 E (=Donk cos 1%
dy Y Jymtr2  2xD " m a
m=135,...
Om
(tanh am + Sosh? o am>
4q? F. (—1)6-Di2 T

-— — ——t——cos— (I
m:Db m® a: . 2\° a ®
m=135,... *i=135...\}? + mé

Having expressions (b) and (I), we can now derive the equations for
calculating the constants E, and F,, in series (¢) and (¢) which represent
the moments acting along the edges of a clamped plate. In the case of
a clamped plate the edges do not rotate. Hence, for the edgesy = +b/2,

we obtain
ow ow; , Ows
—_ _— e = 0
(3?/ )uam + <'3y + ay )y-b/z (m)
In a similar manner, for the edges * = +a/2, we find
ow dw; , dw: _
(E)z_a/z + (6:0 + E)z-aﬂ N 0 (n)

If we substitute expressions (b) and (1) in Eq. (m) and group!® together
the terms that contain the same cos (¢rx/a) as a factor and then observe
that Eq. (m) holds for any value of z, we can conclude that the coefficient
by which cos (¢wz/a) is multiplied must be equal to zero for each value
of 7. In this manner we obtain a system that consists of an infinite num-
ber of linear equations for calculating the coefficients E; and F; as follows:
2
4q(: 1 (—L - ta,nh Ot,')

7® 74 \cosh? o

_E 8ia F. 1 _
(tanhm+(mT)—~ m___~ =0 (o)

3 . 2
b md [ g2 + 72
m=13,5,... bz U ot

A similar system of equations is obtained also from Eq. (n). The
constants Ey, E;, . . . , Fy, F3, . . . can be determined in each particu-
lar case from these two systems of equations by the method of successive
approximations.

To illustrate this method let us consider the case of a square plate.
In such a case the distribution of the bending moments along all sides
of the square is the same. Hence E; = F;, and the two systems of equa-

t Tt is assumed that the order of summation in expression (I) is interchangeable.
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tions, mentioned above, are identical. The form of the equations is

@

[» %3 ) 81« Em 1

cosh? a; T mé 2 \?
m=135,... 1+ mt

2 .
= 4ga® 1 < % __ _ tanh a,)

% (tanh g +

x® 1% \cosh? o;
Substituting the numerical values of the coefficients in these equations

and considering only the first four coefficients, we obtain the following
system of four equations with four unknowns E., E;, Es, and E;:

1.8033E, | +0.0764E; +0.0188E; -0.0071E; = 0.6677K
0.0764E, -0.4045E;]40.0330E; --0.0159E; = 0.01232K
0.0188E, --0.0330E; +0.2255E; | +0.0163EF; = 0.00160K (®)
0.0071E; +40.0159E; -+0.0163E:s -0.1558E; = 0.00042K

where K = —4qa?/x*. It may be seen that the terms along the diagonal
have the largest coefficients. Hence we obtain the first approximations
of the constants E1, . . . , Ey by considering on the left-hand sides of
Egs. (p) only the terms to the left of the heavy line. In such a way we
obtain from the first of the equations E; = 0.3700K. Substituting this
in the second equation, we obtain E; = —0.0395K. Substituting the
values of E; and E; in the third equation, we find E; = —0.0180K.
From the last equation we then obtain E; = —0.0083K. Substituting
these first approximations in the terms to the right of the heavy line
in Egs. (p), we can calculate the second approximations, which are
E, = 0.3722K, E; = —0.0380K, Es; = —0.0178K, E; = —0.0085K.
Repeating the calculations again, we shall obtain the third approxi-
mation, and so on.

Substituting the calculated values of the coefficients Ej, E3, . . . in
series (c), we obtain the bending moments along the clamped edges of
the plate. The maximum of the absolute value of these moments is at
the middle of the sides of the square. With the four equations (p) taken,
this value is

|M,|ymtstiom0 = |E1 — Es + Es — Eq| = 0.0517¢a?

The comparison of this result with Boobnov’s table, calculated with a
much larger number of equations similar to Eqs. (p), shows that the
error in the maximum bending moment, by taking only four equations
(p), is less than 1 per cent. It may be seen that we obtain for the moment
a series with alternating signs, and the magnitude of the error depends on
the magnitude of the last of the calculated coefficients Ey, E;, . . . .
Substituting the values of Ei, E; . . . in expression (d), we obtain
the deflection of the plate produced by the moments distributed along



202

THEORY OF PLATES AND SHELLS

TaBLE 35. DEFLECTIONS AND BENDING MoMENTS IN A UNIFORMLY LoADED

ReEcTaANGULAR PLATE wiTH Buiut-IN Epces (Fig. 91)

vy = 0.3
b/a (W) zw0,y~0 (M2 zcary=o | (My)zaoy=ire (M) zmtiy—o (M) zm0,y=0
1.0 | 0.00126¢a*/D | —0.0513qa2 | —0.0513qa? 0.0231qa* 0.0231¢qa?
1.1 | 0.00150¢a*/D | —0.0581qa? —0.0538¢a* 0.0264¢qa? 0.0231¢qa*
1.2 10.00172gat/D | —0.0639¢a? —0.0554qa? 0.0299qa? 0.0228¢a®
1.3 | 0.00191¢a*/D | —0.0687ga? | —0.0563¢a? 0.0327¢a? 0.0222¢qa?
1.4 | 0.00207ga*/D | —0.0726¢qa® | —0.0568qa2 0.0349qa? 0.0212¢a?
1.5 | 0.00220¢a*/D | —0.0757qa2 —0.0570ga? 0.0368¢a? 0.0203qa2
1.6 | 0.00230ga*/D | —0.0780ga? | —0.0571¢a? 0.0381¢a? 0.0193¢ga?
1.7 | 0.00238¢a4/D | —0.0799¢a% | —0.0571ga% | 0.0392¢a2 0.0182ga?
1.8 | 0.00245¢¢*/D | —0.0812ga? | —0.0571ga? 0.0401¢a? 0.0174¢a
1.9 | 0.00249¢a*/D | —0.0822¢a? —0.0571¢ga? 0.0407qat 0.0165¢a?
2.0 | 0.00254ga*/D | —0.0829qa? —0.0571qa? 0.0412¢qq? 0.0158¢ga?
© | 0.00260qa¢/D | —0.0833¢gaz | —0.0571ga? | 0.0417qa? 0.0125¢a?
the edges y = xb/2. For the center of the plate (x = y = 0) this
deflection is

a® an tanh qat

0 = F5F E,(—1)m-Dni2 2 = = —0.00140 -
(W3)emimo = 55575 (=1 m? cosh o, 0140 75

m=1,3,35...

Doubling this result, to take into aceount the action of the moments dis-
tributed along the sides x = +a/2, and adding
to the deflection of the simply supported square
plate (Table 8), we obtain for the deflection at

the center of a uniformly loaded square plate
with clamped edges

)
90
4 ¥
kY
P
0 g
"
FotlaN]
¥
; 1 7
—-%-—-)(—-—%-—,
Frc. 92

Plates under Hydrostatic Pressure.

4
() max = (0.00406 — 0.00280) gg_

4
= 0.00126 1%

D
(9)

Similar calculations can be made for any ratio

of the sides of a rectangular plate.

The results

of these calculations are given in Table 35.1

pressure distributed according to Fig. 92 in the form

Representing the intensity of the

! The table was calculated by T. H. Evans; see J. Appl. Mechanics, vol. 6, p. A-7,

1939.



VARIOUS RECTANGULAR PLATES 203

w=2+22

we see that the effect of the term ¢o/2 on the deflections of the plate is
already given by the previous solution. Thus it remains to consider the
pressure ¢or/2a. The deflection surface of a simply supported plate
carrying such a load is readily obtained by combining the expression (k)
on page 190 with the expression (a) on page 186. Putting ¢ = —¢o/2 in
this latter expression and replacing x by = + a/2 in both expressions in
accordance with new coordinates, we obtain the deflection surface

2q0a* (=1)miz+1 (2 _ 2+ an tanh an cosh 7%/

=D ms cosh ap,
m=246 ..

w =

1 mry ., mxy\ . mwxxr
+a$;a‘““7)mir(”
symmetrical with respect to the x axis and antisymmetrical with respect
to the y axis. Consequently, to eliminate the slope along the boundary
of the plate we have to apply edge moments of the following form:

(M2)spars = £ (=1)m—Di2E_ cos ml‘:'y
m: 1,3,5,... (s)
(M,)ympbta = (—1)m2f, smm—;—af
m=2486,...

Proceeding just as in the case of the uniformly distributed load, we calcu-
iate the coefficients E,, and F,, from a system of linear equations. The
deflections due to the simultaneous action of the
load ¢oz/2a and the moments (s) must be added, A
finally, to the deflections of the clamped plate ale
loaded uniformly with go/2. Numerical re- Lood P
sults obtained by such a procedure are given in 7 0
Table 36.! s
Plates under Central Load. As a third ex- Y

ample let us consider the bending of a rectan- a I’
gular plate with clamped edges under the action """‘*-2-

of a load P concentrated at the center (Fig. 93).
Again we go back to the case of a simply sup-
ported plate. Substituting into expression (146) a/2 for ¢, and z + a/2

Z

be- ¥y -2

Fic. 93

1See Dana Young, J. Appl. Mechanics, vol. 7, p. A-139, 1940. More extensive
tables were computed, by means of the method of finite differences, by E. G. Odley,
J. Appl. Mechanics, vol. 14, p. A-289, 1947.
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TaBLE 36. DEFLECTIONS AND BENDING MOMENTS IN RECTANGULAR PLATES
witH BuiLt-in Epges aND Hybprostaric Loap (Fie. 92)

v =03
z=0,y=0 z=a/f2,y=0|z= —a/2,y=0z =0,y = £b/2

b

a qoat

w = a——D— Mz = Bigoat | My = Bigeat| Mz = yigea? M: = vyaqoa? M,y = 3qoa?
a B B2 71 Y2 é

0.5| 0.000080 0.00198 0.00515 -0.0115 —0.0028 —0.0104
3 0.000217 0.00451 0.00817 —0.0187 —0.0066 —0.0168
1.0{ 0.00063 0.0115 0.0115 —0.0334 —0.0179 ~0.0257
1.5} 0.00110 0.0184 0.0102 —0.0462 -0.0295 —0.0285
© 0.00130 0.0208 0.0063 -—0.0500 —0.0333

for z, we arrive at the deflection surface (valid for y > 0)

®

w= Pa? 1 cos ™1 ( tanh - Im
" 2x3D m3 a %m = Gosh? a

m=13,5,...

cosh "% — sinh ™Y

— Yy tanh a,, sinh may + mry cosh w]
a a a a

The angle of rotation along the edge y = b/2 is

o

dw Pa 1 mwe an tanh ay,
(@),,_m = T 2D 2 m? %% T3 “cosh O ®
m=135,...
To calculate the bending moments along the clamped edges we proceed
as in the case of uniform load and obtain the same two systems of Eqgs.
(m) and (n). The expressions for w; and w; are the same as in the former
case, and it will be necessary to change only the first term of these equa-
tions by substituting expression (f) instead of (dw/dy),—s/2 in Eq. (m),
and also a corresponding expression for (w/0x),ms/2 in Eq. (n).

For the particular case of a square plate, limiting ourselves to four
equations, we find that the left-hand side of the equations will be the
same as in Egs. (p). The right-hand sides will be obtained from the
expression (t), and we find

1.8033E, + |0.0764E5 4+ 0.0188E; + 0.0071E; = —0.1828P
0.0764E; + 0.4045E; + I 0.0330Es + 0.0159E; = +0.00299P
0.0188E; + 0.0330E; + 0.2255E5 + ) 0.0163E; = —0.000081P
0.0071E; + 0.0159E; + 0.0163E5 4+ 0.1558E; = 4-0.000005P
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Solving this system of equations by successive approximations, as before,

we find
E, = —0.1025P E; = 0.0263P
Es 0.0042P E, = 0.0015P

Substituting these values in expression (¢), the bending moment for the
middle of the side ¥ = b/2 can be obtained. A more accurate calcu-
lation!® gives

(Mv)y—b/2,z—0 = —0.1257P

Comparing this result with that for the uniformly loaded square plate,
we conclude that the uniform load produces moments at the middle of
the sides that are less than half of that which the same load produces if
concentrated at the center.

Having the moments along the clamped edges, we can calculate the
corresponding deflections by using Eq. (d). Superposing deflections pro-
duced by the moments on the deflections of a simply supported plate,
we obtain the deflections of the plate with built-in edges. By the same
method of superposition the other information regarding deflection of
plates with built-in edges under a central concentrated load can be
obtained.? Thus, if the load P is distributed uniformly over the area
of a small circle or rectangle, the bending moments at the center of the
loaded area z = y = O can be obtained by combining the results valid
for simply supported plates [see Eqgs. (157) and (167)] with some addi-
tional moments

My = ,31P my = ﬁgP

given in Table 37 along with data regarding the maximum deflection of
the plate and the numerically largest clamping moment. This latter
moment, however, can reach the value of —P/r = —0.3183P, as men-
tioned on page 192, in the case of a movable load.

46. Rectangular Plates with One Edge or Two Adjacent Edges Simply
Supported and the Other Edges Built In. Let us begin with the case of a
plate simply supported at the edge y = 0 and clamped along the other
edges (Fig. 94). No matter how the load may be distributed over the

!In this calculation seven equations, instead of the four equations taken above,
were used.

* Calculated by Dana Young, J. Appl. Mechanics, vol. 6, p. A-114, 1939. To
obtain the moments with the four correct figures it was necessary to use in this calcula-
tion seven cocfficients E and seven coefficients F in Eqs. (m) and (r). Further solu-
tions of the problem were given by H. Marcus “Die Theorie elastischer Gewebe,”
2d ed., p. 155, Berlin, 1932; J. Barta, Z. angew. Math. Mech., vol. 17, p. 184, 1937;
G. Pickett, J. Appl. Mechanics, vol. 6, p. A-168, 1939; C. J. Thorne and J. V. Atanasoff,
Towa State Coll. J. Sci., vol. 14, p. 333, 1940. The case was investigated experi-
mentally by R. G. Sturm and R. L. Moore, J. Appl. Mechanics, vol. 4, p. A-75, 1937.
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TaBLE 37. BENDING MOMENTS AT THE MIDDLE OF LONGER SIDES AND
DEFLECTIONS AND ADDITIONAL MOMENTS AT THE CENTER OF
RECTANGULAR PraTEs LoapEp aT THE CENTER (Fig. 93)

v =03
Correction moments
@)emrms = a 2| (a1 P
b Tmymd = O T ) z=0,ymbi2 = V.
/a b (mz)z-y—o = BP (mu)z-u-o = B.P
o v ] B2
1.0 0.00560 -—0.1257 —~0.0536 —0.0536
1.2 0.00647 —0.1490 —0.0579 —0.0526
1.4 0.00691 —0.1604 —0.0618 —0.0517
1.6 0.00712 —0.1651 —0.0653 —0.0510
1.8 0.00720 —0.1667 —0.0683 —0.0504
2.0 0.00722 —0.1674 —0.0710 —0.0500
© 0.00725 —0.168 —0.0742 —0.0484

given plate sstt, we can consider this plate as one-half of a plate rrit hav-
ing all edges clamped and carrying a load antisymmetrical with respect
to the line ss. The deflections and the bending moments then are zero
along that line. Thus the problem under consideration is reduced to the

r—qowl -~ q l(.
722 Z .78 3’;2’/2’/22’41’/:;;;__
bt — fe— e r/
p A [
g — — e~ ja— /j - v,
7
74 / o
ate 2 /s
v [
-+ /4 Z
1 8 5 0 S X
—
-i— (—at -5 -?
|
77 L - T t
o Aok g liel]
¢ 27172
y
Fic. 94

problem already solved in Art. 44. Some numerical data concerning two
cases of load distribution are given in Table 38.! A more extensive table

! The tabulated results are due to Dana Young, J. Appl. Mechanics, vol. 7, p.
A-139, 1940, and to C. P. Siess and N. M. Newmark, Univ. [ilinois Bull., vol. 47, p.
98, 1950. Y. S. Uflyand used quite a different method in treating this problem; see
Doklady Akad. Nauk. S.8.8.R., vol. 72, p. 655, 1950.
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TasLE 38. DEFLECTIONS AND BENDING MOMENTS IN RECTANGULAR PLATES
witH ONE EpGe SimpLy SuprorTED AND THREE Epces Buiur IN

(F1a. 94)

Load b/a (W) zmory=biz (M) zwarzyutrz | (My)zaoymd

Uniform pressureg........ 0.5 0.00449qb4/D —0.0786¢b* —0.1148¢b?
0.75 | 0.00286¢b*/D —0.0730¢b2 —0.0838¢gb?

1.0 0.00157¢b4/D —0.0601¢b? —0.0551¢b*

-§- 0.00215¢ga%/D —0.0750ga% —0.0571qa?

2 0.00257¢ga*/D —0.0837ga? —0.0571qa?

Hydrostatic pressure ¢goy/b | 0.5 0.00202q0b4/D | —0.0368q0bz | —0.0623¢cb?
0.75 | 0.00132¢ob*/D | —0.0344geb2 | —0.0484qcb*

1.0 0.00074q0b4/D | —0.0287qob? | —0.0347¢ob?

of bending moments is given on page 244 in connection with a design
method for floor slabs.

The rectangular plate rsut (Fig. 95) with two adjacent edges r = 0 and
y = 0 simply supported and two other edges clamped can be regarded in
like manner as an integral part of the plate

bounded by z = +a, y = +b with all edges ;f“u, ’H’J’?J’;Z—r

built in. 4 | -0 (8
Let us consider a load uniformly distributed Zﬁ ! % !

over the area rsut of the given plate.! A checker- gjL - 5 2 f—x

board loading distributed over the area 2a by 2b gj - +q _i.,

as shown in Fig. 95 then yields the conditions of a 22 g

simply supported edge along the lines x = 0 and ;?E//Nt u{_i

y = 0. Thusthe problem of bending a plate with e e g =]

two adjacent edges simply supported and two y

others clamped is again reduced to the problem, Fie. 95

already solved in Art. 44, of a plate with all

edges built in. Calculations show that the numerically largest moment
is produced near the mid-point of the long side of the plate. The values
of this clamping moment prove to be —0.1180¢b* for b/a = 0.5 and
—0.0694¢b? for b/a = 1.0. The maximum bending moment near the
center of a square plate has the value of 0.034ga? (for » = 0.3) and the
corresponding deflection is given by 0.0023¢a*/D. Further numerical
data regarding bending moments in this case are given on page 243.

1 A modification of Timoshenko’s method was applied in handling this case by
Siess and Newmark, loc. cit. For use of the energy method see W. B. Stiles, J. Appl.
Mechanics, vol. 14, p. A-55, 1947. See also M. K. Huang and H. D. Conway, J. Appl.
Mechanics, vol. 19, p. 451, 1952.
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46. Rectangular Plates with Two Opposite Edges Simply Supported,

the Third Edge Free, and the Fourth Edge Built In or Simply Supported.!

Let us assume the edges « = 0 and z = a in Fig.

Free 96 as simply supported, the edge y = b as free,

T and the edge y = 0 as built in. In such a case
the boundary conditions are

o%*w

0 | . F w=0 W_—_O forz =0andz =a (a)
L----G"--J qL w=0 w _ 0 fory =0 )
Fia. 96 dy

and along the free edge [see Eqgs. (112), (113), page 84]

w *w w acw
G0 [Fre-ramg =0 ©

In the particular case of a uniformly distributed load we proceed as in
Art. 30 and assume that the total deflection consists of two parts, as
follows:

W= w + W2

where w; represents the deflection of a uniformly loaded and simply sup-
ported strip of length ¢ which can be expressed by the series

o«
4ga’ 1 . mmx
W=y —F sin — = )
m=1305,...

and w; is represented by the series

o
.. mnx
Wy = Y. sin o (&)
m=13.5,...
where

Y =

MY o 2
D (A cosh 7Y —I—B sinh a

+ Csinh ™2 4 D, ™Y cosh "L;’g) o

Series (d) and (e) satisfy the boundary conditions (a), and the four con-
stants in expression (f) must be determined so as to satisfy the boundary

1 This case was discussed by Boobnov; see the English translation of his work in
Trans. Inst. Naval Arch., vol. 44, p. 15, 1902, and his ‘“Theory of Structure of Ships,”
vol. 2, p. 545, St. Petersburg, 1914. It was also discussed by K. Goriupp, Ingr.-Arch.,
vol. 16, p. 77, 1947, and by V. Bogunovié, “On the Bending of a Rectangular Plate
with One Edge Free,” Belgrade, 1953.
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conditions (b) and {¢). Using the conditions (b), we obtain
4

Am=—m Cn = ~D, (g)

From the remaining two conditions (¢) we find
4

= xmb
(3 4+ »)(1 — ») cosh? B,, + 2v» cosh B,
— »(1 — »)Bp sinh B, — (1 — »?)
(3 + »)(1 — ») cosh® B + (1 — »)?8% + (1 + »)*
4 @
wmb

(3 4+ »)(1 — ) sinh 8, cosh B, + »(1 4 ») sinh 8,

— v(1 — ¥)Bm cosh B, — (1 — »)?8,,
(3 + »(1 — v cosh® Bm + (1 — »)?%6% + (1 + »)*
where 8, = mwxb/a.

Substituting the constants (g) and (k) in Eq. (f) and using series (e)
and (d), we obtain the expression for the deflection surface. The maxi-
mum deflection occurs in this case at the middle of the unsupported edge.
If the length b is very large in comparison with a, that is, if the free edge
is far away from the built-in edge, the deflection of the free edge is the
same as that of a uniformly loaded and simply supported strip of length a
multiplied by the constant factor (3 — »)(1 + »)/(8 4+ »). Owing to the
presence of this factor, the maximum deflection is larger than that of the
strip by 6.4 per cent for » = 0.3. This fact can be readily explained if we
observe that near the free edge the plate has an anticlastic deflection
surface.

Taking another extreme case, when a is very large in comparison with b,
the maximum deflection of the plate evidently is the same as for a uni-
formly loaded strip of length b built in at one end and free at the other.
Several values of the maximum deflection calculated! for various values
of the ratio d/a are given in Table 39. This table also gives the maxi-
mum values of bending moments which can be readily calculated from
the expression for the deflection surface. The calculations show that
(M 2)umax occurs at the middle of the unsupported edge. The numerical
maximum of the moment M, oceurs at the middle of the built-in edge.

The case of the hydrostatic load distributed according to the law
go(1 — y/b) can be treated in the same manner as the foregoing case. Let
the deflection be expressed by

m

m =

@ @®

_ 4qo(1 — y/b)as 1 . mrz . mxx .
w = =D o Sin == + Yn sin e @)

m=135,... m=1335,...

1 This table was calculated by Boobnov, op. cit.
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TapLe 39. DEFLECTIONS AND BeEnpING MoMENTS FOR A UnrrormLy LoapED
Prate wite Two OprositE Epges SiMpLY SupPorTED, THE THIRD EpGE
Freg, anND THE FourtH BuiLt IN (Fie. 96)

v =03

r=a/2,y=blxz=a/2,y=0
b/a Wmax

M, M,

0 0.125¢b4/D 0 —0.500¢b?
3 0.094¢b4/D 0.0078¢qa? —0.4284b?
3 0.0582¢b4/D 0.0293¢a? —0.319¢b?
3 0.0335¢b*/D 0.0558¢a2 —0.227¢b?
1 0.0113¢gb4/D 0.0972qa2 —0.119¢b?
3 0.0141qa*/D .0.123¢ga? —0.124qa?
2 0.0150qat/D 0.131ga? —0.125¢a?
3 0.0152¢ga*/D 0.133ga? —0.125qa?
% 0.0152¢qa/D 0.133qa? —0.125qa?

in which Y,, is of the form (f), only with the constant ¢o instead of ¢.
Proceeding as before, we obtain the four constants A,, Bm, . . D,
from the boundary conditions (a), (b), and (¢).

If the plate is bent by a load distributed along the free edge, instead of
by a load distributed over the sur-
face, the second of the boundary
conditions (¢) must be modified by
putting the intensity of the load
distributed along the free edge in-
stead of zero on the right-hand side
of the equation. The particular

Fra. 97 case of a concentrated force applied

at the free edge of a very long plate

was investigated (Fig. 97).! It was found that the deflection along the
free edge can be represented by the formula

Pb?
(w)y=s = @ D

‘o

The factor « rapidly diminishes as the distance from the point A of appli-

18ee C. W. MacGregor, Mech. Eng., vol. 57, p. 225, 1935; D. L. Holl, J. Appl.
Mechkanics, vol. 4, p. 8, 1937; T. J. Jaramillo, J. Appl. Mechanics, vol. 17, p. 67, 1950;
and K. Girkmann, “Flichentragwerke,” 4th ed., p. 233, Vienna, 1956. The case of a
cantilever plate having three edges free and carrying a uniformly distributed load was
discussed by W. A. Nash, J. Appl. Mechanics, vol. 19, p. 33, 1952. See also the inves-
tigation of such a plate by W. T. Koiter and J. B. Alblas with numerical results given
in Proc. Koninkl. Ned. Akad. Wetenschap. Amsterdam, vol. 60, p. 173, 1957.
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cation of the load increases. Several values of this factor are given in
Table 40. The numerically largest values of the clamping moment pro-
duced by a load acting at the middle of the free edge of a plate of a finite
length @ are given in Table 41.}

TaBLE 40
z = 0 b/4 b/2 b 2b
a = 0.168 0.150 0.121 0.068 0.016

TasLE 41. BEnpING MoMmENTS M =8P, aTr 2 =0, ¥y = 0, DUg 10 A Loao P
AcTiNG AT 2z =0, y = b aND THE EpGEs z = +a/2 BeING SiMPLY
SurporTED (F16. 97)
vy =03

b/a = 4 2 1.5 1 2 0.5 3 lo2s| o

8 = | —0.000039| —0.0117] —0.0455| —0.163| —0.366| —0.436| —0.498| —0.507| —0.509

The case of a uniformly loaded rectangular plate simply supported
along three edges and free along the edge y = b (Fig. 98) can be treated
in the same manner as the preceding case in y
which the edge y = 0 was built in. It is neces- ,~Free -a ]“
sary only to replace the second of the boundary T
conditions (b) by the condition

[(%f) + "(g%))]v“o =0

Omitting the derivations, we give here only the *
final numerical results obtained for this case. e S,
The maximum deflection occurs at the middie of
the free edge. At the same point the maximum bending moment M,
takes place. These values of deflections Wmex and (M,)m.x are given in
the second and third column of Table 42.2 The last two columns give
the bending moments at the center of the plate.

Table 43, in a similar manner, contains the values of deflections and
bending moments produced at the middle of the free edge and at the
center of the plate by a hydrostatic load.

47. Rectangular Plates with Three Edges Built In and the Fourth
Edge Free. Plates with such boundary conditions are of particular
interest as an integral part of rectangular tanks or retaining walls. Con-

Kmmmmnb R

1 This table was caleulated by V. Bogunovié, loc: cit. See also Art. 78.
2 This table and Table 43 were calculated by B. G. Galerkin; see Bull. Polytech.
Inst., vol. 26, p. 124, St. Petersburg, 1915,
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TapLe 42. DeErFLEcTIONS AND BENpING MoMENTS IN UNIFORMLY LoADED

THE FourTH EpGce Free (Fig. 98)

REcCTANGULAR PLATES WiITH THREE EpGEs SiMPLY SUPPORTED AND

v =03
z=a/2,y=0b z =a/2,y=>b/2
b/a
Wmax (Mx)max M, Mll

3 0.00710ga4/D 0.060ga2 0.039qa? 0.022¢a?
4 0.00968¢ga4/D 0.083ga? 0.055¢ga? 0.030qa?
1/1.4 0.01023ga*/D 0.088qa? 0.059ga? 0.032¢ga?
1/1.3 0.01092ga*/D 0.094ga? 0.064ga? 0.034ga?
1/1.2 0.01158qa4/D 0.100ga? 0.069¢a? 0.036ga?
1/1.1 0.01232ga*/D 0.107ga? 0.074ga? 0.037qa?
1 0.01286gat/D 0.112qa? 0.080ga? 0.039qa?
1.1 0.01341¢a*/D 0.117qa? 0.085ga? 0.040ga?
1.2 0.01384qa4/D 0.121ga? 0.090qa? 0.041¢a?
1.3 0.01417ga*/D 0.124ga? 0.094ga? 0.042ga?
1.4 0.01442ga*/D 0.126ga2 0.098ga? 0.042ga?
1.5 0.01462qa¢/D 0.128¢a? 0.101ga? 0.042ga?
2 0.01507ga4/D 0.132qa2 0.113ga? 0.041ga*
3 0.01520ga4/D 0.133qa? 0.122ga? 0.039a?
0 0.01522¢ga*/D 0.133¢a? 0.125ga 0.037ga?

TasLe 43. DeFLECTIONS AND BENDING MoMENTsS IN HyDpROSTATICALLY LOADED
RECTANGULAR PraTEs wiTH THREE EDpGEs SiMPLY SUPPORTED AND THE
FourrH EpceE Free (Fig. 99)
y =103

b/a

z=a/2,y="%

x =a/2,y =b/2

w

M,

w

M.,

M,

N - Ll S o

[ ]

0.00230g,a*/D
0.00304¢pat/D
0.00368g0at/D
0.00347g0at/D
0.00291qeat/D
0

0.0197q0a?
0.0265q0a?
0.0325qg.a2
0.0308q0a2
0.0258¢0a?

0

0.00135g0a*/D
0.00207goat/D
0.00313q0a*/D
0.00445g0at/D
0.00533¢goat/D
0.00651g0a*/D

0.0145g.a?
0.0220g.a2
0.0331goa?
0.0453g0at
0.0529¢0a?
0.0625qa?

0.0120g0a?
0.0156¢0a?
0.0214gea?
0.0231q.a?
0.0222¢00?
0.0187g0a?
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sequently, the uniformly distributed and the hydrostatic load must be
considered first of all in that case.

Let the boundary of the plate be clamped at ¥y = 0 and z = +a/2
and free along y = b (Fig. 100). Assuming first a uniformly distributed
load of intensity ¢, the expression for deflections may be taken in the form

w=1w + w: + wy (@)
The expressions for
«
4qa’ —1)em—niz mre
wy = 9ot (DO s TTE ®
z5D m a
m=135...
w
mrx
and Wy = Z Yo (—1)m=0i2 gog = (e)
m=1305,...

contained in Eq. (a) are identical with expressions (d) and (e) of the
preceding article if one considers the new position of the origin.

y
,-Free -

o e s

Fic. 99 Fia. 100

A suitable form for the additional deflections w; due to the additional
constraint on the edges z = +a/2 is!

©

- T _ p, "2 inh T gin 7Y
w3 D (F,. v.. tanh v, cosh 55 F, 35 sinh 35 ) n o
n=13,5,...
4
+28N (Gusion ™Y g7, T o, T
a a a
m=13,5,..,
+ I, ¥ gin ’"——“y) cos T2 ()
a a a
in which F,, . . ., I,, are some constants and v, = nra/4b.

! This method of solution essentially is due to Goriupp, op. cit., p. 153 1948.
See also W. J. Van der Eb, Ingenieur, vol. 26, p. 31, 1950.
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As w; = 0 for y = Oand z = % a/2, the boundary conditions still to
be satisfied by deflections (d) are the following:

gwy  ow _ o [dws o',

(E)y2 T ar? ),,,b =0 [ +@- )6392 ay],,_,,
dws _ d(w, + w2 + wy) —
P =0 —_— =0
Ay dr Tmtaf2

Now we expand all noncircular functions of z contained in expression (a)
in a series of the form Za. cos (mrz/a) and all similar functions of y in
a series of the form 2b, sin (nxy/2b). A set of linear equations for F,,
Gny . . ., I is then readily obtained from conditions (¢). Solving the
equations we are able to express those unknown constants by the known
values of A, . . . , Dy, (see page 209).
_~Free In the case of a hydrostatic pressure
acting in accordance with Fig. 101, we have
to superpose solution (7) of the preceding
article on the solution of form (d) and,
besides that, to proceed as indicated above.

Whatever the load, the problem can also

7 g be handled! by the method of finite differ-
L. Q_.L___J <-q°-—| ences {see Art. 83). Numerical values of
Fre. 101 Tables 44 and 45 are computed essentially

by that procedure.!

48, Rectangular Plates with Two Opposite Edges Simply Supported
and the Other Two Edges Free or Supported Elost. beam or free
Elastically. Let us consider the case where the ¥ — - ——_ ——
edges z = 0and z = a (Fig. 102) are simply sup-
ported and the other two edges are supported by
elastic beams. Assuming that the load is uni- [0
formly distributed and that the beams are iden-

(e

-

tical, the deflection surface of the plate will be Elast, beam

. . . or free<
symmetrical with respect to the z axis, and we | ____ "« _ |
have to consider only the conditions along the | ______ 0 mmmmme N

side y = b/2. Assuming that the beams resist '
bending in vertical planes only and do not resist
torsion, the boundary conditions along the edge y = b/2, by using Eq

Fia. 102

(114), are
2 2
6_1/ a9 y=b/2 (a)
ddw 9w
= I —
e R W =)

18ee A. Smotrov, “Solution for Plates Loaded According to the Law of Trapeze,”
Moscow, 1936.



TaBLE 44. DEFLECTIONS, BENDING MOMENTS, AND REACTIONS OF UNIFORMLY LOADED RECTANGULAR PLATES wiTH THREE
Evces BuiLr IN anp A Fourtn Epce Free (Fig. 100)

e1g

v=13
z=0,y=0 z=0,y =b/2 r=a/2,y=0b z=a/2,y =b/2 z=0,y=0
b w w
- | M | M , M, V. M. V. M, v,
say | = Biga® | = ar s | = Bwga® | = Bygat =Bgat | =ysga | =Bga’ | =vqga| = Bsqa? = 740
ay B1 a B2 B, Bs v3 B4 Y4 85 Vs
0.6 0.00271 0.0336 0.00129 0.0168 0.0074 —0.0745 0.750 —0.0365 0.297 —0.0554 0.416
0.7 0.00292 0.0371 0.00159 0.0212 0.0097 —0.0782 0.717 —0.0439 0.346 —0.0545 0.413
0.8 0.00308 0.0401 0.00185 0.0252 0.0116 —-0.0812 0.685 —0.0505 0.385 —0.0535 0.410
0.9 0.00323 0.0425 0.00209 0.0287 0.0129 —0.0836 0.656 —0.0563 0.414 —0.0523 0.406
1.0 0.00333 0.0444 0.00230 0.0317 0.0138 —0.0853 0.628 —0.0614 0.435 -0.0510 0.401
1.25 0.00345 0.0467 0.00269 0.0374 0.0142 —0.0867 0.570 —0.0708 0.475 —0.0470 0.388
1.5 0.00335 0.0454 0.00290 0.0402 0.0118 —0.0842 0.527 —0.0755 0.491 —0.0418 0.373




TasLE 45. DEFLECTIONS, BENDING MoMENTS, AND REAcTIONS OF HYDROSTATICALLY LOADED RECTANGULAR PLATES WITH
THrREE Epges Buiur IN aND A FourtH Epge Free (Fic. 101)
1

913

vE3
z=0,y=0b z2=0,y =b/2 z=a/2,y=b% z=a/2,y =b/2 z=0,y=0
b w M, w M, M, M, V. M., Ve M, Vy
¢ = q—;‘;—‘ = B1goa? | = a3 q_g;‘ = faqoa? | = Prgea’ | = Bagea? = v3gott = 8qoa* | = vioa| = Bsgoa® | = vsqott
o B az B2 4 Bs Vs B4 Y4 Bs s

-0 O OO
(SR S )
o
(=]
=]

(=]

[=7]

3

0.00069 | 0.0089 | 0.00044 | 0.0060 | 0.0062 —0.0179 0.093 —0.0131 | 0.136 —0.0242 | 0.248
0.00069 | 0.0093 | 0.00058 | 0.0080 | 0.0074 —0.0172 0.081 —0.0170 | 0.158 —0.0261 | 0.262
0.00068 | 0.0096 | 0.00072 | 0.0100 | 0.0083 —0.0164 0.069 —0.0206 | 0.177 —0.0278 | 0.275
0.0096 | 0.00085 | 0.0118 | 0.0090 —0.0156 0.057 —0.0239 | 0.194 —0.0290 | 0.286
0.00065 | 0.0095 | 0.00097 | 0.0135 | 0.0094 —0.0146 0.045 —0.0269 | 0.209 —0.0299 | 0.295
.25 | 0.00056 | 0.0085 | 0.00121 | 0.0169 | 0.0092 —0.0119 0.018 ~0.0327 | 0.234 —0.0306 | 0.309
0.00042 | 0.0065 | 0.00138 | 0.0191 | 0.0075 —0.0087 —0.006 —0.0364 | 0.245 —0.0291 | 0.311
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where EI denotes the flexural rigidity of the supporting beams. Pro-
ceeding as in Art. 46, we take the deflection surface in the form

w = w + W, )
_ 4qat 1 . mxx
where w; = “_S—D m sin T (C)
m=1305,...
and Wy = Y. sin m—;rf (d)
m=135,...

From symmetry it can be concluded that in expression (f) of Art. 46 we
must put Cp, = D,, = 0 and take
4
Yo=24 (A,,. cosh 2 + B, ™Y sinh ’%) ©

The remaining two constants A,, and B,, are found from the boundary
conditions (a), from which, using the notations

2a "% aD"
we obtain

A.(1 — ») cosh am + Bnl2 cosh am + (1 — »)a, sinh «,) = 45;_

—A,[(1 — ») sinh a, + maX cosh a,] + B,[(1 + ») sinh a,

. 4\
— (1 — v)an, cosh ap — mrAa, sinh an] = o

5

Solving these equations, we find
4

An = i
v(1 + ») sinh an — »(1 — ¥)an, cosh a, — maA(2 cosh o,
+ an, sinh ap) %)
B+ »)(@ — ») sinh o, cosh am — (1 — v)2am + 2ma) cosh? «
B = 4 »(1 — ») sinh a, + mx\ cosh a,, @)
™ = 75 (3 + »)(1 — ») sinh am COSh am — (I — #)’am g
+ 2mx\ cosh? a,,

The deflection surface of the plate is found by substituting these values
of the constants in the expression

at

w=w,+wg=%— z (1r5 —— + 4n cosh—

+ B, m-;ry mhm'y) n'—'—gﬁ ()
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If the supporting beams are absolutely rigid, A = « in expressions (f)
and (g), and A,, and B,, assume the same value as in Art. 30 for a plate
all four sides of which are supported on rigid supports.

Substituting A = 0 in expressions (f) and (g), we obtain the values of
the constants in series (k) for the case where two sides of the plate are
simply supported and the other two are free.

Except for the case of very small values of A the maximum deflection
and the maximum bending moments are at the center of the plate.
Several values of these quantities calculated for a square plate and for
various values of A are given in Table 46.!

TaBLE 46. DEFLECTIONS AND BENDING MOMENTS AT THE CENTER OF A
UniFOoRMLY LOADED SQUARE Prate wrth Two EpGEs SIMPLY
SurPPORTED AND THE OTHER Two SUPPORTED BY ELasTiC
Beams (Fi1e. 102)

v = 0.3
X = El/aD Wemax (M2)inax (M y)max
© 0.00406ga/D 0.0479¢a? 0.0479¢ga®
100 0.00409qga‘/D 0.0481qa? 0.0477qa?
30 0.00416¢a*/D 0.0486¢a? 0.0473¢ga?
10 0.00434¢a*/D 0.0500qa* 0.0465¢a?
6 0.00454¢a*/D 0.0514qa? 0.0455¢a2

0.00472qa4/D 0.0528ga? 0.0447qa?
0.00529qa4/D 0.0571¢a? 0.0419¢a?
0.00621ga*/D 0.0643¢a? 0.0376qa?
5 0.007569a*/D 0.0744¢a? 0.0315qa?
0.01309ga*/D 0.1225qa* 0.0271ga?

SO - N

The particular case A = 0 of a plate with two opposite edges simply supported and
the other two free deserves some consideration. As Table 472 shows, the deflections
and the largest moments of such a plate loaded uniformly differ but little from the
deflections and moments of a plate bent to a cylindrical surface.

49, Rectangular Plates Having Four Edges Supported Elastically or Resting on
Corner Points with All Edges Free. Let us consider a plate subjected to a uniform
pressure and supported along the boundary by four flexible beams. All beams are
supposed to have rigid supports at the corners of the plate, and two beams parallel to
each other may have the same flexural rigidity (Fig. 103).

1 The table was calculated by K. A. CaliSev, Mem. Inst. Engrs. Ways Commun.,
St. Petersburg, 1914. More recently the problem was discussed by E. Miller,
Ingr.-Arch., vol. 2, p. 606, 1932. The tables for nonsymmetrical cases are calculated
in this paper. Various cases of rectangular and continuous plates supported by
flexible beams were discussed by V. P. Jensen, Univ. Illinois Bull., 81, 1938.

2 These results are due to D. L. Holl, Towa State Coll. Eng. Ezp. Sta. Bull. 129, 1936.
For the case of a concentrated load see also R. Ohlig, Ingr.-Arch., vol. 16, p. 51, 1947.
Both authors also discuss the effect of clamping the supported edges.
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TasLE 47. DEFLECTIONS AND BENDING MomenTs IN UNiroRMLY LoADED
RECTANGULAR PLATES witH THE EDGEs z = 0, z = a SiMpLY
SupprorRTED AND THE OtHER Two FREE (F1e. 102)

v =03

z=a/2,y=0 z=a/2,y = +b/2

b 4 , 4

fa w = aﬂ M, =8yga?| M, = Bqut| w = azgi M, = Byqa?
D D
ai B 5'1 az B

0.5 0.01377 0.1235 0.0102 0.01443 0.1259
1.0 0.01309 0.1225 0.0271 0.01509 0.1318
2.0 0.01289 0.1235 0.0364 0.01521 0.1329
© 0.01302 0.1250 0.0375 0.01522 0.1330

By writing the deflections in the form

B q
¥ = 384D(y + 8

ny nrz z n
+ E A, cosh %ycos% + Z B, coshzl%—cos—ly

[v(16z¢ — 24a%? + 5a4) + 8(16y* — 24b2y? 4 5b4)]

b
g W nmx ., nTx n
+ C,y sinh ikl cos — + D,z sinh = cos nry (a)
a a b b
where 3/y and A,, . . . , D,are some constantsandn = 1,3,5, . . . , wesatisfly the

differential equation AAw = ¢/D of the plate and also the conditions of symmetry.!

Next, let us develop the algebraic and the hyperbolic

functions contained in expression (a) in cosine series. == == = - :':"R‘T

Then, using for + = a/2 and y = b/2 the edge condi- H :' |

tions similar to conditions (a) of the preceding article, | h

we arrive at a set of equations for the constants i 0

A, . . ., D, of expression (a). i ] | —x
Making, in particular, §/y = 0 and EyJs = o, we |

would arrive at the solution of the problem already W

discussed in Art. 48. F R Sy 4
Let us consider now the bending of a square plate L___ GG ,l

(@ = b) supported by four identical beams, We have

then, by symmetry, §/y =1, and A, = B, and

Cn = D,. The unknown coefficients A, are eliminated Fre. 103

by equating to zero the edge moments. Taking, then,

only four terms (n = 1, 3, 5, and 7) in series (a), we arrive at four linear equations for

Cy, Cs, Cs, and Cy. The results of numerical calculations carried out in this way are

given in Table 48,

1 This method of solution is due to B. G. Galerkin; see his “ Collected Papers,” vol.
2, p. 15, Moscow, 1953. The boundary conditions under consideration are easily
realizable and thus appropriate for the verification of the theory by tests. See
N. Dimitrov, Bauingenieur, vol. 32, p. 359, 1957.
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TaBLE 48. DEFLECTIONS AND BENDING MOMENTS OF A SQUARE PLATE wiTH
Four Sipes SuprorTeEp EvasticaLrLy (Fig. 103)

v = 0.25
z2=0,y=0 r=01y=a/2
pu EI 4
7—aD w=aq%- M, =M, = fiqa? M. = Bxa?
I3 81 B2
© 0.00406 0.0460 0
100 0.00412 0.0462
50 0.00418 0.0463
25 0.00429 0.0467 0.0002
10 0.00464 0.0477 0.0024
5 0.00519 0.0494 0.0065
4 0.00546 0.0502 0.0085
3 0.00588 0.0515 0.0117
2 0.00668 0.0539 0.0177
1 0.00873 0.0601 0.0332
0.5 0.01174 0.0691 0.0559
0 0.0257 0.1109 0.1527

In the particular case of BEI = 0 we have a square plate carrying a uniformly dis-
tributed load and supported only at the corners. The value of » has but little influence
on the deflections and moments at the center of the plate; its effect on the edge
moments is more considerable. Taking, for example, » = 0.3 the values given in the
last line of Table 48 for » = 0.25 should be replaced by 0.249, 0.1090, and 0.1404
respectively.!

The problem of bending of a centrally loaded square plate fixed only at the corners
has also been discussed.? If the load P is distributed uniformly over a small area of a
rectangular or circular outline, an expression can be deducted® for moments taking
place at the center of the loaded area. Taking, for example, a square loaded area
u by u, those moments for » = 0.3 can be expressed in the form

M, =M, = (0.1034 log g + 0.129) P ®)

Having this solution and also the solution for the uniformly loaded square plate
supported at the corners, the problem shown in Fig. 104a can be treated by the method
of superposition. It is seen that if a square plate with free edges is supported by the

1See H. Marcus, “Die Theorie elasticher Gewebe,” 2d ed., p. 173, Berlin, 1932;
various cases of plates fixed at points were discussed by A. Nddai, Z. angew. Math.
Mech., vol. 2, p. 1, 1922, and also by C. J. Thorns, J. Appl. Mechanics, vol. 15, p. 73,
1948.

2 See Marcus, tbid.

3 See 8. Woinowsky-Krieger, Ingr.-Arch., vol. 23, p. 349, 1955.
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uniformly distributed reactions, the bending moments at the center are obtained by
subtracting from expression (b) the value M, = M, = 0.1090qa? given above for the
uniformly loaded square plate supported at the

corners and having » = 0.3. In this way weobtain a

M, =M, = (0.1034 log% + 0.020>P ©

valid for » = 0.3. The distribution of bending
moments along the middle line of the footing slab
is shown in Fig. 104b for u/a = 0.1 and u/a = 0.2.
A uniform distribution of the pressure may be as-
sumed for a very rigid footing slab resting on soft
subgrade. More general hypotheses regarding the
law of distribution of that pressure will be postu- P
lated in Chap. 8.

B50. Semi-infinite Rectangular Plates under
Uniform Pressure. The deflection surface and the .
stress distribution near the short side of long Ln—rn—‘—n—n—n-m—l—*- P/o2
rectangular plates are practically the same as those T ¢
at the ends of semi-infinite plates, as shown in Fig. Fie. 104
105. It is mainly for this reason that the simple ’
theory of these latter plates deserves consideration. Let the load be uniformly dis-
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tributed over the area of the entire plate and let the edges z = 0, z = a be simply
supported.!

1 The following solutions of the problem are due to A. Nddai; see his book ‘‘Elas-
tische Platten,” p. 72, Berlin, 1925.
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The deflection surface of the plate may be expressed by

w = w; + w: (@)
in which
L]
1 .. 490t 1 . mrz
- — 2qx3 3y} = e - sip ¢
wy 52D (z azd + a’x) s s sin a ®)
m=13,5

is the particular solution of the equation AAw = q/D, q being the intensity of the load,

and
o
4 4
s = 20 2 ( Au + B m_fy> —— ©
x5D a a

m=1,3,

o

is a solution of the equation AAw = 0, yielding zero deflections at ¥y = . The
coefficients A,, and B,,, which are still at our
disposal, must be determined so as to satisfy
the respective conditions along the edgey = 0
of the plate. The following three cases may
be considered.
The edge y = Qs simply supported (Fig. 105a).
--g-- r»-o-— --g-- The particular conditions to be fulfilled are
w = 0 and 8%w/dy? = 0 for y = 0. Substitu-
tion of the series expressing w = w, + w; in

0 0, :
X X X

o

¥ y those conditions yields the values 4,, = —1/mé
la) (b) {c} and B,, = A.,./2 for the coefficients. Thus we
Fie. 105 arrive at the deflection surface
4qa* mxy\ e""TvIe | max
=, — = 1+ == = d
= xsD + 2a ms sm a @

in which w, is given by Eq. (b).
Of particular interest are the bending moments M, of the plate. Along the middle
line z = a/2 of the plate we have, by differentiation,

2 2 ~mTyla
M, = net 40! 1 -y mry _ L] (—1)tm=1i2 %)
8 s 2a md
m=13,5 ...

Making use of the condition aM,/dy = 0 and taking into account the first term of the
rapidly convergent series, we conclude that M, becomes a maximum at

1+

1 —»

a
y=-
T

Table 49 gives the largest values of bending moments together with the largest values
of the edge reactions V, and the forces R acting downward at the corners of the plate.

It should be noted that the value 0.0364qa? exceeds by 45 per cent the value
0.0250qa? of the largest moment M, of an infinitely long plate, the value of Poisson’s
constant being the same in both cases.
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TaBLE 49. Lareest BEnDING MoMENTs AND REAcTIONS OF A UNIFORMLY
LoapEp SEMI-INFINITE PLATE WITH ALL EDGEs SiMpLY SUPPORTED
(F1a. 105a)

1 (M2) max (My) max (Vy)max 4

it
8

a
0.2 | 0.12500a% = = g, v 0.0364¢a%, z = 5'25: ¥ = 0.4800.520qa, z = 2y = 0| 0.1085¢a?

a
0.3 | 0.1250qa% z = —2~7 v

[l
8

0.0445ga%, z = g, v =0.59 | 0.502¢a, z = g, v = 0 | 0.0949ga?

The edge y = 0 is built in (Fig. 105b). Following the general procedure described
above, but using this time the edge conditions w = 0, dw/8y = Oon y = 0, we obtain,
instead of expression (d), the result

0
at m e~m7yla . mxx
w=w1—4—‘51— (1+—Ly) s—sin —— (§2]
w5D 2 a m a

m=13,5,...

in which w; again is given by Eq. (). The corresponding bending moment

o

vga?  4qa? mwry e~mvle  mmx
M,,=——8—+—7—; (1——u)a—1——u e . )

m=1.3,5,...

becomes a maximum at z = a/2and y = 2a/x(1 — »). Assuming » = 0.3 we obtain
y = 0.91a and (M )max = 0.0427¢a?, whereas the assumption of » = 0.2 yields the
values of 0.0387¢a? and y = 0.80q, respectively. It can be shown, also, that the

variation of the clamping moments along the short side y = 0 of the plate obeys the
simple law

M)y = — % (ax — z?%)

Observing that at large values of y the deflection surface of the plate can be assumed
cylindrical, we have there

q
M. = (az — 29 M,,=vg-(a:c—:c‘)

Thus, the distribution of the edge moments (g) is identical with the distribution of the
moments M, across the plate at y = « but with opposite sign.

The edge y = 0 s free (Fig. 105c). If the conditions prescribed at ¥ = 0 are
P*w  w PBw w
—_— 4 — = — 2 p) ——— =
ax? ay? 0 oy +( ) dx? dy

then, making use of expressions (a), (b), and (c), we arrive at the deflection surface

@®

4pqat 14+»v may\e™vis  max
w wx+(3_'_”)7'_‘s z <l—v— a) o sm—a— (h)

m=13,35,...
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The deflection and the bending moment M, are largest at the middle of the free edge.
It can be proved that

3~
e =T
and (M2)yn = (3;3%1—1;) @),

w, and (M), being the deflections and the moments of an infinite simply supported

plate. We have therefore
0

7 (M) max = (3_—;2.(}_4'_") 99!
+ 8

As a last example, leading to a different form of solution,

4-%—-><——%--> let us consider a uniformly loaded semi-infinite plate with
the edge y = 0 simply supported and the edges 2 = +a/2
built in (Fig. 106). The solution can be obtained by suh-
stituting b = o« in a suitably chosen expression for the
y 4 deflections of a finite rectangular plate simply supported on
Fia. 106 the edges y = 0, b and clamped on the edges x = +a/2.
: The result of such a derivation, which is omitted here, is
" B B B Bz _pz B . Bz| . By
gt L (smh 2 + 2 cosh 2) cosh " a sinh 2 sinh — | sin @,
w—qu 0 2 sinh 8 + 8 g A

@

Differentiating expression (z) and observing that

sin%ydﬁ
T
—_— == fory >0
(i B 2 v
we obtain
sin—pl!dﬁ
anw = 2 _° __3
D Jo B8 D

Thus the differential equation for bending of plates is satisfied. It can be shown that
the required boundary conditions at ¥y = 0 and z = +a/2 are also satisfied by solu-
tion (7).

The expressions for the bending moments of the plate again involve infinite integrals,
which can be evaluated. Once more the moments M, are of interest. Assuming, for
example, » = 0.2, we arrive at a value of (M )max = 0.0174¢a?, occurring at y = 0.3a,
whereas the moment M, = »ga?/24 of an infinite plate does not exceed 0.00833qa? for
the same value of ».

It should be noted that the properties of the semi-infinite plates can be used as
a basis for calculating the deflections and bending moments of finite rectangular
plates with simply supported or built-in edges in any given combination.!

1 For this approach to the theory of rectangular plates see W. Koepcke, Ingr.-Arch.,
vol. 18, p. 106, 1950.
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61. Semi-infinite Rectangular Plates under Concentrated Loads. Assuming the
edges z = 0 and z = a of the plate to be simply supported, let us consider, regarding
the third side (y = 0), the following two cases: (1) the edge y = 0is simply supported,
and (2) the edge y = 0 is clamped.

The edge y = 0 i3 simply supported (Fig. 107). Assuming that the given load P is
applied at point z = §, y = 5 (Fig. 107), we first consider an infinite plate supported
only at the edges z = 0 and 2 = a. In order to use the method of images (see page
156), we assume a second load —P acting at the point z = §, y = —9 of the infinite
plate. The line y = 0 becomes then a nodal line of the deflection surface of the plate.
Thus the required bending of the semi-infinite plate is obtained by superposing the

[ - Q —-=—=-2
Load-P ' P H
| 9
0 1 x 4—F
l .
Load +P%, 1d gl

P
bt —— - e - —--.I

Fi6. 107

deflections [see Eq. (148), page 145} produced in the infinite plate by both concen-
trated loads. In this way we arrive at the deflection surface

%

-2 n—v)
w Pa? e————-——a 1+ x ( ) | sin ik sin Tz
) m3 a 7 v a a

m=1
L.

~2 iyt
Pa? e ¢ 14+ mx (o + o) | sin mwt in mrz
2x3D m3 a v a 8 a

m=1

or, after some rearrangement,

L]

Pa? e~m¥ls m: L. m m: m . mxf , m
w, = — l+—m smh-—f—y-——t-ycosh—g sm—fzsln—r—z
x3D m3 a a a a a a
m=]

(a)

an expression valid for 0 < y < 5 and yielding w, = 0, 0%w,/9y? = 0aty = 0. The
deflections in the range of ¥ > » may be obtained in a similar manner.

If we distribute the single load over a small area, the moments M. at the center of
that area and the corresponding deflections prove to be smaller than those of an
infinite plate without the transverse edge at y = 0. But the moment M, is again an
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exception. Let us write this moment in the form M, = M,, + m,, where M, is the
moment of the infinite plate. The correction m,, representing the effect of the load —P
in Fig. 107, is then readily found by means of the second of the eruations (151) (see
page 145). Assuming, for example, » = 0.3 we obtain m, = 0.0065P as the largest
value of the correction, the corresponding position of the load being given by z = a/2,
y = 0.453a.

o] H
D S
P
(o]
ot ’l
y
Fic. 108

The edge y = 0 is built in (Fig. 108). We begin with the calculation of the slope
of the elastic surface (a) at y = 0, for which differentiation gives

o

dw Py emTle  mat | max
—_— = — sin — sin — )
3 Jymo D m a a

m=1

Next let us submit the simply supported semi-infinite plate to couples distributed
along the edge y = 0 in accordance with the law

L4
. M
(M)ymo = flz) = Z E,, sin T”
m=1
The corresponding deflections, vanishing at y = «, we take in the form

wy = (Am + Bmy)e™wv/e sin T;'—z ©

m=1

The coefficients A, and B, in this expression are readily obtained from the conditions

* 2
@dyeo =0 —D ("a;) = 1@ @

This yields 4,, = 0, B, = Ena/2mzD, and, finally,

L

ay Enemrvis  mrz
Wy = —— ———— 8in — (e)
m a

m=1
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Since we have to eliminate the slope (b), the edge condition is

w1 dws
(ay )u—n + (_5?_/‘>v-o =0 h

Substitution of expressions (b) and (e) in Eq. {f) gives
2Py

. mnf
E, = — — ¢ ™1l gin —
a a

and expression (¢) becomes accordingly
L3

mr
—T(u‘f"l)
Pyq e . mwxt . mxx
- — sin —— sin ——
D m a a

m=1

@

wz =

The deflection surface of the semi-infinite plate clamped on y = 0 then is given by
w = wi + ws (&)

where w; denotes expression {a). As for the series (g), it can be represented in a
closed form. We have only to express the sine functions contained in (g) in terms of
the exponential functions

g(mntila) and gx(mmzila)

and to observe the expansion

e e
log (1 +¢) = i—e’—?i?—

If we proceed in this manner, expression (g) finally appears in the simpler form

cosh = (y + ) — cos — (& — §)

a a .

log - - @
cosh; (y +2) — cosa(x + £

i
" 4D

The value of the clamping moments at y = 0 is readily obtained by differentiation of
expression (z), and the result is
P 1 1 .
(Mv)u-o = - 2_;7 sinh 1%] —_ - (])
™
cosh =% — cos; x — & cosh%ﬂ - cos; z + &)

When the concentrated load approaches the built-in edge y = 0, the value given by
expression (j) tends to zero in general. If, however, { = z and 5 — 0 simultaneously,
then Eq. (j) yields

(%)

v
=
3

2wy

. a
(My)yeo = — lim -2—acoth i A = —

If, finally, = 0, the moment M, becomes zero.
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In conclusion let us consider & single load P (Fig. 109) uniformly distributed over a
straight-line segment of some length u. The moment caused by such a load at the
mid-point of the built-in edge is readily found by means of expression (§). Substitut-

7,
0 Z X

P —

Fi16. 109

ing ¢ = a/2 and P dg/u for P in this expression and integrating we obtain for the
required moment

/
Py - (etu/2 sin Eag dt
(My)tnulz.y—o = - sinh —_ ——
au a 27"1 2r £
(a—u)/2 cosh - + cos -
sin ™
2Py 2a
= — —arctan
sinh o
a

Table 50 gives the position of the load producing the numerically largest clamping
moment and the value of that moment for various values of the ratio »/a.

TasLE 50. LARGEST CLAMPING MOMENTS AT £ = a/2 DUE 10 A SINGLE Loap
DISTRIBUTED OVER A LENGTH w (Fig. 109)

u/a 0 0.1 0.2 0.4 0.6 0.8 1.0
n/a 0 0.147 0.203 0.272 0.312 0.321 0.343
M,/P | —0.318} —0.296 | —0.275 | —0.237 | —0.204 | —0.172 | —0.143




CHAPTER 7

CONTINUOUS RECTANGULAR PLATES

62. Simply Supported Continuous Plates. Floor slabs used in build-
ings, besides being supported by exterior walls, often have intermediate
supports in the form of beams and partitions or in the form of columns.
In the first case we have to deal with proper continuous plates; in the
case of columns without intermediate beams we have to deal with flal
slabs. The floor slab is usually subdivided by its supports into several

s t
T T
o} o Voo _ﬂ“
!
1S it b4
EEAEA N RENE
(a)
11134
T‘—-—a,-—-><——-az-—+*—-—a3—:r
(b)
YR YEEY)
A 7AN x —A
(©)
Fic. 110

panels. Only continuous plates with panels of rectangular shape will be
considered in this chapter.

We begin with a case allowing a rigorous solution by methods already
used in the foregoing chapter. A rectangular plate of width b and length
a; + a; + a;, supported along the edges and also along the intermediate
lines ss and ¢, as shown in Fig. 110, forms a simply supported continuous
plate over three spans. We suppose that the intermediate supports
neither yield to the pressure in the transverse direction nor offer any
resistance to the rotation of the plate with respect to the axes ss and .
With these assumptions, the bending of each span of the plate can be
readily investigated by combining the known solutions for laterally
loaded, simply supported rectangular plates with those for rectangular
plates bent by moments distributed along the edges.

229
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Let us begin with the symmetrical case in which
a1 = Q2 = A3 = 4
and the middle span is uniformly loaded while the side spans are without
load (Fig. 110b). Considering the middle span as a simply supported

rectangular plate and using expression (b) of Art. 44 (see page 198), we
conclude that the slope of the deflection surface along the edge s = a/2 is

dw
0%2 ) vymal2

- 20 (ZDOE g MY (B
~ =D m* €98 73~ \cosh? Bm

m=13,5,...

— tanh B,,.) (a)

where 8, = mwa/2b. Owing to the continuity of the plate, bending
moments M, are distributed along the edges z2 = +a/2. From sym-
metry it is seen that these moments can be represented by the following
series:

@

(Mz)z,—iaﬂ = z (_. 1) (m-1)/2E cos 7_",;'_1/ (b)

m=13,5,...

The deflections w, produced by these moments can be obtained from
Eq. (173), and the corresponding slope along the edge z: = a/2 [see
Eq. (¢), page 198] is

() - S pcue
62?2 Zgemaf 2 21rD b m

m=13,5,...
mry
cos —= (tanh Bn + cosh’ i > (c)

From the condition of continuity we conclude that the sum of expres-
sions (@) and (c) representing the slope of the plate along the line z; = a/2
must be equal to the slope along the same line of the deflection surface
of the plate in the adjacent span. Considering this latter span as a
simply supported rectangular plate bent by the moments (b) distributed
along the edge z; = —a/2, we find the corresponding deflection w: of
the plate by using Eq. (176) (see page 185), from which follows

= mwy (—1)tm=D/2
W = 155D E,, cos —2 5
m=135,.
[COSh Bm (’3'" tanh 8, cosh m1£x 3 m’g”a sinh msz)
I a .y MWLy MAT3 mmwxs
sinh G (ﬁm coth B, sinh 5 5 cosh B )] )
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The corresponding slope along the edge z; = —a/2 is

0w, En m—1)/2
(8753 )z,=—a/2 41I'D Z ( 1)

m=1,3,5,,
ZnLy Bm . B
cosh 5 (tanh Bm + coth 8. + Gosh? B, ~ mimhe ﬁm> (e)

The equation for calculating the coefficients E,, is

w) o, (m)  _ (ow
022 / zyemar2 0%2 Jpmay2 0%3 Jzymas2

Since this equation holds for any value of y, we obtain for each value of
m the following equation:

20 1 [ B b B B
7D mt (cosh2 Bom tanh 4 "') 2xD m (tanh bn + cosh? B,,

b_En (tanhﬂm—l—cothﬂ,,, Bn  __ Bn ) 9

“4&Dm cosh? 8,  sinh? 8,
from which

8gb? 8- — tanh 8, cosh? 3,
73m?® 3 tanh B, cosh? B, + coth B cosh? B + 38m — Bm cOth? B
9

It is seen that E, decreases rapidly as m increases and approaches the
value —2¢b2/r*m3. Having the coefficients E, calculated from (g), we
obtain the values of the bending moments M, along the line # from
expression (b). The value of this moment at y = 0, that is, at the
middle of the width of the plate, is

Em

(Mz)z,=;(:a/2.y=0 = Em(_ 1)(m—1)/2
m=13,5,...

Taking, as an example, b = a, we have 8, = mnr/2, and the formula (g)

gives

201555  E; = q" 0.0092 E; = Sq“ 0.0020
(Mz)zz=i;ﬂ/2,ll=0 = —00381qa2

E, =

8ga? . ... 8
w

The bending moments at the center of the middle span can be readily
obtained by combining bending moments of a simply supported plate,
bent by uniform load, with moments corresponding to the deflections w:.
Taking, for example, @ = b and v = 0.2, which is a convenient value for



232 THEORY OF PLATES AND SHELLS

concrete, we get for the first of these moments the values of

12
13

{see Table 8, page 120) and for the second moments the values
(M), = —0.0067ga? and (M) = —0.0125¢a?
Therefore
(M) zgmo,ymo = 0.0375ga? (M) zsm0.y=0 = 0.0317qa?

If a side span is uniformly loaded, as shown in Fig. 110c, the deflection
surface is no longer symmetrical with respect to the vertical axis of sym-
metry of the plate, and the bending moment distributions along the lines
ss and tt are not identical. Let

(Mo = (M) = 0.0479 X ga* = 0.0442¢ga?

0

(Mz)zx—allz = ("" 1) (m—l)lem_ cos %

m=l,i.5,... (h)
(M) zemayz = (= 1)™=DI2F, cos m__b"r_y

m=135,...

To caleulate the coefficients E,, and F,, we derive two systems of equa-
tions from the conditions of continuity of the deflection surface of the
plate along the lines ss and . Considering the loaded span and using
expressions (a) and (e), we find that the slope of the deflection surface
at the points of the support ss, for a; = a2 = a; = a, is

dw _ 2¢gb® (=12 gy ( Bm )
(‘3171 smaj2 ®D z Tt %% 57 \Gosh? A tanh 8.

m=135,...
_ b (=1 mry (
4TD 2 E, —m——" COs. T tanh B
m=1335,...
ﬁﬂl ﬂm R
+ coth Bm + cosh’ ﬂm - Sinh’ Bm> (1-)

Considering now the middle span as a rectangular plate bent by the
moments M, distributed along the lines ss and ¢ and given by the series
(h), we find, by using Eq. (175) (see page 184),

o __b (—1)™=Di2 gy
(3752):.-.01- " 4D z B a sy [(E.. + F)

m=135,...
Brm

(m + tanh ) + (En — Fu) (coth B — m‘%ﬂ)] )
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From expressions (z) and (j) we obtain the following system of equations
for caleulating coefficients E,, and Fp:

8gb?

A 3m3

where the following notations are used:

__ Ba _ Bm
An = cosh? B, tanh 8, B, = (cosh’ 5. + tanh ﬂ,,.)

__ Ba
Cn = simh? B, coth B,

)

The slope of the deflection surface of the middle span at the supporting
line #t, by using expression (7), is

@

m) b S e
(axz)zg—aﬂ N 4‘II’D m (E + Fm)

m=1305,...

Bm 8
(cosh2 B + tanh ﬁm) + (Fn — En) <coth Bm — WE)]

This slope must be equal to the slope in the adjacent unloaded span
which is obtained from expression (c) by substituting F,, for E,.. In this
way we find the second system of equations which, using notations ({),
can be written in the following form:

B,,.(Em + Fm) + Cm(Fm - Em) = —(Bm + Cm)Fm (m)

From this equation we obtain

_ Cm _ Bm
Fo = En 3B T Co) ™

Substituting in Eq. (k), we find
8¢a’ 2(Bw + C»)
" x3m3 (Cm — Bm)? — 4(Bm + Cn)?

Substituting in each particular case for 4,, B,, and C.,, their numerical
values, obtained from Eqs. (I), we find the coefficients E,, and F,,; and
then, from expressions (h), we obtain the bending moments along the
lines ss and &t. Take, as an example, b = a. Then 8, = mx/2, and we
find from Eqgs. ()

4, = —0.6677 B; = —1.1667 C, = —0.7936
A = —0.9983 B; = —1.0013 Cy = —0.9987

For m larger than 3 we can take with sufficient accuracy
m=Bn=0Cn=—1

E,=4 (0
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Substituting these values in Eq. (0), we obtain

Bi=-01m20 B = - o206 Eo= — 22 0.2500
The moment at the middle of the support ss is
(M) zmai2ym0 = E1 — E3 4 Es — - - - = —0.0424¢a?
For the middle of the support it we obtain
(M) symajpiymo = F1 — F3 + F5 — - - - = 0.0042qa?

Having the bending moments along the lines of support, the deflections
of the plate in each span can readily be obtained by superposing on
the deflections produced by the lateral load the deflections due to the
moments at the supports.

The bending moments in the panels of the continuous plate can be
obtained in a similar manner. Calculating, for example, the moments
at the center of the middle span and taking » = 0.2, we arrive at the

values
9y Sin
—iz el (M.)srmogmo = —0.0039ga?
: ’ | l : Al (My)z,—o,u—o = _00051(1(1,2
1 O 1 Oy T
] l "'L: Xisf _QTN The equations obtained for three
LA LA I spans can readily be generalized and
N ke —-ai4 N expanded for the case of any number of
4 a) . spans. In this way an equation similar
‘;iﬂgm—ﬂ;b:mz{?ﬂ to the three-moment equation of con-
(b) tinuous beams will be obtained.! Let
Fre. 111 us consider two adjacent spans 7 and

1 4+ 1 of the length a; and a;., respec-
tively (Fig. 111). The corresponding values of the functions (I) are
denoted by A%, Bi, Ci and A, Bift, Citt. The bending moments along
the three consecutive lines of support can be represented by the series

@

N 23
M-t = (—1)VI2BE cos Y
m=1,3,5
«
. T
Mi = (—1)m=DI2fE cos —bﬁ
m=1,35
L3
. . mm
Mgt = (—1)=—bI2EH! cos Ty
m=135,...

! This problem in a somewhat different way was discussed by B. G. Galerkin; see his
“Collected Papers,”’ vol. 2, p. 410, Moscow, 1953.
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Considering the span ¢ + 1 and using expressions (a) and (j), we find

ow _ 2gqigb? (—1)m—ni2 mrY i
(3w¢+x>z.-ﬂ-—<am>/2 B =D Z m? cos - A

m=1305,...
~ 1)m—1)/2
T Y e e R Y
m=13,5,...

— (E&' + ELCH (p)
In the same manner, considering the span ¢, we obtain

o

ow _ 2g¢b® (—1)tm=Di2 mry ,;
(a—x;>z.-=m/2 B =D 2 m? e08 b Am

m=13,5,...
b — 1)m—1)/2
o5 ), T o M E + BB
m=135,...

+ (B — EZNCL (9)

From the condition of continuity we conclude that

_aw _ [ow
CLZTRY PARNPNTL O%; ) symais2

Substituting expressions (p) and (¢) in this equation and observing that
it must be satisfied for any value of y, we obtain the following equation
for calculating Ei!, Ei, and Ei¥i:

Ei-BE — C4) + BL(Bh + Ch + Bt + (i)
2
+ BB - O = = S ¥+ gidl) (177)

Equatipns (k) and (m), which we obtained previously, are particular cases
of this equation. We can write as many Eqs. (177) as there are inter-
mediate supports, and there is no difficulty in calculating the moments
at the ‘ntermediate supports if the ends of the plate are simply supported.
The left-hand side of Eq. (177) holds not only for uniform load but also
for any tyve of loading that is symmetrical in each span with respect to
the x and y axes. The right-hand side of Eq. (177), however, has a
different value for each type of loading, as in the three-moment equa-
tion for beams.

The problem of continuous plates carrying single loads can be treated
in a similar manner. In the particular case of an infinite number of
equal spans with a single load applied at any point of only one span, the
deflection of the plate may be obtained by resolving an equation with
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finite differences for the unknown coefficient Ei, as functions of the
index 1.!

If the intermediate supports are elastic, the magnitude of the coeffi-
cients Ei is governed by the five-term equations, similar to the five-
moment equations of the theory of continuous beams.? The torsional
rigidity of supporting beams, tending to reduce the rotations of the plate
along the support, can also be taken into account in considering the
bending of continuous plates.?

As the simplest example of a continuous plate carrying a concentrated load, let us
consider an infinitely long plate simply supported along the sides z = 0, = a, con-
tinuous over the support y = 0, and submitted to a concentrated load P at some point
z = § y =q (Fig. 112a¢). The load and boundary conditions under consideration
can be readily satisfied by superposition of cases shown in Fig. 112b and ¢. In the
case of Fig. 112b each panel of the plate is
simply supported along the line y = 0, and
the elastic surface is given by the expression
+w;/2, in which the sign must be chosen
according to whether y is greater or less
than zero, w; denotes the deflections (a) of
Art. 51,and |y| < |n|. Inthe caseshownin
Fig. 112¢, each panel is clamped along the
edge y = 0, and the corresponding deflec~
tions are w/2, w being given by expression
(h) in Art. 51. We have therefore

P

. -J“’"’

0 X

KN
<
¥

[

[}

]
~

H
ool

w=w;+%2 forn 2y >0

() ® (@ s
Fic. 112 =5 (fory<o

and the moments along the edge y = 0 become equal to one-half of the clamping
moments of a semi-infinite plate with one edge built in, these latter moments being
given by expression (j) of Art. 51.

b3. Approximate Design of Continuous Plates with Equal Spans.*
The layout of a floor slab usually involves continuity not only in one
direction, as assumed in Art. 52, but rather in two perpendicular direc-
tions. A continuous slab of this kind is shown in Fig. 113. The spans
and the thickness of the plate are equal for all rectangular panels. Each

! See S. Woinowsky-Krieger, Ingr.-drch., vol. 9, p. 396, 1938.

% Continuous plates on elastic beams were considered by V. P. Jensen, Univ. Illinois
Bull. 81, 1938, and by N. M. Newmark, Un<v. Illinois Bull. 84, 1938.

3 See K. Girkmann, “Flichentragwerke,” 4th ed., p. 274, Vienna, 1956.

¢ The method given below is substantially due to H. Marcus; see his book ‘‘Die
vereinfachte Berechnung biegsamer Platten,” Berlin, 1929. The coefficients of Tables
51 to 56 are, however, based on solutions considered in Chap. 6 and on the value of
Poisson’s ratio » = 0.2, whereas Marcus uses for the same purpose a simplified theory
of rectangular plates and assumes » = 0,
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panel may carry a dead load goand, r S
possibly, a live load p, both distri- @
buted uniformly over the area of l“"
the panel, the largest intensity of o v
the load being ¢ = qo + 2. @

Let us begin with the computation

y
of bending moments at the inter- [_
mediate supports of the floor plate.

®
|
Calculations show that these mo- HEON
l
@

ments depend principally on the
loading of the two adjacent panels,
and the effect of loading panels
farther on is negligible. It is justi-
fiable, therefore, to calculate the
moments on supports by assuming
the load ¢ uniformly distributed Fre. 113

over the entire floor slab (Fig. 114a). Neglecting, at first, the rotations
of the plate along the intermediate supports, each panel in Fig. 114a will
have the same conditions as a rectangular plate clamped along the inter-
mediate supports and simply supported at the external boundary of the
floor slab.

[~~ao*P

(0}

I+
e

:‘_qo.,.?

(b) {c)
Fre. 114
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The maximum bending moments for plates with such boundary con-
ditions have been tabulated (see Tables 51 to 56). Six possible combi-
nations of simply supported and built-in edges of a rectangular plate are
shown at the head of these tables. The direction of the z and y axes in
each panel of the slab (Fig. 113) must be chosen in accordance with Figs.
116 to 121; span e must be measured in the direction of the z axis and
span b in the direction of the y axis of the respective panel. The six
cases shown in Figs. 116 to 121 may be numbered 1 to 6, and the corre-
sponding indices are attached to the coefficients of Tables 51 to 56.

To illustrate the application of the tables, let us calculate the bending
moment at the middle of the support tw (Fig. 113). We calculate for
this purpose the clamping moment of both panels adjacent to the sup-
port. For panel 2 we have to use the formula

M 2w = qulz (a)
and Table 52, | being the smaller of spans @ and b of the panel. In a
similar manner we obtain the clamping moment of panel 6 from the
expression

Mo = vegl® (b)

by making use of Table 56. The moment in question now is given with
sufficient accuracy by

Mtw = %‘(MZy + MG:) (C)

and the moments on other intermediate supports are obtainable in a sim-~
ilar manner.

It should be noted that Eq. (¢) expresses nothing else than a moment-
distribution procedure in its simplest form, 7.e., a procedure in which the
“carried-over’” moments from other supports, as well as any difference
in the stiffness values of both adjacent panels, are neglected. Such a
simplified procedure is far more justified in the case of a continuous plate
than in the case of a continuous beam.

Next, let us consider the bending moments at the center of panel 6
(Fig. 113) as an example. The load distribution most unfavorable for
these moments can be obtained by superposition of loads shown in Fig.
114b and .

The contribution of the uniformly distributed load ¢o + p/2 to the
values of the moments is obtained by use of Table 56, which gives

M= as(a0+5) 0 M= ao(a0+B)0 @

l denoting the smaller of both spans of panel 6.
Let us consider now the effect of the checkerboard loading as shown in
Fig. 114c. The boundary conditions of each panel here are the same ag
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those of a simply supported plate, and the moments at the center are
readily computed by means of Table 51 for case 1. The load +p/2
acting in panel 6 yields

My =P oy =B ©

and the largest moments at the center of panel 6 are

Mﬁx = Méz + Mé; (f) $
M6v=Méy+Mt,5:, @ @ ol

(o) [y y @ y—30 ++
In order to calculate the largest nega- _|S —|x _l e

tive moments at the same point we
have only to alter the sign of the load

in Fig. 114¢. Stillusingresults (d) and ) ~To
(e), we then have IF&EH;‘:'CH;&%E’:H;{_,%
Me. = Mg, — M,

Mo, = M, — M, @ R L
T

As a second example of the application of
the approximate method, let us compute
the bending moments of the continuous o
plate shown in Fig. 115, which was treated (@) Xk A N AN
rigorously in Art. 52.

First we choose the direction of the z and ¥
¥ axes in accordance with Figs. 117 and 118. () };HIH:H:EIEEEEEH;(_:FD
Assuming next a load ¢ = ¢o + p uniformly T Yo
distributed over the entire surface of the

plate (Fig. 115b) and using the coefficients ¥4
given in Tables 52 and 53 for cases 2 and 3, (f) pppyyr 11} =2
with b/a = 1, we obtain at the center of the 3P
support ss the moment Fia. 115
0.0840 + 0.0697
My = = ——————— (g0 + p)a® = —0.0769(g, + p)a? h)

2

the procedure being the same as in the foregoing example [Eq. {(¢)]. Using the rigorous
solution, the numerically largest moment at ss is produced by the load distribution
shown in Fig. 115¢. Superposing the bending moment obtained on page 231 upon
those calculated on page 234, the exact minimum value of the moment M,, proves
to be

Mll
or M.,

—[0.0381(gs + p) + 0.0424(gs + p) — 0.0042¢,la?
—(0.0805¢, + 0.0763p)a? (@)

Putting, for instance, ¢o = ¢/3, p = 2¢/3, the result (i) yields —0.0777ga? as compared
with the value —0.0769¢a? obtained by the approximate method.

Finally, let us calculate the largest bending moment at the center of the middle
panel, the most unfavorable load distribution being such as shown in Fig. 115d.
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TaBLE 51. BENvING MoOMENTS FOR UNIFORMLY LOADED PLATES IN CaAsE 1
» = 0.2, | = the smaller of spans a and b

Center of plate

b/a Factor
M, = agl?| M, = Bql2
a1 B
0 0.0250* 0.1250
0.5 0.0367 0.0999
0.6 0.0406 0.0868
0.7 0.0436 0.0742 qbt
0.8 0.0446 0.0627
0.9 0.0449 0.0526
1.0 0.0442 0.0442 —_—
1.1 0.0517 0.0449
1.2 0.0592 0.0449
1.3 0.0660 0.0444
1.4 0.0723 0.0439
1.5 0.0784 0.0426
qa?
1.6 0.0836 0.0414
1.7 0.0885 0.0402
1.8 0.0927 0.0391
1.9 0.0966 0.0378
2.0 0.0999 0.0367
» 0.1250 0.02501

* Munax = 0.0364¢b2 at 0.48b from the short edge.
t Muax = 0.0364¢a? at 0.48a from the short edge.

Combining the load in accordance with Fig. 115¢ and f and using the coefficients «
and 8 of Tables 53 and 51, we arrive at the following expressions for these moments:

M, = [0.0216 (qo + ’—2’) + 0.0442 —’; ] a? = (0.0216g, + 0.0329p)a?

M, = [0.0316 (qn + g) + 0.0442 12’] a? = (0.0316g, + 0.0379p)a?

@
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TapLE 52. BENDING MoMENTS FOR UNIFORMLY LoOADED PraTes IN Casg 2

» = 0.2; | = the smaller of spans a and b

Center of plate x(‘efldiz:i
b/a Factor
M, = axql? | My = B:ql2 | M, = 5qi2
%3 2] .23
0 0.0125 0.0625 —0.1250
0.5 0.0177 0.0595 —-0.1210
0.6 0.0214 0.0562 ~0.1156
0.7 0.0249 0.0514 —0.1086 gbt
0.8 0.0272 0.0465 —0.1009
0.9 0.0294 0.0415 —0.0922
1.0 0.0307 0.0367 —0.0840 |——-
1.1 0.0378 0.0391 ~0.0916
1.2 0.0451 0.0404 —0.0983
1.3 0.0525 0.0415 —0.1040
1.4 0.0594 0.0418 —0.1084
1.5 0.0661 0.0418 —-0.1121
qa’
1.6 0.0722 0.0414 —0.1148
1.7 0.0780 0.0408 -0.1172
1.8 0.0831 0.0399 —0.1189
1.9 0.0879 0.0390 —0.1204
2.0 0.0921 0.0382 —0.1216
© 0.1250 0.0250* —0.1250

* Mmax = 0.0387ga? at 0.80a from the built-in edge.

It is of interest to verify the foregoing approximate values by use of the results
obtained on pages 232 and 234. Distributing the load again as shown in Fig. 115d

and interchanging the indices 2 and y in the results mentioned above, we have

M. = 0.0317(g0 + p)at — (0.0051 + 0.0051)gqa?
= (0.0215¢, + 0.0317p)a?
M, = 0.0375(g0 4+ p)a® — (0.0039 + 0.0039)q.a?
= (0.0297¢, + 0.0375p)a?

Setting again g¢o = ¢/3 and p = 2¢/3, we obtain for the moments the exact values
of 0.0283¢a? and 0.0349¢a?, respectively. Eqs. (j) yield for the same moments the
approximate values of 0.0291ga? and 0.0358¢a?

(%)
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TaBLE 53. BENDING MoMENTS FOR UNIFORMLY LOADED PLATES IN Casg 3
v = 0.2, I = the smaller of spans ¢ and b

Center of plate Eiﬁidi?lg:

b/a Factor

M. = txaql2 M,, = 63ql2 M,, = Baqlz

a3 Bs 53
0 0.0083* 0.0417 —0.0833
0.5 0.0100 0.0418 —0.0842
0.6 0.0121 0.0410 —0.0834
0.7 0.0152 0.0393 —0.0814 gb?
0.8 0.0173 0.0371 —0.0783
0.9 0.0196 0.0344 —0.0743
1.0 0.0216 0.0316 -0.0697 |j—
1.1° 0.0276 0.0349 —0.0787
1.2 0.0344 0.0372 —0.0868
1.3 0.0414 0.0391 —0.0938
1.4 0.0482 0.0405 —0.0998
1.5 0.0554 0.0411 —0.1049
ga®

1.6 0.0620 0.0413 —0.1090
1.7 0.0683 0.0412 —0.1122
1.8 0.0741 0.0408 —0.1152
1.9 0.0795 0.0401 —0.1174
2.0 0.0846 0.0394 —0.1191
o 0.1250 0.0250% —0.1250

* Muax = 0.0174¢b? at 0.30b from the supported edge.
t Maax = 0.0387¢a? at 0.80a from the built-in edge.

The largest error of the approximate method ensues from the fact that the largest
positive moments do not always occur at the center of the panel. This is especially
far from being true in the case of distinctly oblong rectangular panels. If b, for
example, is much larger than a, the largest moment M, occurs near the short side of
the rectangular plate. Some values of these largest moments are given in footnotes to
the tables, and they should be considered as the least possible values of the corre-
sponding columns, regardless of the actual ratio b/a.

Tt should be noted, finally, that in the unsymmetrical case 4 neither M. nor M,



CONTINUOUS RECTANGULAR PLATES 243

NN\
-
=

)

l(
0.

P = iy

04aq
Fi1c. 119

TaBLE 54. BENDING MOMENTS FOR UNIFORMLY LOADED PraTes IN Case 4*
v = 0.2, ] = the smaller of spans ¢ and b

Center of plate Middle of fixed edge A; I==0 (;.bla
b/a Factor
Mz = auqlz IM,, = ﬂcql’ M,; = ’14ql= M,, = 64ql’ anx = 64412
ay B4 Y4 84 €

0.5 0.0191 0.0574 —-0.0787 —-0.1180 0.0662

0.6 0.0228 0.0522 —0.0781 -0.1093 0.0570

0.7 0.0257 0.0460 —0.0767 —0.0991 0.0501 gb?
0.8 0.0275 0.0396 —0.0746 —0.0882 0.0430

0.9 0.0282 0.0336 -~0.0715 —0.0775 0.0363

1.0 0.0281 0.0281 —0.0678 —0.0678 0.0305 |}—m—
1.1 0.0330 0.0283 —0.0766 —0.0709 0.0358

1.2 0.0376 0.0279 —0.0845 -0.0736 0.0407

1.3 0.0416 0.0270 —=0.0915 —0.0754 0.0452

1.4 0.0451 0.0260 —0.0975 —0.0765 0.0491

1.5 0.0481 0.0248 —0.1028 —0.0772 0.0524 ga?
1.6 0.0507 0.0236 —0.1068 —0.0778 0.0553

1.7 0.0529 0.0224 —0.1104 -0.0782 0.0586

1.8 0.0546 0.0213 —0.1134 —0.0785 0.0608

1.9 0.0561 0.0202 —0.1159 —0.0786 0.0636

2.0 0.0574 0.0191 —-0.1180 —0.0787 0.0662

* The authors are indebted to the National Research Council of Canada for a grant
which greatly facilitated the computation of the table.

is the largest bending moment at the center of the plate. Table 54 shows, however,
that the difference between Mmsx and the largest of the values of M, and M, does not
exceed 10 per cent of the latter values and that the general procedure described on
page 238 is justified in case 4 as well.

For the purpose of the design of isolated panels without continuity (Fig. 119),
Table 54 contains the values of the largest moments M., actingat z = 0.1a,y = 0.1b;
for rectangular plates the direction of omax is practically that of the shorter span and
for square plates that of the diagonal z = —y. For the sake of a greater security
those values of M max may also be used in caleulating continuous panels of oblong shape.
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N

Fig. 120

TaBLE 55. BEnpING MOMENTS FOR UNIFORMLY LOADED PLATES IN Case 5*
v = 0.2, ! = smaller of spans ¢ and b

Center of plate Middle of fixed edge
b/a Factor
M, = awql? | M, = Bsql? M vsgl? M, = 8ql*
as Bs s s
0.5 0.0206 0.0554 —-0.0783 —0.114
0.6 0.0245 0.0481 —-0.0773 —~0.102
0.7 0.0268 0.0409 —0.0749 —-0.0907 b2
0.8 0.0277 0.0335 —0.0708 —0.0778 ¢
0.9 0.0274 0.0271 —0.0657 —0.0658
1.0 0.0261 0.0213 ~0.0600 —0.0547 |~———
1.1 0.0294 0.0204 —0.0659 —0.0566
1.2 0.0323 0.0192 —0.0705 —0.0573
1.3 0.0346 0.0179 —0.0743 —-0.0574
1.4 0.0364 0.0166 —0.0770 —~0.0576
1.5 0.0378 0.0154 —0.0788 —0.0569
1.6 0.0390 0.0143 —0.0803 —0.0568 ga?
1.7 0.0398 0.0133 —0.0815 —0.0567
1.8 0.0405 0.0125 —0.0825 ~0.0567
1.9 0.0410 0.0118 —0.0831 —0.0566
2.0 0.0414 0.0110 —0.0833 —0.0566
» 0.0417 0.0083 -0.0833 —0.0566

* The data of this table are due substantially to F. Czerny, Bautech.-Arch., vol. 11,
p. 33, W. Ernst & Sohn, Berlin, 1955.

The method given in this article is still applicable if the spans, the flexural rigidities,
or the intensity of the load differs only slightly from panel to panel of the continuous
plate. Otherwise more exact methods should be used.

It should be noted, however, that the application of the rigorous methods to the
design of continuous floor slabs often leads to cumbersome calculations and that the
accuracy thus obtained is illusory on account of many more or less indeterminable
factors affecting the magnitude of the moments of the plate. Such factors are, for
example, the flexibility and the torsional rigidity of the supporting beams, the restrain-
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Tasre 56. BENpDING MOMENTs FOR UNiForMLY LoADED PLaTES IN Case 6
v = 0.2, ] = the smaller of spans ¢ and b

Center of plate Middle of fixed edge
b/a _ _ Factor
M. = aqi® | M, = Beql® | M. = veql* | M, = Suql?
as Be Ye S
0 0.0083 0.0417 —0.0571 —~0.0833
0.5 0.0118 0.0408 —0.0571 —0.0829
0.6 0.0150 0.0381 —-0.0571 —-0.0793
0.7 0.0178 0.0344 —0.0569 —0.0736 qb?
0.8 0.0198 0.0299 ~0.0559 —0.0664
0.9 0.0209 0.0252 —0.0540 —0.0588
1.0 0.0213 0.0213 —0.0513 -0.0513 |[———
1.1 0.0248 0.0210 —0.0581 —0.0538
1.2 0.0284 0.0203 —0.0639 —-0.0554
1.3 0.0313 0.0193 —0.0687 —~0.0563
1.4 0.0337 0.0181 —0.0726 —0.0568
1.5 0.0358 0.0169 —0.0757 —0.0570
qa®
1.6 0.0372 0.0157 —-0.0780 —-0.0571
1.7 0.0385 0.0146 —-0.0799 —0.0571
1.8 0.0395 0.0136 -0.0812 —0.0571
1.9 0.0402 0.0126 —0.0822 —-0.0571
2.0 0.0408 0.0118 -0.0829 -0.0571
P 0.0417 0.0083 —0.0833 —-0.0571

ing effect of the surrounding walls, the anisotropy of the plate itself, and the inaccuracy
in estimating the value of such constants as the Poisson ratio ».

However, we can simplify the procedure of calculation by restricting the Fourier
series, representing a bending moment in the plate, to its initial term or by replacing
the actual values of moments or slopes along some support of the plate by their
average values or, finally, by use of a moment distribution procedure.!

54. Bending of Plates Supported by Rows of Equidistant Columns—
(Flat Slabs). If the dimensions of the plate are large in comparison with

! For such methods see C. P. Siess and N. M. Newmark, Univ. Illinois Bull. 43,
1950, where a further bibliography on the subject is given. See also the paper of
H. M. Westergaard, Proc. Am. Concrete Inst., vol. 22, 1926, which contains valuable
conclusions regarding the design of continuous floor slabs.
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the distances a and b between the columns (Fig. 122) and the lateral load
is uniformly distributed, it can be concluded that the bending in all
panels, which are not close to the boundary of the plate, may be assumed
to be identical, so that we can limit the problem to the bending of one
panel only. Taking the coordinate axes parallel to the rows of columns
and the origin at the center of a panel, we may consider this panel as a
uniformly loaded rectangular plate with sides ¢ and b. From symmetry
we conclude that the deflection surface of the plate is as shown by the
dashed lines in Fig. 122b. The maximum deflection is at the center of
the plate, and the deflection at the corners is zero. To simplify the
problem we assume that the cross-sectional dimensions of the columns
are small and can be neglected in so far as deflection and moments at
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Fra. 122

the center of the plate are concerned.! We then have a uniformly loaded
rectangular plate supported at the corners, and we conclude from sym-
metry that the slope of the deflection surface in the direction of the
normal to the boundary and the shearing force are zero at all points
along the edges of the plate except at the corners.?

Proceeding as in the case of a simply supported plate (Art. 30), we
take the total deflection w in the form

w = wy + W, (a)
gb* 4y°\?
r - ——— — ——

where w1 = 57h <1 b2 (b)

1In this simplified form the problem was discussed by several authors; see, for

example, A. N4dai, Uber die Biegung durchlaufender Platten, Z. angew. Maih.

Mech., vol. 2, p. 1, 1922, and B. G. Galerkin, “Collected Papers,” vol. 2, p. 29, Mos-
cow, 1953.

2 The equating to zero of the twisting moment M., along the boundary follows from
the fact that the slope in the direction of the normal to the boundary is zero.
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represents the deflection of a uniformly loaded strip clamped at the ends
y = 1b/2 and satisfies the differential equation (103) of the plate as well
as the boundary conditions

dw, _ _ _p 8 (3w 0w _
(_0—23—)@#/2 =0 (Qz)emtarz = — D 6:1:( E7) + Y ) oesar 0 (o

The deflection w, is taken in the form of the series

w©

wy = Ao + Y. cos 7—’%@ @

m=246,...

each term of which satisfies the conditions (¢). The functions ¥, must
be chosen so as to satisfy the homogeneous equation

AAw; = 0 (e)

and so as to make w satisfy the boundary conditions at the edges
y = £b/2. Equation (e¢) and the conditions of symmetry are satisfied
by taking series (d) in the form

- mry MY inh 7Y mrz
wy = Ag + (A,,,cosh a + B, a sinh 2 )cos a 62

m=24,6,...

where the constants A¢, A», and B, are to be determined from the
boundary conditions along the edge y = b/2. From the condition con-
cerning the slope, viz., that

(910> - (9&1 + @a) _
Y Jy=bi2 dy Y Jy=bi2

we readily find that

tanh a,
Bn = —4a o, + tanh a, )
in which, as before,
mwb
=g *)

Considering now the boundary condition concerning the shearing force,
we see that on a normal section nn (Fig. 122b) of the plate infinitely
close to the boundary y = b/2, the shearing force Q, is equal to zero at
all points except those which are close to the column, and at these points
@, must be infinitely large in order to transmit the finite load 4gab to the
column (Fig. 122¢) along an infinitely small distance betweenz = a/2 — ¢
andz = a/2 + ¢. Representing @, by a trigonometric series which, from
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symmetry, has the form
Q =Co+ 2 Cn cos’? 0)

m=246,...
and cbserving that

Q, =0 for0<z<2_¢

2
a/2
and [ Qdz = — gab
a/2—¢ 4
we find, by applying the usual method of calculation, that
- _ @ - _PF
2a
mwrx P
and == Q,, cos —dz = — 7 (—1)ym2

where P = qab is the total load on one panel of the plate. Substituting
these values of the coefficients Cqy and C.. in series (¢), the required bound-
ary condition takes the following form:

dw a%w

(Qymssz = —D (W + dx? ay).u=b/2

P
— (=12 cos — — 5
a a
m=246,...

Substituting expression (a) for w and observing that the second term in
parentheses vanishes, on account of the boundary condition éw/dy = 0,
we obtain

@

3w, _ P iz oo MET
-D <6y‘°’ )y=m = a 2 (—1)2 cos e

m=2486,...

from which, by using expression (f), we find that

D ™™ (4, + 3B,) sinh am -+ Bnan cosh a,] =

el

(=™ ()
Solving Eqs. (¢9) and (j) for the constants A, and B,,, we obtain
Pa? 1 an + tanh an,

— —1\m/2 —
An 2mérsD (=1) sinh a,, tanh o,
Pq? 1
— m/2
™ = ImEeiD (=D sinh oy ()
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The deflection of the plate takes the form
mwrz

= (—1)™2 cos —=
2
w _gbt (1_4y>+A0+qab E: . a

~ 384D b2 m? sinh a., tanh an,
m=24,6,...

[tanh U ”—laﬁ/ sinh @_:g ~ (am + tanh o) cosh @] )

The constant A, can now be determined from the condition that the
deflection vanishes at the corners of the plate. Hence

(’w)¢=a/2.u=b/2 =0

_ _ ga% 1 _ am + tanh @,

and 4o= — 55D 2 md \ %" tanh? ., (m)
m=24,6,...

The deflection at any point of the plate can be calculated by using expres-

sions (I) and (m). The maximum deflection is evidently at the center of

the plate, at which point we have

(w) _ _¢b* _ ga% (=)™ q, + tanh a,
W)amoy=0 = 204 T 53 m? sinh a, tanh a,,

m=2406,...
_ qa*h 1 _ oy + tanh a, ()
273D ms \ ™ tanh? am n
m=2486,...

Values of this deflection calculated for several values of the ratio b/a are
given in Table 57. Values of the bending moments (A ,);—0,y—~0 and
(M) sm0y=0 calculated by using formulas (101) and expression (I) for
deflection are also given. It is seen that for b > a the maximum bend-

TasLE 57. DEFLECTIONS AND MOMENTS AT THE CENTER oF A Paneu (¥ig. 122)

v = 0.2

qbt . ,

b/a w =a"5 M, = Bgb* | M, = Bgb?
@ [ 81

1 0.00581 0.0331 0.0331
1.1 0.00487 0.0261 0.0352
1.2 0.00428 0.0210 0.0363
1.3 0.00387 0.0175 0.0375
1.4 0.00358 0.0149 0.0384
1.5 0.00337 0.0131 0.0387
2.0 0.00292 0.0092 0.0411
» 0.00260 0.0083 0.0417
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ing moment at the center of the plate does not differ much from the
moment at the middle of a uniformly loaded strip of length b clamped
at the ends.

Concentrated reactions are acting at the points of support of the plate, and the
moments calculated from expression () become infinitely large. We can, however,
assume the reactive forces to be distributed uniformly over the area of a circle repre-
senting the cross section of the column. The bending moments arising at the center
of the supporting area remain finite in such a case and can be calculated by a pro-
cedure similar to that used in the case of rectangular plates and described on page 147.
With reference to Fig. 122, the result can be expressed by the formulas!

br [ 1
(M 2)zmariy=tiz = Mo — kL 4 4+ {1 - ————
4 3 . M‘rb
sinh? —
L n=1 . a ()
b2 1 1 a
Motz = Mo+ 5| -2+ 0= ) — +a-n
4 3 . nrb b
sinh? —
L n=1 a
In these expressions
Mo= -2l 1410 2 +1
0= 4 v 82‘“(1 — @)Kl —gH? - - -

g = ¢ "*s and ¢ denotes the radius of the circle, supposed to be small compared
with spans a and b of the panel. Carrying out the required calculations, we can
reduce Egs. (o) to the form

(Mz) ZmalZy=bl2

—q—:—b[(l +v)logg - (a +ﬂV)]
1 [4

aab (»)

4n

(Mv):—alz.v-blz

[a+»m%—m+wq

in which « and 8 are coefficients given for several values of the ratio b/a in Table 58.

TaBLE 58. VALUEs oF COEFFICIENTS a AND 8 IN Eqs. (p) For MoMENTS
ON SuPPORT

b/a 1 11 1.2 1.3 1.4 1.5 2.0
a 0.811 | 0.822 0.829 0.833 0.835 0.836 0.838
8 0.811 | 0.698 0.588 0.481 0.374 0.268 —0.256

The bending moments corresponding to the centers of columns of rec-
tangular cross section also can be calculated by assuming that the reac-
tions are uniformly distributed over the rectangles, shown shaded in Fig.

t Given by A. N4dai in his book “Elastische Platten,” p. 154, Berlin, 1925.
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TasLB 59. BENDING MOMENTS AND LARGEST SHEAR FORCE oF A SQUARE
PANEL oF A UNiForRMLY LoapEp PraTe (Fig. 123)

vy =02
w/a =k (M)sayeoit = pa%(M)zayo = 1902 (Ms)zmafty=0 = P1ga?(My)s-a/t.y~0 = P2qa%|Qmax = Y90
8 £ B B v
0 -« 0.0331 —0.0185 0.0512 ©
0.1 -0.196 0.0329 —0.0182 0.0508 2.73
0.2 -~0.131 0.0321 -~0.0178 0.0489
0.3 -0.0933 0.0308 -=0.0170 0.0458 0.842
0.4 —~0.0878 0.0289 —0.0158 0.0415
0.5 —0.0487 0.0265 -0.0140 0.0361 0.419

123, that represent the cross sections of the columns.! In the case of
square panels and square columns we have u/a = »/b = k, and the
moments at the centers of the columns and at the centers of the panels
are given by the following formulas:

Msars = (M )aars = — ( +4v)qa,2 [(1 - kiéz — k)

1 2 o omrk o omm(2 = k)
+ 7 Z o sinh 5 cosh — 5 sin mwk] )

m=1

(M:)n—v—o = (Mu)zw-o
_ (1 + vga? [1 — k2 . Z (= 1y sinh mxk sin mwk] ™

4 12 m?® sinh mx

The values of these moments, to-
gether with values of moments at

12
half a distance between columns, ob- 7 i é
tained from the same solution and T2 T
calculated for various values of k and ‘“g‘“
for v = 0.2, are given in Table 59. oF—4— x
It is seen that the moments at the i
columns are much larger than the , ‘!N
moments at the panel center and that | Y—pr7a v E
their magnitude depends very much .:.T 7
on the cross-sectional dimensions of 'l y
the columns. The moments at the
Fi6. 123

panel center remain practically con-
stant for ratios up tok = 0.2. Hence the previous solution, obtained on
1 This case was investigated by S. Woinowsky-Krieger; see Z. angew. Math. Mech.,

vol. 14, p. 13, 1934. See also the papers by V. Lewe, Bauingenieur, vol. 1, p. 631,
1920, and by K. Frey, Bauingenieur, vol. 7, p. 21, 1926.
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the assumption that the reactions are concentrated at the panel corners,
is sufficiently accurate for the central portion of the panel.
An approximate calculation of moments given by Eq. (¢) in the form of a series can

also be made by means of expressions (p). Using for this purpose Eq. (c), Art. 37,
we substitute

¢ = ks eTi-1 = 0.57u

i.e., the radius of a circle equivalent to the given square area u by u, in Eqgs. (p). In
the particular case of square panels numerical results obtained in this manner are but
slightly different from those given in the second column of Table 59.

The shearing forces have their maximum value at the middle of the
sides of the columns, at points m in Fig. 123. This value, for the case of
square panels, depends on the value of the ratio k and can be represented
by the formula @ = yqa®. Several numerical values of the factor v are
given in Table 59. It is interesting to note that there is a difference of
only about "10 per cent between these values and the average values
obtained by dividing the total column load ga?(1 — k?2) by the perimeter

4Fa of the cross section of the column.
/ Uniform loading of the entire plate

r.---- 0 ~=~—>f

gives the most unfavorable condition
at the columns. To get the maxi-
mum bending moment at the center
of a panel, the load must be distri-
buted as shown by the shaded areas
in Fig. 124a. The solution for this
o) case is readily obtained by combining
i the uniform load distribution of in-
SRRENERRNINRINRER! lTl_‘_% tensity ¢/2 shown in Fig. 124b with
(ol ' the load ¢/2 alternating in sign in
—+q  consecutive spans shown in Fig. 124c.
W‘%r? The deflection surface for the latter
tc) 1 case is evidently the same as that
z for a uniformly loaded strip of length
a simply supported at the ends.
Taking, as an example, the case of square panels and using the values in
Table 57, we find for the center of a panel (Fig. 124a):

(6)eeyos = £ q - 0.00581 % 4
wx=,,=o—2q . o))

o

Fi1G. 124

5 qa* _ qat
s 1% = 000042 %2
(M.)emims = 3 0+ 0033102 + s qat = 0.0791ga?

(M) zmy=0 = %q -0.0331a? + %62 ga® = 0.0291qa®
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From Table 59 we conclude, furthermore, that
(Mz)zao,,,,b/z = -%—q - 0.0512a° + {-gqaz = 00881qa2

The foregoing results are obtained in assuming that the plate is free to
rotate at the points of support. Usually the columns are in rigid con-
nection with the plate, and, in the case of the load distribution shown in
Fig. 124, they produce not only vertical reactions but also couples with a
restraining effect of those couples on the bending of the panels. A frame
analysis extended on the flat slab and the columns as a joint structure
therefore becomes necessary in order to obtain

more accurate values of bending moments under A
alternate load.! & +% _% +%
The case in which one panel is uniformly 4

+
!

loaded while the four adjacent panels are not -
loaded is obtained by superposing on a uniform
load ¢/2 the load ¢/2, the sign of which alter- / - *
nates as shown in Fig. 125. In this latter case
each panel is in the same condition as a simply
supported plate, and all necessary information
regarding bending can be taken from Table 8. Taking the case of a
square panel, we find for the center of a panel that

2

|}
Fie. 125

1 @t 1 gt gt
(1)amims = 5 0~ 0.00581 5 + 2 ¢ - 0.00406 75 = 0.00494 L2
(Ma)amres = (M)ompms = %q -0.0331a? + %q £ 0.0479 - % a* = 0.0387¢a?

The case of an infinitely large slab subjected to equal concentrated
loads centrally applied in all panels can be handled substantially in the
same manner as in the preceding case, 1.e., by using the double periodicity
in the deflections of the plate.2

The problem of bending of a uniformly loaded flat slab with skew
panels has also been discussed.®

b6. Flat Slab Having Nine Panels and Slab with Two Edges Free.
So far, an infinite extension of the slab has always been assumed. Now
let us consider a plate simply supported by exterior walls, forming the
square boundary of the plate, together with four intermediate columns
(Fig. 126). From symmetry we conclude that a uniformly distributed

! The procedure to be used is discussed in several publications; see, for instance,
H. Marcus, “Die Theorie elastischer Gewebe,” p. 310, Berlin, 1932.

* This problem was discussed by V. Lewe in his book ‘‘Pilzdecken und andere
trigerlose Eisenbetonplatten,” Berlin, 1926, and also by P. Pozzati, Riv. math. Univ.
Parma, vol. 2, p. 123, 1951.

3 See V. I. Blokh, Doklady Akad. Nauk S.8.8.R., n. s., vol. 73, p. 45, 1950.
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load of intensity ¢ produces equal
column reactions R, which we may
consider as redundant in the given
statically indeterminate structure.
Removing all columns, we obtain a
simply supported square plate carry-
ing merely the given load ¢. The
deflections wo produced by this load
at the center of the columns can
easily be calculated by means of the
theory given in Chap. 5. Next, re-
moving the load ¢ and distributing a
load R = 1 (acting downward) uni-
formly over each area u by u, we
obtain some new deflections w, at the
same points x = +a/2, y = *a/2
asbefore. From theconditionthatin
the actual case these points donot de-
flect, we conclude that wo — Rw; = 0,
which yields B = we/w;. Now it
remains only to combine the effect
of the uniform load ¢ with the effect
of four known reactions on the bend-
ing moments of the square plate of
the size 3a by 3a.

In the case of a partial loading,
such as shown in Fig. 126b and ¢, we
have to superpose one-half of the
moments previously obtained on the
moments of a simply supported plate
with the area a by 3a, carrying a
uniformly distributed load +g¢/2.
Calculations of this kind carried out
by Marcus? led to the values of bend-
ing moments given in Table 60. The
reaction of a column is B = 1.196¢a*
in this case. The bending of an in-
finite plate which is supported not
only along both its parallel sides

1 #PDje Theorie elastischer Gewebe”’; see

also Lewe, op. cit. The case of a square plate with one intermediate support was
discussed by N. J. Nielsen, “Bestemmelse af Spzndinger I Plader,” p. 217, Copen-

hagen, 1920.
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TaBLE 60. COEFFICIENTS 8 FOR CALCULATION oF BENDING MoMENTS M = Bga?
OF A SiMpPLY SUPPORTED SQUARE PLATE WITH FOUR INTERMEDIATE
CoLumns (Fig. 126)

u/a = 0.25, v = 0.2

Load a Load b Load ¢

. z Y

Point | =~ =

e e M, M, M, M, M. M,

1 0 0 0.021 0.021 | —0.048 | —0.004 0.069 0.025
2 0.51{0 —0.040 0.038 | —0.020 0.019 | —0.020 0.019
3 1.0 0 0.069 0.025 0.093 0.027 | —0.024 | —0.002
4 0 0.5 0.038 | —0.040 | —0.036 | —0.036 0.074 | —0.004
5 0.5[{05| —0.140 | —0.140 | —0.070 | —0.070 | —0.070 | —0.070
6 1.0 0.5 0.074 | —0.004 0.092 0.014 | —-0.018 | —0.018
7 0 1.0 0.025 0.069 | —0.028 0.017 0.052 0.052
8 0.5]1.0] —0.004 0.074 | —-0.002 0.037 | —0.002 0.037
9 1.0 1.0 0.053 0.053 0.066 0.044 | —0.013 0.009

but also by one or several rows of equidistant columns? can be discussed
in a similar manner.

The case of bending of a long rectangular plate supported only by the
two parallel rows of equidistant columns (Fig. 127) can also be solved
without any difficulty for several types of loading. We begin with the case
in which the plate is bent by the moments M, represented by the series

M)z = Mo+ Z B, cos 2 (@)

m=248,...
Since there is no lateral load, the deflection surface of the plate can be
taken in the form of the series

b2
v = dot 4i(v - )
R
+ 2 <A,,, cosh @ + B. % sinh 'i‘aﬂ> cos % ®)
m=2486,...

the coefficients of which are to be determined from the following boundary
conditions:
P*w Fw mnx
-plZ¥ v = mre
<6y2 + V&xz)yﬁm M, + 2 E, cos 2
m=2,46,... ©
w P*w

D [W + (2 - V) 8y ax2]uﬂ;§;blz

! This problem has been considered by K. Grein, *Pilzdecken,” Berlin, 1948.
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and from the condition that the deflection vanishes at the columns.
Substituting series (b) in Eqs. (¢), we find that

- _ Mo
A = — aE,, (1 + ») sinh a, — (1 — v)a, cosh ay, d
" m?m2D (3 + »)(1 — ») sinh a, cosh o, — ax(l — »)? (@)

B — — a*E,, sinh a,,
" #?m?D (3 4+ ») sinh @, cosh an — a,(l — »)

Combining this solution with solution (I), Art. 54, we can investigate the
bending of the plate shown in Fig. 127a under the action of a uniformly

L iz S
(P
il f t !

(b)
Fie. 127

distributed load. For this purpose we calculate the bending moments
M, from expression (I) by using formula (101) and obtain

b2
(M)ymspyr = — %g
_qab (=D 14+v _an(l — ) mrx
2 z m tanh an, sinh? a,, cos a @
m=248,...

Equating this moment to the moment (a) taken with the negative sign,
we obtain the values of M, and E,, which are to be substituted in Eqgs.
(d) for the constants A, A,, and B, in expression (b). Adding expres-
sion (b) with these values of the constants to expression (), Art. 54, we
obtain the desired solution for the uniformly loaded plate shown in Fig.
127a.

Combining this solution with that for a uniformly loaded and simply
supported strip of length b which is given by the equation

=g (¥_ S e
w= 241)(4 y2)(4b v

we obtain the solution for the case in which the plate is bent by the load
uniformly distributed along the edges of the plate as shown in Fig. 127b.
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66. Effect of a Rigid Connection with Column on Moments of the Flat Slab. In
discussing the bending of a flat slab it has always been assumed that the column
reactions are concentrated at some points or distributed uniformly over some areas
corresponding to the cross section of the columns or their capitals. Asa rule, however,
concrete slabs are rigidly connected with the columns, as shown in Fig. 128.

In discussing moments at such rigid joints, let us begin with the case of a circular
column and let ¢ be the radius of its cross section. The calculation of bending

bemm==0.22 0~~~}

IRy
7

&

q
3

¥

ge?
mc2

-F
p——2¢ -

Fic. 128

moments using expression (I) in Art. 54 shows! that, in the case of a square panel
(@ = b) and small values of ¢/a, the bending moments in the radial direction practically
vanish along a circle of radius e = 0.22a (Fig. 122¢). Thus the portion of the plate
around the column and inside such a circle is in the state of an annular plate simply
supported along the circle r = 0.22¢ and clamped along the circle r = ¢, with a
transverse displacement of one circle with respect to the other. Hence the maximum

- Middle line of panel ~Middle line of panel
— R R Sttt it -
T — 17
E B 2
g c=0.la l ol § & =020 olew
s | =3 o l"""
© I ! © I "
£ J £ RET
® X » N x
£y = ¥ r
2 ©
2l % ok
b\
l—»--%--—- <_-—--%-—--><-----%---->
y y
Fie. 129 Fia. 130

bending stress around the column can be obtained by using formulas (75), previously
derived for circular plates (see page 61), and combining cases 3 and 8 in Fig. 36.

A more elaborate discussion of the same problem is due to F. Télke.? Numerical
results obtained by F. Télke for a square panel and ¢/a = 0.1 (Fig. 129) are given in
Table 61, together with values of bending moments calculated for the same case on the

! Such calculations were made by A. N4dai; see his book “Elastische Platten,” p.
156, Berlin, 1925.
2 F. Tolke, Ingr.-Arch., vol. 5, p. 187, 1934.
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basis of the customary theory. It is seen that a rigid connection between slab and
column tends to increase numerically the moments on support and to reduce the posi-
tive moments of the slab.

TaBLE 61. CoEFFICIENTS 8 FOR CALCULATION OoF BENDING MoMENTS M = fga?
oF A UN1FOoRMLY LoaDpED SQUARE PANEL oF A Frar Suas

v =0.2
Circular column Square column
(Fig. 129) (Fig. 130)
B e"di“% Location Rigid Rigid
momen connection | Customary | connection | Customary
with theory with theory
column column

M,=M,|z=a/2y=a/2| 0022 0.0323 0.0264 0.0321

M, z=a/2,y=0 0.0399 0.0494 0.0348 0.0487
M, =4a/2,y =0 -0.0161 —0.0179 —-0.0146 -0.0178

M,=M,| z=0y=0 | ........ —0.143 | ........ —0.131
M, z=u/2,y=0 | ........ 1 ........ —0.0626 | —0.0803
M. z=u/2,y=u/2| ........ | ........ —® —0.0480
M, r=c¢ —0.1682 —0.0629

The same table also gives moments for a flat slab rigidly connected with a column
of a square cross section! (Fig. 130). The infinitely large stresses occurring at the
corners of columns in this case are of a highly localized character. Practically, they
are limited by a cracking of concrete in tension and a local yielding of the steel
reinforcement.

From this discussion we may conclude that (1) the actual values of bending moments
of a flat slab at the columns generally lie between the values given in Table 61 for the
rigid connection and those given by the usual theory, and (2) circular columns secure
a more uniform distribution of clamping moments than columns with a square-shaped
supporting area.?

1 See 8. Woinowsky-Krieger, J. Appl. Mechanics, vol. 21, p. 263, 1954,

2 See T. Haas, ‘“Conception et calcul des planchets & dalles champignon,” Paris,
1950. The distribution of stresses in a flat slab has been investigated experimentally
by M. Ro§ and A. Eichinger, Proc. Congr. Concrele and Reinforced Concrete, Liége,
1930; by R. Caminade and R. L’Hermite, Ann. inst. tech. bdiiment et trav. publ.,
February, 1936; and more recently by J. G. Hageman, Ingenieur, vol. 65, June, 1953.



CHAPTER 8

PLATES ON ELASTIC FOUNDATION

B7. Bending Symmetrical with Respect to a Center. A laterally
loaded plate may rest on an elastic foundation, as in the case of a con-
crete road, an ajrport runway, or a mat. We begin the discussion of such
problems with the simplest assumption that the intensity of the reaction
of the subgrade is proportional to the deflections w of the plate. This
intensity is then given by the expression kw. The constant k, expressed
in pounds per square inch per inch of deflection, is called the modulus of
the foundation. The numerical value of the modulus depends largely
on the properties of the subgrade; in the case of a pavement slab or a
mat of greater extension this value may be estimated by means of the
diagram in Table 62.1

TABLE 62. VALUES OF THE MODULUS OF SUBGRADE

Modulus "k" in Ib/sq in./in. I
0o | 10 | [ {fag0 [ 250 | | | 500 [ [ | 1eco
General soil rating as subgrade, subbase or base
Poor . Excellent Good | Best
Very poor subgrade subgrode Foir to good subgrade subgrode Good subbase bose |base
| [ ew ¢
G~Gravet P - Poorly graded GC 3
$ - Sand L - Low fo med. compressibility h
M-Mo,very fine sond,silt K ~High compressibility GP
C-Cloy GF {.
F - Fines, moteriol
0-0 less than 0.1mm SW
=Qrganic
W-Wegll graded S¢
SP
| SF
CH I ML
OH I cL
| oL ]
< MH I

Let us begin with the case of a circular plate in which the load is dis-
tributed symmetrically with respect to the center. In using Eq. (58),

! Based on Casagrande’s soil classification. The table should not be regarded as a
substitute for plate bearing tests. For further information see Trans. Am. Soc. Civ.
Engrs., vol. 113, p. 901, 1948, See also K. Terzaghi, Geotechnigue, vol. 5, p. 297, 1955
(Harvard Soil Mechanics Series, no. §1).

259



260 THEORY OF PLATES AND SHELLS

we add the load —kw, due to the reaction of the subgrade, to the given
lateral load ¢. Thus we arrive at the following differential equation for

the bent plate:
a2 | 1d\/(/dw ,  ldw\ g¢q—kw
(Wﬁm)(wﬂa?)— — w78)

In the particular case of a plate loaded at the center with a load P,*
¢ is equal to zero over the entire surface of the plate except at the center.
By introducing the notation

k1
DG (@
Eq. (178) becomes
2 1d\[(dw  1dw
14(W+?%> pre ;d—r)“’*" ©)

Since k is measured in pounds per cubic inch and D in pound-inches, the
quantity [ has the dimension of length. To simplify our further dis-
cussion it is advantageous to introduce dimensionless quantities by using
the following notations:

~| g

()

I
[
o~ 3
I
8

Then Eq. (b) becomes

d? 1d\[fd*2 | 1dz
<W+E¢%)(¢W+5% te=0 @

Using the symbol A for

d? 1d
de? " zdz
we then write
MMz +2=0 (e

This is a linear differential equation of the fourth order, the general solu-
tion of which can be represented in the following form:

z = 4. X(zx) + AzXz(CU) + A:;Xz(x) + 4. X(x) (f)
where A1, . .., A, are constants of integration and the functions
Xy, . . ., Xqare four independent solutions of Eq. (e).

We shall now try to find a solution of Eq. (¢} in the form of a power

* This problem was discussed by H. Hertz, Wiedemann’s Ann. Phys. u. Chem., vol.
22, p. 449, 1884; see also his “ Gesammelte Werke,” vol. 1, p. 288, 1895, and A. Foppl,
“Vorlesungen iiber technische Mechanik,” vol. 5, p. 103, 1922. It is worth noting that
Hertz’s investigation deals with the problem of a floating plate rather than with that
of a plate on an elastic foundation. Thus, in this case the assumption regarding the
constancy of % is fulfilled, k being the unit weight of the liquid.
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series. Let a,z” be a term of this series. Then, by differentiation, we
find

Aa.x™) = n{n — Da,x"? 4+ na.x"? = n2a,z"2
and AA(ayz™) = ni(n — 2)%a,x"*
To satisfy Eq. (e) it is necessary that each term a.z” in the series have a
corresponding term a,_4z** such that

nn — 2)%,2" 4 + apgz” ™t =0 ()]
Following this condition, all terms cancel when the series is substituted in

Eq. (e); hence the series, if it is a convergent one, represents a particular
solution of the equation. From Eq. (g) it follows that

- An—1g
= = o = oy Q)
Observing also that
AA{ae) = 0 and AA(asx?®) =0 ()

we can conclude that there are two series satisfying Eq. (e), viz.,

o 28
Xi(z) = 1—22.42+22.42.62.82
Rt
22‘42'62'82'102'122-'-
and @
26 210
Xo(x) =x2—42.62+42.62.82.102

x4
~42.62.82.102.122.142+

It may be seen from the notations (¢) that for small values of the dis-
tance r, that is, for points that are close to the point of application of the
load P, the quantity « is small, and series (j) are rapidly convergent.
It may be seen also that the consecutive derivatives of series (§) remain
finite at the point of application of the load (x = 0). This indicates that
these series alone are not sufficient to represent the stress conditions at
the point of application of the load where, as we know from previously
discussed cases, the bending moments become infinitely large.
For this reason the particular solution X; of Eq. (¢} will be taken in
the following form:
X; = X, log z + Fi(x) (k)

in which F3(z) is a function of # which can again be represented by a
power series. By differentiation we find

anx, = 24X
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and substituting X, for z in Eq. (¢), we obtain

4 d*X,

T d 3 + lOg :c(AAX1 + X]) + AAF;(Z) +F3(x) =0

Since X satisfies Eq. (¢) and is represented by the first of the series (7),
we obtain the following equation for determining F;(zx):

BaFy(@) + Fafa) = — 20X = g (234
+ 2?;%2 ?;2 ~ 9t 4120 611 82121(;:28 122 + ) ®
Taking F3(x) in the form of the series
Fi(x) = bzt + bgx® + brpx'2 4 - - - (m)
and substituting this series in Eq. (I), we determine the coefficients by,
bs, b1z, . . . so that the resulting equation will be satisfied. Observing

that
AA(bgrt) = 4222 b,

we find, by equating to zero the sum of the terms that do not contain z,
that

2-3-4
2 22.b4=4 22 42
2-3-4* 3
or b= S = 108

Equating to zero the sum of the terms containing x4, we find

25

b = ~ {7e9.472

In general, we find

_ 1 n(n (n — 2)
= (—1\n/4—0 _____—
bn (=1 n*(n — 2)2[ n—4 + -6 - - - n?
Thus the third particular solution of Eq. (e) is
X=Xlog:c+——:c—Lxs+--~ (n)
3 ! 128 1,769,472

The fourth particular integral X, of Eq. (¢) is obtained in a similar
manner by taking
4-5-6 ,
44 . 64 z

1 4-5-6 10-9-8
—102.82(4' 2164 +42.62. - 102)$‘°+ e (0

Xe=X,logz+ Fu(x) = Xzslogz + 4-
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By substituting the particular solutions (j), (n), and (o) in expression
(f) we obtain the general solution of Eq. () in the following form:

z* 8
z=A;(1 _22.42+22.4z.62.82_ o )
xG xlo
+A’<x2—42 etee e )
xs

+A3[< 22, 42+22 4?62 - 82" : )10°'x+128

25 xG xlo
- 1,769,472’”“r e ] + A‘[(ﬁ Troetooee i

_ 5, L0 10t
)log *t3ame™ ~ aaz368 © T (®)

It remains now to determine in each particular case the constants of inte-
gration 4,, . . ., A4 so as to satisfy the boundary conditions.

Let us consider the case in which the edge of a circular plate of radius a
is entirely free. Making use of expression (52) for the radial moments
and expression (55) for the radial shear force Q,, we write the boundary

conditions as
d?w 1 dw
(Eﬁ T r dr),_a 0

d [dw | 1dw

%(d? + ;d7>,=., =0
In addition to these two conditions we have two more conditions that
hold at the center of the plate; viz., the deflection at the center of the
plate must be finite, and the sum of the shearing forces distributed over
the lateral surface of an nfinitesimal circular cylinder cut out of the plate
at its center must balance the concentrated force P. From the first of

these two conditions it follows that the constant 4; in the general solu-
tion (p) vanishes. The second condition gives

( foz" Qur do)r_‘ +P=0 )

or, by using notation (a),

—rnl (d"’-;-l‘l“—") e+ P =0 )

(9)

dr? 7 dr Jome

where ¢ is the radius of the infinitesimal cylinder. Substituting Iz for w
in this equation and using for z expression (p), we find that for an infinitely
small value of = equal to ¢/l the equation reduces to

—kl ‘%‘L:-‘- e+ P =0
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from which

p

4, = Srl? @)

Having the values of the constants 4; and A,, the remaining two con-
stants A; and A; can be found from Eqgs. (¢). For given dimensions of
the plate and given moduli of the plate and of the foundation these equa-
tions furnish two linear equations in A; and 4.,.

Let us take, as an example, a plate of radius @ = 5 in. and of such rigidity that
4

l= —-k=5in.

We apply at the center a load P such that

= 102-10~°

4

= Ski®

Using this value of A, and substituting Iz for w, we find, by using expression (p) and
taking z = a/l = 1, that Eqs. (g) give

0.5004, 4 0.2504, = 4.0624,
0.6874, — 8.4834, = 11.094,

4.062 - 102 - 10~¢
11.09 - 102 - 10™*

[}

These equations give
A, = 8610 A = —64 1075

Substituting these values in expression (p) and retaining only the terms that contain
z to a power not larger than the fourth, we obtain the following expression for the
deflection:

4
w=1Ilz=5 [86 - 1074 (1 - -2—:;—42) — 64 - 10752 - 102 - 107522 log x]

The deflection at the center (z = 0) is then

Wmax = 43 - 10~%in.
and the deflection at the boundary (z = 1) is

Wmin = 39.1 - 1073 in.

The difference of these deflections is comparatively small, and the pressure distribution
over the foundation differs only slightly from a uniform distribution.

If we take the radius of the plate two times larger (¢ = 10 in.) and retain the
previous values for the rigidities D and k, « becomes equal to 2 at the boundary, and
Eqgs. (g) reduce to

0.8264, + 1.9804, = 1.2084,
2.6654, — 5.7454,; = 16.374,

These equations give

A, = 3934, = 400-10- A, = —1.034, = —105- 10~ ()
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The deflection is obtained from expression (p) as

e = 540010~ (1 - = 1 Y P
w =1z = . T o — 105 - 10 x——5—7—6

z&
. ~5 T 2 — —
+ 102 - 10 [lobx z yem ) +3456 ]}

The deflections at the center and at the boundary of the plate are, respectively,
Wmax = 2.1072 in. and Wmin = 0.88 - 1072 in.

It is thus seen that, if the radius of the plate is twice as large as the quantity [, the

distribution of pressure over the foundation is already far from uniform. The applica-

tion of the strain energy method to the problem of bending of a plate on elastic sub-

grade will be shown in Art. 80.

58. Application of Bessel Functions to the Problem of the Circular Plate. The
general solution (f) of Eq. (e) in the preceding article can also be represented in terms
of Bessel functions. To this end we introduce into Eq. (¢) a new variable £ = = \/;;
thus we arrive at the equation

A'A'z — 2 =0 (a)
in which the symbol A’ stands for
dz 14
@
Now Eq. (a) is equivalent to equation
ANAz42) —(Az+2) =0 )
and also to
A(A'z —2) + (A2 —2) =0 ]
Hence Eq. (a) is satisfied by the solutions of the Bessel differential equation
d2z 1dz
A A Nt = d
2+ 2 d£3+$d£+z (@)

as well as by the solutions of the equation

d% 1dz
A'z—z=d—g;+—£d—g—-z=0 (e
which is transformable into Eq. (d) by substituting # for &, Thus the combined solu-
tion of Egs. (d) and {(e) can be written as

2 = Bilo(z Vi) + Bolo(mi Vi) + BaKolx Vi) + BuKo(zi V) €3]

Iy and K, being Bessel functions of the first and second kind, respectively, and of
imaginary argument, whereas B, B, . . . are arbitrary constants. The argument
z being real, all functions contained in Eq. (f) appear in a complex form. To single
out the real part of the solution, it is convenient to introduce four other functions, first
used by Lord Kelvin and defined by the relations?!

Io{x vV 27) =berx & beiz
Koz V/ *+1) =kerz + kei z

1 See, for instance, G. N. Watson, “ Theory of Bessel Functions,” p. 81, Cambridge,
1948.

@
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Setting, furthermore,

81 + Bz = Cll Bl bt Bz = —Cz‘ﬂ
Bs + By =C{ B3 — By = —Cul

where the new constants Cy, C;, . . . are real, we obtain the following expression for
the deflections of the plate:
w=Cberz + Cabeiz + Cskeixz + Ciker z (h)
All functions herein contained are tabulated functions,! real for real values of the
argument.
For small values of the argument we have
berz =1 — xz¢/64 + - - .
bei z = z*/4 — 28/2,304 + - - - .
kerz = —logz +log 2 — v + #x2/16 + . - - @
keiz = —(z*/4) logz —x/4 + (1 +log2 — y)zt/4 + - - -

in which v = 0.5772157 - - - is Euler’s constant and log 2 — v = 0.11593 - - -
For large values of the argument the following asymptotic expressions hold:

ber z il il
~ —cos{oc — —
V' 2z 8
bei z al si z
~———3ginfo — =
vV 2xx 8 G)
. J
(4 x
ker z ~ cosfo + -
Vz/x ( 8)
[ x
keiz ~ — sinfo 4 =
\2z/x ( 8)
in which ¢ = z/V/2.

The general solution (k) can be used for the analysis of any symmetrical bending of
a circular plate, with or without a hole, resting on an elastic foundation. The four
constants C, corresponding in the most general case to four boundary conditions, must
be determined in each particular case.?

1See ‘“Tables of Bessel Functions Jo(z) and Ji(z2) for Complex Arguments,”
Columbia University Press, New York, 1943, and ‘“Tables of Bessel Functions
Yo(z) and Y,(2) for Complex Arguments,” Columbia University Press, New York,
1950. We have

ber z = Re [Jo(zeiT/Y)] bei z = — Im [Jo(zei*4)]

kerz = — ’éRe [Yolweiri)] — ’5’ Im [Jo(ze )]
L w
keiz = 2 Im [Yo(ze’/4)] — -2-Re [Jo(zefT4)]

2 Many particular solutions of this problem are given by F. Schleicher in his
book ‘“Kreisplatten auf elastischer Unterlage,” Berlin, 1926, which also contains
tables of functions Z:(z) = ber z, Z:(z) = — bei z, Zi(x) = —(2/x) kei z, and
Z(x) = —(2/x) ker = as well as the first derivatives of those functions. An abbrevi-
ated table of the functions Z and their first derivatives is given in Art. 118, where
they are denoted by the symbol y.
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We shall confine ourselves to the case of an infinitely extended plate carrying a
single load P at the point £ = 0. Now, from the four functions forming solution (%),
the first two Tunctions increase indefinitely with increasing argument in accordance
with Eqgs. (5); and the function ker = becomes infinitely large at the origin, as we can
conclude from Eqs. (3). Accordingly, setting C, = C; = C, = 0, solution (&) is
reduced to

w=_Crkeiz (k)

In order to determine the constant Cs, we calculate, by means of Eqgs. (7), the shearing
force [see Eqgs. (193)]

Ddfdw 1dw CiDf1 =z
Q'-—ﬁa(d?+;d7)-7(;“§+"‘)

As z decreases, the value of Q, tends to C3sD/l3%z = C3D/l*r. On the other hand, upon
distributing the load P uniformly over the circumference with radius r, we have
Q, = —P/2xr. Equating both expressions obtained for Q,, we have

P2

Cy = ~ 2D ()]

Substitution of Csnto Eq. (k) yields, finally, the complete solution of Hertz’s problem
in the form

2
w= - P—lkei z (179)

D
and the corresponding reaction of the subgrade is given by p = kw = El‘— The

variation of these quantities along a meridional section through the deflection
surface of the plate is shown in Fig. 131, together with similar curves based on a theory
which will be discussed in Art. 61.

At the origin we have kei z = —x/4 and the deflection under the load becomes

2
—_ % (180)

For the reaction of the subgrade at the same point we obtain

P
max = 27, 181
p an (181)

If we take an infinitely large plate with the conditions of rigidity and loading assumed
on page 264, the deflection under the load becomes

= gl_’ P 1A, = (3.14)(5)(102 - 10~%) = 0.016 in
Wnax = 8D PYaT TAaAg = . = U. .
as compared with the value of 0.02 in. obtained for a finite circular plate with the
radius ¢ = 21.
The distribution of the bending moments due to the concentrated load is shown in
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Fig. 131¢. It is seen that the radial moments become negative at some distance from
the load, their numerically largest value being about —0.02P. The positive moments
are infinitely large at the origin, but at a small' distance from the point of application
of the load they can be easily calculated by taking the function kei z in the form (z).
Upon applying formulas (52) and (53) to expression (179), we arrive at the results

t As compared with the characteristic length I = ‘\‘/ D/k.
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M, = — [(l +,,)<10g3’ —'y) - l(1 - v)]
’ 2 (182)
M, =-P— [(1 +u)<log§-l —-‘y)‘l‘%(l - v)]

A comparison of the foregoing expressions with Eqgs. (90) and (91) shows that the
stress condition in a plate in the vicinity of the load in Hertz’s case is identical with
that of a simply supported circular plate with a radius @ = 2le™ = 1.123!, except for

a moment M, = M, = — ™ (1 — »), which is superimposed on the moments of the

circular plate.

Let us consider now the case in which the load P is distributed over the area of a
circle with a radius ¢, small in comparison with {. The bending moments at the center
of a circular plate carrying such a load are

M, M;-;[(l‘i-v)log +1] (m)

This results from Eq. (83), if we neglect there the term c¢?/a? against unity. By
substituting a = 2le~7 into Eq. (m) and adding the moment —P/8x(1 — »), we obtain
at the center of the loaded circle of the infinitely large plate the moments

(14 »P 21 1
Mumax o (I°g " -7+ 2) (n)
or Moy = LF9F (log Ly 0.616) (183)
41r c

Stresses resulting from Eq. (183) must be corrected by means of the thick-plate theory
in the case of a highly concentrated load. Such a corrected stress formula is given on
page 275.

In the case of a load uniformly distributed over the area of a small rectangle, we may
proceed as described in Art. 37. The equivalent of a square area, in particular, is a
circle with the radius ¢ = 0.57u, u being the length of the side of the square (see page
162). Substituting this into Eq. (183) we obtain

Moee = 2 4t *p (log % + 1.177) (0)

The effect of any group of concentrated loads on the deflections of the infinitely
large plate can be calculated by summing up the deflections produced by each load
separately.

69. Rectangular and Continuous Plates on Elastic Foundation. An
example of a plate resting on elastic subgrade and supported at the same
time along a rectangular boundary is shown in Fig. 132, which represents
a beam of a rectangular tubular cross section pressed into an elastic
foundation by the loads P. The bottom plate of the beam, loaded by
the elastic reactions of the foundation, is supported by the vertical sides
of the tube and by the transverse diaphragms indicated in the figure by
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dashed lines. Tt is assumed again that the intensity of the reaction p at
any point of the bottom plate is proportional to the deflection w at that
point, so that p = kw, k being the modulus of the foundation.

In accordance with this assumption, the differential equation for the
deflection, written in rectangular coordinates, becomes

] dw d'w Fw _q kw
PR RS A A
I
0 _-r 5 Where g, as before, is the intensity of the lateral
e load.
) Let us begin with the case shown in Fig. 132.

If wo denotes the deflection of the edges of the
bottom plate, and w the deflection of this plate
P P with respect to the plane of its boundary, the
ihtensity of the reaction of the foundation at
any point is k(wo — w), and Eq. (@) becomes

! o AAw = % (w0 — w) ®)

Taking the coordinate axes as shown in the
Fi6. 132

figure and assuming that the edges of the plate
parallel to the y axis are simply supported and the other two edges are
clamped, the boundary conditions are

02w
(w)z-o,z-a =0 (W)z-o'ha =0 (c)
ow
_ —- hdad = d
(Wmsr2 = 0 (3?/ )u—d:b/z 0 @)
The deflection w can be taken in the form of a series:
~ sin L >
_ 4kwo _ a . mwr
w= 5" T RN + Y., sin - (e)
m=135... "\ gi D m=135,...

The first series on the right-hand side is a particular solution of Eq. (b)
representing the deflection of a simply supported strip resting on an
elastic foundation. The second series is the solution of the homogene-
ous equation

8w+ £ =0 o
Hence the functions Y, have to satisfy the ordinary differential equation

22 4
vy —-20 vy +(ma4}’ +;—‘)) Yu =0 @
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Using notations
-_— == = \4
pm =N m)
285 = Vi N4+ ul 2vi= VL FN -l @)

and taking the solution of Eq. (g) in the form e, we obtain for r the
following four roots:

B+iy —B+ivy B—dy 8-ty
The corresponding four independent particular solutions of Eq. (g) are
ePn¥ cos Yy €~8nY o8 YpY eP»v gin v,y et gin v,y  (F)
which can be taken also in the following form:

cosh By cos vmy sinh 8,y co8 vmy )
cosh B,y sin vmy sinh B,y sin v,y

From symmetry it can be concluded that Y, in our case is an even func-
tion of y. Hence, by using integrals (k), we obtain

Yn = An cosh 8,y cos vmy + Bn, sinh B,y sin vy
and the deflection of the plate is

- . mwx [4kwo 1
w = —_—
a D= mirt |k
m=13,5,... m( at + 5)
+ A.. cosh B,y cos ymy + B sinh B,y sin v,y | (D)

This expression satisfies the boundary conditions (¢). To satisfy con-
ditions (d) we must choose the constants A., and B,, so as to satisfy the
equations

4’Cwo 1 ﬁmb 'Ymb
Dr ik + A, cosh 5 €0S 5
m\a tD
ﬂm Ymb _
+ B, sinh %~ in T5= = 0 )
(AmBm + Bumym) sinh %’”b cos lg—b
— (AmYm — BnBn) cosh BL sin %b =

Substituting these values of A., and B,, in expression ({), we obtain the
required deflection of the plate.

The problem of the plate with all four edges simply supported can be
solved by using Eq. (a). Taking the coordinate axes as shown in Fig. 59
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(page 105) and using the Navier solution, the deflection of the plate is

© L]
mrr . W
w = Amn Sin — sin oy (n)
a b
m=1n=1
In similar manner let the series
- o
= A S0 2 sin 7Y (0)
1 e a b
m=1 n=1

represent the distribution of the given load, and the series

2 Z EAma sin 2% sin n%y (»

represent the reaction of the subgrade. Substituting the series (n) in
the left-hand side and the series (o) and (p) in the right-hand side of
Eq. (a), we obtain

Am‘n = o (q)
r‘D( + ) + k

As an example, let us consider the bending of the plate by a force P
concentrated at some point (£,5). In such a case
= AP n E G, T
Cmn = b sin - sin b (r)
by Eq. (b) on page 111, By substitution of expressions (¢) and (r) into
Eq. (n) we finally obtain

"o sin™E g P
4P a b mxz . Ny

= e sm—a—sm 3 (s)
n=1 T‘Dé’&;"'p) +k

m=1

Having the deflection of the plate produced by a concentrated force,
the deflection produced by any kind of lateral loading is obtained by the
method of superposition. Take, as an example, the case of a uniformly
distributed load of the intensity ¢. Substituting q d¢ dy for P in expres-
sion (s) and integrating between the limits 0 and a and between 0 and b,
we obtain

= ot sin m_m: sin m
w = .1_6_g a b _ (t)

w? E E m? . nf\’
M=1,3,5... n=13,5,... T [’r4D (F + Ff) + k]
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When k is equal to zero, this deflection reduces to that given in Navier
solution (131) for the deflection of a uniformly loaded plate.!

Let us consider now the case represented in Fig. 133. A large plate
which rests on an elastic foundation is loaded at equidistant points along
the z axis by forces P.* We shall take the coordinate axes as shown in

Fra. 133

the figure and use Eq. (f), since there is no distributed lateral load. Let
us consider a solution of this equation in the form of the series

@

mmre
w = W + Yn cos —aL (w)

m=24,86,...
in which the first term

__P>‘_ —\/V2 Ay LAY
Wo 2\/§ake cos\/§+sm\/§

represents the deflection of an infinitely long strip of unit width parallel
to the y axis loaded at ¥y = 0 by a load P/a [see Eq. (283), page 471].
The other terms of the series satisfy the requirement of symmetry that
the tangent to the deflection surface in the z direction shall have a zero
slope at the loaded points and at the points midway between the loads.
We take for functions Y, those of the particular integrals (j) which
vanish for infinite values of y. Hence,

Vo = Apne™® 08 Yl + Brne™tv sin v,y

To satisfy the symmetry condition (dw/dy),~0 = 0 we must take in this
expression
Ym

1The case of a rectangular plate with prescribed deflections and moments on two
opposite edges and various boundary conditions on two others was discussed by H. J.
Fletcher and C. J. Thorne, J. Appl. Mechanics, vol. 19, p. 361, 1952. Many graphs
are given in that paper.

* This problem has been discussed by H. M. Westergaard; see Ingenigren, vol. 32,
p. 513, 1923. Practical applications of the solution of this problem in concrete road
design are discussed by H. M. Westergaard in the journal Public Roads, vol. 7, p. 25,
1926; vol. 10, p. 65, 1929; and vol. 14, p. 185, 1933.
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Hence, by introducing the new constants A}, = A./v=, We represent the
deflections (u) in the following form:

W = Wo + 2 A:n coSs ln%t e Py (7m COS YnlY + Bm sin 'me) (l))

m=246,...

In order to express the constants A, in terms of the magnitude of loads
P, we consider the shearing force @, acting along the normal section of
the plate through the z axis. From symmetry we conclude that this
force vanishes at all points except the points of application of the loads
P, at which points the shearing forces must give resultants equal to
—P/2. It was shown in the discussion of a similar distribution of
shearing forces in Art. 54 (see page 248) that the shear forces can be
represented by the series

w0

__,_P__P — 1ym/2 m
Q= 5 " @ 2 (—1) cos —

m=248,...

The shearing force, as calculated from expression (v), is

o (3w 0w
% = ‘D@(W +3@7>

—_ P . ' 2 2 m_"'x
=~ 5 2D 2 Al Buym(Bh + L) cos 2
m=246,...

Comparing these two expressions for the shearing force, we find
P(—1)m'

An = S DBy(BE F )

or, by using notations (7),
PR < G Vs
" aDN VAL F

Substituting this in expression (v), we finally obtain
PN % (=D mmz
w = wy + -Ek— -\7)\—7—_*__—‘3’. CcOo8 —a— € ”("Ym COS YmY
m=24,86,...

+ Bm sin 'me) (w)

The maximum deflection is evidently under the loads P and is obtained
by substituting x = a/2, y = 0 in expression (w), which gives

P)? C Ym
(OIS AS Whl PR L S— 184
Wenax 2\/§ak+ o E IV Cor (184)

m=24,6,...
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The deflection in the particular case of one isolated load P acting on
an infinitely large plate can also be obtained by setting @ = « in formula
(184). Insuch a case the first term in the formula vanishes, and by using
notations (¢) we obtain

P z 2r VNt b =l
a

Wmax = 2 V2 k Nl
m=2,48,...
__P» /\/)\4+n—nd
T2 2k [) M4
Using the substitution
v 1

N oV F 1
we find
P)? =1 du P)?
Wope = ——— [ — % 22 185
2\/§1rk/ VAR (185)
in accordance with the result (180). With this magnitude of the deflec-
tion, the maximum pressure on the elastic foundation is

(P)max = kWmax = ij_ = \E) (186)

The maximum tensile stress is at the bottom of the plate under the point
of application of the load. The theory developed above gives an infinite
value for the bending moment at this point, and recourse should be had
to the theory of thick plates (see Art. 26). In the above-mentioned
investigation by Westergaard the following formula for calculating maxi-
mum tensile stress at the bottom of the plate is established by using the
thick-plate theory:

P Eh?
(af)max = 0275(1 + V) }ﬁ 10g10 W (a:)

Here h denotes the thickness of the plate, and

b= +1.6¢* + h? — 0.675h when ¢ < 1.724h
=c when ¢ > 1.724h

where c is the radius of the circular area over which the load P is assumed
to be uniformly distributed. For ¢ = 0 the case of the concentrated
force is obtained.

In the case of a square loaded area u by %, we have to replace ¢ by
0.57u (see page 162).

The case of equidistant loads P applied along the edge of a semi-infinite
plate, as shown in Fig. 134, can also be treated in a similar way. The
final formula for the maximum tensile stress at the bottom of the plate
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under the load when the distance a is large is

3
(aue = 0.520(1 + 0.549) 7, [mg,o (%) - 0.71] @)

where b is calculated as in the previous case, and c¢ is the radius of the
semicircular area over which the load P is assumed to be uniformly
distributed. Formulas (z) and (y) have proved very useful in the design
of concrete roads, in which case the

circle of radius ¢ represents the area % % %

of contact of the wheel tire with the

road surface.!

60. Plate Carrying Rows of Equidistant

t

1

E

1]

F-

]

Columns. As a last example, let us con- e E
sider an infinite plate or mat resting on % 0 ;" %—i——x

elastic subgrade and carrying equidistant S i

:

o

1

1

)

i

]

3

and equal loads P, each load being distrib-
uted uniformly over the area u by » of a
rectangle, as shown in Fig. 135. The

3
H

ol

Fi1c. 134 Fia. 135

bending of such a *“‘reversed flat slab” may be treated by means of the previously dis-
cussed Westergaard’s solution, using simple series.? Much simpler, however, and,
except for the case of a highly concentrated load, also adequate is the solution in
double series, making use of Navier’s method.
Conditions of symmetry compel us to represent the lateral load due to the columns
in form of a cosine series:
0
2mrz cos 2nry (@

b

qg= Qmn COB

m=0n=0

The intensity of the given load is equal to P/uv within the shadowed rectangles in
Fig. 135 and is zero elsewhere. Thus, proceeding in the usual manner, i.c., multiplying

2
cos -ﬁbﬂ! dz dy and integrating between the limits —~a/2, +a/2

2
Eq. (a) by cos s

1 The problem of stress distribution near the load applied at a corner of a large plate
has not yet been solved with the same reliability as the problems discussed above.
Several empiric and semiempiric stress formulas regarding that case may be found in
“Concrete Pavement Design,” p. 79, Portland Cement Association, Chicago, 1951.
Noteworthy experimental results concerning this problem were obtained by M. Dantu,
Ann. ponts et chaussées, vol. 122, p. 337, 1952. See also L. D. Black, Trans. Eng.
Inst. Canada, vol. 2, p. 129, 1958, and D. E. Nevel, bid., p. 132.

2 See W. Miiller, Ingr. -Arch vol. 20, p. 278, 1952, and Osterr. Ingr.-Arch., vol. 6,
p. 404, 1952,
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for z; —b/2, 4+b/2 for y, we have

4Pepn . mmwu ., nwv
n = —— 8in —— gin — )
Timnuy a b

where enn = 1 form £ 0, n # 0
emn=% form=0,n0 o m#=0,n=0
€mn = form=n =0
in the particular case of m = 0 or n = 0 the coefficient itself is readily obtained as a
limit value of the expression (b).
Now, in accordance with Eq. (a) we take for deflections the series

!
N

2mwrx 2nwy
cos 5

w = Ann cOS ()
m=0n=0

and the relation between the coefficients @ and A, is easily established by the same

reasoning as before (see page 272). Thus, using the notation

2 2
an =T Bu=n dha=ah +E @
a b
we obtain
Amn
Apn = —5—— e
Substituting this in the series (c) and observing Eq. (b) we have the final result?
hd in 2% g nm}cos T cos B
mn SID —— 8in — ™ n
4p emn S0 T, p % v "
w=—
wiuy mn(Dvh,, + k)
m=0n=0

The bending moments of the plate are now obtained by the usual differentiation, and
the distribution of the pressure between the plate and the subgrade is found by multi-
plication of expression (f) by the modulus k.

The particular case k = 0 corresponds to a uniformly distributed reaction of the
subgrade, i.e., to the case of a “reversed flat slab’’ uniformly loaded with ¢ = P/ab.
It is seen from Eq. (f) that the introduction of the modulus tends to reduce the deflec-
tions and also the bending moments of the plate.

The case of a rectangular plate of finite dimensions resting on an elastic foundation
and submitted to the action of a concentrated load has been discussed by H. Happel.?
The Ritz method (see page 344) has been used to determine the deflections of this
plate, and it was shown in the particular example of a centrally loaded square plate
that the series representing the deflection converges rapidly and that the deflection

can be calculated with sufficient accuracy by taking only the first few terms of the
series.?

! Due to V. Lewe, Bauingenieur, vol. 3, p. 453, 1923.

2 Math. Z., vol. 6, p. 203, 1920. See also F. Halbritter, Bautechnik, vol. 26, p. 181,
1949.

3 The problem of a square plate on an elastic foundation has also been investigated
experimentally; see the paper by J. Vint and W. N. Elgood, Phil. Mag., ser. 7, vol. 19,
p- 1, 1935; and that by G. Murphy, Iowa State Coll. Eng. Expt. Sta. Buil. 135, 1937.
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61. Bending of Plates Resting on a Semi-infinite Elastic Solid. So far, the settling
of the subgrade at some point of its surface has been assumed as proportional to the
pressure between the plate and the subgrade at the same point, and consequently as
independent of the pressure elsewhere. This is correct in the case of a floating plate,
considered by Hertz (see page 260), but in the case of a coherent subgrade such a
hypothesis approximates but crudely the actual behavior of the subgrade; a better
approximation can sometimes be obtained on the basis of the following assumptions:

1. The foundation has the properties of a semi-infinite elastic body.

2. The plate rests on the subgrade without friction.

3. A perfect contact between the plate and foundation also exists in the case of a
negative mutual pressure.

This last supposition appears arbitrary; however, a negative pressure between plate
and subgrade actually is compensated, more or less, by the weight of the plate.

The elastic properties of the elastic foundation may be characterized, if isotropy is
assumed, by a Young modulus E,; and a Poisson ratio »,. The approximate numerical
values! of these constants, depending on the nature of the subgrade and based on
results of dynamical tests, are given in Table 63, together with the value of the
constant

E,
hoEi-w @
used in the following.
TasLE 63. VALUES oF ErasTic CONSTANTS DEPENDING ON
NATURE OoF FouNDATION
Subgrade E,, psi vo ko, psi
Clay................... 11,000 0.17 5,700
Loessand clay........... 13,000 0.42 7,900
Mediuvm sand........... 14,000-18,500 0.33-0.23 7,900-9,800
Sand and gravel......... 40,000 0.31 22,000
Ljassic plastic clay....... 38,000 0.44 23,500
Lime (air-slaked)........ 165,000-190,000 0.32-0.38 92,000-110,000
Sandstone............... 1,600,000 0.26 860,000

We restrict the further consideration to the case of an infinitely large plate in a state
of axial symmetry. Using polar coordinates r, 8, we can write the plate equation as
Daaw(r) = g(r) — p(r) ®)

where ¢(r) denotes the given surface loading and p(r) the reaction of the subgrade.
Let Ko(r,p,¢) be the deflection at the point (r,0) of the subgrade surface due to a
normal unit load applied on this surface (p,¢). The form of the “influence function”
K, depends merely upon the nature of the foundation. Making use of some properties

of the Bessel functions, it can be shown? that Eq. (b) is satisfied by the expression

° Q(Q)K(G)Ja(oﬂ')a do
wlr) = f T DK@ ©

1 Due to E. Schultze and H. Muhs, “Bodenuntersuchungen fiir Ingenieurbauten,”
Berlin, 1950. See also Verdffentl. Degebo, Heft 4, p. 37, 1936.

2The solution of the problem in this general form is due to D. L. Holl, Proc. Fifth
Intern. Congr. Appl. Mech., Cambridge, Mass., 1938.
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In Eq. (c) Jo denotes the Bessel function of zero order; the term depending on the
nature of the subgrade is

K(a) = f: 2rsKo(8)J o(as) ds @

in which the form of K, is defined by
Ko(s) = Ko[(r? 4+ p* — 2rp cos ¢)i]
s being the distance between points (r,0) and (p,¢). Finally

Qo) = [: q(p)J o(eep)p dp (e)

is the term depending on the intensity g(p) of the symmetrical loading at r = 5.
In the particular case of a load P uniformly distributed along the periphery of a
circle with a radius ¢, we have

Q) = -Z-P;Jo(ac) 6]

In the case of the load P distributed uniformly over the area of the same circle, Eq.
(e) yields

Q) = - Jieo) @

where the Bessel function is of the order one. Finally, where a load is conoentrated
at the origin (p = 0), we obtain from Eq. (f)

P
Qla) = o )

As for the distribution of the reactive pressure, the respective function p(r) is
obtained from Eq. (b), the term

g(r) = /0 Q) olar)a da )
being previously expressed through its Fourier-Bessel transform (¢). Thus, we obtain

® Qo) olar)a da .
p(r) = —_— @
0 14 Da*K(a)

Now let us consider two particular cases with respect to the physical nature of the
subgrade. For a floating plate (Art. 57) the influence function Ko(s) is zero everywhere
except at s = 0, where the unit force is applied. With regard to Eq. (d) the quan-
tity Ko(a) then must be a constant. In order to get from Eq. (¢) the expression
w(r) = p(r)/k, this in accordance with the definition of the modulus, we have to
assume Ko(a) = 1/k. Using the previous notation I* = D/k (page 260), we obtain
from Eq. (¢) the expression

(%)

1 ® Q(a)Jolar)a da
k Jo

wl) =3 1+ ottt

which actually satisfies the differential equation (178) of the floating plate.
In the case of an isotropic semi-infinite medium we have, by a result due to Bous-
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sinesq,! Ko(s) = (1 — »})/xEs and, by Eq. (d), K(a) = 2(1 — v})/Ew, or

K@ = 5

where ko is the elastic constant defined by Eq. (a). Writing for brevity,

D 2aA-» B @
we finally obtain the solution (¢) in the more special form?

wir) =~ [ 7 Y oler) da

ko Jo T 1+o% (m)

In the particular case of a load concentrated at the origin, expression (m) in con-

nection with (h) yields
® Ar
ﬂ‘i Jo <E) dx

YS%DJo 14N (187
where X\ is written for alo. Therefore, the deflection under the load is
PE [ i Pt /3 P
max = —_— . = = 2 =2
s 22D / TF% " ep 09273 (188)

against the result 0.125P!2/D of Hertz. The distribution of the pressure is readily
obtained from the general expression (j). We have at any point

® Ar
d
o [ (l) S

= 189
P=o Jo 1+ (189)
and especially under the load
P [ xdn P P
Panex = _PVE e e (190)

22 fo 1428 o2 2

in comparison with the value of 0.125P /(2 obtained by Hertz. If we assume equal
values of Wmax in both cases, formula (190) yields a value for pmax which is 2.37 times
as large as the value from Hertz’s formula (181). In such a case the relation
! = 1.241l, must hold, and curves of the respective deflections as calculated from
Eqgs. (179) and (187) are shown in Fig. 131a. Figure 131b shows in like manner the
variation of the pressure; this time, in order to obtain equal values for puax in both
cases, it must be assumed that [ = 0.8061,.

It can be shown, finally, that the magnitude of bending moments in the vicinity of

! See, for example, S. Timoshenko and J. N. Goodier, “Theory of Elasticity,”
2d ed., p. 365, New York, 1951.

? For this result see also S. Woinowsky-Krieger, Ingr.-Arch., vol. 3, p. 250, 1932, and
vol. 17, p. 142, 1949; K. Marguerre, Z. angew. Math. Mech., vol. 17, p. 229, 1937,
A. H. A. Hogg, Phil. Mag., vol. 25, p. 576, 1938.
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the concentrated load is the same for foundations of both kinds if expressed in terms
of the dimensionless argument z = r/l and z = r/l,, respectively. We conclude from
this fact that expressions for bending moments, such as given by Eq. (183), can also be
used for a plate resting on an isotropic elastic medium if we replace I by l., Proceeding
in this manner with the stress formula (z) of Westergaard (page 275), we arrive at the
formula

P Eh?
Omax = 0.366(1 + ») 7 [log,o (k_ob_"> — 0‘266] (n)

in which ko is given by Eq. (a), and b denotes the same quantity as on page 275.

The problem of the bending of a finite circular plate leads to an infinite set of linear
equations for the coefficients of the series, which has to represent the deflections of
such a plate.?

The use of the method of finite differences should also be considered in handling the
problem of finite circular plates.?

The bending of an infinite plate supported by an elastic layer, which rests in its turn
on a perfectly rigid base,® and the problem of a semi-infinite pavement slab¢ have also
been discussed.

Stresses due to a highly concentrated surface load should be corrected in accordance
with the general theory of thick plates. However, a special theory of thick plates
supported elastically has also been established.®

18ee H. Borowicka, Ingr.-Arch., vol. 10, p. 113, 1939; A. G. Ishkova, Doklady
Akad. Nauk 8.8.8.R., vol. 56, p. 129, 1947; G. Pickett and F. J. McCormick, Proc.
First U.S. Natl. Congr. Appl. Mech., p. 331, Chicago, 1951. The effect of raising the
outer portion of the plate submitted to a central load was discussed by H. Jung,
Ingr.-Arch., vol. 20, p. 8, 1952. For bending of rectangular plates see M. 1. Gor-
bounov-Posadov, Priklad. Mat. Mekhan., vol. 4, p. 68, 1940.

2 A. Habel, Bauingenieur, vol. 18, p. 188, 1937; for application to rectangular plates
see G. Pickett, W. C. Janes, M. E. Raville, and F. J. McCormick, Kansas State Coll.
Eng. Expt. Sta. Bull. 65, 1951.

3 A. H. A. Hogg, Phil. Mag., vol. 35, p. 265, 1944.

4 G. Pickett and 8. Badaruddin, Proc. Ninth Intern. Congr. Appl. Mech., vol. 6,
p. 396, Brussels, 1957,

& The first discussion of the statical and dynamical behavior of such plates is due to
K. Marguerre, Ingr.-Arch., vol. 4, p. 332, 1933; see also 1. Szab6, Ingr.-Arch., vol. 19,
pp. 128, 342, 1951; Z. angew. Math. Mech., vol. 32, p. 145, 1952. For application of
E. Reissner’s theory see P. M. Naghdi and J. C. Rowley, Proc. First Midwest Conf.
Solid Mech. (Univ. Illinots), 1953, p. 119, and D. Frederick, J. Appl. Mechanics,
vol. 23, p. 195, 1956,



CHAPTER 9

PLATES OF VARIOUS SHAPES

62. Equations of Bending of Plates in Polar Coordinates. In the
discussion of symmetrical bending of ecircular plates polar coordinates
were used (Chap. 3). The same coordinates can also be used to advan-
tage in the general case of bending of circular plates.

If the 7 and @ coordinates are taken, as shown in Fig. 136a, the relation
between the polar and cartesian coordinates is given by the equations

7t = g% 4 y? 0= arctan% (a)
from which it follows that

27:=£=coso ﬂ=‘1—/=sin0
ax r ay r ®)
9 __y ___sinf 30 _zx _cosd
9  rr T dy . r

Using these expressions, we obtain the slope of the deflection surface of a
plate in the x direction as

ow_dwor  owas
dr  or 9x ' 00 oz

Me dw 10w .

——a;cosf)—;gé-smo (¢)

Qt Qr

) A similar expression can be written

for the slope in the y direction.
To obtain the expression for curva-
ture in polar coordinates the second derivatives are required. Repeating
twice the operation indicated in expression (c), we find

2
é”0=(icosﬁ—lsinei)(a—u-)cosé?—lf@:sino)

Fia. 136

ax? or r a0/ \ ar r a0
_ 29— 9 d*w sin # cos § , Jwsin® @
= g 008 98 ar r ar r
dw sin @ cos 8 , 3%w sin? @
+2 a6 r? 362 r? )

282
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In a similar manner we obtain

w  w d%*w sin 0 cos 8 , dw cos? @
ayr "t S’ in® 6 + 2 555 T Rl
26w sin 8 cos @ N_wcoszo ©
00 r? 96* r?
2w w . 0%w cos 26 Ow cos 20
Ea—y=§z—sm0coso+araa T T3 ot
dwsin f cos § A%wsin § cos @
et T O

With this transformation of coordinates we obtain

w , w dw , low , 1 dw

=t = e Thse ©

Repeating this operation twice, the differential equation (103) for the

deflection surface of a laterally loaded plate transforms in polar coordi-
nates to the following form:

_f9 10 .1 *\[fow , 10w , 1 3w\ _ ¢
Adw = m+;a‘;+ﬁa‘6§)(w+;w+ﬁw)"‘5 s

When the load is symmetrically distributed with respect to the center of
the plate, the deflection w is independent of 8, and Eq. (191) coincides
with Eq. (568) (see page 54), which was obtained in the case of sym-
metrically loaded circular plates.

Let us consider an element cut out of the plate by two adjacent axial
planes forming an angle df and by two cylindrical surfaces of radii r and
r + dr, respectively (Fig. 136b). We denote the bending and twisting
moments acting on the element per unit length by M,, M,, and M, and
take their positive directions as shown in the figure. To express these
moments by the deflection w of the plate we assume that the x axis coin-
cides with the radius . The moments M,, M, and M,, then have the
same values as the moments M., M,, and M,, at the same point, and by
substituting 8 = 0 in expressions (d), (e), and (f), we obtain

I 3w low |, 1 d*w
M, = _D(é}ﬁ + yé—y_z)a_o - [61‘2 + "(?W'*’rﬂaoz)]
w 1ow |, 1 0*w ’w
M= *D( + axz),ao" _D(?EF"'FW“"”W) (192)
1 d%w 1 dw
Mo =1~ ”)D(axay> == ”)D(7a—rar ;m)

In a similar manner, from formulas (108), we obtain the expressions for



284 THEORY OF PLATES AND SHELLS

the shearing forces?
- _pd = — G(Aw)
Q =-D = (Aw) and Q =-D 38 (193)

where Aw is given by expression (g).
In the case of a clamped edge the boundary conditions of a circular
plate of radius a are

(W)rma = 0 i‘ﬁ) -0 k)

Or Jrma
In the case of a simply supported edge
Wma =0  (M)rma =0 Q)
In the case of a free edge (see page 87)

=0 v=(0-2) -0 @

The general solution of Eq. (191) can be taken, as before, in the form
of a sum
w = wo + w, (k)

in which w, is a particular solution of Eq. (191) and w; is the solution of
the homogeneous equation

(9_2_+1 0 1 62)(a2w1+1aw1+1 azwl>=0 (194)

ort " rar T rragr/\ ot T ror T ortae”

This latter solution we take in the form of the following series:?

wy = By + z R.. cos m@ + z R}, sin mé (195)
m=1 m=1
in which Ro, By, . . . , R{, R;, . . . are functions of the radial distance

r only. Substituting this series in Eq. (194), we obtain for each of these
functions an ordinary differential equation of the following kind:

2 2 2 2
(d L1d m)(dRm_‘_ldRm_mRm):O

wria e )N\& i e
The general solution of this equation for m > 1 is
R, = A + Bor— + Cprmt2 + D+ (3]
! The direction of Q. in Fig. 136b is opposite to that used in Fig. 28. This explains
the minus sign in Eq. (193).

2 This solution was given by A. Clebsch in his “Theorie der Elasticitat fester
Korper,” 1862.
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For m = 0 and m = 1 the solutions are

Ry = Ao+ B + Cologr + Dgrtlog r (m)
and Rl = Alr + Bﬂ's + Cﬂ'_l + Dﬂ' log r

Similar expressions can be written for the functions R}, Substituting
these expressions for the functions R, and R], in series (195), we obtain
the general solution of Eq. (194). The constants Ay, Bp, . . . , Dy in
each particular case must be determined so as to satisfy the boundary
conditions. The solution R,, which is independent of the angle 8, repre-
sents symmetrical bending of circular plates. Several particular cases
of this kind have already been discussed in
Chap. 3.

63. Circular Plates under a Linearly
Varying Load. If a circular plate is acted
upon by a load distributed as shown in Fig.
137, this load can always be divided into
two parts: (1) a uniformly distributed load
of intensity 3(p: + p1) and (2) a linearly
varying load having zero intensity alongthe | ~ —™
diameter C D of the plate and the intensities I

—
—p and +p at the ends A and B of the P [TT=] P2
diameter AB. The case of uniform load P 1 1
has already been discussed in Chap. 3. We P I 137

1G.

have to consider here only the nonuniform
load represented in the figure by the two shaded triangles.!
The intensity of the load ¢ at any point with coordinates r and @ is

_precosé
T a

(@)

The particular solution of Eq. (191) can thus be taken in the following
form:
prs cos 6

a

’U)o=A

This, after substitution in Eq. (191), gives

1
4= 192D
__procos @
Hence Wo = o5aD (®

As the solution of the homogeneous equation (194) we take only the term
of series (195) that contains the function R, and assume

w; = (A + By + Cy—! + Dyrlog r) cos @ (¢

! This problem has been discussed by W. Fliigge, Bauingenieur, vol. 10, p. 221, 1929,
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Since it is advantageous to work with dimensionless quantities, we intro-
duce, in place of », the ratio

p =

Qls

With this new notation the deflection of the plate becomes
4
w= w4 wy = 1_3%5 (0% + Ap + Bp* 4 Cp* + Dplogp)cos 9 (d)

where p varies from zero to unity. The constants A, B, . . . in this
expression must now be determined from the boundary conditions.

Let us begin with the case of a simply supported plate (Fig. 137). 1In
this case the deflection w and the bending moment M, at the boundary
vanish, and we obtain

(w)p—l =0 (Mr)p=1 =0 (6)
At the center of the plate (o = 0) the deflection w and the moment M,
must be finite. From this it follows at once that the constants C and D

in expression (d) are equal to zero. The remaining two constants 4 and
B will now be found from Egs. (¢), which give

(W) pmy = 192D Q+A+Bcostd=0
M,)pmr = 192 [4(5 + )+ 2B+ »)Blcos 8 =0

Since these equations must be fulfilled for any value of 6, the factors
before cos # must vanish. This gives

1+ A4A+B=0
46+ v)+ 23+ B =0
and we obtain
205 + ») A=7+u
3+ v 3+

Substituting these values in expression (d), we obtain the deflection w
of the plate in the following form:

_ pa*p(l — %) _ 2
For calculating the bending moments and the shearing forces we substi-
tute expression (f) in Eqs. (192) and (193), from which

M, = %‘g (5 + »)p(1 — p?) cos 0
()

M, = ol(5+ »)(1 + 3») — (1 4+ 5»)(3 + »)p? cos 6

pa’
48(3 + )
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Q= 24(3 + ) 2556+ v) — 9(3 + v)p* cos 6 "
Q= 24(3 + 5 P25 + ) = 3(3 + v)p?] sin 0
It is seen that (M,)m.x occurs at p = 1/4/3 and is equal to
Mrmx_pa(5+y)
(M) 23

The maximum value of M, oceurs at

= VG + A+ 3)/V31 + 5B + )

and 1s equal to

pa? (5 4+ v)(1 + 3v)

(M t)ma.x = 7—2 3 + v
The value of the intensity of the vertical reaction at the boundary is!
_ oM, pa
-V = Q1+7;,’—0-—Z'COSG

The moment of this reaction with respect to the diameter CD of the
plate (Fig. 137) is

/2 3
4 P% os 6a? cos do = T4 P
o 4 4

This moment balances the moment of the load distributed over the plate
with respect to the same diameter.

As a second example, let us consider the case of a circular plate with a
free boundary. Such a condition is encountered in the case of a circular
foundation slab supporting a chimney. As the result of wind pressure,
a moment M will be transmitted to the
slab (Fig. 138). Assuming that the reac- "]ﬂ;;'“ a -
tions corresponding to this moment are [
distributed following a linear law, as -p M
shown in the figure, we obtain the same
kind of loading as in the previous case;
and the general solution can be taken in the same form (d) as before.
The boundary conditions at the outer boundary of the plate, which is
free from forces, are

M) =0 D= (0= 2) 0 Q

i
DN

F1a. 138

The inner portion of the plate of radius b is considered absolutely rigid.
It is also assumed that the edge of the plate is clamped along the circle

1 The reaction in the upward direction is taken as positive.
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of radius b. Hence for p = b/a = B the following boundary condition

must be satisfied:
(aw) (w) )
0p Jomp P /o8 J

Substituting expression (d) in Eqs. (Z) and (j), we obtain the following
equations for the determination of the constants:

46+ +2B+»B+2(1—-»C+ 1 +»nD=0
4174+ +2@+»B+20 —»C - B —»D =0
464 4 28°B — 26~C + D =0

From these equations

B4+»+ 0 — s
AR+ - G+ PG+
C= 2 G+ a- 5 D=1

Substituting these values in expression (d) and using Egs. (192) and (193),
we can obtain the values of the moments and of the shearing forces. The
constant A does not appear in these equations. The corresponding term
in expression (d) represents the rotation of

the plate as a rigid body with respect to the

A \ l" M a----?l\ diameter perpendicular to the plane of Fig.

(@) 138. Provided the modulus of the founda-
tion is known, the angle of rotation can be
A calculated from the condition of equilibrium
» of the given moment M and the reactions of

(b) the foundation.
Using expression (d), the case of a simply
P supported circular plate loaded by a moment
- M at the center (Fig. 139a) can be readily
Mo solved. In this case we have to omit the
term containing p®, which represents the dis-
tributed load. The constant ¢ must be taken
equal to zero to eliminate an infinitely large deflection at the center.

Expression (d) thus reduces to

w = (Ap + Bp® + Dp log p) cos 6 (k)

The three constants A, B, and D will now be determined from the follow-
ing boundary conditions:

@i =0 (M)pmr =0
—a [ 7 (M) s sin 06 + a* [+ (Q)pms c05 0.d0 + M = 0

(c)
Fic. 139

0]

The first two of these equations represent the conditions at a simply sup-
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ported edge; the last states the condition of equilibrium of the forces and
moments acting at the boundary of the plate and the external moment M.
From Egs. (I) we obtain

_ _14vMa _1+vMa __ Ma
Ad=-s%p P=33&%p P~ &
Hence
M
w= — m%r—y)p[a 4+ (1 — p?) + 2(3 + v) log p] cos 6 (m)

Because of the logarithmic term in the brackets, the slope of the deflec-
tion surface calculated from expression (m) becomes infinitely large. ‘To
eliminate this difficulty the central portion of radius b of the plate may
be considered as absolutely rigid.! Assuming the plate to be clamped
along this inner boundary, which rotates under the action of the moment
M (Fig. 139b), we find

Ma s
= GG F ) £ T =g A+ + A =n8
+A+nA -89 +2[@+ )+ (1~ »biplogp
— A+ Bt — B+ Vo tcoss (n)

where 8§ = b/a. When 8 is equal to zero, Eq. (n) reduces to Eq. (m),
previously obtained. By substituting expression (n) in Eq. (192) the
bending moments M, and M, can be calculated.

The case in which the outer boundary of the plate is clamped (Fig.
139¢) can be discussed in a similar manner. This case is of practical
interest in the design of elastic couplings of shafts.? The maximum
radial stresses at the inner and at the outer boundaries and the angle of
rotation ¢ of the central rigid portion for this case are

w

A OtaEw (07)rma = al‘aE‘P ¢ = /X

where the constants a, i, and a, have the values given in Table 64.

TasLE 64
8 =b/a a ay ag
14.17 7.10 12.40

19.54 12.85 28.48
36.25 25.65 77.90
82.26 66.50 314.00

(==~ ]
[ B -0

! Experiments with such plates were made by R. J. Roark, Undv. Wisconsin Buyll,
74, 1932.
* H. Reissner, Ingr.-Arch., vol. 1, p. 72, 1929,
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64. Circular Plates under a Concentrated Load. The case of a load
applied at the center of the plate has already been discussed in Art. 19.
Here we shall assume that the load P is applied at point A at distance b
from the center O of the plate (Fig. 140).! Dividing the plate into two
parts by the cylindrical section of radius b as shown in the figure by the
dashed line, we can apply solution (195) for each of these portions of the
plate. If the angle 6 is measured from the radius OA, only the terms
containing cos m# should be retained. Hence for the outer part of the
plate we obtain

w = R+ Z R.. cos mé (a)
m=]
where Ro= Ao+ By + Cologr + Der2logr

Ry= Awr + By + Cy~ '+ Dyrlogr

Rn = Apr™ + Bpr™ + Cpr™t? 4+ Dr—m+2

®)

Similar expressions can also be written for the functions R{, R{, R.,
corresponding to the inner portion of the plate. Using the symbols A/,
B!, .. . instead of A,, B,, ... for the con-
stants of the latter portion of the plate, from the
condition that the deflection, the slope, and the
moments must be finite at the center of the plate,
we obtain

Cy=Dj=0
1= D=0
B, =D, =0

Hence for each term of series (a) we have to
Fio. 140 determine four constants for the outer portion of
the plate and two for the inner portion.

The six equations necessary for this determination can be obtained
from the boundary conditions at the edge of the plate and from the
continuity conditions along the circle of radius b. If the outer edge of
the plate is assumed to be clamped, the corresponding boundary con-

1 This problem was solved by Clebsch, op. cit. See also A. Foppl, Sitzber. bayer.
Akad. Wiss., Jahrg., 1912, p. 155. The discussion of the same problem by using
bipolar coordinates was given by E, Melan, Eisenbau, 1920, p. 190, and by W. Flugge,
“Die strenge Berechnung von Kreisplatten unter Einzellasten,” Berlin, 1928. See
also the paper by H. Schmidt, Ingr.-Arch., vol. 1, p. 147, 1930, and W. Miiller, Ingr.-
Arch., vol. 13, p. 355, 1943.
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ditions are
dw
('U’)r-a =0 (W>r=a =0 (C)

Denoting the deflection of the inner portion of the plate by w, and
observing that there are no external moments applied along the circle of
radius b, we write the continuity conditions along that circle as

_ dw _ dw % 0%wy _
w = W, a—r———aT 5’;5-—61'2 forr =10 (d)
The last equation is obtained from a consideration of the shearing force
Q- along the dividing circle. This force is continuous at all points of the
circle except point A, where it has a discontinuity due to concentrated
force P. Using for this force the representation in form of the series!

5) (% + z cos m0> (e)

m=1

and for the shearing force the first of the expressions (193), we obtain

d ;] P /1
D@ (Aw),p — D@ (Awy) s = s (5 + 2 cos m0> N
m=1

From the six equations (¢), (d), and (f), the six constants can be calcu-
lated, and the functions R, and RJ, can be represented in the following
form:

= P (g b 10g T 4 @ EDO@ = 1)
By = g | 00 b9 log § + (R
b, @+ = b
a 2a?

, P
Ry = 5D [(r2 + b?) log =

Bo= - DL 2@ —b)r @ —biyr 4r) oa
T T 16sD| 7 a?? a'b? b2
L Pb 2@ —b)r , (@—B)% 4 o«
B = mw[ a? @bt 3 log 5
Ro= o200 1™ Vo — 1302 — ma? + (m — D
™ 8m(m — )xD |a*™
_m(m — 1) b 1/, m—-1.,
m ¥ 1 a2]+rm<T mFi
Ry = 22 T — )b — mat +
™~ 8m(m — xD |a* pam—t

m_ b1 fa\
+(m"1)?ﬁ[l‘m+1$‘m+1<5> ]}

1 Thig series is analogous to the series that was used in the case of continuous plates
(see p. 248).
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Using these functions, we obtain the deflection under the load as

P (az - b2)2
e = N

(196)

For b = 0 this formula coincides with formula (92) for a centrally loaded
plate. The case of the plate with simply sup-
ported edge can be treated in a similar

manner.
The problem in which a circular ring plate
L-b-n is clamped along the inner edge (r = b) and
Fia. 141 loaded by a concentrated force P at the outer
boundary (Fig. 141) can also be solved by
using series (a). In this case the boundary conditions for the clamped
inner boundary are

ow
(W)rms = 0 (g)mb =0 ()]
For the outer boundary, which is loaded only in one point, the conditions
are s
(M r)r—a =0 ﬂz |2_a
g 3
P (1
== 4
M= Z 5+, cos mo)
m=1
(R) 3
Calculations made for a particular T \\ 50
case b/a = g show' that the largest 2 |E=""F
bending moment M, at the inner 2"%5 \1
boundary is NI\
P \
(Mr)r-b.ﬂ-ﬂ = —4.45 — \ T
o SENE TR AMPE: ]
The variation of the moment along x & e
the inner edge and also along a =29
circle of radius r = 5a/6 is shown Fro. 142

in Fig. 142. It can be seen that
this moment diminishes rapidly as the angle 8, measured from the point
of application of the load, increases.

The general solution of the form (a¢) may be used to advantage in
handling circular plates with a system of single loads distributed sym-
metrically with respect to the center of the plate,? and also in the case of

1 H. Reissner, loc. cit.

2 By combining such reactive loads with a given uniform loading, we may solve the

problem of a flat slab bounded by a circle; see K. Hajnal-Konyi, “Berechnung von
kreisformig begrenzten Pilzdecken,”” Berlin, 1929.
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annular plates. For circular plates having no hole and carrying but one
eccentric load, simpler solutions can be obtained by the method of com-
plex variables,! or, when the plate is clamped, by the method of inversion.?
In this latter case the deflection surface of the plate is obtained in the form

P 2
w= qop [ -0 - &)
z? + £ — 2xf cos 0
1 4+ x%2% — 2z¢ cos 0] (197)

+ (2 + £ — 2z£ cos 6) log

where ¢ = r/a and ¢ = b/a (Fig. 140). Expression (197) holds through-
out, the whole plate and yields for x = £, 8 = 0, that is, under the load,
the value (196), previously obtained by the series method.

86. Circular Plates Supported at Several Points along the Boundary. Considering
the case of a load symmetrically distributed with respect to the center of the plate, we
take the general expression for the deflection surface
in the following form:3

w = wo +w (a)

in which we is the deflection of a plate simply sup-
ported along the entire boundary, and w, satisfies the
homogeneous differential equation

Adw; = 0 ®)
Denoting the concentrated reactions at the points of Fia. 143
support 1, 2,3, . . . by N, N;, . . ., N;and using :

series (k) of the previous article for representation of concentrated forces, we have
for each reaction N; the expression

I&<-1- + 2 cos moi) (¢)
xa \2

m=1

where 0; =0 — v

v: being the angle defining the position of the support ¢ (Fig. 143). The intensity
of the reactive forces at any point of the boundary is then given by the expression

t The simply supported plate was treated in that manner by E. Reissner, Math.
Ann., vol. 111, p. 777, 1935; for the application of Muscheli§vili’s method see A. I.
Lourye, Bull. Polytech. Inst., Leningrad, vol. 31, p. 305, 1928, and Priklad. Mat.
Mekhan., vol. 4, p. 93, 1940. See also K. Nasitta, Ingr.-Arch., vol. 23, p. 85, 1955, and
R. J. Roark, Wisconsin Univ. Eng. Ezpt. Sta. Bull. 74, 1932,

¢ J. H. Michell, Proc. London Math. Soc., vol. 34, p. 223, 1902.

3 Several problems of this kind were discussed by A. Nédai, Z. Physik, vol. 23, p.
366, 1922. Plates supported at several points were also discussed by W. A. Bassali,
Proc. Cambridge Phil. Soc., vol. 53, p. 728, 1957, and circular plates with mixed bound-
ary conditions by G. M. L. Gladwell, Quart. J. Mech. Appl. Math., vol. 11, p. 159,
1958.
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< 3

S, 5 )
- ma \2

m=1

in which the summation is extended over all the concentrated reactions (c).

The general solution of the homogeneous equation (b) is given by expression (195)
(page 284). Assuming that the plate is solid and omitting the terms that give infinite
deflections and moments at the center, we obtain from expression (195)

o«

wy = A¢ + Bor?® + z (Amr™ + Cprmt?) cos m@

m=1
L]

+ 2 AL + CL.r™+?) gsin mé ()

ma=]

For determining the constants we have the following conditions at the boundary:

(Mr)r-a = —D [iz_‘w‘*‘l’(lﬂp'i' la:‘w)] =0

ar? ror r W
i . o 6))]
aMrl % l
(V)ema = (Qr -5 ao),_., = — z e (é + Z cos mo.-)
1 m=1

in which M,; and Q, are given by Eqgs. (192) and (193).

Let us consider a particular case in which the plate is supported at two points which
are the ends of a diameter. We shall measure 6 from this diameter. Then v, = 0,
vz = =, and we obtain

Pa? 14+ x3
=+ — 1+ {2102 -
v '”°+2x(3+y)D‘2l°g2 1 _,( o8 12)

1 2(1 + ») o? .
- z [m(m -1 + A = »im — Dm*  mim + 1)] o™ cos mo' @

m=248,...

in which we is the deflection of the simply supported and symmetrically loaded plate,
P is the total load on the plate, and p = r/a. When the load is applied at the center,
we obtain from expression (g), by assuming » = 0.25,

P 3
(0)pat = o.us-f‘;—

P 2
(W)paribmrss = 0.118 T"

For a uniformly loaded plate we obtain

4
() pp = 0.269 %

at
(W) pet bursz = 0.371 q-F
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By combining two solutions of the type (g), the case shown in Fig. 144 can also be
obtained.

When a circular plate is supported at three points
120° apart, the deflection produced at the center of the
plate, when the load is applied at the center, is

Pa?
(w),._o = 0.0670 3 Fia. 144

When the load is uniformly distributed, the deflection at the center is

P 2
(0)po = 0.0362 —1‘;—

where P = wa?q.

The case of a circular plate supported at three points was investigated by experi-
ments with glass plates. These experiments showed a very satisfactory agreement
with the theory.!

66. Plates in the Form of a Sector. The general solution developed for circular
plates (Art. 62) can also be adapted for a plate
in the form of a sector, the straight edges of
which are simply supported.? Take, as an ex-
ample, a plate in the form of a semicirele simply
supported along the diameter AB and uni-
formly loaded (Fig. 145). The deflection of this
plate is evidently the same as that of the circular
plate indicated by the dashed line and loaded as
shown in Fig. 145b. The distributed load is
represented in such a case by the series

(a) (b) 4q .
Fic. 145 q= ot (@)
m=135,...

and the differential equation of the deflection surface is

1
AAw = — 4 sin mo )
D mx
m=135,...
The particular solution of this equation that satisfies the boundary conditions along

the diameter AB is

4qrt :
we = E (16 —mH@& —myp " ™ ©

m=1305,...

The solution of the homogeneous differential equation (194) that satisfies the condi-

1 These experiments were made by Nédai, ¢bid.

? Problems of this kind were discussed by N4dai, Z. Ver. deut. Ing., vol. 59, p. 169,
1915. See also B. G. Galerkin, “Collected Papers,” vol. 2, p. 320, Moscow, 1953,
which gives numerical tables for such cases.
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tions along the diameter AB is

wy = (Amr™ + B,rm+?) gin mé (d)

L]
m=1,3,5,

Combining expressions (c) and (d), we obtain the complete expression for the deflection
w of a semicircular plate. The constants A, and B,, are determined in each particular
case from the conditions along the circular boundary of the plate.

In the case of a simply supported plate we have

(w)r-a = 0

o (e 1ow)] ©
or? "\+or 002 ) |oea

Substituting the sum of series (¢) and (d) for w in these equations, we obtain the
following equations for calculating A,, and B,:

4qa?
" mx(16 — m®)(4 — mHD
Amamm(m — 1) — vm(m — 1)] + Bna™*¥(m + 1)m + 2 + »(2 — m)]
49a?(12 4+ v(4 — m?)]
mw(16 — m2)(4 —~ m2)D

Apna™ + Bnamt? =

From these equations,
gat(m + 5 + »)
ammw(16 — m2(2 + m)[m + 3(1 + »ID
gat(m + 3 + )
T e (4 + m)(& — mB)[m + 21 + »)ID

Ap =

B, =

With these values of the constants the expression for the deflection of the plate
becomes

qat [4r‘ 1
w = — —_—
D at mw(16 — m2)(4 — m?)
m=1385,...
" ™ m+35+»
am mx(16 — m?)(2 + m)im + £(1 + »))
rmtd m43 4+

T P @ Fm)a = B0 T 1| ™

With this expression for the deflection, the bending moments are readily obtained
from Eqs. (192).

In a similar manner we can obtain the solution for any sector with an angle »/k, k
being a given integer. The final expressions for the deflections and bending moments
at a given point can be represented in each particular case by the following formulas:

' "
w= oy M, = fqa? M, = Bya (€3]
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in which «a, 8, and 8, are numerical factors. Several values of these factors for points
taken on the axis of symmetry of a sector are given in Table 65.

TaABLE 65. VALUEs oF THE FACTORS «, 8, AND 8; FOR VARIOUS ANGLES =/k
OoF A BEcTOR SIMPLY SUPPORTED AT THE BOUNDARY

» = 0.3
rfa =} ria = % ria =4 rfa =1
*/k
« 8 -1} @ B8 -1} a B8 81 alB 81
«/4|0.00006 | —0.0015|0.0093 | 0.00033 } 0.0069 | 0.0183 ; 0.00049 { 0.0161 [ 0.0169 |0 |0 | 0.0025
#/3|0.00019 | —0.00250.0177 | 0.00080 { 0.0149 | 0.0255 ] 0.00092{ 0.0243 ( 0.0213 | 0 |0 | 0.0044
~/2| 0.00092 0.0036 } 0.0319 [ 0.00225 | 0.0353 ) 0.0352 { 0.00203 | 0.0381 | 0.0286| 0| 0| 0.0088
» | 0.00589 0.0692 | 0.0357 | 0.00811 | 0.0868 | 0.0515 | 0.00560 ;| 0.0617 | 0.0468] 00| 0.0221

The case in which a plate in the form of a sector is clamped along the circular
boundary and simply supported along the straight edges can be treated by the same
method of solution as that used in the preceding case. The values of the coeflicients
a and 8 for the points taken along the axis of symmetry of the sector are given in
Table 66.

TaBLE 66. VALUES oF THE COEFFICIENTS a AND 8 FOR VARIOUS ANGLES 7/k
oF A SecToR CLAMPED ALONG THE CIRCULAR BOUNDARY AND SIMPLY
SUPPORTED ALONG THE STRAIGHT EDGES

vy = 0.3
r/a =% r/a =% rla =% r/a =1
x/k
a g @ B8 @ 8 « 3]

x/4 | 0.00005 | —0.0008 | 0.00026 | 0.0087 | 0.00028 | 0.0107 | 0 | —0.0250
/3 | 0.00017 { —0.0006 | 0.00057 | 0.0143 | 0.00047 | 0.0123 | 0 | —0.0340
»/2 | 0.00063 0.0068 | 0.00132 | 0.0272 | 0.00082 | 0.0113 | 0 | —0.0488
x | 0.00293 0.0473 | 0.00337 | 0.0446 | 0.00153 | 0.0016 | O | —0.0756

1t can be seen that in this case the maximum bending stress occurs at the mid-point
of the circular edge of the sector.

If the circular edge of a uniformly loaded plate having the form of a sector is entirely
free, the maximum deflection occurs at the mid-point of the unsupported circular edge.
For the case when »/k = 7/2 we obtain

at
ez = 0.0633 q—D~
The bending moment at the same point is

M. = 0.1331¢a?

In the general case of a plate having the form of a circular sector with radial edges
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clamped or free, approximate methods must be applied.! However, the particular
problem of a wedge-shaped plate carrying a lateral load can be solved rigorously (see
Art. 78). Another problem which allows an exact solution is that of bending of a
plate clamped along two circular arcs.? Bipolar coordinates must be introduced in
that case and data regarding the clamped semicircular plate in particular are given
in Table 67.

TaABLE 67. VALUES oF THE FACTORS «, 8, AND 8; [Eqs. (f)] FOR A SEMICIRCULAR
PraTtE CLaMPED ALONG THE Bounpary (Fig. 145a)

vy =03
Load distribution r/a =0|r/a =0483 |r/a = 0.486 | r/a = 0.525 [r/a =1
ﬁ ﬂmnx Qmax ﬁl max ﬂ
Uniform load g....... —0.0731; 0.0355 0.00202 0.0194 —0.0584
Hydrostatic load qy/a |—0.0276] ...... | ....... | ...... —0.0355

Bipolar coordinates can also be used to advantage in case of a plate clamped between
an outer and an inner (eccentric) circle and carrying a single load.?

67. Circular Plates of Nonuniform Thickness. Circular plates of nonuniform
thickness are sometimes encountered in the design of machine parts, such as dia-
phragms of steam turbines and pistons of reciprocating engines. The thickness of
such plates is usually a function of the radial distance, and the acting load is sym-
metrical with respect to the center of the plate. We shall limit our further discussion
to this symmetrical case.

Proceeding as explained in Art. 15 and using the notations of that article, from the
condition of equilibrium of an element as shown in Fig. 28 (page 52) we derive the
following equation:

aM.
I‘I,—{-T-T-—ML-{"QT’-'-‘O
r

(@)

1 8Bee G. F. Carrier and F. 8. Shaw, Proc. Symposia Appl. Math., vol. 3, p. 125, 1950;
H. D. Conway and M. K. Huang, J. Appl. Mechanics, vol. 19, p. 5, 1952; H. R. Hassé,
Quart. Mech. Appl. Math., vol. 3, p. 271, 1950. The case of a concentrated load has
been discussed by T. Sekiya and A. Saito, Proc. Fourth Japan. Congr. Appl. Mech.,
1954, p. 195. For plates bounded by two radii and two arcs and clamped see G. F.
Carrier, J. Appl. Mechanics, vol. 11, p. A-134, 1944. The same problem with various
edge conditions was discussed by L. I. Deverall and C. J. Thorne, J. Appl. Mechanics,
vol. 18, p. 359, 1951. The bending of a uniformly loaded semicircular plate simply
supported around the curved edge and free along the diameter (a “diaphragm’ of a
steam turbine) has been discussed in detail by D. F. Muster and M. A. Sadowsky,
J. Appl. Mechanics, vol. 23, p. 329, 1956. A similar case, however, with a curved
edge clamped, has been handled by H. Miiggenburg, Ingr.-Arch., vol. 24, p. 308, 1956.

2 Green’s function for these boundary conditions has been obtained by A. C. Dixon,
Proc. London Math. Soc., vol. 19, p. 373, 1920. For an interesting limiting case see
W. R. Dean, Proc. Cambridge Phil. Soc., vol. 49, p. 319, 1953. In handling distributed
loads the use of the rather cumbersome Green function may be avoided; see S.
Woinowsky-Krieger, J. Appl. Mechanics, vol. 22, p. 129, 1955, and Ingr.-Arch., vol. 24,
p. 48, 1956.

3 This problem was discussed by N. V. Kudriavtzev, Doklady Akad. Nauk S.S8.8.R.,
vol. 53, p. 203, 1946.
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in which, as before,

d ®)
M, =D <1’i + y—“’)
r dr
d:
where o= — & (¢
dr

and @ is the shearing force per unit length of a circular section of radius r. In the case
of a solid plate, Q is given by the equation

-
Q= 1 ¢ 2xr dr (d)
27r fo
in which ¢ is the intensity of the lateral load.
Substituting expressions (b), (¢), and (d) in Eq. (a) and observing that the flexural
rigidity D is no longer constant but varies with the radial distance r, we obtain the
following equation:

d [fde o dD [de ey _ 17
Da(dr+r)+dr <dr+vr>_ rﬁqrdr ©

Thus the problem of bending of circular symmetrically loaded plates reduces to the
solution of a differential equation (e) of the second order with variable coefficients.
To represent the equation in dimensionless form, we introduce the following notations:

a = outer radius of plate

h = thickness of plate at any point

ho = thickness of plate at center

then Z=x — =y )
a

We also assume that the load is uniformly distributed. Using the notation

6(1 — »?)a’
- et @

Eq. (e) then becomes

d2 1 dlogy?\ d 1 log y°
¢+(_+ ogy>1_<__1dogy)¢=_?g (198)

dz? z dx dz z2 x dx i

In many cases the variation of the plate thickness can be represented with sufficient
accuracy by the equation!
y = ¢ fa'ie (O]

in which 81s a constant that must be chosen in each particular case so as to approximate
as closely as possible the actual proportions of the plate. The variation of thickness

L The first investigation of bending of circular plates of nonuniform thickness was
made by H. Holzer, Z. ges. Turbinenwesen, vol. 15, p. 21, 1918. The results given in
this article are taken from O. Pichler’s doctor’s dissertation, “ Die Biegung kreissym-
metrischer Platten von verinderlicher Dicke,” Berlin, 1928. See also the paper by
R. Gran Olsson, Ingr.-Arch., vol. 8, p. 81, 1937.
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along a diameter of a plate corresponding to various values of the constant 8 is shown
in Fig. 146. Substituting expression (%) in Eq. (198), we find

¢_i’_¢ l — i“i — _1_ = - Pt 3
dx? + (:c B:c) dzx <x’ + vﬁ) i @

It can be readily verified that
P

= — T aeBat i
@0 Y, Te €]

is a particular solution of Eq. (). One of the two solutions of the homogeneous equa-
tion corresponding to Eq. (i) can be taken in the form of a power series:

3

_ (1 4+ v)B +wv) -+ 2n—1+yv) "
<p1—01[1‘+2 2.4.4-6-6 - --2n- 2020 + 2) e l] *®
n=1

in which @, is an arbitrary constant. The second solution of the same equation
becomes infinitely large at the center of the plate, i.e., for £ = 0, and therefore should

y //B=‘4
~,B=-3
,/B=‘2
7 B=-1
.-_B= 0
::~ﬁ= 1
o B=2
—_— , \\\\B= 3
0 05 10 B=4
Fic. 146

not be considered in the case of a plate without a hole at the center. If solutions
(7) and (k) are combined, the general solution of Eq. (z) for a solid plate can be put in
the following form:

¢=p[Wr-"x W%] m

@ —we

The constant C in each particular case must be determined from the condition at the
boundary of the plate. Since series (k) is uniformly convergent, it can be differen-
tiated, and the expressions for the bending moments can be obtained by substitution
in Egs. (b). The deflections can be obtained from Eq. (¢).

In the case of a plate clamped at the edge, the boundary conditions are

(w)z-l =0 (¢)z-1 =0 (m)
and the constant C in solution (l) is
ez
C n)

T B = B

To get the numerical value of C for a given value of 8, which defines the shape of the
diametrical section of the plate (see Fig. 146), the sum of series (k) must be calculated
for z = 1. The results of such calculations are given in the above-mentioned paper
by Pichler. This paper also gives the numerical values for the derivative and for the
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integral of series (k) by the use of which the moments and the deflections of a plate
can be calculated.
The deflection of the plate at the center can be represented by the formula

6(1 — »¥alq

ER} (0

Wmax = adP =
in which « is a numerical factor depending on the value of the constant 8. Several
values of this factor, calculated for » = 0.3, are given in the first line of Table 68.

TaBLE 68. NUMERICAL FACTORS @ AND &' FOR CALCULATING DEFLECTIONS
aT THE CENTER OF CIRCULAR PLATES OF VARIABLE THICKNESS
v =03

8 4 3 2 1 0 -1 -

W

-3 -4

« [0.0801{0.06390.0505;0.0398|0.0313|0.0246|0.0192}{0.0152|0.01195
o [0.2233]0.1944]0.1692|0.1471|0.1273|0.1098 | 0.0937 | 0.0791 | 0.06605

The maximum bending stresses at various radial distances can be represented by the
formulas

3qa® 3qa?
Bt (6)mex = Em1 W

(Vr)msx = tv (P)

The values of the numerical factors ¥ and v, for various proportions of the plate and
for various values of z = r/a are given by the curves in Figs. 147 and 148, respectively.

L -B=4
\ I
--B=2
_—13:1
-—ﬂ:o
--B=-1
._B=_2
0 R
B=-4_f Z
02 Ny =t
l Bra——"|
04

0 0.2 04 06 08 10
X —

Fic. 147

For 8 = O these curves give the same values of stresses as were previously obtained for
plates of uniform thickness (see Fig. 29, page 56).
In the case of a plate simply supported along the edge, the boundary conditions are

0}z =0 M)z =0 [C2]
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Investigation shows that the deflections and maximum stresses can be represefnted
again by equations analogous to Eqs. (o) and (p). The notations ', 7', and ~, will
be used for constants in this case, instead of «, v, and v: as used for clamped plates.
The values of o’ are given in the last line of Table 68, and the values of ' and v, are
represented graphically in Figs. 149 and 150, respectively.

B4,
=3
A=2 N
f0
B= -1 0
B= -2y fe-4
B=-4 N —— = // 0273
e “|
04
0 02 04 x~06> 08 o
Fro. 148
’ N 7
\ — 7
02 \\\\%\ A"—B"A ///
’ /Bf . ~A7]
10.4 \\\t__—i—’%%
~— T
B=4 —//
08 0 0z 04 06 08 10
Fie. 149
0.0 0.2 0.4 0.6 0.8 1.0 0.0
|, 7%
7!’ | 0.2
L = .
e e I R e e ——
\\Qkﬁ-g?— =_;—%/ o
— =017 3=1 .
— S e
0.6
Fic. 150

To calculate the deflections and stresses in a given plate of variable thickness we
begin by choosing the proper value for the constant 8 as given by the curves in Fig.
146. When the value of 8 has been determined and the conditions at the boundary
are known, we can use the values of Table 68 to calculate the defiection at the center
and the curves in Figs. 147, 148 or 149, 150 to calculate the maximum stress. If the
shape of the diametrical section of the given plate cannot be represented with satis-
factory accuracy by one of the curves in Fig. 146, an approximate method of solving the
problem can always be used. This method consists in dividing the plate by con-
centric circles into several rings and using for each ring formulas developed for a ring
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plate of constant thickness. The procedure of calculation is then similar to that
proposed by R. Grammel for calculating stresses in rotating disks.!

68. Annular Plates with Linearly
Varying Thickness. Let us consider a
circular plate with a concentric hole and
a thickness varying as shown in Fig. 151.
The plate carries a uniformly distributed
surface load ¢ and a line load p = P/2rb
uniformly distributed along the edge of
the hole.? Letting Do = Eh3/12(1 — »%)
be the flexural rigidity of the plate at
r = b, we have at any distance r from
the center

_ Dqr?
= —b—a—

Substituting this in Eq. (¢) of Art. 67 and taking into account the additional shear
force P/2xr due to the edge load, we arrive at the differential equation

D (@)

d2p de b3 b2 Pb3
2 2% 4 4, 2% - =2 (1)~ 22
r dr? + Tdr + @ = De 2D, 72 27 Dor? ®

The solution of the homogeneous equation corresponding to Eq. (b) is readily
obtained by setting ¢ = r*. Combining this solution with a particular solution of
Eq. (b), we get
gb?® bt Pb?

= Are Bre —_
v AT B A e —35)  6(1 — 9Dy T bn(l = Dt

()
in which
ar=—15+ V32 -3y a= —15— V325 —3» (@

In the special case » = §, expression (c) has to be replaced by

_qb_-" r qbs Pb3

B
em4 T+ i‘_:’ - 6D, o8 b - 4Dgr? 4xDor?

(e)

The arbitrary constants A and B must be determined from the respective conditions
on the boundary of the plate. Writing, for brevity, ¢ for (¢)rs, and M, for (M,),.s,
and introducing likewise ¢., M., the last column of Table 69 contains the boundary
conditions and the special values of ¢ and P assumed in six different cases. The same
table gives the values of coefficients k and k&, calculated by means of the solution (¢) and
defined by the following expressions for the numerically largest stress and the largest
deflection of the plate:

! R. Grammel, Dinglers Polytech. J., vol. 338, p. 217, 1923. The analogy between
the problem of a rotating disk and the problem of lateral bending of a circular plate of
variable thickness was indicated by L. Foppl, Z. angew. Math. Mech., vol. 2, p. 92,
1922. Nonsymmetrical bending of circular plates of nonuniform thickness is dis-
cussed by R. Gran Olsson, Ingr.-Arch., vol. 10, p. 14, 1939.

2 This case has been discussed by H. D. Conway, J. Appl. Mechanics, vol. 15, p. 1,
1948. Numerical results given in Table 69 are taken from that paper.
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TaBLE 69. VaLuEsS oF CorrrIciENTS IN Eq@s. (f) For VARIous VALUES OF THE
RaTio a/b (Fig. 151)

y=3%

Case Bound-
(number Coeffi- a/b ary
corresponding cient condi-
to Table 3) 1.25 1.5 2 3 4 5 tions

q k 0.249 (0.638 {3.96 (13.64 126.0 |40.6 P = Q*
} ki 10.003720.0453/0.401 | 2.12 {4.25 | 6.28 ' M, =0
a k 0.149 10.991 2.23 5.57 | 7.78 | 9.16 P=9
A } k1 0.00551|0.0564/0.412 | 1.673} 2.79 | 3.57 | M, =0
N k 10.1275 |0.515 2.05 | 7.97 (17.35 | 30.0 P =q*
) ki1 10.00105/0.0115/0.0934] 0.537| 1.261] 2.16 | ¢u =0
4P k [0.159 ]0.396 (1.091 | 3.31 | 6.55 |10.78 g=0
6 a :E 3: E o =0
ky 10.00174/0.0112/0.0606] 0.261| 0.546| 0.876| ¢, =0
17 k [0.353 [0.933 [2.63 | 6.88 [11.47 |16.51 ¢=0
8| =1 ] o =0
{ 4 k,  [0.00816/0.05830.345 | 1.358 2.39 | 3.27 | M, =0
q k  10.0785 10.208 10.52 | 1.27 | 1.94 | 2.52 P=0
— 4 L/LLE 2{1% e =0
ki |0.000920.008 (0.0495 0.193| 0.346| 0.482| ¢, =0

* Where Q = wq(a? — b?).
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2 P
(or)max = gl{ or (ﬂ'r)max =k 33
" n )
& ga _, Pa?
Wmax = K1 73 Eha or Wmax = K1 Eh::

Numerical results valid for similar plates with constant thickness have been given
in Table 3.

69. Circular Plates with Linearly Varying Thickness. In discussing the bending
of the circular plate shown in Fig. 152,* we have to consider two portions of the plate
separately.

1. The annular area b <r < a. Provided » # ¢, the slope ¢ = dw/dr again is
given by the expression (¢) of Art. 68 without, however, its next to last term.

2. The inner area r <b. Here we
have dD/dr = 0, and Eq. (e) of Art. 67 is

lll’llﬁlllllllw — reduced to
/ /%W ,-',' . d2o; d:p. ar Pr

T A "G YT T T Top, 2D,

ke---=~b ----)L ——————— q--——- -3 (a)

where the subscript 7 refers to the inner

| P, portion of the plate. The general solu-
-HIH-ZC tion of Eq. (a) is
\1 y ]y R—x
ho ;1, -4 B; grd
; oo =der 16Do
(b)
Fre. 152 = 83 @logr+1) (®

The constants 4, B in Eq. (¢) of Art. 68, and 4., B; in Eq. (b) above can be obtained
from the boundary condition

(’P)raa =0
and the conditions of continuity

d do;
(@) =0 (¢ — ¢)rs = 0 (—f——“’)_b=o

Tables 70 and 71 give the deflection wmax and values of bending moments of the plate
in two cases of loading. To calculate the bending moment at the center in the case
of a central load P, we may assume a uniform distribution of that load over a small
circular area of a radius ¢. The moment M, = M, at r = 0 then can be expressed
in the form

P c?
me=Mo-;<1 —5‘;;)4-711’ (c)

In this formula M, is given by Eq. (83), which holds for a supported plate of constant
thickness; the second term represents the effect of the edge moment; and the third
term, due to the nonuniformity of the thickness of the plate, is given by Table 71.

1 Clamped and simply supported plates of such a shape were discussed by H. Favre,
Bull. Tech. Suisse romande, vol. 75, 1949. Numerical results given below are due
substantially to H. Favre and E. Chabloz, Bull. Tech. Suisse romande, vol. 78, 1952.
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TaBLE 70. DEFLECTIONS AND BENDING MoMmENTs oF CLamMpED CIRCULAR
Prates LoapEp Unirormiy (Fig. 152a)

v = 0.25
gt 2, = £ya? M, = giqa?
2| tomes = e
a Nl r=0 r=25 r=gq r=0 r=2% r=a
a B B 8 B1 Bi 81

0.008 0.0122 0.0040 | —0.161 | 0.0122 0.0078 | —0.040
0.042 0.0332 0.0007 | —0.156 | 0.0332 0.0157 | —0.039
0.094 0.0543 | —0.0188 | —0.149 | 0.0543 0.0149 | —0.037
0.148 0.0709 | —0.0591 | —0.140 | 0.0709 0.0009 | —0.035
0.176 0.0781 | —0.125 ~0.125 | 0.0781 ; —0.031 -0.031

o000
[=2 = T &)

TasLE 71. DEFLECTIONS AND BENDING MoOMENTs OF CLAMPED CIRCULAR
PLaTes UNDER A CENTRAL Loap (Fig. 152b)

v = 0.25
Pa| w -t M, = gP M, = 8,P

blwms =agpm Tl oo

a ° r= r=b r=a r=5b r=a
. o o2 8 8 B [
0.2 0.031 —-0.114 —0.034 —0.129 —0.028 —0.032
0.4 0.093 ~0.051 | —0.040 | —0.112 | —0.034 | —0.028
0.6 0.155 —0.021 —0.050 —0.096 —0.044 —0.024
0.8 0.203 -0.005 —0.063 —0.084 —0.057 —0.021
1.0 0.224 0 —0.080 —0.080 -0.020 —0.020

*In Eq. (¢).

In the case of a highly concentrated load requiring the use of the thick-plate theory,
the stress at the center of the bottom surface of the plate is given by the expression

6P Y1
h

in which oo may be calculated by means of expression (97).
Assuming next a variation of the flexural rigidity of the plate in accordance with

the law
D= Do(l - i)'" ©)
[22]

where ao denotes a length at least equal to the radius of the plate, we arrive in
general at a slope ¢ expressible in terms of the hypergeometric function.! The par-
ticular assumption m = 1/» leads, however, to a solution in a closed form. Taking,
in addition, » = 4 we arrive again at a plate with linearly variable thickness.?

L R. Gran Olsson, Ingr.-Arch., vol. 8, p. 270, 1937.

2 See especially H. D. Conway, J. Appl. Mechanics, vol. 18, p. 140, 1951, and vol. 20,
p. 564, 1953.

@

Omax = 00
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Symmetrical deformation of plates such as shown in Fig. 153 also can be investi-
gated by means of a parameter method akin to that described in Art. 39. Some
numerical results! obtained in that way
are given in Tables 72 and 73.
For bending moments and tensile
stresses under central load P (Fig. 153b)

L
IEREREE!

bysiyidl o
h

expressions NI
Muax = My + 7P 6)) (<}—-—-———u-—~———>‘
s o
and Omax = 00 + bP;y L (9
kg P
(
analogous to Egs. (¢) and (d) may be > k-2c .
used. M, again is given by expression ~
(83), oo denotes the value calculated by _Kw o AA. :'
means of expression (96), and v, is given
in Table 73. (b)
Of practical interest is also a combina-
tion of loadings shown in Fig. 153a and p
b. Taking ¢ = —P/xa?, we have the 1|
state of equilibrium of a circular footing >i|e2e
carrying a central load P and submitted )
at the same time to a uniformly distrib- / ho hy
uted soil reaction (Fig. 153c). Some t TTTJ Tj 1 T T T ? TT T
data regarding this case, in particular P
the values of the factor v;, to be used in i it TPt 3
formulas (f) and (g), are given in Table (c)
74.2 Fic. 153

TaBLE 72. DEFLECTIONS AND BENDING MOMENTS OF SIMPLY SUPPORTED
Prates UNDER UNirorMm Loap (Fig. 153a)

v = 0.25
qat M, = gga? M, = Biya?
Bo | tmen = o
ha o r=20 r=a/2 r=0 =a/2 r=aq
« B 8 B1 B1 61

1.00 0.738 0.203 0.152 0.203 0.176 0.094
1.50 1.26 0.257 0.176 0.257 0.173 0.054
2.33 2.04 0.304 0.195 0.304 0.167 0.029

! Due, as well as the method itself, to H. Favre and E. Chabloz, Z. angew. Math. u.
Phys., vol. 1, p. 317, 1950, and Bull. Tech. Suisse romande, vol. 78, 1952.

2 For further results concerning circular plates with varying thickness see W. Gittle-
man, Aircraft Eng., vol. 22, p. 224, 1950, and J. Paschoud, Schweiz. Arch., vol. 17, p.
305, 1951. A graphical method of design has been given by P. F. Chenea and P. M.
Naghdi, J. Appl. Mechanics, vol. 19, p. 561, 1952.
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TaBLE 73. DEFLECTIONS AND BENDING MOMENTS OoF SIMPLY SUPPORTED
CIrRcULAR PLaTEs UNDER CENTRAL Loap (Fig. 153b)

= 0.25
Pat M, =M,|M, =8P M, = g,P
22 Wmax = aﬁ

h W r=0 |r=a/2|r=a/2] r=a

o Y2 B 81 B
1.00 0.582 0 0.069 0.129 0.060
1.50 0.93 0.029 0.088 0.123 0.033
2.33 1.39 0.059 0.102 0.116 i 0.016

TaBLE 74. BENDING MoMENTS oF A CIRcULAR Fooring PLATE wiTH CENTRAL
Loap anp UnrrormMiy DisTriBUTED SoiL Pressure (Fig. 153c)

v = 0.25
M, =M, |M, =pP M, = 8P
ho
hy r=0 r=a/2 r=a/2| r=a
2 8 B1 B

1.00 -0.065 0.021 0.073 0.030
1.50 —0.053 0.032 0.068 0.016
2.33 —0.038 0.040 0.063 0.007

70. Nonlinear Problems in Bending of Circular Plates. From the
theory of bending of bars it is known that, if the conditions at the sup-
ports of a bar or the loading condi-
tions are changing with the deflection

vq of the bar, this deflection will no
longer be proportional to the load,
and the principle of superposition
cannot be applied.! Similar prob-
lems are also encountered in the case

Mg of bending of plates.? A simple ex-
ample of this kind is shown in Fig.

154. A circular plate of radius ¢ is

pressed by a uniform load q against an absolutely rigid horizontal founda-
tion. If momentsof an intensity M, areapplied along the edge of the plate,
a ring-shaped portion of the plate may be bent as shown in the figure,

(b
Fia. 154

! An example of such problems is discussed in 8. Timoshenko, *Strength of Mate-
rials,” part I1, 3d ed., p. 69, 1956.

2 8ee K. Girkmann, Stahlbay, vol. 18, 1931. Several examples of such problems are
discussed also in a paper by R. Hofmann, Z. angew. Math. Mech., vol. 18, p. 226, 1938.
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whereas a middle portion of radius b may remain flat. Such conditions
prevail, for example, in the bending of the bottom plate of a circular
eylindrical container filled with liquid. The moments M, represent in
this case the action of the cylindrical wall of the container, which under-
goes a local bending at the bottom. Applying to the ring-shaped portion
of the bottom plate the known solution for a uniformly loaded circular
plate [see expressions (m) in Art. 62], we obtain the deflection

4
w=Cl+Czlogr+Csr2+04r210gr+6g£§ (a)
For determining the constants of integration Cy, . . . , C4 we have the
following boundary conditions at the outer edge:
(w)ﬁ,a =0 (Mr)r—a = '-Ma (b)

Along the circle of radius b the deflection and the slope are zero. The
bending moment M, also must be zero along this circle, since the inner
portion of the plate remains flat. Hence the conditions at the circle of
radius b are

(W)rms = 0 (%lrv),_,, ~0 (M) =0 ©

By applying conditions (b) and (¢) to expression (a) we obtain the five
following equations:

4
C;+C'210ga+03a2+04a210ga=—an—D

4
Ci+ Czlogb + Cpb2 + Ceb2logh = — Gqu
+Ci3+2loga+ 2vloga+ ») = 16D(3+V)-!-D (d)

C. ”;—,1 +C2(» + 1)

+ CsB4+2logh+2vlogh + v) = —IGD(3+u)

1 _ gb®
Cag + Ci2b + Cb2logb + 1) = — 705
By eliminating the constants Cy, . . . , C4from these equations we obtain

an equation connecting M, and the ratio b/a, from which the radius b of
the flat portion of the plate can be calculated for each given value of M,
With this value of b the constants of integration can be evaluated, and
the expression for the deflection of the plate can be obtained from Eq. (a).
Representing the moment M, and the angle of rotation ¢, of the edge of



310 THEORY OF PLATES AND SHELLS

the plate by the equations
_ qa2 qax

Ma—a—3§ and ‘Pu=ﬁ§ﬂ) (e

and repeating the above-mentioned calculations for several values of the
moment M,, we can represent the relation between the constant factors
o and B graphically, as shown in Fig. 155, for the particular case' » = 0.

It is seen from this figure that 8 does not

14 §] vary in proportion to « and that the resist-
(2 / ance to rotation of the edge of the plate
a decreases as the ratio b/a decreases. This

1o B aor condition holds up to the value a = 5, at
08 a_- which value 8 = 1, b/a = 0, and the plate
8 Aoy touches the foundation only at the center,
06 / 9 71 asshown in Fig. 154b. For larger values
04 g=a 3z of «, that is, for moments larger than
M, = 5¢qa?/32, the plate does not touch

02 b the foundation, and the relation between
0 < a9 a and B is represented by the straight line
0 1 2 § 4 5 6 4B The value M, = 5¢a?/32 is that

Frc. 155 value at which the deflection at the center

of the plate produced by the moments M,

is numerically equal to the deflection of a uniformly loaded plate simply
supported along the edge [see Eq. (68)].

Another example of the same kind is shown in Fig. 156. A uniformly
loaded circular plate is simply supported along the edge and rests at the
center upon an absolutely rigid foundation. Again the ring-shaped por-
tion of the plate with outer radius a and inner radius b can be treated as

b
F1c. 156 Fia. 157

a uniformly loaded plate, and solution (a) can be used. The ratio b/a
depends on the deflection § and the intensity of the load g¢.

71. Elliptical Plates. Uniformly Loaded Elliptical Plate with a Clamped
Edge. Taking the coordinates as shown in Fig. 157, the equation of the
boundary of the plate is

2 2
Z+4-1=0 (a)

1 This case is discussed in the paper by Hofmann, op. cit.
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The differential equation

anw = 4 (b
and the boundary conditions for the clamped edge, t.e.,
ow
w=20 and o 0 (c)

are satisfied by taking for the deflection w the expression!

2 2\ 2
wew(1-5-%) @

It is noted that this expression and its first derivatives with respect to
z and y vanish at the boundary by virtue of Eq. (¢). Substituting expres-
sion (d) in Eq. (b), we see that the equation is also satisfied provided

= q ‘
Wo = o1 (199)
+ ~ + -5 2b2

Thus, since expression (d) satisfies Eq. (b) and the boundary conditions,
it represents the rigorous solution for a uniformly loaded elliptical plate
with a clamped edge. Substituting £ = y = 0 in expression (d), we find
that w,, as given by Eq. (199), is the deflection of the plate at the center.
If @ = b, we obtain for the deflection the value previously derived for a
clamped circular plate [Eq. (62), page 55]. If a = «, the deflection w,
becomes equal to the deflection of a uniformly loaded strip with clamped
ends and having the span 2b.

The bending and twisting moments are obtained by substituting expres-
sion (d) in Eqgs. (101) and (102). In this way we find

2w o2w 3x? 1
m=°DGF+”WJ=‘ww[ + -

x? 3y? 1
+«W+F_@]@
For the center of the plate and for the ends of the horizontal axis we
obtain, respectively,

S’LUQD
a2

(Mz)omo.ym0 = 4w0D( + ,,) and (M 2) omaiymo = — o

b2
! This solution and the solution for a uniformly varying load g are obtained by
G. H. Bryan; see A. E. H. Love’s book, ‘“Theory of Elasticity,” 4th ed., p. 484. The

case of an elliptical plate of variable thickness is discussed by R. Gran Olsson, Ingr.-
Arch., vol. 9, p. 108, 1938,
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Similarly, for the moments M, at the center and at the ends of the vertical
axis we find, respectively,

(M,)esm0 = 400D (% +2
It is seen that the maximum bending stress is obtained at the ends of
the shorter principal axis of the ellipse. Having the moments M., M,
and M ,,, the values of the bending moment M, and the twisting moment
M, at any point on the boundary are obtained from Eqgs. (¢) (Art. 22,
page 87) by substituting in these equations

8woD
) and (My)z=0,y-=b == /ul;g (g)

a

COSa—d—y=———ﬂ— sina=_d_x=.__azl—, (h)
ds  ~/a'y? + biz? ds  +/aiy* + bz
The shearing forces Q. and @, at any point are obtained by substi-
tuting expression (d) in Egs. (106) and (107). At the boundary the
shearing force @, is obtained from Eq. (d) (Art. 22, page 87), and the
reaction V, from Eq. (g) of the same article. In this manner we find
that the intensity of the reaction is a maximum at the ends of the minor
axis of the ellipse and that its absolute value is
a?b(3a? + b?gq
3at + 3b* + 2a%b?
The smallest absolute value of V, is at the ends of the major axis of the
ellipse where

(Vi)mex = fora > b (2)

_ ab*a® + 3b%)q .
(Vaduie = 5ar 4 55 207 0

For a circle, a = b, and we find (V,)mx = (Vi)min = qa/2.

Elliptical Plate with a Clamped Edge and Bent by a Linearly Varying Pressure.
Assuming that ¢ = gor, we find that Eq. () and the boundary conditions (c) are
satisfied by taking

(200)

From this expression the bending moments and the reactions at the boundary can be
calculated as in the previous case.

Uniformly Loaded Elliptical Plate with Simply Supported Edge. The solution for
this case is more complicated than in the case of clamped edges ;! therefore we give here
only some final numerical results. Assuming that a/b > 1, we represent the deflection
and the bending moments at the center by the formulas

b4
(10)5mymo = aé—ha M. =ggdb* M, = pugh? (k)

t See B. G. Galerkin, Z. angew. Math. Mech., vol. 3, p. 113, 1923.
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The values of the constant factors «, 8, and g: for various values of the ratio a/b and
for v = 0.3 are given in Table 75.

TaBLE 75. FAcToRs «, B8, 81 IN FormuLas (k) FOorR UNiFOrRMLY LOADED AND
SiMpLy SuppPoRTED ELLipTICAL PLATES
y =03

a/b 1 1.1 1.2 1.3 1.4 L5 2 3 4 5 %

«(0.70 |0.83 {0.96 11.07 [1.17 [1.26 |1.58 }1.88 {2.02 {2.10 (2.28
g 10.206]0.215(0.219/0.223 [0.223{0.222|0.210/0.18810.184|0.170|0.150
B:1]0.206{0.235{0.261{0.282(0.303|0.321|0.379{0.433 | 0.465{0.480|0.500

Comparison of these numerical values with those previously obtained for rectangular
plates (Table 8, page 120) shows that, for equal values of the ratio of the sides of
rectangular plates and the ratio a/b of the semiaxes of elliptical plates, the values of
the deflections and the moments at the center in the two
kinds of plate do not differ appreciably. The case of a
plate having the form of half an ellipse bounded by the
transverse axis has aldo been discussed.!

72. Triangular Plates. Fquilateral Triangular
Plate Simply Supported at the Edges. The bend-
ing of such a triangular plate by moments M,
uniformly distributed along the boundary has
already been discussed (see page 94). It was
shown that in such a case the deflection surface of the plate is the same
as that of a uniformly stretched and uniformly loaded membrane and is
represented by the equation

ZWD [w"' — 3yt —a(x® + ¥ + =5 a"'] (a)

Fia. 158

in which a denotes the height of the triangle, and the coordinate axes
are taken as shown in Fig. 158.
In the case of a uniformly loaded plate the deflection surface is?

= 64?1D [:c3 — 3y — a(z® + y?) + —a3] (% a? — g? — yz) (201)

! B. G. Galerkin, Messenger Math., vol. 52, p. 99, 1923. For bending of clamped
elliptical plates by concentrated forces see H. Happel, Math. Z., vol. 6, p. 203, 1920,
and C. L. Perry, Proc. Symposia Appl. Math., vol. 3, p. 131, 1950. See also H. M.
Sengupta, Bull. Calcutta Math. Soc., vol. 41, p. 163, 1949, and vol. 43, p. 123, 1950;
this latter paper also contains a correction to the former one. By means of curvi-
linear coordinates, solutions for plates clamped along some other contour lines and
submitted to a uniform load have been obtained by B. Sen, Phil. Mag., vol. 33, p. 294,
1942.

2 The problem of bending of a plate having the form of an equilateral triangle was
solved by 8. Woinowsky-Krieger, Ingr.-Arch., vol. 4, p. 254, 1933.
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By differentiation we find

— _ 9 1.3 92y — 2 2 i 3
Aw 4aD[x 32z — alx +y)+27a] b)
It may be seen from (201) and (b) that the deflection and the bending
moment at the boundary vanish, since the expression in the brackets is
zero at the boundary. Further differentiation gives

MAw = —% (©
Hence the differential equation of the deflection surface is also satisfied,
and expression (201) represents the solution of the problem. Having the
expression for deflections, the expressions for the bending moments and
the shearing forces can be readily obtained. The maximum bending
moment occurs on the lines bisecting the angles of the triangle. Con-
sidering the points along the x axis and taking » = 0.3, we find

(M) max = 0.0248¢a? at r = —0.062¢
b i a---- 202
f‘ K\"F\j (M ) max = 0.0259¢a? at ¢ = 0.129a (202)
'F:, At the center of the plate
7 - M, = @
:*P > M,=M,= (144 54 (203)
! 1 The case of a concentrated force acting on the
< - plate can be solved by using the method of images (see
J page 156). Let us take a case in which the point of
Alde application of the load is at the center A of the plate
0 % (Fig. 159). Considering the plate, shown in the figure

wiQ
¥

\
Lg~ /\\/ e by the heavy lines, as a portion of an infinitely long
< P rectangular plate of width a, we apply the fictitious
Y 4 loads P with alternating signs as shown in the figure.
Fic. 159 The nodal lines of the deflection surface, produced by

such loading, evidently divide the infinitely long plate

into equilateral triangles each of which is in exactly the same condition
as the given plate. Thus our problem is reduced to that of bending of
an infinitely long rectangular plate loaded by the two rows of equidistant
loads +P and —P. XKnowing the solution for one concentrated force
(see Art. 36) and using the method of superposition, the deflection at
point A and the stresses near that point can be readily calculated, since
the effect of the fictitious forces on bending decreases rapidly as their dis-
tance from point A increases. In this manner we find the deflection at A :

2
wy = 0.00575 0% (204)
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The bending moments at a small distance ¢ from A are given by the
expressions

_(1+v)P< av3 1 - »P
M, = o log - 0379} — ———2—

8x

M, = (1 -LV)P (log ar\c/g _ 0.379) + (_1#

(205)

Since for a simply supported and centrally loaded circular plate of radius
ao the radial and the tangential moments at a distance ¢ from the center
are, respectively (see page 68),

M, = i+ P log Ge
i ‘ @

_(49P, a (1= P

and Moo= = log b g

it can be concluded that the first terms on the right-hand side of Eqgs.
(205) are identical with the logarithmical terms for a circular plate with
a radius

0 =

_‘,"_;____\/g o—0-379 (&)

Hence the local stresses near the point of application of the load can be
calculated by using the thick-plate theory developed for circular plates
(see Art. 19).

Equzilateral Triangular Plates with Two or Three Edges Clamped. Triangular plates
are used sometimes as bottom slabs of
bunkers and silos. In such a case each SR L R
triangular plate is rigidly clamped along l‘ -]x
both its inclined edges and clamped
elastically along its third, horizontal
edge (Fig. 160). Only the uniform and
the hydrostatic distribution of the load
is of practical interest. The largest
bending moment of the panel and the
clamping moments at the middle of a
built-in edge may be represented as

M=pgga* or M =g8gu (f) -

according to the type of loading (Fig. Fic. 160
160). The values of coefficients 8 and
81, obtained by the method of finite differences,! are given in Table 76.

It should be noted, finally, that a plate in form of a triangle with angles »/2, /3,
and »/6 and having all edges simply supported can be considered as one-half of the
equilateral plate (Fig. 158), this latter being loaded antisymmetrically above the axis

! SBee A. Smotrov, “Solutions for Plates Loaded According to the Law of Trapeze,”
Moscow, 1936.
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TaBLE 76. VALuEs oF THE Factors 8, $1 IN Eqgs. (f) FoR EQUILATERAL
TriancuLAR Prates (Fig. 160)
v = 0.20

Edge y = 0simply supported Edge y = 0 clamped

Load distribution
le Mlll Mn2 Mvs le le an Mv:s

Uniform........ $8]0.01260.0147}—0.0285] 0 [0.0113/0.0110;—0.0238 —0.0238
Hydrostatic. . . . . 81/0.0053/0.0035 —0.0100| 0 0.0051[0.0034| —0.0091|—0.0060

z. The problem of bending of such a plate can be solved in several ways—for example,
by the method of images.!

Plate in the Form of an Isosceles Right Triangle with Simply Supported Edges. Such

a plate may be considered as one-half of a square

g ‘F'“” X plate, as indicated in Fig. 161 by dashed lines,

“““ and the methods previously developed fo