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PREFACE

Since the publication of the first edition of this book, the application
of the theory of plates and shells in practice has widened considerably,
and some new methods have been introduced into the theory. To take
these facts into consideration, we have had to make many changes and
additions. The principal additions are (1) an article on deflection of
plates due to transverse shear, (2) an article on stress concentrations
around a circular hole in a bent plate, (3) a chapter on bending of plates
resting on an elastic foundation, (4) a chapter on bending of anisotropic
plates, and (5) a chapter reviewing certain special and approximate
methods used in plate analysis. We have also expanded the chapter on
large deflections of plates, adding several new cases of plates of variable
thickness and some numerical tables facilitating plate analysis.

In the part of the book dealing with the theory of shells, we limited
ourselves to the addition of the stress-function method in the membrane
theory of shells and some minor additions in the flexural theory of shells.

The theory of shells has been developing rapidly in recent years, and
several new books have appeared in this field. Since it was not feasible
for us to discuss these new developments in detail, we have merely referred
to the new bibliography, in which persons specially interested in this field
will find the necessary information.

S. Timoshenko
S. Woinowsky-Krieger



NOTATION

x, y, z Rectangular coordinates
r, 0 Polar coordinates

rx, ry Radii of curvature of the middle surface of a plate in xz and yz planes,
respectively

h Thickness of a plate or a shell
q Intensity of a continuously distributed load
p Pressure
P Single load
7 Weight per unit volume

(Tx, <rV) (Tt Normal components of stress parallel to x, y, and z axes
(Tn Normal component of stress parallel to n direction
o> Radial stress in polar coordinates

at, (re Tangential stress in polar coordinates
r Shearing stress

Txy, Txz, Tyz Shearing stress components in rectangular coordinates
u, v, w Components of displacements

e Unit elongation
«*, «•/, fz Unit elongations in x, y, and z directions

er Radial unit elongation in polar coordinates
et, eo Tangential unit elongation in polar coordinates
ttp, eo Unit elongations of a shell in meridional direction and in the direction

of parallel circle, respectively
yxy, Vxz, jyz Shearing strain components in rectangular coordinates

7r0 Shearing strain in polar coordinates
E Modulus of elasticity in tension and compression
G Modulus of elasticity in shear
v Poisson's ratio

V Strain energy
D Flexural rigidity of a plate or shell

Mx, My Bending moments per unit length of sections of a plate perpendicular
to x and y axes, respectively

Mxy Twisting moment per unit length of section of a plate perpendicular
to x axis

Mn, Mnt Bending and twisting moments per unit length of a section of a plate
perpendicular to n direction

Qx, Qy Shearing forces parallel to z axis per unit length of sections of a plate
perpendicular to x and y axes, respectively

Qn Shearing force parallel to z axis per unit length of section of a plate
perpendicular to n direction

JVx, Ny Normal forces per Unit length of sections of a plate perpendicular to
x and y directions, respectively



Nxu Shearing force in direction of y axis per unit length of section of a plate
perpendicular to x axis

Mr, Mt, MH Radial, tangential, and twisting moments when using polar coordinates
Qr, Qt Radial and tangential shearing forces

Nn Nt Normal forces per unit length in radial and tangential directions
ri, r2 Radii of curvature of a shell in the form of a surface of revolution in

meridional plane and in the normal plane perpendicular to meridian,
respectively

X<pi XQ Changes of curvature of a shell in meridional plane and in the plane
perpendicular to meridian, respectively

X6ip Twist of a shell
X, Y, Z Components of the intensity of the external load on a shell, parallel to

x, y, and z axes, respectively
N<p, Ne, NfB Membrane forces per unit length of principal normal sections of a shell

MBy M<p Bending moments in a shell per unit length of meridional section and a
section perpendicular to meridian, respectively

Xx, x<p Changes of curvature of a cylindrical shell in axial plane and in a plane
perpendicular to the axis, respectively

N<p, Nx, Nx<p Membrane forces per unit length of axial section and a section perpen-
dicular to the axis of a cylindrical shell

M9, Mx Bending moments per unit length of axial section and a section perpen-
dicular to the axis of a cylindrical shell, respectively

Mx<p Twisting moment per unit length of an axial section of a cylindrical
shell

QiP, Qx Shearing forces parallel to z axis per unit length of an axial section and
a section perpendicular to the axis of a cylindrical shell, respectively

log Natural logarithm
log10, Log Common logarithm
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INTRODUCTION

The bending properties of a plate depend greatly on its thickness as
compared with its other dimensions. In the following discussion, we
shall distinguish between three kinds of plates: (1) thin plates with small
deflections, (2) thin plates with large deflections, (3) thick plates.

Thin Plates with Small Deflection. If deflections w of a plate are small
in comparison with its thickness h, a very satisfactory approximate theory
of bending of the plate by lateral loads can be developed by making the
following assumptions:

1. There is no deformation in the middle plane of the plate. This
plane remains neutral during bending.

2. Points of the plate lying initially on a normal-to-the-middle plane
of the plate remain on the normal-to-the-middle surface of the plate after
bending.

3. The normal stresses in the direction transverse to the plate can be
disregarded.

Using these assumptions, all stress components can be expressed by
deflection w of the plate, which is a function of the two coordinates in
the plane of the plate. This function has to satisfy a linear partial
differential equation, which, together with the boundary conditions, com-
pletely defines w. Thus the solution of this equation gives all necessary
information for calculating stresses at any point of the plate.

The second assumption is equivalent to the disregard of the effect of
shear forces on the deflection of plates. This assumption is usually satis-
factory, but in some cases (for example, in the case of holes in a plate)
the effect of shear becomes important and some corrections in the theory
of thin plates should be introduced (see Art. 39).

If, in addition to lateral loads, there are external forces acting in the
middle plane of the plate, the first assumption does not hold any more,
and it is necessary to take into consideration the effect on bending of the
plate of the stresses acting in the middle plane of the plate. This can be
done by introducing some additional terms into the above-mentioned
differential equation of plates (see Art. 90).



Thin Plates with Large Deflection. The first assumption is completely
satisfied only if a plate is bent into a developable surface. In other cases
bending of a plate is accompanied by strain in the middle plane, but
calculations show that the corresponding stresses in the middle plane are
negligible if the deflections of the plate are small in comparison with its
thickness. If the deflections are not small, these supplementary stresses
must be taken into consideration in deriving the differential equation of
plates. In this way we obtain nonlinear equations and the solution of the
problem becomes much more complicated (see Art. 96). In the case of
large deflections we have also to distinguish between immovable edges
and edges free to move in the plane of the plate, which may have a con-
siderable bearing upon the magnitude of deflections and stresses of the
plate (see Arts. 99, 100). Owing to the curvature of the deformed middle
plane of the plate, the supplementary tensile stresses, which predominate,
act in opposition to the given lateral load; thus, the given load is now
transmitted partly by the flexural rigidity and partly by a membrane
action of the plate. Consequently, very thin plates with negligible
resistance to bending behave as membranes, except perhaps for a narrow
edge zone where bending may occur because of the boundary conditions
imposed on the plate.

The case of a plate bent into a developable, in particular into a cylindri-
cal, surface should be considered as an exception. The deflections of
such a plate may be of the order of its thickness without necessarily pro-
ducing membrane stresses and without affecting the linear character of
the theory of bending. Membrane stresses would, however, arise in such
a plate if its edges are immovable in its plane and the deflections are
sufficiently large (see Art. 2). Therefore, in " plates with small deflec-
tion" membrane forces caused by edges immovable in the plane of the
plate can be practically disregarded.

Thick Plates. The approximate theories of thin plates, discussed
above, become unreliable in the case of plates of considerable thickness,
especially in the case of highly concentrated loads. In such a case the
thick-plate theory should be applied. This theory considers the prob-
lem of plates as a three-dimensional problem of elasticity. The stress
analysis becomes, consequently, more involved and, up to now, the prob-
lem is comuletely solved only for a few particular cases. Using this
analysis, the necessary corrections to the thin-plate theory at the points of
application of concentrated loads can be introduced.

The main suppositions of the theory of thin plates also form the basis
for the usual theory of thin shells. There exists, however, a substantial
difference in the behavior of plates and shells under the action of external
loading. The static equilibrium of a plate element under a lateral load
is only possible by action of bending and twisting moments, usually



accompanied by shearing forces, while a shell, in general, is able to trans-
mit the surface load by " membrane" stresses which act parallel to the
tangential plane at a given point of the middle surface and are distributed
uniformly over the thickness of the shell. This property of shells makes
them, as a rule, a much more rigid and a more economical structure than
a plate would be under the same conditions.

In principle, the membrane forces are independent of bending and are
wholly defined by the conditions of static equilibrium. The methods of
determination of these forces represent the so-called " membrane theory
of shells." However, the reactive forces and deformation obtained by
the use of the membrane theory at the shell's boundary usually become
incompatible with the actual boundary conditions. To remove this dis-
crepancy the bending of the shell in the edge zone has to be considered,
which may affect slightly the magnitude of initially calculated membrane
forces. This bending, however, usually has a very localized1 character
and may be calculated on the basis of the same assumptions which were
used in the case of small deflections of thin plates. But there are prob-
lems, especially those concerning the elastic stability of shells, in which
the assumption of small deflections should be discontinued and the " large-
deflection theory" should be used.

If the thickness of a shell is comparable to the radii of curvature, or
if we consider stresses near the concentrated forces, a more rigorous
theory, similar to the thick-plate theory, should be applied.

1 There are some kinds of shells, especially those with a negative Gaussian curva-
ture, which provide us with a lot of exceptions. In the case of developable surfaces
such as cylinders or cones, large deflection without strain of the middle surface is
possible, and, in some cases, membrane stresses can be neglected and consideration
of the bending stresses alone may be sufficient.



CHAPTER 1

BENDING OF LONG RECTANGULAR PLATES TO A

CYLINDRICAL SURFACE

1. Differential Equation for Cylindrical Bending of Plates. We shall
begin the theory of bending of plates with the simple problem of the
bending of a long rectangular plate that is subjected to a transverse load
that does not vary along the length of the plate. The deflected surface
of a portion of such a plate at a considerable distance from the ends1

can be assumed cylindrical, with the axis of the cylinder parallel to the
length of the plate. We can therefore restrict ourselves to the investi-
gation of the bending of an elemental strip cut from the plate by two
planes perpendicular to the length of the plate and a unit distance (say
1 in.) apart. The deflection of this strip is given by a differential equa-

tion which is similar to the deflection
equation of a bent beam.

To obtain the equation for the de-
flection, we consider a plate of uni-
form thickness, equal to h, and take
the xy plane as the middle plane of
the plate before loading, i.e., as the
plane midway between the faces of

the plate. Let the y axis coincide with one of the longitudinal edges
of the plate and let the positive direction of the z axis be downward,
as shown in Fig. 1. Then if the width of the plate is denoted by Z, the
elemental strip may be considered as a bar of rectangular cross section
which has a length of I and a depth of h. In calculating the bending
stresses in such a bar we assume, as in the ordinary theory of beams,
that cross sections of the bar remain plane during bending, so that they
undergo only a rotation with respect to their neutral axes. If no normal
forces are applied to the end sections of the bar, the neutral surface of
the bar coincides with the middle surface of the plate, and the unit
elongation of a fiber parallel to the x axis is proportional to its distance z

1 The relation between the length and the width of a plate in order that the maxi-
mum stress may approximate that in an infinitely long plate is discussed later; see
pp. 118 and 125.

FIG. 1



from the middle surface. The curvature of the deflection curve can be
taken equal to —d2w/dx2

} where w, the deflection of the bar in the z
direction, is assumed to be small compared with the length of the bar I.
The unit elongation ex of a fiber at a distance z from the middle surface
(Fig. 2) is then - z d2w/dx2.

Making use of Hooke's law, the unit elonga-
tions ex and ey in terms of the normal stresses
(Tx and ay acting on the element shown shaded
in Fig. 2a are

(Tx V(Ty

(D
(Ty V(Tx ^

€" = E ~ ~E = °
where E is the modulus of elasticity of the
material and v is Poisson's ratio. The lateral
strain in the y direction must be zero in order to maintain continuity
in the plate during bending, from which it follows by the second of the
equations (1) that ay = vax. Substituting this value in the first of the
equations (1% we obtain

FIG. 2

and (2)

If the plate is submitted to the action of tensile or compressive forces
acting in the x direction and uniformly distributed along the longitudinal
sides of the plate, the corresponding direct stress must be added to the
stress (2) due to bending.

Having the expression for bending stress ax, we obtain by integration
the bending moment in the elemental strip:

Introducing the notation

(3)

we represent the equation for the deflection curve of the elemental strip
in the following form:

(4)

in which the quantity D, taking the place of the quantity EI in the case



of beams, is called the flexural rigidity of the plate. It is seen that the
calculation of deflections of the plate reduces to the integration of Eq. (4),
which has the same form as the differential equation for deflection of
beams. If there is only a lateral load acting on the plate and the edges
are free to approach each other as deflection occurs, the expression for
the bending moment M can be readily derived, and the deflection curve
is then obtained by integrating Eq. (4). In practice the problem is more
complicated, since the plate is usually attached to the boundary and its
edges are not free to move. Such a method of support sets up tensile
reactions along the edges as soon as deflection takes place. These reac-
tions depend on the magnitude of the deflection and affect the magnitude
of the bending moment M entering in Eq. (4). The problem reduces to
the investigation of bending of an elemental strip submitted to the action
of a lateral load and also an axial force which depends on the deflection
of the strip.1 In the following we consider this problem for the particular
case of uniform load acting on a plate and for various conditions along
the edges.

2. Cylindrical Bending of Uniformly Loaded Rectangular Plates with
Simply Supported Edges. Let us consider a uniformly loaded long rec-
tangular plate with longitudinal edges which are free to rotate but can-
not move toward each other during bending. An elemental strip cut out

FIG. 3

from this plate, as shown in Fig. 1, is in the condition of a uniformly
loaded bar submitted to the action of an axial force S (Fig. 3). The
magnitude of S is such as to prevent the ends of the bar from moving
along the x axis. Denoting by q the intensity of the uniform load, the
bending moment at any cross section of the strip is

1 In such a form the problem was first discussed by I. G. Boobnov; see the English
translation of his work in Trans. Inst. Naval Architects, vol. 44, p. 15, 1902, and his
"Theory of Structure of Ships," vol. 2, p. 545, St. Petersburg, 1914. See also the
paper by Stewart Way presented at the National Meeting of Applied Mechanics,
ASME, New Haven, Conn., June, 1932; from this paper are taken the curves used in
Arts. 2 and 3,



Substituting in Eq. (4), we obtain

(a)

Introducing the notation

(5)

the general solution of Eq. (a) can be written in the following form:

(b)

The constants of integration C\ and C2 will be determined from the
conditions at the ends. Since the deflections of the strip at the ends are
zero, we have

w = 0 for x = 0 and x = I (c)

Substituting for w its expression (6), we obtain from these two conditions

and the expression (b) for the deflection w becomes

Substituting

we can represent this expression in a simpler form:

(6)

Thus, deflections of the elemental strip depend upon the quantity u,
which, as we see from Eq. (5), is a function of the axial force S. This
force can be determined from the condition that the ends of the strip
(Fig. 3) do not move along the x axis. Hence the extension of the strip
produced by the forces S is equal to the difference between the length of
the arc along the deflection curve and the chord length I. This difference



for small deflections can be represented by the formula1

(7)

In calculating the extension of the strip produced by the forces S, we
assume that the lateral strain of the strip in the y direction is prevented
and use Eq. (2). Then

(d)

Substituting expression (6) for w and performing the integration, we
obtain the following equation for calculating S:

or substituting S = 4:2i2D/l2, from Eq. (5), and the expression for D,
from Eq. (3), we finally obtain the equation

(8)

For a given material, a given ratio h/l, and a given load q the left-hand
side of this equation can be readily calculated, and the value of u satis-
fying the equation can be found by a trial-and-error method. To simplify
this solution, the curves shown in Fig. 4 can be used. The abscissas of
these curves represent the values of u and the ordinates represent the
quantities logio (104 VU0), where Uo denotes the numerical value of the
right-hand side of Eq. (8). V Uo is used because it is more easily calcu-
lated from the plate constants and the load; and the factor 104 is intro-
duced to make the logarithms positive. In each particular case we begin
by calculating the square root of the left-hand side of Eq. (8), equal to
Eh4/(1 - v2)ql\ which gives 'VUo. The quantity logio (104 VfT0) then
gives the ordinate which must be used in Fig. 4, and the corresponding
value of u can be readily obtained from the curve. Having u, we obtain
the value of the axial force S from Eq. (5).

In calculating stresses we observe that the total stress at any cross
section of the strip consists of a bending stress proportional to the bend-
ing moment and a tensile stress of magnitude S/h which is constant along
the length of the strip. The maximum stress occurs at the middle of the
strip, where the bending moment is a maximum. From the differential
equation (4) the maximum bending moment is

1 See Timoshenko, "Strength of Materials," part I, 3d ed., p. 178, 1955.



Value of u

FIG. 4

Substituting expression (6) for W1 we obtain

(9)

(e)where

The values of ^o are given by curves in Fig. 5. It is seen that these
values diminish rapidly with increase of u, and for large u the maximum

On Curve A variation in u is from 0 to 4-
»» • i» B " » u " » 4 to 8

C " « u » » 8 to 12

Curve B Curve A Curve C

Log l04VUo(u.) for various values of a



Max. bending moment= Mmax

Max. deflection = Wn10x

Mmax with +ensile reactions
^ max without tensile reactions

r_ Wmax with tensile reactions
VVmax without tensile reactions

Subscript "o": Simply supported edges
Subscript V': Built-in edges

FIG. 5
u-Built-in Edges



bending moment is several times smaller than the moment ql2/S which
would be obtained if there were no tensile reactions at the ends of the
strip.

The direct tensile stress <T\ and the maximum bending stress o-2 are now
readily expressed in terms of U1 q, and the plate constants as follows:

(10)

(H)

The maximum stress in the plate is then

To show how the curves in Figs. 4 and 5 can be used in calculating
maximum stresses, let us take a numerical example and assume that a
long rectangular steel plate 50 in. wide and -̂ in. thick carries a uniformly
distributed load q = 20 psi. We start with a computation of vTTo:

Then, from tables,

From the curve A in Fig. 4 we find u = 3.795, and from Fig. 5 we obtain
^o = 0.1329.

Now, computing stresses by using Eqs. (10) and (11), we find

In calculating the maximum deflection we substitute x = 1/2 in Eq. (6)
of the deflection curve. In this manner we obtain

(12)

where

To simplify calculations, values of fo(u) are given by the curve in Fig. 5.
If there were no tensile reactions at the ends of the strip, the maximum



deflection would be 5gZ4/384D. The effect of the tensile reactions is given
by the factor /o(w), which diminishes rapidly with increasing u.

Using Fig. 5 in the numerical example previously discussed, we find
that for u = 3.795 the value of fo(u) is 0.145. Substituting this value in
Eq. (12), we obtain

«W = 4.74 • 0.145 = 0.688 in.

It is seen from Eq. (8) that the tensile parameter u depends, for a
given material of the plate, upon the intensity of the load q and the
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simply supported edges
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ratio l/h of width to thickness of the plate. From Eqs. (10) and (11)
we see that the stresses <ri and o-2 are also functions of u, q, and l/h.
Therefore, the maximum stress in the plate depends only on the load q
and the ratio l/h. This means that we can plot a set of curves giving
maximum stress in terms of g, each curve in the set corresponding to a
particular value of l/h. Such curves are given in Fig. 6. It is seen that
because of the presence of tensile forces S, which increase with the load,
the maximum stress is not proportional to the load q; and for large values
of q this stress does not vary much with the thickness of the plate. By
taking the curve marked l/h = 100 and assuming q — 20 psi, we obtain
from the curve the value o^* calculated before in the numerical example.



3. Cylindrical Bending of Uniformly Loaded Rectangular Plates with
Built-in Edges. We assume that the longitudinal edges of the plate are
fixed in such a manner that they cannot rotate. Taking an elemental
strip of unit width in the same manner as before (Fig. 1) and denoting by
Mo the bending moment per unit length acting on the longitudinal edges
of the plate, the forces acting on the strip will be as shown in Fig. 7.
The bending moment at any cross section of the strip is

Substituting this expression in Eq. (4), we obtain

(a)

The general solution of this equation, using notation (5), will be repre-
sented in the following form:

(b)

Observing that the deflection curve is symmetrical with respect to the
middle of the strip, we determine the constants of integration Ci, C2, and

FIG. 7

the moment MQ from the following three conditions:

(O

Substituting expression (b) for w, we obtain from these conditions

(13)

where



The deflection w is therefore given by the expression

This can be further simplified and finally put in the following form:

(14)

For calculating the parameter u we proceed as in the previous article
and use Eq. (d) of that article. Substituting in it expression (14) for w
and performing the integration, we obtain

Substituting S from Eq. (5) and expression (3) for Z), the equation for
calculating u finally becomes

(15)

To simplify the solution of this equation we use the curve in Fig. 8, in
which the parameter u is taken as abscissa and the ordinates are equal
to logio (104 Wl) ,where Ui denotes the right-hand side of Eq. (15).
For any given plate we begin by calculating the square root of the left-
hand side of Eq. (15), equaTto Eh4/[(1 - v2)ql% which gives us VUv
The quantity logio (104 V Ui) then gives the ordinate of the curve in
Fig. 8, and the corresponding abscissa gives the required value of u.

Having u, we can begin calculating the maximum stresses in the plate.
The total stress at any point of a cross section of the strip consists of the
constant tensile stress (T1 and the bending stress. The maximum bending
stress <T2 will act at the built-in edges where the bending moment is the
largest. Using Eq. (10) to calculate ax and Eq. (13) to calculate the
bending moment M0, we obtain

(16)

(17)

To simplify the calculation of the stress ^2, the values of the function
ypiiu) are given by a curve in Fig. 5.

The maximum deflection is at the middle of the strip and is obtained by



Curve A: u varies from O+o4
" B: u " » 4 to 8
" C:u' " w 8+012

Curve B Curve C Curve A

Log 104Vu,(u) for various values of U

Value of U
FIG. 8

substituting x = Z/2 in Eq. (14), from which

(18)

where

The function fi(u) is also given by a curve in Fig. 5.



The use of the curves in Figs. 5 and 8 will now be illustrated by a
numerical example. A long rectangular steel plate has the dimensions
I = 50 in., h = % in., and q = 10 psi. In such a case we have

From Fig. 8 we now find u = 1.894; and from Fig. 5, fa = 0.8212. Sub-
stituting these values in Eqs. (16) and (17), we find

Comparing these stress values with the maximum stresses obtained for
a plate of the same size, but with twice the load, on the assumption of

Stresses in steel plates
with built-in edges
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simply supported edges (see page 11), it can be concluded that, owing to
clamping of the edges, the direct tensile stress decreases considerably,
whereas the maximum bending stress increases several times, so that
finally the maximum total stress in the case of clamped edges becomes
larger than in the case of simply supported edges.



Proceeding as in the previous article it can be shown that the maxi-
mum stress in a plate depends only on the load q and the ratio l/h, and
we can plot a set of curves giving maximum stress in terms of q, each
curve in the set corresponding to a particular value of l/h. Such curves
are given in Fig. 9. I t is seen that for small values of the intensity of
the load q, when the effect of the axial force on the deflections of the
strip is small, the maximum stress increases approximately in the same
ratio as q increases. But for larger values of q the relation between the
load and the maximum stress becomes nonlinear.

In conclusion, we give in Table 1 the numerical values of all the func-
tions plotted in Figs. 4, 5, and 8. This table can be used instead of the
curves in calculating maximum stresses and maximum deflections of long,
uniformly loaded rectangular plates.

4. Cylindrical Bending of Uniformly Loaded Rectangular Plates with
Elastically Built-in Edges. Let us assume that when bending occurs,
the longitudinal edges of the plate rotate through an angle proportional
to the bending moment at the edges. In such a case the forces acting on
an elemental strip will again be of the type shown in Fig. 7, and we shall
obtain expression (b) of the previous article for the deflections w. How-
ever, the conditions at the edges, from which the constants of integration
and the moment M0 are determined, are different; viz^ the slope of the
deflection curve at the ends of the strip is no longer zero but is propor-
tional to the magnitude of the moment M0, and we have

(o)

where /3 is a factor depending on the rigidity of restraint along the edges.
If this restraint is very flexible, the quantity /3 is large, and the conditions
at the edges approach those of simply supported edges. If the restraint
is very rigid, the quantity /3 becomes small, and the edge conditions
approach those of absolutely built-in edges. The remaining two end
conditions are the same as in the previous article. Thus we have

(b)

Using these conditions, we find both the constants of integration and the
magnitude of Mo in expression (b) of the previous article. Owing to
flexibility of the boundary, the end moments M0 will be smaller than
those given by Eq. (13) for absolutely built-in edges, and the final result
can be put in the form

(19)



TABLE 1

u logio 104 V ^ logio 104 VU~i log10104 \Z~Ul Mu) Mu) Mu) *i(u) u

_ _ _ _ 1.0001.000 1.000 1.000 ~ 0 ~

0.5 3.889 3.217 3.801 0.9080.976 0.905 0.984 0.5
406 331 425

1.0 3.483 2.886 3.376 0.7110.909 0.704 0.939 1.0
310 223 336

1.5 3.173 2.663 3.040 0.5320.817 0.511 0.876 1.5
262 182 292

2.0 2.911 2.481 2.748 0.3800.715 0.367 0.806 2.0
227 161 257

2.5 2.684 2.320 2.491 0.2810.617 0.268 0.736 2.5
198 146 228

3.0 2.486 2.174 2.263 0.2130.529 0.200 0.672 3.0
175 134 202

3.5 2.311 2.040 2.061 0.1660.453 0.153 0.614 3.5
156 124 180

4.0 2.155 1.916 1.881 0.132 0.388 0.120 0.563 4.0
141 115 163

4.5 2.014 1.801 1.718 0.107 0.335 0.097 0.519 4.5
128 107 148

5.0 1.886 1.694 1.570 0.0880.291 0.079 0.480 5.0
118 100 135

5.5 1.768 1.594 1.435 0.074 0.254 0.066 0.446 5.5
108 93 124

6.0 1.660 1501 1.311 0.063 0.223 0.055 0.417 6.0
100 88 115

6.5 1.560 1.413 1.196 0.054 0.197 0.047 0.391 6.5
93 82 107

7.0 1.467 1.331 1.089 0.047 0.175 0.041 0.367 7.0
87 78 100

7.5 1.380 1253 0.989 0.0410.156 0.036 0.347 7.5
82 74 94

8.0 1.298 1179 0.895 0.036 0.1410.031 0.328 8.0
77 70 89

8.5 1.221 1.109 0.806 0.032 0.127 0.028 0.311 8.5
73 67 83

9.0 1.148 1.042 0.723 0.0290.115 0.025 0.296 9.0
69 63 80

9.5 1.079 0.979 0.643 0.026 0.105 0.022 0.283 9.5
65 61 75

10.0 1.014 0.918 0.568 0.024 0.096 0.020 0.270 10.0
63 58 72

10.5 0.951 0.860 0.496 0.0210.088 0.018 0.259 10.5
59 55 69

11.0 0.892 0.805 0.427 0.0200.0810.017 0.248 11.0
57 54 65

11.5 0.835 0.751 0.362 0.0180.075 0.015 0.238 11.5
55 51 63

12.0 0.780 0.700 0.299 0.0160.069 0014 0.229 12.0



where 7 is a numerical factor smaller than unity and given by the formula

It is seen that the magnitude of the moments M0 at the edges depends
upon the magnitude of the coefficient 0 defining the rigidity of the
restraint. When /3 is very small, the coefficient 7 approaches unity,
and the moment MQ approaches the value (13) calculated for absolutely
built-in edges. When /3 is very large, the coefficient 7 and the moment
Af0 become small, and the edge conditions approach those of simply
supported edges.

The deflection curve in the case under consideration can be repre-
sented in the following form:

(20)

For 7 = 1 this expression reduces to expression (14) for deflections of a
plate with absolutely built-in edges. For 7 = 0 we obtain expression (6)
for a plate with simply supported edges.

In calculating the tensile parameter u we proceed as in the previous
cases and determine the tensile force S from the condition that the exten-
sion of the elemental strip is equal to the difference between the length of
the arc along the deflection curve and the chord length I. Hence

Substituting expression (20) in this equation and performing the inte-
gration, we obtain

(21)

where Uo and Ui denote the right-hand sides of Eqs. (8) and (15), respec-
tively, and

The values of logio (104 VT/2) are given in Table 1. By using this table,
Eq. (21) can be readily solved by the trial-and-error method. For any
particular plate we first calculate the left-hand side of the equation and,



by using the curves in Figs. 4 and 8, determine the values of the parame-
ter u (1) for simply supported edges and (2) for absolutely built-in edges.
Naturally u for elastically built-in edges must have a value intermediate
between these two. Assuming one such value for u, we calculate Uo, Ui1

and U2 by using Table 1 and determine the value of the right-hand side
of Eq. (21). Generally this value will be different from th^ value of the
left-hand side calculated previously, and a new trial calculation with a
new assumed value for u must be made. Two such trial calculations
will usually be sufficient to determine by interpolation tfye value of u
satisfying Eq. (21). As soon as the parameter u is determined, the bend-
ing moments M0 at the ends may be calculated from Eq. (;19). We can
also calculate the moment at the middle of the strip and |ind the maxi-
mum stress. This stress will occur at the ends or at the middle, depend-
ing on the degree of rigidity of the constraints at the edges.

5. The Effect on Stresses and Deflections of Small Displacements of
Longitudinal Edges in the Plane of the Plate. It was assumed in the
previous discussion that, during bending, the longitudinal edges of the
plate have no displacement in the plane of the plate. On the basis of this
assumption the tensile force S was calculated in each particular case.
Let us assume now that the edges of the plate undergo a displacement
toward each other specified by A. Owing to this displacement the
extension of the elemental strip will be diminished by the same amount,
and the equation for calculating the tensile force S becomes

(o)

At the same time Eqs. (6), (14), and (20) for the deflection curve hold
true regardless of the magnitude of the tensile force S. They may be
differentiated and substituted under the integral sign in Eq. (a). After
evaluating this integral and substituting S — ̂ u2D/Z2, we obtain for
simply supported edges

..(22)

and for built-in edges

(23)

If A is made zero, Eqs. (22) and (23) reduce to Eqs. (8) and (15), obtained
previously for immovable edges.

The simplest case is obtained by placing compression bars between the
longitudinal sides of the boundary to prevent free motion of one edge of



the plate toward the other during bending. Tensile forces S in the plate
produce contraction of these bars, which results in a displacement A pro-
portional to S.* Hk is the factor of proportionality depending on the
elasticity and cross-sectional area of the bars, we obtain

S = M

or, substituting S = 4u2D/l2, we obtain

and

Thus the second factor on the left-hand side of Eqs. (22) and (23) is a
constant that can be readily calculated if the dimensions and the elastic
properties of the structure are known. Having the magnitude of this
factor, the solution of Eqs. (22) and (23) can be accomplished in exactly
the same manner as used for immovable edges.

FIG. 10

In the general case the second factor on the left-hand side of Eqs. (22)
and (23) may depend on the magnitude of the load acting on the struc-
ture, and the determination of the parameter u can be accomplished only
by the trial-and-error method. This procedure will now be illustrated
by an example that is encountered in analyzing stresses in the hull of a
ship when it meets a wave. The bottom plates in the hull of a ship are
subjected to a uniformly distributed water pressure and also to forces in
the plane of the plates due to bending of the hull as a beam. Let b be
the width of the ship at a cross section mn (Fig. 10) and I be the frame
spacing at the bottom. When the hollow of a wave is amidships (Fig.
116), the buoyancy is decreased there and increased at the ends. The
effect of this change on the structure is that a sagging bending moment
is produced and the normal distance I between the frames at the bottom
is increased by a certain amount. To calculate this displacement accu-
rately we must consider not only the action of the bending moment M
Oii the hull but also the effect on this bending of a certain change in

* The edge support is assumed to be such that A is uniform along the edges.



Sagging

(b)

FIG. 11

tensile forces S distributed along the edges mn and mini of the bottom
plate mnmiUi (Fig. 10), which will be considered as a long rectangular
plate uniformly loaded by water pressure. Owing to the fact that the

plates between the consecutive
frames are equally loaded, there
will be no rotation at the longitu-
dinal edges of the plates, and they
may be considered as absolutely
built in along these edges.

To determine the value of A,
which denotes, as before, the dis-
placement of the edge mn toward
the edge mini in Fig. 10 and which
is produced by the hull bending
moment M and the tensile reactions
S per unit length along the edges
mn and mini of the bottom plate, let
us imagine that the plate mnmini is
removed and replaced by uniformly
distributed forces S so that the to-
tal force along mn and mini is Sb
(Fig. 12a). We can then say that
the displacement A of one frame
relative to another is due to the
bending moment M and to the

eccentric load Sb applied to the hull without bottom plating.
If A7 I, and c are the cross-sectional area, the centroidai moment of

inertia, and the distance from the bottom plate to the neutral axis of the

Hogging

(a)

(b)
FIG. 12



complete hull section, and if Ai, Ji, and C\ are the corresponding quanti-
ties for the hull section without bottom plates, the latter set of quantities
can be derived from the former by the relations

(b)

The relative displacement Ai produced by the eccentrically applied forces
Sb is

in which the factor 1 — i>2 must be introduced if one neglects the lateral
strain. The displacement due to the bending moment M is

Hence the total displacement is

(c)

Substituting in this expression

we finally obtain

(d)

This quantity must be substituted in Eq. (23) for determining the tensile
parameter u.

Let us apply this theory to a numerical example. Assume b = 54 ft,
J = 1,668 ft4, A = 13.5 ft2, c = 12.87 ft, h = 0.75 in. = 0.0625 ft,
I = 45 in. = 3.75 ft, q = 10 psi, M = 123,500 ft-tons. From Eqs. (b)
we obtain

Ai = 13.5 - 0.0625 • 54 = 10.125 ft2

13.5 - 12.87 1 7 1 A f f
C l = 10.125 = 1 7 - 1 6 f t

Ji = 1,668 - 559.0 - 10.125(17.16 - 12.87)2 = 922.7 ft4

Substituting these values in expression (d), we calculate A and finally
obtain



Equation (23) then becomes

or

Substituting numerical values and taking logarithms of both sides,
we obtain

Using the curve in Fig. 8, this equation can be readily solved by the
trial-and-error method, and we obtain u = 2.187 and, from Fig. 5,
ypi(u) = 0.780. The maximum stress is now calculated by using Eqs.
(16) and (17), from which

30-106-4.783 , . ^ .
ai = "3-0.91-60» = 1 4 ' b°° PS1

a2 = ^ • io • 602 • 0.780 = 14,040 psi
o-max = o-i + (T2 = 28,640 psi

If the bending stress in the plate due to water pressure were neglected
and if the bottom plate stress were calculated from the formula a = Mc/1,
we would arrive at a figure of only 13,240 psi.

6. An Approximate Method of Calculating the Parameter u. In calcu-
lating the parameter u for plates in which the longitudinal edges do not
move in the plane of the plate, we used the equation

(a)

which states that the extension of an elemental strip produced by the
forces S is equal to the difference between the length of the arc along the
deflection curve of the strip and the chord length I. In the particular
cases considered in the previous articles, exact expressions for the deflec-
tions w were derived, and numerical tables and curves for the right-hand
side of Eq. (a) were given. When such tables are not at hand, the solu-
tion of the equation becomes complicated, and to simplify the problem
recourse should be had to an approximate method. From the discussion
of bending of beams it is known1 that, in the case of simply supported
ends with all lateral loads acting in the same direction, the deflection
curve of an elemental strip produced by a combination of a lateral load
and an axial tensile force S (Fig. 3) can be represented with sufficient

1 See Timoshenko, "Strength of Materials," part II, 3d ed., p. 52, 1956.



accuracy by the equation

w = sin -y- (6)
1 + a I

in which W0 denotes the deflection at the middle of the strip produced by
the lateral load alone, and the quantity a is given by the equation

(c)

Thus, a represents the ratio of the axial force S to the Euler critical load
for the elemental strip.

Substituting expression (6) in Eq. (a) and integrating, we obtain

Now, using notation (c) and substituting for D its expression (3), we
finally obtain

(24)

From this equation the quantity a can be calculated in each particular
case, and the parameter u is now determined from the equation

(d)

To show the application of the approximate Eq. (24) let us take a
numerical example. A long rectangular steel plate with simply sup-
ported edges and of dimensions I = 50 in. and h = i in. is loaded with a
uniformly distributed load q = 20 psi. In such a case

and, after substituting numerical values, Eq. (24) becomes

The solution of the equation can be simplified by letting

1 + a = x (e)
Then x3 - x2 = 269.56

i.e., the quantity x is such that the difference between its cube and its
square has a known value. Thus x can be readily determined from a
slide rule or a suitable table, and we find in our case

x = 6.8109 and a = 5.8109



Then, from Eq. (d)

and from the formula (e) (see page 9)

^o = 0.13316

For calculating direct stress and maximum bending stress we use Eqs.
(10) and (11). In this way we find

(T1 = 15,759 psi
(T2 = 19,974 psi

0"max = <Tl + <T2 = 35,733 psi

The calculations made in Art. 2 (page 11) give, for this example,

ffmax = 35,760 psi

Thus the accuracy of the approximate Eq. (24) is in this case very high.
In general, this accuracy depends on the magnitude of u. The error
increases with increase of u. Calculations show that for u = 1.44 the
error in the maximum stress is only 0.065 of 1 per cent and that for
u = 12.29, which corresponds to very flexible plates, it is about 0.30 of
1 per cent. These values of u will cover the range ordinarily encountered
in practice, and we conclude that Eq. (24) can be used with sufficient
accuracy in all practical cases of uniformly loaded plates with simply
supported edges.

It can also be used when the load is not uniformly distributed, as in
the case of a hydrostatic pressure nonuniformly distributed along the
elemental strip. If the longitudinal force is found by using the approxi-
mate Eq. (24), the deflections may be obtained from Eq. (6), and the
bending moment at any cross section may be found as the algebraic sum
of the moment produced by the lateral load and the moment due to the
longitudinal force.1

In the case of built-in edges the approximate expression for the deflec-
tion curve of an elemental strip can be taken in the form

(/)

in which WQ is the deflection of the built-in beam under the lateral load
acting alone and a has the same meaning as before. Substituting this
expression in Eq. (a) and integrating, we obtain for determining a the
equation

1 More accurate values for the deflections and for the bending moments can be
obtained by substituting the approximate value of the longitudinal force in Eq. (4)
and integrating this equation, which gives Eqs. (12) and (9).



(25)

which can be solved in each particular case by the method suggested for
solving Eq. (24).

When a is found, the parameter u is determined from Eq. (d); the
maximum stress can be calculated by using Eqs. (16) and (17); and the
maximum deflection, by using Eq. (18).

If, during bending, one edge moves toward the other by an amount A,
the equation

(g)

must be used instead of Eq. (a). Substituting expression (b) in this
equation, we obtain for determining a in the case of simply supported
edges the equation

(26)

In the case of built-in edges we use expression (/). Then for determin-
ing a we obtain

(27)

If the dimensions of the plate and the load q are given, and the displace-
ment A is known, Eqs. (26) and (27) can both be readily solved in the
same manner as before. If the displacement A is proportional to the
tensile force S7 the second factor on the left-hand sides of Eqs. (26) and
(27) is a constant and can be determined as explained in the previous
article (see page 21). Thus again the equations can be readily solved.

7. Long Uniformly Loaded Rectangular Plates Having a Small Initial
Cylindrical Curvature. It is seen from the discussions in Arts. 2 and 3
that the tensile forces S contribute to the strength of the plates by
counteracting the bending produced by lateral load. This action
increases with an increase in deflection. A further reduction of maxi-
mum stress can be accomplished by giving a suitable initial curvature
to a plate. The effect on stresses and deflections of such an initial curva-
ture can be investigated1 by using the approximate method developed in
the previous article.

Let us consider the case of a long rectangular plate with simply sup-
ported edges (Fig. 13), the initial curvature of which is given by the
equation

1 See S. Timoshenko's paper in "Festschrift zum siebzigsten Geburtstage August
Foppls," p. 74, Berlin, 1923.



(a)

If tensile forces S are applied to the edges of the plate, the initial
deflections (a) will be reduced in the ratio 1/(1 + a), where a has the
same meaning as in the previous article1 (page 25). The lateral load in
combination with the forces S will produce deflections that can be
expressed approximately by Eq. (b) of the previous article. Thus the
total deflection of the plate, indicated in Fig. 13 by the dashed line, is

(b)

Assuming that the longitudinal edges of the plate do not move in the
plane of the plate, the tensile force S is found from the condition that
the extension of the elemental strip produced by the forces S is equal to

FIG. 13

the difference between the length of the arc along the deflection curve
of the elemental strip and the initial length of the strip. This difference,
in the case of small deflections, is given by the equation

(c)

Substituting expressions (a) and (b) for w and Wi and integrating, we

obtain

Putting X equal to the extension of the strip Sl(I- v2)/hE, we finally
obtain

(28)

If we take 8 = 0, this equation reduces to Eq. (24) for a plate without
initial curvature.

To show the effect of the initial curvature on the maximum stress in a
plate, let us apply Eq. (28) to a numerical example. Assume that a
steel plate having I = 45 in. and h = f in. is submitted to the action of

1 See Timoshenko, "Strength of Materials," part II, 3d ed., p. 52,1956.



a uniformly distributed load q = 10 psi. If there is no initial deflection,
5 = 0 and Eq. (28) becomes

from which

From Eq. (10) we then obtain

ax = 11,300 psi
and from Eq. (11)

o-2 = 14,200 psi

The maximum stress in the plate is

(rmax = (Ti + (T2 = 25,500 psi

Let us now assume that there is an initial deflection in the plate such that
• & = h = f in. In such a case Eq. (28) gives

a(l + OLY = 351.6 - 3(1 + a)2

Letting
1 + a = x

we obtain
x3 + 2x2 = 351.6

from which

x = 6.45 a = 5.45 w = ^ = 3.67

The tensile stress, from Eq. (10), is

(T1 = 10,200 psi

In calculating the bending stress we must consider only the change in

deflections

The maximum bending stress, corresponding to the first term on the

right-hand side of Eq. (d), is the same as for a flat plate with u = 3.67.

From Table 1 we find ^0 = 0.142 and from Eq. (11)

a'2 = 15,300 psi

The bending moment corresponding to the second term in Eq. (d) is



This moment has a negative sign, and a corresponding maximum stress of

must be subtracted from the bending stress v'2 calculated above. Hence
the maximum stress for the plate with the initial deflection is

<w = 10,200 + 15,300 - 9,500 = 16,000 psi

Comparison of this result with that obtained for the plane plate shows
that the effect of the initial curvature is to reduce the maximum stress
from 25,500 to 16,000 psi. This result is obtained assuming the initial
deflection equal to the thickness of the plate. By increasing the initial
deflection, the maximum stress can be reduced still further.

8. Cylindrical Bending of a Plate on an Elastic Foundation. Let us consider the
problem of bending of a long uniformly loaded rectangular plate supported over the
entire surface by an elastic foundation and rigidly supported along the edges (Fig. 14).

FIG. 14

Cutting out from the plate an elemental strip, as before, we may consider it as a beam
on an elastic foundation. Assuming that the reaction of the foundation at any point
is proportional to the deflection w at that point, and using Eq. (4), we obtain by double
differentiation of that equation1

(29)

where q is the intensity of the load acting on the plate and k is the reaction of the
foundation per unit area for a deflection equal to unity. Introducing the notation

(30)

the general solution of Eq. (29) can be written as follows:

(a)

The four constants of integration must now be determined from the conditions at the
ends of the strip. In the case under consideration the deflection is symmetrical with
respect to the middle of the strip. Thus, taking the coordinate axes as shown in Fig.

1 Ibid., p. 21. .



14, we conclude1 that Ci — C3 = 0. The constants Ci and C4 are found from the
conditions that the deflection and the bending moment of the strip are zero at the end
(x = 1/2). Hence

(w)x-m = 0

\dx2 /x-ut

Substituting expression (a) for w and observing that C2 = Cz = 0, we obtain

- + Ci sin /8 sinh /3 -f C4 cos /3 cosh 0 = 0
A; (c)

Ci cos £ cosh 0 — C4 sin /3 sinh / 3 = 0
from which we find

Substituting these values of the constants in expression (a) and using Eq. (30), we
finally represent the deflection of the strip by the equation

(d)

The deflection at the middle is obtained by substituting x = 0, which gives
5qlA

^ - - S S D ^ ( 3 1 )

where

To obtain the angles of rotation of the edges of the plate, we differentiate expression
(d) with respect to x and put x = —1/2. In this way we obtain

(32)

where

The bending moment at any cross section of the strip is obtained from the equation

Substituting expression (d) for w, we find for the middle of the strip

(33)

where

1 It is seen that the terms with coefficients C2 and C3 change sign when x is replaced
by —x.



To simplify the calculation of deflections and stresses, numerical values of functions
<p, <pi, and <p2 are given in Table 2. For small values of 0, that is, for a yielding founda-
tion, the functions <p and ^2 do not differ greatly from unity. Thus the maximum
deflection and bending stresses are close to those for a simply supported strip without
an elastic foundation. With an increase in /8, the effect of the foundation becomes
more and more important.

FIG. 15

Conditions similar to those represented in Fig. 14 are obtained if a long rectangular
plate of width I is pressed into an elastic foundation by loads uniformly distributed
along the edges and of the amount P per unit length (Fig. 15). The plate will be

TABLE 2

0 <P <Pl <P2 j8 <P <p\ <p2

0.1 1.000 1.000 1.000 1.6 0.186 0.200 0.164
0.2 0.999 0.999 0.999 1.7 0.151 0.166 0.129
0.3 0.996 0.995 0.995 1.8 0.124 0.138 0.101
0.4 0.984 0.983 0.983 1.9 0.102 0.116 0.079
0.5 0.961 0.961 0.959 2.0 0.084 0.099 0 06?

0.6 0.921 0.923 0.919 2.2 0.058 0.072 0.037
0.7 0.863 0.866 0.859 2.4 0.042 (T055 0.021
0.8 0.787 0.791 0.781 2.6 0.029 0.043 0.011
0.9 0.698 0.702 0.689 2.8 0.022 0.034 0.005
1.0 0.602 0.609 0.591 3.0 0.016 0.028 0.0C2

1.1 0.508 0.517 0.494 3.2 0.012 0.023 0.000
1.2 0.421 0.431 0.405 3.4 0.010 0.019 -0.001
1.3 0.345 0.357 0.327 3.6 0.007 0.016 -0.002
1.4 0.281 0.294 0.262 3.8 0.006 0.014 -0.002
1.5 0.228 0.242 0.208 4.0 0.005 0.012 -0.002

pressed into the elastic foundation and bent, as shown by the dashed line. If 5 denotes
the deflection at the edges of the plate, the reaction of the foundation at any point is

k(8 - w) = k8 - kw

where w is giv^, ^y Eq. (d) with r/ = kd. The magnitude of 5 is then obtained from
the condition that tlie load is balanced by the reaction of the foundation. Hence

Plates on elastic foundation with other conditions at the longitudinal edges can
also be discussed in a similar manner.



CHAPTER 2

PURE BENDING OF PLATES

9. Slope and Curvature of Slightly Bent Plates. In discussing small
deflections of a plate we take the middle plane of the plate, before bend-
ing occurs, as the xy plane. During bending, the particles that were in
the xy plane undergo small displacements w perpendicular to the xy plane
and form the middle surface of the plate. These displacements of the
middle surface are called deflections of a plate in our further discussion.
Taking a normal section of the plate parallel
to the'xz plane (Fig. 16a), we find that the
slope of the middle surface in the x direction
is ix = dw/dx. In the same manner the slope
in the y direction is iv — dw/dy. Taking
now any direction an in the xy plane (Fig.
166) making an angle a with the x axis, we find
that the difference in the deflections of the two
adjacent points a and ax in the an direction is

and that the corresponding slope is pIG 16

(a)

To find the direction a\ for which the slope is a maximum we equate to
zero the derivative with respect to a of expression (a) In this way we
obtain

, dw /dw ...
tana, = - / - (b)

Substituting the corresponding values of sin ax and cos a\ in (a), we obtain
for the maximum slope the expression

(«)

By setting expression (a) equal to zero we obtain the direction for which



the slope of the surface is zero. The corresponding angle a2 is deter-
mined from the equation

dw /dw , JN

t a n a 2 = - - / — (d)

From Eqs. (b) and (d) we conclude that

tan «i tan «2 = — 1

which shows that the directions of zero slope and of maximum slope are
perpendicular to each other.

In determining the curvature of the middle surface of the plate we
observe that the deflections of the plate are very small. In such a case
the slope of the surface in any direction can be taken equal to the angle
that the tangent to the surface in that direction makes with the xy plane,
and the square of the slope may be neglected compared to unity. The
curvature of the surface in a plane parallel to the xz plane (Fig. 16) is
then numerically equal to

GO

We consider a curvature positive if it is convex downward. The minus
sign is taken in Eq. (e), since for the deflection convex downward, as
shown in the figure, the second derivative d2w/dx2 is negative.

In the same manner we obtain for the curvature in a plane parallel to
the yz plane

(/)

These expressions are similar to those used in discussing the curvature
of a bent beam.

In considering the curvature of the middle surface in any direction an
(Fig. 16) we obtain

Substituting expression (a) for dw/dn and observing that

we find

(.9)



It is seen that the curvature in any direction n at a point of the middle
surface can be calculated if we know at that point the curvatures

and the quantity

(A)

which is called the twist of the surface with respect to the x and y axes.
If instead of the direction an (Fig. 166) we take the direction at per-

pendicular to an, the curvature in this new direction will be obtained from
expression (g) by substituting TT/2 + a for a. Thus we obtain

(«")

Adding expressions (g) and (i), we find

(34)

which shows that at any point of the middle surface the sum of the
curvatures in two perpendicular directions such as n and t is independent
of the angle a. This sum is usually called the average curvature of the
surface at a point.

The twist of the surface at a with respect to the an and at directions is

In calculating the derivative with respect to t, we observe that the
direction at is perpendicular to an. Thus we obtain the required deriva-
tive by substituting TT/2 + a for a in Eq. (a). In this manner we find

U)
In our further discussion we shall be interested in finding in terms of a

the directions in which the curvature of the surface is a maximum or a
minimum and in finding the corresponding values of the curvature. We
obtain the necessary equation for determining a by equating the deriva-
tive of expression (g) with respect to a to zero, which gives

№)



From this equation we find two values of a, differing by TT/2. Substitut-
ing these in Eq. (g) we find two values of l/rn, one representing the
maximum and the other the minimum curvature at a point a of the sur-
face. These two curvatures are called the principal curvatures of the
surface; and the corresponding planes naz and taz, the principal planes of
curvature.

Observing that the left-hand side of Eq. (Jc) is equal to the doubled
value of expression (j), we conclude that, if the directions an and at (Fig.
16) are in the principal planes, the corresponding twist l/rnt is equal to
zero.

We can use a circle, similar to Mohr's circle representing combined
stresses, to show how the curvature and the twist of a surface vary with
the angle a.* To simplify the discussion we assume that the coordinate
planes xz and yz are taken parallel to the principal planes of curvature

at the point a. Then

whence

(35)

and we obtain from Eqs. (g) and (j)
for any angle a

(36)

FIG. 17

Taking the curvatures as abscissas and the twists as ordinates and con-
structing a circle on the diameter 1/Vx — l/ry, as shown in Fig. 17, we see
that the point A defined by the angle 2a has the abscissa

and the ordinate

Comparing these results with formulas (36), we conclude that the coordi-
* See S. Timoshenko, "Strength of Materials," part I, 3d ed., p. 40, 1055.



nates of the point A define the curvature and the twist of the surface for
any value of the angle a. It is seen that the maximum twist, represented
by the radius of the circle, takes place when a = TT/4, i.e., when we take
two perpendicular directions bisecting the angles between the principal
planes.

In our example the curvature in any direction is positive; hence the
surface is bent convex downward. If the curvatures \/rx and \/ry are
both negative, the curvature in any direction is also negative, and we have
a bending of the plate convex upward. Surfaces in which the curvatures
in all planes have like signs are called synclastic. Sometimes we shall
deal with surfaces in which the two principal curvatures have opposite
signs. A saddle is a good example. Such surfaces are called anticlastic.
The circle in Fig. 18 represents a particular case of such surfaces when

FIG. 18 FIG. 19

l/rv = — \/rx. It is seen that in this case the curvature becomes zero
for a = T/4 and for a = 3ir/4, and the twist becomes equal to ± l/rx.

10. Relations between Bending Moments and Curvature in Pure
Bending of Plates. In the case of pure bending of prismatic bars a
rigorous solution for stress distribution is obtained by assuming that
cross sections of the bar remain plane during bending and rotate only
with respect to their neutral axes so as to be always normal to the deflec-
tion curve. Combination of such bending in two perpendicular directions
brings us to pure bending of plates. Let us begin with pure bending of a
rectangular plate by moments that are uniformly distributed along the
edges of the plate, as shown in Fig. 19. We take the xy plane to coincide
with the middle plane of the plate before deflection and the x and y axes
along the edges of the plate as shown. The z axis, which is then per-
pendicular to the middle plane, is taken positive downward. We denote
by Mx the bending moment per unit length acting on the edges parallel
to the y axis and by My the moment per unit length acting on the edges
parallel to the x axis. These moments we consider positive when they
are directed as shown in the figure, i.e., when they produce compression



in the upper surface of the plate and tension in the lower. The thickness
of the plate we denote, as before, by h and consider it small in comparison
with other dimensions.

Let us consider an element cut out of the plate by two pairs of planes
parallel to the xz and yz planes, as shown in Fig. 20. Since the case shown
in Fig. 19 represents the combination of two uniform bendings, the stress
conditions are identical in all elements, as shown in Fig. 20, and we have

a uniform bending of the plate. Assuming
/* dx ""^ that during bending of the plate the lateral

i^ '1x^ | ^^ ^ sides of the element remain plane and rotate
l 2" about the neutral axes nn so as to remain nor-

^A -y^~k m a l to the deflected middle surface of the
-*— '̂" j H -r--> A plate, it can be concluded that the middle
\ ^ { ^ J ^ tfr ! plane of the plate does not undergo any ex-

s'' d'z /^ tension during this bending, and the middle
FIQ 20 surface is therefore the neutral surface.1 Let

l/rx and l/ry denote, as before, the curva-
tures of this neutral surface in sections parallel to the xz and yz planes,
respectively. Then the unit elongations in the x and y directions of an
elemental lamina abed (Fig. 20), at a distance z from the neutral surface,
are found, as in the case of a beam, and are equal to

(«)

Using now Hooke's law [Eq. (1), page 5], the corresponding stresses in
the lamina abed are

(&)

These stresses are proportional to the distance z of the lamina abed from
the neutral surface and depend on the magnitude of the curvatures of the
bent plate.

The normal stresses distributed over the lateral sides of the element in
Fig. 20 can be reduced to couples, the magnitudes of which per unit
length evidently must be equal to the external moments Mx and My. In
this way we obtain the equations

(c)

1 It will be shown in Art. 13 that this conclusion is accurate enough if the deflections
of the plate are small in comparison with the thickness h.



Substituting expressions (b) for <rx and ayy we obtain

(37)

(38)

where D is the flexural rigidity of the plate defined by Eq. (3), and w
denotes small deflections of the plate in the z direction.

Let us now consider the stresses acting on a section of the lamina
abed parallel to the z axis and inclined to the x and y axes. If acd (Fig. 21)
represents a portion of the lamina cut by such a section, the stress acting
on the side ac can be found by means of the equations of statics. Resolv-
ing this stress into a normal component an and a shearing component rnt,

FIG. 21

the magnitudes of these components are obtained by projecting the forces
acting on the element acd on the n and t directions respectively, which
gives the known equations

(«0

in which a is the angle between the normal n and the x axis or between
the direction t and the y axis (Fig. 21a). The angle is considered positive
if measured in a clockwise direction.

Considering all laminas, such as acd in Fig. 216, over the thickness of
the plate, the normal stresses <rn give the bending moment acting on the
section ac of the plate, the magnitude of which per unit length along ac
is

(39)

The shearing stresses rnt give the twisting moment acting on the section



ac of the plate, the magnitude of which per unit length of ac is

(40)

The signs of Mn and Mnt are chosen in such a manner that the positive
values of these moments are represented by vectors in the positive direc-
tions of n and t (Fig. 21a) if the rule of the right-hand screw is used.
When a is zero or TT, Eq. (39) gives Mn = Mx. For a = x/2 or 3TT/2, we

obtain Mn = My. The moments Mnt become
zero for these values of a. Thus we obtain
the conditions shown in Fig. 19.

Equations (39) and (40) are similar to Eqs.
(36), and by using them the bending and
twisting moments can be readily calculated
for any value of a. We can also use the
graphical method for the same purpose and
find the values of Mn and Mnt from Mohr's

circle, which can be constructed as shown in the previous article by tak-
ing Mn as abscissa and Mnt as ordinate. The diameter of the circle will
be equal to Mx — My, as shown in Fig. 22. Then the coordinates OB and
AB of a point A, defined by the angle 2a, give the moments Mn and Mnt

respectively.
Let us now represent Mn and Mnt as functions of the curvatures and

twist of the middle surface of the plate. Substituting in Eq. (39) for
Mx and My their expressions (37) and (38), we find

FIG. 22

Using the first of the equations (36) of the previous article, we conclude
that the expressions in parentheses represent the curvatures of the middle
surface in the n and t directions respectively. Hence

(41)

To obtain the corresponding expression for the twisting moment Mnt,
let us consider the distortion of a thin lamina abed with the sides ab and
ad parallel to the n and t directions and at a distance z from the middle
plane (Fig. 23). During bending of the plate the points a, 6, c, and d
undergo small displacements. The components of the displacement of
the point a in the n and t directions we denote by u and v respectively.
Then the displacement of the adjacent point d in the n direction is
u + (du/dt) dt, and the displacement of the point b in the t direction is
v + (dv/dri) dn. Owing to these displacements, we obtain for the shear-



ing strain

(e)

(/)

The corresponding shearing stress is

From Fig. 236, representing the section of the middle surface made by
the normal plane through the n axis, it may be seen that the angle of
rotation in the counterclockwise direction of an element pq, which
initially was perpendicular to the xy plane, about an axis perpendicular
to the nz plane is equal to — dw/dn. Owing to this rotation a point of the

FIG. 23

element at a distance z from the neutral surface has a displacement in the
n direction equal to

Considering the normal section through the t axis, it can be shown that
the same point has a displacement in the t direction equal to

Substituting these values of the displacements u and v in expression (/),
we find

(42)

and expression (40) for the twisting moment becomes

(43)



It is seen that the twisting moment for the given perpendicular directions
n and t is proportional to the twist of the middle surface corresponding to
those directions. When the n and t directions coincide with the x and
y axes, there are only bending moments Mx and My acting on the sections
perpendicular to those axes (Fig. 19). Hence the corresponding twist is
zero, and the curvatures 1/Vx and l/ry are the principal curvatures of the
middle surface of the plate. They can readily be calculated from
Eqs. (37) and (38) if the bending moments Mx and My are given. The
curvature in any other direction, defined by an angle a, can then be
calculated by using the first of the equations (36), or it can be taken from
Fig. 17.

Regarding the stresses in a plate undergoing pure bending, it can be
concluded from the first of the equations (d) that the maximum normal
stress acts on those sections parallel to the xz or yz planes. The magni-
tudes of these stresses are obtained from Eqs. (b) by substituting z = h/2
and by using Eqs. (37) and (38). In this way we find

(44)

If these stresses are of opposite sign, the maximum shearing stress acts in
the plane bisecting the angle between the xz and yz planes and is equal to

(45)

If the stresses (44) are of the same sign, the maximum shear acts in the
plane bisecting the angle between the xy and xz planes or in that bisecting
the angle between the xy and yz planes and is equal to ^(ov)max or (̂o-x)max,
depending on which of the two principal stresses (<Ty)m&x or (<rz)max is
greater.

11. Particular Cases of Pure Bending. In the discussion of the previ-
ous article we started with the case of a rectangular plate with uniformly
distributed bending moments acting along the edges. To obtain a gen-
eral case of pure bending of a plate, let us imagine that a portion of any
shape is cut out from the plate considered above (Fig. 19) by a cylindrical
or prismatic surface perpendicular to the plate. The conditions of bend-
ing of this portion will remain unchanged provided that bending and
twisting moments that satisfy Eqs. (39) and (40) are distributed along the
boundary of the isolated portion of the plate. Thus we arrive at the
case of pure bending of a plate of any shape, and we conclude that pure
bending is always produced if along the edges of the plate bending
moments Mn and twisting moments Mnt are distributed in the manner
given by Eqs. (39) and (40).

Let us take, as a first example, the particular case in which

Mx = My = M



It can be concluded, from Eqs. (39) and (40), that in this case, for a plate
of any shape, the bending moments are uniformly distributed along the
entire boundary and the twisting moments vanish. From Eqs. (37) and
(38) we conclude that

(46)

i.e., the plate in this case is bent to a spherical surface the curvature of
which is given by Eq. (46).

In the general case, when Mx is different from My, we put

Mx — Mi and My = M2

Then, from Eqs. (37) and (38), we find

(a)

and in addition

Integrating these equations, we find

(C)

where Ci, C2, and C3 are constants of integration. These constants
define the plane from which the deflections w are measured. If this
plane is taken tangent to the middle surface of the plate at the origin,
the constants of integration must be equal to zero, and the deflection
surface is given by the equation

(d)

In the particular case where Mi = M2 = M1 we get from Eq. (d)

w
i.e., a paraboloid of revolution instead of the spherical surface given by
Eq. (46). The inconsistency of these results arises merely from the use
of the approximate expressions d2w/dx2 and d2w/dy2 for the curvatures
l/rx and l/ry in deriving Eq. (e). These second derivatives of the
deflections, rather than the exact expressions for the curvatures, will be
used also in all fuither considerations, in accordance with the assump-
tions made in Art. 9. This procedure greatly simplifies the fundamental
equations of the theory of plates.



Returning now to Eq. (d), let us put M2 = — Mi. In this case the
principal curvatures, from Eqs. (a), are

(/)

and we obtain an anticlastic surface the equation of which is

(S)

Straight lines parallel to the z axis become, after bending, parabolic
curves convex downward (Fig. 24), whereas straight lines in the y direc-
tion become parabolas convex upward. Along the lines bisecting the
angles between the x and y axes we have x — y, or x = — y; thus deflec-
tions along these lines, as seen from Eq. (g), are zero. All lines parallel
to these bisecting lines before bending remain straight during bending,
rotating only by some angle. A rectangle abed bounded by such lines

will be twisted as shown in Fig. 24.
Imagine normal sections of the plate
along lines ab, be, cd, and ad. From
Eqs. (39) and (40) we conclude that
bending moments along these sections
are zero and that twisting moments
along sections ad and be are equal to
Mi and along sections ab and cd are

equal to — Mi. Thus the portion abed of the plate is in the condition of
a plate undergoing pure bending produced by twisting moments uni-
formly distributed along the edges (Fig. 25a). These twisting moments
are formed by the horizontal shearing stresses continuously distributed
over the edge [Eq. (40)]. This horizontal stress distribution can be
replaced by vertical shearing forces which produce the same effect as
the actual distribution of stresses. To show this, let the edge ab be
divided into infinitely narrow rectangles, such as mnpq in Fig. 256. If
A is the small width of the rectangle, the corresponding twisting couple
is MiA and can be formed by two vertical forces equal to Mi acting along
the vertical sides of the rectangle. This replacement of the distributed
horizontal forces by a statically equivalent system of two vertical forces
cannot cause any sensible disturbance in the plate, except within a distance
comparable with the thickness of the plate,1 which is assumed small.
Proceeding in the same manner with all the rectangles, we find that all
forces Mi acting along the vertical sides of the rectangles balance one
another and only two forces Mi at the corners a and d are left. Making

1 This follows from Saint VenanVs principle; see S. Timoshenko and J. N. Goodier,
"Theory of Elasticity," 2d ed., p. 33, 1951.

FIG. 24



the same transformation along the other edges of the plate, we conclude
that bending of the plate to the anticlastic surface shown in Fig. 25a can
be produced by forces concentrated at the corners1 (Fig. 25c). Such an
experiment is comparatively simple to perform, and was used for the
experimental verification of the theory of bending of plates discussed
above.2 In these experiments the deflections of the plate along the line bod
(Fig. 24) were measured and were found to be in very satisfactory agree-
ment with the theoretical results obtained from Eq. (g). Some dis-
crepancies were found only near the edges, and they were more pro-

FIG. 25

nounced in the case of comparatively thick plates, as would be expected
from the foregoing discussion of the transformation of twisting couples
along the edges.

As a last example let us consider the bending of a plate (Fig. 19) to a
cylindrical surface having its generating line parallel to the y axis. In
such a case d2w/dy2 = 0, and we find, from Eqs. (37) and (38),

(h)

It is seen that to produce bending of the plate to a cylindrical surface
we must apply not only the moments Mx but also the moments My.
Without these latter moments the plate will be bent to an anticlastic
surface.3 The first of equations Qi) has already been used in Chap. 1 in
discussing the bending of long rectangular plates to a cylindrical surface.
Although i,Q that discussion we had a bending of plates by lateral loads
and there were not only bending stresses but also vertical shearing stresses

1 This transformation of the force system acting along the edges was first suggested
by Lord Kelvin and P. G. Tait; see " Treatise on Natural Philosophy," vol. 1, part 2,
p. 203, 1883.

2 Such experiments were made by A. Nddai, Forschiingsarb., vols. 170, 171, Berlin,
1915; see also his book "Elastische Platten," p. 42, Berlin, 1925.

8 We always assume very small deflections or else bending to a developable surface.
The case of bending to a nondevelopable surface when the deflections are not small
will be discussed later: see p. 47



acting on sections perpendicular to the x axis, it can be concluded from a
comparison with the usual beam theory that the effect of the shearing
forces is negligible in the case of thin plates, and the equations developed
for the case of pure bending can be used with sufficient accuracy for
lateral loading.

12. Strain Energy in Pure Bending of Plates. If a plate is bent by
uniformly distributed bending moments Mx and My (Fig. 19) so that the
xz and yz planes are the principal planes of the deflection surface of the
plate, the strain energy stored in an element, such as shown in Fig. 20,
is obtained by calculating the work done by the moments Mx dy and My dx
on the element during bending of the plate. Since the sides of the ele-
ment remain plane, the work done by the moments Mx dy is obtained by
taking half the product of the moment and the angle between the corre-
sponding sides of the element after bending. Since — d2w/dx'z represents
the curvature of the plate in the xz plane, the angle corresponding to the
moments Mx dy is — (d2w/dx2) dx, and the work done by these moments is

An analogous expression is also obtained for the work produced by the
moments My dx. Then the total work, equal to the strain energy of the
element, is

Substituting for the moments their expressions (37) and (38), the strain
energy of the elements is represented in the following form:

(a)

Since in the case of pure bending the curvature is constant over the
entire surface of the plate, the total strain energy of the plate will be
obtained if we substitute the area A of the plate for the elementary area
dx dy in expression (a). Then

(47)

If the directions x and y do not coincide with the principal planes of
curvature, there will act on the sides of the element (Fig. 20) not only
the bending moments Mx dy and My dx but also the twisting moments
Mxy dy and Myx dx. The strain energy due to bending moments is repre-
sented by expression (a). In deriving the expression for the strain energy
due to twisting moments Mxy dy we observe that the corresponding angle
of twist is equal to the rate of change of the slope dw/dy, as x varies,



multiplied with dx; hence the strain energy due to Mxy dy is

which, applying Eq. (43), becomes

The same amount of energy will also be produced by the couples Myx dx,
so that the strain energy due to both twisting couples is

(b)

Since the twist does not affect the work produced by the bending
moments, the total strain energy of an element of the plate is obtained by
adding together the energy of bending (a) and the energy of twist (b).
Thus we obtain

(48)

The strain energy of the entire plate is now obtained by substituting
the area A of the plate for the elemental area dx dy. Expression (48)
will be used later in more complicated cases of bending of plates.

13. Limitations on the Application of the Derived Formulas. In dis-
cussing stress distribution in the case of pure bending (Art. 10) it was
assumed that the middle surface is the neutral surface of the plate. This
condition can be rigorously satisfied only if the middle surface of the bent
plate is a developable surface. Considering, for instance, pure bending of
a plate to a cylindrical surface, the only limitation on the application of
the theory will be the requirement that the thickness of the plate be
small in comparison with the radius of curvature. In the problems of
bending of plates to a cylindrical surface by lateral loading, discussed in
the previous chapter, it is required that deflections be small in compari-
son with the width of the plate, since only under this condition will the
approximate expression used for the curvature be accurate enough.

If a plate is bent to a nondevelopable surface, the middle surface
undergoes some stretching during bending, and the theory of pure bend-



ing developed previously will be accurate enough only if the stresses
corresponding to this stretching of the middle surface are small in com-
parison with the maximum bending stresses given by Eqs. (44) or, what
is equivalent, if the strain in the middle surface is small in comparison
with the maximum bending strain h/2rmin. This requirement puts an
additional limitation on deflections of a plate, viz., that the deflections w
of the plate must be small in comparison with its thickness h.

To show this, let us consider the bending of a circular plate by bend-
ing couples M uniformly distributed along the edge. The deflection sur-
face, for small deflections, is spherical with radius r as defined by Eq. (46).
Let AOB (Fig. 26) represent a diametral section of the bent circular plate,
a its outer radius before bending, and 5 the deflection at the middle. We
assume at first that there is no stretching of the middle surface of the
plate in the radial direction. In such a case the arc OB must be equal to
the initial outer radius a of the plate. The angle <p and the radius b of
the plate after bending are then given by the following equations:

It is seen that the assumed bending of the plate implies a compressive
strain of the middle surface in the circumferential direction. The magni-

tude of this strain at the edge of the plate is

(a)

For small deflections we can take

which, substituted in Eq. (a), gives

(b)FIG. 26

To represent this strain as a function of the maximum deflection 5, we
observe that

Hence

Substituting in Eq. (6), we obtain

(49)



This represents an upper limit for the circumferential strain at the edge
of the plate. It was obtained by assuming that the radial strain is zero.
Under actual conditions there is some radial strain, and the circumfer-
ential compression is somewhat smaller1 than that given by Eq. (49).

From this discussion it follows that the equations obtained in Art. 10,
on the assumption that the middle surface of the bent plate is its neutral
surface, are accurate provided the strain given by expression (49) is small
in comparison with the maximum bending strain /i/2r, or, what is equiva-
lent, if the deflection 8 is small in comparison with the thickness h of the
plate. A similar conclusion can also be obtained in the more general
case of pure bending of a plate when the two principal curvatures are
not equal.2 Generalizing these conclusions we can state that the equa-
tions of Art. 10 can always be applied with sufficient accuracy if the
deflections of a plate from its initial plane or from a true developable
surface are small in comparison with the thickness of the plate.

14. Thermal Stresses in Plates with Clamped Edges. Equation (46)
for the bending of a plate to a spherical surface can be used in calculating
thermal stresses in a plate for certain cases of nonuniform heating.
Assume that the variation of the temperature through the thickness of
the plate follows a linear law and that the temperature does not vary in
planes parallel to the surfaces of the plate. In such a case, by measuring
the temperature with respect to that of the middle surface, it can be
concluded that temperature expansions and contractions are proportional
to the distance from the middle surface. Thus we have exactly the same
condition as in the pure bending of a plate to a spherical surface. If the
edges of the nonuniformly heated plate are entirely free, the plate will
bend to a spherical surface.3 Let a be the coefficient of linear expansion
of the material of the plate, and let t denote the difference in temperature
of the upper and lower faces of the plate. The difference between the
maximum thermal expansion and the expansion at the middle surface is
at/2, and the curvature resulting from the nonuniform heating can be
found from the equation

at h , v

2 = Tr ( a )

from which

i - f (50)
This bending of the plate does not produce any stresses, provided the

1 This question is discussed later; see Art. 96.
2 See Kelvin and Tait, op. cit., vol. 1, part 2, p. 172.
3 It is assumed that deflections are small in comparison with the thickness of the

plate.



edges are free and deflections are small in comparison with the thickness
of the plate.

Assume now that the middle plane of the plate is free to expand but
that the edges are clamped so that they cannot rotate. In such a case
the nonuniform heating will produce bending moments uniformly dis-
tributed along the edges of the plate. The magnitude of these moments
is such as to eliminate the curvature produced by the nonuniform heat-
ing [Eq. (50)], since only in this way can the condition at the clamped
edge be satisfied. Using Eq. (46) for the curvature produced by the
bending moments, we find for determining the magnitude M of the
moment per unit length of the boundary the equation1

from which

(b)

The corresponding maximum stress can be found from Eqs. (44) and is
equal to

Substituting for D its expression (3), we finally obtain

(51)

It is seen that the stress is proportional to the coefficient of thermal
expansion a, to the temperature difference t between the two faces of
the plate, and to the modulus of elasticity E. The thickness h of the
plate does not enter into formula (51); but since the difference t of tem-
peratures usually increases in proportion to the thickness of the plate, it
can be concluded that greater thermal stresses are to be expected in thick
plates than in thin ones.

1 The effect of pure bending upon the curvature of the entire plate thus is equivalent
but opposite in sign to the effect of the temperature gradient. Now, if the plate
remains, in the end, perfectly plane, the conditions of a built-in edge are evidently
satisfied along any given boundary. Also, since in our case the bending moments are
equal everywhere and in any direction, the clamping moments along that given
boundary are always expressed by the same Eq. (Jb).



CHAPTER 3

SYMMETRICAL BENDING OF CIRCULAR PLATES

15. Differential Equation for Symmetrical Bending of Laterally Loaded
Circular Plates.1 If the load acting on a circular plate is symmetrically
distributed about the axis perpendicular to the plate through its center,
the deflection surface to which the middle plane of the plate is bent will
also be symmetrical. In all points equally distant from the center of
the plate the deflections will be the same, and it is sufficient to consider
deflections in one diametral section through the axis of symmetry (Fig.
27). Let us take the origin of coordinates
0 at the center of the undeflected plate and
denote by r the radial distances of points
in the middle plane of the plate and by w
their deflections in the downward direction.
The maximum slope of the deflection sur-
face at any point A is then equal to — dw/dr,
and the curvature of the middle surface of
the plate in the diametral section rz for
small deflections is

(a) FIG. 27

where <p is the small angle between the normal to the deflection surface
at A and the axis of symmetry OB. From symmetry we conclude that
l/rn is one of the principal curvatures of the deflection surface at A.
The second principal curvature will be in the section through the normal
AB and perpendicular to the rz plane. Observing that the normals, such
as AB, for all points of the middle surface with radial distance r form a
conical surface with apex B1 we conclude that the length AB is the radius
of the second principal curvature which we denote by rf. Then, from
the figure, we obtain

(b)

1 The solution of these problems of bending of circular plates was given by Poisson;
see "Memoirs of the Academy," vol. 8, Paris, 1829.



Having expressions (a) and (b) for the principal curvatures, we can obtain
the corresponding values of the bending moments assuming that relations
(37) and (38), derived for pure bending, also hold between these moments
and the curvatures.1 Using these relations, we obtain

(52)

(53)

where, as before, Mr and Mt denote bending moments per unit length.
The moment Mr acts along circumferential sections of the plate, such as
the section made by the conical surface with the apex at B1 and Mt acts
along the diametral section rz of the plate.

Equations (52) and (53) contain only one variable, w or <p, which can
be determined by considering the equilibrium of an element of the plate

such as element abed in Fig. 28 cut out
from the plate by two cylindrical sec-
tions ab and cd and by two diametral
sections ad and be. The couple acting
on the side cd of the element is

Mrr dd (c)

The corresponding couple on the side
ab is

The couples on the sides ad and be of the element are each Mt dr, and they
give a resultant couple in the plane rOz equal to

Mt dr dO (e)

From symmetry it can be concluded that the shearing forces that may
act on the element must vanish on diametral sections of the plate but
that they are usually present on cylindrical sections such as sides cd and
ab of the element. Denoting by Q the shearing force per unit length of

1 The effect on deflections of shearing stresses acting on normal sections of the plate
perpendicular to meridians, such as the section cut by the conical surface with the
apex at B, is neglected here. Their effect is slight in the case of plates in which the
thickness is small in comparison with the diameter. Further discussion of this subject
will be given in Art. 20. The stresses perpendicular to the surface of the plate are
also neglected, which is justifiable in all cases when the load is not highly concentrated
(see p. 69).

FIG. 28



the cylindrical section of radius r, the total shearing force acting on the
side cd of the element is Qr dB, and the corresponding force on the side ab is

Neglecting the small difference between the shearing forces on the two
opposite sides of the element, we can state that these forces give a couple
in the rz plane equal to

Qr dO dr (/)

Summing up the moments (c), (d), (e), and (/) with proper signs and
neglecting the moment due to the external load on the element as a
small quantity of higher order, we obtain the following equation of
equilibrium of the element abed:

from which we find, by neglecting a small quantity of higher order,

(a)

Substituting expressions (52) and (53) for Mr and Mt, Eq. (g) becomes

(54)

or, in another form,

(55)

In any particular case of a symmetrically loaded circular plate the
shearing force Q can easily be calculated by dividing the load distributed
within the circle of radius r by 2irr; then Eq. (54) or (55) can be used to
determine the slope <p and the deflection w of the plate. The integration
of these equations is simplified if we observe that they can be put in the
following forms:

(56)

(57)

If Q is represented by a function of r, these equations can be integrated
without any difficulty in each particular case.

Sometimes it is advantageous to represent the right-hand side of Eq.
(57) as a function of the intensity q of the load distributed over the plate.
For this purpose we multiply both sides of the equation by 2irr. Then,



observing that

we obtain

Differentiating both sides of this equation with respect to r and dividing
by r, we finally obtain

(58)

This equation can easily be integrated if the intensity of the load q is
given as a function of r.

16. Uniformly Loaded Circular Plates. If a circular plate of radius a
carries a load of intensity q uniformly distributed over the entire surface
of the plate, the magnitude of the shearing force Q at a distance r from
the center of the plate is determined from the equation

2wrQ = irr2q
from which

Q-% («)

Substituting in Eq. (57), we obtain

By one integration we find

(«0

where Ci is a constant of integration to be found later from the conditions
at the center and at the edge of the plate. Multiplying both sides of
Eq. (c) by r, and making the second integration, we find

and (59)

(60)

The new integration then gives

Let us now calculate the constants of integration for various particular
cases.



Circular Plate with Clamped Edges. In this case the slope of the deflec-
tion surface in the radial direction must be zero for r = 0 and r — a.
Hence, from Eq. (59),

From the first of these equations we conclude that C2 = 0. Substituting
this in the second equation, we obtain

With these values of the constants, Eq. (59) gives the following expres-
sion for the slope:

(61)

(d)

Equation (60) gives

At the edge of the plate the deflection is zero. Hence,

and we obtain

Substituting in Eq. (d), we find

(62)

The maximum deflection is at the center of the plate and, from Eq. (62),
is equal to

(e)

This deflection is equal to three-eighths of the deflection of a uniformly
loaded strip with built-in ends having a flexural rigidity equal to Z), a
width of unity, and a length equal to the diameter of the plate.

Having expression (61) for the slope, we obtain now the bending
moments Mr and Mt by using expressions (52) and (53), from which
we find

(63)

(64)



Substituting r = a in these expressions, we find for the bending moments
at the boundary of the plate

(65)

At the center of the plate where r = 0,

(66)

From expressions (65) and (66) it is seen that the maximum stress is at
the boundary of the plate where

(/)

The variation of stresses ar and <rt at the lower face of the plate along the
radius of the plate is shown in Fig. 29.

FIG. 29

Circular Plate with Supported Edges. In calculating deflections for this
case we apply the method of superposition. It was shown that in the
case of clamped edges there are negative bending moments Mr = — qa2/&
acting along the edge (Fig. 30a). If this case is combined with that of
pure bending shown in Fig. 306, the bending moments Mr at the edge
will be eliminated, and we obtain the bending of a plate supported at the
edge. <The deflection surface in the case of pure bending by the moments
qa2/8, from Eq. (46) or Eq. (e) on page 43, is

Adding this to the deflections (62) of the clamped plate, we find for the
plate with a simply supported edge



Substituting r = O in this expression we obtain the deflection of the plate
at the center:

(67)

(68)

For v = 0.3 this deflection is about four times as great as that for the
plate with clamped edge.

In calculating bending moments in this case we must add the constant
bending moment qa2/S to the moments (63) and (64) found above for the
case of clamped edges. Hence in the case of supported edges

(69)

(70)

The maximum bending moment is at the center of the plate where

The corresponding maximum stress is

(71)

To get the maximum stress at any distance r from the center we must
add to the stress calculated for the plate with clamped edges the con-
stant value



corresponding to the pure bending shown in Fig. 306. The same stress is
obtained also from Fig. 29 by measuring the ordinates from the horizontal
axis through Oi. It may be seen that by clamping the edge a more
favorable stress distribution in the plate is obtained.

17. Circular Plate with a Circular Hole at the Center. Let us begin
with a discussion of the bending of a plate by the moments Mi and M2

FXG. 31

uniformly distributed along the inner and outer boundaries, respectively
(Fig. 31). The shearing force Q vanishes in such a case, and Eq. (57)
becomes

By integrating this equation twice we obtain

(a)

Integrating again, we find the deflection

(b)

The constants of integration are now to be determined from the condi-
tions at the edges. Substituting expression (a) into Eq. (52), we find

(c)

This moment must be equal to M\ for r — b and equal to Mi for r — a.
Hence equations for determining constants Ci and Ci are

from which

(d)

To determine the constant Cz in Eq. (b), the deflections at the edges



of the plate must be considered. Assume, for example, that the plate in
Fig. 31 is supported along the outer edge. Then w — 0 for r = a, and
we find, from (b),

In the particular case when M2 = 0 we obtain

and expressions (a) and (b) for the slope and the deflection become

(72)

(73)

As a second example we consider the case of bending of a plate by
shearing forces Q0 uniformly distributed along the inner edge (Fig. 32).
The shearing force per unit length of a
circumference of radius r is

where P = 2irbQQ denotes the total load
applied to the inner boundary of the
plate. Substituting this in Eq. (57) and integrating, we obtain

and

(«)

(/)

The constants of integration will now be calculated from the boundary
conditions. Assuming that the plate is simply supported along the outer
edge, we have

to)
For the inner edge of the plate we have

(h)

FIG. 32



Substituting expressions (e) and (/) in Eqs. (g) and (h), we find

(i)

With these values of the constants substituted in expressions (e) and (/),
we find the slope and the deflection at any point of the plate shown in
Fig. 32. For the slope at the inner edge, which will be needed in the
further discussion, we obtain

U)

In the limiting case where b is infinitely small, 62 log (b/a) approaches
zero, and the constants of integration become

Substituting these values in expression (/), we obtain

(k)

This coincides with the deflection of a plate without a hole and loaded at
the center [see Eq. (89), page 68]. Thus a very small hole at the center

does not affect the deflection of the plate.
Combining the loadings shown in Figs. 31

and 32, we can obtain the solution for the
case of a plate built in along the inner edge
and uniformly loaded along the outer edge
(Fig. 33). Since the slope at the built-in
edge is zero in this case, using expressions

(72) and (j), we obtain the following equation for determining the bending
moment M1 at the built-in edge:

FIG. 33



(74)

Having this expression for the moment My, we obtain the deflections of
the plate by superposing expression (73) and expression (/), in which the
constants of integration are given by expressions (i).

By using the same method of superposition we can obtain also the
solution for the case shown in Fig. 34, in which the plate is supported
along the outer edge and carries a uniformly distributed load. In this
case we use the solution obtained in the previous article for the plate
without a hole at the center. Considering the section of this plate cut by
the cylindrical surface of radius b and perpendicular to the plate, we find
that along this section there act a shearing force Q = 7rqb2/27rb — qb/2
and a bending moment of the inten-
sity [see Eq. (69)]

Mr = ± (Z+ v){a*-V)

Hence to obtain the stresses and de-
flections for the case shown in Fig. 34,
we have to superpose on the stresses and deflections obtained for the plate
without a hole the stresses and deflections produced by the bending
moments and shearing forces shown in Fig. 35. These latter quantities
are obtained from expressions (72), (73), (e), and (/), with due attention
being given to the sign of the applied shears and moments.

Several cases of practical importance
are represented in Fig. 36. In all these
cases the maximum stress is given by a
formula of the type

from which

FIG. 35
(75)

depending on whether the applied load is uniformly distributed over the
surface or concentrated along the edge. The numerical values of the
factor k, calculated1 for several values of the ratio a/b and for Poisson's
ratio v = 0.3, are given in Table 3.

1 The calculations for cases 1 to 8 inclusive were made by A. M. Wahl and G. Lobo,
Trans. ASME1 vol. 52, 1930. Further data concerning symmetrically loaded circular
plates with and without a hole may be found in K. Beyer, "Die Statik im Stahlbe-
tonbau," 2d ed., p. 652, Berlin, 1948.

FIG. 34



Cosei Case 6

Case 2 Case 7

Case 3 Case 8

Case 4
Case 9

Cose 5 Case IO

FIG. 36

TABLE 3. COEFFICIENTS k AND ki IN EQS. (75) AND (76) FOR THE TEN
CASES SHOWN IN FIG. 36

a/b = 1.25 1.5 2 3 4 5

Case k ki k k\ k k\ k ki k k\ k k\

1 1.10 0.341 1.26 0.519 1.48 0.672 1.88 0.7342.17 0.7242.34 0.704
2 0.66 0.202 1.19 0.491 2.04 0.902 3.34 1.2204.30 1.3005.10 1.310
3 0.135 0.002310.410 0.0183 1.04 0.0938 2.15 0.293 2.99 0.448 3.69 0.564
4 0.122 0.00343 0.336 0.03130.74 0.1250 1.21 0.2911.45 0.417 1.59 0.492
5 0.090 0.00077 0.273 0.00620.71 0.0329 1.54 0.1102.23 0.179 2.80 0.234

6 0.115 0.00129 0.220 0.0064 0.405 0.0237 0.703 0.062 0.933 0.092 1.13 0.114
7 0.5920.184 0.976 0.414 1.4400.664 1.880 0.824 2.08 0.8302.19 0.813
8 0.227 0.00510 0.428 0.0249 0.753 0.0877 1.205 0.209 1.514 0.293 1.745 0.350
9 0.194 0.00504 0.320 0.02420.4540.08100.673 0.172 1.0210.217 1.3050.238

10 0.105 0.00199 0.259 0.0139 0.480 0.0575 0.657 0.130 0.710 0.162 0.7300.175



The maximum deflections in the same cases are given by formulas of
the type

(76)

The coefficients k\ are also given in Table 3.
When the ratio a/b approaches unity, the values of the coefficients k and

ki in Eqs. (75) and (76) can be obtained with sufficient accuracy by con-
sidering a radial strip as a beam with end
conditions and loading as in the actual plate.
The effect of the moments Mt on bending is
then entirely neglected.

18. Circular Plate Concentrically Loaded.
We begin with the case of a simply supported
plate in which the load is uniformly distrib-
uted along a circle of radius b (Fig. 37a).
Dividing the plate into two parts as shown
in Fig. 376 and cy it may be seen that the
inner portion of the plate is in the condition
of pure bending produced by the uniformly
distributed moments M\ and that the outer part is bent by the moments
M\ and the shearing forces Qi. Denoting by P the total load applied,
we find that

(a)

The magnitude of the moment M\ is found from the condition of con-
tinuity along the circle r = 6, from which it follows that both portions
of the plate have, at that circle, the same slope. Using Eqs. (72) and
(j) of the preceding article, we find the slope for the inner boundary of
the outer portion of the plate equal to

(b)

The inner portion of the plate is bent to a spherical surface, the curvature
of which is given by expression (46). Therefore the corresponding slope
at the boundary is

(c)

FIG. 37



Equating expressions (b) and (c), we obtain

(d)

Substituting this expression for Mt in Eq. (73), we obtain deflections of
the outer part of the plate due to the moments M\. The deflections due
to the forces Qi are obtained from Eq. (/) of the preceding article. Add-
ing together both these deflections, we obtain for the outer part of the
plate

(77)

Substituting r = b in this expression, we obtain the following deflection
under the load:

(e)

To find the deflections of the inner portion of the plate, we add to the
deflection (e) the deflections due to pure bending of that portion of the
plate. In this manner we obtain

(78)

If the outer edge of the plate is built
in, the deflections of the plate are ob-
tained by superposing on the deflec-
tions (77) and (78) the deflections
produced by the bending moments
M2 uniformly distributed along the
outer edge of the plate (Fig. 38) and

of such a magnitude that the slope of the deflection surface at that edge
is equal to zero. From expression (77) the slope at the edge of a simply
supported plate is

(/)

FIG. 38



The slope produced by the moments M2 is

(g)

Equating the sum of expressions (/) and (g) to zero, we obtain

Deflections produced by this moment are

(h)

Adding these deflections to the deflections (77) and (78) we obtain for the
outer portion of a plate with a built-in edge

(79)

and for the inner portion,

(80)

Having the deflections for the case of a load uniformly distributed
along a concentric circle, any case of bending of a circular plate sym-
metrically loaded with respect to the center can be solved by using the
method of superposition. Let us consider, for example, the case in which
the load is uniformly distributed over the inner portion of the plate

FIG. 39

bounded by a circle of radius c (Fig. 39). Expression (77) is used to
obtain the deflection at any point of the unloaded portion of the plate
(a > r > c). The deflection produced by an elementary loading dis-
tributed over a ring surface of radius b and width db (see Fig. 39) is
obtained by substituting P = 2irbq db in that expression, where q is the
intensity of the uniform load. Integrating the expression thus obtained
with respect to 6, we obtain the deflection



or, denoting the total load wc2q by P,

(81)

Expression (78) is used to obtain the deflection at the center. Substi-
tuting r = 0 and P = 2-irbq db in this expression and integrating, we find

(82)

where P = wc2q.
The maximum bending moment is at the center and is found by using

expression (d). Substituting 2-irbq db for P in this expression and inte-
grating, we find

(83)

where, as before, P denotes the total load TC2q.*
Expression (81) is used to obtain the bending moments Mr and Mt at

any point of the unloaded outer portion of the plate. Substituting this
expression in the general formulas (52) and (53), we find

(84)

(85)

* This expression applies only when c is at least several times the thickness h. The
case of a very small c is discussed in Art. 19.



The maximum values of these moments are obtained at the circle r = c,
where

(86)

(87)

The same method of calculating deflections and moments can be used also
for any kind of symmetrical loading of a circular plate.

The deflection at the center of the plate can easily be calculated also for
any kind of unsymmetrical loading by using the following consideration.

Owing to the complete symmetry of the plate and of its boundary con-
ditions, the deflection produced at its center by an isolated load P depends
only on the magnitude of the load and on its radial distance from the
center. This deflection remains unchanged if the load P is moved to
another position provided the radial distance of the load from the center
remains the same. The deflection remains unchanged also if the load P
is replaced by several loads the sum of which is equal to P and the radial
distances of which are the same as that of the load P. From this it
follows that in calculating the deflection of the plate at the center we can
replace an isolated load P by a load P uniformly distributed along a circle
the radius of which is equal to the radial distance of the isolated load.
For the load uniformly distributed along a circle of radius b the deflection
at the center of a plate supported at the edges is given by Eq. (78) and is

(*)

This formula gives the deflection at the center of the plate produced by
an isolated load P at a distance b from the center of the plate. Having
this formula the deflection at the center for any other kind of loading
can be obtained by using the method of superposition.1 It should be
noted that the deflections and stresses in a circular plate with or without
a hole can be efficiently reduced by reinforcing the plate with either con-
centric2 or radial ribs. In the latter case, however, the stress distribution
is no longer symmetrical with respect to the center of the plate.

19. Circular Plate Loaded at the Center. The solution for a concen-
trated load acting at the center of the plate can be obtained from the

1 This method of calculating deflections at the center of the plate was indicated by
Saint Venant in his translation of the "Theorie de Telasticite des corps solides," by
Clebsch, p. 363, Paris, 1883. The result (i) can also be obtained by applying Max-
well's reciprocal theorem to the circular plate.

2 This case is discussed by W. A. Nash, J. Appl. Mechanics, vol. 15, p. 25, 1948.
See also C. B. Biezeno and R. Grammel, "Technische Dynamik," 2d ed., vol. 1, p. 497,
1953.



discussion of the preceding article by assuming that the radius c of the
circle within which the load is distributed becomes infinitely small,
whereas the total load P remains finite. Using this assumption, we find
that the maximum deflection at the center of a simply supported plate,
by Eq. (82), is

(88)

The deflection at any point of the plate at a distance r from the center,
by Eq. (81), is

(89)

The bending moment for points with r > c may be found by omitting
the terms in Eqs. (84) and (85) which contain c2. This gives

(90)

(91)

To obtain formulas for a circular plate with clamped edges we differ-
entiate Eq. (89) and find for the slope at the boundary of a simply sup-

ported plate

(a)

The bending moments M2 uniformly dis-
tributed along the clamped edge (Fig. 40)
produce a bending of the plate to a spher-

ical surface the radius of which is given by Eq. (46), and the correspond-
ing slope at the boundary is

(1 + v)D W

Using (a) and (b), the condition that the built-in edge does not rotate
gives

(MrUa = M2 = - £ (c)

Deflections produced by moments M2 by Eq. (h) of the preceding article
are

Superposing these deflections on the deflections of a simply supported

FIG. 40



plate in Eq. (89), we obtain the following expression for the deflections
of a clamped plate loaded at the center:

(92)

Adding Eq. (c) to Eqs. (90) and (91) for a simply supported plate, we
obtain the following equations for the bending moment at any point not
very close to the load:

(93)

(94)

When r approaches zero, expressions (90), (91), (93), and (94) approach
infinity and hence are not suitable for calculating the bending moments.
Moreover, the assumptions that serve as the basis for the elementary
theory of bending of circular plates do not hold near the point of appli-
cation of a concentrated load. As the radius c of the circle over which
F is distributed decreases, the intensity P/TC2 of the pressure increases
till it can no longer be neglected in comparison with the bending stresses
as is done in the elementary theory. Shearing stresses which are also
disregarded in the simple theory likewise increase without limit as c
approaches zero, since the cylindrical surface 2icch over which the total
shear force P is distributed approaches zero.

Discarding the assumptions on which the elementary theory is based, we may obtain
the stress distribution near the point of application of the load by considering that
portion of the plate as a body all three dimensions of which are of the same order of
magnitude. To do this imagine the central
loaded portion separated from the rest of the
plate by a cylindrical surface whose radius b is
several times as large as the thickness h of the
plate, as shown in Fig. 41. It may be assumed
that the elementary theory of bending is accur-
ate enough at a distance b from the point of
application of the load P and that the corre-
sponding stresses may be calculated by means
of Eq. (90). The problem of stress distribu-
tion near the center of the plate is thus reduced to the problem of a symmetrical
stress distribution in a circular cylinder of height h and radius b acted upon by a
load P distributed over a small circle of radius c and by reactions along the lateral
boundary.1 The solution of this problem shows that the maximum compressive

1 Several examples of symmetrical stress distribution are discussed in S. Timo-
shenko and J. N. Goodier, "Theory of Elasticity," 2d ed., p. 384, 1951. The case
shown in Fig. 41 was studied by A. Nadai (see his book "Elastische Platten," p. 308)
and also by S. Woinowsky-Krieger (see his paper in Ingr.-Arch., vol. 4, p. 305, 1933).
The results given here are from the latter paper.

FIG. 41



stress at the center A of the upper face of the plate can be expressed by the follow-
ing approximate formula:1

(95)

in which <n is the value of the compressive bending stress2 obtained from the approxi-
mate theory, say, by using Eq. (83) for the case of a simply supported plate, and a is a
numerical factor depending on 2c/h, the ratio of the diameter of the loaded area to the

/I

FIG. 42

thickness of the plate. Several values of this factor are given in Table 4. Its varia-
tion with the ratio 2c/h is shown also in Fig. 42. When c approaches zero, the stress
calculated by Eq. (95) approaches infinity.

TABLE 4. VALUES OF FACTOR a IN EQ. (95)

2c/h = 0.10 0.25 0.50 0.75 1.00 1.50 2.00 2.50

a= 0.0106 0.0466 0.1234 0.200 0.263 0.348 0.386 0.398

The maximum tensile stress occurs at B, the center of the lower surface of the plate
(Fig. 41). When c is very small, i.e., for a strong load concentration, this tensile
stress is practically independent of the ratio 2c/h and for a simply supported plate is
given by the following approximate formula:3

(96)

in which a is the outer radius.
To obtain the compressive stresses ar and at at the center of the upper surface of a

clamped plate, we must decrease the value of the compressive stress o-i in Eq. (95)
by an amount equal to

4TT/ * 2 2 ich?

1 When c is very small, the compressive stress P/TTC2 becomes larger than the value
of o-max given by Eq. (95) (see Fig. 43).

2 This quantity should be taken with negative sign in Eq. (95).
3 See Woinowsky-Krieger, op. cit,



on account of the action of the moments M2 = —P/4TT. The maximum tensile
stress at the center of the lower surface of a clamped plate for a strong concentration
of the load (c = 0) is found by subtracting Eq. (d) from Eq. (96). This stress is

(97)

The stress distribution across a thick circular plate (h/a = 0.4) with built-in edges
is shown in Fig. 43. These stresses are calculated for c = 0.1a and v = 0.3. For this
case the maximum compressive stress vz normal to the surface of the plate is larger than
the maximum compressive stress in bending given by Eq. (95). The maximum

FIG. 43

tensile stress is smaller than the tensile stress given by the elementary theory of bend-
ing. The value of the latter across the thickness of the plate is shown in the figure
by the dashed line. It was calculated from the equation for bending moment

(98)

obtained by adding the moment M2 = —P/4TT to Eq. (83).
In determining the safe dimensions of a circular plate loaded at the center, we can

usually limit our investigations to the calculation of the maximum tensile bending
stresses at the bottom of the plate by means of Eqs. (96) and (97). Although the
compressive stresses at the top of the plate may be many times as large as the tensile
stresses at the bottom in the case of a strong concentration of the load, they do not
represent a direct danger because of their highly localized character. The local
yielding in the case of a ductile material will not affect the deformation of the plate in
general if the tensile stresses at the bottom of the plate remain within safe limits.
The compressive strength of a brittle material is usually many times greater than its
tensile strength, so that a plate of such a material will also be safe if the tensile stress
at the bottom is within the limit of safety.

The local disturbance produced by a concentrated load in the vicinity of its point of
application must also be considered if we want an exact description of the deflection
of the plate. This disturbance is mainly confined to a cylindrical region of radius
several times h, and thus its effect on the total deflection becomes of practical impor-
tance when the thickness of the plate is not very small compared with its radius. As
an illustration there are shown in Fig. 44 the deflections of circular plates with built-in
edges and a central concentrated load for which the ratio of thickness to radius h/a



is 0.2, 0.4, and O.6.1 The deflection given by the elementary theory [Eq. (92)] is
shown by the dashed line. It may be seen that the discrepancy between the elementary
theory and the exact solution diminishes rapidly as the ratio h/a diminishes. In the
next article we shall show that this discrepancy is due principally to the effect of shear-
ing forces which are entirely neglected in the elementary theory.

20. Corrections to the Elementary Theory of Symmetrical Bending of
Circular Plates. The relations (37) and (38) between bending moments
and curvatures, which were derived for the case of pure bending, have
been used as the basis for the solution of the various problems of sym-
metrical bending of circular plates which have been discussed. The effect
that shearing stresses and normal pressures on planes parallel to the sur-
face of the plate have on bending has not been taken into account. Hence

FIG. 44

only the solution for a plate bent to a spherical surface and the solution
for the annular plate loaded with moments uniformly distributed along
the inner and outer boundaries (Fig. 31) are rigorous. In all other cases
discussed, the formulas obtained are approximate, and their accuracy
depends on the ratio of the thickness of the plate to its outer radius.
More accurate formulas may be obtained by considering in an approxi-
mate manner2 the effect of shearing stresses and lateral pressures on
deflections.

Let us consider first a circular plate without a hole supported along its
edge and uniformly loaded. The shearing force Q per unit length of arc

1 The curves in Fig. 44 are the results of the exact solution of Woinowsky-Krieger,
loc. cit.

2 A rigorous theory of plates was originated by Saint Venant in his translation of
Clebsch's "The"orie de 1'elasticity des corps solides," p. 337. A valuable criticism of
this work is given in "History of the Theory of Elasticity," by I. Todhunter and
K. Pearson, vol. 2, part 1, p. 217. Further development of the theory is due to J. H.
Michell, Proc. London Math. Soc, vol. 31, p. 100, 1900, and to A. E. H. Love, "Mathe-
matical Theory of Elasticity," 4th ed., p. 465. A list of references on this subject is
given by Woinowsky-Krieger, op. cit., p. 203. Some examples of rigorous theory are
given in Art. 26 (see p. 98).



along a circle of radius r is
Q = №

From the exact solution for plates whose thickness is not assumed to be
small,1 it is known that the shearing stresses rrz vary across the thickness
of the plate according to the parabolic law in the same way as in beams of
narrow rectangular cross section. Hence the maximum shearing stress is
at the middle surface of the plate, and its magnitude is

(O)

The corresponding shearing strain is

(b)

where W\ is the additional deflection of the middle surface of the plate
due to the shearing stress. By integration the deflections produced by
the shearing stresses are found to be

(c)

and at the center of the plate,

(d)

The lateral pressure acting on the plate produces a positive curvature,
convex downward, similar to that which occurs in a uniformly loaded
beam.2 The pressure q per unit area produces a radial elongation of
vq/E at the upper surface of the plate. At the middle surface of the
plate this elongation is vq/2E, and at the bottom of the plate it is zero.
Assuming a straight-line relation to hold, an approximate value of the
radius of curvature R can be found from the equation

from which

and the negative deflection is

(«)

1 Timoshenko and Goodier, op. cit., p. 351.
2 See ibid., p. 43.



Adding Eqs. (c) and (e) to Eq. (67), a more exact expression for deflec-
tion is found to be

At the center of the plate this becomes

(/)

The second term in Eq. (/) represents the correction for shearing stresses
and lateral pressure. This correction is seen to be small when the ratio
of the thickness of the plate to its radius is small. The value of this
correction given by the exact solution is1

(g)

For v = 0.3 the exact value is about 20 per cent less than that given by
Eq. (/).

In a uniformly loaded circular plate with clamped edges the negative
deflection w^ due to pressure cannot occur, and hence only the deflection
W1 due to shear need be considered. Adding this deflection to Eq. (62),
we obtain as a more accurate value of the deflection

(K)

It is interesting to note that this coincides with the exact solution.2

Consider next the deflections produced by shearing stresses in the
annular plate loaded with shearing forces uniformly distributed along
the inner edge of the plate as shown in Fig. 32. The maximum shearing
stress at a distance r from the center is

where P denotes the total shear load. The corresponding shear strain is3

w
Integrating, we obtain for the deflection produced by shear

U)
1 See Love, op. cit., p. 481.
2 See ibid., p. 485.
3 If the plate has no hole, the right-hand side of Eq. (i) should be multiplied by a

factor (1 — v)/(l + p), in accordance with the result (0 given below.



This deflection must be added to Eq. (Zc) on page 60 to get a more
accurate value of the deflection of the plate shown in Fig. 32. When
the radius b of the hole is very small, the expression for the total deflec-
tion becomes

(k)

The deflection at the edge of the hole is

(D

The second term in this expression represents the correction due to shear.
It increases indefinitely as b approaches zero, as a consequence of our
assumption that the load P is always finite. Thus when b approaches
zero, the corresponding shearing stress and shearing strain become
infinitely large.

The term in Eq. (I) which represents the correction for shear cannot be applied to a
plate without a hole. The correction for a plate without a hole may be expected to be
somewhat smaller because of the wedging effect produced by the concentrated load P
applied at the center of the upper surface of the plate. Imagine that the central
portion of the plate is removed by means of a cylindrical section of small radius b and
that its action on the remainder of the plate is replaced by vertical shearing forces
equivalent to P and by radial forces S representing the wedging effect of the load and

FIG. 45 FIG. 46

distributed along the upper edge of the hole as shown in Fig. 45. It is evident that the
latter forces produce stretching of the middle surface of the plate together with some
deflection of the plate in the upward direction. This indicates that we must decrease
the correction term in expression (k) to make it apply to a plate without a hole. To
get an idea of the magnitude of the radial forces S, let us consider the plate under the
two loading conditions shown in Fig. 46. In the first case the plate is compressed by
two equal and opposite forces P acting along the axis of symmetry z. In the second
case the plate is subjected to uniform compression in its plane by a pressure p uni-
formly distributed over the cylindrical surface bounding the plate. As a result of
lateral expansion these pressures produce an increase of the thickness of the plate by
the amount



We can now obtain from this expression the increase Ar in the radius r of the plate due
to the action of the forces P (Fig. 46a) by applying the reciprocal theorem to the two
conditions of loading shown in Fig. 46. This gives

from which

(m)

Let us compare this radial expansion with the radial expansion produced in a thick-
walled cylinder by an internal pressure pi. If the inner radius b of the cylinder is very
small compared with the outer radius r, the increase in the outer radius by Lamp's
formula1 is

(n)

Comparing expressions (m) and (n), we conclude that the radial expansion which the
forces P in Fig. 46a produce in the plate has the same magnitude as the radial expansion
produced in a plate with a small cylindrical hole at the center (Fig. 45) by internal
pressure pt- whose magnitude is given by the equation

From this we obtain

(o)

Returning to the case of one concentrated force at the center of the upper surface of
the plate, the action of which is illustrated by Fig. 45, we conclude that the force S per
unit length of the circumference of the hole must be equal to the pressure p%h/2.
Using the value of pi from Eq. (o), we obtain

These forces applied in the upper plane of the plate produce upward deflections wx,
the magnitude of which is found by substituting

in Eq. (73) and neglecting b2 in comparison with a2. In this manner we obtain

(P)

Adding this to expression (Zc), we obtain the following more accurate formula for the
deflection of a plate without a hole and carrying a load P concentrated at the center
of the uppei surface of the plate:

1 See S. Timoshenko, "Strength of Materials," part II, 3d ed., p. 210, 1956.



This equation can be used to calculate the deflection of all points of the plate that
are not very close to the point of application of the load. When r is of the same order
of magnitude as the thickness of the plate, Eq. (q) is no longer applicable; and to
obtain a satisfactory solution the central portion of the plate must be considered, as
explained in the preceding article. We can get an approximate value of the deflection
of this central portion considered as a plate of small radius b by adding the deflection
due to local disturbance in stress distribution near the point of application of the load
to the deflection given by the elementary theory.1 The deflection due to local dis-
turbance near the center is affected very little by the conditions at the edge of the
plate and hence can be evaluated approximately by means of the curves in Fig. 44.
The dashed-line curve in this figure is obtained by using Eq. (92). The additional
deflections due to local stress disturbance are equal to the differences between the
ordinates of the full lines and those of the dashed line.

As an example, consider a plate the radius of the inner portion of which is 6 = hh.
The deflection of the inner portion calculated from Eq. (92) and taken as unity in
Fig. 44 is

Using the curve h/a = 0.2 in Fig. 44, the additional deflection due to local stress
disturbance is

(r)

If we consider a plate for which b = 2.5h and use the curve for h/a = 0.4 in Fig. 44,
we obtain

(«)

which differs only slightly from that given in expression (r) for b = bh. It will be
unsatisfactory to take b smaller than 2.5h, since for smaller radii the edge condition
of the thick plate becomes of importance and the curves in Fig. 44, calculated for a
built-in edge, may not be accurate enough for our case.

Finally, to obtain the deflection of the plate under the load we calculate the deflec-
tion by means of Eq. (q), putting r = 0 in the first term and r = b — 2.5h in both
other terms. To this deflection we add the deflection of the central portion of the
plate due to the shear forces as given by expression (s).

In the particular case of v — 0.3 the deflections of simply supported circular plates
may also be obtained by a simple superposition of the curves plotted in Fig. 44, * with
the deflection

1 In the case under consideration this deflection can be calculated by using the first
term in expression (q) and substituting b for a.

* Figure 44 was calculated for v — 0.3.

(?)



due to the pure bending by radial moments P/4ir applied along the boundary of the
plate.

It should be noted also that, for small values of the ratio r/a, the effect of the
shearing force P/2irr upon the deflection is represented mainly by the second term
on the right-hand side of Eq. (q). To this term corresponds a slope

(t)

Comparing this result with the expression (i), we conclude that the factor

(u)

if introduced into Eq. (i) instead of k = %, would give a more accurate value of the
deformation due to shear in the case of a plate without a hole.

All preceding considerations are applicable only to circular plates bent to a surface
of revolution. A more general theory of bending taking into account the effect of the
shear forces on the deformation of the plate will be given in Arts. 26 and 39.



CHAPTER 4

SMALL DEFLECTIONS OF LATERALLY LOADED PLATES

21. The Differential Equation of the Deflection Surface. We assume
that the load acting on a plate is normal to its surface and that the
deflections are small in comparison with the thickness of the plate (see
Art. 13). At the boundary we assume that the edges of the plate are
free to move in the plane of the plate; thus the reactive forces at the
edges are normal to the plate. With these assumptions we can neglect
any strain in the middle plane of the plate during bending. Taking, as

before (see Art. 10), the coordinate axes x and y in the middle plane of
the plate and the z axis perpendicular to that plane, let us consider an
element cut out of the plate by two pairs of planes parallel to the xz and
yz planes, as shown in Fig. 47. In addition to the bending moments Mx

and My and the twisting moments Mxy which were considered in the pure
bending of a plate (see Art. 10), there are vertical shearing forces1 acting
on the sides of the element. The magnitudes of these shearing forces
per unit length parallel to the y and x axes we denote by Qx and Q11,
respectively, so that

(o)

Since the moments and the shearing forces are functions of the coordi-
nates x and y, we must, in discussing the conditions of equilibrium of the
element, take into consideration the small changes of these quantities
when the coordinates x and y change by the small quantities dx and dy.

1 There will be no horizontal shearing forces and no forces normal to the sides of the
element, since the strain of the middle plane of the plate is assumed negligible.



The middle plane of the element is represented in Fig. 48a and b, and the
directions in which the moments and forces are taken as positive are
indicated.

We must also consider the load distributed over the upper surface of
the plate. The intensity of this load we denote by q, so that the load
acting on the element1 is q dx dy.

FIG. 48

Projecting all the forces acting on the element onto the z axis we obtain
the following equation of equilibrium:

from which

(99)

Taking moments of all the forces acting on the element with respect to
the x axis, we obtain the equation of equilibrium

(b)

1 Since the stress component <rt is neglected, we actually are not able to apply the
load on the upper or on the lower surface of the plate. Thus, every transverse single
load considered in the thin-plate theory is merely a discontinuity in the magnitude of
the shearing forces, which vary according to the parabolic law through the thickness
of the plate. Likewise, the weight of the plate can be included in the load q without
affecting the accuracy of the result. If the effect of the surface load becomes of
special interest, thick-plate theory has to be used (see Art. 19).



The moment of the load q and the moment due to change in the force Qy

are neglected in this equation, since they are small quantities of a higher
order than those retained. After simplification, Eq. (b) becomes

(c)

In the same manner, by taking moments with respect to the y axis, we
obtain

id)

Since there are no forces in the x and y directions and no moments
with respect to the z axis, the three equations (99), (c), and (d) com-
pletely define the equilibrium of the element. Let us eliminate the
shearing forces Qx and Qy from these equations by determining them from
Eqs. (c) and (d) and substituting into Eq. (99). In this manner we obtain

(C)

Observing that Myx = — Mxy, by virtue of TXU = ryx, we finally represent
the equation of equilibrium (e) in the following form:

(100)

To represent this equation in terms of the deflections w of the plate,
we make the assumption here that expressions (41) and (43), developed
for the case of pure bending, can be used also in the case of laterally
loaded plates. This assumption is equivalent to neglecting the effect on
bending of the shearing forces Qx and Qy and the compressive stress az

produced by the load q. We have already used such an assumption in
the previous chapter and have seen that the errors in deflections obtained
in this way are small provided the thickness of the plate is small in com-
parison with the dimensions of the plate in its plane. An approximate
theory of bending of thin elastic plates, taking into account the effect of
shearing forces on the deformation, will be given in Art. 39, and several
examples of exact solutions of bending problems of plates will be dis-
cussed in Art. 26.

Using x and y directions instead of n and tf which were used in Eqs.
(41) and (43), we obtain

(101)

(102)



Substituting these expressions in Eq. (100), we obtain1

(103)

(104)

(105)

This latter equation can also be written in the symbolic form

where

It is seen that the problem of bending of plates by a lateral load q
reduces to the integration of Eq. (103). If, for a particular case, a solu-
tion of this equation is found that satisfies the conditions at the bounda-
ries of the plate, the bending and twisting moments can be calculated
from Eqs. (101) and (102). The corresponding normal and shearing
stresses are found from Eq. (44) and the expression

Equations (c) and (d) are used to determine the shearing forces Qx and
Qy, from which

(106)

(107)

(108)

or, using the symbolic form,

The shearing stresses TX2 and ryz can now be determined by assuming
that they are distributed across the thickness of the plate according to
the parabolic law.2 Then

1 This equation was obtained by Lagrange in 1811, when he was examining the
memoir presented to the French Academy of Science by Sophie Germain. The
history of the development of this equation is given in I. Todhunter and K. Pearson,
" History of the Theory of Elasticity," vol. 1, pp. 147, 247, 348, and vol. 2, part 1, p.
263. See also the note by Saint Venant to Art. 73 on page 689 of the French transla-
tion of "Theorie de l'elasticite des corps solides," by Clebsch, Paris, 1883.

2 It will be shown in Art. 26 that in certain cases this assumption is in agreement
with the exact theory of bending of plates.



It is seen that the stresses in a plate can be calculated provided the
deflection surface for a given load distribution and for given boundary-
conditions is determined by integration of Eq. (103).

22. Boundary Conditions. We begin the discussion of boundary con-
ditions with the case of a rectangular plate and assume that the x and
y axes are taken parallel to the sides of the plate.

Built-in Edge. If the edge of a plate is built in, the deflection along
this edge is zero, and the tangent plane to the deflected middle surface
along this edge coincides with the initial position of the middle plane of
the plate. Assuming the built-in edge to be given by x — a, the bound-
ary conditions are

(109)

Simply Supported Edge. If the edge x = a of the plate is simply sup-
ported, the deflection w along this edge must be zero. At the same time
this edge can rotate freely with respect to the edge line; i.e., there are no
bending moments Mx along this edge. This
kind of support is represented in Fig. 49. The
analytical expressions for the boundary condi-
tions in this case are

FIG. 49

Observing that d2w/dy2 must vanish together with w along the rectilinear
edge x = a, we find that the second of the conditions (110) can be
rewritten as d2w/dx2 = 0 or also Aw = 0. Equations (110) are there-
fore equivalent to the equations

(111)

which do not involve Poisson's ratio v.
Free Edge. If an edge of a plate, say the edge x = a (Fig. 50), is

entirely free, it is natural to assume that along this edge there are no
bending and twisting moments and also no vertical shearing forces, i.e.,
that

The boundary conditions for a free edge were expressed by Poisson1 in
this form. But later on, KirchhofP proved that three boundary con-
ditions are too many and that two conditions are sufficient for the com-
plete determination of the deflections w satisfying Eq. (103). He showed

1 See the discussion of this subject in Todhunter and Pearson, op. ciL, vol. 1, p. 250,
and in Saint Venant, loc. cit.

2 See / . Crelle, vol. 40, p. 51, 1850.



also that the two requirements of Poisson dealing with the twisting
moment Mxy and with the shearing force Qx must be replaced by one
boundary condition. The physical significance of this reduction in the
number of boundary conditions has been explained by Kelvin and Tait.1

These authors point out that the bending of a plate will not be changed
if the horizontal forces giving the twisting couple Mxy dy acting on an
element of the length dy of the edge x = a are replaced by two vertical
forces of magnitude Mxy and dy apart, as shown in Fig. 50. Such a
replacement does not change the magnitude of twisting moments and
produces only local changes in the stress distribution at the edge of the
plate, leaving the stress condition of the rest of the plate unchanged.

We have already discussed a par-
ticular case of such a transforma-
tion of the boundary force system
in considering pure bending of a
plate to an ahticlastic surface (see
Art. 11). Proceeding with the
foregoing replacement of twisting
couples along the edge of the plate
and considering two adjacent ele-
ments of the edge (Fig. 50), we

find that the distribution of twisting moments Mxy is statically equiva-
lent to a distribution of shearing forces of the intensity

FIG. 50

Hence the joint requirement regarding twisting moment Mxy and shear-
ing force Qx along the free edge x = a becomes

(a)

Substituting for Qx and Mxy their expressions (106) and (102), we finally
obtain for a free edge x = a:

(112)

The condition that bending moments along the free edge are zero requires

(113)

1 See "Treatise of Natural Philosophy," vol. J, part 2, p. 188, 1883. Independ-
ently the same question was explained by Boussinesq, ./. Math., ser. 2, vol. 16, pp.
125-274, 1871: ser. 3, vol. 5, pp. 329-344, Paris, 1879.



Equations (112) and (113) represent the two necessary boundary con-
ditions along the free edge x = a of the plate.

Transforming the twisting couples as explained in the foregoing dis-
cussion and as shown in Fig. 50, we obtain not only shearing forces Q'x dis-
tributed along the edge x — a but
also two concentrated forces at the
ends of that edge, as indicated in
Fig .51. The magnitudes of these
forces are equal to the magnitudes
of the twisting couple1 Mxy at the
corresponding corners of the plate.
Making the analogous transforma-
tion of twisting couples Myx along the edge y = 6, we shall find that in
this case again, in addition to the distributed shearing forces Q'y, there
will be concentrated forces Myz at the corners. This indicates that a
rectangular plate supported in some way along the edges and loaded
laterally will usually produce not only reactions distributed along the
boundary but also concentrated reactions at the corners.

Regarding the directions of these concentrated reactions, a conclusion
can be drawn if the general shape of the deflection surface is known.
Take, for example, a uniformly loaded square plate simply supported
along the edges. The general shape of the deflection surface is indicated
in Fig. 52a by dashed lines representing the section of the middle surface

of the plate by planes parallel to the xz
and yz coordinate planes. Considering
these lines, it may be seen that near the
corner A the derivative dw/dxt repre-
senting the slope of the deflection sur-
face in the x direction, is negative and
decreases numerically with increasing y.
Hence d2w/dx dy is positive at the cor-
ner A. From Eq. (102) we conclude
that Mxy is positive and Myx is negative
at that corner. From this and from
the directions of Mxy and Myx in Fig.

48a it follows that both concentrated forces, indicated at the point x — a>
y = b in Fig. 51, have a downward direction. From symmetry we conclude
also that the forces have the same magnitude and direction at all corners
of the plate. Hence the conditions are as indicated in Fig. 526, in which

1 The couple Mxy is a moment per unit length and has the dimension of a force.

FIG. 51

FIG. 52



It can be seen that, when a square plate is uniformly loaded, the
corners in general have a tendency to rise, and this is prevented by the
concentrated reactions at the corners, as indicated in the figure.

Elastically Supported and Elastt-
cally Built-in Edge. If the edge a; = a
of a rectangular plate is rigidly joined
to a supporting beam (Fig. 53), the
deflection along this edge is not zero
and is equal to the deflection of the
beam. Also, rotation of the edge is
equal to the twisting of the beam.

Let B be the flexural and C the torsional rigidity of the beam. The pres-
sure in the z direction transmitted from the plate to the supporting beam,
from Eq. (a), is

FIG. 53

and the differential equation of the deflection curve of the beam is

(114)

This equation represents one of the two boundary conditions of the plate
along the edge x — a.

To obtain the second condition, the twisting of the beam should be
considered. The angle of rotation1 of any cross section of the beam is
— (dw/dx)x=a, and the rate of change of this an-
gle along the edge is

Hence the twisting moment in the beam is
— C(d2w/dx dy)x=a. This moment varies along
the edge, since the plate, rigidly connected with
the beam, transmits continuously distributed
twisting moments to the beam. The magni-
tude of these applied moments per unit length
is equal and opposite to the bending moments
Mx in the plate. Hence, from a consideration of the rotational equilib-
rium of an element of the beam, we obtain

1 The right-hand-screw rule is used for the sign of the angle.

FIG. 54



or, substituting for Mx its expression (101),

(115)

This is the second boundary condition at the edge x = a of the plate.
In the case of a plate with a curvilinear boundary (Fig. 54), we take

at a point A of the edge the coordinate axes in the direction of the
tangent t and the normal n as shown in the figure. The bending and
twisting moments at that point are

№)
Using for the stress components <rn and rnt the known expressions1

we can represent expressions (b) in the following form:

(c)

The shearing force Qn at point A of the boundary will be found from the
equation of equilibrium of an element of the plate shown in Fig. 546,
from which

(d)

Having expressions (c) and (d), the boundary condition in each particular
case can be written without difficulty.

If the curvilinear edge of the plate is built in, we have for such an edge

(fi)

In the case of a simply supported edge we have

(/)

Substituting for Mn its expression from the first of equations (c) and
using Eqs. (101) and (102), we can represent the boundary conditions (/)
in terms of w and its derivatives.

If the edge of a plate is free, the boundary conditions are

iff)

1 The x and y directions are not the principal directions as in the case of pure bend-
ing; hence the expressions for Mn and Mnt will be different from those given by Eqs.
(39) and (40)



where the term —dMnt/ds is obtained in the manner shown in Fig. 50
and represents the portion of the edge reaction which is due to the dis-
tribution along the edge of the twisting moment Mnt. Substituting
expressions (c) and (d) for Mn, Mn*, and Qn and using Eqs. (101), (102),
(106), and (107), we can represent boundary conditions (g) in the follow-
ing form:

(116)

where, as before,

Another method of derivation of these conditions will be shown in the
next article.

23. Alternative Method of Derivation of the Boundary Conditions. The differential
equation (104) of the deflection surface of a plate and the boundary conditions can be
obtained by using the principle of virtual displacements together with the expression
for the strain energy of a bent plate.1 Since the effect of shearing stress on the deflec-
tions was entirely neglected in the derivation of Eq. (104), the corresponding expres-
sion for the strain energy will contain only terms depending on the action of bending
and twisting moments as in the case of pure bending discussed in Art. 12. Using
Eq. (48) we obtain for the strain energy in an infinitesimal element

(a)

The total strain energy of the plate is then obtained by integration as follows:

(117)

where the integration is extended over the entire surface of the plate.
Applying the principle of virtual displacements, we assume that an infinitely small

variation fav of the deflections w of the plate is produced. Then the corresponding
change in the strain energy of the plate must be equal to the work done by the external
forces during the assumed virtual displacement. In calculating this work we must
consider not only the lateral load q distributed over the surface of the plate but also
the bending moments Mn and transverse forces Qn — (dMnt/ds) distributed along the
boundary of the plate. Hence the general equation, given by the principle.of virtual
displacements, is

1 This is the method by which the boundary conditions were satisfactorily estab-
lished for the first time; see G. Kirchhoff in / . Crelle, vol. 40, 1850, and also his
Vorlesungen iiber Mathematische Physik, Mechanik, p. 450, 1877. Lord Kelvin took
an interest in Kirchhoff's derivations and spoke with Helmholtz about them; see the
biography of Kelvin by Sylvanus Thompson, vol. 1, p. 432.



(*>)

The first integral on the right-hand side of this equation represents the work of the
lateral load during the displacement 8w. The second, extended along the boundary
of the plate, represents the work of the bending moments due to the rotation d{Sw)/dn
of the edge of the plate. The minus sign follows from the directions chosen for Mn and
the normal n indicated in Fig. 54. The third integral represents the work of the
transverse forces applied along the edge of the plate.

In the calculation of the variation dV of the strain energy of the plate we use certain
transformations which will be shown in detail for the first term of expression (117)
The small variation of this term is

In the first two terms after the last equality sign in expression (c) the double integra-
tion can be replaced by simple integrals if we remember that for any function F of x
and y the following formulas hold:

id)

In these expressions the simple integrals are extended along the boundary, and a. is the
angle between the outer normal and the x axis, as shown in Fig. 54. Using the first
of formulas (d), we can represent expression (c) as follows:

(e)

Advancing along the boundary in the direction shown in Fig. 54, we have

With this transformation, expression (e) becomes

Integrating by parts, we have



The first term on the right-hand side of this expression is zero, since we are integrating
along the closed boundary of the plate. Thus we obtain

Substituting this result in Eq. (/), we finally obtain the variation of the first term in the
expression for the strain energy in the following form:

Transforming in a similar manner the variations of the other terms of expression (117),
we obtain

By using these formulas the variation of the potential energy will be represented in the
following form:

Substituting this expression in Eq. (6) and remembering that 8w and d(5w)/dn are
arbitrary small quantities satisfying the boundary conditions, we conclude that Eq. (6)

(118)



will be satisfied only if the following three equations are satisfied:

(k)

(m)

The first of these equations will be satisfied only if in every point of the middle surface
of the plate we have

DAAw - q = 0

i.e., the differential equation (104) of the deflection surface of the plate. Equations
(Z) and (m) give the boundary conditions.

If the plate is built in along the edge, 8w and d(8w)/dn are zero along the edge; and
Eqs. (Z) and (m) are satisfied. In the case of a simply supported edge, 8w = 0 and
Mn = 0. Hence Eq. (ra) is satisfied, and Eq. (Z) will be satisfied if

In the particular case of a rectilinear edge parallel to the y axis, a = 0; and we obtain
from Eq. (n)

as it should be for a simply supported edge.
If the edge of a plate is entirely free, the quantity 8w and d(8w)/dn in Eqs. (I) and

(m) are arbitrary; furthermore, Mn = 0 and Qn — (dMnt/ds) = 0. Hence, from
Eqs. (Z) and (m), for a free edge we have

These conditions are in agreement with Eqs. (116) which were obtained previously
(see page 88). In the particular case of a free rectilinear edge parallel to the y axis,
a = 0, and we obtain

These equations coincide with Eqs. (112) and (113) obtained previously.



In the case when given moments Mn and transverse forces Qn — (dMnt/ds) are dis-
tributed along the edge of a plate, the corresponding boundary conditions again can
be easily obtained by using Eqs. (I) and (m).

24. Reduction of the Problem of Bending of a Plate to That of Deflec-
tion of a Membrane. There are cases in which it is advantageous to
replace the differential equation (103) of the fourth order developed for
a plate by two equations of the second order which represent the deflec-
tions of a membrane.1 For this purpose we use form (104) of this
equation:

and observe that by adding together the two expressions (101) for bend-
ing moments (see page 81) we have

Introducing a new notation

(119)

the two Eqs. (a) and (b) can be represented in the following form:

(120)

Both these equations are of the same kind as that obtained for a uni-
formly stretched and laterally loaded membrane.2

The solution of these equations is very much simplified in the case of
a simply supported plate of polygonal shape, in which case along each
rectilinear portion of the boundary we have d2w/ds2 = 0 since w = 0 at
the boundary. Observing that Mn — 0 at a simply supported edge, we
conclude also that d2w/dn2 = 0 at the boundary. Hence we have [see
Eq. (34)]

at the boundary in accordance with the second of the equations (111).
It is seen that the solution of the plate problem reduces in this case to
the integration of the two equations (120) in succession. We begin with

1 This method of investigating the bending of plates was introduced by H. Marcus
in his book "Die Theorie elastischer Gewebe," 2d ed., p. 12, Berlin, 1932.

2 See S. Timoshenko and J. N. Goodier, ''Theory of Elasticity," 2d ed., p. 269, 1951,



the first of these equations and find a solution satisfying the condition
M = 0 at the boundary.1 Substituting this solution in the second equa-
tion and integrating it, we find the deflections w. Both problems are of
the same kind as the problem of the deflection of a uniformly stretched
and laterally loaded membrane having zero deflection at the boundary.
This latter problem is much simpler than the plate problem, and it can
always be solved with sufficient accuracy by using an approximate
method of integration such as Ritz's or the method of finite differences.
Some examples of the application of these latter methods will be dis-
cussed later (see Arts. 80 and 83). Several applications of Ritz's method
are given in discussing torsional problems.2

A simply supported plate of polygonal shape, bent by moments Mn

uniformly distributed along the boundary, is another simple case of the
application of Eqs. (120). Equations (120) in such a case become

(121)

Along a rectilinear edge we have again d2w/ds2 = 0. Hence

and we have at the boundary

This boundary condition and the first of the equations (121) will be
satisfied if we take for the quantity M the constant value M = Mn

at all points of the plate, which means that the sum of the bending
moments Mx and My remains constant over the entire surface of the
plate. The deflections of the plate will then be found from the second
of the equations (121),3 which becomes

It may be concluded from this that, in the case of bending of a simply
supported polygonal plate by moments Mn uniformly distributed along
the boundary, the deflection surface of the plate is the same as that of

1 Note that if the plate is not of a polygonal shape, M generally does not vanish at
the boundary when Mn = 0.

2 See Timoshenko and Goodier, op. cit., p. 280.
3 This was shown first by S. Woinowsky-Krieger, Ingr.-Arch., vol. 4, p. 254, 1933.



a uniformly stretched membrane with a uniformly distributed load.
There are many cases for which the solutions of the membrane problem
are known. These can be immediately applied in discussing the corre-

sponding plate problems.
Take, for example, a simply sup-

ported equilateral triangular plate
(Fig. 55) bent by moments Mn

uniformly distributed along the
boundary. The deflection surface
of the plate is the same as that of
a uniformly stretched and uni-
formly loaded membrane. The
latter can be easily obtained ex-
perimentally by stretching a soap
film on the triangular boundary
and loading it uniformly by air
pressure.1

The analytical expression of the deflection surface is also comparatively
simple in this case. We take the product of the left-hand sides of the
equations of the three sides of the triangle:

FIG. 55

This expression evidently becomes zero at the boundary. Hence the
boundary condition w = 0 for the membrane is satisfied if we take for
deflections the expression

where N is a constant factor the magnitude of which we choose in such a
manner as to satisfy Eq. (d). In this way we obtain the required solution:

Substituting x = y = 0 in this expression, we obtain the deflection at the
centroid of the triangle

1SuCh experiments are used in solving torsional problems, see Timoshenko and
Goodier, op. cit., p. 289.



The expressions for the bending and twisting moments, from Eqs. (101)
and (102), are

(h)

Shearing forces, from Eqs. (106) and (107), are

Along the boundary, from Eq. (d) of Art. 22, the shearing force Qn = 0,
and the bending moment is equal to Mn. The twisting moment along
the side BC (Fig. 55) from Eqs. (c) of Art. 22 is

The vertical reactions acting on the plate along the side BC (Fig. 55) are

From symmetry we conclude that the same uniformly distributed reac-
tions also act along the two other sides of the plate. These forces are
balanced by the concentrated reactions at the corners of the triangular
plate, the magnitude of which can be found as explained on page 85 and
is equal to

The distribution of the reactive forces along the boundary is shown in
Fig. 556. The maximum bending stresses are at the corners and act on
the planes bisecting the angles. The magnitude of the corresponding
bending moment, from Eqs. (h), is

This method of determining the bending of simply supported polygonal
plates by moments uniformly distributed along the boundary can be
applied to the calculation of the thermal stresses produced in such plates
by nonuniform heating. In discussing thermal stresses in clamped plates,
it was shown in Art. 14 [Eq. (6)] that nonuniform heating produces uni-
formly distributed bending moments along the boundary of the plate
which prevent any bending of the plate. The magnitude of these



moments is1

To obtain thermal stresses in the case of a simply supported plate we
need only to superpose on the stresses produced in pure bending by the
moments (Z) the stresses that are produced in a plate with simply sup-
ported edges by the bending moments —atD(I + v)/h uniformly dis-
tributed along the boundary. The solution of the latter problem, as was
already explained, can be obtained without much difficulty in the case of
a plate of polygonal shape.2

FIG. 56

Take again, as an example, the equilateral triangular plate. If the
edges of the plate are clamped, the bending moments due to nonuniform
heating are

To find the bending moments Mx and My for a simply supported plate
we must superpose on the moments (m) the moments that will be obtained
from Eqs. Qi) by letting Mn = — atD(l + v)/h. In this way we finally
obtain

1 It is assumed that the upper surface of the plate is kept at a higher temperature
than the lower one and that the plate thus has the tendency to bend convexly upward.

2 See dissertation by J. L. Maulbetsch, / . Appl. Mechanics, vol. 2, p. 141, 1935.



The reactive forces can now be obtained from Eqs. (i) and (j) by substi-
tution of Mn = — CdD(I + v)/h. Hence we find

The results obtained for moments and reactive forces due to nonuniform
heating are represented in Fig. 56a and b, respectively.

25. Effect of Elastic Constants on the Magnitude of Bending Moments. It is seen
from Eqs. (101) and (102) that the magnitude of the bending and twisting moments
in a plate is considerably affected by the numerical value of Poisson's ratio v. On the
other hand, it can be easily shown that in the case of a transverse load the magnitude
of the quantity Dw is independent of both constants E and v if the plate is either
simply supported at rectilinear edges or clamped along some edges, whether rectilinear
or not.

Assuming such boundary conditions in any combination, let us consider the follow-
ing problem. Some values of the bending moments Mx and My being given numeri-
cally for an assumed numerical value of v, these moments must be computed for a new
value, say v', of the same elastic constant. Let Mx and My be the new values of the
bending moments. Writing Eqs. (101) first for v, then for v', eliminating from them
the curvatures dhu/dx2 and dhu/dy2, and solving the resulting equations for M'x and
Myy we obtain

Thus Mx and My can be readily calculated if Mx and Mv are known.
If the constant v is implied in some of the given boundary conditions, as in the case

of a free edge [Eq. (112)], Eqs. (122) do not hold any more.
If the plate is elastically supported or elastically clamped, the moments also depend

on the flexural rigidity D of the plate with respect to the stiffness of its restraint.
The thermal stresses, finally, are affected not only by all the above-mentioned

factors, but also by the absolute value of the rigidity D of the plate.
Average values of v for some materials are given in Table 5. The last value of the

table varies widely, depending on the age of the concrete, on the type of aggregate,
and on other factors.1

TABLE 5. AVERAGE VALUES OF POISSON'S RATIO V

Material v

Steel... 0.30
Aluminum 0.30
Glass 0.25
Concrete 0.15-0.25

1ThC German Code (DIN 4227) gives values of v which approximately can be
expressed by v = V/c/350, fc being the compressive strength of concrete at 28 days
in pounds per square inch. See also J. C. Simmons, Mag. of Concrete Research, vol.
8, p. 39, 1956.



26. Exact Theory of Plates. The differential equation (103), which, together with
the boundary conditions, defines the deflections of plates, was derived (see Art. 21) by
neglecting the effect on bending of normal stresses ot and shearing stresses rxz and ryz.
This means that in the derivation each thin layer of the plate parallel to the middle
plane was considered to be in a state of plane stress in which only the stress components
Vx, 0y, and Txy may be different from zero. One of the simplest cases of this kind is that
of pure bending. The deflection surface in this case is a second-degree function in x
and y [see Eq. (c), Art. 11] that satisfies Eq. (103). The stress components <xx, <*y,
and Txy are proportional to z and independent of x and y.

There are other cases of bending in which a plane stress distribution takes place and
Eq. (103) holds rigorously. Take, for example, a circular plate with a central circular
hole bent by moments Mr uniformly distributed along the boundary of the hole (Fig.
57). Each thin layer of the plate cut out by two adjacent planes parallel to the middle
plane is in the same stress condition as a thick-walled cylinder subjected to a uniform
internal pressure or tension (Fig. 576). The sum <rr -f- at of the two principal stresses
is constant in such a case,x and it can be concluded that the deformation of the layer in
the z direction is also constant and does not interfere with the deformation of adjacent
layers. Hence we have again a planar stress distribution, and Eq. (103) holds.

Let us discuss now the general question regarding the shape of the deflection surface
of a plate when bending results in a planar stress distribution. To answer this ques-
tion it is necessary to consider the three differential equations of equilibrium together
with the six compatibility conditions. If body forces are neglected, these equations
are2

(a)

(b)

(c)

in which

and

1 See Timoshenko and Goodier, op. cit., p. 60.
2 See ibid., pp. 229, 232.



Adding Eqs. (6), we find that

i.e., the sum of the three normal stress components represents a harmonic function.
In the case of a planar stress TXZ = TVZ — <rz = 0, and it can be concluded from the last
two of the equations (c) and the last of the equations (b) that dO/dz must be a constant,
say /8. Hence the general expression for B in the case of planar stress is

6 - 0o + Pz (e)

where 0o is a plane harmonic function, i.e.,

We see that in the case of planar stress the function 0 consists of two parts: 0(
independent of z and fiz proportional to z. The first part does not vary through the
thickness of the plate. It depends on deformation of the plate in its own plane and
can be omitted if we are interested only in bending of plates. Thus we can take in our
further discussion

0 = pz (/)

Equations of equilibrium (a) will be satisfied in the case of a planar stress distribution
if we take

where <p is the stress function. Let us consider now the general form of this function.
Substituting expressions (g) in Eq. (/), we obtain

Furthermore, from the first of the equations (b) we conclude that

which, by using Eq. (h), can be put in the following form:

Tn the same manner, from the second and the third of the equations (b), we find

From Eqs. (i) and (j) it follows that d2v/dz2 is a linear function of x and y. This func-
tion may be taken to be zero without affecting the magnitudes of the stress components
given by expressions (g). In such a case the general expression of the stress function is



where <po is a plane harmonic function and <px satisfies the equation

Since we are not interested in the deformations of plates in their plane, we can omit
<Po in our further discussion and take as a general expression for the stress function

<p = <piz (I)

Substituting this in Eqs. (g), the stress components can now be calculated, and the
displacements can be found from the equations

For the displacements w perpendicular to the plate we obtain in this way1

and the deflection of the middle surface of the plate is

The corresponding stress components, from Eqs. [g) and (I), are

and the bending and twisting moments are

For the curvatures and the twist of a plate, we find, from Eq. (n)

from which, by using Eqs. (k) and (o), we obtain

1 Several examples of calculating u, v, and w from Eqs. (m) are given in ibid.



From this analysis it may be concluded that, in the case of bending of plates resulting
in a planar stress distribution, the deflections w [see Eq. (n)] rigorously satisfy Eq.
(103) and also Eqs. (101) and (102) representing bending and twisting moments. If a
solution of Eq. (k) is taken in the form of a function of the second degree in x and y, the
deflection surface (n) is also of the second degree which represents the deflection for

FIG. 57

pure bending. Generally we can conclude, from Eq. (k), that the deflection of the
plate in the case of a planar stress distribution is the same as that of a uniformly
stretched and uniformly loaded membrane. The plate shown in Fig. 57 represents a
particular case of such bending, viz., the case for which the solution of Eq. (k), given
in polar coordinates, is

pi = Ar2 + B log r + C

where A, B, and C are constants that must be chosen so as to satisfy the boundary
conditions.

Plates of a polygonal shape simply supported and bent by moments uniformly
distributed along the boundary (see Art. 24) represent another example of bending in

FIG. 58

which the deflection surface has a form satisfying Eq. (n), and Eqs. (101), (102), and
(103) hold rigorously. In all these cases, as we may see from Eqs. (k) and (o), we have

i.e., the sum of the bending moments in two perpendicular directions remains constant
over the entire plate.



Let us consider now the case in which bending of a plate results in a generalized
planar stress distribution, i.e., one in which the normal stress component <r2 is zero at
all points of the plate and the shearing stress components rxz and ryz are zero on the
surfaces z = ±h/2 of the plate. The deflection of a rectangular plate clamped along
one edge and uniformly loaded along the opposite edge (Fig. 58) represents an example
of such bending. From the theory of bending of rectangular beams we know that
in this case az = 0 at all points of the plate and rxz is zero on the surfaces of the plate
and varies along the depth of the plate according to the parabolic law

Using again the general equations (a), (6), and (c) and proceeding as in the preceding
case of a planar stress distribution, we find1 that the general expression for the deflec-
tion surface in this case has the form

in which <p is a planar harmonic function of x and y, and (pi satisfies the equation

It can be concluded that in this case again the differential equation (103) holds with
q = 0 .

The equations for the bending and twisting moments and for the shearing forces in
this case are

(123)

Hence the expressions for the shearing forces coincide with expressions (108) given by
the approximate theory, but the expressions for moments are different, the second
terms of those expressions representing the effect of the shearing forces.

These correction terms can be obtained in an elementary way by using the same
reasoning as in the case of bending of beams. Considering the curvature in the xz
plane, we can state that the total curvature is produced by two factors, the bending
moments Mx, My and the shearing force Qx. The curvature produced by the bending

1 The rigorous solution for this case was given by Saint Venant; see his translation
of Clebsch's "The"orie de i'elasticite des corps solides," p. 337. A general discussion
of the rigorous theory of bending of plates was given by J. H. Michell, Proc. London
Math. Soc, vol. 31, p. 100, 1900. See also A. E. H. Love, "The Mathematical Theory
of Elasticity," p. 473.. 1927. The results given in our further discussion are taken
from the latter book.



moments is obtained by subtracting from the total curvature — dhv/dx2 the portion
—B(UQx/W)/dx produced by the shearing force.1 Substituting

and -(dHo/dy*) + d(kQy/hG)/dy for -dhv/dx2 and -dhv/dy2 in Eqs. (101) and
using the last two equations of the system (123), we find for the bending moments the
expressions

These equations coincide with the first two equations of the system (123) if we take

For v = 0.3 this gives k = 1.245.
From the theory of bending of beams we know that the correction due to the action

of the shearing force is small and can be neglected if the depth h is small in comparison
with the span of the beam. The same conclusion also holds in the case of plates.

The exact expressions for stress components are

The second terms on the right-hand sides of the equations for ax, <ry, and rxv are the
corrections due to the effect of shearing forces on bending. It is seen that the stresses
(Tx, (Ty, and Txy are no longer proportional to the distance z from the middle plane but
contain a term proportional to z3. Shearing stresses TXZ and ryz vary according to the
same parabolic law as for rectangular beams. In the case of a plane stress distribu-
tion, Aw is a constant, and formulas (r) coincide with those given by the approximate
theory.

The problem of a uniformly loaded plate can also be treated rigorously in the same
way. Thus it can be shown that the general expression for deflections in this case is
obtained by adding to expression (q) the term

1 A; is a numerical factor that in the case of beams depends on the shape of the cross
section.



which again satisfies Eq. (103) of the approximate theory. The equations for bending
moments do not coincide with Eqs. (101) of the approximate theory but contain some
additional correction terms. If the thickness of the plate is small in comparison with
the other dimensions, these terms are small and can be neglected.

In all previous cases general solutions of plate bending problems were discussed
without considering the boundary conditions. There are also rigorous solutions of
several problems in which boundary conditions are considered.1 These solutions
indicate that, provided the plate can be considered "thin," the customary theory is
accurate enough for practical purposes except (1) in the vicinity of a highly con-
centrated transverse load and (2) in narrow edge zones, especially near the corners of
plates and around holes with a diameter of the order of magnitude of the plate thick-
ness itself.

In the first of these two cases the stress components o-z and the transverse shearing
stresses must be considered equally important in their effect on the deformation of the
plate. In obtaining the necessary correction to the stresses given by the approximate
theory (see page 70) the boundary conditions can be eliminated from consideration.
In such circumstances the thick-plate theory proves most convenient for the solution
of the problem.

In the second case the effect of the stress components <rz on the deformation becomes
secondary as compared with the effect of the transverse shearing stresses rxe and ryt.
Primarily taking into account this latter effect, several modified thin-plate theories
have been developed recently (see Art. 39). These theories are better suited for the
analysis of the stress distribution in the edge zone of the plates than the more rigorous
thick-plate theory.

1 In recent times the rigorous theory of plates has attracted the interest of engineers,
and several important papers in this field have been published. We shall mention
here the following: S. Woinowsky-Krieger, Ingr.-Arch., vol. 4, pp. 203 and 305, 1933.
B. Galerkin, Compt. rend., vol. 190, p. 1047; vol. 193, p. 568; vol. 194, p. 1440. G. D.
Birkhoff, Phil. Mag., vol. 43, p. 953, 1922. C. A. Garabedian, Trans. Am. Math. Soc,
vol. 25, p. 343, 1923; Compt. rend., vols. 178 (1924), 180 (1925), 186 (1928), 195 (1932).
R. Archie Higdon and D. L. HoIl, Duke Math. J., vol. 3, p. 18, 1937. A. C. Stevenson,
Phil. Mag., ser. 7, vol. 33, p. 639, 1942; R. Ohlig, Ingr.-Arch., vol. 13, p. 155, 1942;
I. N. Sneddon, Proc. Cambridge Phil. Soc, vol. 42, p. 260, 1946; L. Leibenson, " Works,"
vol. I1 p. Il l , Moscow, 1951; H. Jung, Z. angew. Math. Mech., vol. 32, p. 57, 1952;
E. Koppe, Z. angew. Math. Mech., vol. 37, p. 38, 1957. For thermal stresses see K.
Marguerre, Z. angew. Math. Mech., vol. 15, p. 369, 1935; and I. S. Sokolnikoff and
E. S. Sokolnikoff, Trans. Am. Math. Soc, vol. 45, p. 235, 1939.



CHAPTER 5

SIMPLY SUPPORTED RECTANGULAR PLATES

27. Simply Supported Rectangular Plates under Sinusoidal Load.
Taking the coordinate axes as shown in Fig. 59, we assume that the load
distributed over the surface of the plate is given by the expression

in which q0 represents the intensity of the load at the center of the plate.
The differential equation (103) for the deflection
surface in this case becomes

The boundary conditions for simply supported
edges are

FIG. 59

Using expression (101) for bending moments and observing that, since
W = 0 at the edges, d2w/dx2 = 0 and d2w/dy2 = 0 for the edges parallel
to the x and y axes, respectively, we can represent the boundary condi-
tions in the following form:

It may be seen that all boundary conditions are satisfied if we take for
deflections the expression

in which the constant C must be chosen so as to satisfy Eq. (b). Substi-
tuting expression (d) into Eq. (6), we find



and we conclude that the deflection surface satisfying Eq. (b) and bound-
ary conditions (c) is

Having this expression and using Eqs. (101J and (102), we find

It is seen that the maximum deflection and the maximum bending
moments are at the center of the plate. Substituting x = a/2, y = 6/2
in Eqs. (e) and (/), we obtain

(124)

(125)

In the particular case of a square plate, a = 6, and the foregoing
formulas become

(126)

We use Eqs. (106) and (107) to calculate the shearing forces and obtain



To find the reactive forces at the supported edges of the plate we pro-
ceed as was explained in Art. 22. For the edge x = a we find

In the same manner, for the edge y = b,

Hence the pressure distribution follows a sinusoidal law. The minus sign
indicates that the reactions on the plate act upward. From symmetry
it may be concluded that formulas (h) and (i) also represent pressure dis-
tributions along the sides x = 0 and y — 0, respectively. The resultant
of distributed pressures is

Observing that

it can be concluded that the sum of the distributed reactions is larger
than the total load on the plate given by expression (Jc). This result can
be easily explained if we note that, proceeding as described in Art. 22,
we obtain not only the distributed reactions
but also reactions concentrated at the cor-
ners of the plate. These concentrated re-
actions are equal, from symmetry; and their
magnitude, as may be seen from Fig. 51, is

FIG. 60

The positive sign indicates that the reactions act downward. Their sum
is exactly equal to the second term in expression (j). The distributed
and the concentrated reactions which act on the plate and keep the load,
denned by Eq. (a), in equilibrium are shown graphically in Fig. 60. It
may be seen that the corners of the plate have a tendency to rise up



under the i ction of the applied load and that the concentrated forces R
must be applied to prevent this.

The maximum bending stress is at the center of the plate. Assuming
that a > b, we find that at the center My > Mx. Hence the maximum
bending stress is

The maximum shearing stress will be at the middle of the longer sides of

the plate. Observing that the total transverse force Vy = Qv -^-

is distributed along the thickness of the plate according to the parabolic
law and using Eq. (i), we obtain

If the sinusoidal load distribution is given by the equation

where m and n are integer numbers, we can proceed as before, and we
shall obtain for the deflection surface the following expression:

(127)

from which the expressions for bending and twisting moments can be
readily obtained by differentiation.

28. Navier Solution for Simply Supported Rectangular Plates. The
solution of the preceding article can be used in calculating deflections
produced in a simply supported rectangular plate by any kind of loading
given by the equation

Q = f(x>v) (a)

For this purpose we represent the function f(x,y) in the form of a double
trigonometric series:1

(128)

1 The first solution of the problem of bending of simply supported rectangular plates
and the use for this purpose of double trigonometric series are due to Navier, who



To calculate any particular coefficient amv of this series we multiply both
sides of Eq. (128) by sin (n'lry/b) dy and integrate from 0 to b. Observing
that

we find in this way

Multiplying both sides of Eq. (6) by sin (m'irx/a) dx and integrating from
0 to a, we obtain

from which

(129)

Performing the integration indicated in expression (129) for a given load
distribution, i.e., for a given f(x,y), we find the coefficients of series (128)
and represent in this way the given load as a sum of partial sinusoidal
loadings. The deflection produced by each partial loading was discussed
in the preceding article, and the total deflection will be obtained by sum-
mation of such terms as are given by Eq. (127). Hence we find

(130)

Take the case of a load uniformly distributed over the entire surface
of the plate as an example of the application of the general solution (130).
In such a case

where go is the intensity of the uniformly distributed load. From formula
(129) w^obtain

presented a paper on this subject to the French Academy in 1820. The abstract of the
paper was published in Bull. soc. phil.-math., Paris, 1823. The manuscript is in the
library of l'Ecole des Ponts et Chauss6es.



where m and n are odd integers. If m or n or both of them are even
numbers, amn — 0. Substituting in Eq. (130), we find

(131)

where m = 1, 3, 5, . . . and n = 1, 3, 5, . . . .
In the case of a uniform load we have a deflection surface symmetrical

with respect to the axes x = a/2, y = 6/2; and quite naturally all terms
with even numbers for m or n in series (131) vanish, since they are
unsymmetrical with respect to the above-mentioned axes. The maxi-
mum deflection of the plate is at its center and is found by substituting
x = a/2, y = b/2 in formula (131), giving

(132)

This is a rapidly converging series, and a satisfactory approximation is
obtained by taking only the first term of the series, which, for example,
in the case of a square plate gives

or, by substituting expression (3) for D and assuming v = 0.3,

This result is about 2£ per cent in error (see Table 8).
From expression (132) it may be seen that the deflections of two plates

that have the same thickness and the same value of the ratio a/b increase
as the fourth power of the length of the sides.

The expressions for bending and twisting moments can be obtained
from the general solution (131) by using Eqs. (101) and (102). The
series obtained in this way are not so rapidly convergent as series (131),
and in the further discussion (see Art. 30) another form of solution will be
given, more suitable for numerical calculations. Since the moments are
expressed by the second derivatives of series (131), their maximum values,
if we keep q0 and D the same, are proportional to the square of linear
dimensions. Since the total load on the plate, equal to qoab, is also pro-
portional to the square of the linear dimensions, we conclude that, for
two plates of equal thickness and of the same value of the ratio a/b, the



maximum bending moments and hence the maximum stresses are equal
if the total loads on the two plates are equal.1

29. Further Applications of the Navier Solution. From the discussion
in the preceding article it is seen that the deflection of a simply supported
rectangular plate (Fig. 59) can always be represented in the form of a
double trigonometric series (130), the coefficients amn being given by
Eq. (129).

Let us apply this result in the case of a single load P uniformly dis-
tributed over the area of the rectangle shown in Fig. 61. By virtue of
Eq. (129) we have

If, in particular, £ = a/2, tj = 6/2, u = a, and
v — 6, Eq. (a) yields the expression (c) obtained
in Art. 28 for the uniformly loaded plate.

Another case of practical interest is a single
load concentrated at any given point x = £, y = rj
of the plate. Using Eq. (a) and letting u and v
tend to zero we arrive at the expression

FIG. 61

(133)

The series converges rapidly, and we can obtain the deflection at any
point of the plate with sufficient accuracy by taking only the first few
terms of the series. Let us, for example, calculate the deflection at the
middle when the load is applied at the middle as well. Then we have
£ = x = a/2, 77 = y = 6/2, and the series (133) yields

1 This conclusion was established by Mariotte in the paper "Traite du mouvement
des eaux," published in 1686. See Mariotte's scientific papers, new ed., vol. 2, p. 467,
1740.

and, by Eq. (130), at the deflection



where m = 1, 3, 5, . . . and n = 1, 3, 5, . . . . In the case of a square
plate, expression (c) becomes

Taking the first four terms of the series we find that

which is about 3 J per cent less than the correct value (see Table 23,
page 143).

As for the series (128) representing the intensity of the concentrated
load it is divergent at x = £, y = rj, and so also are the series expressing
the bending moments and shearing forces at the point of application of
the load.

Let us consider now the expression

which, by virtue of Eq. (132), represents the deflection due to a unit load
P = I and for which the notation K(x,y,^,rj) is introduced for brevity.

Regarding x and y as the variables, w = K(x,y,%,7)) is the equation of
the elastic surface of the plate submitted to a unit load at a fixed point
x — £> V = V' Now considering £ and rj as variable, Eq. (134) defines
the influence surface for the deflection of the plate at a fixed point #, y}

the position of the traveling unit load being given by £ and rj. If, there-
fore, some load of intensity /(£,17) distributed over an area A is given, the
corresponding deflection at any point of the plate may easily be obtained.
In fact, applying an elementary load /(£,??) d% dt] at x = £, y = t\ and
using the principle of superposition, we arrive at the deflection

(134)

(135)

the double integral being extended over the loaded area and K(x,y,£,ri)
being given by Eq. (134).

The function K(x,y,%,7)) is sometimes called Green's function of the plate. When
given as by Eq. (134), this function is associated with the boundary conditions of the
simply supported rectangular plate. Many properties of Green's function, however,
are independent of those restrictions. An example is the property of symmetry,



expressed by the relation
K(x,y,lv) = K(Z,v,x,y)

which follows from the well-known reciprocal theorem of Maxwell1 and is easy to
verify in the particular case of the function (134).

As the last example in the application of Navier's solution let us consider the case of
as ingle load P uniformly distributed over the area of a circle with radius c and with
center at x = £, y = rj. Introducing polar coordinates p, 0 with the origin at the
center of the loaded area and replacing the elementary area dx dy in Eq. (129) by the
area p dp dd, we have, by this latter equation,

Provided that the circle p — c remains entirely inside the boundary of the plate the
evaluation of the integral (d) gives the expression2

in which ymn = ir \/(m/a)2 + (n/6)2 and J\(ymnc) is the Bessel function of order one,
with the argument ymnc. The required deflection now is obtainable by substitution
of the expression (e) into Eq. (130).

It is seen that the form of the Navier solution remains simple even in
relatively complex cases of load distribution. On the other hand, the
double series of this solution are not convenient for numerical computa-
tion especially if higher derivatives of the function w are involved. So,
another form of solution for the bending of the rectangular plate, more
suitable for this purpose, will be discussed below.

30. Alternate Solution for Simply Supported and Uniformly Loaded
Rectangular Plates. In discussing problems of bending of rectangular
plates that have two opposite edges simply supported, M. Le*vy3 sug-
gested taking the solution in the form of a series

(136)

where Ym is a function of y only. It is assumed that the sides x — 0 and
x = a (Fig. 62) are^simply supported. Hence each term of series (136)
satisfies the boundary conditions w = 0 and d2w/dx2 = 0 on these two
sides. It remains to determine Ym in such a form as to satisfy the bound-

1 See, for instance, S. Timoshenko and D. H. Young, "Theory of Structures," p.
250, 1945.

2 See S. Woinowsky-Krieger, Ingr.-Arch., vol. 3, p. 240, 1932.
3 See Compt. rend., vol. 129, pp. 535-539, 1899. The solution was applied to several

particular cases of bending of rectangular plates by E. Estanave, "Theses," Paris,
1900; in this paper the transformation of the double series of the Navier solution to the
simple series of M. LeVy is shown.



ary conditions on the sides y = ± 6/2 and also the equation of the deflec-
tion surface

(«)

In applying this method to uniformly loaded and simply supported
rectangular plates, a further«simplification can be
made by taking the solution of Eq. (a) in the form1

w = Wi + W2 (b)

and letting

Wi = d b ( * 4 ~2ax% + a*x) (c)

i.e., Wi represents the deflection of a uniformly
loaded strip parallel to the x axis. It satisfies Eq.
(a) and also the boundary conditions at the edges
x = 0 and x = a.

The expression W2 evidently has to satisfy the equation

FIG. 62

(137)

and must be chosen in such a manner as to make the sum (b) satisfy all
boundary conditions of the plate. Taking W2 in the form of the series
(136) in which, from symmetry, m — 1, 3, 5, . . . and substituting it
into Eq. (137), we obtain

This equation can be satisfied for all values of x only if the function Ym

satisfies the equation

The general integral of this equation can be taken in the form2

(138)

1 This form of solution was used by A. N&dai, Forschungsarb., nos. 170 and 171,
Berlin, 1915; see also his book "Elastische Platten," Berlin, 1925.

2 A somewhat different form for Fm, more convenient to satisfy some particular
boundary conditions, has been suggested by P. F. Papkovitch, Priklad. Mat. Mekh.,
vol. 5, 1941.



Observing that the deflection surface of the plate is symmetrical with
respect to the x axis (Fig. 62), we keep in the expression (138) only even
functions of y and let the integration constants Cm = Dm = 0.

The deflection surface (b) is then represented by the following
expression:

which satisfies Eq. (a) and also the boundary conditions at the sides
x = 0 and x = a. It remains now to adjust the constants of integration
Am and Bm in such a manner as to satisfy the boundary conditions

on the sides y = ±6/2. We begin by developing expression (c) in a
trigonometric series, which gives1

where w = 1, 3, 5, . . . . The deflection surface (e) will now be repre-
sented in the form

where m = 1, 3, 5, . . . . Substituting this expression in the boundary
conditions (/) and using the notation

we obtain the following equations for determining the constants Am and
Bm:

from which

1 See S. Timoshenko, "Strength of Materials," 3d ed., part II, p. 50, 1956.



Substituting these values of the constants in Eq. (#), we obtain the
deflection surface of the plate, satisfying Eq. (a) and the boundary con-
ditions, in the following form:

(139)

from which the deflection at any point can be calculated by using tables
of hyperbolic functions.1 The maximum deflection is obtained at the
middle of the plate (x = a/2, y = 0), where

Disregarding the second term in the parentheses, this series represents the
deflection of the middle of a uniformly loaded strip. Hence we can
represent expression (J) in the following form:

(140)

The series in this expression converges very rapidly,2 and sufficient accu-
racy is obtained by taking only the first term. Taking a square plate as
an example, we know from Eq. (h) that

and Eq. (140) gives

it is seen that the second term of the series in parentheses is negligible

1 See, for example, "Tables of Circular and Hyperbolic Sines and Cosines," 1939,
and "Table of Circular and Hyperbolic Tangents and Cotangents," 1943, Columbia
University Press, New York; also British Association for the Advancement of Science,
;' Mathematical Tables," 3d ed., vol. 1, Cambridge University Press, 1951; finally,
F. Losch, "Siebenstellige Tafeln der elementaren transzendenten Funktionen,"
Berlin, 1954.

8 We assume that b g£ a, as in Fig. 62.



and that by taking only the first term the formula for deflection is
obtained correct to three significant figures.

Making use of the formula (140), we can represent the maximum
deflection of a plate in the form

(141)

where a is a numerical factor depending on the ratio b/a of the sides of
the plate. Values of a are given in Table 8 (page 120).

The bending moments Mx and My are calculated by means of expres-
sion (e). Substituting the algebraic portion of this expression in Eqs.
(101), we find that

The substitution of the series of expression (e) in the same equations gives

The total bending moments are obtained by summation of expressions
(k) and (Z). Along the x axis the expression for the bending moments
becomes

Both series converge rapidly and the moments can readily be computed
and represented in the form

The numerical values of the factors &' and p[ are given in Table 6.



The bending moments acting along the middle line x = a/2 can be
computed in a similar manner and represented in the form

Values of ft" and 0" are given in Table 7.
The maximum values of these moments,

are at the center of the plate (x = a/2, y = 0), and the corresponding
factors |8 and /3i are found in Table 8. The distribution of the moments
in the particular case of a square plate is shown in Fig. 63.

TABLE 6. NUMERICAL FACTORS /3' AND p[ FOR BENDING MOMENTS OF SIMPLY

SUPPORTED RECTANGULAR PLATES UNDER UNIFORM PRESSURE q

v = 0.3, b > a

Mx = p'qa2, y = 0 My = fi[qa*, y = 0

b/a
X= X= X= X= X= X= X= X= X= X =

0.1a 0.2a 0.3a 0.4a 0.5a 0.1a 0.2a 0.3a 0.4a 0.5a

1.0 0.0209 0.0343 0.0424 0.0466 0.0479 0.0168 0.0303 0.0400 0.0459 0.0479
1.1 0.0234 0.0389 0.0486 0.05410.0554 0.0172 0.03110.0412 0.0475 0.0493
1.2 0.0256 0.0432 0.0545 0.0607 0.0627 0.0174 0.0315 0.0417 0.0480 0.0501
1.3 0.0277 0.0472 0.0599 0.06710.0694 0.0175 0.0316 0.0419 0.0482 0.0503
1.4 0.0297 0.0509 0.0649 0.0730 0.0755 0.0175 0.0315 0.0418 0.04810.0502

1.5 0.0314 0.0544 0.0695 0.0783 0.0812 0.0173 0.0312 0.0415 0.0478 0.0498
1.6 0.0330 0.0572 0.0736 0.08310.0862 0.01710.0309 0.04110.0472 0.0492
1.7 0.0344 0.0599 0.0773 0.0874 0.0908 0.0169 0.0306 0.0405 0.0466 0.0486
1.8 0.0357 0.0623 0.0806 0.0913 0.0948 0.0167 0.03010.0399 0.0459 0.0479
1.9 0.0368 0.0644 0.0835 0.0948 0.0985 0.0165 0.0297 0.0393 0.04510.0471

2.0 0.03780.0663 0.0861 0.0978 0.1017 0.0162 0.0292 Q.0387 0.0444 0.0464
2.5 0.0413 0.0729 0.0952 0.1085 0.1129 0.0152 0.0272 0.0359 0.0412 0.043O
3.0 0.04310.0763 0.1000 0.1142 0.1189 0.0145 0.0258 0.0340 0.0390 0.0406
4.0 0.0445 0.07910.1038 0.1185 0.1235 0.0138 0.0246 0.0322 0.0369 0.0384

oo 0.0450 0.0800 0.1050 0.1200 0.1250 0.0135 0.0240 0.0315 0.0360 0.0375

From Table 8 it is seen that, as the ratio b/a increases, the maximum
deflection and the maximum moments of the plate rapidly approach the
values calculated for a uniformly loaded strip or for a plate bent to a
cylindrical surface obtained by making b/a = <*>. For b/a = 3 the dif-
ference between the deflection of the strip and the plate is about 6£ per
cent. For b/a = 5 this difference is less than £ per cent. The differ-
ences between the maximum bending moments for the same ratios of



TABLE 7. NUMERICAL FACTORS 0" AND /3" FOR BENDING MOMENTS OF SIMPLY

SUPPORTED RECTANGULAR PLATES UNDER UNIFORM PRESSURE q

v = 0.3, b > a

Mx = Vqa2, x = a/2 M11 = p"qa2, x = a/2

b/a
y - y - y = v = 0 y = y = y = ? y = 0

0.4a 0.3a 0.2a 0.1a y OAa 0.3a 0.2a 0.1a y

1.0 0.0168 0.0303 0.0400 0.0459 0.0479 0.0209 0.0343 0.0424 0.0466 0.0479
1.1 0.0197 0.0353 0.0465 0.0532 0.0554 0.0225 0.0363 0.0442 0.04810.0493
1.2 0.0225 0.04010.0526 0.0600 0.0627 0.0239 0.0379 0.0454 0.0490 0.0501
1.3 0.0252 0.0447 0.0585 0.0667 0.0694 0.0252 0.03910.0462 0.0494 0.0503
1.4 0.0275 0.04910.0639 0!0727 0.0755 0.0263 0.0402 0.0468 0.0495 0.0502

1.5 0.0302 0.0532 0.0690 0.07810.0812 0.0275 0.0410 0.0470 0.0493 0.0498
1.6 0.0324 0.05710.0737 0.0832 0.0862 0.0288 0.0417 0.04710.0489 0.0492
1.7 0.0348 0.0607 0.0780 0.0877 0.0908 0.0295 0.0423 0.0470 0.0484 0.0486
1.8 0.03710.06410.0819 0.0917 0.0948 0.0304 0.0428 0.0469 0.0478 0.0479
1.9 0.0392 0.0673 0.0854 0.0953 0.0985 0.0314 0.0433 0.0467 0.0472 0.0471

2.0 0.0413 0.0703 0.0887 0.0986 0.1017 0.0322 0.0436 0.0464 0.0465 0.0464
2.5 0.0505 0.0828 0.1012 0.1102 0.1129 0.0360 0.0446 0.0447 0.0435 0.0430
3 0.0586 0.0923 0.1092 0.1168 0.1189 0.0389 0.0447 0.04310.0413 0.0406
4 0.0723 0.1054 0.1180 0.1224 0.1235 0.0426 0.0436 0.0406 0.0389 0.0384
oc 0.1250 0.1250 0.1250 0.1250 0.1250 0.0375 0.0375 0.0375 0.0375 0.0375

i

FIG. 63



b/a are 5 and -£ per cent, respectively. It may be concluded from this
comparison that for b/a > 3 the calculations for a plate can be replaced
by those for a strip without substantial error.

TABLE 8. NUMERICAL FACTORS a, /3, 7, 5, n FOR UNIFORMLY LOADED AND

SIMPLY SUPPORTED RECTANGULAR PLATES

v = 0.3

WUUiqa* (M»>»« CAOmax «2*)ma* (Qy)m« (F*)max ( F J ^ x /?
6/a = a — = /8ga2 = /ffiga2 = 75a = 7iga = 5ga = 5iga — nqa2

a j3 /Si 7 71 5 5i n

1.0 0.00406 0.0479 0.0479 0.338 0.338 0.420 0.420 0.065
1.1 0.00485 0.0554 0.0493 0.360 0.347 0.440 0.440 0.070
1.2 0.00564 0.0627 0.0501 0.380 0.353 0.455 0.453 0.074
1.3 0.00638 0.0694 0.0503 0.397 0.357 0.468 0.464 0.079
1.4 0.00705 0.0755 0.0502 0.411 0.361 0.478 0.471 0.083

1.5 0.00772 0.0812 0.0498 0.424 0.363 0.486 0.480 0.085
1.6 0.00830 0.0862 0.0492 0.435 0.365 0.491 0.485 0.086
1.7 0.00883 0.0908 0.0486 0.444 0.367 0.496 0.488 0.088
1.8 0.00931 0.0948 0.0479 0.452 0.368 0.499 0.491 0.090
1.9 0.00974 0.0985 0.0471 0.459 0.369 0.502 0.494 0.091

2.0 0.01013 0.1017 0.0464 0.465 0.370 0.503 0.496 0.092
3.0 0.01223 0.1189 0.0406 0.493 0.372 0.505 0.498 0.093
4.0 0.01282 0.1235 0.0384 0.498 0.372 0.502 0.500 0.094
5.0 0.01297 0.1246 0.0375 0.500 0.372 0.501 0.500 0.095
00 0.01302 0.1250 0.0375 0.500 0.372 0.500 0.500 0.095

Expression (e) can be used also for calculating shearing forces and
reactions at the boundary. Forming the second derivatives of this
expression, we find

Substituting this in Eqs. (106) and (107), we obtain



For the sides x = 0 and y = — b/2 we find

These shearing forces have their numerical maximum value at the middle
of the sides, where

The numerical factors y and 71 are also given in Table 8.
The reactive forces along the side x = 0 are given by the expression

The maximum numerical value of this pressure is at the middle of the
side (y = 0), at which point we find



where 5 is a numerical factor depending on v and on the ratio 6/a, which
can readily be obtained by summing up the rapidly converging series
that occur in expression (q). Numerical values of 8 and of Si, which
corresponds to the middle of the sides parallel to the x axis, are given in
Table 8. The distribution of the pressures (q) along the sides of a square
plate is shown in Fig. 63. The portion of the pressures produced by the

Ratio f

FIG. 64

twisting moments Mxy is also shown. These latter pressures are bal-
anced by reactive forces concentrated at the corners of the plate. The
magnitude of these forces is given by the expression

The forces are directed downward and prevent the corners of a plate
from rising up during bending. The values of the coefficient n are given
in the last column of Table 8.



The values of the factors a, 0, 0i, 8 as functions of the ratio b/a are
represented by the curves in Fig. 64.

In the presence of the forces R, which act downward and are by no means small,
anchorage must be provided at the corners of the plate if the plate is not solidly joined
with the supporting beams.

In order to determine the moments arising at the corner let us consider the equi-
librium of the element abc of the plate next to its corner (Fig. 65) and let us introduce,
for the same purpose, new coordinates 1, 2 at an angle of 45° to the coordinates x, y in
Fig. 59. We can then readily verify that the bending moments acting at the sides ab
and cb of the element are Mx = —R/2 and M2 = -f-#/2, respectively, and that the
corresponding twisting moments are zero. In fact, using Eq. (39), we obtain for the
side ac, that is, for the element of the edge,
given by a = — 45°, the bending moment

Mn — Mi cos2 a + M2 sin2 a = 0

in accordance with the boundary condi-
tions of a simply supported plate. The
magnitude of the twisting moment applied
at the same edge element is obtained in like
manner by means of Eq. (40). Putting
ot = —45° we have

Mnt = ^ sin 2*(MX - M2) - ^

according to Eq. (r). Thus, the portion of the plate in the vicinity of the corner is
bent to an anticlastic surface, the moments ±R/2 at the corner itself being of the
same order of magnitude as the bending moments at the middle of the plate (see
Table 8).

The clamping effect of the corners of a simply supported plate is plainly illustrated
by the distribution of the bending moments M1 and M2 of a square plate (Fig. 63).
If the corners of the rectangular plate are not properly secured against lifting, the
clamping becomes ineffective and the bending moments in the center portion of the
plate increase accordingly. The values of (Mx) max and (My)max given in Table 8
must then be multiplied by some factor k > 1. The approximate expression1

may be used for that purpose.
It should be noted that in the case of a polygonal plate with simply supported edges

no single reactive forces arise at a corner point provided the angle between both
adjacent sides of the plate is other than a right angle.2

Even in rectangular plates, however, no corner reactions are obtained if the trans-
verse shear deformation is taken into account. In view of the strongly concentrated

1 Recommended by the German Code for Reinforced Concrete (1943) and basod
on a simplified theory of thin plates due to H. Marcus; see his book " Die vereinfachte
Berechnung biegsamer Platten," 2d ed., Berlin, 1925.

2 For a simple proof see, for example, H. Marcus, "Die Theorie e\astischer Gewebe,"
2d ed., p. 46, Berlin, 1932.

FIG. 65



reactive forces this shear deformation obviously is no longer negligible, and the
customary thin-plate theory disregarding it completely must be replaced by a more
exact theory. The latter, which will be discussed in Art. 39, actually leads to a dis-
tribution of reactive pressures which include no forces concentrated at the corners of
the plate (see Fig. 81).

31. Simply Supported Rectangular Plates under Hydrostatic Pressure.
Assume that a simply supported rectangular plate is loaded as shown in
Fig. 66. Proceeding as in the case of a uniformly distributed load, we
take the deflection of the plate in the form1

represents the deflection of a strip under the tri-
angular load. This expression satisfies the differ-
ential equation

and the boundary conditions

The part Wi is taken in the form of a series

FIG. 66

where the functions Ym have the same form as in the preceding article,
and m = 1, 2, 3, . . . . Substituting expressions (6) and (d) into Eq.
(a), we obtain

where the constants Am and Bm are to be determined from the conditions

1 This problem was discussed by E. Estanave, op. cit. The numerical tables of
deflections and moments were calculated by B. G. Galerkin, Bull. Polytech. InSt1 St.
Petersburg, vols. 26 and 27, 1918.



From these conditions we find

In these equations we use, as before, the notation

Solving them, we find

The deflection of the plate along the x axis is

For a square plate a —

The deflection at the center of the plate is

(uO—/i.iM> = 0.00203 2*£ (h)

which is one-half the deflection of a uniformly loaded plate (see page 116)
as it should be. By equating the derivative of expression (g) to zero, we
find that the maximum deflection is at the point x = 0.557a. This maxi-
mum deflection, which is 0.00206 q0a

4/D, differs only very little from the
deflection at the middle as given by formula (h). The point of maximum
deflection approaches the center of the plate as the ratio b/a increases.
For b/a = oo, as for a strip [see expression (b)], the maximum deflection
is at the point x = 0.5193a. When b/a < 1, the point of maximum
deflection moves away from the center of the plate as the ratio b/a
decreases. The deflections at several points along the x axis (Fig. 66)
are given in Table 9. It is seen that, as the ratio b/a increases, the
deflections approach the values calculated for a strip. For b/a = 4 the
differences in these values are about I^ per cent. We can always calcu-
late the deflection of a plate for which b/a > 4 with satisfactory accu-
racy by using formula (6) for the deflection of a strip under triangular
load. The bending moments Mx and My are found by substituting



TABLE 9. NUMERICAL FACTOR a FOR DEFLECTIONS OF A SIMPLY SUPPORTED
RECTANGULAR PLATE UNDER HYDROSTATIC PRESSURE q = qox/a

b > a
w = <xqoa

A/D, y = 0

b/a x = 0.25a x = 0.50a x = 0.60a x = 0.75a

1 0.00131 0.00203 0.00201 0.00162
1.1 0.00158 0.00243 0.00242 0.00192
1.2 0.00186 0.00282 0.00279 0.00221
1.3 0.00212 0.00319 0.00315 0.00248
1.4 0.00235 0.00353 0.00348 0.00273

1.5 0.00257 0.00386 0.00379 0.00296
1.6 0.00277 0.00415 0.00407 0.00317
1.7 0.00296 0.00441 0.00432 0.00335
1.8 0.00313 0.00465 0.00455 0.00353
1.9 0.00328 0.00487 0.00475 0.00368

2.0 0.00342 0.00506 0.00494 0.00382
3.0 0.00416 0.00612 0.00592 0.00456
4.0 0.00437 0.00641 0.00622 0.00477
5.0 0.00441 0.00648 0.00629 0.00483
oo 0.00443 0.00651 0.00632 0.00484

expression (e) for deflections in Eqs. (101). Along the x axis (y = 0)
the expression for Mx becomes

The first sum on the right-hand side of this expression represents the
bending moment for a strip under the action of a triangular load and is
equal to (qQ/6)(ax — x3/a). Using expressions (/) for the constants Am

and Bm in the second sum, we obtain

The series thus obtained converges rapidly, and a sufficiently accurate
value of Mx can be realized by taking only the first few terms. In this



TABLE 10. NUMERICAL FACTORS 0 AND /3I FOR BENDING MOMENTS OF SIMPLY

SUPPORTED RECTANGULAR PLATES UNDER HYDROSTATIC PRESSURE q — qox/a

v = 0.3, b > a

Mx = /Sa2
0̂, y = 0 My = Pia2qQ, y = 0

b/a
X = X = X = X = X = X = X = X =
0.25a 0.50a 0.60a 0.75a 0.25a 0.50a 0.60a 0.75a

1.0 0.0132 0.0239 0.0264 0.0259 0.0149 0.0239 0.0245 0.0207
1.1 0.0156 0.0276 0.0302 0.0289 0.0155 0.0247 0.0251 0.0211
1.2 0.0179 0.0313 0.0338 0.0318 0.0158 0.0250 0.0254 0.0213
1.3 0.0200 0.0346 0.0371 0.0344 0.0160 0.0252 0.0255 0.0213
1.4 0.0221 0.0376 0.0402 0.0367 0.0160 0.0253 0.0254 0.0212

1.5 0.0239 0.0406 0.0429 0.0388 0.0159 0.0249 0.0252 0.0210
1.6 0.0256 0.0431 0.0454 0.0407 0.0158 0.0246 0.0249 0.0207
1.7 0.0272 0.0454 0.0476 0.0424 0.0155 0.0243 0.0246 0.0205
1.8 0.0286 0.0474 0.0496 0.0439 0.0153 0.0239 0.0242 0.0202
1.9 0.0298 0.0492 0.0513 0.0452 0.0150 0.0235 0.0238 0.0199

2.0 0.0309 0.0508 0.0529 0.0463 0.0148 0.0232 0.0234 0.0197
3.0 0.0369 0.0594 0.0611 0.0525 0.0128 0.0202 0.0207 0.0176
4.0 0.0385 0.0617 0.0632 0.0541 0.0120 0.0192 0.0196 0.0168
5.0 0.0389 0.0623 0.0638 0.0546 0.0118 0.0187 0.0193 0.0166
oo 0.0391 0.0625 0.0640 0.0547 0.0117 0.0187 0.0192 0 0165

_J

way the bending moment at any point of the x axis can be represented
by the equation

( M , ) H = Pqoa2 (k)

where /3 is a numerical factor depending on the abscissa x of the point.
In a similar manner we get

(My)y=0 = P1Q0O,2 (I)

The numerical values of the factors /3 and 0i in formulas (Zc) and (J) are
given in Table 10. It is seen that for b g: 4a the moments are very close
to the values of the moments in a strip under a triangular load.

Equations (106) and (107) are used to calculate shearing forces. From
the first of these equations, by using expression (j), we obtain for points
on the x axis



The general expressions for shearing forces Qx and Qy are

(m)

(n)

The magnitude of the vertical reactions Vx and Vv along the boundary
is obtained by combining the shearing forces with the derivatives of the
twisting moments. Along the sides x = 0 and x — a these reactions can
be represented in the form

(o)

TABLE 11. NUMERICAL FACTORS 5 AND 5I FOR REACTIONS OF SIMPLY
SUPPORTED RECTANGULAR PLATES UNDER HYDROSTATIC PRESSURE q — qox/a

v = 0.3, b > a

Reactions 8qoa Reactions 5igo6

b , x = 0 x = a y = ±6/2

_ ~ y ~ _ n y= x= x= x= X =
y " U 0.256 y " U 0.256 0.25a 0.50a 0.60a 0.75a

1.0 0.126 0.098 0.294 0.256 0.115 0.210 0.234 0.239
1.1 0.136 0.107 0.304 0.267 0.110 0.199 0.221 0.224
1.2 0.144 0.114 0.312 0.276 0.105 0.189 0.208 0.209
1.3 0.150 0.121 0.318 0.284 0.100 0.178 0.196 0.196
1.4 0.155 0.126 0.323 0.292 0.095 0.169 0.185 0.184

1.5 0.159 0.132 0.327 0.297 0.090 0.160 0.175 0.174
1.6 0.162 0.136 0.330 0.302 0.086 0.151 0.166 0.164
1.7 0.164 0.140 0.332 0.306 0.082 0.144 0.157 0.155
1.8 0.166 0.143 0.333 0.310 0.078 0.136 0.149 0.147
1.9 0.167 0.146 0.334 0.313 0.074 0.130 0.142 0.140

2.0 0.168 0.149 0.335 0.316 0.071 0.124 0.135 0.134
3.0 0.169 0.163 0.336 0.331 0.048 0.083 0.091 0.089
4.0 0.168 0.167 0.334 0.334 0.036 0.063 0.068 0.067
5.0 0.167 0.167 0.334 0.335 0.029 0.050 0.055 0.054
oo 0.167 0.167 0.333 0.333



and al^ng the sides y = ±6/2 in the form

in which 5 and 5i are numerical factors depending on the ratio b/a and
on the coordinates of the points taken on the boundary. Several values
of these factors are given in Table 11.

The magnitude of concentrated forces that must be applied to prevent
the corners of the plate rising up during bending can be found from the
values of the twisting moments Mxy at the corners. Since the load is not
symmetrical, the reactions Ri at x = 0 and y = ±6/2 are different from
the reactions R2 at x = a and y = ±6/2. These reactions can be repre-
sented in the following form:

Ri = niqoab R2 = n2qoab (q)

The values of the numerical factors n\ and n2 are given in Table 12.

TABLE 12. NUMERICAL FACTORS nx AND n2 IN EQS. (ry) FOR REACTIVE FORCES
Rl AND R2 AT THE CORNERS OF SlMPLY SUPPORTED RECTANGULAR PLATES

UNDER HYDROSTATIC PRESSURE q = qox/a
v = 0.3, b > a

b/a 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 3.0 4.0 5.0

m 0.026 0.026 0.026 0.026 0.025 0.024 0.023 0.022 0.021 0.021 0.020 0.014 0.010 0.008
nj 0.039 0.038 0.037 0.036 0.035 0.033 0.032 0.030 0.029 0.028 0.026 0.018 0.014 0.011

Since a uniform load ô is obtained by superposing the two triangular
loads q = qox/a and qo(a — x)/a, it can be concluded that for correspond-
ing values of b/a the sum n\ + n2 of the factors given in Table 12 multi-
plied by b/a must equal the corresponding value of n, the last column in
Table 8.

If the relative dimensions of the plate are such that a in Fig. 66 is
greater than 6, then more rapidly converging series will be obtained by
representing Wi and W2 by the following expressions:

(r)

(s)

The first of these expressions is the deflection of a narrow strip parallel to
the y axis, supported at y = ± 6/2 and carrying a uniformly distributed



TABLE 13. NUMERICAL FACTORS a FOR DEFLECTIONS OF SIMPLY SUPPORTED
RECTANGULAR PLATES UNDER HYDROSTATIC PRESSURE q = gox/a

b < a
w = aqob'/D, y = 0

a/b x = 0.25a x = 0.50a x = 0.60a x = 0.75a

oo 0.00325 0.00651 0.00781 0.00976
5 0.00325 0.00648 0.00778 0.00965
4 0.00325 0.00641 0.00751 0.00832
3 0.00321 0.00630 0.00692 0.00707
2 0.00288 0.00506 0.00542 0.00492

1.9 0.00281 0.00487 0.00518 0.00465
1.8 0.00270 0.00465 0.00491 0.00434
1.7 0.00261 0.00441 0.00463 0.00404
1.6 0.00249 0.00415 0.00432 0.00372
1.5 0.00234 0.00386 0.00399 0.00339

1.4 0.00218 0.00353 0.00363 0.00304
1.3 0.00199 0.00319 0.00325 0.00269
1.2 0.00179 0 00282 0.00286 0.00234
1.1 0.00153 0.00243 0.00245 0.00199
1.0 0.00131 0.00202 0.00201 0.00162

load of intensity qox/a. This expression satisfies the differential equa-
tion (c) and also the boundary conditions w = 0 and d2w/dy2 = 0 at

y = + b/2. Expression (s) represents an in-
finite series each term of which also satisfies
the conditions at the edges y = + b/2. The
functions X2m-i of x are chosen in such a
manner that each of them satisfies the homo-
geneous equation (137) of the preceding arti-
cle (see page 114) and so that expression (a)
satisfies the boundary conditions at the edges
x = 0 and x — a. Since the method of de-
termining the functions Xim-\ is similar to
that already used in determining the func-
tions Ym, we shall limit ourselves to giving
only the final numerical results, which are
represented by Tables 13, 14, 15, and 16.
The notation in these tables is the same as

in the foregoing tables for the hydrostatic pressure.
32. Simply Supported Rectangular Plate under a Load in the Form of

a Triangular Prism. Assume that the intensity of the load is represented

FIG. 67



TABLE 14. NUMERICAL FACTORS /3 AND /SI FOR BENDING MOMENTS IN SiMrLY
SUPPORTED RECTANGULAR PLATES UNDER HYDROSTATIC PRESSURE q = qox/a

v = 0.3, b < a

Mx = #>2g0, y = 0 My = /3i62g0, y = 0

X = X = X = X = X= X= X= X =

0.25a 0.50a 0.60a 0.75a 0.25a 0.50a 0.60a 0.75a

oo 0.0094 0.0187 0.0225 0.0281 0.0312 0.0625 0.0750 0.0937
5.0 0.0094 0.0187 0.0230 0.0309 0.0312 0.0623 0.0742 0.0877
4.0 0.0094 0.0192 0.0237 0.0326 0.0312 0.0617 0.0727 0.0820
3.0 0.0096 0.0202 0.0256 0.0345 0.0309 0.0594 0.0678 0.0715
2.0 0.0108 0.0232 0.0285 0.0348 0.0284 0.0508 0.0554 0.0523

1.9 0.0111 0.0235 0.0288 0.0345 0.0278 0.0492 0.0533 0.0498
1.8 0.0115 0.0239 0.0291 0.0341 0.P269 0.0474 0.0509 0.0470
1.7 0.0117 0.0243 0.0293 0.0337 0.0261 0.0454 0.0485 0.0442
1.6 0.0120 0.0246 0.0294 0.0331 0.0251 0.0431 0.0457 0.0412
1.5 0.0123 0.0249 0.0294 0.0324 0.0239 0.0406 0.0428 0.0381

1.4 0.0126 0.0253 0.0292 0.0315 0.0225 0.0376 0.0396 0.0348
1.3 0.0129 0.0252 0.0290 0.0304 0.0209 0.0346 0.0360 0.0314
1.2 0.0131 0.0250 0.0284 0.0291 0.0192 0.0313 0.0323 0.0279
1.1 0.0134 0.0247 0.0276 0.0276 0.0169 0.0276 0.0285 0.0245
1.0 0.0132 0.0239 0.0264 0.0259 0.0149 0.0239 0.0245 0.0207

by an isosceles triangle as shown in Fig. 67a. The deflection surface can
again be represented in the form

w = Wi + W2 (a)

in which W\ represents the deflection of a simply supported strip parallel
to the x axis, and W2 has the same form as in the preceding article [Eq. (d)].
To represent the deflection W\ in the form of a trigonometric series we
observe that the deflection produced by a concentrated force P applied
at a distance £ from the left end of a strip is1

Substituting qd£ for P and using q = 2q^/a for J < a/2 and
q = 2qo(a — J)/a for J > a/2, the deflection of the strip by an ele-
mental load is obtained. The deflection produced by the total load on

1 See Timoshenko, "Strength of Materials," part II, 3d ed., p. 49, 1956.



TABLE 15. NUMERICAL FACTORS 5 AND 61 FOR REACTIONS IN SIMPLY SUPPORTED
RECTANGULAR PLATES UNDER HYDROSTATIC PRESSURE q = qox/a

v = 0.3, b < a

Reactions Sq <& Reactions 8iqob

a/b * = 0 x_^ y= ±b/2

y = 0 y - 6 / 4 y - 0 y = 6/4 *^a 0*50a 0.QOa 0 7 5 a

oo 0.125 0.250 0.300 0.375
5.0 0.008 0.006 0.092 0.076 0.125 0.250 0.301 0.379
4.0 0.013 0.010 0.112 0.093 0.125 0.251 0.301 0.377
3.0 0.023 0.018 0.143 0.119 0.125 0.252 0.304 0.368
2.0 0.050 0.038 0.197 0.166 0.127 0.251 0.296 0.337

1.9 0.055 0.041 0.205 0.172 0.127 0.251 0.294 0.331
1.8 0.060 0.045 0.213 0.179 0.128 0.249 0.291 0.325
1.7 0.066 0.050 0.221 0.187 0.127 0.248 0.288 0.318
1.6 0.073 0.055 0.230 0.195 0.127 0.245 0.284 0.311
1.5 0.080 0.060 0.240 0.204 0.127 0.243 0.279 0.302

1.4 0.088 0.067 0.250 0.213 0.126 0.239 0.273 0.292
1.3 0.097 0.074 0.260 0.223 0.124 0.234 0.266 0.281
1.2 0.106 0.081 0.271 0.233 0.122 0.227 0.257 0.269
1.1 0.116 0.090 0.282 0.244 0.120 0.220 0.247 0.255
1.0 0.126 0.098 0.294 0.256 0.115 0.210 0.234 0.239

the strip is now obtained by integration in the following form:

Substituting this in Eq. (a) and using Eq. (d) of the preceding article,
we obtain

This expression satisfies Eq. (103) and also the boundary conditions at
the edges x = 0 and x = a. The constants Am and Bm can be found



from the conditions along the edges y = ± 6/2, which are the same as in
the preceding article and which give

where, as before, we use the notation

Solving Eqs. (e), we find

To obtain the deflection of the plate along the x axis we put y = 0 in

TABLE 16. NUMERICAL FACTORS ni AND n2 IN EQS. (q) (ART. 31) FOR REACTIVE
FORCES RI AND RI AT THE CORNERS OP SIMPLY SUPPORTED RECTANGULAR

PLATES UNDER HYDROSTATIC PRESSURE q = qox/a
v = 0.3, b < o

a/6 5 4 3 2 1.9 1.8 1.7 1.6 1.5 1.4 1.3 1.2 1.1 1.0

m 0.002 0.004 0.006 0.013 0.014 0.016 0.017 0.018 0.020 0.021 0.023 0.024 0.025 0.026
n, 0.017 0.020 0.025 0.033 0.034 0.035 0.036 0.037 0.037 0.038 0.039 0.039 0.039 0.039

expression (d). Then

The maximum deflection is at the center of the plate, where

It can be represented in the form

in which a is a numerical factor depending on the magnitude of the ratio
b/a. Several values of this factor are given in Table 17.x

1 The tables are taken from the paper by Galerkin, loc. tit.



TABLE 17. NUMERICAL FACTORS a, 0, 7, 5, n FOR SIMPLY SUPPORTED
RECTANGULAR PLATES UNDER A LOAD IN FORM OP A TRIANGULAR PRISM

v = 0.3, 6 > a

^To"4 <M*)"»»< W - W . W («»)-« (^)max (F,)n»x /?
6/a = a — = Pq0O,* = Piqoa2 = 7^0« = yiqdb = fyoa = diqdb = ngoaft

a j8 /3i 7 71 5 Si n

1.0 0.00263 0.0340 0.0317 0.199 0.315 0.147 0.250 0.038
1.1 0.00314 0.0390 0.0326 0.212 0.297 0.161 0.232 0.038
1.2 0.00364 0.0436 0.0330 0.222 0.280 0.173 0.216 0.037
1.3 0.00411 0.0479 0.0332 0.230 0.265 0.184 0.202 0.036
1.4 0.00455 0.0518 0.0331 0.236 0.250 0.193 0.189 0.035

1.5 0.00496 0.0554 0.0329 0.241 0.236 0.202 0.178 0.034
1.6 0.00533 0.0586 0.0325 0.246 0.224 0.208 0 168 0.033
1.7 0.00567 0.0615 0.0321 0.247 0 212 0.214 0.158 0.031
1.8 0.00597 0.0641 0.0316 0.249 0.201 0.220 0.150 0.030
1.9 0.00625 0.0664 0.0311 0.251 0.191 0.224 0.142 0.029

2.0 0.00649 0.0685 0.0306 0.252 0.183 0.228 0.135 0.028
3.0 0.00783 0.0794 0.0270 0.253 0.122 0.245 0.090 0.019
00 0.00833 0.0833 0.0250 0.250 . . . . 0.250

Using expression (d) and proceeding as in the preceding article, we can
readily obtain the expressions for bending moments Mx and My. The
maximum values of these moments in this case are evidently at the center

of the plate and can be represented in the fol-
lowing form:

(Mx)^x = pqoa2 (My)m»* = faq^2

The values of the numerical factors /3 and /Si are
also given in Table 17. This table also gives

numerical factors 7, 71, 5, $1, and n for calculating (1) shearing forces
(Qx) m»x = yqoa, (Qv)m»x = 7itfo& at the middle of the sides x = 0 and
y = —6/2 of the plate, (2) reactive forces

at the same points, and (3) concentrated reactions R = nq^ab at the
corners of the plate which are acting downward and prevent the corners
of the plate from rising. All these values are given for b > a. When
b < a, a better convergency can be obtained by taking the portion W\

FIG. 68



TABLE 18. NUMERICAL FACTORS a, /8, 7, 5, n FOR SIMPLY SUPPORTED
RECTANGULAR PLATES UNDER A LOAD IN FORM OP A TRIANGULAR PRISM

v = 0.3, b < a

^ m a X
o 6 4 (Mx)mtiX (My)n^ (QJxnax (Qy)».« (V t) m (Vv)m«x R

a/b = a^— = /3go&2 = /3igob2 = yqoa = 71906 = 5goa = diqob = n g o a 6

a /5 /81 7 71 5 5i n

co 0.01302 0.0375 0.1250 0.500 0.500
3.0 0.00868 0.0387 0.0922 0.045 0.442 0.027 0.410 0.010
2.0 0.00686 0.0392 0.0707 0.091 0.412 0.057 0.365 0.023
1.9 0.00656 0.0392 0.0681 0.098 0.407 0.062 0.358 0.024
1.8 0.00624 0.0391 0.0651 0.106 0.402 0.098 0.350 0.026
1.7 0.00588 0.0390 0.0609 0.115 0.396 0.074 0.342 0.028
1.6 0.00549 0.0388 0.0585 0.124 0.389 0.081 0.332 0.029

1.5 0.00508 0.0386 0.0548 0.135 0.381 0.090 0.322 0.031
1.4 0.00464 0.0382 0.0508 0.146 0.371 0.099 0.311 0.033
1.3 0.004f8 0.0376 0.0464 0.158 0.360 0.109 0.298 0.035
1.2 0.00367 0.0368 0.0418 0.171 0.347 0.120 0.284 0.036
1.1 0.00316 0.0356 0.0369 0.185 0.332 0.133 0.268 0.037
1.0 0.00263 0.0340 0.0317 0.199 0.315 0.147 0.250 0.038

of the deflection of the plate in the form of the deflection of a strip
parallel to the y direction. We omit the derivations and give only the
numerical results assembled in Table 18.

Combining the load shown in Fig. 67a with
the uniform load of intensity #o, the load
shown in Fig. 68 is obtained. Information
regarding deflections and stresses in this lat-
ter case can be obtained by combining the
data of Table 8 with those of Table 17 or 18.

33. Partially Loaded Simply Supported
Rectangular Plate. Let us consider a sym-
metrical case of bending in which a uniform
load q is distributed over the shaded rectan-
gle (Fig. 69) with the sides u and v.

We begin by developing the load in the series
FIG. 69



which represents the load for the portion prst of the plate. The corre-
sponding deflection of this .portion of the plate is governed by the differ-
ential equation (103), which becomes

Let us again take the deflection in the form

where Wi is a particular solution of Eq. (6), independent of the variable yt

that is, satisfying the equation

Integrating this latter equation with respect to x, we obtain

Then W2 must be a solution of Eq. (137) (page 114). Choosing the form
(136) for this solution and keeping in the expression (138) for Y7n only
even functions of y, because of the symmetry of the deflection surface
with respect to the x axis, we have, by Eq. (c),

in which, this time,

Equation (e) represents deflections of the portion prst of the plate.
Considering now the unloaded portion of the plate below the line ts

we can take the deflection surface in the form

It is now necessary to choose the constants Am, Bm, . . . , D'm in the



series (e) and (g) in such a manner as to satisfy the boundary conditions
2Xy-= 6/2 and the continuity conditions along the line ts. To repre-
sent these conditions in a simpler form, let us introduce the notation

The geometric conditions along the line 2s require that

Furthermore, since there are no concentrated forces applied along the
line ts, the bending moments My and the shearing forces Qy must be
continuous along this line. Observing Eqs. (i) these latter conditions
can be written down in the form

Substituting expressions (e) and (g) in Eqs. (i) and (j) and using notation
(h), we can represent these equations in the following form:

(Am - A'J cosh 2 7 w + (Bm - B'J2ym sinh 2 7 w

- C'm sinh 2 7 m - D'm2ym cosh 2 7 w + am = 0
(Am - A'J sinh 2 T « + (Bm - JS^)(sinh 2 7 m + 2ym cosh 2Tm)

- C7n cosh 2ym - L^(COSh 2ym + 2ym sinh 2ym) = O » .
(^1n - A^) cosh 2ym + (5 m - 5 ^ ( 2 cosh 2ym + 2Twi sinh 2ym) K }

- C^ sinh 2ym - D^ (2 sinh 27m + 2Tm cosh 2Tm) = O
(Am - A'J sinh 2ym + (Bm - B'J(3 sinh 2ym + 27m cosh 2ym)

- C7n cosh 27m - 2>i,(3 cosh 2 7 w + 2 7 m sinh 27m) = O

From these equations we find

Am ~ A'm = am(7m sinh 2 7 m - cosh 27m)

Bm- B'm = ^ cosh 2 7 m

(I)
C'm = am(ym cosh 2 7 m - sinh 27m) K)

D'm = ^ sinh 2 7 m

To these four equations, containing six constants Am, . . . , D'mi we add
two equations representing the boundary conditions at the edge y = b/2.
Substituting expression (g) in the conditions w' — O, d2w'/dy2 — 0 at
y = b/2 we obtain

Am cosh ctm + B'mam sinh am + Cm sinh am + D^« cosh am = 0 , .
5 ; cosh aw + 2>i sinh am = 0 ^ ;



Equations (m), together with Eqs. (Z), yield the constants

Substituting these and expression (/) in Eq. (e), we obtain

(142)

From this equation the deflection at any point of the loaded portion of
the plate can be calculated.

In the particular case where u = a and v = b we have, from Eqs. (h),
7m — dm/2. Expressions (n) become

and Eq. (142) coincides with Eq. (139) (page 116) derived for a uni-
formly loaded rectangular plate.

The maximum deflection of the plate is at the center and is obtained
by substituting y = 0, x = a/2 in formula (142), which gives

(143)

As a particular example let us consider the case where u = a and v is
very small. This case represents a uniform distribution of load along
the x axis. Considering ym as small in Eq. (143) and retaining only small
terms of the first order, we obtain, using the notation qv — qo,

(144)



For a square plate this equation gives

In the general case the maximum deflection can be represented in the form

Several values of the coefficient a are given in Table 19.

TABLE 19. DEFLECTIONS OF SIMPLY SUPPORTED RECTANGULAR PLATES
UNIFORMLY LOADED ALONG THE AXIS OF SYMMETRY PARALLEL TO

THE DIMENSION a
w>max = aq0a

3/D

b/a 2 1.5 1.4 1.3 1.2 1.1 1.0
a 0.00987 0.00911 0.00882 0.00844 0.00799 0.00742 0.00674

a/b 1.1 1.2 1.3 1.4 1.5 2.0 °o
a 0.00802 0.00926 0.01042 0.01151 0.01251 0.01629 0.02083

Returning to the general case where v is not necessarily small and u
may have any value, the expressions for the bending moments Mx and
My can be derived by using Eq. (142). The maximum values of these

TABLE 20. COEFFICIENTS /3 FOR (MX)max IN SIMPLY SUPPORTED PARTIALLY
LOADED SQUARE PLATES

v = 0.3

u/a = 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

v/a Coefficients 0 in the expression (Mx)max = &P

0 * 0.321 0.251 0.209 0.180 0.158 0.141 0.125 0.112 0.102 0.092
0.1 0.378 0.284 0.232 0.197 0.170 0.150 0.134 0.120 0.108 0.098 0.088
0.2 0.308 0.254 0.214 0.184 0.161 0.142 0.127 0.114 0.103 0.093 0.084
0.3 0.262 0.225 0.195 0.168 0.151 0.134 0.120 0.108 0.098 0.088 0.080
0.4 0.232 0.203 0.179 0.158 0.141 0.126 0.113 0.102 0.092 0.084 0.076
0.5 0.208 0.185 0.164 0.146 0.131 0.116 0.106 0.096 0.087 0.079 0.071
0.6 0.188 0.168 0.150 0.135 0.121 0.109 0.099 0.090 0.081 0.074 0.067
0.7 0.170 0.153 0.137 0.124 0.112 0.101 0.091 0.083 0.076 0.069 0.062
0.8 0.155 0.140 0.126 0.114 0.103 0.094 0.085 0.077 0.070 0.063 0.057
0.9 0.141 0.127 0.115 0.104 0.094 0.086 0.078 0.070 0.064 0.058 0.053
1.0 0.127 0.115 0.105 0.095 0.086 0.078 0.071 0.064 0.058 0.053 0.048



T A B L E 21 . COEFFICIENTS /3 AND /SI FOR (Mx)mtkX AND (Mv)mtiX IN PARTIALLY

LOADED RECTANGULAR P L A T E S WITH b = IAa

v = 0.3

u/a = 0 0.2 0.4 0.6 0.8 1.0 0 I 0.2 0.4 0.6 0.8 1.0

. Coefficient /3 in the expression Coefficient /3i in the expression
V/(l (MX)m&X = 0P (My)n** = /JlP

0 oo 0.2760.2080.1630.1340.110 °o 0.299 0.230 0.183 0.1510.125
0.2 0.332 0.239 0.186 0.152 0.125 0.103 0.246 0.208 0.175 0.147 0.124 0.102
0.4 0.2610.207 0.168 0.138 0.115 0.095 0.177 0.157 0.138 0.119 0.1010.083
0.6 0.219 0.1810.1510.126 0.105 0.086 0.138 0.125 0.1110.097 0.083 0.069
0.8 0.187 0.158 0.134 0.112 0.094 0.078 0.112 0.102 0.0910.080 0.069 0.058
1.0 0.162 0.139 0.118 0.100 0.084 0.070 0.093 0.085 0.077 0.068 0.058 0.049
1.2 0.1410.122 0.104 0.089 0.075 0.062 0.079 0.072 0.065 0.058 0.050 0.042
1.4 0.123 0.106 0.0910.077 0.065 0.054 0.068 0.062 0.056 0.050 0.043 0.036

TABLE 22. COEFFICIENTS /3 AND /3I FOR (MX) m a x AND (Mv)me.x IN PARTIALLY

LOADED RECTANGULAR PLATES WITH b — 2a

v = 0.3

u/a = 0 0.2 0.4 0.6 0.8 1.0 0 0.2 0.4 0.6 0.8 1.0

Coefficient /3 in expression Coefficient /Si in expression
V/a (M*)m a x = /SP (My)^x - /S1P

0 oo 0.289 0.220 0.175 0.144 0.118 oo 0.294 0.225 0.179 0.148 0.122
0.2 0.347 0.252 0.199 0.163 0.135 0.1110.242 0.203 0.170 0.143 0.120 0.099
0.4 0.275 0.2210.1810.150 0.125 0.103 0.172 0.152 0.133 0.114 0.097 0.081
0.6 0.233 0.195 0.164 0.138 0.115 0.095 0.133 0.120 0.106 0.093 0.079 0.066
0.8 0.203 0.174 0.148 0.126 0.106 0.088 0.107 0.097 0.087 0.076 0.065 0.054
1.0 0.179 0.155 0.134 0.115 0.097 0.080 0.089 0.0810.073 0.064 0.055 0.046

1.2 0.1610.1410.122 0.105 0.089 0.074 0.074 0.068 0.0610.054 0.046 0.039
1.4 0.144 0.127 0.1110.096 0.0810.0680.064 0.058 0.052 0.046 0.040 0.033
1.6 0.130 0.115 0.1010.087 0.074 0.062 0.056 0.0510.046 0.040 0.035 0.029
1.8 0.118 0.104 0.0910.079 0.067 0.056 0.049 0.045 0.0410.036 0.0310.026
2.0 0.107 0.094 0.083 0.072 0.0610.0510.044 0.0410.037 0.032 0.028 0.023

moments occur at the center of the plate and can be represented by the
formulas

(Mx)m*x = pUVq = |SP (M1,) ̂  = P1WQ = frP

where P = uvq is the total load. The values of the numerical factors P
for a square plate and for various sizes of the loaded rectangle are given
in Table 20. The coefficients Pi can also be obtained from this table by
interchanging the positions of the letters u and v.



The numerical factors /3 and /3i for plates with the ratios b = 1.4a and
b = 2a are given in Tables 21 and 22, respectively.1

34. Concentrated Load on a Simply Supported Rectangular Plate.
Using Navier's method an expression in double-series form has been
obtained in Art. 29 for the deflection of a plate carrying a single load P
at some given point x — £, y = t\ (Fig. 70). To obtain an equivalent
solution in the form of a simple series we begin by representing the Navier
solution (133) in the following manner:

the coefficient Sm being given by

Introducing the notation FIG. 70

(c)

we can also represent expression (b) in the form

To evaluate the sums (c) we use the known series

which holds for 0 < z < 2w and which we regard, first of all, as a func-
tion S(a) of a. Differentiation of the left-hand side of Eq. (e) with
respect to a gives

After differentiating also the right-hand side of Eq. (e) and substituting
1 The values of Mx and Mv for various ratios a/6, u/a, and v/b are also given in the

form of curves by G. Pigeaud, Ann. pants et chausstes, 1929. See also Art. 37 of this
book.
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the result in Eq. (/), we conclude that

Now, to obtain the values of the sums (c) we have to put, in Eq. (g),
first z = (ir/b)(y — 17), thenz = (TT/5)(?/ + 77) and, in addition, a = mb/a.
Using these values for substitution in Eqs. (d) and (a) we arrive, finally,
at the following expression for the deflection of the plate:

(145)

in which

In the case of y < -q the quantity 1/1 must be
replaced by y and the quantity 7? by rji = & — TJ, in
using expression (145).

Let us consider more closely the particular case
of a load P concentrated at a point A on the axis
of symmetry of the plate, which may be used as the
x axis (Fig. 71). With 1? = 6/2 and the notation

the general expression (145) for the deflection of the plate becomes

FIG. 71

(146)

which is valid for y > O1 that is, below the x axis in Fig. 71. Putting,
in particular, y = 0 we obtain the deflection of the plate along the x axis
in the form



This series converges rapidly, and the first few terms give the deflections
with sufficient accuracy. In the case of a load P applied at the center of
the plate, the maximum deflection, which is at the center, is obtained by
substituting x = £ = a/2 in expression (i). In this way we arrive at the
result

(147)

Values of the numerical factor a for various values of the ratio b/a are
given in Table 23.

TABLE 23. FACTOR a FOR DEFLECTION (147) OF A CENTRALLY LOADED

RECTANGULAR PLATE

b/a = 1.0 1.1 1.2 1.4 1.6 1.8 2.0 3.0 oo

a = 0.01160 0.01265 0.01353 0.01484 0.01570 0.01620 0.016510.01690 0.01695

It is seen that the maximum deflection rapidly approaches that of an
infinitely long plate1 as the length of the plate increases. The compari-
son of the maximum deflection of a square plate with that of a centrally
loaded circular plate inscribed in the square (see page 68) indicates that
the deflection of the circular plate is larger than that of the corresponding
square plate. This result may be attributed to the action of the reactive
forces concentrated at the corners of the square plate which have the
tendency to produce deflection of the plate convex upward.

The calculation of bending moments is discussed in Arts. 35 and 37.
35. Bending Moments in a Simply Supported Rectangular Plate with

a Concentrated Load. To determine the bending moments along the
central axis y = 0 of the plate loaded according to Fig. 71 we calculate
the second derivatives of expression (146), which become

1 The deflection of plates by a concentrated load was investigated experimentally
by M. Bergstrasser; see Forschungsarb., vol. 302, Berlin, 1928; see also the report of
N. M. Newmark and H. A. Lepper, Univ. Illinois Bull, vol. 36, no. 84, 1939.



Substituting these derivatives into expressions (101) for the bending
moments, we obtain

When b is very large in comparison with a, we can put

This series does not converge rapidly enough for a satisfactory calcu-
lation of the moments in the vicinity of the point of application of the
load P, so it is necessary to derive another form of representation of the
moments near that point. From the discussion of bending of a circular
plate by a force applied at the center (see Art. 19) we know that the

shearing forces and bending moments become infi-
nitely large at the point of application of the load.
We have similar conditions also in the case of a rec-
tangular plate. The stress distribution within a
circle of small radius with its center at the point of
application of the load is substantially the same as
that near the center of a centrally loaded circular
plate. The bending stress at a point within this cir-
cle may be considered as consisting of two parts: one
is the same as that in the case of a centrally loaded
circular plate of radius a, and the other represents the
difference between the stresses in a circular and those
in a rectangular plate. As the distance r between
the point of application of the load and the point

under consideration becomes smaller and smaller, the first part of the
stresses varies as log (a/r) and becomes infinite at the center, whereas
the second part, representing the effect of the difference in the boundary
conditions of the two plates, remains continuous.

To obtain the expressions for bending moments in the vicinity of the
point of application of the load we begin with the simpler case of an
infinitely long plate (Fig. 72). The deflection of such a plate can readily

FIG. 72



be derived from expression (146) by increasing the length of the side 6,
and consequently the quantity am = 7rnrb/2a, indefinitely, i.e., by putting

Substituting this into Eq. (146) the required deflection of the simply
supported strip carrying a concentrated load P at x = £, y — 0 becomes1

(148)

which holds for y > 0, that is, below the x axis (Fig. 72).
The corresponding expressions for the bending moments and the twist-

ing moment are readily obtained by means of Eqs. (101) and (102). We
have

(149)

Once again using the quantity M = (Mx -f My)/(1 + v) introduced
on page 92, we have

(150)

The moments (149) can be expressed now in terms of the function M in
the following simple manner:

(151)

1 This important case of bending of a plate has been discussed in detail by A. Nadai;
see his book "Elastische Platten," pp. 78-109, Berlin, 1925.



Summing up the series (150), we obtain the expression1

(152)

and, using Eqs. (151), we are able now to represent the moments of the
infinitely long plate in a closed form. Observing, furthermore, that
AAw = 0 everywhere, except at the point (x = £, y = 0) of the appli-
cation of the load, we conclude that the function M = —D Aw satisfies
(except at the above-mentioned point) the equation AM — 0. By virtue
of the second of the equations (111) the boundary condition M = O along
the edges x = 0 and x = a is also satisfied by the function M.

For the points along the x axis Eqs. (151) yield Mx = My and therefore

Using Eqs. (c) and Eq. (152) in the particular case of a load applied at
the center axis of the strip, { = a/2, we obtain

a result which also can be obtained by summation of the series (b).
Now let us return to the calculation of bending moments for points

which are close to the point of application of the load but not necessarily
on the x axis. In this case the quantities (x — J) and y are small and,
using expression (152), we can put

Thus we arrive at the result

(153)

1 See, for instance, W. Magnus and F. Oberhettinger, "Formeln und Satze fur die
speziellen Funktionen der mathematischen Physik," 2d ed., p. 214, Berlin, 1948.



in which

represents the distance of the point under consideration from the point
of application of the load P. Now, using expression (153) for substi-
tution in Eqs. (151) we obtain the following expressions, valid for points
in the vicinity of the concentrated load:

(154)

It is interesting to compare this result with that for a centrally loaded,
simply supported circular plate (see Art. 19). Taking a radius r under
an angle a to the x axis, we find, from Eqs. (90) and (91), for a circular
plate

The first terms of expressions (154) and (e) will coincide if we take the
outer radius of the circular plate equal to

Under this condition the moments Mx are the same for both cases. The
moment My for the long rectangular plate is obtained from that of the
circular plate by subtraction of the constant quantity1 (1 — v)P/Anr.
From this it can be concluded that in a long rectangular plate the stress
distribution around the point of application of the load is obtained by
superposing on the stresses of a centrally loaded circular plate with
radius (2a/?r) sin (?r£/a) a simple bending produced by the moments
My= - ( I - *>)P/4TT.

It may be assumed that the same relation between the moments of
circular and long rectangular plates also holds in the case of a load P
uniformly distributed over a circular area of small radius c. In such a
case, for the center of a circular plate we obtain from Eq. (83), by neg-
lecting the term containing c2,

1 We observe that x2 = r2 - y*.



Hence at the center of the loaded circular area of a long rectangular
plate we obtain from Eqs. (154)

(155)

From this comparison of a long rectangular plate with a circular plate
it may be concluded that all information regarding the local stresses at
the point of application of the load P, derived for a circular plate by-
using the thick-plate theory (see Art. 19), can also be applied in the case
of a long rectangular plate.

When the plate is not very long, Eqs. (a) should be used instead of
Eq. (6) in the calculation of the moments Mx and My along the x axis.
Since tanh am approaches unity rapidly and cosh am becomes a large
number when m increases, the differences between the sums of series (a)
and the sum of series (b) can easily be calculated, and the moments Mx

and My along the x axis and close to the point of application of the load
can be represented in the following form:

(156)

in which 71 and 72 are numerical factors the magnitudes of which depend
on the ratio b/a and the position of the load on the x axis. Several values
of these factors for the case of central application of the load are given in
Table 24.

Again the stress distribution near the point of application of the
load is substantially the same as for a centrally loaded circular plate
of radius (2a/ir) sin (ir£/a). To get the bending moments Mx and My

near the load we have only to superpose on the moments of the



TABLE 24. FACTORS 71 AND 72 IN EQS. (156)

b/a 1.0 1.2 1.4 1.6 1.8 2.0 <*

71 - 0 . 5 6 5 - 0 . 3 5 0 - 0 . 2 1 1 - 0 . 1 2 5 - 0 . 0 7 3 - 0 . 0 4 2 0

72 +0.135 +0.115 +0.085 +0.057 +0.037 +0.023 0

circular plate the uniform bending by the moments Mx — yiP/4w and
Mr

y = — (1 — v — 72)P/4?r. Assuming that this conclusion holds also
when the load P is uniformly distributed over a circle of a small radius c,
we obtain for the center of the circle

(157)

Just as in the case of a distributed load, reactive forces acting down-
ward and considerable clamping moments are produced by concentrated
loads at the corners of a rectangular plate. The corner reactions

R = nP (/)

due to a central load P are given in Table 25 by the numerical values of
the factor n, whereas the clamping moments have the value of —R/2
(see page 85). The computation of the values of R has been carried out
by a simple method which will be described in Art. 36.

TABLE 25. NUMERICAL FACTOR n FOR REACTIVE FORCES R AT THE CORNERS

OF SIMPLY SUPPORTED RECTANGULAR PLATES UNDER CENTRAL LOAD

v = 0.3

b/a = 1.0 1.2 1.4 1.6 1.8 2.0 3.0 00

n - 0.1219 0.1162 0.1034 0.0884 0.0735 0.0600 0.0180 0

The distribution of the bending moments and reactive pressures in the
particular case of a square plate with a central load is shown in Fig. 73.
The dashed portion of the curves holds for a uniform distribution of the
load P over the shadowed circular area with a radius of c = 0.05a.

36. Rectangular Plates of Infinite Length with Simply Supported
Edges. In our foregoing discussions infinitely long plates have been
considered in several cases. The deflections and moments in such plates
were usually obtained from the corresponding solutions for a finite plate
by letting the length of the plate increase indefinitely. In some cases



FIG. 73

it is advantageous to obtain solutions for an infinitely long plate first
and combine them in such a way as to obtain the solution for a finite
plate. Several examples of this method of solution will be given in this
article. We begin with the case of an infinitely long plate of width a
loaded along the z axis as shown in Fig. 74. Since the deflection surface
is symmetrical with respect to the x axis, we need consider only the por-
tion of the plate corresponding to positive values of y in our further dis-

cussion. Since the load is distributed only along
the x axis, the deflection w of the plate satisfies the
equation

We take the solution of this equation in the form

which satisfies the boundary conditions along the simply supported
longitudinal edges of the plate. To satisfy Eq. (a), functions Ym must
be chosen so as to satisfy the equation

FIG. 74



Taking the solution of this equation in the form

and observing that the deflections and their derivatives approach zero
at a great distance from the x axis, it may be concluded that the con-
stants A7n and B7n should be taken equal to zero. Hence solution (b)
can be represented as follows:

From the condition of symmetry we have

This condition is satisfied by taking Cm = Dm in expression (d). Then

The constants C7n can be readily calculated in each particular case pro-
vided the load distribution along the x axis is given.

As an example, assume that the load is uniformly distributed along
the entire width of the plate. The intensity of loading can then be
represented by the following trigonometric series:

in which q0 is the load per unit length. Since the load is equally divided
between the two halves of the plate, we see that

Substituting expression (e) for W1 we obtain

from which



Hence

The deflection is a maximum at the center of the plate (x = a/2, y = 0),
where

The same result can be obtained by setting tanh am = 1 and cosh am = <*>
in Eq. (144) (see page 138).

As another example of the application of solution (e), consider a load
of length u uniformly distributed along a portion of the x axis (Fig. 74).
Representing this load distribution by a trigonometric series, we obtain

where qo is the intensity of the load along the loaded portion of the x axis.
The equation for determining the constants Cm, corresponding to Eq. (/),
is

Substituting expression (e) for w, we obtain

from which

Expression (e) for the deflections then becomes

The particular case of a concentrated force applied at a distance £ from
the origin is obtained by making the length u of the loaded portion of the
x axis infinitely small. Substituting



in Eq. (i), we obtain

(158)

an expression that coincides with expression (148) of the preceding article.
We can obtain various other cases of loading by

integrating expression (i) for the deflection of a long
plate under a load distributed along a portion u of the
x axis. As an example, consider the case of a load
of intensity q uniformly distributed over a rectangle
with sides equal to u and v (shown shaded in Fig. 75).
Taking an infinitesimal element of a load of magni-
tude qu drj at a distance rj from the x axis, the corre-
sponding deflection produced by this load at points
with y > rj is obtained by substituting q di\ for qo and
y — K] for y in expression (i). The deflection pro-
duced by the entire load, at points for which y ^ v/2, is now obtained by
integration as follows:

FIG. 75

By a proper change of the limits of integration the deflection at points
with y < v/2 can also be obtained. Let us consider the deflection along
the x axis (Fig. 75). The deflection produced by the upper half of the
load is obtained from expression (j) by substituting the quantity v/4 for
y and for v/2. By doubling the result obtained in this way we also take
into account the action of the lower half of the load and finally obtain



When v = oo 7 the load, indicated in Fig. 75, is expanded along the entire
length of the plate, and the deflection surface is cylindrical. The corre-
sponding deflection, from expression (k), is

Making { = u/2 = a/2 in this expression, we obtain

which represents the deflection curve of a uniformly loaded strip.
The following expressions for bending moments produced by the load

uniformly distributed along a portion u of the x axis are readily obtained
from expression (i) for deflection w:

These moments have their maximum values on the x axis, where

In the particular case when £ = u/2 = a/2, that is, when the load is
distributed along the entire width of the plate,

The maximum moment is at the center of the plate where



When u is very small, i.e., in the case of a concentrated load, we put

Then, from expression (n), we obtain

which coincides with expression (b) of the preceding article and can be
expressed also in a closed form (see page 146).

In the case of a load q uniformly distributed over the area of a rec-
tangle (Fig. 75), the bending moments for the portion of the plate for
which y ^ v/2 are obtained by integration of expressions (m) as follows:

(159)

The moments for the portion of the plate for which y < v/2 can be calcu-
lated in a similar manner. To obtain the moments along the x axis, we
have only to substitute v/2 for v and v/4 for y in formulas (159) and



double the results thus obtained. Hence

(160)

If values of the moments at the center of the loaded rectangular area are
required, the calculation may also be carried out by means of expressions
(167), which will be given in Art. 37. When v is very small, Eqs. (160)
coincide with Eq. (n) if we observe that qv must be replaced in such a
case by go. When v is very large, we have the deflection of the plate to a
cylindrical surface, and Eqs. (160) become

The expressions for the deflections
and bending moments in a plate of finite
length can be obtained from the corre-
sponding quantities in an infinitely long
plate by using the method of images.1

Let us begin with the case of a concen-
trated force P applied on the axis of
symmetry x of the rectangular plate
with sides a and b in Fig. 76a. If we
now imagine the plate prolonged in both
the positive and the negative y direc-
tions and loaded with a series of forces
P applied along the line mn at a dis-
tance b from one another and in alter-

nate directions, as shown in Fig. 766, the deflections of such an infinitely
1 This method was used by A. Nadai (see Z. angew. Math. Mech., vol. 2, p. 1, 1922)

and by M. T. Huber (see Z. angew. Math, Mech., vol. 6; p. 228, 1926).

FIG. 76



long plate are evidently equal to zero along the lines AiBi, AB1 CD1

CiDi1 . . . . The bending moments along the same lines are also zero,
and we may consider the given plate ABCD as a portion of the infinitely
long plate loaded as shown in Fig. 766. Hence the deflection and the
stresses produced in the given plate at the point of application 0 of the
concentrated force can be calculated by using formulas derived for infi-
nitely long plates. From Eq. (158) we find that the deflection produced at
the x axis of the infinitely long plate by the load P applied at the point O is

The two adjacent forces P applied at the distances b from the point O
(Fig. 766) produce at the x axis the deflection

in which, as before,

The forces P at the distance 2b from the point O produce at the x axis
the deflection

and so on. The total deflection at the x axis will be given by the
summation

w = W1 + W2 + Wz + - - • (p)
Observing that

we can bring expression (p) into coincidence with expression (146) of
Art. 34.

Let us apply the method of images to the calculation of the reactive force



acting at the corner D of the rectangular plate ABCD (Fig. 76) and produced by a load
P at the center of this plate. Using Eqs. (151) and (152), we find that the general
expression for the twisting moment of an infinitely long plate in the case of a single
load becomes

Hence a load P concentrated at x = £ = a/2, y = 0 produces at x — 0 the twisting
moment

Now, putting y = 6/2, 36/2, 56/2, . . . consecutively, we obtain the twisting
moments produced by the loads ±P acting above the line DC. Taking the sum of
these moments we obtain

To take into account the loads acting below the line DC we have to double the
effect (s) of loads acting above the line DC in order to obtain the effect of all given
loads. Thus we arrive at the final result

As for the reactive force acting downward at the point D, and consequently at the
other corners of the plate, it is equal to R = — 2MXV, Mxy being given by Eq. (t).

The method of images can be used also when the point of application of P is not on
the axis of symmetry (Fig. 77a). The deflections and moments can be calculated by
introducing a system of auxiliary forces as shown in the figure and using the formulas
derived for an infinitely long plate. If the load is distributed over a rectangle, for-
mulas (167), which will be given in Art. 37, can be used for calculating the bending
moments produced by actual and auxiliary loads.

37. Bending Moments in Simply Supported Rectangular Plates under a Load
Uniformly Distributed over the Area of a Rectangle. Let us consider once more the
practically important case of the loading represented in Fig. 78. If we proceed as
described in Art. 33, we find that for small values of u/a and v/b the series representing
the bending moments at the center of the loaded area converge slowly and become
unsuitable for numerical computation.

In order to derive more convenient formulas1 in this case let us introduce, in exten-
sion of Eq. (119), the following notation:

1 See S. Woinowsky-Krieger, Ingr.-Arch., vol. 21, p. 331, 1953.



(161)

(162)Hence

At first let us consider a damped circular plate of a radius a0 with a central load,
distributed as shown in Fig. 78. The bending
moments at the center of such a plate can be
obtained by use of the Michell solution, for an
eccentric single load. If u and v are small in

FIG. 77 FIG. 78

comparison with ao, the result, evaluated by due integration of expression (197) (p.
293), can be put in the form

in which

(163)

For a simply supported circular plate with the same radius a0 as before, we have to
add a term P/4TT to Mx and Mv (see p. 68), i.e., a term P/%c(\ -f v) to M and nothing
to N1 so that these latter quantities become



Finally, to obtain the corresponding expressions for an infinite strip (Fig. 75),
we must assume a0 = 2a/ir sin Or£/a) and introduce an additional moment
Mv = — (1 — J/)P/4TT (see p. 147). This latter operation changes the quantity
M by - ( I — V)P/4TT(1 + v) and the quantity N by +P/4TT. Introducing this in
Eqs. (6) we arrive at the result

(164)

The values of the factors <p and ^, depending only on the ratio v/u, are given in
Table 26.

Considering now the case of a rectangular plate (Fig. 78), we have only to take into
account the effect of the auxiliary loads1 ±P (Fig. 77) and to add this effect to the
values (164) of M and N. The final result, in the case shown in Fig. 78, can then be
put in the form

(165)

where <p, \f/, d are given by expressions (163) and Table 26, and

(166)

with <xm = rrnrb/2a. The terms X and /*, expressed by rapidly convergent series, are
wholly independent of the dimensions u and v (and even the shape) of the loaded area.
Their numerical values are given in Table 27.

From Eqs. (162) we obtain the expressions for the bending moments

(167)

acting at the center of the loaded area (Fig. 78). Expressions (165) and (167) are also
applicable to the calculation of moments of a simply supported infinite strip as a
particular case.

1 It is permissible to regard them as concentrated provided u and v are small.



TABLE 26. VALUES OF THE FACTOR <P AND ^ DEFINED BY EQS. (163)

k = v/u

k (p \f/ k ip \[/ k <p \ \f/

0 1.000 -1.000 1.0 1.571 0.000 2.5 1.427 0.475
0.05 1.075 -0.923 1.1 1.569 0.054 3.0 1.382 0.549
0.1 1.144 -0.850 1.2 1.564 0.104 4.0 1.311 0.648
0.2 1.262 -0.712 1.3 1.556 0.148 5.0 1.262 0.712
0.3 1.355 -0.588 1.4 1.547 0.189 6.0 1.225 0.757
0.4 1.427 -0.475 1.5 1.537 0.227 7.0 1.197 0.789
0.5 1.481 -0.374 1.6 1.526 0.261 8.0 1.176 0.814
0.6 1.519 -0.282 1.7 1.515 0.293 9.0 1.158 0.834

0.7 1.545 -0.200 1.8 1.504 0.322 10 1.144 0.850
0.8 1.560 -0.127 1.9 1.492 0.349 20 1.075 0.923
0.9 1.568 -0.060 2.0 1.481 0.374 a> 1.000 1.000

TABLE 27. VALUES OF THE FACTORS X AND p (EQ. 166) FOR SIMPLY SUPPORTED
RECTANGULAR PLATES

X for | /a = /z for £/a =
b/a j

0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5

0.5 2.792 2.352 1.945 1.686 1.599 0.557 -0.179 -0.647 -0.852 -0.906
0.6 2.861 2.545 2.227 2.011 1.936 0.677 0.053 -0.439 -0.701 -0.779
0.7 2.904 2.677 2.433 2.259 2.198 0.758 0.240 -0.229 -0.514 -0.605
0.8 2.933 2.768 2.584 2.448 2.399 0.814 0.391 -0.031 -0.310 -0.404
0.9 2.952 2.832 2.694 2.591 2.553 0.856 0.456 0.148 -0.108 -0.198

1.0 2.966 2.879 2.776 2.698 2.669 0.887 0.611 0.304 0.080 0.000
1.2 2.982 2.936 2.880 2.836 2.820 0.931 0.756 0.551 0.393 0.335
1.4 2.990 2.966 2.936 2.912 2.903 0.958 0.849 0.719 0.616 0.578
1.6 2.995 2.982 2.966 2.953 2.948 0.975 0.908 0.828 0.764 0.740
1.8 2.997 2.990 2.982 2.975 2.972 0.985 0.945 0.897 0.858 0.843

2.0 2.999 2.995 2.990 2.987 2.985 0.991 0.968 0.939 0.915 0.906
3.0 3.000 3.000 3.000 2.999 2.999 0.999 0.998 0.996 0.995 0.994
oo 3.000 3.000 3.000 3.000 3.000 1.000 1.000 1.000 1.000 1.000



Extending the integration over circular, elliptic, and other areas, the corresponding
expressions for M and N for these loadings are readily found. Taking, for instance,
a circular loaded area (Fig. 79) we obtain for its center

(168)

these expressions being equivalent to the result (157).
Comparing (168) with expressions (165) for k = 1, we
may conclude that a circular and a square loaded area
are equivalent with respect to the bending moments they
produce at the center of the area, if

FIG. 79

It should be noted that, as the load becomes more and more concentrated, the
accuracy of the approximate logarithmic formulas for the bending moments, such as
given by Eqs. (157) and (167), increases while the convergence of the customary series
representing these moments becomes slower. Numerical calculations1 show also that
the accuracy of those approximate formulas is entirely sufficient for practical purposes.

38. Thermal Stresses in Simply Supported Rectangular Plates. Let
us assume that the upper surface of a rectangular plate is kept at a higher
temperature than the lower surface so that the plate has a tendency to
bend convexly upward because of nonuniform heating. Because of the
constraint along the simply supported edges of the plate, which prevents
the edges from leaving the plane of the supports, the nonuniform heat-
ing of the plate produces certain reactions along the boundary of the
plate and certain bending stresses at a distance from the edges. The
method described in Art. 24 will be used in calculating these stresses.2

We assume first that the edges of the plate are clamped. In such a case
the nonuniform heating produces uniformly distributed bending moments
along the boundary whose magnitude is (see page 50)

Mn = ^ ± J O (o)

where t is the difference between the temperatures of the upper and the
lower surfaces of the plate and a is the coefficient of thermal expansion.

1 See S. Woinowsky-Krieger, Ingr.-Arch., vol. 3, p. 340, 1932; and Ingr.-Arch.t vol.
21, pp. 336, 337, 1953.

2 See paper by J. L. Maulbetsch, J. Appl. Mechanics, vol. 2, p. 141, 1935; see also
E. Melan and H. Parkus, " Warmespannungen infolge stationarer Temperaturfelder,"
Vienna, 1953, which includes a bibliography on thermal stresses. For stresses due to
assemblage errors in plates, see W. Nowacki, Bull. acad. polon. set., vol. 4, p. 79, 1956.



To get the bending moments Mx and My for a simply supported plate
(Fig. 62), we must superpose on the uniformly distributed moments given
by Eq. (a) the moments that are produced in a simply supported rec-
tangular plate by the moments M'n = — atD(I +-v)/h uniformly dis-
tributed along the edges. We shall use Eqs# (120) (see page 92) in dis-
cussing this latter problem. Since the curvature in the direction of an
edge is zero in the case of simply supported edges, we have M't = vM'n.
Hence at the boundary

Thus the first of equations (120) is satisfied by taking M constant along
the entire plate and equal to its boundary value (6). Then the second
of equations (120) gives

Hence the deflection surface of the plate produced by nonuniform heat-
ing is the same as that of a uniformly stretched and uniformly loaded
rectangular membrane and is obtained by finding the solution of Eq. (c)
that satisfies the condition that w = 0 at the boundary.

Proceeding as before, we take the deflection surface of the plate in the
form

w = Wi + W2 (d)
in which Wi is the deflection of a perfectly flexible string loaded uni-
formly and stretched axially in such a way that the intensity of the load
divided by the axial force is equal to —at(l + v)/h. In such a case the
deflection curve is a parabola which can be represented by a trigonometric
series as follows:

This expression satisfies Eq. (c). The deflection W2, which must satisfy
the equation

can be taken in the form of the series



in which Ym is a function of y only. Substituting (g) in Eq. (/), we find

Hence

From the symmetry of the deflection surface with respect to the x axis
it may be concluded that Ym must be an even function of y. Hence the
constant A7n in the expression (K) must be taken equal to zero, and we
finally obtain

This expression satisfies the boundary conditions w = 0 at the edges
x — 0 and x = a. To satisfy the same condition at the edges y = + 6/2,
we must have

Substituting the value of B7n obtained from this equation in Eq. {i),
we find that

in which, as before, am = rmrb/2a.
Having this expression for the deflections W1 we can find the corre-

sponding values of bending moments; and, combining them with the
moments (a), we finally obtain



The sum of the series that appears in these expressions can be readily
found if we put it in the following form:

The first series on the right-hand side of this equation converges rapidly,
since cosh {miry/a) and cosh am rapidly approach emirvla and eam as m
increases. The second series can be represented as follows.1

The bending moments Mx and My have their maximum values at the
boundary. These values are

It is seen that these moments are obtained by multiplying the value of
Mn in formula (a) by (1 — v). The same conclusion is reached if we
observe that the moments M'n which were applied along the boundary
produce in the perpendicular direction the moments

which superposed on the moment (a) give the value (n)
39. The Effect of Transverse Shear Deformation on the Bending of

Thin Plates. We have seen that the customary theory of thin elastic
plates leads to a differential equation (103) of the fourth order for the

1 See W. E. Byerly, "Elementary Treatise on Fourier Series and Spherical, Cylin-
drical and Ellipsoidal Harmonics,'' p. 100, Boston, 1893. The result can be easily
obtained by using the known series



deflection and, accordingly, to two boundary conditions which can and
must be satisfied at each edge. For a plate of a finite thickness, how-
ever, it appears more natural to require the fulfillment of three boundary
conditions than of two. The formal reason for the impossibility of satis-
fying more than two conditions by the customary theory has been the
order of the basic equation of this theory; physically this reason lies in
the fact that the distortion of the elements of the plate due to transverse
forces such as Q (page 52), Qx, and Qy (page 79) has been neglected in
establishing the relations between the stresses and the deflection of the
plate. The disregard of the deformation due to the transverse stress
component obviously is equivalent to the assumption of a shearing
modulus Gz = oo ; proceeding in this way we replace the actual material
of the plate, supposed to be isotropic, by a hypothetic material of no
perfect isotropy. Owing to the assumption Gz = oo the plate does not
respond to a rotation of some couple applied at the cylindrical surface
of the plate, if the vector of the couple coincides with the normal to this

surface. This enables us to identify
the variation OM3n,/dy of twisting cou-
ples due to horizontal shearing stresses
and acting along an edge x = a with
the effect of vertical forces Qx applied
at the same edge, thus reducing the
number of the edge conditions from
three to two (page 83). The stress
analysis of the elastic plates is greatly
simplified by this reduction.. On the
other hand, in attributing some purely

hypothetic properties to the material of the plate we cannot expect com-
plete agreement of the theoretical stress distribution with the actual one.
The inaccuracy of the customary thin-plate theory becomes of practical
interest in the edge zones of plates and around holes that have a diameter
which is not large in comparison with the thickness of the plate.

The generalization of the customary theory with respect to the effect
of shear deformation is substantially due to E. Reissner.1

Let us consider an element of the plate submitted to the external
transversal load q dx dy and to a system of stress components (Fig. 80).
In accordance with E. Reissner's theory we assume a linear law for the
distribution of the stress components ax, <ry, and r*,, through the thickness
of the plate. By equations of equilibrium (a) on page 98 the distribu-

1 See J. Math, and Phys., vol. 23, p. 184, 1944; J. Appl. Mechanics, vol. 12, p. A-68,
1945; Quart. Appl. Math., vol. 5, p. 55, 1947. For the history of this question going
back to a controversy between M. LeVy and Boussinesq, see L. BoIIe1 Bull. tech. Suisse
romande, October, 1947.

FIG. 80



tion of the components TXZ and ryz then follows a parabolic law. As for
the stress component az it is readily obtained from the third of equations
of equilibrium (a) if one takes into account the conditions

(O-*)*«=-A/2 = —q (o-z)*=fc/2 = 0

at the upper and lower surface of the plate. We arrive, in this manner,
at the following expressions for the stress components in terms of their
resultants and the coordinate z:

Except for Eq. (b) the foregoing system of equations coincides with the
corresponding relations of the customary theory. In like manner we can
rewrite the following conditions of equilibrium of the stress resultants
(see pages 80, 81):

Assuming an isotropic material and supposing the displacements UQ1 V0,
W0 of any point of the plate to be small as compared with its thickness h,
we make use of the general stress-strain relations

in which G = E/2(1 + F). We do not use the sixth relation



however, since this latter proves to be in contradiction with the assumed
linear law for the distribution of the stresses <JXJ <JV1 rxy.

Next,1 we introduce some average value w of the transverse displace-
ment, taken over the thickness of the plate, as well as some average values
<px and <py of the rotation of the sections x = constant and y = constant,
respectively. We define these quantities by equating the work of the
resultant couples on the average rotations and the work of the resultant
forces on the average displacement to the work of the corresponding
stresses on the actual displacements Wo, *>o, and Wo in the same section;
i.e., we put

Now, substituting expressions (a) for the stresses in Eqs. (/), we arrive at
the following relations between the average and the actual displacements:

Using Eqs. (e) and observing Eq. (6), we are also able to express the
stress components aXj ayt and rxy in terms of the actual displacements;
we find2

1 E. Reissner, in his treatment of the subject, makes use of Castigliano's principle of
least work to introduce the conditions of compatibility in the analysis. The method
here followed and leading to substantially the same results is due to A. E. Green,
Quart. Appl. Math., vol. 7, p. 223, 1949. See also M. Schafer, Z. angew. Math. Mech.,
vol. 32, p. 161, 1952.

2 Terms with zz do not actually occur in the following expressions for <rx and <ry

since they are canceled out by identical terms with opposite sign contained in duo/d%
and dvo/dy.



Substituting this in Eqs. (a), multiplying the obtained equations by
122 dz/h3, integrating between z = — h/2 and z = h/2, and observing
relations (g), we arrive at the expressions

in which D is defined, as before, by Eq. (3). In like manner, substituting
expressions (a) for the stress components rxz and ryz in the last two equa-
tions (e), multiplying the result by |[1 — (2z/h)2] dz/h, and integrating
between the limits z = i.h/2, we obtain

Now, eight unknown quantities, namely Mx, My, Mxy, Qx, Qy, w, <px, and
<Py, are connected by two equations (j), three equations (i), and, finally,
by three equations of equilibrium (c) and (d).

In order to transform this set of equations into a form more convenient
for analysis we eliminate the quantities <px and <py from Eqs. (J) and (i),
and, taking into account Eq. (c), we obtain

Substitution of these expressions in Eqs. (d) yields, if one observes Eq.
(c), the result

in which, as before, the symbol A has the meaning (105). In the par-
ticular case of h = 0, that is, of an infinitely thin plate, the foregoing
set of five equations, expressions (k) and (/-), gives Eqs. (101) and (102)



for the moments and Eqs. (108) for the shearing forces of the customary
thin-plate theory.

To obtain the more complete differential equation for the deflection
of the plate we only have to substitute expressions (Z) in Eq. (c); thus
we obtain

(169)

We can satisfy this equation by taking w, that is, the " average deflection "
at (x.y). in the form

y

in which it/ is a particular solution of the equation

and w" is the general solution of the equation

Therefore, using Eq. (169), we are able, just as in the ordinary thin-plate
theory, to satisfy four boundary conditions in all. We can obtain a sup-
plementary differential equation, however, by introducing into consider-
ation the shearing forces Qx and Qy. Equation of equilibrium (c) is
satisfied, in fact, if we express these forces in a form suggested by the
form of Eqs. (Z), i.e.,

In these expressions \j/ denotes some new stress function, whereas Q'x and
Q'y must satisfy the relations

as we can conclude from Eqs. (Z) and in). Differentiating the foregoing
equations with respect to x and y, respectively, and adding the results



we arrive at the condition of equilibrium

To establish a differential equation for the stress function \f/ we substitute
expressions (q) in Eqs. (Z) with the result

from which we conclude that the expressions in parentheses are con-
stants. Making these constants equal to zero we have the relation

(170)

which, still assuming that A^O, yields a second fundamental equation
of the generalized theory of bending, in addition to Eq. (169).

Having established two differential equations, one of which is of the
fourth and the other of the second order, we now are able to satisfy three
conditions, instead of only two, on the edge of the plate. Considering
the general case of an element of the cylindrical boundary of the plate
given by the directions of the normal n and the tangent t (Fig. 54) we can,
for instance, fix the position of the element by the equations

w — w <pn — $n <pt = <Pt (u)

Herein w is the given average deflection and $n and <pt are the given
average rotations of the element with respect to the axes t and n respec-
tively. In the particular case of a built-in edge the conditions are w = 0,
tpn = 0, and <pt — 0. Instead of displacements some values Qn, Mn,
Mnt of the resultants may be prescribed on the boundary, and the corre-
sponding edge conditions would be

On = Qn Mn = Mn Mnt = Mnl (V)

Hence the conditions along a free edge are expressed by equations Qn = 0,
Mn = 0, Mnt = 0, and for a simply supported edge the conditions are
W = O, Mn = 0, M«i = 0. In the latter case we obtain no concentrated
reactions at the corners of the plate, which act there according to the
customary theory and are in obvious contradiction to the disregard of
the shear deformation postulated by this theory.

As an illustration of the refined theory let us consider a plate in form of a semi-
infinite rectangle bounded by two parallel edges y = 0, y = a and the edge z = 0.
We assume that there is no load acting on the plate, that the deflections w and the



bending moments My vanish along the edges y = 0, y = a, and that the edge x = 0
is subjected to bending and twisting moments and to shearing forces given by

where MQ, H0, Qa are constants and n is an integer. Then, in view of q = 0, we have
w' = 0 by Eq. (n) and w = w" by Eq. (w). We can satisfy Eq. (o) and the condition
of vanishing deflections at x — oo by taking

A and B being any constants. Next, assuming for \f/ SL solution of the form

where X is a function of x alone, and substituting this in Eq. (170) we obtain

In this last expression

and C is a constant. From Eqs. (r) we have Qr
x = Q'v = 0 and Eqs. (q) give

Finally, Eqs. (k) yield the following expressions for moments acting along the edge
x = 0:

Equating these expressions, together with the expression for the shearing force

to the expressions (w), respectively, we obtain a set of three equations sufficient to
calculate the unknown constants A, B, and C. In this way, by using the refined plate
theory, all three conditions at the edge x — 0 are satisfied.



Considering now the edges y = Owe see that w vanishes along those edges, and Mu
also vanishes there, as can be proved by substituting the expression for Qy into
the second of equations (k).

Another theory of plates that takes into account the transversal shear deformation
has been advanced by A. Kromm.1 This theory neglects the transverse contraction
eg but, in return, does not restrict the mode of distribution of bending stresses across
the thickness of the plate to a linear law. Applying this theory to the case of a
uniformly loaded, simply supported square plate with a/h = 20, Kromm found the
distribution of shear forces acting along the edge as shown in Fig. 81. For comparison
the results of customary theory (Fig. 63) are also shown by the dashed line and the

FIG. 81

forces R. We see that, as soon as the transversal shear deformation is taken into
account, no concentrated reaction is obtained at the corner point of the plate. The
corresponding negative forces are distributed instead over a small portion of the
boundary adjacent to the corner, yielding at the corner itself a finite pressure acting
downward. The moments Mx„ on the four sides of the plate are zero in that solution.

Still another approach to the theory of shear deformation can be found in a paper
of H. Hencky.2

40. Rectangular Plates of Variable Thickness.8 In deriving the differential equa-
tion of equilibrium of plates of variable thickness, we assume that there is no abrupt
variation in thickness so that the expressions for bending and twisting moments
derived for plates of constant thickness apply with sufficient accuracy to this case also.
Then

1 A. Kromm, Ingr.-Arch., vol. 21, p. 266, 1953; Z. angew. Math. Mech., vol. 35, p.
231, 1955.

s Ingr.-Arch., vol. 16, p. 72, 1947.
* This problem was discussed by R. Gran Olsson, Ingr.-Arch., vol. 5, p. 363, 1934;

see also E. Reissner, J. Math, and Phys., vol. 16, p. 43, 1937.



Substituting these expressions in the differential equation of equilibrium of an element
[Eq. (100), page 81],

and observing that the flexural rigidity D is no longer a constant but a function of the
coordinates x and y, we obtain

where, as before, we employ the notation

As a particular example of the application of Eq. (171) let us consider the case in
which the flexural rigidity D is a linear function of y expressed in the form

where D0 and Di are constants.

FIG. 82

In such a case Kq. (171) becomes

(172)

Let us consider the case in which the intensity of the load q is proportional to the
flexural rigidity D. We shall assume the deflection of the plate (Fig. 82) in the form

W = Wi + 102

and let wi equal the deflection of a strip parallel to the x axis cut from the plate and
loaded with a load of intensity



This deflection can be represented, as before, by the trigonometric series

By substitution we can readily show that this expression for Wi satisfies Eq. (172).
It satisfies also the boundary conditions Wi = 0 and d2wi/dx2 = 0 along the supported
edges x — 0 and x — a.

The deflection w% must then satisfy the homogeneous equation

A[(Do + DlV) Aw2] = 0 (/)

We take it in the form of a series

Substituting this series in Eq. (/), we find that the functions Ym satisfy the following
ordinary differential equation:

Using the notation

we find, from Eq. (h),

Then, from Eq. (i), we obtain

The general solution of this equation is

in which gm is a particular integral of Eq. (j). To find this particular integral we use
the Lagrange method of variation of constants; i.e., we assume that gm has the form

in which Em and Fm are functions of y. These functions have to be determined from
the following equations:1

1 E'm and F*m in these equations are the derivatives with respect to y of Em and Fm.



from which

Integrating these equations, we find

Substituting these expressions in Eqs. (/) and (Zc) and using the notation1

we represent functions Ym in the following form:

The four constants of integration A'm, B'm, Cm, Dm are obtained from the boundary
conditions along the sides y = 0 and y = b. In the case of simply supported edges
these are

The numerical results for a simply supported square plate obtained by taking only the
first two terms of the series (g) are shown in Fig. 83.2 The deflections and the
moments Mx and My along the line x = a/2 for the plate of variable thickness are
shown by full lines; the same quantities calculated for a plate of constant flexural
rigidity D = -J(D0 + DJ)) are shown by dashed lines. It was assumed in the calcula-
tion that Dib = 7D0 and v = 0.16.

1 The integral Ei(u) is the so-called exponential integral and is a tabulated function;
see, for instance, Jahnke-Emde, "Tables of Functions," 4th ed., pp. 1 and 6, Dover
Publications, 1945; or "Tables of Sine, Cosine and Exponential Integrals," National
Bureau of Standards, New York, 1940.

2 These results are taken from R. Gran Olsson, loc. cit.



Finally, let us consider the case in which the thickness of the plate is a linear function
of y alone and the intensity of the load is any function of y (Fig. 82). Denoting the
thickness of the plate along the lino y = b/2 by h0 and the corresponding flexural
rigidity by

we have at any point of the plate

where X is some constant. This yields h = (1 — X)/io at y = 0 and h = (1 + X)A0 at

Moment My Momen+Mx Deflection

FIG. 83

The following method1 introducing the quantity X as a parameter proves to be most
efficient in handling the present problem. Considering the deflection w as a function
of the variables x, y, and X, we can express w{x,y,\) in form of the power series

oo

W = A, U ' m X m ^

m = 0

in which m is an integer and the coefficients wm are merely functions of x and y.
lSee H. Favre and B. GUg, Z. angew. Math. u. Phys., vol. 3, p. 354, 1952.



Substituting expressions (o) and (p) in Eq. (171) and equating to zero the coeffi-
cients of successive powers of X, we obtain a sequence of differential equations

We assume the edges x = 0 and x = a to be simply supported, and we shall restrict
the problem to the case of a hydrostatic load

Using the method of M. Levy we take the solution of Eqs. (q) in the form

the coefficients Ymn (m = 0, 1, 2, . . .) being some functions of y. We can, finally,
represent the load (r) in analogous manner by putting

Substitution of expressions (s) and (v) in the first of the equations (q) enables us to
determine the functions Y0n, the boundary conditions being Y0n = 0, Y'0'n = 0 at
y = 0 and y = b if these edges are simply supported. The substitution of expressions
(s) and (t) in the second of the equations (q) yields the function Ym. In like manner
any function wm is found by substitution of wo, Wi, . . . , wm-i in that differential
equation of the system (q) which contains wm at the left-hand side. The procedure
remains substantially the same if the edges y = 0, 6 are built-in or free instead of being
simply supported.



Moment My Moment Mx Detlection

FIG. 84

Numerical results obtained by H. Favre and B. GiIg1 for the deflections and the
bending moments along the center line x — a/2 of a simply supported plate with
X = 0.2 and v — 0.25 under hydrostatic pressure (r) are shown in Fig. 84. Full lines
give results obtained by taking three terms in the series (p), while the dashed lines
hold for the result of the first approximations.

i Ibid.



CHAPTER 6

RECTANGULAR PLATES WITH VARIOUS

EDGE CONDITIONS

41. Bending of Rectangular Plates by Moments Distributed along the
Edges. Let us consider a rectangular plate supported along the edges
and bent by moments distributed along the edges y = ±6/2 (Fig. 85)
The deflections w must satisfy the homogeneous differential equation

and the following boundary conditions:

in which /i and /2 represent the bending
moment distributions along the edges
2T= ±b/2.

We take the solution of Eq. (a) in the
form of the series

FIG. 85

each term of which satisfies the boundary conditions (6). The functions
Ym we take, as before, in the form

which satisfies Eq. (a).

(a)

(b)

(e)

(d)



To simplify the discussion let us begin with the two particular cases:
1. The symmetrical case in which (My)y==&/2 = (My)y 6/2
2. The antisymmetrical case in which (My)y=b/2 = — (My)y=s-^/2

The general case can be obtained by combining these two particular cases.
In the case of symmetry Y7n must be an even function of y, and it is

necessary to put Am = Dm = 0 in expression (/). Then we obtain, from
Eq. (e),

To satisfy the boundary condition (c) we must put

B7n COSh am + C7nOCm Smh am = 0

where, as before,

Hence

and the deflection in the symmetrical case is

We use the boundary conditions (d) to determine the constants Cm.
Representing the distribution of bending moments along the edges
y = ±b/2 by a trigonometric series, we have in the case of symmetry

where the coefficients Em can be calculated in the usual way for each
particular case. For instance, in the case of a uniform distribution of
the bending moments we have (see page 151)

Substituting expressions (h) and (i) into conditions (d), we obtain



from which

(173)

In the particular case of uniformly distributed moments of intensity M0

we obtain, by using expression (j),

The deflection along the axis of symmetry (y = 0) is

When a is very large in comparison with b, we can put tanh am « a.m
and cosh am « 1. Then, by using series (j), we obtain

This is the deflection at the middle of a strip of length b bent by two
equal and opposite couples applied at the ends.

When a is small in comparison with 6, cosh am is a large number, and
the deflection of the plate along the x axis is very small.

For any given ratio between the lengths of the sides of the rectangle
the deflection at the center of the plate, from expression (k), is

Having expression (173) for deflections, we can obtain the slope of the
deflection surface at the boundary by differentiation, and we can calcu-
late the bending moments by forming the second derivatives of w.



Some values of the deflections and the bending moments computed in
this way are given in Table 28. It is seen, for example, that the deflec-
tion of a strip of a width a is about 3̂ - times that of a square plate of
dimensions a. While the transverse section at the middle of a strip
transmits the entire moment M0 applied at the ends, the bending moment
My at the center of the plate decreases rapidly as compared with M0,
with an increasing ratio b/a. This is due to a damping effect of the edges
.x = 0 and x = a not exposed to couples.

TABLE 28. DEFLECTIONS AND BENDING MOMENTS AT THE CENTER OF

RECTANGULAR PLATES SIMPLY SUPPORTED AND SUBJECTED TO

COUPLES UNIFORMLY DISTRIBUTED ALONG THE EDGES y = ±6/2 (FIG. 85)

v = 0.3

b/a w Mx My

0 0.1250Af ob7£> 0.300M0 1.000M0

0.50 0.0964Mo&2/Z) 0.387M0 0.770M0

0.75 0.0620Af0fc
2/D 0.424M0 0.476M0

1.00 0.0368Af 0a
2/Z) 0.394M0 0.256M0

1.50 0.0280 Af 0a
2/£> 0.264Af0 0.046Af0

2.00 0.0174Af0a2/D 0.153Af0 -0.010Af0

Let us consider now the antisymmetrical case in which

In this case the deflection surface is an odd function of y, and we must
put Bm = Cm = 0 in expression (/). Hence,

From the boundary conditions (c) it follows that

whence

and



The constants An, are obtained from conditions (d), from which it follows
that

Hence

and

(174)

We can obtain the deflection surface for the general case represented
by the boundary conditions (d) from solutions (173) and (174) for the
symmetrical and the antisymmetrical cases. For this purpose we split
the given moment distributions into a symmetrical moment distribution
Mf

y and an antisymmetrical distribution M'y
r, as follows:

( M ; W = {M'y)y=-m = Uf1(X) +J2(X))

« ) , = 6 / 2 = -(M'v')y=-b/2 = Uf1(X)-J2(X)]

These moments can be represented, as before, by the trigonometric series

and the total deflection is obtained by using expressions (173) and (174)
and superposing the deflections produced by each of the two foregoing
moment distributions (Z). Hence

(175)



If the bending moments Mv = ^ E1n sin (mwx/l) are distributed only
TO=I

along the edge y = 6/2, we have fo(x) = 0, E'm = K ' = $#»; and the
deflection in this case becomes

(176)

Solutions (173) to (176) of this article will be applied in the investigation
of plates with various edge conditions.

Moments M0 distributed along only one edge, say y = b/2, would pro-
duce, at the center of the plate, one-half the deflections and bending
moments given in Table 28. In case of a simultaneous action of couples
along the entire boundary of the plate, the deflections and moments can
be obtained by suitable superposition of the results obtained above for a
partial loading.1

42. Rectangular Plates with Two Opposite Edges Simply Supported
and the Other Two Edges Clamped. Assume that the edges x = 0 and
x = a of the rectangular plate, shown in Fig. 86,
are simply supported and that the other two edges
are clamped. The deflection of the plate under
any lateral load can be obtained by first solving
the problem on the assumption that all edges are
simply supported and then applying bending
moments along the edges y = ±b/2 of such a
magnitude as to eliminate the rotations produced
along these edges by the action of the lateral load.
In this manner many problems can be solved by
combining the solutions given in Chap. 5 with the
solution of the preceding article.

Uniformly Loaded Plates.2 Assuming that the edges of the plate are
simply supported, the deflection is [see Eq. (139), page 116]

1 Bending by edge couples was also discussed by H. Bay, Ingr.-Arch., vol. 8, p. 4,
1937, and by U. Wegner, Z. angew. Math. Mech., vol. 36, p. 340, 1956.

2 Extensive numerical data regarding rectangular plates with uniform load and sides
simply supported or clamped in any combination may be found in a paper by F.
Czerny; see Bautech.-Arch.t vol. 11, p. 33, Berlin, 1955.

FIG. 86



and the slope of the deflection surface along the edge y — 6/2 is

To eliminate this slope and thus to.satisfy the actual boundary conditions
we distribute along the edges y = ± 6/2 the bending moments My given
by the series

and we determine the coefficients Em so as to make the slope produced
by these moments equal and opposite to that given by expression (6).
Using expression (173)l for the deflection produced by the moments, we
find that the corresponding slppe along the edge y = 6/2 is

Equating the negative of this quantity to expression (6), we find that

Hence the bending moments along the built-in edges are

The maximum numerical value of this moment occurs at the middle of
the sides, where x = a/2. Series (/) converges rapidly, and the maxi-
mum moment can be readily calculated in each particular case. For

1 From the symmetry of the deflection surface produced by the uniform load it can
be concluded that only odd numbers 1, 3, 5, . . . must be taken for m in expression
(173).



jcample, the first three terms of series (/) give — 0.070<?a2 as the maxi-
mum moment in a square plate. In the general case this moment can be
represented by the formula yqa2, where 7 is a numerical factor the magni-
tude of which depends on the ratio a/b of the sides of the plate. Several
values of this coefficient are given in Table 29.

Substituting the values (e) of the coefficients Em in expression (173),
we obtain the deflection surface produced by the moments My distributed

TABLE 29. CONSTANTS a, fih 02, 7 FOR A RECTANGULAR PLATE WITH TWO
EDGES SIMPLY SUPPORTED AND TWO EDGES CLAMPED (FIG. 86)

v = 0.3
b < a

x = -7 y = 0 a a a b
2- * - - , y - 0 x=-,y=0 * - g . y - 3

b «>m*x = a ^- Mx = piqb2 My = /32g62 Mv = yqb*

a /Si /32 7

00 0.00260 0.0125 0.0417 -0.0833
2 0.00260 0.0142 0.0420 -0.0842
1.5 0.00247 0.0179 0.0406 -0.0822
1.4 0.00240 0.0192 0.0399 -0.0810
1.3 0.00234 0.0203 0.0388 -0.0794
1.2 0.00223 0.0215 0.0375 -0.0771
1.1 0.00209 0.0230 0.0355 -0.0739

b > a

a Mx = Piqa* My = /3^a2 My — yqa*

« /3i fo 7

1 0.00192 0.0244 0.0332 - 0 . 0 6 9 7
1.1 0.00251 0.0307 0.0371 - 0 . 0 7 8 7
1.2 0.00319 0.0376 0.0400 - 0 . 0 8 6 8
1.3 0.00388 0.0446 0.0426 - 0 . 0 9 3 8
1.4 0.00460 0.0514 0 0448 - 0 . 0 9 9 8

1.5 0.00531 0.0585 0.0460 - 0 . 1 0 4 9
1.6 0.00603 0.0650 0.0469 - 0 . 1 0 9 0
1.7 0.00668 0.0712 0.0475 - 0 . 1 1 2 2
1.8 0.00732 0.0768 0.0477 - 0 . 1 1 5 2
1.9 0.00790 0.0821 0.0476 - 0 . 1 1 7 4

2.0 0.00844 0.0869 0.0474 - 0 . 1 1 9 1
3 .0 0.01168 0.1144 0.0419 - 0 . 1 2 4 6

00 0.01302 0.1250 0.0375 - 0 . 1 2 5 0



along the edges.

The deflection at the center is obtained by substituting x = a/2, y = 0
in expression (g). Then

This is a rapidly converging series, and the deflection can be obtained
with a high degree of accuracy by taking only a few terms. In the case
of a square plate, for example, the first term alone gives the deflection
correct to three significant figures, and we obtain

Subtracting this deflection from the deflection produced at the center by
the uniform load (Table 8, page 120), we obtain finally for the deflection
of a uniformly loaded square plate with two simply supported and two
clamped edges the value

w = 0.00192 ^

In the general case the deflection at the center can be represented by the
formula

Several values of the numerical factor a are given in Table 29.
Substituting expression (g) for deflections in the known formulas (101)

for the bending moments, we obtain



The values of these moments at the center of the plate are

These series converge rapidly so that sufficiently accurate values for the
moments are found by taking only the first two terms in the series.
Superposing these moments on the moments in a simply supported plate
(Table 8), the final values of the moments at the center of the plate can
be represented as follows:

Mx = frga2 My = p2qa2 (J)

where /?i and /32 are numerical factors the magnitude of which depends on
the ratio b/a. Several values of these coefficients are given in Table 29.

Taking the case of a square plate, we find that at the center the
moments are

Mx = 0.02Uqa2 and My = 0.0332?a2

They are smaller than the moments Mx = Mv = 0.0479(?a2 at the center
of the simply supported square plate. But the moments My at the
middle of the built-in edges are, as we have seen, larger than the value
0.0479<?a2. Hence, because of the constraint of the two edges, the magni-
tude of the maximum stress in the plate is increased. When the built-in
sides of a rectangular plate are the longer sides (b < a), the bending
moments at the middle of these sides and the deflections at the center of
the plate rapidly approach the corresponding values for a strip with
built-in ends as the ratio b/a decreases.

Plates under Hydrostatic Pressure (Fig. 87). The deflection surface of
a simply supported rectangular plate submitted to the action of a hydro-



static pressure, as shown in Fig. 66 (Art. 31), is

The slope of the deflection surface along the edge y = 6/2 is

This slope is eliminated by distributing the moments My given by series
(c) along the edges y = ± 6/2 and determining the coefficients Em of that
series so as to make the slope produced by the moments equal and oppo-
site to that given by expression (Z). In this way we obtain

E = SffoaH-1)™"1"1 «m - t a n n "m(l + am tanh am)
7r3m3 am — tanh am(am tanh am — 1)

Substituting this in series (c), the expression for bending moments along
the built-in edges is found to be

The terms in series (m) for which m is even vanish
at the middle of the built-in sides where x = a/2,
and the value of the series, as it should, becomes
equal to one-half that for a uniformly loaded plate

[see Eq. (/)]. The series converges rapidly, and the value of the bending
moment at any point of the edge can be readily obtained. Several values
of this moment together with those of the bending moments along the
middle line y = 0 of the plate are given in Table 30.

Concentrated Force Acting on the Plate.1 In this case again the deflec-
tion of the plate is obtained by superposing on the deflection of a simply
supported plate (Art. 34) the deflection produced by moments distributed

1 See S. Timoshenko, Bauingenieur, 1922, p. 51.

FIG. 87



TABLE 30. BENDING MOMENTS IN RECTANGULAR PLATES WITH HYDROSTATIC
LOAD, TWO EDGES SIMPLY SUPPORTED AND TWO EDGES CLAMPED (FIG. 87)

v = 0.3

x = a/2, y = 0 x = 3a/4, y = 0 z = a/2, y = b/2 x = 3a/4, y = 6/2
6/a •

Mx My Mx My My My

0.50 O.OO7tfo6
2 0.021g0&

2 O.O18go6
2 0.029g06

2 -0.042g062 -0.062g062

0.75 O.Ollgo6
2 0.020?0&

2 O.O18go6
2 0.021^06

2 -0.040g062 -O.O45go62

1.00 0.013g0a2 0.017g0a2 0.017^0o2 0.015g0a2 -0.035g0a2 -0.035g0a2

1.25 0.021g0a2 0.021g0a2 0.024g0o2 0.019g0a2 -0.045g0a2 -0.043g0a2

1.50 0.030g0a2 0.023g0a2 0.03lq0a
2 0.020q0a

2 -0 .051q0a2 -0.048g0a2

2 0.043g0a2 0.024g0a2 0.042g0a2 0.020g0a2 -0.060g0a2 -0.053^0a2

« 0.063g0a2 0.019^0a2 0.055g0a2 0.017g0a2 -0.063g0a2 -0.055g0a2

along the clamped edges. Taking the case of a centrally loaded plate and
assuming that the edges y = ± b/2 are clamped, we obtain the following
expression for the deflection under the load:

The first sum in the brackets corresponds to the deflection of a simply
supported plate [see Eq. (147), page 143], and the second represents the
deflection due to the action of the moments along the clamped edges.
For the ratios b/a = 2, 1, -J-, and •£ the values of the expression in the
brackets in Eq. (n) are 0.238, 0.436, 0.448, and 0.449, respectively.

To obtain the maximum stress under the load we have to superpose on
the stresses calculated for the simply supported plate the stresses pro-
duced by the following moments:



TABLE 31. CORRECTION BENDING MOMENTS AT X = a/2, y = 0, DUE TO

CONSTRAINT AT y = ±6/2 IN CASE OF A CENTRAL LOAD P (FIG. 71)

v = 0.3

b/a m* = ^ my " ^P b/a m* = ^lP my = ^
/3i ^ 2 £i £2

0 -0.0484 -0.0742 1.0 -0.0505 -0.0308
0.5 -0.0504 -0.0708 1.2 -0.0420 -0.0166
0.6 -0.0524 -0.0656 1.4 -0.0319 -0.0075
0.7 -0.0540 -0.0580 1.6 -0.0227 -0.0026
0.8 -0.0544 -0.0489 1.8 -0.0155 -0.0002
0.9 -0.0532 -0.0396 2.0 -0.0101 +0.0007

Putting those correction moments equal to

mx = P1P my = Q2P (p)

the numerical factors /3i and /32 for various values of the ratio b/a are
given in Table 31. When the central load P is distributed over the area
of a small circle or rectangle, we have only to add the moments (p) to
bending moments obtained for the simply supported plate by means of
the logarithmical expressions (157) and (167), respectively. The moment
My at the middle of the clamped edges of a square plate is

My = -0.166P

The calculations show that this moment changes only slightly as the
length of the clamped edges increases. It becomes equal to — 0.168P
when b/a = 0.5 and drops to the value of — 0.155P when b/a = 1.2.*

It should be noted that the clamping moment with the numerically
largest possible value of — P/T = — 0.3183P is
produced by a load concentrated near the built-in
edge of the plate rather than by a central load (see
Art. 51). In the case of several movable loads the
influence surface for the clamping moment may be
used to obtain its maximum value with certainty
(see Art. 76).

43. Rectangular Plates with Three Edges Sim-
ply Supported and One Edge Built In. Let us
consider a rectangular plate built in along the edge
y = 6/2 and simply supported along the other edges
(Fig. 88). The deflection of the plate under any

lateral load can be obtained by combining the solution for the plate with

* For further data regarding the plate with two opposite edges built in, see A.
Pucher, Ingr.-Arch., vol. 14, p. 246, 1943-1944.

FIG. 88



all sides simply supported, with solution (176) for the case where bending
moments are distributed along one side of the plate.

Uniformly Loaded Plates. The slope along the edge y = 6/2 produced
by a uniformly distributed load is

The moments My = *ZEm sin (rmrx/a) distributed along the side y = 6/2
produce the slope1 [see Eq. (176)]

From the condition of constraint these two slopes are equal in magnitude
and of opposite signs. Hence

and the expression for the bending moments along the side y = 6/2 is

Taking a square plate, as an example, the magnitude of the bending
moment at the middle of the built-in edge from expression (d) is found
to be

№fy)î */2,*-«/2 = -0.084ga2

This moment is numerically larger than the moment —0,070#a2 which
was found in the preceding article for a square plate with two edges built
in. Several values of the moment at the middle of the built-in side for
various values of the ratio a/b are given in Table 32.

Substituting the values (c) of the constants Em into expression (176),
we obtain the deflection surface produced by the moments of constraint,
from which the deflection at the center of the plate is

1 Only odd numbers must be taken for m in this symmetrical case.



TABLE 32. DEFLECTIONS AND BENDING MOMENTS IN A RECTANGULAR PLATE

WITH ONE EDGE BUILT IN AND THE THREE OTHERS SIMPLY SUPPORTED

(Fig. 88)
v = 0.3

b/a (w)x=a/2,y=0 (My)x=,a/2,y=b/2 (Mx)Xm.a/2.v-0 (M»)i-a/!,»-0

oo 0.0l307O4/^> -0.125qa2 0.125qa2 0.037qa2

2 0.0093qa4/D - 0 A22qa2 0.094ga2 0.047go2

1.5 0.0064ga4AD -0.112ga2 0.069ga2 0.048ga2

1.4 0.005Sqa4/D -0.109ga2 0.063ga2 0.047ga2

1.3 0.0050qaA/D -0.104ga2 0.056ga2 0.045^a2

1.2 0.0043qa4/D -O.OQSqa2 0.049?a2 0.044ga2

1.1 0.0035qa4/D -0.092ga2 0.041ga2 0.042ga2

1.0 0.002Sqa4/D -0.084ga2 0.034ga2 0.039ga2

1/1.1 O.OOWqW/D ~0.092qb2 0.033gb2 0.043g62

1/1.2 0.0035gf6V^> -0.098g62 0.032gb* 0.047gb»

1/1.3 0.0038g64/£> - 0 . 1 0 3 ^ 2 0.031g62 0.050g62

1/1.4 0.0040?6V^ -0.108g62 0.030gb2 0.052g62

1/1.5 0.0042^4/£> -O . l l l gb 2 0.028(?b2 0.054gb2

0.5 0 .0049^ 4 /^ -0.122g62 0.023gfc2 0.060g62

0 0.0052qb4/D -0.125qb2 0.019<?62 0.062g62

i

For a square plate the first two terms of this series give

Subtracting this deflection from the deflection of the simply supported
square plate (Table 8), we find that the deflec-
tion at the center of a uniformly loaded square
plate with one edge built in is

Values of deflection and bending moments for
several other values of the ratio a/b obtained in a
similar way are given in Table 32.

Plates under Hydrostatic Pressure. If the plate
is under a hydrostatic pressure, as shown in Fig.
89, the slope along the edge y = 6/2, in the case

of simply supported edges, is (see page 190)

FIG. 89



The slope produced by bending moments distributed along the edge
y = b/2 is

From the condition of constraint along this edge, we find by equating
expression (g) to expression (/) with negative sign

Hence the expression for the bending moment My along the edge y = 6/2
is

This series converges rapidly, and we can readily calculate the value of
the moment at any point of the built-in edge. Taking, for example, a
square plate and putting x = a/2, we obtain for the moment at the middle
of the built-in edge the value

(My)y=*/2,x=a/2 = - 0 . 0 4 2 g 0 a 2

This is equal to one-half the value of the moment in Table 32 for a
uniformly loaded square plate, as it should be. Values of the moment
(My)y=b/2 for several points of the built-in edge and for various values of
the ratio b/a are given in Table 33. It is seen that as the ratio b/a
decreases, the value of My along the built-in edge rapidly approaches the

TABLE 33. VALUES OF THE MOMENT My ALONG THE BUILT-IN EDGE y — 6/2

OF RECTANGULAR PLATES UNDER HYDROSTATIC LOAD gox/a (FIG. 89)

b/a x = a/4 x = a/2 x = Ja

00 - 0 . 0 3 9 g 0 a 2 - 0 . 0 6 2 ? 0 a 2 -0.055?<>a*
2 - 0 . 0 3 8 ? 0 a 2 - 0 . 0 6 1 o o a 2 -O.O53goa*
1 - 0 . 0 3 4 g 0 a 2 -0.056?<>a2 -0 .05Og 0 O*
I -O.O25goa2 -0.042g<>a2 - 0 . 0 4 0 g 0 a *

I -O.O3Ogo&2 -0 .056g0*>2 -0.060g<>&2

i -O.OSlqob2 -0.061g<>62 -O.O73go&*
0 - 0 . 0 3 Ig0^2 -O.O62g o 6 2 -O.O94go6 2



value — qjb2x/&a, which is the moment at the built-in and of a strip of
length b uniformly loaded with a load of intensity qox/a.

Now let us consider a plate subjected to a hydrostatic load just as
before, this time, however, having the edge x = a built in (Fig. 90).

In applying the method of M.»L6vy to this case we take the deflection
surface of the plate in the form

in which

FIG. 90

Expression (i) satisfies the differential equation of the bent plate and the
edge conditions at y = ±6/2 as well. Expanding the expression in
parentheses in Eq. (i) in the series

we obtain the coefficients Am, Bm, . . . from the conditions on both other
edges: i.e..

Substitution of the coefficients in expression (i) makes the solution com-
plete. Deflections and bending moments obtained from the latter equa-
tion are given in Table 34.

TABLE 34. DEFLECTIONS AND BENDING MOMENTS IN RECTANGULAR PLATES

CLAMPED AT x = a AND CARRYING HYDROSTATIC LOAD (FIG. 90)

v = 0.3

b/a (ty)z_a/2,j/=-0 (Ms);c-a/2,i/=0 (Mv)Xm.al2,v-0 (Mxjx-a.j-O

oo 0.0024q0a
A/D 0.029q0a

2 0.009?0a
2 -0.067g0a2

2 0.002Sq0a*/D 0.029g0a
2 0.011?0a

2 -0.063g0a2

1.5 0.0019qoa*/D 0.02QqQa* 0.013g0a
2 -0.061g0a2

1.0 0.00ldqQa4/D 0.019g0a
2 0.01Bg0O

1 -0.048g0a2

I 0.0030qQb4/D 0.028g0&
2 0 . 0 3 4 ^ 2 -0.07Ig0^2

0.5 O.OO45tfo&V£ 0.024q0b* 0.046g06
2 -0.084g062

0 0.0065ga&4/i> 0.019g06
2 0.062g06

2 -0.125(Z062



44. Rectangular Plates with AU Edges Built In.1 In discussing this
problem, we use the same method as in the cases considered previously.
We start with the solution of the problem for a simply supported rec-
tangular plate and superpose on the deflection of such a plate the deflec-
tion of the plate by moments distributed along
the edges (see Art. 41). These moments we
adjust in such a manner as to satisfy the con-
dition dw/dn = 0 at the boundary of the
clamped plate. The method can be applied to
any kind of lateral loading.

Uniformly Loaded Plates. To simplify our
discussion we begin with the case of a uniformly
distributed load. The deflections and the mo-
ments in this case will be symmetrical with
respect to the coordinate axes shown in Fig. 91.
The deflection of a simply supported plate, as
given by Eq. (139) (page 116), is represented for the new coordinates in
the following form:

FIG. 91

1FOr the mathematical literature on this subject see "Encyklopadie der mathe-
matischen Wissenschaften," vol. 4, art. 25 (Tedone-Timpe), pp. 165 and 186. Other
references on this subject are given in the paper by A. E. H. Love, Proc. London Math.
Soc, vol. 29, p. 189. The first numerical results for calculating stresses and deflections
in clamped rectangular plates, were obtained by B. M. Koyalovich in his doctor's
dissertation, St. Petersburg/1902. • .Further progress was made by I. G. Boobnov, who
calculated the tables for deflections and moments in uniformly loaded rectangular
plates with clamped edges; see his "Theory of Structures of Ships," vol. 2, p. 465, St.
Petersburg, 1914, and "Collected Papers on the Theory of Plates," p. 144, Moscow,
1953. The same problem was discussed also by H. Hencky in his dissertation "Der
Spannungszustand in rechteckigen Platten," Munich, 1913. Hencky's method was
used by I. A. Wojtaszak, / . Appl. Mechanics, vol. 4, p. 373, 1937. The numerical
results obtained by Wojtaszak in this way for a uniformly loaded plate coincide with
the values given in Boobnov's table. Further solutions for the same plate and various
cases of loading are due to H. Leitz, Z. Math. Phys., vol. 64, p. 262, 1917; A. Nadai,
Z. angew. Math. Mech.} vol. 2, p. 14, 1922; A. Weinstein and D. H. Rock, Quart. Appl.
Math., vol. 2, p. 262, 1944; P. Funk and E. Berger, " Federhofer-Girkmann-Fest-
schrift," p. 199, Vienna, 1950; G. A. Grinberg, Doklady Akad. Nauk. S.S.S.R., vol. 76,
p. 661, 1951; K. Girkmann and E. Tungl, Osterr. Bauzeitschrift, vol. 8, p. 47, 1953.
An experimental investigation of the problem is due to B. C. Laws, Phil. Mag., vol.
24, p. 1072, 1937. Our further discussidn makes use of the method developed by
S. Timoshenko, Proc. Fifth Intern. Congr. Appl. Mech., Cambridge, Mass., 1938; the
method is more general than most of those previously mentioned; it can be applied to
any kind of loading, including the case of a concentrated load.



where am = rmrbfoa. The rotation at the edge y = 6/2 of the plate is

Let us consider now the deflection of the plate by the moments dis-
tributed along the edges y = ±6/2. From considerations of symmetry
we conclude that the moments can be represented by the following series:

The corresponding deflection W\ is obtained from expression (173) by sub-
stituting x + a/2 for x and taking m = 1,3,5, . . . . Then

The rotation at the edge y = 6/2, corresponding to this deflection, is

In our further discussion we shall need also the rotation at the edges
parallel to the y axis. Forming the derivative of the expression (d) with
respect to x and putting x = a/2, we obtain



The expression in parentheses is an even function of y which vanishes
at the edges y = ± 6/2. Such a function can be represented by the series

in which the coefficients Ai are calculated by using the formula

from which it follows that

Substituting this in expressions (g) and (/), we obtain

In a similar manner expressions can be obtained for the deflections W2

and for the rotation at edges for the case where moments Mx are dis-
tributed along the edges x = ±a/2. Assuming a symmetrical distribu-
tion and taking

we find for this case, by using expressions (e) and Qi)1 that

where fim = mxa/26, and that

When the moments (c) and (i) act simultaneously, the rotation at the
edges of the plate is obtained by the method of superposition. Taking,



for example, the edge y = b/2, we find

Having expressions (b) and Q), we- can now derive the equations for
calculating the constants E7n and F7n in series (c) and (i) which represent
the moments acting along the edges of a clamped plate. In the case of
a clamped plate the edges do not rotate. Hence, for the edges y = ± b/2,
we obtain

In a similar manner, for the edges x = ± a/2, we find

If we substitute expressions (b) and (I) in Eq. (m) and group1 together
the terms that contain the same cos (inx/a) as a factor and then observe
that Eq. (m) holds for any value of x, we can conclude that the coefficient
by which cos (iirx/a) is multiplied must be equal to zero for each value
of i. In this manner we obtain a system that consists of an infinite num-
ber of linear equations for calculating the coefficients Ei and F4- as follows:

A similar system of equations is obtained also from Eq. (n). The
constants Eh E3, . . . , Fi, F3, . . . can be determined in each particu-
lar case from these two systems of equations by the method of successive
approximations.

To illustrate this method let us consider the case of a square plate.
In such a case the distribution of the bending moments along all sides
of the square is the same. Hence Ei — Fi, and the two systems of equa-

1 It is assumed that the order of summation in expression (I) is interchangeable.



tions, mentioned above, are identical. The form of the equations is

Substituting the numerical values of the coefficients in these equations
and considering only the first four coefficients, we obtain the following
system of four equations with four unknowns Ei, E3, E5, and E7:

1.8033E1 I +0.0764E3 +0.0188E5 +0.0071,EJ7 = 0.6677Z
0.0764E1 +0.4045Jg31 +0.0330E5 +0.0159E7 = 0.01232K (

0.0188Ei +0.0330E3 +0.2255E51 +0.0163E7 = 0.00160K W

0.0071E1 +0.0159E3 +0.0163E5 +0.1558E7 = 0.00042#

where K = —4ga2/7r3. It may be seen that the terms along the diagonal
have the largest coefficients. Hence we obtain the first approximations
of the constants Ei, . . . , E7 by considering on the left-hand sides of
Eqs. (p) only the terms to the left of the heavy line. In such a way we
obtain from the first of the equations Ei = 0.3700i£. Substituting this
in the second equation, we obtain E3 = — 0.0395K. Substituting the
values of Ei and E3 in the third equation, we find E5 = — 0.0180K.
From the last equation we then obtain E7 = — 0.0083K. Substituting
these first approximations in the terms to the right of the heavy line
in Eqs. (p), we can calculate the second approximations, which are
Ei = 0.3722i£, E3 = -0.0380iiC, E5 = -0.0178Z, E7 = -0.0085&.
Repeating the calculations again, we shall obtain the third approxi-
mation, and so on.

Substituting the calculated values of the coefficients Ei, E3, . . . in
series (c), we obtain the bending moments along the clamped edges of
the plate. The maximum of the absolute value of these moments is at
the middle of the sides of the square. With the four equations (p) taken,
this value is

|Afy|»-6/2,*-o = \Ei - E3 + E 5 - E7| = 0.0517ga2

The comparison of this result with Boobnov's table, calculated with a
much larger number of equations similar to Eqs. (p), shows that the
error in the maximum bending moment, by taking only four equations
(p), is less than 1 per cent. It may be seen that we obtain for the moment
a series with alternating signs, and the magnitude of the error depends on
the magnitude of the last of the calculated coefficients Ei, E3, . . . .

Substituting the values of Ei, E3, . . . in expression (d), we obtain
the deflection of the plate produced by the moments distributed along



TABLE 35. DEFLECTIONS AND BENDING MOMENTS IN A UNIFORMLY LOADED

RECTANGULAR PLATE WITH BUILT-IN EDGES (FIG. 91)

v = 0.3

b/a {w)x-0,y-0 (Afz)i-a/2.y-0 (M »)x-0.y-6/2 (^i)i-0,»-0 (Mj,)x-0.»-0

1.0 0.00126ga4/Z> -0.0513ga2 -0.0513ga2 0.0231?a2 0.0231ga2

1.1 0.00150r/a4/Z) -0.0581 qa* -0.0538#a2 0.0264ga2 0.0231ga2

1.2 0.00172ga4/.D -0.0639ga2 -0.0554qa2 0.0299ga2 0.0228ga2

1.3 0.00191ga4/D -0.0687?a2 -0.0563ga2 0.0327ga2 0.0222ga2

1.4 0.00207qa4/D -0.0726qa2 -0.0568ga2 0.0349ga2 0.0212go2

1.5 0.00220ga4/£> -0.0757ga2 -0.0570ga2 0.0368ga2 0.0203ga2

1.6 0.00230ga4/I> -0.0780^a2 -0.0571ga2 0.0381go2 0.0193ga2

1.7 0.00238ga4/£> -0.0799^a2 -0.0571ga2 0.0392^a2 0.0182ga2

1.8 0.00245ga4/I> -0.0812^a2 -0.0571ga2 0.0401ga2 0.0174ga2

1.9 0.00249^a4/D -0.0822ga2 -0.0571#a2 0.0407^a2 0.0165^a2

2.0 0.00254qa*/D -0.0829ga2 -0.0571ga2 0.0412ga2 0.0158ga2

oo 0.00260?a4/D -0.0833<?a2 -0.0571ga2 0.0417ga2 0.0125^a2

the edges y — ±6/2. For the center of the plate (x = y = 0) this
deflection is

Doubling this result, to take into account the action of the moments dis-
tributed along the sides x = ±a/2, and adding
to the deflection of the simply supported square
plate (Table 8), we obtain for the deflection at
the center of a uniformly loaded square plate
with clamped edges

Similar calculations can be made for any ratio
of the sides of a rectangular plate. The results
of these calculations are given in Table 35.l

Plates under Hydrostatic Pressure. Representing the intensity of the
pressure distributed according to Fig. 92 in the form

1 The table was calculated by T. H. Evans; see J. Appl. Mechanics, vol. 6, p. A-7,
1939.

FIG. 92



we see that the effect of the term qo/2 on the deflections of the plate is
already given by the previous solution. Thus it remains to consider the
pressure qox/2a. The deflection surface of a simply supported plate
carrying such a load is readily obtained by combining the expression (k)
on page 190 with the expression (a) on page 186. Putting q = —qo/2 in
this latter expression and replacing x by x + a/2 in both expressions in
accordance with new coordinates, we obtain the deflection surface

symmetrical with respect to the x axis and antisymmetrical with respect
to the y axis. Consequently, to eliminate the slope along the boundary
of the plate we have to apply edge moments of the following form:

Proceeding just as in the case of the uniformly distributed load, we calcu-
late the coefficients Em and Fm from a system of linear equations. The
deflections due to the simultaneous action of the
load q<&/2a and the moments (s) must be added,
finally, to the deflections of the clamped plate
loaded uniformly with qo/2. Numerical re-
sults obtained by such a procedure are given in
Table 36.l

Plates under Central Load. As a third ex-
ample let us consider the bending of a rectan-
gular plate with clamped edges under the action
of a load P concentrated at the center (Fig. 93).
Again we go back to the case of a simply sup-
ported plate. Substituting into expression (146) a/2 for £, and x + a/2

1SeC Dana Young, J. Appl. Mechanics, vol. 7, p. A-139, 1940. More extensive
tables were computed, by means of the method of finite differences, by E. G. Odley,
J. Appl. Mechanics, vol. 14, p. A-289, 1947.

FIG. 93



TABLE 36. DEFLECTIONS AND BENDING MOMENTS IN RECTANGULAR PLATES

WITH BUILT-IN EDGES AND HYDROSTATIC LOAD (FIG. 92)

v = 0.3

x = 0, y = 0 X = a/2, y = 0 x = - a / 2 , y = 0 x = 0, y = ±6/2

b

w =c a Mx = /3igoa2 My — (itqoa11 Mx = 7igoa2 Mx = 7290a2 My = Sqoa*

a 0i /32 71 2! -

0.5 0.000080 0.00198 0.00515 -0.0115 -0.0028 -0.0104

1 0.000217 0.00451 0.00817 -0.0187 -0.0066 -0.0168
1.0 0.00063 0.0115 0.0115 -0.0334 -0.0179 -0.0257
1.5 0.00110 0.0184 0.0102 -0.0462 -0.0295 -0.0285
=0 0.00130 0.0208 0.0063 -0.0500 -0.0333

for x, we arrive at the deflection surface (valid for y > Q)

The angle of rotation along the edge y — 6/2 is

To calculate the bending moments along the clamped edges we proceed
as in the case of uniform load and obtain the same two systems of Eqs.
(m) and (ri). The expressions for Wi and W2 are the same as in the former
case, and it will be necessary to change only the first term of these equa-
tions by substituting expression (t) instead of (dw/dy)y==b/2 in Eq. (m),
and also a corresponding expression for (dw/dx)x=a/2 in Eq. (n).

For the particular case of a square plate, limiting ourselves to four
equations, we find that the left-hand side of the equations will be the
same as in Eqs. (p). The right-hand sides will be obtained from the
expression (J), and we find

1.8O33J01 + 1 0.0764ff 3 + 0.0188E5 + 0.0071E7 = -0.1828P
0.0764E1 + 0.4045E3 + | 0.0330E5 + 0.0159E7 = +0.00299P
0.0188Ei + 0.0330E3 + 0.2255E5 + [ 0.0163E7 = -0.000081P
0.0071Ei + 0.0159E3 + 0.0163E5 + 0.1558E7 = +0.000005P



Solving this system of equations by successive approximations, as before,
we find

E1 = -0.1025P Ez = 0.0263P
Eb = 0.0042P E1 = 0.0015P

Substituting these values in expression (c), the bending moment for the
middle of the side y — 6/2 can be obtained. A more accurate calcu-
lation1 gives

(Mv)y=b/2,x=o = -0.1257P

Comparing this result with that for the uniformly loaded square plate,
we conclude that the uniform load produces moments at the middle of
the sides that are less than half of that which the same load produces if
concentrated at the center.

Having the moments along the clamped edges, we can calculate the
corresponding deflections by using Eq. (d). Superposing deflections pro-
duced by the moments on the deflections of a simply supported plate,
we obtain the deflections of the plate with built-in edges. By the same
method of superposition the other information regarding deflection of
plates with built-in edges under a central concentrated load can be
obtained.2 Thus, if the load P is distributed uniformly over the area
of a small circle or rectangle, the bending moments at the center of the
loaded area x = y = 0 can be obtained by combining the results valid
for simply supported plates [see Eqs. (157) and (167)] with some addi-
tional moments

1MtX — fi\P WIy = $?P

given in Table 37 along with data regarding the maximum deflection of
the plate and the numerically largest clamping moment. This latter
moment, however, can reach the value of — P/w = — 0.3183P, as men-
tioned on page 192, in the case of a movable load.

45. Rectangular Plates with One Edge or Two Adjacent Edges Simply
Supported and the Other Edges Built In. Let us begin with the case of a
plate simply supported at the edge y = 0 and clamped along the other
edges (Fig. 94). No matter how the load may be distributed over the

1 In this calculation seven equations, instead of the four equations taken above,
were used.

2 Calculated by Dana Young, J. Appl. Mechanics, vol. 6, p. A-114, 1939. To
obtain the moments with the four correct figures it was necessary to use in this calcula-
tion seven coefficients E and seven coefficients F in Eqs. (m) and (n). Further solu-
tions of the problem were given by H. Marcus "Die Theorie elastischer Gewebe,"
2d ed., p. 155, Berlin, 1932; J. Barta, Z. angew. Math. Mech., vol. 17, p. 184, 1937;
G. Pickett, / . Appl. Mechanics, vol. 6, p. A-168,1939; C. J. Thome and J. V. Atanasoff,
Iowa State Coll. J. Sd., vol. 14, p. 333, 1940. The case was investigated experi-
mentally by R. G. Sturm and R. L. Moore, / . Appl. Mechanics, vol. 4, p. A-75,1937.



TABLE 37. BENDING MOMENTS AT THE MIDDLE OF LONGER SIDES AND

DEFLECTIONS AND ADDITIONAL MOMENTS AT THE CENTER OF

RECTANGULAR PLATES LOADED AT THE CENTER (FIG. 93)

v = 0.3

„ Correction moments
Pa2

Mx=V=O = a — (My)x=0,v^b/2 = yP
/CL ° ( W 1 ) , . , . , = foP (mw)x_tf_0 = /32P

a _ 7 fr fo

1.0 0.00560 -0.1257 -0.0536 -0.0536
1.2 0.00647 -0.1490 -0.0579 -0.0526
1.4 0.00691 -0.1604 -0.0618 -0.0517
1.6 0.00712 -0.1651 -0.0653 -0.0510
1.8 0.00720 -0.1667 -0.0683 -0.0504
2.0 0.00722 -0.1674 -0.0710 -0.0500

oo 0.00725 -0.168 -0.0742 -0.0484

given plate sstt, we can consider this plate as one-half of a plate rrtt hav-
ing all edges clamped and carrying a load antisymmetrical with respect
to the line ss. The deflections and the bending moments then are zero
along that line. Thus the problem under consideration is reduced to the

FIG. 94

problem already solved in Art. 44. Some numerical data concerning two
cases of load distribution are given in Table SS.1 A more extensive table

1 The tabulated results are due to Dana Young, J. Appl. Mechanics, vol. 7, p.
A-139, 1940, and to C. P. Siess and N. M. Newmark, Univ. Illinois Bull, vol. 47, p.
98, 1950. Y. S. Uflyand used quite a different method in treating this problem; see
Doklady Akad. Nauk. S.S.S.R., vol. 72, p. 655, 1950.



TABLE 38. DEFLECTIONS AND BENDING MOMENTS IN RECTANGULAR PLATES

WITH ONE EDGE SIMPLY SUPPORTED AND THREE EDGES BUILT IN

(FIG. 94)

Load b/a (w)x=o,v=b/2 (Mx)Xm.a/i.v-b/2 (Mv)x^o.v^b

Uniform pressure q 0.5 0.00449g&4/£> -0.07SGqb2 -O.lUSqb2

0.75 0.00286qb*/D -0.07S0qb* -0.0838g&2

1.0 0.00157g&4/£> -0.0601gfc2 -0.0551qb*
•J 0.00215gaV# -0.0750ga2 -0.0571ga2

2 0.00257ga4/£> -0.0837?a2 -0.0571ga2

Hydrostatic pressure qoy/b 0.5 0.00202tf0&
4/£> -0.0368g0&2 -0.0Q2Sq0b

2

0.75 0.001Z2qJ>*/D -0.0344g0&2 -0.0484? 0fc
2

1.0 O.OOO74go6V >̂ -0.0287g0&2 -0.0347g0&
2

of bending moments is given on page 244 in connection with a design
method for floor slabs.

The rectangular plate rsut (Fig. 95) with two adjacent edges x = 0 and
y = 0 simply supported and two other edges clamped can be regarded in
like manner as an integral part of the plate
bounded by x — +a, y = +b with all edges
built in.

Let us consider a load uniformly distributed
over the area rsut of the given plate.x A checker-
board loading distributed over the area 2a by 26
as shown in Fig. 95 then yields the conditions of a
simply supported edge along the lines x = 0 and
y = 0. Thus the problem of bending a plate with
two adjacent edges simply supported and two
others clamped is again reduced to the problem,
already solved in Art. 44, of a plate with all
edges built in. Calculations show that the numerically largest moment
is produced near the mid-point of the long side of the plate. The values
of this clamping moment prove to be — 0.1180g62 for b/a = 0.5 and
— 0.0694g62 for b/a = 1.0. The maximum bending moment near the
center of a square plate has the value of 0.034ga2 (for v = 0.3) and the
corresponding deflection is given by 0.0023ga4/D. Further numerical
data regarding bending moments in this case are given on page 243.

1 A modification of Timoshenko's method was applied in handling this case by
Siess and Newmark, loc. cit. For use of the energy method see W. B. Stiles, / . Appl.
Mechanics, vol. 14, p. A-55, 1947. See also M. K. Huang and H. D. Conway, / . Appl.
Mechanics, vol. 19, p. 451, 1952.

FIG. 95



46. Rectangular Plates with Two Opposite Edges Simply Supported,
the Third Edge Free, and the Fourth Edge Built In or Simply Supported.1

Let us assume the edges x = 0 and x = a in Fig.
96 as simply supported, the edge y = b as free,
and the edge y = 0 as built in. In such a case
the boundary conditions are

FIG. 96

and along the free edge [see Eqs. (112), (113), page 84]

In the particular case of a uniformly distributed load we proceed as in
Art. 30 and assume that the total deflection consists of two parts, as
follows:

where Wx represents the deflection of a uniformly loaded and simply sup-
ported strip of length a which can be expressed by the series

and w2 is represented by the series

where

Series (d) and (e) satisfy the boundary conditions (a), and the four con-
stants in expression (/) must be determined so as to satisfy the boundary

1 This case was discussed by Boobnov; see the English translation of his work in
Trans. Inst. Naval Arch., vol. 44, p. 15, 1902, and his "Theory of Structure of Ships,"
vol. 2, p. 545, St. Petersburg, 1914. It was also discussed by K. Goriupp, Ingr.-Arch.,
vol. 16, p. 77, 1947, and by V. Bogunovic, "On the Bending of a Rectangular Plate
with One Edge Free," Belgrade, 1953.



conditions (b) and (c). Using the conditions (6), we obtain

From the remaining two conditions (c) we find

where j3m = rrnrb/a.
Substituting the constants (g) and (h) in Eq. (/) and using series (e)

and (d), we obtain the expression for the deflection surface. The maxi-
mum deflection occurs in this case at the middle of the unsupported edge.
If the length b is very large in comparison with a, that is, if the free edge
is far away from the built-in edge, the deflection of the free edge is the
same as that of a uniformly loaded and simply supported strip of length a
multiplied by the constant factor (3 — v)(l + v)/(3 + v). Owing to the
presence of this factor, the maximum deflection is larger than that of the
strip by 6.4 per cent for v = 0.3. This fact can be readily explained if we
observe that near the free edge the plate has an anticlastic deflection
surface.

Taking another extreme case, when a is very large in comparison with 6,
the maximum deflection of the plate evidently is the same as for a uni-
formly loaded strip of length b built in at one end and free at the other.
Several values of the maximum deflection calculated1 for various values
of the ratio b/a are given in Table 39. This table also gives the maxi-
mum values of bending moments which can be readily calculated from
the expression for the deflection surface. The calculations show that
(Mx)max occurs at the middle of the unsupported edge. The numerical
maximum of the moment My occurs at the middle of the built-in edge.

The case of the hydrostatic load distributed according to the law
(/o(l — y/b) can be treated in the same manner as the foregoing case. Let
the deflection be expressed by

1 This table was calculated by Boobnov, op. cit.



TABLE 39. DEFLECTIONS AND BENDING MOMENTS FOR A UNIFORMLY LOADED

PLATE WITH TWO OPPOSITE EDGES SIMPLY SUPPORTED, THE THIRD EDGE

FREE, AND THE FOURTH BUILT I N (FIG. 96)

v = 0.3

x = a/2, y = b x = a/2, y = 0
b/a WWx

Mx My

0 0.125qb*/D 0 -0.500qb*
1 0.094qb VD 0.0078?a2 -0A28qb2

^ 0.05S2qb*/D 0.0293^a2 -0.319gfc2

I 0.0335qb*/D 0.0558ga2 -0.227 qb2

1 0.0№qb*/D 0.0972ga2 -0.119g62

1 0.0Ulqa*/D 0.123(?a2 -0 .124^a 2

2 0.0150gaV£> 0.131?a2 -0 .125ga 2

3 0.0152ga4/£> 0.133ga2 - 0 .125ga 2

oo 0.0152qa4/D 0.133ga2 -0.125ga2

in which Y7n is of the form (/), only with the constant #o instead of q.
Proceeding as before, we obtain the four constants Am, Bmj . . . , Dm

from the boundary conditions (a), (b), and (c).
If the plate is bent by a load distributed along the free edge, instead of

by a load distributed over the sur-
face, the second of the boundary
conditions (c) must be modified by
putting the intensity of the load
distributed along the free edge in-
stead of zero on the right-hand side
of the equation. The particular
case of a concentrated force applied
at the free edge of a very long plate

was investigated (Fig. 97).1 It was found that the deflection along the
free edge can be represented by the formula

FIG. 97

The factor a rapidly diminishes as the distance from the point A of appli-
1 See C. W. MacGregor, Mech. Eng., vol. 57, p. 225, 1935; D. L. HoIl, / . Appl.

Mechanics, vol. 4, p. 8, 1937; T. J. Jaramillo, / . Appl Mechanics, vol. 17, p. 67, 1950;
and K. Girkmann, "Flachentragwerke," 4th ed., p. 233, Vienna, 1956. The case of a
cantilever plate having three edges free and carrying a uniformly distributed load was
discussed by W. A. Nash, / . Appl. Mechanics, vol. 19, p. 33, 1952. See also the inves-
tigation of such a plate by W. T. Koiter and J. B. Alblas with numerical results given
in Proc. Koninkl. Ned. Akad. Wetenschap. Amsterdam, vol. 60, p. 173, 1957.



cation of the load increases. Several values of this factor are given in
Table 40. The numerically largest values of the clamping moment pro-
duced by a load acting at the middle of the free edge of a plate of a finite
length a are given in Table 41.1

TABLE 40

x= 0 6/4 6/2 6 26

a = 0.168 0.150 0.121 0.068 0.016

TABLE 41. BENDING MOMENTS M = /JP, AT X = 0, y = 0, DUE TO A LOAD P

ACTING AT X = 0, y = 6 AND THE EDGES X — ±a/2 BEING SIMPLY

SUPPORTED (FIG. 97)

v = 0.3

b/a = 4 2 1.5 1 I 0.5 -£ 0.25 0

p = -0.000039 -0.0117 -0.0455 -0.163 -0.366 -0.436 -0.498 -0.507 -0.509

The case of a uniformly loaded rectangular plate simply supported
along three edges and free along the edge y = b (Fig. 98) can be treated
in the same manner as the preceding case in
which the edge y = 0 was built in. It is neces-
sary only to replace the second of the boundary
conditions (6) by the condition

Omitting the derivations, we give here only the
final numerical results obtained for this case.
The maximum deflection occurs at the middle of
the free edge. At the same point the maximum bending moment Mx

takes place. These values of deflections wm&x and (Mx)max are given in
the second and third column of Table 42.2 The last two columns give
the bending moments at the center of the plate.

Table 43, in a similar manner, contains the values of deflections and
bending moments produced at the middle of the free edge and at the
center of the plate by a hydrostatic load.

47. Rectangular Plates with Three Edges Built In and the Fourth
Edge Free. Plates with such boundary conditions are of particular
interest as an integral part of rectangular tanks or retaining walls. Con-

1 This table was calculated by V. Bogunovic, loo. cit. See also Art. 78.
2 This table and Table 43 were calculated by B. G. Galerkin; see Bull. Polytech.

InsL, vol. 26, p. 124, St. Petersburg, 1915.

FIG. 98



TABLE 42. DEFLECTIONS AND BENDING MOMENTS IN UNIFORMLY LOADED

RECTANGULAR PLATES WITH THREE EDGES SIMPLY SUPPORTED AND

THE FOURTH EDGE FREE (FIG. 98)

v = 0.3

x = a/2, y = b x =» a/2, y = 6/2
b/a

uwx ( M 1 ) ^ X MX MV

i 0.00710qa*/D 0.060ga2 0.039ga2 0.022ga2

I 0.00968ga4/D 0.083ga2 0.055ga2 0.030ga2

1/1.4 0.01023qa*/D 0.0S8qa2 0.059ga2 0.032^a*
1/1.3 0.01092ga7£ 0.094ga2 0.064ga2 0.034ga2

1/1.2 0.01158ga4/£ O.lOOga2 0.069ga2 0.036ga2

1/1.1 0.01232ga7£ 0.107ga2 0.074ga2 0.037go2

1 0.01286ga4/£ 0.112ga2 0.080ga2 0.039ga2

1.1 0.01341gaVZ> 0.117go2 0.085ga2 0.040ga2

1.2 0.01384gaV# 0.121ga2 0.090ga2 0.041ga2

1.3 0.01417ga4/£ 0.124ga2 0.094ga2 0.042ga2

1.4 0.0U42qa*/D 0.126go2 0.098ga2 0.042ga2

1.5 0.01462ga4/D 0.128ga2 O.lOlga2 0.042ga2

2 0.01507ga4AD 0.132ga2 0.113ga2 0.041ga2

3 0.01520ga4/£ 0.133go2 0J22ga2 0.039ga2

oo 0.01522gaV£> 0.133ga2 0.125ga2 0.037ga2

TABLE 43. DEFLECTIONS AND BENDING MOMENTS IN HYDROSTATICALLY LOADED

RECTANGULAR PLATES WITH THREE EDGES SIMPLY SUPPORTED AND THE

FOURTH EDGE FREE (FIG. 99)

v = 0.3

x = a/2, y = b x = a/2, y = 6/2
b/a

w Mx w Mx My

i 0.00230g0aVD 0.0197g0a
2 0.00135g0a

4AD 0.0145g0a
2 0.0120g0a

2

I 0.00304g0aV£> 0.0265g0a
2 0.00207g0a */D 0.0220g0a

2 0.0156g0a
2

1 0.00368g0a
4AD 0.0325g0a

2 0.00313g0a
4/£> 0.0331g0a

2 0.0214g0a
2

1.5 0.00347g0aV# 0 • 0308g0a
2 0.00445g0a

4/D 0.0453g0a
2 0.0231g0a

2

2.0 0.00291g0a
4AD 0.0258g0a

2 0.00533g0a
4/D 0.0529g0a

2 0.0222g0a
2

oo 0 0 0.00651g0a
4/Z) 0.0625g0a

2 O.O187goa2



sequently, the uniformly distributed and the hydrostatic load must be
considered first of all in that case.

Let the boundary of the plate be clamped at y = 0 and x = ±a/2
and free along y = b (Fig. 100). Assuming first a uniformly distributed
load of intensity q, the expression for deflections may be taken in the form

The expressions for

contained in Eq. (a) are identical with expressions (d) and (e) of the
preceding article if one considers the new position of the origin.

FIG. 99 FIG. 100

A suitable form for the additional deflections wz due to the additional
constraint on the edges x = ± a/2 is1

in which Fn, . . . , Im are some constants and yn = mra/4:b.
1 This method of solution essentially is due to Goriupp, op. cit., p. 153 1948.

See also W. J. Van der Eb, higenieur, vol. 26, p. 31, 1950.



As Wz = O for y = 0 and x = ± a/2, the boundary conditions still to
be satisfied by deflections (d) are the following:

Now we expand all noncircular functions of x contained in expression (a)
in a series of the form 2am cos (mirx/a) and all similar functions of y in
a series of the form S6n sin (rnry/2b). A set of linear equations for Fn,
Gn, . . . , Im is then readily obtained from conditions (e). Solving the
equations we are able to express those unknown constants by the known

values of Am, . . . , Dm (see page 209).
In the case of a hydrostatic pressure

acting in accordance with Fig. 101, we have
to superpose solution (i) of the preceding
article on the solution of form (d) and,
besides that, to proceed as indicated above.

Whatever the load, the problem can also
be handled1 by the method of finite differ-
ences (see Art. 83). Numerical values of
Tables 44 and 45 are computed essentially
by that procedure.1

48. Rectangular Plates with Two Opposite Edges Simply Supported
and the Other Two Edges Free or Supported
Elastically. Let us consider the case where the
edges x = 0 and x = a (Fig. 102) are simply sup-
ported and the other two edges are supported by
elastic beams. Assuming that the load is uni-
formly distributed and that the beams are iden-
tical, the deflection surface of the plate will be
symmetrical with respect to the x axis, and we
have to consider only the conditions along the
side y — b/2. Assuming that the beams resist
bending in vertical planes only and do not resist
torsion, the boundary conditions along the edge y = 6/2, by using Eq
(114), are

FIG. 101

Elost. beam
or free

FIG. 102

1 See A. Smotrov, "Solution for Plates Loaded According to the Law of Trapeze,"
Moscow, 1936.

Elost. beam or free



TABLE 44. DEFLECTIONS, BENDING MOMENTS, AND REACTIONS OF UNIFORMLY LOADED RECTANGULAR PLATES WITH THREE

EDGES BUILT IN AND A FOURTH EDGE FREE (FIG. 100)

*-*

x = 0, y = 0x = a/2, y = 6/2x = a/2, y =b3 = 0 , ? / = 6/2x = 0, t/ = 6

7574

Mx

= 04ga2

Vx

7303

Mx

02«2

Mx

0i

qa4

= «: —

ai

6
a

0.416
0.413
0.410
0.406
0.401
0.388
0.373

-0.0554
-0.0545
-0.0535
-0.0523
-0.0510
-0.0470
-0.0418

0.297
0.346
0.385
0.414
0.435
0.475
0.491

-0.0365
-0.0439
-0.0505
-0.0563
-0.0614
-0.0708
-0.0755

0.750
0.717
0.685
0.656
0.628
0.570
0.527

-0.0745
-0.0782
-0.0812
-0.0836
-0.0853
-0.0867
-0.0842

0.0074
0.0097
0.0116
0.0129
0.0138
0.0142
0.0118

0.0168
0.0212
0.0252
0.0287
0.0317
0.0374
0.0402

0.00129
0.00159
0.00185
0.00209
0.00230
0.00269
0.00290

0.0336
0.0371
0.0401
0.0425
0.0444
0.0467
0.0454

0.00271
0.00292
0.00308
0.00323
0.00333
0.00345
0.00335

0.6
0.7
0.8
0.9
1.0
1.25
1.5



TABLE 45. DEFLECTIONS, BENDING MOMENTS, AND REACTIONS OF HYDROSTATICALLY LOADED RECTANGULAR PLATES WITH

THREE EDGES BUILT IN AND A FOURTH EDGE FREE (FIG. 101)

*-*

x = 0, y = 0z = a/2, y = 6/2x = a/2, y = bx = o, !/ = 6/2x = 0, ?y = 6

Fv

74

MxF,

73

= /33<?oa2

/33

WMx

g0a4

6
a

0.248
0.262
0.275
0.286
0.295
0.309
0.311

-0.0242
-0.0261
-0.0278
-0.0290
-0.0299
-0.0306
-0.0291

0.136
0.158
0.177
0.194
0.209
0.234
0.245

-0.0131
-0.0170
-0.0206
-0.0239
-0.0269
-0.0327
-0.0364

0.093
0.081
0.069
0.057
0.045
0.018

-0.006

-0.0179
-0.0172
-0.0164
-0.0156
-0.0146
-0.0119
-0.0087

0.0062
0.0074
0.0083
0.0090
0.0094
0.0092
0.0075

0.0060
0.0080
0.0100
0.0118
0.0135
0.0169
0.0191

0.00044
0.00058
0.00072
0.00085
0.00097
0.00121
0.00138

0.0089
0.0093
0.0096
0.0096
0.0095
0.0085
0.0065

0.00069
0.00069
0.00068
0.00067
0.00065
0.00056
0.00042

0.6
0.7
0.8
0.9
1.0
1.25
1.5



where EI denotes the flexural rigidity of the supporting beams. Pro-
ceeding as in Art. 46, we take the deflection surface in the form

where

and

From symmetry it can be concluded that in expression (/) of Art. 46 we
must put Cm = Dm — 0 and take

The remaining two constants Am and B7n are found from the boundary
conditions (a), from which, using the notations

we obtain

Solving these equations, we find

The deflection surface of the plate is found by substituting these values
of the constants in the expression



If the supporting beams are absolutely rigid, X = <*> in expressions (/)
and (g), and Am and Bm assume the same value as in Art. 30 for a plate
all four sides of which are supported on rigid supports.

Substituting X = 0 in expressions (/) and (g), we obtain the values of
the constants in series (h) for the case where two sides of the plate are
simply supported and the other two are free.

Except for the case of very small values of X the maximum deflection
and the maximum bending moments are at the center of the plate.
Several values of these quantities calculated for a square plate and for
various values of X are given in Table 46.l

TABLE 46. DEFLECTIONS AND BENDING MOMENTS AT THE CENTER OF A

UNIFORMLY LOADED SQUARE PLATE WITH TWO EDGES SIMPLY

SUPPORTED AND THET OTHER TWO SUPPORTED BY ELASTIC

BEAMS (FIG. 102)

v = 0.3

X = EI/aD i tw (M.)m.x (Mv)max

oo 0.00406qa4/D 0.0479ga2 0.0479ga2

100 0.00409ga4/Z) 0.0481ga2 0.0477ga2

30 0.00416ga4/Z) 0.0486ga2 0.0473ga2

10 0.00434ga4/£> 0.0500ga2 0.0465ga2

6 0.00454ga4/Z> 0.0514ga2 0.0455ga2

4 0.00472^a4AD 0.0528ga2 0.0447ga2

2 0.00529<?a4//) 0.0571?a2 0.0419?a2

1 0.00624ga4/i) 0.0643ga2 0.0376qa2

0.5 0.00756ga4/D 0.0744ga2 0.0315^a2

0 0.01309ga4AD 0.1225?a2 0.0271ga2

The particular case X = 0 of a plate with two opposite edges simply supported and
the other two free deserves some consideration. As Table 472 shows, the deflections
and the largest moments of such a plate loaded uniformly differ but little from the
deflections and moments of a plate bent to a cylindrical surface.

49. Rectangular Plates Having Four Edges Supported Elastically or Resting on
Corner Points with AU Edges Free. Let us consider a plate subjected to a uniform
pressure and supported along the boundary by four flexible beams. All beams are
supposed to have rigid supports at the corners of the plate, and two beams parallel to
each other may have the same flexural rigidity (Fig. 103).

1 The table was calculated by K. A. Calisev, Mem. Inst. Engrs. Ways Commun.,
St. Petersburg, 1914. More recently the problem was discussed by E. Miiller,
Ingr.-Arch., vol. 2, p. 606, 1932. The tables for nonsymmetrical cases are calculated
in this paper. Various cases of rectangular and continuous plates supported by
flexible beams were discussed by V. P. Jensen, Univ. Illinois Bull., 81, 1938.

2 These results are due to D. L. HoIl, Iowa State Coll. Eng. Exp. Sta. Bull. 129, 1936.
For the case of a concentrated load see also R. Ohlig, Ingr.-Arch., vol. 16, p. 51, 1947.
Both authors also discuss the effect of clamping the supported edges.



TABLE 47. DEFLECTIONS AND BENDING MOMENTS IN UNIFORMLY LOADED

RECTANGULAR PLATES WITH THE EDGES X = 0, x = a SIMPLY

SUPPORTED AND THE OTHER TWO FREE (FIG. 102)

v = 0.3

x = a/2, y = 0 x = a/2, ?/ = ±6/2

6/tt ^a4 , qa*
w = a — Mx = piqa2 My = P1Qa2 w = a2 — Af3; = fotfa2

ai (St 1S1 a2 02

0.5 0.01377 0.1235 0.0102 0.01443 0.1259
1.0 0.01309 0.1225 0.0271 0.01509 0.1318
2.0 0.01289 0.1235 0.0364 0.01521 0.1329
* 0.01302 0.1250 0.0375 0.01522 0.1330

By writing the deflections in the form

where 5/y and An, . . . ,Dn are some constants and n — 1, 3, 5, . . . , we satisfy the
differential equation AAw = q/D of the plate and also the conditions of symmetry.1

Next, let us develop the algebraic and the hyperbolic
functions contained in expression (a) in cosine series.
Then, using for x = a/2 and y — b/2 the edge condi-
tions similar to conditions (a) of the preceding article,
we arrive at a set of equations for the constants
An, . . . , Dn of expression (a).

Making, in particular, 8/y = 0 and Ebh = oo, we
would arrive at the solution of the problem already
discussed in Art. 48.

Let us consider now the bending of a square plate
(a = b) supported by four identical beams. We have
then, by symmetry, d/y = 1, and An = Bn and
Cn = Dn. The unknown coefficients An are eliminated
by equating to zero the edge moments. Taking, then,
only four terms (n = 1, 3, 5, and 7) in series (a), we arrive at four linear equations for
Ci, Cz, C5, and Cj. The results of numerical calculations carried out in this way are
given in Table 48.

1 This method of solution is due to B. G. Galerkin; see his " Collected Papers," vol.
2, p. 15, Moscow, 1953. The boundary conditions under consideration are easily
realizable and thus appropriate for the verification of the theory by tests. See
N. Dimitrov, Bauingenieur, vol. 32, p. 359, 1957.

FIG. 103



TABLE 48. DEFLECTIONS AND BENDING MOMENTS OF A SQUARE PLATE WITH

FOUR SIDES SUPPORTED ELASTICALLY (Fig. 103)

v = 0.25

x = 0, y = 0 x = 0, y = a/2

EI "
7 = — qa4

aD w = a — Mx = Mv = Piqa2 Mx = P2Qa*

a 0i 02

00 0.00406 0.0460 0
100 0.00412 0.0462
50 0.00418 0.0463
25 0.00429 0.0467 0.0002

10 0.00464 0.0477 0.0024
5 0.00519 0.0494 0.0065
4 0.00546 0.0502 0.0085
3 0.00588 0.0515 0.0117

2 0.00668 0.0539 0.0177
1 0.00873 0.0601 0.0332
0.5 0.01174 0.0691 0.0559
0 0.0257 0.1109 0.1527

In the particular case of EI — 0 we have a square plate carrying a uniformly dis-
tributed load and supported only at the corners. The value of v has but little influence
on the deflections and moments at the center of the plate; its effect on the edge
moments is more considerable. Taking, for example, v = 0.3 the values given in the
last line of Table 48 for v = 0.25 should be replaced by 0.249, 0.1090, and 0.1404
respectively.1

The problem of bending of a centrally loaded square plate fixed only at the corners
has also been discussed.2 If the load P is distributed uniformly over a small area of a
rectangular or circular outline, an expression can be deducted3 for moments taking
place at the center of the loaded area. Taking, for example, a square loaded area
u by u, those moments for v — 0.3 can be expressed in the form

Mx = Mv = f 0.1034 log - + 0.129JF (b)

Having this solution and also the solution for the uniformly loaded square plate
supported at the corners, the problem shown in Fig. 104a can be treated by the method
of superposition. It is seen that if a square plate with free edges is supported by the

1SeC H. Marcus, "Die Theorie elasticher Gewebe," 2d ed., p. 173, Berlin, 1932;
various cases of plates fixed at points were discussed by A. Nadai, Z. angew. Math.
Mechn vol. 2, p. 1, 1922, and also by C. J. Thorns, / . Appl. Mechanics, vol. 15, p. 73,
1948.

2 See Marcus, ibid.
3 See S. Woinowsky-Krieger, Ingr.-Arch., vol. 23, p. 349, 1955.



uniformly distributed reactions, the bending moments at the center are obtained by
subtracting from expression (6) the value Mx = Mv = 0.1090ga2, given above for the
uniformly loaded square plate supported at the
corners and having v = 0.3. In this way we obtain

Mx - My = (0.1034 log ̂  + 0.020 J P (c)

valid for v = 0.3. The distribution of bending
moments along the middle line of the footing slab
is shown in Fig. 1046 for u/a =0.1 and u/a = 0.2.
A uniform distribution of the pressure may be as-
sumed for a very rigid footing slab resting on soft
subgrade. More general hypotheses regarding the
law of distribution of that pressure will be postu-
lated in Chap. 8.

50. Semi-infinite Rectangular Plates under
Uniform Pressure. The deflection surface and the
stress distribution near the short side of long
rectangular plates are practically the same as those
at the ends of semi-infinite plates, as shown in Fig.
105. It is mainly for this reason that the simple
theory of these latter plates deserves consideration.

FIG. 104a

Let the load be uniformly dis-

FIG. 1046
tributed over the area of the entire plate and let the edges x = 0, x = a be simply
supported.1

1 The following solutions of the problem are due to A. Nddai; see his book "Elas-
tische Platten," p. 72, Berlin, 1925.



The deflection surface of the plate may be expressed by

in which

is the particular solution of the equation AAw; = q/D, q being the intensity of the load,
and

is a solution of the equation AAw = 0, yielding zero deflections at y — «>. The
coefficients A m and Bm, which are still at our
disposal, must be determined so as to satisfy
the respective conditions along the edge y = 0
of the plate. The following three cases may
be considered.

The edge y = 0 is simply supported (Fig. 105a).
The particular conditions to be fulfilled are
w = 0 and d2w/dy2 = 0 for y = 0. Substitu-
tion of the series expressing w = Wi + w* in
those conditions yields the values A7n = — 1/m6

and Bm = Am/2 for the coefficients. Thus we
arrive at the deflection surfaceFIG. 105

in which W\ is given by Eq. (6).
Of particular interest are the bending moments Mv of the plate. Along the middle

line x = a/2 of the plate we have, by differentiation,

Making use of the condition dMv/dy = 0 and taking into account the first term of the
rapidly convergent series, we conclude that My becomes a maximum at

Table 49 gives the largest values of bending moments together with the largest values
of the edge reactions Vy and the forces R acting downward at the corners of the plate.

It should be noted that the value 0.0364^a2 exceeds by 45 per cent the value
0.0250tfa2 of the largest moment My of an infinitely long plate, the value of Poisson's
constant being the same in both cases.



TABLE 49. LARGEST BENDING MOMENTS AND REACTIONS OF A UNIFORMLY

LOADED SEMI-INFINITE PLATE WITH ALL EDGES SIMPLY SUPPORTED

(FIG. 105a)

P (iWx)max (ATy) max ( F v ) r o a X R

0.2 0.1250«o2, x = -jy = « 0 .0364^2 , z = - , y = o.48a 0.520qa, x = J y = 0 0.1085Qa*
2 2 2

0 .3 0.1250go2, x = -) y = « 0.0445^a*, x = -J y = 0.59a 0.502ga, a; = - > ? / = 0 0.0949«a2

2 2 2

The edge y = 0 is built in (Fig. 1056). Following the general procedure described
above, but using this time the edge conditions w — 0, dw/dy = 0 on y = 0, we obtain,
instead of expression (d), the result

in which Wi again is given by Eq. (6). The corresponding bending moment

becomes a maximum at x = a/2 and y — 2a/V(I — v). Assuming v = 0.3 we obtain
y = 0.91a and {My)m&^ = 0.0427ga2, whereas the assumption of v — 0.2 yields the
values of 0.0387f?a2 and y = 0.80a, respectively. It can be shown, also, that the
variation of the clamping moments along the short side y = 0 of the plate obeys the
simple law

Observing that at large values of y the deflection surface of the plate can be assumed
cylindrical, we have there

Thus, the distribution of the edge moments (o) is identical with the distribution of the
moments Mx across the plate at 2/ — °° but with opposite sign.

The edge y = 0 is free (Fig. 105c). If the conditions prescribed at y = 0 are

then, making use of expressions (a), (b), and (c), we arrive at the deflection surface



The deflection and the bending moment Mx are largest at the middle of the free edge.
It can be proved that

Wi and (Mx) i being the deflections and the moments of an infinite simply supported
plate. We have therefore

As a last example, leading to a different form of solution,
let us consider a uniformly loaded semi-infinite plate with
the edge y = 0 simply supported and the edges x — ± a/2
built in (Fig. 106). The solution can be obtained by sub-
stituting b = oo in a suitably chosen expression for the
deflections of a finite rectangular plate simply supported on
the edges y = 0, b and clamped on the edges x = ±o/2.
The result of such a derivation, which is omitted here, is

Differentiating expression (i) and observing that

we obtain

Thus the differential equation for bending of plates is satisfied. It can be shown that
the required boundary conditions at y — 0 and x = ±a/2 are also satisfied by solu-
tion (i).

The expressions for the bending moments of the plate again involve infinite integrals,
which can be evaluated. Once more the moments My are of interest. Assuming, for
example, v = 0.2, we arrive at a value of (Mj,)mai = 0.0174qa2, occurring at y = 0.3a,
whereas the moment Mv = vqa2/24 of an infinite plate does not exceed 0.00833ga2 for
the same value of v.

It should be noted that the properties of the semi-infinite plates can be used as
a basis for calculating the deflections and bending moments of finite rectangular
plates with simply supported or built-in edges in any given combination.1

1 For this approach to the theory of rectangular plates see W. Koepcke, Ingr.-Arch.,
vol. 18, p. 106, 1950.



51. Semi-infinite Rectangular Plates under Concentrated Loads. Assuming the
edges x = 0 and x = a of the plate to be simply supported, let us consider, regarding
the third side (y = 0 ) , the following two cases: (1) the edge y = 0 is simply supported,
and (2) the edge y = 0 is clamped.

The edge y = 0 is simply supported {Fig. 107). Assuming that the given load P is
applied at point x = £, y = -q (Fig. 107), we first consider an infinite plate supported
only at the edges x = 0 and x = a. In order to use the method of images (see page
156), we assume a second load — P acting at the point x — £, y = —1\ of the infinite
plate. The line y = 0 becomes then a nodal line of the deflection surface of the plate.
Thus the required bending of the semi-infinite plate is obtained by superposing the

FIG. 107

deflections [see Eq. (148), page 145] produced in the infinite plate by both concen-
trated loads. In this way we arrive at the deflection surface

or, after some rearrangement,

(a)

an expression valid for 0 < y < y and yielding Wi = 0, d*Wi/dy* «• 0 at y = 0 . The
deflections in the range of y > rj may be obtained in a similar manner.

If we distribute the single load over a small area, the moments Mx at the center of
that area and the corresponding deflections prove to be smaller than those of an
infinite plate without the transverse edge at y =» 0. But the moment Mv is again an



exception. Let us write this moment in the form Mv = My0 + my, where MyQ is the
moment of the infinite plate. The correction my, representing the effect of the load — P
in Fig. 107, is then readily found by means of the second of the equations (151) (see
page 145). Assuming, for example, v = 0.3 we obtain my = 0.0065P as the largest
value of the correction, the corresponding position of the load being given by x = a/2,
y = 0.453a.

FIG. 108

The edge y = 0 is built in (Fig. 108). We begin with the calculation of the slope
of the elastic surface (a) at y = 0, for which differentiation gives

Next let us submit the simply supported semi-infinite plate to couples distributed
along the edge y = 0 in accordance with the law

The corresponding deflections, vanishing at y = oo, we take in the form

The coefficients Am and Bn in this expression are readily obtained from the conditions

This yields An = 0, Bm = Ema/2mirD, and, finally,



Since we have to eliminate the slope (b), the edge condition is

Substitution of expressions (6) and (e) in Eq. (/) gives

and expression (e) becomes accordingly

The deflection surface of the semi-infinite plate clamped on y = 0 then is given by

w = Wi -f- u>2 (h)

where, Wi denotes expression (a). As for the series (g), it can be represented in a
closed form. We have only to express the sine functions contained in (g) in terms of
the exponential functions

6±(«x{</a) a n ( i €±{TMrxila)

and to observe the expansion

If we proceed in this manner, expression (g) finally appears in the simpler form

The value of the clamping moments at y = 0 is readily obtained by differentiation of
expression (i"), and the result is

When the concentrated load approaches the built-in edge y = 0, the value given by
expression (J) tends to zero in general. If, however, £ = x and t\ —> 0 simultaneously,
then Eq. (J) yields

If, finally, »7=0, the moment My becomes zero.



In conclusion let us consider a single load P (Fig. 109) uniformly distributed over a
straight-line segment of some length u. The moment caused by such a load at the
mid-point of the built-in edge is readily found by means of expression (J). Substitut-

ing x = a/2 and P d£/u for P in this expression and integrating we obtain for the
required moment

Table 50 gives the position of the load producing the numerically largest clamping
moment and the value of that moment for various values of the ratio u/a.

TABLE 50. LARGEST CLAMPING MOMENTS AT X — a/2 DUE TO A SINGLE LOAD

DISTRIBUTED OVER A LENGTH U (FIG. 109)

u/a 0 0.1 0.2 0.4 0.6 0.8 1.0

v/a 0 0.147 0.203 0.272 0.312 0.321 0.343
My/P -0.318 -0.296 -0.275 -0.237 -0.204 -0.172 -0.143



CHAPTER 7

CONTINUOUS RECTANGULAR PLATES

52. Simply Supported Continuous Plates. Floor slabs used in build-
ings, besides being supported by exterior walls, often have intermediate
supports in the form of beams and partitions or in the form of columns.
In the first case we have to deal with proper continuous plates; in the
case of columns without intermediate beams we have to deal with flat
slabs. The floor slab is usually subdivided by its supports into several

FIG. 110

panels. Only continuous plates with panels of rectangular shape will be
considered in this chapter.

We begin with a case allowing a rigorous solution by methods already
used in the foregoing chapter. A rectangular plate of width b and length
a\ + a% + a3, supported along the edges and also along the intermediate
lines ss and U9 as shown in Fig. 110, forms a simply supported continuous
plate over three spans. We suppose that the intermediate supports
neither yield to the pressure in the transverse direction nor offer any
resistance to the rotation of the plate with respect to the axes ss and U.
With these assumptions, the bending of each span of the plate can be
readily investigated by combining the known solutions for laterally
loaded, simply supported rectangular plates with those for rectangular
plates bent by moments distributed along the edges.



Let us begin with the symmetrical case in which

Q>\ = a2
 = &3 = a

and the middle span is uniformly loaded while the side spans are without
load (Fig. 1106). Considering the middle span as a simply supported
rectangular plate and using expression (b) of Art. 44 (see page 198), we
conclude that the slope of the deflection surface along the edge X2 = a/2 is

where ft* = mwa/2b. Owing to the continuity of the plate, bending
moments Mx are distributed along the edges X2 = + a/2. From sym-
metry it is seen that these moments can be represented by the following
series:

The deflections W\ produced by these moments can be obtained from
Eq. (173), and the corresponding slope along the edge X2 = a/2 [see
Eq. (e), page 198] is

From the condition of continuity we conclude that the sum of expres-
sions (a) and (c) representing the slope of the plate along the line X2 = a/2
must be equal to the slope along the same line of the deflection surface
of the plate in the adjacent span. Considering this latter span as a
simply supported rectangular plate bent by the moments (6) distributed
along the edge xz = —a/2, we find the corresponding deflection W2 of
the plate by using Eq. (176) (see page 185), from which follows



The corresponding slope along the edge Xz = — a/2 is

The equation for calculating the coefficients E7n is

Since this equation holds for any value of y, we obtain for each value of
m the following equation:

from which

It is seen that Em decreases rapidly as m increases and approaches the
value —2qb2/Tr3m3. Having the coefficients E7n calculated from (g), we
obtain the values of the bending moments Mx along the line U from
expression (b). The value of this moment at y = 0, that is, at the
middle of the width of the plate, is

Taking, as an example, b — a, we have $m = mir/2, and the formula (g)
gives

The bending moments at the center of the middle span can be readily
obtained by combining bending moments of a simply supported plate,
bent by uniform load, with moments corresponding to the deflections W\.
Taking, for example, a — b and v = 0.2, which is a convenient value for



concrete, we get for the first of these moments the values of

(see Table 8, page 120) and for the second moments the values

Therefore

If a side span is uniformly loaded, as shown in Fig. 110c, the deflection
surface is no longer symmetrical with respect to the vertical axis of sym-
metry of the plate, and the bending moment distributions along the lines
ss and tt are not identical. Let

To calculate the coefficients Em and Fm we derive two systems of equa-
tions from the conditions of continuity of the deflection surface of the
plate along the lines ss and tt, Considering the loaded span and using
expressions (a) and (e), we find that the slope of the deflection surface
at the points of the support ss, for a\ = a* = a3 = a, is

Considering now the middle span as a rectangular plate bent by the
moments Mx distributed along the lines ss and tt and given by the series
(h), we find, by using Eq. (175) (see page 184),



From expressions (i) and (j) we obtain the following system of equations
for calculating coefficients Em and Fm:

where the following notations are used:

The slope of the deflection surface of the middle span at the supporting
line U1 by using expression (J)1 is

This slope must be equal to the slope in the adjacent unloaded span
which is obtained from expression (c) by substituting Fm for Em. In this
way we find the second system of equations which, using notations (I)1

can be written in the following form:

From this equation we obtain

Substituting in Eq. (Ic)1 we find

Substituting in each particular case for Ami Bmi and Cm their numerical
values, obtained from Eqs. (I)1 we find the coefficients Em and Fm; and
then, from expressions (Zi), we obtain the bending moments along the
lines ss and tt. Take, as an example, b = a. Then fim = ra7r/2, and we
find from Eqs. (Z)

A1 = -0.6677 B1 = -1.1667 Ci = -0.7936
A3 = -0.9983 Bz = -1.0013 C3 = -0.9987

For m larger than 3 we can take with sufficient accuracy



Substituting these values in Eq. (o), we obtain

The moment at the middle of the support ss is

For the middle of the support tt we obtain

Having the bending moments along the lines of support, the deflections
of the plate in each span can readily be obtained by superposing on
the deflections produced by the lateral load the deflections due to the
moments at the supports.

The bending moments in the panels of the continuous plate can be
obtained in a similar manner. Calculating, for example, the moments
at the center of the middle span and taking v = 0.2, we arrive at the

values

The equations obtained for three
spans can readily be generalized and
expanded for the case of any number of
spans. In this way an equation similar
to the three-moment equation of con-
tinuous beams will be obtained.1 Let

p us consider two adjacent spans i and
i + 1 of the length a» and a,-+i, respec-

tively (Fig. 111). The corresponding values of the functions (Z) are
denoted by Ain, B)n, Cin and AjJ-1, UjJ"1, CjJ"1. The bending moments along
the three consecutive lines of support can be represented by the series

1 This problem in a somewhat different way was discussed by B. G. Galerkin; see his
"Collected Papers," vol. 2, p. 410, Moscow, 1953.



Considering the span i + 1 and using expressions (a) and (j), we find

In the same manner, considering the span i, we obtain

From the condition of continuity we conclude that

Substituting expressions (p) and (q) in this equation and observing that
it must be satisfied for any value of y, we obtain the following equation
for calculating E*-1, E]n, and E*+1:

(177)

Equations (/c) and (m), which we obtained previously, are particular cases
of this equation. We can write as many Eqs. (177) as there are inter-
mediate supports, and there is no difficulty in calculating the moments
at the' ntermediate supports if the ends of the plate are simply supported.
The left-hand side of Eq. (177) holds not only for uniform load but also
for any type of loading that is symmetrical in each span with respect to
the x and y axes. The right-hand side of Eq. (177), however, has a
different value for each type of loading, as in the three-moment equa-
tion for beams.

The problem of continuous plates carrying single loads can be treated
in a similar manner. In the particular case of an infinite number of
equal spans with a single load applied at any point of only one span, the
deflection of the plate may be obtained by resolving an equation with



finite differences for the unknown coefficient Ein as functions of the
index i.1

If the intermediate supports are elastic, the magnitude of the coeffi-
cients E]n is governed by the five-term equations, similar to the five-
moment equations of the theory of continuous beams.2 The torsional
rigidity of supporting beams, tending to reduce the rotations of the plate
along the support, can also be taken into account in considering the
bending of continuous plates.3

As the simplest example of a continuous plate carrying a concentrated load, let us
consider an infinitely long plate simply supported along the sides x = 0, x = a, con-
tinuous over the support y — 0, and submitted to a concentrated load P at some point
% = £> V = V (Fig. 112a). The load and boundary conditions under consideration
can be readily satisfied by superposition of cases shown in Fig. 1126 and c. In the

case of Fig. 1126 each panel of the plate is
simply supported along the line y = Q, and
the elastic surface is given by the expression
±Wi/2, in which the sign must be chosen
according to whether y is greater or less
than zero, W\ denotes the deflections (a) of
Art. 51, and \y\ < \q\. In the case shown in
Fig. 112c, each panel is clamped along the
edge y = 0, and the corresponding deflec-
tions are w/2, w being given by expression
(h) in Art. 51. We have therefore

FIG. 112

and the moments along the edge y = 0 become equal to one-half of the clamping
moments of a semi-infinite plate with one edge built in, these latter moments being
given by expression (j) of Art. 51.

53. Approximate Design of Continuous Plates with Equal Spans.4

The layout of a floor slab usually involves continuity not only in one
direction, as assumed in Art. 52, but rather in two perpendicular direc-
tions. A continuous slab of this kind is shown in Fig. 113. The spans
and the thickness of the plate are equal for all rectangular panels. Each

1 See S. Woinowsky-Krieger, Ingr.-Arch., vol. 9, p. 396, 1938.
2 Continuous plates on elastic beams were considered by V. P. Jensen, Univ. Illinois

Bull. 81, 1938, and by N. M. Newmark, Univ. Illinois Bull. 84, 1938.
3 See K. Girkmann, "Flachentragwerke," 4th ed., p. 274, Vienna, 1956.
4 The method given below is substantially due to H. Marcus; see his book "Die

vereinfachte Berechnung biegsamer Platten," Berlin, 1929. The coefficients of Tables
51 to 56 are, however, based on solutions considered in Chap. 6 and on the value of
Poisson's ratio v = 0.2, whereas Marcus uses for the same purpose a simplified theory
of rectangular plates and assumes ^ = O .



panel may carry a dead load go and,
possibly, a live load p, both distri-
buted uniformly over the area of
the panel, the largest intensity of
the load being q = g0 + p.

Let us begin with the computation
of bending moments at the inter-
mediate supports of the floor plate.
Calculations show that these mo-
ments depend principally on the
loading of the two adjacent panels,
and the effect of loading panels
farther on is negligible. I t is justi-
fiable, therefore, to calculate the
moments on supports by assuming
the load q uniformly distributed FlG- 1 1 3

over the entire floor slab (Fig. 114a). Neglecting, at first, the rotations
of the plate along the intermediate supports, each panel in Fig. 114a will
have the same conditions as a rectangular plate clamped along the inter-
mediate supports and simply supported at the external boundary of the
floor slab.

FIG. 114



The maximum bending moments for plates with such boundary con-
ditions have been tabulated (see Tables 51 to 56). Six possible combi-
nations of simply supported and built-in edges of a rectangular plate are
shown at the head of these tables. The direction of the x and y axes in
each panel of the slab (Fig. 113) must be chosen in accordance with Figs.
116 to 121; span a must be measured in the direction of the x axis and
span b in the direction of the y axis of the respective panel. The six
cases shown in Figs. 116 to 121 may be numbered 1 to 6, and the corre-
sponding indices are attached to the coefficients of Tables 51 to 56.

To illustrate the application of the tables, let us calculate the bending
moment at the middle of the support tw (Fig. 113). We calculate for
this purpose the clamping moment of both panels adjacent to the sup-
port. For panel 2 we have to use the formula

M2y = 82qP (a)

and Table 52, I being the smaller of spans a and b of the panel. In a
similar manner we obtain the clamping moment of panel 6 from the
expression

M6x = y6ql* (b)

by making use of Table 56. The moment in question now is given with
sufficient accuracy by

Mtw = i(Miv + M6x) (c)

and the moments on other intermediate supports are obtainable in a sim-
ilar manner.

It should be noted that Eq. (c) expresses nothing else than a moment-
distribution procedure in its simplest form, i.e., a procedure in which the
"carried-over" moments from other supports, as well as any difference
in the stiffness values of both adjacent panels, are neglected. Such a
simplified procedure is far more justified in the case of a continuous plate
than in the case of a continuous beam.

Next, let us consider the bending moments at the center of panel 6
(Fig. 113) as an example. The load distribution most unfavorable for
these moments can be obtained by superposition of loads shown in Fig.
1146 and c.

The contribution of the uniformly distributed load g0 + p/2 to the
values of the moments is obtained by use of Table 56, which gives

I denoting the smaller of both spans of panel 6.
Let us consider now the effect of the checkerboard loading as shown in

Fig. 114c. The boundary conditions of each panel here are the same as



those of a simply supported plate, and the moments at the center are
readily computed by means of Table 51 for case 1. The load +p/2
acting in panel 6 yields

and the largest moments at the center of panel 6 are

In order to calculate the largest nega-
tive moments at the same point we
have only to alter the sign of the load
in Fig. 114c. Still using results (d) and
(e)j we then have

M6x = M6', - Mi', . ,

Mey = m y - MZ W

As a second example of the application of
the approximate method, let us compute
the bending moments of the continuous
plate shown in Fig. 115, which was treated
rigorously in Art. 52.

First we choose the direction of the x and
y axes in accordance with Figs. 117 and 118.
Assuming next a load q = qo + p uniformly
distributed over the entire surface of the
plate (Fig. 1156) and using the coefficients
given in Tables 52 and 53 for cases 2 and 3,
with b/a = 1, we obtain at the center of the
support ss the moment

the procedure being the same as in the foregoing example [Eq. (c)]. Using the rigorous
solution, the numerically largest moment at ss is produced by the load distribution
shown in Fig. 115c. Superposing the bending moment obtained on page 231 upon
those calculated on page 234, the exact minimum value of the moment M,, proves
to be

Mat = -[0.0381 (g0 + v) + 0.0424(g0 + p) - 0.0042g0]o
2

or M88 = -(0.0805g0 + 0.0763p)a2 (i)

Putting, for instance, q0 = q/3, p = 2q/3, the result (i) yields -0.0777ga2as compared
with the value — 0.0769ga2 obtained by the approximate method.

Finally, let us calculate the largest bending moment at the center of the middle
panel, the most unfavorable load distribution being such as shown in Fig. 115d.

FIG. 115



FIG. 116

TABLE 51. BENDING MOMENTS FOR UNIFORMLY LOADED PLATES IN CASE 1

v = 0.2, I = the smaller of spans a and b

Center of plate

b /a Factor
Mx = aiql2 My = /3i^2

ai 0i

O 0.0250* 0.1250
0.5 0.0367 0.0999
0.6 0.0406 0.0868
0.7 0.0436 0.0742 ?62

0.8 0.0446 0.0627

0.9 0.0449 0.0526

I

1.0 0.0442 0.0442
1.1 0.0517 0.0449
1.2 0.0592 0.0449
1.3 0.0660 0.0444
1.4 0.0723 0.0439
1.5 0.0784 0.0426

qa2

1.6 0.0836 0.0414
1.7 0.0885 0.0402
1.8 0.0927 0.0391
1.9 0.0966 0.0378
2.0 0.0999 0.0367
oo 0.1250 0.025Of

* Mm&x = 0.0364gb2 at 0.486 from the short edge.
t Mmai = 0.0364ga2 at 0.48a from the short edge.

Combining the load in accordance with Fig. 115e and / and using the coefficients a
and p of Tables 53 and 51, we arrive at the following expressions for these moments:



FIG. 117

TABLE 52. BENDING MOMENTS FOR UNIFORMLY LOADED PLATES IN CASE 2
v — 0.2; I = the smaller of spans a and b

„ ^ - w Middle ofCenter of plate ^ , ,fixed edge
b/a Factor

Mx = a2ql2 My = p2ql2 Mv = M 2

«2 $2 ^2

0 0.0125 0.0625 -0.1250
0.5 0.0177 0.0595 -0.1210
0.6 0.0214 0.0562 -0.1156
0.7 0.0249 0.0514 -0.1086 qb*
0.8 0.0272 0.0465 -0.1009
0.9 0.0294 0.0415 -0.0922

1.0 0.0307 0.0367 -0.0840
1.1 0.0378 0.0391 -0.0916
1.2 0.0451 0.0404 -0.0983
1.3 0.0525 0.0415 -0.1040
1.4 0.0594 0.0418 -0.1084
1.5 0.0661 0.0418 -0.1121

qa*
1.6 0.0722 0.0414 -0.1148
1.7 0.0780 0.0408 -0.1172
1.8 0.0831 0.0399 -0.1189
1.9 0.0879 0.0390 -0.1204
2.0 0.0921 0.0382 -0.1216

oo 0.1250 0.0250* -0.1250

* Mmax = 0.0387ga2 at 0.80a from the built-in edge.

It is of interest to verify the foregoing approximate values by use of the results
obtained on pages 232 and 234. Distributing the load again as shown in Fig. 115d
and interchanging the indices x and y in the results mentioned above, we have

Mx = O.O317(go + p)a2 - (0.0051 -f 0.0051)q0a
2

= (O.O215go + 0.0317p)a2

My - O.O375(go + p)a2 - (0.0039 + 0.0039)g0o
2 ( }

= (0.0297g0 + 0.0375p)a2

Setting again g0 = 9/3 and p — 2q/3, we obtain for the moments the exact values
of 0.0283ga2 and 0.0349qa2, respectively. Eqs. (j) yield for the same moments the
approximate values of 0.029lqa* and 0.0358ga2
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TABLE 53. BENDING MOMENTS FOR UNIFORMLY LOADED PLATES IN CASE 3

v = 0.2, I = the smaller of spans a and b

^ , j. i . Middle of
Center of plate - , ,F fixed edge

b/a Factor

Mx = a3ql* My = №* Mv = S3^
2

«3 03 ^3

0 0.0083* 0.0417 -0.0833
0.5 0.0100 0.0418 -0.0842
0.6 0.0121 0.0410 -0.0834
0.7 0.0152 0.0393 -0.0814 qb*
0.8 0.0173 0.0371 -0.0783
0.9 0.0196 0.0344 -0.0743

1.0 0.0216 0.0316 -0.0697
L I ' 0.0276 0.0349 -0.0787
1.2 0.0344 0.0372 -0.0868
1.3 0.0414 0.0391 -0.0938
1.4 0.0482 0.0405 -0.0998
1.5 0.0554 0.0411 -0.1049

qa*
1.6 0.0620 0.0413 -0.1090
1.7 0.0683 0.0412 -0.1122
1.8 0.0741 0.0408 -0.1152
1.9 0.0795 0.0401 -0.1174
2.0 0.0846 0.0394 -0.1191

oo 0.1250 0.025Of -0.1250

* Mm a x = 0.0174qb2 at 0.306 from the supported edge,
t Mm a x = 0.0387ga2 at 0.80a from the built-in edge.

The largest error of the approximate method ensues from the fact that the largest
positive moments do not always occur at the center of the panel. This is especially
far from being true in the case of distinctly oblong rectangular panels. If 6, for
example, is much larger than a, the largest moment Mv occurs near the short side of
the rectangular plate. Some values of these largest moments are given in footnotes to
the tables, and they should be considered as the least possible values of the corre-
sponding columns, regardless of the actual ratio b/a.

It should be noted, finally, that in the unsymmetrical case 4 neither Mx nor My
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TABLE 54. BENDING MOMENTS FOR UNIFORMLY LOADED PLATES IN CASE 4*

v = 0.2, I = the smaller of spans a and b

Center of plate Middle of fixed edge __~ '

b/a Factor

Mx = a*ql2 My = /34(^
2 Mx = y*ql2 Mv = 6*ql2 Mm>x = e4ql*

<X4 /S4 74 54 €4

0.5 0.0191 0.0574 -0.0787 -0.1180 0.0662
0.6 0.0228 0.0522 -0.0781 -0.1093 0.0570
0.7 0.0257 0.0460 -0.0767 -0.0991 0.0501 qb*
0.8 0.0275 0.0396 -0.0746 -0.0882 0.0430

0.9 0.0282 0.0336 -0.0715 -0.0775 0.0363
1.0 0.0281 0.0281 -0.0678 -0.0678 0.0305
1.1 0.0330 0.0283 -0.0766 -0.0709 0.0358
1.2 0.0376 0.0279 -0.0845 -0.0736 0.0407

1.3 0.0416 0.0270 -0.0915 -0.0754 0.0452
1.4 0.0451 0.0260 -0.0975 -0.0765 0.0491
1.5 0.0481 0.0248 -0.1028 -0.0772 0.0524 ga2

1.6 0.0507 0.0236 -0.1068 -0.0778 0.0553

1.7 0.0529 0.0224 -0.1104 -0.0782 0.0586
1.8 0.0546 0.0213 -0.1134 -0.0785 0.0608
1.9 0.0561 0.0202 -0.1159 -0.0786 0.0636
2.0 0.0574 0.0191 -0.1180 -0.0787 0.0662

* The authors are indebted to the National Research Council of Canada for a grant
which greatly facilitated the computation of the table.

is the largest bending moment at the center of the plate. Table 54 shows, however,
that th\3 difference between Mmax and the largest of the values of Mx and Mv does not
exceed 10 per cent of the latter values and that the general procedure described on
page 238 is justified in case 4 as well.

For the purpose of the design of isolated panels without continuity (Fig. 119),
Table 54 contains the values of the largest moments Mm&x acting at x = 0.1a, y = 0.16;
for rectangular plates the direction of <rmax is practically that of the shorter span and
for square plates that of the diagonal x = — y. For the sake of a greater security
those values of Mn^x may also be used in calculating continuous panels of oblong shape.
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TABLE 55. BENDING MOMENTS FOR UNIFORMLY LOADED PLATES IN CASE 5*
v = 0.2, I = smaller of spans a and b

Center of plate Middle of fixed edge

b/a Factor
Mx = abql* My - /3&9/2 Mxybql* Mv = S5^2

«6 06 TS ^5

0.5 0.0206 0.0554 -0.0783 -0.114
0.6 0.0245 0.0481 -0.0773 -0.102
0.7 0.0268 0.0409 -0.0749 -0.0907
0.8 0.0277 0.0335 -0.0708 -0.0778 q

0.9 0.0274 0.0271 -0.0657 -0.0658
1.0 0.0261 0.0213 -0.0600 -0.0547
1.1 0.0294 0.0204 -0.0659 -0.0566
1.2 0.0323 0.0192 -0.0705 -0.0573

1.3 0.0346 0.0179 -0.0743 -0.0574
1.4 0.0364 0.0166 -0.0770 -0.0576
1.5 0.0378 0.0154 -0.0788 -0.0569
1.6 0.0390 0.0143 -0.0803 -0.0568 t

qa*
1.7 0.0398 0.0133 -0.0815 -0.0567
1.8 0.0405 0.0125 -0.0825 -0.0567
1.9 0.0410 0.0118 -0.0831 -0.0566
2.0 0.0414 0.0110 -0.0833 -0.0566

x 0.0417 0.0083 -0.0833 -0.0566

* The data of this table are due substantially to F. Czerny, Bautech.-Arch., vol. 11,
p. 33, W. Ernst & Sohn, Berlin, 1955.

The method given in this article is still applicable if the spans, the flexural rigidities,
or the intensity of the load differs only slightly from panel to panel of the continuous
plate. Otherwise more exact methods should be used.

It should be noted, however, that the application of the rigorous methods to the
design of continuous floor slabs often leads to cumbersome calculations and that the
accuracy thus obtained is illusory on account of many more or less indeterminable
factors affecting the magnitude of the moments of the plate. Such factors are, for
example, the flexibility and the torsional rigidity of the supporting beams, the restrain-



FIG. 121

TABLE 56. BENDING MOMENTS FOR UNIFORMLY LOADED PLATES IN CASE 6
v — 0.2, I = the smaller of spans a and b

Center of plate Middle of fixed edge

b/a I Factor

Mx = a6ql2 Mu - /S6^' Mx = 76gZ2 My = 8«ql2

«6 06 7« 5e

0 0.0083 0.0417 -0.0571 -0.0833
0.5 0.0118 0.0408 -0.0571 -0.0829
0.6 0.0150 0.0381 -0 .0571 -0.0793
0.7 0.0178 0.0344 -0.0569 -0 .0736 qb*
0.8 0.0198 0.0299 -0.0559 -0 .0664
0.9 0.0209 0.0252 -0 .0540 -0 .0588
1.0 0.0213 0.0213 -0 .0513 -0 .0513
1.1 0.0248 0.0210 -0 .0581 -0 .0538
1.2 0.0284 0.0203 -0 .0639 -0.0554
1.3 0.0313 0.0193 -0.0687 -0 .0563
1.4 0.0337 0.0181 -0 .0726 -0 .0568
1.5 0.0358 0.0169 -0 .0757 -0.0570

qa*
1.6 0.0372 0.0157 -0.0780 -0.0571
1.7 0.0385 0.0146 -0.0799 -0 .0571
1.8 0.0395 0.0136 -0 .0812 -0.0571
1.9 0.0402 0.0126 -0 .0822 -0.0571
2.0 0.0408 0.0118 -0.0829 -0.0571
=o 0.0417 0.0083 -0 .0833 -0.0571

ing effect of the surrounding walls, the anisotropy of the plate itself, and the inaccuracy
in estimating the value of such constants as the Poisson ratio v.

However, we can simplify the procedure of calculation by restricting the Fourier
series, representing a bending moment in the plate, to its initial term or by replacing
the actual values of moments or slopes along some support of the plate by their
average values or, finally, by use of a moment distribution procedure.1

64. Bending of Plates Supported by Rows of Equidistant Columns—
(Flat Slabs). If the dimensions of the plate are large in comparison with

1 For such methods see C. P. Siess and N. M. Newmark, Univ. Illinois Bull. 43,
1950, where a further bibliography on the subject is given. See also the paper of
H. M. Westergaard, Proc. Am. Concrete Inst., vol. 22, 1926, which contains valuable
conclusions regarding the design of continuous floor slabs.



the distances a and b between the columns (Fig. 122) and the lateral load
is uniformly distributed, it can be concluded that the bending in all
panels, which are not close to the boundary of the plate, may be assumed
to be identical, so that we can limit the problem to the bending of one
panel only. Taking the coordinate axes parallel to the rows of columns
and the origin at the center of a panel, we may consider this panel as a
uniformly loaded rectangular plate with sides a and 6. From symmetry
we conclude that the deflection surface of the plate is as shown by the
dashed lines in Fig. 1226. The maximum deflection is at the center of
the plate, and the deflection at the corners is zero. To simplify the
problem we assume that the cross-sectional dimensions of the columns
are small and can be neglected in so far as deflection and moments at

FIG. 122

the center of the plate are concerned.1 We then have a uniformly loaded
rectangular plate supported at the corners, and we conclude from sym-
metry that the slope of the deflection surface in the direction of the
normal to the boundary and the shearing force are zero at all points
along the edges of the plate except at the corners.2

Proceeding as in the case of a simply supported plate (Art. 30), we
take the total deflection w in the form

where

1 In this simplified form the problem was discussed by several authors; see, for
example, A. Nadai, tlber die Biegung durchlaufender Platten, Z. angew. Math.
Mech., vol. 2, p. 1, 1922, and B. G. Galerkin, "Collected Papers," vol. 2, p. 29, Mos-
cow, 1953.

2 The equating to zero of the twisting moment Mxy along the boundary follows from
the fact that the slope in the direction of the normal to the boundary is zero.



represents the deflection of a uniformly loaded strip clamped at the ends
y = ±6/2 and satisfies the differential equation (103) of the plate as well
as the boundary conditions

The deflection W2 is taken in the form of the series

each term of which satisfies the conditions (c). The functions Ym must
be chosen so as to satisfy the homogeneous equation

AAw2 = 0 (e)

and so as to make w satisfy the boundary conditions at the edges
y = ±6/2. Equation (e) and the conditions of symmetry are satisfied
by taking series (d) in the form

where the constants A0, Am, and Bm are to be determined from the
boundary conditions along the edge y = 6/2. From the condition con-
cerning the slope, viz., that

we readily find that

in which, as before,

Considering now the boundary condition concerning the shearing force,
we see that on a normal section nn (Fig. 1226) of the plate infinitely
close to the boundary y = 6/2, the shearing force Qy is equal to zero at
all points except those which are close to the column, and at these points
Qy must be infinitely large in order to transmit the finite load %qab to the
column (Fig. 122c) along an infinitely small distance between x = a/2 — c
and x = a/2 + c. Representing Qv by a trigonometric series which, from



symmetry, has the form

and observing that

we find, by applying the usual method of calculation, that

where P = qab is the total load on one panel of the plate. Substituting
these values of the coefficients Co and Cm in series (i), the required bound-
ary condition takes the following form:

Substituting expression (a) for w and observing that the second term in
parentheses vanishes, on account of the boundary condition dw/dy = 0,
we obtain

from which, by using expression (/), we find that

Solving Eqs. (g) and (j) for the constants Am and B7n, we obtain



The deflection of the plate takes the form

The constant A0 can now be determined from the condition that the
deflection vanishes at the corners of the plate. Hence

The deflection at any point of the plate can be calculated by using expres-
sions (I) and (ra). The maximum deflection is evidently at the center of
the plate, at which point we have

Values of this deflection calculated for several values of the ratio b/a are
given in Table 57. Values of the bending moments (Mx)̂ o1W=O and
(My)x=sQ,yz=Q calculated by using formulas (101) and expression (I) for
deflection are also given. It is seen that for b > a the maximum bend-

T A B L E 57. D E F L E C T I O N S AND M O M E N T S AT T H E C E N T E R OF A P A N E L (Fig. 122)

v = 0.2

qb4

b/a W = a D M* = ^ 2 Mv = Piqb'Z

a fJ ffi

1 0.00581 0.0331 0.0331
1.1 0.00487 0.0261 0.0352
1.2 0.00428 0.0210 0.0363
1.3 0.00387 0.0175 0.0375
1.4 0.00358 0.0149 0.0384
1.5 0.00337 0.0131 0.0387
2.0 0.00292 0.0092 0.0411
» 0.00260 0.0083 0.0417



ing moment at the center of the plate does not differ much from the
moment at the middle of a uniformly loaded strip of length b clamped
at the ends.

Concentrated reactions are acting at the points of support of the plate, and the
moments calculated from expression (Z) become infinitely large. We can, however,
assume the reactive forces to be distributed uniformly over the area of a circle repre-
senting the cross section of the column. The bending moments arising at the center
of the supporting area remain finite in such a case and can be calculated by a pro-
cedure similar to that used in the case of rectangular plates and described on page 147.
With reference to Fig. 122, the result can be expressed by the formulas1

In these expressions

g «_ e-rbia} anci c denotes the radius of the circle, supposed to be small compared
with spans a and b of the panel. Carrying out the required calculations, we can
reduce Eqs. (o) to the form

in which a and /3 are coefficients given for several values of the ratio b/a in Table 58.

TABLE 58. VALUES OF COEFFICIENTS a AND 0 IN EQS. (p) FOR MOMENTS

ON SUPPORT

b/a 1 1.1 1.2 1.3 1.4 1.5 2.0

a 0.811 0.822 0.829 0.833 0.835 0.836 0.838

0 0.811 0.698 0.588 0.481 0.374 0.268 -0.256

The bending moments corresponding to the centers of columns of rec-
tangular cross section also can be calculated by assuming that the reac-
tions are uniformly distributed over the rectangles, shown shaded in Fig.

1 Given by A. Nadai in his book "Elastische Platten," p. 154, Berlin, 1925.



TABLE 59. BENDING MOMENTS AND LARGEST SHEAR FORCE OP A SQUARE
PANEL OF A UNIFORMLY LOADED PLATE (Fig. 123)

v - 0.2

u/a -m k W)*-9—lt •» faa* (3/)x_v-o — 0iqa* (Mx)x-a/t,v-o — P*qa* (My)x-.an,v-o - Ptqa* Qmax - yqa

0 fii fh fit y

0 - « 0.0331 -0.0185 0.0512 «
0.1 -0.196 0.0329 -0.0182 0.0508 2.73
0.2 -0.131 0.0321 -0.0178 0.0489
0.3 -0.0933 0.0308 -0.0170 0.0458 0.842
0.4 -0.0678 0.0289 -0.0158 0.0415
0.5 -0.0487 0.0265 -0.0140 0.0361 0.419

123, that represent the cross sections of the columns.1 In the case of
square panels and square columns we have u/a = v/b = k, and the
moments at the centers of the columns and at the centers of the panels
are given by the following formulas:

The values of these moments, to-
gether with values of moments at
half a distance between columns, ob-
tained from the same solution and
calculated for various values of k and
for v = 0.2, are given in Table 59.

It is seen that the moments at the
columns are much larger than the
moments at the panel center and that
their magnitude depends very much
on the cross-sectional dimensions of
the columns. The moments at the
panel center remain practically con-
stant for ratios up to k = 0.2. Hence the previous solution, obtained on

1 This case was investigated by S. Woinowsky-Krieger; see Z. angew. Math. Mech.,
vol. 14, p. 13, 1934. See also the papers by V. Lewe, Bauingenieur, vol. 1, p. 631,
1920, and by K. Frey, Bauingenieur, vol. 7, p. 21, 1926.

FIG. 123



the assumption that the reactions are concentrated at the panel corners,
is sufficiently accurate for the central portion of the panel.

An approximate calculation of moments given by Eq. (q) in the form of a series can
also be made by means of expressions (p). Using for this purpose Eq. (c), Art. 37,
we substitute

i.e., the radius of a circle equivalent to the given square area u by u, in Eqs. (p). In
the particular case of square panels numerical results obtained in this manner are but
slightly different from those given in the second column of Table 59.

The shearing forces have their maximum value at the middle of the
sides of the columns, at points m in Fig. 123. This value, for the case of
square panels, depends on the value of the ratio k and can be represented
by the formula Q = yqa2. Several numerical values of the factor y are
given in Table 59. It is interesting to note that there is a difference of
only about'10 per cent between these values and the average values
obtained by dividing the total column load qa2(l — /c2) by the perimeter

4/ca of the cross section of the column.
Uniform loading of the entire plate

gives the most unfavorable condition
at the columns. To get the maxi-
mum bending moment at the center
of a panel, the load must be distri-
buted as shown by the shaded areas
in Fig. 124a. The solution for this
case is readily obtained by combining
the uniform load distribution of in-
tensity q/2 shown in Fig. 1246 with
the load q/2 alternating in sign in
consecutive spans shown in Fig. 124c.
The deflection surface for the latter
case is evidently the same as that
for a uniformly loaded strip of length
a simply supported at the ends.

Taking, as an example, the case of square panels and using the values in
Table 57, we find for the center of a panel (Fig. 124a):

FIG. 124



From Table 59 we conclude, furthermore, that

(M,)_o.y^/a = iq ' 0.0512a2 + T\qa2 = 0.0881?a2

The foregoing results are obtained in assuming that the plate is free to
rotate at the points of support. Usually the columns are in rigid con-
nection with the plate, and, in the case of the load distribution shown in
Fig. 124, they produce not only vertical reactions but also couples with a
restraining effect of those couples on the bending of the panels. A frame
analysis extended on the flat slab and the columns as a joint structure
therefore becomes necessary in order to obtain
more accurate values of bending moments under
alternate load.1

The case in which one panel is uniformly
loaded while the four adjacent panels are not
loaded is obtained by superposing on a uniform
load q/2 the load q/2, the sign of which alter-
nates as shown in Fig. 125. In this latter case
each panel is in the same condition as a simply
supported plate, and all necessary information
regarding bending can be taken from Table 8. Taking the case of a
square panel, we find for the center of a panel that

O)x=y=o = \q • 0.00581 ~ + ^q • 0.00406 ^ = 0.00494 ^

(Mx)w«o = (My)x=v=o = ^q • 0.0331a2 + ± g • 0.0479 ^ a 2 = 0.0387?a2

The case of an infinitely large slab subjected to equal concentrated
loads centrally applied in all panels can be handled substantially in the
same manner as in the preceding case, i.e., by using the double periodicity
in the deflections of the plate.2

The problem of bending of a uniformly loaded flat slab with skew
panels has also been discussed.3

55. Flat Slab Having Nine Panels and Slab with Two Edges Free.
So far, an infinite extension of the slab has always been assumed. Now
let us consider a plate simply supported by exterior walls, forming the
square boundary of the plate, together with four intermediate columns
(Fig. 126). From symmetry we conclude that a uniformly distributed

1 The procedure to be used is discussed in several publications; see, for instance,
H. Marcus, "Die Theorie elastischer Gewebe," p. 310, Berlin, 1932.

2 This problem was discussed by V. Lewe in his book "Pilzdecken und andere
tragerlose Eisenbetonplatten," Berlin, 1926, and also by P. Pozzati, Riv. math. Univ.
Parma, vol. 2, p. 123, 1951.

3 See V. I. Blokh, Doklady Akad. Nauk S.S.S.R., n. s., vol. 73, p. 45, 1950.

FIG. 125



load of intensity q produces equal
column reactions R, which we may
consider as redundant in the given
statically indeterminate structure.
Removing all columns, we obtain a
simply supported square plate carry-
ing merely the given load q. The
deflections WQ produced by this load
at the center of the columns can
easily be calculated by means of the
theory given in Chap. 5. Next, re-
moving the load q and distributing a
load R = 1 (acting downward) uni-
formly over each area u by u, we
obtain some new deflections Wi at the
same points x = ±a/2, y — ±a/2
as before. From the condition that in
the actual case these points do not de-
flect, we conclude that Wo — Rw\ = 0,
which yields R = Wo/wi. Now it
remains only to combine the effect
of the uniform load q with the effect
of four known reactions on the bend-
ing moments of the square plate of
the size 3a by 3a.

In the case of a partial loading,
such as shown in Fig. 1266 and c, we
have to superpose one-half of the
moments previously obtained on the
moments of a simply supported plate
with the area a by 3a, carrying a
uniformly distributed load ±<//2.
Calculations of this kind carried out
by Marcus1 led to the values of bend-
ing moments given in Table 60. The
reaction of a column is R — 1.196ga2

in this case. The bending of an in-
finite plate which is supported not
only along both its parallel sides

1 "Die Theorie elastischer Gewebe"; see
also Lewe, op. cit. The case of a square plate with one intermediate support was
discussed by N. J. Nielsen, "Bestemmelse af Spaendinger I Plader," p. 217, Copen-
hagen, 1920.

FIG. 126



TABLE 60. COEFFICIENTS /3 FOR CALCULATION OF BENDING MOMENTS M = Pqa2

OF A SIMPLY SUPPORTED SQUARE PLATE WITH FOUR INTERMEDIATE

COLUMNS (Fig. 126)

u/a = 0.25, v = 0.2

Load a Load 6 Load c
Point -

a a Mx My Mx My Mx My

1 0 0 0.021 0.021 -0 .048 -0.004 0.069 0.025
2 0.5 0 -0.040 0.038 -0.020 0.019 -0.020 0.019
3 1.0 0 0.069 0.025 0.093 0.027 -0.024 -0.002
4 0 0.5 0.038 -0.040 -0.036 -0.036 0.074 -0.004
5 0.5 0.5 -0.140 -0.140 -0.070 -0.070 -0.070 -0.070

6 1.0 0.5 0.074 -0.004 0.092 0.014 -0 .018 -0.018
7 0 1.0 0.025 0.069 -0.028 0.017 0.052 0.052
8 0.5 1.0 -0.004 0.074 -0.002 0.037 -0.002 0.037
9 1.0 1.0 0.053 0.053 0.066 0.044 -0 .013 0.009

but also by one or several rows of equidistant columns1 can be discussed
in a similar manner.

The case of bending of a long rectangular plate supported only by the
two parallel rows of equidistant columns (Fig. 127) can also be solved
without any difficulty for several types of loading. We begin with the case
in which the plate is bent by the moments My represented by the series

Since there is no lateral load, the deflection surface of the plate can be
taken in the form of the series

the coefficients of which are to be determined from the following boundary
conditions:

1TWs problem has been considered by K. Grein, "Pilzdecken," Berlin, 1948.



and from the condition that the deflection vanishes at the columns.
Substituting series (b) in Eas. Cc). we find that

Combining this solution with solution (I), Art. 54, we can investigate the
bending of the plate shown in Fig. 127a under the action of a uniformly

FIG. 127

distributed load. For this purpose we calculate the bending moments
My from expression (Z) by using formula (101) and obtain

Equating this moment to the moment (a) taken with the negative sign,
we obtain the values of M0 and Em which are to be substituted in Eqs.
(d) for the constants Ai, Am, and Bm in expression (b). Adding expres-
sion (b) with these values of the constants to expression (J), Art. 54, we
obtain the desired solution for the uniformly loaded plate shown in Fig.
127a.

Combining this solution with that for a uniformly loaded and simply
supported strip of length b which is given by the equation

we obtain the solution for the case in which the plate is bent by the load
uniformly distributed along the edges of the plate as shown in Fig. 1276.



56. Effect of a Rigid Connection with Column on Moments of the Flat Slab. In
discussing the bending of a flat slab it has always been assumed that the column
reactions are concentrated at some points or distributed uniformly over some areas
corresponding to the cross section of the columns or their capitals. As a rule, however,
concrete slabs are rigidly connected with the columns, as shown in Fig. 128.

In discussing moments at such rigid joints, let us begin with the case of a circular
column and let c be the radius of its cross section. The calculation of bending

moments using expression (Z) in Art. 54 shows1 that, in the case of a square panel
(o = b) and small values of c/a, the bending moments in the radial direction practically
vanish along a circle of radius e = 0.22a (Fig. 122a). Thus the portion of the plate
around the column and inside such a circle is in the state of an annular plate simply
supported along the circle r = 0.22a and clamped along the circle r = c, with a
transverse displacement of one circle with respect to the other. Hence the maximum

Middle line of panel Middle line of panel

M
id

dl
e 

lin
e 

o
f p

an
el

M
id

d
le

 l
in

e 
o

f 
p

an
el

FIG. 129 FIG. 130

bending stress around the column can be obtained by using formulas (75), previously
derived for circular plates (see page 61), and combining cases 3 and 8 in Fig. 36.

A more elaborate discussion of the same problem is due to F. Tolke.2 Numerical
results obtained by F. Tolke for a square panel and c/a = 0.1 (Fig. 129) are given in
Table 61, together with values of bending moments calculated for the same case on the

1 Such calculations were made by A. Nddai; see his book "Elastische Platten," p.
156, Berlin, 1925.

2 F. Tolke, Ingr.-Arch., vol. 5, p. 187, 1934.



basis of the customary theory. It is seen that a rigid connection between slab and
column tends to increase numerically the moments on support and to reduce the posi-
tive moments of the slab.

TABLE 61. COEFFICIENTS £ FOR CALCULATION OF BENDING MOMENTS M — Pqa2

OF A UNIFORMLY LOADED SQUARE PANEL OF A FLAT SLAB

v = 0.2

Bending
moment

Mx = My
Mx

My
Mx = My

Mx

Mr
Mr

Location

x = a/2, y = a/2
x = a/2, y - 0
x = a/2, y = 0
x = 0, y = 0

x = w/2, 2/ - 0
s = u/2, y = M/2

r = c

Circular column
(Fig. 129)

Rigid
connection

with
column

0.0292
0.0399

-0 .0161

-0 .1682

Customary
theory

0.0323
0.0494

-0 .0179
- 0 . 1 4 3

-0 .0629

Square column
(Fig. 130)

Rigid
connection

with
column

0.0264
0.0348

-0 .0146

-0 .0626
OO

Customary
theory

0.0321
0.0487

-0 .0178
-0 .131
-0 .0803
-0 .0480

The same table also gives moments for a flat slab rigidly connected with a column
of a square cross section1 (Fig. 130). The infinitely large stresses occurring at the
corners of columns in this case are of a highly localized character. Practically, they
are limited by a cracking of concrete in tension and a local yielding of the steel
reinforcement.

From this discussion we may conclude that (1) the actual values of bending moments
of a flat slab at the columns generally lie between the values given in Table 61 for the
rigid connection and those given by the usual theory, and (2) circular columns secure
a more uniform distribution of clamping moments than columns with a square-shaped
supporting area.2

1 See S. Woinowsky-Krieger, / . Appl. Mechanics, vol. 21, p. 263, 1954.
1 See T. Haas, "Conception et calcul des planchets a dalles champignon," Paris,

1950. The distribution of stresses in a flat slab has been investigated experimentally
by M. Ro§ and A. Eichinger, Proc. Congr. Concrete and Reinforced Concrete, Lie"ge,
1930; by R. Caminade and R. L'Hermite, Ann. inst. tech. bdtiment et trav. publ.,
February, 1936; and more recently by J. G. Hageman, Ingenieur, vol. 65, June, 1953.



CHAPTER 8

PLATES ON ELASTIC FOUNDATION

57. Bending Symmetrical with Respect to a Center. A laterally
loaded plate may rest on an elastic foundation, as in the case of a con-
crete road, an airport runway, or a mat. We begin the discussion of such
problems with the simplest assumption that the intensity of the reaction
of the subgrade is proportional to the deflections w of the plate. This
intensity is then given by the expression kw. The constant /b, expressed
in pounds per square inch per inch of deflection, is called the modulus of
the foundation. The numerical value of the modulus depends largely
on the properties of the subgrade; in the case of a pavement slab or a
mat of greater extension this value may be estimated by means of the
diagram in Table 62. *

TABLE 62. VALUES OF THE MODULUS OF SUBGRADE

Modulus "k" in Ib/sq in./in.

General soil rating as subgrade, subbase or base

Very poor subgrade Poor
subgrade Fair to good subgrade Excellent

subgrade Good subbase Good
base

Best
base

G-Gravel
S-Sand
M-Mo','very fine sand,silt
C-Cloy
F-Fines, material

less than 0.1mm
0-Organic
W-WeII graded

P-Poorly groded
L - Low to med. compressibility
H-High compressibility

Let us begin with the case of a circular plate in which the load is dis-
tributed symmetrically with respect to the center. In using Eq. (58),

1 Based on Casagrande's soil classification. The table should not be regarded as a
substitute for plate bearing tests. For further information see Trans. Am. Soc. Civ.
Engrs., vol. 113, p. 901, 1948. See also K. Terzaghi, Geotechnique, vol. 5, p. 297, 1955
(Harvard Soil Mechanics Series, no. 51).



we add the load —kw, due to the reaction of the subgrade, to the given
lateral load q. Thus we arrive at the following differential equation for
the bent plate:

(178)

In the particular case of a plate loaded at the center with a load P,*
q is equal to zero over the entire surface of the plate except at the center.
By introducing the notation

7_ 1

Eq. (178) becomes

Since Tc is measured in pounds per cubic inch and D in pound-inches, the
quantity I has the dimension of length. To simplify our further dis-
cussion it is advantageous to introduce dimensionless quantities by using
the following notations:

Then Eq. (b) becomes

Using the symbol A for

we then write

This is a linear differential equation of the fourth order, the general solu-
tion of which can be represented in the following form:

z = A1X1(X) + A2X2(X) + A3X3(X) + AiXt(X) (/)

where Ai, . . . , A4 are constants of integration and the functions
Xi, . . . , X4 are four independent solutions of Eq. (e).

We shall now try to find a solution of Eq. (e) in the form of a power

* This problem was discussed by H. Hertz, Wiedemann's Ann. Phys. u. Chem., vol.
22, p. 449, 1884; see also his " Gesammelte Werke," vol. 1, p. 288, 1895, and A. Foppl,
" Vorlesungen liber technische Mechanik," vol. 5, p. 103, 1922. It is worth noting that
Hertz's investigation deals with the problem of a floating plate rather than with that
of a plate on an elastic foundation. Thus, in this case the assumption regarding the
constancy of k is fulfilled, k being the unit weight of the liquid.



series. Let anx
n be a term of this series. Then, by differentiation, we

find

To satisfy Eq. (e) it is necessary that each term anx
n in the series have a

corresponding term an-^xn~i such that

Following this condition, all terms cancel when the series is substituted in
Eq. (e); hence the series, if it is a convergent one, represents a particular
solution of the equation. From Eq. (g) it follows that

Observing also that

we can conclude that there are two series satisfying Eq. (e), viz.,

It may be seen from the notations (c) that for small values of the dis-
tance r, that is, for points that are close to the point of application of the
load P, the quantity x is small, and series 0') are rapidly convergent.
It may be seen also that the consecutive derivatives of series (j) remain
finite at the point of application of the load (x = 0). This indicates that
these series alone are not sufficient to represent the stress conditions at
the point of application of the load where, as we know from previously
discussed cases, the bending moments become infinitely large.

For this reason the particular solution X3 of Eq. (e) will be taken in
the following form:

X3 = X1 log x + F3(z) (k)

in which F3(x) is a function of x which can again be represented by a
power series. By differentiation we find



and substituting X3 for z in Eq. (e), we obtain

Since Xi satisfies Eq. (e) and is represented by the first of the series (J)1

we obtain the following equation for determining Fz(x):

Taking F3 (x) in the form of the series

and substituting this series in Eq. (I), we determine the coefficients 64,
&8, & 12, . . . so that the resulting equation will be satisfied. Observing
that

AA(&4z
4) = 42 • 22 • 64

we find, by equating to zero the sum of the terms that do not contain X1

that

Equating to zero the sum of the terms containing x4, we find

In general, we find

Thus the third particular solution of Eq. (e) is

The fourth particular integral X4 of Eq. (e) is obtained in a similar
manner by taking



By substituting the particular solutions (j), (n), and (o) in expression
(/) we obtain the general solution of Eq. (e) in the following form:

It remains now to determine in each particular case the constants of inte-
gration Ai, . . . , A4 so as to satisfy the boundary conditions.

Let us consider the case in which the edge of a circular plate of radius a
is entirely free. Making use of expression (52) for the radial moments
and expression (55) for the radial shear force Qn we write the boundary
conditions as

In addition to these two conditions we have two more conditions that
hold at the center of the plate; viz., the deflection at the center of the
plate must be finite, and the sum of the shearing forces distributed over
the lateral surface of an infinitesimal circular cylinder cut out of the plate
at its center must balance the concentrated force P. From the first of
these two conditions it follows that the constant A3 in the general solu-
tion (p) vanishes. The second condition gives

or, by using notation (a),

where e is the radius of the infinitesimal cylinder. Substituting Iz for w
in this equation and using for z expression (p), we find that for an infinitely
small value of x equal to e/l the equation reduces to



from which

Having the values of the constants A3 anji A4, the remaining two con-
stants Ai and A2 can be found from Eqs. (q). For given dimensions of
the plate and given moduli of the plate and of the foundation these equa-
tions furnish two linear equations in Ax and A2.

Let us take, as an example, a plate of radius a = 5 in. and of such rigidity that

We apply at the center a load P such that

Using this value of A4 and substituting Iz for w, we find, by using expression (p) and
taking x = a/I = 1, that Eqs. (q) give

0.50(Mi -f 0.250A2 = 4.062A4 = 4.062 • 102 • 10~6

0.687A1 - 8.483A2 = 11.09A4 = 11.09 • 102 • 10~5

These equations give

Ai = 86 • 10~4 A2 = -64 • 10~6

Substituting these values in expression (p) and retaining only the terms that contain
x to a power not larger than the fourth, we obtain the following expression for the
deflection:

The deflection at the center (x = 0) is then

and the deflection at the boundary (x = 1) is

The difference of these deflections is comparatively small, and the pressure distribution
over the foundation differs only slightly from a uniform distribution.

If we take the radius of the plate two times larger (a = 10 in.) and retain the
previous values for the rigidities D and k, x becomes equal to 2 at the boundary, and
Eqs. {q) reduce to

0.826A1 + 1.980A2 = 1.208A4

2.665A1 - 5.745A2 = 16.37A4

These equations give



The deflection is obtained from expression (p) as

The deflections at the center and at the boundary of the plate are, respectively,

wm&x = 2.10~2 in. and wm\n = 0.88 • 10~2 in.

It is thus seen that, if the radius of the plate is twice as large as the quantity /, the
distribution of pressure over the foundation is already far from uniform. The applica-
tion of the strain energy method to the problem of bending of a plate on elastic sub-
grade will be shown in Art. 80.

58. Application of Bessel Functions to the Problem of the Circular Plate. The
general solution (/) of Eq. (e) in the preceding article can also be represented in terms
of Bessel functions. To this end we introduce into Eq. (e) a new variable £ = x V i ;
thus we arrive at the equation

A'A'z - 2 = 0 (a)

in which the symbol A' stands for

Now Eq. (a) is equivalent to equation

and also to

Hence Eq. (a) is satisfied by the solutions of the Bessel differential equation

as well as by the solutions of the equation

which is transformable into Eq. (d) by substituting %i for £. Thus the combined solu-
tion of Eqs. (d) and (e) can be written as

z = BxI0(X Vi) + BJ0(Xi Vi) + B*K0(x Vi) + BAK0(xi Vi) (/)
I0 and K0 being Bessel functions of the first and second kind, respectively, and of
imaginary argument, whereas Bi, Bi, . . . are arbitrary constants. The argument
x being real, all functions contained in Eq. (/) appear in a complex form. To single
out the real part of the solution, it is convenient to introduce four other functions, first
used by Lord Kelvin and defined by the relations1

1 See, for instance, G. N. Watson, "Theory of Bessel Functions," p. 81, Cambridge,
1948.



Setting, furthermore,

where the new constants Ci, C2, . . . are real, we obtain the following expression for
the deflections of the plate:

w = Ci ber x + C2 bei x -f C3 kei x + C4 ker x (h)

All functions herein contained are tabulated functions,1 real for real values of the
argument.

For small values of the argument we have

ber x = 1 - z4/64 -f . . .
bei x = x*/4 - z«/2,304 -f . . .
ker x = - log x + log 2 - T + **V16 + • • • ( l )

kei x - -(z2/4) log Z - TT/4 + (1 + log 2 - 7)s74 + • • •

in which y = 0.5772157 - i s Euler's constant and log 2 - y = 0.11593 • • •
For large values of the argument the following asymptotic expressions hold:

in which <r « x/\/2.
The general solution (h) can be used for the analysis of any symmetrical bending of

a circular plate, with or without a hole, resting on an elastic foundation. The four
constants C, corresponding in the most general case to four boundary conditions, must
be determined in each particular case.2

1 See "Tables of Bessel Functions /0(2) and Ji(z) for Complex Arguments,"
Columbia University Press, New York, 1943, and "Tables of Bessel Functions
Yo(z) and Yx{z) for Complex Arguments," Columbia University Press, New York,
1950. We have

* Many particular solutions of this problem are given by F. Schleicher in his
book " Kreisplatten auf elastischer Unterlage," Berlin, 1926, which also contains
tables of functions Z1 (x) = ber x, Z2(x) = —bei x} Zz(x) = — (2/ir) kei x, and
ZA(X) •» — (2/TT) ker x as well as the first derivatives of those functions. An abbrevi-
ated table of the functions Z and their first derivatives is given in Art. 118, where
they are denoted by the symbol ^.



We shall confine ourselves to the case of an infinitely extended plate carrying a
single load P at the point x = 0. Now, from the four functions forming solution Qi)1

the first two functions increase indefinitely with increasing argument in accordance
with Eqs. (J); and the function ker x becomes infinitely large at the origin, as we can
conclude from Eqs. (J). Accordingly, setting C1 = C 2 • CA = 0, solution (h) is
reduced to

w = Cz kei x (k)

In order to determine the constant Cz, we calculate, by means of Eqs. (i), the shearing
force [see Eqs. (193)]

As x decreases, the value of Qr tends to CzD/I3X — CzD/l2r. On the other hand, upon
distributing the load P uniformly over the circumference with radius r, we have
Qr = —P/2irr. Equating both expressions obtained for Qr, we have

Substitution of Cz into Eq. (k) yields, finally, the complete solution of Hertz's problem
in the form

(179)

wu
and the corresponding reaction of the subgrade is given by p = kw = •—• The

variation of these quantities along a meridional section through the deflection
surface of the plate is shown in Fig. 131, together with similar curves based on a theory
which will be discussed in Art. 61.

At the origin we have kei x = —T/4 and the deflection under the load becomes

(180)

For the reaction of the subgrade at the same point we obtain

(181)

If we take an infinitely large plate with the conditions of rigidity and loading assumed
on page 264, the deflection under the load becomes

as compared with the value of 0.02 in. obtained for a finite circular plate with the
radius a = 21.

The distribution of the bending moments due to the concentrated load is shown in



(Elost. solid)

(Hertz)

(Elosisolid)

(c)
FIG. 131

Fig. 131c. It is seen that the radial moments become negative at some distance from
the load, their numerically largest value being about —0.02P. The positive moments
are infinitely large at the origin, but at a small1 distance from the point of application
of the load they can be easily calculated by taking the function kei x in the form (i).
Upon applying formulas (52) and (53) to expression (179), we arrive at the results

1 As compared with the characteristic length I = s/D/k.



(182)

A comparison of the foregoing expressions with Eqs. (90) and (91) shows that the
stress condition in a plate in the vicinity of the load in Hertz's case is identical with
that of a simply supported circular plate with a radius a = 2le~y = 1.123J, except for

p
a moment M' = M\ = — — (1 — v), which is superimposed on the moments of the

OTT

circular plate.
Let us consider now the case in which the load P is distributed over the area of a

circle with a radius c, small in comparison with I. The bending moments at the center
of a circular plate carrying such a load are

This results from Eq. (83), if we neglect there the term c2/a2 against unity. By
substituting a = 2le~f into Eq. (m) and adding the moment —P/8TT(1 — v), we obtain
at the center of the loaded circle of the infinitely large plate the moments

(183)

Stresses resulting from Eq. (183) must be corrected by means of the thick-plate theory
in the case of a highly concentrated load. Such a corrected stress formula is given on
page 275.

In the case of a load uniformly distributed over the area of a small rectangle, we may
proceed as described in Art. 37. The equivalent of a square area, in particular, is a
circle with the radius c = 0.57w, u being the length of the side of the square (see page
162). Substituting this into Eq. (183) we obtain

The effect of any group of concentrated loads on the deflections of the infinitely
large plate can be calculated by summing up the deflections produced by each load
separately.

59. Rectangular and Continuous Plates on Elastic Foundation. An
example of a plate resting on elastic subgrade and supported at the same
time along a rectangular boundary is shown in Fig. 132, which represents
a beam of a rectangular tubular cross section pressed into an elastic
foundation by the loads P. The bottom plate of the beam, loaded by
the elastic reactions of the foundation, is supported by the vertical sides
of the tube and by the transverse diaphragms indicated in the figure by



dashed lines. It is assumed again that the intensity of the reaction p at
any point of the bottom plate is proportional to the deflection w at that
point, so that p = kw, k being the modulus of the foundation.

In accordance with this assumption, the differential equation for the
deflection, written in rectangular coordinates, becomes

where q, as before, is the intensity of the lateral
load.

Let us begin with the case shown in Fig. 132.
If W0 denotes the deflection of the edges of the
bottom plate, and w the deflection of this plate
with respect to the plane of its boundary, the
intensity of the reaction of the foundation at
any point is k(wQ — w), and Eq. (a) becomes

Taking the coordinate axes as shown in the
figure and assuming that the edges of the plate

parallel to the y axis are simply supported and the other two edges are
clamped, the boundary conditions are

FIG. 132

The deflection w can be taken in the form of a series:

The first series on the right-hand side is a particular solution of Eq. (6)
representing the deflection of a simply supported strip resting on an
elastic foundation. The second series is the solution of the homogene-
ous equation

Hence the functions Ym have to satisfy the ordinary differential equation



Using notations

and taking the solution of Eq. (g) in the form erv, we obtain for r the
following four roots:

The corresponding four independent particular solutions of Eq. (g) are

e0mV C Og ymy e-PmV C 0 S ymy ePmV S[n ymy g-0mV g ^ ymy (j)

which can be taken also in the following form:

cosh pmy cos ymy sinh pmy cos ymy „ .
cosh pmy sin ymy sinh pmy sin ymy

From symmetry it can be concluded that Yn in our case is an even func-
tion of y. Hence, by using integrals (k), we obtain

Yn = Am cosh $my cos ymy + Bn sinh j3TOt/ sin ymy

and the deflection of the plate is

This expression satisfies the boundary conditions (c). To satisfy con-
ditions (d) we must choose the constants Am and Bm so as to satisfy the
equations

Substituting these values of Am and Bm in expression (Z), we obtain the
required deflection of the plate.

The problem of the plate with all four edges simply supported can be
solved by using Eq. (a). Taking the coordinate axes as shown in Fig. 59



(page 105) and using the Navier solution, the deflection of the plate is

In similar manner let the series

represent the distribution of the given load, and the series

represent the reaction of the subgrade. Substituting the series (n) in
the left-hand side and the series (o) and (p) in the right-hand side of
Eq. (a), we obtain

As an example, let us consider the bending of the plate by a force P
concentrated at some point (£,7?). In such a case

by Eq. (6) on page 111. By substitution of expressions (q) and (r) into
Eq. (n) we finally obtain

Having the deflection of the plate produced by a concentrated force,
the deflection produced by any kind of lateral loading is obtained by the
method of superposition. Take, as an example, the case of a uniformly
distributed load of the intensity q. Substituting q d£ drj for P in expres-
sion (s) and integrating between the limits 0 and a and between 0 and 6,
we obtain



When k is equal to zero, this deflection reduces to that given in Navier
solution (131) for the deflection of a uniformly loaded plate.1

Let us consider now the case represented in Fig. 133. A large plate
which rests on an elastic foundation is loaded at equidistant points along
the x axis by forces P.* We shall take the coordinate axes as shown in

FIG. 133

the figure and use Eq. (/), since there is no distributed lateral load. Let
us consider a solution of this equation in the form of the series

in which the first term

represents the deflection of an infinitely long strip of unit width parallel
to the y axis loaded at y = 0 by a load P/a [see Eq. (283), page 471].
The other terms of the series satisfy the requirement of symmetry that
the tangent to the deflection surface in the x direction shall have a zero
slope at the loaded points and at the points midway between the loads.
We take for functions Ym those of the particular integrals (j) which
vanish for infinite values of y. Hence,

To satisfy the symmetry condition (dw/dy)y==o = 0 we must take in this
expression

1 The case of a rectangular plate with prescribed deflections and moments on two
opposite edges and various boundary conditions on two others was discussed by H. J.
Fletcher and C. J. Thorne, J. Appl. Mechanics, vol. 19, p. 361, 1952. Many graphs
are given in that paper.

* This problem has been discussed by H. M. Westergaard; see Ingenifiren, vol. 32,
p. 513, 1923. Practical applications of the solution of this problem in concrete road
design are discussed by H. M. Westergaard in the journal Public Roads, vol. 7, p. 25,
1926; vol. 10, p. 65, 1929; and vol. 14, p. 185, 1933.



Hence, by introducing the new constants A'm = Am/ym, we represent the
deflections (u) in the following form:

In order to express the constants A'm in terms of the magnitude of loads
P, we consider the shearing force Qy acting along the normal section of
the plate through the x axis. From symmetry we conclude that this
force vanishes at all points except the points of application of the loads
P, at which points the shearing forces must give resultants equal to
— P/2. It was shown in the discussion of a similar distribution of
shearing forces in Art. 54 (see page 248) that the shear forces can be
represented by the series

The shearing force, as calculated from expression (v), is

Comparing these two expressions for the shearing force, we find

or, by using notations (i),

Substituting this in expression (v), we finally obtain

The maximum deflection is evidently under the loads P and is obtained
by substituting x = a/2, y = 0 in expression (w), which gives

(184)



The deflection in the particular case of one isolated load P acting on
an infinitely large plate can also be obtained by setting a = <*> in formula
(184). In such a case the first term in the formula vanishes, and by using
notations (i) we obtain

Using the substitution

we find

(185)

in accordance with the result (180). With this magnitude of the deflec-
tion, the maximum pressure on the elastic foundation is

(186)

The maximum tensile stress is at the bottom of the plate under the point
of application of the load. The theory developed above gives an infinite
value for the bending moment at this point, and recourse should be had
to the theory of thick plates (see Art. 26). In the above-mentioned
investigation by Westergaard the following formula for calculating maxi-
mum tensile stress at the bottom of the plate is established by using the
thick-plate theory:

Here h denotes the thickness of the plate, and

where c is the radius of the circular area over which the load P is assumed
to be uniformly distributed. For c = 0 the case of the concentrated
force is obtained.

In the case of a square loaded area u by u, we have to replace c by
0.57u (see page 162).

The case of equidistant loads P applied along the edge of a semi-infinite
plate, as shown in Fig. 134, can also be treated in a similar way. The
final formula for the maximum tensile stress at the bottom of the plate



under the load when the distance a is large is

where b is calculated as in the previous case, and c is the radius of the
semicircular area over which the load P is assumed to be uniformly
distributed. Formulas (x) and (y) have proved very useful in the design
of concrete roads, in which case the
circle of radius c represents the area
of contact of the wheel tire with the
road surface.1

60. Plate Carrying Rows of Equidistant
Columns. As a last example, let us con-
sider an infinite plate or mat resting on
elastic subgrade and carrying equidistant
and equal loads P, each load being distrib-
uted uniformly over the area w by v of a
rectangle, as shown in Fig. 135. The

FIG. 134 FIG. 135

bending of such a "reversed flat slab" may be treated by means of the previously dis-
cussed Westergaard's solution, using simple series.2 Much simpler, however, and,
except for the case of a highly concentrated load, also adequate is the solution in
double series, making use of Navier's method.

Conditions of symmetry compel us to represent the lateral load due to the columns
in form of a cosine series:

The intensity of the given load is equal to P/uv within the shadowed rectangles in
Fig. 135 and is zero elsewhere. Thus, proceeding in the usual manner, i.e., multiplying

Eq. (a) by cos —— cos —— dx dy and integrating between the limits — a/2, -{-a/2
a b

1 The problem of stress distribution near the load applied at a corner of a large plate
has not yet been solved with the same reliability as the problems discussed above.
Several empiric and semiempiric stress formulas regarding that case may be found in
"Concrete Pavement Design," p. 79, Portland Cement Association, Chicago, 1951.
Noteworthy experimental results concerning this problem were obtained by M. Dantu,
Ann. ponts et chausstes, vol. 122, p. 337, 1952. See also L. D. Black, Trans. Eng.
Inst. Canada, vol. 2, p. 129, 1958, and D. E. Nevel, ibid., p. 132.

2 See W. Muller, Ingr.-Arch., vol. 20, p. 278, 1952, and Osterr. Ingr.-Arch., vol. 6,
p. 404, 1952.



for x) —6/2, +6/2 for y, we have

where emn = 1 for m ^ 0, n ^ 0
e,nn = £ for w = 0, n ^ 0 or m ^ 0, n = 0
€mn = -J- for w = n = 0

In the particular case of m — 0 or n = 0 the coefficient itself is readily obtained as a
limit value of the expression (6).

Now, in accordance with Eq. (a) we take for deflections the series

and the relation between the coefficients amn and Amn is easily established by the same
reasoning as before (see page 272). Thus, using the notation

we obtain

Substituting this in the series (c) and observing Eq. (6) we have the final result1

The bending moments of the plate are now obtained by the usual differentiation, and
the distribution of the pressure between the plate and the subgrade is found by multi-
plication of expression (/) by the modulus k.

The particular case k = 0 corresponds to a uniformly distributed reaction, of the
subgrade, i.e., to the case of a "reversed fiat slab" uniformly loaded with q — P/ab.
It is seen from Eq. (/) that the introduction of the modulus tends to reduce the deflec-
tions and also the bending moments of the plate.

The case of a rectangular plate of finite dimensions resting on an elastic foundation
and submitted to the action of a concentrated load has been discussed by H. Happel.2

The Ritz method (see page 344) has been used to determine the deflections of this
plate, and it was shown in the particular example of a centrally loaded square plate
that the series representing the deflection converges rapidly and that the deflection
can be calculated with sufficient accuracy by taking only the first few terms of the
series.3

1 Due to V. Lewe, Bauingenieur, vol. 3, p. 453, 1923.
2 Math. Z., vol. 6, p. 203, 1920. See also F. Halbritter, Bautechnik, vol. 26, p. 181,

1949.
3 The problem of a square plate on an elastic foundation has also been investigated

experimentally; see the paper by J. Vint and W. N. Elgood, Phil. Mag., ser. 7, vol. 19,
p. 1, 1935; and that by G. Murphy, Iowa State Coll. Eng. Expt. Sta. Bull. 135, 1937.



61. Bending of Plates Resting on a Semi-infinite Elastic Solid. So far, the settling
of the subgrade at some point of its surface has been assumed as proportional to the
pressure between the plate and the subgrade at the same point, and consequently as
independent of the pressure elsewhere. This is correct in the case of a floating plate,
considered by Hertz (see page 260), but in the case of a coherent subgrade such a
hypothesis approximates but crudely the actual behavior of the subgrade; a better
approximation can sometimes be obtained on the basis of the following assumptions:

1. The foundation has the properties of a semi-infinite elastic body.
2. The plate rests on the subgrade without friction.
3. A perfect contact between the plate and foundation also exists in the case of a

negative mutual pressure.
This last supposition appears arbitrary; however, a negative pressure between plate

and subgrade actually is compensated, more or less, by the weight of the plate.
The elastic properties of the elastic foundation may be characterized, if isotropy is

assumed, by a Young modulus E0 and a Poisson ratio v0. The approximate numerical
values1 of these constants, depending on the nature of the subgrade and based on
results of dynamical tests, are given in Table 63, together with the value of the
constant

ka = ^ 4 ) (a)

used in the following.

T A B L E 63. V A L U E S OF E L A S T I C CONSTANTS D E P E N D I N G ON

N A T U R E OF FOUNDATION

Subgrade E0, psi v0 k0, psi

Clay 11,000 0.17 5,700
Loess and clay 13,000 0.42 7,900
Medium sand 14,000-18,500 0.33-0.23 7,900-9,800
Sand and gravel 40,000 0.31 22,000
Liassic plastic clay 38,000 0.44 23,500
Lime (air-slaked) 165,000-190,000 0.32-0.38 92,000-110,000
Sandstone 1,600,000 0.26 860,000

We restrict the further consideration to the case of an infinitely large plate in a state
of axial symmetry. Using polar coordinates r, 0, we can write the plate equation as

DAAw(r) = q(r) - pir) (b)

where q(r) denotes the given surface loading and p(r) the reaction of the subgrade.
Let KQ{r,p,<p) be the deflection at the point (r,0) of the subgrade surface due to a

normal unit load applied on this surface (P,<P). The form of the ''influence function"
K0 depends merely upon the nature of the foundation. Making use of some properties
of the Bessel functions, it can be shown2 that Eq. (b) is satisfied by the expression

1 Due to E. Schultze and H. Muhs, " Bodenuntersuchungen fur Ingenieurbauten,"
Berlin, 1950. See also Veroffentl. Degebo, Heft 4, p. 37, 1936.

2 The solution of the problem in this general form is due to D. L. HoIl, Proc. Fifth
Intern. Congr. Appl. Mech., Cambridge, Mass., 1938.



In Eq. (c) J0 denotes the Bessel function of zero order; the term depending on the
nature of the subgrade is

in which the form of Ko is defined by

s being the distance between points (r,0) and (P,<P). Finally

is the term depending on the intensity q(p) of the symmetrical loading at r = p.
In the particular case of a load P uniformly distributed along the periphery of a

circle with a radius c, we have

In the case of the load P distributed uniformly over the area of the same circle, Eq.
(e) yields

where the Bessel function is of the order one. Finally, where a load is concentrated
at the origin (p = 0), we obtain from Eq. (/)

As for the distribution of the reactive pressure, the respective function p(r) is
obtained from Eq. (6), the term

being previously expressed through its Fourier-Bessel transform (e). Thus, we obtain

Now let us consider two particular cases with respect to the physical nature of the
subgrade. For a, floating plate (Art. 57) the influence function Ko(s) is zero everywhere
except at s = 0, where the unit force is applied. With regard to Eq. (d) the quan-
tity Ko(a) then must be a constant. In order to get from Eq. (c) the expression
w(r) = p(r)/k, this in accordance with the definition of the modulus, we have to
assume K0(a) = 1/k. Using the previous notation Z4 = D/k (page 260), we obtain
from Eq. (c) the expression

which actually satisfies the differential equation (178) of the floating plate.
In the case of an isotropic semi-infinite medium we have, by a result due to Bous-



sinesq,1 KQ(s) - (1 - wD/rE* and, by Eq. (d), K(a) = 2(1 - wD/Eaa, or

where k0 is the elastic constant defined by Eq. (a). Writing for brevity,

we finally obtain the solution (c) in the more special form2

In the particular case of a load concentrated at the origin, expression (m) in con-
nection with (h) yields

where X is written for ah. Therefore, the deflection under the load is

(187)

(188)

against the result 0.125Pl2/D of Hertz. The distribution of the pressure is readily
obtained from the general expression (j). We have at any point

(189)

(190)

and especially under the load

in comparison with the value of 0.125P/Z* obtained by Hertz. If we assume equal
values of wm*x in both cases, formula (190) yields a value for pmax which is 2.37 times
as large as the value from Hertz's formula (181). In such a case the relation
Z — 1.241Zo must hold, and curves of the respective deflections as calculated from
Eqs. (179) and (187) are shown in Fig. 131a. Figure 1316 shows in like manner the
variation of the pressure; this time, in order to obtain equal values for pmax in both
cases, it must be assumed that I — 0.806Z0.

It can be shown, finally, that the magnitude of bending moments in the vicinity of
1SeC, for example, S. Timoshenko and J. N. Goodier, "Theory of Elasticity,"

2d ed., p. 365, New York, 1951.
2 For this result see also S. Woinowsky-Krieger, Ingr.-Arch., vol. 3, p. 250, 1932, and

vol. 17, p. 142, 1949; K. Marguerre, Z. angew. Math. Mech., vol. 17, p. 229, 1937;
A. H. A. Hogg, Phil Mag., vol. 25, p. 576, 1938.



the concentrated load is the same for foundations of both kinds if expressed in terms
of the dimensionless argument x = r/l and x = r/h, respectively. We conclude from
this fact that expressions for bending moments, such as given by Eq. (183), can also be
used for a plate resting on an isotropic elastic medium if we replace I by Zo.. Proceeding
in this manner with the stress formula {x) of Westergaard (page 275), we arrive at the
formula

in which ko is given by Eq. (a), and b denotes the same quantity as on page 275.
The problem of the bending of a finite circular plate leads to an infinite set of linear

equations for the coefficients of the series, which has to represent the deflections of
such a plate.1

The use of the method of finite differences should also be considered in handling the
problem of finite circular plates.2

The bending of an infinite plate supported by an elastic layer, which rests in its turn
on a perfectly rigid base,3 and the problem of a semi-infinite pavement slab4 have also
been discussed.

Stresses due to a highly concentrated surface load should be corrected in accordance
with the general theory of thick plates. However, a special theory of thick plates
supported elastically has also been established.6

xSee H. Borowicka, Ingr.-Arch., vol. 10, p. 113, 1939; A. G. Ishkova, Doklady
Akad. Nauk 8.8.S.R., vol. 56, p. 129, 1947; G. Pickett and F. J. McCormick, Proc.
First U.S. Nail. Congr. Appl. Mech., p. 331, Chicago, 1951. The effect of raising the
outer portion of the plate submitted to a central load was discussed by H. Jung,
Ingr.-Arch., vol. 20, p. 8, 1952. For bending of rectangular plates see M. I. Gor-
bounov-Posadov, Priklad. Mat. Mekhan., vol. 4, p. 68, 1940.

2 A. Habel, Bauingenieur, vol. 18, p. 188, 1937; for application to rectangular plates
see G. Pickett, W. C. Janes, M. E. Raville, and F. J. McCormick, Kansas State Coll.
Eng. Expt. Sta. Bull. 65, 1951.

3 A. H. A. Hogg, Phil. Mag., vol. 35, p. 265, 1944,
4 G. Pickett and S. Badaruddin, Proc. Ninth Intern. Congr. Appl. Mech., vol. 6,

p. 396, Brussels, 1957.
5 The first discussion of the statical and dynamical behavior of such plates is due to

K. Marguerre, Ingr.-Arch., vol. 4, p. 332, 1933; see also I. Szab6, Ingr.-Arch., vol. 19,
pp. 128, 342, 1951; Z. angew. Math. Mech., vol. 32, p. 145, 1952. For application of
E. Reissner's theory see P. M. Naghdi and J. C. Rowley, Proc. First Midwest Conf.
Solid Mech. (Univ. Illinois), 1953, p. 119, and D. Frederick, J. Appl. Mechanics,
vol. 23, p. 195, 1956.



CHAPTER 9

PLATES OF VARIOUS SHAPES

62. Equations of Bending of Plates in Polar Coordinates. In the
discussion of symmetrical bending of circular plates polar coordinates
were used (Chap. 3). The same coordinates can also be used to advan-
tage in the general case of bending of circular plates.

If the r and 0 coordinates are taken, as shown in Fig. 136a, the relation
between the polar and cartesian coordinates is given by the equations

from which it follows that

Using these expressions, we obtain the slope of the deflection surface of a
plate in the x direction as

A similar expression can be written
for the slope in the y direction.
To obtain the expression for curva-

ture in polar coordinates the second derivatives are required. Repeating
twice the operation indicated in expression (c), we find

FIG. 136



In a similar manner we obtain

With this transformation of coordinates we obtain

Repeating this operation twice, the differential equation (103) for the
deflection surface of a laterally loaded plate transforms in polar coordi-
nates to the following form:

(191)

When the load is symmetrically distributed with respect to the center of
the plate, the deflection w is independent of 0, and Eq. (191) coincides
with Eq. (58) (see page 54), which was obtained in the case of sym-
metrically loaded circular plates.

Let us consider an element cut out of the plate by two adjacent axial
planes forming an angle dd and by two cylindrical surfaces of radii r and
r + dr, respectively (Fig. 1366). We denote the bending and twisting
moments acting on the element per unit length by Mr, Mty and Mrt and
take their positive directions as shown in the figure. To express these
moments by the deflection w of the plate we assume that the x axis coin-
cides with the radius r. The moments Mn Mt, and Mri then have the
same values as the moments MZJ My, and Mxy at the same point, and by
substituting 6 = 0 in expressions (d), (e), and (/), we obtain

(192)

In a similar manner, from formulas (108), we obtain the expressions for



the shearing forces1

(193)

where Aw is given by expression (g).
In the case of a clamped edge the boundary conditions of a circular

plate of radius a are

In the case of a simply supported edge

In the case of a free edge (see page 87)

The general solution of Eq. (191) can be taken, as before, in the form
of a sum

W = WQ + Wi (k)

in which W0 is a particular solution of Eq. (191) and Wx is the solution of
the homogeneous equation

(194)

This latter solution we take in the form of the following series:2

(195)

in which RQ, Ri, . . . , R[, Ri1 . . . are functions of the radial distance
r only. Substituting this series in Eq. (194), we obtain for each of these
functions an ordinary differential equation of the following kind:

The general solution of this equation for m > 1 is

Rm = Amrm + Bmr~m + Cmrm+2 + Dmr—+2 (I)

1 The direction of Qr in Fig. 1366 is opposite to that used in Fig. 28. This explains
the minus sign in Eq. (193).

2 This solution was given by A. Clebsch in his "Theorie der Elasticitat fester
Korper," 1862.



For m — 0 and m = 1 the solutions are

Ro = A0 + BQr2 + C0 log r + DQr2 log r
and #1 = A1T + BiH + C1/-1 + J V log r W

Similar expressions can be written for the functions R'm. Substituting
these expressions for the functions R7n and R'm in series (195), we obtain
the general solution of Eq. (194). The constants Am, Bm, . . . , Dm in
each particular case must be determined so as to satisfy the boundary-
conditions. The solution Ro, which is independent of the angle 0, repre-
sents symmetrical bending of circular plates. Several particular cases
of this kind have already been discussed in
Chap. 3.

63. Circular Plates under a Linearly
Varying Load. If a circular plate is acted
upon by a load distributed as shown in Fig.
137, this load can always be divided into
two parts: (1) a uniformly distributed load
of intensity i(p2 + Pi) and (2) a linearly
varying load having zero intensity along the
diameter CD of the plate and the intensities
— p and +P at the ends A and B of the
diameter AB. The case of uniform load
has already been discussed in Chap. 3. We
have to consider here only the nonuniform
load represented in the figure by the two shaded triangles.1

The intensity of the load q at any point with coordinates r and 0 is

FIG. 137

The particular solution of Eq. (191) can thus be taken in the following
form:

This, after substitution in Eq. (191), gives

Hence

As the solution of the homogeneous equation (194) we take only the term
of series (195) that contains the function Ri and assume

W1 = (Air + Bxr
z + CiT-1 + D1T log r) cos B (c)

1 This problem has been discussed by W. Fliigge, Bauingenieur, vol. 10, p. 221, 1929.



Since it is advantageous to work with dimensionless quantities, we intro-
duce, in place of r, the ratio

' " 5
With this new notation the deflection of the plate becomes

w = W0 +W1 = ^j5 (p5 + Ap + Bp* + Cp-1 + Dp log P) cos B (d)

where p varies from zero to unity. The constants A9 B, . . . in this
expression must now be determined from the boundary conditions.

Let us begin with the case of a simply supported plate (Fig. 137). In
this case the deflection w and the bending moment Mr at the boundary
vanish, and we obtain

(w),=i = 0 (Mr)P=i = 0 (e)
At the center of the plate (p = 0) the deflection w and the moment Mr

must be finite. From this it follows at once that the constants C and D
in expression (d) are equal to zero. The remaining two constants A and
B will now be found from Eqs. (e), which give

Since these equations must be fulfilled for any value of 0, the factors
before cos B must vanish. This gives

and we obtain

Substituting these values in expression (d), we obtain the deflection w
of the plate in the following form:

For calculating the bending moments and the shearing forces we substi-
tute expression (/) in Eqs. (192) and (193), from which



It is seen that (ikfr)max occurs at p = 1/V3 and is equal to

The maximum value of Mt occurs at

and is equal to

The value of the intensity of the vertical reaction at the boundary is1

The moment of this reaction with respect to the diameter CD of the
plate (Fig. 137) is

This moment balances the moment of the load distributed over the plate
with respect to the same diameter.

As a second example, let us consider the case of a circular plate with a
free boundary. Such a condition is encountered in the case of a circular
foundation slab supporting a chimney. As the result of wind pressure,
a moment M will be transmitted to the
slab (Fig. 138). Assuming that the reac-
tions corresponding to this moment are
distributed following a linear law, as
shown in the figure, we obtain the same
kind of loading as in the previous case;
and the general solution can be taken in the same form (d) as before.
The boundary conditions at the outer boundary of the plate, which is
free from forces, are

FIG. 138

The inner portion of the plate of radius b is considered absolutely rigid.
It is also assumed that the edge of the plate is clamped along the circle

1 The reaction in the upward direction is taken as positive.



of radius b. Hence for p = b/a = fi the following boundary condition
must be satisfied:

Substituting expression (d) in Eqs. (i) and 0'), we obtain the following
equations for the determination of the constants:

4(5 + v) + 2(3 + v)B + 2(1 - v)C + (1 + v)D = 0
4(17 + v) + 2(3 + v)B + 2(1 - v)C - (3 - v)D = 0

404 + 2/32J3 - 20"2C + Z) = 0
From these equations

Substituting these values in expression (d) and using Eqs. (192) and (193),
we can obtain the values of the moments and of the shearing forces. The
constant A does not appear in these equations. The corresponding term

in expression (d) represents the rotation of
the plate as a rigid body with respect to the
diameter perpendicular to the plane of Fig.
138. Provided the modulus of the founda-
tion is known, the angle of rotation can be
calculated from the condition of equilibrium
of the given moment M and the reactions of
the foundation.

Using expression (d), the case of a simply
supported circular plate loaded by a moment
M at the center (Fig. 139a) can be readily
solved. In this case we have to omit the
term containing p6, which represents the dis-
tributed load. The constant C must be taken

equal to zero to eliminate an infinitely large deflection at the center.
Expression (d) thus reduces to

FIG. 139

The three constants A, B, and D will now be determined from the follow-
ing boundary conditions:

The first two of these equations represent the conditions at a simply sup-



ported edge; the last states the condition of equilibrium of the forces and
moments acting at the boundary of the plate and the external moment M.
From Eqs. (I) we obtain

Hence

Because of the logarithmic term in the brackets, the slope of the deflec-
tion surface calculated from expression (m) becomes infinitely large. To
eliminate this difficulty the central portion of radius b of the plate may
be considered as absolutely rigid.1 Assuming the plate to be clamped
along this inner boundary, which rotates under the action of the moment
M (Fig. 1396), we find

where /3 — b/a. When 0 is equal to zero, Eq. (n) reduces to Eq. (w),
previously obtained. By substituting expression (n) in Eq. (192) the
bending moments Mr and Mt can be calculated.

The case in which the outer boundary of the plate is clamped (Fig.
139c) can be discussed in a similar manner. This case is of practical
interest in the design of elastic couplings of shafts.2 The maximum
radial stresses at the inner and at the outer boundaries and the angle of
rotation <p of the central rigid portion for this case are

where the constants a, «i, and a2 have the values given in Table 64.
TABLE 64

/8 = b/a a ai oti

0.5 14.17 7.10 12.40
0.6 19.54 12.85 28.48
0.7 36.25 25.65 77.90
0.8 82.26 66.50 314.00

1 Experiments with such plates were made by R. J. Roark, Univ. Wisconsin Bull,
74, 1932.

2 H. Reissner, Ingr.-Arch., vol. 1, p. 72, 1929,



64. Circular Plates under a Concentrated Load. The case of a load
applied at the center of the plate has already been discussed in Art. 19.
Here we shall assume that the load P is applied at point A at distance b
from the center 0 of the plate (Fig, 14O).1 Dividing the plate into two
parts by the cylindrical section of radius b as shown in the figure by the
dashed line, we can apply solution (195) for each of these portions of the
plate. If the angle 0 is measured from the radius OA, only the terms
containing cos mB should be retained. Hence for the outer part of the
plate we obtain

where

Similar expressions can also be written for the functions RQ, R[, R'm
corresponding to the inner portion of the plate. Using the symbols A'm,

B'm, . . . instead of Am, Bm, . . . for the con-
stants of the latter portion of the plate, from the
condition that the deflection, the slope, and the
moments must be finite at the center of the plate,
we obtain

Hence for each term of series (a) we have to
determine four constants for the outer portion of
the plate and two for the inner portion.

The six equations necessary for this determination can be obtained
from the boundary conditions at the edge of the plate and from the
continuity conditions along the circle of radius b. If the outer edge of
the plate is assumed to be clamped, the corresponding boundary con-

1 This problem was solved by Clebsch, op. cit. See also A. Foppl, Sitzher. bayer.
Akad. Wiss., Jahrg., 1912, p. 155. The discussion of the same problem by using
bipolar coordinates was given by E. Melan, Eisenbau, 1920, p. 190, and by W. Fliigge,
"Die strenge Berechnung von Kreisplatten unter Einzellasten," Berlin, 1928. See
also the paper by H. Schmidt, Ingr.-Arch., vol. 1, p. 147, 1930, and W. Muller, lngr.-
Arch., vol. 13, p. 355, 1943.

FIG. 140



ditions are

Denoting the deflection of the inner portion of the plate by Wi and
observing that there are no external moments applied along the circle of
radius b, we write the continuity conditions along that circle as

dw dwi d2w d2wi , , / J N
w = Wl d7 = l F W = lfr i0Tr = b {d)

The last equation is obtained from a consideration of the shearing force
Qr along the dividing circle. This force is continuous at all points of the
circle except point A, where it has a discontinuity due to concentrated
force P. Using for this force the representation in form of the series1

and for the shearing force the first of the expressions (193), we obtain

From the six equations (c), (d), and (/), the six constants can be calcu-
lated, and the functions R7n and R'm can be represented in the following
form:

1 This series is analogous to the series that was used in the case of continuous plates
(see p. 248).



Using these functions, we obtain the deflection under the load as

(196)

For 6 = 0 this formula coincides with formula (92) for a centrally loaded
plate. %The case of the plate with simply sup-
ported edge can be treated in a similar
manner.

The problem in which a circular ring plate
is clamped along the inner edge (r = h) and
loaded by a concentrated force P at the outer
boundary (Fig. 141) can also be solved by

using series (a). In this case the boundary conditions for the clamped
inner boundary are

FIG. 141

For the outer boundary, which is loaded only in one point, the conditions
are

Calculations made for a particular
case b/a = | show1 that the largest
bending moment Mr at the inner
boundary is

The variation of the moment along
the inner edge and also along a
circle of radius r = 5a/6 is shown
in Fig. 142. It can be seen that
this moment diminishes rapidly as the angle 0, measured from the point
of application of the load, increases.

The general solution of the form (a) may be used to advantage in
handling circular plates with a system of single loads distributed sym-
metrically with respect to the center of the plate,2 and also in the case of

1 H. Reissner, loc. cit.
2 By combining such reactive loads with a given uniform loading, we may solve the

problem of a flat slab bounded by a circle; see K. Hajnal-Konyi, "Berechnung von
kreisformig begrenzten Pilzdecken," Berlin, 1929.

FIG. 142



annular plates. For circular plates having no hole and carrying but one
eccentric load, simpler solutions can be obtained by the method of com-
plex variables,1 or, when the plate is clamped, by the method of inversion.2

In this latter case the deflection surface of the plate is obtained in the form

(197)

where x = r/a and £ = b/a (Fig. 140). Expression (197) holds through-
out the whole plate and yields for x = J, 0 = 0, that is, under the load,
the value (196), previously obtained by the series method.

66. Circular Plates Supported at Several Points along the Boundary. Considering
the case of a load symmetrically distributed with respect to the center of the plate, we
take the general expression for the deflection surface
in the following form:3

W = WQ 4" W\ (a)

in which Wo is the deflection of a plate simply sup-
ported along the entire boundary, and W\ satisfies the
homogeneous differential equation

AAw i = 0 (6)

Denoting the concentrated reactions at the points of
support 1, 2, 3, . . . b y N\, Af2, . . . , N% and using
series (h) of the previous article for representation of concentrated forces, we have
for each reaction Ni the expression

FIG. 143

where

Y; being the angle defining the position of the support i (Fig. 143). The intensity
of the reactive forces at any point of the boundary is then given by the expression

1 The simply supported plate was treated in that manner by E. Reissner, Math.
Ann., vol. I l l , p. 777, 1935; for the application of Muschelisvili's method see A. I.
Lourye, Bull. Polytech. Inst., Leningrad, vol. 31, p. 305, 1928, and Priklad. Mat.
Mekhan., vol. 4, p. 93, 1940. See also K. Nasitta, Ingr.-Arch., vol. 23, p. 85, 1955, and
R. J. Roark, Wisconsin Univ. Eng. Expt. Sta. Bull. 74, 1932.

2 J. H. Michell, Proc. London Math. Soc, vol. 34, p. 223, 1902.
3 Several problems of this kind were discussed by A. N&dai, Z. Physik, vol. 23, p.

366, 1922. Plates supported at several points were also discussed by W. A. Bassali,
Proc. Cambridge Phil. Soc, vol. 53, p. 728, 1957, and circular plates with mixed bound-
ary conditions by G. M. L. Gladwell, Quart. J. Mech. Appl. Math., vol. 11, p. 159,
1958.



in which the summation is extended over all the concentrated reactions (c).
The general solution of the homogeneous equation (6) is given by expression (195)

(page 284). Assuming that the plate is solid and omitting the terms that give infinite
deflections and moments at the center, we obtain from expression (195)

For determining the constants we have the following conditions at the boundary:

in which Mrt and Qr are given by Eqs. (192) and (193).
Let us consider a particular case in which the plate is supported at two points which

are the ends of a diameter. We shall measure 6 from this diameter. Then 71 = 0,
72 = ir, and we obtain

in which Wa is the deflection of the simply supported and symmetrically loaded plate,
P is the total load on the plate, and p = r/a. When the load is applied at the center,
we obtain from expression (g), by assuming v — 0.25,

For a uniformly loaded plate we obtain



By combining two solutions of the type (g), the case shown in Fig. 144 can also be
obtained.

When a circular plate is supported at three points
120° apart, the deflection produced at the center of the
plate, when the load is applied at the center, is

FIG. 144

When the load is uniformly distributed, the deflection at the center is

where P = iratq.
The case of a circular plate supported at three points was investigated by experi-

ments with glass plates. These experiments showed a very satisfactory agreement
with the theory.1

66. Plates in the Form of a Sector. The general solution developed for circular
plates (Art. 62) can also be adapted for a plate
in the form of a sector, the straight edges of
which are simply supported.2 Take, as an ex-
ample, a plate in the form of a semicircle simply
supported along the diameter AB and uni-
formly loaded (Fig. 145). The deflection of this
plate is evidently the same as that of the circular
plate indicated by the dashed line and loaded as
shown in Fig. 1456. The distributed load is
represented in such a case by the series

FIG. 145

and the differential equation of the deflection surface is

The particular solution of this equation that satisfies the boundary conditions along
the diameter AB is

The solution of the homogeneous differential equation (194) that satisfies the condi-

1 These experiments were made by Nadai, ibid.
* Problems of this kind were discussed by Nadai, Z. Ver. deut. Ing., vol. 59, p. 169,

1915. See also B. G. Galerkin, "Collected Papers/' vol. 2, p. 320, Moscow, 1953,
which gives numerical tables for such cases.



tions along the diameter AB is

Combining expressions (c) and (d), we obtain the complete expression for the deflection
w of a semicircular plate. The constants Am and Bm are determined in each particular
case from the conditions along the circular boundary of the plate.

In the case of a simply supported plate we have

Substituting the sum of series (c) and (d)- for w in these equations, we obtain the
following equations for calculating An and Bm:

From these equations,

With these values of the constants the expression for the deflection of the plate
becomes

With this expression for the deflection, the bending moments are readily obtained
from Eqs. (192).

In a similar manner we can obtain the solution for any sector with an angle ir/k, k
being a given integer. The final expressions for the deflections and bending moments
at a given point can be represented in each particular case by the following formulas:



in which a, 0, and 01 are numerical factors. Several values of these factors for points
taken on the axis of symmetry of a sector are given in Table 65.

TABLE 65. VALUES OF THE FACTORS a, /S, AND /SI FOR VARIOUS ANGLES ir/k

OF A SECTOR SIMPLY SUPPORTED AT THE BOUNDARY

v = 0.3

r/a •= i r/a =* J r/a — \ r/a = 1

*/k

a 0 /Si a /9 /Si a /3 /Si a /3 /3i

TT/4 0.00006 -0.0015 0.0093 0.00033 0.0069 0.0183 0.00049 0.0161 0.0169 0 0 0.0025
TT/3 0.00019 -0.0025 0.0177 0.00080 0.0149 0.0255 0.00092 0.0243 0.0213 0 0 0.0044
ir/2 0.00092 0.0036 0.0319 0.00225 0.0353 0.0352 0.00203 0.0381 0.0286 0 0 0.0088
K 0.00589 0.0692 0.0357 0.00811 0.0868 0.0515 0.00560 0.0617 0.0468 0 0 0.0221

The case in which a plate in the form of a sector is clamped along the circular
boundary and simply supported along the straight edges can be treated by the same
method of solution as that used in the preceding case. The values of the coefficients
a and /3 for the points taken along the axis of symmetry of the sector are given in
Table 66.

TABLE 66. VALUES OF THE COEFFICIENTS a AND /8 FOR VARIOUS ANGLES ir/k

OF A SECTOR CLAMPED ALONG THE CIRCULAR BOUNDARY AND SIMPLY

SUPPORTED ALONG THE STRAIGHT EDGES

v = 0.3

r/a = \ r/a = % r/a = f r/a = 1
rr/h

a p a / 3 a / 3 a £

x/4 0.00005 -0.0008 0.00026 0.0087 0.00028 0.0107 0 -0.0250
TT/3 0.00017 -0.0006 0.00057 0.0143 0.00047 0.0123 0 -0.0340
TT/2 0.00063 0.0068 0.00132 0.0272 0.00082 0.0113 0 -0.0488

TT 0.00293 0.0473 0.00337 0.0446 0.00153 0.0016 0 -0.0756

It can be seen that in this case the maximum bending stress occurs at the mid-point
of the circular edge of the sector.

If the circular edge of a uniformly loaded plate having the form of a sector is entirely
free, the maximum deflection occurs at the mid-point of the unsupported circular edge.
For the case when ir/k = w/2 we obtain

(7O4

u w = 0.0633 -*—

The bending moment at the same point is

Mt = 0.1331ga2

In the general case of a plate having the form of a circular sector with radial edges



clamped or free, approximate methods must be applied.1 However, the particular
problem of a wedge-shaped plate carrying a lateral load can be solved rigorously (see
Art. 78). Another problem which allows an exact solution is that of bending of a
plate clamped along two circular arcs.2 Bipolar coordinates must be introduced in
that case and data regarding the clamped semicircular plate in particular are given
in Table 67.

TABLE 67. VALUES OF THE FACTORS a, /3, AND JSI [EQS. (/)] FOR A SEMICIRCULAR

PLATE CLAMPED ALONG THE BOUNDARY (Fig. 145a)

v = 0.3

Load distribution r/a = ° r/a = 0 " 4 8 3 *'* = ° 4 8 6 ^ = ° ' 5 2 5 r/a " *
/5 & n a x CKmax ftl max P

Uniform load q -0 .0731 0.0355 0.00202 0.0194 -0.0584
Hydrostatic load qy/a -0.0276 -0 .0355

Bipolar coordinates can also be used to advantage in case of a plate clamped between
an outer and an inner (eccentric) circle and carrying a single load.3

67. Circular Plates of Nonuniform Thickness. Circular plates of nonuniform
thickness are sometimes encountered in the design of machine parts, such as dia-
phragms of steam turbines and pistons of reciprocating engines. The thickness of
such plates is usually a function of the radial distance, and the acting load is sym-
metrical with respect to the center of the plate. We shall limit our further discussion
to this symmetrical case.

Proceeding as explained in Art. 15 and using the notations of that article, from the
condition of equilibrium of an element as shown in Fig. 28 (page 52) we derive the
following equation:

dMr
Mr H r - Mt + Qr = 0 (a)

dr
1 See G. F. Carrier and F. S. Shaw, Proc. Symposia Appl. Math., vol. 3, p. 125, 1950;

H. D. Conway and M. K. Huang, / . Appl. Mechanics, vol. 19, p. 5, 1952; H. R. Hasse,
Quart. Mech. Appl. Math., vol. 3, p. 271, 1950. The case of a concentrated load has
been discussed by T. Sekiya and A. Saito, Proc. Fourth Japan. Congr. Appl. Mech.,
1954, p. 195. For plates bounded by two radii and two arcs and clamped see G. F.
Carrier, J. Appl. Mechanics, vol. 11, p. A-134, 1944. The same problem with various
edge conditions was discussed by L. I. Deverall and C. J. Thorne, / . Appl. Mechanics,
vol. 18, p. 359, 1951. The bending of a uniformly loaded semicircular plate simply
supported around the curved edge and free along the diameter (a "diaphragm" of a
steam turbine) has been discussed in detail by D. F. Muster and M. A. Sadowsky,
J. Appl. Mechanics, vol. 23, p. 329, 1956. A similar case, however, with a curved
edge clamped, has been handled by H. Miiggenburg, Ingr.-Arch., vol. 24, p. 308, 1956.

2 Green's function for these boundary conditions has been obtained by A..C. Dixon,
Proc. London Math. Soc, vol. 19, p. 373, 1920. For an interesting limiting case see
W. R. Dean, Proc. Cambridge Phil. Soc, vol. 49, p. 319, 1953. In handling distributed
loads the use of the rather cumbersome Green function may be avoided; see S.
Woinowsky-Krieger, J. Appl. Mechanics, vol. 22, p. 129, 1955, and Ingr.-Arch., vol. 24,
p. 48, 1956.

3 This problem was discussed by N. V. Kudriavtzev, Doklady Akad. Nauk 8.S.S.R.,
vol. 53, p. 203, 1946.



in which, as before,

where

and Q is the shearing force per unit length of a circular section of radius r. In the case
of a solid plate, Q is given by the equation

in which q is the intensity of the lateral load.
Substituting expressions (6), (c), and (d) in Eq. (a) and observing that the flexural

rigidity D is no longer constant but varies with the radial distance r, we obtain the
following equation:

Thus the problem of bending of circular symmetrically loaded plates reduces to the
solution of a differential equation (e) of the second order with variable coefficients.
To represent the equation in dimensionless form, we introduce the following notations:

a = outer radius of plate
h = thickness of plate at any point
Ao = thickness of plate at center

We also assume that the load is uniformly distributed. Using the notation

Eq. (e) then becomes

(198)

In many cases the variation of the plate thickness can be represented with sufficient
accuracy by the equation1

y = e-P**'* (h)

in which /3 is a constant that must be chosen in each particular case so as to approximate
as closely as possible the actual proportions of the plate. The variation of thickness

1 The first investigation of bending of circular plates of nonuniform thickness was
made by H. Holzer, Z. ges. Turbinenwesen, vol. 15, p. 21, 1918. The results given in
this article are taken from O. Pichler's doctor's dissertation, "Die Biegung kreissym-
metrischer Platten von veranderlicher Dicke," Berlin, 1928. See also the paper by
R. Gran Olsson, Ingr.-Arch., vol. 8, p. 81, 1937.



along a diameter of a plate corresponding to various values of the constant /3 is shown
in Fig. 146. Substituting expression (h) in Eq. (198), we find

It can be readily verified that

is a particular solution of Eq. (i). One of the two solutions of the homogeneous equa-
tion corresponding to Eq. (i) can be taken in the form of a power series:

in which ai is an arbitrary constant. The second solution of the same equation
becomes infinitely large at the center of the plate, i.e., for x = 0, and therefore should

FIG. 146

not be considered in the case of a plate without a hole at the center. If solutions
(j) and (k) are combined, the general solution of Eq. (i) for a solid plate can be put in
the following form:

The constant C in each particular case must be determined from the condition at the
boundary of the plate. Since series (k) is uniformly convergent, it can be differen-
tiated, and the expressions for the bending moments can be obtained by substitution
in Eqs. (b). The deflections can be obtained from Eq. (c).

In the case of a plate clamped at the edge, the boundary conditions are

and the constant C in solution (I) is

To get the numerical value of C for a given value of /3, which defines the shape of the
diametrical section of the plate (see Fig. 146), the sum of series (k) must be calculated
for x = 1. The results of such calculations are given in the above-mentioned paper
by Pichler. This paper also gives the numerical values for the derivative and for the



integral of series (k) by the use of which the moments and the deflections of a plate
can be calculated.

The deflection of the plate at the center can be represented by the formula

(o)

in which a is a numerical factor depending on the value of the constant /3. Several
values of this factor, calculated for v = 0.3, are given in the first line of Table 68.

TABLE 68. NUMERICAL FACTORS a AND a FOR CALCULATING DEFLECTIONS

AT THE CENTER OF CIRCULAR PLATES OF VARIABLE THICKNESS

v = 0.3

/3 4 3 2 1 0 - 1 - 2 - 3 - 4

a 0.0801 0.0639 0.0505 0.0398 0.0313 0.0246 0.0192 0.0152 0.01195
a' 0.2233 0.1944 0.1692 0.1471 0.1273 0.1098 0.0937 0.0791 0.06605

The maximum bending stresses at various radial distances can be represented by the
formulas

The values of the numerical factors y and yi for various proportions of the plate and
for various values of x = r/a are given by the curves in Figs. 147 and 148, respectively.

FIG. 147

For / 3 = 0 these curves give the same values of stresses as were previously obtained for
plates of uniform thickness (see Fig. 29, page 56).

In the case of a plate simply supported along the edge, the boundary conditions are

Wx.i - 0 (Mr).-i - 0 (q)



Investigation shows that the deflections and maximum stresses can be represented
again by equations analogous to Eqs. (o) and (p). The notations a, 7', and J1 will
be used for constants in this case, instead of a, 7, and 71 as used for clamped plates.
The values of a! are given in the last line of Table 68, and the values of 7' and -jx are
represented graphically in Figs. 149 and 150, respectively.

FIG. 148

FIG. 149

FIG. 150

To calculate the deflections and stresses in a given plate of variable thickness we
begin by choosing the proper value for the constant /3 as given by the curves in Fig.
146. When the value of /3 has been determined and the conditions at the boundary
are known, we can use the values of Table 68 to calculate the deflection at the center
and the curves in Figs. 147, 148 or 149, 150 to calculate the maximum stress. If the
shape of the diametrical section of the given plate cannot be represented with satis-
factory accuracy by one of the curves in Fig. 146, an approximate method of solving the
problem can always be used. This method consists in dividing the plate by con-
centric circles into several rings and using for each ring formulas developed for a ring



plate of constant thickness. The procedure of calculation is then similar to that
proposed by R. Grammel for calculating stresses in rotating disks.1

68. Annular Plates with Linearly
Varying Thickness. Let us consider a
circular plate with a concentric hole and
a thickness varying as shown in Fig. 151.
The plate carries a uniformly distributed
surface load q and a line load p = P/2-irb
uniformly distributed along the edge of
the hole.2 Letting D0 = ^5 /12(1 - *>2)
be the flexural rigidity of the plate at
r = b, we have at any distance r from
the center

FIG. 151

Substituting this in Eq. (e) of Art. 67 and taking into account the additional shear
force P/2irr due to the edge load, we arrive at the differential equation

The solution of the homogeneous equation corresponding to Eq. (6) is readily
obtained by setting <p = ra. Combining this solution with a particular solution of
Eq. (6), we get

in which

In the special case v = -J, expression (c) has to be replaced by

The arbitrary constants A and B must be determined from the respective conditions
on the boundary of the plate. Writing, for brevity, <pb for {<f>)r=b, and Mb for (Mr)r-b,
and introducing likewise <pa, Ma, the last column of Table 69 contains the boundary
conditions and the special values of q and P assumed in six different cases. The same
table gives the values of coefficients k and kx calculated by means of the solution (e) and
defined by the following expressions for the numerically largest stress and the largest
deflection of the plate:

1 R. Grammel, Dinglers Polytech. / . , vol. 338, p. 217, 1923. The analogy between
the problem of a rotating disk and the problem of lateral bending of a circular plate of
variable thickness was indicated by L. Foppl, Z. angew. Math. Mech., vol. 2, p. 92,
1922. Nonsymmetrical bending of circular plates of nonuniform thickness is dis-
cussed by R. Gran Olsson, Ingr.-Arch., vol. 10, p. 14, 1939.

2 This case has been discussed by H. D. Conway, «/. Appl. Mechanics, vol. 15, p. 1,
1948. Numerical results given in Table 69 are taken from that paper.



TABLE 69. VALUES OF COEFFICIENTS IN EQS. (/) FOR VARIOUS VALUES OF THE

RATIO a/b (Fig. 151)

Case
(number

corresponding
to Table 3)

Coeffi-
cient

a/b

1.25 1.5 2 3 4 5

Bound-
ary

condi-
tions

k 0.249 0.638 3.96 13.64 26.0 40.6

/ci 0.00372 0.0453 0.401 2.12 4.25 6.28

k 0.149 0.991 2.23 5.57 7.78 9.16

hi 0.005510.0564 0.412 1.673 2.79 3.57

k 0.1275 0.515 2.05 7.97 17.35 30.0

Jbi 0.00105 0.0115 0.0934 0.537 1.261 2.16

k 0.159 0.396 1.091 3.31 6.55 10.78

fci 0.00174 0.0112 0.0606 0.261 0.546 0.876

k 0.353 0.933 2.63 6.88 11.47 16.51

kx 0.00816 0.0583 0.345 1.358 2.39 3.27

k 0.0785 0.208 0.52 1.27 1.94 2.52

Jfci 0.00092 0.008 0.0495 0.193 0.346 0.482

I
Where Q = >irq(a* - 62).



Numerical results valid for similar plates with constant thickness have been given
in Table 3.

69. Circular Plates with Linearly Varying Thickness. In discussing the bending
of the circular plate shown in Fig. 152,1 we have to consider two portions of the plate
separately.

1. The annular area b < r < a. Provided v y^ -̂ , the slope <p = dw/dr again is
given by the expression (c) of Art. 68 without, however, its next to last term.

2. The inner area r < b. Here we
^q have dD/dr = 0, and Eq. (e) of Art. 67 is

. U I I i I W I H l I H J l reduced t0

where the subscript i refers to the inner
portion of the plate. The general solu-
tion of Eq. (a) is

FIG. 152

The constants A, B in Eq. (c) of Art. 68, and Ai, Bi in Eq. (6) above can be obtained
from the boundary condition

and the conditions of continuity

Tables 70 and 71 give the deflection wm&x and values of bending moments of the plate
in two cases of loading. To calculate the bending moment at the center in the case
of a central load P, we may assume a uniform distribution of that load over a small
circular area of a radius c. The moment Mr = Mt at r = 0 then can be expressed
in the form

In this formula Mo is given by Eq. (83), which holds for a supported plate of constant
thickness; the second term represents the effect of the edge moment; and the third
term, due to the nonuniformity of the thickness of the plate, is given by Table 71.

1 Clamped and simply supported plates of such a shape were discussed by H. Favre,
Bull. Tech. Suisse romande, vol. 75, 1949. Numerical results given below are due
substantially to H. Favre and E. Chabloz, Bull. Tech. Suisse romande, vol. 78, 1952.



TABLE 70. DEFLECTIONS AND BENDING MOMENTS OF CLAMPED CIRCULAR
PLATES LOADED UNIFORMLY (Fig. 152a)

v = 0.25

-_4 Mr = Pia* Mt = faqa*
° « W = a—i

a ' ° r = 0 r = b r• = a r = 0 r = b r — a

a 0 /3 /3 0i 01 0i

0.2 0.008 0.0122 0.0040 -0.161 0.0122 0.0078 -0.040
0.4 0.042 0.0332 0.0007 -0.156 0.0332 0.0157 - 0 039
0.6 0.094 0.0543 -0.0188 -0.149 0.0543 0.0149 -0.037
0.8 0.148 0.0709 -0.0591 -0.140 0.0709 0.0009 -0.035
1.0 0.176 0.0781 -0.125 -0.125 0.0781 -0.031 -0.031

TABLE 71. DEFLECTIONS AND BENDING MOMENTS OF CLAMPED CIRCULAR
PLATES UNDER A CENTRAL LOAD (Fig. 1526)

v = 0.25

a r = b r = a r = b r — a

a Ti ? ft ^i 0i

0.2 0.031 -0.114 -0.034 -0.129 -0.028 -0.032

0.4 0.093 -0.051 -0.040 -0.112 -0.034 -0.028

0.6 0.155 -0.021 -0.050 -0.096 -0.044 -0.024

0.8 0.203 -0.005 -0.063 -0.084 -0.057 -0.021

1.0 0.224 0 -0.080 -0.080 -0.020 -0.020

*InEq. (c).

In the case of a highly concentrated load requiring the use of the thick-plate theory,
the stress at the center of the bottom surface of the plate is given by the expression

in which <ro may be calculated by means of expression (97).
Assuming next a variation of the flexural rigidity of the plate in accordance with

the law

where ao denotes a length at least equal to the radius of the plate, we arrive in
general at a slope <p expressible in terms of the hypergeometric function.1 The par-
ticular assumption m = 1/v leads, however, to a solution in a closed form. Taking,
in addition, v = -g- we arrive again at a plate with linearly variable thickness.2

1 R. Gran Olsson, Ingr.-Arch., vol. 8, p. 270, 1937.
2 See especially H. D. Conway, J. Appl. Mechanics, vol. 18, p. 140, 1951, and vol. 20,

p. 564, 1953.



Symmetrical deformation of plates such as shown in Fig. 153 also can be investi-
gated by means of a parameter method akin to that described in Art. 39. Some
numerical results1 obtained in that way
are given in Tables 72 and 73.

For bending moments and tensile
stresses under central load P (Fig. 1536)
expressions

analogous to Eqs. (c) and (d) may be
used. M0 again is given by expression
(83), cro denotes the value calculated by
means of expression (96), and -y2 is given
in Table 73.

Of practical interest is also a combina-
tion of loadings shown in Fig. 153a and
b. Taking q = — P/xa2, we have the
state of equilibrium of a circular footing
carrying a central load P and submitted
at the same time to a uniformly distrib-
uted soil reaction (Fig. 153c). Some
data regarding this case, in particular
the values of the factor 72, to be used in
formulas (/) and (gr), are given in Table
74.2 FIG. 153

TABLE 72. DEFLECTIONS AND BENDING MOMENTS OF SIMPLY SUPPORTED

PLATES UNDER UNIFORM LOAD (Fig. 153a)

v = 0.25

4 Mr = 0qa* Mt = piqa2

^o wmftX = a —

hx ° r = 0 r = a/2 r = 0 r = a/2 r = a

a 0 P fa Pi ffi

1.00 0.738 0.203 0.152 0.203 0.176 0.094

1.50 1.26 0.257 0.176 0.257 0.173 0.054

2.33 2.04 0.304 0.195 0.304 0.167 0.029

1 Due, as well as the method itself, to H. Favre and E. Chabloz, Z. angew. Math. u.
Phys., vol. 1, p. 317, 1950, and Bull Tech. Suisse romande, vol. 78, 1952.

2 For further results concerning circular plates with varying thickness see W. Gittle-
man, Aircraft Eng., vol. 22, p. 224, 1950, and J. Paschoud, Schweiz. Arch., vol. 17, p.
305, 1951. A graphical method of design has been given by P. F. Chenea and P. M.
Naghdi, J. Appl. Mechanics, vol. 19, p. 561, 1952.



TABLE 73. DEFLECTIONS AND BENDING MOMENTS OP SIMPLY SUPPORTED
CIRCULAR PLATES UNDER CENTRAL LOAD (Fig. 1536)

v = 0.25

P f l 2 \Mr = M1 Mr -0P Mt = /S1P
^o wm a x = a —

fci ° r = 0 r = a/2 r = a/2 r - a

a T2 0 0i fti

1.00 0.582 0 0.069 0.129 0.060
1.50 0.93 0.029 0.088 0.123 0.033
2.33 1.39 0.059 0.102 0.116 0.016

TABLE 74. BENDING MOMENTS OP A CIRCULAR FOOTING PLATE WITH CENTRAL

LOAD AND UNIFORMLY DISTRIBUTED SOIL PRESSURE (Fig. 153c)

v = 0.25

Mr = Mt Mr = $P Mt = /3lP
h, _

hi r = 0 r = a/2 r = a/2 r = a

72 /S j3i |9i

1.00 -0.065 0.021 0.073 0.030
1.50 -0.053 0.032 0.068 0.016
2.33 -0.038 0.040 0.063 0.007

70. Nonlinear Problems in Bending of Circular Plates. From the
theory of bending of bars it is known that, if the conditions at the sup-

ports of a bar or the loading condi-
tions are changing with the deflection
of the bar, this deflection will no
longer be proportional to the load,
and the principle of superposition
cannot be applied.1 Similar prob-
lems are also encountered in the case
of bending of plates.2 A simple ex-
ample of this kind is shown in Fig.
154. A circular plate of radius a is

pressed by a uniform load q against an absolutely rigid horizontal founda-
tion. If moments of an intensity Ma are applied along the edge of the plate,
a ring-shaped portion of the plate may be bent as shown in the figure,

1 An example of such problems is discussed in S. Timoshenko, "Strength of Mate-
rials," part II, 3d ed., p. 69, 1956.

2 See K. Girkmann, Stahlbau, vol. 18, 1931. Several examples of such problems are
discussed also in a paper by R. Hofmann, Z. angew. Math. Mech., vol. 18, p . 226, 1938.

FIG. 154



whereas a middle portion of radius b may remain flat. Such conditions
prevail, for example, in the bending of the bottom plate of a circular
cylindrical container filled with liquid. The moments Ma represent in
this case the action of the cylindrical wall of the container, which under-
goes a local bending at the bottom. Applying to the ring-shaped portion
of the bottom plate the known solution for a uniformly loaded circular
plate [see expressions (m) in Art. 62], we obtain the deflection

For determining the constants of integration Ci, . . . , C* we have the
following boundary conditions at the outer edge:

(W)r=a = 0 (Mr)r=a = - Ma (b)

Along the circle of radius b the deflection and the slope are zero. The
bending moment Mr also must be zero along this circle, since the inner
portion of the plate remains flat. Hence the conditions at the circle of
radius b are

By applying conditions (6) and (c) to expression (a) we obtain the five
following equations:

By eliminating the constants Ci, . . . , CA from these equations we obtain
an equation connecting Ma and the ratio b/a, from which the radius b of
the flat portion of the plate can be calculated for each given value of Ma.
With this value of b the constants of integration can be evaluated, and
the expression for the deflection of the plate can be obtained from Eq. (a).
Representing the moment Ma and the angle of rotation <pa of the edge of



the plate by the equations

and repeating the above-mentioned calculations for several values of the
moment Ma, we can represent the relation between the constant factors
a and /3 graphically, as shown in Fig. 155, for the particular case1 v = 0.

It is seen from this figure that /3 does not
vary in proportion to a and that the resist-
ance to rotation of the edge of the plate
decreases as the ratio b/a decreases. This
condition holds up to the value a = 5, at
which value /3 = 1, b/a = 0, and the plate
touches the foundation only at the center,
as shown in Fig. 1546. For larger values
of a, that is, for moments larger than
Ma = 5qa2/32, the plate does not touch
the foundation, and the relation between
a and /3 is represented by the straight line
AB. The value Ma = 5ga2/32 is that
value at which the deflection at the center
of the plate produced by the moments Ma

is numerically equal to the deflection of a uniformly loaded plate simply
supported along the edge [see Eq. (68)].

Another example of the same kind is shown in Fig. 156. A uniformly
loaded circular plate is simply supported along the edge and rests at the
center upon an absolutely rigid foundation. Again the ring-shaped por-
tion of the plate with outer radius a and inner radius b can be treated as

FIG. 156 FIG. 157

a uniformly loaded plate, and solution (a) can be used. The ratio b/a
depends on the deflection 5 and the intensity of the load q.

71. Elliptical Plates. Uniformly Loaded Elliptical Plate with a Clamped
Edge. Taking the coordinates as shown in Fig. 157, the equation of the
boundary of the plate is

1 This case is discussed in the paper by Hofmann, op. cit.



The differential equation

and the boundary conditions for the clamped edge, i.e.,

are satisfied by taking for the deflection w the expression1

It is noted that this expression and its first derivatives with respect to
x and y vanish at the boundary by virtue of Eq. (a). Substituting expres-
sion (d) in Eq. (6), we see that the equation is also satisfied provided

(199)

Thus, since expression (d) satisfies Eq. (b) and the boundary conditions,
it represents the rigorous solution for a uniformly loaded elliptical plate
with a clamped edge. Substituting x = y = 0 in expression (d), we find
that W0, as given by Eq. (199), is the deflection of the plate at the center.
If a = b, we obtain for the deflection the value previously derived for a
clamped circular plate [Eq. (62), page 55]. If a = <x>, the deflection W0

becomes equal to the deflection of a uniformly loaded strip with clamped
ends and having the span 26.

The bending and twisting moments are obtained by substituting expres-
sion (d) in Eqs. (101) and (102). In this way we find

For the center of the plate and for the ends of the horizontal axis we
obtain, respectively,

1 This solution and the solution for a uniformly varying load q are obtained by
G. H. Bryan; see A. E. H. Love's book, "Theory of Elasticity," 4th ed., p. 484. The
case of an elliptical plate of variable thickness is discussed by R. Gran Olsson, Ingr.-
Arch., vol. 9, p. 108, 1938.



Similarly, for the moments My at the center and at the ends of the vertical
axis we find, respectively,

It is seen that the maximum bending stress is obtained at the ends of
the shorter principal axis of the ellipse. Having the moments Mx, My,
and Mxy, the values of the bending moment Mn and the twisting moment
Mnt at any point on the boundary are obtained from Eqs. (c) (Art. 22,
page 87) by substituting in these equations

The shearing forces Qx and Qy at any point are obtained by substi-
tuting expression (d) in Eqs. (106) and (107). At the boundary the
shearing force Qn is obtained from Eq. id) (Art. 22, page 87), and the
reaction Vn from Eq. (</) of the same article. In this manner we find
that the intensity of the reaction is a maximum at the ends of the minor
axis of the ellipse and that its absolute value is

The smallest absolute value of Vn is at the ends of the major axis of the
ellipse where

For a circle, a = b, and we find (Fn)max = (Vn)min = qa/2.

Elliptical Plate with a Clamped Edge and Bent by a Linearly Varying Pressure.
Assuming that q = qox, we find that Eq. (6) and the boundary conditions (c) are
satisfied by taking

(200)

From this expression the bending moments and the reactions at the boundary can be
calculated as in the previous case.

Uniformly Loaded Elliptical Plate with Simply Supported Edge. The solution for
this case is more complicated than in the case of clamped edges;l therefore we give here
only some final numerical results. Assuming that a/b > 1, we represent the deflection
and the bending moments at the center by the formulas

1 See B. G. Galerkin, Z. angew. Math. Mech., vol. 3, p. 113, 1923.



The values of the constant factors a, j3, and j3i for various values of the ratio a/b and
for v = 0.3 are given in Table 75.

TABLE 75. FACTORS a, /3, JS1 IN FORMULAS (k) FOR UNIFORMLY LOADED AND
SIMPLY SUPPORTED ELLIPTICAL PLATES

v = 0,3

a/b 1 1.1 1.2 1.3 1.4 1.5 2 3 4 5 oo

a 0.70 0.83 0.96 1.07 1.17 1.26 1.58 1.88 2.02 2.10 2.28
/3 0,206 0.215 0.219 0.223 0.223 0.222 0.210 0.188 0.184 0.170 0.150
/Si 0.206 0.235 0.261 0.282 0.303 0.321 0.379 0.433 0.465 0.480 0.500

Comparison of these numerical values with those previously obtained for rectangular
plates (Table 8, page 120) shows that, for equal values of the ratio of the sides of
rectangular plates and the ratio a/b of the semiaxes of elliptical plates, the values of
the deflections and the moments at the center in the two
kinds of plate do not differ appreciably. The case of a
plate having the form of half an ellipse bounded by the
transverse axis has also been discussed.1

72. Triangular Plates. Equilateral Triangular
Plate Simply Supported at the Edges. The bend-
ing of such a triangular plate by moments Mn

uniformly distributed along the boundary has
already been discussed (see page 94). It was
shown that in such a case the deflection surface of the plate is the same
as that of a uniformly stretched and uniformly loaded membrane and is
represented by the equation

FIG. 158

in which a denotes the height of the triangle, and the coordinate axes
are taken as shown in Fig. 158.

In the case of a uniformly loaded plate the deflection surface is2

(201)

1 B. G. Galerkin, Messenger Math., vol. 52, p. 99, 1923. For bending of clamped
elliptical plates by concentrated forces see H. Happel, Math. Z., vol. 6, p. 203, 1920,
and C. L. Perry, Proc. Symposia Appl. Math., vol. 3, p. 131, 1950. See also H. M.
Sengupta, Bull. Calcutta Math. Soc, vol. 41, p. 163, 1949, and vol. 43, p. 123, 1950;
this latter paper also contains a correction to the former one. By means of curvi-
linear coordinates, solutions for plates clamped along some other contour lines and
submitted to a uniform load have been obtained by B. Sen, Phil. Mag., vol. 33, p. 294,
1942.

2 The problem of bending of a plate having the form of an equilateral triangle was
solved by S. Woinowsky-Krieger, Ingr.-Arch., vol. 4, p. 254, 1933.



By differentiation we find

It may be seen from (201) and (6) that the deflection and the bending
moment at the boundary vanish, since the expression in the brackets is
zero at the boundary. Further differentiation gives

Hence the differential equation of the deflection surface is also satisfied,
and expression (201) represents the solution of the problem. Having the
expression for deflections, the expressions for the bending moments and
the shearing forces can be readily obtained. The maximum bending
moment occurs on the lines bisecting the angles of the triangle. Con-
sidering the points along the x axis and taking v — 0.3, we find

(202)

(203)

At the center of the plate

The case of a concentrated force acting on the
plate can be solved by using the method of images (see
page 156). Let us take a case in which the point of
application of the load is at the center A of the plate
(Fig. 159). Considering the plate, shown in the figure
by the heavy lines, as a portion of an infinitely long
rectangular plate of width a, we apply the fictitious
loads P with alternating signs as shown in the figure.
The nodal lines of the deflection surface, produced by
such loading, evidently divide the infinitely long plate

into equilateral triangles each of which is in exactly the same condition
as the given plate. Thus our problem is reduced to that of bending of
an infinitely long rectangular plate loaded by the two rows of equidistant
loads + P and — P. Knowing the solution for one concentrated force
(see Art. 36) and using the method of superposition, the deflection at
point A and the stresses near that point can be readily calculated, since
the effect of the fictitious forces on bending decreases rapidly as their dis-
tance from point A increases. In this manner we find the deflection at A:

(204)

FIG. 159



The bending moments at a small distance c from A are given by the
expressions

(205)

Since for a simply supported and centrally loaded circular plate of radius
do the radial and the tangential moments at a distance c from the center
are, respectively (see page 68),

it can be concluded that the first terms on the right-hand side of Eqs.
(205) are identical with the logarithmical terms for a circular plate with
a radius

Hence the local stresses near the point of application of the load can be
calculated by using the thick-plate theory developed for circular plates
(see Art. 19).

Equilateral Triangular Plates with Two or Three Edges Clamped. Triangular plates
are used sometimes as bottom slabs of
bunkers and silos. In such a case each
triangular plate is rigidly clamped along
both its inclined edges and clamped
elastically along its third, horizontal
edge (Fig. 160). Only the uniform and
the hydrostatic distribution of the load
is of practical interest. The largest
bending moment of the panel and the
clamping moments at the middle of a
built-in edge may be represented as

M = 0qa* or M - /Sî ua* (/)

according to the type of loading (Fig.
160). The values of coefficients /3 and
0i, obtained by the method of finite differences,1 are given in Table 76.

It should be noted, finally, that a plate in form of a triangle with angles x/2, *-/3,
and ir/6 and having all edges simply supported can be considered as one-half of the
equilateral plate (Fig. 158), this latter being loaded antisymmetrically above the axis

1 See A. Smotrov, "Solutions for Plates Loaded According to the Law of Trapeze/'
Moscow, 1936.

FIG. 160



TABLE 76. VALUES OF THE FACTORS /S, JS1 IN EQS. (/) FOR EQUILATERAL
TRIANGULAR PLATES (Fig. 160)

v = 0.20

Edge y = 0 simply supported Edge y = 0 clamped
Load distribution

MxI MyI Mn2 MyZ MxI MyI Mn2 My-A

Uniform /3 0.01260.0147 -0.0285 0 0.01130.0110 -0.0238 -0.0238
Hydrostatic IS10.0053 0.0035 -0.0100 0 0.0051 0.0034 -0.0091 -0.0060

x. The problem of bending of such a plate can be solved in several ways—for example,
by the method of images.1

Plate in the Form of an Isosceles Right Triangle with Simply Supported Edges. Such
a plate may be considered as one-half of a square
plate, as indicated in Fig. 161 by dashed lines,
and the methods previously developed for rectan-
gular plates can be applied.2 If a load P is
applied at a point A with coordinates £, y (Fig.
161), we assume a fictitious load — P applied at
A', which is the image of the point A with respect
to the line BC. These two loads evidently pro-
duce a deflection of the square plate such that the
diagonal BC becomes a nodal line. Thus the
portion OBC of the square plate is in exactly the
same condition as a simply supported triangular
plate OBC. Considering the load +P and using

the Navier solution for a square plate (page 111), we obtain the deflection

FIG. 161

In the same manner, considering the load — P and taking a — t\ instead of £ and a — £
instead of rj, we obtain

The complete deflection of the triangular plate is obtained by summing up expressions
(g) and (h):

w = Wi + Wi (i)

1 For the solution of this problem in double series, see R. Girtler, Sitzber. Akad.
Wiss. Wien, vol. 145, p. 61, 1936. The bending of equilateral triangular plates with
variable thickness has been discussed by H. Gottlicher, Ingr.-Arch., vol. 9, p. 12, 1938.

2 This method of solution was given by A. Nadai, "Elastische Platten," p. 178,
1925. Another way of handling the same problem was given by B. G. Galerkin, Bull,
acad. sci. Russ., p. 223, 1919, and Bull. Polytech. InSL1 vol. 28, p. 1, St. Petersburg,
1919.



To obtain the deflection of the triangular plate produced by a uniformly distributed
load of intensity q, we substitute q d£ dt/ for P and integrate expression (t) over the
area of the triangle OBC. In this manner we obtain

This is a rapidly converging series and can be used to calculate the deflection and the
bending moments at any point of the plate. Taking the axis of symmetry of the
triangle in Fig. 161 as the Xi axis and representing the deflections and the moments
Mx1 and MVl along this axis by the formulas

the values of the numerical factors a, /S, and /3i are as given in Figs. 162 and 163. By
comparing these results with those given in Table 8 for a uniformly loaded square

FIG. 162

FIG. 163



plate, it can be concluded that for the same value of a the maximum bending moment
for a triangular plate is somewhat less than half the maximum bending moment for a
square plate.

To simplify the calculation of the deflections and moments, the double series (j) can
be transformed into simple series.1 For this purpose we use the known series

which can be represented in the following form

Considering now the series

we obtain

By integrating Eq. (p) we find

The constants Am and Bm can be determined from the conditions

which follow from series (o) and (n). With these values of the constants expression
(r) gives the sum of series (o), which reduces the double series in expression (j) to a
simple series.

73. Skewed Plates. Plates bounded by an oblique parallelogram have been used
recently as floor slabs of skew bridges. Such slabs usually are simply supported along

1 This transformation was communicated to S. Timoshenko by J. V. Uspensky.



the abutments, whereas both other sides remain free or are supported elastically by
"curbs" or beams.

In the most general case the use of an oblique system of coordinates chosen in
accordance with the given angle of skew
should be recommended; in certain particular
cases rectangular coordinates may also be used
to advantage in dealing with skew plates, and
the method of finite differences appears, in
general, to be the most promising. The fol-
lowing numerical data for uniformly loaded
skewed plates were obtained in that way.l At
the center of a skew plate with all edges simply
supported (Fig. 164a), let

The bending moment Afmax acts very nearly
in the direction of the short span of the plate.

If the edges y = 0 and y = a are free and
the other two edges are simply supported
(Fig. 1646), the central portion of the plate
carries the load in the direction normal to the
abutments. Letting Wo and (Mo) max be,
respectively, the deflection and bending
moment at the center of the plate, and (wi)m&x

and (Af 0 max the corresponding quantities at
the free edge, we may express these quantities in the form

The numerical values of the coefficients are given in Table 77.

74. Stress Distribution around Holes. In order to investigate the
stress distribution around a hole, it is simplest to consider a very large
plate; results obtained in this way prove t<3 be applicable without appreci-
able inaccuracy to plates of any shape, provided the width of the hole
remains small as compared with the over-all dimensions of the plate.

1 The most data are due to V. P. Jensen, Univ. Illinois Bull. 332, 1941, and V. P-
Jensen and J. W. Allen, Univ. Illinois Bull. 369, 1947. See also C. P. Siess, Proc
ASCE, vol. 74, p. 323, 1948. Analytical methods have been applied by H. Favre,
Schweiz. Bauztg., vol. 60, p. 35, 1942; P. Lardy, Schweiz. Bauztg., vol. 67, p. 207, 1949;
and also by J. Krettner, Ingr.-Arch., vol. 22, p. 47, 1954, where further bibliography
is given. For use of energy methods see also A. M. Guzman and C. J. Luisoni,
Publs. Univ. Nad. Buenos Aires, p. 452, 1953. Pure bending of skewed plates has
been discussed by E. Reissner, Quart. Appl. Math., vol. 10, p. 395, 1953. Models of
skewed plates were tested by L. Schmerber, G. Brandes, and H. Schambeck, Bauinge-
nieur, vol. 33, p. 174, 1958. For use of finite differences see also Art. 83.

FIG. 164
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TABLE 77. VALUES OF COEFFICIENTS IN EQS. (a) AND (6) FOR DEFLECTIONS

AND BENDING MOMENTS OF UNIFORMLY LOADED SKEWED PLATES

v = 0.2

0
30
30
45
60
75

m

2
2.02
1.92
2
2
2

n

2
1.75
1.67
1.414
1
0.518

Plate in Fig. 164a

a

0.01013
0.01046

0.00938
0.00796
0.00094

/3

0.0999
0.0968

0.0898
0.0772
0.0335

Plate in Fig. 1646

an

0.214

0.1183
0.0708
0.0186

Oil

0.224

0.1302
0.0869
0.0396

0o

0.495

0.368
0.291
0.166

0.508

0.367
0.296
0.152

To take an example, let us consider an infinitely large plate in a uni-
form state of stress denned by the bending moments

which correspond to a deflection surface

To obtain the disturbance produced in such a state of pure bending
by a circular hole with a radius a (Fig.
165), we assume the material to be re-
moved inside the periphery of the circle.
Then we have to replace the action of
the initial stresses along the periphery of
the hole by the action of the external
couples and forces:

FIG. 165

which are readily obtained by differentiation of expression (b) in accord-
ance with Eqs. (192).

On the initial state of stress we superimpose now an additional state
of stress such that (1) the combined couples and forces vanish at r = a
and (2) the superimposed stresses taken alone vanish at infinity (r = <*>).

We can fulfill both conditions by choosing the additional deflection in
the form



This expression also satisfies the homogeneous differential equation (194)
and yields the following stress resultants on the periphery of the hole:

Since expressions (c) and (e) for Mr contain a constant term as well as
a term proportional to cos 20, while both expressions for Vr contain only
one term, three equations are needed to satisfy the required conditions
M'r + M'r' = 0 and V'r -f V" = Oon the periphery of the hole. Resolv-
ing these equations with respect to the unknown coefficients A, B, and C,
we obtain the final deflections w = w' •+ w" and the following stress
resultants along the periphery of the plate:

For 0 = 7r/2 and 0 = TT/4, respectively, we obtain

It is usual to represent the largest value of a stress component due to a
local disturbance in the form

o-mas = ka (h)

where a denotes the average value of the respective component in the
same section and k is the so-called factor of stress concentration. Having
in mind the largest bending stress along the periphery of the hole,
we can also write k — (Mf)max/ikfo, MQ being the initial value of the stress
couples at B — TT/2, where this largest stress occurs. Thus in the event
of pure bending we have

equal to about 1.80 for steel (v = -J).
Factors of stress concentration could be obtained in a similar manner

for various modes of a uniform state of stress and also for holes of other
than circular shape.1 All such results, however, prove to be of relatively
little value for the following reason.

1 See J. N. Goodier, Phil Mag., vol. 22, p. 69, 1936, and G. N. Savin, "Stress Con-
centration around Holes," Moscow, 1951.



While the bending stresses (to take only the previously discussed
case) do not exceed the value of o w = 6M0k/h2, the largest value of the
corresponding shearing stresses is given by

Thus, by decreasing the ratio a/h we can increase the ratio Tn^x/ow at
will. In this way we soon arrive at transverse shearing stresses of such
a magnitude that their effect on the plate deformation ceases to be negli-
gible in comparison with the effect of the couples. Consequently, to

assure reliable results regarding the stress distribution around holes, we
have to resort to special theories which take the shear deformation into
account.

Stress-concentration factors obtained1 by means of E. Reissner's theory
(see Art. 39) are plotted in Fig. 166 versus the value of a/h. The curve
kb holds in the case of pure bending considered above; the curve kt gives
the stress concentration in the event of a uniform twist, produced by
couples Mx = Mo9 Mv = -M0 in the initial state of stress. The values

1 E. Reissner, / . Appl. Mechanics, vol. 12, p. A-75,1945. The case is discussed most
rigorously by J. B. Alblas, "Theorie van de driedimensionale Spanningstoestand in
een doorborde plaat,'' Amsterdam, 1957. For bending of a square plate with a circular
hole, see M. El-Hashimy, "Ausgewahlte Plattenprobleme," Zurich, 1956, where
customary theory is applied.



kb = 1.80 and kt = 1.60 given for these cases by the customary theory
appear, if plotted, as straight lines which approach both respective curves
asymptotically as the ratio a/h increases indefinitely. It is seen from
the graph that even for holes three times as wide as the plate is thick
the error resulting from the application of the usual theory exceeds 10
per cent of the true value of kb. It is also noteworthy that for vanishing
hole diameter the limit value h — 3 of the stress-concentration factor in
pure bending becomes equal to the value of the same factor in plane
stress when uniform tension in one direction is assumed.

If the hole (Fig 165) is filled up with an elastic material other than that of the plate,
we have to deal with an "elastic inclusion." The unfilled hole and the rigid inclusion

v - 0.3 for material of
plate and inclusion

FIG. 167

can be regarded as the limiting cases of the elastic inclusion, Young's modulus of the
filling being zero in the former and infinitely large in the latter case. In the following,
the effect of a rigid inclusion is briefly considered.

Just as in the case of a hole, we have to combine an initial state of stress with a
supplementary one; however, the conditions now to be fulfilled on the periphery of the
circle r = a are (in the symmetrical case)

where w is the combined deflection of the plate. From the expressions (192) for the
stress resultants, we readily conclude that on the periphery of the inclusion the relation
Mt = vMr must hold, whereas the moments Mrt become zero.

In the particular case of pure bending, assumed on page 43, we obtain a distribu-
tion of radial moments around the rigid inclusion given by1

1 M. Goland, / . Appl. Mechanics, vol. 10, p. A-69, 1943; Fig. 167 is taken from this
paper. See also Yi-Yuan Yu, Proc. Second U.S. Natl. Congr. Appl. Mech., Ann
Arbor, Mich., 1954, p. 381.



The respective stress concentration factor is equal to k = (3 + v)/(l — v2), that is, to
3.63 for steel. The effect of the transverse shear deformation, however, is not implied
in this result, which consequently holds only for large values of a/h.

It is seen that in the vicinity of a rigid inclusion the radial couples Mr far exceed
the tangential couples Mt) this is in strong contrast to the stress state around a hole,
where the couples Mt dominate the couples Mr- Both moments are balanced best
in their magnitude in the case of an elastic inclusion, as shown in Fig. 167. Here Ei
denotes Young's modulus of the plate and E% that of the filling.

An inclusion with elastic filling may be replaced, without substantially changing its
effect on the plate, by an annular elastic inclusion. Reinforcing a hole with a ring of
properly chosen stiffness can therefore considerably reduce the stress concentration
in the material of the plate around the hole.1

1 For stress analysis and numerical data regarding this case see Savin, op. cit.



CHAPTER 10

SPECIAL AND APPROXIMATE METHODS IN THEORY

OF PLATES

75. Singularities in Bending of Plates. The state of stress in a plate
is said to have a singularity at a point1 (xo,yo) if any of the stress com-
ponents at that point becomes infinitely large. From expressions (101),
(102), and (108) for moments and shearing forces we see that a singu-
larity does not occur as long as the deflection w(x,y) and its derivatives
up to the order four are continuous functions of x and y.

Singularities usually occur at points of application of concentrated
forces and couples. In certain cases a singularity due to reactive forces
can occur at a corner of a plate, irrespective of the distribution of the
surface loading.

In the following discussion, let us take the origin of the coordinates
at the point of the plate where the singularity occurs. The expressions
for the deflection given below yield (after appropriate differentiations)
stresses which are large in comparison with the stresses resulting from
loading applied elsewhere or from edge forces, provided x and y are small.

Single Force at an Interior Point of a Plate. If the distance of the
point under consideration from the boundary and from other concen-
trated loads is sufficiently large, we have approximately a state of axial
symmetry around the single load P. Consequently, the radial shearing
force at distance r from the load P is

Observing the expression (193) for Qr we can readily verify that the
respective deflection is given by

(206)

in which a is an arbitrary length. The corresponding term r2 log a yields
negligible stresses when the ratio r/a remains small.

Single Couple at an Interior Point of a Plate. Let us apply a single
1 More exactly, at a point (xo,yo,z).



force — Mi/Ax at the origin and a single force +M1ZAx at the point
(— Aa;,0), assuming that Mx is a known couple. From the previous result
[Eq. (206)] the deflection due to the combined action of both forces is

As Ax approaches zero, we obtain the case of a couple Mi concentrated
at the origin (Fig. 168a) and the deflection is

where wQ is the deflection given by expression (206). Performing the
differentiation we obtain

If we omit the second term MXX/8TTD, which gives no stresses, and use
polar coordinates, this expression becomes

(207)

In the case of the couple M2 shown in Fig. 1686 we have only to replace
6 by 0 + TT/2 in the previous formula to obtain the corresponding
deflection.

FIG. 168

Double Couple at an Interior Point of a Plate. Next we consider the
combined action of two equal and opposite couples acting in two parallel
planes Ax apart, as shown in Fig. 169. Putting M1 Ax = Hx and fixing
the value of Hx we proceed in essentially the same manner as before and
arrive at the deflection



due to a singularity of a higher order than that corresponding to a couple.1

Substitution of expression (206), where rectangular coordinates may be
used temporarily, yields the deflection

(208)

Expressions containing a singularity are also obtainable in the case of a
couple acting at the corner of a wedge-shaped plate with both edges free,
as well as in the case of a semi-infinite plate sub-
mitted to the action of a transverse force or a
couple at some point along the free edge.2

Single Load Acting in the Vicinity of a Built-in

FIG. 169 FIG. 170

Edge (Fig. 170). The deflection of a semi-infinite cantilever plate carry-
ing a single load P at some point (£,77) is given by the expression

where r\ = (x — £)2 + (y — rj)2. We confine ourselves to the consider-
ation of the clamping moment at the origin. Due differentiation of
expression (d) yields

(209)

at x = y = 0, provided £ and 17 do not vanish simultaneously. It is seen
that in general the clamping moment Mx depends only on the ratio ?;/f.

1 To make the nature of such a loading clear, let us assume a simply supported
beam of a span L and a rigidity EI with a rectangular moment diagram Ax by M} sym-
metrical to the center of beam and due to two couples M applied at a distance Ax from
each other. Proceeding as before, i.e., making Ax —* 0, however fixing the value of
H = M Ax, we would arrive at a diagram of magnitude H concentrated at the middle
of beam. Introducing a fictitious central load H/EI and using Mohr's method, we
would also obtain a triangular deflection diagram of the beam with a maximum ordi-
nate HL/4JZI. A similar deflection diagram would result from a load applied at the
center of a perfectly flexible string.

2 See A. Nadai, "Elastische Platten," p. 203, Berlin, 1925.



If, however, Z = rj = O the moment Mx vanishes, and thus the function
MX(ZM) proves to be discontinuous at the origin.

Of similar character is the action of a single load near any edge rigidly
or elastically clamped, no matter how the plate may be supported
elsewhere. This leads also to the characteristic shape of influence sur-
faces plotted for moments on the boundary of plates clamped or continu-
ous along that boundary (see Figs. 171 and 173).

For the shearing, or reactive, force acting at x = y = 0 in Fig. 170
we obtain in similar manner

(210)

where r2 = Z2 + v
2.

76. The Use of Influence Surfaces in the Design of Plates. In Art. 29
we considered an influence function K(x,y,ZM) giving the deflection at
some point (x,y) when a unit load is applied at a point (£,17) of a simply
supported rectangular plate. Similar functions may be constructed for
any other boundary conditions and for plates of any shape. We may
also represent the influence surface K(ZM) for the deflection at some fixed
point (x,y) graphically by means of contour lines. By applying the
principle of superposition to a group of n single loads Px acting at points
(iifVi) we find the total deflection at (x,y) as

In a similar manner, a load of intensity P(ZM) distributed over an area A
of the surface of the plate gives the deflection

By Maxwell's reciprocal law we also have the symmetry relation

i.e.j the influence surface for the deflection at some point (x,y) may be
obtained as the deflection surface W(ZM) due to a unit load acting at
(x,y). The surface W(ZM) is given therefore by the differential equation
AAW(ZM) — QJ

 a n d the solution of this equation not only must fulfill the
boundary conditions but also must contain a singularity of the kind
represented in Eq. (206) at Z = X1 y = y.

Of special practical interest are the influence surfaces for stress resultants1 given by
a combination of partial derivatives of w(x,y) with respect to x and y. To take an

1 Such surfaces have been used first by H. M. Westergaard, Public Roads, vol. 11,
1930. See also F. M. Baron, / . Appl. Mechanics, vol. 8, p. A-3, 1941.



example, let us consider the influence surfaces for the quantity

By result (c) of Art. 75 this latter expression yields the ordinates of a deflection surface
in coordinates £, 77 containing at £ = x, 77 = y a singularity due to a "couple of second
order" H=I which acts at that point in accordance with Fig. 169.

The procedure of the construction and the use of influence surfaces may be illus-
trated by the following examples.1

Influence Surf ace for the Edge Moment of a Clamped Circular Plate2 (Fig. 171). By
representing the deflection (197), page 293, in the form w = PK(x,0,£,8), we can con-
sider K as the influence function for the deflection at some point (x,0), the momentary
position of the unit load being (£,0). In calculating the edge couple Mr at x = r/a — 1,
y — 0 we observe that all terms of the respective expressions (192), except for the
following one, vanish along the clamped edge x = 1. The only remaining term yields

For brevity let us put £2 — 2£ cos 8 + 1 = rj2 and, furthermore, introduce the angle
<P (Fig. 171a). Then we have £2 — 1 — 2?? cos <p + y2 and

which, for negligible values of 77, coincides with the expression (209). The influence
surface for the moment Mr is represented by the contour map in Fig. 1716, with the
ordinates multiplied by 4TT.

Influence Surface for the Bending Moment Mx at the Center of a Simply Supported
Square Plate.3 It is convenient to use the influence surfaces for the quantities
Mxo = — D d2w/dx2 and Myo = — D d2w/dy2 with the purpose of obtaining the final
result by means of Eqs. (101).

The influence surface for Mx0 may be constructed on the base of Fig. 76. The
influence of the single load P = I acting at point 0 is given by the first of the equations
(151) and by Eq. (152). This latter expression also contains the required singularity
of the type given by Eq. (206), located at the point 0. The effect of other loads may
be calculated by means of the first of the equations (149), the series being rapidly
convergent. The influence surface is shown in Fig. 172 with ordinates multiplied
by 8TT.

Let us calculate the bending moment Mx for two single loads Pi and P2 < Pi at a
fixed distance of 0.25a from each other, each load being distributed uniformly over

1 For details of the so-called singularity method see A. Pucher, Ingr.-Arch., vol. 12,
p. 76, 1941.

2 Several influence surfaces for the clamped circular plate are given by M. El-
Hashimy, "Ansgewahlte Plattenprobleme," Zurich, 1956.

3 The most extensive set of influence surfaces for rectangular plates with various
edge conditions is due to A. Pucher, "Einflussfelder elastischer Platten," 2d ed.,
Vienna, 1958. See also his paper in "Federhofer-Girkmann-Festschrift," p. 303,
Vienna, 1950. For influence surfaces of continuous plates, see G. Hoeland, Ingr.-Arch.,
vol. 24, p. 124, 1956.



Multiplication factor ^ p = 0.0796

FIG. 171

an area 0.1a • 0.1a. Outside those areas the plate may carry a uniformly distributed
live load of an intensity q < Pi/O.Ola*.

The influence surface (Fig. 172) holds for Afx0, and the distribution of the loading
which yields the largest value of Mxo is given in this figure by full lines. Because of the
singularity, the ordinates of the surface are infinitely large at the center of the plate;



therefore it is simplest to calculate the effect of the load Pi separately, by means of
Eqs. (163) and (165), in connection with Tables 26 and 27.x For this case we have
v = 0, v/u = k = 1, <p = 1.5708, ^ = 0, X = 2.669, and n = 0, which yields N = 0
and a value of M calculated hereafter. As for the effect of the load P2, it can be
assumed as proportional to the ordinate 2.30 of the surface at the center of the loaded

Multiplication factor ^ - = 0.0398 For uniform lood Mx =0.0369 qo2

area. Introducing only the excesses of both single loads over the respective loads due
to q, we have to sum up the following contributions to the value of MXQ:

1. Load P1 : from Eqs. (163), (165), with £ = a/2, d = 0.1 V^ a,

1 The effect of the central load may also be calculated by means of influence lines
similar to those used in the next example or by means of Table 20.



2. Load P2:

3. Uniform load q: from data on Fig. 172,

Therefore

Owing to the square shape of the plate and the symmetry of the boundary conditions
we are in a position to use the same influence surface to evaluate Mvo. The location
of the load P2 corresponding to the location previously assumed for the surface MxO
is given by dashed lines, and the contribution of the load P2 now becomes equal to
M'^ = 0.035(P2 — O.Olga2), while the contributions of Pi and q remain the same as
before. This yields

Now assuming, for example, v = 0.2 we have the final result

Influence Surface for the Moment Mx at the Center of Support between Two Interior
Square Panels of a Plate Continuous in the Direction x and Simply Supported aty = ± b /2 .
This case is encountered in the design of bridge slabs supported by many floor beams
and two main girders. Provided the deflection and the torsional rigidity of all sup-
porting beams are negligible, we obtain the influence surface shown1 in Fig. 173.

In the case of a highway bridge each wheel load is distributed uniformly over some
rectangular area u by v. For loads moving along the center line y = 0 of the slab a
set of five influence lines (valid for v/b = 0.05 to 0.40) are plotted in the figure and their
largest ordinates are given, which allows us to determine without difficulty the govern-
ing position of the loading. Both the surface and the lines are plotted with ordinates
multiplied by 8x.

EXAMPLE OF EVALUATION. Let us assume a = b — 24 ft 0 in.; furthermore, for the
rear tire Pr = 16,000 Ib, u = 18 in., v = 30 in., and for the front tire P/ = 4,000 Ib,
u = 18 in., v = 15 in. The influence of the pavement and the slab thickness on the
distribution of the single loads may be included in the values u and v assumed above.

For the rear tire we have v/b « 0.10 and for the front tire v/b » 0.05. Assuming
the position of the rear tires to be given successively by the abscissas £ = 0.20a, 0.25a,
0.30a, 0.35a, and 0.40a, the respective position of the front tires is also fixed by the
wheel base of 14 ft = 0.583a. The evaluation of the influence surface for each par-
ticular location of the loading gives a succession of values of the moment plotted in
Fig. 173 versus the respective values of £ by a dashed line. The curve proves to have
a maximum at about £ = 0.30a. The procedure of evaluation may be shown for this
latter position only.

The influence lines marked 0.10 and 0.05, respectively, yield the contribution of both
central loads Tat y = 0) equal to

and the influence surface gives the contribution of the remaining six loads as

1 For methods of its construction see references given in Art. 52.



Influence surface for Mx at x = y =0 for o'continuous plate with squorepanels

Influence lines for v/a =0.05 to 0.40

Simply supported

For uniform load in oil ponels

FIG. 173

Simply supportedMultiplication factor g^ = 0.0398



Finally, taking into account the prescribed multiplier of 1/8TT = 0.0398, we have
the result

Maximum Shearing Force Due to a Load Uniformly Distributed over the Area of a
Rectangle. A load of this type, placed side by side with the built-in edge of an infinite
cantilever plate, is shown in Fig. 170 by dashed lines. This problem is encountered
also in the design of bridge slabs. By using the result (210) and the principle of
superposition we obtain the following shearing force at x = y = 0:

which gives

Numerical values of the factor a are given in Table 78. As the influence of the other
tire loads on Qx is usually negligible we have no need of an influence surface for Qx.
The result (/) can be used with sufficient accuracy for slabs having finite dimensions
and also, as a largest possible value, for an edge built in elastically.

TABLE 78. VALUES OF THE FACTOR a. IN EQ. (/)

v/u a v/u a

0.1 0.223 1.2 0.852
0.2 0.357 1.4 0.884
0.3 0.459 1.6 0.909
0.4 0.541 1.8 0.927
0.5 0.607 2.0 0.941

0.6 0.662 2.5 0.964
0.7 0.708 3 0.977
0.8 0.747 4 0.989
0.9 0.780 5 0.994
1.0 0.807 10 0.999

77. Influence Functions and Characteristic Functions. It is interesting to note the
close connection between the influence function (or Green's function) of the bent
plate and the problem of its free lateral vibrations. The latter are governed by the
differential equation

where W(x,y,t) is the defleetion, n the mass of the plate per unit area, and t the time.
With the assumption W = w(x,y) cos pt we obtain for the function w the differential
equation

DAAw — Xw = 0 (b)



iii which X = 1P1Ii. For some specific boundary conditions, solutions of Eq. (b)
exist only for a definite set of values Xi, X2, . . . , X*, . . . of the parameter X, the
so-called characteristic numbers (or eigenvalues) of the problem. The respective solu-
tions form a set of characteristic functions Wi(z,y), W2(x,y), . . . , Wk(x,y), . . . .
These functions are mutually orthogonal; i.e.,

for i •£ k, the integral being extended over the surface of the plate. As the functions
Wk{x,y) are defined except for a constant factor, we can "normalize" them by choosing
this factor such as to satisfy the condition

The form chosen for the right-hand side of (d) is appropriate in the case of a rectangular
plate with the sides a and b, but whatever the contour of the plate may be, the dimen-
sion of a length must be secured for wk. The set of numbers X* and the corresponding
set of normalized functions Wk(x,y) being established, it can be shown1 that the
expansion

holds for the influence function of the plate with boundary conditions satisfied by the
characteristic functions.

By applying Eqs. (a) and (6) of the previous article to the result (e) we conclude
that, no matter what the distribution of the loading may be, the deflection of the plate
can always be represented by a linear combination of its characteristic functions.

As an example, let us take the rectangular plate with simply supported edges (Fig.
59). Eigenfunctions which satisfy Eq. (6) along with the boundary conditions
w = Aw — 0 and the condition (d) are

m and n being two arbitrary integers. The respective eigenvalue, from Eq. (6), is

Substitution of this in the expansion (e) immediately leads to the result (134). For
rectangular plates with only two opposite edges supported, the conditions on the other
edges being arbitrary, influence functions may be obtained in a similar manner.
However, in such a case a preliminary computation of the values of X* from the respec-
tive transcendental frequency equation becomes necessary. A further example of an
influence function obtainable in the form of an expansion is the case of a circular plate,

1 See, for instance, R. Courant and D. Hilbert, " Methods of Mathematical Physics/.'
vol. 1, p. 370, New York, 1953.



for which the modes of vibration, expressible in terms of Bessel functions, are well
known.

78. The Use of Infinite Integrals and Transforms. Another method of treating the
problems of bending of plates is the use of various transforms.1 A few such transforms
will be discussed in this article.

Fourier Integrals. In the case of infinite or semi-infinite strips with arbitrary condi-
tions on the two parallel edges the method of M. Le"vy, described on page 113, can be
used, but in doing so the Fourier series necessarily must be replaced by the respective
infinite integrals. In addition to the example considered in Art. 50, the problem of an
infinite cantilever plate (Fig. 174) carrying a single load P may be solved in this way.2

FIG. 174

Let Wi be the deflection of the portion AB and iu2 the deflection of the portion BC
of the plate of width AC — a. Then we have to satisfy the boundary conditions

together with the conditions of continuity

The single force P may be distributed uniformly over a length v. Now, any even
function of y can be represented by the Fourier integral

Since the intensity of the loading is given by f(v) — P/v for — v/2 < TJ < v/2 and by

1 For their theory and application see I. N. Sneddon, "Fourier Transforms," New
York, 1951.

2 The solution and numerical results hereafter given are due to T. J. Jaramillo,
J. Appl. Mechanics, vol. 17, p. 67, 1950. Making use of the Fourier transform,
H. Jung treated several problems of this kind; see Math. Nachr., vol. 6, p. 343, 1952.



zero elsewhere, we have

On the other hand, the function f(y) is equal to the difference of the shearing forces Qx
at both sides of the section x = £. Thus, by Eqs. (108), we have

on x = £. In accordance with Eq. (d) we represent the deflections Wi and W2 by the
integrals

in which the function

is of the same form as the function Ym on page 114.
It remains now to substitute expressions (/) into Eqs. (a), (6), and (e) in order to

determine the coefficients Ai, Bi, . . . , D2, independent of y but depending on a.

FIG. 175

The distribution of bending moments along the built-in edge, as computed from the
foregoing solution for various positions of the single load and for v = 0, v = 0.3, is
shown in Fig. 175.

Mellin Transform. The application of this transform is suitable in the case of a
wedge-shaped plate with any homogeneous conditions along the edges 0 = 0 and



B — a. (Fig. 176). To take an example let us consider the edge B — 0 as clamped and
the edge B = a, except for a single load P at r = r0, as free.1

We use polar coordinates (see Art. 62) and begin by taking the general solution of
the differential equation AAw = 0 in the form

where s is a parameter and

The deflection and the slope along the clamped edge vanish if

The bending moment Mt on the free edge
vanishes on the condition that

FIG. 176

Free
edge

Now, a function f(r) can be represented by means of Mellin's formula as follows:

where a is a real constant, subject to some limiting conditions. Specifically for a force
P concentrated at r — r0 we obtain

This suggests the following form for the deflection of the plate:

Now, the reactive forces acting down along the edge B — a. are given by

This, by use of due expressions for Qt and Mrt (see pages 283, 284) as well as the
expression (m), gives

1 The problem was discussed by S. Woinowsky-Krieger, Ingr.-Arch., vol. 20, p. 391,
1952. Some corrections are due to W. T. Koiter, Ingr.-Arch., vol. 21, p. 381, 1953.
For a plate with two clamped edges see Y. S. Uflyand, Doklady Akad. Nauk S.S.S.R.,
vol. 84, p. 463, 1952. See also W. T. Koiter and J. B. Alblas, Proc. Koninkl. Ned.
Akad. Wetenschap., ser. B, vol. 57, no. 2, p. 259, 1954.



We finally equate expressions (I) and (o) and thus obtain, in addition to Eqs. (i) and
(J)1 a fourth condition to determine the quantities A(s), B(s), C(s), and D(s). Sub-
stitution of these coefficients in the expressions (h) and (m) and introduction of a new
variable u — — (s + l)if where i = V— 1, yields the following expression for the
deflection of the plate:

in which G and H are some functions of a, 0, and w, and Af is a function of a and w.

Clomped

FIG. 177

The variation of the deflections along the free edge and the distribution of the
moments Mt along the edge B = 0 in the particular case of a = TT/4 and a = TT/2 is
shown in Fig. 177.

Hankel Transform. Let a circular plate with a radius a be bent to a surface of
revolution by a symmetrically distributed load q(r). We multiply the differential
equation AAw = q/D of such a plate by rJo(Xr) dr and integrate by parts between



r « O and r — «. Provided w — 0 for r > a, the result is

where

«/o and Ji are Bessel functions of the order zero and one, and C1- are constants. Appli-
cation of the Hankel inversion theorem to Eq. (g) gives

The constants d now are obtainable from the conditions on the boundary r = a of
the plate and from the condition that the function (̂X)/X4 must be bounded. The
expression (r) must be slightly modified in the case of an annular plate.1 Examples
of the application of solutions of the type (s) to the problem of elastically supported
plates are given in Art. 61.

Sine Transform. In the case of rectangular plates we have used solutions of the
form

w(x,y) = 2Y(y,a) sin aa;

and in the case of sectorial plates those of the form

w(r,B) = 2U(r,0) sin pO
The finite sine transforms of the function w, taken with respect to x and 0, respec-
tively, and introduced together with transformed derivatives of w and the trans-
formed differential equation of the plate, then prove useful in calculating the constants
of the functions Y and R from the given boundary conditions of the plate.2

79. Complex Variable Method. By taking z = x + iy and z = x — iy for inde-
pendent variables the differential equation (104) of the bent plate becomes

Let us assume w — wo + Wi9 where w\ is the general solution of the equation

and WQ a particular solution of Eq. (a). Then we have3

W1 = <R[Sv(z) + xW] W

where <p and x are functions which are analytic in the region under consideration.
Usually the derivative \f/ = dx/dz is introduced along with x>

1 For the foundation of the method and an extensive list of transforms needed in its
application see H. Jung, Z. angew. Math. Mech., vol. 32, p. 46, 1952.

2 The application of the method is due to L. I. Deverall and C. J. Thorne, / . Appl.
Mechanics, vol. 18, pp. 152, 359, 1951.

3 (R denotes the real part of the solution. This form of the solution of the bipoten-
tial equation is due to E. Goursat, Bull. Soc. Math. France, vol. 26, p. 236, 1898,



In the case of a single load P acting at Zo = Xo+ iya the solution WQ may be chosen
in the form

which is substantially equivalent to expression (206). For a uniform load

would be a suitable solution.
If the outer or the inner boundary of the plate is a circle we always can replace it

by a unit circle z = elB, or briefly z = a. The boundary conditions on z = a must be
expressed in complex form also. The functions <p and ^ may be taken in the form of a
power series, with additional terms, if necessary, depending on the value of stress
resultants taken along the inner edge of the plate. Multiplication of the boundary
conditions by the factor [2iri(<r — z)]~l da and integration along z — a then yields the
required functions <p and \f/.*

For boundaries other than a circle a mapping function z — w(f) = ca(pei(p) may be
used so as to map the given boundary line onto the unit circle f = et<p = <r. The
determination of the functions <pi(£) = <p(z) and ypx(f) = \f/{z) from the boundary
conditions on f = <r then is reduced to the problem already considered. The Musch-
eliShvili method outlined above is especially efficient in cases concerning stress
distribution around holes;1 the function «(f) then has to map the infinite region of the
plate into the interior of the unit circle.

The complex variable method also allows us to express Green's functions of a circular
plate with various boundary conditions in closed form.2 In other cases, such as that
of a clamped square plate, we must rely on an approximate determination of the
Green functions.3

When expressible by a double trigonometric series, the deformation of the plate can
also be represented in a simpler form by making use of the doubly periodic properties
of the elliptic functions. For the quantity Aw, satisfying the potential equation
A(Aw) = 0, such a representation becomes particularly convenient because of the
close connection between the Green function for the expression AM; and the mapping
function of the region of the given plate into the unit circle.4 Once Aw is determined

*For evaluation of integrals of the Cauchy type implied in this procedure see N. I.
MuscheliShvili, "Some Basic Problems of the Mathematical Theory of Elasticity,"
Groningen, 1953.

1 An extensive application of the method to the problem of stress concentration is
due to G. N. Savin; see his "Stress Concentration around Holes," Moscow, 1951.
See also Yi-Yuan Yu, J. Appl. Mechanics, vol. 21, p. 129, 1954, and Proc. Ninth
Intern. Congr. Appl. Mech., vol. 6, p. 378, Brussels, 1957; also L. I. Deverall, / . Appl.
Mechanics, vol. 24, p. 295, 1957. A somewhat different method, applicable as well
to certain problems of the thick-plate theory, was used by A. C. Stevenson, Phil. Mag.,
vol. 33, p. 639, 1942.

2 E. Reissner, Math. Ann., vol. I l l , p. 777, 1935; A.Lourye, Priklad. Mat Mekhan.,
vol. 4, p. 93, 1940.

3 F. Schultz-Grunow, Z. augew. Math. Mech., vol. 33, p. 227, 1953.
4 Courant and Hilbert, op. city vol. 1, p. 377. Elliptic functions have been used in

particular by A. Nadai, Z. angew. Math. Mech., vol. 2, p. 1, 1922 (flat slabs); by
F. Tolke, Ingr.-Arch., vol. 5, p. 187, 1934 (rectangular plates); and also by B. D.
Aggarwala, Z. angew. Math. Mech., vol. 34, p. 226, 1954 (polygonal plates and, in
particular, triangular plates).



the shearing forces of the plate are readily given by the derivatives of that function by
virtue of Eqs. (108).

80. Application of the Strain Energy Method in Calculating Deflec-
tions. Let us consider again the problem of the simply supported
rectangular plate. From the discussion in Art. 28 it is seen that the
deflection of such a plate (Fig. 59) can always be represented in the form
of a double trigonometric series:1

The coefficients amn may be considered as the coordinates denning the
shape of the deflection surface, and for their determination the principle
of virtual displacements may be used. In the application of this principle
we need the expression for strain energy (see page 88):

Substituting series (a) for w, the first term under the integral sign in (6)
becomes

Observing that

if m 7* m' and n j* n', we conclude that in calculating the integral (c)
we have to consider only the squares of terms of the infinite series in the
parentheses. Using the formula

the calculation of the integral (c) gives

1 The terms of this series are characteristic functions of the plate under consideration
(see Art. 77).



From the fact that

it can be concluded that the second term under the integral sign in
expression (6) is zero after integration. Hence the total strain energy
in this case is given by expression (c) and is

Let us consider the deflection of the plate (Fig. 59) by a concentrated
force P perpendicular to the plate and applied at a point x = £, y = 77.
To get a virtual displacement satisfying boundary conditions we give to
any coefficient amv of series (a) an infinitely small variation 5am'n\ As a
result of this the deflection (a) undergoes a variation

and the concentrated load P produces a virtual work

From the principle of virtual displacements it follows that this work must
be equal to the change in potential energy (d) due to the variation 8am

f
n
r.

Hence

Substituting expression (d) for V, we obtain

from which

Substituting this into expression (a), we obtain once more the result (133).
Instead of using the principle of virtual displacements in calculating

coefficients amn in expression (a) for the deflection, we can obtain the
same result from the consideration of the total energy of the system.
If a system is in a position of stable equilibrium, its total energy is a



minimum. Applying this statement to the investigation of bending of
plates, we observe that the total energy in such cases consists of two
parts: the strain energy of bending, given by expression (6), and the
potential energy of the load distributed over the plate. Defining the
position of the element q dx dy of the load by its vertical distance w from
the horizontal plane xy, the corresponding potential energy may be taken
equal to — wq dx dy, and the potential energy of the total load is

The total energy of the system then is

The problem of bending of a plate reduces in each particular case to
that of finding a function w of x and y that satisfies the given boundary
conditions and makes the integral (h) a minimum. If we proceed with
this problem by the use of the calculus of variations, we obtain for w
the partial differential equation (104), which was derived before from the
consideration of the equilibrium of an element of the plate. The inte-
gral (h), however, can be used advantageously in an approximate investi-
gation of bending of plates. For that purpose we replace the problem of
variational calculus with that of finding the minimum of a certain func-
tion by assuming that the deflection w can be represented in the form
of a series

w = ai<pi(x,y) + a2<p2(x,y) + a3<pz(x,y) + • • • + an(pn(x,y) (211)

in which the functions <p\, ^2, . . . , <pn are chosen so as to be suitable1

for representation of the deflection surface w and at the same time to
satisfy the boundary conditions. Substituting expression (211) in the
integral (Ji), we obtain, after integration, a function of second degree with
coefficients ai, a^ . . . . These coefficients must now be chosen so as
to make the integral (h) a minimum, from which it follows that

This is a system of n linear equations in ai, 02, . . . , an, and these
quantities can readily be calculated in each particular case. If the
functions <p are of such a kind that series (211) can represent any arbi-

1 From experience we usually know approximately the shape of the deflection
surface, and we should be guided by this information in choosing suitable functions <p.



trary function within the boundary of the plate,1 this method of calcu-
lating deflections w brings us to a closer and closer approximation as the
number n of the terms of the series increases, and by taking n infinitely
large we obtain an exact solution of the problem.

Applying the method to the case of a simply supported rectangular
plate, we take the deflection in the form of the trigonometric series (a).
Then, by using expression (d) for the strain energy, the integral (Ji) is
represented in the following form:

and Eqs. (i) have the form

In the case of a load P applied at a point with the coordinates £, 17,
the intensity q of the load is zero at all points except the point £, 17, where
we have to put qdx dy = P. Then Eq. (k) coincides with Eq. (e), previ-
ously derived by the use of the principle of virtual displacements. For
practical purposes it should be noted that the integral

contained in expressions (b) and (h) vanishes for a plate rigidly clamped
on the boundary. The same simplification holds for a polygonal plate
if one of the boundary conditions is either w = 0 or dw/dn = 0, where
n = direction normal to the edge.2

If polar coordinates instead of rectangular coordinates are used and
axial symmetry of loading and deformation is assumed, Eq. (h) has to be
replaced by

1 We have seen that a double trigonometrical series (a) possesses this property with
respect to deflections w of a simply supported rectangular plate. Hence it can be used
for obtaining an exact solution of the problem. The method of solving the bending
problems of plates by the use of the integral (h) was developed by W. Ritz; see J. reine
angew. Math., vol. 135, 1908; and Ann. Physik, ser. 4, vol. 28, p. 737, 1909.

2 See, for instance, E. R. Berger, Osterr. Ingr.-Arch., vol. 7, p. 41, 1953.



The contribution of the term containing the factor 1 — v again is zero
for a plate clamped along the boundary.

The strain energy method can also be used for calculating the deflection of a circular
plate resting on an elastic foundation. For example, to obtain a rough approximation
for the case of a circular plate, we take for the deflection the expression

w = A + Br* {n)

in which A and B are two constants to be determined from the condition that the
to al energy of the system in stable equilibrium is minimum.

The strain energy of the plate of radius a as given by Eq. (m) is

Vi = 4B2DXa2Cl + v)

The strain energy of the deformed elastic foundation is

The total energy of the system for the case of a load P applied at the center is

Taking the derivatives of this expression with respect to A and B and equating them
to zero, we obtain

In accordance with the numerical example on page 264 we take

and obtain

This result is about 3 per cent less than the result 43 • 10~3 obtained from the differen-
tial equation of a plate resting on elastic foundation. For greater accuracy more
terms should be taken in expression (n).

If the stress distribution around the single load, not merely the deflection, were
desired, a term of the form

should be included in expression (n) in accordance with the type of singularity here
required [see Eq. (206)].

When using polar coordinates in the most general case the integral (Ji) assumes the
form



81. Alternative Procedure in Applying the Strain Energy Method.
The calculation of the coefficients ai,a2, . . . , an in expression (211), which
had to satisfy the boundary conditions but not the differential equation
of the problem, may also be carried out without actually determining
the potential energy of the system.

Let us assume a virtual deflection 8w of the plate; then, we can calcu-
late the respective work of the loading q either directly, by means of the
integral

(5F)1= ffqdwdxdy (a)

or indirectly, using the expression

(5F)2 = JJDAAti? 8w dx dy (b)

If w were the exact solution of the differential equation DAAw — q of the
plate, then the expressions (a) and (b) would be identical. For an
approximate solution, which Eq. (211) represents, this is certainly not
the case. We can succeed, however, in equalizing the expressions for the
work for a particular set of virtual deflections, namely for 8wi = v\ 5ai,
dw2 = <P2 Sa2, • • • > i>wn — <pn Ban. Substituting these expressions con-
secutively in the equation (BV) i = (5F)2 or, what is the same, in the
equation

jfq hw dx dy = ffDAAw bw dx dy (c)

we obtain the following system of equations:1

It remains only to substitute the expression (211) in Eqs. (d) and to
resolve them with respect to the unknown coefficients ai, a2, . . ., an.
This leads to the final expression for the deflection (211).

To illustrate the application of the method let us consider a uniformly
loaded rectangular plate with all edges built in (Fig. 91). Writing for
brevity 2x/a = U1 2y/b = vf we shall use the expressions

irThe principle leading to these so-called Galerkin equations was indicated by
W. Ritz; see "Gesammelte Werke," p. 228, 1911.



The set of functions

then fulfills the required conditions

Let us carry out the computation for the particular case of the square plate. As
x and y now are interchangeable, we have a2 = a3 and, consequently,

Putting qa*/16D = N we take expression (211) in the form

Substituting this consecutively in Eqs. (d) with the factors <p\, ^2, and <p* and
observing notation (e) we have then to evaluate the integrals between the limits
w= ±1, v = ±1. Thus we arrive at the following system of equations:

6.687345ai + 1.215879a2 + 0.0675488a4 = 0.1422221AT
1.215879a! + 2.743525a2 + 0.218235a4 = 0.0406349JV (h)
0.0675488a! + 0.218235a2 + 0.00590462a4 = 0.00290249AT

For the first approximation we have

-is-—
Resolving the whole system (h) we have

O1 = 0.02023^ a2 = 0.00535AT a4 = 0.006257ST

for the third approximation.
Numerical results obtained by means of the expression (g) for the deflection at the

center, the moments Mx = Mv at the center, and the moment Mx at x = a/2, y = 0,
respectively, are the following:

First approx. 0.001329ga4/Z>, 0.0276ga2, -0.0425ga2

Third approx. 0.001264ga4/I>, 0.0228ga2, -0.0512ga2

For comparison, Table 35 gives the values

0.00126ga4/A 0.0231ga2, -0.0513ga2

The moments at the center are calculated for v — 0.3.
It is seen that, whereas the first approximation is not yet satisfactory, the third

approximation appears quite sufficient even for the bending moments concerned.
82. Various Approximate Methods. A Combined Method.^ The procedure

described in the foregoing article may be restricted as well to one variable, say y, thus
obtaining for the other variable, x, an ordinary differential equation. Let us consider
again the bending of a clamped square plate under uniform load (Fig. 91).

1 Due to L, V, Kantorovich, Izvest. Akad. Nauk S.S.S.R., no. 5, 1933,



In confining ourselves to the first approximation we take, this time,

w = <p(x)f(y) = <p(x)(a* - 8aV + 16y4) (a)

the boundary conditions w — dw/dy — 0 on y = ±a/2 thus being fufilled by the
function ${y). Now we try to satisfy the condition (c) of Art. 81 by choosing the
variation in the form

8w = Hy) 8<p(x) (b)

This, after substitution in Eq. (c) of Art. 81, yields

which is fulfilled if

Next, we substitute expression (a) in this latter equation and obtain the following
differential equation for the unknown function <p(x):

An obvious particular solution of this equation is <p = <?/384Z). For the homogeneous
equation resulting from Eq. (e), when q = 0, we have to assume <p = eKxla. This
yields X= ±a ± pi, with a = 4.1503 and /3 = 2.2858. In view of the symmetry
of the deflection surface about the y axis, solutions of Eq. (e) must be even functions
in X) accordingly we have

To calculate the constants C\ and C2 we use the boundary conditions <p = d<p/dx = 0
on x - ±a/2. Thus we obtain Ci = -0.50227, C2 = -0.04396, which establishes
definitively the form of the function (/) and the solution (a).

We derive from this latter the following numerical results for the center of the plate:
w - 0.001296?a4/£> and (for v = 0.3) Mx = 0.0241ga* and Mv = 0.0261go2.

Owing to the partial use of the differential equation the results of the first approxi-
mation prove to be more exact than those of Art. 81, where a pure strain energy method
was applied. To improve the accuracy still further, we have to assume

where all the functions \l/(y) have to fulfill the boundary conditions on y = ±a/2.
The use of Eq. (c) in conjunction with the variations Swi = ^i 8<pi, Sw2 = fa 8<p2, . . .
would lead this time to a system of linear differential equations with constant coeffi-
cients for the functions <PI(X), <p2(x), . . . . The handling of such a system, though
simple in principle, may become troublesome for higher approximations; the second
approximation, however, should be adequate for the most practical purposes.

The Method of Reversion. Solution (211), fulfilling only the boundary conditions
of the problem, may also be used in the following manner. Instead of calculating the
deflections from a given load distribution by means of the differential equation (103)
we use the same equation to calculate the loading



resulting from the tentative expression (211) for the deflection. According to our
hypothesis, expression (211) does not represent the rigorous solution of the problem
and, therefore, the loading (h) will never be identical with the given loading q. We
can, however, choose the parameters a\} a2, . . . in Eq. (211) so as to equalize the

functions q and q on the average over some por-
tions of the area of the plate.

Consider, for example, a rectangular plate
(Fig. 178) with boundary conditions and a dis-
tribution of loading symmetrical about both
axes x and y. Having subdivided the plate
into 16 equal rectangles, we need, because of
the symmetry, to consider only four partial
areas, such as Ax, A2, Az, and L̂4. Expression
(211) can be restricted accordingly to four
terms, i.e., to

w = ditpi - f a-2<p2 + o,z<pz + cn<pi (i)

Now let q and q' undergo in each of the partial
areas the condition

FIG. 178

This gives four linear equations for the four parameters an and the resolution of these
equations establishes the expression (i) in its final form.1

Methods Approximating the Boundary Conditions. If we succeed in finding a solu-
tion which fulfills the differential equation (103) together with one of the boundary
conditions, the second prescribed condition may be satisfied by determination of a set
of suitably chosen parameters. In solving the problem stated in Art. 44 coefficients
of the two trigonometric series representing the variation of the edge moments of the
plate were introduced as such parameters. Expansion of the slope dw/dN in Fourier
series2 along the boundary was used in order to let this slope vanish in accordance
with the requirements of the problem. In using the latter condition the parameters
could be calculated. Some minimum principle—for example, the method of least
squares—may be used as well in order to satisfy approximately the conditions on the
boundary. The application of such a principle needs more detailed consideration
when two boundary conditions must be simultaneously fulfilled.3

In using a solution which satisfies only the differential equation of the problem it
sometimes proves simplest to fulfill the boundary conditions merely at a number of
points suitably chosen along the boundary. The symmetry of the deformation of the
plate, if such a symmetry exists, should be taken into account in locating those points.
In order to satisfy all boundary conditions at m points we must introduce 2m unknown
parameters.

In the most general case4 we may use an expression for the deflection which satisfies
neither the differential equation of the bent plate nor the boundary conditions of the

1 An illustrative example for the application of the method may be found in C. B.
Biezeno and R. Grammel, "Technische Dynamik," 2d ed., vol. 1, p. 147, Berlin, 1953.

2 A more general system of functions orthogonalized along an edge was used by
A. Nadai to fulfill a boundary condition; see "Elastische Platten," p. 180, Berlin, 1925.

3 An important contribution to this question is due to E. Berger, op. cit., p. 39.
4 The method was discussed by C. J. Thorne and J. V. Atanasoff, Iowa State Coll. J.

Sd., vol. 14, p. 333, 1940.



problem. A number of points, say n, will be chosen then on and inside the boundary
of the plate in which the differential equation must be satisfied exactly. Therefore
a total of 2m -J- n parameters will be needed to obtain the solution of the problem.

Weinstein's Method.1 In the specific case of a plate built in along the boundary we
may seek at first a solution of the differential equation AAwi = q/D such that the
solution is valid for the given loading q and for the boundary conditions w\ = 0,
Aw1 = 0, instead of the actual conditions. It has been shown in Art. 24 that this latter
procedure is equivalent to solving in succession two problems, each dealing with the
equilibrium of a loaded membrane.

The solution of the actual problem may be taken in the form

where dk are some coefficients and <pk functions of z, y, vanishing at the boundary and
obeying the differential equation AA<pk = 0. The required condition dw/dN at the
boundary (where N is the normal to the boundary) can be modified by means of
Green's theorem, which leads to the following system of m linear equations for the
parameters a*:

where all integrals are taken over the entire area of the plate. The method may be
used to advantage when the boundary conditions w = 0, Aw; = 0 suggest a much
simpler solution of the problem than the actual conditions w — 0, dw/dN = 0.

83. Application of Finite Differences Equations to the Bending of
Simply Supported Plates. In our previous discussion (see Art. 24) it
was shown that the differential equation for the bending of plates can be
replaced by two equations each of which has the form of the equation
for the deflection of a uniformly stretched membrane. It was mentioned
also that this latter equation can be solved with sufficient accuracy by
replacing it by a finite differences equation. To illustrate this method of
solution let us begin with the case of a uniformly loaded long rectangular
plate. At a considerable distance from the short sides of the plate the
deflection surface in this case may be considered cylindrical. Then, by
taking the x axis parallel to the short sides of the plate, the differential
equations (120) become

1A. Weinstein and D. H. Rock, Quart. Appl. Math., vol. 2, p. 262, 1944.



Both these equations have the same form as the equation for the deflec-
tion of a stretched and laterally loaded flexible string.

Let AB (Fig. 179) represent the deflection curve of a string stretched
by forces S and uniformly loaded with a vertical load of intensity q. In
deriving the equation of this curve we consider the equilibrium of an
infinitesimal element ran. The tensile forces at points m and n have the

directions of tangents to the deflection curve at these points; and, b}r

projecting these forces and also the load q dx on the z axis, we obtain

from which

This equation has the same form as Eqs. (a) derived for an infinitely
long plate. The deflection curve is now obtained by integrating Eq. (c),
which gives the parabolic curve

satisfying the conditions w = 0 at the ends and having a deflection 8 at
the middle.



The same problem can be solved graphically by replacing the uniform
load by a system of equidistant concentrated forces q Ax, Ax being the
distance between two adjacent forces, and constructing the funicular
polygon for these forces. If A (Fig. 179) is one of the apexes of this
funicular polygon and iS -̂i and Sk are the tensile forces in the two adja-
cent sides of the polygon, the horizontal projections of these forces are
equal to S and the sum of their vertical projections is in equilibrium with
the load q Ax, which gives

-S^p=I + SWk+\~ W* + qAx = 0 (e)

In this equation wk-\, wk, and wk+i are the ordinates corresponding to the
three consecutive apexes of the funicular polygon, and (wk — Wk-i)/Ax
and (wk+i — wk)/Ax are the slopes of the two adjacent sides of the poly-
gon. Equation (e) can be used in calculating the consecutive ordinates
Wi, W2, . . . , Wk-i, Wk, wk+h . . . , Wn of the funicular polygon. For
this purpose let us construct Table (/).

The abscissas of the consecutive division points of the span are entered in
the first column of the table. In the second column are the consecutive
ordinates of the apexes of the polygon. Forming the differences of the
consecutive ordinates, such as Wi — W0, . . . , wk — wk-i, wk+i — wk,
. . . , we obtain the so-called first differences denoted by Aw0, • • • ,
AWk-i, AWk, . . . , which we enter in the third column of the table. The
second differences are obtained by forming the differences between the
consecutive numbers of the third column. For example, for the point k
with the abscissa k Ax the second difference is



With this notation Eq. (e) can be written in the following form:

This is a finite differences equation which corresponds to the differential
equation (c) and approaches it closer and closer as the number of division
points of the span increases.

In a similar manner the differential equations (a) can be replaced by
the following finite differences equations:

To illustrate the application of these equations in calculating the deflec-
tions of the plate let us divide the span, say, into eight equal parts, i.e.,
let Aa; = ^a. Then Eqs. (i) become

Forming the second differences for the consecutive division points W\,
W2, Wz, and W4 in accordance with Eq. (g) and observing that in our case
W0 = 0 and M0 = 0 and from symmetry W3 = w*> and M3 = M5, we
obtain the two following groups of linear equations:

Solving the first group, we obtain the following values for M:

These values coincide exactly with the values of the bending moments
for a uniformly loaded strip, calculated from the known equation



Substituting the values (Jc) for the moments in the second group of Eqs.
(j), we obtain

where

Solving these equations, we obtain the following deflections at the division
points:

The exact values of these deflections as obtained from the known equation

for the deflection of a uniformly loaded strip of length a, for purposes of
comparison, are

It is seen that by dividing the span into eight parts, the error in the
magnitude of the maximum deflection as obtained from the finite differ-
ences equations (i) is about 1.25 per cent. By increasing the number of
division points the accuracy of our calculations can be increased; but this
will require more work, since the number of
equations in the system (j) increases as we
increase the number of divisions.

Let us consider next a rectangular plate
of finite length. In this case the deflections
are functions of both x and y, and Eqs.
(a) must be replaced by the general equa-
tions (120). In replacing these equations
by the finite differences equations we have
to consider the differences corresponding to
the changes of both the coordinates x and y.
We shall use the following notations for the first differences at a point
Amn with coordinates m Ax and n Ay. The notation used in designating
adjacent points is shown in Fig. 180.

AxWm-l,n = Wmn ~ Wm-l,n AxWmn = Wm+i>n — Wmn

AyWm,n-l = Wmn ~ Wm,n-1 AyWmn = Wm>n+i — Wmn

Having the first differences, we can form the three kinds of second differ-
ences as follows:

FIG. 180



AxxWmn = AxWmn — AxWm-ltn = Wm+ltn — Wmn — (wmn ~ ^m-lfn)

= Wm+l,n — 2wmn + Wm-itn

AyyWmn = AyWmn — AyWTO,n_l = t0m,n+l ~ ^ n ~ («)mn ~ Wm,n-l) / s

= Wm,n+1 - 2wmn + iym,n_i W

A t̂̂ mn = AyWm» — AyWm-l,n = Wm.n+1 ~ WTOn ~ (t^m-l.n+1 ~ V l , n )
= Wmin+i — Wmn ~ Wm-l.n+1 + ^m-l,n

With these notations the differential equations (120) will be replaced by
the following differences equations:

In the case of a simply supported rectangular plate, M and w are equal to
zero at the boundary, and we can solve Eqs. (n) in succession without any

difficulty.
To illustrate the process of calculating

moments and deflections let us take the very
simple case of a uniformly loaded square
plate (Fig. 181). A rough approximation for
M and w will be obtained by dividing the
plate into 16 small squares, as shown in the
figure, and by taking Ax = Ay = a/4 in Eqs.
(n). It is evident from symmetry that the
calculations need be extended over an area
of one-eighth of the plate only, as shown in
the figure by the shaded triangle. In this

area we have to make the calculations only for the three points 0, 1, 2,
for which M and w are different from zero. At the remaining points 3,4,5,
these quantities are zero from the boundary conditions. Beginning with
the first of the equations (n) and considering the center of the plate, point
0, we find the following values of the second differences for this point by
using Eqs. (m) and the conditions of symmetry:

AXXMO = 2Mi - 2M0

AyyMo = 2Mi - 2M0

in which My and M0 are the values of M at points 1 and 0, respectively.
Similarly for point 1 we obtain

A1xM1 = Mz- 2M1 + M 0 = -2M 1 + M0

AyyM! = 2M2 - 2Mi

The second differences at point 2 can be calculated in the same way.
Substituting these expressions for the second differences in the first of

FIG. 181



the equations (n), we obtain for points 0, 1, and 2 the following three
finnatinns1

from which we find

Substituting these values of moments in the second of the equations (n),
we obtain the following three equa-
tions for calculating deflections Wo,
Wi, and W2'.

where

From these equations we find the fol-
lowing values of the deflections:
W0 = ee]Sf Wl = 4 8 ^ W2 = 35jy

For the deflection at the center we
obtain FIG. 182

Comparing this with the value 0.00406ga4/£> given in Table 8, it can be
concluded that the error of the calculated maximum deflection is less than
1 per cent. For the bending moment at the center of the plate we find

which is less than the exact value 0.0479ga2 by about 4£ per cent. It
can be seen that in this case a small number of subdivisions of the plate
gives an accuracy sufficient for practical applications. By taking twice
the number of subdivisions, i.e., by making Ax = Ay = -§-a, the value
of the bending moment will differ from the exact value by less than
1 per cent.

As a second problem let us consider the bending of a simply supported skew plate
carrying a uniform load of intensity q (Fig. 182). The subdivisions in this case are



Ax = b/6 and Ay = 6/3. Therefore the first of the equations (n) can be written as

Applying this equation to points 1 to 8 successively and using expressions (m) for the
differences, we obtain the following system of linear equations:

The solution of this system is

The second of the equations (n) now becomes

Taking into account the result (q) this gives a second group of equations:



in which

This yields the deflections

W1 = 0.13176iV wb = 0.38549iV
W2 = 0.25455AT W6 = 0.20293JV
Wz = 0.2211IiV W7 = 0.31249N
W4 = 0.32469JV Ws = 0.44523AT

It should be noted that the integration of
the differential equation of the bent plate
by analytic methods would encounter con-
siderable difficulties in this case.

To calculate the moments at the middle
point 8 of the plate we have to use expres-
sions (101) and (102), in which the deriva-
tives first must be replaced by the respective
differences. Thus, making use1 of expres-
sions (m) and using the values (t) for the
deflections, and also taking v = 0.2, we
obtain

FIG. 183

Mohr's circle (Fig. 183) now gives2 the following principal moments at point 8:

The direction of stresses due to these moments with respect to the coordinate axes
x and y, respectively, is given by

From Fig. 182 we conclude that the stresses due to Mmax at the center are acting almost
exactly in the direction of the short span of the plate.

The plan of the plate in Fig. 182 was such that we could use a rectangular network
1 See also the diagrams in Fig. 184 for the particular case As = Ay.
2 Note the difference of notations in Figs. 183 and 22. The principal moments in

Fig. 183 are denoted by Mm8x and Afmin. Note also that if in both diagrams the point
on the circle moves in the clockwise direction, the normal to corresponding section
will move in the same direction.



with constant subdivisions Ax and Ay. In a more general case a triangular network1

must be used for the analysis of a skew slab.
The method of finite differences can also be applied to plates with edges built in or

free and, finally, to plates with mixed boundary conditions.2 Since in the general

FIG. 184

case the value of M is not fixed on the boundary, and accordingly the use of M becomes
less advantageous, the deflections w may be calculated directly by means of a sequence

1 Extensive use of such networks is made by V. P. Jensen in Univ. Illinois Bull. 332,
1941, and the previous numerical example is taken therefrom.

2 Many numerical examples of this kind may be found in the book by H. Marcus,
"Die Theorie elastischer Gewebe," 2d ed., Berlin, 1932; see also N. J. Nielsen,
"Bestemmelse af Spaendinger i Plader," Copenhagen, 1920.



of difference equations equivalent to the differential equation AAw = q /D of the bent
plate. For convenience the finite difference equivalent of the operator AA( • • • ) is
represented in Fig. 184 together with the other useful operators. The diagram is based
on the assumption Ax = Ay — X. Each number has to be multiplied by the symbol wk

denoting the deflection at the respective point k and the sum of such products then
divided by an expression given in the caption.

In order to formulate the boundary conditions for an edge with vanishing deflections
let us establish the equation for an interior point 7, next to the edge (Fig. 185).
Applying the operator AA ( • • • ) we have

[wi H- w6 + w9 + Wu + 2(w>2 + W4, + wio H- Wn)

- S(wz H- wt + w9 H- Wn) + 2Ow7] — = ~ (u)

in which W2 = Wz = W* = 0. Next we have to eliminate the deflection Wi at a fictive
point 1, obtained by continuation of the network beyond the boundary of the plate.

FIG. 185

This is readily done by means of the relation Wi = -W1 when the plate is simply sup-
ported at point 3 and by means of Wi — W1 when the plate is built in. Thus, there
remain only the deflections of the interior points in Eq. (u) and the total number of
such unknown deflections will not exceed the number of the equations of the type (u)
at our disposal.

In the case of a free edge the number of such difference equations will be increased
by the number of such points 2, 3, 4, . . . on the boundary at which the deflections
do not vanish. The respective operators AAw now must be extended over the exterior
point at the distance X and also 2X from the free edge. Corresponding to each pair of
such unknown deflections W0, wi} there will be two boundary conditions

expressed by means of the differences and written for point 3, opposite to both exterior
points 0 and 1. Hence the total number of equations will still be the same as the
number of unknown deflections.

When the values of M in the interior of the plate are no longer independent of the



deflections w, the difference equations for the deflections become more involved than
was the case in the two previous examples. In solving such equations the method of
relaxation can sometimes be used to great advantage.1

84. Experimental Methods. For irregularly shaped plates or plates with irregularly
varying thickness or weakened by many holes, experimental methods of investigation
become more efficient than purely analytical methods. Conventional devices, such
as electrical strain gauges and extensometers of all kinds, can be used for determination
of strain in a bent plate.2 The following brief review is restricted to methods which are
appropriate to special conditions connected with the bending of thin elastic plates.

Use of Photoelasticity.3 This method, usually applied to problems of plane stress,
must be necessarily altered if employed in the case of bending of plates. In fact, the
normal stresses in a thin bent plate are equal in magnitude but opposite in sign for two
fibers symmetrical with respect to the middle plane of the plate. Accordingly, the
optical effect produced in the zone of tension on a beam of polarized light passing
through the plate is nullified by an opposite effect due to the zone of compression.

The influence of the second zone can be eliminated by cementing together two
identical plates of photoelastic material with a reflecting foil of metal between them.
The inner surface of one or both plates may also be silvered to the same end.4 Calcula-
tions show that the optical effect of such a sandwich plate of a thickness h is about the
same as the effect of a single plate of the thickness h/2 if this latter plate is submitted
to a plane stress equal to the extreme fiber stress of the bent plate.

Another alternative5 for making a bent plate photoelastically effective is to cement
together two plates, both of photoelastic material, but having different elastic proper-
ties. The law of distribution of the flexural stress is no longer linear in such a plate.
Hence, being bent, it yields an optical effect on a beam of polarized light.

According to a third method, sheets of photoelastic material are bonded on a reflec-
tive surface of a plate of any elastic material and any dimensions.6 The behavior of
such sheets in a beam of polarized light yields all data regarding the strain in the
extreme fibers of the tested plate. The method allows us to investigate the strain in a

1 For this method, due to R. V. Southwell, see S. Timoshenko and J. N. Goodier,
"Theory of Elasticity," 2d ed., p. 468, New York, 1951. See also F. S. Shaw, "An
Introduction to Relaxation Methods," Dover Publications, New York, 1953, where
further bibliography is given. Another method of successive approximation in using
the finite differences equation was developed by H. Liebman, Die angenaherte
Ermittlung harmonischer Funktionen und konformer Abbildungen, Sitzber.
Munchen. Akad., p. 385, 1918. The convergency of this method was discussed by
F. Wolf, Z. angew. Math. Mech., vol. 6, p. 118, 1926, and by R. Courant, Z. angew.
Math, Mech., vol. 6, p. 322, 1926. For an improved method see also R. Zurmuhl, Z.
angew. Math. Mech., vol. 37, p. 1, 1957.

2 An electromechanical method in measuring curvatures of a bent slab was used by
W. Andra, F. Leonhardt, and R. Krieger, Bauingenieur, vol. 33, p. 407, 1958.

" See for instance Timoshenko and Goodier, op. cit., p. 131.
4 See J. N. Goodier and G. H. Lee, J. Appl. Mechanics, vol. 8, p. A-27, 1941, and

T. Dantu, Ann. ponts et chausstes, p. 281, 1952.
5 See H. Favre, Schweiz. Bauztg., 1950. For application of the method to a canti-

lever plate of variable thickness see H. Schwieger and G. Haberland, Z. angew. Math.
Mech., vol. 36, p. 287, 1956.

6 This photostress method is due in principle to A. Mesnager (1930), but its practical
application has been realized only recently; see, for example, F. Zandman and M. R.
Wood, Prod. Eng., September, 1956. For application of the so-called freeze procedure
to plates, see D. C. Drucker, J. Appl. Mechanics., vol. 9, p. A-161, 1942.



slab which is part of an actual structure and subjected to the actual loading, rather
than being restricted to a model of the slab.

Use of Reflected Light.1 The effect of a reflective surface of a strained plate on the
direction of two adjacent light beams can be used to calculate the surface curvatures
62V)ZdX2, d2w/dy2, and d2w/dx dy, and, consequently, also the values of the flexural and
torsional moments of the plate. For the same purpose the distortion of a luminous
rectangular mesh projected on the initially plane surface of the plate may be used.
Especially valuable are results obtained in this way for plates on elastic foundation,
whose mechanical properties never can be expressed in a perfect manner analytically.

The Interference Method. Similar to the classic method used for determination of
Poisson's ratio on beams, the interference method has also been applied to measure
the deflections of a bent plate.2

Analogy between Plane Stress and Plate Bending.3 There is an analogy between the
plate deflection, governed by the differential equation AAw = 0 on the particular case
of edge forces acting alone, and Airy's stress function <p satisfying the equation AÂ ? = 0.
Whereas the function w yields the curvatures of the deformed plate, Airy's function
yields the components <rx = d2<p/dy2,ffu = a2<p/dx2, and r,v = — d2<p/dx dy of the plane
stress in an elastic solid. Provided the contour, say f(x,y) = 0, is the same in both
cases, we can put

where K is an arbitrary constant, such that the curvatures remain small.
Measured deflections w can be used for computation of the components of the plane

stress and vice versa if certain conditions of analogy are satisfied both on the boundary
of the plate and on that of the elastic solid.4

1 For theory of the method and its application to various problems of bending of
plates see M. Dantu, Ann. ponts et chausstes, 1940 and 1952. See also G. Bowen,
Eng. News-Record, vol. 143, p. 70, 1949.

2 See R. Landwehr and G. Grabert, Ingr.-Arch., vol. 18, p. 1, 1950.
3 Established by K. Wieghardt, Mitt. Forschungsarb. Ingenieurwesens, vol. 49, 1908.

For a further extension of the analogy see H. Schaefer, Abhandl. Braunschweig, wiss.
Ges., vol. 8, p. 142, 1956.

4 A simple formulation of those conditions is due to M. Dantu, Ann. ponts et
chausstes, p. 386, 1952. For experimental methods based on analogy with electrical
phenomena see R. H. MacNeal, J. Appl Mechanics, vol. 18, p. 59, 1951, and K.
Wotruba, Czechoslov. J. Phys., vol. 2, p. 56, 1953. Further information on various
experimental methods may be found in L. Foppl and E. Monch, "Praktische Span-
nungsoptik," 2d ed., Berlin, 1959.



CHAPTER 11

BENDING OF ANISOTROPIC PLATES

85. Differential Equation of the Bent Plate. In our previous discus-
sions we have assumed that the elastic properties of the material of the
plate are the same in all directions. There are, however, cases in which
an anisotropic material must be assumed if we wish to bring the theory
of plates into agreement with experiments.1 Let us assume that the
material of the plate has three planes of symmetry with respect to its
elastic properties.2 Taking these planes as the coordinate planes, the
relations between the stress and strain components for the case of plane
stress in the xy plane can be represented by the following equations:

It is seen that in the case of plane stress, four constants, E'x, E'yJ E", and
G1 are needed to characterize the elastic properties of a material.

Considering the bending of a plate made of such a material, we assume,
as before, that linear elements perpendicular to the middle plane (xy
plane) of the plate before bending remain straight and normal to the
deflection surface of the plate after bending.3 Hence we can use our
previous expressions for the components of strain:

1 The case of a plate of anisotropic material was discussed by J. Boussinesq, / . math.,
ser. 3, vol. 5, 1879. See also Saint Venant's translation of "Theorie de l'elasticite* des
corps solides," by A. Clebsch, note 73, p. 693.

2 Such plates sometimes are called "orthotropic." The bending of plates with more
general elastic properties has been considered by S. G. Lechnitzky in his book " Aniso-
tropic Plates," 2d ed., Moscow, 1957.

3 The effect of transverse shear in the case of anisotropy has been considered by
K. Girkmann and R. Beer, Osterr. Ingr.-Arch., vol. 12, p. 101, 1958.



The corresponding stress components, from Eqs. (a), are

With these expressions for stress components the bending and twisting
moments are

(212)

in which

Substituting expressions (212) in the differential equation of equilibrium
(100), we obtain the following equation for anisotropic plates:

Introducing the notation

we obtain

(213)

The corresponding expressions for the shearing forces are readily obtained
from the conditions of equilibrium of an element of the plate (Fig. 48)
and the previous expressions for the moments. Thus, we have

(214)

In the particular case of isotropy we have



Hence

and Eq. (213) reduces to our previous Eq. (103).
Equation (213) can be used in the investigation of the bending of plates

of nonisotropic and even nonhomogeneous material, such as reinforced
concrete slabs,1 which has different flexural rigidities in two mutually
perpendicular directions.

86. Determination of Rigidities in Various Specific Cases. The expressions (d)
given for the rigidities in the preceding article are subject to slight modifications accord-
ing to the nature of the material employed. In particular, all values of torsional
rigidity Dxy based on purely theoretical considerations should be regarded as a first
approximation, and a direct test as shown in Fig. 25c must be recommended in order
to obtain more reliable values of the modulus G. Usual values of the rigidities in some
cases of practical interest are given below.

Reinforced Concrete Slabs. Let Es be Young's modulus of steel, Ec that of the con-
crete, Vc Poisson's ratio for concrete, and n = Es/Ec. In terms of the elastic con-
stants introduced in Art. 85 we have approximately vc = E" /y/E'xE'y. For a slab
with two-way reinforcement in the directions x and y we can assume

In these equations, I0x is the moment of inertia of the slab material, Isx that of the
reinforcement taken about the neutral axis in the section x = constant, and Icv and
I8y are the respective values for the section y — constant.

With the expression given for Dxy (also recommended by Huber) we obtain

and the differential equation

1 The application of the theory of anisotropic plates to reinforced concrete slabs is
due to M. T. Huber, who published a series of papers on this subject; see Z. Osterr.
Ing. u. Architektur Ver., 1914, p. 557. The principal results are collected in his books:
"Teorya Plyt," Lvov, 1922, and "Probleme der Statik technisch wichtiger orthotroper
Platten," Warsaw, 1929. Abstracts of his papers are given in Compt. rend., vol. 170,
pp. 511 and 1305, 1920; and vol. 180, p. 1243, 1925.



which can readily be reduced to the form (103) by introducing yi = y -\/Dx/Dy as a
new variable.

I t is obvious that the values (a) are not independent of the state of the concrete.
For instance, any difference of the reinforcement in the directions x and y will affect
the ratio Dx/Dv much more after cracking of the concrete than before.

Plywood. For a plate glued together of three or five plies, the x axis supposed to be
parallel to the face grain, we may use the constants given in Table 79.

TABLE 79. ELASTIC CONSTANTS FOR PLYWOOD

Unit = 106 psi

Material K E'y E" G

Maple,* 5-ply 1.87 0.60 0.073 0.159
Afara,*3-ply 1 9 6 0.165 0.043 0.110
Gaboon* (Okoume), 3-ply 1.28 0.11 0.014 0.085
Birch, t3-and5-ply 2.00 0.167 0.077 0.17
Birch t with bakelite membranes 1.70 0.85 0.061 0.10

* By R. F. S. Hearmon and E. H. Adams, Brit. J. Appl. Phys., vol. 3, p. 155, 1952-
f By S. G. Lechnitzky, "Anisotropic Plates," p. 40, Moscow, 1947.

FIG. 186

Corrugated Sheet. Let E and v be the elastic constants of the material of the sheet,
h its thickness,

the form of the corrugation, and s the length of the arc of one-half a wave (Fig. 186).
Then we have1

1 See E. Seydel, Ber. deut. Versuchsanstalt Luftfahrt, 1931.



in which, approximately,

Plate Reinforced by Equidistant Sliffeners in One Direction. For a plate reinforced
symmetrically with respect to its middle plane, as shown in Fig. 187, we may take1

in which E and v are the elastic constants of the material of the plating, E' the Young
modulus, and / the moment of inertia of a stiffener, taken with respect to the middle
axis of the cross section of the plate.

FIG. 187 FIG. 188
Plate Cross-stiffened by Two Sets of Equidistant Stiffeners. Provided the reinforce-

ment is still symmetrical about the plating we have

Ii being the moment of inertia of one stiffener and b\ the spacing of the stiff eners in
direction x, and /2 and ai being the respective values for the stiffening in direction y.

Slab Reinforced by a Set of Equidistant Ribs. In the case shown in Fig. 188 the
theory established in Art. 85 can give only a rough idea of the actual state of stress and

1 Recommended by Lechnitzky, op. cit. For more exact values see N. J. Huffington,
/ . Appl. Mechanics, vol. 23, p. 15, 1956. An experimental determination of the
rigidities of stiffened and grooved plates was carried out by W. H. Hoppmann, N. J.
Huffington, and L. S. Magness, J. Appl. Mechanics, vol. 23, p. 343, 1956.



strain of the slab. Let E be the modulus of the material (for instance, concrete),
/ the moment of inertia of a T section of width ah and a = h/H. Then we may
assume

The effect of the transverse contraction is neglected in the foregoing formulas. The
torsional rigidity, finally, may be calculated by means of the expression

in which D'xy is the torsional rigidity of the slab without the ribs and C the torsional
rigidity of one rib.1

87. Application of the Theory to the Calculation of Gridworks. Equa-
tion (213) can also be applied to the gridwork system shown in Fig. 189.

FIG. 189

This consists of two systems of parallel beams spaced equal distances
apart in the x and y directions and rigidly connected at their points of
intersection. The beams are supported at the ends, and the load is
applied normal to the xy plane. If the distances a\ and 6i between the
beams are small in comparison with the dimensions a and b of the grid,
and if the flexural rigidity of each of the beams parallel to the x axis is
equal to Bi and that of each of the beams parallel to y axis is equal to B2,
we can substitute in Eq. (213)

1 For a more exact theory concerning slabs with ribs in one or two directions and
leading to a differential equation of the eighth order for the deflection see K. Trenks,
Bauingenieur, vol. 29, p. 372, 1954; see also A. Pfluger, Ingr.-Arch., vol. 16, p. I l l , 1947



The quantity D\ in this case is zero, and the quantity Dxy can be expressed
in terms of the torsional rigidities Ci and C2 of the beams parallel to the
x and y axes, respectively. For this purpose we consider the twist of an
element as shown in Fig. 1896 and obtain the following relations between
the twisting moments and the twist d2w/dx dy:

Substituting these expressions in the equation of equilibrium (e) on page
81, we find that in the case of the system represented in Fig. 189a the
differential equation of the deflection surface is

(215)

which is of the same form as Eq. (213).

In order to obtain the final expressions for the flexural and torsional moments of a
rib we still have to multiply the moments, such as given by Eqs. (212) and valid for
the unit width of the grid, by the spacing of the ribs. The variation of the moments,
say Mx and Mxy, may be assumed parabolic between the points (m — 1) and
(in + 1) and the shaded area of the diagram (Fig. 190) may be assigned to the rib

FIG. 190

(w) running in the direction x. Then, observing the expressions (212), we obtain the
following approximate formulas for both moments.of the rib (m):

For ribs of the direction y we have to interchange x and y in the foregoing expressions
and replace B1 by B2 and Ci by C2; (m — 1), (m), and (m + 1) then denote three
successive joints on a rib having the direction x.



Two parameters largely defining the elastic properties of a grid and often used in
calculation are

The parameter X multiplied by the side ratio a/b (Fig. 189) yields the relative carrying
capacity of a rectangular plate in the directions y and x, whereas the parameter n
characterizes the torsional rigidity of a grid as compared with its flexural rigidity.

Equation (215) has been extensively used in investigating the distribution of an
arbitrarily located single load between the main girders of a bridge stiffened in the
transverse direction by continuous floor beams.1

88. Bending of Rectangular Plates. When the plate is simply sup-
ported on all sides Eq. (213) can be solved by the methods used in the
case of an isotropic plate. Let us apply the Navier method (see Art. 28)
and assume that the plate is uniformly loaded. Taking the coordinate
axes as shown in Fig. 59 and representing the load in the form of a double
trigonometric series, the differential equation (213) becomes

A solution of this equation that satisfies the boundary conditions can be
taken in the form of the double trigonometrical series

Substituting this series in Eq. (a), we find the following expression for the
coefficients amn\

1 Factors giving the distribution of a single load have been calculated for ix = 0 by
Y. Guyon, Ann. ponts et chaussSes, vol. 116, p. 553, 1946, and for /x 7^ 0 by C. Mas-
sonnet, Publs. Intern. Assoc. Bridge and Structural Engrs., vol. 10, p. 147, 1950. For
verification of calculated results by test see K. Sattler, Bauingenieur, vol. 30, p. 77,
1955, and also M. Naruoka and H. Yonezawa, Publs. Intern. Assoc. Bridge and
Structural Engrs., vol. 16, 1956. For skewed grids see S. Woinowsky-Krieger, Ingr.-
Arch., vol. 25, p. 350, 1957.



Hence the solution of Eq. (a) is

In the case of an isotropic material Dx = Dy — H = D, and this solution
coincides with that given on page 110.

Furthermore, let us consider the particular case of H = -y/DxDy

already mentioned on page 366. Comparing expression (c) with the
corresponding expression (131) for the isotropic plate, we conclude that
the deflection at the center of such an orthotropic plate with rigidities
Dx, Dy, and the sides a, b is the same as that of an isotropic plate having
a rigidity D and the sides a0 — a \/D/'Dx and bo = b -\/D/Dy. In like
manner the curvatures of the orthotropic plate may be expressed by
those of a certain isotropic plate. The deflection and the bending
moments at the center of the orthotropic plate obtained in this way
can be expressed by the formulas

where a, fa, and /S2 are numerical coefficients1 given in Table 80 and

As a second example let us consider an infinitely long plate (Fig. 74)
and assume that the load is distributed along the x axis following the
sinusoidal relation

In this case Eq. (213) for the unloaded portions of the plate becomes

1 Calculated by M. T. Huber, "Probleme der Statik technisch wichtiger orthotroper
Platten," p. 74, Warsaw, 1929. For numerical data regarding uniformly loaded
rectangular plates with various edge conditions and various torsion coefficients, see
H. A. Schade, Trans. Soc. Naval Architects Marine Engrs., vol. 49, pp. 154, ISO, 1941.



TABLE 80. CONSTANTS a, (3if AND /S2 FOR A SIMPLY SUPPORTED RECTANGULAR

ORTHOTROPIC PLATE WITH H = \ZDXDV) EQS. (d), (e) (Fig. 59)

€ a 0i /S2 € a |8i /S2

1 0.00407 0.0368 0.0368 1.8 0.00932 0.0214 0.0884

1.1 0.00488 0.0359 0.0447 1.9 0.00974 0.0191 0.0929

1.2 0.00565 0.0344 0.0524 2.0 0.01013 0.0174 0.0964

1.3 0.00639 0.0324 0.0597 2.5 0.01150 0.0099 0.1100

1.4 0.00709 0.0303 0.0665 3 0.01223 0.0055 0.1172

1.5 0.00772 0.0280 0.0728 4 0.01282 0.0015 0.1230

1.6 0.00831 0.0257 0.0785 5 0.01297 0.0004 0.1245

1.7 0.00884 0.0235 0.0837 oo 0.01302 0 0.1250

A solution of this equation, satisfying the boundary conditions at the
sides parallel to the y axis, can be taken in the following form:

where Ym is a function of y only. Substituting this in Eq. (g), we obtain
the following equation for determining the function Ym:

The roots of the corresponding characteristic equation are

Using, in accordance with Eq. (d), Art. 87, the notation

we have to consider the following three cases:

Case 1, M > 1:
H2 > DXDV

Case 2, n = 1:
H* = DxDy

 w

Case 3, n < 1:
H* < DXDV

In the first case all the roots of Eq. (j) are real. Considering the part
of the plate with positive y and observing that the deflection w and its
derivatives must vanish at large distances from the load, we can retain



only the negative roots. Using the notation

the integral of Eq. (i) becomes

and expression (h) can be'represented in the form

From symmetry we conclude that along the x axis

and we find

The coefficient Am is obtained from the condition relating to the shearing
force Qy along the x axis, which gives

Substituting for w its expression (n), we obtain

and the final expression (n) for the deflection becomes

In the second of the three cases (I) the characteristic equation has two
double roots, and the function Ym has the same form as in the case of an
isotropic plate (Art. 36). In the third of the cases (Z) we use the notation



and thus obtain the solution

We can also shift from case 1 to case 2 by using the complex relations

Having the deflection surface for the sinusoidal load (/), the deflection
for any other kind of load along the x axis can be obtained by expanding
the load in the series

and using the solution obtained for the load (/) for each term of this
series. The following expressions hold when, for instance, a load P is
concentrated at a point x = £, y = 0 of the infinite strip (Fig. 72):

Case 1, M > 1:

Case 2 , M = 1:

Case 3, fi < 1:

Expressions in closed form1 can be obtained for bending moments due to
a single load in a manner similar to that used for the isotropic plate in
Art. 35.

Having this solution, the deflection of the plate by a load distributed
1 See W. Nowacki, Ada Tech. Acad. Sci. Hung., vol. 8, p. 109, 1954; S. Woinowsky-

Krieger, Ingr.-Arch., vol. 25, p. 90, 1957. Numerical results regarding influence
surfaces of orthotropic rectangular plates may be found in H. Olsen and F. Reinitz-
huber, "Die zweiseitig gelagerte Platte," Berlin, 1950, and in H. Homberg and
J. Weinmeister, "Einflussflachen fur Kreuzwerke," 2d ed., Berlin, 1956.



over a circular area can be obtained by integration, as was shown in the
case of an isotropic plate (see Art. 35). By applying the method of
images the solutions obtained for an infinitely long plate can be used in
the investigation of the bending of plates of finite dimensions.1

89. Bending of Circular and Elliptic Plates. A simple solution of Eq. (213) can be
obtained in the case of an elliptic plate clamped2 on the boundary and carrying a
uniform load of intensity q. Provided the principal directions x and y of the ortho-
tropic material are parallel to the principal axes of the ellipse (Fig. 157) the expression

in which

satisfies Eq. (213) and the required conditions on the boundary. The bending
moments of the plate are readily obtained by means of expressions (212). In the
particular case of a clamped circular plate (a = b) we have the following results:

in which

Since the twist is zero along the edge, the reactions of the support are given by a linear
combination of the boundary values of the shearing forces Qx and Qy (see page 87).

A straightforward solution can also be obtained in the case of pure bending or pure
twist of an orthotropic plate. Let such a plate be subjected to uniform couples
Mx — Mi, My = M2, and Mxy = M3. By taking the deflection in the form

1 Several examples of this kind are worked out in the books by M. T. Huber:
"Teorya Plyt," Lvov, 1922, and "Probleme der Statik technisch wichtiger orthotroper
Platten," Warsaw, 1929.

2 For bending of a simply supported elliptical plate, see Y. Ohasi, Z. angew. Math. u.
Phys., vol. 3, p. 212, 1952.



we obviously satisfy the differential equation (213). The constants A, B, and C then
are given by the linear equations

which ensue from the expressions (212).
The bending of a circular plate with cylindrical aeolotropy has been discussed too.1

If, in addition to the elastic symmetry, the given load distribution is also symmetrical
about the center of the plate, then the ordinary differential equation of the bent plate
contains only two flexural rigidities, the radial and the tangential. Formal solutions
of this equation for any boundary conditions are simple to obtain; the choice of the
elastic constants of the material, however, requires special consideration since certain
assumptions regarding these constants lead to infinite bending moments at the center
of the plate even in the case of a continuously distributed loading.

Most of the special methods used in solving the problems of bending of an isotropic
plate (Chap. 10) can be applied with some modifications to the case of an anisotropic
plate as well.

If we take the complex variable method,2 for example, the form of the solution
proves to be different from that considered in Art. 79. As can be shown, it depends
upon the roots pi, p2, —pi, and — p2 of the characteristic equation

DvP
4 -f 2Hp2 + Dx = 0

which are either imaginary or complex. These roots being determined, the solution
of the homogeneous equation Dx d4wi/dx4 + 2H d4wi/dx2 dy2 + Dy dAWi/dy4 = 0 can
be represented either in the form

Wi = (R[^1(Zi) + <pi{zi)]

if Pi T^ p2, or else in the form

Wi = <&[<pi{Zi) + Z1Cp2(Zi)]

if pi = p2. In these expressions <pi and <P2 are arbitrary analytic functions of the com-
plex variables Zi = x + piy and Z2 = x + PiV-

In using the Ritz method, expression (6) of Art. 80 for the strain energy has to be
replaced by the expression

while the rest of the procedure remains the same as in the case of the isotropic plate.
1 G. F. Carrier, / . Appl. Mechanics, vol. 11, p. A-129, 1944, and Lechnitzky, op. cit.
2 See S. G. Lechnitzky, Priklad. Mat. Mekhan., vol. 2, p. 181, 1938, and V. Morcovin,

Quart. Appl. Math., vol. 1, p. 116, 1943. For application of the method to the problem
of stress concentration, see also G. N. Savin, "Stress Concentration around Holes,"
Moscow, 1951, and S. G. Lechnitzky, Inzhenernyi Sbornik, vol. 17, p. 3, 1953. Stress
concentration in isotropic and anisotropic plates was also discussed by S. Holgate,
Proc. Roy. Soc. London, vol. 185A, pp. 35, 50, 1946.



CHAPTER 12

BENDING OF PLATES UNDER THE COMBINED ACTION

OF LATERAL LOADS AND FORCES IN THE MIDDLE

PLANE OF THE PLATE

90. Differential Equation of the Deflection Surface. In our previous
discussion it has always been assumed that the plate is bent by lateral
loads only. If in addition to lateral loads there are forces acting in the
middle plane of the plate, these latter forces may have a considerable
effect on the bending of the plate and must be considered in deriving the
corresponding differential equation of the deflection surface. Proceed-
ing as in the case of lateral loading (see Art. 21, page 79), we consider
the equilibrium of a small element cut from the plate by two pairs of
planes parallel to the xz and yz coordinate planes (Fig. 191). In addi-
tion to the forces discussed in Art. 21 we now have forces acting in the

middle plane of the plate. We denote the
magnitude of these forces per unit length by
Nx, Nyj and Nxy = Nyx, as shown in the figure.
Projecting these forces on the x and y axes
and assuming that there are no body forces or
tangential forces acting in those directions at
the faces of the plate, we obtain the following
equations of equilibrium:

dNx dNxy _ Q

dx dy rciftt
eNxv dNy _ ( 2 1 6 )

These equations are entirely independent of
the three equations of equilibrium considered
in Art. 21 and can be treated separately, as
will be shown in Art. 92.

In considering the projection of the forces shown in Fig. 191 on the
z axis, we must take into account the bending of the plate and the
resulting small angles between the forces Nx and Ny that act on the
opposite sides of the element. As a result of this bending the projection

FIG. 191



of the normal forces Nx on the z axis gives

After simplification, if the small quantities of higher than the second
order are neglected, this projection becomes

In the same way the projection of the normal forces Ny on the z axis gives

Regarding the projection of the shearing forces Nxy on the z axis, we
observe that the slope of the deflection surface in the y direction on the
two opposite sides of the element is dw/dy and dw/dy + (d2w/dx By) dx.
Hence the projection of the shearing forces on the z axis is equal to

An analogous expression can be obtained for the projection of the shear-
ing forces Nyx — Nxy on the z axis. The final expression for the projec-
tion of all the shearing forces on the z axis then can be written as

Adding expressions (a), (6), and (c) to the load q dx dy acting on the ele-
ment and using Eqs. (216), we obtain, instead of Eq. (100) (page 81), the
following equation of equilibrium:

Substituting expressions (101) and (102) for Mx, My, and Mxyy we obtain

(217)

This equation should be used instead of Eq. (103) in determining the
deflection of a plate if in addition to lateral loads there are forces in the
middle plane of the plate.



If there are body forces1 acting in the middle plane of the plate or tangential forces
distributed over the surfaces of the plate, the differential equations of equilibrium
of the element shown in Fig. 191 become

(218)

Here X and Y denote the two components of the body forces or of the tangential
forces per unit area of the middle plane of the plate.

Using Eqs. (218), instead of Eqs. (216), we obtain the following differential equa-
tion2 for the deflection surface:

(219)

Equation (217) or Eq. (219) together with the conditions at the boundary (see Art. 22,
page 83) defines the deflection of a plate loaded
laterally and submitted to the action of forces in the
middle plane of the plate.

91. Rectangular Plate with Simply Supported
Edges under the Combined Action of Uniform
Lateral Load and Uniform Tension. Assume
that the plate is under uniform tension in the
x direction, as shown in Fig. 192. The uniform

lateral load q can be represented by the trigonometric series (see page 109).

FIG. 192

Equation (217) thus becomes

This equation and the boundary conditions at the simply supported edges

1 An example of a body force acting in the middle plane of the plate is the gravity
force in the case of a vertical position of a plate.

2 This differential equation has been derived by Saint Venant (see final note 73) in
his translation of Clebsch, "Theorie de Telasticite des corps solides," p. 704, 1883.



will be satisfied if we take the deflection w in the form of the series

Substituting this series in Eq. (6), we find the following values for the
coefficients amn:

in which m and n are odd numbers 1, 3, 5, . . . , and amn = 0 if m or n
or both are even numbers. Hence the deflection surface of the plate is

Comparing this result with solution (131) (page 110), we conclude from
the presence of the term Nxm

2/ir2Da2 in the brackets of the denominator
that the deflection of the plate is somewhat diminished by the action of
the tensile forces Nx. This is as would be expected.

By using M. Levy's method (see Art. 30) a solution in simple series
may be obtained which is equivalent to expression (e) but more con-
venient for numerical calculation. The maximum values of deflection
and bending moments obtained in this way1 for v = 0.3 can be represented
in the form

The constants a, /3, and /3i depend upon the ratio a/b and a parameter

and are plotted in Figs. 193, 194, and 195.
If, instead of tension, we have compression, the force Nx becomes
1 H. D. Conway, J. Appl. Mechanics, vol. 16, p. 301, 1949, where graphs in the case

of compression are also given; the case Nx = Ny has been discussed by R. F. Morse
and H. D. Conway, J. Appl. Mechanics, vol. 18, p. 209, 1951, and the case of a plate
clamped all around by C. C. Chang and H. D. Conway, J. Appl. Mechanics, vol. 19,
p. 179, 1952. For combined bending and compression, see also J. Lockwood Taylor,
The Shipbuilder and Marine Engine Builder, no. 494, p. 15, 1950.



negative, and the deflections (e) become larger than those of the plate
bent by lateral load only. It may be seen also in this case that at cer-
tain values of the compressive force Nx the denominator of one of the
terms in series (e) may vanish. This indicates that at such values of Nx

the plate may buckle laterally without any lateral loading.
92. Application of the Energy Method. The energy method, which

was previously used in discussing bending of plates by lateral loading
(see Art. 80, page 342), can be applied also to the cases in which the

FIG. 193

lateral load is combined with forces acting in the middle plane of the
plate. To establish the expression for the strain energy corresponding
to the latter forces let us assume that these forces are applied first to the
unbent plate. In this way we obtain a two-dimensional problem which
can be treated by the methods of the theory of elasticity.1 Assuming
that this problem is solved and that the forces Nx, Ny, and Nxy are known
at each point of the plate, the components of strain of the middle plane
of the plate are obtained from the known formulas representing Hooke's

1SeC, for example, S. Timoshenko and J. N. Goodier, "Theory of Elasticity," 2d
ed., p. 11, 1951.



law, viz.,

The strain energy, due to stretching of the middle plane of the plate, is
then

(220)

where the integration is extended over the entire plate.
Let us now apply the lateral load. This load will bend the plate and

produce additional strain of the middle plane. In our previous discus-
sion of bending of plates, this latter strain was always neglected. Here,

FIG. 194



FIG. 195

however, we have to take it into consideration, since this small strain in
combination with the finite forces Nx, Nv, Nxy may add to the expression
for strain energy some terms of the same order as the strain energy of
bending. The x, y, and z components of the small displacement that a
point in the middle plane of the plate experiences during bending will be

denoted by U1 v. and w, respectively.
Considering a linear element AB of that
plane in the x direction, it may be seen from
Fig. 196 that the elongation of the element
due to the displacement u is equal to
(du/dx) dx. The elongation of the same
element due to the displacement w is
%(dw/dx)2 dx, as may be seen from the com-

parison of the length of the element AiBi in Fig. 196 with the length of
its projection on the x axis. Thus the total unit elongation in the x direc-
tion of an element taken in the middle plane of the plate is

(221)

FIG. 196



Similarly the strain in the y direction is

(222)

Considering now the shearing strain in the middle plane due to bend-
ing, we conclude as before (see Fig. 23) that the shearing strain due to
the displacements u and v is du/dy + dv/dx. To determine the shear-
ing strain due to the displacement w we take two infinitely small linear
elements OA and OB in the x and y directions, as shown in Fig. 197.
Because of displacements in the z direction these elements come to the
positions OiAi and 0\B\. The difference between the angle TT/2 and the
angle AiOiBi is the shearing strain corresponding to the displacement w.
To determine this difference we con-
sider the right angle .B2OiAi, in which
B2Oi is parallel to BO. Rotating the
plane .B2OiAi about the axis OiAi by
the angle dw/dy, we bring the plane
B2OiAi into coincidence with the
plane BiOiA 1* and the point B2 to posi-
tion C. The displacement B 2<7 is equal
to (dw/dy) dy and is inclined to the ver-
tical B2Bi by the angle dw/dx. Hence
BiC is equal to (dw/dx) (dw/dy) dy,
and the angle C0iBh which repre-
sents the shearing strain corresponding to the displacement w} is
(dw/dx) (dw/dy). Adding this shearing strain to the strain produced by
the displacements u and v, we obtain

(223)

Formulas (221), (222), and (223) represent the components of the addi-
tional strain in the middle plane of the plate due to small deflections.
Considering them as very small in comparison with the components ex, ey,
and yxy used in the derivation of expression (220), we can assume that
the forces Nx, Ny, Nxy remain unchanged during bending. With this
assumption the additional strain energy of the plate, due to the strain
produced in the middle plane by bending, is

Substituting expressions (221), (222), and (223) for e'XJ e'y, and y'xy, we

* The angles dw/dy and dw/dx correspond to small deflections of the plate and are
regarded as small quantities.

FIG. 197



finally obtain

(224)

It can be shown, by integration by parts, that the first integral on the
right-hand side of expression (224) is equal to the work done during bend-
ing by the forces acting in the middle plane of the plate. Taking, for
example, a rectangular plate with the coordinate axes directed, as shown
in Fig. 192, we obtain for the first term of the integral

Proceeding in the same manner with the other terms of the first integral
in expression (224), we finally find

The first integral on the right-hand side of this expression is evidently
equal to the work done during bending by the forces applied at the edges
x = 0 and x = a of the plate. Similarly, the second integral is equal to
the work done by the forces applied at the edges y = 0 and y = b. The
last two integrals, by virtue of Eqs. (218), are equal to the work done
during bending by the body forces acting in the middle plane. These
integrals each vanish in the absence of such corresponding forces.

Adding expressions (220) and (224) to the energy of bending [see Eq.
(117), page 88], we obtain the total strain energy of a bent plate under
the combined action of lateral loads and forces acting in the middle plane
of the plate. This strain energy is equal to the work Tv done by the
lateral load during bending of the plate plus the work Th done by the
forces acting in the middle plane of the plate. Observing that this latter
work is equal to the strain energy Vi plus the strain energy represented
by the first integral of expression (224), we conclude that the work pro-



duced by the lateral forces is

(225)

Applying the principle of virtual displacement, we now give a variation Bw
to the deflection w and obtain, from Eq. (225),

(226)

The left-hand side in this equation represents the work done during the
virtual displacement by the lateral load, and the right-hand side is the
corresponding change in the strain energy of the plate. The application
of this equation will be illustrated by several examples in the next article.

93. Simply Supported Rectangular Plates under the Combined Action
of Lateral Loads and of Forces in the Middle Plane of the Plate. Let us
begin with the case of a rectangular plate uniformly stretched in the
x direction (Fig. 192) and carrying a concentrated load P at a point with
coordinates £ and i). The general expression for the deflection that satis-
fies the boundary conditions is

To obtain the coefficients amn in this series we use the general equation
(226). Since Ny = Nxy = 0 in our case, the first integral on the right-
hand side of Eq. (225), after substitution of series (a) for w, is

The strain energy of bending representing the second integral in Eq.
(225) is [see Eq. (d), page 343]



To obtain a virtual deflection 8w we give to a coefficient ami»x an increase
8amini. The corresponding deflection of the plate is

The work done during this virtual displacement by the lateral load P is

The corresponding change in the strain energy consists of the two terms
which are

Substituting expressions (d) and (e) in Eq. (226), we obtain

from which

Substituting these values of the coefficients amifll in expression (a), we
find the deflection of the plate to be

If, instead of the tensile forces Nx, there are compressive forces of the
same magnitude, the deflection of the plate is obtained by substituting
— Nx in place of Afx in expression (g). This substitution gives



The smallest value of Nx at which the denominator of one of the terms
in expression (Zi) becomes equal to zero is the critical value of the com-
pressive force Nx. It is evident that this critical value is obtained by
taking n = 1. Hence

(227)

where m must be chosen so as to make expression (227) a minimum.
Plotting the factor

against the ratio a/b, for various integral values of m, we obtain a system
of curves shown in Fig. 198. The portions of the curves that must be

FIG. 198

used in determining k are indicated by heavy lines. I t is seen that the
factor k is equal to 4 for a square plate as well as for any plate that can
be subdivided into an integral number of squares with the side 6. I t can
also be seen that for long plates k remains practically constant at a value
of 4.* Since the value of m in Eq. (227) may be other than 1 for oblong
plates, such plates, being submitted to a lateral load combined with com-
pression, do not generally deflect1 in the form of a half wave in the direc-
tion of the longer side of the plate. If, for instance, a/b = 2, 4, . . .
the respective elastic surface becomes markedly unsymmetrical with
respect to the middle line x = a/2 (Fig. 192), especially so for values of
Nx close to the critical value (Nx)cr.

By using the deflection (g) produced by one concentrated load, the

* A more detailed discussion of this problem is given in S. Timoshenko, "Theory of
Elastic Stability," p. 327, 1936.

1 Several examples of such a deformation have been considered by K. Girkmann,
Stahlbau, vol. 15, p. 57, 1942,



deflection produced by any lateral load can be obtained by superposition.
Assuming, for example, that the plate is uniformly loaded by a load of
intensity q, we substitute q d% drj for P in expression (g) and integrate
the expression over the entire area of the plate. In this way we obtain
the same expression for the deflection of the plate under uniform load as
has already been derived in another manner (see page 381).

If the plate laterally loaded by the force P is compressed in the middle
plane by uniformly distributed forces Nx and Ny, proceeding as before
we obtain

The critical value of the forces Nx and Ny is obtained from the
condition1

where m and n are chosen so as to make Nx and Ny a minimum for any
given value of the ratio Nx/Ny. In the case of a square plate submitted
to the action of a uniform pressure p in the middle plane we have a = b
and Nx = Ny = p. Equation (j) then gives

The critical value of p is obtained by taking m = n = 1, which gives

(228)

In the case of a plate in the form of an isosceles right triangle with
simply supported edges (Fig. 161) the deflection surface of the buckled
plate which satisfies all the boundary conditions is2

Thus the critical value of the compressive stress is obtained by substi-
tuting m — 1, n = 2 or m — 2} n = 1 into expression (/c). This gives

(229)

1 A complete discussion of this problem is given in Timoshenko, "Elastic Stability,"
p. 333.

2 This is the form of natural vibration of a square plate having a diagonal as a nodal
line.



94. Circular Plates under Combined Action of Lateral Load and Tension or Com-
pression. Consider a circular plate (Fig. 199) submitted to the simultaneous action
of a symmetrical lateral load and a uniform compression Nr = Nt = N in the middle
plane of the plate. Owing to the slope <p of the deformed plate (Fig. 27) the radial
compression N gives a transverse component N d<p/dr which we have to add to the
shearing force Q (Fig. 28) due to the lateral load.
Hence the differential equation (54) becomes

in which

In the case of a circular plate without a hole1 the
solution of Eq. (a) is of the form

FIG. 199

where J\ is the Bessel function of the order one, ^0 a particular solution of Eq. (a)
depending on Q, and Ci a constant defined by the boundary conditions of the plate.

Let us take as an example a rigidly clamped2 plate carrying a uniform load of
intensity q. Then, as a particular solution, we use

and therefore

It follows, by integration, that

where J0 is the Bessel function of the order zero and C2 a second constant. Having
calculated Ci from the condition <p = 0 on r = a, and C2 from the condition w = 0 on
r = a, we obtain the final solution3

The deflections (/) become infinite for Jx(Iz) = 0. Denoting the zeros of the func-
tion J1 in order of their magnitude by J1, j 2 , . . . we see that the condition k = jx

1 In the case of a concentric hole a term proportional to a Bessel function of second
kind must be added to expression (c). The inner boundary must be submitted then
to the same compression N, or else the problem becomes more complex because of the
inconstancy of stresses Nr and Nt.

2 The case of an elastic restraint without transverse load has been discussed by
H. Reismann, / . Appl. Mechanics, vol. 19, p. 167, 1952.

3 This result may be found in A. Nadai, "Elastische Platten," p. 255, Berlin, 1925.



defines the lowest critical value

of the compressive stress iV. Now, for the function J\(k) we have the expression

in which ji = 3.83171, J2 = 7.01559, . . . . As k < ji we can neglect the terms
k2/j2 beginning with the second parentheses. Observing, furthermore, that

by virtue of Eqs. (6) and (g) we have, approximately,

where

Making use of the expression (i), it can be shown that, approximately,1

where wq is the deflection due to the load q alone. Cases with other boundary condi-
tions and other laws of distribution of the lateral load may be handled in like manner.
In the general case of a symmetrical lateral load combined with compression we can
put, approximately, for the center of the plate (r = 0)

and on the boundary (r = a)

where wq relates to a plate carrying the given lateral load alone and a. = N/Ncr has
the following meaning:

Na2

For a simply supported plate: a. =

Na2

For a clamped plate: a =
14.DoJL'

1 See O. Pettersson, Acta Polytech., Stockholm, no. 138, 1954. The following results
are taken from this paper, in which, more generally, an elastic restraint at the edge is
assumed.



TABLE 81. VALUES OF CONSTANTS IN APPROXIMATE EXPRESSIONS (JC) AND (I)
n n

Case

1

2

3

4

5

Load distribution

Uniform edge couples

Uniform load

Central uniform load over area
of radius ea

Boundary
conditions

Simply supported

Simply supported

Clamped

Simply supported

Clamped

Constants

C0 = 0.305
c' = -0.270

c" = -1.219

C0 = 0.0480
c' = c" = -0.0327

C0 = 0.308
c" = -0.473

i , 2.153
C ° " 1 + i - 1 . 3 1 n .
c' = c" = 0.205

1.308
C0 = 1 .

In e
c" = 0.0539

the former value being valid for v = 0.3. The values of the constants C0, c', and c" are
given in Table 81.

If the circular plate is subjected to a lateral load combined with a uniform tension JV,
instead of compression, then we have, approximately,

where a is the absolute value of N/Ncr. As for the curvatures, a factor

instead of the factor (1 + Ca)/(I — a) must be used in expressions (Jc) and (I), the
constant c having the meaning of C0, c

r, and c", respectively.

95. Bending of Plates with a Small Initial Curvature.1 Assume that a
plate has some initial warp of the middle surface so that at any point
there is an initial deflection Wo which is small in comparison with the
thickness of the plate. If such a plate is submitted to the action of
transverse loading, additional deflection w\ will be produced, and the
total deflection at any point of the middle surface of the plate will be
Wo + Wi. In calculating the deflection Wi we use Eq. (103) derived for
flat plates. This procedure is justifiable if the initial deflection W0 is

1 See S. Timoshenko's paper in Mera. Inst. Ways Commun., vol. 89, St. Petersburg,
1915 (Russian).



small, since we may consider the initial deflection as produced by a
fictitious load and apply the principle of superposition.1 If in addition
to lateral loads there are forces acting in the middle plane of the plate,
the effect of these forces on bending depends not only on Wi but also on WQ.
To take this into account, in applying Eq. (217) we use the total deflection
w = WQ + Wi on the right-hand side of the equation. It will be remem-
bered that the left-hand side of the same equation was obtained from
expressions for the bending moments in the plate. Since these moments
depei.d not on the total curvature but only on the change in curvature
of the plate, the deflection W1 should be used instead of w in applying
that side of the equation to this problem. Hence, for the case of an
initially curved plate, Eq. (217) becomes

(230)

It is seen that the effect of an initial curvature on the deflection is equiva-
lent to the effect of a fictitious lateral load of an intensity

Thus a plate will experience bending under the action of forces in the
xy plane alone provided there is an initial curvature.

Take as an example the case of a rectangular plate (Fig. 192), and
assume that the initial deflection of the plate is defined by the equation

If uniformly distributed compressive forces Nx are acting on the edges
of this plate, Eq. (230) becomes

Let us take the solution of this equation in the form

Substituting this value of W\ into Eq. (b), we obtain

1 In the case of large deflections the magnitude of the deflection is no longer pro-
portional to the load, and the principle of superposition is not applicable.



With this value of A expression (c) gives the deflection of the plate pro-
duced by the compressive forces Nx. Adding this deflection to the initial
deflection (a), we obtain for the total deflection of the plate the following
expression:

in which

The maximum deflection will be at the center and will be

This formula is analogous to that used for a bar with initial curvature.1

In a more general case we can take the initial deflection surface of the
rectangular plate in the form of the following series:

Substituting this series in Eq. (230), we find that the additional deflection
at any point of the plate is

in which

It is seen that all the coefficients bmn increase with an increase of Nx.
Thus when Nx approaches the critical value, the term in series (Zi) that
corresponds to the laterally buckled shape of the plate [see Eq. (227)]
becomes the predominating one. We have here a complete analogy with
the case of bending of initially curved bars under compression.

The problem can be handled in the same manner if, instead of com-
pression, we have tension in the middle plane of the plate. In such a
case it is necessary only to change the sign of Nx in the previous equa-
tions. Without any difficulty we can also obtain the deflection in the
case when there are not only forces Nx but also forces Ny and Nxy uni-
formly distributed along the edges of the plate.

1 See S. Timoshenko, "Strength of Materials/' part II, 3d ed., p. 56, 1956.



CHAPTER 13

LARGE DEFLECTIONS OF PLATES

96. Bending of Circular Plates by Moments Uniformly Distributed
along the Edge. In the previous discussion of pure bending of circular
plates it was shown (see page 47) that the strain of the middle plane of
the plate can be neglected in cases in which the deflections are small as
compared with the thickness of the plate. In cases in which the deflec-
tions are no longer small in comparison with the thickness of the plate
but are still small as compared with the other dimensions, the analysis of
the problem must be extended to include the strain of the middle plane
of the plate.1

We shall assume that a circular plate is bent by moments M0 uni-
formly distributed along the edge of the plate (Fig. 200a). Since the
deflection surface in such a case is symmetrical with respect to the center
0, the displacement of a point in the middle plane of the plate can be
resolved into two components: a component u in the radial direction and
a component w perpendicular to the plane of the plate. Proceeding as
previously indicated in Fig. 196 (page 384), we conclude that the strain
in the radial direction is2

The strain in the tangential direction is evidently

Denoting the corresponding tensile forces per unit length by AT7. and

1 This problem has been discussed by S. Timoshenko; see Mem. Inst. Ways
Commun., vol. 89, St. Petersburg, 1915.

2 In the case of very large deflections we have

which modifies the following differential equations. See E. Reissner, Proc. Symposia
Appl. Math., vol. 1, p. 213, 1949.



Nt and applying Hooke's law, we obtain

These forces must be taken into consideration in deriving equations of
equilibrium for an element of the plate such as that shown in Fig. 2006

FIG. 200

and c. Taking the sum of the projections in the radial direction of all
the forces acting on the element, we obtain

from which



The second equation of equilibrium of the element is obtained by taking
moments of all the forces with respect to an axis perpendicular to the
radius in the same manner as in the derivation of Eq. (55) (page 53).
In this way we obtain1

The magnitude of the shearing force Qr is obtained by considering the
equilibrium of the inner circular portion of the plate of radius r (Fig.
200a). Such a consideration gives the relation

Substituting this expression for shearing force in Eq. (e) and using expres-
sions (c) for Nr and N1 we can represent the equations of equilibrium (d)
and (e) in the following form:

(231)

These two nonlinear equations can be integrated numerically by start-
ing from the center of the plate and advancing by small increments in
the radial direction. For a circular element of a small radius c at the
center, we assume a certain radial strain

and a certain uniform curvature

With these values of radial strain and curvature at the center, the values
of the radial displacement u and the slope dw/dr for r = c can be calcu-
lated. Thus all the quantities on the right-hand side of Eqs. (231) are
known, and the values of d2u/dr2 and of dzw/drz for r = c can be calcu-
lated. As soon as these values are known, another radial step of length c
can be made, and all the quantities entering in the right-hand side of
Eqs. (231) can be calculated for r = 2c* and so on. The numerical

1 The direction for Qr is opposite to that used in Fig. 28. This explains the minus
sign in Eq. (e).

* If the intervals into which the radius is divided are sufficiently small, a simple
procedure, such as that used in^. Timoshenko's " Vibration Problems in Engineering,"
3d ed., p. 143, can be applied. The numerical results represented in Fig. 201 are



values of u and w and their derivatives at the end of any interval being
known, the values of the forces Nr and Nt can then be calculated from
Eqs. (c) and the bending moments Mr and Mt from Eqs. (52) and (53)
(see page 52). By such repeated calculations we proceed up to the radial
distance r = a at which the radial force Nr vanishes. In this way we
obtain a circular plate of radius a bent by moments Mo uniformly dis-
tributed along the edge. By changing the numerical values of €0 and

Scale
For stresses: I division=

For deflec+ion:! division

FIG. 201

1/po at the center we obtain plates with various values of the outer radius
and various values of the moment along the edge.

Figure 201 shows graphically the results obtained for a plate with

It will be noted that the maximum deflection of the plate is 0.55/i, which
is about 9 per cent less than the deflection WQ given by the elementary
theory which neglects the strain in the middle plane of the plate. The
forces Nr and Nt are both positive in the central portion of the plate.
In the outer portion of the plate the forces Nt become negative; i.e.,

obtained in this manner. A higher accuracy can be obtained by using the methods
of Adams or Stormer. For an account of the Adams method see Francis Bashforth's
book on forms of fluid drops, Cambridge University Press, 1883. Stormer's method
is discussed in detail in A. N. Krilov's book " Approximate Calculations," pub-
lished by the Russian Academy of Sciences, Moscow, 1935. See also L. Collatz,
"Numerische Behandlung von Differentialgleichungen," Berlin, 1951.



compression exists in the tangential direction. The maximum tangential
compressive stress at the edge amounts to about 18 per cent of the maxi-
mum bending stress 6M0//12. The bending stresses produced by the
moments Mr and Mt are somewhat smaller than the stress QMQ/h2 given
by the elementary theory and become smallest at the center, at which
point the error of the elementary theory amounts to about 12 per cent.
From this numerical example it may be concluded that for deflections of
the order of O.dh the errors in maximum deflection and maximum stress
as given by the elementary theory become considerable and that the
strain of the middle plane must be taken into account to obtain more
accurate results.

97. Approximate Formulas for Uniformly Loaded Circular Plates with
Large Deflections. The method used in the preceding article can also be
applied in the case of lateral loading of a plate. It is not, however, of
practical use, since a considerable amount of numerical calculation is
required to obtain the deflections and stresses in each particular case.
A more useful formula for an approximate calculation of the deflections
can be obtained by applying the energy method.1 Let a circular plate
of radius a be clamped at the edge and be subject to a uniformly dis-
tributed load of intensity q. Assuming that the shape of the deflected
surface can be represented by the same equation as in the case of small
deflections, we take

The corresponding strain energy of bending from Eq. (m) (page 345) is

For the radial displacements we take the expression

each term of which satisfies the boundary conditions that u must vanish
at the center and at the edge of the plate. From expressions (a) and (c)
for the displacements, we calculate the strain components er and e* of the
middle plane as shown in the preceding article and obtain the strain
energy due to stretching of the middle plane by using the expression

1 See Timoshenko, "Vibration Problems," p. 452. For approximate formulas see
also Table 82.



Taking only the first two terms in series (c), we obtain

The constants d and C 2 are now determined from the condition that the
total energy of the plate for a position of equilibrium is a minimum.
Hence

Substituting expression (e) for Fi, we obtain two linear equations for Ci
and C2. From these we find that

Then, from Eq. (e) we obtain1

Adding this energy, which results from stretching of the middle plane,
to the energy of bending (6), we obtain the total strain energy

The second term in the parentheses represents the correction due to strain
in the middle surface of the plate. It is readily seen that this correction
is small and can be neglected if the deflection wQ at the center of the plate
is small in comparison with the thickness h of the plate.

The strain energy being known from expression (Zi), the deflection of
the plate is obtained by applying the principle of virtual displacements.
From this principle it follows that

Substituting expression (h) in this equation, we obtain a cubic equation
for W0. This equation can be put in the form

(232)

The last factor on the right-hand side represents the effect of the stretch-
ing of the middle surface on the deflection. Because of this effect the
deflection WQ is no longer proportional to the intensity q of the load, and

1 It is assumed that v = 0.3 in this calculation.



the rigidity of the plate increases with the deflection. For example,
taking wQ = %h, we obtain, from Eq. (232),

This indicates that the deflection in this case is 11 per cent less than that
obtained by neglecting the stretching of the middle surface.

Up to now we have assumed the radial displacements to be zero on the
periphery of the plate. Another alternative is to assume the edge as free
to move in the radial direction. The expression (232) then has to be
replaced by

(233)

a result1 which shows that under the latter assumption the effect of the
stretching of the plate is considerably less marked than under the former
one. Taking, for instance, WQ = ^h we arrive at WQ = 0.965(qa*/64Z)),
with an effect of stretching of only 3̂ - per cent in place of 11 per cent
obtained above.

Furthermore we can conclude from Eqs. (b) and (c) of Art. 96 that, if
Nr = 0 on the edge, then the edge value of Nt becomes Nt = Ehet = EKuJr1

that is, negative. We can expect, therefore, that for a certain critical
value of the lateral load the edge zone of the plate will become unstable.2

Another method for the approximate solution of the problem has been
developed by A. Nadai.3 He begins with equations of equilibrium simi-
lar to Eqs. (231). To derive them we have only to change Eq. (/), of the
preceding article, to fit the case of lateral load of intensity q. After such a
change the expression for the shearing force evidently becomes

Using this expression in the same manner in which expression (/) was
used in the preceding article, we obtain the following system of equations
in place of Eqs. (231):

(234)

1 Obtained by a method which will be described in Art. 100.
2 The instability occurring in such a case has been investigated by D. Y. Panov and

V. I. Feodossiev, Priklad. Mat. Mekhan., vol. 12, p. 389, 1948.
3 See his book "Elastische Platten," p. 288, 1925.



To obtain an approximate solution of the problem a suitable expression
for the deflection w should be taken as a first approximation. Substi-
tuting it in the right-hand side of the first of the equations (234), we
obtain a linear equation for u which can be integrated to give a first
approximation for u. Substituting the first approximations for u and w
in the right-hand side of the second of the equations (234), we obtain a
linear differential equation for w which can be integrated to give a second
approximation for w. This second approximation can then be used to
obtain further approximations for u and w by repeating the same sequence
of calculations.

In discussing bending of a uniformly loaded circular plate with a
clamped edge, N&dai begins with the derivative dw/dr and takes as first
approximation the expression

which vanishes for r = 0 and r = a in compliance with the condition at
the built-in edge. The first of the equations (234) then gives the first
approximation for u. Substituting these first approximations for u and
dw/dr in the second of the equations (234) and solving it for q, we deter-
mine the constants C and n in expression (j) so as to make q as nearly a
constant as possible. In this manner the following equation1 for calcu-
lating the deflection at the center is obtained when v = 0.25:

(235)

In the case of very thin plates the deflection W0 may become very large
in comparison with h, In such cases the resistance of the plate to bend-
ing can be neglected, and it can be treated as a flexible membrane. The
general equations for such a membrane are obtained from Eqs. (234) by
putting zero in place of the left-hand side of the second of the equations.
An approximate solution of the resulting equations is obtained by neg-
lecting the first term on the left-hand side of Eq. (235) as being small in
comparison with the second term. Hence

1 Another method for the approximate solution of Eqs. (234) was developed by
K. Federhofer, Eisenbau, vol. 9, p. 152, 1918; see also Forschungsarb. VDI1 vol. 7,
p. 148, 1936. His equation for WQ differs from Eq. (235) only by the numerical value
of the coefficient on the left-hand side; viz., 0.523 must be used instead of 0.583 for
v - 0.25.



A more complete investigation of the same problem1 gives

(236)

This formula, which is in very satisfactory agreement with experiments,2

shows that the deflections are not proportional to the intensity of the load
but vary as the cube root of that intensity. For the tensile stresses at
the center of the membrane and at the boundary the same solution gives,
respectively,

To obtain deflections that are proportional to the pressure, as is often
required in various measuring instruments, recourse should be had to
corrugated membranes3 such as that shown in Fig. 202. As a result of

the corrugations the deformation con-
sists primarily in bending and thus
increases in proportion to the pressure.4

If the corrugation (Fig. 202) follows a
sinusoidal law and the number of

waves along a diameter is sufficiently large (n > 5) then, with the nota-
tion of Fig. 186, the following expression6 for Wo = (w)max may be used'.

FIG. 202

98. Exact Solution for a Uniformly Loaded Circular Plate with a
Clamped Edge.6 To obtain a more satisfactory solution of the problem
of large deflections of a uniformly loaded circular plate with a clamped
edge, it is necessary to solve Eqs. (234). To do this we first write the
equations in a somewhat different form. As may be seen from its deri-

1 The solution of this problem was given by H. Hencky, Z. Math. Physik, vol. 63,
p. 311, 1915. For some peculiar effects arising at the edge zone of very thin plates
see K. O. Friedrichs, Proc. Symposia Appl. Math., vol. 1, p. 188, 1949.

2 See Bruno Eck, Z. angew. Math. Mech., vol. 7, p. 498, 1927. For tests on circular
plates with clamped edges, see also A. McPherson, W. Ramberg, and S. Levy, NACA
Rept. 744, 1942.

3 The theory of deflection of such membranes is discussed by K. Stange, Ingr.-Arch.,
vol. 2, p. 47, 1931.

4 For a bibliography on diaphragms used in measuring instruments see M. D.
Hersey's paper in NACA Rept. 165, 1923.

8 A. S. Volmir, "Flexible Plates and Shells," p. 214, Moscow, 1956. This book also
contains a comprehensive bibliography on large deflections of plates and shells.

• This solution is due to S. Way, Trans. ASME, vol. 56, p. 627, 1934,



vation in Art. 96, the first of these equations is equivalent to the equation

(237)

Also, as is seen from Eq. (e) of Art. 96 and Eq. (i) of Art. 97, the second
of the same equations can be put in the following form:

(238)

From the general expressions for the radial and tangential strain (page
396) we obtain

Substituting

in this equation and using Eq. (237), we obtain

(239)

The three Eqs. (237), (238), and (239) containing the three unknown
functions Nn Nt, and w will now be used in solving the problem. We
begin by transforming these equations to a dimensionless form by intro-
ducing the following notations:

(240)

With this notation, Eqs. (237), (238), and (239) become, respectively,

(241)

(242)

(243)

The boundary conditions in this case require that the radial displace-
ment u and the slope dw/dr vanish at the boundary. Using Eq. (6) of
Art. 96 for the displacements u and applying Hooke's law, these con-
ditions become

(244)



Assuming that Sr is a symmetrical function and dw/dr an antisym-
metrical function of £, we represent these functions by the following
power series:

in which Bo, B2, . . . and Ci, C3, . . . are constants to be determined
later. Substituting the first of these series in Eq. (241), we find

By integrating and differentiating Eq. (c), we obtain, respectively,

It is seen that all the quantities in which we are interested can be found
if we know the constants Bo, B2, . . . , Ci, C3, . . . . Substituting
series (6), (c), and (d) in Eqs. (242) and (243) and observing that these
equations must be satisfied for any value of £, we find the following
relations between the constants B and C:

It can be seen that when the two constants B0 and Ci are assigned, all the
other constants are determined by relations (#). The quantities Sr, St,
and dw/dr are then determined by series (b), (d)} and (c) for all points in
the plate. As may be seen from series (6) and (/), fixing B0 and Ci is
equivalent to selecting the values of Sr and the curvature at the center
of the plate.1

To obtain the following curves for calculating deflections and stresses in
particular cases, the procedure used was: For given values of v and

1 The selection of these same quantities has already been encountered in the case of
bending of circular plates by moments uniformly distributed along the edge (see
page 398).



p = q/E and for selected values of B0 and Ci, a considerable number of
numerical cases were calculated,1 and the radii of the plates were deter-
mined so as to satisfy the boundary condition (a). For all these plates
the values of Sr and St at the boundary were calculated, and the values of
the radial displacements (u)rs=a at the boundary were determined. Since
all calculations were made with arbitrarily assumed values of BQ and Ci,
the boundary condition (244) was not satisfied. However, by interpo-
lation it was possible to obtain all the necessary data for plates for which
both conditions (244) and (a) are satisfied. The results of these calcu-
lations are represented graphically in Fig. 203. If the deflection of the
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FIG. 203

plate is found from this figure, the corresponding stress can be obtained
by using the curves of Fig. 204. In this figure, curves are given for the
membrane stresses

and for the bending stresses

as calculated for the center and for the edge of the plate.2 By adding
together o> and <r'r) the total maximum stress at the center and at the
edge of the plate can be obtained. For purposes of comparison Figs.
203 and 204 also include straight lines showing the results obtained from

1 Nineteen particular cases have been calculated by Way, op. cit.
2 The stresses are given in dimensionless form.



the elementary theory in which the strain of the middle plane is neg-
lected. It will be noted that the errors of the elementary theory increase
as the load and deflections increase.

Bending stress
at edge

Bending stress by
linear iheory, edge

Bending stress
by linear theory,
center

Bending stress
at center

S
tr

es
s

Membrane stress
at center

Membrane stress
at edge

Deflection, W0 /h

FIG. 204

99. A Simply Supported Circular Plate under Uniform Load. An exact solution of
the problem1 can be obtained by a series method similar to that used in the preceding
article.

Because of the axial symmetry we have again dwl&r — 0 and Nr — Nt at r = 0.
Since the radial couples must vanish on the edge, a further condition is

With regard to the stress and strain in the middle plane of the plate two boundary
conditions may be considered:

1. Assuming the edge is immovable we have, by Eq. (244), St — vSr = 0, which,
by Eq. (237), is equivalent to

1 K. Federhofer and H. Egger, Sitzber. Akad. Wiss. Wien, Ha, vol. 155, p. 15, 1946;
see also M. Stippes and A. H. Hausrath, J. Appl. Mechanics, vol. 19, p. 287, 1952.
The perturbation method used in this latter paper appears applicable in the case of a
concentrated load as well.



2. Supposing the edge as free to move in the radial direction we simply have

The functions Sr and dw/dr may be represented again in form of the series

where p = r/a. Using these series and also Eqs. (241), (242), (243), from which the
quantity Sr can readily be eliminated, we arrive at the following relations between
the constants B and C:

where p = q/E, q being the intensity of the load.
Again, all constants can easily be expressed in terms of both constants Bi and Ci,

for which two additional relations, ensuing from the boundary conditions, hold:
In case 1 we have

and in case 2

To start the resolution of the foregoing system of equations, suitable values of Bi and
Ci may be taken on the basis of an approximate solution. Such a solution, satisfying
condition (a), can be, for instance, of the form

where C is a constant and /3 = ——^ (n « 3, 5, . . .). Substituting this in Eqs.
n + v

(241) and (243), in which £ must be replaced by pa/h, and eliminating St we obtain
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TABLE 82. DATA FOR CALCULATION OF APPROXIMATE VALUES OF DEFLECTIONS

Wo AND STRESSES IN UNIFORMLY LOADED PLATES

v - 0.3

Boundary
conditions

Plate
clamped

Plate
simply-
supported

Edge im-
movable

Edge free
to move

Edge im-
movable

Edge free
to move

A

0.471

0.146

1.852

0.262

B

0.171

0.171

0.696

0.696

Center

ar = at

0.976

0.500

0.905

0.295

fir ^ fit

2.86

2.86

1.778

1.778

Edge

OCr

0.476

0

0.610

0

OLt

0.143

-0.333

0.183

-0.427

fir

-4.40

-4.40

0

0

fit

-1.32

-1.32

0.755

0.755



Herein c\ and Ci are constants of integration and

Let us, for example, assume the boundary conditions of case 2. Then we obtain

The constant C, finally, can be determined by some strain energy method—for exam-
ple, that described in Art. 100. Using there Eqs. (m) or (o) we have only to replace

Radially movable edge*.

Logorithmic scale for abscissas
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dtp/dr = rhESr and dw/dr by approximate expressions in accordance with Eqs. (k)
and (I) given above.

The largest values of deflections and of total stresses obtained by Federhofer and
Egger from the exact solution are given in Fig. 205 for case 1 and in Fig. 206 for case 2.
The calculation has been carried out for v = 0.25.

Table 82 may be useful for approximate calculations of the deflection 100 at the



center, given by an equation of the form

also of the stresses in the middle plane, given by

and of the extreme fiber bending stresses1

100. Circular Plates Loaded at the Center. An approximate solution of this
problem can be obtained by means of the method described in Art. 81.

The work of the internal forces corresponding to some variation 8er, 8et of the strain is

Using Eqs. (a) and (b) of Art. 96 we have

We assume, furthermore, that either the radial displacements in the middle plane or
the radial forces Nr vanish on the boundary. Then, integrating expression (a) by
parts and putting du = 0 or Nr — 0 on r = a, we obtain

The work of the bending moments Mr and M1 on the variation 8(—d2w/dr2) and
5(—-J- dw/dr) of the curvatures is similarly

Now we suppose that either the radial bending moment Mr or the slope 8(dw/dr)
becomes zero on the boundary. Integration of expression (c) by parts then yields

Finally, the work of the external forces is

or, by putting

1 The sign is negative if the bottom of the plate is in compression,



we have

Provided 8iv = 0 on the boundary we finally obtain

The condition S(Vi + F2 4- F3) = 0 now yields the equation

We could proceed next by assuming both variations 8w and 8u as arbitrary. Thus
we would arrive at the second of the differential equations (234), Nr being given by
expression (c) of Art. 96, and at Eq. (d) of the same article. If we suppose only this
latter equation of equilibrium to be satisfied, then we have still to fulfill the condition

in which / is a stress function defining

and governed by the differential equation

which follows from Eq. (239). Integrating expression (h) by parts once more we
obtain

With intent to use the method described in Art. 81 we take the deflection in the form

Just as in the case of the expression (211) each function <pi(r) has to satisfy two
boundary conditions prescribed for the deflection. Substituting expression (I) either
in Eq. (h) or in Eq. (A;) and applying the same reasoning as in Art. 81, we arrive at a
sequence of equations of the form

in which



or at a set of equations

where

Now let us consider a clamped circular plate with a load P concentrated at r = 0.
We reduce expression (I) to its first term by taking the deflection in the form

which holds rigorously for a plate with small deflections. From Eq. (j) we obtain,
by integration,

Let there be a free radial displacement at the boundary. The constants of integra-
tion Ci and C2 then are determined by two conditions. The first, namely,

can be rewritten as

and the second is

This latter condition must be added in order to limit, at r = 0, the value of the
stress Nr given by Eq. (i). Thus we obtain

The load function is equal to

in our case, and expressions (q) and (r) yield

while <pi is given by the expression in the parentheses in Eq. (q). Substituting this in
Eq. (w) we arrive at the relation



The general expressions for the extreme fiber bending stresses corresponding to the
deflection (q) and obtainable by means of Eqs. (101) are

These expressions yield infinite values of stresses as r tends to zero. However, assum-
ing the load P to be distributed uniformly over a circular area with a small radius
r = c, we can use a simple relation existing in plates with small deflections between
the stresses <// = <r" at the center of such an area and the stresses <rr = at caused at
r = c by the same load P acting at the point r = 0. According to Nddai's result,1

expressed in terms of stresses,

Applying this relation to the plate with large deflections we obtain, at the center of
the loaded area with a radius c, approximately

The foregoing results hold for a circular plate with a clamped and movable edge.
By introducing other boundary conditions we obtain for Wo an equation

which is a generalization of Eq. (v). The constants A and B are given in Table 83.
The same table contains several coefficients2 needed for calculation of stresses

acting in the middle plane of the plate and the extreme fiber bending stresses

The former are calculated using expressions (i), the latter by means of expressions
(101) for the moments, the sign being negative if the compression is at the bottom.3

101. General Equations for Large Deflections of Plates. In discussing
the general case of large deflections of plates we use Eq. (219), which was

1 A. Nadai, "Elastische Platten," p. 63, Berlin, 1925.
2 All data contained in Table 82 are taken from A. S. Volmir, op. tit.
3 For bending of the ring-shaped plates with large deflections see K. Federhofer,

Osterr. Ingr.-Arch., vol. 1, p. 21, 1946; E. Reissner, Quart Appl. Math., vol. 10, p. 167,
1952, and vol. 11, p. 473, 1953. Large deflections of elliptical plates have been dis-
cussed by N. A. Weil and N. M. Newmark, / . Appl. Mechanics, vol. 23, p. 21, 1956.



TABLE 83. DATA FOR CALCULATION OF APPROXIMATE VALUES OF DEFLECTIONS

Wo AND STRESSES IN CENTRALLY LOADED PLATES

v - 0.3

Boundary-
conditions

Plate
clamped

Plate
simply
supported

Edge im-
movable

Edge free
to move

Edge im-
movable

Edge free
to move

A

0.443

0.200

1.430

0.272

B

0.217

0.217

0.552

0.552

Center

OCr ~ CCt

1.232

0.875

0.895

0.407

Edge

OLr

0.357

0

0.488

0

OLt

0.107

-0.250

0.147

-0.341

-2.198

-2.198

0

0

ft

-0.659

-0.659

0.606

0.606

derived by considering the equilibrium of an element of the plate in the
direction perpendicular to the plate. The forces NX) NVJ and Nxy now
depend not only on the external forces applied in the xy plane but also
on the strain of the middle plane of the plate due to bending. Assuming
that there are no body forces in the xy plane and that the load is perpen-
dicular to the plate, the equations of equilibrium of an element in the
xy plane are

The third equation necessary to determine the three quantities Nx, Ny,
and Nxy is obtained from a consideration of the strain in the middle sur-
face of the plate during bending. The corresponding strain components
[see Eqs. (221), (222), and (223)] are

By taking the second derivatives of these expressions and combining the



resulting expressions, it can be shown that

By replacing the strain components by the equivalent expressions

the third equation in terms of Nx, Nv, and Nxy is obtained.
The solution of these three equations is greatly simplified by the intro-

duction of a stress function.1 It may be seen that Eqs. (a) are identically
satisfied by taking

where F is a function of x and y. If these expressions for the forces are
substituted in Eqs. (d), the strain components become

Substituting these expressions in Eq. (c), we obtain

(245)

The second equation necessary to determine F and w is obtained by
substituting expressions (e) in Eq. (217), which gives

(246)

1 See S. Timoshenko and J. N. Goodier, "Theory of Elasticity," 2d ed., p. 26,1951.



Equations (245) and (246), together with the boundary conditions,
determine the two functions F and w.* Having the stress function F,
we can determine the stresses in the middle surface of a plate by apply-
ing Eqs. (e). From the function w, which defines the deflection surface
of the plate, the bending and the shearing stresses can be obtained by
using the same formulas as in the case of plates with small deflection [see
Eqs. (101) and (102)]. Thus the investigation of large deflections of
plates reduces to the solution of the two nonlinear differential equations
(245) and (246). The solution of these equations in the general case is
unknown. Some approximate solutions of the problem are known, how-
ever, and will be discussed in the next article.

In the particular case of bending of a plate to a cylindrical surface1

whose axis is parallel to the y axis, Eqs. (245) and (246) are simplified by
observing that in this case w is a function of x only and that d2F/dx2 and
d2F/dy2 are constants. Equation (245) is then satisfied identically, and
Eq. (246) reduces to

Problems of this kind have already been discussed fully in Chap. 1.

If polar coordinates, more convenient in the case of circular plates, are used, the
system of equations (245) and (246) assumes the form

in which

and L(w,w) is obtained from the foregoing expression if w is substituted for F.

In the case of very thin plates, which may have deflections many times
larger than their thickness, the resistance of the plate to bending can be

* These two equations were derived by Th. von Karman; see " Encyklopadie der
Mathematischen Wissenschaften," vol. IV4, p. 349, 1910. A general method of non-
linear elasticity has been applied to bending of plates by E. Koppe, Z. angew. Math.
Mech., vol. 36, p. 455, 1956.

1 For a more general theory of plates (in particular of cantilever plates) bent, with-
out extension, to a developable surface, see E. H. Mansfield, Quart. J. Mech. Appl.
Math., vol. 8, p. 338, 1955, and D. G. Ashwell, Quart. J. Mech. Appl. Math., vol. 10,
p. 169, 1957. A boundary-layer phenomenon arising along the free edges of such
plates was considered by Y. C. Fung and W. H. Witrick, Quart. J. Mech. Appl. Math.,
vol. 8, p. 191, 1955.



neglected; i.e., the flexural rigidity D can be taken equal to zero, and
the problem reduced to that of finding the deflection of a flexible mem-
brane. Equations (245) and (246) then become1

(247)

A numerical solution of this system of equations by the use of finite
differences has been discussed by H. Hencky.2

The energy method affords another means of obtaining an approxi-
mate solution for the deflection of a membrane. The strain energy of a
membrane, which is due solely to stretching of its middle surface, is given
by the expression

(248)

Substituting expressions (221), (222), and (223) for the strain compo-
nents ex, ey, yxy, we obtain

(249)

In applying the energy method we must assume in each particular case
suitable expressions for the displacements u, i>, and w. These expressions
must, of course, satisfy the boundary conditions and will contain several
arbitrary parameters the magnitudes of which have to be determined by
the use of the principle of virtual displacements. To illustrate the
method, let us consider a uniformly loaded square membrane3 with sides
of length 2a (Fig. 207). The displacements u, v, and w in this case must
vanish at the boundary. Moreover, from symmetry, it can be concluded

1 These equations were obtained by A. Foppl, "Vorlesungen fiber Technische
Mechanik," vol. 5, p. 132, 1907.

2 H. Hencky, Z. angew. Math. Mech., vol. 1, pp. 81 and 423, 1921; see also R. Kaiser,
Z. angew. Math. Mech., vol. 16, p. 73, 1936.

3 Calculations for this case are given in the book "Drang und Zwang" by August
and Ludwig Foppl, vol. 1, p. 226, 1924; see also Hencky, ibid.



that w is an even function of x and y, whereas u and v are odd functions
of x and of y, respectively. AU these requirements
are satisfied by taking the following expressions for
the displacements:

FIG. 207

which contain two parameters W0 and c. Substituting these expressions
in Eq. (249), we obtain, for v - 0.25,

The principle of virtual displacements gives the two following equations:1

Substituting expression (h) for F, we obtain from Eq. (i)

and from Eq. (j)

(250)

This deflection at the center is somewhat larger than the value (236)
previously obtained for a uniformly loaded circular membrane. The
tensile strain at the center of the membrane as obtained from expressions
(flO is

and the corresponding tensile stress is

(251)

Some application of these results to the investigation of large deflections
of thin plates will be shown in the next article.

1 The right-hand side of Eq. (i) is zero, since the variation of the parameter c pro-
duces only horizontal displacements and the vertical load does not produce work.



102. Large Deflections of Uniformly Loaded Rectangular Plates. We begin with
the case of a plate with clamped edges. To obtain an approximate solution of the
problem the energy method will be used.x The total strain energy V of the plate is
obtained by adding to the energy of bending [expression (117), page 88] the energy
due to strain of the middle surface [expression (249), page 419]. The principle of
virtual displacements then gives the equation

5V- djjqw dxdy = 0 (a)

which holds for any variation of the displacements u, v, and w. By deriving the vari-
ation of V we can obtain from Eq. (a) the system of Eqs. (245) and (246), the exact
solution of which is unknown. To find an approximate solution of our problem we
assume for u, v, and w three functions satisfying the boundary conditions imposed by
the clamped edges and containing several parameters which will be determined by
using Eq. (a). For a rectangular plate with sides 2a and 2b and coordinate axes, as
shown in Fig. 207, we shall take the displacements in the following form:

u = (a2 - x*,(b* - y*)x(boo + b02y* + b20x* + 622zV)
v = (a2 - s2)(62 - y2)y(cOo + c02i/

2 + C20Z
2 + c22x*y*) (b)

w = (a2 - z2)2(62 - 2/2)2(a00 + a02y
2 + a20z

2)

The first two of these expressions, which represent the displacements u and v in the
middle plane of the plate, are odd functions in x and y, respectively, and vanish at
the boundary. The expression for w, which is an even function in x and y, vanishes
at the boundary, as do also its first derivatives. Thus all the boundary conditions
imposed by the clamped edges are satisfied.

Expressions (b) contain 11 parameters boo, • • . , «20, which will now be determined
from Eq. (a), wliich must be satisfied for any variation of each of these parameters.
In such a way we obtain 11 equations, 3 of the form

and 8 equations of the form2

These equations are not linear in the parameters amn, bmn, and cmn as was true in the
case of small deflections (see page 344). The three equations of the form (c) will con-
tain terms of the third degree in the parameters amn. Equations of the form (d) will
be linear in the parameters bmn and cmn and quadratic in the parameters amn. A solu-
tion is obtained by solving Eqs. (d) for the bmn's and cmn's in terms of the amn's and
then substituting these expressions in Eqs. (c). In this way we obtain three equa-

1 Such a solution has been given by S. Way; see Proc. Fifth Intern. Congr. Appl.
Mech., Cambridge, Mass., 1938. For application of a method of successive approxi-
mation and experimental verification of results see Chien Wei-Zang and Yeh Kai-
Yuan, Proc. Ninth Intern. Congr. Appl. Mech., Brussels, vol. 6, p. 403, 1957. Large
deflections of slightly curved rectangular plates under edge compression were con-
sidered by Syed Yusuff, / . Appl. Mechanics, vol. 19, p. 446, 1952.

2 The zeros on the right-hand sides of these equations result from the fact that the
lateral load does not do work when u or v varies,



tions of the third degree involving the parameters amn alone. These equations can
then be solved numerically in each particular case by successive approximations.

Numerical values of all the parameters have been computed for various intensities
of the load q and for three different shapes of the plate b/a = 1, b /a = -|, and b/a = ^
by assuming v — 0.3.

It can be seen from the expression for w that, if we know the constant aoo, we can
at once obtain the deflection of the plate at the center. These deflections are graphi-
cally represented in Fig. 208, in which Wm**/h is plotted against qbA/Dh. For com-
parison the figure also includes the straight lines which represent the deflections
calculated by using the theory of small deflections. Also included is the curve for
b/a = 0, which represents deflections of an infinitely long plate calculated as explained
in Art. 3 (see page 13). It can be seen that the deflections of finite plates with
b/a < f are very close to those obtained for an infinitely long plate.

Knowing the displacements as given by expressions (b), we can calculate the strain
of the middle plane and the corresponding membrane stresses from Eqs. (b) of the

FIG. 208

preceding article. The bending stresses can then be found from Eqs. (101) and (102)
for the bending and twisting moments. By adding the membrane and the bending
stresses, we obtain the total stress. The maximum values of this stress are at the
middle of the long sides of plates. They are given in graphical form in Fig. 209. For
comparison, the figure also includes straight lines representing the stresses obtained
by the theory of small deflections and a curve b/a = 0 representing the stresses for
an infinitely long plate. It would seem reasonable to expect the total stress to be
greater for b/a = 0 than for b/a = -J for any value of load. We see that the curve
for b/a = 0 falls below the curves for b/a = •§• and b/a = ^. This is probably a
result of approximations in the energy solution which arise out of the use of a finite
number of constants. It indicates that the calculated stresses are in error on the
safe side, i.e., that they are too large. The error for b/a = -J appears to be about
10 per cent.

The energy method can also be applied in the case of large deflections of simply
supported rectangular plates. However, as may be seen from the foregoing dis-
cussion of the case of clamped edges, the application of this method requires a con-
siderable amount of computation. To get an approximate solution for a simply



supported rectangular plate, a simple method consisting of a combination of the
known solutions given by the theory of small deflections and the membrane theory
can be used.1 This method will now be illustrated by a simple example of a square
plate. We assume that the load q can be resolved into two parts qi and q% in such a
manner that part qi is balanced by the bending and shearing stresses calculated by

FIG. 209

the theory of small deflections, part qt being balanced by the membrane stresses.
The deflection at the center as calculated for a square plate with sides 2a by the
theory of small deflections is2

From this we determine

1 This method is recommended by Foppl; see "Drang und Zwang," p. 345.
2 The factor 0.730 is obtained by multiplying the number 0.00406, given in Table 8,

by 16 and by 12(1 - v*) - 11.25.



Considering the plate as a membrane and using formula (250), we obtain

from which

The deflection w0 is now obtained from the equation

which gives

(252)

After the deflection WQ has been calculated from this equation, the loads qi and qi are
found from Eqs. (e) and (/), and the corresponding stresses are calculated by using
for î the small deflection theory (see Art. 30) and for q2, Eq. (251). The total stress
is then the sum of the stresses due to the loads qi and q*.

Another approximate method of practical interest is based on consideration of the
expression (248) for the strain energy due to the stretching of the middle surface of
the plate.l This expression can be put in the form

in which

A similar expression can be written in polar coordinates, e2 being, in case of axial
symmetry, equal to eret. The energy of bending must be added, of course, to the
energy (g) in order to obtain the total strain energy of the plate. Yet an examination
of exact solutions, such as described in Art. 98, leads to the conclusion that terms of
the differential equations due to the presence of the term e2 in expression (g) do not
much influence the final result.

Starting from the hypothesis that the term containing e% actually can be neglected
in comparison with e2, we arrive at the differential equation of the bent plate

in which the quantity

proves to be a constant. From Eqs. (6) of Art. 101 it follows that the dilatation
e = ex + ey then also remains constant throughout the middle surface of the bent
plate. The problem in question, simplified in this way, thus becomes akin to prob-
lems discussed in Chap. 12.

1 H. M. Berger, ./. Appl. Mechanics, vol. 22, p. 465, 1955.



For a circular plate under symmetrical loading, Eq. (i) must be replaced by

In this latter case the constants of integration of JEq. (h) along with the constant a
allow us to fulfill all conditions prescribed on the boundary of the plate. However,
for a more accurate calculation of the membrane stresses NT, Nt from the deflections,
the first of the equations (231) should be used in place of the relation (j).

The calculation of the membrane stresses in rectangular plates proves to be rela-
tively more cumbersome. As a whole, however, the procedure still remains much
simpler than the handling of the exact equations (245) and (246), and the numerical
results, in cases discussed till now, prove to have an accuracy satisfactory for technical
purposes. Nevertheless some reservation appears opportune in application of this
method as long as the hypothesis providing its basis lacks a straight mechanical
interpretation.

103. Large Deflections of Rectangular Plates with Simply Supported Edges. An
exact solution1 of this problem, treated in the previous article approximately, can be
established by starting from the simultaneous equations (245) and (246).

The deflection of the plate (Fig. 59) may be taken in the Navier form

the boundary conditions with regard to the deflections and the bending moments
thus being satisfied by any, yet unknown, values of the coefficients wmn. The given
lateral pressure may be expanded in a double Fourier series

A suitable expression for the Airy stress function, then, is

where Px and Pv denote the total tension load applied on the sides x = 0, a and
y = 0, b, respectively. Substituting the expressions (a) and (c) into Eq. (245), we
arrive at the following relation between the coefficients of both series:

1 Due to S. Levy, NACA Tech. Note 846, 1942, and Proc. Symposia Appl. Math.,
vol. 1, p. 197, 1949. For application of the same method to plates with clamped
edges see this latter paper and NACA Tech. Notes 847 and 852, 1942; for application
to slightly curved plates under edge compression see J. M. Coan,«/. Appl. Mechanics,
vol. 18, p. 143, 1951. M. Stippes has applied the Ritz method to the case where
the membrane forces vanish on the boundary and two opposite edges are supported;
see Proc. First Natl. Congr. Appl Mech., Chicago, 1952, p. 339.



The sum includes all products for which r ± p = m and s ± q — n. The coefficients
brsva are given by the expression

where the sign is positive for r + p = m and s — q = n or for r — p = m and
s -f q == n, and is negative otherwise. Taking, for example, a square plate (a = 6),
we obtain

It still remains to establish a relation between the deflections, the stress function, and
the lateral loading. Inserting expressions (a), (6), and (c) into Eq. (246), we arrive
at the equation

The summation includes, this time, all products for which r ± p = m and s ± q = n,
and the coefficients are given by

and are twice this value otherwise. The first sign is positive if either r — p = m or
s — q = n (but not simultaneously), and is negative in all other cases. The second
sign is positive if r + p = m and s - g = n o r r - p = m and s •+• q = n, and is
negative otherwise. For example,

In accordance with conditions occurring in airplane structures the plate is con-
sidered rigidly framed, all edges thus remaining straight1 after deformation. Then
the elongation of the plate, say in the direction x, is independent of y. By Eqs. (b)
and (/) of Art. 101 its value is equal to

Using the series (a) and (c), this yields

i.e., an expression which in fact does not include y. Similarly, one obtains

1 A solution due to Kaiser, loc. cit., is free from this restriction.
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With regard to the boundary conditions we again consider two cases:
1. All edges are immovable. Then Sx = Sv = 0 and Eqs. {i) and (j) allow us to

express Px and Pv through the coefficients wmn.
2. The external edge load is zero in the plane of the plate. We have then simply

Px=P1,= 0.
Next we have to keep a limited number of terms in the series (a) and (6) and to

substitute the corresponding expressions (d) in Eq. (/). Thus we obtain for any
assumed number of the unknown coefficients wmn as many cubic equations. Having
resolved these equations we calculate the coefficients (d) and are able to obtain all
data regarding the stress and strain of the plate from the series (a) and (c). The
accuracy of the solution can be judged by observing the change in the numerical
results as the number of the coefficients wmn introduced in the calculation is gradually
increased. Some data for the flexural and membrane stresses obtained in this manner
in the case of a uniformly loaded square plate with immovable edges are given in
Figs. 210 and 211.



CHAPTER 14

DEFORMATION OF SHELLS WITHOUT BENDING

104. Definitions and Notation. In the following discussion of the
deformations and stresses in shells the system of notation is the same as
that used in the discussion of plates. We denote the thickness of the
shell by h, this quantity always being considered small in comparison
with the other dimensions of the shell and with its radii of curvature.
The surface that bisects the thickness of the plate is called the middle
surface. By specifying the form of the middle surface and the thickness
of the shell at each point, a shell is entirely defined geometrically.

To analyze the internal forces we cut from the shell an infinitely small
element formed by two pairs of adjacent planes which are normal to the
middle surface of the shell and which contain its principal curvatures
(Fig. 212a). We take the coordinate axes x and y tangent at O to the
lines of principal curvature and the axis z normal to the middle surface,
as shown in the figure. The principal radii of curvature which lie in the
xz and yz planes are denoted by rx and ry, respectively. The stresses
acting on the plane faces of the element are resolved in the directions of
the coordinate axes, and the stress components are denoted by our previ-
ous symbols <rS) <ry, TXV = TVX, rxg. With this notation1 the resultant forces
per unit length of the normal sections shown in Fig. 2126 are

The small quantities z/rx and z/rv appear in expressions (a), (6), (c),
because the lateral sides of the element shown in Fig. 212a have a trape-
zoidal form due to the curvature of the shell. As a result of this, the
shearing forces Nxy and Nyx are generally not equal to each other, although

1 In the cases of surfaces of revolution in which the position of the element is denned
by the angles B and <p (see Fig. 213) the subscripts B and <p are used instead of x and y
in notation for stresses, resultant forces, and resultant moments.



it still holds that TXV = ryx. In our further discussion we shall always
assume that the thickness h is very small in comparison with the radii
rx, Ty and omit the terms z/rx and z/ry in expressions (a), (6), (c). Then
Nxy — Nyx, and the resultant shearing forces are given by the same
expressions as in the case of plates (see Art. 21).

FIG. 212

The bending and twisting moments per unit length of the normal sec-
tions are given by the expressions

in which the rule used in determining the directions of the moments is
the same as in the case of plates. In our further discussion we again
neglect the small quantities z/rx and z/ry, due to the curvature of the
shell, and use for the moments the same expressions as in the discussion
of plates.

In considering bending of the shell, we assume that linear elements,
such as AD and BC (Fig. 212a), which are normal to the middle surface
of the shell, remain straight and become normal to the deformed middle
surface of the shell. Let us begin with a simple case in which, during



bending, the lateral faces of the element ABCD rotate only with respect
to their lines of intersection with the middle surface. If rx and r'y are the
values of the radii of curvature after deformation, the unit elongations of
a thin lamina at a distance z from the middle surface (Fig. 212a) are

If, in addition to rotation, the lateral sides of the element are displaced
parallel to themselves, owing to stretching of the middle surface, and if
the corresponding unit elongations of the middle surface in the x and y
directions are denoted by ei and €2, respectively, the elongation ex of the
lamina considered above, as seen from Fig. 212c, is

Substituting

we obtain

A similar expression can be obtained for the elongation ey. In our fur-
ther discussion the thickness h of the shell will be always assumed small
in comparison with the radii of curvature. In such a case the quantities
z/rx and z/ry can be neglected in comparison with unity. We shall neg-
lect also the effect of the elongations €1 and e2 on the curvature.1 Then,
instead of such expressions as (0), we obtain

where Xx and Xv denote the changes of curvature. Using these expres-
sions for the components of strain of a lamina and assuming that there
are no normal stresses between laminae (<rz = 0), the following expres-

1 Similar simplifications are usually made in the theory of bending of thin curved
bars. It can be shown in this case that the procedure is justifiable if the depth of the
cross section h is small in comparison with the radius r, say h/r < 0.1; see S. Timo-
shenko, "Strength of Materials," part I, 3d ed., p. 370, 1955.



sions for the components of stress are obtained:

Substituting these expressions in Eqs. (a) and (d) and neglecting the
small quantities z/rx and z/ry in comparison with unity, we obtain

(253)

where D has the same meaning as in the case of plates [see Eq. (3)] and
denotes the flexural rigidity of the shell.

A more general case of deformation of the element in Fig. 212 is
obtained if we assume that, in addition to normal stresses, shearing
stresses also are acting on the lateral sides of the element. Denoting
by 7 the shearing strain in the middle surface of the shell and by %xy dx
the rotation of the edge BC relative to Oz about the x axis (Fig. 212a) and
proceeding as in the case of plates [see Eq. (42)], we find

Substituting this in Eqs. (b) and (e) and using our previous simplifications,
we obtain

(254)

Thus assuming that during bending of a shell the linear elements normal
to the middle surface remain straight and become normal to the deformed
middle surface, we can express the resultant forces per unit length Nx,
Ny, and Nxy and the moments Mx, My, and Mxy in terms of six quantities:
the three components of strain ei, e2, and y of the middle surface of the
shell and the three quantities Xx, Xy> and Xxy representing the changes of
curvature and the twist of the middle surface.

In many problems of deformation of shells the bending stresses can be
neglected, and only the stresses due to strain in the middle surface of the
shell need be considered. Take, as an example, a thin spherical container
submitted to the action of a uniformly distributed internal pressure nor-
mal to the surface of the shell. Under this action the middle surface of
the shell undergoes a uniform strain; and since the thickness of the shell
is small, the tensile stresses can be assumed as uniformly distributed
across the thickness. A similar example is afforded by a thin circular



cylindrical container in which a gas or a liquid is compressed by means of
pistons which move freely along the axis of the cylinder. Under the
action of a uniform internal pressure the hoop stresses that are produced
in the cylindrical shell are uniformly distributed over the thickness of
the shell. If the ends of the cylinder are built in along the edges, the
shell is no longer free to expand laterally, and some bending must occur
near the built-in edges when internal pressure is applied. A more com-
plete investigation shows, however
(see Art. 114), that this bending is of
a local character and that the portion
of the shell at some distance from the
ends continues to remain cylindrical
and undergoes only strain in the
middle surface without appreciable
bending.

If the conditions of a shell are such
that bending can be neglected, the
problem of stress analysis is greatly
simplified, since the resultant moments
(d) and (e) and the resultant shearing
forces (c) vanish. Thus the only un-
knowns are the three quantities Nx,
Ny, and Nxy = Nyx, which can be de-
termined from the conditions of equi-
librium of an element, such as shown in
Fig. 212. Hence the problem becomes
statically determinate if all the forces
acting on the shell are known. The
forces Nx, Ny, and Nxy obtained in this
manner are sometimes called membrane forces, and the theory of shells
based on the omission of bending stresses is called membrane theory. The
application of this theory to various particular cases will be discussed in
the remainder of this chapter.

105. Shells in the Form of a Surface of Revolution and Loaded Sym-
metrically with Respect to Their Axis. Shells that have the form of
surfaces of revolution find extensive application in various kinds of con-
tainers, tanks, and domes. A surface of revolution is obtained by rota-
tion of a plane curve about an axis lying in the plane of the curve. This
curve is called the meridian, and its plane is a meridian plane. An ele-
ment of a shell is cut out by two adjacent meridians and two parallel
circles, as shown in Fig. 213a. The position of a meridian is denned by
an angle B1 measured from some datum meridian plane; and the position
of a parallel circle is denned by the angle (p, made by the normal to the

FIG. 213



surface and the axis of rotation. The meridian plane and the plane
perpendicular to the meridian are the planes of principal curvature at a
point of a surface of revolution, and the corresponding radii of curvature
are denoted by r\ and r2, respectively. The radius of the parallel circle is
denoted by r0 so that the length of the sides of the element meeting at 0,
as shown in the figure, are rx dip and r0 dd = r2 sin <p dd. The surface
area of the element is then T̂ r2 sin <p d<p dd.

From the assumed symmetry of loading and deformation it can be
concluded that there will be no shearing forces acting on the sides of
the element. The magnitudes of the normal forces per unit length are
denoted by Nv and Ne as shown in the figure. The intensity of the
external load, which acts in the meridian plane, in the case of symmetry
is resolved in two components Y and Z parallel to the coordinate axes.
Multiplying these components with the area rxr2 sin <p d<p dd, we obtain
the components of the external load acting on the element.

In writing the equations of equilibrium of the element, let us begin
with the forces in the direction of the tangent to the meridian. On the
upper side of the element the force

is acting. The corresponding force on the lower side of the element is

From expressions (a) and (6), by neglecting a small quantity of second
order, we find the resultant in the y direction to be equal to

The component of the external force in the same direction is

YriVo d<p dd (d)

The forces acting on the lateral sides of the element are equal to NeTi dip
and have a resultant in the direction of the radius of the parallel circle
equal to iVVi dip dO. The component of this force in the y direction
(Fig. 2136) is

— N0Vi cos ip dip dd (e)

Summing up the forces (c), (d), and (e), the equation of equilibrium in
the direction of the tangent to the meridian becomes



The second equation of equilibrium is obtained by summing up the
projections of the forces in the z direction. The forces acting on the
upper and lower sides of the element have a resultant in the z direction
equal to

The forces acting on the lateral sides of the element and having the
resultant NQT1 d<p dd in the radial direction of the parallel circle give a
component in the z direction of the magnitude

The external load acting on the element has in the same direction a
component

Summing up the forces (g), (h), and (£), we obtain the second equation
of equilibrium

N^r0 + NeTi sin <p + ZT1TQ = 0 (j)

From the two Eqs. (/) and (j) the forces
Ne and N^ can be calculated in each
particular case if the radii r0 and T1 and
the components Y and Z of the intensity
of the external load are given.

Instead of the equilibrium of an ele-
ment, the equilibrium of the portion of
the shell above the parallel circle defined by the angle <p may be considered
(Fig. 214). If the resultant of the total load on that portion of the shell
is denoted by R, the equation of equilibrium is

FIG. 214

(255)

This equation can be used instead of the differential equation (/), from
which it can be obtained by integration. If Eq. (J) is divided by T1T0,
it can be written in the form

(256)

It is seen that when Nv is obtained from Eq. (255), the force Ne can be
calculated from Eq. (256). Hence the problem of membrane stresses
can be readily solved in each particular case. Some applications of these
equations will be discussed in the next article.



106. Particular Cases of Shells in the Form of Surfaces of Revolution,1

Spherical Dome. Assume that a spherical shell (Fig. 215a) is submitted
to the action of its own weight, the magnitude of which per unit area is
constant and equal to q. Denoting the radius of the sphere by a, we
have ro = a sin <p and

Equations (255) and (256) then give

(257)

It is seen that the forces N? are always negative. There is thus a com-
pression along the meridians that
increases as the angle <p increases. For
<p = 0 we have Np = —ag/2, and
for <p — TT/2j N<p = — aq. The forces
Ne are also negative for small angles <p.
When

i.e., for (p = 51°50', N6 becomes equal
to zero and, with further increase of <p,
becomes positive. This indicates that
for <p greater than 51°50' there are tensile
stresses in the direction perpendicular
to the meridians.

The stresses as calculated from (257)
will represent the actual stresses in the
shell with great accuracy2 if the sup-
ports are of such a type that the reac-
tions are tangent to meridians (Fig.
215a). Usually the arrangement is
such that only vertical reactions are
imposed on the dome by the supports,

whereas the horizontal components of the forces N^ are taken by a
1 Examples of this kind can be found in the book by A. Pfliiger, "Elementare

Schalenstatik," Berlin, 1957; see also P. Forchheimer, "Die Berechnung ebener und
gekrummter Behalterboden," 3d ed., Berlin, 1931, and J. W. Geckeler's article in
"Handbuch der Physik," vol. 6, Berlin, 1928.

2 Small bending stresses due to strain of the middle surface will be discussed in
Chap. 16.

FIG. 215



supporting ring (Fig. 2156) which undergoes a uniform circumferential
extension. Since this extension is usually different from the strain along
the parallel circle of the shell, as calculated from expressions (257),
some bending of the shell will occur near the supporting ring. An investi-
gation of this bending1 shows that in the case of a thin shell it is of a very
localized character and that at a certain distance from the supporting ring
Eqs. (257) continue to represent the stress conditions in the shell with
satisfactory accuracy.

FIG. 216

Very often the upper portion of a spherical dome is removed, as shown
in Fig. 215c, and an upper reinforcing ring is used to support the upper
structure. If 2^0 is the angle corresponding to the opening and P is the
vertical load per unit length of the upper reinforcing ring, the resultant R
corresponding to an angle <p is

From Eqs. (255) and (256) we then find

(258)

As another example of a spherical shell let us consider a spherical tank
supported along a parallel circle AA (Fig. 216) and filled with liquid of a
specific weight y. The inner pressure for any angle <p is given by the

1 See Art. 131. It should be noted, however, that in the case of a negative or zero
curvature of the shell (rir2 < 0) bending stresses due to the edge effect are not neces-
sarily restricted to the edge zone of the shell. See, for instance, W. Flugge, "Statik
und Dynamik der Schalen," p. 65, 2d ed., Berlin, 1957. The limitations of the mem-
brane theory of shells are discussed in detail by A. L. Goldenveiser, "Theory of
Elastic Thin Shells," p. 423, Moscow, 1953. The compatibility of a membrane state
of stress under a given load with given boundary conditions was also discussed by
E. Behlendorff, Z. angew. Math. Mech., vol. 36, p. 399, 1956.



expression1

The resultant R of this pressure for the portion of the shell defined by
an angle <p is

Substituting in Eq. (255), we obtain

and from Eq. (256) we find that

(259)

(260)

Equations (259) and (260) hold for <p < ^0. In calculating the resultant
R for larger values of <p, that is, for the lower portion of the tank, we must
take into account not only the internal pressure but also the sum of the
vertical reactions along the ring AA. This sum is evidently equal to
the total weight of the liquid 4ira37/3. Hence

Substituting in Eq. (255), we obtain

and from Eq. (256),

(261)

(262)

Comparing expressions (259) and (261), we see that along the supporting
ring AA the forces N^ change abruptly by an amount equal to 2ya2/
(3 sin2 <po). The same quantity is also obtained if we consider the vertical
reaction per unit length of the ring AA and resolve it into two compo-
nents (Fig. 2166): one in the direction of the tangent to the meridian and
the other in the horizontal direction. The first of these components is
equal to the abrupt change in the magnitude of Nv mentioned above;
the horizontal component represents the reaction on the supporting ring
which produces in it a uniform compression. This compression can be
eliminated if we use members in the direction of tangents to the meridians
instead of vertical supporting members, as shown in Fig. 216a. As may

1 A uniform pressure producing a uniform tension in the spherical shell can be
superposed without any complication on this pressure.



be seen from expressions (260) and (262), the forces N$ also experience
an abrupt change at the circle A A. This indicates that there is an abrupt
change in the circumferential expansion on the two sides of the parallel
circle A A. Thus the membrane theory does not satisfy the condition of
continuity at the circle AA, and we may expect some local bending to
take place near the supporting ring.

Conical Shell In this case certain membrane stresses can be produced
by a force applied at the top of the cone. If a force P is
applied in the direction of the axis of the cone, the stress
distribution is symmetrical, and from Fig. 217 we obtain

tf, = - ^— (a)
2TTVQ COS a

Equation (256) then gives N9 = 0. The case of a force
applied at the top in the direction of a generatrix will be
discussed in Art. 110 and the loading of the shell by its
weight in Art. 133.

If lateral forces are symmetrically distributed over the conical surface,
the membrane stresses can be calculated by using Eqs. (255) and (256).
Since the curvature of the meridian in the case of a cone is zero, 7*1=00;

we can write these equations in the following
form:

Each of the resultant forces N9 and N6 can be
calculated independently provided the load dis-
tribution is known. As an example, we take the
case of the conical tank filled with a liquid of

specific weight y as shown in Fig. 218. Measuring the distances y from
the bottom of the tank and denoting by d the total depth of the liquid in
the tank, the pressure at any parallel circle ran is

p = -Z = y(d - y)

Also, for such a tank <p = (T/2) + a and r0 = y tan a. Substituting in
the second of the equations (b), we obtain

This force is evidently a maximum when y — d/2, and we find

FIG. 217

FIG. 218



In calculating the force N9 we observe that the load R in the first of the
equations (b) is numerically equal to the weight of the liquid in the conical
part mno together with the weight of the liquid in the cylindrical part
must. Hence

and we obtain

This force becomes a maximum when y = fd, at which point

If the forces supporting the tank are in the direction of generatrices, as
shown in Fig. 218, expressions (c) and (d) represent the stress conditions

in the shell with great accuracy. Usually
there will be a reinforcing ring along the
upper edge of the tank. This ring takes the
horizontal components of the forces N9;
the vertical components of the same forces
constitute the reactions supporting the
tank. In such a case it will be found that
a local bending of the shell takes place at
the reinforcing ring.

Shell in the Form of an Ellipsoid of Revolu-
tion. Such a shell is used very often for the
ends of a cylindrical boiler. In such a case

a half of the ellipsoid is used, as shown in Fig. 219. The principal radii
of curvature in the case of an ellipse with semiaxes a and b are given by
the formulas

or, by using the orthogonal coordinates x and y shown in the figure,

If the principal curvatures are determined from Eqs. (e) or (/), the forces
N9 and N6 are readily found from Eqs. (255) and (256). Let p be the
uniform steam pressure in the boiler. Then for a parallel circle of a
radius r0 we have R = —7rpr§, and Eq. (255) gives

(263)

FIG. 219



Substituting in Eq. (256), we find

(264)

At the top of the shell (point 0) we have rx = r2 = a%/b, and Eqs. (263)
and (264) give

At the equator AA we have T1 — b2/a and r2 = a; hence

It is seen that the forces Nv are always positive, whereas the forces Ne
become negative at the equator if

In the particular case of a sphere, a = 6; and we find in all points
A ,̂ = N6 = pa/2.

Shell in Form of a Torus. If a torus is obtained by rotation of a circle
of radius a about a vertical axis (Fig. 220), the forces N^ are obtained by

FIG. 220

considering the equilibrium of the ring-shaped portion of the shell repre-
sented in the figure by the heavy line AB. Since the forces Nv along the
parallel circle BB are horizontal, we need consider only the forces Nv

along the circle AA and the external forces acting on the ring when dis-
cussing equilibrium in the vertical direction. Assuming that the shell is
submitted to the action of uniform internal pressure p, we obtain the
equation of equilibrium

from which

(265)



Substituting this expression in Eq. (256), we find1

(266)

A torus of an elliptical cross section may be treated in a similar manner.

107. Shells of Constant Strength. As a first example of a shell of constant strength,
let us consider a dome of nonuniform thickness supporting its own weight. The
weight of the shell per unit area of the middle surface is yh, and the two components
of this weight along the coordinate axes are

In the case of a shell of constant strength the form of the meridians is determined in
such a way that the compressive stress is constant and equal to a in all the directions
in the middle surface, i.e., so that

Substituting in Eq. (256), we find

or, by substituting r2 = r0 sin <p and solving for n,

From Fig. 2136, we have

Thus Eq. (c) can be represented in the form

At the top of the dome where <p = 0, the right-hand side of the equation becomes
indefinite. To remove this difficulty we use Eq. (6). Because of the conditions of
Symmetry at the top, r\ = r2, and we conclude that

1 Nevertheless, a consideration of the deformation of the shell shows that bending
stresses inevitably must arise near the crown r0 = b of the shell, and this in spite of
the lack of any singularity either in the shape of the shell surface or in the distribu-
tion of the loading. See W-. R. Dean, Phil. Mag., ser. 7, vol. 28, p. 452, 1939, and
also Fliigge, op. cit.t p. 81.



Hence, for the top of the dome we have

Using Eqs. (e) and (d), we can obtain the shape of the meridian by numerical inte-
gration, starting from the top of the dome and calculating for each increment A<p
of the angle <p the corresponding increment Ar0 of the radius ro. To find the vari-
ation of the thickness of the shell, Eq. (/), Art. 105, must be used. Substituting
N<p = N$ = — <rh in this equation and observing that a is constant, we obtain

Substituting expression (c) for rh the following equation is obtained:

For <p — 0, we obtain from Eq. (/)

It is seen that for the first increment A<p of the angle <p any constant value for h can
be taken. Then for the other points of
the meridian the thickness is found by
the numerical integration of Eq. (g). In
Fig. 221 the result of such a calculation
is represented.1 It is seen that the
condition

N6 = N* ah

brings us not only to a definite form of
the middle surface of the dome but also to a definite law of variation of the thick-
ness of the dome along the meridian.

In the case of a tank of equal strength that contains a liquid with a pressure yd at
the upper point A (Fig. 222) we must find a shape of the meridian such that an internat
pressure equal to yz will give rise at all points of the shell to forces2

N9 = Ne = const

A similar problem is encountered in finding the shape of a drop of liquid resting on
a horizontal plane. Because of the capillary forces a thin surface film of uniform
tension is formed which envelops the liquid and prevents it from spreading over the
supporting surface. Both problems are mathematically identical.

1 This example has been calculated by Fliigge, op. cit., p. 38.
2 A mathematical discussion of this problem is given in the book by C. Runge and

H. Konig, "Vorlesungen iiber numerisches Rechnen," p. 320, Berlin, 1924.

FIG. 221



In such cases, Eq. (256) gives

Taking the orthogonal coordinates as shown in the figure, we have

Hence

and Eq. (h) gives

Observing that

it is possible to eliminate sin <p from Eq. (») and obtain in this way a differential
equation for z as a function of x. The equation obtained in this manner is very

FIG. 222

complicated, and a simpler means of solving the problem is to introduce a new vari-
able u = sin <p. Making this substitution in Eqs. (i) and (j), we obtain

These equations can be integrated numerically starting from the upper point A of
the tank. At this point, from symmetry, ri = Ti1 and we find from Eq. Qi) that



By introducing the notation

we write

With this radius we make the first element of the meridian curve r^<p = Ax, corre-
sponding to the small angle A<p. At the end of this arc we have, as for a small arc of
a circle,

When the values u and z have been found from Eqs. (n), the values of du/dx and
dz/dx for the same point are found from Eqs. (k) and (I). With these values of the
derivatives we can calculate the values of z and u at the end of the next interval, and
so on. Such calculations can be continued without difficulty up to an angle <p equal,
say, to 50°, at which the value of u becomes approximately 0.75. From this point
on and up to <p = 140° the increments of z are much longer than the corresponding
increments of x, and it is advantageous to take z as the independent variable instead
of x. For <p > 140°, x must again be taken as the independent variable, and the
calculation is continued up to point B, where the meridian curve has the horizontal
tangent BC. Over the circular area BC the tank has a horizontal surface of contact
with the foundation, and the pressure y(d -+• di) is balanced by the reaction of the
foundation.

A tank designed in this manner1 is a tank of constant strength only if the pressure
at A is such as assumed in the calculations. For any other value of this pressure
the forces Ne and N<p will no longer be constant but will vary along the meridian.
Their magnitude can then be calculated by using the general equations (255) and
(256). It will also be found that the equilibrium of the tank requires that vertical
shearing forces act along the parallel circle BC. This indicates that close to this circle
a local bending of the wall of the tank must take place.

108. Displacements in Symmetrically Loaded Shells Having the Form
of a Surface of Revolution. In the case of symmetrical deformation of a
shell, a small displacement of a point can be resolved into two compo-
nents: v in the direction of the tangent to the meridian and w in the
direction of the normal to the middle surface. Considering an element
AB of the meridian (Fig. 223), we see that the increase of the length of
the element due to tangential displacements v and v + (dv/d<p) d<p of its
ends is equal to (dv/d<p) d<p. Because of the radial displacements w of the
points A and B the length of the element decreases by an amount w dtp.
The change in the length of the element due to the difference in the radial
displacements of the points A and B can be neglected as a small quantity

1 Tanks of this kind were constructed by the Chicago Bridge and Iron Works; see
C. L. Day, Eng. News-Record, vol. 103, p. 416, 1929.



of higher order. Thus the total change in length of the element AB due
to deformation is

Dividing this by the initial length r± dip of the element, we find the strain
of the shell in the meridional direction to be

Considering an element of a parallel circle it
may be seen (Fig. 223) that owing to displace-
ments v and w the radius r0 of the circle
increases by the amount

The circumference of the parallel circle increases in the same proportion
as its radius; hence

FIG. 223

or, substituting r<S = Ti sin <p,

Eliminating w from Eqs. (a) and (6), we obtain for v the differential
equation

The strain components ev and ee can be expressed in terms of the forces
Nv and Ne by applying Hooke's law. This gives

Substituting in Eq. (c), we obtain

(267)

In each particular case the forces Nv and Ne can be found from the load-
ing conditions, and the displacement v will then be obtained by integration
of the differential equation (267). Denoting the right-hand side of this



equation by f(<p), we write

The general solution of this equation is

in which C is a constant of integration to be determined from the con-
dition at the support.

Take, as an example, a spherical shell of constant thickness loaded by
its own weight (Fig. 215a). In such a case 7*1 = r2 = a, AT̂, and Ne are
given by expressions (257), and Eq. (267) becomes

The general solution (e) is then

The constant C will now be determined from the condition that for <p = a
the displacement v is zero (Fig. 215a). From this condition

The displacement v is obtained by substitution in expression (/). The
displacement w is readily found from Eq. (6). At the support, where
v = 0, the displacement w can be calculated directly from Eq. (6), with-
out using solution (/), by substituting for ee its value from the second of
the equations (a7).

109. Shells in the Form of a Surface of Revolution under Unsym-
metrical Loading. Considering again an element cut from a shell by two
adjacent meridians and two parallel circles (Fig. 224), in the general case
not only normal forces N? and N$ but also shearing forces N^e — Ne?
will act on the sides of the element. Taking the sum of the projections
in the y direction of all forces acting on the element, we must add to the
forces considered in Art. 105 the force

representing the difference in the shearing forces acting on the lateral
sides of the element. Hence, instead of Eq. (/), Art. 105, we obtain the



equation

(268)

Considering the forces in the x direction, we must include the difference
of the shearing forces acting on the top and bottom of the element as

FIG. 224

given by the expression

the force

due to variation of the force Ne and the force

due to the small angle cos <p d6 between the shearing forces Ne9 acting on
the lateral sides of the element. The component in x direction of the
external load acting on the element is

Xr0T1 dd d<p (e)

Summing up all these forces, we obtain the equation

(269)

The third equation of equilibrium is obtained by projecting the forces on
the z axis. Since the projection of shearing forces on this axis vanishes,



the third equation conforms with Eq. (256), which was derived for sym-
metrical loading.

The problem of determining membrane stresses under unsymmetrical
loading reduces to the solution of Eqs. (268), (269), and (256) for given
values of the components X, Y1 and Z of the intensity of the external load.
The application of these equations to the case of shells subjected to wind
pressure will be discussed in the next article.

110. Stresses Produced by Wind Pressure.1 As a particular example
of the application of the general equations of equilibrium derived in the
previous article, let us consider the action of wind pressure on a shell.
Assuming that the direction of the wind is in the meridian plane 0 = 0
and that the pressure is normal to the surface, we take

The equations of equilibrium then become

By using the last of these equations we eliminate the force N0 and obtain
the following two differential equations2 of the first order for determining
Nv and Ne* = Nv0:

Let us consider the particular problem of a spherical shell, in which
case Ti — r2 = a. We take the solution of Eqs. (c) in the form

1TlIe first investigation of this kind was made by H. Reissner, " Miiller-Breslau-
Festschrift," p. 181, Leipzig, 1912; see also F. Dischinger in F. von Emperger's
"Handbuch fur Eisenbetonbau," 4th ed., vol. 6, Berlin, 1928; E. Wiedemann, Schweiz.
Bauztg., vol. 108, p. 249, 1936; and K. Girkmann, Stahlbau, vol. 6, 1933. Further
development of the theory of unsymmetrical deformation is due to C. Truesdell,
Trans. Am. Math. Soc, vol. 58, p. 96, 1945, and Bull. Am. Math. Soc, vol. 54, p. 994,
1948; E. Reissner, / . Math, and Phys., vol. 26, p. 290, 1948; and W. Zerna, Ingr.-
Arch., vol. 17, p. 223, 1949.

2 The application of the stress function in investigating wind stresses was used by
A. Pucher, Publs. Intern. Assoc. Bridge Structural Engrs., vol. 5, p. 275, 1938; see also
Art. 113.



in which S^ and S9* are functions of <p only. Substituting in Eqs. (c),
we obtain the following ordinary differential equations for the determi-
nation of these functions:

By adding and subtracting these equations and introducing the notation

the following two ordinary differential equations, each containing only
one unknown, are obtained:

Applying the general rule for integrating differential equations of the
first order, we obtain

where C\ and C2 are constants of integration. Substituting in Eqs. (/)
and using Eqs. (d), we finally obtain

To determine the constants of integration Ci and Ci let us consider a
shell in the form of a hemisphere and put <p = TT/2 in expressions (i).
Then the forces along the equator of the shell are

Since the pressure at each point of the sphere is in a radial direction,
the moment of the wind forces with respect to the diameter of the sphere
perpendicular to the plane 6 = 0 is zero. Using this fact and applying
the first of the equations (j), we obtain



which gives

The second necessary equation is obtained by taking the sum of the com-
ponents of all forces acting on the half sphere in the direction of the
horizontal diameter in the plane 0 = 0. This gives

From (k) and (I) we obtain

Substituting these values for the constants in expressions (i) and using
the third of the equations (b), we obtain

By using these expressions the wind stresses at any point of the shell
can be readily calculated. If the shell is in the form of a hemisphere,
there will be no normal forces acting
along the edge of the shell, since
(N9) ̂ x/2 = 0. The shearing forces
Ne? along the edge are different from
zero and are equal and opposite to the
horizontal resultant of the wind pres-
sure. The maximum numerical value
of these forces is found at the ends of the
diameter perpendicular to the plane
0 = 0, at which point they are equal
to ±2pa/3.

As a second application of Eqs. (c) let us consider the case of a shell
having the shape of a circular cone and supported by a column at the
vertex (Fig. 225). In this case the radius rx is infinitely large. For an
element dy of a meridian we can write dy = r\ dip. Hence

In addition we have

FIG. 225



Substituting in Eqs. (c), we obtain for a conical shell submitted to a
wind pressure Z = p sin <p cos 0 the equations

The second equation can be readily integrated to obtain

The edge of the shell y = I is free from forces; hence the constant of
integration in expression (o) is

and we finally obtain

Substituting in the first of the equations (n), we find

The integration of this equation gives

which vanishes at the edge y — I, as it should. The forces Ne are
obtained from the third of the equations (6), which gives

The expressions (p), (q), and (r) give the complete solution for the
stresses due to wind pressure on the conical shell represented in Fig. 225.
At the top (y = 0) the forces N9 and N$9 become infinitely large. To
remove this difficulty we must assume a parallel circle corresponding to
a certain finite value of y along which the conical shell is fastened to the
column. The forces N91 Ne? distributed along this circle balance the
wind pressure acting on the cone. It can be seen that, if the radius of
the circle is not sufficient, these forces may become very large.

In the case of a transverse load Q applied at the top of the cone (Fig. 226a) we can
satisfy Eqs. (n), in which the right-hand side becomes zero, by putting



It is readily verified by integration that the shearing force which results from the
stresses Nv for any section normal to the axis of the cone is equal to Q and that the
moment of those stresses with respect to the axis 6 = x/2 of this section equalizes the
moment Qy cos a of the load. As for the stress components Ne, they vanish through-
out the shell, as ensues from the third of
the equations (b), where we have to assume
n rm oo and p = 0 .

Should a load S act in the direction of
the generatrix of the cone (Fig. 2266), we
must combine the effect of both its com-
ponents P = £ cos a (Fig. 217) and Q = S
sin a upon the forces Nv.

The result is

which yields the extreme values of <S/2irro
at 0 = 0 and -3S/27rr0 at 6 = *-,
respectively.

111. Spherical Shell Supported at Iso-
lated Points.1 We begin with the general
case of a shell having the form of a surface
of revolution and consider the case when
the forces are acting only along the edge of the shell so that X-Y-Z=O. The
general equations (b) of the preceding article then become

FIG. 226

Let us take the solution of these equations in the form

where JS^», S$n, and Se^n are functions of <p only and n is an integer. Substituting
expressions (6) in Eqs. (a), we obtain

1 Flugge, op. cit. For the application of the stress function in solving such prob-
lems, see the paper by Pucher, op. cit.



Using the third of these equations, we can eliminate the function Sen and thus obtain

In the particular case of a spherical shell r\ = rz = a, ro = a sin <p; and Eqs. (d)
reduce to the following simple form:

Proceeding as in the preceding article, by taking the sum and the difference of Eqs.
(e) and introducing the notation

we obtain

The solution of these equations is

From Eqs. (/) we then obtain

If we have a shell without an opening at the top, expressions (i) must be finite for
^ = O. This requires that the constant of integration d« = 0. Substituting this in
Eqs. (i) and using Eqs. (6), we find

Substituting for <p the angle <po corresponding to the edge of the spherical shell, we
shall obtain the normal and the shearing forces which must be distributed along the
edge of the shell to produce in this shell the forces (j). Taking, as an example, the
case when ^0

 5^ ?r/2, that is, when the shell is a hemisphere, we obtain, from



expressions 0'),

Knowing the stresses produced in a spherical shell by normal and shearing forces
applied to the edge and proportional to cos nd and sin nd, respectively, we can treat
the problem of any distribution of normal forces along the edge by representing this

FIG. 227

distribution by a trigonometric series in which each term of the series is a solution
similar to solution (j).1 Take, as an example, the case of a hemispherical dome of
radius a, carrying only its own weight of q psf and supported by four symmetrically
located columns. If the dome is resting on a continuous foundation, the forces Nv
are uniformly distributed along the edge as shown in Fig. 227a, in which the intensity
of force aNv per unit angle is plotted against the angle 0. In the case of four equi-
distant columns the distribution of reactions will be as shown in Fig. 2276, in which
2e denotes the angle corresponding to the circumferential distance supported by each
column. Subtracting the force distribution of Fig. 227a from the force distribution of
Fig. 2276, we obtain the distribution of Fig. 227c, representing a system of forces in
equilibrium. This distribution can be represented in the form of a series

OO

1 In using a series Nv = -J ^ ^2* c o s ne *or n<>rmal forces we obtain a dis-
n = i ,2 ,3 , . . .

tribution of these forces symmetrical with respect to the diameter 0 = 0. In the
general case the series will contain not only cosine terms but also sine terms. The
solutions for sine terms can be obtained in exactly the same manner as used in our
discussion of the cosine terms. It is only necessary to exchange the places of cos nd
and sin nO in Eqs. (6).



in which only the terms n = 4, 8, 12, . . . must be considered, since the diagram
227c repeats itself after each interval of x/2 and has four complete periods in the
angle 2%. Applying the usual method for calculating the coefficients of series (Z),
we find

Hence the distribution shown by diagram 227c is represented by the series

Comparing each term of this series with the first of the equations (Jc) we conclude that

The stresses produced in the shell by the forces (m) are now obtained by taking a
solution of the form (j) corresponding to each term of series (m) and then super-
posing these solutions. In such a manner we obtain

Superposing this solution on solution (257), which was previously obtained for a dome
supported by forces uniformly distributed along the edge (Fig. 215a), we obtain
formulas for calculating the stresses in a dome resting on four columns. It must be
noted, however, that, whereas the above-mentioned superposition gives the necessary
distribution of the reactive forces N^ as shown in Fig. 2276, it also introduces shear-
ing forces Ne<p which do not vanish at the edge of the dome. Thus our solution does
not satisfy all the conditions of the problem. In fact, so long as we limit ourselves to
membrane theory, we shall not have enough constants to satisfy all the conditions
and to obtain the complete solution of the problem. In actual constructions a
reinforcing ring is usually put along the edge of the shell to carry the shearing forces
Nev. In such cases the solution obtained by the combination of solutions (257) and
(n) will be a sufficiently accurate representation of the internal forces produced in a
spherical dome resting on four columns. For a more satisfactory solution of this
problem the bending theory of shells must be used.1

The method discussed in this article can also be used in the case of a nonspherical
dome. In such cases it is necessary to have recourse to Eqs. (d), which can be solved
with sufficient accuracy by using numerical integration.2

1 An example of such a solution is given in A. Aas-Jakobsen's paper, Ingr<-Arch.,
vol. 8, p. 275, 1937.

2 An example of such integration is given by Fliigge, op. cit. On p. 51 of this book
the calculation of membrane forces in an apsidal shell, due to the weight of the



112. Membrane Theory of Cylindrical Shells. In discussing a cylin-
drical shell (Fig. 228a) we assume that the generator of the shell is hori-
zontal and parallel to the x axis. An element is cut from the shell by
two adjacent generators and two cross sections perpendicular to the x axis,
and its position is defined by the coordinate x and the angle <p. The
forces acting on the sides of the element are shown in Fig. 2286. In

FIG. 228

addition a load will be distributed over the surface of the element, the
components of the intensity of this load being denoted, as before, by X,
Y, and Z. Considering the equilibrium of the element and summing up
the forces in the x direction, we obtain

^rd<pdx + ^ ^ dip dx + Xr d<p dx = 0 (a)
ox dip

Similarly, the forces in the direction of the tangent to the normal cross
section, i.e., in the y direction, give as a corresponding equation of
equilibrium

^ * rd<pdx + ^±d<pdx + Yr dip dx = 0 (b)
ox o<p

The forces acting in the direction of the normal to the shell, i.e., in the

shell, is also discussed. For application of the complex variable method to the stress
analysis in spherical shells, see F. Martin, Ingr.-Arch.} vol. 17, p. 167, 1949; see also
V. Z. Vlasov, Priklad. Mat. Mekhan., vol. 11, p. 397, 1947.



z direction, give the equation

After simplification, the three equations of equilibrium can be repre-
sented in the following form:

(270)

In each particular case we readily find the value of N9, Substituting
this value in the second of the equations, we then obtain NXif> by inte-

FIG. 229

gration. Using the value of Nx<p thus obtained we find Nx by integrating
the first equation.

As an example of the application of Eqs. (270) let us consider a hori-
zontal circular tube filled with liquid and supported at the ends.1 Meas-
uring the angle <p as shown in Fig. 2296 and denoting by po the pressure
at the axis of the tube, the pressure at any point is p0 — T^ cos <p. We
thus obtain

Substituting in Eqs. (270), we find

The functions Ci (<p) and (M^) must now be determined from the con-
ditions at the edges.

Let us first assume that there are no forces Nx at the ends of the tube.
1 This problem was discussed by D. Thoma, Z. ges. Turbinenwesen, vol. 17, p. 49,

1920,



Then

We shall satisfy these conditions by taking

It is seen from expression (/) that the constant C represents forces Nx^
uniformly distributed around the edge of the tube, as is the case when
the tube is subjected to torsion. If there is no torque applied, we must
take C = O. Then the solution of Eqs. (270) in our particular case is

(271)

It is seen that NX(P and Nx are proportional, respectively, to the shearing
force and to the bending moment of a uniformly loaded beam of span I
and can be obtained by applying beam formulas to the tube carrying a
uniformly distributed load of the magnitude1 ira2y per unit length of the
tube.

By a proper selection of the function Ci{<p) we can also obtain a solu-
tion of the problem for a cylindrical shell with built-in edges. In such a
case the length of the generator remains unchanged, and we have the
condition

Substituting

we obtain

(272)

Owing to the action of the forces N9 and JV, there will be a certain amount
of strain in the circumferential direction at the end of the tube in contra-
diction to our assumption of built-in edges. This indicates that at the
ends of the tube there will be some local bending, which is disregarded in
the membrane theory. A more complete solution of the problem can be
obtained only by considering membrane stresses together with bending
stresses, as will be discussed in the next chapter.

1 The weight of the tube is neglected in this discussion.



Sections of cylindrical shells, such as shown in Fig. 230, are sometimes
used as coverings of various kinds of structures. These shells are usually
supported only at the ends while the edges AB and CD are free. In
calculating the membrane stresses for such shells Eqs. (270) can again be
used. Take, for example, a shell of a semicircular cross section sup-
porting its own weight, which is assumed to be uniformly distributed

over the surface of the shell. In
such a case we have

X = O Y = p sin <p Z = p cos <p

The third of the equations (270) gives

N9 = —pa cos (p (h)

which vanishes along the edges AB
and CD, as it should. It is seen that
this condition will also be satisfied if
some other curve is taken instead of
a semicircle, provided that <p = ±r/2

at the edges. Substituting expression (h) in the second of the equations
(270), we find

Nx<p = -2px sin <p + C1(V) (i)

By putting the origin of the coordinates at the middle of the span and
assuming the same end conditions at both ends, x = ±1/2 of the tube,
it can be concluded from symmetry that Ci((p) = 0. Hence

NX(p = -2px sin (p (j)

It is seen that this solution does not vanish along the edges AB and CD
as it should for free edges. In structural applications, however, the edges
are usually reinforced by longitudinal members strong enough to resist
the tension produced T>y shearing force (j). Substituting expression (j)
in the first of the equations (270), we obtain

If the ends of the shell are supported in such a manner that the reactions
act in the planes of the end cross sections, the forces Nx must vanish at
the ends. Hence C2(<p) = — (pi2 cos (p)/4a, and we obtain

Expressions (Zi), (j), and (I) represent the solution of Eqs. (270) for our
particular case (Fig. 230) satisfying the conditions at the ends and also
one of the conditions along the edges AB and CD. The second con-

FIG. 230



dition, which concerns the shearing forces Nx^1 cannot be satisfied by
using the membrane stresses alone. In practical applications it is
assumed that the forces Nx<p will be taken by the longitudinal members
that reinforce the edges. It can be expected that this assumption will be
satisfactory in those cases in which the length of the shell is not large,
say I ^ 2a, and that the membrane theory will give an approximate
picture of the stress distribution in such cases. For longer shells a satis-
factory solution can be obtained only by considering bending as well as
membrane stresses. This problem will be discussed in the next chapter
(see Arts. 124 and 126).

FIG. 231

113. The Use of a Stress Function in Calculating Membrane Forces of Shells.
In the general case of a shell given by the equation z = f(x,y) of its middle surface
the use of a stress function1 defining all three stress components may be convenient.
Let us consider an element of a shell submitted to a loading the magnitude of which
per unit area in xy plane is given by its components X, Y, Z (Fig. 231). The static
equilibrium of the element then can be expressed by the equations

1 The introduction of the function considered here is due to A. Pucher, op. cit., and
Beton u. Eisen, vol. 33, p. 298, 1934; see also Proc. Fifth Intern. Congr. Appl. Mech.,
Cambridge, Mass., 1938. Cylindrical coordinates, more suitable for shells in the form
of a surface of revolution, are also used by Pucher. For a general theory of defor-
mation following Pucher's approach, see W. Flugge and F. Gey ling, Proc. Ninth Intern.
Congr. Appl. Mech., vol. 6, p. 250, Brussels, 1957.



in which the following notation is used:

where tan <p = dz/dx and tan 0 = dz/dy. Carrying out the differentiation as indi-
cated in Eq. (6) and taking into account Eqs. (a), we obtain

We can satisfy both equations (a) by introducing a stress function F(x,y) such that

the lower and the upper limits of the integrals being z0, x and yo, yt respectively, with
Xo and yo fixed. Substituting this in Eq. (d) we obtain the following differential equa-
tion governing the stress function F:

in which the following abbreviation is used:

If the membrane forces on the boundary of the shell are given, the respective
boundary conditions can readily be expressed by means of Eqs. (e). If, in particular,
the edge is connected with a vertical wall whose flexural rigidity is negligible or if the

edge is free, then the edge forces normal to
the elements ds of the boundary and pro-
portional to d*F/ds2 must vanish. Hence
the variation of the stress function along
such an edge must follow a linear law.

A Shell in the Form of an Elliptic Parabo-
loid. To illustrate the application of the
method, let us take a shell in the form of an
elliptic paraboloid (Fig. 232) with the middle
surface

"T + I W

where hi and h$ are positive constants.
The sections x = constant and y — constant
then yield two sets of parabolas, and the

level curves are ellipses. Assuming solely a vertical load uniformly distributed over
the ground plan of the shell and using Eqs. (/) and (g) we obtain

FIG. 232

where p - Z is the intensity of the load.



Let the shell be supported by four vertical walls x = ±a/2, y = ±6/2 in such a
way that the reactive forces normal to the respective wall vanish along the boundary.
Consequently, the boundary conditions for the function F are 82F/dy2 = 0 on
x sx +a/2 and d2F/dx2 = 0 on y — ±6/2. Thus F may be a linear function in
x and y on the boundary. Since terms linear in x or y have no effect on stresses [see
Eqs. (e)], this is equivalent to the condition F = 0 on the whole boundary.

We satisfy Eq. (i) and make F = 0 on y = ±6/2 by taking for F the expression

in which c = 6 y/hi/h%. In order to fulfill the remaining condition F = 0 on
x — ±a/2, we first develop the algebraic term in expression (j) into the Fourier series

Substituting this in Eq. (j)} making x = ±a/2, and equating the result to zero we
obtain for each n = 1, 3, 5, . . . the equation

This yields the value of the coefficient An and leads to the final solution

00 nirx

To obtain the membrane forces we have only to differentiate this in accordance
with the expressions (e) and to make use of the relations (c). The result is

All series obtained above are convergent, the only exception being the last series,
which diverges at the corners x = ±a/2, y = ±6/2. This fact is due to a specific



property of the shell surface under consideration obtained by translation of a plane
curve. The elements of such a surface are free of any twist, and for this reason the
membrane forces Nxy fail to contribute anything to the transmission of the normal
loading of the shell. As the forces Nx and Ny both vanish at the corner points of the
shell, the shearing forces Nxy near these points have to stand alone for the transmission
of the loading. Owing to the zero twist of the surface of the shells, this leads to an
infinite increase of those shearing forces toward the corners of the shell. Practically,
bending moments and transverse shearing forces will arise in the vicinity of the
corners, should the edge conditions Nx = 0, Ny = 0 be fulfilled rigorously.

FIG. 233

A Shell in the Form of a Hyperbolic Paraboloid.1 Another case where Pucher's
method may be applied to advantage is a shell with a middle surface given by the
equation

in which c = a2/h (Fig. 233). Hence

Provided we have to deal with a vertical loading only, the differential equation (/)
becomes

which yields the result

Let us consider first a load of an intensity Z — q, uniformly distributed over the
horizontal projection of a shell with edges free of normal forces. Then we have

Now consider the effect of the own weight of the shell equal to qo — constant per
1 See F. Aimond, G6nie civil, vol. 102, p. 179, 1933, and Proc. Intern. Assoc. Bridge

Structural Engrs., vol. 4, p. 1? 1936; also B. Laffaille, Proc. Intern. Assoc. Bridge
Structural Engrs., vol. 3, p. 295, 1935. Various cases of loading were discussed by
K. G. Tester, Ingr.-Arch., vol. 16, p. 39, 1947.



unit area of the surface. To this area corresponds an area

of the horizontal projection of the shell. Hence

and Eq. (r) yields

Differentiating this with respect to y and then integrating the result with respect to x,
or vice versa, both in accordance with Eqs. (e), we get

The true forces Nx and Nv are obtained from those expressions by means of Eqs. (c),
in which the angles <p, 6 are given by tan <p = — y/c and tan 0 — —x/c.

FIG. 234

Several shells of this kind may be combined to form a roof, such as shown in Fig.
234. It should be noted, however, that neither the dead load of the groin members,
needed by such a roof, nor a partial loading—due, for instance, to snow—can be
transmitted by the membrane forces alone; hence flexural stresses will necessarily
arise.l

Of practical interest and worthy of mention are also the conoidal shells, which some-
times have been used in the design of cantilever roofs and dam walls.2 Roof shells of
this kind, however, with curved generatrices instead of straight ones, have also been
used in structural applications.3

1 See Flugge, op. cit., p. 119, Flugge and Geyling, op. cit., and F. A. Gerard, Trans.
Eng. Inst. Canada, vol. 3, p. 32, 1959.

2 The theory of the conoidal shell has been elaborated by E. Torroja, Riv. ing.,
vol. 9, p. 29, 1941. See also M. Soare, Bauingenieur, vol. 33, p. 256, 1958, and Flugge,
op. cit., p. 127.

3 See I. Doganoff, Bautechnik, vol. 34, p. 232, 1957.



CHAPTER 15

GENERAL THEORY OF CYLINDRICAL SHELLS

114. A Circular Cylindrical Shell Loaded Symmetrically with Respect
to Its Axis. In practical applications we frequently encounter problems
in which a circular cylindrical shell is submitted to the action of forces
distributed symmetrically with respect to the axis of the cylinder. The
stress distribution in cylindrical boilers submitted to the action of steam
pressure, stresses in cylindrical containers having a vertical axis and sub-
mitted to internal liquid pressure, and stresses in circular pipes under
uniform internal pressure are examples of such problems.

FIG. 235

To establish the equations required for the solution of these problems
we consider an element, as shown in Figs. 228a and 235, and consider the
equations of equilibrium. It can be concluded from symmetry that the
membrane shearing forces Nx<f> = N^x vanish in this case and that forces
N9 are constant along the circumference. Regarding the transverse
shearing forces, it can also be concluded from symmetry that only the
forces Qx ̂ o not vanish. Considering the moments acting on the ele-
ment in Fig. 235, we also conclude from symmetry that the twisting
moments Mxip = Mvx vanish and that the bending moments Mv are con-
stant along the circumference. Under such conditions of symmetry



three of the six equations of equilibrium of the element are identically
satisfied, and we have to consider only the remaining three equations,
viz., those obtained by projecting the forces on the x and z axes and by
taking the moment of the forces about the y axis. Assuming that the
external forces consist only of a pressure normal to the surface, these
three equations of equilibrium are

The first one indicates that the forces Nx are constant,1 and we take them
equal to zero in our further discussion. If they are different from zero,
the deformation and stress corresponding to such constant forces can be
easily calculated and superposed on stresses and deformations produced
by lateral load. The remaining two equations can be written in the
following simplified form:

These two equations contain three unknown quantities: N91 Qx, and Mx.
To solve the problem we must therefore consider the displacements of
points in the middle surface of the shell.

From symmetry we conclude that the component v of the displace-
ment in the circumferential direction vanishes. We thus have to con-
sider only the components u and w in the x and z directions, respectively.
The expressions for the strain components then become

Hence, by applying Hooke's law, we obtain

From the first of these equations it follows that

1 The effect of these forces on bending is neglected in this discussion,



and the second equation gives

Considering the bending moments, we conclude from symmetry that
there is no change in curvature in the circumferential direction. The
curvature in the x direction is equal to — d2w/dx2. Using the same equa-
tions as for plates, we then obtain

where

is the fiexural rigidity of the shell.
Returning now to Eqs. (6) and eliminating Qx from these equations,

we obtain

from which, by using Eqs. (e) and (/), we obtain

(273)

All problems of symmetrical deformation of circular cylindrical shells
thus reduce to the integration of Eq. (273).

The simplest application of this equation is obtained when the thick-
ness of the shell is constant. Under such conditions Eq. (273) becomes

(274)

Using the notation

(275)

Eq. (274) can be represented in the simplified form

(276)

This is the same equation as is obtained for a prismatical bar with a
fiexural rigidity D, supported by a continuous elastic foundation and
submitted to the action of a load of intensity Z.* The general solution
of this equation is

(277)



in which f(x) is a particular solution of Eq. (276), and Ci, . . . , C4 are
the constants of integration which must be determined in each particular
case from the conditions at the ends of the cylinder.

Take, as an example, a long circular pipe submitted to the action of
bending moments M0 and shearing forces Qo, both uniformly distributed
along the edge x = 0 (Fig. 236). In this case
there is no pressure Z distributed over the sur-
face of the shell, and f(x) = 0 in the general solu-
tion (277). Since the forces applied at the end
x = 0 produce a local bending which dies out
rapidly as the distance x from the loaded end
increases, we conclude ̂  that the first term on
the right-hand, side of Eq. (277) must vanish.1

Hence, Ci = C* = 0, and we obtain

FIG. 236

The two constants C3 and C4 can now be determined from the conditions
at the loaded end, which may be written

Substituting expression (g) for w, we obtain from these end conditions

Thus the final expression for w is

(278)

The maximum deflection is obtained at the loaded end, where

(279)

The negative sign for this deflection results from the fact that w is taken
positive toward the axis of the cylinder. The slope at the loaded end is

1 Observing the fact that the system of forces applied at the end of the pipe is a
balanced one and that the length of the pipe may be increased at will, this follows also
from the principle of Saint-Venant; see, for example, S. Timoshenko and J. N. Goodier,
"Theory of Elasticity," 2d ed., p. 33, 1951.



obtained by differentiating expression (278). This gives

(280)

(281)

By introducing the notation

the expressions for deflection and its consecutive derivatives can be
represented in the following simplified form:

(282)

The numerical values of the functions <p(fix), ^(#c), 0($x), and f (#e) are
given in Table 84.l The functions <p{fix) and (̂jSx) are represented graph-
ically in Fig. 237. It is seen from these curves and from Table 84

FIG. 237

that the functions defining the bending of the shell approach zero as the
quantity (3x becomes large. This indicates that the bending produced in
the shell is of a local character, as was already mentioned at the beginning
when the constants of integration were calculated.

If the moment Mx and the deflection w are found from expressions
1 The figures in this table are taken from the book by H. Zimmermann, " Die

Berechnung des Eisenbahnoberbaues," Berlin, 1888.



(282), the bending moment Mv is obtained from the first of the equa-
tions (/), and the value of the force Nv from Eq. (e). Thus all neces-
sary information for calculating stresses in the shell can be found.

115. Particular Cases of Symmetrical Deformation of Circular Cylin-
drical Shells. Bending of a Long Cylindrical Shell by a Load Uniformly
Distributed along a Circular Section (Fig. 238). If the load is far enough
from the ends of the cylinder, solution (278) can be used for each half of

FIG. 238

the shell. From considerations of symmetry we conclude that the value
of Q0 in this case is — P/2. We thus obtain for the right-hand portion

where x is measured from the cross section at which the load is applied.
To calculate the moment MQ which appears in expression (a) we use
expression (280), which gives the slope at x = 0. In our case this slope
vanishes because of symmetry. Hence,

and we obtain

Substituting this value in expression (a), the deflection of the shell
becomes

(283)

and by differentiation we find



TABLE 84. TABLE OF FUNCTIONS <p, ^, 0, AND f

0x <p $ e f

0 1.0000 1.0000 1.0000 0
0.1 0.9907 0.8100 0.9003 0.0903
0.2 0.9651 0.6398 0.8024 0.1627
0.3 0.9267 0.4888 0.7077 0.2189
0.4 0.8784 0.3564 0.6174 0.2610

0.5 0.8231 0.2415 0.5323 0.2908
0.6 0.7628 0.1431 0.4530 0.3099
0.7 0.6997 0.0599 0.3798 0.3199
0.8 0.6354 -0.0093 0.3131 0.3223
0.9 0.5712 -0.0657 0.2527 0.3185

1.0 0.5083 -0.1108 0.1988 0.3096
1.1 0.4476 -0.1457 0.1510 0.2967
1.2 0.3899 -0.1716 0.1091 0.2807
1.3 0.3355 -0.1897 0.0729 0.2626
1.4 0.2849 -0.2011 0.0419 0.2430

1.5 0.2384 -0.2068 0.0158 0.2226
1.6 0.1959 -0.2077 -0.0059 0.2018
1.7 0.1576 -0.2047 -0.0235 0.1812
1.8 0.1234 -0.1985 -0.0376 0.1610
1.9 0.0932 -0.1899 -0.0484 0.1415

2.0 0.0667 -0.1794 -0.0563 0.1230
2.1 0.0439 -0.1675 -0.0618 0.1057
2.2 0.0244 -0.1548 -0.0652 0.0895
2.3 0.0080 -0.1416 -0.0668 0.0748
2.4 -0.0056 -0.1282 -0.0669 0.0613

2.5 -0.0166 -0.1149 -0.0658 0.0492
2.6 -0.0254 -0.1019 -0.0636 0.0383
2.7 -0.0320 -0.0895 -0.0608 0.0287
2.8 -0.0369 -0.0777 -0.0573 0.0204
2.9 -0.0403 -0.0666 -0.0534 0.0132

3.0 -0.0423 -0.0563 -0.0493 0.0071
3.1 -0.0431 -0.0469 -0.0450 0.0019
3.2 -0.0431 -0.0383 -0.0407 -0.0024
3.3 -0.0422 -0.0306 -0.0364 -0.0058
3.4 -0.0408 -0.0237 -0.0323 -0.0085

3.5 -0.0389 -0.0177 -0.0283 -0.0106
3.6 -0.0366 -0.0124 -0.0245 -0.0121
3.7 -0.0341 -0.0079 -0.0210 -0.0131
3.8 -0.0314 -0.0040 -0.0177 -0.0137
3.9 -0.0286 -0.0008 -0.0147 -0.0140



TABLE 84. TABLE OF FUNCTIONS <p, \j/, O1 AND f {Continued)

0X <p rp 6 f

4.0 -0.0258 0.0019 -0.0120 -0.0139

4.1 -0.0231 0.0040 -0.0095 -0.0136
4.2 -0.0204 0.0057 -0.0074 -0.0131
4.3 -0.0179 0.0070 -0.0054 -0.0125
4.4 -0.0155 0.0079 -0.0038 -0.0117

4.5 -0.0132 0.0085 -0.0023 -0.0108
4.6 -0.0111 0.0089 -0.0011 -0.0100
4.7 -0.0092 0.0090 0.0001 -0.0091
4.8 -0.0075 0.0089 0.0007 -0.0082
4.9 -0.0059 0.0087 0.0014 -0.0073

5.0 -0.0046 0.0084 0.0019 -0.0065
5.1 -0.0033 0.0080 0.0023 -0.0057
5.2 -0.0023 0.0075 0.0026 -0.0049
5.3 -0.0014 0.0069 0.0028 -0.0042
5.4 -0.0006 0.0064 0.0029 -0.0035

5.5 0.0000 0.0058 0.0029 -0.0029
5.6 0.0005 0.0052 0.0029 -0.0023
5.7 0.0010 0.0046 0.0028 -0.0018
5.8 0.0013 0.0041 0.0027 -0.0014
5.9 0.0015 0.0036 0.0026 -0.0010

6.0 0.0017 0.0031 0.0024 -0.0007
6.1 0.0018 0.0026 0.0022 -0.0004
6.2 0.0019 0.0022 0.0020 -0.0002
6.3 0.0019 0.0018 0.0018 +0.0001
6.4 0.0018 0.0015 0.0017 0.0003

6.5 0.0018 0.0012 0.0015 0.0004
6.6 0.0017 0.0009 0.0013 0.0005
6.7 0.0016 0.0006 0.0011 0.0006
6.8 0.0015 0.0004 0.0010 0.0006
6.9 0.0014 0.0002 0.0008 0.0006
7.0 0.0013 0.0001 0.0007 0.0006

Observing from Eqs. (6) and (/) of the preceding article that

we finally obtain the following expressions for the bending moment and
shearing force:

(284)



The results obtained are all graphically represented in Fig. 239. It is
seen that the maximum deflection is under the load P and that its value

as given by Eq. (283) is

P Pa2P
w™ = WD = ~2M ( 285 )

The maximum bending moment is
also under the load and is deter-
mined from Eq. (284) as

M^ = ^ (286)

The maximum of the absolute value
of the shearing force is evidently
equal to P/2. The values of all
these quantities at a certain dis-
tance from the load can be readily
obtained by using Table 84. We
see from this table and from Fig.

239 that all the quantities that determine the bending of the shell are small
for x > ir/p. This fact indicates that the bending is of a local character
and that a shell of length I — 2TT//3 loaded at the middle will have practi-
cally the same maximum deflection and the same maximum stress as a very
long shell.

Having the solution of the problem for the case in which a load is con-
centrated at a circular cross section, we can
readily solve the problem of a load dis-
tributed along a certain length of the cylinder
by applying the principle of superposition.
As an example let us consider the case of a
load of intensity q uniformly distributed
along a length I of a cylinder (Fig. 240).
Assuming that the load is at a considerable
distance from the ends of the cylinder, we can
use solution (283) to calculate the deflections.
The deflection at a point A produced by an elementary ring load of an
intensity1 q d£ at a distance £ from A is obtained from expression (283)
by substituting q d£ for P and £ for x and is

The deflection produced at A by the total load distributed over the
1 q d£ is the load per unit length of circumference.

FIG. 239

FIG. 240



length I is then

The bending moment at a point A can be calculated by similar appli-
cation of the method of superposition.

Cylindrical Shell with a Uniform Internal Pressure (Fig. 241). If the
edges of the shell are free, the internal pressure p produces only a hoop
stress

and the radius of the cylinder increases by the amount

If the ends of the shell are built in, as shown in Fig. 241a, they cannot
move out, and local bending occurs at the edges. If the length I of the

FIG. 241

shell is sufficiently large, we can use solution (278) to investigate this
bending, the moment M0 and the shearing force Qo being determined
from the conditions that the deflection and the slope along the built-in
edge x = 0 (Fig. 241a) vanish. According to these conditions, Eqs.
(279) and (280) of the preceding article become

where 5 is given by Eq. (d).
Solving for M0 and Q0, we obtain

(287)



We thus obtain a positive bending moment and a negative shearing force
acting as shown in Fig. 241a. Substituting these values in expressions
(282), the deflection and the bending moment at any distance from the
end can be readily calculated using Table 84.

If, instead of built-in edges, we have simply supported edges as shown
in Fig. 2416, the deflection and the bending moment Mx vanish along the
edge Af o = 0, and we obtain, by using Eq. (279),

Qo = -2p*D8

By substituting these values in solution (278) the deflection at any dis-
tance from the end can be calculated.

It was assumed in the preceding discussion that the length of the shell
is large. If this is not the case, the bending at one end cannot be con-
sidered as independent of the conditions at the other end, and recourse
must be had to the general solution (277), which contains four constants
of integration. The particular solution of Eq. (276) for the case of uni-
form load (Z = — p) is — p/4/34Z) = —pa2/Eh. The general solution
(277) can then be put in the following form by the introduction of hyper-
bolic functions in place of the exponential functions:

If the origin of coordinates is taken at the middle of the cylinder, as shown
in Fig. 2416, expression (e) must be an even function of x. Hence

The constants Ci and C4 must now be selected so as to satisfy the con-
ditions at the ends. If the ends are simply supported, the deflection and
the bending moment Mx must vanish at the ends, and we obtain

Substituting expression (e) in these relations and remembering that
C2 = C3 = 0, we find

where, for the sake of simplicity,



From these equations we obtain

Substituting the values 0') and (/) of the constants in expression (e) and
observing from expression (275) that

we obtain

In each particular case, if the dimensions of the shell are known, the
quantity a, which is dimensionless, can be calculated by means of
notation (i) and Eq. (275). By substituting this value in expression (Z)
the deflection of the shell at any point can be found.

For the middle of the shell, substituting x — 0 in expression (Z), we
obtain

When the shell is long, a becomes large, the second term in the paren-
theses of expression (ra) becomes small, and the deflection approaches
the value (d) calculated for the case of free ends. This indicates that in
the case of long shells the effect of the end supports upon the deflection
at the middle is negligible. Taking another extreme case, viz., the case
when a is very small, we can show by expanding the trigonometric and
hyperbolic functions in power series that the expression in parentheses in
Eq. (m) approaches the value 5a4/6 and that the deflection (Z) approaches
that for a uniformly loaded and simply supported beam of length I and
flexural rigidity D.

Differentiating expression (Z) twice and multiplying it by D, the bend-
ing moment is found as



At the middle of the shell this moment is

It is seen that for large values of a, that is, for long shells, this moment
becomes negligibly small and the middle portion is, for all practical pur-
poses, under the action of merely the hoop stresses pa/h.

The case of a cylinder with built-in edges (Fig. 241a) can be treated in
a similar manner. Going directly to the final result,1 we find that the
bending moment M0 acting along the built-in edge is

(288)

where

In the case of long shells, a is large, the factor X2(2a) in expression (288)
approaches unity, and the value of the moment approaches that given
by the first of the expressions (287). For shorter shells the value of the
factor X2(2a) in (288) can be taken from Table 85.

TABLE 85

2a Xi (2a) X2(2a) Xz(2a)

0.2 5.000 0.0068 0.100

0.4 2.502 0.0268 0.200
0.6 1.674 0.0601 0.300
0.8 1.267 0.1065 0.400
1.0 1.033 0.1670 0.500

1.2 0.890 0.2370 0.596

1.4 0.803 0.3170 0.689
1.6 0.755 0.4080 0.775
1.8 0.735 0.5050 0.855
2.0 0.738 0.6000 0.925

2.5 0.802 0.8220 1.045
3.0 0.893 0.9770 1.090
3.5 0.966 1.0500 1.085
4.0 1.005 1.0580 1.050
4.5 1.017 1.0400 1.027
5.0 1.017 1.0300 1.008

Cylindrical Shell Bent by Forces and Moments Distributed along the
Edges. In the preceding section this problem was discussed assuming

1 Both cases are discussed in detail by I. G. Boobnov in his " Theory of Structure
of Ships," vol. 2, p. 368, St. Petersburg, 1913. Also included are numerical tables
which simplify the calculations of moments and deflections.



that the shell is long and that each end can be treated independently.
In the case of shorter shells both ends must be considered simultaneously
by using solution (e) with four constants of integration. Proceeding as
in the previous cases, the following results can be obtained. For the
case of bending by uniformly distributed shearing forces Q0 (Fig. 242a),
the deflection and the slope at the ends are

(289)

In the case of bending by the moments M0 (Fig. 242b), we obtain

(290)

In the case of long shells, the factors xi, X2, and xz in expressions (289)
and (290) are close to unity, and the results coincide with those given by

FIG. 242

expressions (279) and (280). To simplify the calculations for shorter
shells, the values of functions xi, X2, and xz are given in Table 85.

Using solutions (289) and (290), the stresses in a long pipe reinforced
by equidistant rings (Fig. 243) and submitted to the action of uniform
internal pressure p can be readily discussed.

Assume first that there are no rings. Then, under the action of internal
pressure, hoop stresses <rt — pa/h will be produced, and the radius of the
pipe will increase by the amount

Now, taking the rings into consideration and assuming that they are abso-
lutely rigid, we conclude that reactive forces will be produced between
each ring and the pipe. The magnitude of the forces per unit length of



the circumference of the tube will be denoted by P. The magnitude of
P will now be determined from the condition that the forces P produce a
deflection of the pipe under the ring equal to the expansion 5 created by
the internal pressure p. In calculating this deflection we observe that a
portion of the tube between two adjacent rings may be considered as the
shell shown in Fig. 242a and b. In this case Q0 = - J P , and the mag-
nitude of the bending moment M0 under a ring is determined from the

condition that dw/dx = 0 at that point.
Hence from Eqs. (289) and (290) we find

from which

FIG. 243

If the distance I between the rings is large,1 the quantity

is also large, the functions X2(2a) and %3(2a) approach unity, and the
moment MQ approaches the value (286). For calculating the force P
entering in Eq. (p) the expressions for deflections as given in Eqs. (289)
and (290) must be used. These expressions give

(291)

For large values of 2a this reduces to

which coincides with Eq. (285). When 2a is not large, the value of the
reactive forces P is calculated from Eq. (291) by using Table 85. Solv-
ing Eq. (291) for P and substituting its expression in expression (p),
we find

(292)

This coincides with expression (288) previously obtained for a shell with
built-in edges.

To take into account the extension of rings we observe that the reactive



forces P produce in the ring a tensile force Pa and that the corresponding
increase of the inner radius of the ring is1

where A is the cross-sectional area of the ring. To take this extension
into account we substitute 8 — 5i for 8 in Eq. (291) and obtain

(293)

From this equation, P can be readily obtained by using Table 85, and
the moment found by substituting p — (Ph/A) for p in Eq. (292).

If the pressure p acts not only on the cylindrical shell but also on the
ends, longitudinal forces

are produced in the shell. The extension of the radius of the cylinder is
then

and the quantity p(l — ^v) must be substituted for p in Eqs. (292) and
(293).

Equations (293) and (291) can also be used in the case of external
uniform pressure provided the compressive stresses in the ring and in
the shell are far enough from the critical stresses at which buckling may
occur.2 This case is of practical importance in the design of submarines
and has been discussed by several authors.3

116. Pressure Vessels. The method illustrated by the examples of the
preceding article can also be applied in the analysis of stresses in cylindri-
cal vessels submitted to the action of internal pressure.4 In discussing
the "membrane theory" it was repeatedly indicated that this theory fails
to represent the true stresses in those portions of a shell close to the

1 It is assumed that the cross-sectional dimensions of the ring are small in com-
parison with the radius a.

2 Buckling of rings and cylindrical shells is discussed in S. Timoshenko, "Theory
of Elastic Stability," 1936.

3 See paper by K. von Sanden and K. Giinther, " Werft und Reederei," vol. 1, 1920,
pp. 163-168, 189-198, 216-221, and vol. 2, 1921, pp. 505-510.

4 See also M. Esslinger, "Statische Berechnung von Kesselboden," Berlin, 1952;
G. Salet and J. Barthelemy, Bull. Assoc. Tech. Maritime Aeronaut., vol. 44, p. 505,
1945; J. L. Maulbetsch and M. Het&iyi, ASCE Design Data, no. 1, 1944, and F.
Schultz-Grunow, Ingr.-Arch., vol. 4, p. 545, 1933; N. L. Svensson, / . Appl. Mechanics,
vol. 25, p. 89, 1958.



edges, since the edge conditions usually cannot be completely satisfied
by considering only membrane stresses. A similar condition in which
the membrane theory is inadequate is found in cylindrical pressure vessels
at the joints between the cylindrical portion and the ends of the vessel.
At these joints the membrane stresses are usually accompanied by local
bending stresses which are distributed symmetrically with respect to the
axis of the cylinder. These local stresses can be calculated by using
solution (278) of Art. 114.

Let us begin with the simple case of a cylindrical vessel with hemi-
spherical ends (Fig. 244).x At a sufficient distance from the joints mn

FIG. 244

and mini the membrane theory is accurate enough and gives for the
cylindrical portion of radius a

where p denotes the internal pressure.
For the spherical ends this theory gives a uniform tensile force

The extension of the radius of the cylindrical shell under the action of
the forces (a) is

and the extension of the radius of the spherical ends is

Comparing expressions (c) and (d), it can be concluded that if we con-
sider only membrane stresses we obtain a discontinuity at the joints as
represented in Fig. 2446. This indicates that at the joint there must act

1 This case was discussed by E. Meissner, Schweiz. Bauztg., vol. 86, p. 1, 1925.



shearing forces Q0 and bending moments M0 uniformly distributed along
the circumference and of such magnitudes as to eliminate this discon-
tinuity. The stresses produced by these forces are sometimes called
discontinuity stresses.

In calculating the quantities Qo and M0 we assume that the bending is
of a local character so that solution (278) can be applied with sufficient
accuracy in discussing the bending of the cylindrical portion. The
investigation of the bending of the spherical ends represents a more
complicated problem which will be fully discussed in Chap. 16. Here
we obtain an approximate solution of the problem by assuming that the
bending is of importance only in the zone of the spherical shell close to
the joint and that this zone can be treated as a portion of a long cylindri-
cal shell1 of radius a. If the thickness of the spherical and the cylindrical
portion of the vessel is the same, the forces Qo produce equal rotations
of the edges of both portions at the joint (Fig. 2446). This indicates
that M0 vanishes and that Qo alone is sufficient to eliminate the discon-
tinuity. The magnitude of Qo is now determined from the condition that
the sum of the numerical values of the deflections of the edges of the two
parts must be equal to the difference 5i — S2 of the radial expansions
furnished by the membrane theory. Using Eq. (279) for the deflections,
we obtain

from which, by using notation (275),

Having obtained this value of the force Qo, the deflection and the bend-
ing moment Mx can be calculated at any point by using formulas (282),
which give2

Substituting expression (e) for Q0 and expression (275) for /3 in the
formula for Mx, we obtain

1 E. Meissner, in the above-mentioned paper, showed that the error in the mag-
nitude of the bending stresses as calculated from such an approximate solution is small
for thin hemispherical shells and is smaller than 1 per cent if a/h > 30.

2 Note that the direction of Qo in Fig. 244 is opposite to the direction in Fig. 236.



This moment attains its numerical maximum at the distance x = v/40t

at which point the derivative of the moment is zero, as can be seen from
the fourth of the equations (282).

Combining the maximum bending stress produced by Mx with the
membrane stress, we find

This stress which acts at the outer surface of the cylindrical shell is about
30 per cent larger than the membrane stress acting in the axial direction.
In calculating stresses in the circumferential direction in addition to the
membrane stress pa/h, the hoop stress caused by the deflection w as well
as the bending stress produced by the moment M9 = vMx must be con-
sidered. In this way we obtain at the outer surface of the cylindrical shell

Taking v = 0.3 and using Table 84, we find

Since the membrane stress is smaller in the ends than in the cylinder
sides, the maximum stress in the spherical ends is
always smaller than the calculated stress Qi). Thus
the latter stress is the determining factor in the design
of the vessel.

The same method of calculating discontinuity stresses
can be applied in the case of ends having the form of an
ellipsoid of revolution. The membrane stresses in this
case are obtained from expressions (263) and (264) (see
page 440). At the joint ran which represents the
equator of the ellipsoid (Fig. 245), the stresses in the

direction of the meridian and in the equatorial direction are, respectively,

The extension of the radius of the equator is

Substituting this quantity for 52 in the previous calculation of the shear-
ing force Q0, we find

FIG. 245



and, instead of Eq. (e), we obtain

It is seen that the shearing force Q0 in the case of ellipsoidal ends is
larger than in the case of hemispherical ends in the ratio a2/b2. The
discontinuity stresses will evidently increase in the same proportion.
For example, taking a/b = 2, we obtain, from expressions (g) and (h),

Again, (o-f)max is the largest stress and is consequently the determining
factor in design.1

117. Cylindrical Tanks with Uniform Wall Thickness. If a tank is sub-
mitted to the action of a liquid pressure, as shown in Fig. 246, the stresses
in the wall can be analyzed by using Eq. (276). Substituting in this
equation

where y is the weight per unit volume of the liquid, we obtain

A particular solution of this equation is

This expression represents the radial expansion
of a cylindrical shell with free edges under the
action of hoop stresses. Substituting expres-
sion (c) in place of/(#) in expression (277), we obtain for the complete solu-
tion of Eq. (b)

w = ^'(C1 cos px + C2 sin px) + e-'*(C8 cos px + C4 sin Px) - 7 ^ I 1 * ^ *

In most practical cases the wall thickness h is small in comparison with
both the radius a and the depth d of the tank, and we may consider the
shell as infinitely long. The constants Ci and C2 are then equal to zero,

1 More detail regarding stresses in boilers with ellipsoidal ends can be found in the
book by Hohn, "Uber die Festigkeit der gewolbten Boden und der Zylinderschale,"
Zurich, 1927. Also included are the results of experimental investigations of dis-
continuity stresses which are in a good agreement with the approximate solution.
See also Schultz-Grunow, loc. cit.

FIG. 246



and we obtain

The constants C3 and C4 can now be obtained from the conditions at the
bottom of the tank. Assuming that the lower edge of the wall is built
into an absolutely rigid foundation, the boundary conditions are

From these equations we obtain

Expression (d) then becomes

from which, by using the notation of Eqs. (281), we obtain

From this expression the deflection at any point can be readily calculated
by the use of Table 84. The force N9 in the circumferential direction is
then

From the second derivative of expression (e) we obtain the bending
moment

Having expressions (/) and (g), the maximum stress at any point can
readily be calculated in each particular case. The bending moment has
its maximum value at the bottom, where it is equal to



The same result can be obtained by using solutions (279) and (280)
(pages 469, 470). Assuming that the lower edge of the shell is entirely
free, we obtain from expression (c)

To eliminate this displacement and rotation of the edge and thus satisfy
the edge conditions at the bottom of the tank, a shearing force Q0 and
bending moment M0 must be applied as indicated in Fig. 246. The
magnitude of each of these quantities is obtained by equating expressions
(279) and (280) to expressions (i) taken with reversed signs. This gives

From these equations we again obtain expression (h) for Mo, whereas for
the shearing force we find1

Taking, as an example, a = 30 ft, d = 26 ft, h = 14 in., y = 0.03613 Ib per in.3,
and v = 0.25, we find p = 0.01824 in."1 and Qd = 5.691. For such a value of 0d our
assumption that the shell is infinitely long results in an accurate value for the moment
and the shearing force, and we obtain from expressions
(h) and (j)

M0 = 13,960 in.-lb per in. Q0 = -563.6 Ib per in-

In the construction of steel tanks, metallic sheets of
several different thicknesses are very often used as
shown in Fig. 247. Applying the particular solution
(c) to each portion of uniform thickness, we find that
the differences in thickness give rise to discontinuities
in the displacement Wi along the joints mn and mini.

These discontinuities, together with the displace-
ments at the bottom ab, can be removed by apply-
ing moments and shearing forces. Assuming that the vertical dimension of each
portion is sufficiently large to justify the application of the formulas for an infinitely
large shell, we calculate the discontinuity moments and shearing forces as before by
using Eqs. (279) and (280) and applying at each joint the two conditions that the
adjacent portions of the shell have equal deflections and a common tangent. If the
use of formulas (279) and (280) derived for an infinitely long shell cannot be justified,
the general solution containing four constants of integration must be applied to each
portion of the tank. The determination of the constants under such conditions
becomes much more complicated, since the fact that each joint cannot be treated

1 The negative sign indicates that Q0 has the direction shown in Fig. 246 which is
opposite to the direction used in Fig. 236 when deriving expressions (279) and (280).

FIG. 247



independently necessitates the solution of a system of simultaneous equations. This
problem can be solved by approximate methods.1

118. Cylindrical Tanks with Nonuniform Wall Thickness. In the case of tanks of
nonuniform wall thickness the solution of the problem requires the integration of
Eq. (273), considering the flexural rigidity D and the thickness h as no longer constant
but as functions of x. We have thus to deal with a linear differential equation of
fourth order with variable coefficients. As an example, let us consider the case when
the thickness of the wall is a linear function of the coordinate x. * Taking the origin
of the coordinates as shown in Fig. 248, we have for the thickness of the wall and for
the flexural rigidity the expressions

and Eq. (273) becomes

The particular solution of this equation is

This solution represents the radial expansion of a shell
with free edges under the internal pressure y(x — XQ)-
As a result of the displacement (c) a certain amount of
bending of the generatrices of the cylinder occurs.
The corresponding bending moment is

This moment is independent of x and is in all practical
cases of such small magnitude that its action can
usually be neglected.

To obtain the complete solution of Eq. (b) we have
to add to the particular solution (c) the solution of the homogeneous equation

FIG. 248

1 An approximate method of solving this problem was given by C. Runge, Z. Math.
Physik, vol. 51, p. 254, 1904. This method was applied by K. Girkmann in a design
of a large welded tank; see Stahlbau, vol. 4, p. 25, 1931.

* H. Reissner, Beton u. Eisen, vol. 7, p. 150, 1908; see also W. Flugge, "Statik und
Dynamik der Schalen," 2d ed., p. 167, Berlin, 1957. For tanks slightly deviating
from the cylindrical form see K. Federhofer, Osterr. Bauzeilschrift, vol. 6, p. 149, 1951;
and for tanks with thickness varying in accordance with a quadratic law, see Feder-
hofer, Osterr. Ingr.-Arch., vol. 6, p. 43, 1952. A parameter method, akin to that
explained in Art. 40, has been used by H. Faure, Proc. Ninth Congr. Appl. Mech.
Brussels, vol. 6, p. 297, 1957. Many data regarding the design of water tanks are
found in W. S. Gray, "Reinforced Concrete Reservoirs and Tanks," London, 1954,
and in V. Lewe, "Handbuch fur Eisenbetonbau," vol. 9, Berlin, 1934.



which, upon division by x, can be also written

The solution of this equation of the fourth order can be reduced to that of two equa-
tions of the second order1 if we observe that

For simplification we introduce the following symbols:

Equation (e) then becomes

and can be rewritten in one of the two following forms:

where i — V — 1.
We see that Eq. (h) is satisfied by the solutions of the second-order equations

Assuming that

are the two linearly independent solutions of Eq. (j), it can be seen that

are the solutions of Eq. (k). All four solutions (I) and (m) together then represent
the complete system of independent solutions of Eq. (h). By using the sums and the
differences of solutions (I) and (m), the general solution of Eq. [h) can be represented
in the following form:

in which C1, . . . , C4 are arbitrary constants. Thus the problem reduces to the
determination of four functions <pi, . . . , <pi} which can all be obtained if the com-
plete solution of either Eq. (j) or Eq. (k) is known.

Taking Eq. (J) and substituting for L(w) its meaning (/), we obtain

1TlIiS reduction was shown by G. Kirchhoff, "Berliner Monatsberichte," p. 815,
1879; see also I. Todhunter and K. Pearson, "A History of the Theory of Elasticity,"
vol. 2, part 2, p. 92,



By introducing new variables

Eq. (o) becomes

We take as a solution of this equation the power series

Substituting this series in Eq. (r) and equating the coefficients of each power of rj to
zero, we obtain the following relation between the coefficients of series (s):

Applying this equation to the first two coefficients and taking a_i = a_2 = 0, we find
that ao = 0 and that a\ can be taken equal to any arbitrary constant. Calculating
the further coefficients by means of Eq. (0, we find that series (s) is

where /1(77) is the Bessel function of the first kind and of the first order. For our
further discussion it is advantageous to use the relation

in which the series in brackets, denoted by /0, is the Bessel function of the first kind
and of zero order. Substituting the expression 2p y/iz for 77 [see notation (p)] in
the series representing JQ(V) and collecting the real and the imaginary terms, we
obtain

where

(294)

The solution (u) then gives

where $[ and \f/'2 denote the derivatives of the functions (294) with respect to the
argument 2p \/x.

The second integral of Eq. (r) is of a more complicated form. Without derivation
it can be represented in the form



TABLE 86. TABLE OF THE \p{x) FUNCTIONS

Mx) Mx) - ^ - - ^

0.00 +1.0000 0.0000 0.0000 0.0000
0.10 +1.0000 -0.0025 -0.0001 -0.0500
0.20 +1.0000 -0.0100 -0.0005 -0.1000
0.30 +0.9999 -0.0225 -0.0017 -0.1500
0.40 +0.9996 -0.0400 -0.0040 -0.2000

0.50 +0.9990 -0.0625 -0.0078 -0.2499
0.60 +0.9980 -0.0900 -0.0135 -0.2998
0.70 +0.9962 -0.1224 -0.0214 -0.3496
0.80 +0.9936 -0.1599 -0.0320 -0.3991
0.90 +0.9898 -0.2023 -0.0455 -0.4485

1.00 +0.9844 -0.2496 -0.0624 -0.4974
1.10 +0.9771 -0.3017 -0.0831 -0.5458
1.20 +0.9676 -0.3587 -0.1078 -0.5935
1.30 +0.9554 -0.4204 -0.1370 -0.6403
1.40 +0.9401 -0.4867 -0.1709 -0.6860

1.50 +0.9211 -0.5576 -0.2100 -0.7302
1.60 +0.8979 -0.6327 -0.2545 -0.7727
1.70 +0 8700 -0.7120 -0.3048 -0.8131
1.80 +0.8367 -0.7953 -0.3612 -0.8509
1.90 +0.7975 -0.8821 -0.4238 -0.8857

2.00 +0.7517 -0.9723 -0.4931 -0.9170
2.10 +0.6987 -1.0654 -0.5690 -0.9442
2.20 +0.6377 -1.1610 -0.6520 -0.9661
2.30 +0.5680 -1.2585 -0.7420 -0.9836
2.40 +0.4890 -1.3575 -0.8392 -0.9944

2.50 +0.4000 -1.4572 -0.9436 -0.9983
2.60 +0.3001 -1.5569 -1.0552 -0.9943
2.70 +0.1887 -1.6557 -1.1737 -0.9815
2.80 +0.0651 -1.7529 -1.2993 -0.9589
2.90 -0.0714 -1.8472 -1.4315 -0.9256

3.00 -0.2214 -1.9376 -1.5698 -0.8804
3 10 -0.3855 -2.0228 -1.7141 -0.8223
3.20 -0.5644 -2.1016 -1.8636 -0.7499
3.30 -0.7584 -2.1723 -2.0177 -0.6621
3.40 -0.9680 -2.2334 -2.1755 -0.5577

3.50 -1.1936 -2.2832 -2.3361 -0.4353
3.60 -1.4353 -2.3199 -2.4983 -0.2936
3.70 -1.6933 -2.3413 -2.6608 -0.1315
3.80 -1.9674 -2.3454 -2.8221 +0.0526
3.90 -2.2576 -2.3300 -2.9808 +0.2596



TABLE 86. TABLE OF THE \p(x) FUNCTIONS (Continued)

x fi(x) Mx) — — —3—
dx dx

4.00 -2.5634 -2.2927 -3.1346 +0.4912
4.10 -2.8843 -2.2309 -3.2819 +0.7482
4.20 -3.2195 -2.1422 -3.4199 +1.0318
4.30 -3.5679 -2.0236 -3.5465 +1.3433
4.40 -3.9283 -1.8726 -3.6587 +1.6833

4.50 -4.2991 -1.6860 -3.7536 +2.0526
4.60 -4.6784 -1.4610 -3.8280 +2.4520
4.70 -5.0639 -1.1946 -3.8782 +2.8818
4.80 -5.4531 -0.8837 -3.9006 +3.3422
4.90 -5.8429 -0.5251 -3.8910 +3.8330

5.00 -6.2301 -0.1160 -3.8454 +4.3542
5.10 -6.6107 +0.3467 -3.7589 +4.9046
5.20 -6.9803 +0.8658 -3.6270 +5.4835
5.30 -7.3344 +1.4443 -3.4446 +6.0893
5.40 -7.6674 +2.0845 -3.2063 +6.7198

5.50 -7.9736 +2.7890 -2.9070 +7.3729
5.60 -8.2466 +3.5597 -2.5409 +8.0453
5.70 -8.4794 +4.3986 -2.1024 +8.7336
5.80 -8.6644 +5.3068 -1.5856 +9.4332
5.90 -8.7937 +6.2854 -0.9844 +10.1394
6.00 -8.8583 +7.3347 -0.2931 +10.3462

in which \f/'t and \f/\ are the derivatives with respect to the argument 2p Va; of the
following functions:

(295)



TABLE 86. TABLE OF THE \f/(x) FUNCTIONS {Continued)

d+3(x) df<(x)
x 4>z{x) tiix) —— — —

dx dx

0.00 +0.5000 -oo 0.0000 +oo
0.10 +0.4946 -1.5409 -0.0929 +6.3413
0.20 +0.4826 -1.1034 -0.1419 +3.1340
0.30 +0.4667 -0.8513 -0.1746 +2.0498
0.40 +0.4480 -0.6765 -0.1970 +1.4974

0.50 +0.4275 -0.5449 -0.2121 +1.1585
0.60 +0.4058 -0.4412 -0.2216 +0.9273
0.70 +0.3834 -0.3574 -0.2268 +0.7582
0.80 +0.3606 -0.2883 -0.2286 +0.6286
0.90 +0.3377 -0.2308 -0.2276 +0.5258

1.00 +0.3151 -0.1825 -0.2243 +0.4422
1.10 +0.2929 -0.1419 -0.2193 +0.3730
1.20 +0.2713 -0.1076 -0.2129 +0.3149
1.30 +0.2504 -0.0786 -0.2054 +0.2656
1.40 +0.2302 -0.0542 -0.1971 +0.2235

1.50 +0.2110 -0.0337 -0.1882 +0.1873
1.60 +0.1926 -0.0166 -0.1788 +0.1560
1.70 +0.1752 -0.0023 -0.1692 +0.1290
1.80 +0.1588 +0.0094 -0.1594 +0.1056
1.90 +0.1433 +0.0189 -0.1496 +0.0854

2.00 +0.1289 +0.0265 -0.1399 +0.0679
2.10 +0.1153 +0.0325 -0.1304 +0.0527
2.20 +0.1026 +0.0371 -0.1210 +0.0397
2.30 +0.0911 +0.0405 -0.1120 +0.0285
2.40 +0.0804 +0.0429 -0.1032 +0.0189

2.50 +0.0705 +0.0444 -0.0948 +0.0109
2.60 +0.0614 +0.0451 -0.0868 +0.0039
2.70 +0.0531 +0.0452 -0.0791 -0.0018
2.80 +0.0455 +0.0447 -0.0719 -0.0066
2.90 +0.0387 +0.0439 -0.0650 -0.0105

3.00 +0.0326 +0.0427 -0.0586 -0.0137
3.10 +0.0270 +0.0412 -0.0526 -0.0161
3.20 +0.0220 +0.0394 -0.0469 -0.0180
3.30 +0.0176 +0.0376 -0.0417 -0.0194
3.40 +0.0137 +0.0356 -0.0369 -0.0204

3.50 +0.0102 +0.0335 -0.0325 -0.0210
3.60 +0.0072 +0.0314 -0.0284 -0.0213
3.70 +0.0045 +0.0293 -0.0246 -0.0213
3.80 +0.0022 +0.0271 -0.0212 -0.0210
3.90 +0.0003 +0.0251 -0.0180 -0.0206



TABLE 86. TABLE OF THE \p(x) FUNCTIONS (Continued)

, , , <fyt(x) d*<(x)
X ^Ps(X) Xp4(X) — —

ax ax

4.00 -0.0014 +0.0230 -0.0152 -0.0200
4.10 -0.0028 H-0.0211 -0.0127 -0.0193
4.20 -0.0039 +0.0192 -0.0104 -0.0185
4.30 -0.0049 +0.0174 -0.0083 -0.0177
4.40 -0.0056 +0.0156 -0.0065 -0.0168

4.50 -0.0062 +0.0140 -0.0049 -0.0158
4.60 -0.0066 +0.0125 -0.0035 -0.0148
4.70 -0.0069 +0.0110 -0.0023 -0.0138
4.80 -0.0071 +0.0097 -0.0012 -0.0129
4.90 -0.0071 +0.0085 -0.0003 -0.0119

5.00 -0.0071 +0.0073 +0.0005 -0.0109
5.10 -0.0070 +0.0063 +0.0012 -0.0100
5.20 -0.0069 +0.0053 +0.0017 -0.0091
5.30 -0.0067 +0.0044 +0.0022 -0.0083
5.40 -0.0065 +0.0037 +0.0025 -0.0075

5.50 -0.0062 +0.0029 +0.0028 -0.0067
5.60 -0.0059 +0.0023 +0.0030 -0.0060
5.70 -0.0056 +0.0017 +0.0032 -0.0053
5.80 -0.0053 +0.0012 +0.0033 -0.0047
5.90 -0.0049 +0.0008 +0.0033 -0.0041
6.00 -0.0046 +0.0004 +0.0033 -0.0036

Having solutions (ar) and (b') of Eq. (r), we conclude that the general solution (n)
of Eq. (e) is

Numerical values of the functions ^i, . . . ,^4 and their first derivatives are given
in Table 86.l A graphical representation of the functions \p[, . . . , xp[ is given in
Fig. 249. It is seen that the values of these functions increase or decrease rapidly as
the distance from the end increases. This indicates that in calculating the constants
of integration in solution (c') we can very often proceed as we did with functions
(281), i.e., by considering the cylinder as an infinitely long one and using at each
edge only two of the four constants in solution (c').

1TWs table was calculated by F. Schleicher; see " Kreisplatten auf elastischer
Unterlage," Berlin, 1926. The well-known Kelvin functions may be used in place
of the functions \p, to which they relate as follows: $i(x) = ber x, yf/i(x) = — bei x,
\pz(x) = — (2/TT) kei x, \p4 = — (2/ir) ker x. For more accurate tables of the functions
under consideration see p. 266.



FIG. 249

In applying the general theory to particular cases, the calculation of the consecutive
derivatives of w is simplified if we use the following relations:

where the symbol £ is used in place of 2p y/x. From expression (c') we then obtain

By means of these formulas the deflections and the stresses can be calculated at
any point, provided the constants Ci, . . . , C4 are determined from the edge condi-



tions. The values of the functions \ph . . . ,^4 and their derivatives are to be taken
from Table 86 if 2p y/~x ^ 6. For larger values of the argument, the following
asymptotic expressions are sufficiently accurate:

(296)

As an example, consider a cylindrical tank of the same general dimensions as that
used in the preceding article (page 487), and assume that the thickness of the wall varies
from 14 in. at the bottom to 3^ in. at the top. In such a case the distance of the
origin of the coordinates (Fig. 248) from the bottom of the tank is

Hence, (2p VaO *-*„+<* = 21.45. For such a large value of the argument, the functions
ypx, . . . , ̂ 4 and their first derivatives can be replaced by their asymptotic expressions
(296). The deflection and the slope at the bottom of the tank corresponding to the
particular solution (c) are

Considering the length of the cylindrical shell in the axial direction as very large, we
take the constants Cz and C4 in solution (cf) as equal to zero and determine the con-
stants Ci and C2 so as to make the deflection and the slope at the bottom of the shell
equal to zero. These requirements give us the two following equations:



Calculating the values of functions ^1, ^2 and their derivatives from the asymptotic
formulas (296) and substituting the resulting values in Eqs. (J'), we obtain

Substituting these values of the constants in expression (g') we find for the bending
moment at the bottom

MQ = 13,900 lb-in. per in.

In the same manner, by using expression (hf), we find the magnitude of the shearing
force at the bottom of the tank as

Qo = 527 Ib per in.

These results do not differ much from the values obtained earlier for a tank with
uniform wall thickness (page 487).

119. Thermal Stresses in Cylindrical Shells. Uniform Temperature
Distribution. If a cylindrical shell with free edges undergoes a uniform
temperature change, no thermal stresses will be produced. But if the
edges are supported or clamped, free expansion of the shell is prevented,
and local bending stresses are set up at the edges. Knowing the thermal
expansion of a shell when the edges are free, the values of the reactive
moments and forces at the edges for any kind of symmetrical support
can be readily obtained by using Eqs. (279) and (280), as was done in
the cases shown in Fig. 241.

Temperature Gradient in the Radial Direction. Assume that h and U
are the uniform temperatures of the cylindrical wall at the inside and the
outside surfaces, respectively, and that the variation of the temperature
through the thickness is linear. In such a case, at points at a large dis-
tance from the ends of the shell, there will be no bending, and the stresses
can be calculated by using Eq. (51), which was derived for clamped plates
(see page 50). Thus the stresses at the outer and the inner surfaces are

where the upper sign refers to the outer surface, indicating that a tensile
stress will act on this surface if h > U.

Near the ends there will usually be some bending of the shell, and the
total thermal stresses will be obtained by superposing upon (a) such
stresses as are necessary to satisfy the boundary conditions. Let us con-
sider, as an example, the condition of free edges, in which case the stresses
<jx must vanish at the ends. In calculating the stresses and deformations

Next Page



Calculating the values of functions ^1, ^2 and their derivatives from the asymptotic
formulas (296) and substituting the resulting values in Eqs. (J'), we obtain

Substituting these values of the constants in expression (g') we find for the bending
moment at the bottom

MQ = 13,900 lb-in. per in.

In the same manner, by using expression (hf), we find the magnitude of the shearing
force at the bottom of the tank as

Qo = 527 Ib per in.

These results do not differ much from the values obtained earlier for a tank with
uniform wall thickness (page 487).

119. Thermal Stresses in Cylindrical Shells. Uniform Temperature
Distribution. If a cylindrical shell with free edges undergoes a uniform
temperature change, no thermal stresses will be produced. But if the
edges are supported or clamped, free expansion of the shell is prevented,
and local bending stresses are set up at the edges. Knowing the thermal
expansion of a shell when the edges are free, the values of the reactive
moments and forces at the edges for any kind of symmetrical support
can be readily obtained by using Eqs. (279) and (280), as was done in
the cases shown in Fig. 241.

Temperature Gradient in the Radial Direction. Assume that h and U
are the uniform temperatures of the cylindrical wall at the inside and the
outside surfaces, respectively, and that the variation of the temperature
through the thickness is linear. In such a case, at points at a large dis-
tance from the ends of the shell, there will be no bending, and the stresses
can be calculated by using Eq. (51), which was derived for clamped plates
(see page 50). Thus the stresses at the outer and the inner surfaces are

where the upper sign refers to the outer surface, indicating that a tensile
stress will act on this surface if h > U.

Near the ends there will usually be some bending of the shell, and the
total thermal stresses will be obtained by superposing upon (a) such
stresses as are necessary to satisfy the boundary conditions. Let us con-
sider, as an example, the condition of free edges, in which case the stresses
<jx must vanish at the ends. In calculating the stresses and deformations
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in this case we observe that at the edge the stresses (a) result in uni-
formly distributed moments M0 (Fig. 250a) of the amount

To obtain a free edge, moments of the same magnitude but opposite in
direction must be superposed (Fig. 2506). Hence the stresses at a free
edge are obtained by superposing upon the stresses (a) the stresses pro-
duced by the moments -M0 (Fig. 250b). These latter stresses can be
readily calculated by using solution (278). From this solution it follows
that

It is seen that at the free edge the maximum thermal stress acts in the
circumferential direction and is obtained by adding to the stress (a) the
stresses produced by the moment Mv and the force N9. Assuming that
t\ > fa, we thus obtain

For v = 0.3 this stress is about 25 per cent greater than the stress (a)
calculated at points at a large distance from the ends. We can therefore

conclude that if a crack will occur in a brittle
material such as glass due to a temperature
difference h — U, it will start at the edge and
will proceed in the axial direction. In a similar
manner the stresses can also be calculated
in cases in which the edges are clamped or
supported.1

Temperature Gradient in the Axial Direction.
If the temperature is constant through the

thickness of the wall but varies along the length of the cylinder, the pro-
blem can be easily reduced to the solution of Eq. (274).2 Let t = F(x) be
the increase of the temperature of the shell from a certain uniform initial
temperature. Assuming that the shell is divided into infinitely thin rings
by planes perpendicular to the x axis and denoting the radius of the shell by
a, the radial expansion of the rings due to the temperature change is aaF(x).

1 Several examples of this kind are discussed in the paper by C. H. Kent, Trans.
ASME7 vol. 53, p. 167, 1931.

2 See Timoshenko and Lessells, "Applied Elasticity," p. 146, 1925.

FIG. 250



This expansion can be eliminated and the shell can be brought to its initial
diameter by applying an external pressure of an intensity Z such that

which gives

A load of this intensity entirely arrests the thermal expansion of the shell
and produces in it only circumferential stresses having a magnitude

To obtain the total thermal stresses, we must superpose on the stresses (g)
the stresses that will be produced in the shell
by a load of the intensity — Z. This latter
load must be applied in order to make the
lateral surface of the shell free from the ex-
ternal load given by Eq. (/). The stresses
produced in the shell by the load —Z are ob-
tained by the integration of the differential
equation (276), which in this case becomes

As an example of the application of this
equation let us consider a long cylinder, as
shown in Fig. 251a, and assume that the part
of the cylinder to the right of the cross section
ran has a constant temperature Uy whereas that
to the left side has a temperature that decreases linearly to a temperature
t\ at the end x = b according to the relation

The temperature change at a point in this portion is thus

Substituting this expression for the temperature change in Eq. (h), we
find that the particular solution of that equation is

FIG. 251



The displacement corresponding to this particular solution is shown in
Fig. 251b, which indicates that there is at the section mn an angle of dis-
continuity of the magnitude

To remove this discontinuity the moments M0 must be applied. Since
the stress av corresponding to the particular solution (j) cancels the
stresses (g), we conclude that the stresses produced by the moments M0

are the total thermal stresses resulting from the above-described decrease
in temperature. If the distances of the cross section mn from the ends
of the cylinder are large, the magnitude of the moment Mo can be obtained
at once from Eq. (280) by substituting

to obtain1

Substituting for 0 its value from expression (275) and taking v = 0.3,
we find that the maximum thermal stress is

It was assumed in this calculation that the length b to the end of the
cylinder is large. If this is not the case, a correction to the moment (I)
must be calculated as follows. In an infinitely long shell the moment M0

produces at the distance x = b a moment and a shearing force (Fig. 251c)2

that are given by the general solution (282) as

Since at the distance x = b we have a free edge, it is necessary to apply
there a moment and a force of the magnitude

in order to eliminate the forces (n) (Fig. 251c).
1 If t0 — ti is positive, as was assumed in the derivation, M0 is negative and thus

has the direction shown in Fig. 2516.
2 The directions Mx and Qx shown in Fig. 251c are the positive directions if the

x axis has the direction shown in Fig. 251a.



The moment produced by the forces (o) at the cross section mn gives
the desired correction AM0 which is to be applied to the moment (I). Its
value can be obtained from the third of the equations (282) if we substi-
tute in it —M0<p(pb) for M0 and — 2/3Mof (/36)* for Q0. These substitutions
give

As a numerical example, consider a cast-iron cylinder having the following dimen-
sions: a = 9j£ in., h = If in., b = 4J in.; a = 101 • 10~7, E = 14 • 106 psi,

The formula (m) then gives

In calculating the correction (p), we have

and, from Table 84,

Hence, from Eq. (p),

This indicates that the above-calculated maximum stress (q) must be diminished by
15.6 per cent to obtain the correct maximum value of the thermal stress.

The method shown here for the calculation of thermal stresses in the case of a linear
temperature gradient (i) can also be easily applied in cases in which F (x) has other
than a Linear form.

120. Inextensional Deformation of a Circular Cylindrical Shell.1 If
the ends of a thin circular cylindrical shell are free and the loading is not
symmetrical with respect to the axis of the cylinder, the deformation con-
sists principally in bending. In such cases the magnitude of deflection
can be obtained with sufficient accuracy by neglecting entirely the strain
in the middle surface of the shell. An example of such a loading con-
dition is shown in Fig. 252. The shortening of the vertical diameter
along which the forces P act can be found with good accuracy by con-
sidering only the bending of the shell and assuming that the middle sur-
face is inextensible.

Let us first consider the limitations to which the components of dis-
placement are subject if the deformation of a cylindrical shell is to be
inextensional. Taking an element in the middle surface of the shell at
a point 0 and directing the coordinate axes as shown in Fig. 253, we shall

* The opposite sign to that in expression (o) is used here, since Eqs. 282 are derived
for the direction of the x axis opposite to that shown in Fig. 251a.

1 The theory of inextensional deformations of shells is due to Lord Rayleigh, Proc.
London Math. Soc, vol. 13, 1881, and Proc. Roy. Soc. (London), vol. 45, 1889.



denote by u, v, and w the components in the x, y, and z directions of the
displacement of the point O. The strain in the x direction is then

In calculating the strain in the circumferential direction we use Eq. (a)
(Art. 108, page 446). Thus,

The shearing strain in the middle surface can be expressed by

which is the same as in the case of small deflections of plates except that
a dip takes the place of dy. The condition that the deformation is inexten-

FIG. 252 FIG. 253

sional then requires that the three strain components in the middle surface
must vanish; i.e.,

These requirements are satisfied if we take the displacements in the
following form:

where a is the radius of the middle surface of the shell, <p the central
angle, and an and af

n constants that must be calculated for each particular
case of loading. The displacements (e) represent the case in which all



cross sections of the shell deform identically. On these displacements
we can superpose displacements two of which vary along the length of
the cylinder and which are given by the following series:

It can be readily proved by substitution in Eqs. (d) that these expressions
also satisfy the conditions of inextensibility. Thus the general expres-
sions for displacements in inextensional deformation of a cylindrical shell
are

In calculating the inextensional deformations of a cylindrical shell
under the action of a given system of forces, it is advantageous to use
the energy method. To establish the required expression for the strain
energy of bending of the shell, we begin with
the calculation of the changes of curvature of
the middle surface of the shell. The change
of curvature in the direction of the generatrix
is equal to zero, since, as can be seen from
expressions (e) and (/), the generatrices re-
main straight. The change of curvature of
the circumference is obtained by comparing
the curvature of an element mn of the circum-
ference (Fig. 254) before deformation with that of the corresponding ele-
ment mini after deformation. Before deformation the curvature in the
circumferential direction is

The curvature of the element mini after deformation is

FIG. 254



Hence the change in curvature is

By using the second of the equations (d) we can also write

The bending moment producing this change in curvature is

and the corresponding strain energy of bending per unit area can be calcu-
lated as in the discussion of plates (see page 46) and is equal to

In addition to bending, there will be a twist of each element such as
that shown at point 0 in Fig. 253. In calculating this twist we note that
during deformation an element of a generatrix rotates1 through an angle
equal to —dw/dx about the y axis and through an angle equal to dv/dx
about the z axis. Considering a similar element of a generatrix at a
circumferential distance a d<p from the first one, we see that its rotation
about the y axis, as a result of the displacement w, is

The rotation of the same element in the plane tangent to the shell is

Because of the central angle dcp between the two elements, the latter
rotation has a component with respect to the y axis equal to2

From results (j) and (k) we conclude that the total angle of twist between
the two elements under consideration is

1 In determining the sign of rotation the right-hand screw rule is used,
2 A small quantity of second order is neglected in this expression,



and that the amount of strain energy per unit area due to twist is (see
page 47)

Adding together expressions (i) and (J) and integrating over the surface
of the shell, the total strain energy of a cylindrical shell undergoing an
inextensional deformation is found to be

Substituting for w and v their expressions (g) and integrating, we find for
a cylinder of a length 21 (Fig. 252) the following expression for strain
energy:

(297)

This expression does not contain a term with n = 1, since the corre-
sponding displacements

represent the displacement of the circle in its plane as a rigid body. The
vertical and horizontal components of this displacement are found by
substituting <p = T/2 in expressions (m) to obtain

Such a displacement does not contribute to the strain energy.
The same conclusion can also be made regarding the displacements

represented by the terms with n = 1 in expressions (/).

Let us now apply expression (297) for the strain energy to the calculation of the
deformation produced in a cylindrical shell by two equal and opposite forces P acting
along a diameter at a distance c from the middle1 (Fig. 252). These forces produce
work only during radial displacements w of their points of application, i.e., at the
points x = c, <p = 0, and <p ~ ir. Also, since the terms with coefficients an and bn
in the expressions for W\ and W2 [see Eqs. (e) and (/)] vanish at these points, only terms
with coefficients an and b'n will enter in the expression for deformation. By using the

1 The case of a cylindrical shell reinforced by elastic rings with two opposite forces
acting along a diameter of every ring was discussed by R. S. Levy, J. Appl. Mechanics,
vol. 15, p. 30, 1948.



principle of virtual displacements, the equations for calculating the coefficients a'n
and b'n are found to be

Substituting expression (297) for V, we obtain, for the case where n is an even number,

If n is an odd number, we obtain

Hence in this case, from expressions (e) and (/),

If the forces P are applied at the middle, c = 0 and the shortening of the vertical
diameter of the shell is

The increase in the horizontal diameter is

The change in length of smy other diameter can also be readily calculated. The same
calculations can also be made if c is different from zero, and the deflections vary with
the distance x from the middle.

Solution (p) does not satisfy the conditions at the free edges of the shell, since it
requires the distribution of moments Mx = vM<p to prevent any bending in meridional
planes. This bending is, however, of a local character and does not substantially
affect the deflections (q) and (r), which are in satisfactory agreement with experiments.

The method just described for analyzing the inextensional deformation of cylindrical
shells can also be used in calculating the deformation of a portion of a cylindrical
shell which is cut from a complete cylinder of radius a by two axial sections making



an angle a. with one another (Fig. 255). For example, taking for the displacements
the series

we obtain an inextensional deformation of the shell such that the displacements u
and w and also the bending moments M^ vanish along the edges ran and mini. Such
conditions are obtained if the shell is
supported at points m, n, m1} n\ by bars
directed radially and is loaded by a
load P in the plane of symmetry. The
deflection produced by this load can be
found by applying the principle of
virtual displacements.

121. General Case of Deformation
of a Cylindrical Shell.x To establish
the differential equations for the dis-
placements u, V, and w which define
the deformation of a shell, we proceed as in the case of plates. We begin
with the equations of equilibrium of an element cut out from the cylindri-
cal shell by two adjacent axial sections and by two adjacent sections
perpendicular to the axis of the cylinder (Fig. 253). The corresponding
element of the middle surface of the shell after deformation is shown in
Fig. 256a and b. In Fig. 256a the resultant forces and in Fig. 2566 the

1 A general theory of bending of thin shells has been developed by A. E. H. Love;
see Phil. Trans. Roy. Soc. (London), ser. A7 p. 491, 1888; and his book "Elasticity,"
4th ed., chap. 24, p. 515, 1927; see also H. Lamb, Proc. London Math. Soc, vol. 21.
For bending of cylindrical shells see also H. Reissner, Z. angew. Math. Mech., vol. 13,
p. 133, 1933; L. H. Donnell, NACA Repi. 479, 1933 (simplified theory); E. Torroja
and J. Batanero, "Cubiertos laminares cilindros,'' Madrid, 1950; H. Parkus, Osterr.
Ingr.-Arch., vol. 6, p. 30, 1951; W. Zerna, Ingr.-Arch., vol. 20, p. 357, 1952; P. Csonka,
Acta Tech. Acad. Sci. Hung., vol. 6, p. 167, 1953. The effect of a concentrated load
has been considered by A. Aas-Jakobsen, Bauingenieur, vol. 22, p. 343, 1941; by
Y. N. Rabotnov, Doklady Akad. Nauk S.S.S.R., vol. 3, 1946; and by V. Z. Vlasov,
"A General Theory of Shells," Moscow, 1949. For cylindrical shells stiffened by
ribs, see N. J. Hoff, J. Appl. Mechanics, vol. 11, p. 235, 1944; "H. Reissner Anniver-
sary Volume," Ann Arbor, Mich., 1949; and W. Schnell, Z. Flugwiss., vol. 3, p. 385,
1955. Anisotropic shells (together with a general theory) have been treated by
W. Fliigge, Ingr.-Arch., vol. 3, p. 463, 1932; also by Vlasov, op. cit., chaps. 11 and 12.
For stress distribution around stiffened cutouts, see bibliography in L. S. D. Morley's
paper, Natl. Luchtvaarlab. Rappts., p. 362, Amsterdam, 1950. A theory of thick
cylindrical shells is due to Z. Bazant, Proc. Assoc. Bridge Structural Engrs., vol. 4, 1936.

FIG. 255



resultant moments, discussed in Art. 104, are shown. Before defor-
mation, the axes x, y, and z at any point O of the middle surface had the
directions of the generatrix, the tangent to the circumference, and the
normal to the middle surface of the shell, respectively. After defor-
mation, which is assumed to be very small, these directions are slightly
changed. We then take the z axis normal to the deformed middle sur-
face, the x axis in the direction of a tangent to the generatrix, which may
have become curved, and the y axis perpendicular to the xz plane. The

FIG. 256

directions of the resultant forces will also have been slightly changed
accordingly, and these changes must be considered in writing the equa-
tions of equilibrium of the element OABC.

Let us begin by establishing formulas for the angular displacements of
the sides BC and AB with reference to the sides OA and OC of the ele-
ment, respectively. In these calculations we consider the displacements
u, V, and w as very small, calculate the angular motions produced by
each of these displacements, and obtain the resultant angular displace-
ment by superposition. We begin with the rotation of the side BC with
respect to the side OA. This rotation can be resolved into three com-



ponent rotations with respect to the x, y, and z axes. The rotations of
the sides OA and BC with respect to the x axis are caused by the dis-
placements v and w. Since the displacements v represent motion of the
sides OA and BC in the circumferential direction (Fig. 253), if a is the
radius of the middle surface of the cylinder, the corresponding rotation
of side OA about the x axis is v/a, and that of side BC is

Thus, owing to the displacements v, the relative angular motion of BC
with respect to OA about the x axis is

Because of the displacements w, the side OA rotates about the x axis
through the angle dw/(a dp), and the side BC through the angle

Thus, because of the displacements w, the relative angular displace-
ment is

Summing up (a) and (6), the relative angular displacement about the
x axis of side BC with respect to side OA is

The rotation about the y axis of side BC with respect to side OA is caused
by bending of the generatrices in axial planes and is equal to

The rotation about the z axis of side BC with respect to side OA is due to
bending of the generatrices in tangential planes and is equal to

The formulas (c), (d), and (e) thus give the three components of rotation
of the side BC with respect to the side OA.

Let us now establish the corresponding formulas for the angular dis-
placement of side AB with respect to side OC. Because of the curvature



of the cylindrical shell, the initial angle between these lateral sides of the
element OABC is d<p. However, because of the displacements v and w
this angle will be changed. The rotation of the lateral side OC about
the x axis is

The corresponding rotation for the lateral side AB is

Hence, instead of the initial angle d<p, we must now use the expression

In calculating the angle of rotation about the y axis of side AB with
respect to the side OC we use the expression for twist from the preceding
article (see page 504); this gives the required angular displacement as

Rotation about the z axis of the side AB with respect to OC is caused by
the displacements v and w. Because of the displacement v, the angle of
rotation of side OC is dv/dx, and that of side AB is

so that the relative angular displacement is

Because of the displacement W1 the side AB rotates in the axial plane
by the angle dw/dx. The component of this rotation with respect to the
z axis is

Summing up (t) and (j), the relative angular displacement about the
z axis of side AB with respect to side OC is

Having the foregoing formulas1 for the angles, we may now obtain
three equations of equilibrium of the element OABC (Fig. 256) by pro-
jecting all forces on the x, y, and z axes. Beginning with those forces

1 These formulas can be readily obtained for a cylindrical shell from the general
formulas given by A. E. H. Love in his book "Elasticity," 4th ed., p. 523, 1927.



parallel to the resultant forces Nx and N^x and projecting them on the
x axis, we obtain

Because of the angle of rotation represented by expression (k), the forces
parallel to Ny give a component in the x direction equal to

Because of the rotation represented by expression (e), the forces parallel
to Nx<p give a component in the x direction equal to

Finally, because of angles represented by expressions (d) and (Zi), the
forces parallel to Qx and Q^ give components in the x direction equal to

Regarding the external forces acting on the element, we assume that
there is only a normal pressure of intensity q, the projection of which
on the x and y axes is zero.

Summing up all the projections calculated above, we obtain

In the same manner two other equations of equilibrium can be written.
After simplification, all three equations can be put in the following form:

(298)



Going now to the three equations of moments with respect to the x, y,
and z axes (Fig. 2566) and again taking into consideration the small angu-
lar displacements of the sides BC and AB with respect to OA and OC,
respectively, we obtain the following equations:

(299)

By using the first two of these equations1 we can eliminate Qx and Q^
from Eqs. (298) and obtain in this way three equations containing the
resultant forces Nx, Nv, and Nx* and the moments Mx, M^, and MXif>.
By using formulas (253) and (254) of Art. 104, all these quantities can be
expressed in terms of the three strain components ex, e9, and yx<p of the
middle surface and the three curvature changes x*> Xv, a n d Xx?- By
using the results of the previous article, these latter quantities can be
represented in terms of the displacements u, v, and w as follows:2

(300)

Thus we finally obtain the three differential equations for the determi-
nation of the displacements u, v, and w.

In the derivation equations (298) and (299) the change of curvature
of the element OABC was taken into consideration. This procedure is
necessary if the forces Nx, Ny, and Nxy are not small in comparison with
their critical values, at which lateral buckling of the shell may occur.3

If these forces are small, their effect on bending is negligible, and we can
omit from Eqs. (298) and (299) all terms containing the products of the
resultant forces or resultant moments with the derivatives of the small
displacements u, v, and w. In such a case the three Eqs. (298) and the

1 To satisfy the third of these equations the trapezoidal form of the sides of the
element OABC must be considered as mentioned in Art. 104. This question is dis-
cussed by W. Fliigge, "Statik und Dynamik der Schalen," 2d ed., p. 148, Berlin, 1957.

2 The same expressions for the change of curvature as in the preceding article are
used, since the effect of strain in the middle surface on curvature is neglected.

3 The problems of buckling of cylindrical shells are discussed in S. Timoshenko.
"Theory of Elastic Stability," and will not be considered here.



first two equations of system (299) can be rewritten in the following
simplified form:

(301)

Eliminating the shearing forces Qx and Q^ we finally obtain the three
following equations:

(302)

By using Eqs. (253), (254), and (300), all the quantities entering in these
equations can be expressed by the displacements u, v, and w, and we
obtain

(303)

More elaborate investigations show1 that the last two terms on the
left-hand side of the second of these equations and the last term on the
left-hand side of the third equation are small quantities of the same order
as those which we already disregarded by assuming a linear distribution
of stress through the thickness of the shell and by neglecting the stretch-
ing of the middle surface of the shell (see page 431). In such a case it

1 See Vlasov, op. cit., p. 316, and, for more exact equations, p. 257.



will be logical to omit the above-mentioned terms and to use in analysis
of thin cylindrical shells the following simplified system of equations:

(304)

Some simplified expressions for the stress resultants which are in
accordance with the simplified relations (304) between the displacements
of the shell will be given in Art. 125.

From the foregoing it is seen that the problem of a laterally loaded
cylindrical shell reduces in each particular case to the solution of a sys-
tem of three differential equations. Several applications of these equa-
tions will be shown in the next articles.

122. Cylindrical Shells with Supported Edges. Let us consider the
case of a cylindrical shell supported at the ends and submitted to the

FIG. 257

pressure of an enclosed liquid as shown in Fig. 257. * The conditions at
the supports and the conditions of symmetry of deformation will be
satisfied if we take the components of displacement in the form of the
following series:

in which I is the length of the cylinder and <p is the angle measured as
shown in Fig. 257.2

JSee S. Timoshenko, "Theory of Elasticity," vol. 2, p. 385, St. Petersburg, 1916
(Russian).

2 By substituting expressions (a) in Eqs. (300) it can be shown that the tensile
forces Nx and the moments Mx vanish at the ends; the shearing forces do not vanish,
however, since yx9 and Mx<p are not zero at the ends,



The intensity of the load q is represented by the following expressions:

in which y is the specific weight of the liquid and the angle a defines the
level of the liquid, as shown in Fig. 2576. The load q can be represented
by the series

in which the coefficients Dmn can be readily calculated in the usual way
from expressions (6). These coefficients are represented by the expression

where

whereas

and

In the case of a cylindrical shell completely filled with liquid, we denote
the pressure at the axis of the cylinder1 by yd; then

and we obtain, instead of expressions (d), (e), and (/),

To obtain the deformation of the shell we substitute expressions (a)
and (c) in Eqs. (304). In this way we obtain for each pair of values of
m and n a system of three linear equations from which the corresponding
values of the coefficients Amn, Bmn, and Cmn can be calculated.2 Taking a
particular case in which d = a, we find that for n — 0 and m = 1, 3, 5, . . .
these equations are especially simple, and we obtain

1 In a closed cylindrical vessel this pressure can be larger than ay.
2 Such calculations have been made for several particular cases by I. A. Wojtaszak,

Phil. Mag., ser. 7, vol. 18, p. 1099, 1934; see also the paper by H. Reissner in Z. angew.
Math. Mech., vol. 13, p. 133, 1933.



For n = 1 the expressions for the coefficients are more complicated. To
show how rapidly the coefficients diminish as m increases, we include in
Table 87 the numerical values of the coefficients for a particular case in
which a = 50 cm, I — 25 cm, h = 7 cm, v — 0.3, and a = ir.

TABLE 87. T H E VALUES OF THE COEFFICIENTS IN EXPRESSIONS (a)

2- IQ3 2- IQ3 2- IQ3 2 • 103 2-10»
W -AmO 777 CmO TTT -Ami 777— Bmi —ZZZ— CmI — ~ —

Nh Nh Nh Nh Nh

1 57.88 -1,212. 49.18 -66.26 -1,183
3 0.1073 -6.742 0.1051 -0.0432 - 6.704
5 0.00503 -0.526 0.00499 -0.00122 - 0.525

It is seen that the coefficients rapidly diminish as m increases. Hence,
by limiting the number of coeffi-
cients to those given in the table,
we shall obtain the deformation of
the shell with satisfactory accuracy.

123. Deflection of a Portion of
a Cylindrical Shell. The method
used in the preceding article can
also be applied to a portion of a
cylindrical shell which is supported
along the edges and submitted to
the action of a uniformly distrib-
uted load q normal to the surface
(Fig. 258).x We take the compo-

nents of displacement in the form of the series

in which a is the central angle subtended by the shell and I is the length
of the shell. It can be shown by substitution of expressions (a) in Eqs.
(300) that in this way we shall satisfy the conditions at the boundary,
which require that along the edges <p = 0 and <p = a the deflection w,
the force N9, and the moment M9 vanish and that along the edges x = 0
and x — l the deflection w, the force Nx, and the moment Mx vanish.

1 See Timoshenko, "Theory of Elasticity/' vol. 2, p. 386, 1916.

FIG. 258



The intensity of the normal load q can be represented by the series

Substituting series (a) and (6) in Eqs. (304), we obtain the following sys-
tem of linear algebraic equations for calculating the coefficients Amn, Bmn,
and Cmn:

To illustrate the application of these equations let us consider the case
of a uniformly distributed load1 acting on a portion of a cylindrical shell
having a small angle a and a small sag / = a[l — cos (a/2)]. In this
particular case expression (b) becomes

and the coefficients Dmn are given by the expression

Substituting these values in Eqs. (c), we can calculate the coefficients
Amn, Bmn) and Cmn. The calculations made for a particular case in which
aa = I and for several values of the ratio f/h show that for small values
of this ratio, series (a) are rapidly convergent and the first few terms give
the displacements with satisfactory accuracy.

The calculations also show that the maximum values of the bending
stresses produced by the moments Mx and M9 diminish rapidly as f/h
increases. The calculation of these stresses is very tedious in the case of
larger values of f/h, since the series representing the moments become
less rapidly convergent and a larger number of terms must be taken.

The method used in this article is similar to Navier's method of calculating bending
of rectangular plates with simply supported edges. If only the rectilinear edges
<p = 0 and <p = a of the shell in Fig. 258 are simply supported and the other two edges
are built in or free, a solution similar to that of M. Levy's method for the case of
rectangular plates (see page 113) can be applied. We assume the following series
for the components of displacement:

1 The load is assumed to act toward the axis of the cylinder.



in which Um, V1n, and Wm are functions of x only. Substituting these series in
Eqs. (304), we obtain for Um, Vn, and Wm three ordinary differential equations with
constant coefficients. These equations can be integrated by using exponential func-
tions. An analysis of this kind made for a closed cylindrical shell1 shows that the
solution is very involved and that results suitable for practical application can be
obtained only by introducing simplifying assumptions. It could be shown that each
set of the functions Un, Vm, Wm contains eight constants of integration for each
assumed value of m. Accordingly, four conditions on each edge x = constant must
be at our disposal. Let us formulate these conditions in the following three cases.

Built-in Edge. Usually such a support is considered as perfectly rigid, and the
edge conditions then are

Should it happen, however, that the shell surface on the edge is free to move in the
direction x, then the first of the foregoing conditions has to be replaced by the condi-
tion Nx = 0.

Simply Supported Edge. Such a hinged edge is not able to transmit a moment
Mx needed to enforce the condition dw/dx = 0. Assuming also that there is no edge
resistance in the direction x, we arrive at the boundary conditions

whereas the displacement u and the stress resultants Nx<p, Mx<f>t and Qx do not vanish
on the edge.

The reactions of the simply supported edge (Fig. 259a) deserve brief consideration.
The action of a twisting couple Mxip ds, applied to an element ABCD of the edge, is
statically equivalent to the action of three forces shown in Fig. 2596. A variation of
the radial forces MXip along the edge yields, just as in the case of a plate (Fig. 50), an
additional shearing force of the intensity —dMxip/ds, the total shearing force being
(Fig. 259c)

The remaining component Mxip d<p (Fig. 2596) may be considered as a supplementary
membrane force of the intensity Mx<p d<p/ds = Mx<p/a. Hence the resultant mem-
brane force in the direction of the tangent to the edge becomes

1 See paper by K. Miesel, Ingr.-Arch., vol. 1, p. 29, 1929. An application of the
theory to the calculation of stress in the hull of a submarine is shown in this paper.



Free Edge. Letting all the stress resultants vanish on the edge, we find that the
four conditions characterizing the free edge assume the form

Nx =0 Mx =0 Sx = 0 Tx = 0 (/b)

where Sx and Tx are given by expressions (j) and (i), respectively.1

124. An Approximate Investigation of the Bending of Cylindrical Shells. From the
discussion of the preceding article it may be concluded that the application of the
general theory of bending of cylindrical shells in even the simplest cases results in
very complicated calculations. To make the theory applicable to the solution of
practical problems some further simplifications in this theory are necessary. In con-
sidering the membrane theory of cylindrical shells it was stated that this theory
gives satisfactory results for portions of a shell at a considerable distance from the
edges but that it is insufficient to satisfy all the conditions at the boundary. It is
logical, therefore, to take the solution furnished by the membrane theory as a first

FIG. 259

approximation and use the more elaborate bending theory only to satisfy the condi-
tions at the edges. In applying this latter theory, it must be assumed that no external
load is distributed over the shell and that only forces and moments such as are neces-
sary to satisfy the boundary conditions are applied along the edges. The bending
produced by such forces can be investigated by using Eqs. (303) after placing the
load q equal to zero in these equations.

In applications such as are encountered in structural engineering2 the ends x = 0
and x — I of the shell (Fig. 260) are usually supported in such a manner that the

1 For a solution of the problem of bending based on L. H. Donnell's simplified
differential equations see N. J. Hoff, / . Appl. Mechanics, vol. 2I7 p. 343, 1954; see also
Art. 125 of this book.

2 In recent times thin reinforced cylindrical shells of concrete have been successfully
applied in structures as coverings for large halls. Descriptions of some of these
structures can be found in the article by F. Dischinger, "Handbuch fiir Eisenbeton-
bau," 3d ed., vol. 12, Berlin, 1928; see also the paper by F. Dischinger and U. Finster-
walder in Bauingenieur, vol. 9, 1928, and references in Art. 126 of this book.



displacements v and w at the ends vanish. Experiments show that in such shells
the bending in the axial planes is negligible, and we can assume Mx = 0 and Qx = 0
in the equations of equilibrium (301). We can also neglect the twisting moment MX<P.
With these assumptions the system of Eqs. (301) can be considerably simplified, and

FIG. 260

the resultant forces and components of displacement can all be expressed in terms1 of
moment M<p. From the fourth of the equations (301) we obtain

Substituting this in the third equation of the same system, we obtain, for q = 0,

The second and the first of the equations (301) then give

The components of displacement can also be expressed in terms of M^ and its deriva-
tives. We begin with the known relations [see Eqs. (253) and (254)]

1 This approximate theory of bending of cylindrical shells was developed by U.
Finsterwalder; see Ingr.-Arch., vol. 4, p. 43, 1933.



From these equations we obtain

Using these expressions together with Eqs. (6), (c), and (d) and with the expression
for the bending moment

we finally obtain for the determination of M9 the following differential equation of the
eighth order:

A particular solution of this equation is afforded by the expression

Substituting it in Eq. Qi) and using the notation

the following algebraic equation for calculating a. is obtained:

The eight roots of this equation can be put in the form

Beginning with the edge <p = 0 and assuming that the moment M9 rapidly diminishes
as <p increases, we use only those four of the roots (I) which satisfy this requirement.
Then combining the four corresponding solutions (i), we obtain

M9 = [e~y^{Ci cos /5i<p 4- Ct sin @i<p) + e~^^{Cz cos /32*> + C4 sin 02*O] sin —— (m)

which gives for <p = 0



If instead of a single term (i) we take the trigonometric series

any distribution of the bending moment Mv along the edge <p = 0 can be obtained.
Having an expression for M^, the resultant forces Q<p, N<p, and NX(p are obtained from
Eqs. (a), (6), and (c).

If in some particular case the distributions of the moments M<p and the resultant
forces Q1P, N1P, and Nxip along the edge <p = 0 are given, we can represent these dis-
tributions by sine series. The values of the four coefficients in the terms containing
sin (rrnrx/l) in these four series can then be used for the calculation of the four con-
stants Ci, . . . ; C4 in solution (m); and in this way the complete solution of the
problem for the given force distribution can be obtained.

If the expressions for u, v, and w in terms of M^ are obtained by using Eqs. (/), we
can use the resulting expressions to solve the problem if the displacements, instead
of the forces, are given along the edge <p = 0. Examples of such problems can be
found in the previously mentioned paper by Finsterwalder,x who shows that the
approximate method just described can be successfully applied in solving important
structural problems.

126. The Use of a Strain and Stress Function. In the general case of bending of
a cylindrical shell, for which the ratio I/a (Fig. 260) is not necessarily large, the effect
of the couples Mx and Mxy cannot be disregarded. On the other hand, the simplified
form [Eqs. (304)] of the relations between the displacements allows the introduction
of a function2 F(x,<p) governing the state of strain and stress of the shell. Using the
notation

we can rewrite Eqs. (304) in the following form, including all three components X, Y,
and Z of the external loading,

(305)

The set of these simultaneous equations can be reduced to a single differential equation
by putting

(306)

1 Ibid.
2 Due to Vlasov, op. cit. Almost equivalent results, without the use of a stress

function, were obtained by L. H. Donnell, NACA RepL 479, 1933. See also N. J. Hoff,
J. Appl. Mechanics, vol. 21, p. 343, 1954,



where Uo, V0, WQ are a system of particular solutions of the nonhomogeneous equations
(305). As for the strain and stress function F(£,<p), it must satisfy the differential
equation

(307)

which is equivalent to the group of Eqs. (305), if X — Y = Z = 0.* It can be shown
that in this last case not only the function F but also all displacement and strain
components, as well as all stress resultants of the shell, satisfy the differential equa-
tion (307).

For the elongations, the shearing strain, and the changes of the curvature of the
middle surface of the shell, the expressions (300) still hold. The stress resultants
may be represented either in terms of the displacements or directly through the func-
tion F. In accordance with the simplifications leading to Eqs. (304), the effect of
the displacements u and v on the bending and twisting moments must be considered
as negligible. Thus, with the notation

(308)

the following expressions are obtained:

(309)

(310)

(311)

Representing the differential equation (307) in the form

* Further stress functions Fx, Fy, Fz were introduced by Vlasov, op. cit., to represent
the particular integral of Eqs. (305) if X, Y, or Z, respectively, is not zero.



we see that Eq. (307) is also equivalent to the group of four equations

Putting, finally,

for the four new functions $n a set of four equations

is obtained, in which for the constant pn we have to assume

The form of each of the equations (/) is analogous to that of the equation of vibration
of a membrane. In comparison with Eqs. (d), Eqs. (/) have the advantage of being
invariant against a change of coordinates on the cylindrical surface of the shell.

FIG. 261

126. Stress Analysis of Cylindrical Roof Shells.1 Three typical roof layouts are
shown in Figs. 261 and 265. The shells may be either continuous in the direction x
or else supported only twice, say in the planes x = 0 and x = L We shall confine
ourselves to the latter case. We suppose the supporting structures to be rigid with

1SeC also "Design of Cylindrical Concrete Shell Roofs," ASCE Manuals ofEng.
Practice, no. 31, 1952; J. E. Gibson and D. W. Cooper, "The Design of Cylindrical
Shell Roofs," New York, 1954; R. S. Jenkins, "Theory and Design of Cylindrical
Shell Structures," London, 1947; A. Aas-Jakobsen, "Die Berechnung der Zylinder-
shalen," Berlin, 1958. Many data on design of roof shells and an interesting compari-
son of different methods of stress analysis may be found in Proceedings of a Symposium
on Concrete Shell Roof Construction, Cement and Concrete Association, London, 1954.



respect to forces acting in their own planes, x = constant, but as perfectly flexible
with respect to transverse loading. In Fig. 261a the tension members at <p = <pQ are
flexible, whereas the shells shown in Figs. 2616 and 265 are stiffened by beams of
considerable rigidity, especially so in the vertical plane.

Any load distribution over the surface of the shell may be represented by the mag-
nitude of its three components in the form of the series

in which

Likewise, let us represent the particular solutions M0, V0, W0 in expressions (306) in
the form

Expressions for the stress resultants Nx and Mx obtained from these series by means of
Eqs. (309) and (310), in which £ = x/a, show that the conditions (h) of Art. 123 for
hinged edges are fulfilled at the supports x = 0 and x = I.

In order to obtain the general expressions for the displacements in the case

X = F = Z = O

we make use of the resolving function F (Art. 125) by taking it at first in the form

Substitution of this expression in the differential equation (307) yields the following
characteristic equation for a:



in which c2 = h2/12a2. The eight roots of this equation can be represented in the
form

with real values of 7 and 0. Using the notation

we obtain

Returning to the series form of solution, we find that the general expression for the
stress function becomes

and Cim, C2m, . • . are arbitrary constants.
We are able now to calculate the respective displacements by means of the rela-

tions (306). Adding to the result the solution (c), we arrive at the following expres-
sions for the total displacements of the middle surface of the shell:

where primes denote differentiation with respect to <p.
The strain and stress components now are obtained by means of expressions (300),

(309), (310), and (311). In the most general case of load distribution four conditions



on each edge <p = ±<po are necessary and sufficient to calculate the constants Cm\,
. . . , Cms associated with each integer m = 1, 2, 3, . . . .

As an example, let us consider the case of a vertical load uniformly distributed
over the surface of the shell. From page 460 we have

Hence the coefficients of the series (a) are

defined by

FIG. 262

. An appropriate particular solution (c) is given by

The coefficients Aom, B0n, and Com are readily obtained by substitution of the expres-
sions (c), (n), and (m) in Eqs. (305).

To satisfy the conditions of symmetry with respect to the meridian plane <p = 0, a
suitable form of the function (J) is

fm(<p) — Aim cos @i<p cosh yi<p + A 2 m sin &i<p s inh y\<p + A 3 m cos @2<p cosh y2<p
+ A 4m sin /32<P sinh y2<p (o)

in which /?i, /?2, 71, and 72 are defined by the expressions (h) and m = 1, 3, 5, . . . .
In order to formulate the edge conditions on <p = ±<po in the simplest way, let us

write the expressions for the vertical and horizontal components of the edge displace-
ment and of the membrane forces on the edge as well (Fig. 262). We obtain

Finally, the rotation of the shell with respect to the edge line is expressed by

In all terms on the right-hand side of the foregoing expressions we have to put <p = <po.
The following three kinds of edge conditions may be considered in particular.

Roof with Perfectly Flexible Tension Rods (Fig. 261a). Owing to many connected
spans supposed to form the roof, the deformation of the roof can be considered as
symmetrical with respect to the vertical plane through an intermediate edge <p — ±<p0,
where the displacement 5 and the rotation % must vanish. Hence



on (p — ¥?o. Letting Qo be the weight of the tension rod per unit length, we have, by
Eq. {pz), a further condition

2V = Q0 («,)

in which Qo, if constant, can be expanded in the series

Finally, the elongation ex of the shell on the edge <p = <p0 must be equal to the elonga-
tion of the tension member. If A0 denotes the cross-sectional area of the latter and
E0 the corresponding Young modulus,1 then we have, for <p — <p0,

in which the integral represents the tension force of the rod.
The further procedure is as follows. We calculate four coefficients A im, . . . , Aim

for each m = 1, 3, 5, . . . from the conditions (qi), . . . , (g4). The stress function F
is now denned by Eqs. (o) and (i), and the respective displacements are given by the
expressions (306) or (A;). Finally, we obtain the total stress resultants by means of
expressions (309) to (311), starting from the known displacements, or, for the general
part of the solution, also directly from the stress function F.

Roof over Many Spans, Stiffened by Beams (Fig. 2616). The conditions of symmetry

on if> = <po are the same as in the preceding case. To establish a third condition, let
Qo be the given weight of the beam per unit length, Ji0 its depth, 2̂ 0Zo the flexural
rigidity of the beam in the vertical plane, and A 0 the cross-sectional area. Then the
differential equation for the deflection t\ of the beam becomes

the functions 77, V1 and Q0 being given by the expressions (pi), (p3), and (p6), respec-
tively. The last term in Eq. (r3) is due to the difference of level between the edge
of the shell and the axis of the beam. As for the elongation ex of the top fibers of the
beam, it depends not only on the tension force but also on the curvature of the beam.
Observing the effect of the curvature d2r}/dxz

} we obtain in place of Eq. (^4) the
condition

1 In the case of a tension member composed of two materials, say steel and concrete,
a transformed cross-sectional area must be used.



The further procedure of analysis remains essentially the same as in the foregoing
case.

The distribution of membrane forces and bending moments M? obtained1 for the
middle span of a roof, comprising three such spans in all, is shown in Fig. 263. In the
direction x the span of the shell is I = 134.5 ft, the surface load is p — 51.8 psf, and
the weight of the beam Q0 = 448 Ib per ft. Stress resultants obtained by means of
the membrane theorj'- alone are represented by broken lines.
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FIG. 263

One^span Roof, Stiffened by Beams (Fig. 265). In such a case we have to observe
not only the deflection of the beam, given by the edge displacements rj and 5, but the
rotation of the beam x as well (Fig. 264). The differential equation for the vertical
deflection is, this time, of the form

1 By Finsterwalder, loc. cit., using the method described in Art. 124; see also Proc.
Intern. Assoc. Bridge Structural Engrs., vol. 1, p. 127, 1932.



the notation being the same as in the previous case. The horizontal deflection is
governed in like manner by the equation

in which EQI'O denotes the flexural rigidity
of the beam in the horizontal plane,
whereas 5, x, &nd H are given by the
expressions (p2), (p5), and (p4).

The condition of equilibrium of couples
acting on an element of the beam and
taken about the axis of the beam (Fig.
264) yields a further equation

where Mt is the torsional moment of the
beam. Now, the relation between the
moment Mt, the twist 0 =• dx/dx, and
the torsional rigidity Co of the beam isFIG. 264

Substituting this in Eq. (t), we obtain the third edge condition

in which x is given by the expression (p6) and <p — <po.
The elongation ex of the top fibers of the beam due to the deflection 5 may be

neglected, the average value of ex through the thickness of the beam being zero.
Therefore, the condition (r4) of the foregoing case can be rewritten in the form

Again the remaining part of the stress analysis is reduced to the determination of the
constants A\m, . . . , Aim for each m = 1, 3, 5, . . . from Eqs. (si) to (s4) and to
the computation of stresses by means of the respective series.

Figure 265 shows the stress distribution in the case of a shell with I = 98.4 ft and
(po = 45°. It is seen in particular that the distribution of the membrane stresses ax

over the depth of the whole beam, composed by the shell and both stiffeners, is far
from being linear. However, by introducing 8 — 0 as the edge condition instead of
the condition (S2), an almost linear stress diagram 2 could be obtained. If we sup-
pose, in addition, that the rotation x vanishes too, we arrive at a stress distribution
given by curve 3.*

* For particulars of the calculation see K. Girkmann, "Flachentragwerke," 4th ed.;

p. 499, Springer-Verlag, Vienna, 1956. The diagrams of Figs. 265 and 263 are
reproduced from that book by permission from the author and the publisher.



Various simplifications can be introduced into the rather tedious procedure of stress
calculation described above.

Thus, if the ratio I/a is sufficiently large, the stress resultants Mx, Qx, and Mx<p can
be disregarded, as explained in Art. 124. Again, the particular solution (c) may be
replaced by a solution obtained directly by use of the membrane theory of cylindrical
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FIG. 265

shells (Art. 112). The corresponding displacements, needed for the formulation
of the boundary conditions, could be obtained from Eqs. (309). The method con-
sidered in Art. 124 is simplified still more if from all derivatives with respect to <p
needed to represent the strain and stress components, only those of the highest order
are retained.1

On the other hand, the procedure of the stress computation can be greatly reduced
by use of special tables for strain and stress components due to the action of the edge

1 See H. Schorer, Proc. ASCE, vol. 61, p. 181, 1935.



forces on the cylindrical shell.1 A method of iteration2 and the method of finite
differences3 have also been used in stress analysis of shells.

If edge conditions on the supports x = 0, x = I of the shell are other than those
assumed on page 524, the stress disturbance arising from the supplementary edge
forces would require special investigation.4

Provided I/a is not small, the roof shell may also be considered primarily as a beam.6

Various methods of design of such a beam are based on different assumptions with
respect to the distribution of membrane forces Nx over the depth of the beam. A
possible procedure, for example, is to distribute the membrane forces along the contour
of the shell according to the theory of elasticity and to distribute them along the
generatrices according to the elementary beam theory.

In the case of very short roof shells continuous over many supports, the edge condi-
tions on (p = ±<PQ become secondary, and a further simplification of the stress analysis
proves possible.6

So far only circular cylindrical shells have been considered; now let us consider
a sylindrical shell of any symmetrical form (Fig. 266). Given a vertical loading

varying only with the angle <p, we always can obtain a
cylindrical surface of pressure going through the gen-
eratrices A, C, and B. If, for instance, the load is
distributed uniformly over the ground plan of the shell,
the funicular curve ACB would be a parabola. Now
suppose the middle surface of the shell to coincide with
the surface of pressure due to a given load. The total
load then is transmitted by the forces Nv toward the
edges A and B of the shell to be carried finally by the
side beams over the whole length of the cylinder. If,

instead, we want the load to be transmitted toward the end supports of the shell by
the action of the membrane forces Nx and Nx<p, a shell contour overtopping the
funicular (thrust-line) curve must be chosen (Fig. 266).

From the relation N^, = -Za [see Eqs. (270)] we also conclude that for a vertical
load, i.e., for Z = pv cos <p, we have Nv = — pva cos <p, where pv is the intensity of the
load. Therefore the ring forces Nv on the edge vanish only when <po = x/2, that is,
when the tangents to the contour line of the shell are vertical at the edges A and B.
This condition is satisfied by such contours as a semicircle, a semiellipse, or a cycloid,7

which all overtop the pressure line due to a uniformly distributed load.
1SuCh tables (for v = 0.2) are given by H. Lundgren in his book "Cylindrical

Shells," vol. 1, Copenhagen, 1949. For tables based on a simplified differential
equation, due to L. H. Donnell, see D. Riidiger and J. Urban, " Kreiszylinderschalen,"
Leipzig, 1955. See also references, page 524.

2 A. Aas-Jakobsen, Bauingenieur, vol. 20, p. 394, 1939.
3 H. Hencky, "Neuere Verfahren in der Festigkeitslehre," Munich, 1951. For the

first application of the method to stress analysis of shells, see H. Keller, Schweiz.
Bauztg., p. I l l , 1913. The relaxation method has been applied to stress analysis of
shells by W. Flugge, "Federhofer-Girkmann-Festschrift," p. 17, Vienna, 1950.

4 By application of Miesel's theory, op. cit., or by an approximate method due to
Finsterwalder, op. cit.

6 This approach has especially been used by A. Aas-Jakobsen, op. cit., p. 93.
6 See B. Thiirlimann, R. O. Bereuter, and B. G. Johnston, Proc. First U.S. Natl.

Congr. Appl. Mech., 1952, p. 347. For application of the photoelasticity method to a
cylindrical shell (tunnel tube), see G. Sonntag, Bauingenieur, vol. 31, p. 408, 1956.

7 For membrane stresses in shells of this kind see, for example, Girkmann, op. cit.,
and A. Pfluger, "Elementare Schalenstatik," Berlin, 1957. The bending of semi-
elliptical shells was considered by A. Aas-Jakobsen; Ginie civil, p. 275, 1937. For
other shapes of cylindrical roofs, see E. Wiedemann, Ingr.-Arch.., vol. 8, p. 301, 1937.
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CHAPTER 16

SHELLS HAVING THE FORM OF A SURFACE OF

REVOLUTION AND LOADED SYMMETRICALLY

WITH RESPECT TO THEIR AXIS

127. Equations of Equilibrium. Let us consider the conditions of
equilibrium of an element cut from a shell by two adjacent meridian
planes and two sections perpendicular to the meridians (Fig. 267). * It
can be concluded from the condition of symmetry that only normal
stresses will act on the sides of the element lying in the meridian planes.
The stresses can be reduced to the resultant force Ne Vi d<p and the
resultant moment M9 v\ d<p, Ne and M6 being independent of the angle 0
which defines the position of the meridians. The side of the element
perpendicular to the meridians which is denned by the angle <p (Fig. 267) is
acted upon by normal stresses which
result in the force Nv V2 sin <p dd
and the moment Mv v2 sin <p dd and
by shearing forces which reduce
the force Qv V2 sin <p dd normal to the
shell. The external load acting
upon the element can be resolved,
as before, into two components
Yrir2 sin <p dcp dd and ZvxV2 sin <p d<p dd
tangent to the meridians and nor-
mal to the shell, respectively.
Assuming that the membrane forces
Ne and N9 do not approach their
critical values,2 we neglect the
change of curvature in deriving the
equations of equilibrium and pro-
ceed as was shown in Art. 105. In Eq. (/) of that article, obtained by
projecting the forces on the tangent to the meridian, the term -Q^r0

must now be added to the left-hand side. Also, in Eq. 0), which was
1 We use for radii of curvature and for angles the same notation as in Fig. 213.
2 The question of buckling of spherical shells is discussed in S. Timoshenko, "Theory

of Elastic Stability," p. 491, 1936.

FIG. 267



obtained by projecting the forces on the normal to the shell, an additional
term d( Q r̂0)/d<p must be added to the left-hand side. The third equation
is obtained by considering the equilibrium of the moments with respect to
the tangent to the parallel circle of all the forces acting on the element.
This gives1

After simplification, this equation, together with the two equations of
Art. 105, modified as explained above, gives us the following system of
three equations of equilibrium:

(312)

In these three equations of equilibrium are five unknown quantities,
three resultant forces N99 Ne, and Q9 and two resultant moments M6 and
M9. The number of unknowns can be reduced to three if we express the
membrane forces N9 and Ne and the moments M9 and M9 in terms of
the components v and w of the displacement. In the discussion in Art.
108 of the deformation produced by membrane stresses, we obtained for
the strain components of the middle surface the expressions

from which, by using Hooke's law, we obtain

(313)

To get similar expressions for the moments M9 and M6 let us consider
the changes of curvature of the shell element shown in Fig. 267. Con-
sidering the upper and the lower sides of that element, we see that the
initial angle between these two sides is d<p. Because of the displace-
ment v along the meridian, the upper side of the element rotates with

1 In this derivation we observe that the angle between the planes in which the
moments Me act is equal to cos <p d$.



respect to the perpendicular to the meridian plane by the amount v/rx.
As a result of the displacement W1 the same side further rotates about
the same axis by the amount dw/(r\ d<p). Hence the total rotation of the
upper side of the element is

For the lower side of the element the rotation is

Hence the change of curvature of the meridian is1

To find the change of curvature in the plane perpendicular to the
meridian, we observe that because of symmetry of deformation each of
the lateral sides of the shell element (Fig. 267) rotates in its meridian plane
by an angle given by expression (a). Since the normal to the right lateral
side of the element makes an angle {TT/2) — cos <p dd with the tangent to
the y axis, the rotation of the right side in its own plane has a com-
ponent with respect to the y axis equal to

This results in a change of curvature

Using expressions (6) and (c), we then obtain

(314)

Substituting expressions (313) and (314) into Eqs. (312), we obtain three
equations with three unknown quantities V1 W1 and Qv. Discussion of
these equations will be left to the next article.

We can also use expressions (314) to establish an important conclusion
regarding the accuracy of the membrane theory discussed in Chap. 14.
In Art. 108 the equations for calculating the displacements v and w were

1 The strain of the middle surface is neglected, and the change in curvature is
obtained by dividing the angular change by the length rxd<pol the arc.



established. By substituting the displacements given by these equations
in expressions (314), the bending moments and bending stresses can be
calculated. These stresses were neglected in the membrane theory. By
comparing their magnitudes with those of the membrane stresses, a con-
clusion can be drawn regarding the accuracy of the membrane theory.

We take as a particular example a spherical shell under the action of its
own weight (page 436). If the supports are as shown in Fig. 215a, the
displacements as given by the membrane theory from Eqs. (/) and (b)
(Art. 108) are

Substituting these expressions into formulas (314) for the bending
moments, we obtain

The corresponding bending stress at the surface of the shell is numeri-
cally equal to

Taking the ratio of this stress to the compressive stress a given by the
membrane theory [see Eqs. (257)], we find

The maximum value of this ratio is found at the top of the shell where
V = 0 and has a magnitude, for v = 0.3, of

It is seen that in the case of a thin shell the ratio (/) of bending stresses
to membrane stresses is small, and the membrane theory gives satisfactory
results provided that the conditions at the supports are such that the
shell can freely expand, as shown in Fig. 215a. Substituting expression
(e) for the bending moments in Eqs. (312), closer approximations for the
membrane forces N^ and Ne can be obtained. These results will differ
from solutions (257) only by small quantities having the ratio h2/a2 as a
factor.

From this discussion it follows that in the calculation of the stresses in



symmetrically loaded shells we can take as a first approximation the
solution given by the membrane theory and calculate the corrections by
means of Eqs. (312). Such corrected values of the stresses will be accu-
rate enough if the edges of the shell are free to expand. If the edges are
not free, additional forces must be so applied along the edge as to satisfy
the boundary conditions. The calculation of the stresses produced by
these latter forces will be discussed in the next article.

128. Reduction of the Equations of Equilibrium to Two Differential
Equations of the Second Order. From the discussion of the preceding
article, it is seen that by using expressions (313) and (314) we can obtain
from Eqs. (312) three equations with the three unknowns v, w, and Qv.
By using the third of these equations the shearing force Q1? can be readily
eliminated, and the three equations reduced to two equations with the
unknowns v and w. The resulting equations were used by the first
investigators of the bending of shells.1 Considerable simplification of
the equations can be obtained by introducing new variables.2 As the
first of the new variables we shall take the angle of rotation of a tangent
to a meridian. Denoting this angle by V, we obtain from Eq. (a) of the
preceding article

As the second variable we take the quantity

To simplify the transformation of the equations to the new variables
we replace the first of the equations (312) by one similar to Eq. (255)
(see page 435), which can be obtained by considering the equilibrium of
the portion of the shell above the parallel circle defined by the angle ip
(Fig. 267). Assuming that there is no load applied to the shell, this
equation gives

2TTTQNV S i n ip + 2TTTQQV C 0 S V = O

from which

Substituting in the second of the equations (312), we find, for Z = O,

!See A. Stodola, "Die Dampfturbinen," 4th ed., p. 597, 1910; H. Keller, Mitt.
Forschungsarb., vol. 124, 1912; E. Fankhauser, dissertation, Zurich, 1913.

2 This method of analyzing stresses in shells was developed for the case of a spherical
shell by H. Reissner, "Miiller-Breslau-Festschrift," p. 181, Leipzig, 1912: it was
generalized and applied to particular cases by E. Meissner, Physik. Z., vol. 14, p. 343,
1913; and Vierteljahrsschr. naturforsch. Ges. Zurich, vol. 60, p. 23, 1915.



and, observing that rQ = r2 sin <p, we obtain

Thus the membrane forces Nv and Ne are both represented in terms of
the quantity U, which is, as we see from notation (6), dependent on the
shearing force Q^.

To establish the first equation connecting V and U we use Eqs. (313),
from which we readily obtain

Eliminating w from these equations, we find

Differentiation of Eq. (/) gives1

The derivative dv/d<p can be readily eliminated from Eqs. (g) and (h)
to obtain

Substituting expressions (c) and (d) for N? and Ne, we finally obtain the
following equation relating to U and V:

(315)

The second equation for U and V is obtained by substituting expressions
(314) for Mv and Me in the third of the equations (312) and using nota-
tions (a) and (b). In this way we find

1 We consider a general case by assuming in this derivation that the thickness h
of the shell is variable.



(316)

Thus the problem of bending of a shell having the form of a surface of
revolution by forces and moments uniformly distributed along the parallel
circle representing the edge is reduced to the integration of the two Eqs.
(315) and (316) of the second order.

If the thickness of the shell is constant, the terms containing dh/d<p
as a factor vanish, and the derivatives of the unknowns U and V in both
equations have the same coefficients. By introducing the notation

the equations can be represented in the following simplified form:

(317)

From this system of two simultaneous differential equations of the second
order we readily obtain for each unknown an equation of the fourth order.
To accomplish this we perform on the first of the equations (317) the
operation indicated by the symbol L( • • • ), which gives

Substituting from the second of the equations (317),

we obtain

(318)

In the same manner we also find the second equation

(319)

If the radius of curvature n is constant, as in the case of a spherical or
a conical shell or in a ring shell such as is shown in Fig. 220, a further



simplification of Eqs. (318) and (319) is possible. Since in this case

by using the notation

both equations can be reduced to the form

(320)

which can be written in one of the two following forms:

These equations indicate that the solutions of the second-order equations

(321)

are also the solutions of Eq. (320). By proceeding as was explained in
Art. 118, it can be shown that the complete solution of Eq. (320) can be
obtained from the solution of one of the equations (321). The appli-
cation of Eqs. (321) to particular cases will be discussed in the two
following articles.

129. Spherical Shell of Constant Thickness. In the case of a spherical
shell of constant thickness 7*1 = r% — a, and the symbol (i) of the pre-
ceding article is

Considering the quantity aQ^ instead of t/, as one of the unknowns in
the further discussion and introducing, instead of the constant /A, a new
constant p denned by the equation

we can represent the first of the equations (321) in the following form:

(322)

A further simplification is obtained by introducing the new variables1

1 This solution of the equation was given by Meissner, op. ciU



With these variables Eq. (322) becomes

This equation belongs to a known type of differential equation of the
second order which has the form

Equations (d) and (e) coincide if we put

A solution of Eq. (e) can be taken in the form of a power series

Substituting this series in Eq. (e) and equating the coefficients for
each power of x to zero, we obtain the following relations between the
coefficients:

With these relations series (g) becomes

This is the so-called hypergeometrical series. It is convergent for all
values of x less than unity and can be used to represent one of the inte-
grals of Eq. (d). Substituting for a, ft, and y their values (/) and using
the notation

we obtain as the solution of Eq. (d)

which contains one arbitrary constant Ao.



The derivation of the second integral of Eq. (d) is more complicated.1

This integral can be written in the form

where <p(x) is a power series that is convergent for |x| < 1. This second
solution becomes infinite for x = 0, that is, at the top of the sphere (Fig.
267), and should not be considered in those cases in which there is no
hole at the top of the sphere.

If we limit our investigation to these latter cases, we need consider only-
solution (j). Substituting for 52 its value (z) and dividing series (j) into
its real and imaginary parts, we obtain

where Si and S2 are power series that are convergent when |a;| < 1. The
corresponding solution of the first of the equations (321) is then

where / i and I2 are two series readily obtained from the series Si and $2.
The necessary integral of the second of the equations (321) can be

represented by the same series I\ and I2 (see page 489). Thus, for the
case of a spherical shell without a hole at the top, the general solution
of the differential equation (320), which is of the fourth order, can be
represented in the form

where A and B are constants to be determined from the two conditions
along the edge of the spherical shell.

Having expression (n) for U, we can readily find the second unknown V.
We begin by substituting expression (ra) in the first of the equations (321),
which gives

Hence

Substituting expression (n) in the first of the equations (317) and apply-
ing expressions (0), we then obtain

It is seen that the second unknown V is also represented by the series
/1 and I2.

1 Differential equations that are solved by hypergeometrical series are discussed in
the book " Riemann-Weber, Die partiellen Differential-Gleichungen," vol. 2, pp. 1-29,
1901. See also E. Kamke, "Differentialgleichungen," vol. 1, 2d ed., p. 465, Leipzig,
1943.



Having the expressions for U and V1 we can obtain all the forces,
moments, and displacements. The forces N9 and Ne are found from
Eqs. (c) and (d) of the preceding article. The bending moments M9 and
M9 are obtained from Eqs. (314). Observing that in the case of a spheri-
cal shell T1 = r2 = a and using notation (a), we obtain

In calculating the components v and w of displacement we use the
expressions for the strain in the middle surface:

Substituting for N9 and Ne their expressions in U and V, we obtain
expressions for ê  and ee which can be used for calculating v and w as was
explained in Art. 108.

In practical applications the displacement 8 in the planes of the parallel
circles is usually important. It can be obtained by projecting the com-
ponents v and w on that plane. This gives (Fig. 267)

The expression for this displacement in terms of the functions U and V is
readily obtained if we observe that 8 represents the increase in the radius
r0 of the parallel circle. Thus

Thus all the quantities that define the bending of a spherical shell by
forces and couples uniformly distributed along the edge can be repre-
sented in terms of the two series Ii and Z2.

The ease with which practical application of this analysis can be made
depends on the rapidity of convergence of the series I\ and /2. This con-
vergence depends principally upon the magnitude of the quantity

which, if v2 is neglected in comparison with unity, becomes



Calculations show1 that for p < 10 the convergence of the series is satis-
factory, and all necessary quantities can be found without much diffi-

culty for various edge conditions.

As an example we shall take the case
of a spherical shell submitted to the
action of uniform normal pressure p
(Fig. 268). The membrane stresses in
this case are

and the corresponding membrane forces
that keep the shell in equilibrium are

By superposing on the membrane forces
horizontal forces

FIG. 268

uniformly distributed along the edge of the shell, we obtain the case, represented in
Fig. 268a, in which the loaded shell is supported by vertical reactions of a horizontal
plane. The stresses in this case are obtained by superposing on the membrane stresses
(t) the stresses produced by the horizontal forces H. These latter stresses can be
obtained by using the general solutions (n) and (p) and determining the constants
A and B in these solutions so as to satisfy the boundary conditions

(N<p)<p-a = H COS a (M^p-a = 0

The stresses obtained in this way for a particular case in which a = 56.3 in., h =
2.36 in., a = 39°, p = 284 psi, and v = 0.2 are shown in Fig. 269.

By superposing on the membrane forces (u) the horizontal forces H1 and bending
moments Ma uniformly distributed along the edge, we can also obtain the case of a
shell with built-in edges (Fig. 2686). The stresses in this case are obtained by super-
posing on the membrane stresses (t) the stresses produced in the shell by the forces
Hx and the moments Ma. These latter stresses are obtained as before from the
general solutions (n) and (p), the constants A and B being so determined as to satisfy
the boundary conditions

(*),- - o (VV- - o
The total stresses obtained in this way for the previously cited numerical example are
shown in Fig. 270.

From the calculation of the maximum compressive and maximum tensile stresses
for various proportions of shells submitted to the action of a uniform normal pressure
p, it was found2 that the magnitude of these stresses depends principally on the

1 Such calculations were made by L. Bolle, Schweiz. Bauztg., vol. 66, p. 105, 1915.
8 Ibid.
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magnitude of the quantity

and can be represented by comparatively simple formulas. For the case represented
in Fig. 268a these formulas for the numerically greatest stress are as follows:

For the case represented in Fig. 2686 the formulas are:

It was assumed in the foregoing discussion that the shell has no hole at the top. If
there is such a hole, we must satisfy the boundary conditions on both the lower and
the upper edges of the shell. This requires consideration of both the integrals (j)
and (Jc) of Eq. (d) (see p. 541) and finally results in a solution of Eq. (320) which con-
tains four constants which must be adjusted in each particular case so as to satisfy
the boundary conditions on both edges. Calculations of this kind show1 that, if the
angle a is not small, the forces distributed along the upper edge have only a very small
influence on the magnitude of stresses at the lower edge. Thus, since these latter
stresses are usually the most important, we can obtain the necessary information for
the design of a shell with a hole by using for the calculation of the maximum stresses
the formulas derived for shells without holes.

The method of calculating stresses in spherical shells discussed in this article can
also be applied in calculating thermal stresses. Assume that the temperatures at the
outer and at the inner surfaces of a spherical shell are constant but that there is a
linear variation of temperature in the radial direction. If t is the difference in the
temperatures of the outer and inner surfaces, the bending of the shell produced by
the temperature difference is entirely arrested by constant bending moments
(see Art. 14):

In the case of a complete sphere these moments actually exist and produce bending
stresses the maximum values of which are

If we have only a portion of a sphere, supported as shown in Fig. 268a, the edge is
free to rotate, and the total thermal stresses are obtained by superposing on stresses

1JMd.



(w) the stresses that are produced in the shell by the moments

uniformly distributed along the edge. These latter stresses are obtained by using
the method discussed in this article.1 In the case shown in Fig. 2686 the thermal
stresses are given by formula (w), if the temperature of the middle surface always
remains the same. Otherwise, on the stresses (w) must be superposed stresses pro-
duced by forces H and moments Ma which must be determined in each particular
case so as to satisfy the boundary conditions.

130. Approximate Methods of Analyzing Stresses in Spherical Shells.
In the preceding article it has already been indicated that the application
of the rigorous solution for the stresses in spherical shells depends on the
rapidity of convergence of the series entering into the solution. The con-
vergence becomes slower, and more and more terms of the series must be
calculated, as the ratio a/h increases, i.e., as the thickness of the shell
becomes smaller and smaller in comparison with its radius.2 For such
shells approximate methods of solution have been developed which give
very good accuracy for large values of a/h.

One of the approximate methods for the solution of the problem is the
method of asymptotic integration.3 Starting with Eq. (320) and intro-
ducing, instead of the shearing force Q^, the quantity

we obtain the equation

in which

It can be seen that for thin shells, in which a/h is a large number, the
quantity 4/34 is very large in comparison with the coefficients a0, ai, and
a2, provided the angle <p is not small. Since in our further discussion we
shall be interested in stresses near the edge where (p = a (Fig. 268) and

1 Thermal stresses in shells have been discussed by G. Eichelberg, Forschungsarb.,
no. 263, 1923. For shells of arbitrary thickness see also E. L. McDowell and E.
Sternberg, J. Appl. Mechanics, vol. 24, p. 376, 1957.

2 Calculations by J. E. Ekstrom in Ing. Vetenskaps. Akad., vol. 121, Stockholm,
1933, show that for a/h = 62.5 it is necessary to consider not less than 18 terms of the
series.

3 See O. Blumenthal's paper in Repts. Fifth Intern. Congr. Math., Cambridge, 1912;
see also his paper in Z. Math. Physik, vol. 62, p. 343, 1914.



a is not small, we can neglect the terms with the coefficients a0, ai, and
a2 in Eq. (b). In this way we obtain the equation

This equation is similar to Eq. (276), which we used in the investigation
of the symmetrical deformation of circular cylindrical shells. Using the
general solution of Eq. (d) together with notation (a), we obtain

From the previous investigation of the bending of cylindrical shells we
know that the bending stresses produced by forces uniformly distributed
along the edge decrease rapidly as the distance from the edge increases.
A similar condition also exists in the case of thin spherical shells. Observ-
ing that the first two terms in solution (e) decrease while the second two
increase as the angle <p decreases, we conclude that in the case of a sphere
without a hole at the top it is permissible to take only the first two terms
in solution (e) and assume

Having this expression for Qv and using the relations (6), (c), and (d) of
Art. 128 and the relations (p), (g), and (r) of Art. 129, all the quantities
defining the bending of the shell can be calculated, and the constants Ci
and C2 can be determined from the conditions at the edge. This method
can be applied without any difficulty to particular cases and gives good
accuracy for thin shells.1

Instead of working with the differential equation (320) of the fourth
order, we can take, as a basis for an approximate investigation of the
bending of a spherical shell, the two Eqs. (317).2 In our case these
equations can be written as follows:

1 An example of application of the method of asymptotic integration is given by
S. Timoshenko; see Bull. Soc. Eng. Tech., St. Petersburg, 1913. In the papers by
Blumenthal, previously mentioned, means are given for the improvement of the
approximate solution by the calculation of a further approximation.

2 This method was proposed by J. W. Geckeler, Forschungsarb., no. 276, Berlin,
1926, and also by I. Y. Staerman, Bull. Polytech. Inst. Kiev, 1924; for a generaliza-
tion see Y. N. Rabotnov, Doklady Akad. Nauk S.S.S.R., n.s., vol. 47, p. 329, 1945.



where Qv is the shearing force and V is the rotation of a tangent to a
meridian as denned by Eq. (a) of Art. 128. In the case of very thin
shells, if the angle <p is not small, the quantities Q^ and V are damped out
rapidly as the distance from the edge increases and have the same oscilla-
tory character as has the function (/). Since 0 is large in the case of thin
shells, the derivative of the function (/) is large in comparison with the
function itself, and the second derivative is large in comparison with the
first. This indicates that a satisfactory approximation can, be obtained
by neglecting the terms containing the func-
tions Q^ and V and their first derivatives
in the left-hand side of Eqs. (g). In this
way Eqs. (g) can be replaced by the follow-
ing simplified system of equations:1

By eliminating V from these equations, we
obtain

The general solution of this equation is

Considering the case in which there is no hole at the top (Fig. 271a) and
the shell is bent by forces and moments uniformly distributed along the
edge, we need consider from the general solution (k) only the first two
terms, which decrease as the angle (p decreases. Thus

The two constants Ci and C 2 are to be determined in each particular case
from the conditions at the edge (<p — a). In discussing the edge con-
ditions it is advantageous to introduce the angle >p = a — <p (Fig. 271).
Substituting a — ^ for <p in expression (I) and using the new constants

1 This simplification of the problem is equivalent to the replacement of the portion
of the shell near the edge by a tangent conical shell and application to this conical
shell of the equation that was developed for a circular cylinder (Art. 114): see E.
Meissner, "A. Stodola Festschrift," p. 406, Zurich, 1929.



C and 7, we can represent solution (I) in the form

Now, employing Eqs. (b), (c), and (d) of Art. 128, we find

(323)

From the first of the equations (h) we obtain the expression for the angle
of rotation

(324)

The bending moments can be determined from Eqs. (q) of the preceding
article. Neglecting the terms containing V in these equations, we find

(325)

Finally, from Eq. (r) of the preceding article we find the horizontal com-
ponent of displacement to be

(326)

With the aid of formulas (323) to (326) various particular cases can
readily be treated.

Take as an example the case shown in Fig. 27Ib, The boundary con-
ditions are

( M , ) ^ = Ma (N,),-a = 0 (n)

By substituting \p = 0 in the first of the equations (323), it can be con-
cluded that the second of the boundary conditions (n) is satisfied by
taking the constant y equal to zero. Substituting 7 = 0 and \j/ = 0 in
the first of the equations (325), we find that to satisfy the first of the
conditions (n) we must have

which gives

Substituting values thus determined for the constants y and C in expres-
sions (324) and (326) and taking ^ = 0, we obtain the rotation and the



horizontal displacement of the edge as follows;

(327)

In the case represented in Fig. 271c, the boundary conditions are

To satisfy the first of these conditions, we must take 7 = — T/4 . To
satisfy the second boundary condition, we use the first of the equations
(323) which gives

from which we determine

Substituting the values of the constants 7 and C in (324) and (326),
we find

(328)

It can be seen that the coefficient of Ma in the second of the formulas
(327) is the same as the coefficient of H in the first of the formulas (328).
This should follow at once from the reciprocity theorem.

Formulas (327) and (328) can readily be applied in solving particular problems
Take as an example the case of a spherical shell
with a built-in edge and submitted to the action
of a uniform normal pressure p (Fig. 272a).
Considering first the corresponding membrane
problem (Fig. 2726), we find a uniform compres-
sion of the shell

The edge of this shell experiences no rotation and
undergoes a horizontal displacement

(p)

To obtain the solution of the given problem we
superpose on the membrane forces of Fig. 2726
forces and moments uniformly distributed along
the edge as in Fig. 272c. These forces and mo-
ments are of such magnitude that the correspond-
ing horizontal displacement is equal and opposite
to the displacement (p), and the corresponding rotation of the edge is equal to zero.

FIG. 272



In this way, by using formulas (327) and (328), we obtain the following equations for
the determination of Ma and H:

from which

The negative signs indicate that Ma and H have directions opposite to those shown
in Fig. 271.

The approximate equations (h) were obtained by neglecting the unknown functions
Q<P and V and their first derivatives in the exact equations (g). A better approxima-
tion is obtained if we introduce the new variables1

Substituting

in Eqs. (g), we find that the terms containing the first derivatives of Qi and Vi vanish.
Hence, to obtain a simplified system of equations similar to Eqs. {h)} we have to
neglect only the terms containing the quantities Q\ and V\ in comparison with the
terms containing the second derivatives of the same quantities. This gives

The solution of these equations can be obtained in the same manner as in the case of
Eqs. (h). Returning to the original variables Q<p and V1 we then obtain, instead of
expressions (m) and (324), the following solutions:2

(329)

Proceeding now in exactly the same way as in our previous discussion, we obtain the
following expressions in place of formulas (323), (325), and (326):

1 This is the same transformation as was used by O. Blumenthal; see Eq. (a), p. 547.
2 The closer approximation was obtained by M. Hete*nyi, Publs. Intern. Assoc.

Bridge Structural Engrs., vol. 5, p. 173, 1938; the numerical example used in the
further discussion is taken from this paper.



(330)

Applying formulas (330) to the particular cases previously discussed and repre-
sented in Fig. 2716 and c, we obtain, instead of formulas (327) and (328), the follow-
ing better approximations:

(331)

(332)

Meridional bending moments M~ inch lbs./nch

Appro*. I

Approx. I

Fm. 273



By applying these formulas to the particular case shown in Fig. 272a, second
approximations for the reactive moments Ma and reactive forces H are readily
obtained.

To compare the first and second approximations with the exact solution, we shall
consider a numerical example in which a = 90 in., h = 3 in., a = 35°, p = 1 psi, and
v = -g-. The first and second approximations for M^ have been calculated by using
the first of the equations (325) and the third of equations (330) and are represented by
the broken lines in Fig. 273. For comparison the exact-solution1 has also been calcu-
lated by using the series of the preceding article. This exact solution is represented by
the full line in Fig. 273. In Fig. 274 the force Ne as calculated for the same numerical

Membrane hoop force No = 45.0/bs. per inch.

Hoop forces due to bending H9 Ibs./inch

Approx.TL
Exact

Approx. I

FIG. 274

example is shown. From these two figures it can be concluded that the second
approximation has very satisfactory accuracy. Observing that in our example the
ratio a/h is only 30 and the angle a. = 35° is comparatively small, it can be concluded
that the second approximation can be applied with sufficient accuracy in most cases
encountered in present structural practice.2

1 It was necessary to take 10 terms in the series to obtain sufficient accuracy in
this case.

2 In the case in which the angle a is small and the solution (329) is not sufficiently
accurate, the shell may be considered "shallow" and treated accordingly (see Art.
132). Application of the equations of finite differences to the same problem has been
made by P. Pasternak, Z. angew. Math. Mech., vol. 6, p. 1, 1926. The case of non-
isotropic shells is considered by E. Steuermann, Z. angew. Math. Mech., vol. 5, p. 1,
1925. One particular case of a spherical shell of variable thickness is discussed by
M. F. Spotts, / . Appl. Mechanics (Trans. ASME), vol. 61, 1939, and also by F. Tolke,
Ingr.-Arch., vol. 9, p. 282, 1938. For the effect of concentrated loads, see F. Martin,
Ingr.-Arch., vol. 17, p. 107, 1949, and Art. 132. The problem of nonsymmetrical
deformation of spherical shells is considered by A. Havers, Ingr.-Arch., vol. 6, p. 282,
1935. Further discussion of the same problem in connection with the stress analysis
of a spherical dome supported by columns is given by A. Aas-Jakobsen, Ingr.-Arch.t
vol. 8, p. 275, 1937.



131. Spherical Shells with an Edge Ring. In order to reduce the effect of the
thrust of a dome in its action upon the supporting structure, an edge ring (Figs. 275a
and 276a) is sometimes used. The vertical deflection of this ring, supported either
continuously or in a number of points, may be neglected in the following analysis.

FIG. 275

Let us consider the conditions on the edge <p = a of the dome carrying-some dis-
tributed, symmetrical load. The membrane forces N^1 Ne due to this load would
produce, according to Eq. (r) (page 543) an increase of the radius ra — a sin a equal to

This displacement will be accompanied by a rotation of the edge tangent

according to results obtained on page 538, and by a thrust

The corresponding tension force in the ring is HQTQ. and the elongation is eo = >
hod

where E denotes Young's modulus of the material of the ring. The increase of the
radius r0 due to the action of H0 will be



In order to bring the edge deformation of the shell in accordance with the deforma-
tion of the ring, let us apply along the circumference of both the edge and the ring
uniformly distributed couples of an intensity Ma and radial forces of an intensity H
(Fig. 2756). Using the results (327) and (328), we obtain the following expressions
for the horizontal displacement of the edge and the rotation V:

The action of Ma and H upon the ring is statically equivalent to the combined
action of the overturning couples

and of forces H applied on the level of the centroid of the ring section (Fig. 275c).
These latter cause a radial displacement of the ring equal to

as follows from Eq. (d), but no rotation.
It still remains to consider the deformation of the ring due to the couples T. An

element of the ring of length ds = ro dd is held in equilibrium by the action of an
overturning couple T ds and two bending couples Me = T ds/dd = Tr0 (see Fig. 275d,
where all three couples are represented by equivalent vectors). Thus, the maximum
hoop stress in the ring due to the couples T is

The corresponding unit elongation of the top and bottom fibers of the ring is seen
to be € = ±6Tro/Ebd2, respectively. Hence the rotation of the transverse section
of the ring becomes

where |e| denotes the absolute value of the largest unit elongation.
Now, the total horizontal displacement of the shell edge must be equal to that of the

ring, and the same holds for the rotation. This yields the following relations:

in which the term Vie represents the effect of the rotation on the radial displacement
of the ring at the level of the edge of the shell. After substitution of the expressions
(a) to (h) for the displacement and the rotation in (i) and (j), we obtain two linear
equations for the unknown values of Ma and H. These values also define the con-
stants of integration of the approximate solution, as shown in Art. 130. The total
stress resultants and deflections of the shell can be found then by combining the effect
of membrane forces with the effect of bending, this latter being expressed, for example,
by Eqs. (323), (324), and (325).

As an illustrative example, let us consider a spherical dome (Fig. 276a) with a =
76.6 ft, a = 40°, r0 = 49.2 ft, h = 2.36 in., and the cross-sectional dimensions of the



FIG. 276

ring 6 = 1.97 ft, d =» 1.64 ft, and e « d/2; the modulus E is the same for the shell
and the ring, and the constant v is assumed equal to zero. The dome is submitted
to the action of its own weight q = 41 psf of the surface of the dome. The membrane
forces due to this load are given by Eqs. (257), and the procedure of computation
indicated above leads to the following values of the edge forces:1

Ma = -24.84 lb-in. per in.
H = -8.95 Ib per in.

The corresponding values of bending moment Mp are shown in Fig. 2766.
In the foregoing the simplified differential equation (i), Art. 130, has been employed
1 The details of computation may be found in K. Girkmann, "Flachentragwerke,"

4th ed., p. 442, Springer-Verlag, Vienna, 1956. The diagram Fig. 2766 is repro-
duced here by courtesy of Professor K. Girkmann and the Springer-Verlag, Vienna.



to determine the effect of the edge forces. The reasoning and the procedure remain
substantially the same, however, if a more exact differential equation is used.

132. Symmetrical Bending of Shallow Spherical Shells. Let the middle surface
of a spherical shell (Fig. 277a) be given in the form

If we have to deal with a "shallow" spherical shell, we put

and take for symmetrical1 load distribution the radius r (Fig. 277a) as the sole inde-
pendent variable. The differential equa-
tions of equilibrium (312) then become

where p and pr designate the load inten-
sity in the normal and in the meridional
direction, respectively. The relations
between the stress resultants, the strain
components, and the displacements w
and v (in the directions p and pr) are the
following:FIG. 277

in which

Now we take the fact into account that the effect of transverse shear Qr on mem-
brane forces in Eq. (b) can be neglected in the case of a shallow shell. Assuming,
furthermore, that the load term pr is derivable from a load potential fl, so that pr =
-dti/dr, we satisfy Eq. (6) by setting

1 The general theory of shallow spherical shells, due to E. Reissner, is free from this
limitation; see J. Math. andPhys., vol. 25, p. 80, 1946; vol. 25, p. 279, 1947.



where F is a stress function. It is easy to verify also that the relations (e) between the
strain and the displacement components correspond to the equation of compatibility:

in which A = d*/dr* + (l/r)(d/dr).
Combining Eqs. (e) and (i), we arrive at the following fundamental equation for

F and w:

In order to obtain a second fundamental relation between the same functions, we
substitute Qr from (d) in Eq. (c). We obtain

Using now the expressions (/) and (h) in combination with Eq. (k), we find

Finally, let us write the expressions for the vertical shearing force Qv and the horizontal
displacement 8, both of which may be used in formulating the edge conditions of the
shell. We obtain

in which the expression for the transverse force

is of the same form as in the theory of plates.
In the case p = S7 = 0, the integration of the simultaneous equations (j) and (I) can

be carried out by multiplying Eq. (j) by a factor — X and adding the result to Eq. (Z).
This yields

From (o) we obtain an equation for a single function w — \F by putting X = - l/\h DE;
that is,



where i = V— 1. Let us also introduce a characteristic length I defined by the
relation \Eh/a = i/l2, so that

The differential equation (o) then assumes the form

Next, setting

we obtain $ and SF as the general solution of the equations

The respective solutions are of the form

An are arbitrary complex constants and \pi(x), . . . , ^4(z) are functions denned on
page 490 and tabulated in Table 86. Using the solutions (u) and (v) and a set of real
constants Cn and separating in Eq. (s) real and imaginary parts after substitution,
we can obtain the following general expressions for the normal deflection w and the
stress function F:1

To illustrate the use of the foregoing results, let us consider a shallow shell with a
very large radius subjected to a point load P at the apex r = 0.

In such a case we have to satisfy the obvious condition

while w, dw/dr, Nr, and Ne must be finite at r = 0, and w, Mr, and Me must vanish for
r = oo. Using the first of the expressions (m) to satisfy Eq. (z), we obtain

and for the other constants we get the values
1 It can be shown that a term C7 log x must be omitted in expression (z), while a

constant term Cg can be suppressed as immaterial in expression (y).



ynccurumgiy, me una-i results axe

Since 3̂(O) = 0.5 we obtain for the deflec-
tion of the shell at the point of the appli-
cation of the load the value

The distribution of the membrane stresses
(xr = Nr/h and <re = Ne/h and that of the
bending stresses <rr = T6Mr/h

2 and
o-0 = + 6Me/h2 on the upper surface of
the shell (for which the upper signs must be taken) are shown in Fig. 278.

When the central load P is uniformly distributed over a circular area of a small
radius c, the following results hold at the center of the loaded area r = 0:

FIG. 278

Since the expressions (x) and (y) contain six arbitrary constants in all, any symmet-
rical conditions at the center and on the outer edge of the shell could be fulfilled.

It should be noted also that, as far as bending is concerned, a shallow spherical shell
behaves somewhat like a plate on an elastic foundation. This time the characteristic
length is given by Eq. (q) instead of expression (a), page 260, which we had in the
case of the plate. Thus, when I as defined by Eq. (q) is small compared with the
radius of the edge, this is equivalent to the case of a plate on a very rigid foundation.
The deflections and the bending moments at the center of such a shell are affected
very little by the respective conditions on the outer edge, which only govern the
state of the edge zone of the shell.1

1 For inextensional deformations of shallow elastic shells see M. W. Johnson and
E. Reissner,J. Math. andPhys., vol. 34, p. 335, 1956; singular solutions were considered
by W. Flugge and D. A. Conrad, Stanford Univ. Tech. Rept. 101, 1956. Some of the



133. Conical Shells. To apply the general equations of Art. 128 to the particular
case of a conical shell (Fig. 279a), we introduce in place of the variable <p a new vari-
able y which defines the distance from the apex of the cone. The length of an infini-
tesimal element of a meridian is now dy, instead of T1 d<p as was previously used. As a

FIG. 279

result of such changes in the variables, the following transformations of the deriva-
tives with respect to <P are necessary:

With these transformations, the symbol (i) in Art. 128 becomes

Observing that for a cone the angle <P is constant and using notation a for ir/2 — <p
(Fig. 279), we obtain

previous results were already given by J. W. Geckeler, Ingr.-Arch., vol. 1, p. 255, 1930.
General differential equations for curved plates (shallow shells) were established by
K. Marguerre, Proc. Fifth Intern. Congr. Appl. Mech., 1938, p. 93. For bending of
shallow shells of translation, see G. Ae. Oravas, Osterr. Ingr.-Arch., vol. 11, p. 264, 1957,
and for nonlinear bending of shallow spherical shells, R. M. Simons, J. Math, and
Phys., vol. 35, p. 164, 1956. For bending of shallow helicoidal shells see E. Reissner,
J. Appl. Mechanics, vol. 22, p. 31, 1955. Helicoidal shells were also considered by
R. Malcor, Travaux, vol. 32, p. 605, December, 1948, and by L. Solomon, Priklad.
Mai. Mekhan., vol. 18, p. 43, 1954. For shallow shells see V. Z. Vlasov, "A General
Theory of Shells," Moscow, 1949.



Substituting the expressions into (a) and putting rx = oo, the symbol L( • • • ) ,
becomes

Equations (321) of Art. 128 are then

or, with U = T2Q? = y tan a Qy,*

Using the notation (j) of Art. 128 and introducing the new notation

we finally obtain

Considering the first of these equations, we transform it into the known Bessel equa-
tion by introducing, instead of y, a new variable

which gives

A similar equation has already been discussed in the treatment of a cylindrical shell of
nonuniform thickness (Art. 118). The functions \pi, . . . , ^4 which were introduced
at that time and whose numerical values are given in Table 86 can also be applied in
this case. The general solution for yQy which satisfies both of the equations (c) can
then be represented in the following form:1

where £ = 2\ v y, and the primes denote derivatives with respect to £. From our
previous discussion and from the values of Table 86 we know that the functions ^1

* The subscript y is used instead of <p in the further discussion of conical shells.
1 A comprehensive discussion of conical shells is given in F. Dubois' doctoral

dissertation "Uber die Festigkeit der Kegelschale," Zurich, 1917; this paper also
contains a series of numerical examples with curves illustrating the stress distribution
in conical shells having various angles at the apex. The case of an arbitrary loading
has been considered by N. J. Hoff, / . Appl. Mechanics, vol. 22, p. 557, 1955, and
thermal stresses by J. H. HutB, / . Aeronaut Sd., vol. 20, p. 613, 1953.



and \f/2 and their derivatives ^1 and ^ have an oscillatory character such that the
oscillations are damped out rapidly as the distance y decreases. These functions
should be used in investigating the bending of a conical shell produced by forces and
moments distributed uniformly along the edge y = I. The functions ^3 and ^4 with
their derivatives also have an oscillatory character, but their oscillations increase
as the distance y decreases. Hence the third and fourth terms in solution (/), which
contain these functions and their derivatives, should be omitted if we are dealing with
a complete cone. The two constants Ci and C2, which then remain, will be determined
in each particular case from the boundary conditions along the edge y — I.

In the case of a truncated conical shell there will be an upper and a lower edge, and
all four constants Ci, . . . , C4 in the general solution (/) must be considered to satisfy
all the conditions at the two edges. Calculations show that for thin shells such as
are commonly used in engineering and for angles a which are not close to TT/2, the
forces and moments applied at one edge have only a small effect on the stresses and
displacements at the other edge.1 This fact simplifies the problem, since we can use a
solution with only two constants. We use the terms of the integral (/) with the con-
stants Ci and C2 when dealing with the lower edge of the shell and the terms with
constants C3 and C4 when considering the conditions at the upper edge.

To calculate these constants in each particular case we need the expressions for the
angle of rotation V, for the forces Nv and Ne, and for the moments M„ and Me. From
Eqs. (c) and (d) of Art. 128 we have

From the first of the equations (317) we obtain the rotation

The bending moments as found from Eqs. (314) are

By substituting y tan a for a in Eq. (r) of Art. 129 we find

Thus all the quantities that define the bending of a conical shell are expressed in terms
of the shearing force QVf which is given by the general solution (/). The functions
\f/i, . . . , \f/4 and their first derivatives are given in Table 86 for £ < 6. For larger
values of £ the asymptotic expressions (296) (page 496) of these functions can be used
with sufficient accuracy.

1 For a » 84°, F. Dubois found that the stress distribution in a truncated conical
shell has the same character as that in a circular plate with a hole at the center. This
indicates that for such angles the forces and the moments applied at both edges must
be considered simultaneously.



As an example we take the case represented in Fig. 279a. We assume that the
shell is loaded only by its weight and that the edge (y = I) of the shell can rotate
freely but cannot move laterally. Considering first the corresponding membrane
problem (Fig. 2796), we find

where q is the weight per unit area of the shell. As a result of these forces there wili
be a circumferential compression of the shell along the edge of the amount

To satisfy the boundary conditions of the actual problem (Fig. 279a) we must super-
pose on the membrane stresses given by Eqs. (k) the stresses produced in the shell by
horizontal forces H (Fig. 279c) the magnitude of which is determined so as to eliminate
the compression (I). To solve this latter problem we use the first two terms of solution
(/) and take

The constants Ci and Ci will now be determined from the boundary conditions

in which expressions (i) and (j) must be substituted for My and 5. After the introduc-
tion of expression (m) for yQV} expressions (i) and (j) become

Substituting 2X y/l for £ in expressions (o) and (p) and using Table 86 or expres-
sions (296), we obtain the left-hand sides of Eqs. (n). We can then calculate Ci and Ct
from these equations if the load q and the dimensions of the shell are given. Calcula-
tions show that for shells of the proportions usually applied in engineering practice
the quantity £ is larger than 6, and the asymptotical expressions (296) for the func-
tions entering in Eqs. (o) and (p) can be used. An approximate solution for conical
shells, similar to that given in the preceding article for spherical shells, can also
readily be developed.



The case of a conical shell the thickness of which is proportional to the distance y
from the apex can also be rigorously treated. The solution is simpler than that
for the case of uniform thickness.1

134. General Case of Shells Having the Form of a Surface of Revolu-
tion. The general method of solution of thin-shell problems as developed
in Art. 128 can also be applied to ring shells such as shown in Fig. 220.

In this way the deformation of a
ring such as shown in Fig. 280a
can be discussed.2 Combining sev-
eral rings of this kind, the problem
of compression of corrugated pipes
such as shown in Fig. 2806 can be
treated.3 Combining several coni-
cal shells, we obtain a corrugated
pipe as shown in Fig. 280c. The
compression of such a pipe can be
investigated by using the solution
developed for conical shells in the
previous article. The method of
Art. 128 is also applicable to more
general surfaces of revolution pro-
vided that the thickness of the
wall varies in a specific manner,
that the general equations (315)

and (316) obtain the forms (317).4 The solution of these equations,
provided it can be obtained, is usually of a complicated nature and
cannot readily be applied in solving practical problems.

1 Meissner, Vierteljahrsschr. naturforsch. Ges. Zurich, vol. 60, p. 23, 1915; see also
E. Honegger, " Festigkeitsberechnung von Kegelschalen mit linear veranderlicher
Wandstarke," doctoral thesis, Zurich, 1919. For the case of an arbitrary loading see
H. Nollau, Z. angew. Math. Mech., vol. 24, p. 10, 1944.

2 Problems of this kind are rigorously treated in the paper by H. Wissler, "Festig-
keitsberechnung von Ringflachenschalen," doctoral thesis, Zurich, 1916. For toroidal
shells see also R. A. Clark, / . Math, and Phys., vol. 29, p. 146, 1950; for those with an
elliptical cross section, see R. A. Clark, T. I. Gilroy, and E. Reissner, / . Appl.
Mechanics, vol. 19, p. 37, 1952. Short axisymmetrical shells under edge loading have
been considered by G. Horvay, C. Linkous, and J. S. Born, / . Appl. Mechanics, vol. 23,
p. 68, 1956. For calculation of annular, conical, and spherical shells in combination
with a flat bottom, see G. Horvay and I. M. Clausen, J. Appl. Mechanics, vol. 22,
p. 25, 1955.

3 Such corrugated pipes were considered by K. Stange, Ingr.-Arch., vol. 2, p. 47,
1931. R. A. Clark and E. Reissner have considered some corrugated pipes as " nearly
cylindrical shells"; see J. Appl. Mechanics, vol. 23, p. 59, 1956. For the theory of
such shells see also E. F. Burmistrov, Priklad. Mat. Mekhan., vol. 13, p. 401, 1949.

4 See Meissner paper, loc. cit.

FIG. 280



At the same time, all the existing solutions indicate that, for thin shells
for which the angle <p is not small, the stresses produced by forces and
moments uniformly distributed along the edge are of a local character
and die out rapidly as the distance from the edge increases. This fact
suggests the use in more general cases of the same kind of approximate
solutions as were discussed in the case of spherical shells. Starting with
the general equations (315) and (316) (page 538), we neglect on the left-
hand sides of these equations the functions U and V and their first deriva-
tives in comparison with the second derivatives.1 This results in the
following simplified system of equations:

Differentiating the first of these equations twice, we obtain

If after differentiation we again retain on each side only one term con-
taining the derivative of the highest order of the functions U and V,
we obtain

After the introduction of the notation

1 This method of obtaining an approximate solution in a general case is due to J. W.
Geckeler, Forschungsarb., no. 276, p. 21, Berlin, 1926. An extension of Blumenthal's
method of asymptotic integration on the general case of shells in form of a surface of
revolution was given by E. Steuermann, Proc. Third Intern. Congr. Appl. Mech., vol. 2,
p. 60, 1930. For the method of asymptotic integration see also F. B. Hildebrand,
Proc. Symposia Appl. Math., vol. 3, p. 53, 1950. For the general theory of shells and
the limits of its application see F. B. Hildebrand, E. Reissner, and G. B. Thomas,
NACA Tech. Note 1833, 1949; W. Zerna, Ingr.-Arch., vol. 17, p. 149, 1949; A. E.
Green and W. Zerna, Quart. Mech. Appl. Math., vol. 3, p. 9, 1950; H. Parkus, Osterr.
Ingr.-Arch., vol. 4, p. 160, 1950; J. K. Knowles and E. Reissner, / . Math, and Phys.,
vol. 35, p. 351, 1957; H. Neuber, Z. angew. Math. Mech., vol. 29, p. 97, 1949. The
effect of transverse shear deformation on shells of revolution has been considered by
P. M. Naghdi, Quart. Appl. Math., vol. 15, p. 41, 1957. Advances in the nonlinear
theory of shells are especially due to N. A. Alumyae, K. Z. Galimov, and K. M.
Mushtari; see bibliography in A. S. Volmir, "Flexible Plates and Shells," Moscow,
1956. See also Z. Parszewski, Proc. Ninth Intern. Congr. Appl. Mech., vol. 6, p. 280,
Brussels, 1957; G. Schwarze, Ingr.-Arch., vol. 25, p. 278, 1957.



Eq. (c) becomes

This is of the same form as Eq. [i) in Art. 130, which was obtained for
spherical shells. The difference between the two equations consists only
in the fact that the factor X, given by expression (d), is no longer con-
stant in the general case but varies with the angle <p. Since the function
U dies out rapidly as the distance from the edge increases, we can obtain
a satisfactory approximate solution of Eq. (e) by replacing X by a certain
constant average value. The approximate solution previously obtained
for a sphere can then be directly applied here.

To obtain a more satisfactory result the shell can be divided by parallel
circles into several zones for each of which a certain constant average
value of X is used. Beginning with the first zone at the edge of the shell,
the two constants of the general solution (329) are obtained from the
conditions at the edge in the same manner as was illustrated for a spheri-
cal shell. Then all quantities defining the deformations and stresses in
this zone are obtained from Eqs. (330). The values of these quantities
at the end of the first zone give the initial values of the same quantities
for the second zone. Thus, after changing the numerical value of X for
the second zone, we can continue the calculations by again using the
general solution (329).x

If the factor X can be represented by the expression

in which a and b are constants, a rigorous solution of Eq. (e) can be
obtained.2 However, since Eq. (e) is only an approximate relation, such
a rigorous solution apparently has little advantage over the previously
described approximate calculation.3

1 An application of this method to the calculation of stresses in full heads of pres-
sure vessels is given in the paper by W. M. Coates, Trans. ASME, vol. 52, p. 117, 1930.

2 See Geckeler, op. cit. An application of this solution to the calculation of
stresses in a steep-sided dome is given by W. Fliigge; see "Statik und Dynamik der
Schalen," 2d ed., p. 194, Berlin, 1957. Shells with varying thickness were also con-
sidered by C. N. DeSilva and P. M. Naghdi, Quart. Appl. Math., vol. 15, p. 169, 1957.

3 For bibliography regarding shells, see also the books of W. Fliigge, op. cit.; K. Girk-
mann, op. cit.; and R. L'Hermite, "Resistance des materiaux the'orique et expe>i-
mentale," Paris, 1954. The theory of prismatic and pyramidal shells is considered in
the above-mentioned books, and also by J. Born, "Faltwerke," Stuttgart, 1954. For
bibliography in the field of roof shells see especially A. Aas-Jakobsen, op. cit., and
Proc. Symposium on Concrete Shell Roof Construction, Cement and Concrete Associa-
tion, London, 1954.
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Pure bending of plates, anticlastic surface in (Continued) 
relation between bending moments and curvature in 39 
slope and curvature in 33 
strain energy of 46 

R 
Reactions at boundary of plates, relation with 

deflection 84 
of simply supported rectangular plates, under 

hydrostatic load 128 132 
under triangular load 134 
under uniform load 120 

Rectangular plates, anisotropic 371 
with clamped edges 197 
under concentrated load 111 141 144 

 203 
continuous 229 236 245 
deflection calculation, by energy method 342 347 

by finite difference method 351 
by method of reversion 349 
(See also Deflection) 

Rectangular plates, under hydrostatic pressure 124 
of infinite length 4 149 
long (see Long rectangular plates) 
partially loaded 135 
semi-infinite 221 225 
simply supported 105 

under uniform load 109 113 



589 
Index terms Links 

 This page has been reformatted by Knovel to provide easier navigation.  

Rectangular plates, under hydrostatic pressure (Continued) 
under sinusoidal load 105 
under triangular load 130 
under uniform load 109 113 240 
of variable thickness 173 
with various edge conditions 180 

all edges built-in 197 245 
all edges elastically supported or free and resting 

on corner points 218 
all edges simply supported 105 240 
three edges built-in, one edge free 211 

one edge simply supported 205 244 
three edges simply supported, one edge built-in 192 241 
two adjacent edges simply supported, other edges 

built-in 207 243 
two opposite edges simply supported, one edge 

free, fourth edge built in or simply supported 208 
two others built-in 185 242 
two others free or supported elastically 214 

Reflected light, measuring of curvatures with 363 

Relaxation method 362 

Reversion method 349 

Rigid inclusion in plate 323 

Rigidity, flexural, of plates 5 
anisotropic 365 
of shells 432 

Rigorous theory of plates 98 
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Ring, reinforcing, of spherical dome 555 

Ring-shaped plates 58 303 

Roof shells, cylindrical 460 519 524 

S 
Sector, plates in form of 295 

Semicircular plate, clamped 298 
simply supported 295 

Semi-infinite rectangular plates 221 
under concentrated load 225 
under uniform load 221 

Shallow spherical shells 558 

Shear (see Transverse shear) 

Shearing forces, of cylindrical shells expressed in 
terms of displacements 523 

Shearing forces, of plates, relation with deflection 82 284 

Shearing strain in plate 41 

Shearing stress in plate 41 

Shells, conical 439 451 562 
conoidal 465 
of constant strength 442 
cylindrical (see Cylindrical shells) 
deflections of, strain energy method of calculating 505 
deformation of, without bending 429 
ellipsoidal 440 
flexural rigidity of 432 
in form, of elliptic paraboloid 462 
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Shells, conical (Continued) 
of hyperbolic paraboloid 464 
of surface of revolution (see Surface of 

revolution) 
of torus 441 566 

nonsymmetrically loaded 447 
spherical 436 

wind pressure on 449 
symmetrically loaded (see Symmetrically loaded 

shells) 

Simply supported edges, boundary conditions for 83 171 
circular plates with 56 68 
rectangular plates with 105 

Singularities in bending of plates 325 

Skewed plates 318 357 

Spherical dome, under action of its weight 436 
bending of, approximate analysis 547 
bending stress calculation for, example 554 
with edge ring 555 
membrane forces in 436 
shallow 558 
supported at isolated points 453 
under wind pressure 449 

Strain energy in bending, of anisotropic plates 377 
of isotropic plates 88 

expressed in polar coordinates 345 346 
for large deflections 400 412 
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Strain energy in bending, of anisotropic plates (Continued) 
in pure bending 47 

Strain energy method in calculating deflections, of 
plates, large 400 412 

small 342 
of shells 505 

Stress function, in calculating membrane forces of 
shells 461 

in general theory of cylindrical shells 522 
in resolving equations for large deflections 413 417 

Stresses in plate, normal 42 
Poisson’s ratio effect on 97 
shearing 41 42 
(See also Thermal stresses) 

Successive approximation in calculating bending 
stresses in shells 552 

Surface of revolution, shells having form of 433 533 
bending stresses in 566 
symmetrically loaded 433 533 

displacements in 445 
equations for determining membrane forces in 434 
particular cases of 436 

Symmetrically loaded shells 433 533 
spherical 436 540 547 

Synclastic surface 37 
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T 
Tanks, of constant strength 443 

cylindrical, with nonuniform wall thickness 488 
with uniform wall thickness 485 

spherical 437 

Thermal stresses, in cylindrical shells 497 
in plates with clamped edges 49 
in simply supported rectangular plates 162 
in spherical shells 546 
in triangular plates 95 

Thick plates 69 72 98 

Toroidal shells 441 566 

Transforms, use in theory of plates 336 

Transverse shear, effect of, on deflections of plates 72 165 
on stresses around hole 322 

Triangular load, rectangular plates under 130 

Triangular plates, clamped in all or two sides 315 
equilateral, simply supported 313 

bending, by concentrated load 314 
by edge moments 94 
by uniform load 313 

thermal stresses in 95 
in form of isosceles right triangle 316 

Twist of surface 35 

Twisting moment 39 
in terms of deflection 41 81 
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U 
Uniform load, plates under, circular 54 

rectangular, clamped 197 
continuous 229 236 
simply supported 109 113 

portion of cylindrical shell under 516 
on spherical shell 544 

V 
Variable thickness, plates of, circular 298 305 

rectangular 173 
ring-shaped 303 

Vibration, lateral, of plates 334 

Virtual displacements, application of principle in 
bending, of plates 342 387 

of shells 505 

W 
Wedge-shaped plates 337 

Wind pressure on dome, conical 451 
spherical 449 
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