謹序

本書原著是蠻率先可關於大學基本力學課程的著名文獻，在資本主義世界中是一本被推崇為「經典著作」的教材。很顯然，這本著作對我們學習工業科學的基本理論是有巨大的參致價值的。

當初編譯本書是出於教學上的需要。一九四九年秋，譯者在同濟大學機械系教「動力學」。後來一本講稿，先譯了本書的下冊；第二年，在原校上木系開「靜力學」課，才補出上冊。初稿完稿後，曾送請中央人民政府出版總署編譯局審查。審訂後，編譯局曾給予極大的支持，使這本書能夠出版，譯者在此謹表衷心的感謝。

本書書名，就內容而言，應稱為「工程剛體力學」。但這一叫法不通行，所以還是照原著書名直譯為「工程力學」。工程力學這一門課程，根據一九五○年中央頒發的「高等學校理工院校各系課程暫行規程（草案）」，應包括材料力學在內。而且，真正要「循名責實」的話，那末「工程力學」（或者以前流行的名稱——「應用力學」）就幾乎應該包括工科的全部力學課程（材料力學、流體力學、熱力學……）。所以本書的書名是不夠確切的。至於目前將這門課程改稱為「理論力學」的說法，顯然也還有可商榷的地方。如果是為了說明這門課程的基础性質，恐怕還是稱之為「基本力學」相宜些。

關於本書的譯文方面有兩點需要說明：原著所用的單位系統是英美或磅，譯文中已全部換算成公制單位。再，原著中有一小部份習題，譯文中已做了解答，改為例題，目的是增強本書的參致作用，以便於自學。

本書錯誤或不妥當的地方，希望讀者多多指正。

江可宗
一九五一年八月，上海。
原　序

力學對於工科學生的重要，那是無論如何強調都不會過份的。 現代工業固然需要許多受過專業訓練的人員，但是更需要大量的在基本知識方面有堅固基礎的青年。 這是一種很合理的趨勢。 工業上不斷有很多新的問題發生。 這種新問題當然不是應用任何固定的方法所能應付的。 工程人員要能夠正確地處理這種問題，就必須對引用的基本理論有透徹的了解，通曉各種解決問題的一般方法；單單熟悉於一定方法的運用，自然是不夠的。 因此，在大學課程中，像“工程力學”這樣一門基本學科的教學，就必須給學生建立一個鞏固的理論基礎；儘可能提示各種多樣的處理問題的一般方法，並且使這些方法跟實際應用密切結合；避免使學生只熟練於一些典型方法的運用。 這就是本書的目的。

本書內容比兩學期三小時的教材要廣泛一些。 例如，“靜力學”中有幾節研究平面和空間剛架的理論；“動力學”中有幾節討論到振動問題。 目的是使學生進一步學習“結構原理”和“機械設計”時，能夠對力學理論跟應用間的聯繫有較深刻的理解。 上冊最後一章並且討論了負荷移原理。 應用這一原理來解決力學中某些問題可以使手續大為簡化，所以專設一章讓學生認識這－可能性，似乎不無必要。 下冊最後一章說明相對運動的理論及應用。 假若教學時間不足，這些章節都可以略去不敘，對全書的連貫性並無影響。 即使省略不敘，這些材料的存有至少可以讓初學者知道，力學內容絕不至全部學完。 除此之外，還希望這些材料能夠對學習力學特別有興趣的學生有所幫助。

一般工業大學多數在二年級第二學期講授“靜力學”。 這一學期中，學生還沒有學完“積分”，所以本書“靜力學”篇除掉少數可以省略的章節外，都不需“積分”以上的數學知識。 但是這一範圍以內的數學方法，那就毫無限制地使用。 “靜力學”可能是應用高等數學的最初一門課程，我們僅僅給學生一個練習的機會是不夠的，應該儘量鼓勵他們在學習中充分地應用已學得的數學知識。
“動力學”的情形完全不同。有些大學這門課程並不緊接着“靜力學”，而是排在“材料力學”之後。學生在學習上已經成熟得多，因此我們可以儘量應用微積分，甚至一些簡單的微分方程式。對於每一微分方程式，本書都有詳細的解法說明，使學生沒有學習過的學生也不致發生理解上的困難。

下冊中，運動方程式完全用微分方程式來表示。由於“動力學”是一門需要深入鍛鍊的學科，命題方式如果任意簡化，就容易使初學者孕育錯誤的觀念。此外，利用微分方程式還有底下幾層好處：(1) 使學生一開始學習就能着重於分清動力學中已知運動和已知作用力兩類問題的基本區別。 (2) 使某些動力學問題（例如，振動問題）可以作比較深入的討論。不用微分方程式的話，深入討論這些問題是不可能的，至少也是繁複不堪的。 (3) 可以給學生建立一個良好的動力學基礎。這樣，他們如果希望進一步學習較深的力學或閱讀現代力學文獻時，就具有基礎了。

因爲要獲得力學的基礎知識非演算習題不可，所以本書對於例題和習題的選擇特別注意。所有例題都有詳細的解答。這些例題有兩個目的：第一，利用例題的解答來補充正文中一些未加討論的材料。第二，用例題來指示處理實際工程問題所應遵循的推理途徑。因此，讀者對於例題，應該跟對於習題一樣，同樣加以重視。

解決一個力學問題一般分為三階段：(1) 排除掉實際問題中存在的不需要考慮的具體條件，使問題抽象到可以純粹用算學或幾何方式來表現。(2) 解答這純粹的算學或幾何問題，得到數學上的結果。(3) 把所得的數學結果引回到原來問題中去，把它解釋為實際問題的結論。初學者解決問題往往只注意到第二階段為止，以致看不清計算結果跟具體問題的聯繫。本書每一例題的演算都按以上三階段發展，希望能導致讀者充分認識每一個力學問題的完整意義，並鼓勵他按照類似的步驟去處理問題。

本書的例題大多數用代數式計算，最後的答案往往只是一個代數公式。假使題中給有數值，也只將數值代入答案中以計算結果。這樣做法有很多好處；首先，答案可以用可靠的複核方法來複核。最好的複
核方法中有兩種最常用：一種是“因次考考”；另一種是考察所得結果如果引用到一定的極限情形之內，是否與常理符合。假使演算問題一開始就用數值計算，而不用代數式，那末這兩種複核方法都將無法應用。其次就是代數式結果容易解釋為實際問題的具體結論，大大增加了解題工作進入第三階段的可能。最後，就求數值結果而論，也是以應用代數式解答為好；因爲只有在代數式中才能按照答案應達到的精確度來確定計算中各數值的有效位數。

本書的習題按難易程度排列，逐漸由淺入深。其中有些難的習題是足夠考驗讀者的思考和分析能力的。本書選擇習題注重題目的意義和趣味性，避開重複繁多。絕大多數的習題雖然都具有工程上的現實性，但是並非以此為選題條件。同一問題是否會發生實際意義是任何人都無法預見的。

本書這次修訂的目的主要在於縮減第一版的篇幅。縮減辦法首先是把第一版中小字排印的章節刪除。其次是把一部份章節加以修改或全部重寫，使內容更簡明。最後，剔除一些冗長的學院式例題，也減少了不少篇幅。

此外，跟縮減篇幅無關的修訂，也有兩點值得注意：第一，“動力學”中第一章“質點的運動幾何”已全部刪除。其中包括的材料已分別編入之後的三章內。第二，“旋轉運動”一章中關於“惰性”部分也已完全抽出，改在書後增加兩章“附錄”來討論：(1)平面圓形的惰性；(2)物體的質量惰性。

編著本書時，尤其是挑選例題和習題時，曾經參考過很多數本。有不少的例題和習題採自木廣先可參加編纂的“力學問題選編”一書。此外，密西根大學的舊同事和斯丹福大學各同人都對本書提供了許多寶貴的意見。作者在此一併致謝。

S. Timoshenko,
D. H. Young.

* 原名“Collection of Problems of Mechanics”，1913年由J. V. Mestecherski,
St. Peterburg 出版。
本書應用的符號

<table>
<thead>
<tr>
<th>符號</th>
<th>意義</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>面積</td>
</tr>
<tr>
<td>a</td>
<td>加速度,半徑</td>
</tr>
<tr>
<td>a_n</td>
<td>法線加速度</td>
</tr>
<tr>
<td>a_r</td>
<td>相對加速度</td>
</tr>
<tr>
<td>a_s</td>
<td>補加速度</td>
</tr>
<tr>
<td>a_t</td>
<td>切線加速度,參考系加速度</td>
</tr>
<tr>
<td>B</td>
<td>彈力係數常數</td>
</tr>
<tr>
<td>C</td>
<td>積分常數</td>
</tr>
<tr>
<td>c</td>
<td>阻尼係數</td>
</tr>
<tr>
<td>cm</td>
<td>公分</td>
</tr>
<tr>
<td>a, b, c</td>
<td>尺度</td>
</tr>
<tr>
<td>D</td>
<td>直徑</td>
</tr>
<tr>
<td>d</td>
<td>直徑,力臂</td>
</tr>
<tr>
<td>E</td>
<td>彈性模數</td>
</tr>
<tr>
<td>e</td>
<td>偏心率,復形係數,自然對數的底</td>
</tr>
<tr>
<td>F</td>
<td>作用力,摩擦力</td>
</tr>
<tr>
<td>f</td>
<td>頻率,振動的動能(或高)</td>
</tr>
<tr>
<td>G</td>
<td>剪力彈性模數</td>
</tr>
<tr>
<td>g</td>
<td>地心加速度</td>
</tr>
<tr>
<td>H</td>
<td>極點距離,波動的水平張力</td>
</tr>
<tr>
<td>h</td>
<td>高度,厚度</td>
</tr>
<tr>
<td>I</td>
<td>情矩或慣性項</td>
</tr>
<tr>
<td>I_x, I_y, I_z</td>
<td>情矩</td>
</tr>
<tr>
<td>I_{xy}, I_{xz}, I_{yz}</td>
<td>情矩積</td>
</tr>
<tr>
<td>i</td>
<td>情矩半徑(旋轉半徑), √−1，次序指數</td>
</tr>
<tr>
<td>J</td>
<td>面積慣性矩</td>
</tr>
<tr>
<td>j</td>
<td>筋點數</td>
</tr>
</tbody>
</table>
静力学

- \(K \) 一般常数
- \(k \) 弹力常数
- \(kg \) 公斤
- \(L \) 曲线长度
- \(l \) 跨度
- \(M \) 力矩
- \(M \) 动量矩, 角动量
- \(m \) 质量
- \(m \) 公尺
- \(N \) 法线分力
- \(n \) 任意数, 每分钟转数
- \(P \) 作用力
- \(p \) 频率因子
- \(Q \) 作用力
- \(q \) 单位长度的重量
- \(R \) 合力, 反作用力, 半径
- \(r \) 半径, 射程
- \(S \) 张力或压力
- \(s \) 距离
- \(s \) 秒
- \(T \) 切线分力
- \(t \) 时间
- \(U \) 动能
- \(V \) 位能, 体积
- \(v \) 速度
- \(v_i \) 相对速度
- \(v_r \) 参考系速度
- \(W \) 重量, 重力
- \(w \) 单位体积重量
- \(u, v, w \) 正交坐标系坐标值
- \(X, Y, Z \) 作用力在坐标轴方向的投影
- \(x, y, z \) 正交绝对坐标系坐标值
本書採用的符號

\(x, y, z\) 速度在坐標軸方向的投影
\(\dot{x}, \dot{y}, \dot{z}\) 加速度在坐標軸方向的投影

\(\alpha\) 角加速度，相角

\(\beta\) 放大因數

\(\gamma\) 阻尼因數

\(\alpha, \beta, \gamma\) 方向角·方向除法

\(\delta\) 變形

\(\delta_{\text{r}}\) 靜力變形

\(\delta x, \delta y, \delta z\) 虛位移在坐標軸方向的投影

\(\theta\) 旋轉角

\(\dot{\theta}\) 角速度

\(\ddot{\theta}\) 角加速度

\(\mu\) 摩阻係數

\(\pi\) 3.1416

\(\rho\) 曲率半徑

\(\rho, \theta\) 平面極坐標

\(\sigma\) 應力

\(\tau\) 週期

\(\xi, \eta, \zeta\) 正交相對坐標系坐標航

\(\varphi\) 摩阻角

\(\theta, \psi, \varphi\) 角

\(\omega\) 角速度

\(\overrightarrow{AB},\overrightarrow{v},\overrightarrow{r}\) 向量
內 容

譜序
原序
本書應用的符號

上冊 靜力學
第一章 靜力學原理 ... 1
 1. 預論 .. 1
 2. 力 .. 2
 3. 力的平行四邊形原理 3
 4. 力的等效性 .. 6
 5. 作用力及反作用力 ... 8
 6. 力系的分類 .. 11

第二章 平面共點力系 ... 14
 7. 力的合成 .. 14
 8. 力的分解 .. 16
 9. 平面共點力系的平衡 18
 10. 平面三力的平衡 .. 23
 11. 綁錨 ... 28
 12. 壓縮力 ... 39
 13. 掕擠法 ... 35
 14. 力對於一定點的力矩 41
 15. 力矩的合成定理 .. 42
 16. 力矩法 ... 43
 17. 簡易樑架 ... 47
 18. 節點分析法 ... 51
 19. 綜合力圖 ... 56

第三章 平面平行力系 ... 61
 20. 同方向平行力 .. 61
 21. 雙方向相等的不等平行力 64
第八章 虚位移原理 .. 183

53. 概論 ... 183
54. 功 ... 183
55. 一般点的虚位移原理 ... 184
56. 理想系统 ... 186
57. 理想系统的虚位移原理 189
58. 简单结构的效率 .. 196
59. 稳定平衡与不稳定平衡 200
第一章 靜力學原理

1. 導論

靜力學研究物體在「力」作用下的平衡條件\(^{(1)}\)。它是門非常古老的科學；它的若干基本原理早在埃及人建金字塔和巴比倫人造神廟時代，已經被用來解決建造中的問題。阿基米德\(^{(2)}\)發現了「槳桿原理」和一些流體靜力學的定律：他的遺著就是有關靜力學的最早期文獻之一。雖說如此，但是現代形式的靜力學，它所根據的基本原理的構成，主要還是要歸功於首先應用「力平行四邊形原理」的史狄文納\(^{(3)}\)。關於靜力學的演進史實，讀者可參閱馬赫\(^{(4)}\)的「力學的發展」\(^{(5)}\)一書。

本書『靜力學』所研究的主要對象是剛性物體的平衡問題。所謂剛性物體在任何外力作用下「各構成部分的相互距離毫不變動」的一種性質。剛性物體通常簡稱為「剛體」。實際物體在工程設計中所處理的建築結構物、機械原件等，在外力作用下必然多少要發生一些形狀的改變；決不可能是理想的「剛體」。不過在多數情形中，這種形變十分微小，對於「攻擊物體的平衡問題」可以完全忽略不計。所以在靜力學中我們可以認為所處理的物體就是「絕對」剛體。

必需顧及實際物體的微小形變所生影響的問題，普遍在「材料力學」及「彈性理論」中研究。非剛性物體，如液體及氣體，的平衡問題通常在「流體靜力學」及「空氣靜力學」中研究。本書均不討論。

\(^{(1)}\) 「平衡」有時指物體的靜止狀態或沿直線作恆動狀態（不過，在靜力學中）運動狀態

\(^{(2)}\) Archimedes（公元前 287-212）。

\(^{(3)}\) Stevinus（1548-1620）。

\(^{(4)}\) Ernst Mach（1838-1916），是德國的物理學家，又是反動的「經驗批判論」的代表人，

\(^{(5)}\) Die Mechanik In Ihrer Entwicklung，英譯本叫 Science of Mechanics。
2. 力

處理靜力學問題需要先有一「力」的概念。在靜力學中，「力」的作用可以當作使所加物體改變靜止狀態的一種原因。力的存在形式很多：如熟知的「地心吸力」，我們手作用於物體的推力或拉力。此外，如太陽和行星間的萬有引力、機車的牽引力、磁鐵的吸力、氣缸內的氣體壓力、房屋所受的風力、大氣壓力以及接觸表面間的摩擦力等等都是力的具體形式。

地心吸力是最常見的「力」的一種（以下簡稱重力）。第 1a 圖中，AB 縫下懸吊一圓球體。圓球受重力作用加一拉力於 AB 縫。拉力的大小就是圓球的重量。此力作用在繩上 B 點，方向沿垂線向下。

由此例可看出，要完全決定一個「力」，必需已知「力」的：(1) 大小，(2) 作用點，(3) 方向。此三者完全確定一個「力」，所以稱為「力」的三要素。

力的大小可任選[標準單位]來比較決定。工程問題中，「力」的單位為「公斤」(英制為「磅」)，用保存在法國的一個金柱的重量為單位標準。力的大小普通有各種「量力計」測量。量力計的主要部分是一條螺旋鋼線。用已知重量的物體懸掛在它的鋼線下，讀出鋼線的伸長，資料後，就可用來測量各種「力」的大小。

力的作用點是物體上可以想像「力」在此集中作用的一點。實際上，「力」當然不可能集中在一點，任何「力」都必需相當的面積或體積以資分佈。上例中，作用在 AB 縫上的 W 力（第 1 圖），顯然也是分佈於 AB 縫的線性密度切面。同様，地球加於圓球的重力當然也是分佈於整個球的體積中，不可能集中在一點。不過，「靜力學」所處理的問題只是物體的「平衡條件」，如我們想像這種分佈力集中在一點作用，並不會顯著地影響物體的「平衡條件」，那為簡便，自然就可以這樣想像。物體重力滿布於物體的整個體積內。全部重力如果可以假定是集中在物體中某一點作用，這點就稱為物體的「重心」。

力的方向指此力單獨作用時，物體因而運動的軌跡方向。在此方向通過作用點的直線稱為力的「作用線」。物體重力的方向永遠鉛垂
向下，指向地心。一根软索拉入他物體的「力」，它的作用線就是软索本身所表示的直线，故第 1 圖中，掛鉤 A 所受 AB 線的作用就是一鉛垂向下的「力」。

任何一種像「力」一樣的「量」，除有「大小」外還兼有「方向」性的，就稱為向量。向量可以由一根直線線段表示。例如第 1b 圖，圓球對於 AB 線的拉力就可以用 BC 線段代表。BC 的長度按適當的比例尺繪出，代表力的大小。C 點鉛垂朝下的箭頭，表示力的方向。B 和 C 點分別稱為向量的起點和終點。力的作用點用起點或終點表示均無不可。如以起點和終點的字母記錄向量，那就要按起終的次序寫；第 1b 圖中的向量應寫作 \overrightarrow{BC}，說明作用方向是由 B 指向 C 點。

要使任何數目的已定大小和方向的「力」作用在一物體的各預定點上（不一定平衡），可如第 2 圖應用「疊力計」來做到。這種作用於一物體上的力羣 \(F_1, F_2, F_3, F_4, \ldots \) 稱為一個「力系」。物體受「力系」作用時，一般的靜力學問題就在於尋求使物體平衡，這一力系所必須滿足的條件。

3. 力的平行四邊形原理

全部靜力學以以下幾個公設作爲基礎。它們被稱為靜力學的「基本原理」。不過必須注意的，這些公設並非靜力學的唯一可能的出發點；例如阿基米得遺留下來的力學，就是另由「槓桿原理」出發的。此處先說明史密文納在 1596 年所提出的第一基本原理。這一原理通常稱為「力的平行四邊形原理」。

第一原理：設有二「力」作用在物體的 A 點，此二力分別由向量 \(\overrightarrow{AB} \)和 \(\overrightarrow{AC} \) 代表，\(\overrightarrow{AB} \) 和 \(\overrightarrow{AC} \) 互成 \(\alpha \) 角，以 \(\overrightarrow{AB} \) 和 \(\overrightarrow{AC} \) 為鄰邊構成一平行四邊形 \(ABDC \)，\(\overrightarrow{AD} \) 為此平行四邊形的過 A 點的對角線，那末原來二「力」的共同作用將完全跟 \(\overrightarrow{AD} \) 所代表的一個「力」的作用相同。\(\overrightarrow{AD} \) 的作
用方向如第 3a 圈。

第一原理中所所谓「作用」，自然指各「力」单独或共同使所加的物体
改变静止状态的作用。\(\overrightarrow{AD} \) 所代表的力称为 \(\overrightarrow{AB} \) \(\overrightarrow{AC} \) 两力的
合力；\(\overrightarrow{AB} \) \(\overrightarrow{AC} \) 两力则称为 \(\overrightarrow{AD} \) 力的分力。第一原理说明，合力等于它的全
部分力或各分力共同等于它们的合力。

按第 3b 圈应用 \(\Delta ACD \) 代表作四边形，自然也可以决定「合力」：先繪出 \(\overrightarrow{AC} \) 力，再自 \(\overrightarrow{AC} \) 终点繪 \(\overrightarrow{CD} \) 跟 \(\overrightarrow{AB} \) 平行并且相等，即得
\(\overrightarrow{AD} \) 为所求的合力。合力的方向是从 \(\overrightarrow{AC} \) 的起始 \(A \) 机向 \(\overrightarrow{CD} \) 的终点 \(D \)。
應用这一方法所得的向量 \(\overrightarrow{AD} \) 确为向量 \(\overrightarrow{AC} \) 及 \(\overrightarrow{CD} \) 的「几何和」。这
也就是说，作用在物体 \(A \) 点的各力，它们合力的大小和方向还可以由
两力代表向量的「几何相加」来决定。合力的作用点自然仍是 \(A \) 点。
第 3b 图中，各力几何相加的「代表向量」不表示出各力的作用点，所
以跟平行四边形中的代表向量是有所不同的。这种不表示作用点的向
量通常称为「分離向量」或「自由向量」。\(\Delta ACD \) 则称为「力三角形」。

\(\overrightarrow{AB} \) 和 \(\overrightarrow{AC} \) 间的交角如十分微小（如第 4a 图），力三角形的形状就
將非常尖狭（如第 4b 圈）。可见在极端
c情形下，两力沿同一一直线同一方向作
用於物体時，它们的合力也必沿此同
一方向作用，合力的大小則等於原来两
力大小之和。同様情形，如果两力沿同
一直线但方向相反作用於物体，那末合
力的大小将穏於兩力大小之差，方向則跟其中较大的一力相同。假使
命沿作用線的某一方向为正，另一方向为负，分别按两力的作用方向，
定出它们各自大小的正负，以下两结論就可統一為：同一作用線的两
力的合力乃等於此兩力的「代数和」。

\[\text{第 4 圈} \]

\[\text{第 3 圈} \]
根據「力的平行四邊形原理」，作用在一點的任意兩力永遠可以由它們的合力來替代。因此，共點兩力只有在合力等於零時才沒有「力」的作用；兩力才能平衡。但由以上討論又可看到：兩共點力的合力要等零，必須兩力作用線相同、大小相等、方向相反才可能。將這結論加以推廣，就可得到靜力學第二原理。

第二原理：兩「力」構成平衡，必須它們的大小相等、方向相反、作用線相同才可能。

工程中最常遇的靜力學問題是「研究一個切面均一的樑形物體，兩端受兩力作用時的平衡」（如第 5 圖）。這種物體通常簡稱為「樑件」。在樑件的本身重量（以下簡稱「自重」）可以忽略不計，根據第二原理，樑件就只有在兩端外力大小相等、方向相反、作用線相同的情形下才能平衡。所謂「兩力的作用線相同」也就是說，兩力必須沿它們兩作用點的連接線作用。假使兩力作用點可以假定都是在樑件的長度方向中心軸（大多數實際問題中都可如此假定），那未兩力就必須沿這一長度中心軸（以下簡稱「長軸」）作用。

兩力的作用方向如果像第 5a 圖所示的情形，就稱樑件是受拉力作用；如果像第 5b 圖，則稱為受壓力作用。

第 5a 圖中，m-n 是樑件 AB 上一任意指定的切面。研究 m-n 左邊一部份樑件，就可看到，要平衡 A 端的外力，必須 m-n 切面右邊部份有一跟 A 端外力 S 相等相反、作用線相同的 S 力作用在左邊部份的切面上（第 5c 圖）；否則便不可能平衡。這種一部分作用在另一部份的內力在受拉力的樑件中稱為「張力」；在受壓力的樑件，則稱為「壓力」。內力分佈於切面的整個面積。單位面積上的內力，也就是內力的強度，通常稱為「應力」。

現在同題討論兩力成 a 交角的問題（第 3a 圖）。根據第二原理，如果在 A 點另加一力，跟兩力的合力大小相等、作用線相同、但方向相反，那末這一新加的力就可跟原來兩力構成平衡。這新加的力特稱為
原來兩力的「平衡力」。

將已知兩力和它們的平衡力——幾何相加，得第 3c 圖的 ΔACD。此三要素跟第 3b 圖的 ΔACD 有所不同。不同處在 DA 向量的箭頭在兩三角形中恰巧相反。可見，作用在一點的三力要構成平衡，它們的代表向量就必將頭尾——相接，組成一個封閉的力三角形。

力平行四邊形原理是質力學的最基本公設。根據它，我們已經演繹出若干很難的結
論。但是原理本身的正確性還未討論過。
現在說明一個用儀器檢驗它的正確性的實
驗方法如下：

第 6 圖中，儀器上部為一有軸承的水平環形；圓盤中心有一金針 O。三個小滑輪 A, B 和 C，輪面光滑，可以安裝在環形上任意指定角度的位置。另有兩根鋼線交結於 D 處，各跨過一個滑輪可能繞三個重體 P, Q 及 R (重量等於 P, Q……的物體，輪面為支體 P, Q……)。實驗時，將 A, B
兩滑輪先安裝在任意選定的位置，跨過兩
滑輪的鋼線分別懸掛任意選定的重體 P 和
Q。至於第三個滑輪 C 的位置，應該由反
復試驗，使三線的交點 D 恰好在金針 O 上來確定。因第三根線上的 R 重力必須等於
P, Q 兩力的合力並且跟合力方向相反才能構成平衡，所以由所定的重力大小及滑輪 C 的位
置我們也就可以完全確定 P, Q 兩力的合力。實驗結果幾乎跟力平行四邊形原理相同符
合。但必須注意，這實驗只是表示第一原理的正確，並不曾證明這一原理。而且原理本身
原理假設形式下的結論。在理想情形中若無其它因素，鋼塊堅力、細線非完全柔軟等等已不存
在；實際實驗結果必將多少要受這些因素的影響。因此，實驗時應試十分細心來減少此等
因素的影響；否則，就不能充分顯示第一原理的正確。

4. 力的傳導性

第三原理：在原來作用於物體的力系外，另外加一個或減去一個
自成平衡的力系，原來力系的作用並不發生絲毫改變。

引伸本原理可證明：一般在 A 點的 P 力如果沿它的作用線推
移到其他任何一點 B，這種作用點的推移對 P 力對於剛體的作用將毫
無影響。作用點推移而不影響力的作用的這一性質稱為力的傳導性。
以上的敘述稱為力的傳導原理。此原理的證明如下：
第7a圖中，P力作用在物體的A點。P力作用線上任意選定B點。加一對大小等於P力的相等相反力於B點（第7b圖）。按第三原理，所加的兩力P'和P''自成平衡。加入後，對原來P力的作用並無影響。但P力和P''力是大小相等、方向相反的同作用線兩力，也是一個平衡力系。故按第三原理，可以將這兩個力取去而無影響。因此，物體變成只受B點的P''力作用（第7c圖），但是跟A點的P力作用時的情形完全相同。這就證明了「力的傳導原理」。

再觀察一個切面均一的樑件AB。AB的兩端有一對相等相反的P₁和P₂力作用（第8a圖）。圖中已表明：樑件是在受壓力作用下平衡。如將P₁和P₂力的作用點分別由A和B點推移到B和A點如第8b圖，根據「力的傳導原理」，樑件的平衡狀態雖然仍未改變，但是原來受壓力的卻變成受拉力作用。設再想像將P₁和P₂的作用點一同推移到樑軸的中點C處（第8c圖），兩力雖仍平衡，但AB內已無內力存在。故見物體上力的作用點的推移雖不改變平衡狀態，從而不影響力系的平衡條件，但是物體的內力而論，則有決定性的改變。因此，「傳導原理」的應用只限於致察平衡而不涉及「內力」的靜力學問；在內力問題中，力是沒有傳導性的。

第9a圖中P、Q兩力作用在物體的A、B兩點。兩力作用線相交於C點。引用傳導原理，我們可將兩力的作用點一同推移到C點，然
後按平行四邊形原理決定它們的合力 R（第 8b 圖），由 R 來代替原來兩力。

假使兩力的交點 C 在物體以外（第 9c 圖），則仍可想像 C 點是由圖中虛線所表示的物體與大部份剛性連接在物體上的一點。因而仍可按以上方法求出兩力合力來替代原來兩力。

5. 作用力及反作用力

在很多情形中，我們所研究的對象並不是在一切方向全無自由運動的物體。禁止物體在任何一定方向發生運動的限制物通常稱為物體的「運動約束」。約束有「完全約束」和「部份約束」之分。例如第 10a 圖的圓球，它位於一水平平面上，可以沿平面上任何方向運動，但不能鉛直向下運動。又如第 11a 圖中切面均一的樑件 AB，置於一光滑圓圈內。AB 可以以圓圈中心 O 為軸發生任意的旋轉，但兩端 A 和 B 點不允許離開圓圈表面。再如第 12a 圖，這是「約束」的另一種類型，樑柱 AB 可以繞支點 C 在圓平面上任意旋轉，但 C 點不能移動。這些都是「部份約束」的例子。最後，例如第 13a 圖中的 AB 梁。A 端為一固定支點；B 端是附有掙柱裝置的滑動支點，掙柱可以沿水平平面作無摩擦滑動，但不能在鉛直方向運動。在如此的約束下，AB 梁在任何方向都沒有運動的可能，所以這是對 AB 梁的一種「完全約束」。

不能完全自由運動的物體如果受外力作用必然將產生對約束的壓力。例如第 10a 圖中，圓球在重力 W 作用下必將於接觸處產生對水平平面的壓力；第 11a 圖，樑件 AB 受重力 Q 作用，當然要在兩端發生
對圓圓表面的壓力；再如第 12a 圖，樑往受 P, Q 兩外力作用時，也必將產生壓力於支點 C 的铰連樑子上；第 13a 圖, AB 梁在外力作用下, 支點 A 和 B 自然將受到外力 P 所引起的壓力作用。

第四原理: 物體對於支承的任何壓力必引起支承對物體的相等相反的反壓力, 使作用及反作用成爲一對相等相反的「力」。

觀察受約束物體的平衡，必須設想去掉它的約束而代以約束對於物體的反作用力。例如第 10a 圖中就可在接觸點 A 處用平面對於圓球的反作用力 R_b 而代替此支承圓球的平面如第 10b 圖。

在第 11a 圖例中, 也可取去支承樑件的圓圈, 以反作用力 R_a 和 R_b 來替代。範圍內表面既已限定爲絕對光滑, A, B 兩端沿圓周切線方向的運動自然不會遭遇到阻力，所以反作用力 R_a 和 R_b 只能在 A, B 兩點的圓周法線方向。在多數實際問題中，我們是可以假定接觸表面是絕對光滑的。在這一定假下, 表面的反作用力則必垂直於此表面。

對於第 12a 圖的樑往, 我們可用反作用力 R_c 代替支點 C 的槓子。此處仍假定槓子的表面爲絕對光滑, 使槓子和槓子間分佈於接觸處的壓力都垂直於接觸表面如第 12c 圖。對於圓形的槓子而言, 這也就是說, 所有的分佈壓力全都是沿圓的半徑方向的作用線作用。反作用力 R_c 既然需要跟分佈壓力作用相同, 它的作用線自然也必須通過圓心。這種光滑的圓形槓子所構成的結合稱爲理想槓子, 在力學中極爲常用;
它所產生的反作用力在任何情形下都將通過梢子中心。至於反作用力 \(R_c \) 的方向，因 \(R_c \) 應跟 \(P, Q \) 兩力構成平衡，故作用線必須跟 \(P, Q \) 兩力的合力作用線相同。

對於第 13a 圖的 \(AB \) 梁，可如第 13b 圖取去兩支點 \(A, B \) 而用反作用力 \(R_a \) 和 \(R_b \) 來代替。假定 \(A, B \) 兩點是理想鉸鍵，反作用力 \(R_a \) 和 \(R_b \) 就必須通過梢子的中心。此外，再假定 \(B \) 點的漿柱裝置毫無阻礙力作用，那末，反作用力 \(R_b \) 又必須垂直於漿柱的裝置平面。這種允許梁的一端在一定方向運動的漿柱裝置，常用於巨大的橋樑結構中以防止因溫度升降，橋身發生膨縮現象而引起的損害。

如果應用一能不計自重的桿件 \(BC \) 來代替 \(B \) 處的漿柱裝置如第 18c 圖，桿件兩端各由理想鉸鍵跟其他部份連接（這種桿件以下簡稱為鉸鍵桿），自然仍可獲得相同效果。在此情形下，因加於桿件的外力只能作用在桿兩端的鉸鍵上，故按以前討論，兩力的作用線必須跟桿件的長軸相合。因此，桿件在 \(B \) 處加於梁的反作用力，根據第四原理，必將在鉸鍵方向，以桿件的長軸為作用線。

由以上的討論，可見一受約束的物體上必有兩種力同時作用：第一種是已定力，例如：地心吸力 \(W \)（第 10a 圖）和 \(Q \)（第 11a 圖）以及第 12a 圖的 \(P, Q \) 兩力，第 13a 圖中的 \(P \) 力。這種力是獨立存在不受其他力的影響的，通常特稱為「主作用力」或簡稱「作用力」。第二種是「反作用力」，就是用以代替「約束」的力。例如第 10b 圖中的 \(R_a \)，第 11b 圖中的 \(R_a \) 和 \(R_b \)，第 12b 圖的 \(R_c \) 以及第 13b 圖的 \(R_a \) 和 \(R_b \) 各力。這種力不是獨立存在的，它們的大小方向完全要看主作用力的大小方向如何才能確定。

應用圖形以表示物體的受力情形，必須去掉物體的約束（或支承），以反作用力來替代。這種用反作用力代替「約束」的物體受力圖，如第 10b, 11b, 12b 和 13b 圖，通常稱為分離體圖或自由體圖。

一個物體的平衡並不一定要它的全部「作用力」單獨構成平衡，而是要所有「作用力」及「反作用力」共同構成平衡力系。所以研究一物體的平衡，必需應用「分離體圖」來研究物體上的全部力系。
「分離體圖」因而必然是分析任何靜力學問題的最先一步。此圖如有任何錯誤或遺漏，均將影響相應的分析結果，所以要特別注意。

6. 力系的分類

第14圖是一小型起電機，設置在一車輛上。它的主要構件為—直立桅AB和—可以自由旋轉的機構CD。CD位於車軸轉盤上，車軸可以旋轉，因此CD可以自由旋轉至任何指定的位置。在車軸AB另由拉索AE和AP拉住，來維持它的水平位置。

起電機可提起的重量W通常要比直立桅、機臂、拉索、吊纜和滑輪等的自重大得多。所以這些構件的自重我們可以完全忽略不計。 起電機各主要構件的外力因之都只在各件的末端作用。假定所有各主要構件的連接都是應用「理想銅鉗」，那末在重量W作用下，按§3所述，各件都只是受單純的拉力或壓力作用而已。換句話說，每一構件對於兩端相鄰構件的反作用力必定是以構件長軸為及作用線上的一對相等相反的力。

在§5中已看到，設想一個受約束物體的平衡，無非就是設想它的「分離體圖」中所表明的全部力系。在分析一個工程結構的問題中，我們可以遇到各種不同類型的力系。現在以上述區為例來說明這些類型。

作C點標子的「分離體圖」如第15圖。 分離體上所荷的作用力是：由吊纜CG所傳來的重力W，機臂CD和吊纜AC對標子的反作用力；一共三個力，每一力均沿相應的構件長軸作用。這三個力同在——直徑平面ABC內，而且均同交於一點——標子的中心。這是一種最簡單的「力系」，通常稱為「平面共點力系」。
以直立柱頂端的圓環 A 作爲分離體 (第 16 圖)。 圓環受四個力作用：兩拉索 AE 和 AF 對圓環的反作用力以及直立柱 AB 和吊繩 AC 對圓環的反作用力。四個力的作用線各跟它們相應構件的長度相合，並且共同相交於一點——圓環 A 的中心，但不在同一平面。這種力系稱為「空間共點力系」。

假使將整個平車及起重機當作一個「分離體」來考察，那由第 17 圖就可以看到：分離體上除掉 C 處的外力 W 和作用在 B 處的平車的重力 Q 外，只有平車軌道對於車輪的各反作用力需要考慮。假使軌道面完全光滑，那軌道各反作用力就全應垂直於軌道平面。因此，分離體上所有外力都是在鉛垂方向。這種互相平行而不在同一平面的一羣力通常稱為「空間平行力系」。

現在將臂臂端動到使 ABC 平面與軌道相互平行的位置；也就是 ABC 平面在平車的長度方向等分平車，成爲平車的對稱平面。電力 W 和 Q 都作用在此平面中。此外，因兩前輪及兩後輪所受的軌道反作用力都兩輪相等，故可想像平車是平衡在上述對稱平面中的一根軌道上。在以整個平車及起重機為分離體所得的力系中，所有各力全都相互平行並同在——平面，故這種力系可稱為「平面平行力系」。

設機臂繼續保持如此位置，但想像在 C 點除 W 力外，還有一水平力 P 作用。因此平車因而滾動起見，前輪前面應如第 19 圖置一阻
植物。在此情形下，軌道的反作用力自然不再垂直於水平軌道面。故得一個所謂「一般的平面力系」。

最後，令桿臂離遠這一對稱平面，但仍使水平力 P 繼續在 C 處作用（第 20 圖）。如此所得到的是一個「一般的空間力系」。

第 20 圖

綜合以上的討論，可知，力系計可分類(1)為:

(1) 平面共點力系，
(2) 平面平行力系，
(3) 一般的平面力系，
(4) 空間共點力系，
(5) 空間平行力系，
(6) 一般的空間力系。

以下各章將循序討論各類力系的平衡條件，並且將各種決定平衡條件的方法一一加以詳細說明。

(1) 這裏所謂「分類」，很當然的，並不是說各種力系都是性質上完全不同的類型。事
上，一切力系當然都在「一般的空間力系」之內；任何平面力系也都屬於「一般的平
面力系」。這裏所謂「分類」不過是把其中所有特殊規則的力系提出來作一個類型而已，
所以這所謂的「分類」的意義是有所不同的。
第二章 平面共點力系

7. 力的合成

將已知的一羣力化作作用相同的方向力系稱為力的合成。合成的結果可能是形式簡單的一個單力，這單力稱為原始力系的「合力」。假使若干力 F_1, F_2, F_3, \ldots 都共同作用在物體的一點，各力並且同在一個平面中，那這個力系就是可以簡化成一個「合力」的力系。它們的合力可由連續使用力平行四邊形原理來決定。例如，第 21a 圖中 $F_1, F_2,$ F_3 和 F_4 四力作用在物體的 A 點。求合力時，可先按第一原理確定 F_1 和 F_2 的合力 AC，又由同一原理將 AC 和 F_3 的合力 AD 求出。因 AC 可以完全代表 F_1 和 F_2，所以 AD 也就是 F_1, F_2 和 F_3 的合力。最後，合成 AD 和 F_4，就決定了原來四個力的合力 R。這種合成方法對力系內包含的力的個數並無限制。因此，無論一個力系含有多少力，只要它們全通過一點，並且同在一個平面內，就可應用以上方法把它簡化成一個「合力」。

如不用力平行四邊形，而把各力的代表向量——幾何相加，如第 21b 圖，當然也可求到合力 R。兩種方法所得到的結果自然完全相同。幾何相加時，先以 AB 代表 F_1，自 AB 終點引 BC 代表 F_2，繼續再繪 CD 及 DE 分別代表 F_3 及 F_4。所得到的多邊形 $ABCDE$，不用說，是跟第 21a 圖的多邊形 $ABCDE$ 一致一樣的。因此，\overrightarrow{AE} (以 AB
的起點為起點；以 DE 的終點為終點）就是代表合力 R 的分離向量 R 的作用點仍是在第 21a 圖中的 A 點。第 21b 圖的多邊形稱為力多邊形。它的封閉邊決定所求的合力合方向則自第一向量的起點指向最後一向量的終點。任何平面共點力系的合力都可以由這種各力相加的「幾何和」來決定。用「力多邊形」求多數力的「合力」顯然要比連繫使用「力平行四邊形」方便，故實際問題多用前法。此外，這一方法跟應用力平行四邊形方法相同，各力相加的先後次序對所求結果也同樣毫無影響。例如上例中，如果先施 F_1，再施 F_4，然後再依次加入 F_2 及 F_3，所得的「力多邊形」（第 21c 圖）雖然跟第 21b 圖多邊形 ABCDE 完全不同，但它的封閉邊 AE 所決定的合力 R 是跟第 21b 圖毫無差別的。

特例情形，如已知各力都沿同一直線作用，那麼「力多邊形」的各邊都將在一根直線上。各力的「幾何和」，因此，也就跟它們的「代數和」相同，故所求「合力」就等於各力的「代數和」。

如果最後一向量的終點恰好落在第一向量的起點，合力等於零，那么各力當然就是平衡力系。

例題和習題
1. 假設兩力 P,Q 作用在物體的 A 點，兩力互成 α 角。試求它們的合力以及合力作用線與它們作用線間的夾角 β 和 γ。

解：作「力平行四邊形」如第 22a 圖或將力圖相加，得「力三角形」如第 22b 圖。由圖可求得：

\[R = \sqrt{P^2 + Q^2 + 2PQ \cos \alpha} \quad (a) \]

合力 R 的大小及方向，β 及 γ 角可利用以下兩式計算：

\[\sin \beta = \frac{Q}{R} \sin \alpha \quad (b) \]

\[\sin \gamma = \frac{P}{R} \sin \alpha \]

這種「計算方法」有時比應用比例尺繪製繪圖的「圖解法」方便。

2. 應用「圖解法」求第 23 圖中 P,Q 兩力的合力，設 P,Q 兩力作用線的交點在圖紙之外。

解：根據第三原則，我們可在 P,Q 兩力作用點的直線 AB 上加一點等分點的 S_1 和 S_2 兩力（第 23 圖）。應用平行四邊形原理，將 S_1 和 T；S_2 和 Q 分別合成合力 R_1 和
3. 一張紙由兩匹馬用不變速度拖着在運河中行駛如第 24 圖。 假設兩馬的牽引力是 \(P = 100 \text{ kg} \) 和 \(Q = 120 \text{ kg} \)。 三角強力的夾角是 \(\alpha = 60^\circ \)。 試求它們的合力以及弧中 \(\beta \) 及 \(\gamma \) 角的大小。 (先用圖解法解題; 然後; 用第 1 題公式計算。 以計算結果校核圖解結果)。

4. 一個人重 \(50 \text{ kg} \), 提它一包重的一袋。 網橋過渡入正上方的一個定滑輪後; 在另一側懸掛一個重量 \(Q = 50 \text{ kg} \) 的物體。 試求過人加在地面上的壓力等於多大?

(解: \(10 \text{ kg} \))

5. 兩個力 \(F_1, F_2, \ldots, F_n \) 共同作用在物體的 \(A \) 點如第 25 圖。 它們的代數乘積的矩

(解: \(60 \text{ kg} \), 沿 \(AD \) 作用)

6. 兩個力 \(F_1 \) 任意三角形的兩邊作用; 假設兩力的大小為各自所沿一側的

7. 力的分解

以「共同的作用跟一個已知力相等」的幾個「分力」去代替這一已

知力就稱為力的分解。 此中以用

兩個「分力」去代替一個單力的情形為最常見。 根據「力平行四邊

形原理」, 可知; 分解一已知力 \(R \) 爲兩分力, 使兩分力相交於 \(R \) 力作用

線上任意一點; 計有四種可能情形。
(分解——已知力為兩個平行分力的問題將在§20及§21中討論)

1. 已知兩個分力的方向，求它們的大小 例如第26a圖中，已知的力需要分解為沿AC'和AD'兩方向作用的分力。分解時，可自B點引虛線BC和BD分別平行於AD'和AC'，得兩交點C和D。AC和AD的長度，當然，就是所求兩分力P和Q的大小。

應用「力三角形」，也可得同樣結果。第26b圈中，AB為R的代表向量。自A和B點分別引平行於已知方向的兩直線，交於C點。所得的AC和BC顯然就是P和Q兩分力的代表向量。兩分力的共同作用點可以是R力作用線上任意一點；共同作用點不論取R作用線上那一點，兩分力都跟R力的作用完全相同。在兩分力互相垂直的特例中，這兩分力特稱為「正交分力」。

2. 已知一個分力的大小和方向，求另一個分力 例如AB和AC分別為已知的合力R和一分力P的代表向量(第26a圖)。繪出這兩個已知的代表向量，第26b圖。C點和B點的連接線CR顯然就是代表所求的另一個分力Q。

3. 已知兩個分力的大小，求它們的方向 這一問題也就是已知三邊長求三角形的問題。第27a圖中，令AB為R力的代表向量，分別以A點和B點為圓心，以兩分力P和Q的已知大小為半徑，繪兩圓弧。由圓弧的交點C和D，我們得到兩組可能的解答；AC，CB或AD，DB都可能是所求的兩分力的代表向量。假設兩分力大小的和或差恰好等於R力的大小，兩圓弧只能相切於一點，那末便有一組解答；兩分力的作用線就跟R力的作用線相同。假設兩分力大小的和或差分別是小於或大於R力的大小，那末兩圓弧不能相交，沒有解答。
4. 已知一個分力的方向和另一個分力的大小，求前一個分力的大小和後一個分力的方向。第 27b 圖中，令 \overline{AB} 為 R 力的代表方向，AC' 為前一個分力 P 的作用線，以 B 點做圓心，以後一個分力 Q 的大小做半徑畫一圓弧交 AC' 於 C, D 兩點。故得到兩組解答；$\overline{AC}, \overline{CB}$ 或 $\overline{AD}, \overline{DB}$ 都可能是所求的兩分力。假設圓弧只跟 AC' 相切於一點，那末僅有一組解答。如果圓弧跟 AC' 不相交，那就根本沒有解答。

由以上討論，可見：1, 2 兩類問題是有唯一的固定解答的；3, 4 兩類問題，那就有時還可能有兩組解答，有時卻又沒有解答。在可能有兩組解答的情形，一般問題中多半另外給有決定那組解答適用的條件。

如要分解一個已知方於已定方向以得到同平面三個分力，那我們任意選擇其中一個分力的大小，都可得到一組分力，可能的解答，因此，有無數多。所以這種分解是一種完全不確定的問題。更一般的問題是分解已知力為任意數目的分力。這種分解，除非所有分力中僅有兩個分力是以上四類中的一種，其他各分力的大小方向都完全確定，才可能有一定的解答。否則也是「不定」的問題。

例題和習題

7. 一塊重量 $Q=5\text{kg}$ 的物體，放在水平木板與 30° 的斜面。著分解受力 Q 為兩正交
分力 Q_1 和 Q_2，使 Q_1 平行於斜面，Q_2 垂直於斜面。
（解：$Q_1=2.5\text{kg}$，$Q_2=4.28\text{kg}$）

8. 第 28 圖中是在一程度弧形木板。架
在水平面內位置時，推動 AB 對
於 A 點梁的推力 $P=250\text{kg}$。
（a）試分解此 P 為水平分力 P_h 和豎直分力 P_v，（b）又分解 P 為垂直於 OA 的
分力 P_1 和沿 OA 作用的分力 P_2。
（解：$P_h=234\text{kg}$，$P_v=83.5\text{kg}；P_1=103\text{kg}$，$P_2=233\text{kg}$）

9. 平面共點力系的平衡

§ 7 已說明，一個平衡物體上的全部力如果是一個平面共點力系，
那末各力幾何相加時，必然將得到一個封閉的「力多邊形」。因此，在
平衡的 n 個平面共點力中，如果 $n-2$ 個「力」為完全已知，那其餘 2 力
的合力就必須跟這 $n-2$ 個力構成平衡；換句話說，2 力的合力就是
n—2 個力的「平衡力」。這「平衡力」顯然可由「力 n—2 邊形」決定。因此，按 § 8 方法分解這「平衡力」就可得到其餘未知兩力。

例題和習題

9. 第 29 圖中是懸掛在繩子 B 下面的物體。 B 號由 AB 和 CB 兩根繩子在高度相等的 A 和 C 點。假使 AB，CB 兩線完全柔軟，並且自重極小，可以不計，它的長度都是 3m，試求圖中 BD 長度為 1.5m 和 重力 7.5kg 時，AB 和 CB 的張力的大小。

解：輸出 B 端的「分離體圖」如第 29b 圖。分離體上有三個「力」構成平衡。它們對鎮定的力三角形如第 29b 圖。作力三角形時，以 \(\vec{a} \) 按一定比例代表物體的重量。之後，取 \(\vec{b} \) 和 \(\vec{c} \) 分別代表於 CB 和 AB。\(\vec{b} \) 和 \(\vec{c} \) 显然就是所求兩張力的代表向量。如果力三角形已經按比例繪圖，我們可以從圖上計算出兩張力的大小。否則，用計算方法也可以：因 \(\triangle ACD \) 與 \(\triangle cdb \) 相似，故 \(\frac{ab}{bc} = \frac{2BD}{BC} = \frac{3}{4} \)。但力 \(ab = 7.5kg \)，因此，\(bc = 7.5 \times \frac{4}{3} = 10kg \)。

10. 第 30a 圖中的起重機：\(Q = 500kg \)，懸臂、吊繩等的自重可以不計，C 處是一阻礙點。求直接掛在 A 端所受的「反作用力」。

解：先畫出 B 點的力的平衡。它的「分離體圖」見第 30a 圖中所畫的黑體圖。分離體上的三個力中，Q 的大小方向完全已知。其餘兩力—懸臂和吊繩的反作用力—方向也已確定。故可畫力三角形如第 30b 圖來求出兩力的大小。此三角形顯然就是封閉的「力三角形」，所以兩力作用的方向也可決定如圖。由圖中可看到：懸臂是受張力作用，吊繩是受拉力作用；一般來說，未知的反作用力作用方向如果復合則得不對，作出力多邊形後就可發現而改正。

因吊繩和懸臂分別受拉力和壓力作用，故它們各自對於直立架的「反作用力」一定是分別與 \(\vec{a} \) 和 \(\vec{c} \) 方向相反，大小相等。用力的作用方向，故之，現如第 30a 圖。至於它們的大小，我們可以由懸臂掛重物的圖中求出；也用計算法求出為：\(\vec{a} = 574kg \)，\(\vec{c} = 906kg \)。

11. 假設第 31 圖中，短的重量為 \(Q = 4kg \)，試求 AB 和 BC 兩線中的張力。

(解：\(AB \) 中 2.93kg，\(BC \) 中 2.07kg)

12. 試求第 32 圖中牆內對於兩根帶斜面的拉力，懸掛重量 \(Q = 12kg \)。

(解：\(D \) 端 10.4kg，\(E \) 端 6kg)
13. 第 33 圖中起重裝置，Q=2t，滑輪摩擦可以不計。 試求 AB, AC 兩鋼繩的內力。
(解：AB 中無內力，AC 中張力為 3.43t)

第 31 圖
第 32 圖
第 33 圖

14. 第 34 圖內是一個產生相等壓力於方形容塊 M 四邊的裝置。AB, BC 和 CD 是一 正方形的三側，AE, BF, CG 和 DH 是正方形對角線按順時針旋轉的條件。假使在絞鈑 A 和 D 相加一對相等相 反的作用力 F=1050kg 如圖。試求水 混凝土所受到的壓力在多少？ 各 條件的自重及可不計。
解：各條件對於周邊絞鈑的「反作用力」都是 互答自的等效作用的。如將 A 與絞鈑當 作分離體（見第 34a 圖中虛線線的圖）。
分離體上共三個力作用。其中 P 力是已知的。故可將力三角形如第 34b 圖，得 AB 和 AE 兩條件對分離體的反作用力 F 分別等於 P 和 1/2 P 的二力。

之後，觀察 B 絞鈑的平衡。因 AB 受等於 P 的拉力作用，故 B 絞鈑受王一 方向的力，方向則如第 34a 圖所示。靜止絞鈑的「力三角形」，就可得到 BF 和 BC 的「反作用力」。不過由圖上可看出，這一「力三角形」只要將第 34b 圖的「力三角形」旋轉 90° 就可得到。同理，將這一「力三角形」再相繼作適當的旋轉，又可決定 C 及 D 結兩個絞鈑的受力情形。故此，水混合的四邊的絞鈑，很顯然的，都是受 P=100kg 的拉作用。對角線方向的絞鈑則是等於 P=144kg 的壓力作用；這一壓力也就是水混合每一分受到的全部壓力。

15. 兩個完全相同的光滑鐵球放在如第 35a 圖的兩個箱重的平底槽內。假定小球的直徑為 r，重量為 Q。平槽的深度為 b。試求槽面 A 和 B 處以及地面 D 處受到的壓力各等於多大?
(解：假設：r=10cm, b=36cm, Q=100kg)
解：因鐵球光滑，故各接觸處的各相應作用力必定垂直於接觸表面。將錶面受到的反作用力 R_A, R_B 和 R_D 分別三面和地面即得兩圓球的「分離體」如第 35a 圖。
平面共點力系

如圖個別圖面論，因兩球的接觸處另有兩個相互相反的內力過球心連繫作用，所以上面一球共受三力作用：重力Q及反作用力R₁和R₂；下面一球共受四力作用：R₁，Q，R₃和R₄。兩球上各力廓各自成「平面共點力系」。

先畫上球的「力三角形」如第35b圖，求出R₃和R₄。之後，解下球的平衡。宜上球的四力，Q為已知，R₃則為已求得的R₁的相等相力。欲畫「力多邊形」如第35c圖可作定R₃和R₄。

假使第35a圖已按比例繪製，R₁和R₃的方向（也就是OC在空間的方向）就可由圖上確定。如果各「力多邊形」也已按比例繪製，則各力的大小和方向就可由圖上量出來。否則，由計算決定，由圖上可看出：

\[2r + 2r \cos \alpha = b \]

或

\[\cos \alpha = \left(\frac{b}{2r} - 1 \right) \] \hspace{1cm} (a)

用(a)式求出α角後，就可求得R₃=1.33Q，R₄=2Q。將已知數值代入，即得：

\[R₃ = 135 kg, \quad R₄ = 200 kg \]

16. 第36圖中是三個同軸的定置。A，B兩同軸的中心距為r=6cm，重量同為W=1000kg。兩同軸的中心距離為AB的長度為l=1km。第三個同軸，中心距為r=6cm，重量為Q=200kg。試求AB軸的張力以及地面接觸為D₃E兩點的接地力為多大？

(解：D₃E接地力為200kg，AB張力為89.4kg)

17. 第37圖中，ACB長6cm。兩端掛在圖中A，B兩點。C是一個輕小的滑輪。下面懸一重量為P=18kg的物體。滑輪C可以沿ACB導軌無滑動。試求平衡時，決定滑輪C位置的x值及軸內的張力為多大？
解：設鉛直動能為發生，ACB 金剛的張力自必完全相同，然的 AC 及 BC 兩部分對於
滑輪 C 的作用力於，必相相等而且它們得合力必然跟力相等相等。因此這一
條件下 AC 和 BC 就非要有相等的水平緩衝角不可。所以引長 BC 到點中之點時，
ACD 頭就是一個等角三角形。由此可見 $ABFD$ 三邊之比必是

$$BF : DF : BD = \sqrt{6.0^2 - 4.8^2} : 4.8 : 6.0 = 3 : 6 : 4$$

不過，$ABGH$ 跟 $ABDF$ 相似，故 $GH : BH = DF : BF = 4 : 3$。也就是

$$\frac{4.8 - 2r}{2r} : 1 = 4 : 3$$

因此，$x = 1$ 故 m。此外，C 點的「力三角形」(第 275 圖) 跟 ACD 相等。故 $S : P = 5 : 6$ (因 $ACDI$ 跟 $ABDF$ 相似，它的三邊之比也應為 $3 : 4 : 5$)。題中 $P = 18$ kg，
故求張力 $S = 18 \times \frac{3}{2} = 27$ kg。

18. 第 38 圖中的滑輪裝置，兩滑輪的尺寸極小，可以不計。設圖中 $l = 5$ m，$P = 16$ kg；
$Q = 5$ kg，試求 ABC 點 B 點的「力矩」(1) BD 等於多少？

(解：$BD = 77.5$ cm)

19. 第 39 圖中的滑輪裝置，滑輪摩擦力可以不計。設 $P - Q, \alpha = 60^\circ$，試求 β 角。

(解：$\beta = 80^\circ$)

20. 第 40 圖中兩側微小物體 A, B 的重量分別為 P, Q。兩物體的連接紐是一根完全柔軟
而沒有伸縮性的紐結。圖中中間的物體為 r。設連接紐之長度 $l = r$，此外，$P = 2$ Q，
試求平滑時，物體 OA 和 OB 間將力矩的夾角 α 和 β 等於多少？

(解：$\alpha = 15^\circ 20', \beta = 39^\circ 00'$)

21. 第 41 圖中，A 和 B 用兩滑輪各載 W_1 和 W_2, AB 是一等重量可以不計的數矩桿，兩
端連接在 A 和 B 的中心。設兩圧桿可以在圖中圓弧上作無摩擦力的滑動，此外，

(1) 直線度基本為 sag
平面與點力系

\[W_a = 50 \text{kg}, W_b = 300 \text{kg} \]
何平衡時，設運轉的水平線與角將等於多少？
（解：\(\alpha = 6^\circ 25' \)）

22. 上題再如 \(W_a = 200 \text{kg} \), \(A \) 取水平位置 (\(\alpha = 0^\circ \)), 於
何 \(W_a \) 達等於多大？才能平衡？
（解：\(W_a = 68.7 \text{kg} \））

19. 平面三力的平衡

平面上三個不平行「力」，如果構成平
衡，那末三「力」的作用線必然共同相交於
一點。 證明如下：

第 42 圖中 \(P, Q \) 和 \(S \) 三個不平行「力」分別作用在物體的 \(A, B \) 和
\(C \) 三點。三「力」同在一平面內。 引長其中任何兩「力」，譬如 \(P \) 和
\(Q \)，作用線使相交於 \(D \) 點，推移兩「力」的作用點到這 \(D \) 點，並將它
們的「合力」替代它們本身。 因第三個「力」 \(S \) 必須跟 \(P, Q \) 兩「力」的
「合力」構成平衡，而兩個「力」要成平衡，必須作用線合一才可能，故
第三個「力」當然非通過 \(D \) 點不可。

在工程靜力學問題中，尤其是在受「約束」物體的平衡問題中，三個
平面力的平衡問題最常見。 §5（第 11, 12, 13 圖）已討論過這一類問
題。 這類問題的形式通常多半是求已知作用點的支點反作用力。 平
衡的三個「力」，因作用線要交在一點，所以如果其中兩個「力」的作用
線都已知，那末第三個「力」的作用線就可以由它的已知的作用點跟兩
「力」作用線的交點來決定。 例如第 11 圖中，圖內表面既已假定是絕
對光滑，反作用力 \(R_a \) 和 \(R_b \) 自然必將通過圓心。 根據三「力」的平衡
條件，可知，只有桿件 \(AB \) 的重力 \(Q \) 也通過圓心時，它才能平衡。 \(AB \)
位置決定後，由力三角形就可決定 \(R_a \) 和 \(R_b \) 的大小。 再如第 12 圖中，
桿桿應取水平位置平衡； \(P \) 及 \(Q \) 力的方向完全已知，故支點反作用
力的方向可以由「三力作用線相交一點」的條件來決定。 至於第 13 圖，
圖中反作用力 \(R_b \) 已知為鉛直方向，故延長 \(P \) 力和 \(R_b \) 力的作用線，使
它們相交，就可決定 \(R_a \) 的作用線。 如再應用「力三角形」，那末所求
各力的大小也可決定。

例題和習題

23. 第 42 圖中是一起重物。 各支承設的摩阻力可以不計。 假設中 \(P = 4t \), 穩定 \(A \) 和
B兩端的反作用力 \(R_a \) 和 \(R_b \)。

第 43 圖

嚴格說來，軸承 A 所生的反作用力應該是分佈在「軸承跟底軸的全部接觸面」上。不過因爲這接觸面比起全部表面來實在非常較小，所以把反作用力 \(R_a \) 看作是集中在一點（譬如說，軸承長度方向的中點）也無不可。軸承無摩擦時，因此 \(R_a \) 應垂直於 \(AB \)。根據這兩適當的簡化假定，\(R_a \)的方向和作用點乃可決定如圖。 引入 \(R_a \)
作用線跟 \(P \) 力作用線交於 \(D \) 點。 \(AD \) 線臥就是 \(R_a \) 的作用線。

三力的作用線確定後，即「力三角形」如第 43 圖。因「力三角形」跟 \(\Delta ABD \) 相等，故 \(R_a : 3 = P : 4 \); 也就是 \(R_a = \frac{3}{4} P = 3t \)。同様情形，\(R_b : 5 = P : 4; R_b = \frac{5}{4} P = 5t \)。 \(R_a \) 和 \(R_b \) 的方向各如圖中所示。

24. 第 44 圖中是一懸掛於生線的裝置。前後一式兩個，可懸掛數百哩一般。 固中懸柱 \(ABC \) 可以把 \(AB \) 軸旋轉， \(B \) 處為一無摩擦的轉軸。 懸掛生線及滑輪等的重量為 450kg; 試求 \(A, B \) 兩處，懸掛所受的反作用力 \(R_a \) 和 \(R_b \)。

(解：\(R_a = 800 \text{kg}; R_b = 640 \text{kg} \))

25. 第 45 圖中，\(AB \) 是一切均勻的軟線段，重量 \(Q = 2t \); \(BC \) 是一根完全柔軟的鋼索，它的自重可以不計。 試求 BC 線上的張力 \(S \) 和懸線 \(A \) 端的反作用力 \(R_a \)。

(解：\(R_a = 1t \); 綁著重機成 60°交角; \(S = \sqrt{3} t \))

26. 第 46 圖中，鋼球重 \(Q \); 半徑為 \(r \) 由 \(AD \) 線懸掛，靠在一繩圍欄上。 試求 \(AD \) 鍊內的
強力 S 和 R_B 對應某球的反作用力 R_B。設 $Q=4\text{kg}$, $r=2\text{cm}$, $AD=2\text{cm}$, 則 R_B 和 S 等於多少？

解：$S=5\text{kg}$, $R_B=3\text{kg}$

第 47 圖

第 48 圖

第 48 圖

第 49 圖

27. 第 47 圖是一間柱形柱體，長度為 Q，半徑為 a。當它在高 h 的障礙 D。試求圖中 P 最小應多大，才能將柱體拖過障礙？

解：柱體開始被拖動時，它和水平地面的接點立刻就於分開；其間的距離；因此，應於零。

柱體上此時具有三個力作用：P, Q 和障礙物的反作用力 R_D。因 P, Q 力臂始終通過原柱中心 C，故柱體移到未動的張平面時，不論 D 還有無摩擦力存在，R_D 力的作力線

第 47 圖

第 48 圖

第 49 圖

28. 一小木球電 Q, 半徑為 a，沿一 AB 縫道在固定點 A 處，小球又另放在一垂直於 r 的

第 47 圖

第 48 圖

第 49 圖

第 48 圖

第 49 圖

29. 一個切面均一的水平桿 AB，自重不計可以不計，長度為 l。AB 桿 B 端由一拉桿 BC 固定在 A 桿上個點 D，另一端由軟錐定在桿上 A 處。BC 的水平桿與桿 A 處。現在有一重桿 P 可以放在 AB 上任何一點。假設桿接點 AB 桿端的距離為 x，試
求拉開的張力 S 與 x 的關係。第 49 圖)

$S = \frac{P}{l} \frac{1}{\sin \alpha}$

30. 第 50 圖中，AB 是一兩端均一的桿件，端點 Q 是 B 端的端點，AB 的長度為 a，桿件 CAD 完全光滑。試求平衡時，x 等於多少？

$x = \sqrt{\frac{a^2 - 12}{3}}$

31. 第 51 圖中，AB 是一端均一的桿件，端點 Q 是 B 端的端點，D 端的一端端點，E 端均一的桿件。試圖中 $h > l$，試計算強力求 BD 的長度 r 等於多少？

$r = \frac{hP}{Q}$

52. 水平桿 ABC 橫在在 AD, BE 和 CF 三根桿件上（見第 52 圖）。試求 ABC 橫在圖中 P 力作用下，三根桿件內的內力 S_a, S_b 和 S_c 等於多少？

解：因 S_a, S_b 和 S_c 的作用桿件與組成各桿件的結構組合，故都是已知的。ABC 軸上共有四「力」作用：P 力和三桿件的反作用力。因此，剛要先合成 S_a 和 S_b 力反作用力的問題簡化為「三桿件」問題。設 DA 和 EB, 得 H 爲 S_a 和 S_b 的合力在通過的

的大小方向則均末知。S_a 和 P 力及 R 力互相作用，它們自然必須

交於一點。因此 G 為 P 力及 S_a 力的交點。若末 HG 顯然就是 R 力的作用線。 信「力三角形」 (第 52 圖) 求出 R 和 S_a 的大小。之後，再分解 R，這樣，S_a 和 S_b 的大
33. 第 58a 圖中的三力拱 A B C 上有一支定力 P 作用；試不計拱的自重求 A B C 間各點的反作用力。

解：將三力拱的 ACA 部份當作一個「分離體」。 它上部具有「支點 A 的反作用力 R_A」和
「組件 ACA 間的內力壓力 R_C」兩個「力」在作用。 因而，這兩個「力」的作用線必然就是
三力拱間的連接線 AC，否則無法平衡。 之後，觀察拱的 B C 部份，叉可看到這
部份共有 P 力和支點 B 的反作用力 R_B 以及組件 BC 間的壓力 R_C，三個力在作用。R_C
自然而然跟 R_C 相等相反的力。 這三「力」的總和或平衡後必然集中在一點，所以 R_C 的作用
線必然會通過 P 力和 R_B 的交點 D。 最後把整個三力拱當作「分離體」它上面兩個「力」
——P 力和 R_B 和 R_C 的作用線全部相加。 故根據 P 力的大小可求出「力三角形」如第 58b
圖。 R_A 和 R_C 的大小則從而決定。

第 58 圖

34. 求第 54a 圖中的三力拱在 A B 間有促使壓力 F = 10N，力 P = 5N； P = 4N，Q = 3N.
解：按上述方法先分別求出 P 和 Q 單獨作用時所產生於 A B 間的壓力。 之後，將 A
和 B 間 P 和 Q 單獨作用的壓力分別用「力平行四邊形原理」求出它們的合力。 這兩
個力的和就是 P 和 Q 同時作用時 A 和 B 間的壓力。 這就是這樣做是否妥當，我們再回
到第 53 原則。 便於結果：R_A = 4 N，R_B = 4 N

35. 二水平梁由四拱橋架成，架設在四拱橋樑上（見第 55 圖）。 梁中各長度尺寸均以公
尺為單位。 該作用力 F = 300kg，試求兩拱件的內力等於多少。

(解：S_a = 158kg 懸臂；S_a = 265kg 懸臂；S_c = 95kg 懸臂)
11. 索鍊

工程結構中常應用柔軟的「索繩」或「索條」來傳導作用力。『索』或『紡』張掛在兩個支點間，兩端固定，中間部份則因重力關係下垂如第56a圖。研究索鍊結構有兩個問題要解決：(1) 在平衡狀態下，索鍊的形狀是什麼樣的曲線？(2) 索鍊中各處的張力如何沿索鍊的長度方向變化？此兩問題可根據§10 討論的分析方法來解答。

以索鍊的最低點為原點，定一正交坐標軸系 x, y 如第59a圖。任意選擇索鍊的一部份 CD 當作「分離體」（見第58b圖）。設想 CD 部份在割離前，全索鍊達到平衡時，已經硬化成一個剛體。這樣設想，

因平衡後索鍊各部份的相對位置已不再變動，顯然不會影響 CD 部份的平衡條件，而可使研究對象仍然是一剛性物體，從而以前的各項平衡定理都可以引用無礙。CD 部份共有三個力作用：它的自重，其餘部份對它兩端的拉力 H 和 S。命 q 為索鍊單位長度的質量。一般情形下，索鍊的形狀都是十分扁平的曲線。因此，CD 部份的重力可以當作等於 qx，並且是作用在 C, D 兩點的水平距離的中央（如第56b圖）。此外，因索鍊已假定為完全柔軟，其中的張力自然只能沿索鍊的長軸作用。最低點 C 的切線為水平方向，因之，H 的作用線必定也是水平方向。三力中兩個力的作用線既然已確定，第三力——D 處的張力 S 自然就必須通過以上兩力的交點 E。但 S 力的作用線應跟 D 點的切線相合，故 ED 同時也決定了一曲線在 D 處的切線方向。作「力三角形」如第56c圖，這三角形應跟 ΔEDG 相似。故得

\[y : x/2 = qx : H \]

\[y = \frac{qx^2}{2H} \] (a)
(a) 式顯然就是索絣平衡時的形狀曲線的方程式。對於一定的索絣，
q 和 H 都是固定常數，可見 (a) 式所表示的是—種形變曲線(1)。

根據力矩三角形，索絣中任何—種曲面的張力是

$$ S = \sqrt{H^2 + q^2} \tag{b} $$

可見張力在 $x = 0$，即最低點 C 處，它的值最小。由最小值起，張力沿索
絣的長軸方向向兩支點逐漸增加。等到達到支點 $x = \pm \frac{l}{2}$ 處，張力就
增加到它的最大值。

假使索絣的最大「變形」f（見第 56 圖）和跨度 l 是已知的，由

(a) 式就可得出

$$ H = \frac{q l^2}{8 f} \tag{c} $$

代入 (b) 式內，並令 $x = l/2$，即可求出支點處的「最大張力」為

$$ S_{\text{max}} = \sqrt{H^2 + \left(\frac{f}{2} \right)^2} = H \sqrt{1 + \left(\frac{f}{l} \right)^2} \tag{d} $$

因 f/l 比值一般都很小，應用「二項定理」展開上式時，其中第二項以後
全可不計，故得

$$ S_{\text{max}} = H \left[1 + 8 \left(\frac{f}{l} \right)^2 \right] \tag{e} $$

例題和習題

96. 第 57 圖中，$A CB$ 是一根單位長度重 $2kg/m$ 的柔軟索絣，張掛在 A 和 B 兩端尺寸極小
的滑輪間。它的兩端各吊一重量 $F = 2k$ 的物體。兩滑輪中心的「位置高度」相等，相
互距離為 $l = 203m$。試不計摩擦力求此索的中點的變落 f。

(解：$f \approx 5m$)

97. 第 58 圖的懸索，單位長度重 $2kg/m$，一端固定在一 $1:5$ 的光滑斜面的 A 點，另外一端

(1) 懸垂度的分析，此曲線區爲—種調 (catenary), 而非拉物線。但在 f/l 比率很小
的情形下，這兩種曲線在實際上沒有太大差別。
C 有一水平力 $P=900\text{kg}$ 施。A 与 B 间的水平距离为 120m。悬索架设在最低点 B 开始下垂。求 B 点到 A 点的水平距离 x 以及索中的最大张力 S_a。

(解: $x=30\text{m}$, $S_a=330\text{kg}$)

38. 第 59 图中，A 点的重量可作沿水平方向均匀分佈。假设 A 点的单位质量重量 $q=5\text{kg/m}$, 悬长 $l=1\text{m}$, 距离 $h=2\text{m}$, $h=60\text{m}$, 考虑最低点 C 处的张力 H 等於多大?

(解: $H=1210\text{kg}$)

39. 假設第 60 图中横梁全部重量 $Q=100\text{kg}$

均匀分佈在它的水平経度 l 上，图中 $l=100\text{m}$, $l=12\text{m}$, $h=10\text{m}$, 考虑横梁的最大张力 S_{max} 等於多大?

(解: $S_{max}=94700\text{kg}$)

40. 第 57 图中，P 力大小等於一定值時，$[A]$ 跟 P 的比例是 $f/l=75\%$。若 P 力如增大一倍，此 f/l 值應等於多少?

(解: $f/l=1/25$)

12. 摩阻力

在以往各問題中，物體與支承間的接觸表面都被假定是絕對光滑的，因此支承的反作用力都只在接觸面的垂直方向作用。不過這種理想情形下假定並不等等於所有問題都適合。在若干情形下，這一假定固然還不完全合適；但是在其他一些情形下，就完全不準確。尤其是對於某些問題，其中接觸面間的滑動抵抗力已經是物體平衡的決定因素，我們決不可假定接觸面絕對光滑。

兩物體間的接觸面上實際必然有一有限的抵抗相對滑動的阻力存在。這阻力稱做摩阻力。例如第 60 图中，兩平板由兩個垂直於接觸面的

作用力 N 所阻後，我們如果要克服接觸面間的「摩阻力」使它們發生相

對滑動，就必須沿接觸面加一個適當大小的 F 力才可能。

關於兩個乾燥而清潔的表面間的「摩阻力」問題，庫倫氏做過無數次實驗，在 1751 年公佈所得結果。現在將這些結果綜合如下：

(1) 假使接觸面間有一層液體層（像潤滑剂）存在，它的摩阻力定律就跟以上所述的完全不同。
1. 接觸面間可以產生的全部摩擦阻力完全跟接觸面的面積大小無關。

2. 可產生的全部摩擦阻力跟接觸面受到的垂直壓力成正比例。

3. 試驗結果顯示表示，使接觸面開始相對滑動所需要的阻力力 F 比維持滑動所需要的要大一些。不過，在實際問題中，如果滑動速度不高，接觸面可產生的全部摩擦阻力就可當作跟速度無關。

以上各種阻力定律用簡便的算式表示，就是

$$ F = \mu N $$(1)

式內 μ 稱為摩擦係數。假使 F 等於使接觸面開始滑動所需的作用力，μ 就稱為「靜力摩擦係數」。如果 F 等於較小的，維持滑動所需的作用力，那末 μ 應稱為「動力摩擦係數」。各種不同的物質，它的靜力或動力摩擦係數也各不相同。而且接觸面的表面狀況如果不同，係數值也將變化。

第 61 圖中是一個放在水平平面上的微小長方體。它上面有一個跟水平線成 α 角的 P 力在作用。 P 力比方體的自重大得多，所以方體的重心可以不計。不過我們把 P 力當作重力和其它「圖中未畫出」的外力的「合力」，自然也可無不可。

接觸面上，壓力的真正分佈情形，實際上，要看 P 力的作用點和 α 角而定。不過

致察的對象如是平衡的物體，那末這些分佈壓力自然必須等於一個跟 P 力相等相反的反作用力 R。分解 R 為接觸面的切線和法線方向的分力 F 和 N； F 和 N 分別代表摩擦力和垂直壓力。物體如果平衡，就必須

$$ F/N = \tan \alpha $$ (a)

α 角假使逐漸增加到它的極限值 φ，使物體即將開始滑動（第 61b 圖），那末平衡條件就要求

$$ F/N = \tan \varphi $$ (l)
不過物體將開始滑動時，根據（1）式，應該

$$F'N = \mu$$

故綜合（b）（c）兩式就可得知底下這一重要的關係方程式:

$$\tan \varphi = \mu$$

這一\(\alpha\)角的極限值\(\varphi\)，通常稱為摩阻角。上式說明，摩阻係數乃等於摩阻角的正切。

綜合以上討論，知：物體即將開始滑動時，接觸面所產生的全部反作用力，它們作用線跟接觸面的法線所成交角就等於摩阻角\(\varphi\)，它的方向則取阻止物體運動的方向（見第61b圖）。至於將開始滑動前反作用力跟法線所成的交角，那就需要由平衡條件來決定。換句話說，這一交角應該等於反作用力使物體平衡所需要的交角。若假定接觸面完全光滑，\(\mu = 0\)，摩阻角因此也等於零，全部反作用力\(R\)就顯然將垂直於接觸面。

以上討論雖然僅指\(P\)力在圖平面上作用的情形。不過，一般說來，只要\(P\)力作用線在一摩阻角\(\varphi\)絞法線旋轉所成的圓錐內，那就，不論\(P\)力大小如何，物體都可以平衡。這一圓錐（頂點在接觸面上）通常稱為靜力摩阻錐。

例題和習題

41. 一個鋼製劈木模的尖角\(\alpha\)必須等於多少，劈木時鋼模才不會滑出來？

（解：\(\alpha \geq 2\varphi\)）

42. 一石板放在傾斜的滑道上，滑道的水平繫定角為\(\alpha\)。假設石板和滑道間的摩阻角等於\(\varphi\)，求石板的平衡條件。

（解：\(\alpha \geq \varphi\)）

43. 第62圖中，\(AB\)是自重可以不計的繩條，自由度等於1。繩條跟地面和壁面間的摩擦角等於\(\varphi\)。試求一重\(W\)的人可以通過繩條登而繩條不致滑動的最大阻滑距\(x\)可以等於多大？

解：繩條將開始滑動時，\(A-B\)兩力的反作用力跟它們相應的法線所成交角\(\varphi\)。人的重力必須通過這兩個反作用力\(R_a\)和\(R_b\)的交點\(C\)；三力才能平衡。當力既然要通過圖中\(C\)點，那末人的最高位置就可以在圖上指定；如要是按照比例尺畫的，所求的\(x\)就可從圖上量出。否則，如下

第62圖
計算：

\[DB = l \cos (\alpha + \varphi) \cos \varphi, \quad x = l - BD \cos \alpha \]

故

\[x = l \left[1 - \cos (\alpha + \varphi) \cos \varphi \cos \alpha \right] \quad (d) \]

可見如沒有摩擦力，\(\varphi = 0 \) 時，將變為零；因此，\(A \) 處必須放一阻燃物來防止滑動，否則一步也不能攀繩。此外，又可見：\(\alpha = 90^\circ - \varphi \) 時，人就能攀到頂端也無妨礙。換句話說，如攀繩放 \(A \) 位置所成角度不大於摩擦角，那末攀繩將無滑動危險。

44. 一個方體重 \(2b \), 高 \(h \), 放在一水平平面上如第 63a 圖。它的重量為 \(W \), 接觸面間摩擦係數為 \(\mu \)。試問該方體於開始時同時滑動

當鍵轉時，圖中 \(P \) 力的大小及作用線高度 \(c \)

達至 \(\Delta \) 多？

解：將開始如此運動時，方體是在三個力的作用下平衡：作用在它的中心 \(A \) 之的重量 \(W \), 作用力 \(P \) 以及水平面的反作用力 \(R \)。 以前已指出：阻力面反作用力的摩擦係數

情形要看作用力 \(P \) 的作用點而定。因之，圖面上跟這些分佈力作用相等的反作用力 \(R \) 的作用點位置也可由 \(P \) 力作用點來決定。長方體於開始接觸時，兩接觸面就將開始分離。接觸的摩擦力這時必集中於 \(C \) 點作用。 這就是說，分佈力集中在 \(C \) 點作用時，長方體就將開始滑動。所以我們令 \(R \) 作用於 \(C \) 點表示長方體開始滑動；另外，再令 \(R \) 作用線跟接觸面成直角等於 \(\text{「部力摩擦角」} \) 的角，就表示長方體又將開始滑動。根據這兩個條件，同時接觸和滑動的 \(R \) 力作用線完全決定。 \(R \) 力和重量 \(W \) 的中點為 \(D \)。 三力不平衡，水平力 \(P \) 自然必須通過這一定 \(D \) 點。 由第 63a 圖中：

\[\Delta DBC \]

(a)

(b)

第 63 圖

可知，\(P \) 力作用線的「臨界」高度為

\[c = b - \mu \]

式又說明：方體的尺寸如果是 \(b/h > \mu \)；那就不要 \(P \) 力作用線的位置如何，總是

滑動比較點先發生。

由第 63b 圖的力三角形，又可決定：「引起開始滑動所必須的 \(P \) 力大小」為

\[F = W \tan \varphi = \mu W \]

將 \((f) \) 跟 \((1) \) 比較，可知，這 \(P \) 力的大小當然等於接觸面所能許許的摩擦力。 此外，還可看出，只要滑動並沒有發生，\(P \) 力的大小顯然跟作用線位置毫無關係。

45. 一個人用一根繩在水泥地上拉一塊沉重的石塊（第 64 圖）。 如果要使拖動時，拉力

最小，問 \(AB \) 線應該取什麼角度？ 該石塊和

地面間的摩擦係數為 \(\mu \)；問這一最小的拉力 \(P_{\text{min}} \) 應當於 \(\Delta \) 多？

解：石將塊開始滑動時，它在三個「力」作用下

平衡：重力 \(W \), 拉力 \(P_{\text{min}} \) 和地面的反作用力 \(R \)。 反作用力 \(R \) 是石塊面向的分佈壓力

\[\begin{align*}
W & \quad 50^\circ \quad \varphi \\
\cdots & \quad \cdots & \quad \cdots \\
R & \quad P_{\text{min}}
\end{align*} \]

第 64 圖

(a)

(b)
合力（第 64a 前）以上二力的力組件是形成一個封閉的「力三角形」。這「力三角形」畫法如下：先作力 W 的平行四邊形；然後以 W 的作用點為原點，以 H 角的直線表示 W 的作用線。再作 Fmin 的作用線；不用說，應該是從 W 力作用點所引 Fmin 力作用線的垂線。故合力 Fmin 在它跟水平線成角時最小；也就是說，它的作用線 AB 鏈接水平線成角時最小；合力最小。這時，

\[F_{\text{min}} = W \sin \theta \] \hfill (7)

比較 (7)/(4) 式，可見：在一個粗細很小的柱體表面上拉一個圓形的石塊，如果在水平方向上拉，就需要非常巨大的拉力；假使將拉精調整水平線時成等於摩擦角的支角，那就不容易得多。例如本題中 \(\mu = 0.6 \) 時，由 (7) 式所得的最小拉力 \(F_{\text{min}} \) 就只等於由 (7)/(4) 所得的水平拉力的 86 倍而已。

48. 一個正方形樑，高 12cm，厚 10kg，設其半徑 \(r = 3 \text{m} \)，重心在其中心偏於離處 \(\frac{15}{4} \)；放客一角度的方盤上（見第 65 圖）。假設初始角度的摩擦係數 \(\mu = 0.5 \)。試求平面時翻盤的水平力 \(P \) 最大可以為多大？最小又何等於多少？

解：\(P_{\text{max}} = 4.6 \text{kg}, P_{\text{min}} = 0.508 \text{kg} \)

47. 一個長度不大的半圓柱體，半徑為 \(r \)，重量為 \(W \)，放在一水平平面上。按摩擦的摩擦係數為 \(\mu \)。半圓柱的前邊於點 C 处有一垂直於長軸的水平力 \(P \) 作用（見第 66 圖）。圖中 \(O \) 点是半圓柱的重心。試求這一半圓柱在開始滑動時，它向上平面跟水平面的交角 \(\alpha \) 等於多少？

解：\(\sin \alpha = \frac{3 \mu x}{4 + 8 \mu x} \)

48. 第 67a 圖中是一堆石塊的裝置。設各接觸面的摩擦係數為 \(\mu = 0.25 \)，棱子(1) 的自重可以不計，試求感到圈中的重 2000g 的石塊所受的水平力 \(F \) 與等於多少？

解：\(\mu = 0.25 \)，摩擦角 \(\theta = 14^\circ \)。當石塊將開始滑動時，石塊和棱子的「分離體圖」各如第 67b 圖所示。其上每一角的摩擦力的反作用力跟所設的法線成等於摩擦角的交角，並且取法線運動方向。石塊和棱子各在三個「力」作用平衡，它的「力三角形」

(1) 叫「棱子」。
49. 如第 68 圖中的裝置，條形和斜面上的摩擦係數各為 0.2 和 0.3，設 Q=800kg，試求
平衡時圖中 W 力的最小值等於多大？

（解：W_{min}=2950 N）

50. 兩根每重 10kg 的立軸自相連接後，放在如第 69 圖的上下平面上，各接
觸面的摩擦係數 μ=0.3。當立軸開始向左滑動時，圖中 P 力的方向（即θ角）及最小值各等於多大？

（解：P_{min}=5.75 kg，θ=16°42'）

13. 投影法

以上所討論的「力的合成和分解」以及「平面力系平衡問題」等等
都是應用「分離向量」的「幾何相加」來處理。不過並不因此，這是唯
一可行的方法。如果任意選擇作用於平面上兩根正交直線 x, y 作為坐標軸，將各力投影在兩軸上，應用各投影的「代數相加」，事實上，也同
樣可以解決以上各問題。

第 70 圖中，F_1 和 F_2 是物體 A 點的兩個作用力。兩「力」跟坐標軸正方向的交角分別為 α_1, β_1 和 α_2, β_2。由「力平四邊形」求出它們的合力 R。P 跟 x, y 軸的交角為 α 和 β。投影各力於正 x 軸方向。
投影值為 \(F_1 \cos \alpha_1, F_2 \cos \alpha_2 \) 和 \(F \cos \alpha \)。
由圖上可以看到，
\[R \cos \alpha = F_1 \cos \alpha_1 + F_2 \cos \alpha_2 \quad (a) \]
同樣，投影各於正 \(y \) 軸方向，又可得
\[R \cos \beta = F_1 \cos \beta_1 + F_2 \cos \beta_2 \quad (b) \]
由以上兩式，可以看出，兩力的合力對於任何軸線的投影，總等於兩力對於同軸投影的「代數和」。
只要連續應用「力平行四邊形原理」，以上結論顯然可推廣應用於任何多個數的平面各點力 \(F_1, F_2, \ldots, F_n \)。令
\[F_1 \cos \alpha_1 = X_1, F_2 \cos \alpha_2 = X_2, \ldots, F_n \cos \alpha_n = X_n \]
\[F_1 \cos \beta_1 = Y_1, F_2 \cos \beta_2 = Y_2, \ldots, F_n \cos \beta_n = Y_n \]
\[R \cos \alpha = X, \quad R \cos \beta = Y \]
即得
\[
\begin{align*}
X &= X_1 + X_2 + \ldots + X_n = \sum_{i=1}^{n} X_i \\
Y &= Y_1 + Y_2 + \ldots + Y_n = \sum_{i=1}^{n} Y_i
\end{align*}
\]
（3）
此式說明：\(n \) 個平面各點力 \(F_1, F_2, \ldots, F_n \) 的合力對於任何坐標軸的投影就等於所有各力對同軸投影的「代數和」。
已知各力的大小和方向時，它們在坐標軸 \(x, y \) 上的投影可以應用表格計算。合力兩投影 \(X \) 及 \(Y \) 的大小可在表中直接算出。它本身的大小和方向，則由以下各式計算：
\[
\begin{align*}
R &= \sqrt{X^2 + Y^2} \\
\cos \alpha &= \frac{X}{\sqrt{X^2 + Y^2}} \\
\cos \beta &= \frac{Y}{\sqrt{X^2 + Y^2}}
\end{align*}
\]
（4）
應用此式求合力的大小和方向，有時，可較 § 7 中的「幾何相加」方法方便。
如果各已知力 \(F_1, F_2, \ldots, F_n \) 是一個平衡力系，合力等於零，那未，根據（4）中第一式，可知，必須 \(X = 0, Y = 0 \)；否則，合力就不會等於零。所以按（3）式，可得
解: 求得平衡力系中各力大小, 各力矢量相等。 图中 PB,因之, 是在三个力作用下平衡。 选定坐标轴 x, y 如图, 由(5)式, 可得:

\[
\begin{align*}
\sum X_i &= 0 \\
\sum Y_i &= 0
\end{align*}
\]

\[S = 5\sqrt{3}\text{kg} \]

\[P = 5(1 + \sqrt{3}) = 13.7\text{kg} \]

52. 第 72 图中, 跨度 l = 30m, 高度 h = 5m, 车重 ACDB 的自重很小, 可以不计。 车求车的 AC 和 CD 部分的内力 S1 和 S2 各等于多大？

(解： S1 = \sqrt{5}P, S2 = 2P)

53. 第 73b 图中, 三个铰链组成一个三脚架 ABC。 两个力在 A, B 两轴线 AB 横杆的力矩方向作用。 (a) 车求各杆件中的内力; (b) 另外, 在 AB 杆件中间加设一铰链杆件 CD 如第 73b 图。 车求各杆件中的内力如何变化？

54. 第 74 图中, ACEDB 是一铰链杆, E 点是它的中点。 车求平衡时图中 B 角度等于多大？

(解： \(\beta = 30^\circ\))
55. 如第75图所作用力P=10kg。求平衡时，Q应等于多少?
解：先观察B点的平衡。将各力投影在平行于AB的直线上，之后再考虑C点的平衡，以BC为基线，将各力投影在垂直于BC的直线上，就可求得Q=16.32kg。

56. 第76图中是一个杠杆的装置。ABC是一根接梁和长直杆的铁索，BC的BC部分是支承在由微小的α角。末端E点将ABC架的B点支点架的E点连接。它的BD部分水平；DE部分想平行于杆和微小的β角。现在在D点加一个垂直向下的拉力Q。 如α= β=0.1弧度，求杠杆受到的拉力Q的大小?
解：先观察D点的平衡。投影各力于一偏心于3上得DE部分内的拉力为S=Q_{\sin\beta}≈0Q_{\beta}。
之后，在B点的平衡。将各力投影于一偏心于杆的直线上，可得拉力P约等于100Q≈1500kg。

57. 两端固定 AB, CD 由拉链 BF, DG 固定在同一个平面内。其间用一根长 l 的 BD 线。
BD的中点处悬着一个重物Q (第77图)。设Q=100kg, l=20m, 距离d=1m, 求将拉链 BF, DG 内的张力各等多少?
(解：S≈10\cdot10kg)

58. 在一个弯曲框架 CD 上有一个铰链 A 可以沿框架作滑动和转动。 结构 CD 的弯曲半径为r，P, Q两力作用的矢量图第78图。滑轮的尺寸和摩擦力可忽略不计。求平衡时α角的大小等于多少?
解：滑轮摩擦力不计考虑，AB条中的张力显然就等于Q。A点的平衡是由于以下三个力的作用：P, Q, 及反力F_{re}。F_{re}的方向与抛线OA的方向。穿过三个
力投影在 A 点的圆弧切线之上，使未知的 RA 不入算法，即可得

\[Q \cos \frac{\alpha}{2} = P \sin \alpha = 0 \]

也就是

\[Q \cos \frac{\alpha}{2} - 2P \cos \frac{\alpha}{2} = 0 \quad (e) \]

故得

\[\sin \frac{\alpha}{2} = \frac{Q}{2P} \]

或

\[\cos \frac{\alpha}{2} = 0 \]

也就是

\[\alpha = \pi \quad (d) \]

(4) 式表示：是说使横轴从 C 到 D 已经完全成一个完全的圆弧。若 A 点恰好在 O 点的正下方，也会不平，而且 A 点的圆弧上的平衡由 P，Q 两力的大小决定。但结论是不合常理的。本题中如 P=Q，那 α 就将等于 90°。

第 78 图

第 79 图

59. 第 79 图中，A 球的重量为 W，AB 线取水平方向，所有各处的摩擦力都取小，可以不计。求平衡时，图中 AC 线的水平组件角 α 和 A 球对圆中水平平面的摩擦力各等于多少？

(解：cos α = P/Q，R = W - √(Q² + P²))

60. 第 80 图中 D、E 用绳各系 P、Q。两绳都各自沿 AC 和 BC 作纯摩擦滑动。二球的中心连接线是一根没有张力的细线 DE。求平衡时，DE 跟 AC 的夹角 α 应等于多少？

(解：tg α = √3 Q/P)

61. 第 81 图中，一个重 W 的立方体放在一个倾斜 θ 角的斜面上。其同质体重为重 W。立方体的尺寸均可以使滑动比较容易发生。有一 P 力作用在立方体上，使之开始移动。问图中 θ 角应等于多少，P 力才最小？

第 60 图

第 81 图
解：若方體已達到使方體將開始滑動的足夠大小，方體將沿在三力作用下平面。 三力的交點為 A。 由 (5) 式，可

\[P \cos \alpha - R \sin q - W \sin \beta = 0 \]

\[P \sin \alpha + R \cos q - W \cos \beta = 0 \]

從第一式解出 R，代入第二式，得

\[P = \frac{W}{\mu \sin \beta + \sin \beta} \]

其中 \(\mu = \tan \phi \) 是接觸面的摩擦係數。

以 \(\alpha \) 作為變數，代入 (e) 式，並令 \(\frac{dP}{d\alpha} = 0 \)，P 力最小的 \(\alpha \) 值就可由下式決定：

\[\mu = \tan \alpha - \sin \alpha = 0 \]

故

\[\tan \alpha = \mu = \tan \phi \]

可見：作用力 P 使斜面方向或等於摩擦角的交角時，推動方體所施加的推力 P 最小。 遊題第 45 號得到的結果正相符合，足見第 45 號的解答沒有錯誤。

將 \(\alpha = \phi \) 代入 (f) 式中，P 力的最小值乃為

\[P_{\text{min}} = W (\sin \phi \cos \beta + \cos \phi \sin \beta) = W \sin (\phi + \beta) \]

特別情形，\(\beta = 0 \)，斜面與水平面平行，此式的 \(P_{\text{min}} \) 值就簡化為第 45 號的 (g) 式。

62. 第 82 圖中有兩個大小不同的方體面疊在一起水平平面上，上上面方體受一整 AB 線連通在上部的 B 點，各接觸面的摩擦係數都是 \(\mu = 0.3 \)。設圖中 \(W_1 = 200 \text{kg} \), \(W_2 = 50 \text{kg} \)，問下面方

體將開始滑動時，間 Ç 重心力 P 應等於多少？

(解：P = 84.5 kg)

63. 如第 83 圖的裝置，所有各接觸面的摩擦係數都等於 \(\mu \)，不過滑輪的拉繩力可以不計，設 \(W_1 = W_2 \)，試求斜面的水平段推角 \(\alpha \) 應等於多少，當中兩物體才將開始滑動？

(解：\(\tan \frac{\beta}{2} = \mu \))

64. 第 84 圖中，兩半圓柱體跟水平平面間的摩擦係數為 \(\mu \)；各圓柱體間撲由摩擦力發生。

三圓柱體的半徑都等於 \(r \)。 他們要在「中間圓柱不接觸水平面」的條件下平衡，問

下面兩個半圓柱體的中心距離 \(b \) 最大可以等於多少？

(解：\(b = 8 \mu r / \sqrt{1 + 4 \mu^2} \))
14. 力對於一定點的力矩

一個力使所作用的物體繞一個定點旋轉的「作用」，可以構成功一個「概念」。這一「概念」如應用來解決靜力學問題有時非常有用。譬如第 85 圖中的螺桿支頸，它上面有如圖的 P, Q 兩個力作用。光由直覺經驗已經可以發現：對於旋轉螺桿用來說，即使 P, Q 兩力的大小相同，那跟扳手成直角的 P 力仍然要比 Q 力作用大。測量力的這種使所作用物體繞一個定點旋轉的「作用」的尺度就叫做力對於這一定點的力矩。力矩的大小以「作用力的大小」跟「定點到力作用線的距離」的乘積來代表。

故圖中 Q 力對 Q 點的力矩不但跟 Q 力的大小有關，而且要看 Q 點到 Q 力作用線的距離 OD 的大小而定。

根據以上力矩的定義，Q 力對 Q 點的力矩顯然就等於 ΔOAB 面積（圖中繪虛線部份）的兩倍。圖中 AB 是 Q 力的代表向量。ΔOAB 就是以力的代表向量 AB 為底邊，力矩中心為頂點的三角形。AB 和 OD 的長度當然應該分別按力和長度的比例來決定。由這裏也可看到，力矩的單位應當是力的單位跟長度單位的乘積。如力的單位用 kg, 長度單位用 m, 則力矩單位就是 kg·m。工程問題中，另一力矩單位也是十分常用的，那就是 kg·cm。(有時還用 t·m)。

假使物體上同時有若干個平面共點力作用，其中有幾個力使物體繞定點向某一方向旋轉；但其他幾個力使物體繞同點向反方向旋轉，那末通常規定：自作用平面的同一方向觀察，那些使物體「反」時針方向旋轉的「力」的力矩為正；「順」時針方向的為「負」。所以上圖中，Q 力對於力矩中心 O 的力矩為正；P 力對同點的力矩為負。

根據力矩的定義，力對於一定點的力矩，在下列各情形中，它的大小並不改變：(1) 力的作用點沿作用線任意移動，(2) 力矩中心沿平行於力作用線的直線上任意移動。此外，還可看到，「力」如果不等於零，那只有力矩中心恰好在力作用線上，力臂為零，力矩才可能等於零。
15. 力矩合成定理

兩共點力的合力對作用平面上任何一定點的力矩等於這兩個力對同點力矩的代數和。這就是力矩合成定理(1)。它的證明如下:

(1)「P, Q 兩力對定點 O 的力矩」方向相同的情形
如第 86a 圖，先任意選定一直線 mn，令跟 OA 垂直。O 是力矩中心，A 就是 P, Q 兩力的交點。又延 Aa, Bb, Cc 及 Dd 垂直於 mn。假
面積來說，可得
\[\Delta OAB = \frac{1}{2} OA \cdot ab, \quad \Delta OAC = \frac{1}{2} OA \cdot ac, \quad \Delta OAD = \frac{1}{2} OA \cdot ad \]
但 \(ad = ab + bd = ab + ac \)，故
\[\Delta OAD = \Delta OAB + \Delta OAC \]
可見在本情形下，定理是正確的。

![圖(a)](圖(a)

(2)「P, Q 兩力對 O 點的力矩」方向相反的情形
由第 86b 圖，可看到: \(ad = ab - db = ab - ac \)。故得
\[\Delta OAD = \Delta OAB - \Delta OAC \]
可見力矩合成定理對本情形也是正確的。

在 (2) 中，Q 力對 O 點的力矩是負值，故以上兩種情形可總括為：兩平面共點力的合力對於一定點的力矩等於兩力對同點力矩的代數和。

如果有很多共點力 \(F_1, F_2, \ldots, F_n \) 作用在同一平面，我們只要連續應用以上「兩個力的力矩合成定理」，就可得到這樣一個結論：這些力的

(1) 又稱為力能 (Varignon) 定理。
合力對同平面上任何一個定點的力矩即等於所有各力對同點的力矩的\textit{代數和}。證明這個更一般的[力矩合成定理]的[步驟如下]；先把\(F_1 \)和\(F_2 \)合成為合力\(R_1 \)。根據力矩合成定理，可知，\(F_1 \)和\(F_2 \)對作用平面上任何一點的力矩都可以由\(R \)力對同點力矩來代表。其次，又合成這一[份力](R_1)和\(F_3 \)，得到合力\(R_2 \)。前兩力\(F_1 \)，\(F_2 \)，\(F_3 \)對定點的力矩，因之，就可以由\(R_2 \)對同點的力矩來代表。如此繼續下去，直到包括\(F_n \)為止，就可以得出以上結論。令\(M_0 \)為合力\(R \)對\(O \)點的力矩；\((M_0)_1 \)，\((M_0)_2 \)，\(\cdots \)\((M_0)_n \)各為\(F_1 \)，\(F_2 \)，\(\cdots \)\(F_n \)對\(O \)點的力矩。以上結論即可用方程式表示如下：

\[M_0 = (M_0)_1 + (M_0)_2 + (M_0)_3 + \cdots + (M_0)_n = \sum_{i=1}^{n} (M_0)_i \] (6)

計算式中\((M_0)_i \)時，通常分解作用力\(F \)於兩正交坐標軸\(x \)，\(y \)方向，求出它的分力\(X_i \)和\(Y_i \)對\(O \)點的力矩代數和，來確定\((M_0)_i \)。這樣，計算可以簡便一些。如\(x_i \)，\(y_i \)為\(F_i \)力作用點\(A \)的坐標值（第87圖），按力矩合成定理，就得

\[(M_0)_i = F_i \cdot OD = Y_i x_i - X_i y_i \] (7)

16. 力矩法

根據(6)式，可推知：(1) 力矩中心如果恰巧在力系合力作用線上，或(2) 各力如果構成平衡，合力等於零，那末這一平面共點力系中各力對力矩中心的力矩代數和就等於零不可。這一事實對於決定一個平面共點力系的平衡條件非常有用。例如第88圖中的力系。假使這力系對任意點\(B \)的力矩代數和等於零，那末不是合力等於零，就是合力是作用在\(AB \)線上。若這力系對另一「不在\(AB \)直線上的力矩中心\(C \)」的力矩代數和，仍等於零，那合力就等於零不可。因合力不可能同時有\(AC \)和\(AB \)兩根作用線。以上討論如果用方程式表示，就是

\[\sum_{i=1}^{n} (M_B)_i = 0, \quad \sum_{i=1}^{n} (M_C)_i = 0 \] (8)
兩式也就是平面共點力系的平衡條件在力矩法中的表現形式。 (8) 式中 B, C 兩點是力系作用平面上的任意兩個力矩中心，不過它們不可以跟各力交點在同一直線上。 (8) 式跟 § 13 中 (5) 式，在意義上，自然完全相同。 不過應用 (8) 式解決靜力學問題有時要簡便得多。 解決平面共點力系的平衡問題而且還可以由 (5) (8) 兩式各取其中一式來應用。 這樣做，有時可更方便。

例題和習題

65. 第 88 圖中 AB 是一個平面均一，厚度為 Q 的樑件。 一端由一根軸固定在 A 點；另一端 B 斜開在一個光滑的斜面上。 試求 B 極受到的反作用力 R_b 等於多少？

解：因不計摩擦力，故 R_b 嚴豞立於樑軸。 AB 梁上共有 Q, R_b 和按此 A 的反作用力三個力在作用。 此三力構成平衡，它們對作用平面上任何一點的力矩代數和恒為零，因此必須等於零。 現在求 A 點力矩中心，使未知的 A 外反作用力可以不計；即得

$$\frac{1}{2} Q \cos \alpha - R_b = 0$$

故

$$R_b = \frac{1}{2} Q \cos \alpha$$

66. 第 90 圖中 A, B, C 都是理想軸盡。 水平桿 AB 的自重可以不計。 試求 BC 梁件由圖中 P 所引起的內力等於多少？

解：$S=P/2\sqrt{2}$；壓力

67. 第 91 圖中，AB 是一塊板戊。 一重桿 W 可掛在此板上任何一端的下端。 重桿所在一端到板端的距離為 a。 各接觸面的摩擦力和摩擦的自重可以不計。 試求 B 端反作用力 R_b 的大小。

解：$R_b = \frac{W_o}{\tan \alpha}$

68. 短型桿 AB 是，一端固定在圖上 A 點，另一端由 BC 梁開一固定點 C 接接著 (第 92 圖)。 AB 梁上有一重塊 Q. 重桿可以放在 AB 梁上沿垂直方向的任何位置。 AB
60. 第 93 圖中是一個 T 字架。E 處的 P 力是 48kg。求 BC 桁中的內力 S。

解：

$$S_{max} = \frac{Q}{2 \sin 35^\circ} = 1.98Q$$

61. 如第 94 圖的裝置。水平地面完全光滑。P、E 兩處的地面反作用力，因對稱關係，應都等於 \(\frac{Q}{2}\)。問 BC 桁中的張力 S 等於多大？

解：

$$S = \frac{Ql}{4h}$$

62. 如第 95 圖的裝置。F=200kg。求 E 處的反作用力 \(R_e\)。

解：

$$R_e = 100kg$$

72. 如第 96 圖的裝置。AC 是一長 L 的桿件。BC 是一根拉桿。所有自重都可以不計。一根光滑的鋼球放在 AC 桿和懸垂的中間。球半徑為 a。球的重量為 Q。如不計阻尼，試求 BC 桿張力 S 最小時，圖中 a 角應等於多少？設 Q=50kg，L=1m，

a=20cm，試問這最小張力 S 等於多大？

解：先考察鋼球的平衡。鋼球上有三個力作用：重力 Q 和懸垂的水平方向反作用力 \(R_d\) 以及垂直於桿件的 AC 桿的反作用力 \(R_e\)。取 D 点作力矩中心，可得

$$R_e + a \sin \alpha - Q = 0$$

即可

$$R_e = Q \sin \alpha$$ \(\text{(a)}\)
這一結果也可以由「三力合成垂直於向的投影代數和應當為零」的條件來求出。

之後，考察AC杆的平衡。AC杆所受到的三個力是：BC钡中的力在C處產生的反作用力S和Re和等相反的方向對AC的壓力R'，以及絞鏈桿子A的反作用力R。以A點作力矩中心，令各力對A點的力矩代數和等於零，就可得

\[S \cos \alpha = R'e' \csc \alpha = 0 \]

因 \[R'e' = R_e = Q \sin \alpha \]，故

\[S = \frac{Q \sin \alpha}{2 \times 2 \sin \frac{\alpha}{2}} \cos \alpha \]

（b）

仔細研究此處，可以，當 \(\alpha = 0 \) 及 \(\alpha = \pi/2 \) 時，力S將變成無限大。在這兩個 \(\alpha \) 值間，S卻都在於有限值。可見，在 \(\alpha \) 值在 0 到 \(\pi/2 \) 間，力S必定有一個最小值。以 \(\alpha \)

作稱變數，設 \(b \) 式，並令 \(ds/da = 0 \)，即得

\[\sin \alpha (4 \sin \frac{\alpha}{2} - 1) = 0 \]

（c）

也即

\[\sin \alpha /2 = 1/2 \]

（d）

將（d）代入（b）中，即得

\[S_{\text{min}} = \frac{4Qa}{l} \]

（e）

現已知 \(Q = 50 \text{kg} \), \(l = 1 \text{m} \), \(a = 20 \text{cm} \),

故

\[S_{\text{min}} = 43 \text{kg} \]

73. 第97圖中，AB杆長2l重Q，懸著在一無摩擦力的組滑輪D上。它的一端A懸

掛在一鉤和縛面的A點。縛面光滑。求平衡時，問中 \(\alpha \) 角的大小。

（解：\(\cos \alpha = \sqrt{a/l} \)

74. 第98圖中，絞鏈桿BC及l重W。懸載AB重Q。此絞的懸臂重量可以假定是均勻分

佈在水平跨度AB間。A, B兩點的高度相等。設圖中 \(l = 2.4 \text{m} \), \(\alpha = 60^\circ \), \(W = 10 \text{kg} \),

第97圖

第98圖
平面滑點力系

\(Q = 2 \text{kg} \), 試求 \(AB \) 在準點的數值 / 等於多大？

(解：\(f = 0.05 \text{m} \))

75. 第 99 圖中的接點處 \(W \), 底面是一個半徑為 \(a \) 的 \(AB \) 圓弧。 周弧的圓心為 \(O \)。 有一水平力 \(P \) 作用在 \(O \) 點。 (a) 選擇

\[
\text{設滑動的重心在圓弧 } AB \text{ 的等分當與 } OE \text{ 上，距圓心 } O \text{ 等於 } b \text{ 處。試求平衡時，圖中 } \alpha \text{ 角的大小。}
\]

(b) 設接頭和地面間的摩擦係數等於 \(\mu \), \(P \) 力自小而大逐漸增加它的大小，問接頭開始滑動時，\(\alpha \) 角應等於多大?

(解：(a) \(\sin \alpha = \frac{P_d}{W_b} \), (b) \(\sin \alpha = \frac{\mu a}{b} \))

76. 吊橋 \(AB \) 其 \(t \) 重 \(Q \), 一端裝在支點 \(A \) 上（見第 100 圖）。 \(DE \) 是一根鋼筋混凝土的拉索。 它所跨過的滑輪、尺寸極小，摩擦力也很小。 滑輪到 \(A \) 點的高度為 \(h \)。 其它尺寸見圖中所注。 試求 \(DE \) 槳中張力 \(S \) 繼圖中 [開備角 \(\alpha \)] 的函數關係。

(解：\(S = \frac{Q_1}{2a} \sqrt{h^2 - 2ah \sin \alpha + a^2} \))

17. 簡單桁架

結構工程中常應用桁架代替樑拱來支承「荷重」。 桁架由一系「樑件」構成。 平面桁架，全部樑件的長軸都是在同一平面，樑件兩端則相互兩兩連接，組織成一個剛性的構架。 例如第 101 圖所畫的兩個構
架。图 a 中 ABCD 是四个铰件由梢子连接成的一个四方架。它如果受到如图的两个力作用，显然立刻就会垮成图中虚线所表示的形状。可见四方架不是一种刚性框架。同样，多于四的任何个数铰件，如果用梢子相互连接成一个多边形形状的架也决不会是一个刚性框架（以下简称刚架）。但是，一个由三个铰件用梢子连接成的三角架就完全不同。三角架（第 101 圖）如果于各角顶受力作用，它的形状，也就是 A, B, C 三顶点的相对位置，并不会改变（此处不考虑铰件本身在长度方向受力作用而发生的微小变形。我们假定铰件在力作用前和作用后，长度并无变动）。因此，三角架是整个的等於一个刚体的。

把三角架 ABC（第 102 圖）当作一个基本的刚性单位，在它上面附加上两个铰件 BD 和 CD 以组成一个新架点 D。得到的新架架 ABCD 显然还是一个刚架。如果在 ABCD 上再增加两个铰件 AE 和 DE，那末得到的仍然还是一个刚架，因为 ABCDE 刚架可以当作等于一个铰件 AD 同其他两个新铰件 AE, DE 構成的一个刚性三角形。这种附加两个新铰件组成新架点的方法，自然可无限制连续应用，故可得到如下一个法则：一个刚性框架可以由一个用梢子连接的三角架开始，依次将各新架点来组成。按照这一法则组成任何「铰件系统」都称为刚架。例如第 103 图所画的即这种架；它的组合就是由基本单位 ΔABC 开始，按字母次序依续加装新铰件於已成系统而成。此一规律虽然并不系铰件两端用梢子连接来组成刚性框架的唯一方法，但是结构工程中
應用最多的桁架已均可包括。故以下只就這一類簡單桁架來討論。

第 104 圖中是幾種實際應用的簡單桁架。每一桁架的構成都是由繪斜線的 \(\Delta ABC \) 開始，按字母次序先後組成各新節點。圖中，為求簡便起見，已用單線和小圓圈來分別表示桿件和節點。

因爲任何按以上規律組織起來的簡單桁架必然整個的是一個剛體，所以我們可以用支承桿架的方法來支承它。例如第 103 圖中的桁架，我們可以固定它的某一節點 \(A \)，同時用桿件裝置來支承它另外一節點 \(G \)。這種支承法，在§5 中已指出過，是一種使剛體在圖平面中受完全約束的支承法。第 103 圖中，E 點的作用力 \(Q \) 傳導至兩支點，使它們發生反作用力的情形，因此，完全同桿架的情形一樣，從而也可以應用 §10 中的方法來決定 \(A, G \) 兩支點的反作用力。桁架在這樣的「作用力和反作用力共同構成的外力」所成的平衡力系作用下，各桿件都將產生長軸方向的內力。決定這些內力的過程就稱為桁架分析。

桁架各桿件的相互結合，有時，並不按上述的「用銫鍊槽子連接兩端」的方法，而是每一個節點應用一塊鋼板，將桿件兩端一一由銫釘或電釘連接在鋼板上。第 103b 圖中所畫的就是用銫釘接合的一般形式。
不過不論桿件兩端的接合形式如何，通常可以總作出如下的假定來簡化分析手續：

（1）所有各桿件都由它兩端的理想铰鏈來互相連接。
（2）所有各桿件的軸線都在同一平面內。此平面稱為桁架的「平面」。
（3）所有外力都只作用在桁架的節點上，並且作用線都處於平面內。

很顯然的，鋼接節點和铰接節點所構成的桁架，它們受力情形，事實上，不可能完全相同，因爲鋼接節點多少總要引起桿件的彎曲。不過根據精密觀測的結果，安置時如果細心處理，使各桿件的長軸在每一節點都正確相交於一點，那末以上的假定（1）跟實際情形還是相當符合的。換句話說，鋼接所引起的彎曲對於各桿件的長軸方向內力（以下簡稱「桿力」）確乎不會發生過大的影響。

至於假定（2），若設計和安裝時加以小心，使各桿件的横截面沿中平面對稱，那顯然也不會有什麼問題。

最後，對於假定（3），可以說在極大多數的實際結構中都已經照到。例如橋梁結構，通常總是兩個同式桁架並行的放在橋座間。兩架間架設橋面，由橋面直接承受「荷重」。橋面結構的支點都是桁架節點，跟假定（3）甚為符合。至於橋梁的實際結構可參閱第105頁的透視圖。橋面的橫梁一一切在桁架底部的各節點上。橋面其他構造部分由橫梁支承。由此可見，橋面上任何一點的荷重力都只會
由横梁传到桁架的节点。桥面上所有的「荷重」，因故，都引致到两
桁架的各自中平面中；两桁架可以当作是相互无间的独立结构。

所有外力既然都在桁架的节点上，故横件上除自重外，并无其他
发生弯曲的外力存在。自重所引起的弯曲应力，事实上，比荷
重引起的拉应力或压应力要小得多。所以我们可将横件的自重作为
与分配在两端节点上作，使一切外力都可以看作作用在节点上
的，自重作用下的桁架分析有其特殊作用。另外的专门问题处理，
故在处理一般荷重的桁架分析问题中，自重可以完全不计）。

以上三个假定十分重要。通过这些假定，我们可以把一个「实际
的桁架」（如第103a或103b图）简化为一个「理想桁架」（如103c图）。
「理想桁架」是这样一种桁架：它上面所有的外力都同在一个平面内，
并且都作用在其节点上：所有它的横件都毫无重量，都在两面由毫
无摩擦力的理想铰链来相互连接。

对于这一「理想桁架」，根据§3的讨论，它的每一横件都是在
重力作用在两端的两个力作用下平衡，因此，都是受单延的拉力或压
力作用。从而，每一横件对两端的铰链销子的两个反作用力，必
然都是以横件长轴作为共同作用线的相等相反力。由此可得，桁架上
每个节点的力都是一个平面共面力系，而且是一个平衡的共面力
系（见第103c图）。所以以前所讨论的各种处理「平面共面力系平衡
问题」的方法，通过上面三个假定，都可以直接用来分析桁架。

8. 节点分析法

现在来详细讨论一个如第106图的简单桁架的分析方法。在Q
力作用下，节点的支点反作用力R。和R。可以按§10中方法，先把
整个桁架当作隔离体来求得各力的作用线，然后，由力三角形来决定
和R。的大小。D点Q力的作用线是已知的；E点反作用力R。必
须垂直于铰柱的支承面，所以R。作用线也是已知的。因此，A点反作
力R。的作用线必定通过Q和R。两作用线的交点G。换句活说，
3 就是R。的作用线。作用线都求得后，画「力三角形」如第106b
，R。和R。两力就完全决定。§17中已说过：外力引起桁架各横件
横力；各横件则对两端的铰链产生一对以长轴为共同作用线的相当
相反的反作用力。這兩反作用力中，任何一個力的大小都可以表示桿力的大小；同時，反作用力是指向或者離開節點又可以表示桿力是張力還是壓力。所以桿件的桿力可以完全根據兩端反作用力中任何一個來決定。為便於說明起見，我們把桁架中所有桿件編號如圖，並令 \(S_i \) 代表任一桿件 \(i \) 的桿力。

現在從分析節點 \(E \) 的平衡開始分析桁架。以桿桿 \(E \) 作爲分離體。它的分離體圖就是第 106a 圖中圍繞 \(E \) 點的細節圖。它上面除開已決定的 \(R_e \) 外，還有桿件 1 和 2 的反作用力 \(S_1 \) 和 \(S_2 \) 在作用。後面還兩個力，當然還不知道是向向節點還是離開節點。不過它們的作用線必須各自跟「產生它們的桿件」的長軸相合則是肯定的。因此，可以畫出 \(E \) 點的「力三角形」如第 106e 圖；\(S_1 \) 和 \(S_2 \) 的大小就由「力三角形」的邊長決定，可以用比例尺量出。因為力三角形中各代表向量必須首尾銜接——連貫，所以由圖中箭頭所指的方向，又可以發現：桿件 1 是在拉節點；因此，表示它內部是受張力作用；桿件 2 是在推節點；因此，表示它內部是受壓力作用。現在分別用箭頭把這兩個反作用力的方向標誌在 \(E \) 點如第 106a 圖。

其次，觀察 \(D \) 點桿桿的平衡。先用桿件 2 的反作用力 \(S_2 \) 代替桿件
伴2本身。這裏的S_1當然跟桿件2對E點的反作用力S_2相等相反。D點的未知力只是桿件3和4的反作用力S_3和S_4兩力。這兩力究竟是指向還是離開節點當然還不知道。不過我們已經曉得它們的作用線，所以可以畫「力多邊形」如第106d圖。根據這「力多邊形」S_3和S_4就可按前述方法決定。由「力多邊形」各邊的箭頭方向，可看出，兩桿件都是在推壓铰塊，因此，它們內部都是受壓力作用。現在將這兩個反作用力的方向也分別在D點用箭頭標誌出來（見第106a圖）。

又進而觀察C點铰塊。桿件1,3對铰塊C的反作用力已確定。因此，只有桿件5,6的反作用力S_5, S_6兩力是未知量。故由「力多邊形」，就可決定S_5和S_6（見第106e圖）。最後，可觀察铰塊B。由B點的「力三角形」（第106f圖）求得S_7，後，所有桿件的桿力就都告決定。假使要檢驗所得結果，那還可致察铰塊A。由A點的「力三角形」（第106g圖），就可以判斷所得結果是否已足夠精確。

除開以上「相繼畫出各節點力多邊形」的方法外，如果希望的話，我們自然還可在每一節點應用(5)式中兩個平衡方程式來決定各桿力。不過各桿件間的夾角如果需要相當繁複的計算才能決定，那還是用圖解方法簡便得多。若是各夾角很容易決定，那就最好用平衡方程式計算。

以上的「簡單桁架」分析方法稱為「節點分析法」。任何按照第48頁法則構成的桁架，也就是簡單桁架，都可用這方法來分析。簡單桁架中至少總有一個由兩桿件組成的節點（最後組成的節點）。考察這一節點的平衡，兩桿件的桿力就能完全決定。桿力決定後，兩個桿件就可以由它們對各自另外一端穠塊的反作用力代替。於是樑架上必然又會有一個節點（組合時的最後第二個節點）是只由兩個「桿力未知」的桿件組合而成的。它們的桿力，因此，也可以決定。如此，按組合的相反次序，逐一考察各節點的平衡，就可看到：每一節點上都只有兩個「桿力未知」的桿件出現，它們的桿力全可用「力多邊形」或(5)式的兩平衡方程式給以——決定。
例題和習題

77. 試分析第 107 圖所受的荷載。圖中 B 點的作用力 \(P = 100 \) kg。

解：圖中的桿件 6 不適是節點 C 的支承件，顯然不是桿件本身的一個桿件。不計這一桿件後，其餘桿件的組合即可當作是平衡規律的簡單桿件；因此，可以應用節點分析法來處理。因各桿件間的夾角已知，故本題適用於應用平衡方程式分析。

首先，觀察桿件 A 的平衡。由圖中連桿所表示的分離體圖，可看出，A 點只有桿件 1 和 2 的兩個反作用力在作用。兩力要構成平衡必須大小相等、方向相反、作用線相同才可能。桿件 1 和 2 的長度不同在一根直線上，它們的桿力自然不等於零；否則，A 點就無法平衡。因此，桿件 1,2 的存在並無作用；在想像中去掉這兩個桿件，對其他各桿件的受力情形將無影響。

之後，觀察桿件 B 的平衡。B 點上的三個「力」是：P 力和桿件 3,4 的反作用力 \(S_3, S_4 \)。3,4 的作用力方向已知，但是方向尚未決定。先假設假定 \(S_3, S_4 \) 都是桿力。計算後，所得的結果如果是負載，那顯然表示：假定的方向有錯誤；桿件是受拉力而不是受拉力。所以我們可以把所有桿件都假定是受拉力作用，再看於計算結果的正負號：正負號表示桿件是受拉力，負號表示受荷載。這樣可以始終一致避免混清。現在在圖中選定兩正交坐標系 \(x, y \)，投影 B 點各力於這兩個坐標軸上。由 (5) 式，可得

\[
\begin{align*}
-S_3 - 0.707 S_4 &= 0 \\
-P - 0.707 S_4 &= 0
\end{align*}
\]

故

\[S_3 = +P, \quad S_4 = -\sqrt{2} P \]

之後，觀察桿件 C 的平衡。因已知，\(S_1 = 0, \quad S_2 = +P \)，故平衡方程式為:

\[
\begin{align*}
+S_2 - 0.707 S_6 &= 0 \\
-S_3 - 0.707 S_6 &= 0
\end{align*}
\]

可見

\[S_6 = -P, \quad S_6 = +\sqrt{2} P \]

78. (a) 試分析第 105 圖中的荷載；(b) 設 P 力作用點自圖中 B 點移到 A 點，問各桿件的桿力將如何變化？

解：
(a) \(S_1 = 0, \quad S_2 = +P, \quad S_2 = -\sqrt{2} P, \quad S_1 = +P \)
(b) \(S_1 = 0, \quad S_2 = 0, \quad S_3 = -\sqrt{2} P, \quad S_4 = +P \)

79. 試分析第 109 圖中的四力桿件。

解：
\(S_1 = S_2 = S_4 = S_5 = 0, \quad S_3 = +P \)
80. 設第 108 圖中的 P 力由 B, D 兩點施加到 A, C 兩點去作用，作用線為 AC 對角線。試問各棒力如何變動？

(解：$S_1 = S_2 = S_3 = -S_4 = \frac{P}{\sqrt{2}}, S_5 = -P$)

第 108 圖

81. 第 110 圖的四方格架中，AB 僅有上邊有一個螺絲管 A。旋緊螺管，可以在 AB 中產生一等於 P 的張力。AC, BD 兩桿件固定在 E 點，其間並無阻礙。試求各桿件的拉力。

(解：$S_1 = S_2 = S_3 = P, S_4 = S_5 = -\sqrt{2}P$)

第 110 圖

82. 一個正八邊形的框架（第 111 圖）在一半徑方向的桿件中裝有一螺絲管 A。旋緊 A，可產生一等於 P 的張力於桿件中。試求其他各桿件因而產生的桿力。

(解：所有各半徑方向桿件桿力為 $+P$；連桿桿件桿力為 $-1.305P$)

83. 在第 112 圖中，設 B 點的給定力 P 由 A 點的一水平向右的力 P_1 來代替，試求各桿力。

(解：$S_1 = +\sqrt{2}P, S_2 = -P, S_3 = +P$，

$S_4 = -\sqrt{2}P, S_5 = -P, S_6 = 2\sqrt{2}P$)

第 112 圖

84. 試分析第 112 圖中的桁架。

解：先用以下方法確定桿件 7, 8, 9 和 10 的桿力都等於零，鋼桿比例即可節能很多。先觀察節點 B 的平衡，以各桿力投影於一垂直於 AD 的直線上。各桿力的大小和方向等於零，可見其上裝有的桿力 S_7 的桿力是應該等於零的。因此，S_7 本身亦為零。桿件 7 輸無桿力，從圖自相架中取出它來，自然無桿力。於是節點 C 的情形變成與 B 點相同，故 S_8 也等於零。同樣方法，觀察節點 D 和 E，又可求知 S_9 和 S_{10} 也等於零。根
據這些討論，我們得到一個規律：任何桁架中，已經無外力作用的三桿件節點，如果其中兩個桿件在同一直線時，則第三個桿件就必須沒有桿力發生。

荷載：7,8,9,10 各部無桿力，其他各桿力，自然很容易求得；結果：

$$S_1 = S_2 = S_3 = S_4 = +1,83 P, S_5 = S_6 = S_7 = S_8 = -1,83 P$$

85. 證明第 113 圖中桿件 DE 的桿力是等於 P 的桿力。

86. 在第 114 圖所示的桁架中，兩支反作用力，由於對稱關係，可肯定等於 Q/2。試求桿件 CD 的桿力。

(解：$$S = -Q/2$$)

87. 第 115 圖是一個等邊三角形形狀的桁架。試求它在圖中 P 力作用下，桿件 CD 的桿力。

(解：$$S = -0,866 P$$)

88. 設第 116 圖簡單桁架中，AB 桿件內的桿力。

(解：$$S = +\frac{1}{2} P$$)

19. 綜合力圖

在第 106 圖中的桁架分析方法是每一個節點都畫一個「力多邊形」來決定各桿力。仔细觀察各「力多邊形」後，可以看出：每一個桿力的代表向量都出現過兩次，每次分別代表桿件對一端和另一端桿件的反作用力。兩次所畫的向量只是方向相反而已。假使在適當的條件下，能夠避免這種圖解上的重複，把各方的代表向量合成一個總的力多
邊形，那手絹上就可簡便不少。這種綜合而成的力多邊形通常稱為綜合力圖（1）。

現在仍把第 106 圖中的桁架當作例子來說明。畫畫原圖如第 117a 圖。最初，仍以整個桁架作爲分離體，畫力三角形如第 117b 圖，求出 \(R_a \) 和 \(R_c \)。之後，節點 \(E \) 的「力三角形」可以附合在 \(R_a \) 和 \(R_c \) 等的「力三角形」上，使 \(R_c \) 可以不必重畫。同樣，節點 \(D \) 的「力多邊形」又可附合在已成的力圖上，使 \(S_2 \) 不必重畫；不過在 \(S_2 \) 代表向量上需要再畫一箭頭以表示相反方向。\(S_3 \) 和 \(S_4 \) 於是可直接畫上去。此處可注意的，就是原來畫就的 \(Q \) 力的代表向量恰好合適，可以不必再畫。這似乎有些巧合。

放置節點 \(C \) 的平衡時，也可發現，其中 \(S_1 \) 和 \(S_3 \) 的位置也正好合適；只要將箭頭反一反就能利用。故又可畫出如圖中虛線所表示的「力多邊形」。全部綜合力圖至此即告完成。

綜合各「力多邊形」成一個全圖，必須遵守一定的規則；否則，達不到目的。畫每一分離體的力圖時，要想想自己在繞這一分離體行走。繞行的方向可以是順時針方向也可以是反時針方向，不過最初分離體的繞行方向已經確定，以後便不能變更；始終要採取同一的方向繞行桁架中所有節點。在畫力多邊形時， 各力代表向量幾何相加的次序也就按照繞行時所遇各力的先後來決定。違反這一規則，有些向量或不能避免重畫。這就是以上所謂 \(S_2 \) 等「恰好合適，似乎巧合」的原因。

(1) 又稱為克隆奈雅 (Cremona) 或馬克威爾 (Maxwell) 圖。
完成的「合成力圖」如第117c圖。讀者可將它跟第106圖中各「力多邊形」比較，分辨出其中所包含的各「力多邊形」。

應用合成力圖分析桁架，通常採用一系特設的記號來表示各個「力」。此系記號稱為「間隔符號」。應用這種符號的辦法是：在各「力」的作用線間一一標誌出一個小寫字母。每一個「力」就由它兩旁間隔中的字母來表示。

例如第118a圖中的桁架ADEBC，我們在它的三個外力作用線間分別標誌a，b，c三個字母，各桿件間則分別標誌d，e，f三個字母。標好後，Q力就可以稱為ab力，Ra可以稱為bc力，Rb可以稱為ca力。同樣，桿件AC的桿力可稱為ad力，桿件CE的桿力稱為cf力，……。

現在來畫這一桁架的綜合力圖：先將整個桁架作爲分離體，畫「力三角形」abc如第118b圖。其中ab代表Q力；bc，ca分別代表Ra和Rb。

要注意的是作「力三角形」時，畫各力代表向量的次序必須按着取一定方向（在本例中就是順時針方向）繞行分離體（此處就是整個桁架）時所遇各力的先後而定。以前說過，這一次序的保持，對於畫綜合力圖來說，非常重要，所以畫以第一次節點的「力多邊形」時要不斷注意這一次序。

其次，將桿桿A當作分離體。從已有的ca開始，自a引ad平行桿件AC，自C引ce平行AD畫綜合力圖中一個新點d，構成節點A

（1）又稱為波氏（Row）符號。
的封閉的「力三角形」。畫 \(\overline{cd} \), \(\overline{ad} \) 和 \(\overline{dc} \) 的次序仍必須按照順時針方向繞 A 點行走所經各力的先後次序（第 118b 圖）。

之後，觀察節點 D。從已有的 \(\overline{cd} \) 開始。由 d 和 c 點分別引平行於桿件 CD 和 DE 的 \(\overline{dc} \) 和 \(\overline{ce} \)。又得到綜合力圖的一個新點 e，構成節點 D 的力三角形（第 118c 圖）。

再其次，可觀察節點 C。它上面現在只剩下桿件 CE 和 CB 的兩個反作用力是未知的。其他桿件 CD, AC 的反作用力 \(\overline{ed} \), \(\overline{da} \) 以及外力 Q，在綜合力圖中已經存在，它們的排列次序也完全合適。所以由 b 和 e 分別引 \(\overline{bf} \) 和 \(\overline{fe} \) 平行於桿件 CB 和 CE 後，節點 C 的「力多邊形」就告完成（第 118d 圖）。

之後，再觀察節點 B 或節點 E 均無不可。假使觀察節點 B，我們就立刻可看到：B 點的各力中只有桿件 EB 的反作用力 \(\overline{cf} \) 還未決定。但是 c 點和 f 點在圖上已經存在（第 118d 圖），只要連接起來就得到 \(\overline{cf} \)。因此，檢查 \(\overline{cf} \) 是否跟桿件 EB 的長軸正緩平行，就可以核驗綜合力圖的精確程度。

第 118 e 圖已經是完整的綜合力圖。節點 E 雖然未曾考察，但是它的力三角形 \(\overline{cfe} \) 卻也在圖中。應用這一完整的綜合力圖，桁架中任何一個桿件的桿力都可以從圖上量出來。

間隔符號在決定桿力的正負符號，也就是桿件是受拉還是受壓，的問題中特別有用。例如桿件 DE 的桿力，它的大小由綜合力圖中的代表向量 \(\overline{ce} \) 的長度決定。假使我們順時針方向繞節點 D 行走，我們將先進入間隔 e，再進入間隔 c。因此，桿件 DE 對於節點 D 的反作用力，我們應該讀作 \(\overline{ec} \)。在力圖中，\(\overline{ec} \) 是自 e 指 c；也就是自右至左。這就表示 DE 桿件對節點 D 的反作用力是自右至左方向的壓力。所以我們可判斷 DE 是一個受壓力的桿件。再觀察 DE 對節點 E 的反作用力，我們仍舊順時針方向繞行 E 點，此反作用力將讀為 \(\overline{ce} \) 而不是 \(\overline{ec} \)。在力圖中，\(\overline{ce} \) 的方向是由 c 到 e。這表示 DE 對節點的反作用力的方向是由左到右指向節點。所以這桿件仍然是一個受壓桿件；判斷結果跟以上相同。
例題和習題

89. 試應用綜合力圖分析第 119c 圖中的桁架。

解：作綜合力圖如第 119b 圖。樑件 GE 和 CE 在圖中的外力作用下並無作用。力圖中 f, g 和 h 三點，因此，都畫合在一起。

第 119e 圖中是一種誇明分析結果的方法。這種方法方法可以使所得結果一目瞭然。

90. 試應用綜合力圖分析第 120 圖中的桁架。

（注意辨別各樑力的性質：張力還是壓力。）
第三章 平面平行力系

20. 同方向的平行力

關於平行力問題，我們從討論兩個同向平行力的情形開始。圖121

圖中是兩個同方向的平行力 P, Q 分別

作用在物體的 A, B 點。 按靜力學第

三原理，我們如果在 A, B 兩點的連線上

加一對相等相反的 S 力於 A, B 兩

點，原來 P, Q 兩力對物體的作用是不

會因而改變的。將 A 點的 P, S 兩力和

B 點的 Q, S 兩力分別合成為合力 P₁ 和

Q₁。 物體上的兩個平行力於是變成了

兩個不平行力，不過原來兩平行力對物

體的作用並沒有改變，所以 P, Q 兩平行

力的合力顯然會跟 P₁, Q₁ 兩個不平行力的合力完全相同。 之後，我
們將 P₁, Q₁ 兩力的作用點一同推移到它們作用線的交點 D 處，再將它
們分別分解爲 S, P 和 S, Q 如圖。 兩 S 力的作用互相抵消，故可以去
掉。 剩下來的就只是沿圖中 DC 線作用的 P, Q 兩力。 這兩個力的
合力，也就是作用在 A, B 兩點 P, Q 兩力的合力，顯然等於兩力的總和；

\[R = P + Q \]

（a）

合力的作用線就是平行 P 和 Q 兩已知力作用線的 DC。 這作用線分
割 A, B 兩力作用點 A, B 間的距離，為兩部份，兩部份的長度比例恰
等於兩力大小的反比。 證明如下： 因 \(\triangle ACD \) 跟 \(\triangle FED \) 相似，故

\[\frac{AC}{CD} = \frac{S}{P} \]

（b）

又因 \(\triangle BCD \) 跟 \(\triangle HGD \) 相似，故

\[\frac{BC}{CD} = \frac{S}{Q} \]

（c）

由 (b) (c) 兩式，就可得到以上所說的比例關係如下：

\[\frac{AC}{BC} = \frac{Q}{P} \]

（d）
(a) (d) 兩式可以分別決定 \(R \) 力的大小以及作用線的位置，因而完全決定了兩平行力 \(P, Q \) 的合力。

合成兩同向平行力的方法知道後，我們就可以解決「分解一個已知力 \(R \) 爲兩個同向平行分力 \(P, Q \)」的問題。現在分兩種可能的情形來討論這問題：

(1) 已知兩分力中一分力，譬如 \(P \)，的作用點和它的大小（此分力自不可大於 \(R \) 力），求另一分力 \(Q \)。因 \(P \) 力的大小是已知的，根據 (a) 式，可知另一分力 \(Q \) 的大小必定就等於 \(R - P \)。至於 \(Q \) 力的作用線位置，我們顯然可以用 (d) 式來決定。

(2) 已知兩分力的作用點（必須分位於 \(R \) 力作用線的兩旁），求它們的大小。此問題中 \(AC, BC \) 和 \(R \) 為已知。故應用 (a) (d) 兩式即可決定兩分力 \(P, Q \) 的大小。

求兩個同向平行力合力的作用線位置，如果應用力矩法，那就更方便。在第 121 圖中，合另加一對等長等反的 \(S \) 力於原來 \(P, Q \) 兩力，得到交於 \(D \) 點的兩力 \(P_1 \) 和 \(Q_1 \)。這兩個相交力 \(P_1 \) 和 \(Q_1 \)，按照「力矩合成定理」，對於作用平面上任何一點的力矩代數和是等於它們的合力 \(R \) 對同點的力矩的。但是所加的兩力 \(S \) 相等相反，對於任何一點的力矩代數和永遠等於零，可見相交兩力 \(P_1, Q_1 \) 對任一定點的力矩代數和必將等於平行兩力 \(P, Q \) 對同點的力矩代數和。因此，平行兩力對任一定點的力矩代數和也就等於它們的合力 \(R \) 對同點的力矩。換句話說，兩個同向平行力也服從「力矩合成定理」。

若有多數同向的平行力 \(F_1, F_2, \ldots, F_n \) 作用在一平面中，那就需連續應用以上方法去決定它們的合力：先按以上方法將 \(F_1 \) 和 \(F_2 \) 合成為「部份合力」 \(R_1 \)。之後，合成 \(R_1 \) 和 \(F_3 \)，得 \(F_1, F_2 \) 和 \(F_3 \) 的合力 \(R_2 \)。如此，逐步把 \(F_4, F_5, \ldots, \) 一直到 \(F_n \)，跟已得的部份合力合成起來，最後就可得到總合力 \(R \)（第 122 圖）。\(R \) 的大小顯然是等於所有各分力的總和：

\[
R = F_1 + F_2 + \ldots + F_n
\]

(5)

此外，因在每一合成兩個同向平行力的過程中，都可以應用一次兩個同
向平行力的「力矩合成定理」。所以最後可以得到：所有平行力對於作用平面上任意一定點的力矩代數和就等於它們的合力對同點的力矩。這也就是多數平行力的「力矩合成定理」。根據這一定理，我們就可以用以下方法來決定合力作用線的位置：在作用平面上，畫一直垂直於各平行力作用線的直線OA，跟各力作用線依次相交於A，B，…點，跟合力作用線相交於E點（第122圖）。取O點為力矩中心，可得

\[R \cdot OE = F_1 \cdot OA + F_2 \cdot OB + F_3 \cdot OC + \ldots + F_n \cdot OD \]

O點到合力作用線的距離因此是

\[OE = \frac{F_1 \cdot OA + F_2 \cdot OB + \ldots + F_n \cdot OD}{R} \tag{f} \]

(e) 式决定了合力的大小，這一 (f) 式又決定它作用線的位置，故合力可由 (e) (f) 兩式完全決定。

例題和習題

9'. 設求第123a圖所示的幾根在圖中風力作用下所受到的兩支點的反作用力。

解：在僅僅是求反作用力的問題中，圖中五個平行的風力是可由它們的合力 R 來代替的。這合力的大小，根據 (e) 式是

\[R = 800 + 3(1200) + 200 = 4800 \text{ kg} \]

至於合力作用線的位置，我們取A點作為力矩中心，應用 (f) 式，就可得

\[d = \frac{1200(3 + 6 + 9) + 200 \times 12}{4800} = 5.22 \text{ m} \]
21. 兩方向相反的不等平行力

兩個不相等的平行力 P 和 Q（第125圖）如果作用方向相反，那麼
它們的合力 R 等於 P 及 Q 兩力之差。作用線上任的一個點，作用線在線段力的力矩以外，並且分割兩力作用點的連
綿 AB 為兩部份，兩部份的比重按等於
兩力的反比。要證明此說法，可分解較
大的一力 P 為兩個平行分力 Q' 及 R。
令 Q' 的作用線跟 Q 力相合，並使它們
相等相反。如此，另一分力 R 显然將
等於 $P - Q'$. 至於 R 力的作用點 C 如
何決定，根據第20，P 力作用線應當分割
「Q', Q' 兩力作用點 B 和 R 力作用點 C」
的連線 BC 為反比於 Q' 和 R 的兩部份。 Q' 與等於 Q, 故

$$\frac{Q}{AC} = \frac{R}{AB} = \frac{Q + R}{AC + AB} = \frac{P}{BC} \quad (a)$$

分解 P 力後，原來的 P, Q 力系已經由 Q, Q' 和 R 三力所代替。但
Q, Q' 兩力相反相等，相互抵消，所以只剩下 R 力單獨來代替 P, Q 力
系。這 R 力當然就是 P, Q 兩力的合力。 R 力等於 P, Q 兩力之
差，(a) 式又符合以上所說的比例關係，故上述合成兩相反不等平行力
的方法已完全證明。

應用(a)式也可以分解一個已知力為兩個方向相反的不等平行力。
這種分解有兩種可能的情形：（1）已知兩分力中一個分力的大小和作用點，求另外一個分力；（2）已知兩分力的作用點（必須同在已知力作用線的一邊），求兩分力的大小。

在以上討論中，因 P 力是兩個同向平行力 Q' 和 R 的合力，故根據「力矩合成定理」可知：對作用平面上任意一點，應該

\[P \text{ 力矩} = (Q' \text{ 力矩}) + (R \text{ 力矩}) \]

因此，

\[R \text{ 力矩} = (P \text{ 力矩}) - (Q' \text{ 力矩}) \]

但 Q 力矩 = (Q' 力矩)，故

\[R \text{ 力矩} = (P \text{ 力矩}) + (Q \text{ 力矩}) \]

可見兩方向相反不等平行力也是服从力矩合成定理的。

例題和習題

93. 一組重裝置 ABCD（第 126 圖），底座 A 端是一個軸心；B 是一個後軸。整個裝置的自重很小，可以不計。試求圖中重體 Q 所引起的支點反作用力 R_a 和 R_b。

解：整個裝置何器平衡，兩反作用力 R_a 和 R_b 的合力 Q' 自然必須與重力 Q 方向相反、大小相等並且作用線相同。此外，因 B 端是一個後軸，故 R_b 必須垂直於後軸的支承面，取鉛直方向。因此，R_a 也必然是一個鉛直力；否則就不能跟 R_b 合成一個錐形的 Q' 力。如此，本題轉成「分解一個已知力 Q' 為作用於 A, B 兩點的一對相反不等平行力」的問題。故由 (a) 式，可得

\[\frac{R_a}{b} = \frac{Q'}{a} = \frac{R_b}{a+b} \]

但是 Q' = Q，故

\[R_a = \frac{Q' b}{a} \]

\[R_b = \frac{Q' a + b}{a} \]

94. 有一個如第 127 圖的橋樑。試求支點 D 的反作用力 R_d 和 D C 部分的慣力 S。
解：圖中「P , Q 兩力」的合力必須跟「支點 D 和物件 BC 對應的兩個反作用力」的合力相等反向並且作用線相同。故先求出 P + Q 的合力，把該合力的平衡力分解為 D 点兩點的兩個平行分力，就可得到 R , S = P + Q , S = 3P + Q。

22. 力偶

兩個方向相反的相等平行力構成的力系稱為力偶。這力系不能合成一個「單力」。證明如下：先假定第 128 圖中兩 P 力所構成的力偶，在任意一 C 點有一個如虛線所畫的平行於兩 P 力的合力 R。假設如果正確，那末圖中跟 R 相等相反，也作用在 C 點的 R' 力就一定能跟兩 P 力構成平衡。這是不可能的事。R' 力和 A 點 P 力的合力既不等於 P，而且合力作用線也決不肯跟 B 點 P 力作用線相重合。可是靜力學第二原理明明說：兩個力要構成平衡，它們必須大小相等、方向相反而且作用線相同。可見用 P 力作沒有 R 這樣一個合力存在。同様方法，我們也可以證明：兩 P 力不可能有一個跟它們不平行的合力。所以一個力偶不能夠簡化為一個單力。

力偶作用的平面稱為「力偶面」。它兩個「構成力」間的距離稱為「力偶臂」，或簡稱「力臂」。

任意取力偶上的一點 O 作為力矩中心。力偶的構成力為 P，力偶力臂為 a (第 128 圖)。自 O 點引 OCD 直線垂直於兩 P 力。兩 P 力對 O 點的力矩代表數和顯然

\[P \cdot OD = P \cdot OC = P (OD - OC) = P \cdot a \]

以上 O 點是任意選定的力矩中心。如果 O 點在兩 P 力中間，結果當然也相同。再如第 129b 圖中的 P 力力偶。這力偶的兩構成力的作用方向跟圖 a 中兩 P 力的方向相反。不過我們仍可按照以上方法證明它們對於力偶面上任意一定點力矩代表數都等於 " -P a"。由以
上討論，可得出一重要的結論如下：構成立偶的兩力對力偶面上任何
一定點的力矩代數和都將等於一個力的大小跟力偶力臂的乘積。這乘
積就稱為力偶的力矩。我們規定：由同一方觀察，若力偶使它所作用
的物體產生反時針方向旋轉的趨向，那末它的力矩是正值（第129a圖）；
否則，就是負值（第129b圖）。

力偶力臂在力偶面中繞力臂一端旋轉一個任意角度α，力偶的作用
並不會因而改變。要證明這句話，可觀察第130圖中所表示的力臂為
AB的P力力偶。

由A點引一根長度等於AB的直線AC。AC跟AB的交角α可以取任意的大小。
在AC兩端A點和C點分別各加一對垂直於AC的相等相反力Q和Q'（見第130圖）。Q，Q'的大小都等於P。所

加四個力自成平衡，根據第三原理，並不影響原來P力力偶的作用。現在
將P和Q力兩兩合成為兩個合力R

如圖。這兩個合力的代表向量都是
菱形（等邊平行四邊形）的對角線。
因此，它們必然一同在A，D兩角的
等分線上。換句話說，AD必定是兩
R力的公共作用線。作用線既相同，
兩合力的大小又相等而且方向又相反，所以兩R力，也就是P，Q四力，
將互相抵消，可以由力系中拿掉。剩下來的於是只有作用在A，C兩
點的兩個相等相反力Q'。這兩力構成一個力偶；構成立偶的大小等於
P，力臂AC等於P力力偶的力臂AB並且跟AB成等於α的交角。
這就證明了以上說的「力偶力臂繞一端任意旋轉，並不會改變力偶對所
作用物體的作用」。

因為一個力偶，只要它的力臂先繞一端又繞另外一端連續作適當
的旋轉，就可以在力偶面上被推移到任何指定的位置上去，所以，根據
以上討論，我們可以把一個力偶隨意在力偶面上移動，而不影響它對所
作用物體的作用。

此外，一個力偶即使它構成力的大小以及力臂都變動，只要「力矩」
保持不變，那它的作用也不會改變。證明這句話，可觀察第 131 圖。

圖中力臂 AB 的 P 力偶是一個已定的力偶。
我們先分解 B 點的 P 力分 A, C 兩點的同向平行力 Q' 和 Q。由以前所說的分解法則，可知

\[Q = P \cdot \frac{a}{b}, \quad Q' = P - Q \quad (b) \]

在 A 點的 P 力中減掉這一 Q' 力，可得到一個向上作用的 Q 力如圖。此 Q 力與 C 點 Q 力構成一個力臂等於 AC 的力偶。這個新力偶的力矩等於 Q \cdot b。根據 (b) 式中第一式，可知 Q \cdot b = P \cdot a。可見，一個力偶可以完全由另外一個成力大小以及力臂長短都不相等的力偶來代替，只要它們的力矩相等。

綜合以上說明的力偶的各種性質，可知，兩個同平面的力偶只要力矩相同，那它們對物體的作用就完全相同。換句話說，一個已定平面的力偶完全決定於它的力矩的大小和正負符號。

力偶在力偶面上的移動是跟力在作用線上的移動相仿的。我們說力偶這種移動不會改變它的作用，同樣是指對物體平衡的作用而言。假使考察的是物體內部的壓力，那力偶在力偶面上的移動就跟力在作用線上的移動一樣，是對問題本身有決定性影響的。

兩個力偶的相加，只要把它們的力矩加成代數和就得到它們合成力偶(1)的力矩。要證明这一点，可觀察第 132 圖中力臂分別等於 a, b 的 P 力和 Q 力力偶。將第 132a 圖中 P 力力偶推移到第 132b 圖中 Q 力力偶處，使它們的力臂 AB 與 CD 重合，並且使 A 點恰好落在 C 點上，如第 132c 圖。之後，又將 P 力力偶轉換為力臂等於 b 的新力偶。這新力偶構成力的大小當然是等於 P \cdot \frac{a}{b} (第 132d 圖)。現在把 C, D 兩點的力相加，就可得到一個力臂為 b，構成力等於 Q + P \cdot \frac{a}{b} 的「合成力偶」。這合成力偶的力矩是

\[(Q + P \cdot \frac{a}{b}) \cdot b = Q \cdot b + P \cdot a \quad (c) \]

(1) 所謂「合成力偶」，就是跟若干「力偶」作用相等的一個「力偶」，相當於「力」的「合力」。
可見，兩力偶相加，它們「合成力偶」的力矩的確就等於兩力偶的力矩的代數和。這裏說「代數和」的意思，是因為力偶偶數力矩符號相反，我們還是可得到相同結論。

連續使用以上合成方法，平面上任何多的力偶就都能簡化成爲同平面的一個「合成力偶」。合成力偶的力矩就等於各力偶的力矩代數和。

同平面的兩個力偶若是力矩值大小相等、符號相反，那它們就構成平衡。因爲這樣兩力偶，若按照第 132 圖所說明的方法去合成它們，那合成力偶的每一個構成力都會等於零。反過來看，這又說明：一個力偶只可以由同平面一個力矩大小相等、符號相反的力偶來平衡。

假設有很多力偶作用在同一平面中，那連續應用兩力偶的相加方法把它們合成起來就可證明：必須所有力偶的力矩的代數和等於零，這一系力偶才構成平衡。

一個力偶，顯然，也可以分解成爲幾個力分力偶，只要各「分力偶」力矩的代數和跟原來力偶的力矩相等就行。

例題 和習題

95. 如第 133 圖的水平桿 AB，兩端有一對相等相反的 P 力在作用。試不計 AB 的自重求各支承桿件的桿力。

解：作用力既然是一個力偶，C 點和 D 點的反作用力自然也必須是一個力偶。D 點的反作用力的作用線應與桿件 FD 的幾何結合。因此，它必定是在垂重方向。從而，C 點的反作用力也必須取垂重方向，否則不能與總力偶。D 點反作用力既決定是垂重方向，垂直 CE 的桿力自然非等於零不可。至於由鍵桿件的桿力，我們可根據這
這樣的原則來決定。即是兩反作用力所成的力偶必須力臂相等，力大小相等，但方向相反。這也就是說，兩反作用力的大小應該等於 P/2，方向則分別如圖。所以 CE 紅的靜力是等於 P/2 的靜力，DF 紅的靜力是等於 P/2 的靜力。

96. 如第 134 圖的裝置，摩擦力可以不計。試求各支點對重量 Q 的靜矩反作用力 R_c，水平及作用力 R_a 和 R_b。

(解：R_c = Q, R_a = -R_b = Q/2)

97. 第 135a 圖中機車的重量為 W，機車在圖中 A, B 兩點受到的反作用力為 W/2。若設機車對列車的拉力為 P 恰當於 AB 兩點的摩擦力，問機車若在開始拉動列車時（第 135b 圖）A, B 兩點的摩擦反作用力 R_a 和 R_b 將等於多大？

(解：R_a = W/2 - P/2, R_b = W/2 + P/2)

23. 一般的平面平行力系

第 136 圖中是若干方向不盡相同的平行力。假使將其中同一方向的 F_1, F_2, F_3 合成為一個合力 R_1，另一方向的 F_4, F_5 合成為另一個合力 R_2，那末可能有以下三種結果：

第一，R_1 不等於 R_2。我們得到的是兩個相反不等平行力，故可以按 §21 方法合成一個 R_1 和 R_2 的合力 R。這 R 也就是原來 F_1，
平面平行力系

F_1, \cdots, F_5 力系的合力。

第二，R_1 等於 R_5，但作用線不相同。因 R_1, R_5 是方向相反的兩
重平行力的合力，所以它們是一對
相反平行力是不用說的。現在它們
的大小又相等，當然，它們就是一個
不能再簡化的力偶。這就是說，原
來 F_1, F_2, \cdots, F_5 力系可合成為一個
合成力偶。

第三，R_1 等於 R_3，方向相反而且作用線相同。在這一情形下，原
來力系，很顯然的，是一個平衡力系。

以上三種可能還可以從另外一個角度來辨別。如果已知各力的代
數和不等於零，這一力系就可以合成為一個合力。合力的大小和方向
當然就是代數和的大小和正負而定。至於合力作用線的位置，我們可
根據「合力對作用平面上任意一定點的力矩必等於各分力對同點力矩
的代數和」來決定。假使已知各力的代數和恰好等於零，那末又有兩
種可能性：(1) 這一力系可簡化為一個「合成力偶」，(2) 這力系是一個
平衡力系。辨別這兩種可能，必須把各力對所在平面上任意一定點的
力矩計算出來。若力矩的代數和不等於零，那這一力系就可以化成
一個合成力偶，力偶的力矩就等於這代數和。假如代數和等於零，那
把它們化成一個合成力偶就不可能了。因此，原來力系一定是一個
平衡力系。

應用解析方法來辨別以上三種
可能時，我們可選定兩正交坐標軸
x, y 如第 137 圖，令 y 軸跟各已知
力 Y_1, Y_2, \cdots, Y_n 的作用線平行。
然後，以坐標原點 O 作力矩中
心，並令 x 與 x 分別為 O 點到"任
一 Y_i 力作用線"和「這一力系的合
力 Y 作用線」的垂直距離，那合力
就可由以下兩式完全決定:

\[
\begin{align*}
Y &= \sum_{i=1}^{i=n} Y_i \\
x &= \frac{\sum_{i=1}^{i=n} (Y_i x_i)}{\sum_{i=1}^{i=n} Y_i}
\end{align*}
\] (9)

第一式確定了合力\(Y\)的大小；第二式又確定了它作用線的位置（也就是合力對選定的力矩中心\(O\)的力臂大小）。計算第一式各力的代數和時，各力的符號要看它們的方向如何而定，跟正\(y\)軸方向相同的力為正，否則為負。計算第二式各力力矩代數和時，力矩的符號以反時針方向的力矩為正，否則為負。

若是合成效的結果是一個力偶，它的力矩為\(M\)，那末

\[
\begin{align*}
\sum_{i=1}^{i=n} Y_i &= 0 \\
M &= \sum_{i=1}^{i=n} (Y_i x_i)
\end{align*}
\] (10)

假如原來力系是一個平衡力系，那末

\[
\begin{align*}
\sum_{i=1}^{i=n} Y_i &= 0 \\
\sum_{i=1}^{i=n} (Y_i x_i) &= 0
\end{align*}
\] (11)

這也就是一個平面平行力系的平衡方程式。

一個力系如果已滿足(11)的第一式，那它化為一個合力的可能性已不存在。假使再能滿足(11)中第二式，那合成為一個力偶的可能性就也沒有了。因此，一個力系如果能同時滿足(11)的兩式，就必然是一个平衡力系。

這一平衡條件還可以由兩個力矩方程式來表示。假如力系對任一
力矩中心 O 的力矩的代數和等於零，它化為一個力偶的可能雖然沒有，但還可能是它的合力恰巧通過這一 O 點。如果它對另外一個力矩中心 O_1 的力矩代數和仍然是等於零，那這一力系不是平衡力系就是它的合力又通過 O_1 點。所以只要連線 OO_1 不跟各力的作用線平行，那這力系就非自成平衡不可；否則變成一個「力」要同時有兩根作用線。以上兩條件可由以下兩式表示：

$$\sum_{i=1}^{n} (Y_i x_i) = 0$$

$$\sum_{i=1}^{n} (Y_i x_i') = 0$$

其中 x_i 指任意一力 Y_i 對力矩中心 O 的力臂；x_i' 指它對另一力矩中心 O_1 的力臂。

例題和習題

98. 試求第 138 圖中 AB 梁的支承反力作用 AD, AE 和 BC 的桿力。 AB 梁的自重可以不考慮。

解：梁上的 P 力必須由 A, B 兩支點的反作用力 R_a, R_b 來支承。因 BC 梁對 B 點支承的反作用力 R_b 在鉛垂方向，故 R_a 亦非在鉛垂方向不可，否則，它不能跟 P 力合成一個鉛垂合力去平衡 R_b。因此，AB 梁應有三個桿力 R_a, P 和 R_b 在作用。這三個力要構成平衡。前面這些問題以應用 (12) 式為最簡單：分別以 A, B 兩點作力矩中心，就可得

$$R_b l - Pa = 0$$

$$P(l - a) - R_a l = 0$$

解得

$$R_b = \frac{Pa}{l}, \quad R_a = \frac{P(l - a)}{l}$$

運算結果可用 (11) 中第一式校驗：

$$R_a + R_b = P$$

梁對於 BC 梁的作用力是 R_b 的相等相反力，故 BC 梁的桿力就是等於 $\frac{Pa}{l}$ 的壓力。梁對於紮點 A 的作用力是 R_a 的相等相反力。將此作用力於 AD 梁和 AE 梁的反力方向，就可以得到它們的桿力就是等於 $\frac{P(l - a)}{2l \cos \alpha}$ 的壓力。
97. 第 139 圖中，P=2t, Q=1t, l=12m, c=3m, AB 梁的自重可以不計。設支點 A 的反作用力 R_d 恰等於支點 B 的反作用力 R_b 的兩倍，問 P 力到支點 A 的距離 x 應等於多大？
解：將整個 AB 梁作為一個受力體，分別取 A, B 兩點設力矩中心，可得
\[
\begin{align*}
R_b l - Q(x + c) - P x &= 0 \\
Q (l - c - x) + P (l - x) - R_d l &= 0
\end{align*}
\]
已知
\[R_d = 2R_b\]
由以上三式求解 R_d 和 R_b，可得
\[x = \frac{l}{3} - \frac{Q c}{P + Q}\]
將已知各數值代入上式，可得 x = 3m。

100. 第 140 圖中 AB 是一根由鋼筋重量懸掛的水平梁。鋼重 10kg。D 端的 F 力等於 20kg。試求兩段梁中的張力 S_d 和 S_b。
（解：S_d = 20 kg, S_b = 10 kg）

101. 第 141 圖中，P, Q 各力是一個圈車的軸力。設 P = 10t, Q = 8t，試求支點 A, B 對 AB 梁的反作用力 R_a 和 R_b。
（解：R_a = 19 t, R_b = 18 t）

102. 如第 142 圖的設置。試求 AB 梁在水平位置平衡時，x 等於多少？
（解：x = P l / Q）

103. 試求第 143 圖中 B, C 兩支點的反作用力 R_b 和 R_c。設 a = 1/4, Q = 1/2。
（解：R_b = 1/2 向上, R_c = 1/2 向下）
104. 對第 144 圖中 l = 3m, d = 0.6m, Q = 1t。試不計摩阻力影響, 由圖中 B, C 兩點 A B 梁將受到的反作用力 R_b 和 R_{bc}。

(解: $R_b = 6t, R_{bc} = 5t$)

105. 對第 144 圖中 Q = 2t。 梁的自重可以不計。試求平衡時 比例 a : b 等於多大?

(解: $a : b = 2 : 3$)

106. 如第 146 圖的起重裝置。 起重機本身的重力為 Q = 5t, 作用在圖中 G 點。 重物 $P = 1t$。 梁的自重可以不計。 所有作用力都在同一平面。 此外, l = 10m, $x = 3m$, $c = 4m$。 試求支點 A, B 的反作用力 R_a 和 R_b。

解： 大梁對於起重機的 C, D 兩處的反作用力必須與 P, Q 兩力平衡。 故起重機對大梁的作用力必然是一個與 P, Q 兩力相等的力系。 所以設 P, Q 兩力是通過作用在大梁上也無不可。 這就是說, 我們可以將整個裝置視為一個分離體來考擦, 使 C, D 兩處的反作用力和作用力自相抵消, 而不必考慮。 現在取 A, B 二力矩中心, 由(12)式

$$R_b l = P(x + c) - Qx = 0$$
$$P(l - c) + Q(l - x) = R_a l = 0$$

以已知各數值代入以上方程, 就可得 $R_a = 3.8t, R_b = 2.2t$。 此外, 還可以想到, 這兩組反作用力的大小跟越腔範的距離無關。

107. 試求第 147 圖中 A, B 兩支點對梁的反作用力 R_a 和 R_b。

(解: $R_b = P + \frac{P_a}{l}$ 向上, $R_a = \frac{P_a}{l}$ 向下)

108. 第 148 圖中 ABC 是一個變成折線形的樑件, 由一根於桿 DA 活掛在圖中 D 點。
AB, BC 兩部分的長度分別為 l 和 2l，重量分別為 Q 和 2Q。 等角
於 60°，試求平衡時 如中 α 角度等於多大。
解：將整個結構當作一個三角體來考慮。 它上面有 Q, 2Q 和 DA 線的相對反作用力三
個力在作用。 稱為力是一個平衡的力系。 以 A 點作力矩中心就可得圖中
AF = 2AE

由力矩的幾何關係，知

\[\frac{1}{2} \cos (60° - \alpha) = 2 \left[l \cos \alpha - l \cos (60° - \alpha) \right] \]

放

\[\tan \alpha = \sqrt{\frac{3}{5}} \]

也就是

\[\alpha = 36° 06' \]

109. 第 149 圖中，AB 和 CD 是兩條互相垂直，在 C 點剛性結合的直桿，由一個鐵鏽 D 固
定在圖中 D 處。 兩直桿的重量分別為 Q_2 和 Q_1。 試求它們在圖中的 P_1, P_2 兩力作
用下平衡時，α 角度等於多大？ 使 P_2 > P_1。

(解： \[\tan \alpha = \frac{a}{b} = \frac{P_2 - P_1}{2P_1 + 2P_2 + 2Q_2 + Q_1} \])

第 148 圖

第 149 圖

110. 第 150 圖中是一個重量 Q = 20t 的起重機。 重力 Q 作用在圖中 B 點。 D 處有一個
平衡重桿 W，作用是防止機身因 Q 和無重桿 P 而發生的傾倒。 達一平衡體要使
起重機作最大重量 P 時不至於向右傾倒；而取去 P 後又不至於向左傾倒。 該圖中
Q = 20t, P = 20t, b = 2m, c = 1m, l = 4m, 試求 W 以及 x 的極限值等於多大？

第 150 圖
§ 211. 平面平行力系

解：現在分兩種極端情形來討論！

（1）P 方在 C 處作用使整個情形「維持 C 點固定可能」的情形。在此情形下，現時力開始
作用時，A 點和 C 點均無力存在。故現時力上只有 W, Q, P 及 B 處的鉛直反作用
力共四個力構成平衡。將 B 點作爲力矩中心，既可得

$$W(x + b) - Qc - Pl = 0 \quad (a)$$

（2）P 方取去後，平衡僅在使機構有「維持 A 點固定可能」的情形。在此情形下，B 點
無鉛直力存在。若取 A 點作力矩中心，既可得

$$Wx - Q(b + e) = 0 \quad (b)$$

解開以上 (a) (b) 兩式，得

$$W = \frac{Pl}{b - Qc}, \quad x = \frac{Q(b + e)}{Pl - Qc}$$

把已給各數值代入以上結果，得

$$W = 20t, \quad x = 2\frac{3}{4}m.$$

認著試證明：所得到的 W 值是最小值，X 是最大值。

111. 試求第 151 圖中 A, B, C, D 四支點所產生的反作用力 R_a, R_b, R_c 和 R_d

（解：$$R_a = \frac{Qa}{2t}$$ 向下，$$R_b = \frac{Q(a + l)}{2t}$$ 向上，$$R_c = Q + \frac{3Q(a + l)}{2t}$$ 向上，$$R_d = \frac{3Qa}{7}$$ 向下）

112. 試求第 152 圖中支點 C 所產生的反作用力 R_c.

（解：$$R_c = Pa/b$$）

24. 平行力中心

第 153 圖中，P 和 Q 是兩個分別作用在一剛體上 A 和 B 兩點的平行力。它們的合力 R，根據 § 20，應該方向跟
兩力平行，大小等於兩力的代數和，作用線通過連線 AB 的 C 點使

$$BC : AC = P : Q$$

現在假定 P, Q 兩力的作用線在作用平面中同時分別繞 A, B 兩點向同一方向旋轉一個任意
的角度 a。顯然，合力 R 的作用線也將同

第 153 圖
方向繞 C 點旋轉 α 角（見第 153 頁中的虛線）。不論旋轉的 α 角等於
多大，此 R 力的作用線部將通過 C 點。這也就是說，不管 P, Q 兩平
行力的方向如何，它們的合力 R 的作用線上總有一點 C 是不變的。這
僅有的合力所必定通過的不變點 C 通常稱為兩平行力 P, Q 作用在 A, B
兩定點的平行力中心。

現在來討論一個很多力組成的平行力系。第 154 圖中 A₁, A₂, ⋯, Aₙ
是某剛體上的一個點系。平行力 F₁, F₂, ⋯, Fₙ 分別作用在點系的
各點。根據以上討論，其中 F₁, F₂ 兩力，不論力系的作用方向如何，
總可以由一個作用在 A, B 連線上 C 點的合力 R₁ 來代替；C 點則分
為 A₁A₂ 線為 A₂C₁ : A₃C₁ = F₁ : F₂。同樣，又將 A₃ 點的力 F₃ 和作用
在 C₁ 點的「部分合力」R₁ 合成為 F₁, F₂, F₃ 三個力的合力 R₂，作用於
圖中 C₂ 點，C₃ 是 C₁ 和 A₃ 連線上的一點，分割 C₁A₃ 為

\[C₁C₂ : A₃C₂ = F₃ : (F₁ + F₂) \]

C₂ 就是 F₁, F₂, F₃ 三力的平行力中心。繼續用同樣方法，又可求出
A₁, A₂, A₃, A₄ 四點上 F₁, F₂, F₃, F₄ 四力的平行力中心 C₄。繼續應
用這一方法到點系 n 個點上所有 n 個力的合力的平行力中心已決定
為止，就可看到，不管各點的平行力的作用方向如何，作用平面上總必
定有一點，也僅有這一點是各力的合力作用線所必須通過的。這一點
就稱為平行力系作用在此點系的平行力中心。

特例情形，點系的所有各點都在同一平面時，我們可以由 (9) 式來
決定作用在這些點上各力的「平行力中心」。例如第 155 圖中 A₁, A₂, ⋯, Aₙ
是剛體內某一平面中一個任意的點系。它們對於圖中正交坐標
軸 x, y 的座標值分別為 x₁, x₂, ⋯, xₙ 和 y₁, y₂, ⋯, yₙ。現在要決定一個
作用在這一點系上的力系 \(F_1, F_2, \ldots, F_n \) 的「平行力中心」，可先設想各平行力的方向平行於坐標軸 \(y \)。由 (9) 式可得到合力 \(R \) 對原點 \(O \) 的力臂是

\[
\sum_{i=1}^{i=n} (F_i x_i) \\
\sum_{i=1}^{i=n} F_i
\]

\(x_C = \frac{\sum_{i=1}^{i=n} (F_i x_i)}{\sum_{i=1}^{i=n} F_i} \) (13a)

之後，設想各平行力纔各自作用點旋轉 90° 至作用線跟 \(x \) 軸平行，又可由 (9) 式求得合力 \(R \) 對 \(O \) 點的力臂是

\[
\sum_{i=1}^{i=n} (F_i y_i) \\
\sum_{i=1}^{i=n} F_i
\]

\(y_C = \frac{\sum_{i=1}^{i=n} (F_i y_i)}{\sum_{i=1}^{i=n} F_i} \) (13b)

以前已說過，一個平行力系對於一個一定點系的平行力中心，跟力系的作用方向是毫無關係的。因此，(13) 式已可完全決定所求的平行力中心，並不會因爲計算過程中是設想平行力系取特殊的坐標軸方向而有所影響。

計算 (13) 式時，對於任何一力 \(F_i \) 的正負符號可如下規定：假使 \(F_i \) 的方向跟坐標軸的正方向相同，那它就是正值；否則，就是負值。

一個「作用在點系 \(A_1, A_2, \ldots, A_n \) 上的力系 \(F_1, F_2, \ldots, F_n \)」的平行力中心，如果各力的大小同時乘以一個固定常數，那它的位置並不會因而變動。這事實只要研究一下 (13) 式便可知道。各力所乘的固定常數 \(n \) 會在兩式的分子分母中同時出現，因而將互相抵消，所以各力共同增大或縮小 \(n \) 倍，平行力中心的位置是不會改變的。這也就是說，一個作用在一定點系中的一個力系的平行力中心，只看各點的位置以及力系各力的相對大小如何而定；跟各力的真實大小是完全無關的。

特殊情形，力系中各力的大小都相等時，平行力中心的坐標值 \(x_C \) 和 \(y_C \)，根據 (13) 式，直接就等於點系各點坐標值的平均值。

25. 重心及形心
一個物體的重心就是，不論物體在空間的位置如何，它受到的分佈
重力的合力作用線始終都通過的一點。 由這一定義，可見一個剛體的
重心，實際上，就是作用在它各質點的重力的平行力中心；因重力永
遠是沿著向下，「一個物體發生任何一個角度 α 的旋轉」顯然就跟 § 21
所指的「所有作用力總作用點作相同角度的旋轉」情形相同。

一個只受本身的分佈重力作用的物體，若支承在它重心處，這物體，
顯然，取任何位置都可以均衡；因重力不論位置如何，重力的合力總通過
這樣的支點，因而永遠可以由支點的反作用力來抵消全部重力的作用。

所有的實際物體當然都是三元次的空間物體。 因之，它各質點上
的重力必然是一個空間的平行力系。 不過在一元情形下，我們還是可
以不考慮物體的厚度，甚至它的厚度和宽度，而假定構成物體的質點都
在同一平面內及或在同一根線上。 以下我們就這些特殊情形來討論。

例如第 156a 圖中的一個密度均勻、厚度相同的薄片形物體，我們
在想像中將這薄片分割成為極多的微細長條（見第 156a 圖）。 如果設
想薄片體經着放在一個平面上，那每一長條的重力就都在薄片體厚度
方向的中平面上，構成一個平面的平行力系。 力系的平行力中心（當
然也在中平面上）就是薄片形物體的重心。

第 156 圖

對於一根密度均勻、切面不變的細線形物體，如果它的長軸全部在
一個平面內，我們在想像中把它分割成很多小段（見第 156b 圖），並且
令它的長軸所在平面取鉛垂位置，那每一小段受到的重力就可構成一
個長軸平面內的平行力系。 這力系的平行力中心當然就是線形物體
的重心。

因爲薄片體密度均勻、厚度不變，因此，分割後，每一微細長條受到
的重力的大小必定跟各自的切面積成正比。 同樣，線形物體中每一
小段上的重力的大小也應該跟每一段的長度成正比。對平行力中心的位置來說，這是有重要的意義的。§ 24 中已說明過，平行力中心的位置跟各平行力本身的絕對大小無關。現在材料形成物體或細線形成物體中每一長段或每一小段的電力既然都跟切面面積或每段長度成正比，那末不論它們的比值如何，這一比值總是所有各長段或各小段所共同的一個數值。因此，作用在各長段或小段上的電力，不問物體是由什麼構成的，它們的相對大小總是一定的。這也就是說，物體重心的位置，在薄片體中只跟中平面上的形狀有關；在細線體中只跟長軸的形狀有關。

由此可見，要決定一個密度均勻、厚度不變的薄片體的重心位置，只要將它中平面上的形狀在想像中分割為無數小塊如第 157a 圖，並假定在每一小塊的中心有一個跟它切面面積成正比的重力在作用，然後讓這些電力先後跟 x 和 y 軸平行，按照 (13) 式就可以決定它們平行力中心的位置。這位置也就是物體的重心位置，跟薄片體的厚度以及構成物體的物質完全無關。同樣情形，一根密度均勻、切面不變的細線，如果它的長軸在一個平面上，那就可以按第 157b 圖來分割。之後，令作用在各小段中點跟各小段長度成正比的電力力系先後跟 x 和 y 軸平行，再應用 (13) 式就可決定它們的平行力中心（也就是細線的重心）的位置。

在以上討論中，我們得到了「平面圖形的面積重心」和「平面曲線的長度重心」的觀念。這些觀念非但是因爲「面積重心或長度重心跟薄片體或細線體的重心相同」而可以利用來決定重心；並且它們的本身意義，對某些力学問題來說，也非常重要。不過平面圖形或平面曲線事實上，沒有什麼「重量」可言。因此，重心這一名詞，對它們來說，是
不很妥當的。為避免誤解起見，以下改稱它們為形心。

計算一個平面圖形（第157面圖）的面積形心的坐標值，根據以上討論，可以將(13)式化成如下兩式來應用：

$$
\begin{align*}
\frac{\sum_{i=1}^{i=n} (\Delta A_i \cdot x_i)}{\sum_{i=1}^{i=n} \Delta A_i} \\
\frac{\sum_{i=1}^{i=n} (\Delta A_i \cdot y_i)}{\sum_{i=1}^{i=n} \Delta A_i}
\end{align*}
$$

(14)

其中 ΔA_i 是圖形中任一小塊的面積；x_i, y_i 是這一小塊的中心的坐標值。

同樣，一根平面曲線的長度形心的坐標值，也可以直接由以下兩式來計算：

$$
\begin{align*}
\frac{\sum_{i=1}^{i=n} (\Delta L_i \cdot x_i)}{\sum_{i=1}^{i=n} \Delta L_i} \\
\frac{\sum_{i=1}^{i=n} (\Delta L_i \cdot y_i)}{\sum_{i=1}^{i=n} \Delta L_i}
\end{align*}
$$

(15)

其中 ΔL_i 是曲線中任一小段的長度，x_i, y_i 就是這一小段中點的坐標值。

由(14)（15）兩式可看到，若是平面圖形或平面曲線有一個對稱軸線，那麼它的形心就一定在對稱軸線上。例如第158面的兩個例子。圈 n 的平面曲線有一個對稱軸 Oy。現在設想分割這一曲線為很多長度等於 ΔL 的相等小段，令作用在每小段中點的相等電力平行於 Oy 軸。根據§24, 這一力系平行力中心的 x 軸坐標 x_c 應該直接等於
各小段中心的 *x* 軸坐標的平均值。這平均值當然等於零，所以 *x* 也等於零。可見長度形心 *C* 確是在對稱軸上。至於圖 b 中有兩個對稱軸 (x 軸和 y 軸) 的平面圖形 ABCD，我們也可以用相同方法來證明：它的形心必須同時在兩對稱軸線上，因此，可以由兩軸線的交點完全決定。這一圖形的輪廓曲線的長度形心，根據相同理由，可以斷定也就是圖形的面積形心。所以一切有兩個對稱軸的圖形如圖、橢圓、正多邊形等等的「輪廓曲線」的長度形心以及圖形的面積形心，我們都可以一望而知，不必計算。

有時一個圖形雖然沒有明確的對稱軸，但是仍舊存在着一定的對稱屬性。這種圖形有一個所謂「圖形中心」。它是圖形所有可能的直徑的中點。第 150 圖中舉出幾個這種圖形的例子。這種圖形的「圖形中心」，顯然的，就是它的面積形心或它輪廓曲線的長度形心。

任何三角形的形心都是它三根中線的交點。證明如下：將第 160 圖中的任意三角形 *ABD* 分割為平行於底邊 *AD* 的無限多的狹條。每一狹條的形心顯然就是狹條的長度中點。這些形心的軌跡也就是三角形的 *Bb* 中線。可見整個三角形的面積形心必定就在這一中線
26. 旋轉面和旋轉體的形心

1. 一個任意的平面曲線繞一個不穿過它的同平面軸線旋轉時，它在空間所產生的表面積就等於這一曲線的長度跟它長度形心在旋轉過程中所經過的路程長度的乘積。

2. 一個平面圖形繞同平面一個不穿過它的軸線旋轉時，它在空間所產生的體積就等於這一圖形的面積跟旋轉過程中面積形心所經路程的長度的乘積。

這兩個命題稱為「旋轉體定律」(1)。現在先證明第一定律如下：第161a圖中AB是xy平面中的一根長L的曲線。它跟x軸互不相交。

![圖](image)

現在設想把它分割成很多長度極短的小段，使每一小段都可以看作是一根極短的直線線段。任一長ΔLᵢ的小段的中點的y軸坐標是𝑦ᵢ；AB曲線的形心C的坐標是𝑦ᵋ。假使AB繞Oₓ軸旋轉一個α角(以弧度計)，那任一小段的中點所走的路程就將等於α𝑦ᵢ。因之，這一小段在空間產生的表面積將等於ΔLᵢ⋅α⋅𝑦ᵢ。應用(15)中第二式，可得AB繞Oₓ旋轉而產生的全部表面積是

\[\sum_{i=1}^{n} ΔLᵢ \cdot α \cdot yᵢ = \alpha \cdot \sum_{i=1}^{n} ΔLᵢ \cdot yᵢ = \alpha yᵋ \sum_{i=1}^{n} ΔLᵢ = αyᵋL \quad (a) \]

其中αyᵋ就是形心C在旋轉過程中所走的路程。故第一定律已完全證明。至於第二定律，我們也可用同樣方法去證明：第161b圖中是—

(1) 這就是Pappus定理；德語叫Guldinsche定律。
個面積等於 A 的圓形，它的形心坐標在 y 軸方向為 y_c。現在分割這圆形為很多平行於 x 軸的無限窄狭條。任一狭條的面積為 ΔA_i，中心坐標為 y_i。圖形繞 x 軸旋轉 α 角後，因各狭條的寬度極小，故任一狭條在空間產生的體積可當作等於 $\Delta A_i \cdot y_i \cdot \alpha$。應用 (14) 中第二式，可得整個圖形在空間產生的體積是

$$
\sum_{i=1}^{n} \Delta A_i \cdot \alpha \cdot y_i = \alpha \sum_{i=1}^{n} \Delta A_i \cdot y_i = \alpha y_c \sum_{i=1}^{n} \Delta A_i = \alpha y_c \cdot A
$$

故第二定律已證明。

旋轉體定律除開可以決定旋轉面或旋轉體的面積或體積外，還可以用來計算一個平面圖形的面積形心，或平面曲線的長度形心。例如第 162a 圖中的半圓形弧 AB。它的半徑為 r。如要求 AB 的長度形心 C，可選擇坐標軸 x, y 如圖。形心 C 自然在對稱軸 y 軸上。故 x 軸

![第 162 圖](image)

坐標應等於零；y 軸坐標則爲所求的 y_c。設想 AB 繞 x 軸旋轉 2π 角產生了一個圓球表面。球表面的面積已知應等於直徑跟大圓圓周的乘積 $4\pi r^2$。故由第一定律，可得

$$
\pi r \cdot 2\pi y_c = 4\pi r^2
$$

$$
y_c = 2r / \pi
$$

再如第 162b 圖的半圓形。它的半徑等於 r。如要決定它的面積形心 C 的 y 軸坐標 y_c，也可設想這半圓形面積繞 x 軸旋轉 2π 角，產生一個圓球的體積。球的體積已知為 $\frac{4}{3}\pi r^3$，故由第二定律可得

$$
\frac{\pi r^2}{2} \cdot 2\pi y_c = \frac{4}{3} \pi r^3
$$

$$
y_c = \frac{4r}{3\pi}
$$
27. 平面組合圖形和組合曲線的形心

假使一個平面圖形的面積可以分成若干有限面積的部份，而這些部份的面積形心又都是已知的，那整個組合圖形的形心 \(C \) 就可以直接用 §25 中 (14) 式來決定它的位置。

例如第 163a 圖中的平面圖形。它由 \(Oabcd \) 及 \(defg \) 兩長方形組合而成。兩長方形的面積分別為 \(A_1, A_2 \)。它們各自的形心 \(C_1 \) 和 \(C_2 \) 的坐標分別為已知的 \(x_1, y_1 \) 和 \(x_2, y_2 \)。由 (14) 式，可得這一組合圖形的形心 \(C \) 的位置為：

\[
\begin{align*}
 x_c &= \frac{A_1 x_1 + A_2 x_2}{A_1 + A_2} \\
 y_c &= \frac{A_1 y_1 + A_2 y_2}{A_1 + A_2}
\end{align*}
\]

(a)

![圖163a](image)

我們也可以把這一組合圖形當作由一個面積等於 \(A_1' \) 的長方形 \(Oabc \) 削去另一個面積等於 \(A_2' \) 的長方形 \(efbd \) 而成的（第 163b 圖）。兩長方形的形心 \(C_1' \) 和 \(C_2' \) 的位置已知為 \(x_1', y_1' \) 和 \(x_2', y_2' \)。計算組合圖形的形心 \(C \) 的坐標時，可先設想長方形 \(Oabc \) 是由長方形 \(efbd \) 和組合圖形共同組成的。之後，應用 (14) 式確定三個形心位置間的關係，由這一關係式中就可求得

\[
\begin{align*}
 x_c &= \frac{A_1' x_1' - A_2' x_2'}{A_1' - A_2'} \\
 y_c &= \frac{A_1' y_1' - A_2' y_2'}{A_1' - A_2'}
\end{align*}
\]

(b)

此式說明，最初只要把 \(efbd \) 長方形的面積 \(A_2' \) 當作負值，那就仍可直接應用 (14) 式求得相同結果。

應用同樣方法，也可以決定一根組合的平面曲線的形心位置。例如第 163c 圖中的折線 \(ABDE \) 由三根長度分別為 \(L_1, L_2 \) 及 \(L_3 \) 的直線
AB, BD 及 DE 所組成。這三直線的形心 $C_1; C_2; C_3$ 的位置已知為 $x_1, y_1; x_2, y_2; x_3, y_3$。應用 (15) 式，可得 $ABDE$ 的形心 C 的位置為：

$$
\begin{align*}
 x_c &= \frac{L_1 x_1 + L_2 x_2 + L_3 x_3}{L_1 + L_2 + L_3} \\
 y_c &= \frac{L_1 y_1 + L_2 y_2 + L_3 y_3}{L_1 + L_2 + L_3}
\end{align*}
$$

（c）

例題和習題

113. 點求第 164 圖中繪斜線的圖形的面積形心位置。設圖中 $a=6\text{cm}, b=1\text{cm}, c=2\text{cm}$。

（解：$y_c=1,1\text{cm}$）

114. 设第 164 圖中 a 与 b 固定不變。當形心 C 坐在 AB 線上時，圖中 c 等於多大？

（解：$c=\sqrt{ab}/2$）

115. 第 165 圖中，正方形的邊長等於 a。試求它的四分之三部分（圖中繪斜線部分）的面積形心位置。

（解：$x_c=y_c=\frac{5}{12}a$）

116. 求第 166 圖中繪斜線圖形的面積形心的位置。

（解：$x_c=\frac{a}{2}; y_c=\frac{7}{18}a$）

117. 第 167 圖中繪斜線的 BDE 圖形由一正方形 $OBDE$ 及半徑為 a 的四分之一相減而成。試求它的形心 C 在何處？
解：BDE是一個對稱圖形，故形心C必在對稱軸——$OBDE$正方形的對角線上。也就是說，C點的座標為$y_C = y_0$。已知$OBDE$和四分圓的形心$C_1(x_1, y_1)$和$C_2(x_2, y_2)$是已知的，那麼用(14)中第一式就可得

$$x_C = \frac{A_1x_1 - A_2x_2}{A_1 - A_2}$$

以圖中所繪各值和(23)中(d)式代入上式，可知

$$x_C = \frac{a^2 - \frac{\pi a^2}{4} - \frac{4a}{3\pi}}{a^2 - \frac{\pi a^2}{4}}$$

故

$$y_C = x_C = \frac{2a}{3(4 - \pi)}$$

118. 第168圖繪斜軸的圖象是由一長直角a的四分圓中挖掉一個半徑為$rac{a}{2}$的半圓而成的。

要求它的面積形心C在何處？

(解：$x_C = 0.349a$, $y_C = 0.636a$)

119. 第169圖中是一根切面不變的細長鍥形而成的組合直線。設圖中a固定不變，求此組合直線的形心C恰在半圓的圓心處時，a中b應等於多少？

(解：$b = \frac{a}{2}(\sqrt{5} - 1) = 0.618a$)

120. 由正方形$ABCD$中挖去一個等腰三角形AED得到如第170圖的繪斜軸部份。設這部份的面積形心恰在ΔAED的頂點E處，試求ΔAED的高度y應等於多少？

(解：$y = \frac{3 - \sqrt{3}}{2}a = 0.634a$)
121. 設第171圖中縱銅線的面積形心在何處？圖中所標尺寸的單位為 cm。
解：圖形中的主面積可當作由大牛角的面積 A_1 以及小牛角面積 A_2 而成的。 其餘部分可當作由三個楔形的長方形 A_3, A_4 和 A_5 綜合而成。一個組合圖形假若組合部分很多，則最好採用代數來計算（14）式；否則，很難避免錯誤。現在把本題做作例子，介紹一種計算表的格式如下：

<table>
<thead>
<tr>
<th>i</th>
<th>ΔA_i</th>
<th>x_i</th>
<th>y_i</th>
<th>$\Delta A_i x_i$</th>
<th>$\Delta A_i y_i$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>21.8</td>
<td>0.00</td>
<td>7.41</td>
<td>0.00</td>
<td>225.60</td>
</tr>
<tr>
<td>2</td>
<td>-25.1</td>
<td>0.00</td>
<td>7.20</td>
<td>0.00</td>
<td>-180.70</td>
</tr>
<tr>
<td>3</td>
<td>2.5</td>
<td>-4.25</td>
<td>3.20</td>
<td>-10.62</td>
<td>7.50</td>
</tr>
<tr>
<td>4</td>
<td>1.0</td>
<td>-5.00</td>
<td>0.25</td>
<td>-5.00</td>
<td>0.25</td>
</tr>
<tr>
<td>5</td>
<td>1.0</td>
<td>5.00</td>
<td>5.25</td>
<td>5.00</td>
<td>5.25</td>
</tr>
<tr>
<td>Σ</td>
<td>11.2</td>
<td>......</td>
<td>......</td>
<td>-10.62</td>
<td>67.90</td>
</tr>
</tbody>
</table>

按（14）式，可得：

$$x_c = \frac{-10.62}{11.2} = -0.95\text{cm}$$
$$y_c = \frac{67.90}{11.2} = +6.06\text{cm}$$

122. 設第172圖中面積的面積形心 C 的位置。圖中所標尺寸的單位為 cm，單位。
（解：$x_c = -0.71\text{cm}$, $y_c = +4.24\text{cm}$）

123. 設第171圖中面積形形的中線的中點的面積形心位置。試問所給結果是不是面積形
心位置的一個很準確的近似值？
（解：$x_c = -0.95\text{cm}$, $y_c = +6.06\text{cm}$）

124. 第173圖中是鋼鉄工程中常用的一種角鋼的切面。圖中所標尺寸的單位為 mm，單位。

第172圖

第173圖
試根據這些尺寸，求切面的靜定形心 C 的座標 x_C 和 y_C。

解：首先，先不考慮切面的三個角的面 A_3, A_4 和 A_5，把整個切面作成由兩個矩形面 A_1 和 A_2 所組成。因矩形的形心 C_1 和 C_2 的位置皆在一定形面而不必計算。這從求出來的切面形心 C_0 的位置與正確切面形心 C 的位置非常接近，而且 $C_0 (x_0, y_0)$ 的座標計算很簡單不易出差錯。C_0 的位置確定後，真正形心 $C (x, y)$ 的座標計算就變成僅僅是改正座標 x_0, y_0 的微小誤差；整個計算過程中，計算錯誤的機會，因此，減少很多。

根據以上說法，我們先計算接近近似形的形心 C_0 的座標 (x_0, y_0)；把各個尺寸填入下表第一第二兩欄內，算出結果。再利用 (14) 式，或得到

$$
\begin{align*}
 x_0 &= \frac{23000}{1400} = 15.7 \text{ mm} \\
 y_0 &= \frac{43000}{1400} = 30.7 \text{ mm}
\end{align*}
$$

之後，把角鋼的真正的切面看作由三已知形心位置 (x_0, y_0) 的座標中減去 A_3 和 A_4 兩面積。由第 117 項的結果 [見 (4) 式]，可算出三個微形面積的形心座標，把他們分別填入下表中，計算出 (14) 式就可得到

<table>
<thead>
<tr>
<th>i</th>
<th>ΔA_i</th>
<th>x_i</th>
<th>y_i</th>
<th>ΔA_{xi}</th>
<th>ΔA_{yi}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>500</td>
<td>5</td>
<td>4.5</td>
<td>4500</td>
<td>40500</td>
</tr>
<tr>
<td>2</td>
<td>500</td>
<td>35</td>
<td>5</td>
<td>17500</td>
<td>2500</td>
</tr>
<tr>
<td>Σ</td>
<td>1400</td>
<td>15.7</td>
<td>39.7</td>
<td>22500</td>
<td>43000</td>
</tr>
<tr>
<td>3</td>
<td>-2.6</td>
<td>8.2</td>
<td>83.2</td>
<td>-21</td>
<td>-232</td>
</tr>
<tr>
<td>4</td>
<td>-2.6</td>
<td>83.2</td>
<td>8.2</td>
<td>-154</td>
<td>21</td>
</tr>
<tr>
<td>5</td>
<td>10.5</td>
<td>11.6</td>
<td>11.6</td>
<td>122</td>
<td>122</td>
</tr>
<tr>
<td>Σ</td>
<td>1405.3</td>
<td></td>
<td></td>
<td>21947</td>
<td>42369</td>
</tr>
</tbody>
</table>

$$
\begin{align*}
 x_C &= \frac{21947}{1405.3} = 15.6 \text{ mm} \\
 y_C &= \frac{42369}{1405.3} = 30.5 \text{ mm}
\end{align*}
$$

從這一結果，可看到：以前得到的近似值 x_0, y_0 跟正確結果，最大也僅僅相差約 0.7%。因此，大多數的使用問題中，近似值已經足夠應用，可以直接引用。

125，第 174 圖是一個鋼板和金屬鋼及銅螺旋的切面，圖中尺寸以 mm 為單位。

126，試根據這些尺寸求切面形心的座標 C 的位置。將孔的影響要考慮在內。

解：各角鋼的面積和它們形心的位置可以由工程學家計算出形面尺寸表中直接查出。按照上述方法，先不考慮孔的影響，求得形心的正確位置，之後，根據孔尺寸加以
127. 第76題中\(BDEF \)是一個任意的四邊形。\(GH \)是上底\(DE \)跟下底\(BF \)的中點連線。試證明梯形的面積形心\(C \)必在\(GH \)線上，並且它的座標是

\[
y_c = \frac{1}{2} \left(1 - \frac{1}{3} \frac{a-h}{a+b} \right)
\]

(9)

此外，再證明這一形心\(C \)可以利用解法由圖中\(MN \)直線跟\(GH \)線的交點來決定。
128. 三等分一個任意四邊形 $ABCD$ 的各邊。由各三等分點的連線，我們可得到一個半行
四邊形 $OEFG$ 如第 177 圖。 試證明 $ABCD$
四邊形的面積形心 C 就是半行四邊形兩對角
幾 O 和 F 的交點。

解：我們只要把 $ABCD$ 兩內作半行四邊形 $OEFG$
中從點 A, O, E, F, G 等點的四個小三角
形，然後，在加上 A, B, C, D 等點的四個
小三角形，而成的一個四邊形（圖中黃色部分)
就可以證明本題。

28. 應用積分求形心位置法

在很多的實際問題中必須應用積分才能決定平面曲線和平面圖形
的形心位置。例如，第 178 圖 xy 平面中的一根曲線 AB，假若要求它
的形心位置，就必須用一羣非常短的直線線段去近似地代表它。令任
一線段的長度為 dL，形心坐標為 x_i 和 y_i，那整個曲線的形心 C 的坐
標 x_c 和 y_c 就可以根據(15) 式（見第 82 頁）計算出來。 這樣決定的形
心，非常容易的，不過是那些非常短的線段組成的折線的形心，並不是
真正曲線 AB 的形心。 但是從另一方面看，那些線段愈短，數目愈多，
它就愈近似真正的曲線；從而由(15)式所得到的 x_c 和 y_c 值也愈正確。
曲線 AB 我們可以看作是那些長度 dL 無限減小的直線線段所組成
的折線的極限。因此，真正的 x_c 和 y_c 也可以看作(15)式在這樣一計
算過程中的極限值。 這種極限值必須應用積分來決定如下：

$$
x_c = \frac{\int x dL}{\int dL}, \quad y_c = \frac{\int y dL}{\int dL},
$$

積分號右下方的 L 表示要沿曲線的整個長度去積分。

同様情形，對於任意一平面圖形（第178b圖），我們可以用無數的小矩形去近似它。它形心 C 的坐標 x_c 和 y_c，則之，可以用（17）式（第82頁）計算。同様，當 Δx 和 Δy 就近減小時，那些無限多小矩形的面積的總和也就逐漸接近於真正的圖形。故其處的 x_c 和 y_c 值可以看作是（14）式在 Δx 和 Δy 無限減小過程中的極限值。這種極限值當然必須應用積分決定：

$$
\begin{align*}
\frac{x}{A} &= \int_A \frac{xdA}{dA}, \\
\frac{y}{A} &= \int_A \frac{y dA}{dA}.
\end{align*}
$$

積分號右下方的 A 表示積分範圍應包括圖形的全部面積。

只要(16)或(17)式包含的各定積分都能夠計算，我們就可以應用它們去決定一根平面曲線或一個平面圖形的形心。一般情形下，假若曲線或圖線的形狀能夠由一個或一個以上的方程式表示，那(16)或(17)式的方法也就可能計算。

以下我們舉幾個例子來說明如何應用積分方法去決定一根平面曲線或一個平面圖形的形心位置。

例題和習題

12. 第179圖中 AB 是一根半徑等於 r 的半圓軸。試根據圓中坐標軸線計算它長度形心 C 的坐標值。

解：圓弧的方程式是：

$$
\begin{align*}
x^2 + y^2 &= r^2
\end{align*}
$$

分離變數積分方程，任一積分的面積是

$$
\begin{align*}
dL &= \int (dx)^2 + (dy)^2 = r \frac{y}{r} dx
\end{align*}
$$

代入(16)的第二式，得

$$
\begin{align*}
y_c &= \frac{\int_L y dL}{\int_L dL} = \frac{\int_0^r \frac{y}{r} dx}{\int_0^r dx} = \frac{r^2}{2 \pi r} = \frac{r}{2 \pi}
\end{align*}
$$

（a）

因坐標軸，$x_c = y_c$，故 C 的位置已完全確定。此結果照 §26 中應用旋轉體定律所得完全符合。

130. 第180圖中 OD 是一根以 C 為鉚釘軸線的邊軸線的螺旋線的一部分。試求圖中旋錐體圓形 ODB 面積形心 C 的位置。

解：一個以坐標原點為頂點的鉚釘軸線的方程式的一般形式是

$$
\begin{align*}
x^2 &= a^2 y
\end{align*}
$$

本地 $x = a$ 處，$y = b$，設

$$
\begin{align*}
a &= \frac{a^2}{db}
\end{align*}
$$

也就是曲線 OD 的方程式為

$$
\begin{align*}
y &= \frac{b}{a^2} x^2
\end{align*}
$$
現在設想把OBD分割為無數的面積。任一微柱的寬度為dx, 高度為y, 面積為
dA = y·dx。它的形心位置是 (x; y/2)。由 (17) 式, 可得:

$$
x_c = \frac{\int_a^b x \cdot y \cdot dA}{\int_a^b dA} = \frac{\frac{a^3 b}{4}}{\frac{a b}{3}} = \frac{3}{4} a
$$

$$
y_c = \frac{\int_a^b y \cdot dA}{\int_a^b dA} = \frac{\frac{a b^2}{10}}{\frac{a b}{3}} = \frac{3}{10} b
$$

131. 第181圖中OBD是一個半徑為r, 中心角為α的扇形。試求它對軸的積分形心C的坐標x_c和y_c。

解：設想這一扇形是由無數的無限小三角形所構成。任一小三角形的底邊為r·dθ, 高為r, 面積為dA = r²dθ/2, 它形心的x軸坐標為r·sinθ。(17) 式, 可得整個扇形形心C的x軸坐標為

$$
x_c = \frac{\int_a^b x \cdot dA}{\int_a^b dA} = \frac{2}{3} \int_a^b \frac{r^2}{2} \cdot \frac{r^2}{2} \cdot dθ
$$

$$
= \frac{r^2}{3} \sin \frac{a^2}{2} = \frac{4}{3} r \sin \frac{\alpha}{2}
$$

由對稱關係, 又可知, y_c = 0。假使α = π, 代入 (d) 式可得x_c = 4r/3π, 跟 (18) 中計算的結果相符。

132. 應用上述方法, 求第181圖中BD弧的積分形心的位置。

(解: x_c = \frac{2r}{\alpha} \sin \frac{\alpha}{2})
133. 第 182 図中 OD 是一根正弦曲線的一部分。試求它跟 x 軸所圍面積的形心 C 在那裏?

(解: \(x_c = \frac{l}{2}, \quad y_c = \frac{la}{8} \))

134. 試求第 183 圖中四邊形形心 \(DPEF \) 的面積形心 C 在那裏?

解: 應用 §27 的方法, 按第 131 個結果, 就可求得

\[y_c = \frac{4}{3} \frac{r_1^3 - r_2^3}{r_1^2 - r_2^2} \cdot \frac{\sin \alpha / 2}{\alpha} \]

第 182 図

第 183 図

135. 第 184 圖中 \(BDF \) 是一個直角角等於 \(\alpha \), 坐標等於 \(r \) 的弓形。試測它的面積形心 C 的坐標 \(x_c \) 等於多少?

(解: \(x_c = \frac{4}{3} \frac{\sin^3 \frac{\alpha}{2}}{\alpha - \sin \alpha} \))

136. 試求第 180 圖中三角形的面積 \(OED \) 的形心 C 在那裏?

(解: \(x_c = \frac{9}{8} a, \quad y_c = \frac{3}{5} b \))

137. 設第 185 圖中曲線 \(OB \) 的方程式是 \(y = kx^n \), 試證明圖中三角形的面積 \(OBD \) 的形心位置是:

\[x_c = \frac{n+1}{n+2} a \]

\[y_c = \frac{n+1}{4n+2} b \]
29. 靜力學

以前討論的問題都是指物體在集中一點作用的集中力作用下的平衡。以下我們再就分佈力，譬如堤壩上的水壓力、電力等的作用情形來研究。

這種「分佈力」常可用一種所謂荷重圖來表示。例如第 186a 圖中的 AB 桁。它上面的「沿長軸方向均勻分佈」的電力就可以由一長方形荷重圖 AabB 來表示。分佈在單位長度分佈於 AB 上的荷重通常稱為分佈力的強度。 「強度」由荷重圖中高標的高度 q 表示。本書中，縫標在分佈線上各點的高度都相同，也就是說，各點的強度都相同，所以荷重是一種「均勻分佈力」。如果荷重是水產生在一個鉛垂面的靜水壓力（第 187a 圖），那它就是由一三角形荷重圖 AbB 來表

![圖](image)

第 186 圖 第 187 圖

示的一種不均勻分佈力。在這種情形下，因荷重圖中 AB 線上任何一點的縫標高度就代表這一點的壓力「強度」，圖片中各點的縫標高度即隨著深度作直線式變化，可見壓力是跟水的深度成正比的。最一般的平面不均勻分佈力，各點強度的變化還要複雜一些，荷重圖的等幅線變成一根曲線。例如，第 186b 圖中 AabB 所表示的飛機蒙皮上面的空氣壓力就是這樣的荷重圖。第 187b 圖也是靜水壓力的一個例子，它的荷重圖是一個梯形。

現在觀察任意一個如第 188 圖的平面分佈力的荷重圖 BbaA。設想把「分界線」BA 分割成無數的微分小段，其中任一小段的長度為 dx；在這一小段的中點上有一個微小的作用力 dQ。在如此設想下，
可得到一個無限多的不等平行力構成的力系。假設一個平行力系，那
就可以應用 §21 的方法來決定它的合力 \(Q \) 的大小以及合力作用線的
位置。任取任意一點的強度為 \(q \)，可得

\[
\text{d}Q = q \, \text{d}x
\]

由第 188 圖又可知，這 \((a) \) 式同時又代表荷
重圖中一個寬 \(\text{d}x \) 高 \(q \) 的狹條的微分面積。
所以分佈力中的任意一個微小作用力 \(\text{d}Q \)，在
荷重圖中就是跟它對應的範窄的面積。

因此，把所有微小作用力所代表的面積分別加成總和，所得到的
「等於狹條總和」的整個荷重圖面積 BbaA 顯然就代表「等於微小作用
力總和」的合力 \(Q \) 的大小。

求到合力 \(Q \) 的大小後，\(Q \) 的作用線位置就可按「力矩法」決定。
取 A 點作為「力矩中心」。各狹條面積所代表的 \(\text{d}Q \) 力對中心的力矩
為 \(x \cdot \text{d}Q \) （\(x \) 是 \(\text{d}Q \) 的力臂，也就是狹條中心到 A 點的距離）。
根據 \((a) \)
式，此力矩應等於 \(q \, x \, \text{d}x \)，故力矩的總和是

\[
\int_{A}^{B} q \, x \, \text{d}x
\]

令合力 \(Q \) 對 A 點的力臂為 \(x_c \)，因合力 \(Q \) 對 A 點的力矩等於上一總和，
故

\[
Q \cdot x_c = \int_{A}^{B} q \, x \, \text{d}x
\]

即

\[
x_c = \frac{\int_{A}^{B} q \, x \, \text{d}x}{Q}
\]

把 \((d) \) 式跟 \((17) \) 式比較，立刻可看出，合力 \(Q \) 的作用線必然將通過荷重
圖的面積形心。因此，分佈力的合力可以完全由荷重圖來決定。

如果荷重圖的輪廓線不是一根連續曲線（如第 189a 圖），那我們就
應該先就連續部份求出各個部份合力，例如圖中 \(Q_1 \) 和 \(Q_2 \)，然後再按照
處理集中力方法把各部份合力合成為整個分佈力的合力。如果分佈力

第 189 圖
在分布线上有符号相反的两部件（如图 186b 图），也可以用相同的方法，先就符号相同部件求出两个部件合力（例如 Q_1, Q_2），再按集中力的处理方法来合成。在这一情形下，两部件合力 Q_1 和 Q_2 可能恰巧大小相等；因此，原来的分布力也可能等于一个力偶。

处理受分布力作用的物体，在考察它的平衡条件时，首先要决定合力或合成力偶，使这一部分力可以由集中作用的一个合力或一个力偶来代替。

例 3 例题

188. 第 190 图中一矩形闸门，开启时由上下两水平梁 AA 和 BB（它们是轴垂直于水平面）支承着。门窗的水平力由闸门传向到这两根水平梁上。假设分布的水平力均匀分布，AA 和 BB 的长度上，水的单位体积密度为 ρ，求这两水平梁对闸门的反作用力的强度等于多大？

解：观察闸门的单位宽度（垂直于水平面）部分，可看到，这一部分上的水压力完全对称于它的中央轴垂直于水平面 AB。所以可以设想全部水力都被集中在这一个轴水平面上作用。AB 内外两侧作用是一个受水平分布力作用的轴重坝，它两侧的支点反作用力 p_a 和 p_b 也就是所求的沿 AA 和 BB 作用的反作用力的强度。因水中任何一点的压力跟这一点离水面的深度 x 以及水的单位体积密度 $ρ$ 成正比，所以分布力的集中图 AB 必然是一个知第 190 图的三角形。

在深 h 处的水压力强度为 wh，故代表合力 Q 大小的荷重圆柱面积积为

$$Q = \frac{wh^2}{2}$$

此外，因合力作用线必须通过重力圆的形状中心，故可得

$$x_0 = \frac{1}{3} h$$

合力 Q 的大小和作用线位置已确定后，我们分别取 A, B 作力矩中心，由 §28 的 (12) 式就可得：

$$-p_a h + Q \cdot \frac{1}{3} h = 0$$
$$p_a h - Q \cdot \frac{1}{3} h = 0$$

故

$$p_a = \frac{1}{2} Q, \quad p_b = \frac{1}{2} Q$$

将 (e) 的 Q 代入上式，即得

$$p_a = \frac{1}{2} \rho h^2, \quad p_b = \frac{1}{2} \rho h^2$$
§ 329
平面下平行力系

139. 第 192 圖中的開門，皆是跟上題中的相同，不過兩邊都有靜水壓力作用。兩邊的水深分別為 h_1 和 h_2，水的單位重量是 w。此外，水的浮力是沿 AA, BB 兩線均勻分佈。求求出水平和開門的反作用力的大小 A_c 和 B_c 各是多少。

解：

\[A_c = \frac{w}{8} \left(h_1^2 - h_1 h_2 + \frac{h_2^3}{h_1} \right) \]

\[B_c = \frac{w}{8} \left(h_1^2 - h_1 h_2 + \frac{h_2^3}{h_1} \right) \]

140. 第 192 圖中 AC 是一水平梁。它的 AB 部份受圖中長虛線 AB 所表示的分佈力作用，試不計架的自重，求支點 B, C 處梁的反作用力 R_b, R_c。

解：

\[R_b = \frac{q_b}{6} \left(3 + \frac{a^2}{l} \right) \], 向上；
\[R_c = \frac{q_c a^2}{6 l} \], 向下。

141. 假設梁 AC 被剖在厚度等於 c 的截面(第 193 圖)。它上面有一 P 力作用在 C 端，因此，使支座 A 受到如圖重 A_c P, B_c 所代表的分佈力作用。假設分佈力是對於 P 的等重的點作為中心。試不計架的自重，求分佈力的最大強度 q_a 和 q_b 等於多少？

解：因桁反作用力的平面圖為三角形，故它們合力 Q_a, Q_b 的作用線位置可決定如圖。用

\[Q_a, Q_b \] 代替分佈力的作用。觀察 AC 梁在 P, Q_a 和 Q_b 三平行為作用下的平衡，就可決定 Q_a, Q_b 的大小。現在分別以 D, E 兩點作用力矩中心，應用 (12) 式，可得：

\[Q_a = \frac{3P}{a} \left(1 + \frac{1}{\frac{3}{2}} \right) = 0 \]

\[Q_b = \frac{3P}{a} \left(1 + \frac{2}{\frac{3}{2}} \right) = 0 \]

故

\[Q_a = \frac{3P}{a} \left(1 + \frac{1}{\frac{3}{2}} \right) = 0 \]

\[Q_b = \frac{3P}{a} \left(1 + \frac{2}{\frac{3}{2}} \right) = 0 \]

四等分的大小相等於荷載重的面積，故 \[Q_a = \frac{q_a}{2} a, Q_b = \frac{q_b}{2} a \]；也就是 \[q_a = \frac{2Q_a}{a} \]

\[q_b = \frac{2Q_b}{a} \]。把以上得到的 Q_a 和 Q_b 代入此結果，就可得：
靜 力 學 [第三章]

\[q_a = \frac{2Q_a}{a} = \frac{6P}{a^2} \left(l + \frac{1}{3}d \right) \]
\[q_b = \frac{2Q_b}{b} = \frac{6P}{b^2} \left(l + \frac{2}{3}d \right) \]

以上式，可見，反作用力的大小與鋼板厚度\(t \)的平方成正比。因之，最大拉伸力會隨
著鋼板的減小而急劇增加。所以把一個梁板固定在槽鋼內，最容易使鋼中 A, B 兩點的
拉力強度超過槽鋼材料的「破壞強度」。

142. 第 194 圖中，AB 是放置在 AG, DB 兩平面的一水平梁，在它中點有一 P 力作用。

試求 AC, DB 兩員承載的均勻分佈力的強度等於多大？

(解：\(q_1 = \frac{F \left(l + \frac{1}{2} \right)}{a\left(2l + a + b\right)} \), \(q_2 = \frac{P}{b} \times \frac{\left(l + \frac{a}{2}\right)}{\left(2l + a + b\right)} \))

143. 第 195 圖中是一幅石塊的載荷的橫切面。石塊立在基座上，高 h, 寬 b。石塊的水
深分別為 h = 2m, b = 3m, c = 4m。當石塊的 A 點的載荷

的安全因數大於 2 時, 石塊切面的寬與高的比值 \(b/h \) 等於多大？

(解：\(b/h = \frac{\sqrt{2}}{2} \))

144. 如果要使第 195 圖中石塊的載荷在 B 處不受載荷作用，試求 A, B 兩的載荷均勻

是一個三角形，試問它的載荷比的最小流動等於多大？

(解：\(b/h = \frac{\sqrt{3}}{2} \))
第四章 一般的平面力系

30. 平面力系的合成

假设作用在物事上的若干平面力既不完全互相平行又不共同相交在一点，那末这一组普遍形式的平面力系称为一般的平面力系。例如第160a图中作用在物事上A，B，C，D各点的F_1，F_2，……F_4各力就是这种力系。要决定这一力系的合力，可先按「力平行四边形原理」把F_1，F_2合成成R_1。之后，又合成R_2和F_3以得到合力R_2；R_3即为F_1，F_2和F_3三力的合力。最后，合成R_2和F_4就得到整个力系的合力R。R力的作用点是图中G点。这一点作用点当然也可以沿作用线任意移动。

合力R的大小还可以按第160b图直接由代表各力的「分離向量」的「几何相加」来决定。这就是说，一个平面力系的合力的大小、方向跟各力的作用点无关，完全可以由各力所成的「力多边形」的「封闭形」来决定。

更普通的情形是n个力F_1，F_2，……F_n组成的平面力系。对于这种力系我们可以把各力分成两部份，连续应用「力平行四边形原理」先後确定两部份的部份合力，如果第一部份k个力F_1，F_2，……F_k的合力不跟第二部份$n-k$个力F_{k+1}，F_{k+2}，……F_n的合力相交而是两力互相平行，那这两个部份合力虽然无法应用力平行四边形原理，但是可以根据§23处理平行力方法把它们再合成。因此，一个「一般的平面力系」的合成只有三种可能的结果：(1)它可以合成一个单力，(2)它可以合成一个力偶，(3)它是一个平衡的力系。

要辨别这三种可能，可先作各力的「力多边形」。假若力多边形不
自行封閉，這—力系就是第一種可以化為一個單力的力系。它的合力的大小和方向由「力多邊形」的封閉邊決定。至於它合力的作用線位置，我們可以按第 196 頁所用方法或按平行力相加方法來確定。如果力多角形自行封閉，那就應該先把所有的力分成兩部份，求出兩部份的合力 \(R_1 \) 和 \(R_2 \)。這兩個 \(R_1 \) 部份合力 \(R_1, R_2 \) 當然是一對相等相反的平行力。之後，再按以上方法確定它們作用線的位置，假如兩作用線位置不同，那原來力系顯然是第二種可以合成為一個力偶的力系；設或兩作用線恰好相合；那它就是個平衡力系。

31. 投影法和力矩法

§ 80 所說明的平面力系的合成方法，如「力」數很多，顯然將十分繁煩，所以實際上多不應用。比較好的方法是應用 § 13 中處理平面共點力系的代數方程式。根據 § 80 的討論，若一個力系可以合成為一個單力，那它的合力的大小和方向將完全跟各力作用點無關。因此，它的合力可以應用處理平面共點力系的方法來決定。令 \(X_1, X_2, \ldots, X_n \) 和 \(Y_1, Y_2, \ldots, Y_n \) 分別為 \(F_1, F_2, \ldots, F_n \) 各力在 \(x \) 和 \(y \) 軸上的投影。應用 (8) 式，可得合力 \(R \) 在這兩坐標軸上的投影是:

\[
X = \sum_{i=1}^{n} X_i, \quad Y = \sum_{i=1}^{n} Y_i
\] \((a)\)

再由 (4) 式，就得到合力 \(R \) 本身的大小和方向是:

\[
R = \sqrt{X^2 + Y^2} \quad \cos \alpha = \frac{X}{\sqrt{X^2 + Y^2}} \quad \cos \beta = \frac{Y}{\sqrt{X^2 + Y^2}}
\] \((b)\)

\(R \) 力的作用線位置也可用「力矩法」決定。力矩法對於平面的共點力系和平行力系的正確性已得證明，然而是否可用它來處理平面的一般力系遠未嘗試過。

一個一般的平面力系的合力，根據 § 80 討論，是由連續應用「力平行四邊形」或「平行力相加」方法逐次合成各式而決定的。每一合成的步驟，顯然，都可以引用一次「力矩合成定理」，故最後可得到。「一
§31 一般的平面力系

個一般平面力系的合力對作用平面上任選一點的力矩必等於所有各力對同點力矩的代數和。令 $(M_o)_1, (M_o)_2, \cdots, (M_o)_n$ 為 F_1, F_2, \cdots, F_n 各力對任意選定的原點 O 的力矩，M_o 為它們合力對同點的力矩，可得

$$M_o = \sum_{i=1}^{n} (M_o)_i$$ \hspace{1cm} (c)

至於其中各力對矩的計算，這裡仍以應用(7)式為比較簡便。

力系合力對原點 O 的力矩確定後，它的力臂 d_o 就可由下式求出:

$$d_o = \frac{M_o}{R}$$ \hspace{1cm} (d)

如果把力臂 d_o 作在圖上，那即是力 O 點到合力作用線的垂線，垂線的垂足就在作用線上。因作用線的方向已由 (b) 式求得，故合力作用線的位置不難在圖上確定。因此，(a)到(d)四式可以完全決定一個一般平面力系的合力。

如果 (a) 式中 X, Y 都等於零，這一般力系顯然就沒有化為一個單力可能；這跟 §30 中力多邊形自行封閉的情形完全相同。這一力系如果不自成平衡，那就一定可合成為一個力偶。假若再由 (c) 式算出所有各力對原點力矩的代數和是等於 M_o，那表示這一力系可以合成為一個力偶等於 M_o 的力偶。如果力矩代數和也等於零，很顯然的，力系非自成平衡不可。

綜合以上各點可知，一個一般平面力系能合成為一個力偶的條件是:

$$\begin{align*}
\sum_{i=1}^{n} X_i &= 0 \\
\sum_{i=1}^{n} Y_i &= 0 \\
\sum_{i=1}^{n} (M_o)_i &= M_o
\end{align*}$$ \hspace{1cm} (18)

它自成平衡的條件是:
\[
\begin{align*}
\sum_{i=1}^{n} X_i &= 0 \\
\sum_{i=1}^{n} Y_i &= 0 \\
\sum_{i=1}^{n} (M_o)_i &= 0
\end{align*}
\] (19)

(19) 式通常稱為一般平面力系的靜力平衡方程式。

平面的共點力系和平行力系不過是一般平面力系中的特例。故(19)式對於這兩種力系的平衡條件當然也包括在內。一個平面共點力系如滿足(19)中第一第二兩式，當然一定能滿足第三式。故第三式可以不必列出；(19)式就變成比較簡單的(5)式(見第37頁)。至於平面平行力系，如取 y 軸平行於各力作用線，則各力在 x 軸上就沒有投影；它對(19)中第一式毫無問題的一定滿足，這式可以不需要列出。因此，(19)式就簡化為(11)式(見第72頁)。

為簡便起見，有時也可以用三個力矩方程式來代替(19)式。這跟共點力系的(8)式和平行力系的(12)式，在意義上，完全相同。假使一個任意的平面力系對作用平面上任一定點 A 的力矩等於零，那它就不可能合成一個力偶。如果它對另外任一定點 B 的力矩等於零，那它不自成平衡就必定是有一個同時通過 A, B 兩點的合力。設再任意選定一個不在 AB 線上的 C 點作為力矩中心，計算它的力矩等於零，發現這代數仍舊是等於零，那就表示決不可能有一個合力，這力系非自成平衡不可。所以一個平面力系若是對作用平面上三個不在一直線上的任意點的力矩等於零，那它就必然是一個平衡力系。這結論用方程式來表示，就是：

\[
\begin{align*}
\sum_{i=1}^{n} (M_A)_i &= 0 \\
\sum_{i=1}^{n} (M_B)_i &= 0 \\
\sum_{i=1}^{n} (M_C)_i &= 0
\end{align*}
\] (20)
例題和習題

145. 如第 197 圖的連桿受力圖，接觸面間的摩擦力可以不計。設工 P=4t，Q=2t，
 \(a = 5m, b = 1m, c = 2m\)，求各點 A，C 所受的支承反作用力 \(R_a\) 和 \(R_c\)。

解：各力的作用線如圖。取 C 點為原點圖定座標軸 x, y 如圖。接觸力於兩坐標軸上
並以 C 點為力矩中心，由 (19) 式，就可得：

\[
\begin{align*}
X_c - R_a &= 0 \\
Y_c - P - Q &= 0 \\
- R_c &= 0
\end{align*}
\]

因所取的力矩中心是 C 點，故未知力 \(R_c\) 不出現於力矩方程式中，我們可直接求出 \(R_c\)。

由已知各數值代入 (c) 式，就可得：

\[
R_a = 11t, \quad X_c = 11t, \quad Y_c = 6t
\]

故

\[
R_c = \sqrt{X_c^2 + Y_c^2} = \sqrt{11^2 + 6^2} = 3.29\text{t}
\]

146. 如第 198 圖的梁受載荷。設 \(F=2t, Q=1t, a=4m, b=6m, c=7m\)。試不計摩擦力
求 A 和 B 所受的反作用力 \(R_a\) 和 \(R_b\)。

(解：\(R_a=2t, R_b=8.61t\))

147. 試求第 199 圖的 AB 梁在載荷的各支承壓力 \(Q\) 和為引力 \(F\) 作用下的支承反作用力
 \(R_a\) 和 \(R_b\)。設 \(Q=2t, F=1t, a=5m, b=3m, h=2.5m, l=20m\)。

(解：\(R_a=35\text{t}, R_b=24.5\text{t}\))

148. 如第 200 圖的起吊裝置。機架的自重可以不計。A, D 和 E 是三個理想鍵軸。設
 \(P=500\text{kg}, Q=300\text{kg}, a=2m\)。試求 A 點的反作用力 \(R_a\) 和 DE 鋼架的拉力 \(S\)。

(解：\(R_a=1140\text{kg}, S=1555\text{kg}\))

149. 第 201 圖中是一個船機器的台架。其中 BFG 是一傾斜。W 是載荷的重量。試
 求台架上的重量 \(Q\) 等於多少？

(解：\(Q=W-\frac{f_1}{f_2}\))
150. 第 202 圖中，A 端 C 端的阻力可以不計。C 端滑輪的尺寸極小也可以不計。試求桿件 AB 平衡時，圖中 a 角應等於多大？

解：A, C 兩滑輪間居然沒有摩阻力，Rc 和 R, 二支點反作用力方向自然視如圖。它們作用樞尖點 O 到 A 端的距離因之應該

\[\delta = a \cdot \cos \alpha \]

桿件平衡時，所有各支點 O 端的力矩代數和必將等於零，故

\[Q \left(\frac{a}{\cos \alpha} - \frac{l}{2} \cos \alpha \right) = P \left(l \cos \alpha - \frac{a}{\cos \alpha} \right) \]

或

\[\cos \alpha = \frac{2l(P+Q)}{2lP+Q} \]

或

\[\cos \alpha = \frac{2l}{2l+1} \] \((f) \)

如果 P = 0，上式就化為

\[\cos \alpha = \frac{2l}{2l+1} \]

以上討論中假定了 \(a < \frac{l}{2} \)。

151. 第 203 圖中，AB 槳長 1 重 Q，放在一吊藤於 a 的光滑鋼線內。有一鉛垂力 P 作用在 AB 槳的 C 點。試求 AB 槳平衡時，圖中 a 角應等於多大？

(解：\(\tan \alpha = \frac{P}{l+Q} \cdot \frac{1}{2l+Q} \))
§ 32 一般的平面力系

153. 不計各柱間的摩阻力，試求第 204 圖中 A, C 和 D, E 支點對 AB 柱的反作用力 R_A, R_C 和 R_D

(解: \(R_A = Q, R_C = R_d = \frac{Q_1}{2} \cos \alpha \))

第 203 圖

第 204 圖

153. 兩桿件 AC 和 BC 都是 1 電 Q, 由一環形接頭相互連接於 C 點 (第 205 圖), 放在圖中

D, E 兩光滑的圓鉚上。試求平衡時圖中 \(\theta \) 角等於多大?

(解: \(\cos \theta = \frac{a}{t} \))

第 205 圖

第 206 圖

第 207 圖

154. 第 206 圖中，兩桿件為 \(t \), 重力為 \(W \) 的光滑鋼球放在一個直立的坡面上。圖中的坡度是小於 \(2 \). 的 \(\alpha \); 各桿桿間的摩擦力極小可以不計。試求平衡時的電量 Q 對於多大，才不會翻倒?

(解: \(Q_{min} = 2W \frac{a - t}{a} \))

32. 簡單樑架——桿件分析法

結構工程中除開樑架外尚有一種鋼架也頗常用。這種鋼架跟樑架
一樣，也是由若干桿件或其他桿件用銷子結合互相連接而組成的剛性
結構。不過這種鋼架跟樑架有大不相同的地方。首先，它並不是按着
簡單桁架的組成法則（見第18頁）構成的。其次，更主要的就是它的各桁件不僅在兩端接合上活動有外力作用，而且桁件本身也可能有外力存在。因此，各桁件除掉長軸方向的單純拉力或壓力外，還會受到彎曲作用。各桁件間的作用力和反作用力的作用線因之也不一定跟相應的長軸相合。這種桁架通常稱為簡單桁架。第207圖中就是簡

單桁架的幾種實例。桁架既然跟桁架不一樣，各桁件間的相互作用力不跟相應的長軸相合，那分析它就必須致察各個桿件本身的平衡條件，而不是光致察各節點所能奏效。桁架分析是致察各節點的平衡條件以決定各桿力，故稱為「節點分析法」；桁架分析即是致察各桿件本身，故可稱為桿件分析法。

例如，第208a圖的一個三铰拱ACB受圖中P, Q兩力作用。如需要確定A, B兩支點對拱的反作用力，可先致察整個拱的平衡。令

\[\begin{align*}
X_a, Y_a \quad \text{和} \quad X_b, Y_b \quad \text{分別為} \ A \quad \text{和} \quad B \quad \text{兩支點反作用力在坐標軸} \ x, y \text{方向的各分力（見第208a圖）。取} \ B \quad \text{點作為力矩中心，使三個未知分力不入} \\
\text{式內，得} \\
P\left(\frac{1}{2} + \frac{1}{3}\right) + Q\left(\frac{1}{2} - \frac{1}{4}\right) - Y_a l = 0
\end{align*} \]
一般的研究

\[Y_a = -\frac{y}{8} P + \frac{1}{4} Q \]

又取 A 點作力矩中心，令各方臂力的力矩代數和等於零，可得

\[Y_b \cdot l - P \left(\frac{1}{2} - \frac{1}{3} \right) - Q \left(\frac{1}{2} + \frac{1}{4} \right) = 0 \]

故

\[Y_b = \frac{1}{6} P + \frac{3}{4} Q \]

由以上結果，可見 \(Y_a + Y_b = P + Q \)，確已滿足 \(y \) 軸上各力投影的代數和應等於零的條件。之後，又令 \(x \) 軸上各力投影的代數和等於零，得

\[X_a - X_b = 0 \]

故

\[X_a = X_b \]

如果還需要求出 C 點橢子上的切力，可再致案左半視 AC 部分的平衡。並分解體圖如第 2085b 圖。令右半視對 C 點的反作用力在兩坐標軸方向的分力為 \(X_c \) 和 \(Y_c \)。取 O 點為力矩中心，得

\[X_c \cdot \frac{1}{2} + P \cdot \frac{1}{3} - Y_c \cdot \frac{1}{2} = 0 \]

以上決定的 \(Y_c \) 代入此式，可得

\[X_c = \frac{1}{6} P + \frac{2}{4} Q \]

因分解體上所有各力在 \(x \) 軸方向的投影代數和應等於零，故

\[X_a - X_c = 0 \]

也就是

\[X_a = X_c = X_e \]

又因所有各力在 \(y \) 軸上的投影代數和也必須等於零，故

\[Y_a + Y_c - P = 0 \]

以以前決定的 \(Y_c \) 值代入此式，可得

\[Y_c = \frac{1}{6} P - \frac{1}{4} Q \]

A, B, C 三軸線橢子上的三反作用力的坐標軸方向分力既然都已求得，所求三反作用力的本身當然很容易決定。

例題和習題

155. 如第 209 圖中所示橢子，各節點及內部指標數順序列成。 B 點滑輪的滑輪半徑 \(r = 1 \text{ m} \)。

將所有總尺寸都以 m 為單位。試求 Q = 1000 kg 時，(a) 橫件 BC 的拉力，(b) D 端橢子受到的切力 \(R_d \)。

(解： \(S = 1250 \text{ kg} \)， \(R_d = 2016 \text{ kg} \))

156. 如第 210 圖的簡單樑架，圖中所註尺寸都以 m 為單位。樑固力可以不計。試求橢線

【103】
157. 第211圖中是一條放在光滑水平平面上的條架。試求：(a)該錐 E 榈子所受的切力；(b) P 力使「E 榈子切力值達到最大」的作用線位置(即 α 值)。

解：由整體捨作分篩體，求得 A 和 B 兩端的反作用力如圖。AD 和 BC 兩桿件間產生於 E 榈子上的作用力及反作用力各作出力的兩正交分力表示如圖。其中 X_e' 和 Y_e' 指作用在 AD 棍上的分力；X_e 和 Y_e 指作用在 BC 棍上的分力。之後，依著 CONTRA AD 和 BC 檔作分篩體，各取 D 和 C 點作力矩中心，應用力矩方程求得

\[-P(1-\alpha)a + Y_e + \frac{a}{2} + X_e' + \frac{a}{2} = 0\]

\[\alpha + P + Y_e - \frac{a}{2} - X_e - \frac{a}{2} = 0\]

因 X_e' = X_e, Y_e' = Y_e, 故由上式可得

\[X_e = P, \quad Y_e = (1-2\alpha)P\]

E 榈子所受的切力因之是

\[R_e = P \sqrt{1 + (1-2\alpha)^2}\]

可見切力的最大值應為

\[(R_e)_{max} = \sqrt{2}P\]

此時，\(\alpha = 0\) 或 \(\alpha = 1\)，表示 P 力恰在 C 點或 D 點。

158. 試求第55圖（第27頁）中錐體 B 榈子上的切力，設 P=2000kg。

(解：R_b = 502kg)

159. 第212圖中是一架放在光滑水平平面上的立梯。試求在圖中 P 力作用下 DE 檔中的張力 S 等於多少？又問 P 力在何處，張力 S 才最大？

(解：\(S = \frac{P \cos \alpha}{2a}\))
160. 第 213 圖中是一個可以借由的 X 形框架。其中設框在 C, D 兩點的剪力合計熱量等於 Q。兩交又斜件 AD, BC 的重量共等於 2W。兩斜件中點的水平直線 DE 以及水平平面上 A, B 兩處的變形都能否去。Q 可以分解為兩部分之水平均度 f 間。試求變形的總距離與角度的比值 f/1 等於多少？

(解：f = \frac{1}{8} \frac{Q}{W + Q})

第 212 圖

第 213 圖

33. 簡單框架：截面分析法

§18 中曾研究過處理簡單框架的節點分析法，現在再討論另外一種分析方法。應用這種方法去計算簡單框架中某一構件的慣力，可以不必逐次求出它各節點的各節點的平衡。例如第 214a 圖中的框架，我們只需要求出它各構件的慣力，假如應用「節點分析法」，那*

就必須逐次求出 A, B, C, D 及 E 各節點的平衡，手續非常繁複。現在設想把整個框架在切面 m n 處 (第 214a 圖) 切開而求出切面右側部分的平衡。由第 214b 圖可看到：這一部份上除開 K 點的支點反作用力外，另有切開後三構件的慣力 S_8, S_9 和 S_10 三力作用。它們的作用線一一跟各自構件的長軸相合。這樣，就得到一個平衡的一般平面力系。因此，可以引用 (19) 或 (20) 式來決定各未知力的大小和方向。取 E 點作爲力矩中心列力矩方程式，使兩個未知力不入式內，就可得

S_9 \cdot h + \frac{1}{2} P \cdot 3a = 0

故 S_9 = -3Pa/5h。前面負號表示構件 S 是受壓力作用，而不是像圖
中所限定的受拉力的情形。同样，取 F 点作力矩中心，再可求得 $S_{10} = \pm Pa/\sqrt{2}h$。至于 S_6，我们只要令各力在铅垂方向投影的代数和等于零，就可得

$$\frac{1}{2} P - \frac{S_6 h}{\sqrt{\left(\frac{a}{2}\right)^2 + h^2}} = 0$$

$$S_6 = \frac{P \sqrt{\left(\frac{a}{2}\right)^2 + h^2}}{5h}$$

以上的决定的力法称为切面分析法。它的主要关键在于把桁架在想像中切开，使所求的力的力由在力矩作用在切开部分上的外力。因各力必须构成一个平衡的-一般平面力系，所以根据(19)或(20)式，就可以把所有未知力决定。一般情形下，切面只允许切开三个构件，因

为平面力系的平衡方程式只有三个，可以求出三个未知力。不过，特殊情形，我们可以选取切面切开三个以上的杆件。在以下例题中有几个这种特殊情形的例子。

应用「切面分析法」时，我们仍规定：受拉杆件的拉力是正号；受压的，张力是负号。

例题和习题

161. 试用切面分析法决定例 215a 图中杆件 1, 2 和 3 在 A 端水平力 P 所引起的力。

 (解：$S_1 = \frac{Ph}{a}$，$S_2 = \frac{P \sqrt{a^2 + h^2}}{a}$，$S_3 = -\frac{2Ph}{a}$)

162. 试求例 216a 图中杆件 1 和 4 由 C 端水平力 P 所引起的力。

 (解：此题以切面 m-n 为界，分切开以上部分作系。它上面有三个未知力的作用，互相交于一点，使此点为力矩中心；再而使切面 m-n 通过四个杆件，我们即可求出第四未知力。本题的结果是：

 $$S_3 = \frac{2Ph}{a}$$

163. 求例 217 图的桁架中杆件 1, 2 和 3 的张力。

 (解：$S_1 = -\frac{4Pa}{h}$，$S_2 = -\frac{1}{2} P$，$S_3 = \frac{4Pa}{h}$)

164. 求例 218 图的桁架中杆件 1, 2 和 3 的张力。

 (解：$S_1 = S_2 = S_3 = -\frac{3Qa}{2l}$)
第 215 圖

第 216 圖

第 217 圖

第 218 圖

165. 第 213 圖中的桁架，D 點有一重量 $W = 1000$ kg 的圓盤。鋼筋由一根 EF 繩繩吊在頂上，EF 平行於 AC。試應用【切面分析法】求杆件 1, 2 和 3 的拉力。

（解：$S_1 = -416.7$ kg, $S_2 = +500.0$ kg, $S_3 = +333.3$ kg）

166. 求第 220 圖桁架中杆件 1, 2 和 3 的拉力。

（解：$S_1 = -0.25Q$, $S_2 = +0.424Q$, $S_3 = +0.500Q$）
167. 求第 221 圖中架中樑件 1, 2 和 3 的勢力。

(解：\(S_1 = -4Q, S_2 = -\sqrt{3}Q, S_3 = \frac{5\sqrt{3}}{2}Q \))

168. 求第 222 圖中架中樑件 1 和 2 的勢力。

(解：\(S_1 = -\frac{4}{3}P, S_2 = \frac{4}{3}P \))

169. (a) 求第 223a 圖中架中樑件 1 和 2 的勢力；(b) 求第 223b 圖中架中樑件 1 和 2 的勢力。

(解：
(a) \(S_1 = +Q/\sqrt{2}, S_2 = -Q/\sqrt{2} \)
(b) \(S_1 = -Q/\sqrt{2}, S_2 = +Q/\sqrt{2} \))

170. 若干桿件 \(AF, BC, CD \ldots \) 運端用數個尾端接成一個彎頭或由一個彎頭組成的展開多邊形。另一系列桿件 \(AO, BO, CO \ldots \) 分別將多邊形的各頂點與彎頭的圓心連接起來。現在在 \(AB, BC, CD \ldots \) 一系列桿件中任意選定一個桿件，裝一根旋桿使形成勢力 \(P \) 在此桿件內。試用切面分析法證明這一系列桿件中其他每一桿件的勢力也祇等於 \(P \)。

34. 剛體在平面中的靜力定式支承

在以前各問題中常可看到如第 224a 圖所表示的支承剛體的方法。這種支承可以把剛體在所在平面中的運動完全約束住；使它在這一平面中的位置完全固定。分析這種支承方法就可以看到，剛體在 \(A \) 點由一桿桿固定在基礎上後，它在平面中唯一可能的運動是繞 \(A \) 點的旋轉。因此，它上面其他任意一點 \(B \) 就只可能在 \(AB \) 直線的垂直方向
發生運動。假若把 B 點這一方向的運動給約束住，那這一任意向點 B 就將完全固定在圖平面中，也就是說，整個剛體在圖平面內的運動已受到完全的「約束」。

一般來說，一個物體在圖平面中的「完全約束」可以由三個長軸既不共同平行又不共同相交於一點的鉸鏈樑來實現。要證明這句話，可觀察第 224b 圖。先設想物體是由 AD, CE 兩鉸樑連接在基礎上，這時候，A 和 C 點還可以各自沿 AD 和 CE 的長軸垂直方向運動；也就是物體還可能繞兩長軸的交點 G 轉動。如果再用一 BF 梁把物體上另外一點 B 約束住，使 B 點只可以在某一方向運動，而這方向的運動不跟物體繞 G 點的轉動配合（換句話說，不讓 BF 梁的長軸通過 G 點），物體在圖平面中的運動那就將完全不可能。可見這樣三鉸樑的樑可構成物體在圖平面中的「完全約束」。

在三鉸樑樑互相平行的特殊情形中（第 224c 圖），它們所支承的物體，很顯然的，還有某些沿横方向運動的自由，並非在所在平面中受到完全約束。同樣，在三鉸樑樑長軸相交於一點的情形中（第 224d 圖），它們所支承的物體也有些於它們長軸交點旋轉的自由，而非完全受約束。

根據以上討論，一個構成物體在圖平面中「完全約束」的支承系統必須由三個鉸樑樑或與它們相應的装置，按適當的安裝方法來組成；而且如此的支承系統也足夠實現物體在圖平面中的「完全約束」。

支承系統中任何超過這種「物體在圖平面中受完全約束的支承」所需的樑件或装置都叫做過剰支承。例如，第 225a 圖中的剛體。它由如圖的四個鉸樑樑固定在圖平面中。它們當然也構成物體的「完全
約束」，不過如果去掉其中任何一個槓件，物體的「完全約束」也並不會因而破壞，所以其中任何一個槓件都可以看作是一過剰支承。再如第 225 圖的支承系統。其中三個鉛垂槓件中也有一過剰支承存在，如果任意去掉其中一個，物體的「完全約束」並不會破壞。但是，鉛垂槓 BD 卻不同；它不是過剰支承。如果去掉這一鉛垂槓，物體的「完全約束」就不能實現。

當一個在圖平面內受到完全約束的剛體被同平面的一個力系作用時，各支承點必然要產生對於剛體的反作用力。這些反作用力連同各作用力共同構成一個平面力系。很顯然的，這必須是一個平衡的平面力系。對於這樣一個力系，我們一共有 (19) 或 (20) 中三靜力平衡方程式所表示的三個平衡條件。因此，只能解決三個未知量。這恰好跟三鉛垂槓支承中三個未知反作用力的数目相合。所以一個剛體如果按任何一種符合於完成它在圖平面中「完全約束」的必須和足夠條件的方法支承著，那末各支承點由於同平面作用力系而產生的反作用力就全部可以根據靜力平衡方程式來決定。這樣的支承系統，因此，就叫做靜力定式支承或簡稱靜定支承。

假使支承系統有過剰支承存在，以致有三個以上的未知量，像第 225 圖的情形一樣，那末物體雖然還是受到「完全約束」，但是三靜力平衡方程式已經不夠解決問題。這樣的支承系統，因此，叫做靜力不定式支承或簡稱超靜定支承。(1)

特殊情形，像第 224e 圖和第 224d 圖中的支承系統，雖然也只產生三個未知量，但是我們仍然可證明它們是一種「超靜定支承」。我們如果設想第 224d 圖中物體上作用力合力恰巧通過三鉛垂的交點 G，那作用在物體的全部「力」就將共同構成一個「平面共點力系」。平面共

(1) 在這種情形下，作用力經過過體傳導而使到各支承點的分配方式要看構成物體和各鉛垂槓的材料的彈性性質而定。因此，只要知道材料性質，各反作用力仍可以根據材料的性質來決定。不過這一類問題必須在「結構靜力學」中才討論。
點力系的平衡條件只有兩個方程式，只能解出兩個未知數。因此，這種支承系統的全部反作用力仍然無法由靜力方程式完全決定，可見還是一種「超靜定支承」。假使作用力合力不通過 G 點，那情形又不同。我們如果以 G 點作為力矩中心來計算力矩，就會發現：各反作用力的力臂完全都等於零；要它們產生跟作用力平衡的力矩，勢必某些零件要能夠產生無限大的反作用力。這當然是不可能的事。所以這一情形，在理論上說，是物體不可能平衡。至於實際情形，因為各零件在這樣的作用力作用下必然要發生長度的伸縮，允許物體轉動一些部位使三段螺旋的長度不再相同於一點，所以物體還是可以平衡。不過物體最後的平衡位置以及三段螺旋的轉向必須根據各零件相的材料的彈性性能才能確定。因此，這種支承系統仍然是一種「超靜定支承」。關於第 224c 圖的情形，我們也可以用類似的方法來說明，此處不再重複。

在結構工程中，有時用兩套或兩套以上的單元結構（通常是簡單桁架）互相連接起來，組成成功一個整體的剛性結構。例如，第 228a 圖中的剛架就是由兩個簡單桁架（圖中畫斜線的）用一個铰接 C 及一個铰接樑 BE 連接而成的。因為這一結構中每一個單元結構都是剛體，它們跟其他部分的連接方法又合於剛體在一平面中受「完全約束」的條件，所以整個結構依然是一個剛性結構。

第 226b 圖中是一個由兩套式桁架用長軸軸不互相平行又不共同交於一點的三段螺旋連接而成的剛架。第 226c 圖中的結構，組合是比較複雜一些。其中兩個簡單桁架及基礎共同組成一個完全剛性的系統。分析這種組合結構（像第 226 圖中所表的各種剛架）以應用 §33 中的「切面分析法」為最適宜。現在舉幾個實際的例子來說明如下：
例題和習題

171. 試求第227圖組合桁架中樑件1、2和3的樑力。

\[S_1 = -\frac{P}{3}, \quad S_2 = 0, \quad S_3 = -\frac{E}{3}P \]

172. 試求第228圖組合桁架中AB樑的樑力\(S_3 \)。

\[S = +0.48P \]

第227圖

第228圖

173. 第229圖的組合桁架中，\(\angle CAB = \angle DBA = 60^\circ \), \(\angle CBA = \angle DAB = 30^\circ \)。試求樑件1、2和3的樑力。

\[S_1 = +\frac{\sqrt{3}}{2}P, \quad S_2 = -\frac{4}{3\sqrt{3}}P, \quad S_3 = -\frac{5}{3\sqrt{3}}P \]

174. 第230圖組合桁架中，\(ABCDEFG \)是六個正八邊形。試求樑件1、2和3的樑力。

\[
\begin{align*}
S_1 &= -0.293P \\
S_2 &= -P \\
S_3 &= -1.207P \\
\end{align*}
\]

第229圖

第230圖

175. 試求第231圖組合桁架中DE樑的樑力\(S \)。

\[S = +2.15P \]

176. 第232圖組合桁架中，樑件1到6的長度相同並且傾斜正交。設樑中\(P = 1000\text{kg} \)。試求樑件1到6的樑力。

\[
\begin{align*}
S_1 &= -707\text{kg}, \quad S_4 = -265\text{kg} \\
S_2 &= 0, \quad S_3 = -442\text{kg} \\
S_5 &= 0, \quad S_6 = -442\text{kg} \\
\end{align*}
\]
§347 一般的平面力系

177. 求第233图组合桁架中AB杆的拉力S。

(解：S=+Q/2)

178. 求第234图组合桁架中AF杆的拉力S。

(解：S=-P/2)

179. 第235图的平面桁架中有一铰链力P作用于C点。图中注的尺寸均以cm为单位。

试证明铰件CF的内力完全跟桁架的高度h无关，始终等于零。

180. 求第236图桁架中铰链件x的拉力X。

(解：X=+3P)
35. 一般的平面分佈力

§29 中已說明過，有很多種的分佈力可以看作是完全作用在一個平面中。有時這種分佈力的方向在作用平面中逐點各不相同。例如，車輪的轉動對於車輪邊緣的分佈壓力；輪轂在受熱膨脹時套上車輪，等冷卻收縮後，就產生這種方向不同的分佈壓力。此外，作用弧形表面上的流體靜壓力是最普通的例子之一，如弧形水堤在上游表面上所受的水壓力，導管中的水或蒸汽壓力等等，都是這種各點方向不同的平面分佈力。

第237 圖所表示的是平面分佈力的最一般的式子。這樣的分佈力由兩個因素決定：分佈線 AB 及線上每一點的力的「方向和強度」。分佈在分佈線的任何一段微分長度 ds 上的 dQ 力由下式決定：

$$dQ = q ds \quad (a)$$

式中 q 指分佈力在 AB 線上的強度。因 dQ 力可看作集中在一點作用的集中力，故全部分佈力可化為一個勻分集中力所構成的平面力系。從而 §31 中得出的各種方程式也都可以應用。不過，因爲在分佈力問題中，我們處理的對象都是微分量，所以對於力的投影和成力矩和都必須應用積分分來計算。

例題和習題

181. 一個園環，內半徑等於 a，受均勻軸度等於 q 的流體靜壓力作用，如第238a 圖。設園環厚度皆半徑 a 小得很多，試求園環內的張力 S 等於多大？

解：先假設「一等」園環的平衡方程式（第238b 圖）。園中 A, B 兩點的 S 力顯然就是所求的張力；這張力自然在園環周圈各切面都相等。假使要用一個單力 Q 來替代分佈的流體靜壓力，可先假設 AB 坐標中對稱於中心的兩小部分園環（圖中斜體的），它們長度都是 $ds = d\theta$。根據(a)式，這兩小部分上的「力」的大小是 $qad\theta$。分解這兩個力為水平和水平分力。其中用水平分力將互相抵消；兩鉅量分力則可合成等於

$$2qa \sin \theta d\theta \quad (b)$$

的合力。這鉅量合力的作用線，因對稱緣故，自將通過 O 點。其他各小部分上的「力」同様可按照方法處理。所以我們可以得到弧 A 到 B 間的鉅量分力的總合力

$$Q = 2qa \int_0^{\pi/2} \sin \theta d\theta = 2qa \left[-\cos \theta \right]_0^{\pi/2} = 2qa \quad (c)$$
這一分析方法的合力 R 決定後，以 A 點作力矩中心，計算合力矩，就可得

\[S = \frac{1}{2} Q = qa \] \hspace{1cm} (d)

由此式可見，若水壓在水位固定不變，則試算中壓力 S 就將正比於水壓的半徑 a。所以壓力一定的水柱或油管，它的管壁厚度隨著距離主體成正比例。

第 238 圖

第 239 圖

182. 試證明作用在任意一平面曲線 AB 上的均勻壓力等於 q 時分佈壓力必等於作用在 AB

弦上的均勻分佈壓力（第 239 圖）。

183. 第 240 圖中 AB 是一水平直，牛頓等於 a。 排熱受水的靜力壓力作用。 該弧在

圖水平垂直方向的厚度為單位長度。水的單位體積重量等於 w，試求支點 A 和 B 對

柱的反作用力 R_a 和 R_b。

[解： \(R_a = R_b = w a^2 \left(1 - \frac{a^2}{4}\right) \)]

184. 一個水平的水管由兩個半圓形弧線連接而成，如第 241 圖。 水管的牛頓等於 r。 管中的

水位高度等於水柱直徑 AB 的一半。 試求單位體積重量等於 w，試求單位管長上分佈

壓力產生於弧 B 的分佈壓力的強度。

解：我們取一段水平方向單位長度的水管來觀察 ABC 部分的平衡，就可得到所需的強度

\[q_b = w \cdot r^2 / 4 \]
第 242 圖

解：在輪子上任意取一小段皮帶為元。這小段皮帶的長度是 \(ds = r d\theta \)，設在位置跟接觸開始點 \(B \) 所對角心距等於 \(\rho \)（見第 242a 圖）。設定係標軸 \(x, y \) 如第 242b 圖，將這一小段上的各力投影於軸 \(x \) 軸方向，因 \(d\theta \) 很小，可得

\[
S + dF = (S + dS) - 0
\]

或

\[
dF = dS \tag{e}
\]

再將各力於 \(y \) 軸方向，因 \(d\theta \) 約等於 \(\sin d\theta \)，又可得

\[
dN = S \frac{d\theta}{2} - (S + dS) \frac{d\theta}{2} = 0
\]

式中左於一次方的微分量可以不計，故任一小段皮帶加於輪子上的正交壓力是

\[
dN = S d\theta \tag{f}
\]

根據 § 12 中 (1) 式，

\[
dF = \mu dN
\]

故聯合 (e) (f) 兩式可得

\[
ds = \mu S d\theta \tag{g}
\]

沿接觸線 \(AB \) 的整個周長淨分 \(\beta \) 式，就得到

\[
\log \frac{S_1}{S_2} = \mu \beta \tag{h}
\]

或

\[
\frac{S_1}{S_2} = e^{\mu \beta}
\]

可見兩張力的比值隨著接觸線 \(AB \) 所對角心距 \(\beta \) 的增加而急速地変大。這就說明，為什麼我們將一根繩子繞在柱子上兩圈就可以抵抗住一個極大的力量。此外，由 (h) 式還可看到，比值 \(S_1/S_2 \) 跟繩子的半徑完全無關。
186. 第 243 圖中是一個固定不動的輪子。設圖中某等輪間的摩擦係數是 $\mu=0.4$，$P=2000$ kg，試求平衡時的 Q 最小要等於多大？

(解：$Q=500$ kg)

187. 第 244 圖中，A 和 B 是兩個大小相同直徑 $d=12$ cm 的皮帶輪。皮帶環繞在兩輪子之間。靜止時，皮帶的 CD 和 EF 兩邊的張力都等於 1000 kg。設皮帶輪子間的摩擦係數是 $\mu=0.5$，試求兩輪子間可以傳導的旋轉力矩最大可以達到多大？皮帶傳動時，我們可以定出等皮帶內張力的增加恰等於另一邊皮帶內張力的減少。

(解：$M_{\text{max}}=7872$ kg cm)

第 243 圖

第 244 圖

36. 縫線圖

§21 中所討論的投影法和力矩法雖然可用來解決一切的靜力學問題；然而處理一個平行力系問題有時還是以應用圖解方法為簡便。§30 中應用力平行四邊形求合力的圖解法是不適宜於實際應用的；一則，手續十分繁複，二則，各力的作用線如果交點不在圖紙之內，合力就不容易決定，而且對於平行力系，這方法根本就不適宜。這裏介紹一種適合於一切平行力系的圖解合成法如下：

第 245a 圖中 P, Q 是作用在一物體上的兩力。先畫出它們的力三角形 ABC 如第 245b 圖，$\triangle ABC$ 的封閉邊 AO 決定了兩力合力 R 的大小和方向。不過 R 力的作用線位置還未確定。現在在力多邊

第 245 圖
形平面中任意選定一點 O，這 O 點叫做極點。極點跟力多邊形各頂點的連線 $1,2,3$ 叫做射線。這些射線，我們可當作一些力的代表向量看。因此，按 ΔAOB 內所畫的箭頭來確定方向，P 就可以看作 $1,2$ 所代表的兩個力的合力；按 ΔBOC 內箭頭所指的方向，Q 力就可作爲是 $2,3$ 所代表的兩個力的合力。我們如果用這樣決定的各分力來替換物體上原來的 P,Q 兩力，很顯然的，並不會改變原來兩力的作用。替代兩力的方法如下：先在第 245a 圖中任意選一 a 點，由 a 引射線 AO 的平行線 ab 交 P 力作用線於 b 點。又由 b 點引射線 BO 的平行線 bc 交 Q 力作用線於 c 點。最後，自 c 點引射線 CO 的平行線 cd。這樣得到的多邊形 $abci$ 就叫做 P,Q 兩力的索線多邊形。索線多邊形」的所有頂點都在各力的作用線上；它們各自都分別平行於力多邊形的各射線。現在設在第 245a 圖中 b 點用 $1,2$ 兩力來代替 P 力；在 c 點用 $2,3$ 兩力來代替 Q 力（第 245a 圖）。原來 P,Q 兩力因此就變成作用在物體 b,c 這兩個「力」，被這四個「力」所替代。可是其中沿 bc 線作用的兩個 $2,3$ 力是一對相等相反「力」，它們互相抵消。所以物體上只剩下 $1,3$ 兩力去替換原來的 P,Q 兩力。$1,3$ 兩力的合力當然就是原來 P,Q 兩力的合力。這合力的大小和方向已經由第 245b 圖中的 \overline{AC} 決定。它的作用線必須通過替換它的 $1,3$ 兩力的作用線交點。$1,3$ 兩力的作用線就是在第 245a 圖中索線多邊形第一邊 ab 和最後一邊 cd。所以這兩邊的交點 e 必然是合力 R 作用線上的一點。合力 R 的大小、方向既然已由力多角形求到，現在又得到它作用線上的一點，所以合力 R 已經完全決定。

設想有一根不計質量的索線，兩端固定在第 245a 圖中 a,d 兩點，全線沿着多邊形的 ab, bc, cd 各邊張緊，這根線在圖中 P,Q 兩力作用下，顯然是處於平衡狀態。線的 ab 和 bc 部份中的張力分別跟 $1,2$ 兩力相同，它們跟 P 力共同構成 b 點的平衡力系。線的 bc 和 cd 部份中的張力分別跟 $2,3$ 兩力相等，它們共同跟 c 點的 Q 力構成平衡。這種對比關係的存在，就是多邊形 $abci$ 所以叫索線多邊形的來由。

以上的解法，對於一切平面力系都適用。例如，第 240a 圖中一個作用在物體上的平行列系。它由 P,Q 兩力構成。要求出它的合力，我們仍先畫力多邊形 ABC。這一多邊形在平行列系中已轉化為
一般的平面力系

一根直線（第 246b 圖）。任取一極點 O，引射線 1, 2 和 3，再按以上方法，就可得到索線多邊形 $abcd$ 如第 246a 圖。P 力在 b 點由 1, 2 兩力代替；Q 力在 c 點由 2, 3 兩力代替。兩個 P 力的作用互相抵消，由力系中把它們拿出後，就只剩下作用完全跟 P, Q 兩力相同的 1, 3 兩力。兩力合力 R 的大小和方向由第 246b 圖中力多邊形的封閉邊 AC 決定。至於它作用線位置，因索線多邊形最初一邊跟最末一邊的交點 c 是線上的一點，故也可確定如圖。

![圖](image)

對於方向相反的兩個不等平行力，如第 247a 圖中的 P 和 Q，我們仍可同樣處理。先畫力多邊形 ABC 如第 247b 圖。擇定極點 O，引射線 1, 2 和 3。之後，根據射線，畫出索線多邊形如第 247a 圖。索線多邊形的第一邊 ab 和最後一邊 cd 的交點 c 決定 P, Q 合力 R 作用線上的一點。合力 R 的大小和方向則由第 247b 圖中力多邊形的封閉邊 AC 決定。

![圖](image)

現在觀察一個一般的平面力系，例如，第 248a 圖中共同作用在一個物體上的 $F_1, F_2, \ldots F_6$ 各力。先畫力多角形 $ABCDEF$ 如第 248b 圖。選極點 O，引射線 1, 2, \ldots 6。再在第 248a 圖中畫出索線多邊
形 $abcdefg$。其中 bc, cd, de, ef 四邊上的「力」的作用是全部兩兩抵消，可以由力系中把它們拿出去。剩下的力是跟 $F_1, F_2, \ldots F_5$ 作用相等的 $1, 6$ 兩力。所以由線多邊形的第一邊 ab 和最末一邊的 fg 交點 h 就是力系合力 R 作用線上的一點。R 力的大小和方向則由第 248 圖中力多邊形的封閉邊 AF 決定。

根據以上討論，要合成任何一個平面力系，我們只要畫兩個多邊形：力多邊形和彩線多邊形。力多邊形的封閉邊可決定所求合力的大小和方向，彩線多邊形的第一邊和最後一邊的交點又可決定合力作用線上的一點。因此，力多邊形可以完全確定力系的合力。

假使力多邊形自行封閉，沒有封閉邊，以致第一根射線跟最後一根射線變成一短線，那末彩線多邊形中的第一邊和最後一邊如不互相平行就非互相重合不可。它們互相平行的話，就表示這兩條作用的兩力是一個力偶；重合的話，那表示兩力互相抵消，原來各力是一個平衡力系。

第 249 圖可說明這兩種可能的情形。物體上的三已知力 F_1, F_2, F_3
一般的平面力系

§ 36）

和 F₂ 的大小和方向恰好使它们的力三角形自行封闭，以致射线 1 和 4 整合成为 OA。假使三力的作用线位置如图 a 所表示的情形，那么线多边形的第一边 ab 跟最末一端 de 就将平行而不重合。由原力系简化而得的 1, 4 两力因之是一个力偶。这力偶的力矩，我们可自图 a 量出力臂的长度，自四 c 量出 OA 射线的长度，算出它们的乘积，由乘积的大小来决定。

假使三力作用线位置如图 b 情形，索线多边形的第一边跟最末一端就将完全重合，1 和 4 两力互相抵消。这表示原来各力是一个平衡力系。

可见应用力多边形和索线多边形还可以完全由图解法来辨认 § 30 中所说的合成一般平面力系的三种可能结果。假使一个力系的力多边形不封闭，力系显然可以化为一个合力。如果力多边形封闭，但是索线多边形的第一边跟最末一端平行而不重合，那力系就可以化为一个力偶。若力多边形自行封闭，索线多边形也自行封闭（就是第一边跟最末一端重合的情形），原来各力就必然是一个平衡力系。

例 题 和 算 题

158. 用图解法求图 250a 图中刚架 JKL 两支点 J 和 K 对刚架的反作用力 Rj 和 Rk。

解：重力多边形 ABCDEFG 如第 259b 图，作用于的合力 R 的代表向量 AF。再由索线多边形 abedfg 的第一边 ab 加最末一端 fg 的支点 k 定 R 力的作用线位置。

作用力的合力 R 求出后，我们可以用它来代替出原来的反作用力系。因此，刚架变成在 R 和 Rj, Rk 三个力作用下平衡，故由「三力的作用线必交于一点 M」，可得 Rj 的作用线 JM。查出三力的力三角形，Rj 和 Rk 的大小和方向就可能定如第 270b 图。
189. 用圖解法求第 251 圖中水平力 A、B 作用力 R_a, R_b
(解: R_a = 481kg, R_b = 34kg)

190. 用圖解法求第 252 圖中水平力 A、B 作用力 R_a, R_b
(解: R_a = 2.04Q, R_b = 1.38Q)

191. 用串聯多邊形求第 253 圖中 AB 桁上四作用力的合成結果。
(解: M = -1300kg·m)

192. 第 254a 圖中是一吊車機械。他的吊船在恆重 G、力 P、Q

解: 把吊車當作所求力系的基準多邊形，即問題不大簡化。因吊船無摩阻力，故吊船重

193. 第 255 圖中各桿件在平衡狀態。試求各作用力 P_1, P_2, P_3 的相對大小（也就是

P_1: P_2: P_3 的比例）應當有多大？各桿件的自重可以不計。圖中標的尺寸都以 m

為單位。
一般的平面力系

解：任意设定一个 P 力的大小，譬如令 P_1 = 1000 kg。把圆中的 abcd 分别是各作用力的矢量多边形，即可求得 P_1 : P_2 : P_3 = 100 : 85.7 : 286。

194. 應用解析法求第 253 圖中所畫圖形的面積形心位置。圖中所注的尺寸全是以 cm 为单位。

46. 各小方形面积的面积是 A_1, A_2, ..., A_6。把 A_1, A_2, ..., A_5 看作一个平行力系，此一力系的矢量多边形，即可求出形心 C 的 x 轴坐标是

x_C = 5.18 cm。

第 253 圖

37. 封閉矢量圖

§ 36 中已指出过，一个平面力系如果组成平衡，那它的力多边形和矢量多边形就必须要同时自行封闭。这平衡条件跟力多边形中力的几何顺序、极点 O 的位置和矢量多边形的开始一点的位置全都完全无关。这平衡条件跟 § 31 中 (19) 或 (20) 两组平衡方程式的作用完全相同，应用这条件可以图解一切平面力系的平衡问题。

用计算方法处理静力学问题，假使力知中心的位置选择得适当，计算手续就可大大简化。同样，在图解法中，假使力多边形中力的几何顺序、极点的位置以及矢量多边形开始一点的位置选择得适当，那图解手续也可以大大简化。不过所谓“选择得适当”并没有一定的法则，纯粹要看各问题的具体条件而定。所以我们必须对矢量多边形跟力多边形的基关系有彻底的了解，否则就很难“选择得适当”。以下我们举些例子来说明。

例题和习题

195. 製求第 257 圖中 AB 线在 A_1 C 两支点所受的反作用力。

解：所求的反作用力 R_a, R_c 都在矢量方向。设 AB 线在三组平行力 P_1, P_2 等

R_c 作用下不变。这三平行力的力多边形和矢量多边形因之必须同时自行封闭。

先画力多边形如第 257b 圖。图中以 DE 代表 P 力，EF 代表反作用力 R_a，使封
閉邊 \overline{FD} 可以代表反作用力 R_c。然而 R_a, R_b 何力的大小這時還不知道, 所以除掉圖中 EF 表示了 R_2 力的方程, 力多邊形事實上並沒有完成。現在任擇一極點 O, 引射線 1 和 2。力多邊形的頂點 K 在 EF 上的位置還未確定, 射線 3 然而也還畫不出來。我們在第 257a 圖中 P 力作用線上任定一 b 點, 串連出線段多邊形中平行於射線 $1, 2$ 的兩邊 a_d, b_c. 然具選兩邊, 得它們跟 R_a, R_b 作用線的交點 a, c 則如第 257a 圖。這個交點 a, c 就是線段多邊形的其餘兩個頂點。所以由極點 O 引一平行於張線多邊形的封閉邊 a_d, b_c 串連的平行線就得到未知的射線 3。射線 3 與 EF 的交點決定力多邊形最後一頂點 K。以 EF 和 FD 就代表所求的兩反作用力 R_a 和 R_c。

應注意的：既然 EF 上的任何一點都可以滿足力三角形必須封閉的條件，但是只有它上面的 F 點才能夠同時滿足位移多邊形也封閉的平衡條件。

195. 用圖解法求第 258 圖中 A 和 B 支點對力 AB 的反作用力 R_a 和 R_b。
（解：$R_a = P/3$ 向下；$R_b = P/3$ 向上）

197. 第 259 圖中，$P = 600$ kg，圖中尺寸以 m 爲單位。試用圖解法求反作用力 R_c 和 R_d。
（解：$R_c = 1300$ kg, $R_d = 1700$ kg）

198. 用圖解法求第 259 圖中 A, B 兩點對力 AB 標的反作用力 R_a, R_b。
（解：$R_a = 40$ kg 向下，$R_b = 340$ kg 向上）

199. 用圖解法求第 260a 圖中 A, B 兩點對力 P 的反作用力 R_a, R_b。
解：所有各作用力 Q 等等反作用力 R_a, R_b 共同構成平衡，故它們的力多邊形及張線多邊形都必須自行封閉。以反作用力多邊形如第 260b 圖。自圖中 F 點引線到原點 FG' 代表
反作用力 R_b 的方向。这时，R_a 力的大小和方向尚未决定，所以力多边形还不能完成。任取一基点 O，引射线 $1 , 2 , 3 , 4 , 5$ 和 O 如图，画出力多边形的所有顶点都在各力的作用线上。现在由 R_a 作用线上的一点 A 开始画多边形，先得 ab , bc , cd , de , ef 和 $f g$ 各边，最后可得到封闭的多边形 $a g$。自基点 O 引射线 7 与 $a g$ 的交点 G 既然是力多边形的所求的顶点。所以可将 R_a 和 R_b 的代表向量 \overrightarrow{FG} 和 \overrightarrow{GA} 如第 261 图。
第五章 空間共傾力系

38. 空間共傾力系的合成與分解

一疊空間共傾力也可以連接應用力平行四邊形來合成。例如，第264a圖中 F₁, F₂ 和 F₃ 三力共同作用在物體的 O 點，三力代表向量是 OA, OB 和 OD。我們用力平行四邊形合成 F₁ 和 F₂ 得合力 OC 作用在兩力的作用面 AO∥OB 中。以 OC 代替 F₁ 和 F₂，再用力平行四邊形求出 F₃ 和 OC，也就是原來三力的合力 R。R 力的代表向量就是圖中 ODEC 平行四邊形的對角線 OE。可見三個空間共傾力的合力，可以完全由三力代表向量 OA, OB 和 OD 所成平行六面體的對角線決定。

如果應用力多邊形自然也可得到同様結果。我們先畫出 F₁ 的「分離向量」 OA(第264b圖)，由 O 作 OA 終點引分離向量 AC 代表 F₂，再自 AC 終點引分離向量 CE 代表 F₃。比較第264a 圖和第264b 圖，就可知道這幾何相加而得的分離向量 OE 也就代表 F₁, F₂ 和 F₃ 三力的合力 R。

第264 圖中雖然繪合成了一個力，但是這兩種合成方法對「力」的數目並沒有任何限制；它們可以用來合成任何多個數的空間共傾力。因此，可以得出這樣一個結論：一個空間共傾力系，不論其中包含多少個「力」，它的合力就等於各力的幾何和；合力作用線通過各力的共同交點。

空間力系的力多邊形自然不是各邊都在同一平面中。因此，應用圖解法求合力的大小和方向就必須考慮合力在兩個正交平面上的投影才能解決。一個空間共傾力系的力多邊形在任何一個平面的正投影是一個平面的多邊形。這個多形邊的各邊當然就是各空間力在
這一平面內的正投影。 可見空間力系的合力在這一平面內的正投影
也就是各空間力在同平面內的各正投影所合成的合力。 因此，我們可
以由空間力系在兩個正交平面上的正投影來決定力系合力在這兩個平
面上的正投影。 合力在兩個正交平面上的正投影求到後，合力本身的
大小、方向當然就可以根據這兩個投影來確定。

要分解一個已知力於已知不同平面的三直線方向，如果這三直線
共同相交在已知力作用線上一點，那就可用第 264a 圖的畫平行四邊形
方法來分解。 例如，我們要分解 OE 所代表的已知力 R 爲三個分力，
三「分力」的方向指定為 OA, OB 和 OD，我們可通過 E 點作三個平面
平行於 DOB, DOA 和 AOB 三平面（第 264a 圖）。 這三平面分別跟
OA, OB 和 OD 相交於 A, B 和 D 三點。 這樣得到的 OA, OB 和 OD
顯然就是所求分力的代表方向。 應該注意的，第 284a 圖不過是說
明分解的過程，真正要由圖解析來決定分力的大小、方向還是非要利用
已知力和三分力作用線在兩個正交平面上的正投影來解決不可。

例如第 285 圖中，F 和 F' 代表一個已知力在一個平面和一水平平面上的正投影；
O', O_1, O_3 和 $O'1, O'2, O'3$ 分別代表所求分力的作用線在這二平面上的正投影。 第
一步，我們求出「已知力的作用線跟任意一個分力作用線所成的平面」和「其餘兩分力作
用線所成平面」的相交線。 現在令已知力跟「作用線投影是 O_1 及 $O'1$ 的分力」所成的平
面代表前一個平面「作用線投影是 $O_2, O'2$ 和 $O_3, O'3$ 的兩分力」所決定的平面代表後一

第 285 圖
平面。 (O, O') 點(指在圖中鉛直和平水平面的投影是 O 和 O' 的空間一點) 當然是這兩個
平面相交線上的一點。此外, 圖中 1' 4' 和 2' 3' 兩組的交點 n' 所指的一 (m', n') 點也必
須在這一交線上。相交線的兩點既經決定, 相交線本身自然就可以由它的投影 m' 和 n' 完全
決定。第二步, 我們把已知力分解於 (O1, O'1') 和 (O2, O'2') 所指兩直線的方向。所
得的力的投影就是圖中力多邊形內的 1, 1' 和 2, 2'。這就是說, Δabc 和 Δa'b'c' 是「分
解已知力所用的空間力三角形」在兩投影平面上的投影, 所以 a' 的投影 a' 也是 (O1, O'1') 直
線方向分力的投影, a' 也是 a' 的投影, a' 也是 a' 的投影。最後, 我們把這一 (O2, O'2') 直線方向的力再分解
於 (b'c'b') 和 (b'c'd') 直線所定的兩方向
的 2, 2' 和 3, 3' 所指的兩分力。所求的分力在鉛直平面上的投影 a', b', c' 和在水平
平面上的投影 a', b', c' 現在已經完全求出來了。各分力的本身自然已由這些
投影來推算。

39. 投影法

由 § 38 的討論, 可知: 如果用圖解法來處理空間力系, 就必須應用
t 個正交平面的正投影, 因此, 手續十分麻煩。對於一個空間共點力
系, 其實我們還可以用 § 13 中平面共點力系的「投影法」來處理, 而且
這方法對於此類問題特別適合。

按照 § 13 中處理平面共點
力系的推理方法, 我們同樣可
證明: 若在空間共點力的合力
在任意一坐標軸的投影就等於
各力在同軸投影的代數和。例
如, 第 260 圖中 X, Y 和 Z 是一
共點力系 F_1, F_2, ..., F_n 的合
力 R 對於三個正交坐標軸 x, y
和 z 上的投影; X_i, Y_i 和 Z_i 是
力系中任一 F_i 的在以上三坐
標軸上的投影。根據以上論斷, 可得:

\[X = \sum_{i=1}^{n} X_i \]
\[Y = \sum_{i=1}^{n} Y_i \]
\[Z = \sum_{i=1}^{n} Z_i \]
計算任一 F_i 力在 x, y 和 z 軸上的投影，可用以下三式：

$$X_i = F_i \cos \alpha_i, \quad Y_i = F_i \cos \beta_i, \quad Z_i = F_i \cos \gamma_i$$

其中 α_i, β_i 和 γ_i 分別指 F_i 力作用線跟正方向 x, y 和 z 軸的交角。合力 R 的大小是

$$R = \sqrt{X^2 + Y^2 + Z^2} \quad (b)$$

如 α, β, γ 是合力 R 作用線跟正方向 x, y, z 軸的交角，就可得:

$$\cos \alpha = \frac{X}{R}, \quad \cos \beta = \frac{Y}{R}, \quad \cos \gamma = \frac{Z}{R} \quad (c)$$

(a), (b), (c) 三式顯然已經完全決定了所求的空間共點力系的合力。

假若這一共點力系自成平衡，那它的平衡條件，按 (a), (b), (c) 三式，就是:

$$\sum_{i=1}^{n} X_i = 0$$
$$\sum_{i=1}^{n} Y_i = 0$$
$$\sum_{i=1}^{n} Z_i = 0 \quad (21)$$

應用 (21) 於任何一個平衡的空間共點力系，我們都能夠決定三個未知量。例如，一個平衡的空間共點力系中，如果其中所有各力除掉三個力的大小外，全部都知道，那應用 (21) 式就可以確定這三個力的未知的大小。

再如一個平衡的空間共點力系中，有一個「力」完全未知，那我們應用 (21) 式把這「力」在三坐標軸的投影求出來，也就可以完全決定這一個「力」。

根據 (21) 式，還可以推論出：(1) 三個空間共點力構成平衡，這三力的作用線若不共同在一個平面內，那三力就非都等於零不可；(2) 四個不共同在一個平面內的共點力，其中若有兩個力作用線相同，那其他兩個力必定都等於零，而且同作用線的兩力必定是相等相反兩力；(3) 共點力系中，若是除掉一個力外，其餘各力全部都在同一平面內，那就只有不在同一平面的一個力等於零，這力系才可能平衡；(4) 在一個共點力系中，所有各力的作用線都已經知道，而且除兩個力的作用線外，
所有其他各力的作用線都在同一平面內。在這樣情形下，假使不在同一平面的兩力中，有一個力的大小也已知道，那麼其餘一個力的大小就也可以決定。這些推論現在留給讀者自己去證明。

例題和習題

202. 兩個相等的水平力 F，互相正交，作用在一桿杆 AB 的頂點 A 端（第 207 圖）。桿杆 AB 端由拉簧 AC 拉住，防止桿 F 力的折斷作用。AC 端內有一條橡質管 D 作調節桿中的張力。設 F=100 kg，求桿 AC 端所受的張力 S₁ 以及桿杆 AB 因此而引起的桿力 S₂ 各等於多大？

解：當桿杆頂點 A 受各力的合力。因桿杆完全不受扭轉時，故它對 A 點的反作用力 S (也就是它的張力) 必定是在它的長軸 AB 方向。各力作用線決定後，可得 A 點的分面圖如第 207 圖。

定坐標軸 x, y 和 z 如圖。xy 平面跟 ACB 平面相合，z 軸垂直於 ACB 平面。根據 (21) 式，可知，ABC 平面必需等分桿 F 力作用線所成的 90° 角，AB 才沒有曲曲發生。投影分面體上各力於 z 軸方向，可得

\[S_1 \cos 60° + 2F \cos 45° = 0 \]

故 \(S_1 = 2\sqrt{F} = 283 \text{kg} \)。再投影分面力於 y 軸方向，又可得

\[S_1 - S_2 \cos 60° = 0 \]

故 \(S_2 = S_1 \cos 60° = 245 \text{kg} \)。

203. 假設第 202 題中的參水平力，一個力是 \(F_1 = 100 \text{kg} \)，另一個力是 \(F_2 = 80 \text{kg} \)。試求 \(S_1 \) 和 \(S_2 \) 各等於多大？

解：因桿杆 AC 必需在這樣一個張力平面中，要使它能夠完全防止桿杆發生彎曲，故可得 \(S_1 = 250 \text{kg} \) 擠力，\(S_2 = 220 \text{kg} \) 擠力。

204. 一向一端的桿杆 AB 由四根及 l 的拉桿 BC, BD, BE, BF 拉住如第 268 圖。C, D, E, F 四點構成一個正方形。四拉桿中的張力都是 1 t。設 l = 16 m, l_1 = 25 m。求桿杆 AB 的張力 S 等於多大？

(解：\(S = 3 \sqrt{t} \))
206. 蟹體棍 AB, 一端固定在壁上 B 點，另一端 A 由相應水平的拉繩 AC 和 AD 拉住。兩繩的另外兩端 C, D 也固定在壁上 (附圖 269)。設繩中掛在 A 點的物體重量是 $F=1t$。試求拉繩中的張力 S 和 AB 條的拉力 S_1 各等於多少？

解：$S=0.707F$, $S_1=1.41t$

206. 第 270 圖中是一個三腿架。三腳 OA, OB, OC 的角度都等於 l. 地面上三支點 A, B, C 的位置恰成等邊三角形。有一重量 P 綁在三腿架的頂點 O 處。地面摩擦力足夠防止三腳的滑動。試求 OA, OB, OC 三腳內的張力等於多少？

解：觀察 O 點各力的平衡。O 點共有 S_1, S_2, S_3 和 P 四個力作用。定 O 為重力原點, 銷 處標為 O 點。投於各力於 x 軸方向, 可得

$$(S_1 + S_2 + S_3) \cos \gamma - P = 0$$

式中 γ 是三腳各自成 O 軸所成的夾角。

因三腳的長度相同, 三支點又組成等邊三角形, 故 x 軸一定通過 $\triangle ABC$ 三支架的交點。根據題中已給各值, 可算出 $\gamma = 60^\circ$。

之後，把各力投影在過 O 點的水平平面上, 得如一第 270b 圖的水平力系。根據 § 38 中的討論, 可知平衡的空間力系在任何平面上的投影也必然是平衡力系。因此, 應該 $S_1' = S_2' = S_3'$, 否則第 270b 圖的平面力系就不平衡。由這三投影的大小相等, 我們又可斷斷 $S_1 = S_2 = S_3 = S$, 故按 (d) 式, 可得

$$S = \frac{P}{3 \cos 30^\circ} = \frac{2P}{3\sqrt{3}}$$

207. 想想第 106 題中, 地面完全光滑, 為了防止滑動, 沿 AB, BC 和 AC 方向用三根繩子把三個支點的相對位置固定起來。試求這三根繩子中的張力 S 等於多少？

解：$S = \frac{P}{3}$(P)

208. 第 271 圖中是四個組成三角錐形狀的光滑面球。圓球半徑都是 r. 底層三球由一繩繩子固定住, 使它們不會散開。第三個球在上面一個球還未放上去的時候恰好張力等於零。設四球的重量全等於 Q, 試求疊起後繩子內的張力 S 等於多少？

解：$S = \frac{Q}{3\sqrt{6}}$
207. 第 272 圖中是一些重物。鋼棒 AB 類似在 A 點由支撐 BE, BF 拉住。兩拉
繩的水平線與角度等於 45°。它的所在的水平面 ABE 和 ABF 互相垂直。整個
重物的水平面把它見第 272b 圖。轉變 CD 所在的鉛垂面 ABC 可以在 $F''A''E''$
角所指的範圍內繞 AB 轉動。若 CD 取自 $7b$ 圖中位置提起重物 P，試求平
衡時 BE, BF 兩拉繩內的張力 S_1, S_2 以及鋼棒 AB 中的張力 S 各為多少？

解：假設 CD 軸於鋼棒 AB 的「力」通過 A 點，於 AB 中具有它面軸方向的單純張力存
在，不另外受彎曲作用。因此，AB 對 B 點的反作用力 S_4 將如第 272a 圖所表示的情
形，取傾斜方向。故考覈 B 點平衡，可得

$S_3 = 1,366P(\cos \alpha + \sin \alpha)$
$S_2 = 1,366P(\cos \alpha - \sin \alpha)$
$S_1 = P(\cos 45^\circ - 0.066 + 1.850 \cos \alpha)$

210. 第 273a 圖中，有一個重 W 的立體纔放在斜面上；斜面角是 α，立體的尺寸足夠使它的
滑動先於傾倒。斜面間的摩擦角 ϕ 比斜面角 α 大。假使在立體的中點加一如
第 273a 圖所選的水平力 F，使立體在斜面後方將開始滑動，試求 F 力的大小應等
於多少？

解：立體斜著開始沿水平方向滑動時，它是在重力 W，作用力 F 和斜面的反作用力 R 三個
力作用下平衡。三個要成為平衡，它們的作用線必須在同一直線內並且相交於一點。
此外，斜面反作用力 R，是立體斜著開始滑動，故必定是跟斜面法線構成等於摩擦
角 ϕ 的角度。這樣，三個力的作用線便完全確定。
§40 空間軸對稱力系

定立方體中心為原點，斜面軸線為 z 軸，平行對面的水平軸為 y 軸。投影各力於
z 軸方向，可得

$$ R \cos \varphi = W \cos \alpha \quad (c) $$

再投影各力於水平平面上，得到各力投影在這一平面上產生的平衡力系如第 273 圖。
我們可設這一水平面，就結果

$$ R^2 \sin^2 \varphi = P^2 + W \cdot \sin^2 \alpha \quad (f) $$

消去 (e), (f) 兩式中的 R 得

$$ P = W \sqrt{\mu^2 \cos^2 \alpha - \sin^2 \alpha} \quad (g) $$

其中 $\mu = \tan \varphi$ 就是立方體和斜面的摩擦係數。假使 $\alpha = \varphi$，由 (g) 式可得 $P = 0$。
假使 $\alpha = 0$，斜面變成一個水平平面，那按 (g) 式就得到 $P = \mu W$。

211. 預想第 271 圖中，底層是三個「半球體」；它们半徑都是 r，重量都等於 $Q/2$。這三個
「半球」伏在水平平面上，靠水平平面上的摩擦力維持它们互相接觸的位置，不需要再用
繩子固定住。上層仍是一個重 Q 的光滑圓球；圓球半徑是 r。試問三個「半球」和
水平平面上的摩擦係數 μ 至少要大於多少，才能平衡?

(解：$\mu = \sqrt{\frac{2}{5}}$)

第 273 圖

第 274 圖

212. 一個很小的方塊 A 重 w，伏在一塊三角形切面的 BC 桿上如第 274 圖。設 BC 桿的
水平傾斜角等於 β 時，方塊 A 就會開始滑動，試求方塊 A 和 BC 桿間的摩擦係數 μ 等
於多少？

(解：$\mu = \tan \beta \sin \frac{\alpha}{2}$)

40. 力對於軸線的力矩

一個力有使它作用的物體發生繞某一「軸線」旋轉的傾向的「作用」。測量「力」的這種作用的尺度就叫做這「力」對於「軸線」的力
矩。例如，第 275 圖中一個可以繞 On 軸線自由旋轉的物體上有一向 AB
所代表的「力」作用在 A 點。假使把這個「力」分解成平行和垂直於 On 軸的分力 AC 和 AD，我們就很顯然的可以看到，兩分力中只
AD 分力才有使物體繞 On 軸發生旋轉的「作用」。因此，我們規定：
力矩合成定理的引伸 假使如第 276 圖把 P, Q 兩力和它們合力 R 所構成的力平行四邊形 ACBD 投影到一個垂直於 On 軸的平面上去，我們就又會得到一個新平行四邊形 A'C'B'D'。可見，P 和 Q 在一平面上的投影的合力也就等於它們合力在同一平面的投影。根據以前的力矩合成定理和以上力對於軸線力矩的定義，我們馬上可以推斷出來：兩個共點力 P, Q 對於任意一根軸線的力矩等於和必等於它們合力對同軸的力矩。在 §38 中我們已經知道，隨便多少個的空間共點力都可以連續應用力平行四邊形一步一步把它們合成為一個合力。因
此，我們可以在每一合成步驟引用一次兩個力的矩合成定理，最後，就可得到這樣一個最普遍的力矩合成定理：任何一個空間共點力系對於一根軸線的力矩代數和必定等於這力系的合力對同軸的力矩；假設 \(F_1, F_2, \ldots, F_n \) 各力是一個空間的共點力系，\((M_n)_i \) 是力系中任意 \(F_i \) 力對 \(O_n \) 軸的力矩，\(M_n \) 是這力系的合力對同軸的力矩，就可得

\[
M_n = \sum_{i=1}^{i=n} (M_n)_i
\]

（a）

計算一個靜力學問題，通常選三個正交坐標軸 \(x, y, z \) 作為「力矩軸線」。因此，任何一力 \(F_i \) 對三個坐標軸的力矩最好能應用固定公式來計算。第 277 圖中，我們選定各坐標軸 \(x, y, z \)；令 \(AB \) 代表的 \(F_i \) 力在這三坐標軸上的投影分別是 \(X_i, Y_i, Z_i \)，作用點 \(A \) 的坐標是 \(x_i, y_i, z_i \)；這樣，\(F_i \) 力對 \(x, y \) 和 \(z \) 三軸的力矩公式顯然就是：

\[
\begin{align*}
(M_x)_i &= Z_i y_i - Y_i z_i \\
(M_y)_i &= X_i z_i - Z_i x_i \\
(M_z)_i &= Y_i x_i - X_i y_i
\end{align*}
\]

（b）

其中各力矩值的正負號自然照「右螺旋法則」決定。

第 277 圖

41. 力矩法

我們由 § 40 中的 (a) 式可以推斷：在以下三種情形下一個空間共點力系對於力矩軸線的力矩代數和必然等於零。這三種情形是：

(1) 這一力系的合力作用線恰好通過力矩軸線。(2) 這一力系的合力作用線恰好跟力矩軸線平行。(3) 這一力系的合力等於零；它是一平衡的
力系。對於決定一個空間一點力系是否平衡的問題，我們察察這三種可能的情形顯然非常有用。例如第278圖中的一個作用在A點的空間力系。我們假定任意選定一個坐標原點O，取Ox, Oy和Oz作為三個坐標軸，使A點不在三軸所成的坐標平面的任何一平面中，那就可以應用 §40 的 (b) 式來計算力系對於x軸和y軸的力矩代數和。如果這兩個代數和完全相等於零，很顯然的，這合力系的合力不等於零就必定是作用線恰巧在OA直線上；因爲合力作用線決不能同時跟x, y兩軸軸線平行，它的合力不等於零自然非通過兩軸的交點O不可。之後，我們再任意選定一根既不跟OA平行又不跟OA相交的直線O'x'作爲力矩軸線，計算力系對O'x'的力矩代數和。假使這代數和仍然是等於零，當然，力系合力就非等於零不可。因此，可得:

\[
\begin{align*}
\sum_{i=1}^{n} (M_{x})_i &= 0 \\
\sum_{i=1}^{n} (M_{y})_i &= 0 \\
\sum_{i=1}^{n} (M_{x'})_i &= 0
\end{align*}
\]

（22）

這三方程式就是一個空間一點力系的平衡條件，它們跟§40的(21)式中三方程式作用完全相同。以下我們舉幾個例子說明它們的用途。

例題和習題

213. 計算第269圖中杆件AB的拉力。
解：A處接合在S, S1, S2和P四個力作用下平衡。取CD作力矩軸線，使兩未知的S力可以不考慮，可得

\[-P \cdot AE + S1 \cdot EF = 0\]

\[S1 = P \cdot \frac{AE}{EF} \rightarrow \sqrt{2} P\]

214. 第279圖中，滑輪A，中徑等於a，由三杆件AB和AC及一拉桿AD連接在壁面上的B, C, D三點。EAF是一根跨越滑輪A的拉桿，一頭固定在壁上E點，另一頭掛一載體Q。設Q=100kg, a=6cm, b=48cm, c=90cm，試求拉桿AD中的拉力S。

(解：S=53kg)
215. 一個半徑等於 \(r \) 的圓球自長 \(l \) 的 \(AB \) 線懸在橋梁上如第 280 圖。若不計摩擦力，求出
\(AB \) 輪中的張力 \(S \)。

解：因不計摩擦力，故兩端面對求球的反作用力都是通過球心的水平力。圖上一共四個力，三個力既然都通過球心，第四個力自然也一定通過球心，否則它會產生不通過球心的力矩使球體不能平衡。所以 \(AB \) 線的長度是通過球心的直線。由此，可得

\[
S = Q \cdot \frac{1 + \tau}{\sqrt{l^2 + 2l \cdot \tau^2}}
\]

第 279 圖
第 280 圖

216. 第 281 圖中 \(AB, AC \) 和 \(AD \) 三導向的長度都等於 \(l \)。A 點和重樁原點 \(O \) 皆在平面

\(BCD \) 的一方。A 點所掛的物體總

\(\text{故 } l > \sqrt{\frac{1}{3} l^2 + \frac{2}{3} l \cdot \tau^2 - \frac{1}{3} \tau^2} \)

解：\(S = Q \cdot \frac{1}{3} \cdot \frac{2 \sqrt{3l^2 - 2a^2 - a}}{\sqrt{3l^2 - 2a^2}} \)

217. 第 282 圖中 \(AD, BD \) 和 \(CD \) 是長度都等於 \(l \) 的軟鋼。它們的一端 \(A \), \(B \) 和 \(C \) 都固定在水平面的下面。\(A \), \(B \) 和 \(C \) 點的位置恰在水平平面上構成一個等邊三角形；\(BC, AC \) 過對的長度等於 \(b \), \(AB \) 過的長度等於 \(a \)。三根鋼的另外一端 \(D \) 結成一 結，掛一個重量等於 \(Q \) 的物體。設 \(Q = 10 \text{kg}, l = 20 \text{cm}, a = 10 \text{cm}, b = 15 \text{cm} \)，試求
\(CD \) 鋼內的張力 \(S \) 等於多大?

解：\(S = 4.2 \text{kg} \)

第 281 圖
第 282 圖
218. 第 283 圖中是一個半徑等於 \(r \) 的圓球 \(C \) 放在一個 \(V \) 形槽內。 槽壁與水平線的夾角是 \(\beta \)。 對球施一水平方向的 \(AB \) 輪線接在槽壁 \(A \) 處。 摩阻力可以不計。 試求 \(AB \) 輪內的法力 \(S \) 等於多少？

（解： \(S = Q \tan \beta \)）

第 283 圖

42. 空間桁架

一系桿件由它們各自兩端的互相連接，組合成功一個樑架，就叫做空間桁架。 空間桁架在結構工程中應用範圍極廣，像鋼架建築、輸電塔、起重橋等等都是屬於這種結構形式。

對於用鉸鏈梢子連接而成的桁架，我們需要有一個鑑定它「剛性」的標準。 建立這一標準應先研究一下空間一點的「完全約束」問題。 第 284 圖中，圖 a 的 \(O \) 點由兩個鉸接桿 \(OA, OB \) 連接在基礎上。 這樣，\(O \) 點除開在 \(AOB \) 平面中受到「完全約束」外，它還可能在空間繞 \(AB \) 軸線旋轉。 要限制住這一旋轉的可能，必須再加裝一個不在 \(AOB \) 平面內的鉸接桿 \(OC \) 如圖 b。

假使把 \(O \) 點連接在基礎上的三桿件，是共同在一個平面內，則 \(O \) 點的「完全約束」還是不能實現的。 例如，圖 c 中的情形；三桿件的 \(A, C \) 和 \(B \) 端都同在一根直線上，因此，跟圖 a 的情形一樣，\(O \) 點還可以毫無限制地繞這直線旋轉。 假使三桿件的一端並不同在一直線上，但是它們的長軸仍然同在一平面中，像圖 d 的情形一樣，顯然，\(O \) 點還可能因三桿件長度的微小變化而發生顯著的垂直於 \(ABC \) 平面的運動。 因此，也不能構成 \(O \) 點的「完全約束」。

可見一個空間點的「完全約束」必須由長軸不在同一平面的三桿件把這點連接在基礎上才能實現，而且這樣三桿件也足夠使「完全約束」
實現。

空間一點的「完全約束」方法找到後，我們就可以有一個簡單的辦法把一系桿件組合成功一個剛性結構。第 285 圖中，我們先用 AE，BE 和 CE 三桿連桿把桿件 E 完全約束起來。E 點固定後，桿件 F 的完全約束又可以由 BF，EF 和 DF 三桿連桿來完成。E，F 現在已經跟 A，B，C，D 各點一樣，同樣是空間的固定點。所以由 EG，FG 和 GG 三桿連桿組成的桿件 G 也一定是受完全約束的一個固定點。這樣

的構成過程，當然可以無限制地繼續下去。因此，我們可得到如下的法則：一個剛性的空間桁架的構成，必然可以由三個不同在一平面的桿連桿跟基礎連接以構成第一個節點。之後，繼續加裝三個又三個不同平面的桿連桿於已得的節點或其他固定點上，就可組成一個個的新節點。第 286 圖中各桁架，它們的結構都是符合這一法則的。

一般說來，這樣的空間桁架的剛性是跟桁架與基礎間的連接情形不無關係的。例如第 286c 圖的桁架，它內中的六邊形 ABCDEF 就並不是一個平面桁架。整個系統之所以能成爲剛性結構完全靠這一六邊形跟基礎上的 A'，B'，C'，D'，E'，F' 六點的連接。圖 b 桁架中的 ABCDEFGH 部份也是這個情形，不過不及圖 e 明顯。

現在再討論跟基礎連接無關的剛性空間桁架要如何組成。根據以
們必自三個關連桿構成一個三角形ABC（第287圖）開始，之後，加裝AD，BD和CD三桿件以建立第四個節點，所構成的四面體ABCD顯然是一個剛性的空間桁架。在ABCD四面體上面，我們若另外加裝BE，CE和DE三桿件組成新節點E，又可以得到一個剛性的空間桁架ABCDE。在這一桁架上再加裝AF，CF和DF三桿件，又可得一個剛性空間桁架ABCDEF。這種加裝方法當然可以無限制地繼續使用，因此我們得到這樣一個法則：一個剛性的空間桁架的構成必然可以由三個關連桿組成的三角形開始，然後，繼續加裝三個又三個的不同平面的關連桿於已成的節點上以構成一個個的新節點。第288圖內的各桁架就是結構情形符合於這一法則的幾個例子。每一桁架的構
成都是由图中△ABC开始，然后按照字母次序依次组成它们的各节点。这类桥架的刚性完全跟它与基础间的联系无关。

任何属于受「完全约束」的刚性结构的空间桥架，如果在各节点受「力」的作用，它的各杆件中就会产生长轴方向的内力（简称轴力）。轴力的决定就叫做桁架分析。 对于空间桁架的分析，我们，像处理平面桁架一样，也做出以下几个理想情形的假定：（1）桁架中各杆件的本身重量都可以完全不计；（2）所有杆件都是由两端的铰链相互连接起来，铰链的附阻力可以完全不考虑；（3）桁架上的所有外力都只作用在各节点上。根据这些假定，桁架在作用力作用下，它各杆件就只受受到抗或弯的作用，不会受到弯曲作用。因此，各杆件对两端铰链的反作用力一定是作用线跟各自的长轴相合，从而每一个节点上的「力」都是一个空间力系，所以我们可以直接应用§39和§41所讨论的力系的平衡条件来分析这种桁架。

43. 网点分析法

如图第239图中的桁架，其中各杆件的组合是符合§42中第一个法则的。以A、E两点节点开始，该节点各以三个铰链相围结于基础上。至于其他各节点构成的先后完全按字母的次序。每一节点都是由三个不在同一平面的铰链连接在三个固定点上，故构成的是一个刚性的空间桁架。假使有一铅垂力P作用在铰链E上，那有些杆件就必然会有轴力发生。现在我们来分析这一桁架如下：

![第239图](image)

首先，最好把轴力等于零的杆件标示出来，使得问题简单一些。再进一步工作根据§39中最后几个结论去做，是很容易的。例如，检查节
點 G，我們就發現：交合在這一節點只有三個不在同一平面的樑件，而且節點上又沒有外力作用，因此三條件的樑力都非等於零不可。同樣情形的還有節點 H 以及去掉沒有樑力各樑件後的節點 F。所以交合在這些節點上的各樑件都是樑力等於零。這些無樑力的樑件當然可以在想像中把它們去掉，因中因此已用細線把它們標誌出來。剩下來用細線所畫的各樑件還需要加以分析。

現在先觀察鋼鏈 E 的平衡。令 S_1, S_2 和 S_3 分別代表樑件 EA, EC 和 ED 的樑力。這些樑力只要樑件的尺寸確定，可以很容易的由(21)或(22)式或用圖解法決定。此後，我們應用(21)或(22)式依次考察 C, B 和 A 各樑鏈，就可完全求出其餘各樑件的樑力。

以上的樑件分析方法叫做節點分析法。一般來說，應用這一方法來分析樑架，必須開始時就至少能找到這樣一個節點，它上面只有三個「未知樑力」的樑件；在這三個未知樑力決定後，又至少能發現同樣的一個節點，它上面也只有三個「未知樑力」的樑件；並且，以後繼續不斷有這樣一個情形存在。這是很顯明的，任何一樑架如果它的結構是符合§42中的第一法則的，那就不成問題可以完全應用節點分析法來分析。同様，任何一空間樑架如果它是按照§42中的第二法則構成，它上面的一切外力包括支點反作用力在內，在分析之前又都已知道，那末也可以完全應用節點分析法來分析。至於它的支點反作用力的一般的決定方法，我們在以後§51和§52中再討論。

開始分析時，如果三樑件所成的節點一個都找不到，照理是無法應用節點分析法的。不過，在特殊情下，有時還是可以應用。例如第290圖的樑架。這樑架跟第280\circ圖所畫的不同地方只是一根 AF' 樑換成了 AF 樑。這樑架中雖然沒有由三個樑件铰結而成節點，但是我們可以先觀察樑鏈 B 的平衡。它上面有四個樑件的反作用力在作用，其中三個力在同一平面（就是 CBB' 平面），可見第四個力，也就是 AB 樑的樑力必定等於零。同樣理由，依次考察 C, D, E 和

第290圖
F 各節點後，又可發現桿件 BC, CD, DE 和 EF 都沒有桿力。設想把這些沒有桿力的桿件由桁架中剪掉，我們就將看到，在節點 B, C, D 和 E 上都只有長軸相重合的兩個桿件，因此，它們的桿力也都非等於零不可。這樣，整個結構中就只剩下粗線所畫的幾個桿件桿力還沒有決定。對於這些桿力，我們只要依次考察鍊錨 A 和 F 的平衡，就可以很容易地確定。

例題和習題

219. 試研究一下第 291 圖中的兩相架，把它們中沒有桿力的桿件都標記出來。

解：圖中加標記的桿件都沒有桿力。

解 291 圖

220. 第 292a 圖中，一個空間桁架受如圖的三個桿力 P 作用。圖中 ABC 是一個等邊三角形，邊長等於 a。此外，$A'B'C'$ 是一個等邊等於 $2a$ 的等邊三角形，其水平平面 ABC 和 $A'B'C'$ 間的鉛垂距離是 $2a$。試求桁架中各桿件的桿力。

解：先觀察節點 C，它上面有 $1, 2$ 和 3 三個桿件。假定它們都是受拉桿件，畫出節點 C 受到的反作用力 S_1, S_2 和 S_3 如圖。定 C 點為坐標原點，令 x 軸取縱直方向，y 軸等分 $\angle ACB$。投影各力於 y 軸方向，得

$$-P - S_1 \frac{2\sqrt{3}}{\sqrt{13}} = 0$$

設 $S_1 = -\frac{2\sqrt{3}}{\sqrt{13}} P = -1.01 P$，負號表示桿件 1 不是受拉而是受壓，$S_1$ 的真正方向恰巧跟圖上畫的相反。再投影各力於 x 軸方向，可得
\(S_2 \sin 30^\circ - S_3 \sin 30^\circ = 0 \)

故 \(S_2 = S_3 \)。最後，設各力於 \(x \) 軸方向，又可得

\[-S_1 \frac{1}{\sqrt{13}} + S_2 \frac{\sqrt{3}}{2} + S_3 \frac{\sqrt{3}}{2} = 0\]

故

\[S_2 = S_3 = -\frac{P}{6} \]

註解表示 2 和 3 是兩個受力條件。

\(S_4 \) 決定後，我們即可求得點 \(B \)。它上面只有三個「力未知」的条件。把各件對點 \(B \) 的力作用力代替各件作後，我們得到一個平衡的空間共點力系。各力對於任意一軸線的力矩代數和應為零，取 \(C'A' \) 作為「力矩軸線」，使通過軸線的 \(S_6 \) 和 \(S_5 \) 以及在 \(B \) 點平行於該軸線的 \(S_2 \) 各未知力可以不考慮，即可得到

\[\frac{\sqrt{3}}{2} S_1 \cdot 2a + P \cdot \frac{a}{\sqrt{3}} = 0 \]

故 \(S_1 = -\frac{P}{6} \)，是壓力。因 \(S_1 = S_4 \)，該件與 \(B \) 點的力系必定在包含 \(B \) 點外力 \(P \) 與軸線 \(5 \) 的平面內。這樣，點 \(B \) 就變成受四個力作用，而且其中三個共線在一一個平面內，可見 \(S_6 = 0 \)。想像把零件 6 由框架中拿去，我們立刻就看到，各點 \(B \) 的受力情形完全與軸線 \(C \) 相同。因此，\(S_5 = S_1 = -1.04P \)。

至於零件 7, 8 和 9 的相力，考慮點 \(A \) 的平衡後，就可得 \(S_7 = S_8 = 0 \) 和 \(S_9 = -1.04P \)。

第 292 圖

221. 第 292 圖中 \(ACBD \) 和 \(A'C'B'D' \) 是各有一感平行的兩個水平正方形；邊長分別是 \(a \)和 \(2a \)。它們相互的距離為等於 2a。假設有四個鉛垂力 \(P \) 作用在這樣一個框架上如圖，試求構件 1, 2, 3, 4, 5 和 6 的相力。

(解：\(S_1 = S_2 = -0.25P \), \(S_3 = S_4 = -1.03P \), \(S_5 = S_6 = 0 \))

222. 第 294a 圖中是一個正方體形狀的框架。在它的一根對角線方向的構件 \(HB \) 內有一個螺旋彈簧。假使該彈簧被拉使構件 \(HB \) 中产生一等於 \(P \) 的反力，試求其他各構件
223. 假設在第 236a 圖的桁架上有一水平力 $P = 1000\text{kg}$ 任意取一個方向作用在铰點 D 上，
試決定這桁架中有那些桿件，樑力不等於零？

(解：$AD, BD, CD, AA', BB', CC'$)
第六章 空間力偶和平行力系

44. 平行平面上的力偶

在以前§22中討論一平面上的力偶時，我們已經證明：只要力偶的力矩保持不變，那一力偶在作用平面中的變換或移動就絲毫都不會改變力偶對所加物體的靜力作用。現在要進一步證明：一個力偶，即使作用平面發生平行於本身的移動，它對於所作用剛體的靜力作用也毫不改變。例如，第295圖中一個作用在平面M上的P力力偶，我們即使把它移到平行於M的平面N上，它的作用也不會受到影響。

這一論斷的證明如下：我們在平面N上取一直線A'B'平行於原來力臂AB，並且跟它相等。在A',B'兩點各加一對跟P力平行而相等的相等相反力P。這兩對方自成平衡，加入後並不影響原來力偶的作用。現在把A和B'點兩個向上的P力合成為作用在A,B'連線中點O的向上R力；把B和A'點兩個向下的P力合成為作用在B,A'連線中點O的向下R力。AB'和BA'自然相交於中點O處，所以O點的兩R力的作用將互相抵消，可以由力系中拿出來。剩下的就只是A'點的向上P力和B'點的向下P力。這兩個P力構成一個平面N上的力偶。這兩個力偶的力，相等於原來平面M上的P力力偶；它們的力偶矩（靜力作用）完全相同。因此，證明了：一個作用在剛體上的力偶對於剛體的作用，即使是力偶的作用平面發生平行於本身的移動，也不會改變。關於「力偶」的這一論斷，很顯然，是跟力的傳遞定理（§1）相像的。
根據以上討論，一個「力偶」完全決定於以下三因素：（1）力偶的力矩大小；（2）力偶面在空間的方向（這方向可由平面的法線方向來表示）；（3）力矩在力偶平面上所指的旋轉方向，也就是力偶的方向。這三個因素可完全由一向量來表示。假使已知一 \(P \) 力力偶（第296圖），我們就可以在力偶平面上任意選定一 \(C \) 點，引這平面的法線 \(CD \)，並按比例尺量出一段 \(CD \)，合這長度等於力偶的力矩，然後，按右旋螺旋法則畫一箭頭來表示力矩的方向。這樣得到的向量 \(CD \) 就完全決定了已知的「力偶」。因為力偶作用平面可以作平行於本身的推移，所以任何平行於 \(CD \) 的向量 \(C'D' \)，如果長度相等，就代表同一「力偶」。這種用向量表示力偶的方法在研究方向不同的空間力偶的問題中非常有用。以下討論中，像 \(CD \) 或 \(C'D' \) 這樣的向量我們都叫做力矩向量來跟力向量區別。

兩平行平面上的相等力偶可以由同樣的力矩向量來代表。若干個作用在平行平面上的力偶也可以由它的合成力偶來代表；合成力偶的力矩就等於各力偶的力矩代數和。這是因爲各力偶可以一起推移到同一平面上，從而可以應用§ 22中方法把它們合成為一個合成力偶。

45. 相交平面上的力偶

現在觀察兩個分別作用在平面 \(M \) 和 \(N \) 中的力偶 \(PL \) 和 \(Qi \)（第297圖）。因這個力偶，只要矩不變，就非但可以在作用平面上任意移動，而且力臂的長短也可以任意改變，所以我們在任何情況下都可以把力偶
\(PL, Qi \) 兩力偶的力臂共同移到平面 \(M, N \) 的交線上，並且令它們的長度一起都等於 \(l \)；這就是說，使兩力偶共同以圖中的 \(AB \) 為力臂。根據力平行四邊形原理，力和 \(B \) 點上的 \(P, Q \) 力可以合成為兩個大小相等、方向相反的合力。
R。這兩個力偶合成的力矩等於 Rl 的力偶，就是原來兩力偶合成的結果。

P1 及 Q1 兩力偶這樣的合成結果，還可以用 §44 中的力偶的向量表示法來求到。我們在平面 M, N 的交線上任意選定一個 C 點，從 C 點依次引長度等於 P1 及 Q1 的 CG 和 CH 垂直於平面 M, N 分別代表這兩力偶。把 CG 和 CH 合成力偶 C1L。所需用的平行四邊形 CGIH 跟力偶四邊形 BDIF 相似，因此，可以看作是由 BDIF 總 AC 線旋轉 90°，並且各邊放大了 l 倍而成。這也就是說，C1 等於 RI 並垂直於力偶 RI 所在的平面，亦即代表 R 力力偶的「力矩向量」。可見：要合成兩個力偶，只要把它們的「力矩向量」幾何相加，就可以得到合成力偶的「力矩向量」。

假使力偶的數目很多，我們應用以上向量相加方法先求出其中兩個的合成力偶，然後，又把第三個力偶加入進去，這樣連續進行向量相加就可以把它們全部合成為一個合成力偶。在如此合成過程中，我們會看到，代表合成力偶的力矩向量實際上也就是所有各力偶的力矩向量的幾何和。這些向量構成一個空間的力矩多邊形。多邊形的封閉邊代表合成力偶。

假使若干個力偶共同構成平衡，那它們力矩向量的「幾何和」自然必須等於零；否則它們就無法構成一個合成力偶而不可能平衡。因此，一個平衡的「力偶」系，它們力矩向量幾何相加必須共同構成一個封閉的空間多邊形。

一個已知力偶自然也可以由力矩向量的分解來分解為幾個分力偶。分解的各種情形完全跟 §38 中所討論的力的分解相同。這裡不再重複討論。

46. 力偶的投影法

應用 §45 的力矩向量幾何相加方法來決定力偶系的合成力偶並不簡便。因爲應用這種方法，需要像空間共點力的情形一樣，處理力矩向量所構成的空間力矩多邊形在兩個正交平面的投影。不過，也因為力矩和力在向量表示法方面的完全相像，所以 §39 中所討論的投影法對於處理力偶問題也同樣是非常有用的。
例如，平面 \(ABC \) 中有一力矩等於 \(M_i \) 的力偶（第 298 圖）；它的力矩
向量是圖中垂直於平面 \(ABC \) 的 \(\overrightarrow{OD} \)。 以 \(\overrightarrow{OD} \) 的起點作作原點， 定坐
標軸 \(x, y \) 和 \(z \) 如圖。 \(OD \) 跟坐標
標軸的交角是 \(\alpha_i, \beta_i \) 和 \(\gamma_i \)。 力矩
向量 \(M_i \) 在坐標軸上的投影是
\((M_x)_i, (M_y)_i, (M_z)_i \)。 故 \((M_x)_i = M_i \cos \alpha_i, \ (M_y)_i = M_i \cos \beta_i, \ (M_z)_i = M_i \cos \gamma_i \)。 這三個投影，
代表力偶 \(M_i \) 在三個坐標平面上的
分力偶。

因爲力偶不相本身可以沿作用平面任意推移而且作用平面還可以
任意作平行於本身的推移，所以任何一個空間力偶系統經常可以由一
條交會在一點的力矩向量來代表。 這也就是說，我們可以完全按照空間
共點力系的方法來處理任何一個力偶系。 因此，一個力偶系 \(M_1, \ M_2, \ldots, M_n \) 的合成力偶 \(M \) 可以由下式決定：

\[
\begin{align*}
M_x &= \sum_{i=1}^{n} (M_x)_i \\
M_y &= \sum_{i=1}^{n} (M_y)_i \\
M_z &= \sum_{i=1}^{n} (M_z)_i
\end{align*}
\]

合成力偶的大小是

\[
M = \sqrt{M_x^2 + M_y^2 + M_z^2}
\]

合成力偶 \(M \) 所在平面的法線跟 \(x, y \) 和 \(z \) 坐標軸的交角是 \(\alpha, \beta \) 和 \(\gamma \)； 那末

\[
\begin{align*}
\cos \alpha &= \frac{M_x}{M} \\
\cos \beta &= \frac{M_y}{M} \\
\cos \gamma &= \frac{M_z}{M}
\end{align*}
\]
假使一空間力偶系自己構成平衡，那根據 (b) 式就知道它的平衡條件是:

\[
\begin{align*}
\sum_{i=1}^{n} (M_x)_i &= 0 \\
\sum_{i=1}^{n} (M_y)_i &= 0 \\
\sum_{i=1}^{n} (M_z)_i &= 0
\end{align*}
\]

例題和習題

224. 第 299 圖中 A B C D 是一個密度均勻的長方體。有如圖的 P_a 和 Q_b 兩力偶作用在它上面。試求長方體平衡時，圖中 P, Q 兩力大小的比值等於多少?

![圖](a)

![圖](b)

第 299 圖

解：因長方體上 B, D 兩點所受到的反作用力 S_2 和 S_1 應該構成一個作用在包含對角線 BD 的鉛垂平面上的力偶，所以兩作用力為 P_a 和 Q_b 所成合成功力偶的力矩方向應當垂直於 BD，否則長方體不可能平衡。根據這一條件，可見

\[P_a : Q_b = a : b \]

故 \(P = Q \)。

225. 第 300 圖中一個正方體上有五個相等的作用力 P 在各角點作用。試證明如果在角點

![圖](a)

第 300 圖
47. 對一點與對通過該點一軸向的力矩間的關係

現在在一個已經有一個力在A點作用的物體上任意找一個O點，使這O點對物體加一對相等相反的力—P'及P''。它們的大小各與原力相等，作用線與P力平行（第303圖）；這兩力互相抵消，因此，毫不影響原來P力對物體的作用。這樣，我們便得到跟原來P力作用完全相同的一個三個力所成的力系。這力系，從另一方面看，我們又可以把它當作是由O點的單力P'及一個P和P''組成的力偶所構成的。可見：物體上的一個力在任何情形下總可以由物體上任意一點的一個單力及同一個力偶來代替。其中單力是一跟原來力平
行且相等的力；力偶是由原力和以上所选一点上一个跟原力相等相反的力所构成的。

這一變換方法（指以一個力及一個力偶代替一個力的方法）對於致
使支承於一點的物體的受力情形最有用。我們可以把這種物體上所有
各力一起移到支點上，整個由支點的反作用力來平衡。之後，決定物
體的平衡，就只要致察按以上變換所得到的各力偶對於物體的作用便
夠了。

由第303幅可以看到，P力對O點的力矩完全跟P和P''兩力所
成力偶的力矩相同。這一力矩的大小等於圖中△OAB 面積的兩倍（見
§14）。圖中我們用力矩向量OC 來代表這力偶；OC 的長度等於它
力矩的大小，方向按右旋螺絲法則確定。

P力對於O點的力矩跟it對於過O點任意一軸線的力矩問的關
係很簡單。根據§40，P力對圖中On 軸的力矩實際上也就是 P力在
On 軸垂直平面中的投影OA'B' 對O點的力矩。這一力矩的大小等於
圖中△OAB' 的兩倍面積，但這一△OA'B' 其實就是△OAB 在On 軸
垂直平面中的投影，它的面積實際上等於△OAB 的面積乘上OAB 與
OA'B'平面間夾角α的餘弦。α角自然也是這兩個平面在O點所引
法線OC' 跟OC 的交角。所以一個力對於任意一軸線On的力矩，就
力矩向量來說，就等於這力對軸線上O點的力矩在這軸線上的投影。

§20中說明過，兩個平行力的合力對兩力所在平面上任意一點的
力矩就等於原來兩平行力對同點的力矩代數和。根據這一事實連同以
上的討論，可知：任意兩個平行力的合力對空間任意一根軸線的力矩必
然等於這兩個平行力對同軸線的力矩代數和。

48．一般空間平行力系

我們來考察一個像第304幅的若干力F_1, F_2, …•F_6 所組成的一
般平行力系。這些力共同作用在一個物體上；有的作用方向向上，有
的作用方向向下。我們如果繼續應用§20的平行力相加方法，自然很
容易把其中向上各力 F_1, F_2 和F_3 的合力R_1 以及向下各力 F_4, F_5 和
F_6 的合力R_2 分別決定如圖。
一般說來，這樣做下來的結果有三種不同的可能：（1）得到的 ${\mathbf{R}}_1, {\mathbf{R}}_2$ 二力是一對相反的不等平行力。因之，我們可以把這兩力按 §21 方法合成為一個合力 ${\mathbf{R}}_1+{\mathbf{R}}_2$。也就是說，原來力系可以簡化成一個單力 ${\mathbf{R}}_1+{\mathbf{R}}_2$。得到的 ${\mathbf{R}}_1, {\mathbf{R}}_2$ 二力相等相反，但作用線不同。它們所成的力偶就是原來力系的合成結果。 （2）得到的 ${\mathbf{R}}_1, {\mathbf{R}}_2$ 二力相等相反，但作用線相同。它們所成的力偶就是原來力系的合成結果。 （3）得到的相反兩力 ${\mathbf{R}}_1, {\mathbf{R}}_2$ 非但大小相等而且作用線相等。這表示原來力系是一個平衡力系。

對於任意一個力系和平衡力系，要辨別以上三種可能，可先假定一個原點 ${\mathcal{O}}$，然後假定三個坐標軸，令其中 y 軸跟各力的作用線平行，以 Y_1, Y_2, \ldots, Y_n 分別代表各力（第 305 圖）。按第 304 圖的說法，設力系可以化為一個合力，那合力的大小自然等於各力大小的代數和。至於合力的作用線位置，§47 已說明過「兩平行力對任意一軸線的力矩相等和等於它們合力對同軸的力矩」，如果繼續應用這一觀點於每一個平行力的過程中，顯然可以證明：無論有多少個平行力對於一根軸線的全部力矩都等於它們的合力對這軸的力矩；所以一個平行力系的合力位置可以根據這一事實來決定。如果 x_i, z_i 代表力系中任意一力 Y_i 的坐標；x, z 代表力系合力 Y 的坐標，就可得：

$$
\begin{align*}
Y &= \sum_{i=1}^{i=n} Y_i \\
 x &= \frac{\sum_{i=1}^{i=n} (Y_i \cdot x_i)}{\sum_{i=1}^{i=n} Y_i} \\
 z &= \frac{\sum_{i=1}^{i=n} (Y_i \cdot z_i)}{\sum_{i=1}^{i=n} Y_i}
\end{align*}
$$

（24）
設或所有各力的代數和等於零，那這一力系化為一個合力的可能性就沒有，只可能(1)化為一個力偶，或(2)自成平衡。要辨別這兩種可能，便需要把各力對 x 和 z 軸的力矩代數和計算出來。假使對兩軸的力矩代數和完全或有一個不等於零，就表示這力系可化為一個力偶；所得到的力矩代數和就是合成力偶在 yz 平面和 xy 平面的分力偶的力矩。令 M_x 和 M_z 分別代表這兩個分力偶的力矩，可得

$$
\begin{align*}
\sum_{i=1}^{i=n} Y_i &= 0 \\
M_x &= \sum_{i=1}^{i=n} -(Y_i x_i) \\
M_z &= \sum_{i=1}^{i=n} (Y_i x_i)
\end{align*}
$$

（25）

分力偶的力矩確定後，合成力偶的力矩 M 的大小以及所在平面的方位可由 § 46 中 (b), (c) 兩式去決定。假使兩分力偶有一個力矩等於零，那就表示合成力偶恰巧作用在一個坐標平面中。

以上算出來的兩分力偶的力矩若是完全相等於零，原來力系那就進化為一個合成力偶的可能也沒有了，非自成平衡不可。所以一個空間的平行力系的平衡條件是：

$$
\begin{align*}
\sum_{i=1}^{i=n} Y_i &= 0 \\
\sum_{i=1}^{i=n} (Y_i x_i) &= 0 \\
\sum_{i=1}^{i=n} (Y_i z_i) &= 0
\end{align*}
$$

（26）

例題和習題

228. 第 306 图示中 AB 是一根水平支承在 A, B 轉軸之間的鋼軸，C 是一個半徑 $r = 20$ cm 的圓盤，掛在它隨上的重錘 $Q = 25$ kg，DE 是一根固定在軸上的桿桿，長 $l = 10$ cm，掛在它下端的重錘 $P = 100$ kg，C 輪的軸平行和 DE 杆具輪軸垂直支放軸 AB，試求平衡時 DE 沿軸方向的外力 α 以及兩軸承 A 和 B 對 AB 的反作用力 R_a 和 R_b。摩擦力和調整旋轉軸的自重都可以不計。圖中標的尺側以 cm 爲單位。

解：把整個裝置作爲分別體。因不計摩擦力，故軸承反作用力 R_a 和 R_b 必定是兩個類垂

228. 第 307 圖中長方板 ABDG 的質量是 α, 長度是 b, 重量是 Q。求圖中三個條件 1, 2 和 3 的力 S1, S2 和 S3。

(解: S1 = S2 = + \frac{Q}{2}, S3 = 0)

229. 第 309 圖中水平板的重量是 \gamma, 重量是 Q。求圖中三個條件 1, 2 和 3 的力 S1, S2 和 S3。

(解: S1 = 0.38 Q, S2 = 0.18 Q, S3 = 4 Q)

230. 第 309 圖中 O 是一塊厚度均勻、重量是 Q, 半徑是 r1 的圓板, 沿著放在一個半徑等於 r2 的圓洞上。試求圓板在 C 點承受的重量 P 最大可以達多少, 圓板還不至於翻轉?

\[P_{\text{max}} = Q \left(\frac{2r_1^2}{r_1^2 + 1} - 1 \right) \]

232. 兩根完全相同的鋼線 AD, BE 和 CF 組成一個長度 310 圖所畫的三角形。他們的 A, B 和 C 三點由紡車的三根鋼線的端點 1, 2 和 3 撐在水平的天花板下面。現在在 E 點加一鉛直力 F, 試求三根鋼的拉力 S1, S2 和 S3 以及紡車 D, E 和 F 的絞錘作用力 R1, R2 和 R3, 使三根的長度是 l。

(解: S1 = \frac{4}{7} P, S2 = \frac{1}{7} P, S3 = \frac{2}{7} P, R1 = \frac{4}{7} P, R2 = \frac{8}{7} P, R3 = \frac{2}{7} P)

233. 第 311 圖中是一個三端起重機。三個紡錘的紡錘, 就它們在水平面的位置, 恰好構成一個三角形 ABC。欲求紡錘的紡錘又恰好在 ΔABC 形心的正
上方。機臂 DF 可以繞著軸線 F 旋轉。α 代表 DF 所在平面與水平面之間的夾角（第 310 圖）。起重機所能提起的重量 P 應該是無論機臂 DF 在什麼位置都不至於使機臂翻倒。試求 P 最大可以等於多少?

解：在 α 很小，機臂 DF 在圖中 FD 位置的時候，機身因 P 力過大而發生的翻倒是繞 AB 轉而起 C 轉的旋轉；如果 α 很大，機臂在圖中 FD' 位置，那就是繞 AC 軸把 B 轉而起的旋轉，這兩種情形應該分別來討論。

起重機如繞 AB 軸旋轉，那在將開始旋轉時，C 端和地面間就不會有阻力存在。
§49

空間力偶和平行力系

設取 AB 作力矩軸綫，引用平衡條件即可得

$$P_c + FH - Q\cdot FE = 0$$

把已知各值代入上式，

$$P_c \cdot l \cdot \cos \alpha - Q \cdot \frac{a}{2 \cdot \sqrt{3}} = 0$$

故

$$P_c = \frac{Qa}{2 \cdot \sqrt{3} \cdot \cos \alpha}$$

由(b) 可知：使機身開始翻倒的臨界值 P 值 P_c 將隨著 α 變化；從 $\alpha = 0$ 時的最小值 $Qa/2 \cdot \sqrt{3}$ 變到 $\alpha = \pi/2$ 時的無，大。 不過事實上在 α 快達到當於 $\pi/2$ 之前，機身的 AB 基軸桿的可能已經不能作同標準，我們需要考慮 $(\alpha $ 相當大時) 機身機 AC 軸桿的翻倒。 這時侯機身 FD 在圖 FD' 位置。 機身將開始翻倒時， B 輪跟地面已沒有壓力存在。 故按以上方法，可得

$$P_c \cdot D'J - Q\cdot E G = 0$$

或

$$P_c \cdot (FJ - FK) - Q\cdot E G = 0$$

把已知各值代入上式，可得

$$P_c = \left[l \cdot \cos (120^\circ - \alpha) - \frac{a^2}{4} \right] - \frac{Qa}{2 \cdot \sqrt{3}} = 0$$

故

$$P_c = \frac{Qa}{8 \cdot l \cdot \sin \alpha - a \cdot \sqrt{3} \cdot \cos \alpha - \frac{a}{4}}$$

(c)

至於 (b), (c) 兩式的適用範圍 (指 α 的臨界值)： 在這以上一般應該以機身機 AC 軸的翻倒為標準； 需要應用 (e) 勢； 在這以下一般應該以機身機 AB 軸的翻倒為標準，需要應用 (b) 式。 我們可以令 (b), (c) 兩式相等來決定。 此時，$\sin \alpha$ 得到

$$\sin \alpha = \frac{a \cdot \sqrt{3} \cdot a - 3a^2}{8l}$$

(d)

特殊情形，$\alpha = l$ 時，(d)式簡化為

$$\sin \alpha = \frac{l + \sqrt{3}}{8} = 0.961$$

或 $\alpha = 74.8^\circ$。

(d) 式中的 $\sin \alpha$ 是沒有實際意義的，因α 導受オリフィ力矩的限制，不可能大於 90°。 對在 $a = l$ 的特殊情形下，機身在 $a = 0$ 時最容易翻倒。 因之，最大的 P 值，按 (b) 式，應該是 $Q \cdot 2 \cdot \sqrt{3}$。

49. 平行力中心及重心

我們在 §24 中已經知道：假使有一個已知的平行力系作用在一個剛體內的一定的點上，那剛體中就必定有一點可叫做「平行力中心」；無論平行力系的作用方向如何，它的合力必然通過這一中心。

因合力對任一軸線的力矩總等於力
系中各力對同軸的力矩代數和，所以力系的平行力中心可以很簡便地由這一條件來確定。令剛體內某一力系 \(\{ A_1, A_2, \ldots, A_n \} \) 的任一點 \(A_i \)
的座標為 \(x_i, y_i \) 和 \(z_i \)。一已知平行力系 \(F_1, F_2, \ldots, F_n \) 各力分別作用在這點系的各點上。因力系可以取任何方向作用，故可先設想它們的作用線跟 \(yz \) 位置平面平行。在 \(yz \) 平面內任意選定一垂直於力系方向的直線作為力矩軸線，計算後，可得力系合力作用線到 \(yz \) 平面的距離（也就是平行力中心 \(C \) 到平面的距離）是

\[
x_c = \frac{i=n \sum_{i=1}^{i=n} (F_i x_i)}{\sum_{i=1}^{i=n} F_i} \quad (27a)
\]

之後，設想力系取平行於 \(xz \) 位置平面的方向作用，又可得合力作用線或平行力中心 \(C \) 到 \(xz \) 平面的距離是

\[
y_c = \frac{i=n \sum_{i=1}^{i=n} (F_i y_i)}{\sum_{i=1}^{i=n} F_i} \quad (27b)
\]

最後，設想力系跟 \(xy \) 平面平行，又得到

\[
z_c = \frac{i=n \sum_{i=1}^{i=n} (F_i z_i)}{\sum_{i=1}^{i=n} F_i} \quad (27c)
\]

因爲我們已經知道，平行力中心的位置完全跟力系所取的方向無關，所以(27)式以坐標方程確定的力系的中心位置，對於任何方向的力系均可適用。

§ 25 中已說明過，一個物體的「重心」就是其中各質點所受重力的平行力中心。所以重心的位置也可以用(27)式來決定。物體的密度如果完全均勻，各部份的重力就跟各部份的體積成正比。因此，它的重心位置只跟它的整個的體積形状有關，密度如何是沒有影響的；這就是說，一個密度均勻的物體，它的重心跟它的體積的形心是同一回事。

一個密度均勻的物體如果它的體積形狀有一對稱平面，那樣

\[
\sum_{i=1}^{i=n} (F_i x_i)
\]

\[
\sum_{i=1}^{i=n} F_i
\]
(27) 式即可推知，它的重心一定是在这平面内，如果它有三个对称平面，那重心就在这三个平面的交线上。假设有一个对称平面，自然，重心就是这三个平面的交点。因此，密度均匀的球，它的重心就是球心；密度均匀的圆柱体，它的重心就是它中心轴的中点；密度均匀的圆锥体，它的重心就在它中心轴上等等。

一个物体如果各部分的重心已经知道，那这一组合体的重心位置就可以由作用在已知各重心点的各部分的重力的平行力中心来决定。

一个物体的表面形状，假若能用方程式表示，并且其中每一小的密
度都已经知道，那我们设法把物体分割成无限多的微小部分，应用积分
法去求出 (27) 式的各「重积值」，就可求得它的重心位置。

以下我们用几个例子来证明各种求重心位置的方法。

例题和习题

238. 第 313 图中矩形 $AOBD$ 由三部分组成：两边形部分 AO, OB 分别是正方形同轴的

x, y 轴重合，中间形部分 BD 是 xy 平面内一根半径等于 r 的圆弧。设中间形均匀，切面一模，

两边形部分都是 r，求出整个组合的重心位置。

解：因为中间形切面一模，切面直径又很小，所以它的

重心可以当作就是组合形 $AOBD$ 的重要形心。现在

在三个平行力大小分别等于 AO, OB 和 BD 的

重量，作用在各部分的形心 C_1, C_2 和 C_3 处。先设想三个平行力平行于 x 轴由 (27a) 和 (27c)，可得

$$x_c = \frac{\pi r \cdot 2r + r \cdot r}{2r + \frac{\pi r}{2}} = \frac{3r}{4 + \pi}$$

$$y_c = \frac{r \cdot r}{2r + \frac{\pi r}{2}} = \frac{r}{4 + \pi}$$

之后，令平行力平行于 y 轴由 (27) 式，又可得

$$y_c = \frac{\pi r \cdot 2r + \pi r}{2r + \frac{\pi r}{2}} = \frac{2r}{4 + \pi}$$

239. 第 314 图中是一个密度均匀，厚薄一致的圆筒体，上面开口，下口封底。要圆筒的中
236. 以圖 315 圖中一截面直徑等於 1 cm 的鋼股。它上面裝一個直徑為 4 cm 的鋼管。圖中所有尺寸都以 cm 為單位。試求整個物體的重心 C 離開一端的距離 x_c 等於多大？

(解：x_c=0, y_c=\frac{h^2}{2h+r})

237. 以圖 317 圖中是一塊包在箱子角上的薄鋼皮，密度均勻，厚度與底面一樣。試按圖中尺寸，求它的重量 G 的坐標 x_c, y_c 和 z_c(見圖示)。

(解：x_c=\frac{a^2(b+c)}{3(ab+bc+ac)}, y_c=\frac{b^2(a+c)}{3(ab+bc+ac)}, z_c=\frac{c^2(a+b)}{3(ab+bc+ac)})

238. 以圖 318 圖中的圓錐體，密度均勻，高 h，底面半徑是 r。試求它重心 C 的位置。

解：因密度均勻，故所求重心也就是圓錐體的體形心 C。又因中心軸 OB 是圓錐體的對稱軸，故形心 C 一定在這一軸線上。因此，只要求出形心 C 的坐標 x_c，重心位置就完全決定。選定坐標軸如圖。我們把圓錐體沿長軸分剖為無限小的薄片。坐標等於 x 的一薄片；厚度是 dx，半径是 y，面積是 dV=\pi y^2 dx。因 y=x/r，故

\[dV=\frac{\pi r^2}{h^3} x^2 dx\]

應用(27)式，積分後就得到

\[x_c=\frac{\int_0^h \frac{\pi r^2}{h^3} x^2 dx}{\int_0^h \frac{\pi r^2}{h^3} x^2 dx} = \frac{\frac{h^4}{4}}{\frac{h^4}{8}} = \frac{2}{3} h\]

這就是說，一個密度均勻的正圓錐體的重心是在它中心軸上離底面的距離等於圓錐高度四分之一處。
239. 任意一個密度均勻的金字塔形物體，底面面積等於 \(A \)，高度等於 \(h \)。試證明它的重心在頂點和底面面積重心的直線上，離底面的距離等於 \(h/4 \)。

240. 假設第 317 圖的正圓錐體中，各部分的高度乘以上方部分的面積成正比。試求它重心 \(C \) 的坐標 \(x_c \)。

(解：\(x_c = \frac{3}{5}h \))

241. 試求一個半徑等於 \(r \) 的半球體的重心與半球體底面的距離 \(x_c \)。

(解：\(x_c = \frac{3}{8}r \))

242. 試一密度均勻的正圓錐體，高度為 \(h \)，底面面積等於 \(r^2 \)，頂面面積等於 \(r_1^2 \)。試求它重心距離底面的垂直距離 \(x_c \)。

(解：\(x_c = \frac{h}{4} \cdot \frac{r_1^2 + 2r_1 r_2 + 3r_2^2}{r_1^2 + r_1 r_2 + r_2^2} \))

243. 第 318 圖中是一個長方體，底面是一個直徑等於 \(r \) 的半圓球，上面是一個高 \(h \)，半徑也等於 \(r \) 的半圓柱。現要在這個小朋友號在半球球心處，問高度 \(h \) 應該等於多少？

(解：\(h = \frac{r}{\sqrt{2}} \))

244. 第 319 圖中的合體，上部是一個高 \(h \)，底面面積等於 \(r \) 的正圓錐體，頂部是一個半徑等於 \(r \) 的半球。假設這一合體的重心恰在半球球心處，試求圓錐部份的高度 \(h \) 等於多少？

(解：\(h = \frac{3}{4}r \))

245. 第 320 圖中是一個不銹鋼球的切面，圖中尺寸全以 mm 為單位。鋼球上部的鋼球頭是一個半球。試求鋼球重心的坐標 \(y_c \)。

(解：\(y_c = 25.3 \) mm)
第七章 一般的空間力系

50. 空間力系的合成

任何一個作用在一物體上的空間力系都可以簡化為作用在任意一點的一個合力和另外一個合成力偶。例如第 321 圖中作用在物體 A，B 和 C 三點的 \(F_1, F_2 \) 和 \(F_3 \) 三力。我們隨意選一點 \(O \)，在這點加一對相等相反、且平行而等於 \(F_1' \) 與 \(F_1'' \) 兩力。這樣，原來 \(A \) 點的 \(F_1 \) 力就變成 \(O \) 點的 \(F_1', F_1'' \) 所成的力偶，作用完全跟 \(F_1 \) 相同。同様辦法，\(B \) 點 \(F_2 \) 力也可以由 \(O \) 點 \(F_2', F_2'' \) 所成的力偶來代替；\(C \) 點 \(F_3 \) 力又可以由 \(O \) 點 \(F_3', F_3'' \) 所成的力偶來代替。\(O \) 點的 \(F_1', F_2', F_3' \) 力三力當然可按§ 43 中的方法合成為作用在 \(O \) 點的合力 \(R \)。其餘三個力偶又可按§ 45 中的方法合成為一個合力偶 \(M \)。可見原來作用在 \(A, B, C \) 三點的 \(F_1, F_2, F_3 \) 三力的確能化為靜力作用完全相同的「一個合力 \(R \) 和一個合成力偶 \(M \)」，合力 \(R \) 的作用點 \(O \) 而且可以隨意選定。

合力 \(R \) 的大小、方向是由所給各力的幾何和來決定的，完全跟所選 \(O \) 點的位置無關。不過所得的合成力偶的力矩 \(M \) 以及其它的作用平面卻要看 \(O \) 點的位置如何而定。例如第 322 圖中，力向量 \(R \) 和力矩向量 \(M \) 代表第 321 圖中力系的合力和合成力偶。現在另選定一點 \(O_1 \) 點，
加一對相等相反並且跟 R 平行而相等的 R'及 R'' 兩力。 原來力系因之又轉化為一個 O_1 點的 R' 力和另外一個合成力偶 M_1。 這一力偶 M_1 是由原來力偶 M 加上 O 點 R 力和 O_1 點 R'' 力所合成力偶而成的。可見，我們把合力的作用點由 O 點移到 O_1 點只是合成力偶的大小和作用平面會因而變化，合力的大小和方向是毫不改變的。合成力偶的變化等於 O_1 點 R' 力對 O_1 點的力矩，它的力矩向量 M 乘直於 R 及 R'' 所決定的平面。因此，對於平行於合力作用線的直線上的一切點，一個空間力系的力矩值是保持不變的。

此外，如果把力矩向量 M 分解為平行和垂直於 R 力作用線的兩個分向量，那其中就只有垂直於 R 力方向的分向量才會因合力作用點從 O 變換到 O_1 而變化，平行於 R 力方向的分向量是始終固定不變的。因此，O_1 點假使選擇得適當，就可能使垂直 R 力的這一分向量等於零。這也就是說，我們可以找到一個使合成力偶恰好在合力作用線的垂直平面中的合力作用點。例如第 323 圖中，我們設想 KK 是 O 點合力 R 的作用線和合成力偶的力矩向量 M 所決定的平面。在這一平面中，我們把向量 M 分解為 R 力方向和 R 力垂直方向的分向量 M_x 和 M_y。之後，過 R 力作用線作一垂直於向量 M' 的平面 NN，在這一平面上，選按一 O_1 點，使 O_1 點跟 R 力作用線的垂直距離 $d = M' / R$。因此，R 力對於 O_1 點的力矩 Rd 恰等於 M'，但方向跟 M' 相反。現在在 O_1 點加一對相等相反並且平行而等於 R 的 R' 及 R'' 力，使原來的力偶 M' 由 R, R'' 兩力所合成力偶抵消。剩下下来的就只是一個作用在 O_1 點的合力 R' 和一個在垂直於 R' 力作用線平面中的合成力偶 M'（見第 323 圖）。這就是一個空間力系所可能簡化的最簡單形式。
特例情形，一個已定空間力系的各力幾何和等於零時，那這一力系就將化為一個合成力偶。這力偶的力矩是跟任意選定的 O 點位置完全無關的。

如果合力不等於零而力偶的力矩 M 等於零，那這一已定力系就可以簡化成一個合力。此外，如果合成力偶的力矩向量 M 不等於零，但是它的方向垂直於合力 R，那這一力系也可以化為一個合力；因爲合力 R 和合成力偶 M 既然在同一平面，我們自然可以按處理平面力系的方法把它們合成一個合力。這些事實說明了：任何一個的空間力系，只要有簡化後它的合力及合成力偶同時都等於零時，它才會平衡。

任何一個空間力系除掉可以化為一個合力及一合成力偶外，還可以把它簡化為「作用線互不相交」的兩個力。例如第 324 圖中，A 點的 R 力和圖中 R₂ 力偶是一個按照以上方法簡化而成的空間力系；而且 R₂ 力偶已經推移到使其中一力 R₂ 作用在 A 點。現在把 A 點的 R 和 R₂ 兩力合成一個合力 R₁。這樣，原來的空間力系就化為 A、B 兩點的 R₁ 和 R₂ 兩個力構成的力系，它的作用跟原來力系相同；而且由以上的合成過程可知，這兩力的作用線必然互不相交。把一個空間力系簡化為兩個力，有時比化為一個合力和一合成力偶要適用一些。

51. 投影法和力矩法

§50 中已說明，任何一個空間力系都可以化簡為作用在任料一點的合力 R 和一個合成力偶 M。簡化的方法是把所有各力都推移到任選的 O 點，求出它們的幾何和就得到力系的合力。至於合成力偶的力矩，我們可以由所有各力對 O 點力矩的力矩向量的幾何和來決定。

關於合力和合成力偶的計算，我們可以以任選的 O 點作原點，選定正交座標軸 x，y 和 z。根據以上的討論，O 點的合力就可以由 §39 中 (a)，(b) 和 (c) 三式來決定；合成力偶可以由 §46 中 (a)，(b) 和 (c) 三式來決定。

§50 中也說明：一個空間力系必須合力 R 和合成力偶的力矩 M
同時都等於零才能平衡。所以按§39和§46中討論的結果，可得一般的空間力系的平衡條件如下：

\[
\begin{align*}
\sum_{i=1}^{n} X_i &= 0 \\
\sum_{i=1}^{n} Y_i &= 0 \\
\sum_{i=1}^{n} Z_i &= 0 \\
\sum_{i=1}^{n} (M_x)_i &= 0 \\
\sum_{i=1}^{n} (M_y)_i &= 0 \\
\sum_{i=1}^{n} (M_z)_i &= 0
\end{align*}
\]

(28)

這六個方程式是對於任何力系都適用的平衡條件；以前所討論過的各種平衡條件沒有任何一種不可以由這最普通的條件歸納出來。

假使一個力系中所有各力都互相平行，那我們可選定一個 y 軸跟各力平行的正交坐標軸系來計算。在這種情形下，力系對(28)式中第一、第三、第五各式在任何條件下都一定會滿足，所以我們得到§48中(26)式所表示的平衡條件。

若是一個力系中所有各力都相交於一點，那我們可以選這點作為原點，定一正交坐標軸系，這一力系對(28)式中第四、第五、第六各式就無論如何都能滿足，故得到共點力系的平衡條件如§39中的(21)式。

如果一個力系中所有各力都在同一平面，我們可選取這平面作為 x 和 y 軸所成的坐標平面，那力系永遠會滿足(28)式中第三、第四、第五各式，可不必列出，所以這種力系的平衡條件如§31中(19)式。同様，一個平面的平行力系和共點力系的平衡條件§23中(11)式和§13中(5)式，又可由這裏得到的(19)式簡化出來。

根據§30中的一般性的討論，任何一個力系要成為平衡，就必須合
力和合成力偶同時都等於零，從而，這一力系對於空間任何一軸線的力矩代數和以及各力在空間任何一軸線的投影代數和都必定是等於零。因此，處理一個已知是平衡的力系就不必一定應用正交坐標軸系來考察各力的力矩及投影；任何其他軸系也無不可以選用。

例題和習題

243. 第 325 圖中，一個半徑 \(r = 3 \text{ cm} \) 的圓盤安裝在一根垂直於盤面的中心軸 \(AB \) 上，\(AB \) 與盤軸形成 \(\alpha = 20^\circ \) 的角度，兩端固定在 \(A, B \) 兩軸承內不能旋轉。設圖中 \(CD \) 是一對水平軸，\(D \) 點鉛重力為 \(P = 43 \text{ kg} \)，試求 \(P \) 力對於 \(AB \) 軸的力矩 \(M \) 等於多大。

（解：\(M = 4 \text{ kg cm} \)）

247. 第 325 圖中一水平旋轉軸支在 \(A, B \) 兩軸承內，它上面安裝兩個滑輪，各受外力 \(P, Q \) 作用如圖。設圖中尺寸完全用 \(\text{cm} \) 作爲單位，\(Q = 600 \text{ kg} \)，試求計算阻力求平衡時 \(P \) 力的大小，以及軸承 \(A \) 和 \(B \) 對水平旋轉反作用力的水平和鉛垂分力 \(X_a, Y_a \) 和 \(X_b, Y_b \) 各等於多大？

解：先以水平軸和兩滑輪當作一個「整體」。因軸承的摩擦力可以不計，故 \(A, B \) 兩軸承的反作用力在軸的軸心方向沒有分力存在。現在選定坐標軸系如圖，應用 (28) 式，可得:

\[
\begin{align*}
X_a + X_b + P &= 0 \\
Y_a + Y_b - Q &= 0 \\
40Y_b - 60Q &= 0 \\
-10P - 40X_b &= 0 \\
8Q - 12P &= 0
\end{align*}
\]

(a)
248. 第 327 圖中是一根杆，所舉的重量是 Q。設作用力 P 垂直於桿兩 CD,CD 和 P 力所決定的平面和垂直於桿的軸枝 AB, 某不計摩擦力, 求平衡時, P 力的大以及 A, B 兩軸的反作用力在桿中各處作用方向和距離。

(解: \(P = 0.25Q\); \(X_b = 0.02Q, Y_b = 0.703Q, X_a = -0.146Q, X_a = 0.031Q \))

2.9. AB 桿重 Q 及 l，斜羅在光滑的終端牆面和水平地面間，兩端由兩根水平的軟桿 AC, BD 連接在桿上 C, D 兩點 (第 328 圖)。試求不平衡時桿面地面對 AB 桿的反作用力 \(R_a \) 和 \(R_b \) 以及 AC, BD 兩桿內的張力 \(S_a \) 和 \(S_b \)。

(解: \(R_a = \frac{Q}{4}; R_b = Q; S_a = \frac{Q}{4} \); \(S_b = \frac{Q}{2} \))

250. 第 329 圖中方樁的重量 ADEB 的重量是 \(W = 48\) kg, 由一桿 DF 支撐如圖。設桿 A, B 的摩擦力可以不計, 桿端可以在桿中 AB 桿方向自由滑動。試求 DF 桿的拉力 S 以及 A, B 三桿的反作用力的各分力。

(解: \(S = 1386\) kg; \(X_a = 0.83k, X_b = 0; Y_a = 12,00k; Y_b = 24,00k \))

251. 第 329 圖中 AB 桿連 Q 重 Q, 由兩桿的 \(\epsilon \) 的鉛垂軸桿 AC 和 BD 掛在天花板下。(在 AB 所在的水平面中, 有一桿 P 力力作用在 AB 桿上。力重的力矩是 M。AB 桿在力矩作用下旋轉一 \(\alpha \) 角如圖)。設桿已知 \(\alpha \) 角的大小, 試求平衡時力矩 M 和兩桿桿內的張力及各分力多少?

解: 將 AB 桿當作「分離桿」。選分離桿在桿力 Q, 水平 P 力力矩和傾斜方向的桿桿張力

解: 將 AB 桿當作「分離桿」。選分離桿在桿力 Q, 水平 P 力力矩和傾斜方向的桿桿張力
S 作用下平衡。令 β 代表该梁与铅垂线所成的交角，分解 S 力为水平及垂直方向分力：

$$S_h = S \sin \beta, \quad S_v = S \cos \beta$$

投影所有各力于铅垂线上，可得

$$2S \cos \beta - Q = 0 \quad (b)$$

因强力的两水平分力 S_h 共同成一个水平面 $AC'BD'$ 中的力偶，力偶臂是

$$2r \cos \frac{\alpha}{2} \quad (a. 330 \text{图})$$

故该 Q 力作用线作为力矩轴线计算各力的力矩，可得

$$M - S \sin \beta \cdot 2r \cos \frac{\alpha}{2} = 0 \quad (c)$$

(1) 例 330 图

但从图上可以得到

$$\sin \beta = \frac{2r}{l} \sin \frac{\alpha}{2}$$

或

$$\cos \beta = \sqrt{1 - \frac{4r^2}{l^2} \sin^2 \frac{\alpha}{2}} \quad (d)$$

故把 (d) 式代入 (b), (c) 式中，解出 S 及 M，就可得

$$S = \frac{Ql}{2 \sqrt{l^2 - 4r^2 \sin^2 \frac{\alpha}{2}}}$$

$$M = \frac{Qr^2 \sin \alpha}{\sqrt{l^2 - 4r^2 \sin^2 \frac{\alpha}{2}}} \quad (e)$$

校核所得到的数值，如用「分力校核法」看 S 和 M 的数值是否与力矩和力矩的数值符合外，还可以由最极限情况下的实际现象来考虑。假使 $\alpha = 0$, 那么 (e) 式可得

$$S = \frac{Q}{2}, \quad M = 0$$

这显然符合常理，故该如此。如果 $\alpha = 180^\circ$, 那么 $M = 0$, 但

$$S = \frac{Ql}{2 \sqrt{l^2 - 4r^2}}$$

这时候，两根弦线交叉在铅垂平面中，我们如用处理平面力系的方法也就会得到同样的结果。
§ 51. 一般的空间力系

252. 第 331 圖中 AB 得長 2r, 可以在水平平面中的它中點的支點 C 自由旋轉。它的 B 端由一根跨過 D 頂的絞軸吊著一個重物 Q 如圖。 假使在 AB 柱的 A 末端增加一個垂直於軸線的水平力 P, 使 AB 所建的矩形平面旋轉到水平線 α, 並不計摩擦力。求平衡時，P 力的大小應等於多少？

(解: \[P = \frac{QR \sin \alpha}{\sqrt{h^2 + 4r^2 \sin^2 \alpha}} \])

253. 第 332 圖中 AB 原是 1 重 Q；A 端由一節慣性矩固定在地面上；B 端自由地懸在一個鉗座表面上。拉面和絞軸 A 的水平距離等於 \(a \)。圖中 AOB 平面與絞軸的 \(\alpha \) 平面的夾角是 \(\alpha \)。AB 柱與地面間的摩擦係數是 \(\mu \); 絞軸的摩擦力則可不計。試求 AB 柱略開始運動時，\(\alpha \) 角應該等於多少？

解: AB 柱將開始運動時，B 端的反作用力必須在垂直於平面的弧弧 DBE 的 B 點切面中。

(a) \[\tan \alpha = \frac{\frac{\mu N}{\mu N}}{N} \]

第 331 圖

第 332 圖

254. 第 333 圖中是一個風車。它的水平軸 DAB 由 A, B 兩軸垂直支承著。軸上繞有

一個螺旋 C, 其長度 \(l \) = 12cm。風車葉片所受到的風壓相等於作用在離軸旋轉面線

20cm 處的一個等於 \(100 \) kg 的作用力。風車葉片與近似 \(EGH \) 平面所成的夾角

是 \(30 \)°; EGH 是垂直於 DAB 軸的旋轉平面。 試求圖中作用在轉軸 C 邊上的 P 力

應等於多少，才能平衡？

(解: \[P = 500 \) kg)

255. 第 334 圖的起重裝置中，兩根絞索平面 ABC 和 BGF 所成的夾角是 \(\alpha \)。 試求圖中 DB, EB 兩拉索中的張力 \(S_1 \) 和 \(S_2 \) 應等於若干？

\[S_1 = \frac{P_a}{h} (\cos \alpha + \sin \alpha) \]

(解: \[S_2 = \frac{P_a}{h} (\cos \alpha - \sin \alpha) \])
52. 剛體在空間的靜定支承

現在要討論如何把一個剛體固定在基礎上使它在空間的運動自由受到完全約束的一般性問題。例如，第335圖中的一長方體，我們可以用一個球形鉸鏈把它上面任意一點A完全固定在基礎上。這樣，物體就只能繞A點旋轉；換句話說，它上面任何一點只可能在以A點為球心、以這一點與A點的距離為半徑的一個圓球表面上運動。假使還要進一步約束物體的運動自由，我們可再把它上面另外一個任意的B點用鋸形鉸鏈連接在基礎上，令鋸鉸鍊的平面垂直於A，B的軸線。這樣，物體的運動自由又將進一步受到約束，只可以作繞AB軸線的旋轉；這也就是說，它上面任何一點只可能在垂直於AB線的平面中一個圓心在AB線上的圓周上運動。因此，我們如果再把物體上另外一個C點用一鉸鉸連接在基礎，此樑件的長軸不跟AB線相交，使物體繞AB線旋轉的可能全消失，那這一物體在空間的運動自由就可以完全約束住。以上的討論雖然用長方體做例子，但是任何其他形狀的物體也無不如此，因此，是普遍性的討論。這兒所以用長方體做例子不過
是強調物體的空間三度性而已。由這個例子，可以看到：要完全約束一個剛體在空間的運動自由，只要由（1）一個球形銜棒，（2）一個環形銜鏈，（3）一個銜鏈桿，把剛體連接在基礎上就能實現。

剛體運動自由的完全約束也可以完全應用銜鏈桿來完成。例如，第335b圖中完全用銜鏈桿的支承系統就顯然跟第335a圖的裝置效用相同。A點的三個不同在一平面中的桿件相當於一個球形銜鏈，這在§42中已指出過。B點兩桿件把B點約束在一平面中，相當於一個環形銜鏈。可見，如果要完全用桿件來完成物體運動自由的「完全約束」，那就至少要有六個銜鏈桿。

這六桿件當然不一定要按照相當於球形銜鏈和環形銜鏈的方式（第335b圖）安裝。換一種安裝方法，同樣也可以實現物體運動自由的完全約束。例如，A點的一個桿件（第335b圖）就可以由跟它平行但是裝在D點的桿件來代替（第335c圖），B點的一桿件也可以由跟它平行的E點的桿件來代替。這樣的「替換」並不會破壞物體的「完全約束」。因此，我們有很多的安裝六桿件的方法，都可以實現物體運動自由的「完全約束」。不過，我們也不能由此推論，認為六桿件無論怎樣安裝都成。這是不對的，例如，第336a圖中的六桿件所成的支承系統，它的六個桿件全部相互平行。物體在這種方式支承下，顯然在垂直於各桿件的平面中還有一些運動的自由。這也就是說，因爲所有桿件都跟任何一根平行於各桿件的直線在無限遠相交，所以物體有一些繞這些直線旋轉的自由。因此，這樣安裝起來的支承系統就不能完成物體的「完全約束」。再如第336b圖中的支承系統，它的所有桿件都在相互平行的各平面中，因此，也不能實現物體的「完全約束」。因爲三個平

![迪圖](attachment:diagram.png)
行平面將在無限遠處共同相交於一根直線，以致所有桿件的長軸都共同跟這一直線相交，所以物體仍然有一些繞這根交線旋轉的自由；也就是說，物體在垂直於桿件長軸的平面中仍舊有運動的可能，從而這樣六桿件不可能是一個使物體運動自由受完全約束的支承系統。

一般說來，如果支承系統中所有桿件的長軸都跟某一直線相交，那物體就有這樣的可能性，就是它至少可以繞這根線發生一定程度的旋轉。支承系統的六桿件中，如果有四個桿件，它們長軸共同交於一點，那其餘兩桿件無論如何安裝都會共同跟一根過四桿件長軸交點的直線相交。例如，第 336c 頁中的支承系統，其中有四個桿件的長軸共同相交在 A 點。這一 A 點跟另一 CF 桿的長軸可以決定一個平面 ACF，桿件 BE 又將跟這一平面相交於 D 點。因此，AD 直線就必然會跟所有六桿件的長軸相交，這樣就不可能構成一個使物體運動自由受「完全約束」的支承系統。當然，桿件 BE 也可能不跟 ACF 平面相交。不過即使它們不相交而互相平行，那 ACF 平面中也可能有一根跟 BE 平行的直線 AD 可以作爲跟六桿件長軸相交的直線，只是 BE 跟它相交在無限遠而已。這種構成空間「完全約束」的六桿件支承系統是跟平面的三桿件支承系統相同的。六桿件的長軸不能共同跟一根直線相交且平面支承系統中三桿件不能共同在一點相交的情形相同（見 § 34）。

由以上的例子說明中，我們可看到，一個長軸不共同跟一根直線相交的六桿桿件（或相當於六桿件的裝置）所構成的支承系統足夠使支承的物體在空間的運動自由受完全約束。同時，也必須有如此六個桿件才能完成物體的「完全約束」。桿件的數目如果超過六個，那多餘的桿件就叫做過剩支承。

任何一個受「完全約束」的物體，例如第 335 個中的各物體，如果受到一個作用力系的作用，那它的支承系統的各桿件就必然將產生一組反作用力來跟作用力共同構成平衡。這也就是說，在物體受作用力作用時，每一個支承桿件內部都會產生長軸方向的樑力，同時每一個桿件都會對物體產生一個跟桿力相同的反作用力，使物體上所有作用力和反作用力共同構成一個平衡的一組空間力系。這種力系的平衡條件 (28) 一共有六個方程式，可以解決六個未知數。在以上討論中，我們
已經知道，一個對物體運動自由有完全約束的支承系統，它內中「必須和足夠」的桿件數目恰巧也是六個。 因此，六個桿件對物體的反作用力，也就是它們的桿力，恰好可以完全由六個靜力平衡方程式來結以決定。 正因為這一緣故，這種由不共同跟一直線相交的六錨鏈桿組成的支承系統就叫做超靜定支承。

假使支承系統中桿件多於六個，有過剩支承存在，那六個靜力平衡方程式就不夠決定所有桿件的桿力。 因此，這種支承系統我們特稱為超靜定支承。

在六個桿件的長軸都共同跟一根直線相交的特例情形中，它們構成的支承系統還是屬於「超靜定支承」。 這跟平面支承中三桿件的長軸共同交於一點的情形是一樣的。

分析任何一個六桿件構成的支承系統，首先總是畫剛體受力作用的「分解體圖」，把支承系統中的各桿件本身用它們各自對剛體的反作用力替代出來。這些反作用力的作用線是跟各桿件的長軸相合的，所以只有它們的大小和正反方向要決定。 決定各反作用力的大小，也就是各桿件的桿力大小，我們可以成問題地應用(28)式來計算。 不過，一個平衡力系對任何一根軸線的力矩代數和以及投影代數和都是等於零的。 因此，我們不必一定要拘泥於應用(28)式中各式。 假使能夠選出幾根適當的軸線來列立六個獨立的平衡方程式，使每一個方程式裏面只包含一個或兩個未知數，那就比單純用(28)式容易解決得多。

底便我們舉些例子來說明這類問題的解決方法。

例題和習題

256. 第 337 圖中 ABCDEFGH 是一個高，且各鄂部 a,b,c 的長方體，由圖中六桿件支承在水平位置。 假設有一水平力 P 拉圈中 GH 方 向在長方體的 G 點作用，試求支承系統中各桿件的桿力。

解：將長方體當作分離體。 先假定各桿件中都是 桿力，如果某桿桿力計算出來的結果是負的， 那就表示它們跟假定相反；是負力。

第一步：我們列立以 DE 作爲力矩基線的
力矩方程式。 因为所有各棱条内除除 AC'外，不是跟 BF 相交就是跟它平行，故得
\[-(S_5 \cos \alpha) a - P_c = 0\]
或 \[S_5 = -\frac{P_c}{a \cos \alpha} \]
可见得力 \(S_5\) 是压力。 同样方法，列出以 AE 作力矩轴的力矩方程式，又可得 \[S_3 = +\frac{P_c}{a \cos \alpha}\]
是压力。 這一结果，若已知 \(S_5\) 的条件下，也可以由「各力在 AC 轴线上的投影等于零」来决定。

之后，我們分别以 AB 和 CD'作力矩轴时，列出力矩方程式，就可得：
\[S_4 = -S_6, \quad S_1 = -S_2\]
又由「各力对 AB 轴线的投影代数和等于零」的条件，可得
\[-S_1 \cos \beta + S_2 \cos \beta + P = 0\]
故
\[S_1 = -S_2 = \frac{P}{2 \cos \beta}\]

最後，我們令各力在 AC 轴线上的投影代数和等于零，得
\[(S_1 \sin \beta) \frac{a}{2} + (S_2 \sin \beta) \frac{a}{2} + (S_3 \sin \alpha) a + S_4 a + P_b = 0\]
把已知的 \(S_3, S_2\) 和 \(S_1\) 代入上式，就可求出 \(S_6 = -S_4 = P \left(\frac{b + c \tan \alpha}{a}\right)\)

综合以上所得的结果如下：
\[S_3 = -S_5 = \frac{P_c}{a \cos \alpha}, \quad S_1 = -S_2 = \frac{P}{2 \cos \beta}, \quad S_6 = -S_4 = P \left(\frac{b + c \tan \alpha}{a}\right)\]

257. 第 338a 圖中是一個由六棱条支承在水平位置的长方體。 它的六個支承棱条排列如
圈。 假定長方體的一端平面 ABE 中有一個水平力 \(P\) 作用在 \(E\) 點，試求六棱条的弹
力各等於多少?

![Image](a-b)
258. 試求第 339 圖的支承系統中六杆件 1, 2, ..., 6 的張力。

(解: \(S_1 = S_2 = -167 \text{kg}, S_3 = +167 \text{kg}, S_4 = -S_6 = 0, S_5 = -67 \text{kg} \))
一個力矩等於 \(M \) 的水平力偶在作用。試求支承系統各杆件的樑力。

\[
\begin{align*}
S_1 &= S_2 = S_3 = -\frac{2M}{3a}, \\
S_4 &= S_5 = S_6 = -\frac{4M}{3a}.
\end{align*}
\]
第八章 虛位移原理

53. 導論

在以上各章中，所有的靜力學問題都是由「力平行四邊形原理」出發來討論的。事實上，還有幾種別的理論也可以作爲出發點。例如，最早期的靜力學就是阿基米得（公元前287-212）根據「槓桿原理」而構成的。所謂「槓桿原理」是阿基米得提出的一個公式：「等重量物體懸掛在支點距離相等的槓桿兩旁處，槓桿必定平衡」（第342圖）。很久之後，史托文納（1548-1620）提出所謂「斜面原理」。這原理是根據「斜面掛在等高兩斜面上必成平衡」（第343圖）—事實引伸出來的。史托文納完全由這一原理出發，也完勝地演繹出全部靜力學。

虛位移原理是在史托文納和其他各家的著作中逐漸形成的。最後由白路里（1）於1717年總結成目前形式的論斷。以下各節中，我們先討論這原理本身如何形成，然後，再研究如何應用它來解決某一些靜力學問題；對於解決這些問題，應用「虛位移原理」是特殊的好方法。

第342圖

第343圖

第344圖

54. 功

要把握「虛位移原理」，必須先研究力的作用點發生位置移動（以下簡稱位移）時，力所做的功的意義。譬如，第344圖中，P力作用在一個質點（微小的物體）上。設質點由A移動到A1位置，那末向量AA1就稱為質點的「位移」，並且稱P力對這一「位移」做「功」。「功」的大小，我們規定，等於「質點位移S」跟「P力在AA1上的正投影」的

(1) John Bernoulli.
乘積。所以第 344 圖中 P 力的功就是

$$Ps \cos (P,s)$$ \hspace{1cm} (a)$$

其中 (P,s) 指力作用線跟位移間的交角，這是處理「功」的問題中常用的一種表示交角的記號。 「功」的單位是力的單位跟長度單位的乘積，通常用 $m\cdot kg$ 或 $cm\cdot kg$。「功」值的正負要看力投影的方向跟位移方向相同或相反而定，相同時是正的，否則，就是負的。假若力本身的方向跟位移的相同，則 $\cos (P,s)$ 將等於 1，「功」就直接等於 $P\cdot s$。假若力跟位移正交，$\cos (P,s)$ 將等於零，這就表示無功發生。例如，一個在光滑表面上運動的質點，表面對它的反作用力將始終垂直於它可能發生的任何位移，所以反作用力做不出「功」來。再如，一個光滑曲線上的質點，像光滑軸上的珠粒，假若因外力的作用發生沿曲線的運動，那曲線對它的反作用力也是始終垂直於位移，不能產生「功」的。

如果第 344 圖中，質點 A 並不沿直線運動，交角 (P,s) 在運動過程中不斷變化，那麼計算「功」值時，就必須將全部運動路程分割成無數的無限小路程 ds，使每一小路程跟力作用線的交角 (P,ds) 可以看做是在這一無限小路程內保持不變。這樣，P 力對任一無限小路程所代表的位移 ds 做的功就將等於 $P \cdot ds \cdot \cos (P,ds)$。把所有各路程上 P 力所做的功加起來，就得到 P 力對於整個路線的全部功。

假使有很多力共同作用在一點上，那麼它們對質點任何位移 ds 做的全部功，根據「功」的定義，應等於所有各力在位移方向正投影的代數和跟位移 ds 的乘積。但是各力投影的代數和等於它們的合力在位移方向的投影，所以這一對力對位移 ds 做的功也就等於它們合力對這位移的「功」。

計算一個力 F_i 對作用點無限小位移 ds 的功時，通常把 F_i 分解為三正交坐標軸方向的三個分力 X_i, Y_i 和 Z_i。令 α, β, γ 依次為位移 ds 跟三坐標軸 x, y, z 間的交角，就可得

$$F_i ds \cos (F_i,ds) = X_i ds \cos \alpha + Y_i ds \cos \beta + Z_i ds \cos \gamma$$

$$= X_i dx + Y_i dy + Z_i dz$$ \hspace{1cm} (b)$$

其中 dx, dy 和 dz 分別是位移 ds 在三坐標軸 x, y, z 上的投影。

55. 一質點的虛位移原理

現在觀察一個在所有方向都可以自由運動的質點受一力系作用的
情形。力系的合力在三坐标轴方向的分力是 X, Y, Z。设想这一质点发生任意的位移 δs。这种想像出来的、可以无限微小的并且可能发生的任意位移通常就叫做质点的虚位移。力系合力 R 对虚位移所做的功，因此，叫做虚功。此虚功显然跟 §54（b）式相似，应该是

$$ R \delta s \cos (R, \delta s) = X \delta x + Y \delta y + Z \delta z \quad (a) $$

假使力系已经自成平衡，$X = 0, Y = 0, Z = 0$，那由 (a) 式可知它的虚功也必定将等于零。这就是说

$$ X \delta x + Y \delta y + Z \delta z = 0 \quad (b) $$

反过来讲，假使作用在一质点上的一力系，所有各力对质点每一虚位移所做功的代数和都等于零，那它就一定是一个平衡力系。这一论断称为「一质点的虚位移原理」。它的证明如下：

因虚位移 δs 可以任意选定并且没有固定方向，所以 δs 在三坐标轴方向的分位移 $\delta x, \delta y, \delta z$ 可以是任意选定的无限小量。现在令

$\delta y = 0, \delta z = 0$，但 δx 不等于零，由 (b) 式可看到，X 就必须等于零。同样理由，也可证明：Y 和 Z 都必须等于零。故根据 (21) 式，可知力系是一平衡力系。

现在再观察一个受有「部件约束」的质点，例如，第 345 图中的质点 A。此质点由一重量可以不计的刚性铰链杆连接在一固定点 O 上。A 点因之只可以沿一球面自由运动。球面的半径就是 OA 杆的长度 l。球心就是固定点 O。如果 A 点受一力系作用而平衡，那显然只有这一力系的合力在垂直于 OA 的平面上没有投影才可能。

设想 A 发生一虚位移 δs。虚位移可以是任意的无限小位移，但是也必须是可能发生的，决不跟「约束」矛盾的；故 δs 必定是在垂直于 OA 的过 A 点平面上 (1)。分解 δs 为两个分位移 δs_1 及 δs_2；令 δs_1 取球面而过 A 的 A 点切面。

(1) 因为虚位移必须是无限小的，对于微小量本身来说，是可以忽略不计的，所以 A 点通过的微小球面可以看作是 A 点的球面切平面。
線方向，\(\delta s \)取球面緯圈的\(\lambda \)點切線方向。又令 \(R_1 \) 和 \(R_2 \) 分別為力系合力在這兩方向的分力，便可得力系對虛位移 \(\delta s \) 做的全部功是

\[
R_1 \delta s_1 + R_2 \delta s_2
\]

至於力系合力在垂直於 \(R_1 \) 和 \(R_2 \) 方向的分力以及 \(OA \) 相對質點的反作用力，因為它們都垂直於虛位移，無功發生，所以我們可以不去考慮。

假若質點是處於平衡狀態，

\[
R_1 = 0, \quad R_2 = 0
\]

那就可得

\[
R_1 \delta s_1 + R_2 \delta s_2 = 0 \quad (c)
\]

可見，一個受有「部分約束」的質點，如平衡的話，它上面所有主動作用力對任一虛位移的全部虛功就非等於零不可。反正來說，若是這樣一個質點的所有主動作用力對任一虛位移的全部虛功都等於零，那質點就必定是處於平衡狀態。這一反證明我們可以按以上處理完全自由的質點的方法同樣給以證明，此處不再重複。

同樣，對於一個被約束在任意的光滑表面或光滑曲線上的質點，我們也可以應用以上方法來獲得相同結論，就是：這樣一個質點要平衡的話，一定要它上面的主動作用力對任何虛位移所做的全部功都等於零。這是一質點平衡的必要條件，同時也是充分條件。條件中所指的虛位移當然必須是可能發生的，以光滑表面的約束情形來說，虛位移只可能在過質點位置而跟表面相切的平面中發生；以約束是光滑曲線的情形來說，它就只可能在曲線的質點處切線方向發生。

應該仔細注意的，所有以上討論，我們對於摩阻力的影響都不曾考慮，[約束]對質點的反作用力在質點虛位移上完全無功發生，從而反作用力也就不會在我們的虛功方程式內出現。所以對於反作用力可以不管的問題，也就是只要決定使質點平衡主動作用力必須滿足什麼條件的問題，虛位移原理特別適用。

56. 理想系統

假使有若干點互相連接起來，使它們相互間的相對運動受到一定的限制，那我們就得到一個點系。很多靜力學問題都可以簡化為「點系」平衡的一般性問題。例如第 346 圖中的連繫機構，假如要決定圖中 \(P, Q \) 雙力使機構平衡所應滿足的條件，那我們就可以把整個機構看做是由四個點組成的點系。這點系計包括：曲軸中心 \(O \)，曲拐梢子
B，十字頭 C 和活塞 D 所代表的四點。四點由剛桿 OB，BC，CD 連接而成。這些剛桿只作點與點彼此間互相連的東西。除此之外，各點系中還有三個完全固定的 O 點以及只可以沿 OD 線運動的 C 和 D 點也都代表點與的運動自由的約束。

![第 346 圖](image)

跟以前一樣，仍假定機構內摩阻力可以不計。各剛桿對於兩端梢子的反作用力，因之，得垂直於各自的接觸面，從而，各剛桿繞梢子轉動時，這些反作用力都無「功」發生。此外，十字頭和活塞的滑動也已假定為摩阻力極小，故它們受到的反作用力全部垂直於各作用點由滑動而引起的位移，因之，也無功發生。

各點間的相對距離由各剛桿保持，故始終不變。此外，又因各外力只作用於各連桿桿的交點上，故任何一剛桿加於兩端兩「點」的反作用力 S 必定相等相反，對作用點的任何位移都無「功」發生。更精確一點說，就是兩 S 對任何位移所做的功都必定是總和等於零。這一論斷的證明見第 347 圖。此點系發生任意一種小位移後，其中 B 和 C 兩點分別由圖中原來位置運動到新位置 B_1 和 C_1。這種位移的發生，我們可以想像 BC 桿先作平行於本身的推移達到圖中 B'C' 位置，然後，以 C_1 爲中心旋轉到新位置 B_1 C_1。首先，在平行推移過程中，兩端的位移 BB' 和 CC' 完全相同，所以 BC 桿對兩端兩「點」的相等相反反作用力 S 在位移 BB' 和 CC' 上所做功必然將互相抵消。其次，在旋轉過程中，因 C_1 點固定不動；B 端的位移又始終跟此端的反作用力 S 垂直，故 S 做的功都等於零。可見在 B，C 兩「點」發生位移的整個過程中，這兩 S 力的確無功發生。

綜合以上討論各點，可知：任何一個用剛桿連接的、摩阻力可以不計的、像第 346 圖所示的點系，它內中的反作用力以及各種內力對於點系的任何位移都無「功」發生。所能做功的只有主作用力（如第 346 圖...
現在再觀察一種很多剛體組成的剛體系統。這種系統中，各剛體相互間以及剛體跟基礎間全都由理想恆軸連接，像第348圖一樣。如果整個系統的確都是絕對的剛體，並且所有的摩擦力都可以不計，那末同樣可以推知，其中一切反作用力和內力都不能對整個系統的任何虛位移作功；可以產生「功」的，只有作用在各剛體上的主動作用力。

第347圖

像第346圖的點系以及像第348圖的剛體系統，我們一總叫做理想系統。這種系統中，一切由於「運動約束」而引起的「力」，對於全系統可能的虛位移完全沒有「力」產生；也就是說，這些力的虛功永遠是總和等於零。

就理想系統可能發生的虛位移而論，第346圖的點系中它所有各點的位置都可以完全由曲拐OB跟定軸OC所成的交角θ來決定。因此，θ可以看做是一種坐標值，由它可以完全決定整個系統的形狀（也就是各點的位置）。這種由一個坐標值就可以完全決定形狀的「理想系統」通常稱為一次自由度系統。很多的機器和機械都是一次自由度系統。它的可能的虛位移只有一種。第346圖中，如果令θ角發生一無限小的變化δθ時，全系統所有各點的虛位移也就由之完全決定。

第345圖的單一質點就不同。A點的位置必須已知θ和φ兩個角才能確定，所以是一個二次自由度系統。如果令φ角發生一無限小的變化δφ，我們將得到A點沿縱向方向的虛位移δs₁；假使又讓θ角發生一無限小變化δθ，同様又可得A點沿縱向方向的虛位移δs₂。A點任何可能的虛位移都能由這兩種位移δs₁和δs₂聯合決定。

第348圖的剛體系統顯然也是個「二次自由度系統」。整個系統
的形状必须已知两个坐標值，例如 AB 桁和 DE 桁的水平線仰角 θ 和 φ，才能確定。

57. 理想系統的虛位移原理

像第 346 圖和第 348 圖的理想系統，我們如果要決定它們主動作
用力的平衡條件，當然也可以應用每一「點」或每一「剛體」的平衡方
程式。不過這些平衡方程式中非但包含有主動作用力而且支承的反作
用力以及相互間的內力也將同在其內，所以有時非常繁複不容易解開。
如果問題只在決定作用力的平衡條件，並不需要求出各反作用力和內
力的大小，那應用虛位移原理就可以大大簡化解題的程序。關於§ 56
所討論的各種理想系統，虛位移原理說明了：如果整個系統中所有主動
作用力對某一可能的虛位移的全部功始終等於零，那這一理想系統
就必然自成平衡。

例如，令第 346 圖中 θ 角增加一個無限小的角度 $\delta \theta$，全系統中各
點的虛位移隨而確定，可得 B 點的虛位移是一個長 $\delta s_1 = r \delta \theta$ 的圓弧。
至於 C 和 D 點相應的虛位移 δs_2，自然也可以根據圖中幾何關係來決
定。D 點的 P 力跟這一定位移 δs_2 方向相同，如假定 B 點的 Q 力垂直於
OB，按虛位移原理就可得

$$+P \delta s_2 - Q \delta s_1 = 0$$

故全系統的平衡條件就是

$$\frac{P}{Q} = \frac{\delta s_1}{\delta s_2} \quad (a)$$

可見平衡時的作用力間的相互關係，只要求出位移 δs_1 與 δs_2 的比值就
可以完全確定；各樑件中的內力以及支承的反作用力都不會在式中出
現。

要證明理想系統的「虛位移原理」，可觀察一個 n 個點構成的一般
點系。假使這一系統已經平衡，那其中每一點自然也一定平衡。因
此，所有作用在任意一點上的「力」必須滿足「虛功總和等於零」的條
件。如果令 R_i 代表任意一點 i 上面所有「作用力」的合力，N_i 代表
同點上一切「反作用力」的合力，δs_i 代表這一點的虛位移，那麼這一點的平衡方程式就是

$$R_i \, \delta s_i \cos (R_i, \delta s_i) + N_i \, \delta s_i \cos (N_i, \delta s_i) = 0$$
整個點系中，每一點都有這樣一個平衡方程式，故加起來，就可得

\[\sum_{i=1}^{n} R_i \delta s_i \cos (R_i, \delta s_i) + \sum_{i=1}^{n} N_i \delta s_i \cos (N_i, \delta s_i) = 0 \] \((b) \)

其中第一項是所有「作用力」對各自作用點的虛位移所做之全部力；第二項是所有「反作用力」對相應各點的虛位移所做之全部力。 §56 中已說過，一個理想的系統，各反作用力是無功發生的（或說它們的功是互相抵消的），因此，（b）式第二項對於全系統任何跟「約束」符合的虛位移都將等於零；全式因之化為

\[\sum_{i=1}^{n} R_i \delta s_i \cos (R_i, \delta s_i) = 0 \] \((29) \)

此式說明：任何點錐構成的理想系統，如果已成平衡的話，各求所有作用力對於全系統任何跟「約束」符合的虛位移所做之全部力必定等於零；所有由「約束」而引起的反作用力完全無功發生，不在平衡方程式中出現。

以上說法的反論可證明如下：先假定整個系統並不平衡，既不平衡，那末其中各點就要向所受到的全部力（作用力和反作用力）的合力方向作「約束」所允許的運動。也就是說，各點的合力都將跟各點的位移方向相同，故所產生的完全是正功。可是反作用力所產生的全部功總是等於零的，所以作用力的全部功就不能等於零。這當然跟這一反論的假設（29）式直接矛盾。可見理想系統中，如果全部作用力對於任何「約束」所允許的虛位移無功發生，那這一系統就非平衡不可。這是虛位移原理的更普遍的形式，以下我們舉些例子來說明它的應用。

例題和習題

261. 第 349 圖中是一個螺紋桿。螺紋間的摩擦力可以不計。試求螺紋桿所用的一對相等反力 P 跟螺紋桿力的關系。

解：螺紋的螺紋和螺桿可看做是絕對剛體。螺紋桿 P 可看成是作用在螺桿和螺紋上的兩個「力」。在這樣的理想系統中，「約束」所允許的虛位移只是螺紋的轉動角度 δθ。因此，力矩 P 所做的虛功應等於 2Pa δθ。今 h 代表螺紋的螺距，可得螺紋桿所受的位移為 h⋅δθ/2π。作用在螺紋桿的 P 力對著一相位移所作的功，因此，於等 -Qhδθ/2π。螺紋桿上的 Q 方無功產生。故按惠更斯等式得

\[2Pa \delta \theta - \frac{Qh\delta \theta}{2\pi} = 0 \]
§51] 位置移原理

\[P = \frac{Qh}{4\pi a} \] \hspace{1cm} (c)

262. 試求第350圖中差動滑輪平衡時，\(P \)力與\(Q \)力的關係。
解：令定滑輪旋轉一無限小角度\(\delta \theta \)，可得\(P \)和\(Q \)力的勢能分別為\(P_1 \delta \theta \)和\(Q \frac{(r_1 - r_3)}{2} \delta \theta \)。
由位置移原理，得

\[P_1 \delta \theta - Q \frac{(r_1 - r_3)}{2} \delta \theta = 0 \]

故

\[P = \frac{r_1 - r_2}{2r_3} Q \] \hspace{1cm} (d)

第349圖

第350圖

263. 如第351圖的滑輪裝置。不計摩擦力，試求平衡時，\(P \)力與\(Q \)力的關係。

（解：\(P = Q \frac{r_2}{r_1 - r_2} \)）

264. 第352圖中是一個差動螺旋的支承裝置。兩螺旋的導程分別是\(h \)及\(h_1 \)。圖中電動機部分代表一個圓管的切面，不計摩擦力，試求圓管受到的壓力\(Q \)與加於槓桿上的\(P \)力有何關係？

（解：\(\frac{P}{Q} = \frac{h - h_1}{2\pi r} \)）

第352圖

265. 第353圖中是一個由八根鋼棒組成的橋樑。八根鋼棒兩根兩根相連，構成三個矩形。試求平衡時，圖中\(P \)與\(Q \)兩力的比值。

（解：\(\frac{P}{Q} = \frac{1}{3} \)）
266. 若一重 W 的 AB 梁斜靠在一光滑的壳面上, 距水平线成夹角 θ, 有一作用在 C 端的水平力 P 推出(第 355 圖)。地面摩擦力可以不計, 求求平衡時, P 力應等於多大?
解: 令 AB 梁沿地面及轉面旋轉一微小角度 δθ, 可得 A 端的位移為

\[l \cos (θ + δθ) - l \cos θ = l \delta θ \sin θ \]

AB 梁重心 C 相應的位移為

\[\frac{l}{2} \sin (θ + δθ) - \frac{l}{2} \sin θ = \frac{l}{2} \delta θ \cos θ \]

按位移原理, 得

\[P \delta θ \sin θ - W \delta θ \cos θ = 0 \]

故

\[P = \frac{W}{2} \cot θ \]

(5)

第 353 圖

第 354 圖

第 355 圖

267. 四铰鑰椼組成如第 355 圖的菱形 ABCD。A 點固定, B, C 和 D 三點各受圖示 P, Q 和 P 各力作用。求求平衡時, 圖示 θ 角等於多大?

(解: \(\cot θ = \frac{P}{Q} \))

268. 第 356 圖中 AB 矩是 2I, 重 Q, 穿過一光滑縫隙 D, 一端抵在一光滑的槽面的 A 點。求求平衡時, AB 和縫面所成的夾角 θ。

解: 因為 AB 矩上的「作用力」只來 C 點的重力 Q, 其他全都是「約束」的反作用力, 故 AB 梁 A 端發生「約束」所允許的位移 δsa (見第 356 圖) 的動心 C 的相應位移必須在水平方向, 否則作用力的趨勢不能等於零。A 端的相應位移 δsa 可分解為兩個「位移」εsa sin θ 和 δsa cos θ 分別垂直和平行於縫隙。其中 δsa sin θ 可看作是 AB 梁經 D 點旋轉而出的, δsa cos θ 可看作是 AB 梁沿縫隙方向滑動而出的。這時兩者「位移」相應的動心 C 的位移分別是 \(\frac{1 - \cos θ}{2} \) and δsa sin θ。
根據以上討論各點, C 點沿「分位移」在傾斜方向的投影代數和標等於零。

故
\[
\frac{1-e}{c} \sin^2 \theta - \cos^2 \theta = 0
\]

因此, 可得
\[
\frac{1}{c} \sin^2 \theta = 1 \text{或} \sin^2 \theta = \frac{c}{1}
\]

以 \(a = \sin \theta \) 代入, 得
\[
\sin^2 \theta = \frac{a}{1} \text{或} \sin \theta = \frac{\sqrt{a}}{1}
\]

由此式可見, \(a = 1 \) 時, \(AB \) 槳才能平衡。

269. 當 \(366 \) 圖中, \(A1B1 \) 畫成在兩個水平等於 \(r \) 的樑柱上, 由一跟竹架平行的 \(P \) 力使它滑
斜面滑行。設樑柱和其的重量為 \(W \) 和 \(Q \), 斜面的水平稜角為 \(\alpha \), 各接觸點完全無
滑動發生, 試求平衡時, \(P \) 力等於多大?

解: 因各接觸點無滑動發生, 各反作用力因而不做功, 故整個系統是一理想系統。 如
合兩個橧柱 \(A \), \(B \) 積定點旋轉一定無小角度 \(\theta \), 就可得到各力作用點的位移。 應用
度位移方程式即得 \(P = (Q + W) \sin \alpha \)。

270. 當 \(365 \) 圖中是一台機械, 樑柱 \(COA \) 取水平位置時, \(P \) 力與 \(Q \) 力的關關完全跟電
體 \(Q \) 在樑柱 \(DF \) 上的位置無關。 設 \(GE : GH = 3\); 試求 \((a) OC : OE \), \((b) P : Q \)。

(解: \(a) OC : OB = 3 \), \((b) P : Q = OB : OA \)

271. 當 \(368 \) 圖中是一台機械, 樑柱 \(EF, FG, KE \) 及樑柱 \(HKL \) 槳成。 橫中 \(A \), \(B \), \(C \), \(D \)
為直接加壓力於機械的平面。 設所有橧柱都是相對剛體, \(HKL \) 樑柱 \(L \) 端的正交
作用力等於 \(P \), 圓球受壓力等於 \(Q \); 試求 \(P, Q \) 兩力的比值以及圖中各角度 \(\theta, \phi \)。
解：令圖中 \(\theta \) 角發生一微小變化 \(\delta \theta \)，可設 \(E \) 和 \(L \) 兩點的位移依次為 \(\delta s_0 \) 和 \(\delta s_1 \)。因此，

\[
P : Q = \delta s_0 : \delta s_1 \quad \text{(f)}
\]

於 \(\delta s_0 : \delta s_1 \) 的決定，可按 \(P \) 和 \(E \) 的位移於帶件 \(EF \) 方向。因 \(EF \) 線的偏度固定不變，故設兩投影應相等，

\[
\delta s_1 \sin(\theta + \varphi) = \delta s_0 \cos \varphi \quad \text{(g)}
\]

同理，投影 \(\delta s_1 \) 及 \(\delta s_0 \) 於 \(FK \) 橫的水平方向，可得

\[
\delta s_1 \cos \theta = \delta s_0 \cos \psi \quad \text{(h)}
\]

但 \(K, L \) 兩點的位移 \(\delta s_1 \) 及 \(\delta s_0 \) 之間的關係是

\[
\delta s_1 = \frac{1}{a} \delta s_0 \quad \text{(i)}
\]

故自 \((g), (h) \) 和 \((i) \) 式中消去 \(\delta s_0 \) 和 \(\delta s_1 \)，得

\[
\frac{\delta s_2}{\delta s_1} = \frac{a}{l} \cdot \frac{\cos \psi}{\cos \theta} \cdot \frac{\sin(\theta + \varphi)}{\cos \varphi}
\]

代入 \((f) \) 式中，得

\[
P : Q = \frac{a}{l} \cdot \frac{\cos \psi}{\cos \theta} \cdot \frac{\sin(\theta + \varphi)}{\cos \varphi} = \frac{a}{l} \cdot \cos \psi \left(\frac{\varphi}{\cos \varphi} \right)
\]

272。第 380 圖中所標各物的重量分別是 \(Q_1 \) 和 \(Q_2 \)。設求平衡時，圖中 \(\theta \) 和 \(\varphi \) 角各等於多大？

解：因形狀的對稱，故知整個整件系統的重心必在垂直軸 \(OC \) 上。重心離 \(AB \) 水平線的

\[
y_c = \frac{Q_1 \cdot \frac{a}{2} \cos \theta + Q_2 \left(a \cos \theta + \frac{b}{2} \cos \varphi \right)}{Q_1 + Q_2} \quad \text{(f)}
\]

對於整個系統的位移為，全部力中具有合力為動力，此功自應等於整個系統重心的高度

\[
\text{變化跟全部條件變數之乘積。} \quad \text{如全系統已平衡，此功就必須等於零，} \quad \text{可見全系統的}
\]

重心應設在最重的位置，全系統才能平衡。因之，\((i) \) 式應取最大值。求 \(y_c \) 的最大
往位移原理

(1) 式與 \(\theta \) 和 \(\phi \) 角的差分等於零；

\[
(Q_1 + 2Q_2) a \sin \theta + d \theta + Q_2 b \sin \phi dq = 0
\]

(1)

此外，所有桿件在水平方向的投影等於在 \(A \) \(B \) 兩支點間的距離 \(l_1 \)

\[
2a \sin \theta + 2b \sin \phi = l_1
\]

(2)

對 \(\theta \) 及 \(\phi \) 角微分 \((m) \) 式，得

\[
a \cos \theta dq + b \cos \phi dq = 0
\]

(3)

如果各力必須同時滿足 \((k) \) \((m) \) 兩式，那就有 \(dq \) 和 \(dq \) 兩力的係數的比例相等才可能，即惟有

\[
\frac{(Q_1 + 2Q_2) a \sin \theta}{a \cos \theta} = \frac{Q_2 b \sin \phi}{b \cos \phi}
\]

(4)

由 \((a) \) \((l) \) 式，就可決定 \(\theta \) 和 \(\phi \)。

2.3. 第 361 圖中，\(AB \) 和 \(BC \) 是任意長等於 \(l_1 \) 和 \(l_2 \)，重量各等於 \(Q_1 \) 和 \(Q_2 \) 的兩根桿件桿。設有一水平力 \(P \) 作用在 \(BC \) 桿的 \(C \) 標，試求平衡時，桿中 \(\theta \) 和 \(\phi \) 等於多少？

解：因全系的形狀必須由兩桿全桿桿決定，故是一個二次自由度系統。往位移通用也有一

\[
P l_2 \delta \phi \cos \phi - Q_2 l_2 \delta \phi \sin \phi = 0
\]

(5)

故

\[
tg \phi = \frac{2P}{Q_2}
\]

(6)

之後，令 \(\phi \) 角保持不變，\(\theta \) 角增加一無限小角度 \(\delta \theta \)，又可得

\[
P (l_1 \cos \theta + l_2 \cos \phi) \delta \theta - Q_1 l_2 \delta \theta \sin \theta - Q_2 (l_2 \sin \theta + l_2 \sin \phi) \delta \theta = 0
\]

(7)

應用 \((c) \) 式消去上式中包含 \(\phi \) 的各項，得

\[
tg \theta = \frac{P}{Q_1/2 + Q_2}
\]

(8)

該整個系的形狀可由 \((p) \) 和 \((q) \) 式完全決定。
274. 設求第 262 圖中各式滑輪在平衡時的 \(Q/P \) 之值。摩擦阻力及滑輪、纜索的重量可以不計。

\[
\begin{align*}
(a) & \quad Q/P = 1/2 \\
(b) & \quad Q/P = 1/8 \\
(c) & \quad Q/P = 1/6
\end{align*}
\]

解：

58. 簡單機械的效率

以上的討論都僅指直線位移原理在不計摩擦阻力的理想系統中的應用。多數的機構中，機件間的摩擦力很小，故可以不計。但其他也有摩擦力非計不可的情形。在這種情形下，應用直線位移原理時，我們除開系統的所有[作用力]的動力外，還必須考慮摩擦力做的功。

例如，第 363 圖中用來舉起重體 \(W \) 的斜面裝置。如果斜面不光滑，那計算足夠使重體將開始滑動的 \(P \) 力大小，就必須顧及重體跟斜面間摩擦力的影響。故直線位移方程應該是

\[
P\delta s - W\delta s \sin \alpha - F \delta s = 0 \quad \text{(a)}
\]

其中 \(\delta s \) 指拉繩 \(A \) 端的垂直方向位移，\(F \) 指物體跟斜面間的摩擦力。至於滑輪的摩擦力，因極小，故茲仍不考慮。令 \(\mu \) 代表物體、斜面間的摩擦係數。它們間的正壓力是 \(W \cos \alpha \)。

故(a)式可化為

\[
P\delta s - W\delta s \sin \alpha - \mu W\delta s \cos \alpha = 0
\]

或

\[
P = W \left(\sin \alpha + \mu \cos \alpha \right) \quad \text{(b)}
\]

我們由 (a) 式可看到：作用力 \(P \) 所做的功 \(P\delta s \) 非但消耗在將重體 \(W \) 舉起 \(\delta s \sin \alpha \) 高度，而且消耗在克服摩擦力上。因此重體的功 \(W\delta s \sin \alpha \) 通常叫做有用功，它跟加入的功 \(P\delta s \) 的比值稱為機械效率。本例中，斜面的機械效率就是

\[
\text{有用功} = \frac{\sin \alpha}{\left(\sin \alpha + \mu \cos \alpha \right)}
\]

可見 \(\mu = 0 \) 時，效率將等於一，這是不計摩擦力的理想情形。除此之外，機械效率就隨 \(\mu \) 的增加而遞減。

假使現在不舉起重體 \(W \)，反而由 \(P \) 力自反方向將重體沿斜面推下，那末重體將開始下滑時，\(P \) 力的大小就可由下式決定：

\[
P\delta s + W\delta s \sin \alpha - F \delta s = 0
\]
以 $F = \mu W \cos \alpha$ 代入上式，可得

$$P = \mu W \cos \alpha = W \sin \alpha$$

如 $\mu \cos \alpha - \sin \alpha = 0$，也就是 $\tan \alpha = \mu$，斜面的水平线倾角恰好等于摩擦角时（见 §12），所需的 P 力大小就将等于零。若 α 角大于摩擦角 φ，那重体就不需任何推力也可自行滑下。

在 $\alpha = \varphi$ 的特殊情形下，第363 图中斜面的摩擦效率可由 $\mu = \tan \alpha$ 代入(4)式去求解，故得

$$\frac{\sin \alpha}{(\sin \alpha + \tan \alpha \cos \alpha)} = \frac{1}{2}$$

以上所述处理斜面问题的方法也可以同样应用来处理第364a 图的螺旋压床。螺旋的螺纹我们可以设想作是围绕在一根圆柱上的斜面。螺旋压床作无限小的旋转角 $\delta \theta$ 后，作用力偶 $M = Pa$ 所做的功将等于 $2Pa \delta \theta$，压床恒定 Q 所做的功将等于 $-\frac{Qh \delta \theta}{2\pi}$。至于计算机架对于螺旋螺纹的摩擦力 F（第364b 图），我们可假定螺纹切面是长方形，

螺纹的平均半径是 r。各摩擦力 F 的作用点的位移移位等同于 $\delta s = \frac{r \delta \theta}{\cos \alpha}$。应用位移移原理，可得

$$2Pa \delta \theta - \frac{Qh \delta \theta}{2\pi} - \sum F \frac{r d\theta}{\cos \alpha} = 0$$

(d)
其中 F 指一小部份接觸面間的摩阻力，它的總和才是全部摩阻力，故上
式最末一項代表全部摩阻力的虛功。至於接觸面間的正交壓力，因為
它們都垂直於作用點的位移，故不做功。螺桿下端與加壓平板間的摩
阻力此處仍不考慮。現在令 μ 代表螺紋間的摩阻係數，可知

$$ \Sigma F = \mu \Sigma N $$

又因各力在軸垂方向的投影代數和要等於零，故

$$ \Sigma F \sin \alpha - \Sigma N \cos \alpha + Q = 0 $$

由以上兩式中消去 ΣN，就得到

$$ \Sigma F = \frac{\mu Q}{\cos \alpha - \mu \sin \alpha} $$

把這個 ΣF 值和螺距 $h = 2\pi \tan \alpha$ 代入 (d) 式，可得

$$ 2Pa - Qr \tan \alpha - \mu Qr \frac{\mu Qr}{\cos^2 \alpha - \mu \sin \alpha \cos \alpha} = 0 $$

故

$$ M = Qr \frac{\sin \alpha + \mu \cos \alpha}{\cos \alpha - \mu \sin \alpha} $$

但是 $\mu = \tan \phi$ (或 $\phi = \arctan \mu$)，因此，

$$ M = Qr \tan (\alpha + \phi) \quad \text{(e)} $$

在不計摩阻力的理想情形下，$\phi = 0$，就可得到

$$ M = Qr \tan \alpha $$

在這種情形下，全部「加入的功」都將化為「有用功」；在 (e) 式所表
示的情形下，加入的功卻有一部份要消耗在克服摩阻力。故根據定義，

$$ \frac{\text{有用功}}{\text{加入的功}} = \frac{\tan \alpha}{\tan (\alpha + \phi)} \quad \text{(f)} $$

如果螺距角很大而摩阻角 ϕ 很小，那作用力偶 M 取去後，螺桿也
可能因壓力 Q 而上行。要防止這種螺桿倒行現象發生，需要在力偶
M 取消後保持一個作用力偶。這力偶的大小也可以用處位移原理來
確定。列立計算式時，只要把摩阻力的方向反過來，就可得相當於 (d)
的下式

$$ 2Pa \delta \theta - \frac{Qh}{2\pi} \delta \theta + \Sigma F \frac{r \delta \theta}{\cos \alpha} = 0 \quad \text{(g)} $$

再按以前方法，又可得
位移原理

\[\Sigma F = \frac{\mu Q}{\cos \alpha + \mu \sin \alpha} \]

代入(3)式中，就得到防止螺栓倒行的力矩，它的力矩值是

\[M = 2Pa = Qr \tan (\alpha - \phi) \]

如 \(\alpha = \phi \)，螺距角跟螺纹角恰巧相等，那末 \(M = 0 \)。可见在 \(\alpha \leq \phi \) 时，螺栓可自行制正它的倒行，不需要另加力偶。\(\alpha = \phi \) 的情形下，由 (f) 式可得螺旋的效率是 \(\tan \alpha / \tan 2\alpha \)。

如果 \(\alpha = \frac{\pi}{2} - \phi \)，(e) 中的 \(M \) 值将变成无限大，根据 (f) 式机机械效率将等于零。这表示 \(F \) 和 \(N \) 的合力是作用在摩擦面以内的（见 §12），作用力偶无论如何大都不会增加机器跟螺栓螺纹间的压力，所以这种 [有用功]。

另外-一个例子是第 365 图中的滑轮装置。在决定使重物 \(W \) 将开始滑动的作用力 \(P \) 的大小时，我们假定作用在滑轮上的所有各力都是同在滑轮厚度方向的平面上。先考察滑轮轴和轴承的接触情形。它们的接触点 A 的位置由图中 \(\alpha \) 角的大小来表示。分解这一点的反作用力为滑轮半径方向的正交压力 \(N \) 及切线方向的摩擦力 \(F \)。令滑轮发生—无限小的旋转角 \(\delta \theta \)（顺时针方向的旋转）可得虚功方程式

\[(P - W) r_1 \delta \theta - Fr_2 \delta \theta = 0 \] (h)

式中 \(r_1 \) 及 \(r_2 \) 分别指滑轮和滑轮轴的半径。投影各力于铅垂和水平方向，令它们的代数和分别等于零，又可得

\[N \cos \alpha + F \sin \alpha - P - W = 0 \]

\[F \cos \alpha - N \sin \alpha = 0 \]

将 \(N = F/\mu \) 代入以上两式，就得到

\[\tan \alpha = \mu \]

\[F = \frac{\mu (P + W)}{\cos \alpha + \mu \sin \alpha} \]

把以上各结果分别代入 (h) 中，可知
靜力學

\[P = W \left(1 + \frac{\mu r_3}{r_1 \sqrt{1 + \mu^2}} \right) \left(1 - \frac{\mu r_3}{r_1 \sqrt{1 + \mu^2}} \right) \]

(i)

故滑輪的機械效率是

\[\frac{1 - \frac{\mu r_3}{r_1 \sqrt{1 + \mu^2}}}{1 + \frac{\mu r_3}{r_1 \sqrt{1 + \mu^2}}} \]

(ii)

假若 \(\mu \) 值很小，我們可以不計它的高次方，那 (i) 式就可按以下近似式計算:

\[1 - \frac{2\mu r_3}{r_1} \]

(i')

在以上要計較摩阻力的每一個例子中，我們都可以看到：計算時除掉虛位移方程式外，每次都必須引用其他的靜力方程式。從而要解出跟這些方程式關係不大的若干個未知數，手續十分繁復。因此，對於摩阻力很小的車軸轉動，鼓軸等等，通常於暫時忽略掉它的摩阻力，先按照理想系統處理，立出各虛位移方程式。解出這些方程式後，就可初步決定全系統中各「作用力」間的關係關係。根據此關係，求出各假想載荷或正

59. 穩定平衡與不穩定平衡

以上關於虛位移原理的討論，僅限於如何應用這一原理來確定一物體或一系物體在作用力作用下的平衡條件。實際上，這一原理對於進一步考察一個理想系統的平衡是否穩定也非常有用。所謂「平衡狀態是否穩定」，在任何情形下，指的：如果有一瞬間的外力以之於時極短極短的時間作用於一平衡的系統中，使它的平衡狀態發生極小極小的變動，但是這偶然的外力一旦消失，這系統就立刻能復原其來平衡形態，這樣的平衡狀態就叫做穩定平衡；反過來說，如果偶然外力一瞬間的作用會將全系統原來的平衡狀態完全破壞，或者說外力消失後全系統仍繼續有離開原來狀況的傾向存在，那這一系統原來的平衡就是不

穩定平衡。在一定情況下，一個平衡系統也可能在偶然外力消失後既
無恢復原來狀況的趨勢，也無延續远离原來狀況的趋向，這種平衡就叫做“穩定平衡”。

例如，第 366 圖中。圖 a 表示一個圓球放在一個光滑凸曲面的頂點 A 處。因 A 點的垂直於曲面的反作用力在鉛垂方向，故跟圓球的重力恰恰互相抵消，使圓球處於平衡狀態。不過這種狀態是一種不穩定平衡。如果圓球受到偶然外力的輕微作用使它位置有一點點改變，它立刻就會沿曲面滾下來，決不會因外力消失而恢復原來位置的平衡。圖 b 所表示的是個放在光滑凹曲面的最低點 A 處的圓球。如果有一偶然外力使它改變一點點圖中的平衡位置，外力消失後，它仍會立刻滾向原處恢復原來的平衡。所以這一圓球是處於穩定平衡狀態。至於圖 c 的圓球，它是在--水平平面上平衡。它在平面上任何一位置都可以保持平衡，所以這是一種“穩定平衡”。

假使由虛位移原理來決定第 366 圖中三球是否平衡，那只要令它們各發生一「約束」所允許的虛位移(也就是無限小的，圓球跟各自支承

![圖 a](image1)

![圖 b](image2)

![圖 c](image3)

第 366 圖

第 367 圖

面始終保持接觸的位移)。此位移顯然在各接觸點的水平切平面中，圓球重心的相應位移也只可以取水平方向，重力因而無功發生，故可知三個球都是在平衡狀態。

假使要進一步決定它們的平衡是否穩定，那就必須把「作用力」對以上虛位移所做的功加以更精密的計算。例如，第 366a 圖的圓球。它如果發生一無限小的位移 $\delta A' = \delta s = r \, \delta \varphi$ (見第 367 圖)，它的重心顯然就將降低—如下的距離：

$$\overline{AB} = r \left[1 - \cos(\delta \varphi) \right] = \frac{r}{2}(\delta \varphi)^2$$

這是一個比虛位移更高一級的無限小量。決定平衡狀態是否存在的問
題中，這種高級無限小量雖然可以不計，但是在討論平衡對於那一種狀態的問題中，卻不可忽略。根據以上的討論，可知：對於不穩定平衡狀態，像第366a圖所示的情形，重力對圓球任意虛位移所做的功都是正负能，並且發生無限小位移後有一個跟運動方向相同的反作用力出現，使圓球有繼續離開它原來平衡位置的傾向。同樣理由，對於穩定平衡，像第366b圖所示的情形，重力將對圓球的任何虛位移作負的功。因此，圓球受到偶然的外力作用而發生無限小的位移時，會有一個位移反方向的反作用力出現，從而使圓球有回到原來平衡位置的傾向。

計算重力做的功，以應用『位能』觀念為最方便。我們要從一個固定的基準水平平面舉起一個重 W 的物體至高度等於 h 處，需要做等於 Wh 的功以克服重力。這『功』就叫做物體在新位置對於基準水平平面的位能。假若令物體自由落回原來基準平面，重力 W 可以做出的功就是這『位能』。根據『位能』定義，可知：在不穩定平衡情形下，像第366a圖中的圓球，它的位能必將因任何虛位移的發生而減少。反之來說，在穩定平衡的情形下，例如第366b圖的圖球，它的「位能」必將因任何虛位移的發生而增加。換句話說，圓球在不穩定平衡的狀態下，『位能』將取最大值；在穩定平衡狀態下，將取最小值。

對於理想系統的一般情形，如果其中作用力的大小只跟這一系統的形狀有關 (1)，那我們就也可以應用以上方法來處理。不過考察這種系統的任何平衡狀態時，所有「約束允許的」處位移都必須考慮在內。假使對於所有虛位移，作用力所做的功都是負值，那就表示整個系統跟第366b圖中情形相同，是處於穩定平衡狀態。反過來說，只要有一種「約束」所可能允許的虛位移會使作用力做的功變成正值，那情形就跟第366a圖中相同，表示整個系統原来是處於不穩定平衡狀態。以上所說的「作用力」的「功」，當然必須把高級的微小量計算在內。

考察一個理想系統的平衡狀態是否穩定，也可應用「位能」觀念。

取這一系統的某一形態作爲基本形態。要使這一系統由基本形態變化成另一形態，那克服作用力所必需的「功」就代表它新的形態對於基本

(1) 像電力之類的「功」，它的大小不僅跟系統的形狀有關，而且要由運動的方向決定，是不包括在内的。
形態的「位能」。如果系統取某一一定形態平衡時的位能小於它取相應的任何形態時的位能，那就表示整個系統原是處於穩定平衡狀態。如果有一相近的形態會使系統的「位能」比原來形態的「位能」小，那就表示整個系統原是處於不穩定平衡狀態。

例題和習題

2.5. 第 368a 圖中一個高度為 h，面徑為 d 的圓筒，一週開口，放在一個半徑等於 r 的圓球上。圓筒在圓球上可以自由滑動，但接觸處無滑動發生。試求圓筒穩定平衡時，

圈球半徑 r 是小於等於多大？

解：如第 368b 圖令圓筒發生一微小的旋轉角 δφ。圓筒重心 C 對圈中 A 點水平平面的

第 368 圖

高度原是 c，圈筒旋轉後，這一高度可由 A 點位移 A_1 = δs_a 與距離 A_1C = c 在圈中離中 y 軸上的投影代數和決定（第 368b 圖）。故在旋轉過程中，重心 C 的降低是

\[c - c \cos (\delta \phi) = \delta s_a \cos (\delta s_a, y) \]

(α)

\[\delta \phi \to \text{極微小，可令} \quad \cos (\delta \phi) \approx 1 - \frac{1}{2} (\delta \phi)^2 \]

圖圈轉，圈球間無滑動發生，故位移 A_1 = δs_a 的位置必定是在 AD 和平行於 OB 的 AE 線的中間（第 368c 圖），否則 A_1B 與 AB 弧不可能相等。由此可得

\[AE \cos (\delta \phi) < \delta s_a \cos (\delta s_a, y) < AD \]

以已知數值代入其中，得

\[r [1 - \cos (\delta \phi)] \cos (\delta \phi) < \delta s_a \cos (\delta s_a, y) < r (\sec (\delta \phi) - 1) \]

其中末末趣味的相差只是含有 (δφ) 四次方及更高次方的無限小量；故可令

\[\delta s_a \cos (\delta s_a, y) \approx \frac{r}{2} (\delta \phi)^2 \]

將此式代入 (α) 中，可得重心 C 的「降低」為

\[\frac{c}{2} (\delta \phi)^2 - \frac{r}{2} (\delta \phi)^2 \]

(β)
假使此量值正值，電力做功「功」是正的，表示圓心是處於不穩定平衡狀態；否則，
表示圓心處於穩定平衡狀態，這也就是說，圓心如果處於穩定平衡狀態，則電力 C 的降
低就一定要是「負值」。因此，必須

\[c < r \]

圓筒如果是由厚薄均勻的鋼片做成，則由

\[c = \frac{\pi dh^2}{2\left(\pi dh + \frac{d^2}{4}\right)} \]

穩定平衡的條件就成為

\[\frac{h^2}{2\left(h + \frac{d}{4}\right)} < r \] (c)

273. 第 309 圖中 AB 隷是 a+b，重 W，重心在圖中 C 點，放在圖中滑動的斜面上。試
證明 AB 隷在圖中位置是處於不穩定平衡狀態。
解：選定直角軸 x, y 如圖。重心 C 的坐標是:

\[x = a \cos \varphi, \quad y = b \sin \varphi \]

故

\[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \]

此式說明，重心 C 的軌跡是一個四分之一的橢圓。AB 隷在圖中位置時，C 點的
橢圓切線是在水平方向。而圖中的長軸是凸形向上的，故 AB 隬的任何位置都會使
重心 C 的位置降低，故第 321a 圖的情形一樣。因此，AB 是處於不穩定的平衡狀態。

277. 第 370 圖中，AB 隬是 l 重 Q；A 端由一根鋼線接在固定點上，B 端由一鉚釘吊住。
設遇著一個滑輪 D，在另外一端懸掛一電機 P。滑輪 D 距離 A 的軸心距離 h 比
滑輪長度 l 大。試求所有可能的平衡位置及平衡的穩定狀況。滑輪的大小可以不計。

解：以 AB 隬件取船尾位置作為整個系統的基準形態。令 r 代表螺旋 BD 部份的長度，可
得 AB 隬件船尾方向成 \(\varphi \) 軸角時全系統的位能等於

\[P(r - (h - l)) - Q \frac{r}{2}(1 - \cos \varphi) \] (d)
此外

\[r = \sqrt{h^2 + h^2 + 2h \tan \psi} \]

代入 (d) 式，再合位能對於 \(\varphi \) 角的微分等於零，可得

\[\frac{Ph}{r} \sin \varphi - \frac{Q}{2} \sin \varphi = 0 \]

故

\[\varphi = 0, \quad \varphi = \pi \text{ 或 } \frac{Ph}{r} - \frac{Q}{2} = 0 \]

這說明可能的平衡位置是：(1) AB 條取 B 端向上的斜重位置；(2) AB 條取 B 端向下的斜重位置；(3) AB 條取

\[\frac{2h}{P} = \frac{Q}{P} \]

(6)

的傾斜位置。

要決定以上各位置的平衡狀態是否穩定，我們必須對 (d) 式的動能作更進一步的考察。在 (7) 式所指的平衡位置，r 的最大值是 \(r_{\text{max}} = h + l \)，最小值是 \(r_{\text{min}} = h - l \)；故

\[\frac{2h}{l+1} < \frac{Q}{P} < \frac{2h}{h-l} \]

(7)

現在要決定此位置的平衡是否穩定，可將 (d) 式位能對 \(\varphi \) 二次微分，求出為

\[\frac{Ph}{r} \cos \varphi - \frac{Q}{2} \cos \varphi = 0 \]

(8)

如 (g) 式的平衡條件已滿足，則 (h) 中前兩項 doğruluşur，只剩最後一項。這項本身是質點，可見此位置是系統的位能是一個最大值。因此，這種平衡是在不確定狀態。

至於其他兩種可能的平衡狀態，它們的穩定狀況應可自行決定。兩情形中，如

\[\frac{Q}{P} \]

可以滿足 (g) 式，則上都是穩定狀態。假使 \(\frac{Q}{P} \) 大於 (g) 式所規定的大小，那就只有 AB 條取 B 端向下的斜重位置才是系統的穩定平衡位置。假定 \(\frac{Q}{P} \) 小於 (g) 式規定的大小，那就只有 AB 條取 B 端向上的斜重位置才是穩定平衡位置。

278. 第 71 章中是接著船身挾動的「綜合」。OC 結可以在 O 點軸承中滑動且方向

作無摩擦滑動，O 點動手又可繞 O 點垂直於圖平面的軸線自由旋轉。OC 上的 A 點

由一輻旋杆 OA 側於定點 O1 上。各部件的運動都可不計。間 O1A 結在斜重

位置時，全系統的平衡狀態是穩定的。

解：令整個系統離開它的斜重位置發生一微小位移。此位移由圖中極微小的 \(\varphi, \psi \) 兩角表

示。以 O1 點的水平面為基準平面；可得擺球的重心 C 的高度等於

\[r \cos \varphi = l \cos \psi \]

因原來高度是 \(r - l \)，故重心的高度變化等於

\[r (1 - \cos \varphi) = l (1 - \cos \psi) \]

(1)

如果此位移是正值，就表示擺球向 F 移動，全系統的位能在減少。故 O1A 條取船

重位置的全系統平衡是不穩定的。反過來說，如果這一位移是負值，就表示擺球有向

(1) 叫許力克 (sehliek) 徵。
上的移動，全系統仍處於穩定平衡狀態。因\(\varphi \)和\(\psi \)角極小，可令\(\cos \varphi = 1 - \frac{\psi^2}{2} \)及\(\cos \psi = 1 - \frac{\phi^2}{2} \)，故(1)可化為

\[
\frac{r \phi^2}{2} - \frac{h \psi^2}{2}
\]

不過本系統只有一個自由度，\(\varphi \)和\(\psi \)並非獨立無關的兩個角。由\(\Omega \)平面圖，可得

\[
AB = r \sin \varphi = (h - r \cos \varphi) \tan \psi
\]

故

\[
r \sin (\varphi + \psi) = h \sin \psi
\]

但\(\varphi \)及\(\psi \)是極小的角度，故上式也可寫成

\[
r (\varphi + \psi) = h \psi
\]

或

\[
\frac{r}{h - r} = \frac{\psi}{\varphi}
\]

將上式代入(1)中，得額外的向下位移為

\[
\frac{r \phi^2}{2} \left(r - \frac{1}{(h-r)^2} \right) = 0
\]

根據以上討論，當(1)式等於負值時，也就是

\[
r (h - r)^2
\]

時，\(O_1A \)取新平衡位置就是全系統的額外平衡位置，故使(1)式值是正的，也就是

\[
rl < (h - r)^2
\]

的情形下，那就變成不確定狀態不穩定。

279. 第372圖中，AB桿及1重O₂B重均在一光滑的斜面體上，A端的支承面是一個光滑的曲面表面OC。設AB桿取任何位置(也就是整個的\(\theta \)角不論等於多少)都可以保持平衡，試求曲面OC以圖中\(x, y \)作爲變量的平衡方程式。

解：AB桿無然在任何位置都可以平衡，顯然它處於穩定平衡狀態。因此，它的位能必須
位移原理

式中保持固定不变。A，B两端的反作用力是不能没功的。可见OC曲线的形状必须使AB杆的重心处于该始保持固定的高度h/2。这就说，应该

\[\frac{l}{2} \cos \theta + y = \frac{1}{2} l \]

但

\[\cos \theta = \frac{\sqrt{l^2 - x^2}}{l} \]

故所求的方程式是

\[y = \frac{l}{2} - \frac{1}{2} \sqrt{l^2 - x^2} \]

339. 第373图中，一个半径等于r的圆球放在一个半径等于a的圆环的上面。作用于P经过一个杆子传递到小圆球上。杆子的两端在大圆环的圆心直线上（第303图）。该所用的球部是结合的刚体，求求小圆环稳定平衡的条件。

解：令小圆环发生一个方向的位移。这一个位移由图中\(q\)角来表示（第373×图）。圆球移动后，重心的「升降」是\(pq\)，P力作用点的「升降」是\(mn\)。所以圆环在最低位置的平衡，如

\[Q \cdot pq > P \cdot mn \]

就是稳定的平衡；假如

\[Q \cdot pq < P \cdot mn \]

那就是不稳定的平衡。至于式中两个位移，因\(pq\)是半径等于\(a-r\)的圆环上的一点与中心的距离，所以对于\(q\)角很小的情形，就可得

\[pq = \frac{q^2}{2} (a-r) \]

\(mn\)是一个半径等于\(a-2r\)的圆环到小杆子和圆球接触点间的距离，如\(q\)角很小，就可得

\[mn = \frac{q^2}{2} (a-2r) + \frac{q^2}{2} = \frac{q^2}{2} (a-2r) + \cdot \frac{q^2}{2} (a-2r)^2 = \frac{q^2}{2} (a-2r) (a-r) \]

将\((q)\)式代入\((a)\)中，即得所求的稳定平衡条件是

\[P < \frac{q^2 r}{a-2r} \]
281. 第 274 圖是一個放在水平面上的圓柱體切面。 圓柱的密度不均勻，以致它的重心
C 距圓柱中心 O 不相吻合。欲證明 C 點在 O 點的正下方時，圓柱在穩定的平衡位置。

282. 第 275 圖中是一可以繞支點 O 自由旋轉的桿子。 圖中兩桿桿各重 W_1 和 W_2，桿子
的重量可不計，摩擦力也可不計。試求連桿在靜止位置穩定平衡的條件。

（解：W_1 sin θ > W_2）

283. 第 276 圖中，AB 棒一端由一球形絞體固定在 A 點，另外一端則在一根光滑的水平
桿 CD 上，CD 棒的長度垂直於圖中重量平面 AEF。欲證明 AB 棒在這一位置的
平衡是不穩定的。

284. 第 277 圖中，AB 棒一端由一球形絞體固定在 A 點，另外一端則在一根光滑的水平
桿 CD 上，CD 棒的半徑是 r。欲求連桿 AB 棒在圖中位置穩定平衡的
條件。

（解：a > r）

285. 第 273 圖的絞體體重均勻；底部是一個半徑等於 r 的半球，上部是一個底面半徑
也等於 r 的正圓錐。欲求絞體體重均勻時位置穩定平衡，面錐的最大高度 h 可以等於多
大？

（解：h_{max} = \sqrt{3} r）

286. 一個密度均勻的正方體邊長等於 a，平衡在一個半徑等於 r 的圓柱體外表面上如第
379 圖，設接觸面間阻尼阻力很大，足夠阻止相對滑動發生，試求平衡正方體穩定平衡的
條件。

（解：r > a/\sqrt{2}）

287. 試求第 38 圖（第 39 頁）中兩球球的位能方程式；根據這一位能方程式，把決定平衡形
態的 α 角求出來，欲證明這兩球形態的平衡是不穩定的。
[General Information]

书名=铁氏工程力学 (上册)
作者=S. Timoshenko著 江可宗译
页数=209
SS号=11040221
出版日期=1953年04月第1版
前言
目录
内容
译序
原序
本书应用的符号
上册 静力学
第一章 静力学原理
1.导论
2.力
3.力的平行四边形原理
4.力的等导性
5.作用力及反作用力
6.力系的分类
第二章 平面共点力系
7.力的合成
8.力的分解
9.平面共点力系的平衡
10.平面三力的平衡
11.索炼
12.摩阻力
13.投影法
14.力对于一定点的力矩
15.力矩的合成定理
16.力矩法
17.简单桁架
18.节点分析法
19.综合力图
第三章 平面平行力系
20.同方向平行力
21.两方向相反的不等平行力
22.力偶
23.一般的平面平行力系
24.平行力中心
25.重心及形心
26.旋转面和旋转体的形心
27.平面组合图形和组合曲线的形心
28.应用积分求形心位置法
29.平面分布力
第四章 一般的平面力系
30.平面力系的合成
31.投影法和力矩法
32.简单框架:杆件分析法
33.简单桁架:切面分析法
34.刚体在平面中的静定式支承
35.一般的平面分布力
36.索线图
譯 序

本書原著是鐵壊古可關於大學基本力學課程的著名文獻，在資本主義世界中是一本被推祟為「經典著作」的教材。很顯然，這樣一本著作對我們學習工業科學的基本理論是有至大之異致價值的。

當初譯這本書是出於教學上的需要。一九四九年秋，譯者在同濟大學機械系教「動力學」，需要一本講義，先譯了本書的下冊；第二年，在原校上一系開「靜力學」課，才補譯出上冊。初稿完成後，曾送請中央人民政府出版總署編譯局審查。審後，編譯局曾給予極大的支持，使這本書能夠出版。譯者在此謹致衷心的感謝。

本書書名，就內容而論，應稱為「工程剛體力學」。但這一叫法不合時宜，所以還是照原著書名直譯為「工程力學」。工程力學這一門課程，根據一九五〇年中央頒發的「高等學校理工學院各系課程暫行規程（草案）」，應包括材料力學在內。而且，真正要「循名責實」的話，那就應叫「工程力學」或者以前流行的名稱——「應用力學」就幾乎應該包括工程的全部力學課程（材料力學、流體力學、熱力學……）。所以本書的書名是不夠確切的。至於目前將這門課程改稱為「理論力學」的說法，顯然也還有可商榷的地方。如果是為了解明這門課程的基礎性質，恐怕還是稱之為「基本力學」較宜些。

關於本書的譯文方面有兩點需要說明：原著所用的單位系統是英美制，譯文中已全部換算成公制單位。再，原著中有一小部份習題，譯文中已做了解答，改為例題，目的是增強本書的參照作用，以便於自學。

本書錯誤或不妥當的地方，希望讀者多多指正。

江可宗
一九五一年八月，上海。
本書應用的符號

<table>
<thead>
<tr>
<th>符號</th>
<th>意義</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>面積</td>
</tr>
<tr>
<td>a</td>
<td>加速度,半徑</td>
</tr>
<tr>
<td>a_n</td>
<td>法線加速度</td>
</tr>
<tr>
<td>a_r</td>
<td>相對加速度</td>
</tr>
<tr>
<td>a_s</td>
<td>補加速度</td>
</tr>
<tr>
<td>a_t</td>
<td>切線加速度,參考系加速度</td>
</tr>
<tr>
<td>B</td>
<td>彈力臂矩常數</td>
</tr>
<tr>
<td>C</td>
<td>積分常數</td>
</tr>
<tr>
<td>c</td>
<td>阻尼係數</td>
</tr>
<tr>
<td>cm</td>
<td>公分</td>
</tr>
<tr>
<td>a, b, c</td>
<td>尺度</td>
</tr>
<tr>
<td>D</td>
<td>直徑</td>
</tr>
<tr>
<td>d</td>
<td>直徑,力臂</td>
</tr>
<tr>
<td>E</td>
<td>彈性模數</td>
</tr>
<tr>
<td>e</td>
<td>偏心率,復形係數,自然對數的底</td>
</tr>
<tr>
<td>F</td>
<td>作用力,摩擦力</td>
</tr>
<tr>
<td>f</td>
<td>週率,節點的捏落(失高)</td>
</tr>
<tr>
<td>G</td>
<td>剪力臂矩模數</td>
</tr>
<tr>
<td>g</td>
<td>地心加速度</td>
</tr>
<tr>
<td>H</td>
<td>極點距離,紡錘的水平張力</td>
</tr>
<tr>
<td>h</td>
<td>高度,厚度</td>
</tr>
<tr>
<td>l</td>
<td>情矩或慣矩積</td>
</tr>
<tr>
<td>I_x, I_y, I_z</td>
<td>情矩</td>
</tr>
<tr>
<td>I_{xy}, I_{xz}, I_{yz}</td>
<td>情矩積</td>
</tr>
<tr>
<td>i</td>
<td>情矩半徑(旋轉半徑),\sqrt{-1},次序指數</td>
</tr>
<tr>
<td>J</td>
<td>面積積極慣矩</td>
</tr>
<tr>
<td>j</td>
<td>節點數</td>
</tr>
</tbody>
</table>
K 一般常數
k 彈力常數
kg 公斤
L 曲線長度
i 跨度
M 力矩
M 動量矩, 角動量
m 質量
m 公尺
N 法線分力
n 任意數, 每分鐘轉數
P 作用力
p 週率因力
Q 作用力
q 單位長度的重量
R 合力, 反作用力, 半徑
r 半徑, 射程
S 張力或壓力
s 距離
s 秒
T 切線分力
t 時間
U 動能
V 位能, 體積
v 速度
v_r 相對速度
v_i 參考系速度
W 重量, 重力
w 單位體積重量
u, v, w 正交坐標系坐標值
X, Y, Z 作用力在坐標軸方向的投影
x, y, z 正交絕對坐標系坐標值
本章應用的符號

\(x, y, z\) 速度在坐标轴方向的投影
\(\dot{x}, \dot{y}, \dot{z}\) 加速度在坐标轴方向的投影
\(\alpha\) 角加速度，相角
\(\beta\) 放大因数
\(\gamma\) 阻尼因数
\(\alpha, \beta, \gamma\) 方向角，方向余弦
\(\delta\) 变形
\(\delta_{1}\) 静力变形
\(\delta x, \delta y, \delta z\) 位移在坐标轴方向的投影
\(\theta\) 旋转角
\(\dot{\theta}\) 角速度
\(\ddot{\theta}\) 角加速度
\(\mu\) 屈服系数
\(\pi\) 3.1416
\(\rho\) 曲率半径
\(\rho, \theta\) 平面极坐标
\(\sigma\) 应力
\(\tau\) 力矩
\(\xi, \eta, \zeta\) 正交相坐标系坐标值
\(\varphi\) 旋转角
\(\theta, \psi, \varphi\) 角
\(\omega\) 角速度
\(\overline{AB}, \overline{a}, \overline{v}\) 向量
內容

下冊 動力學

第九章 動力學原理

60. 導論 .. 1
61. 質點的運動 ... 2
62. 牛頓定律 ... 4
63. 質點運動的一般方程式 7
64. 重力單位制與電單位 8
65. 剛體運動的分類 9

第十章 直線移動

66. 剛體直接移動的運動方程 11
67. 運動方程式 .. 19
68. 在常力作用下的質點運動 23
69. 作用力是時間函數的質點運動 27
70. 正比於位移的力——自由振動(一) 29
71. 自由振動(二) 36
72. 強迫振動 ... 43
73. 強迫振動的應用 45
74. 慣性力——慣性力原理 48
75. 動量和衝量 54
76. 功和能 .. 58
77. 能量不確定律 63
78. 雜擾 ... 68

第十一章 曲線移動

79. 剛體曲線移動的運動方程 74
80. 法向加速度和切線加速度 79
81. 質點的曲線運動方程 83
82. 接觸體的運動 86
83. 曲線運動中的慣性力——慣性力原則 93
84. 動量矩 .. 95
第十二章 附體的定軸微轉

85. 直線運動的動量方程式.. 103
86. 轉體的運動幾何... 103
87. 固定點之定軸微轉的運動方程式............................... 111
88. 不受力矩作用下的旋轉運動.................................... 115
89. 旋轉運動.. 118
90. 一般力矩作用下定軸微轉的旋轉運動......................... 123
91. 彈簧.. 127
92. 旋轉運動的慣性力... 132
93. 旋轉慣量的內力.. 135
94. 固定直線上軸心反作用力.................................... 139
95. 旋轉剛性的均布力... 143
96. 角動量定理.. 143
97. 角動量的面積表示... 153
98. 連轉慣.. 154
99. 旋轉角的動量方程式.. 158

第十三章 剛體的平面運動... 164

100. 剛體平面運動的運動幾何................................... 164
101. 噴射中心.. 167
102. 平面運匠中的受動和運動的相互獨立性................. 171
103. 剛體平面運動的運動方程式................................ 175
104. 剛體平面運動的動量方程式................................ 178
105. 碰撞及連轉中心... 188

第十四章 相對運動.. 192

106. 相對運動的運動幾何.................................... 192
107. 相對運動的運動方程式.................................... 193
108. 相對運動中的慣性力.................................... 204

附錄 I 平面圖形的面積表矩.................................... 207
附錄 II 物體的質量表矩.................................... 210
動力學

第九章 動力學基本原理

60. 導論

動力學以靜止的剛體作爲研究對象，動力學以運動的剛體作爲研究對象。動力學成功一門學科還在靜力學之後。它的歷史一般認爲從伽利略(1564-1642)時代才開始。動力學基本理論的形成必須依靠實驗，它的迅速發展主要就是由於實驗上的困難。在動力學中我們只要處理兩種「量」：第一，物體本身或物體與物體間的空間關係——長度；第二，物體與物體間的相互作用——力。精密測量「長度」和「力」的儀器，構造比較簡單，發展也較早。在動力學中，除此之外，還要測量「時間」這一個「量」。可是篤得上稱為準確的計時儀器，像有鐘擺的錶、有擺輪的錶都是比較近代的東西，在加利略時代是完全沒有的。精密測量「時間」的困難延緩了動力學的發展，這當然是很自然的事。

為了研究上的方便，通常把動力學分爲兩大部門：運動幾何和動力學。運動幾何只研究「一個運動」的空間—時間關係，而不問產生這一運動的原理。譬如，一個車輪沿水平直線軌道等速運動，運動幾何就只問車輪運動某一時的運動軌跡是什麼形狀；或者問某一時刻這一點在軌跡上何位置。至於產生這一運動的原因，是不加過問的。

動力學研究：一個物體或一系物體在一定外力作用下將產生怎樣的運動，或者要產生一種預定的運動必須用什麼樣的力來作用。譬如：有一個物體在光滑的水平平面上受到一個一定的水平力作用，要預測它如何運動就是動力學的問題。再如，在一定時間內，要使一個旋轉物體達到已定的角速，必須在它軸上加上一個多大的矩力矩來作用，也是動力學的問題。

整個動力學建築在幾條關於質點運動的自然規律上。所謂質點是指不計位置而不計大小的定量物質。事實上，任何量的物質都有大小，都不是質點。質點只是一個抽象概念。概念的構成無非是要排除一些
不必要的因素，使得問題中可決定因素能夠顯露出來。在力學中，這就是說，只要物體的大小不影響它的運動或雖有影響但影響極小，就可以把物體看成一個「質點」。譬如行星運動，星體的直徑都有千萬公里，不能不計體積大小，但是它的體積比起它的運動軌跡來，卻仍然是渺小的，所以還足可當作一個「質點」。同樣，一個槍彈，因爲本身尺寸比起彈道來也小得多，所以也可以當作一個質點。質點既不計大小，本身自然沒有旋轉可言。電子之微小在我們心目中已經無法想像，似乎一定可以把它看作一個質點。實際上並非如此，討論電子的「角動量」時，我們必須顧到它的體積，決不可當它是一個質點；否則，就否定了它的旋轉，無所謂角動量。所以，總括起來說，「質點」只是一個抽象概念，並非具體的東西。

61. 質點的運動

質點在空間的運動軌跡稱為運動路線。路線佔三度空間稱為空間路線；佔兩度空間，稱為平面路線。最簡單的情形，運動路線是一條直線；質點在這種路線上的運動，稱為質點的直線運動。

第380圈表明一個質點的直線運動。質點在任一時刻t所在的位置可以由這一定位置到某一定點A的距離$AP=s$決定。s稱為質點的位移。質點運動時，位移隨時間變化。若每一時刻的s值都知道，質點的運動情形就完全決定。假使在任同一段時間Δt內，不管Δt的長短如何，質點移動的距離Δs都相等，那這一特殊情形就稱為質點的均勻直線運動。作這種運動的質點，其位移對時間的變化率$\Delta s/\Delta t$稱為質點的速率，通常用v表示：

$$v = \frac{\Delta s}{\Delta t}$$

在均勻直線運動中，質點的速度當然是固定不變的。

比較一般的情形，質點在兩段連續的相等時間Δt內運動的距離並不相等，那就是質點的不均勻直線運動。假若質點在t及$t+\Delta t$時刻
的位置分別是 P 及 P_1 （第 380 圖），那末

$$v_m = \frac{\Delta s}{\Delta t}$$

就稱為質點在 t 到 $t + \Delta t$ 一段時間內的平均速度。 v_m 位隨時間 Δt 的

長短而變化。 運動變化當然會取結疤方式，所以時間 Δt 選擇愈小，

質點在這一段時間內的運動就愈近似均勻直線運動。 比率 $\Delta s/\Delta t$ 也愈

接近運動的真買情形。 若 Δt 無限小，$\Delta s/\Delta t$ 也無限趨近一個一定

值，這一極限值就稱為質點在 t 時刻和 P 點的點速度（1）（又稱瞬時速

度）；

$$v = \lim_{\Delta t \to 0} \left| \frac{\Delta s}{\Delta t} \right|$$ \hspace{1cm} (30)

在不均勻直線運動中，質點的速度隨時變化。 速度變化對於時間

的比率稱為加速度。 例如第 380 圖中，若質點在 t 時刻和 P 位置的速

度是 v ；在 $t + \Delta t$ 時刻和 P_1 位置是 $v + \Delta v$ ，那末

$$a_m = \frac{\Delta v}{\Delta t}$$

就是質點在 Δt 一段時間內的平均加速度。 當 Δt 這段時間向無限小

減少時，那末平均加速度的極限值

$$a = \lim_{\Delta t \to 0} \left| \frac{\Delta v}{\Delta t} \right|$$ \hspace{1cm} (31)

就稱為質點在 t 時刻和 P 位置的點加速度。

速度通常用一根線段來表示。 這種幾何表示方法對於解決曲線運

動問題特別有用。 在質點的曲線運動中（第 381 圖），我們把（30）式所

規定的「速度」看成路線各點的切線上的一個個向量。 質點在 t 及 $t + \Delta t$

時刻的位置分別是 P 及 P_1 （第 381a 圖）； v 和 v_1 分別代表質點在這兩

位置的速度。 v 和 v_1 分別在路線 P 和 P_1 點的切線方向。 從分離

向量圖（第 381b 圖），我們看得出，速度的變化是一個方向跟路線斜交

的向量 Δv ，所以質點在 Δt 這段時間內的平均加速度就是一個大小等

（1）速度本末指位移對時間的比值，實際上，質點在一點不可能具有一個所謂「速度」，而且

我們的直接量得出來的也只有「平均速度」。 這說明：「點速度」只是一個拓廣概念，

它的形成是因需要排除不需要考慮的因素。 如果不構成這樣一個概念，選「平均

速度」來直接參與力學問題的計算，那就必須確定兩個「位置」和兩個「時刻」。 這

樣，稍微複雜一點的問題就可能不適用計算。
於 $\Delta v/\Delta t$，方向跟 Δv 相同的向量。
這向量，當 Δt 無限趨近於零的極限，
就代表質點在 t 時刻的點加速度。

在曲線運動中，質點加速度的大小
非但要看速度大小的增加而定，而
且跟運動的方向也有關。因此，只
有在速度的大小和方向都不變的質
點均勻直線運動中，加速度才會等於
零。

62. 牛頓定律

在前一節的討論中，我們沒有追問過產生質點運動的原因。現在
要進一步去察察作用在質點上的「力」對於質點的運動有什麼影響。這
需要有幾條公理來做基礎。這些公理稱為動力學的基本原理。原理
的正確性無法直接證明，不過由它們推出來的結論是跟一般的自然現
象精密符合的；尤其在天文方面，根據這些原理推算出來的星體運動幾
乎完全跟實際觀察相符合。

在動力學實驗方面，伽利略是第一個得到成功的人。基本原理中，
第一、第二兩定律都是他發現的。不過基本原理的最後形成還是要歸
功於牛頓，所以這些原理又稱為牛頓定律。以下我們將詳細討論這些
定律的內容。

第一定律：任何質點不受外力作用時，原來靜止的，繼續保持靜止；
原來運動的，保持着均勻直線運動狀態。

第一定律又稱慣性定律。古時學者假設有：要維持一個質點的均
勻直線運動，必須要有一個跟運動方向相同的力，作用在質點上。這樣
一個假設跟日常生活經驗也似乎符合，如在水平平面上射出一個物體，
它速度必然要漸漸減小；最後歸於靜止。但是伽利略已觀察到，在這種
情形下，速度的減少是由於接觸而摩擦阻力和空氣阻力的存在；如果減少
這些阻力，物體就會接近於作均勻直線運動；阻力減少得愈小，愈接近；
在理想情形下，完全沒有阻力，物體自然將作均勻直線運動。在特殊情
形下，當速度為零時，物體處於靜止的狀態，好像沒有任何力加在它
上面一樣。第一定律假設了絕對靜止的存在，這是不對的，實際上靜止只能有相對的意義。大多數的工程力學問題中，我們都假定地球不動；質點的運動都是相對於地球而言。在一般情形下，由這假定推出來的結果跟實驗或觀察的結果相當符合。不過，在某些問題內，地球本身的運動卻不能不致意；否則，結果達不到所需要的精確度。在這種情形下，我們需要把恆星當作固定的坐標軸系來先確定地球的運動。

慣性定律說明物體有保持它原來運動狀態的特性。這特性稱為物體的慣性或慣性。慣性定律也可以當作是「力」的定義。若問什麼是「力」，有了這定律，我們就可以回答，力，它的作用是物體改變運動速度的原因；或者說，力的作用是產生加速度的原因。

第二定律：一個質點的加速度，大小跟作用在它上面的力的大小成正比，方向跟力的方向相同。

第一定律只對慣性和力作定性說明；僅僅說明了，力跟速度變化是互相關聯著而已。第二定律則進一步作定性說明，說明力跟加速度有什麼樣的關係。

第二定律也是加利略發現的。在他有名的落體實驗中，他已發現落體加速度的固定不變性；加速度的大小完全跟物體構成的物質無關。他這個結論後來由牛頓用無數次的精密實驗給以證實。牛頓觀察過各種物質做成的落的振動，根據測出的振動週期，算出落體加速度等於 980\text{cm/s}^2，跟加利略測出的相同。以下我們一概用 \(g \) 代表這一加速度。

落體下降很快，因之，時間不容易測得準確，為了消除這一困難，加利略另行觀察物體沿斜面的降落（第 382a 圖）。他發現：物體沿斜面下降的加速度也是一個不變常數（實驗中已經儘可能減少了摩擦力的影響）。觀察過各種不同傾斜角 \(\alpha \) 的斜面運動後，他發現：物體沿斜面下降的加速度

![第 382 圖](image-url)
面下降的加速度 \(a \) 跟自由落體加速度 \(g \) 間有如下的關係：

\[
\alpha = g \sin \alpha \tag{a}
\]

\(\alpha = \pi \) 時，加速度 \(a \) 跟自由落體加速度 \(g \) 相同；\(\alpha = 0 \) 時，加速度等於零，質點作等速運動。

質點作斜面運動時，它上面作用各力，加利略已發現，不等於質點的重力 \(W \) （第 382a 圖），而等於維持質點在斜面上平衡的重量 \(W_1 \) （第 382b 圖）。\(W_1 \) 比 \(W \) 要小一些，在不計風阻力的情形下，是

\[
W_1 = W \sin \alpha \tag{b}
\]

比較\((a)(b)\)兩式，立刻知道：當斜面角 \(\alpha \) 變化時，加速度和力按同一比例變化。考慮根據這一實驗結果，得到力的大小跟加速度大小成正比的結論。換句話說，質點上力的大小若增減多少倍，加速度的大小也增減多少倍。

加利略的實驗結果由牛頓加以推廣，列為動力學第二定律。本定律對於質點在受力作用以前的運動狀況未加任何限制。力產生的加速度跟質點原來的運動完全沒有關係。換句話說，一個已知力作用於質點，不管質點原來是在靜止狀態或運動狀態，也不管原來運動的方向如何，速度如何，所產生的加速度總是相同的。

同樣，對於作用在質點上的力的個數，本定律也未加任何限制。不論有多少個力同時作用在一個質點上，各個力所引起的加速度跟各自單獨作用時完全相同；力的效應絲毫不會受同時存在的其他的力的影響。因此，一個質點的合成加速度，完全像力一樣，也可以由所有各力所產生的加速度的幾何相加來決定。各力所生的加速度都各自跟各力的大小成正比；方向各自跟相應各力相同，所以合成加速度跟合力，也是大小成正比，方向相同。

有了以上兩定律，我們已經可以研究一個單一質點在力作用下的運動狀況。不過，這是不夠的。實際問題中需要處理的對象常常是一系質點（或一個剛體）或一系剛體。這就需要底下的第三定律來決定它們相互間的作用力及反作用力：

第三定律：每一個作用力必定有一個大小相等、方向相反的反作用
力相伴存在。换句话说，任何两物體間的相互作用力必然是大小相等、方向相反的兩力。

一個物體加一個壓力於另一物體，那後一物體就必然有一個同樣大的壓力加於前一物體。兩個互相遠隔的物體，若一個吸引另外一個，那後一個也必定用同様大小的反作用力吸引前一個。不僅「萬有引力」如此，其他各種形式的力，例如電、靜電力、兩接觸物體間的壓力（靜力學中討論過的）等也無不如此。磁鐵吸引鐵塊的吸力，大小跟鐵塊吸引磁鐵的力完全相等。

關於第三定律，最容易發生的誤解是誤認作用力及反作用力都集中在一個物體上，以致誤會到完全力都不能使物體運動的荒謬結論。很多數書籍上把旋轉物體上的「離心力」看成「向心力」的反作用力，是不對的。離心力是一種作用在旋轉物體上的「慣性力」（它們的意義以後再討論），大小、方向都跟向心力的反作用力相同，可是後者並不作用在旋轉物體上。

關於物體的「重量」，通常也有一些誤解。「重量」指物體對支承物的作用力。它的大小、方向普通都跟地球加於物體的重力相同。認為重量就是重力，或者認為是支承物對物體的反作用力，是不夠精確的。因爲物體和支承物如果同時有铅垂向的加速度，那末，重力在一定範圍內仍固定不變，而重量卻會有顯著的增減。

63. 質點運動的一般方程式

質點的運動方程式根據第二定律而來。我們在落體實驗中已經看到，質點單獨受重力 W 作用時，產生的加速度是 g。現在改用 F 力作用，這一質點如果產生的加速度是 a，那末按第二定律，a 跟 g 的比率就應該等於作用力 F 跟重力 W 的比率，這就是說，

\[
\frac{a}{g} = \frac{W}{F}
\]

因此，得

\[
F = \frac{W}{g}a
\] (32)

(32)就是質點運動的一般方程式。只要知道作用力 F，任何時刻的質
點加速度 \(a \) 都可以用 (32) 式來計算。

(32) 式說明，如果作用力 \(F \) 的大小一定，它產生的質點加速度就
跟因子 \(W / g \) 成反比。 \(W / g \) 因子的大小跟作用力的大小完全無關，純粹是質點本身具有的性質。所以，可以用來測量質點慣性的大小，這
因子稱為質點的質量，通常用字母 \(m \) 代表，

\[
m = \frac{W}{g} \quad (a)
\]

或

\[
m a = F \quad (32')
\]

由 (a) 式可看出，質量 \(m \) 的因子是作用力除以加速度；著力的單位用
kg (公斤)，長度單位用 m (公尺)，時間單位用 s (秒)，質量單位顯然就
是 kg·s²/m。質量的單位在工程科學中是一種導出單位。力學中有四
種基本量是相互獨立、不能彼此解釋的：(1) 長度，(2) 時間，(3) 質量，
(4) 力。應用了以上運動方程式，在這四種基本量的單位中，只要任意
選定三種，便能導出第四種的單位。

64. 量力單位和絕對單位

以上討論中，我們始終假定地心加速度 \(g \) 是一個不變常數，可是在
精密測量下，\(g \) 值實際上是隨運動的所在地而變化的。緯度愈高，海拔
愈低的地點，\(g \) 值也愈大。精確的 \(g \) 值公式是

\[
g = 980.62(1 - 0.00263 \cos^2 \varphi - 0.00000003 \ h) \quad \text{cm/s}^2 \quad (a)
\]

式中 \(\varphi \) 指運動所在地的緯度； \(h \) 指所在地距離海平面海水面的高
度，以 m 為單位。緯度 \(\varphi \) 最大的變化是 90°，影響 \(g \) 值不過 0.5%；
\(h \) 值如果發生 8000m 變化時，影響 \(g \) 值也不過 0.25%。所以在工程學問題中可
以假定 \(g \) 是一個固定值。在以後計算中，我們一律規定 \(g = 980\text{cm/s}^2 \)。

假使需要的精確度很高，\(g \) 值應按 (a) 式計算，那 (32) 式中重力 \(W \)
的大小自然也隨物體所在地點的不同而略有差別。這種差別可以由量
力計中彈簧的伸長來測量（量力計，構造與普通應用的彈簧秤一樣，用
來測量作用力的大小）。如果需要更精確測量重力，那還可以用以下
§ 9 所討論的方法，觀察物體的搖動週期。 搖動週期跟物體所受重力
的平方根成反比例，所以間接推算得出重力的大小。我們由加利略實
騏中已經知道，質點的加速度跟作用力成正比。這說明，(32)式中 \(W \) 和 \(g \) 應該按同樣的比例隨所在地不同而變化；而兩者的比例——也就是質點的質量——是跟所在地無關而保持固定不變的。

上一節已說過，力學中四基本量的單位中有三種可以隨意選定，再由四量的關係方程式(32)或(32')就可導出第四種單位。為方便計，工程力學中選定長度、時間和力的單位作為基本單位，而以質量的單位作為導出單位。這樣，有時候就可以消除 \(g \) 值變化所引起的計算上的不方便。這種單位系統稱為重力單位系統。

物理和天文學中以長度、時間和質量作基本單位，定4°C的1cm³水所具有的慣性為1克質量，力的單位由這三種基本單位導出來。由(31')式可看出，一個單位力就等於使一克質量物體產生 1cm/s² 加速度的作用力，這單位稱為「達因」或 gm−cm/s²。如此的單位系統通常叫做絕對單位系統。

65．剛體運動的分類

以上討論的基本原理都是就單一質點的運動而言。以下我們需要詳細討論如何把這些原理應用於剛體(或質點系)運動；否則，不能解決實際工程問題。實際應用中所遇到的剛體運動可分為以下幾類。例如第 383 圖中的原動機，P 是活塞，O A 和 O₂B 是各個曲軸，AB 是聯桿，BC 是推桿。假定機架靜止不動，原動機開動後，立刻可以看到，活塞 P 上面所有各質點的運動都完全相同。這種所有各組成質點都

作完全相同運動的剛體，它的運動就稱為移動。聯桿 AB 的各質點的運動也都相同，運動路線全是在半徑的周，使聯桿本身在運動中永遠保持自身的相互平行。因此，它的運動也是一種移動。可見剛體移動又可分為兩類：如果剛體每一質點的運動路線是一根直線，像活塞 P 一樣，那末這剛體就是作直線移動。直線移動是剛體可能的運動中一種最簡單的類型。如果剛體每一質點的運動路線都是一根相同的曲
線，像聯桿 AB 一樣，那末這個剛體就是作曲線移動。路線可能是一根平面曲線也可能是一根空間曲線，所以曲線移動既可能是平面運動也可能是空間運動。

曲軸 O_1A 和 O_2B 繞固定軸線旋轉，軸線位置由 O_1 和 O_2 兩軸承決定。一個剛體繞一固定軸線旋轉，像 O_1A 和 O_2B 一樣，那就稱為旋轉運動。內在這種運動中，物體上兩個已知點的連接直線，運動時並不保持自身的相互平行，所以我們需要考慮「連線」因不同位置而發生的角度變化。

圖中推桿 BC 的運動是複雜的，它 B 端沿一個以 O_2B 爲半徑的圓周運動，C 端沿直線 O_3C 運動，中間各點又作不同的曲線運動。所有各點的運動都互不相同；不過運動時，所有各質點的運動路線全部平行於一個平面（圖平面），所以通常稱為剛體的平面運動。平面運動的意義當然更廣泛。以上，活塞 P 的直線運動，聯桿 AB 的曲線運動以及曲軸 O_1A，O_2B 的旋轉，都不過是平面運動中的各種特例而已。

以下各章將依以上分類的次序從最簡單的直線運動開始，分別對各種剛體運動加以詳細的探討。
第十章 直線移動

66. 剛體直線移動的運動幾何

第九章已指出，剛體發生直線移動時，它所有各質點的運動情形完全相同，所以我們只要觀察剛體上任何一點，例如重心的運動就可以完全決定整個剛體的運動。換句話說，在這樣的運動中，我們可以把整個剛體當作全部質量統統在重心一點的質點看待。

關於質點在直線運動中的位移，我們可以取它的運動路線作作 \(x \) 軸，在 \(x \) 軸上選定一個固定點 \(O \) 作作原點。這樣，質點的 \(x \) 軸坐標（質點離開原點的距離）就是它的位移（第 384 圖）。

我們規定：質點在原點 \(O \) 右邊的位移為正；左邊的為負。測量位移所用的長度單位一般應用 cm 或 m。

質點運動時，位移隨時間變化。假使質點在每一時刻 \(t \) 的位移都知道，那麼質點的運動就完全決定。表示位移時間關係的算式，即是質點的位移方程式：

\[
x = f(t)
\]

(33)

\(f(t) \) 的具體內容，看質點如何沿 \(x \) 軸運動而定。它可以是各種形式的時間函數。

例如，某一定點的位移方程式是

\[
x = c + bt
\]

(33a)

式中常數項 \(c \) 代表最初 \(t = 0 \) 時質點的位移。這位移稱為質點的最初位移；式中另一常數 \(b \) 表示位移對於時間的變化率。這一方程式所表示的運動，稱為均勻直線運動。這雖然是一種最簡單的運動，不過在工程問題中卻常碰到。

再如底下這一位移方程式：

\[
x = ct^2
\]

(33b)

它所表示的質點運動也是直線運動，其中質點位移跟時間的平方成正
我們在普通物理學中已經知道，這是一個自由落體的位移方程式。

另外一個例子是工程問題中常常遇到的簡諧運動。這種運動的位移方程式形式如下：

\[x = r \cos \omega t \] \hspace{1cm} (33c)

關於簡諧運動，我們可以用第 385 圖來幫助了解。設想有一點 A' 沿一軸綫
在半徑為 r 的圓周上以相等的速率 (速度值) 動動。\(\omega \) 表示半徑 OA'
在單位時間內經過的弧度角，A 點表示 A' 點
在 x 軸上的一個點。我們從半徑 OA'
跟正 x 軸相合時起算時間，很顯然的，(33c)
式代表 A 點在 x 軸上的運動，OA 等於
r \cos \omega t 。簡諧運動在工程應用中有特殊的重要性，我們必須詳細研究。

現在另外舉一
例如第 386 圖的實例來說明。圖中是一具蒸汽機。我們以汽缸中心
線為 x 軸，以活塞 P 所走路線的中點 O 作軸原點，從活塞在最高位
置時起算時間。軸綫 AB 一發生旋轉，桿子 B 就在水平導槽 CD 中來
回滑動，活塞的垂直位移 \(x \) 等於曲軸 AB 在 x 軸上的投影。若 r 代表曲
軸 AB 的長度，\(\omega \) 代表 AB 在單位時間內所掃過的弧度角，活塞 P 的位
移 \(x \) 就恰好可由 (33c) 式表示。活塞來回一次所需要的有效週期為曲軸等
速旋轉一周的時間相等。這一段時間等於 \(2\pi / \omega \)，稱為簡諧運動的週期。

應用曲線來說明位移跟時間的關係有時比應用算式好。我們只
要用笛坐標表示時間 t，縱坐標表示位移 x，任何具體問題的 (33) 式就可導出一個曲線。這種曲線頭就稱為位移時間圖。 (33a) 和 (33b) 兩式的位移時間圖見第 387 圖； (33c) 式簡略運動的位移時間圖見第 386b 圖。這些曲線的效能跟方程式完全相同，它們也能告訴我們同樣多的東西。畫位移時間圖所用的位移單位和時間單位應該長度相同，使比例尺的大小可以不必放縮。

關於質點在直線運動中的速度，我們可以從第 387 圖表示的均勻直線運動來開始討論。在圖上可看出，質點在任何相等的時間 Δt 內所增加的位移 Δx 始終相等。因此，均勻直線運動的速度 v 可以由以下一式決定：

$$ v = \frac{\Delta x}{\Delta t} \quad (a) $$

至於速度的正負，我們規定：如果質點的位移隨着時間的增加而增加，那就是正的；否則，就是負的。速度的單位是「長度／時間」，通常用 cm/s 或 m/s 做單位。

(33b) 式是比較普通的不均勻運動。它的圖象見第 387 圖中的曲線。在圖上可看出，質點在兩段相等的時間 Δt 內所增加的位移 Δx_1 和 Δx_2 並不相等。圖中位移的增加是隨着時間的增加而變化，所以這是一種加速運動。若令 Λv 表示質點在 Δt 時間內增加的位移，質點在這段時間內的平均速度是

$$ \bar{v} = \frac{\Lambda v}{\Delta t} \quad (b) $$

以前 (30) 所表示的質點在 t 時刻的瞬速 (以下簡稱速度) 為之是

$$ v = \lim_{\Delta t \to 0} \frac{\Delta x}{\Delta t} = \frac{dx}{dt} = \dot{x} \quad (84) $$

式中用 \dot{x} 表示位移對時間的導函數，是牛頓所引用的，底下 dx/dt 一般用這符號來代表。

以上討論的各點，也可以圖解如下：第 383 圖中曲線 AD 代表任意一質點運動的位移時間圖。質點自 t 時刻到 $t + \Delta t$ 時刻中的所謂平
均速度，就相當於用圖中的 BC 直線表示的均勻運動來代替真實運動。BC 直線的傾斜度表示 (b) 式的平均速度。若 Δt 渐漸減小，表示真實運動的 BC 曲線跟 BC 直線的相差也逐漸減少。若 $\Delta t = 0$ 的極限值
形下，BC 直線變成位移時間曲線在 B 處的切線，切線的傾斜角就代表質點在 t 時刻的速度 v。所以，位移時間曲線上各點切線的傾斜角變化，可以表示不均速直線運動質點的速度的變化。

由（34a）式，可見只要微分位移－時間方程式，就可求得到運動中質點的速度跟時間的關係方程式，速度的大小和方向也就隨之決定。若（33）式的導函數等於正值，表示位移隨時間增加而增加，則速度就也是正的；否則，就是負的。正的速度表示它的方向跟正 x 軸方向相同。（33a）（33b）和（33c）三式所表示的直線運動，質點的速度分別是：

$$v = \frac{dx}{dt} = c + bt$$ \hspace{1cm} (34a) \\
$$v = \frac{dx}{dt} = ct^2 - 2ct$$ \hspace{1cm} (34b) \\
$$v = \frac{dx}{dt} = r \cos \omega t = -r \omega \sin \omega t$$ \hspace{1cm} (34c)

速度對時間的變化也可以用曲線表示。我們只要把速度 v 和時間 t 分別作為縱坐標和橫坐標，就可以畫出（34）式的曲線圖。這曲線圖通常稱速度時間圖（以下簡稱速度曲線或速度圖）。（34a）（34b）和（34c）三式的這種曲線圖見第 389 圖。圖中的虛線是位移時間曲線，可以給我們一個比較。

第 389a 圖的速度曲線是一根水平直線，這表示：質點速度的固定不變性在位移曲線上就是各點的傾斜度不變。第 389b 圖的速度曲線是一根傾斜直線，它表示位移曲線各點的傾斜度按相同比率增加。第
389c 圖表示的簡答運動，速度曲線很複雜。在圖上看得出，當位移取極大或極小值時，速度等於零；換句話說，第 386 圖中活塞 P 在兩極端位置時，速度等於零。此外，還可看出，活塞經過中央位置時，速度將等於極大或極小。

第 390 圖是任意一直線運動的速度曲線。由 (34) 式, 可得

\[dx = v dt \] \hspace{1cm} (c)

代表質點在 \(dt \) 時間內所增加的位移，也就是速度圖中高 \(v \) 寬 \(dt \) 的無限條小形面積。所以把由 \(t_1 \) 到 \(t_2 \) 的所有位移的增量加起來，就得到圖中藍彩範圍的面積，亦即等於質點從 \(t_1 \) 到 \(t_2 \) 一段時間內所走過的距離。這說明，由速度圖非但可以得到質點在任何一時刻的速度，而且還可以求出質點在任意一段時間內所走過的距離。

如果質點速度也隨時變化，那就表示質點有加速度。由第 389a 圖可見，均勻運動中，質點速度是固定不變的，但是在第 389b 圖所表示的運動中，速度在等時間 \(\Delta t \) 內要發生等速的增加。增加量是 \(\Delta v \),
故等加速度是

$$a = \frac{\Delta v}{\Delta t}$$ (d)

質點的加速度跟速度相同，非但有大小而且有正負方向。假使速度的
大小隨時間的增加而在正方向增加，那加速度就是正的，否則，就是負的。
所以質點速度等於正的時刻，也可以有負的加速度；速度負的時
候，也可以有正的加速度，兩者方向並不一定相同。加速度的因次是
[長度/時間^2·時間]，通常用 cm/s^2 或 m/s^2 做單位。

第 389c 圖所表示的是比較一般的情形。質點在兩段相等時間 \(\Delta t\)
內的速度的增加量 \(\Delta v\) 為不相等，所以這是一種不等加速運動。
要求出質點在某一時刻 \(t\) 的加速度，我們仍可按照以前用的方法，先求得
質點在 \(t\) 時刻到 \(t + \Delta t\) 時刻中的平均加速度

$$a_m = \frac{\Delta v}{\Delta t}$$ (e)

然後，命 \(\Delta t \rightarrow 0\)，決定 \(a_m\) 的極限值，就得到質點在 \(t\) 時刻的點加速度
（以後簡稱加速度）如下：

$$a = \lim_{\Delta t \rightarrow 0} \frac{\Delta v}{\Delta t} = \frac{d\upsilon}{dt} = \frac{d^2x}{dt^2} = x$$ (35)

由(35)式可以看出，要求加速度跟時間的關係方程式，只要把位移-時間
方程式對時間微分兩次就成。以上三個例子的質點加速度故分別是：

$$a = \frac{d^2}{dt^2}(c + bt) = 0$$ (35a)

$$a = \frac{d^2}{dt^2}(ct^2) = 2c$$ (35b)

$$a = \frac{d^2}{dt^2}(r \cos \omega t) = -r \omega^2 \cos \omega t$$ (35c)

這些關係表現在速度-時間圖中，就是第 389 圖速度曲線上各點傾斜度
的變化。

第 389a 圖所表示的運動，質點加速度是等於零的；第 389b 圖所表
示的運動的加速度是等於常數，等於等速加速度 \(\gamma = 980\) cm/s^2；第 389c 圖的運
動是質點運動，質點的加速度最大等於 \(+r\omega^2\)，最小等於 \(-r\omega^2\)。加速度
的大小跟位移成正比，方向跟位移相反，這就是質點運動的特徵。
例題和習題

283. 一個直線運動的質點，位移方程式是

\[x = x_0 + v_0 t + \frac{1}{2} a t^2 \] \hspace{1cm} (f)

求求這一直線運動的速率方程式和加速度方程式。

解：令 \(t = 0 \)，得 \(x = x_0 \)，可見 \(x_0 \) 就是質點的初起位置。將 (f) 式對時間差分一次得

\[\dot{x} = v_0 + at \] \hspace{1cm} (g)

代表所求的速度方程。令式中 \(t = 0 \)，得 \(\dot{x} = v_0 \)，表示 \(v_0 \) 是質點的初速。再將 (g) 式對時間差分一次，得

\[\ddot{x} = a \] \hspace{1cm} (h)

代表所求的加速度方程式。由 (h) 式，可看到，(f) 式所表示的運動是一種等加速直線運動。

289. 上述中若 \(x_0 = 10\text{cm} \), \(v_0 = 5\text{cm/s} \), \(a = 2\text{cm/s}^2 \)，試求出這運動的位移圖、速度圖以及加速度圖，並求出 \(t = 2\text{s} \) 時，質點的速度和加速度。

解：\(\dot{x}(t) = 45\text{cm/s}; \ddot{x}(t = 2) = 2\text{cm/s}^2 \)

290. 某一運動質點的速度時間關係是 \(x = \frac{1}{2} ct^2 \)，其中 \(c = 8\text{m/s}^2 \)。設最初位移等於零，試求 \(t = 3\text{s} \) 時質點的位移。

解：\(x(t = 3) = 36\text{m} \)

291. 設第 386 項中，原動機的轉動角速 \(\omega = 4 \pi \text{rad/s} \)，曲柄長 \(10\text{cm} \)，試求活塞的最大速度和最大加速度等於多少？

解：活塞在道路中點時，\(|\dot{x}_{max}| = 40 \pi \text{cm/s} \); 活塞在道路兩端，\(|\ddot{x}_{max}| = 160 \pi^2 \text{cm/s}^2 \)

292. 雙桿 \(AB \) 靠在牆上，下端以等速度 \(v_0 \) 運動，位移是 \(OA = vt \) (第 391 圖)，試求它上端 \(B \) 點的位移、速度和加速度的方程式。

解：以 \(OB \) 作 \(x \) 軸，\(O \) 作原點，\(B \) 端位移就等於

第 391 圖
$$x = \sqrt{t^2 - (v_0 t)^2}$$

（i）

對時間微分 (i) 式一次及二次，得

$$\dot{x} = -\frac{v_0^2 t}{\sqrt{t^2 - v_0^2 t^2}}$$

（ii）

$$\ddot{x} = \frac{v_0^2}{(t^2 - v_0^2 t^2)^{3/2}}$$

（iii）

因 \(t = t/v_0 \) 時，B 端已達離開面，故所得三式只適用於 \(0 < t < t/v_0 \) 的一段時間。

第 392 圖是 (i) (ii) 式的圖解。因 (ii) 式又可寫成

$$\frac{x^2}{t^2} + \frac{t^3}{(l/v_0)^2} = 1$$

可見位移時間曲線是一四分之一的橢圓，它的軸長等於 \(l/v_0 \) 及 \(l \)。

233. 第 392 圖中的 AB 纜，A 端離地面 5m，以固定速度 \(v_0 = 10 \text{m/s} \) 拉一水平直線運動；

B 端吊著一物體，滑車 C 的大小可以不計。 (a) 試求出 B 端物體的速度時間圖。 (b) 試求把物體吊到離地 \(h = 20 \text{m} \) 需所需要的时间。

（解）：

\[(a) \quad v = \frac{100t}{\sqrt{25 + 1016}} \quad (b) \quad t = 8.16 \text{ s} \]

234. 第 393 圖中，AB 紛 A 端沿直線 AA' 以等速度運動，滑車 C 的大小可以不計，試求 B 端物體在豎直方向的速度時間的方程式。

（解）

$$\dot{x} = \frac{v_0 (b + v_0 t)}{\sqrt{b^2 + b^2 + 2b v_0 t + v_0^2 t^2}}$$

235. 一質點作等加速直線運動，初速等於零，試證明質點在相等的相等時間內所經過的距離之比等於 \(1 : 3 : 5 : 7 \cdots \cdots \)（第 394 圖）。

（解）：我們按研究等速運動的方法，考質點的速度時間圖，它所經過的路程等於直線（第 394 圖）。分割此路程等長相等的許多等分。時分點的分割點是 \(1, 2, 3, 4 \cdots \cdots \) ，表示一段等速的時間 \(\Delta t \) 。質點在每一段時間 \(\Delta t \) 內所經過的距離等於相應梯形的面積，

如以面積相同的四等份等方形代表梯形，是方形的高當然就必須等於梯形的平均高。這
§67

直線移動

也就是質點在 \(\Delta t \) 時間內的平均速度。這些平均速度是 \(v_1, v_2 = 3v_1, v_3 = 5v_1 \ldots \); 相應的距離是 \(\Delta s \cdot v_1, \Delta s \cdot v_2 = 3\Delta s \cdot v_1, \ldots \)。可見質點在連續的一段段相等時間 \(\Delta t \) 內所走過的距離之比是 \(1:3:5:7:9 \ldots \)。

![圖304](image1)

![圖305](image2)

293. 設一質點作直線運動的速度時間曲線是一條波形正弦曲線的一半（見圖305），試求質點在半週期 \(\pi/2 \) 時間內所走的距離等於多少?

(解: \(x = \frac{\pi}{2} v_{\text{max}} / \pi \))

297. 設第305圖所表示的速度時間曲線是一條拋物線，問質點在半週期 \(\pi/2 \) 時間內所走過的距離又等於多少?

(解: \(x = \frac{\pi}{2} v_{\text{max}} / 3 \))

299. 有一部汽車，原來靜止，發動後以加速度 \(a_1 \) 使速度由 0 增加到 \(v \)。以後就用這一速度 \(v \) 行走了一段時間，最後再用等減速度 \(a_2 \) 回到停止。設所行走的距離等於 \(s \)，問所需時間等於多少?

(解: \(t = \frac{s}{v} + \frac{v}{2} \left(\frac{1}{a_1} + \frac{1}{a_2} \right) \))

299. 列車所可能達到的最大速度等於 \(v_0 \)。最大的速度變化等於 \(a \)。設列車間距離等於 \(s \)，試求列車由第一站出發到達第二站，需要的時間最少等於多少?

(解: \(t_{\text{min}} = \frac{s}{v_0} + \frac{v_0}{a} \))

67. 運動方程式

剛體發生直線移動時，因為它所有各質點的運動都完全相同，所以我們可以把它當作全部質量集結在重心一點的質點看待。這樣，質點的普遍運動方程式（32）當然就可以直接應用於直線移動的剛體。一個運動的物體（或質點）在作用線一定的外力作用下，外力作用線若通過它的重心，使它發生了跟外力方向相同的加速度，假使它的最初速度也在外力的作用線上，我們所得到的就是剛體的直線移動。對於這樣
力學（第十章）

的運動，我們定運動路線為 x 軸，用 x 和 X 分別表示加速度和外力合力，就可得到底下的運動方程式：

$$
\dddot{x} = X
$$

其中 W 指物體的重量。這一方程式顯然跟 (32) 式完全相同。

(36) 式可解決兩種問題：(1) 已知運動情形（就是已知位移 x 跟時間 t 的關係方程式），求產生這運動的作用力 X。 (2) 已知作用力 X，求運動情形（就是求能夠滿足 (36) 式的位移方程式）。

第一種問題是簡單；只要將位移方程式連續對時間微分兩次，代入 (36) 式，就可得作用力 X。第二種問題因必須積分，所以須給有一定的條件，才能解。 以下先討論第一類問題。

例題和習題

200。如 386 圖中的原動機，活塞及活塞桿共重 50 kg，曲軸半徑等於 20 cm，轉速是每分鐘 120 次，問 (a) 活塞在極端位置時和 (b) 活塞在極端位置時，活塞所受的外力合力各等於多少？

解： §66 中說明，活塞乃作簡諧運動，它的位移方程式是

$$
x = r \cos \omega t
$$

其中 $\omega = 2\pi n / 60 = \pi \times 2 \pi / s$。 連續微分 (a) 式兩次，得

$$
\dddot{x} = -\omega^2 \cos \omega t = -320 \times 2 \cos \omega t
$$

代入 (36) 式中，得

$$
X = -\frac{50}{380} \times 320 \omega^2 \cos \omega t
$$

可見作用力合力是一個時間函數，它隨著時間而變化。活塞在極端位置時，由圖 386 可知，ωt 必須等於 $\pi / 2$，是任何正奇數。當 $\cos \omega t = 1$ 時，代入 (c) 式，可得

$$
X = 161 kg
$$

活塞在極端位置時，ωt 必須等於 $2\pi / 2$, ωt 是任意正奇數。因此，$\cos \omega t = 0$，代入 (d) 式，可得，作用力合力等於零。此式如何按 (c) 式推出本題作用力圖時間的關係曲線，留待讀者作一個練習。

201。如 386 圖中的球下落 W，以等加速度 a 險低下降。問這一氣球要拋出多少磅纔有地，氣球才能以加速度 a 險低上升？ 空氣阻力不計。

解：先考慮下降的情形（396 圖）；氣球所受的作用力是浮力 P 和重力 W，依 (36) 式，可得

$$
\frac{W}{g} \dddot{x} = W - P
$$

(d)
§ 67

1. 抛出重 Q 的似物在抛石塊後, 機車要以加速度 a 上升, 故必須

\[\frac{W}{g} a = P - (W - Q) \]

（e）

自 (d) (e) 二式中消去浮力 P, 就得

\[Q = \frac{2W}{1 + g/a} \]

（f）

要使該式成立, 可觀察兩極性情形: 機車下降時, 若 a = g, (f) 式中 Q 就也等於零。若見在這種情形下, 要使機車以零加速度上升, 則不需要提出石塊。如果距離不存, 機車以 a = g 加速度下降, 那便顯然提出任何多的石塊也不能使機車上升; 今 a = g 代入 (f) 式, 得 Q = W, 也說明此事實。

![第 396 圖](image1)

![第 397 圖](image2)

202. 第 397 圖中是條重 W 的物體懸掛在一根繩子的兩端, 繩子跨過一個滑輪。如滑車的質量, 空氣阻力以及磨擦力都可以忽略, 試問應該增加多大的重量 Q 於繩的一端, 才能使物體在繩中間的方向產生加速度 a?

解: 本題是兩個質點作成的質點系的運動, 所以可以列出兩個運動方程式。今 S 代表繩子的張力, 左邊物體的運動方程式是

\[\frac{W}{g} a = S - W \]

右邊物體的是

\[\frac{W + Q}{g} a = W + Q - S \]

其中 Q 代表所加的重量, 欲得兩端的 S, 就有 Q = 2W/(g/a - 1), 由此式, 可見假使要使 a = g, 那就必須 Q = \infty。

203. 假設第 397 圖中, 該運動方向相反但具有同樣加速度 a, 求在左方物體上應加之重量 P。

解: P = 2Q \left(1 + \frac{Q}{2W} \right)

204. 第 398 圖中之升降電動機, 重量 W = 5000 kg, 以等加速度 a 運動下降。經過的距離 s = 100 m, 時間等於 10 s。如初速度為零, 所有阻力可以忽略, 則吊繩中張力等於多大?
解：從力學圖如第 398a 圖。由圖上可以知道，電梯受到的作用力是重力 W 和曳力 S，
故得

$$\frac{W}{g}a = W - S$$

或

$$S = W \left(1 - \frac{a}{g}\right)$$ \hspace{1cm} (7)

可見 S 的大小跟加速度密切相關：$a = 0$ 時，S 最大，等於 W；此時電梯或是停止或在
等速下$; a = g$ 時，S 最小等於零，此時電梯在自由下落。

第 398b 圖是電梯的速度時間圖。因加速度不變，故速度曲線是一根直線。直線
的傾斜度等於加速度的值 a。因自 $t = 0$ 到 $t = 10$ s 一段時間內，電梯經過的距離
$s = 100$ m 應當等於速度曲線下方時間座標 O 到 11 間的面積。故

$$a = \frac{2s}{t_1^2} = \frac{200}{100} = 2 \text{m/s}^2$$

代入 (7) 式，可求曳力 S。得

$$S = W \left(1 - \frac{2}{9.8}\right) = 0.76 \cdot W = 8830 \text{kg}$$

第 398 圖

305. 電梯，重量 $W = 1000$ kg，以等加速度向左運行，達到速度 $v = 6$ m/s 時已上升 $s = 6$ m。
求加速上升時，吊索中張力等於多少？

(解：$S = 13.6$ kg)

306. 上題中，電梯達到 6 m/s 速度後，又以等加速度在兩秒鐘內停止。電梯中有一乘客重
70 kg。試求減速上升時，乘客加在電梯機械板上的壓力 P 等於多少？

(解：$P = 48.5$ kg)

307. 列車重 230 t (機車重量在外)，以固定加速度沿一水平直線軌道開始。在最初 30 s
內達每小時 70 km 速度。設風阻力和空氣阻力固定等於列車重量的 0.005 倍，試求
機車的牽引力等於多大？

(解：$S = 6790$ kg)

308. 行駛在水平直線上的汽車，突然剎車，使車身在路面滑行 2 秒鐘後停止，滑行的距離是
9.8 m。 該剎車時，車輪的減速度不變。試求剎車與路面間的摩擦係數等於多少？

(解：$\mu = 0.5$)
369. 有一撲接，重量 \(W = 1t \)，以等加速由靜止下降，在 10 秒內下降了 30m。求下降時吊繩內的拉力 \(S \) 等於多少？

(解：\(S = 980 \text{ kg} \))

68. 常力作用下的質點運動

質點在常力 (大小和方向不變的力) 作用下的運動是最簡單的「第二類問題」。這種運動中，作用力的大小、方向都不變。地面附近的自由落體運動，就是這種情形（如落體離地面很高，重力變化很顯著，那就不能把重力當作常力了）。

第 399 圖中，一質點 \(A \) 在常力 \(X \) 作用下沿 \(x \) 軸運動，最初位移 \(OA = x_0 \)（就是當質點在 \(A \) 位置時，開始計算運動的時間）。質點的初速是 \(x_0 \)，方向跟 \(x \) 軸相同。根據 (36) 式，得

\[
d(x) = \frac{g}{W} X dt
\]

積分後，上式變為

\[
x = \frac{g}{W} X t + C_1 \quad (a)
\]

其中 \(C_1 \) 是積分常數。\(t = 0 \) 時，\(x = x_0 \)，故 \(C_1 = x_0 \)。可見這一積分常數就是質點的初速。把 \(C_1 \) 代入 (a) 式，得

\[
x = x_0 + \frac{X g t}{W} \quad (37)
\]

這就是質點在常力 \(X \) 作用下發生直線運動的速度方程式。 (37) 式如寫成

\[
dx = x_0 dt + \frac{g X}{W} t dt
\]

然後積分，又可得

\[
x = x_0 t + g \frac{X}{W} t^2 + C_2 \quad (b)
\]

因 \(t = 0 \) 時，\(x = x_0 \)，故將積分常數 \(C_2 = x_0 \)，代入上式，就得到

\[
x = x_0 + x_0 t + g \frac{X}{W} \frac{t^2}{2} \quad (38)
\]
這就是質點在常力 X 作用下發生直線運動的位移方程式。

以上這樣演算(36)式，當然一定會出現兩個積分常數。要決定這兩個常數必須已知具體問題中的兩個條件，譬如質點的最初位移和初速。因此，只要在運動方程式之外還已知這兩個條件，我們就能夠完全確定質點的運動狀況。關於質點在常力作用下的直線運動，最普通的一個例子就是自由落體。其中作用力 X 等於落體的重量 W，所以落體運動的 (37)(38) 兩式是:

$$
\begin{align*}
\dot{x} &= x_0 + gt \\
\dot{x} &= x_0 + x_0 t + \frac{1}{2} g t^2
\end{align*}
$$

如落體最初位移 $x_0 = 0$ 和初速 $x_0 = 0$，那就得到有名的自由落體公式（原來是根據實驗結果導出的）如下:

$$
\begin{align*}
\dot{x} &= gt \\
\dot{x} &= \frac{1}{2} g t^2
\end{align*}
$$

例題 和 習題

810. 有幾個質點同時從一點出發，各自沿一縱面自地面下落。各面面的傾斜角分別是 α, β, γ 和 δ (第 400 章)。不計各面面 OA, OB, OC, OD 上的摩擦力，試證明在任何一時刻，所有質點都將同以 OD 作直線的軌跡上 (OD 為質點自地面下落的距離)。

解：分別以各面面作 x 軸，取 O 點作為共同原點，如此，各質點最初位移與初速均等於零。

根據 (38a) 式，若

$$
OD = \frac{1}{2} g t^2
$$

質點在陡峭角 θ 的斜面下落，它受到的
作用力是重力 W 和斜面反作用力。分解 W 於平行斜面和垂直斜面方向。同一分力由斜面反作用力抵消，故具於運動方向的作用力

$$
X = W \sin \theta
$$

作用於質點，以 (d) 式代入 (38a) 式，得

$$
x = g - \frac{W \sin \theta}{2} t^2 = \frac{1}{2} g t^2 \sin \theta
$$

可見質 OA, OB, OC, OD 各面面運動的質點在時刻的位移分別是:

$$
x_1 = OD \sin \alpha \\
x_2 = OD \sin \beta
$$
直線移動

\[x = OD \sin \gamma \]

由第400圖中所表示的幾何關係，可知各質點在同一時刻的位移在同一以OD為直徑的圓上。

311. 有一個球，自一高h = 120m的塔頂自由下墜。同時，另外有一球，以初速v_0 = 60m/s自塔頂上升（第401圖）。求兩球交點離塔頂的距離和交點時兩球的相對速度等於多大？

解：設第一球的初速向為正，令下落方向的位移為正，此時，第一球的初速為v_0 = 60m/s，初位移為0。

由式(38a)得

\[x_1 = v_0 t - \frac{1}{2} gt^2 \tag{f} \]

設第二球的初速為v_0，初位移為0，初速度為正，此時，第二球的初速為v_0 = 60m/s，初位移為0。

由式(38b)得

\[x_2 = v_0 (t - \frac{1}{2} g t^2) \tag{g} \]

兩球交點時，

\[x_1 + x_2 = h \tag{h} \]

由式(f)(g)兩式代入(h)式得

\[\frac{1}{2} g t^2 + v_0 t - \frac{1}{2} g t^2 = h \]

再以v_0 = 60m/s和h = 120m代入上式，可得兩球交點的時間为t = 2s。應用(f)式，又可得

\[(x_1 t)^2 = 19.8 \text{m} \]

設為式(f)(g)兩式，可得兩球在t = 2s時的位移為19.8m和40.4m/s，故交點時兩球的相對速度等於60m/s。

312. 一高9m的塔頂自由下墜。試求兩球可達的最大高度和(b)間的距離為原位位置的時間各等於多少？計算時，可以出發處作為原點，使x_0 = 0。空氣阻力可以不計。

解：(a)\(x_{\text{max}} = 20.4 \text{m} \quad \text{和} \quad t = 4.08 \text{s}\)

313. 列車以每小時5km的速度，自一0.008的斜坡處下行，途中剎車，後部阻力恰等於列車重量的十分之一，問剎車後，列車還能行驶多少距離才停止？

解：\(x = 107 \text{m}\)

314. 電梯重500kg，以等速4m/s電梯，設運動阻力等於10kg，當電梯運行時，電梯電機需要多少電力才停止？

解：(x = 0.8m)

315. 鉛垂向下射出一質點，經t秒後，質點到達高h處，在t時刻又落到此高h處。試求這一高度h和質點的初速v各等於多大？

解：若不計空氣阻力，質點受到的推力在全段運動過程中僅有鉛垂向下的重力W。以質點為原點，運動路線為x軸，和向上的方向為正。根據(38a)式，可得

\[t = \frac{v}{g} \]

因此，質點到達高h處時，位移為

\[x = \frac{v^2}{2g} \]

這時，質點的初速為

\[v = \sqrt{2gx} \]

因為質點能回到原來的高度h，所以

\[h = \frac{v^2}{2g} \]

即

\[v = \sqrt{2gh} \]

因此，質點的初速為

\[v = \sqrt{2gh} \]

這時，質點到達高h處時，位移為

\[x = \frac{v^2}{2g} \]

因此，質點的初速為

\[v = \sqrt{2gx} \]

因為質點能回到原來的高度h，所以

\[h = \frac{v^2}{2g} \]

即

\[v = \sqrt{2gh} \]

因此，質點的初速為

\[v = \sqrt{2gh} \]

這時，質點到達高h處時，位移為

\[x = \frac{v^2}{2g} \]

因此，質點的初速為

\[v = \sqrt{2gx} \]

因為質點能回到原來的高度h，所以

\[h = \frac{v^2}{2g} \]

即

\[v = \sqrt{2gh} \]

因此，質點的初速為

\[v = \sqrt{2gh} \]

這時，質點到達高h處時，位移為

\[x = \frac{v^2}{2g} \]

因此，質點的初速為

\[v = \sqrt{2gx} \]

因為質點能回到原來的高度h，所以

\[h = \frac{v^2}{2g} \]

即

\[v = \sqrt{2gh} \]

因此，質點的初速為

\[v = \sqrt{2gh} \]

這時，質點到達高h處時，位移為

\[x = \frac{v^2}{2g} \]

因此，質點的初速為

\[v = \sqrt{2gx} \]

因為質點能回到原來的高度h，所以

\[h = \frac{v^2}{2g} \]

即

\[v = \sqrt{2gh} \]

因此，質點的初速為

\[v = \sqrt{2gh} \]

這時，質點到達高h處時，位移為

\[x = \frac{v^2}{2g} \]

因此，質點的初速為

\[v = \sqrt{2gx} \]

因為質點能回到原來的高度h，所以

\[h = \frac{v^2}{2g} \]

即

\[v = \sqrt{2gh} \]

因此，質點的初速為

\[v = \sqrt{2gh} \]

這時，質點到達高h處時，位移為

\[x = \frac{v^2}{2g} \]

因此，質點的初速為

\[v = \sqrt{2gx} \]

因為質點能回到原來的高度h，所以

\[h = \frac{v^2}{2g} \]

即

\[v = \sqrt{2gh} \]

因此，質點的初速為

\[v = \sqrt{2gh} \]

這時，質點到達高h處時，位移為

\[x = \frac{v^2}{2g} \]

因此，質點的初速為

\[v = \sqrt{2gx} \]

因為質點能回到原來的高度h，所以

\[h = \frac{v^2}{2g} \]

即

\[v = \sqrt{2gh} \]

因此，質點的初速為

\[v = \sqrt{2gh} \]

這時，質點到達高h處時，位移為

\[x = \frac{v^2}{2g} \]

因此，質點的初速為

\[v = \sqrt{2gx} \]
316. 第 402a 圖中，斜面上的方塊重 W，斜面摩擦係數 \(\mu = 0.3 \)，方塊由 A 號開始自由滑下，試求滑到 B 點所需時間 \(t \) 等於多少？

解：由第 402b 圖的分離圖，可見所受的依附作用力始終是

\[
X = \frac{3}{5} W - \frac{6}{25} W = \frac{9}{25} W
\]

以 AB 為 x 軸，A 為原點，向下的位移為正，根據 (3.8) 式，可得

\[
x = \frac{9}{25} W t^2
\]

因為 \(AB = 50m \)，故 \(t = 5.33s \)。

317. 第 403 圖中，假設 AB 斜面上的方塊自 A 號開始滑下，滑到 B 點後，繼續以所達到的速度沿水平面 BC 転行，設等平面到方塊初的摩擦係數都是 \(\mu = 0.3 \)；方塊在 BC 平面上，前进多少距離才停止？

(解：\(s = 60m \))

318. 第 404 圖中，一部小車自 A 號開始沿 AB 斜面向下，然後滑上 BC 斜面，再滑下到達 RA 斜面，來來回往返。設 A 號水平面 DE 的高度是 \(h_0 \)；運動阻力固定等於十分之一的小車重量。小車來回經過 B 號共 n 次，最後靜止於 AB 或 BC 斜面上離 DE 平面高度等於 \(h_0 \)。試證明 \(h = (\frac{1}{3})^n h_0 \)。

319. 如第 405 圖的裝置，滑輪和滑子的慣性以及摩擦力可以不計。靜止時，兩重物 \(W_1, W_2 \) 高度相差等於 \(c \)；求開始運動到兩物體受制時，經過的時間 \(t \) 等於多少？

(解：\(t = \sqrt{\frac{c}{g} \left(\frac{W_1 + W_2}{W_2} \right)} \))
69. 作用力是時間函數的質點運動

有時候我們會碰到這樣的質點直線運動，質點上的作用力按著一定的規律隨時間變化。譬如電磁現象中的磁場強度，它的大小看電流大小而定，通常就是時間的簡諧方程式。

根據(36)式，如

$$\frac{W}{g} \ddot{x} = X = f(t)$$ \hspace{1cm} (a)

或

$$\frac{W}{g} \dot{x} = f(t) \, dt$$ \hspace{1cm} (b)

積分後，得

$$\frac{W}{g} \dot{x} = \int_0^t f(t) \, dt + C_1$$ \hspace{1cm} (c)

假設(39)式，那末$C_1 = \frac{W}{g} x_0$，故得質點的速度方程式

$$\dot{x} = x_0 + \frac{W}{g} \int_0^t f(t) \, dt$$ \hspace{1cm} (39)

再積分(39)式，又可得質點的位移方程式

$$x = \frac{W}{g} \int_0^t \int_0^t f(t) \, dt \, dt + x_0 t + C_2$$ \hspace{1cm} (d)

若最初位移$x = x_0$，就可得積分常數$C_2 = x_0$，故

$$x = x_0 + x_0 t + \frac{W}{g} \int_0^t \int_0^t f(t) \, dt \, dt$$ \hspace{1cm} (40)

例題和習題

32. 一質點作直線運動，它的作用力在$t = 0$時是X_0，之後，隨時間的增加而逐漸等量減小到$t = t_1$時，等於零，以後，質點上就無外力作用。設最初位移和初速度都等於零，試求$t = t_1$時，質點的速度和位移。
解: 本題的作用力 \(X \) 明然可以由下述一時間的積分函數表示:

\[
X = x_0 - \frac{X_0}{t_1} t
\]

(5)

以(5)代入(39)式中, 積分後, 得

\[
\dot{x} = \frac{g}{W} \int_0^t \left(x_0 - \frac{X_0}{t_1} t \right) dt = \frac{g}{W} \left[X_0 t - \frac{X_0}{t_1} \frac{t^2}{2} \right]
\]

(6)

在 \(t = t_1 \) 之後, \(X \) 已不存在, 故(6)式只適用於 \(0 < t < t_1 \) 範圍。以 \(t = t_1 \) 代入(6)式

\[
\dot{x} = t - t_1 = \frac{g}{W} X_0 \frac{t_1}{2}
\]

(7)

再按(40)式積分(6)式, 得

\[
x = \frac{g}{W} \int_0^t \left(X_0 t - \frac{X_0}{t_1} \frac{t^2}{2} \right) dt = \frac{g}{W} \left[X_0 t - \frac{X_0}{t_1} \frac{t^3}{6} \right]
\]

(8)

這是質量點的位移方程式。由此式, 可算出質點 \(t = t_1 \) 時的速度, 是

\[
\dot{x} = t - t_1 = \frac{g}{W} X_0 \frac{t_1}{2}
\]

(9)

在 \(t = t_1 \) 以後, 質點以(8)式決定的速度等速前進, 所以質點在 \(t = t_2 > t_1 \) 時的位移, 可以由(9)式位移加上(8)式速度跟時間 \(t_2 - t_1 \) 的乘積決定, 故得

\[
x(t) = \frac{g}{W} X_0 \frac{t_1^2}{8} + \frac{g}{W} X_0 \frac{t_1}{2} (t_2 - t_1) = \frac{W X_0 (t_1 - t_2)}{g}
\]

(10)

321. 有兩個作直接運動的質點, 重量都等於 \(W \), 受到的作用力分別是:

\[
X = X_0 \cos \omega t
\]

(11)

和

\[
X = X_0 \sin \omega t
\]

(12)

兩質點的初位移, 初速都等於零。試比較這兩種運動, 分別求出它的位移方程式並畫出相應的位移曲線。

\[\text{[解]: (11) } \frac{W}{\gamma} x = \frac{X_0}{\omega^2} (1 - \cos \omega t), \quad (12) \frac{W}{\gamma} x = \frac{X_0}{\omega^2} (\omega t - \sin \omega t) \]

322. 一質 \(W \) 的質點, 受一逐漸等量增大的作用力作用。最初作用力等於零; 每一秒, 增加到等於 \(W \)。設 \(x_0 = 0 \), \(x_0 = 1 \text{m/s} \), 求 \(t = 8 \text{秒} \) 時, 質點的速度和位移。

\[\text{[解]: } (x)_{t = 8} = 581 \text{m/s}, \quad (x)_{t = 8} = 1165 \text{m} \]

323. 一質 \(W \) 質點受到的作用力是 \(X = kt^2 \), 試求它的速度方程式、位移方程式和運動方程式。

解: 以 \(X = kt^2 \) 代入(39)和(40)式中, 積分後, 就可得

\[
\dot{x} = x_0 + \frac{g}{W} \frac{kt^3}{3}
\]

和

\[
x = x_0 + \frac{g}{W} \frac{kt^4}{12}
\]
224. 一物體重 3.14 kg, 作用力是 \(X = X_0 \sin \omega t \), 其中 \(\omega = 8 \) rad/s; 初態為 \(x_0 = 0, v_0 = 0 \), 則
物體在作用力下一定週期變化後, 位移等於 10 m, 試求作用力最大值 \(X_0 \) 等於多少?
(解: \(X_0 = 32.64 \) kg)

225. 第 384 圖中, 質點受到的合力為 \(X = -12 \) - 2\(t \)。質點由 \(X \) 軸某點出發, 開始沿軸線運動。 試問什麼時刻, 質點又回到原點?
(解: \(t = 18 \) s)

70. 正比於位移的作力---自若振動(一)

作用力跟位移成正比的質點運動, 是工程中常遇到一種運動; 例如
第 406 圖的螺旋弹簧, 它下面懸掛的物體重 \(W \)。\(W \) 的靜力作用使彈簧發生 \(\delta_w \) 的伸長, 當彈簧中產生的張力恰等於 \(W \), 故物體這時處於平衡的。不過, 如果使物體發生一向下位移, 弹簧張力就將隨位移的增加而變大。這時, 取出外力後, 物體自然要向上運動, 根據彈性定律, 在弹簧的彈性限度以內, 它的張力是跟伸長成正比的, 故

\[
S = W + kx
\] \((a) \)

其中 \(k \) 是彈簧常數 (內中包括張力常數, 張力模數等), 等於當張力發生單位伸長時的張力的大小。

根據 (36) 式, 並不計彈簧的慣性和阻尼, 可知

\[
\frac{W}{g} x = W - (W + kx)
\]

故

\[
\frac{W}{g} x = -kx
\] \((b) \)

(36) 式說明, 物體的位移等於正時, 加速度是負的; 位移等於負時, 加速度就是正的, 這也就是說, 加速度方向永遠是指向物體原本的靜力平衡位置 (即坐標原點), 它的大小跟位移成正比。以 \(\frac{W}{g} \) 除 (36) 式兩邊, 並命

\[
\frac{k}{W} = p^2
\] \((c) \)

可得

\[
\ddot{x} + p^2 x = 0
\] \((41) \)
這就是質點自由振動的運動方程式。

要滿足(41)式，我們所要求的「解」，必須是這樣一個 \(x = f(t) \) 的函數。這函數對時間微分兩次後要等於自己本身跟一常數 \(-p^2\) 的乘積。三角函數 \(\cos pt \) 和 \(\sin pt \) 都能滿足這一要求，事實上只要將這兩個函數各乘以任意常數，然後相加，仍可滿足要求。如此，我們得到

\[
x = C_1 \cos pt + C_2 \sin pt
\]

就是(41)式的通解。式中兩常數 \(C_1 \) 和 \(C_2 \) 由個體運動的具體狀況決定。要證明(42)式是(41)式的通解，只要把(42)式對時間微分一次及兩次，就可得

\[
\dot{x} = -C_1 p \sin pt + C_2 p \cos pt
\]

\[
x = -C_1 p^2 \cos pt - C_2 p^2 \sin pt = -p^2(C_1 \cos pt + C_2 \sin pt) = -p^2 x
\]

假使我們先讓物體發生一個離開它平衡位置的位移 \(x_0 \)，然後突然放任它自由振動，使初速等於零。這樣，就得到下面兩個條件:

\[
(x)_{t=0} = x_0 \quad \quad (x)'_{t=0} = 0
\]

(42a)

先把第一個條件引用到通解(42)式中，可得 \(C_1 = x_0 \)。之後，對時間微分(42)式一次，得到普通的速度方程式:

\[
x = -p C_1 \sin pt + p C_2 \cos pt
\]

再把第二條件引用到這式，又可得 \(C_2 = 0 \)。所以，這一運動的位移方程式，也就是振動方程式在(42a)式兩個條件下的解，乃是

\[
x = x_0 \cos pt
\]

把上式跟 § 86 中(38)式比較一下，就知道這是一種簡諧運動。它的位移、速度和加速度等的圖解見 407 圖。在圖中看得出，物體的最大位移等於最初位移 \(x_0 \)，通常稱之為物體振動的振幅。此外還可看出，物體完成一次振動，需要的時間是 \(2\pi \sqrt{\frac{k}{m}} \) 秒。這時稱為物體振動的週期，用 \(\tau \) 代表。

\[
\tau = \frac{2\pi}{p} = 2\pi \sqrt{\frac{k}{mg}} = 2\pi \sqrt{\frac{2\pi}{g}}
\]

可見週期 \(\tau \) 跟 \(p \) 成反比。\(p \) 這一因子是有特殊意義的。它的單位是 \(s^{-1} \)，表示它的因次跟以弧度計算的單位時間內旋轉角 \(\omega \) 相同。由第
406 鬆可看到，如果我們以物體的
靜力平衡位置作爲圖心，畫一個半
徑等於振幅的圓周，那末物體上下
振動時，它重心在圓周上的水平投
影將以一定的速率沿圓周運動。它
每秒所掠過的弧度角就等於 p。物體
振動一次，投影也繞圓周運動一周，
這個周長通常稱為參致周。總括起
來說，p 是物體上下振動時物體的
水平投影，沿參致圓周運動，每秒
鐘所掠過的弧度角。

(43) 式又說明，週期 τ 的大小
跟 \sqrt{W} 成正比，而跟 \sqrt{k} 成反比。所以物體重量小而彈簧強健，週期
就短；物體重而彈簧軟，週期就長。調節物體重量和彈簧軟硬就可改
變振動週期。

按彈力常數 k 的定義，W/k 原表示彈簧在 W 的靜力作用下，產生
的伸長 δ_n，故 (43) 式中

$$\delta_n = \frac{W}{k}$$

如果把 (43) 的第三式同單擺週期比較一下，立刻可看到，物體的振動週
期是跟一個擺長等於 δ_n 的單擺相同的。δ_n 的大小，我們可以在彈簧
下面懸掛物體直接量出來，所以週期 τ 也可以根據量出來的 δ_n 決
定。

週期的倒數稱為週率 (或稱振動數)，通常用 f 表示，故

$$f = \frac{1}{\tau} = \frac{p}{2\pi} = \frac{1}{2\pi} \sqrt{\frac{k}{\rho}} = \frac{1}{2\pi} \sqrt{\frac{\rho}{\delta_n}}$$

週期、週率實際上說明同一事實，如何選擇應用，純粹看我們的方便；例
如電磁波，它每秒要振動數十萬到數百萬次，若應用週期說明，顯然很
不方便；所以一般都只用週率表示。

以上的討論是從假定「最初位移等於 x_0」和「初速等於零」兩個條
件出發的。現在我們再討論另外一種開始振動的方式。假定開始振動是由於物體在水平方向突然受到一下衝擊，使它在平衡位置上得到一個初速。這樣，我們就有底下兩個條件：

\[(x)_t = 0 = 0; \quad (x')_t = 0 = x_0 \] \hspace{1cm} (f)

把第一和第二兩個條件分別引入 (42) 和 (e) 兩式，可得 \(C_1 = 0 \) 和 \(C_2 = \frac{x_0}{p} \)。本振動的位移方程式 (42) 因此是

\[x = \frac{x_0}{p} \sin pt \] \hspace{1cm} (42b)

可見這是一種簡諧運動。這運動的圖解見第 408 圖，週期 \(T \) 仍等於 \(2\pi/p \)，幅值仍為 \(\frac{x_0}{p} \)。所以，物體自由振動的週期僅受彈性常數 \(k \) 和重量 \(W \) 的影響，而跟物體如何開始振動（初位移或初速）無關。

更一般的情形是假定物體最初位移和初速是:

\[(x)_t = 0 = x_0; \quad (x')_t = 0 = x_0 \] \hspace{1cm} (g)

(42) 式，因此，變成

\[x = x_0 \cos pt + \frac{x_0}{p} \sin pt \] \hspace{1cm} (42c)

可見，我們只要把第 407 圖和第 408 圖中對應的動作相加，就可得到 (42c) 式的圖解如第 409 圖，結果仍舊是一種簡諧運動。
異常行(42c)式也是等同 VANU 與運動可觀察第 410 圖。 規中 Ox 是運動方向的軸線；O 点表示物體的平衡位置。向量 Ox 等長分於 x_0，取 Ox 軸的正向角 pt；向量 BC 垂直於 Ox，

长度为 \(\frac{x_0}{p} \)。 沿著兩者向量在 Ox 軸上的投影分別等於 \(x_0 \cos pt \) 和 \(\frac{x_0}{p} \sin pt \)，所以它们的合成向量 OC 在 Ox 軸上的投影正式(42c)式，等於 \(x_0 \cos pt + \frac{x_0}{p} \sin pt \) 代表物體的運動。 因此，我們可以得出一個關鍵-即當物體上下振動時，C 點以角速 p 沿著一個半徑等於 OC 的參數面運動，\(\overline{OC} \) 代表這個振動的振幅 \(x_m \)。 如 OB 跟 OC 所成夾角等於 \(\alpha \)，\(42c \) 就可寫成這樣的表示形式：

\[
x = x_m \cos (pt - \alpha)
\]

第 410 圖

可見簡樸運動的和的疊羅是一種同週率的簡樸運動。

它假設 \(x_m \) 和角 \(\alpha \) 可由以下兩式算出：

\[
x_m = \sqrt{x_0^2 + \left(\frac{x_0}{p} \right)^2}
\]

\[
\alpha = \arctan \frac{x_0}{p x_0}
\]

\(\alpha \) 是 \(\overline{OC} \) 與 \(\overline{OB} \) 的角度差，通常稱作相角差。振動運動中，質點自平衡位置到達某一位置所需時時間對振動週期的比值，稱為這一位置的相。 質點在參數圖的投影自平衡位置到某一位置所經過的中心角稱為相角。 故相角差的意義是：振動物體從開始 \(t = 0 \)，位移等於 \(x_0 \) 時，到物體到達最大位移 \(x_m \) 時，它重心位移在參數圖上的投影所含的中心角。 換句話說，\(\alpha/p \) (以秒計)是放鬆物體之後，它到達最低位置開始轉向上方運動以前，所需要的時間。

例題與習題

326. 有一部車重 25000kg 時，輪樑彈簧發生 10cm 的變形。 假設現在要載重 40000 kg，試求車輛自由振動的週率等於多少？ 假定車輪只發生垂直方向振動。

解：輪樑彈簧的彈力常數是

\[
h = 25000/10 - 2500kg/cm
\]

應用(45)式，就得到

\[
f = \frac{1}{2 \pi} \sqrt{\frac{k}{W}} = \frac{1}{2 \pi} \sqrt{\frac{2500 - 980}{40000}} = 1.246 頻次/s
\]

327. 有一根彈簧，作用力等於 10kg 時，彈簧的伸長是 3cm。 現在懸掛一個重 1kg 的物體，於彈簧上，試求振動週率等於多少？

\(\text{解：} f = 15.76 頻次/s \)

328. 有一根彈簧，懸掛重 7kg 的物體時，靜力伸長等於 1.2cm，試求懸掛 10kg 重物時的振動週期。

\(\text{解：} \tau = 0.253s \)
289. 一物體重 W，掛在一根橡皮帶下面，靜力伸長 δ_{st} = 5 cm (第 411 圖)。假設物體托到橡皮帶張力等於零的位置，然後放手任它自由振動。物體初速等於零。試求橡皮帶受到突然增加的物體重量作用後，所發生的最大伸長和物體的振動週率各等於多少？

解：以物體平衡位置看作原點，設定向下位移為正。物體的初位移是

\[x_0 = -\delta_{st} \] \hspace{1cm} (j)

初始等於零。按 (42a) 式，物體在任意一時刻 t 的位移應該是

\[x = -\delta_{st} \cos pt \]

因 \(pt \approx \pi \) 時，\(\cos pt \approx -1 \)，故最大的正位移是

\[x_{\text{max}} = +\delta_{st} \] \hspace{1cm} (k)

比較 (j) (k) 式，可見到皮帶因突然作用的重力 W 而產生的伸長，要兩倍於由逐漸增加的重力 W 而產生的伸長。

根據 (45) 式，物體的自由振動週率就是

\[f = \frac{1}{2\pi} \sqrt{\frac{W}{\delta_{st}}} = \frac{1}{2\pi} \sqrt{\frac{980}{5}} = 2.23 \text{ 大/秒} \]

![第 411 圖](image1)

第 412 圖

290. 第 412 圖中，兩螺旋的彈力常數都是 k = 1 kg/cm，圈重 W = 1 kg。假設在圈重向右發生 1 cm 的位移後，再放下它自由振動。試求週期以及圈重經過平衡位置時的速度等於多少？

(解：\(t = 0.142 \text{ 秒} \); \(x_{\text{max}} = 44.3 \text{ cm/秒} \))

291. 一電梯重 W，以均勻速度 \(v \) 下降。它掛著的的彈力常數等於 k。假設上面的電梯突然剎車，試求電梯受到的最大張力以及電梯箱的振動週期各等於多少？

解：因電梯等速下降，故在電梯箱內張力就等於 W。令 \(\dot{x} = 0 \) 和 \(x = 0 \)，根據 (42b) 式，可得

\[x = \frac{v}{p} \sin pt \] \hspace{1cm} (l)

當 \(\sin pt = 1 \) 時，\(x \) 等於最大，它等於 \(v/p \)。應用 (c) 式，可得

\[x_{\text{max}} = v \sqrt{\frac{W}{kg}} \] \hspace{1cm} (m)
§70 直線移動

但這一最大值是自由衡位時開始計算的。轉換後的全部伸長度等於

$$ \delta_{st} = \delta_{st} + \Delta a_{dx} $$

（1）

因此，最大張力為

$$ S_{max} = k \delta_{max} $$

（2）

以（1）式和（44）式代入（6）式，就得

$$ S_{max} = W \left(1 + \sqrt{\frac{f}{g \delta_{st}}} \right) $$

（p）

332. 一桿懸梁，載重160kg時，中點懸度等於0.8cm。設一重物重200kg，自高度h=8cm

處處中點自由落下，靜止於梁上，試求梁的最大懸度以及物體的懸度差（第413圖）。

（解：δ_{max} = 1.95cm，f = 7.38次/s）

第413圖

第414圖

333. 第414圖中，懸於未放物體時，懸盤的自由懸度周期是τ_{3}。如放一已知重量 P 的物體

於盤中，懸度期期變成等τ_{3}。假設重量 W 未知的物體放在盤中懸度的懸度等於τ_{3}’

試求 W 等於多大？

（解：W = P \frac{\tau_{3}^{2} - \tau_{3}^{2}}{\tau_{1}^{2} - \tau_{0}^{2}}

334. 第414圖中，彈簧的彈力常數 k 不知道。現在先後把兩個已知重量 P 和 Q 的物體

放在懸盤中，觀察得兩物體的懸度期間分別是 τ_{1} 和 τ_{3}’。試問彈簧的彈力常數 k 等

於多少？

（解：k = \frac{4\pi^{2}(P - Q)}{g(\tau_{1}^{2} - \tau_{0}^{2})}

335. 第415圖上下兩弾簧的張力常數分別是 k_{1} 和 k_{2}。問弾簧後，張力常數將等於多少？

解：兩弾簧在重力 W 作用下的張力伸長分別是 δ_{1} = W / k_{1} 和 δ_{2} = W / k_{2}。弾簧彈簧的靜

力伸長 δ_{st} 等於 δ_{1} + δ_{2}，故

$$ \delta_{st} = W \left(\frac{1}{k_1} + \frac{1}{k_2} \right) $$

代入（44）式，可得所求的張力常數是

$$ k = \frac{k_1 \cdot k_2}{k_1 + k_2} $$

（q）
335. 計算第 416 圖中並聯彈簧的彈力常數 \(k \) 等於多少？ 假設兩個彈簧的彈力常數分別是 \(k_1 \) 和 \(k_2 \)。
解：兩彈簧受到的作用力不相等，但發生的位移相等，如記 \(W_1 \) 和 \(W_2 \) 分別代表物塊懸掛於上下兩彈簧的重量，那末

\[
\frac{W_1}{k_1} = W_2, \quad \frac{W_2}{k_2} = W_1
\]

或

\[
W_2 = \frac{k_1}{k_2} W_1
\]

故

\[
W = W_1 + W_2 = W_1 \left(\frac{k_1 + k_2}{k_1} \right) = \frac{W_1 (k_1 + k_2)}{k_1}
\]

得

\[
k = \frac{W}{k_1} = k_1 + k_2
\]

71. 自由振動（二）

有很多種的物體在直流運動，雖然不像 §70 所討論的情形是一個物體掛在一根彈簧或幾根彈簧下面，可是物體受到的作力也跟位置成正比。這種情形下，我們一下子就可能看出運動的性質。處理這類問題我們需要由建立基本方程式（38）開始。設設能夠把運動方程式化成底下的形式：

\[
\ddot{x} + p^2 x = 0
\]

其中 \(p^2 \) 代表一個跟 \(x \) 無關的任意常數，那末這一運動一定還是一種簡單運動，它的週期是

\[
\tau = \frac{2\pi}{p}
\]
在一般情形下，對於簡譜運動我們只要求知道它的週期，可以根本不必求(41)式的通解方程式。現在舉一些例子來說明如何直接計算週期的方法。

例題和習題

337. 有一艘船，平均吃水深度等於 h，水箱切面面積等於 A。如不計水的摩擦力和質量，
試證明這船的上下方向振動是一種簡譜運動，並且求出它的週期等於多大（第417圖）？
解：若水的密度等於 \(\omega \)，船由平衡位置向下沉落 \(x \) 距離時，浮力的增加是 \(A \omega x \)。所以

\[
\frac{Ah \omega}{g} \cdot x = -Ax \\
\]

也就是

\[
\ddot{x} + \frac{g}{h} x = 0
\] \hspace{1cm} (a)

可見這一運動的確是一種簡譜運動。振動方程式的常數 \(\rho \) 在這裡等於 \(\frac{g}{h} \)，故週期是

\[
T = 2\pi \sqrt{\frac{h}{g}}
\]

這說明，船的週期是週期等於 \(h \) 的單槓週期相同的。

338. 某船吃水深度等於 9.8m 的船體的重量方向作用週期等於多大？

(解： \(T = 6.28s \))

![第417圖](image1)

![第418圖](image2)

339. 試求單槓作微小角度運動的週期等於多大（第418圖）？

解：因角度很小故質點的弧線路程可近似為一短直線段。質點受到的作用力是

\[
W \sin \theta = -W \frac{x}{l}
\]

其中 \(l \) 表示槓的長度。根據(38)式，得

\[
\frac{W}{g} \cdot \ddot{x} = -W \frac{x}{l}
\]

故

\[
\ddot{x} + \frac{g}{l} x = 0
\] \hspace{1cm} (b)

可見槓的振動是一種簡譜運動。由(41)式 \(\rho^2 = \frac{g}{l} \)，故週期是

\[
T = 2\pi \sqrt{\frac{l}{g}}
\]
340. 第 419 圖中，小球重 \(W \)；栓在一根緊張的細繩 \(AB \) 中點。試證明小球在水平方向的微小振動是一種諧振運動；並計算它振動週期等於多長？

解：假定繩在原來緊張時已經有很大的張力 \(S \)；小球作微小水平位移所引起的張力增加可以不計。小球在對中位置受到的水平作用力是

\[
X = -2S \frac{x}{l}
\]

應用 (36) 式，得

\[
\frac{W}{g} \frac{x}{x_l} = -2S \frac{x}{l}
\]

或

\[
\ddot{x} + \frac{2S}{W} \frac{g}{l} x = 0
\]

這表明小球做作諧振運動。 (41) 式中的常數 \(p \) 在這裏是等於 \(2Sg/\sqrt{W} \)；故週期是

\[
T = \frac{2\pi}{p} = 2\pi \sqrt{\frac{W}{2Sg}}
\]

可見週期與張力的平方根成反比。所以調整繩的緊張程度，就可以得到指定的振動週期。

341。假設沿地球直徑打一個對穿的井洞。試證明一個物體落在井中後，必將發生諧振運動；並求出這一振動週期的大小。假定地球半徑等於 \(r \)；單位體積的重量等於 \(w \)。

解：由萬有引力定律，知道

\[
X = K \frac{m_1 m_2}{x^2}
\]

其中 \(K \) 是引力常數。物體在第 420 圖中位置時，它受到的作用力應該等於地球中對稱部分質量的引力。欲求何時釋放？可觀察第 420b 圖中的一層極薄的空心球。設想有一個問題。鐵塊在物體所在位置；鐵塊能在空心球上切出兩個圓溝，它們重量分
則是 M_1 和 M_2。因圓盤薄，所以它的質量可當作翼面積成正比。但是同一圓盤
與翼面積成本來翼面積高 a_1 和 a_2 的平方成正比，所以根據引力公式，這兩側翼面
側對物體的引力應該恰巧互相抵消。整個空心球體當然可看作由如此兩翼相對的翼面
所構成，放在空心球內部的物體，它受到空心球的引力合力永遠等於零。一般說來，任
何在物體外的空心球殼部分加於物體的引力都是如此，所以物體在其中不受它所在位
置外的地球的引力影響。物體的運動方程式，因此是

$$\frac{W}{g} \dot{x} = -K \frac{4\pi x^3 \omega}{3g^2}$$

故

$$\dot{x} + K \frac{4\pi x}{3g} = 0$$

可知物體的確是發生簡單運動。式(41)式的常數 K 還是等於 $\frac{4\pi \omega}{3g}$，但是引力常數
K 的大小，我們另外由地球表面的引力現象來決定。物體在地球表面的加速度是 g，這
就是說 $x = r$ 時，$x = g$，代入運動方程式，得

$$K = \frac{3g}{4\pi r \omega}$$

這樣，運動方程式就化為

$$(d) \dot{x} + \frac{d}{r} x = 0$$

可知物體的振動週期是

$$\tau = 2\pi \sqrt{r \frac{r}{g}}$$

相當於極長等於 r 的簡單週期。

342. 軌上蓋中 $r = 637 \cdot 10^3$ cm，試求週期應等於多少？

(解：$\tau = 94.4$ 分)

343. 第 241 圖的設置：AB 代表 W 兩圓柱互相等。因連方向相反。試證明如果 AB 的
重心 C 有一些偏移，AB 就會發生簡單運動。而且這運動的週期要看兩圓柱的中心
距離 $2a$ 和翼面與 AB 桿的摩擦係數 μ 而定。

解：按靜力學方法，可求出翼柱的反作用力是

$$R_1 = \frac{W}{2a} (a - x) \text{ 和 } R_2 = \frac{W}{2a} (a + x)$$

相對的摩擦力是

$$F_1 = \mu R_1 \text{ 和 } F_2 = \mu R_2$$

所以 AB 桿的運動方程式是

$$\frac{W}{g} \ddot{x} = -F_2 + F_1$$

AB 桿在圖中位置時，$F_2 > F_1$，所以它受到的作用力合力應該在使 AB 桿回到平衡位
置——也就是圖中下有到左——的方向。以 F_1 和 F_2 代入運動方程式，得

\[\frac{W}{g} \ddot{x} = -\frac{μW}{a} \frac{x}{t^2} \]

所以

\[\ddot{x} + \frac{μg}{a} x = 0 \tag{e} \]

可見 AB 條紮是發生簡態振動。 常数 \(μ = \frac{μg}{a} \)，該週期是

\[τ = 2π/β = 2π\sqrt{a/μg} \]

利用第 421 圖這樣的裝置，我們顯然也可以由週期的觀測來測定彈簧間 AB 條間的摩擦係數。 觀察出週期後，根據上式就可得

\[μ = 4π^2a/gτ^2 \tag{f} \]

第 421 圖

344. 設上圖中，AB 是一根放在兩個鐵軌上的木棒，測出的振動週期是 43 次/分。 \(a \) 等於 25.4cm 間木棒與錘面間的摩擦係數等於多少？

(解： \(μ = 0.45 \))

72. 迤迫振動

以上專就質點的自由振動討論。 自由振動的動力，例如彈簧的彈力等等是由運動本身來提供的。 假設在彈簧下面的物質不遜動，那就不會有不平衡的彈力發生，從而就不會有振動。 環球表面的重力，始終不變，所以它不能引起振動。

假設除開彈力外，另外有一個隨時間變化的外力在物體上作用，那物體的運動方程式 (36) 就變成

\[\frac{W}{g} \ddot{x} = -kv + Q \tag{a} \]

其中 \(Q = f(t) \) 稱為振動的動力源。

實際問題中，Q 力常是時間的正弦或餘弦函數。 例如第 422 圖中一懸掛著W的電動機，底座裝有彈簧，可以上下振動。 若以機槽子完全均衡，那它具有電動機的動量作用於彈簧上，使電動機產生靜力震幅 \(δ_{st} = \frac{W}{K} \)。 這時，如果有一個偶然外力，使電動機上下振動，那發生的就只是自由振動，週期是
\[r = 2\pi \sqrt{\frac{A}{g}} \]

不過轉子若因製造關係並不均勻，以致在某一偏心質量在圖中 A 處一樣，那末轉動時就會產生離心力 \(Q_0 \)。這離心力等到傳動上的鉤重方向外力是

\[Q = Q_0 \cos \omega t \quad (b) \]

其中，\(\omega \) 指轉動子的固有角速度，時間 \(t \) 始 \(Q_0 \) 銷切向下時起算，以 (b) 式代入 (a) 式，兩邊同時除以 \(W/g \)，並令

\[\frac{kQ}{W} = p^2, \quad \frac{Q_0 g}{W} = q_0 \quad (c) \]

就可得

\[\ddot{x} + p^2 x = q_0 \cos \omega t \quad (40) \]

這就是物體的變阻振動方程，式中 \(q_0 = \frac{Q_0 g}{W} \) 表示離心機單位質量所受到的動力。（以上我們假設接點的偏度很小；否則，偏心質量的運動路程不能認為是一個圓周。）

在解 (45) 式以前，再舉一個情形相類的如第 423 圖。圖中物體重 \(W \)，懸掛在一根撤在下面，加加本身又懸掛在兩下方向作等速度運動的十字架 \(A \) 下面。OB 也轉長 \(a \)，轉速和定等於 \(\omega \)。時間從 OB 銷切向下時開始計算，A 的位置 \(x \) 以它的運動路程中點作為原點。這樣，對該中點而言的 A 點的位移 \(x \) 就是

\[x = a \cos \omega t \]

（d）

第 422 圖

第 423 圖

彈簧上端發生了這樣的位移，下端懸掛的物體自然將因而移動。計算物體的位移 \(x \)；我們以十字架 \(A \) 在中層在物的伸縮員平面位置為基準。 \(x \) 和 \(x_1 \) 並不一定相同，因彈簧本身還會伸縮。若 \(x_1 = x \) 表示物體在某一位置時，彈簧與伸縮員伸長後的再伸長。根據這些條件，可得物體運動方程式如下：
\[\frac{W}{f} x = W - (W + k(x - x_1)) \]

将 (d) 式代入上式，得

\[\frac{W}{f} x' + kx = \omega_k \cos \omega t \] (e)

知

\[\frac{k}{W} = p^2, \quad \omega_0 = \frac{\omega_k}{W} \] (f)

再以 \(W/f \) 除 (e) 式各项，就可得

\[x + p^2 x' = \omega_0 \cos \omega t \]

上式与 (46) 式在形式上完全相同。不同之处仅在于方程内部为常数，而非变化的函数，而在后者中，却经过变化才得到方程的形式。

现在要解 (46) 式的「解」。下式显然可满足 (46) 式:

\[x = C \cos \omega t \] (g)

其中 C 是一个常数，以 (g) 式代入 (46) 式，可得

\[-C \omega^2 + \omega^2 = \omega_0 \] (h)

故

\[C = \frac{-\omega_0}{\omega^2} \] (i)

以 (i) 代入 (g) 式，就得

\[x = \frac{\omega_0}{\omega^2} \left(\frac{1}{1 - \frac{\omega_0^2}{\omega^2}} \right) \cos \omega t \] (47)

这恰是 (46) 式的特例。我们还需要把 (41) 式的商解 (42) 式综合进去，才能得到混合运动的解。综合如下：

\[x = C_1 \cos \omega t + C_2 \sin \omega t + \frac{\omega_0 \cos \omega t}{\omega^2 (1 - \frac{\omega_0^2}{\omega^2})} \] (48)

(48) 式能满足 (46) 式，可用代入法证明。这一结果有两个积分常数，故它适用于任何受到外力和任何初速的混合问题。 (48) 式中右端第一，第二两项代表自由振动，周期是

\[\tau = \frac{2\pi}{\omega} \]

对于一个给定的振动系统，这一周期是不变的，是不受动力影响的。 (48) 式右端最后一项代表强迫振动。这一振动的周期是

\[\tau_1 = \frac{2\pi}{\omega_0} \]

它跟动力学的周期变化相同，而跟振动系统的自然周期不同。

(48) 式的运动是自然由周期不同的两种简谐振动相加而成，它的图形自然应该如第 424 图。 a 图表示强迫振动的位移时间关系，相当于 (48) 式的最后一项；b 图表示自由振动的位移时间关系，相当于 (48) 式的前两项；设定 \(C_2 = 0 \)。c 图是这两者之和。以上指出 (48)
式的過程中，摩擦力始終不計及。事實上，摩擦力必然存在。物體振動次數越多，其影響就會相對顯著。所以自由振動的振幅，必然要因摩擦力逐漸減小而趨近於零。強迫振動則不同，只要振動力繼續存在，振幅就可以維持。所以實際運動情形會像第424圖。物質在振動很多次後，自由振動就被摩擦力消減，剩下來的只是純粹的強迫振動。換句話說，強迫振動會單獨形成物體振動的經常形態，如(47)式所示。

![第424圖](image)

在前面所討論的例子中(第422圖)，以初值代出 \(q_0 \) 和 \(p^2 \)，(47)式可改寫為

\[
x = \frac{Q_0 \cos \omega t}{k} \left(\frac{1}{1 - \frac{\omega^2}{p^2}} \right)
\]

（47a）

在彈簧下振盪物體的例子中(圖423)，以初值代出 \(q_0 \) 和 \(p^2 \)，(47)式可改寫為

\[
x = a \cos \omega t \left(\frac{1}{1 - \frac{\omega^2}{p^2}} \right)
\]

（47b）

（47a）式的 \(\frac{Q_0 \cos \omega t}{k} \) 表示彈簧彈簧在振動力靜力作用下的伸長（此伸長不可跟弾簧重量 \(W \) 所生的靜力形變 \(S = W/k \) 分別）。(47b)式的 \(a \cos \omega t \) 表示彈簧上加負荷力 \(A \) 的位移，也可以看作在彈簧上的作用力所生的靜力形變。所以這項例子當中可以看出，振動力的動力形態是由底下的因數

\[
\left(\frac{1}{1 - \frac{\omega^2}{p^2}} \right)
\]

（5）

與靜力形態的乘積來決定的。這因子的絕對值通常稱為強迫振動的放大因數。由（5）式
可知因数值的大小就决定比值 \(\omega / \beta \) 值，也就是要使物體的自鳴振動週率 \(f = \beta / 2\pi \) 跟強迫振動週率 \(f_1 = \omega / 2\pi \) 的值相同。這兩個週率又分別稱為自然週率和外加週率。

因強迫振動的振幅跟放大因數直接成比例，所以放大因數在確定振動中至關重要。第 425 圖是這一週率跟週率比值間的關係曲線。由圖中可看出，當 \(\omega \) 小於 \(\beta \) 很多（也就是外加週率比自然週率低很多），放大因數就逐漸接近於 1。這時，強迫力的動力效應就跟靜力效應相差無幾。當 \(\omega \) 逐漸接近 \(\beta \) 之時，放大因數迅速增大，到 \(\omega = \beta \) 時，因數值就變成無限大，因而振幅也變成無限大。實際上，因壓屈力關係振幅當然不至於成無限大。但振幅大到可以破壞振動系統，所以則是沒有意義的，這種情形下的振動通常稱為共振或共鳴。

第 425 圖

當 \(\omega \) 增加到大於 \(\beta \)，超過共振現象後，放大因數將開始減小。等 \(\omega \) 大到大於 \(\beta \) 之數倍時，放大因數就逐漸接近於零。這時，強迫力的動力效應已經沒有，強迫振動的振幅極度減小，物體幾乎是處於靜止狀態。這一刻具有極大的實際意義。

在 \(\omega > \beta \) 後，放大因數變負時，物體位移就受強迫力方向相反。所以物體在共振現象前的振動稱為同步振動，意思是物體位移跟強迫力方向相同。在過共振現象後的振動，通常稱為異步振動，表示強迫力跟物體位移方向相反，步進相異。

例題和習題

345. 第 422 圖中，電動機轉子的轉速是每分鐘 1800 轉，機心質量所產生的振動力等於 \(W/19 \)，\(W \) 是電動機電量。此外，\(\delta_{tt} = W/k = 0.0076 \text{cm} \)。試求強迫振動的振幅與 \(\delta_{tt} \) 的比值等於多少?

解：因 \(\omega = 2\pi \times 1800/60 = 60\pi \text{ rad/s} \),

\[
d = \sqrt{\frac{CK}{W}} = \sqrt{\frac{W}{0.0076 \times \frac{88}{W}}} = 359 \text{ s}^{-1}
\]

故

\[
\omega / \beta = 60\pi / 359 = 0.525
\]

應用式 47(a)式，得

\[
x_m = \frac{\delta_{tt}}{1 - \left(\frac{\omega}{\beta} \right)^2} = \frac{\delta_{tt}}{1 - 0.525^2} = \frac{\delta_{tt}}{1 - 0.275} = 0.138 \delta_{tt}
\]
所以
\[x_m : 5.7 = 0.138 \]

3 6. 第 423 幅中，\(a = 25 \text{ cm} \), \(m = 180 \text{ g} \), \(s = \frac{W}{k} = 7.6 \text{ cm} \)。試求巨體 W 銳過振動
的振幅等於多大？

(解：\(x_m = 0.013 \text{ cm} \))

847. 第 426 幅的振幅，活塞 DE 上下運動的週期 \(\omega = 2\pi \) 平方的平方等於圖中兩個圓球自然週
期的平方的平均值。兩圓球重量等於 W。試求它們銳過振動的振幅比值等於多大？

(解：\(x_m (a) / x_m (b) = (\lambda / l)^3 \))

73. 強迫振動的應用

(1) 這在共振現象前的強迫振動；\(\omega / \rho \ll 1 \)

各種壓力指示計都利用這種強迫振動作為設計根據。 壓力指示計構造形式如第
427 幅，主要部分是一個附裝彈簧的活塞。 壓力的自然週期和弹簧的彈力常數 \(k \) 和活塞
重量 W 的大小而定。 指示計由 M 口引出一根導管跟振動的汽缸連通，使活塞受調的壓

力傳給缸中壓力相同。 原動蒸汽缸內的壓力不斷變化，活塞因此將產生強迫振動。 振動
幅度由指標顯示記錄在一個旋轉的 \(A \) 端上。 因必須使活塞的振幅跟活塞受相同壓力的靜
力位移相等，該指示計的自然週率一定要比原動機壓力的變化週率大得多，使放大同數接近
於 1，壓力的壓力位移才能接近於靜力位移。 可見，指示計的小活塞適筋，彈簧應當弱
，使自然週率很大，才宜。

復寫型振動計的加速度指示計也是應用以上這種振動現象來設計的。指示計構造如第
428 幅。 應用時，把它裝在振動機的十字頭上，使彈簧受振的運動完全跟十字頭運動相
同。 十字頭的位移方程式是

\[z = a \cos \omega t \]

其中 \(a \) 代表十字頭的振幅（振動週期等於 \(2\pi / \omega \)）。 巨體 W 的絕對位移量
$$x = a \cos \omega t \left(\frac{1}{1 - \frac{\omega^2}{p^2}} \right)$$

所以體積對於十字頭或「記録圓筒」的相對位移是

$$x - x_1 = - c \cos \omega t \left(\frac{1}{1 - \frac{\omega^2}{p^2}} - 1 \right)$$

或

$$x - x_1 = \frac{-c}{p^2} \cos \omega t \left(\frac{1}{1 - \frac{\omega^2}{p^2}} \right)$$

(2)

這就是記録下來的位移曲線的方程式。因 ω/p 若十分微小，(2) 式就可簡化為

$$x - x_1 = \frac{-c}{p^2} \cos \omega t$$

此外，因十字頭加速度是

$$x = - \omega^2 a \cos \omega t$$

所以只要把記録下來的位移曲線乘上常數係數 p^2，就可得到十字頭的加速度曲線。

(2) 這在表接後果以後的強迫振動；$\omega/p > 1$

計量地基振動情形的地震儀和基礎振動儀，一般都是利用通過振動作用設計的。儀器
的結構形式如第 428 圖。應用中，將儀器裝在透平或電機的基礎上。儀器中彈簧的彈簧常
數極小，而相應的質量 W 卻很大，所以自由振動週率很低。地基週率遠不的階數一般都比

![第 428 圖](image1)

![第 427 圖](image2)

高；故儀器中的振動速率遠於絕對靜止。A 表因而可以記録出地基在水平方向的振動情形。

如測量水平方向的振動，儀器中可改用水平方向彈簧。

精密儀器的底盤，也利用這種強迫振動現象來設計（第 429 圖）。房基結構一般都很堅
實，自然週率甚高。衡車振動具有週率接近房基的才能對房基有相當影響，所以振動時間
很短時，它對低週率振動的底盤也不會有顯著的影響，儀器因此可以不受影響。
在機器內部同軸機件會使機件變形，也是這種緣故。若不使這種現象發生，機體結構所承受的不均勻動力就會傳導到基礎上，引起可觀的振動。

譬如第 431 圖的電動機，它的軸子有偏心質量，會產生一個阻力臂 Q_0 作用在機座上。若我們把機座直接裝到基礎上去（第 431a 圖），那 Q_0 就會傳導到基礎，引起基礎的振動。若把機座設置於基礎上，電機的彈性基座（第 431b 圖）有兩種力所引起的振動，基礎或機座

$$x_m = \frac{Q_0}{k} \cdot \frac{1}{1 - \omega^2}$$

可以是變動時的彈簧使振動系統的振動週率矩比外加週率——也就是電動機的每分鐘樞數——小得多，故的 ω/p 會很大，從而可以使基礎 x_m 及 Q_0 的阻力臂所產生的振動形狀與基礎相似。這樣，基礎電機的振動形狀也自產生的振動形狀相較，基礎由軸子不均勻而引起的振動自然也就大大減弱。

(3) 共振現象

關於共振現象，§72 中討論的只是振動機可以不振的情形，而工業現象究竟如何還不清楚。不過，有一點至少是可以肯定的，就是共振時，振動振幅的振幅會特別大。因此有這一緣故，所以共振是是一種很危險的現象，它會使振動形狀發生過大的振動形態而遭到破壞。不過，一般機電振動形狀的振動形狀是根據共振現象設計的。它們的振動週率非常接近共振。現在舉兩個例子來說明。

運動指示器：這是一種測量各種機電機
的振動的儀器，結構形式見第 432 圖。主要
部分是一排搖臂的鋼條，一個裝在底座內，另外
一排裝一個振動器。所以每一單位都裝有一個
有振動的振動器。因此機器的自然振動週率
各鋼條上有動體的電磁，按一定規律安
排，使共振形狀某一個週率。應用時，把
底座裝在要測量振動器的機器上。如果物體
的振動週率形狀中某一單位的週率趨近，這
一單位的振幅就特別大，所以所求的週率可以
直接根據這一單位的已知自然週率來決定。

振動器：第 433 圖是一個銀振器用於測定振動器的振動器。主要原理是對應的有相同偏心質量的偏心。工作時，兩端相對等質量，偏心質量所產生的離心力 Q，非很小大小相等，而且兩端方向相對錯位相等的交角。所以只在離心方向產生一個週期變化的作用力。適用於把振動器安在建築物上，逐漸增加荷載的繩速；達到建築物建築振動的振
幅顯著增大，記錄下這時繩輪的每分鐘的轉數，就得到建築物的自然週率。

道一構器還可以用來試驗大的振幅模型的質量的建築物。試驗對象在振動器引起的共振現象的負荷下，我們可以詳細研究結構上各種破壞的類型。一個相對小的振動器能夠完全導致一個巨大建築物的破壞，也說明了共振現象的危險，所以任何機器都不可以在共振現象(或接近這種現象)下工作。

例題和習題

348. 第 427 圖中是一個蒸汽壓力表，其中彈簧的彈力常數 \(k = 18 \text{kN/cm} \)。蒸汽壓力的最大變化週率每分鐘 60 次，誤差限度 2%。試問壓力表指示的正確壓力為多少？

(解：\(W = 0.091 \text{kN} \))

349. 將第 428 圖的加速度表示計裝在一部蒸汽機的十字頭上。圖示上計示下来的振幅是 0.06mm。所需計示計數的彈力常數 \(k = 1.8 \text{kN/cm} \)，計示計數的重量 \(W = 0.1 \text{kN} \)，試求計示計數的最大加速度為多少？

(解：\(a = 1058 \text{cm/s}^2 \))

350. 假定第 431a 圖中，電動機經在受彈簧作用達到基礎的變化作用力，其等於速度曲彈簧中的(第 431b 圖)的十分之一，電動機的數分達 1800 次。電動機重量是 100kg，試求這曲彈簧彈力常數為多少？

(解：\(k = 330 \text{kN/m} \))

74. 極性力——慣性力原理

質點的直線運動方程式(36)也可以寫成底下的形式：

\[X - m \ddot{x} = 0 \]

其中 \(X \) 表示所有沿 \(x \) 軸方向作用的外力的合力，\(m \) 表示質點的質量。這一運動方程式(36)跟靜力平衡方程式在形式上完全相同，所以可以
把它當作一個動力平衡方程式看待。要建立這樣一個方程式，我們只要在實際作用力之外，假想有一個 $-m\ddot{x}$ 力作用在質點上。然後，分析各力的平衡條件就成。這一假想的作用力，大小等於質點的質量跟加速度的乘積，方向跟加速度相反，是所有實際作用力的平衡力，通常特稱為慣性力。

剛體作直線移動時，所有各質點都發生同樣的直線運動，各點加速度完全相同，所以各質點慣性力的合力應該是

$$ -\sum m\ddot{x} = -\dot{x}\sum m = -\frac{W\ddot{x}}{g} \quad (b) $$

式中 W 指剛體的全部重量。此外，各質點的慣性力跟質點的重力成正比，所以它合力的作用點也必定在剛體的重心上。剛體直線運動的動力平衡公式因此是

$$ \Sigma X_i + \left(-\frac{W\ddot{x}}{g}\right) = 0 \quad (49) $$

現在來討論幾個互相牽制的質點所組成的質點系，其中每一個質點都只能發生直線運動。例如第 434 圖的兩個物體，它們分別重 W_1 和 W_2，由一根沒有伸縮性的軟線連接，跨著掛在一個固定滑車上，滑車的慣性和摩擦阻力全部可以不計。設整個系統按圖中箭頭表示的方向運動，可得質點 W_2 的向上加速度 \ddot{x} 和質點 W_1 的向下加速度 \ddot{x}。現在在實質作用力——重力 W_1, W_2 和軟線反作用力 S——之外，把加速度引起的慣性力加入進去，就可以在每一個質點上得到一個平衡力系。由此又可以斷定，整個系統一定也是在平衡狀態。這樣，我們就只需要列一個整個系統的平衡方程式，而不必分別列兩個質點的兩個平衡方程式。

至於列方程式的方法，我們根據所有各力——包括慣性力在內——對於滑車中心的力矩代數和等於零的條件，或根據第八章的動理學原理都無不可。無論用那一種方法，軟線的張力 S 總是全系統的內力，可以不計慮。因此，我們可直接得到底下的方程式：

$$ \ldots $$
只要已知 W_1 和 W_2，由上式就能求出加速度 x。

以上方法也可以应用於更複雜的質點系中。若用了這個方法，我們只需要列出一個全系統的動力平衡方程式 (否則，有多少個質點就需要列多少個方程式)，質點間所有的內力——像前一例子中的 S 都可以不考慮，計算手續當然大為減少。

一個運動方程式只要把慣性力加进去，就可以化為形式跟著平衡方程式相同的動力平衡方程式，系統中的內力，因自己成對抵消，可以完全不考慮，這就是慣性力原理的根據。這一原理說明：若一個系統的運動，我們只要把質點系的全部外力，連同各質點上的慣性力加在一起，當作一個力系來看，力系的平衡條件就是質點系的運動方程式。慣性力原理在工程科學中應用極廣。底下我們舉一些例子來說明應用慣性力原理的好處。

例題與習題

351. 鋼索吊起一個重 W 的物體，使它發生加速度 a (第 435 圖)，問纜索內的張力於多少?

解：在物體上加入慣性力 $\frac{W}{g}a$ 後，得動力平衡方程式

$$W + \frac{W}{g}a - S = 0 \quad \text{(c)}$$

故

$$S = W \left(1 + \frac{a}{g}\right) \quad \text{(d)}$$

可見纜索中的張力不但跟物體重量 W 有關，而且要看加速度的大小而定。若 a 甚大，S 就可能比 W 大得多。平常用鋼索拉住吊物時，就是這個道理。

若加速度 a 向下方，S 就將比 W 小。假使物體自由下墜，$a = -g$，那

於索。

352. 假設在用加速度 a 向上或向下運動的電纜箱中，掛一個重 W 的物體，試問這個物體不會受到什麼影響？

解：先假定加速度 a 向上，如第 436 圖。加入慣性力 $\frac{W}{g}a$ 後，電纜中的張力

$$S = W \left(1 + \frac{a}{g}\right)$$

當電纜與電纜架成 θ 角時，所有作用力——包括慣性力在內——除張力 S 外於 x 軸，令各方在 x 軸方向分力的總和等於零，可得作用力方程式

$$\sum F_x = 0$$

$$\sum F_y = 0$$
\[-\frac{W}{g} \ddot{x} - S \sin \theta = 0 \]
(e)

投影平行于坐标方向，又可得

\[S = (W + \frac{W}{g}a) \cos \theta \approx W + \frac{W}{g}a \]

\(\theta \) 角很小，我们可以近似为 \(\cos \theta \approx 1 \)，\(\theta \approx \frac{x}{l} \)，所以以 \(S \) 代入 (e) 式：可得

\[\ddot{x} + \frac{g + a}{l} x = 0 \]
(f)

当 \(\frac{(g + a)}{l} \) 相当于简谐运动方程式 (41) 的常数 \(b \)；解常微分方程

\[x - 2\pi / b = 2\pi \int \frac{t}{\sqrt{g + a}} \]
(g)

可见加速度 \(a \) 向上时，\(x \) 比普通周期小；向下时，\(x \) 比普通周期大。如果弹簧箱自由下落；\(a = -g \) 时，\(x = \infty \)；表示弹簧箱被静止，它可以相对静止于任何位置。换句话说，弹簧箱的惯性力恰好等于重力，它们方向相反，因而，不起振荡。

第 437 圈中是防止浮漂箱产生意外的自由装置。如果以图中圈中的 A, B 两点用弹簧来控制弹簧臂：若弹簧箱自由下落时，弹簧臂伸入浮箱中而发生作用，就错了。由政党式，\(a = -g \) 时，物体重量会释放弹簧力抵消，A, B 两点实际上不向下移动，所以正确的装置必须用 AC 和 BD 两点装置。

第 436 圈

真解图的装置图是用弹簧装置，从一个弹簧箱中，使弹簧箱的向上或向下加速度对弹簧的振荡有何影响？

式求解 434 圆中物箱的加速度等于多少？

解：

\[\ddot{x} = \frac{W_1 - W_2}{W_1 + W_2} \]

第 438 圈的装置。试不计摩擦及重力，求质量 \(Q \) 的加速度 \(a \) 等于多少？

解：

\[a = \frac{Q - P/2}{Q + P/4} \]
556. 第439問中，方塊重力W'放於一平車上，接觸面間間隙f等於h。試求：(1)方塊開始在平車上滑動，平車的加速度a等於多大？(2)方塊開始兩側滑動，平車的加速度a等於多大？

解：除摩擦力和不平車反作用力外，方塊受到的外力的合力是R'。因此，摩擦力合平車反作用力的合力必須跟R'方向相同。而且在同一作用線上。方塊將開始滑動時，必然

\[\frac{W}{g} \alpha = \mu \cdot W \]

也就是

\[a = \mu \cdot g \]

若著摩擦係數很大，足夠使物體不發生滑動，則未加速度逐漸增加到合力R'通過A點時，方塊將開始滑動。這時候，

\[\frac{W}{g} \alpha h = Wc \]

故

\[a = \frac{c}{h} \cdot g \]

聯合以上兩結果，就知到，在

\[\mu = \frac{c}{h} \]

的條件下，方塊將同時開始滑動和脫離。

第438圖

第439圖

567. 輔上題中，平車速度等於6m/s。此外，c = 2.3m，h = 1m和 \(\mu = 0.5 \)，試求在不懸掛車上方向塊的條件下，所需要的最大停車距離s等於多少？

解：(解：s = 3.7m)

558. 假設輪胎貼著地面間摩擦係數等於μ，試求懸掛汽車(後輪懸掛輪子)在平地上可達到的最大加速度a等於多大？(第440圖)

解：後輪懸掛的作用力是載荷的摩擦力F，所以必須先求出前後輪加於路面的垂直壓力。汽車靜止時，這兩個壓力是：
$\begin{align*}
R_f &= \frac{b}{b+c} W \\
R_r &= \frac{c}{b+c} W
\end{align*}$

再加入慣性力 $-\frac{W}{g} a$，就可得汽車運轉時的前後輪壓力如下：

$$
\begin{align*}
R_f &= W \frac{b}{b+c} - \frac{W}{g} \frac{h}{b+c} a \\
R_r &= W \frac{c}{b+c} + \frac{W}{g} \frac{h}{b+c} a
\end{align*}
$$

可見後輪壓力因汽車的前進加速度而增加；前輪卻減少。所以要增加推動力 F 起見，
應該取後輪為推動輪。根據同一理由，剎車應該裝在前輪以增加制力（剎車時，汽車的
加速度方向朝後）。

投影所有作用力於水平方向，應用(49)式，得

$$F = \mu R_r = \frac{W}{g} a$$

以(m)中 R_r 代入(n)式，就可得最大加速度

$$a = \frac{W g}{b+c - \mu h}$$

359. 假設第 441 圖中，汽車的馬力十分強大，同時輪胎面間的摩擦力足以使車輪毫不
滑動，試求這部汽車不致向後傾覆的最大加速度可以等於多大？

(解：$a = \frac{b}{h} g$)

360. 第 441 圖中車重的重量各等於 P 和 Q。設 P 與水平平面間的摩擦係數等於 μ_a，試
不計其他摩擦力，求：(1)兩重物的加速度 a。 (2)傾斜力 S。

(解：$a = \frac{Q g - \mu Q}{P+Q} + g, S = \frac{P Q (1+\mu)}{P+Q}$)

361. 第 442 圖中，斜面 CD 的水平斜線與角 $\alpha = 30^\circ$，兩物重 A 和 B 正重分別是 $W_a = 5\text{kg}$
和 $W_b = 10\text{kg}$，A 倾斜面間以及 B 倾斜面間的摩擦係數是 $\mu_a = 0.15$ 和 $\mu_b = 0.30$。試
求運動時，兩重量間壓力等於多大？

(解：$P = 0.43\text{kg}$)
75. 動量和衝量

質點直線運動方程式還可以寫成如下的形式:

\[\frac{W \, dx}{g \, dt} = X, \]

或

\[d \left(\frac{W}{g} \cdot x \right) = X \, dt \] \hspace{1cm} (a)

其中作用力 \(X \), 在以後討論中, 一概假定是一個已知的時間函數, 它跟時間的關係曲線見第 444 圖。(a) 式中右邊一項顯然表示圖中書線線的狹條面積, 它的高度和寬度分別是 \(X \) 和 \(dt \). \([X \, dt] \) 這樣一個量通常稱為作用力 \(X \) 在 \(dt \) 時間內的衝量。 (a) 式左邊一項 \(\left(\frac{W}{g} \right) \cdot x \) 稱為質點的動量。(a) 式說明: 質點動量在 \(dt \) 時間內的微分變化乃等於作用力在同時間的衝量。 動量和衝量的單位都是 \([力 \times 時間] \), 它們的單位通常用 \(kg \cdot m/s \)。

積分(a)式, 得

\[\frac{W}{g} \cdot x + C = \int_{0}^{t} X \, dt \] \hspace{1cm} (b)
其中積分常數 C 可由運動的具體條件決定。如果質點在 $t=0$ 時，x 軸方向的初速等於 x_0, 由(b)式，就可得

$$C = -\frac{W^*}{g} x_0$$

故

$$\frac{W^*}{g} x - \frac{W^*}{g} x_0 = \int_0^t F \, dt$$ (50)

可見在一定的有限時間內，質點動量的全部增減量將等於作用力在同時間內的全部衝量。第 444 圖中，$OBCt$ 面積正代表此衝量值。

動量方程式(50)對於「質點系」的運動問題特別有用。因在這

$$v_1 \rightarrow \boxed{F} \rightarrow v_2$$

第 445 圖

類問題中，衝量因此可以不需要計算。譬如第 445 圖中所表示的炮彈的發射，炮彈和炮身可以共同當作兩個質點構成的質點系看待。在非常短促的爆炸瞬間，火藥作用於炮彈和炮身的氣體壓力 F 究竟如何變化是不知道的，計算衝量，因此，十分困難。雖然如此，但是炮彈出口速度 v_1 和炮身後坐速度 v_2 間的關係還是可以由(50)式確立，用不到計算衝量。因炮身和炮彈上受到的兩 F 力是屬於作用力和反作用力性質；它們在任何時刻總是相等相反的兩力，而且作用時間也相同，所以兩力在爆炸瞬間的衝量非相等不可。命 W_1 和 W_2 分別代表炮彈和炮身的重量，並且假定它們的初速都等於零，同時，不計其他外力，那末：

$$\frac{W_1}{g} v_1 = \int_0^t F \, dt$$

$$\frac{W_2}{g} v_2 = \int_0^t F' \, dt$$

所以，就整個質點系而論，是

$$\frac{W_1}{g} v_1 - \frac{W_2}{g} v_2 = 0$$

也就是

$$\frac{v_1}{v_2} = \frac{W_2}{W_1}$$
可見發射時，炮彈和炮身的速度是一對方向相反，大小跟它們自己的重量成比例的速度。

這一問題所以能夠如此簡便解決，純粹因爲全系統只有內力性質的作用力和反作用力而沒有任何外力存在。在一個質點系中，內力總是兩力相等相反的力，所以應用動量及動量方程式時，內力可不用去計算。換句話說，任何質點系若沒有外力作用，那這系統的動量就必然固定不變，因總衝量等於零。這論斷通常稱為動量不減原理。

例 題 和 習 題

363. A, B 兩人重量相同，各自拿在一根掛在固定滑車上的繩子的一頭。問 A 向上爬的時候，B 將如何運動（繩子和滑車的張力以及繩承摩擦力可以不計）？
解：繩內的張力在 A, B 間必是相等相等，所以作用於 A 和 B 的衝量一定也相等。因兩
人重量相同，故各人的上升速度也必須相同。所以 A 向上爬時，B 可以毫不費力隨之上升。

364. 一根切面積等於 A 的 BC 條放在光滑水平平面上（第 440 圖）。假定 BC 是一個完
全彈性球。現在在 A 頭突然打壓 BC 一下，問碰撞在 BC 中的傳播速度等於多大？

解：B 端受力 P 發生的內應力是 P/A。相應的壓縮變形是 P/EA。E 指 BC 條的彈性
模數。假定這壓縮以等速度 v 沿 BC 條傳播，經過一段時間 t 後，到達 ab 切面（第 445 圖），再經過一段時間 dt，又到達 cd 切面。cd 和 ab 腦切面的距離自然是 vdt。
此外，壓縮部份本身也沿水平方向前進。若假定速度等於 v1，那末在 dt 時間內的位
移 v1 dt 應該等於 abcd 部份的壓縮。故

\[v_1 = \frac{P}{AE} \cdot \frac{dt}{v} = \frac{P}{AE} \]

abcd 塊壓縮後，也以 v1 速度向前運動。於全系統在 dt 一段時間內所增加的動量，
就是 abcd 部份自靜止達到 v1 速度所獲得的動量。若令 w 代表 BC 條單位體積的電
量，這動量的變化就等於

\[\frac{Acv}{y} \cdot v_1 = \frac{Awm}{y} \cdot dt \cdot \frac{P}{AE} \]
§ 251 直 線 移 動

產生運動量的微分是 Pdt 因此就整個 LC 桿來說，內力兩兩抵消，不產生衝量，只有外力 P 的衝量能夠使系統在 dt 一段時間內增加動量。因此，

$$Pdt = \frac{Fw \cdot dt}{Eg}$$

也就是

$$v = \sqrt{\frac{Eg}{}\} \text{ (e) }}$$

可見波在桿內的傳播速度只與 E 桿的彈性模數 E 和單位體積重量 w 有關，外力、切削力、應力等等對速度都沒有影響。

365. 槓鋼桿的 $w = 0.0079\text{kg/cm}^3, E = 21 \times 10^6\text{kg/cm}^3$，試求聲波在鋼桿中的傳播速度。

(解：$v = 5100\text{cm/s}$)

366. 一人重 80kg，站在一艘重 100kg 的靜止船上（第 447 圖），人離開岸邊的距離是 15m。水與船的摩擦力可以不計。試求人在船上向前行走 8m 後，離開岸的距離將變成多少?

(解：10.5m)

367. 機車重 54t，以每小時 16km 速度拖拉一輛重 9t 的靜止貨車。軌道水平，並不計摩擦阻力。試求接駁後，這一車列艦隊行進的速度等於多少?

(解：每小時 18.7km)

368. 一人重 65kg，坐在一隻 34kg 重的小船上，向船尾的正後方射擊。射出的子彈重 0.028kg。不計水的摩擦力。欲子彈的槍口速度等於 67cm/s，問射擊後，船的速度 v 等於多少?

(解：$v = 0.184\text{m/s}$)

369. 有一木塊重 2.9kg，放在光滑的水平平面上。一顆重 0.014kg 的子彈在水平方向射入後，木塊以 3m/s 速度向前運動，問射彈原來速度 v 等於多少?

(解：$v = 495\text{m/s}$)

370. 船頭重 63000kg，射出的炮彈重 455kg，炮口速度是 164m/s，炮身後座彈簧的彈力
76. 功和能

質點直線運動方程式還可以寫成這樣的公式:

\[W \frac{dx}{dt} = X \]

若兩邊同乘以 \(dx \)，就可得:

\[W \frac{dx}{dt} \cdot dx = X \cdot dx \]

或

\[d \left(\frac{Wx^2}{2} \right) = X \cdot dx \]

假定作用力 \(X \) 是一個已知的位移函數，第 488 圖是這一函數的圖象，那(a)式的右邊第二項顯然就代表圖中曲線段的面積面積，這一 \(X \cdot dx \) 項我們稱為作用力 \(X \) 在位移 \(dx \) 上做的功。 (a) 式左邊括弧內一項，我們稱為質點的動能。 (a) 式就是說：一個質點的動能的微分變化等於作用力在質點的微分位移 \(dx \) 上所做的功。功和能的因次都是 \([力 \times 位移] \)。通常採用 kg-m 或 kg-cm 作為單位。

積分 (a) 式，可得

\[\frac{W}{g} \frac{x^2}{2} + C = \int_0^x X \cdot dx \]

其中積分常數 \(C \) 由個別運動的具體條件決定。設質點位移 \(x = 0 \) 時，初速為 \(\dot{x} \)。由 (b) 式可得

\[C = \frac{-Wx_0^2}{g} \]

故

\[\frac{W}{g} \frac{x^2}{2} - \frac{W}{g} \frac{x_0^2}{2} = \int_0^x X \cdot dx \]

上式右項顯然是代表第 488 圖中的 \(Obcx \) 面積，也就是作用力 \(X \) 在這一有限位移 \(x \) 上所做的全部功。作用力跟質點位移方向相同，作用力的功是正的；否則，就是負的。 (51) 式說明：質點在發生位移 \(x \) 過程中所增減的動能，乃等於作用力 \(X \) 在同位移中所做的功。
對於作用力是位移常數，並且又只要決定速度跟位移關係的一類問題，適用(51)式處理最簡便。例如一個重 W 的物體，從高 h 處自由落下，若要求出它落到地面時的速度，我們就可以這樣做：因爲作用力 $X = W$，所以它做的全部功是 Wh；物體原來在靜止狀態，初速 $x_0 = 0$，應用(51)式，立刻可得到

$$\frac{W v^2}{g} = Wh$$

所以所求的速度是

$$v = \sqrt{2gh} \quad (c)$$

即使這一物體不自由下落而為沿一光滑斜面 AB 滑下（見圖449，圖中 A 點對於 B 點的高度是 h），物體滑到 B 點的速度還是可以由(51)式決定。物體受到的作用力中，在這一情形下，只有重力在斜面方向的分力 $W \sin \alpha$ 才對物體位移做功。重力在垂直於斜面方向的分力始終被斜面反作用力抵消，故所有各力的合力就是 $X = W \sin \alpha$，作用點位移是 $h / \sin \alpha$，因此，做的功等於

$$W \sin \alpha \frac{h}{\sin \alpha} = Wh$$

應用(51)式，仍舊可得到

$$v = \sqrt{2gh} \quad (d)$$

(c) (d) 兩式結果完全相同，可見物體自斜面滑下或自由下墜，只要經過的高度相同，所達到的速度就一定相等。

例題和習題

371. 稱450b 圖中是一個彈簧器。球重 W，彈簧的彈力常數是 k。現將球向上推至距離 x 等於多少

解：令 X 代表球受到的力，可知 $X = kgx$。位移 x 以彈簧不受動時球的位置作為原點，故位移與重心的關係如附圖450b 所示。最初球受到的壓力是 $k \delta_0$，以後逐漸均勻減少，直到 $x = 0$ 時，變到等於零。所以 X 力所做的功等於 $k \delta_0 \cdot \frac{x_0^2}{2} = k \delta_0^2 / 2$。也就是等於附450b 圖中 $\angle \alpha \beta \triangle$ 的面積。應用(51)式，可得

$$\frac{W x^2}{g} \frac{2}{2} = k \delta_0^2$$

解

$$x = \delta_0 \sqrt{\frac{kW}{2}} \quad (e)$$

這跟 §70 話論彈簧 W 擁有彈力常數等於 k 的彈簧下壓，因初位移 δ_0 引起振動的話

372. 一塊木板，長度是 l，密中載有質量為 M 的重物，板的兩端各懸掛著質量為 m 的物體。設

$$\frac{W}{g} \frac{2}{2} = k \delta_0^2$$

解

$$x = \delta_0 \sqrt{\frac{kW}{2}} \quad (e)$$

這跟 §70 話論彈簧 W 擁有彈力常數等於 k 的彈簧下壓，因初位移 δ_0 引起振動的話
題中所求出的最大伸長結果相異。

372. 第 451 圖中，設：W 由高 h 作沿鋼桿 BC 自由滑下。BC 桿長 l；切面積等於 A，質量等重於 W 的小得多，所以可以不計。試求 BC 桿的伸長是等於多少？

解：設 W 自滑下 h 未滑之前，所經過的距離等於 h + δ。它使 BC 桿伸長 δ，速度又回到 h 等於零。設 W 自 h 到 h + δ 作用力等於 W。由牛頓第二定律，它使 BC 桿伸長 δ 時要受到拉力的作用，這拉力正與 WC 的伸長。拉力的長度是 h = A E / l。拉力自 0 (x = h 時) 顯著增加到等於 k δ (x = h + δ 時) 過程中，所作的功等於 k δ^2 / 2，

也就是 aab 三角形的面積。故

\[W(h + \delta) - \frac{k \delta^2}{2} = 0 \] (f)

或

\[\frac{k \delta^2}{2} - W\delta - Wh = 0 \] (g)

解出 (g) 式，得命 \(W/k = \delta_{st} \)，故

\[\delta = \delta_{st} \pm \sqrt{\delta_{st}^2 + 2h} \delta_{st} \] (h)

因所求的是最大伸長；故

\[\delta_{max} = \delta_{st} + \sqrt{\delta_{st}^2 + 2h} \delta_{st} \]

可見即使 h = 0 (即體重為 W 完全加於 BC 桿上)，BC 桿的伸長是等於 h δ_{st} (即真空滑下時)。假定物體質量越增加地作用在滑動時，緊張力的伸長 \(\delta_{max} \) 等於 0.25 cm。

373. 在一根簡單端的中間高 10 cm 種懸下一個重 2000 kg 的物體。試計算它的質量以及掉時損失。求物體下落時，緊張力的伸長 \(\delta_{max} \)。假定物體質量越增加地作用在滑動時，緊張力的伸長 \(\delta_{max} \) 等於 0.25 cm。

(解：\(\delta_{max} = 2.5 \) cm)
374. 第 452 圖是一電動機。電機箱重於 \(W = 10,900 \text{ kg} \)，甲板切面積是 \(s = 16 \text{ cm}^2 \)，電機箱速度是 \(v = 1 \text{ m/s} \)。電機箱下降，設上端與機箱突然剎車時，電機箱長度 \(l = 6 \text{ cm} \)。試求電機箱下降時的安放時的最大吸力 \(S \) 等於多少？

解：電機箱的阻力常數是

\[
\frac{k \cdot \Delta F}{l} = \frac{16 \times 1.1 \times 10^5}{69 \times 0.01} = 2933 \text{ kg/cm}
\]

電機箱的連接傳輸的靜力等於

\[
\delta_{st} = \frac{W}{k} = \frac{10000}{2933} = 3.4 \text{ cm}
\]

正削離時，電機箱的速度是 \(v = 1 \text{ m/s} \)，故它的動量等於

\[
\frac{W \cdot v^2}{2}
\]

這時電機箱已伸長 \(\delta_{st} \)，它的吸力是 \(k \delta_{st} \)。之後，電機箱下降到電機箱伸長等於 \(\delta \) 時才停止。

停止時，電機箱動力等於零。這時吸力張力是 \(k \delta \)。故剎車後，電機箱下降的位移等於 \(\delta - \delta_{st} \)。電機箱的動能變化是

\[
-\frac{W \cdot \delta_{st}^2}{2}
\]

重力做的正功等於 \(W (\delta - \delta_{st}) \)，電機箱反作用力做的負功等於第 452 圖中的 abcle 面積，所以全部功是

\[
W (\delta - \delta_{st}) - \frac{k (\delta + \delta_{st}) (\delta - \delta_{st})}{2} = 0
\]

(i) 式【動能】應該等於(ii)式【功】

\[
\frac{k}{2} (\delta^2 - \delta_{st}^2) - W (\delta - \delta_{st}) - \frac{W \cdot v^2}{2} = 0
\]

由此可得

\[
\delta = \delta_{st} + \sqrt{\frac{\delta_{st}^2}{g}}
\]

因張力跟伸張長正比，故

\[
\frac{S}{W} = \frac{\delta}{\delta_{st}} = 1 + \frac{v}{\sqrt{g \cdot \delta_{st}}}
\]

以各已知值代入(m)式，得

\[
S = 2.73W = 27330 \text{ kg}
\]

375. 假設在上題的電機箱與甲板之間裝上一根吸力常數 \(k = 500 \text{ kg/cm} \) 的彈簧。試求甲板中的最大吸力可以減小多少？

(解：\(S = 16300 \text{ kg} \))
376. 不計空氣阻力，試求從地面優出向上拋射物體到無限高處所需要的初速。

解：因物體在離地面 \(x \) 處受到的引力 \(x \) 隨距離 \(x \) 的平方成反比，故

\[
x = -\frac{W}{x^2}
\]

其中 \(r \) 代表地球的半徑。物體從地面升到 \(x \) 高，引力所做的功是

\[
\int_r^x x \frac{dx}{x^2} = -W \int_r^x \frac{1}{x} dx = -W \ln \left(\frac{x}{r} \right)
\]

(5) 式中 \(W \) 前有一負號，是因為引力方向跟位移方向相反。若 \(x \rightarrow \infty \)，引力所做的功

\[
\int_r^\infty \frac{W}{x} \frac{dx}{x^2} = -W
\]

物體離開地球的逸點速度因此是

\[
u = \sqrt{\frac{2W}{M}}
\]

377. 地球半徑 \(r = 6.37(10) \) m。不計空氣阻力，求物體逸點速度等於多少？

解：\(v = 11.18 \) m/s

378. 列車在水平直線軌道上以固定速度每小時 60 km 行。如司機懸掛氣門，使阻力增加 25%。問列車要達到每小時 70 km 速度，需要行駛的距離 \(x \) 等於多少？假定

\[
u = \frac{v}{2}
\]

解：\(x = 5.12 \) km

379. 一重 \(W \) 物塊在水平桌面上作直線運動，初速等於 \(v_0 \)。運動了距離 \(s \) 後，靜止於停止，假定

摩擦阻力跟速度無關，試求方塊與地面間的摩擦係數 \(\mu \) 等於多少？

解：\(\mu = \frac{v_0^2}{2gs} \)

380. 求第 454 圖中矩形開關光滑導軌時，速度 \(v \) 等於多少？

解：令 \(W \) 代表總重量可得

\[
\begin{align*}
\alpha &= \frac{v^2}{2s} \\
\end{align*}
\]
直線移動

\[a\left(\frac{W}{g} - \frac{v^2}{2}\right) = \frac{W}{l} \cdot a \cdot da \]

積分上式得

\[\frac{W}{g} \cdot \frac{v^2}{2} = \int_a^1 \frac{W}{l} \cdot a \cdot da \]

或

\[\frac{W \cdot v^2}{2g} = \frac{W}{2l} \cdot (l^2 - a^2) \]

故所求的速 度是

\[v = \sqrt{\frac{W}{2l} \cdot (l^2 - a^2)} \]

77. 能量不滅定理

在已有的能量方程式中，位移指質點從 \(x = 0 \) 位置運動到任何其他位置 \(x \) 的位移，功也是指作用力 \(X \) 對於這樣一個位移所做的功。我們如 果把功看作 \(X \) 力對於質點從 \(x = x_1 \) 位置運動到任何其他 \(x = x_2 \) 位置的位移所做 的功，這一能量方程式當然還可以採取更普遍的形式。若命 \(x_1 \) 和 \(x_2 \) 分別代表質點在 \(x = x_1 \) 和 \(x = x_2 \) 兩位置的速度，(51) 式顯然就可以化為這樣的形式:

\[\frac{W}{g} \frac{\dot{x}_2^2}{2} - \frac{W}{g} \frac{\dot{x}_1^2}{2} = \int_{x_1}^{x_2} X \, dx \tag{51a} \]

由第 455 圖的力跟位移的關係曲線，可以看出，(51a) 式右邊的積分正代表圖中直線線部分的面積。現在把(51a) 式改成直線下的形式:

\[\frac{W}{g} \frac{\dot{x}_2^2}{2} - \frac{W}{g} \frac{\dot{x}_1^2}{2} = \int_{x_1}^{x_2} X \, dx - \int_{x_1}^{x_1} X \, dx \tag{51b} \]

(51a) 跟(51b) 式不同處只是：(51a) 式右項表示作用力 \(X \) 在從 \(x = x_1 \) 到 \(x = x_2 \) 位移中所做的功，而(51b) 右項卻表示同一作用力 \(X \) 在自共同原點到 \(x_1 \) 和 \(x_2 \) 兩位置的兩個位移所做的功的相差。

前文已指出過，\(\int_{x_1}^{x_2} X \, dx \) 形式的積分一種指物體自零點運動到 \(x \) 位置中作用力 \(X \) 所做的功。其中 \(X \) 一定要純粹是位移 \(x \) 的函數；摩擦力 的作用方向跟運動方向有關，不能只由 \(x \) 決定，所以不可包括在內。作
用力 X 既然純粹是位移 x 的函數，則有 $\int_0^x X \, dx$ 的負值自然一定代表物體自 x 處回到原點時，作用力可以做出來的功。這種物體回到原點時作用力就能做功的情形說明：物體在 x 位置負有一種做功的能力。這能力由質點與原點的相對位置而來，所以可稱為物體對於原點的位能。例如第 456 圖中，一把重 W 的物體，它懸掛在離地面高 x 處。若切斷縐繩，讓物體落下，重力 W 就將做功。以地面作爲原點，物體做功的能力是

$$-\int_0^x X \, dx = - \int_0^x (-W \, dx) = Wx$$

同様情形，一個由一根彈簧拉住的重體 W (第 457 圖)，離開中心位置後，也會因作用力 (在這裏就是彈簧的彈力 S) 的關係，而擁有對於中心位置的位能。若不計摩擦力，物體在圖中 C 處的位能就是

$$-\int_0^x X \, dx = - \int_0^x (-kx) \, dx = \frac{kx^2}{2}$$

這位能就是重體從 C 處回到原點 O，重力可以做出來的正功的大小。命 V 代表重體位能，可得

$$V = -\int_0^x X \, dx \tag{a}$$

若再命 U 代表物體的動能，又可得

$$U = \frac{W \frac{x^2}{2}}{2} \tag{b}$$

(51b) 式因此可以寫成

$$U_1 + V_1 = U_2 + V_2 \tag{52}$$
此式所說明的也就是有名的能量不滅定理。它說明了物體由一個位置運動到其他位置，位能和動能雖然可以互相變換，但總能量始終是固定不變的。能量不滅的運動系統稱為保守系統，其中作用力必須只跟位移有關（不能包括摩擦力在內）；否則，式(52)就不能成立。能量不滅定理特別適用於處理振動問題。關於處理的方法，我們再舉幾例來說明。

例題和習題

381. 第457圖中是一個作簡單運動的物體。它的初位移等於 x_m，位移方程式是

$$x = x_m \cos \omega t$$ \hspace{1cm} (c)

試計算阻力、求運動因子 ω 的大小。

解：因不計摩擦力，故運動系統的運動，物體的總能量在任何位置都保持相同。式(52)適用於物體在運動路徑上的一切位置。我們用位移來表達兩個位置之間的關係。物體在中心位置時，彈簧張力等於零，物體具有動能；在極端位置 A 時，物體速度等於零，它的全部能量就是物體的位能。若物體的張力常數等於 k，由(d)式可知物體位移位置的位能是

$$V_{max} = \int_0^x \frac{kx^2}{2} \, dx \quad - \int_0^x (-kx) \, dx = \frac{kx^2_m}{2} \quad (d)$$

物體在中心位置的動能，根據(b)式為

$$\frac{1}{2} m \omega^2 x_m^2 = \frac{W}{2} \quad (e)$$

假設用(52)式，可得

$$\frac{W}{2} = \frac{kx_m^2}{2} \quad (f)$$

因物體在中心位置時，$\sin \omega t = 0$，速度最大。再根據(c)式，可得值唯一最大速度

$$\omega t_m = \frac{\pi}{2} \quad (g)$$

代入(f)式，得

$$\frac{1}{2} m \omega^2 x_m^2 = \frac{kx_m^2}{2} \quad (h)$$

所以振動週期是

$$f = \frac{1}{2\pi} \sqrt{\frac{k}{W}} \quad (i)$$

此式與§70 得到的結果相符。不過讀者比較一下就可看出，適用這解法所用的處理方法實際上完全不同。由底以下一些例題，我們還可以顯出，即使是複雜得多的質點系——各種點間不完全是剛性連接著的質點系——能量方程式方法還是可以應用的。

382. 第458圖中是一個切而均勻的 U 形管。所盛的液體單位體積重量等於 w_0。液柱長 l 受到振動後，發生簡正運動。試不計摩擦力，求它的振動週期。
解：這液柱是一個質點位置可以相對移動的質點系，其中一部份質點作直線運動，另外一部份沿 U 軸每部分作曲線運動。設整個液柱長成，雖然它不是剛體，不過能量守恆定律對於這個一個質點系是同樣可以成立的。設液柱所有質點經過它們各自中心位置時的共速度等於 c，那末，液柱這時候的動能——也就是它的全部能量——就是

$$U_{max} = \frac{wA l}{2} \frac{c^2}{2}$$

其中 A 指液柱的截面積，wAf 代表液柱的全部質量。因液柱

在從最高點到平點的運動過程中需要把 wAf 這個多的液柱轉低一個等於 c 的高度，所以它在最高位置對於靜力平衡位置的位能——也就是它的全部能——是

$$V_{max} = wAf$$

因為所有質點的內力全部相互抵消，不能做功，所以液柱內的力的變化可以不必顧及。因液柱的位能直接跟速率因子 p 成比例，而（q）式又可知 V = p\alpha，故有 U_{max} = V_{max}，可得

$$\frac{wAf c^2}{2} = \frac{wAf \alpha^2}{p^2}$$

也就是

$$p = \sqrt{\frac{2V}{f}}$$

放振動周期是

$$T = 2\pi \sqrt{\frac{I}{w f}}$$

可見振動週期可以單獨由液柱的長度決定，跟液體密度以及管徑粗細等無關影響。這就是說，不論液體是水紙或水，它的振動週期是相同的。

333. 與上題中 U 形管的兩臂跟液體連接成 α 項如第 450 圖。試求液柱長度等於 l 時的

振動週期。

(解：T = 2\pi \sqrt{\frac{I}{w f \cos \alpha}})

334. 第 463 圖中是一種重 W 的物體懸掛在一根鉛垂的鋼性吊棒下面。若不計吊棒的本身質量，物體受到上下方向鐘離振動的振動週期就將是

$$T = 2\pi \sqrt{\frac{I}{(1/2) w f \cos \alpha}}$$

其中 f = \Delta \ell / f 指吊棒的揚力常數。假設現在這吊棒質量的影響也要顧及，試求物體

振動週期時等於多少？

解：吊棒在靜力作用下，它各部分的向下位移應該正比於這部分離吊棒頂的距離（見第 462b

圖的三角形）。譬如物體重量 W 的靜力作用使吊棒伸長了 x_{1}，b 中dc 部份的向下位
移位將是 $\frac{c}{l} \cdot x$. 現在假設物體振動時，吊桿各部分的位移保持這樣的關係，則吊桿下端的速度等於 x 時，dc 部分的速度就是 $\frac{c}{l} \cdot x$. 因此，當 dc 部分經過物體的重心位置時，它的動能應該等於

$$ \frac{q}{g} \cdot \frac{c^2}{2} \cdot \frac{x^2}{2} $$

其中 q 為吊桿的重量，x_m 為物體的最大速度，故吊桿的全部動能等於

$$ \int_0^l \frac{q}{g} \cdot \frac{c^2}{2} \cdot x_m^2 = \frac{q}{2g} \cdot \frac{x_m^2}{2} $$

再加上物體的動能即可得到

$$ U_{m,x} = \left(\frac{W}{g} + \frac{q}{g} \right) \cdot \frac{x_m^2}{2} $$

對於全系統的位能，因為已經假定吊桿各部分的位移跟不計吊桿質量時的情況相同，所以全系統在初態數的位能和一端跟不計吊桿質量時相同，故得

$$ V_{m,x} = \int_0^{x_m} \left(-kx \right) dx = \frac{kx_m^2}{2} $$

根據 (52) 式，(5) (1) 式用式應該相等，故

$$ \left(W + \frac{q}{g} \right) \cdot \frac{x_m^2}{2} = \frac{kx_m^2}{2} $$

比較一下 (5) (1) 式，就知道，到這一步已經不必再考慮重力。 (m) 式已經很明顯地指出，物體質量對振動的影響，只要在物體重量 W 下午，把吊桿質量的三分之一去加進去就可以考慮到了。換句話說，只要把物體質量改為原来重量加上三分之一的吊桿重量，全部問題就可以按照不計吊桿質量的情形處理。所以，由 (48) 式，可得

$$ \tau = 2\pi \sqrt{\frac{W + \frac{q}{g}}{k\nu}} $$
385. 單樑橋、中樑有一個重 W 的物件。不計橋的本重及由。物體的形動週期很短，所易求到。 在依次均勑分佈的原身重量的作用下，試問橋的週期若使用平}

er 公式計算。 就應當先算本重重量 W 與分之緊加到物體重量 W 中去。 預著，可}

er 定動時後的曲率形狀及重量作用在中樑所引起之靜力變形相等。}

(解) \(\frac{17}{285} \text{Q} \)

78. 碰撞

兩物體碰撞時，其間的作用力及反作用力十分巨大，作用時間非常短暫。這種巨大的作用力和極度短促的作用時間成爲碰撞現象的最主要的特徵。

碰撞時，力的大小以及時間的長短要考兩碰撞物體的形狀、速度以及材料的彈性性質而定。第 461 圖中是一個簡單的碰撞例子。兩

er 球重量及速度分別等於 \(W_1 \) 和 \(W_2 \)。它們碰撞都事
er 先義棉好一層薄繃布，碰撞後，用顯微鏡量出脫
er 去繃布處的大小，就得到兩球的接觸面積。之後，
er 以靜力學加在這兩個球上，求出接觸面大小跟所加壓力的關係曲線。碰撞接觸面積既然
er 已經義棉，碰撞作用力的大小就可於在關係
er 曲線上算得出。 至於力的作用時間，也就是兩
er 球的接觸時間，通常用衝擊電流計測定。兩
er 個直徑共同等於 2.5 cm 的黃銅球，以每秒約 30 cm 速度碰撞，實驗中
er 算得的接觸時間約為 15 \times 10^{-3} \text{s}，萬分之一秒半而已。在這樣一瞬間兩
er 球原來的速度就全部消失。 這就證明了，爲什麼碰撞物體會發生一個

非常巨大的減速度；爲什麼碰撞作用力跟碰撞物體的本身重量比起來，
er 會顯得異常的巨大。

以上的結論還是根據碰撞物體在接觸處有局部性的形變發生而

言。 如果是這樣——微小形變都不放棄而設定物體有絕對的剛性，那結

論就會是，接觸點的作用力無限大，作用時間無限小。 研究碰撞作用

力主要是考察它在這種短的接觸時間內所發生的全部作用。這一作用

er 決定於底下的積分：

\[\int_{a}^{b} F \, dt \]
積分就是§75 所討論的力的衡量。至於作用力在極短的接觸時間內究竟如何變化，我們可以不必過問。由於碰撞力的十分巨大，頂形之下，平常的作用力自然就顯得十分微小，所以在此問題中，一般的作
用力可以略去不計。此外，又由於碰撞物體的接觸時間極短，所以物
體在這樣一瞬間所發生的位移也極為微小，我們也可以忽略不計。一
般作用力和物體在碰撞期間的位移既然都可以不計，解決一個碰撞問
題，因此，不過是建立碰撞作用力的衡量跟物體的動量變化間的關係
而已。

第462 圖中，兩球分別重 W_1 和 W_2，碰撞前，兩球共同沿中心軸線
運動，速度分別是 v_1 和 v_2。速度規定以 x 軸的正方向為正。圖中

![Image](image)

第 462 圖

所畫的情形，只 $v_1 > v_2$ 時，碰撞才能發生。這是一種最簡單的碰撞現
象，通常稱為中心碰撞。在碰撞中，接觸點的作用力和反作用力始終相
等相反，所以根據「動量不減定理」，可知這兩力不能使全系統的動量
發生任何變化。如 v_1' 和 v_2' 是兩球在碰撞中或在碰撞後任意一時刻
的速度，那就得到

$$
\frac{W_1}{\sigma} v_1 + \frac{W_2}{\sigma} v_2 = \frac{W_1}{\sigma} v_1' + \frac{W_2}{\sigma} v_2'
$$

(α)

僅僅這一個方程式還不能解決兩個未知的速度 v_1' 和 v_2'，我們還需要
研究一下兩球的彈性性質。

假定兩球完全無彈性，那末碰撞開始後，接觸點就開始變形。I 球
的速度因 II 球的反作用力而逐漸減少，II 球速度卻因 I 球的作用力
而逐漸增加。這樣，I 和 II 兩球的速度 $v_1' - v_2'$ 於是就逐漸消
失，到 $v_1' = v_2' = v$ 時，兩球就停止變形，共同以速度 v 繼續運動。兩
球既然完全沒有彈性，自然也不會有恢復原來形狀的傾向，所以 (α) 式
可化為
\[
\frac{W_1 v_1}{g} + \frac{W_2 v_2}{g} = \left(\frac{W_1}{g} + \frac{W_2}{g}\right) v
\]

也就是

\[
v = \frac{W_1 v_1 + W_2 v_2}{W_1 + W_2} \quad (53a)
\]

若假定兩球有完全的彈性（高硬度鋼球或玻璃球近似這種理想情形），
其全系統的能量在碰撞中就毫無損失。所以除開 (a) 式外，還可以應用
底下這一能量方程式:

\[
\frac{W_1}{2} \frac{v_1'^2}{g} + \frac{W_2}{2} \frac{v_2'^2}{g} = \frac{W_1}{2} \left(\frac{v_1'}{g}\right)^2 - \frac{W_2}{2} \left(\frac{v_2'}{g}\right)^2 \quad (b)
\]

事實上，全系統的能量在碰撞中有一部分要變為兩球的振動能；不過
這種能量極小，對於 (b) 式的影響不大。以上 (a) (b) 兩式可以簡化
為:

\[
W_1 (v_1 - v_1') = W_2 (v_2' - v_2) \quad (c)
\]

\[
W_1 (v^2 - (v_1')^2) = W_2 [(v_2')^2 - v_2'^2] \quad (d)
\]

解開 (c) (d) 兩式，可得

\[
v_1 + v_1' = v_2' + v_2
\]

或

\[
v_1' - v_2' = -(v_1 - v_2) \quad (54a)
\]

可見完全彈性的碰撞，兩碰撞體在碰撞前後的相對速度必然將大小相同
等方向相反。解開 (54a) 和 (c) 式，就得到兩球碰撞後的絕對速度分
別是:

\[
\begin{align*}
v_1' &= \frac{2W_2 v_2 + (W_1 - W_2) v_1}{W_1 + W_2} \\
v_2' &= \frac{2W_1 v_1 - (W_1 - W_2) v_2}{W_1 + W_2}
\end{align*}
\]

假定在完全彈性的碰撞中兩球重量相等，II 球原來靜止，I 球以
速度 \(v_1 \) 運動，那末在碰撞瞬間的前半期，碰撞現象跟完全非彈性碰撞
相同，I 球速度漸漸減少，II 球速度漸漸增加，一直到達到共同速度為
止。之後，兩球開始恢復原來形狀。復形彈力使 I 球速度繼續減
少，而使 II 球速度繼續再增加，到兩球完全恢復原來形狀，彈力不再存在時為止。在這碰撞後半期中，彈力變化與前半期情形完全相同。結果 I 球速度在碰撞後完全消減，而 II 球速度卻自零增加到 \(v_2' = v_1 \)。這結果說明了(54)式中負號的意義。

假定 II 球是一個無限大的剛球，變成了某極重物體的平面，它的原來速度 \(v_2 = 0 \)，於未碰撞後，它仍將保持靜止；根據(54)式就得到

\[
v_1' = -v_1
\]

可見 I 球將用原來的速率在 II 球上反彈回來。

實際上，當中沒有具有完全彈性的物體，全部能量在碰撞中必然有所損失。兩球的相對速率因此必然會比原來的小。命 \(e \) 代表一個小於 1 的正數，可得

\[
v_1' - v_2' = -e(v_1 - v_2)
\]

這一小於 1 的 \(e \) 值表示兩碰撞體的彈性性質，通常稱為物體的覆形係數。物體在碰撞後的速度應該根據(c)和(54')兩式共同決定。這樣，可得

\[
\begin{align*}
v_1' &= \frac{W_1 v_1(1+e) + (W_1-eW_2)v_2}{W_1+W_2} \\
v_2' &= \frac{W_1 v_1(1+e) - (eW_1-W_2)v_2}{W_1+W_2}
\end{align*}
\]

例題和習題

356. 一個人下 70kg，沿岸上以水平速度 \(v_1 = 3m/s \)，跑步跳上一艘重 100kg 的船。船原

來靜止在水中。假設人與船間是一種完全非彈性的碰撞，試求人在船上升速度差並於多大？

(解：\(v = 12.1m/s \))

357. 第 463 圖中的打橋設置，木橋重 \(W_2 \)，橋樑重 \(W_1 \)，浮於水內。假設水的阻力固

定不變，當某一次，木橋打入水中深度 \(\delta \)，求其浮力 \(R \) 等於多大？

解：打橋時，若橋不傾斜，其表示橋樑所受的是完全非彈性的碰撞。橋樑沿著橋面時，速度

\[
v_t = \frac{W_1 + W_2}{(W_1 + W_2)}
\]

碰撞後，立即降低，直到跟橋速度相同為止，這一共同速度是

\[
v = \frac{W_1 + W_2}{(W_1 + W_2)}(W_1 + W_2)
\]

此外，因水性時間極短，所以可認為木橋未達到這共同速度時，橋樑還未顯著下降。
第二章

碰撞后木最初的速度是 \(v \)。下降后，在地基抵抗其所作用下它们的速度逐渐减低，直到等于零为止。在这一段时间，等木打进土中的深度是 \(\delta \)。因此，运用能量方程式，

\[
-W_1 + W_1 \cdot \frac{W_1 h}{2g} - \frac{(W_1 + W_2)}{2} \delta = -R \delta + (W_1 + W_2) \delta
\]

(1)

通常地基的抵抗力量 \(R \) 要比 \((W_1 + W_2) \) 大得多，所以 (1) 式有第二项实际可以忽略不计。这样，就可得

\[
R = \frac{W_1 h}{(W_1 + W_2) \delta}
\]

(2)

或

\[
R \delta = W_1 h \left(\frac{W_1}{W_1 + W_2} \right)
\]

(3)

(3) 式就是说：得到的功 \(R \delta \) 要比投入的功 \(W_1 h \) 小，减小的比率是 \(\frac{W_1}{W_1 + W_2} \)。这一比率可以表示打桩的工作效率，可要提高效率，桩锤要越重越好。

388. 第 463 图中表示一个重锤 \(W_1 \) 落在另一重锤 \(W_2 \) 上。碰后完全无弹性。图中弹性的弹力系数等於 \(k \)。试求弹性的最大压缩等於多少？

解：设碰后重锤达到共同速度

\[
v = \frac{W_1 h}{W_1 + W_2}
\]

弹簧尚未因重锤 \(W_1 \) 的落下而开始压缩，

根据能量方程式可得

\[
-W_1 + W_1 \cdot \frac{W_1 h}{2g} - \int_{\delta = 0}^{\delta = \delta} k \delta dx + (W_1 + W_2) \delta
\]

或

\[
-W_1 + W_1 \cdot \frac{W_1 h}{2g} = \frac{k}{2} \delta^2 + W_1 \delta
\]

也就是

\[
\delta^2 - \frac{2W_1}{k} \delta - \frac{2W_1 h}{k(W_1 + W_2)} = 0
\]
解開方程式，就得到最大速度，是

$$
\delta = \frac{W_1}{k} + \sqrt{\left(\frac{W_1}{k}\right)^2 + \frac{2W_1h}{k(W_1+W_2)}}
$$

380. 一靜止的質球放在水平路面上，反彈後的高度等於原來高度的十分之九。如不計空氣阻力，試求這球的復形係數等於多少？

（解：\(e = 0.95\)）

330. 假設第 461 圖中，兩球重量等同。I 球從懸線與鉛垂方向成 Q = 45° 夾角的位置自由落下。撞後，II 球彈開，撞到它的懸線與鉛垂成 30° 夾角的位置為止。問兩球的復形係數等於多少？

（解：\(e = 0.95\)）
第十一章 曲線移動

79. 剛體曲線移動的運動幾何

剛體發生曲線移動時，它內中所有各質點的運動都完全相同，因此，我們可以跟剛體直線移動的情形一樣，把它當作一個全部質量集中在一點(譬如說，它的重心)的質點看待。

表明一個質點的曲線運動必須指出：(1)它的運動路線，(2)質點在這一路線上離開某一定點的距離跟時間的關係。例如第四節圖的質點，它沿着已定的曲線OABC運動，我們只要知道它離開一個任意選定的原點O的距離s跟時間的關係方程式

\[s = f(t) \] \hspace{1cm} (a)

以及運動路線的方程式，那這一質點在空間的位置就完全確定。

一個運動質點在空間的位置，自然還可以用它對於三個正交坐標軸的坐標來決定。這些坐標值隨著時間不斷變化。如果質點在任何一時刻t的三個坐標值x，y，z跟時間的關係方程式

\[x = f_1(t), \quad y = f_2(t), \quad z = f_3(t) \] \hspace{1cm} (55)

都知道，那末，這一質點的運動就完全決定。(55)式好像跟運動路線無關。事實上，只要知道這三個方程式，消去它們中間的t，我們就一定能夠得到路線的方程式。例如第466a圖的質點B，已知它在xy平面上的運動是：

\[x = r \cos \omega t, \quad y = r \sin \omega t, \quad z = 0 \] \hspace{1cm} (55a)

消去t後，立刻就得到下一一方程式：

\[x^2 + y^2 = r^2 \] \hspace{1cm} (b)

可見運動路線完全可以由(55a)式決定，它是一個以原點O作爲圓心的半徑等於r的圓周。同樣情形，一個質點在平面上的運動，假使是:
\[x = a \cos \omega t, \quad y = b \sin \omega t, \quad z = 0 \]

(55b)

那末消去 \(t \) 後，也可得到質點的運動路線

\[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \]

(c)

這就表示路線是一個長軸和短軸各等於 \(a \) 和 \(b \) 的橢圓圓周（第 465b 圖）。

[圖]

現在我們回頭看第 465 圖。若命 \(t_1 \) 及 \(t_2 \) 代表質點到達圖中 \(A \) 及 \(C \) 兩位置的時刻，\(s_1 \) 和 \(s_2 \) 代表這兩個位置離開原點的距離，那末，

\[\frac{s_2 - s_1}{t_2 - t_1} \]

(d)

就稱為質點在 \(t_1 \) 到 \(t_2 \) 一段時間內的平均速率。假使質點在任何相等
的一段時間內，而且不論這一段時間多麼短，所走過的距離總是相等的，那末它的曲線運動就稱為均勻曲線運動。這也就是說，對於質點這樣的運動，不論 \(t_2 - t_1 \) 一段時間如何選擇，(d)式總保持是一個固定值。

一般的情形下，質點並不作均勻曲線運動，命 \(A \) 及 \(B \) 兩點到原點的距
離依次是 \(s \) 及 \(s + \Delta s \)，質點到達兩點的時刻依次是 \(t \) 及 \(t + \Delta t \)，可得

\[\frac{\Delta s}{\Delta t} \]

代表質點在 \(\Delta t \) 一段時間內的平均速率。如果 \(\Delta t \to 0 \)，那末 \(\Delta s/\Delta t \) 的極限值就稱為質點在 \(A \) 點的角速度。

至於質點的速度，那顯然還包括運動的方向。一個大小等於平均速率，方向跟 \(AB \) 弦方向相同的向量就稱為質點在 \(\Delta t \) 一段時間內的平均速度。如果 \(\Delta t \to 0 \)，那末平均速度的極限向量就稱為質點在 \(t \) 時刻的點速度，它的大小是

\[v = \lim_{\Delta t \to 0} \frac{\Delta s}{\Delta t} = \frac{ds}{dt} \]

(e)
方向跟路線在 A 點的切線方向相同。可見以上說的「速率」並非代表「速度」的大小而已。

速度是一種向量。計算時，我們可以把它分解成三個正交坐標軸 x, y, z 方向的分量。例如平均速度，它大小等於 $\Delta s/\Delta t$，方向跟 AB 絲相同。要求它 x 軸分量，只要把它的大小乘上 AB 絲跟 x 軸間夾角的餘弦就行。這餘弦當然等於 $\Delta x/\Delta s$，所以分量的大小，就是

$$
\frac{\Delta s}{\Delta t} \cdot \frac{\Delta x}{\Delta s} = \frac{\Delta x}{\Delta t}
$$

（f）

質點本身沿曲線運動，它在 x 軸上的投影同時也沿 x 軸運動。可見 (f) 式所表示的分量也就是質點投影在 x 軸上的平均速度。如果 $\Delta t \to 0$，我們就可得質點點速度在各軸線方向的分量，它們是:

$\mathbf{v} \cos (\nu, x) = \lim_{\Delta t \to 0} \frac{\Delta x}{\Delta t} = \frac{dx}{dt} = \dot{x}$

$\mathbf{v} \cos (\nu, y) = \lim_{\Delta t \to 0} \frac{\Delta y}{\Delta t} = \frac{dy}{dt} = \dot{y}$

$\mathbf{v} \cos (\nu, z) = \lim_{\Delta t \to 0} \frac{\Delta z}{\Delta t} = \frac{dz}{dt} = \dot{z}$

（56）

其中$(\nu, x), (\nu, y)$ 和 (ν, z) 分別代表速度本身跟 x, y 和 z 三軸線間的交角。由 (56) 式，同様可以看出，質點速度在各軸線方向的分量就等於質點投影在各軸的點速度（以下簡稱速度）。

若已知質點速度在各軸線的分量，應用下式就可算出原來速度 v 的大小和它的方向餘弦:

$$
\begin{align*}
\mathbf{v} &= \sqrt{\dot{x}^2 + \dot{y}^2 + \dot{z}^2} \\
\cos (\nu, x) &= \dot{x}/v \\
\cos (\nu, y) &= \dot{y}/v \\
\cos (\nu, z) &= \dot{z}/v
\end{align*}
$$

（g）

由以上討論各點，可見一質點的曲線運動，如果 (55) 式已經知道，那未質點在任何時刻的速度也都能計算出來。
質點沿曲線路徑運動。它速度的大小和方向隨時改變。例如，第465圖中A,B是質點沿曲線運動時的兩相鄰位置，質點在A及B點的時刻是t及t+Δt，它在A,B兩點的速度是v₁和v₂。我們在第467圖中分別用分離向量OA₁,和OB₁代表v₁和v₂。由圖中可看到，OB₁是OA₁與A₁B₁的幾何和；換句話說，要得到速度v₂，必須在原來速度v₁上加一個A₁B₁代表的速度變化Δv。這一速度變化Δv對於時間的變化率就是質點在Δt一段時間內的平均加速度的大小。加速度方向就是A₁B₁的方向（決不是第465圖中AB的方向）。若Δt→0，這一平均加速度的極限向量就稱為質點在t時刻的點加速度，它的大小等於

$$a = \lim_{\Delta t \to 0} \left| \frac{\Delta v}{\Delta t} \right| = \frac{dv}{dt}$$

（9）

設想自一固定點O引一變化的速度向量v（第467圖）。這向量繞O點旋轉。它的大小和方向代表第465圖中質點在曲線路線上所有各位置的速度。第465圖中，質點沿路線運動時，第467圖中速度向量v的終點也隨之畫出一條對應的曲線如圖中的A₁B₂。這曲線通常稱為質點運動的路線。A₁B₂是速度線上相鄰兩點，質點在這兩點的時刻先後是t及t+Δt。速度v終點在Δt一段時間內描繪速度線的平均速度，大小等於Δv/Δt，方向跟A₁B₂方向相同。它就是質點在Δt時間內的平均加速度（平均加速度定義見前面）。若Δt→0，那末，第467圖中速度v終點在t時刻描繪速度線的點速度就代表質點在t時刻的點加速度（以下稱稱加速度）。因v的終點的坐標值是x,y和z，所以它描繪速度線的速度在各軸上的投影應該就等於質點在相應各軸上的分加速度：

...
\[
\begin{align*}
\alpha \cos (a, x) &= \frac{d}{dt}(x) = \ddot{x} \\
\alpha \cos (a, y) &= \frac{d}{dt}(y) = \ddot{y} \\
\alpha \cos (a, z) &= \frac{d}{dt}(z) = \ddot{z}
\end{align*}
\] (57)

可见质点本身的加速度在各轴的分量等于质点的投影在同轴的加速度。已知质点的分加速度后，加速度本身的大小和方向可由以下各式决定：

\[
\begin{align*}
a &= \sqrt{\dot{x}^2 + \dot{y}^2 + \dot{z}^2} \\
\cos(a, x) &= \ddot{x} / a \\
\cos(a, y) &= \ddot{y} / a \\
\cos(a, z) &= \ddot{z} / a
\end{align*}
\] (i)

根据(i)式，可见一个质点的运动只要位置方程式(55)式已经知道，质点在任何时刻的速度及加速度就都算得出来。计算手续很简单，只要把(55)式对时间微分一次及二次，就可得到所求的(56)(57)式。

例如第 468a 图中所表示的质点运动，(55a)是质点的位置方程式，对时间微分它一次，就得到各分速度如下：

\[
\dot{x} = -r \omega \sin \omega t, \quad \dot{y} = r \omega \cos \omega t, \quad \dot{z} = 0
\] (56a)

所以速度本身等于

\[
v = \sqrt{\dot{x}^2 + \dot{y}^2 + \dot{z}^2} = r \omega
\]

可见这一质点是沿圆周作均匀运动。之后，对时间微分(56a)式，又可得质点各分加速度如下：

\[
\ddot{x} = -r \omega^2 \cos \omega t, \quad \ddot{y} = -r \omega^2 \sin \omega t, \quad \ddot{z} = 0
\] (57a)

所以加速度本身等于

\[
a = \sqrt{\ddot{x}^2 + \ddot{y}^2 + \ddot{z}^2} = r \omega^2
\]

可见这一质点的加速度的大小始终固定不变。此外，由(i)式的余弦值还可以看出，它的方向始终是指向圆心。
80. 法線加速度和切線加速度

有些問題適用於把質點的加速度分解為路徑的法線和切線方向的分量。這兩個分量通常依次稱為法線加速度和切線加速度。例如第468a圖中，質點在相鄰A、B兩位置的速度分別為\(\mathbf{v}_1\)和\(\mathbf{v}_2\)，相應的時

則是\(t\)及\(t+\Delta t\)。\(\overrightarrow{A_1B_1}\)表示質點在\(\Delta t\)一段時間內的速度變化（第468b圖），把\(\overrightarrow{A_1B_1}\)分解為\(\mathbf{v}_1\)的平行和垂直方向，得到平均加速度的兩個分加速度\(\overrightarrow{C_1B_1}/\Delta t\)和\(\overrightarrow{A_1C_1}/\Delta t\)。現在令\(\Delta t \to 0\)來求兩分加速度的極限向量。命路徑在A點的曲率半徑等於\(\rho\)，因質點在微分時間\(dt\)內所通過的\(AB\)弧長等於\(vdt\)，所以\(AB\)弧所對的圓心角\(\Delta \theta\)近似於\(vdt/\rho\)。在極限情形下，\(\overrightarrow{OB_1}\)與\(\overrightarrow{OA_1}\)方向一致，\(\overrightarrow{C_1}\)與\(\overrightarrow{OA_1}\)方向一致，同時\(\overrightarrow{A_1C_1}\)又垂直於\(\overrightarrow{OB_1}\)。由第468圖的\(\overrightarrow{AC_1}\)方向可以看出，\(\overrightarrow{A_1C_1}\)方向

分加速度變化的極限值等於\(v\dot{\theta} = v^2 dt / \rho\)，若兩邊同除以\(dt\)，就得到質點在\(t\)時刻的切線加速度和法線加速度，它們的大小依次是

\[
a_t = \frac{d\mathbf{v}}{dt}, \quad a_n = \frac{v^2}{\rho}
\]

(58)

可見質點的切線加速度\(a_t\)純然表示質點速率的變化率，法線加速度的大小只與質點的速率和路徑的曲率半徑有關，方向永遠指向著曲率中心。如果已知這兩個分加速度，那末質點的加速度本身就可由下式決定:

\[
a = \sqrt{\left(\frac{d\mathbf{v}}{dt}\right)^2 + \left(\frac{v^2}{\rho}\right)^2}
\]

\[
\cos (s, \alpha) = \frac{v}{a}
\]

\[
\cos (n, \alpha) = \frac{v^2}{\rho a}
\]

(a)
其中 \(s \) 表示路线切线上质点的运动方向，\(n \) 表示指向曲率中心的法线方向。

以上决定切线、法线加速度的(58)式，同样也适用于质点在空间的一般运动。在质点空间运动的其中，第 468 图的 \(xy \) 平面可以看做路线在 \(A \) 点的切面，且且在 \(B \) 点切线平行。加速度本身就在切面中，因此(58)式是可以成立的。不过，在这种情形下，其中的 \(n \) 代表路线的主法线方向，\(\rho \) 代表主曲率半径。

特殊情形，质点作均匀曲线运动时，质点加速度的大小永远等于 \(\frac{n^2}{\rho} \) 方向永远正指向曲率中心。

例题和习题

301. 一质点 \(P \) 沿一圆周运动 \(2 \) 的圆周运动 (第 467 题)。设质点在 \(t \) 時刻偏离圆周上某一定点 \(A \) 的距离是 \(s = c t \)。求质点在 \(B \) 点时的速率与加速度的大小和方向。

解：

(1) 微分上式，得速率

\[
\frac{ds}{dt} = \frac{d}{dt}(c t^2) - 2ct \]

(2) 若质点在 \(B \) 点时，由(1)式可知

\[
\frac{\pi r}{2} = ct^2 \]

故 \(t = \sqrt{\frac{2r}{\pi c}} \)，代入(2)式得

\[
\nu_B = \sqrt{2\pi c} \]

在圆周上可看到，

\[
x = r \cos \left(\frac{t}{r} \right), \quad y = r \sin \left(\frac{t}{r} \right) \quad (d)
\]

以(1)式代入(4)式，得

\[
x = r \cos \left(\frac{c t^2}{r} \right), \quad y = r \sin \left(\frac{c t^2}{r} \right) \quad (e)
\]

（2）用微分(2)式，又得

\[
x = 2ct \sin \left(\frac{c t^2}{r} \right), \quad y = 2ct \cos \left(\frac{c t^2}{r} \right) \quad (f)
\]

两分速度值的平方和即等于速度本身的平方，故得 \(\nu^2 = 2ct^2 \)，结果跟(3)式相同。要确定质点在任意一时刻的切线和法线加速度，可应用(58)式，结果是：
曲線運動

\[\alpha = \frac{d\theta}{dt} = 2\pi, \quad \alpha = \frac{v^2}{\rho} = \frac{4\pi^2}{T^2} \quad (i) \]

92. 第470圖中是一個單摆。鐵球掛在平衡位置一靜小位移 \(\theta_0 \) 後，開始自由擺動。運動路程是一根半徑等於 \(R \) 的圓弧。設圓弧在任意一時刻 \(t \) 離開其平衡位置（也就是最低位置）的距離是

\[x = x_0 \cos (\pi t) \]

其中 \(p = \sqrt{g/R} \) 是一個固定常數。試求圓周 \(r \)，角速度 \(\omega \) 最大速度 \(v_{\text{max}} \) 和最大角加速度 \(\alpha_{\text{max}} \) 各等於多少。

解：

\[\omega = \frac{2\pi}{p}, \quad v_{\text{max}} = \omega p, \quad (\alpha_{\text{max}}) = \frac{p^2}{l} \]

93. 第471圖表示的是單動機械傳動裝置。設 A 點以固定速率 \(v \) 沿軸线等於 \(x \) 的圓周運動，而被限制於 \(x \) 軸上的 B 點將如何運動？

解：自 A 點在 \(A_0 \) 位置時計算時間。令 \(\omega \) 代表 A 點單位時間內所劃過的圓心角，可得

\[\omega = \frac{v}{T}, \quad \angle AOA_0 = \omega t \]

故 A 點在 \(t \) 時刻的坐標值是：

\[x = r \cos \omega t, \quad y = r \sin \omega t \quad (h) \]

因 B 點作直線運動，其中 \(y \) 等於零，坐標 \(x \) 等於 \(OA \) 同 \(AB \) 的投影和，所以

\[x = r \cos \omega t + l \cos \phi \quad (i) \]

但是

\[r \sin \omega t = l \sin \phi \]

和

\[\cos \phi = \frac{1 - \sin^2 \omega t}{l^2} = \frac{1 - \frac{r^2}{L^2} \sin^2 \omega t}{l^2} \]

所以代入(i)式後，可得

\[x = r \cos \omega t + l \sqrt{1 - \frac{r^2}{L^2} \sin^2 \omega t} \quad (j) \]

這裏，值得注意的是：D 點只作純點運動，而 B 點的運動卻像上式\(\text{類似} \) 的軌跡。
設 C 是 AB 駆動上任意的一點。它同 A 點的距離是 b，坐標值之足是:

$$
\begin{align*}
 \frac{x}{r} = \frac{r-b}{r} \cos \omega t \\
 \frac{y}{r} = \frac{r-b}{r} \sin \omega t
\end{align*}
$$

\[(k) \]

特殊情形，$r=1$ 時，(k) 式變為

$$
\begin{align*}
 x = (r+b) \cos \omega t \\
 y = (r-b) \sin \omega t
\end{align*}
$$

\[(k') \]

消去 (k') 式中 r，就得到 C 點的路徑方程式

$$
\frac{x^2}{(r+b)^2} + \frac{y^2}{(r-b)^2} = 1
$$

\[(l) \]

這是一個橢圓，等於 $r+b$，短軸等於 $r-b$ 的橢圓，所以第 471 圖所描繪可以用来設計運輸機的橢圓軌道。

394. 第 472 圖中，AB 駆動端在沿 x 和 y 幅運動。 作比 $2l$。試證明 AB 中點 C 的運動路徑是一個以原點 O 作為圓心，半徑等於 l 的圓周。假設 AB 上另一點 D，離開 C 點的距離是 b，試證明 D 點的運動路徑就是 (l) 式所表示的橢圓，其中 $r=b$。

395. 詢一質點沿第 473 圖中 $ABCD$ 路徑均勻運動。 質點在 t_0, t_1, t_2 和 t_3 時刻分別到達 A, B, C 和 D 各點。 由試畫出此質點運動的加速度及時間的圖形。

解：質點加速度與時間的關係圖見第 473 圖。 由圖上可看出，質點在 B 和 C 兩點，加速度有突變的變化。 爲避免這種突變變化起見，可在切線和圓弧 BC 間間入一段切線，使路徑的曲率在逐漸由曲線部份的 ∞ 變到曲線部份的 ∞。 旋轉路徑一般都採用這方法改陸。

![圖 472](image)

![圖 473](image)

396. 一機車於 $t = 0$ 時開動，以等加速率沿一鉛直於 $600 m$ 的電流前行，六十秒後速度達到每小時 $25 km$。 試求在 $t = 30 s$ 時，機車的切線和法線加速度各等於多大？

(解: $a_t = 0.116 m/s^2$，$a_n = 0.02 m/s^2$)

397. 一質點沿螺旋線等速下降如第 474 圖。 它的速度由圖中 v 表示。 螺旋線半徑等於 r，螺旋線的水平傾斜角是 θ。 試求這一質點的加速度。
解：因質點做圓周運動等速下降，$\frac{\text{d}v}{\text{d}t} = 0$，所以質點沒有切線加速度。因而，法線加速度就是質點的全部加速度，

$$a_n = \frac{\text{r}^2}{\rho} = \frac{v^2}{r} \cos^2 \alpha$$

式中 $r \cos^2 \alpha$ 是曲線上任意一點的曲率半徑。

另一求加速度的方法是畫質點運動的軌跡圖（第474 圖）。因速度 v 沿水平方向與曲線 α 夹角，而且

ν_v 的速度垂直，所以速度模必定是一個平行於 $\nu \cos \alpha$ 的水平直線。速度 v 的終點隨著速度軌

一周期所需的時間是

$$\tau = 2\pi \frac{r}{v \cos \alpha}$$

故 v 終點偏離速度軌的偏離等於

$$a = 2\pi \frac{v \cos \alpha}{\tau} = \frac{v^2}{r} \cos^2 \alpha$$

這就是所求的質點加速度。可見加速度大小始終固定不變，方向，按第 474 圖，是在

水平平面上指向鏡組法的中心軸。

398. 地球的半徑是 6370km，試求地球表面正緯 40° 處，任一質點因地球自轉而生的加速度。

（解： $a = 0.0362$ m/s²，在垂直通過地軸方向）

900. 試求第 591 題中，質點速度軌的極坐標方程式，並畫出相應的極坐標曲線。

400. 第 470 圖中，單值的位置也可以由極線曲線曲線所成的交角決定。設點速度任一位

置的速度值是

$$v^2 = 2gy (\cos \theta - \cos \theta_0)$$

試求它速度軌的極坐標方程式；當假定 $\theta_0 = 30°$，把速度軌的極坐標曲線畫出來。

81. 質點的曲線運動方程式

牛頓第二定律是導出質點運動的普遍方程式 (32) 式的根據。它說

明：一個質點在力 F 的作用下會產生一個加速度 a，方向跟力的方向
相同，大小跟力的大小成正比。這一定律對於質點受力作用前的運動
狀況沒有任何限制。假設質點原來的運動跟作用線固定的力同在一
直線上，那出現的就是 §67 所討論的「直線運動」。假設力的作用
線並不固定或者質點原來運動方向跟力的方向並不一致，那發生的就
是「曲線運動」。 (32) 式雖然也適用於曲線運動，但是因爲力的大小、
方向兩樣東西都隨時變化，所以最好分解質點的作用力 F 和加速度 a
於三正交坐標軸方向。命 \(X, Y, Z \) 和 \(x, y, z \) 分別代表質點在三軸線 \(x, y, z \) 方向的分力和分加速度，因各分力所產生的質點加速度，大小跟分力大小成正比，方向跟分力方向相同，所以質點的運動方程式可以分寫成底下三式:

\[
\begin{align*}
\frac{W}{g} \ddot{x} &= X \\
\frac{W}{g} \ddot{y} &= Y \\
\frac{W}{g} \ddot{z} &= Z
\end{align*}
\] (59)

(59)式跟(36)式用途相同，也可以用來解決這樣兩類問題：(1)已知質點運動情形——也就是已知(55)式——求產生這一運動的力；(2)已知質點受到的力，求質點運動情形——也就是求微分方程式(59)的解。

第二類問題需要積分，所以有時很難解決，不像第一類問題簡單只要應用微分計算就可以。現在先討論幾個簡單的第一類問題如下：

例題和習題

401. 一個重 \(W \) 的質點，由一樞轉 \(l \) 的樞連接在一個固定的 \(O \) 點。設這一質點在水平面上繞 \(O \) 點以固定速率 \(v \) 進旋（第 475 圖），試求樞中張力的 \(S \) 等於多少？

解：因質點等速進旋，所以它具有指向中心 \(O \) 的法線加速度:

\[
a_n = \frac{v^2}{l}
\]

根據(32)式，可得

\[
S = \frac{Wv^2}{gl}
\]

可見張力的大小與進旋速率的平方成正比，而跟樞長 \(l \) 成反比。

402. 機車重 60 噸，以固定速率每小時 72km 沿一半徑 \(r = 400m \) 的圓道前行。試求外軸所受張力等於多少？

(解：6125kg，向外)

403. 搬一質點 \(W \) 由一樞加速度 \(g \sin \alpha \)，沿第 474 圖中一半徑等於 \(r \) 的球體柱的樞旋轉。試求使螺旋柱繞中心軸旋轉的力矩 \(M \) 等於多大？

(解：\(M = \frac{Wr}{2} \sin 2\alpha \))
404. 一重 W 物體放在第 478 圖中轉台上。物體到旋轉軸線的距離等於 r_0。接觸面摩擦係數等於 μ。試求物體在轉台旋轉而引起的滑動運動的最大固定速度 v_{max} 等於多大？

(解: $v_{\text{max}} = \sqrt{\mu g}$)

第 475 圖

第 476 圖

435. 第 477 圖中是一個振幅很小的單擺，位置方程式是

$$s = s_0 \cos \omega t$$

試求經歷中最大張力 S 等於多大？

解：定義樣本方向以及垂直方向旋轉軸 y 和 x 的方向。相應作用力的合力在軸 y 方向的分力是

$$Y = S - W \cos \left(\frac{s}{l} \right)$$

相應的加速度是

$$j = a_y = \frac{v^2}{r} = \frac{s_0^2 p^2 \sin pt}{l}$$

(1)

把(1)(2)代入(59)第二式中，得

$$S = W \left[\frac{s_0^2 p^2 \sin^2 pt}{l^2} + \cos \left(\frac{s_0 \cos pt}{l} \right) \right]$$

(2)

球體懸掛中最大張力在晃動經過靜止位置時 ($p t = \frac{\pi}{2}$ 時) 發生，所以 $p^2 = g/l$ 就可得

$$S_{\text{max}} = W \left(1 + \frac{s_0^2}{l^2} \right)$$

(3)

403. 第 478 圖中 ACB 是一根鉛直平面中的餘弦曲線。它的方程式如下：

第 477 圖

第 478 圖
$$y = \delta \cos (2x / 11)$$

一個重力 W 的質量，沿一軸線以固定速度運動，質點質點經過最低點 C 時，它加於運動線段的壓力 R 等於多少？

解：由受力公式

$$\frac{1}{R} = \frac{d^2 y}{dx^2} \left[1 + \left(\frac{dy}{dx} \right)^2 \right]^{\frac{3}{2}}$$

求出弧徑在 C 點的曲率，就可求得

$$R = W \left(1 + \frac{4\pi^2 \delta}{g \sqrt{5} v^2} \right)$$

407. 一質量等於 W 的汽車，以固定速率 v 沿拋物線路徑 ABC 行駛。試求汽車經過最高點 C 時，它對軸心加於路面的壓力 R 等於多少？（略 479 圖）

解：$R = W \left(1 - \frac{8\delta}{g \sqrt{5} v^2} \right)$

第 479 圖

82. 拋射體的運動

現在我們開始研究「已知作用力求質點曲線運動」的第二類問題。其中最簡單的情形是作用力的大小和方向都固定不變：質點的運動路線之所以會是曲線，純粹因為質點原來有一個方向跟力的方向不同的初速存在。

例如第 480 圖中的拋射體，它的初速是跟水平線成 α 角的 v_0。在圖中兩坐標軸 x 和 y 上的投影是 x_0 和 y_0。假定空氣阻力可以不計，並且拋射體上除開重力 W 外沒有其他外力作用，由 (50) 式就可得：

$$\frac{W}{g} x = 0, \quad \frac{W}{g} y = -W$$

第 480 圖
或
\[\ddot{x} = 0, \quad \ddot{y} = -g \] (a)

積分一次後得
\[\dot{x} = C_1, \quad \dot{y} = -gt + C_2 \] (b)

如果 \(t = 0 \) 時，\(x = x_0 \) 和 \(\dot{y} = \dot{y}_0 \)，則未上式中
\[C_1 = x_0, \quad C_2 = \dot{y}_0 \]

(b) 式就變為
\[\dot{x} = \dot{x}_0, \quad \dot{y} = -gt + \dot{y}_0 \] (c)

(c) 式是拋射體的速度方程式。它說明，我們若在高空俯視這一運動
那拋射體就像一個用固定水平速度 \(\dot{x}_0 \) 運動的質點。若從拋射平面中遠
處來觀察，拋射體就像一個以初速 \(\dot{y}_0 \) 向正上方拋出的質點。

積分式(a)兩次，得：
\[x = \dot{x}_0 t + D_1, \quad y = -\frac{1}{2} gt^2 + \dot{y}_0 t + D_2 \] (d)

若 \(t = 0 \) 時，\(x = y = 0 \)，兩積分常數就將是
\[D_1 = 0, \quad D_2 = 0 \]

(d) 式變成
\[x = \dot{x}_0 t, \quad y = -\frac{1}{2} gt^2 + \dot{y}_0 t \] (e)

這就是拋射體的位置方程式，應用這式我們可以算出拋射體在任何時
刻的位置，所以它的運動已經完全決定。

消去(e)中兩式的 \(t \) 可得路線方程式：
\[y = -\frac{g}{2 \dot{x}_0^2} x^2 + \frac{\dot{y}_0}{\dot{x}_0} x \] (f)

這是一根拋垂的拋物線。最高點 A 的 \(x \) 軸坐標，因路線在這一點的
切線是水平方向，可以由 \(dy/dx = 0 \) 這一條件來定。這樣，便得到
\[\frac{dy}{dx} = -\frac{g}{\dot{x}_0} x + \frac{\dot{y}_0}{\dot{x}_0} = 0 \]

因此，
\[x_1 = \frac{\dot{x}_0 \dot{y}_0}{g} \] (g)

把此值代入(f)式又可得最高點的 \(y \) 軸坐標
這一坐標值稱為射高。由 (c) 式也求得到 \(x_1 \) 和 \(y_1 \)，因拋射體在最高點時，它在鉛垂方向的速度 \(y \) 等於零，所以把 \(y = 0 \) 代入 (c) 式，得到

\[-gt + \dot{y} = 0 \]

或

\[t = \frac{\dot{y}}{g} \]

把 \(t \) 代入 (c) 式就可得最高點坐標值 \(x_1 \) 和 \(y_1 \)，結果跟 (g)(h) 兩式完全相同。若要求運動路線跟 \(x \) 軸的交點，只要把 \(x_1 \) 加一個倍就得到交點到原點 \(O \) 的距離，是

\[r = 2x_1 = 2 \frac{x_1 \dot{y}_0}{g} \] (i)

這一距離通常稱為射程。如果把 \(x_0 = v_0 \cos \alpha \) 和 \(\dot{y}_0 = v_0 \sin \alpha \) 代入 (i) 式，則末，

\[r = 2v_0^2 \sin \alpha \cos \alpha = \frac{v_0^2 \sin 2 \alpha}{g} \] (i')

可見對於固定大小的初速 \(v_0 \)，射程在 \(\alpha = 45^\circ \) 時最遠，它等於

\[r = \frac{v_0^2}{g} \] (i'')

以上的討論完全不曾考慮空氣阻力對拋射運動的影響。事實上，在一般的拋射速度下，物體所受到的空氣阻力絕不算小，所以實際問題中決不能不加考慮。不過加入空氣阻力後，問題就十分複雜，討論起來會超出本書所允許的範圍。在以下的例題中我們仍假定空氣阻力可以不計。(1)

題例和習題

408. 一塊木靶在射程等於 \(r \) 時，射高等於 \(h \)。試證明它用同樣的初速發射，炮彈可達到的最遠射程是

\[r_{\text{max}} = 2h + \frac{r^2}{8h} \]

(1) 雖然計算有空氣阻力的拋射運動，讀者可參閱 H. Lamb 者的 Dynamics 一書。
解：令 α 和 ϕ 分别代表射程和 r 时的未知的射角和射速的初值，由式(1)、式(2)可知

\[
\begin{align*}
 h &= \frac{v_0^2 \sin^2 \alpha}{2g} \\
 r &= \frac{v_0^2 \sin 2\alpha}{g}
\end{align*}
\] \((1) \)

（2）式已指出：$r_{max} = \frac{v_0^2}{g}$，故有

\[
\begin{align*}
 h &= \frac{r_{max} \sin^2 \alpha}{2} \\
 r &= r_{max} \sin 2\alpha
\end{align*}
\] \((2) \)

（3）中第一式可以写成

\[h = \frac{r_{max}}{4} (1 - \cos 2\alpha) \]

故

\[\cos 2\alpha = 1 - \frac{4h}{r_{max}} \] \((3) \)

（4）中第二式是

\[\sin 2\alpha = \frac{r}{r_{max}} \]

解得

\[r_{max} = 2h + \frac{r^2}{8h} \]

409. 某发射物增加 10%，同拋射體的最大射程增加多少？

(解：21%)

410. 有一發射器，最大射程為 2000m。若發射初速不變，同拋射體於 1500m 時，發射角 α 等於多少？

(解：$\alpha = 24^\circ 18'$ 或 $66^\circ 42'$)

411. 一架飛機以固定速度 v_0 在高 h 的水平面而飛行。該飛機槍徑發射到它正上方某點時射射，問最小的發射初速 v_0 及射角 α 要等於多大才能夠擊中飛機？(第 481 頁)。

解：擊中的條件：第一，應該

\[v_0 \cos \alpha = v \] \((1) \)

這就是說，必須

\[\alpha = \arccos \left(\frac{v}{v_0} \right) \]
第二，必須積聚能達飛行高度 \(h \) 所以必須
\[
\sqrt{\frac{v_0^2}{\sin \alpha}} = \sqrt{2gh}
\]

由 (1) (m) 式消去 \(\alpha \) 就可得
\[
v_0 = \sqrt{\frac{2gh}{\sin \alpha}}
\]

412. 依上作法，微機要發動時，向達機槍彈倉，問飛機炮擊距離 \(A \) 點的水平距離 \(x \) 應
等於多少，炸彈才能命中 (第 481 圖)？

(解：\(x = u \sqrt{2h/g} \))

83. 曲線運動中的慣性力——慣性力原理

質點的曲線運動方程式 (59) 也可以寫成底下的形式:

\[
\begin{align*}
X - m\ddot{x} &= 0 \\
Y - m\ddot{y} &= 0 \\
Z - m\ddot{z} &= 0
\end{align*}
\]

其中 \(m = W/g \) 代表質點的質量。這些方程式的形式跟靜力平衡方程式 (21) 完全相同，所以可以看作動力平衡方程式。列立一個運動質點
的動力平衡方程式，手續很簡單，只要在質點的實際作用力之外，把慣性力加入進去，讓所有外力共同組成一個平衡力系就算。慣性力在 \(x, y, z \) 三坐標軸上的投影是:

\[-m\ddot{x}, \quad -m\ddot{y}, \quad -m\ddot{z}\]

全部慣性力的合力跟質點上全部外力的合力共同構成平衡，因此，可以
當作質點是處於平衡狀態。

剛體發生曲線移動時，它上面所有各質點都作同樣的運動，因之，
各點的加速度也都完全相同。假使把所有各質點的慣性力合成為一個
合力，那這一合力也應該跟剛體上所有外力的合力共同構成平衡，所以
我們仍然會得到一個平衡的力系；剛體內各質點間的內力全部消去對
抵消，是用不到考慮的。

底下我們舉些例子來說明慣性力原理在剛體曲線移動中的應用。

例題和習題

413. 第 482 圖中的傳動機構，\(O_1A = O_2B = r = 40\text{cm} \)。\(O_1A \) 和 \(O_2B \) 的轉數是每分鐘 240 轉。
試求 \(AB \) 的最大彎曲力矩等於多大？
解：因 O₁A 和 O₂B 等速轉動，所以 AB 上所有各質點都是以相同的圍的速度 r 各自沿半徑
到 centre 的圓周運動，因而，它們的加速度都在各自
的向心方向，大小等於 \(\frac{v^2}{r} \)。這也就是說，各質點
的慣性力在任何時刻都不平行於 O₁A 和 O₂B。假
定 q 代表 AB 單位長度的重量，可得 AB 的單位長度
上分佈著的慣性力等於

\[
\frac{q}{g} \frac{v^2}{r}
\]

AB 的最大慣性力出現在 AB 中的中點切面。 當 AB 運動到圖中 A'B' 位置時，慣性力
跟 AB 的電力在同方向，拉時得最大。根據動力學公式，可得 AB 中最切角
的力矩力矩

\[
M_{max} = \left(q + \frac{q}{g} \frac{v^2}{r} \right) \frac{r}{8} = \frac{qR}{8} \left(1 + \frac{v^2}{gr} \right)
\]

其中 R 代表 AB 的長度。已知各已知數值 \(r = 40 \text{ cm}, v = 40 \cdot 240 \cdot 2\pi / 60 = 320 \text{π} \) 代入
(a) 式中，可得

\[
M_{max} = \frac{qR}{8} \left(1 + 25.8 \right) = \frac{qR}{8} 25.8
\]

可見這一最大慣性力，數 AB 靜止停本身重量所引起之慣性力約大 27 倍。而且
由(b)式還可看到，最大慣性力矩受重力的平均載荷，所以在高速運輸運輸中，
慣性力矩不可忽視。

414。試求圖 453b 中矩形截面 0 徑中心軸截面的鋼管內的等值 S 等於多大？設鋼管
中徑是 \(r_0 \) 單位長度重量等於 \(q_0 \)。

解：鋼管內均勻分佈的慣性力是

\[
\frac{q}{g} \frac{v^2}{r}
\]

慣性力的作用方向是圖中所表示的切線方向。力決定後，可求得一半圓周的動力平衡
（第四節 1 部）。

根據第 451 條所得結果，鋼管的力矩力矩

\[
S = \frac{q}{g} \frac{v^2}{r} = \frac{qR}{g}
\]

若鋼管的切面面積等於 A，單位長度的重量是 \(w = q / A \)，那鋼管的內壓力就是

\[
S = \frac{q}{A} = \frac{q}{A} \frac{v^2}{v} = \frac{qR}{g}
\]

415。第 483 所的一個鋼管截面，平均半徑 \(r = 50 \text{ cm} \) ，單位截面重量 \(w = 0.0073 \text{ kg/cm}^2 \)，最
大的等值力度是 420 \text{ kN/cm}^2 。試求使鋼管所承受的等值力度等於多大？

（解：每分鐘約 4400 轉）

415。第 484a 畫中，小球 A 置 W，沿水平管以等速 v 沿水平面，平移往復運動。 畫中標記是 1 公
量可以不計。試求小球的速率以及沿等值力度 S 等於多大？
解：A 球的惯性力是 $\frac{W}{g} \frac{v^2}{r}$，方向如图。这一惯性力应该跟实际作用的重力 W 和阻力 S 构成平衡，故可得第 484b 图的封闭的力三角形。

$$\frac{\tau}{\sqrt{1 - r^2}} = \frac{g^2}{gr}$$

也就得

$$\nu = \sqrt{\frac{g}{(1 - r^2)^2}}$$

由第 481b 图又可看到

$$S = W \sqrt{1 + \frac{v^2}{g^2 r^2}}$$

由式 (e) 代入上式，得

$$S = W \sqrt{1 - \left(\frac{1}{r^2}\right)^2}$$

第 484c 图的图示通常称为圆锥体，它的运动是

$$\nu = \frac{2\pi r}{v} = \frac{2\pi}{\sqrt{g}} \frac{d}{\sqrt{1 - r^2}}$$

若圆锥体的圆雉角很小，以致 r^2 比 r 要小得多，那 r^2 可以忽略不计，(g) 式就变成

$$\nu = \frac{2\pi}{\sqrt{g}} \frac{d}{\sqrt{1 - \frac{1}{r^2}}}$$

表示圆锥体的运动，跟圆锥的运动相同。

417. 第 485 图中是一个圆心调节装置。C, D 两球都重 W。圆柱体半径 R，长度 l 等于 L；重物可以不计。此外，固定杆也可以不计。试问 C, D 两球绕轴旋转角 AB 的速度 π 应达到多大才能将重物 Q 提起？(Q 可以沿 AB 轴自由滑动)？如果 $W=5kg$, $Q=10kg$, $l=25cm$，问调节 π 等于多大？

(解：$\pi=每分转 111 转)$
418. 設（第 486 圖）中，列車在運動中，列車的速率等於 \(v \)，列車的半徑等於 \(r \)。若使列車的外軌超高數 \(e \) 等於 \(\frac{v^2}{g} \) 多大？

解：列車的慣性力是 \(\frac{W}{g} \) 作用力，由此方向看，這一慣性力與重量 \(W \) 所構成的合力必須垂直於軌道平面，否則，內外軌受到的壓力不能相等。由圖中可以看出，

\[
\frac{W}{g} = \frac{\frac{v^2}{r}}{W}
\]

所以

\[
e = \frac{v^2}{gr}
\]

其中 \(b \) 代表軌距。

419. 一公路路面，寬 8m，彎道半徑等於 603m，行車速率每小時 80km。求路肩超高數 \(e \) 應等於多大？

解：\(e = 0.07m \)

420. 設求地球表面某點的重力因地球自轉而發生的偏差（第 487 圖）。

解：\(v \) 代表地球表面等高線的坡度，\(r_1 \) 代表地球半徑，\(\omega \) 代表地球自轉的角速度。用在重力

下面的物體，它的運動是均勻圓周運動，速率 \(v_1 = r_1 \omega \cos \phi \)，圈中半徑 \(r = r_1 \cos \phi \)。

所以的重力是 \(\Delta N \)，在重力上作用力 \(MD \)，所代表的重力外，還有 \(MF \) 所代表的慣性力在作用。兩力

的合力是 \(\Delta NMP \) 故在重力將跟平行重力 \(AO \) 成一個角為 \(\theta \)。引 \(MP \) 垂直於 \(NF \)。因

\[
W \sin \theta = \frac{W}{g} \cdot \frac{v^2}{r} \sin \phi
\]

\(\theta \) 總很小，可命

\[
\theta = \sin \theta = \frac{v^2}{gr} \sin \phi \quad (i)
\]

以 \(v = \frac{2\pi}{86400} \), \(r = r_1 \cos \phi \) 和 \(r_1 = 6.37 \times 10^8m \) 代入 \((i) \) 式，得

\[
\frac{1}{583} \sin 2\phi
\]
421. 第 488 圖中的角運動方程表達: 車輪周圍的角速度 ω，以角速度偏移角度 α，則車輪的半徑方向的轉速 r，以及車輪的半徑方向的水平樞軸角 α 各應等於多少？（假設車輪相對車輪內的運轉方向為 W）。

\[\omega = \sqrt{\frac{\mu}{\mu - m}(r - c)} \quad \alpha = \arctan W \]

422. 一個重 W 的車輪沿在 x 軸方向的水平路面上 (第 489 圖)。路障中間有一個小坑，形狀是

\[y = \frac{5}{4} \left(1 - \cos \frac{2\pi x}{l} \right) \]

若車輪上除本身的重量 W 外，還有通過車輪轉動的熱量力 P 在作用，試求車輪沿路
障間的作用力。

解：車輪在水平路面上行時，車輪跡近永遠是 $W + P$。駕入小坑後，車輪沿徑直方向也有運
動，所以徑直方向的加速度 \ddot{y} 也應被考慮。對時間損分小坑中的運動路徑方程式，得
到車輪沿徑直方向的加速度如下：

\[\ddot{y} = \frac{d^2y}{dt^2} = \frac{d}{dx} \left(\frac{d}{dt} \right) y = v^2 \frac{d^2y}{dx^2} = v \frac{d}{dx} \left(\frac{d}{dt} \right) y = v \frac{d^2y}{dx^2} = \frac{2\pi t^2 - \cos \frac{2\pi x}{l}}{l} \]

再進一步，又可得徑直方向的加速度如下：

\[\ddot{y} = \frac{d^2y}{dt^2} = \frac{d}{dx} \left(\frac{d}{dt} \right) y = v^2 \frac{d^2y}{dx^2} = \frac{2\pi t^2 - \cos \frac{2\pi x}{l}}{l} \]

所引起的車輪慣性力自然也要考慮到路面上去，所以車輪在任意位置 x 時路面上
的紀力應該是

\[R = P + W - \frac{W}{g} \left(1 - \frac{2\pi x \cos \frac{2\pi x}{l}}{g \frac{2\pi x}{l}} \right) \]

車輪到小坑邊緣時，$x = 0$, $\cos \frac{2\pi x}{l} = 1$，所以這時的車輪慣性力最小，其等於

\[R_{min} = P + W \left(1 - \frac{2\pi x \cos \frac{2\pi x}{l}}{g \frac{2\pi x}{l}} \right) \]

\[(W') \]
可見如果 $\frac{2\pi^2 t_2^2\delta}{g} > 1$，壓力就會反而小於 P 力。這種情形下，假使 $P = 0$，顯然車輪將在小坑上擦過，不會陷入坑中。

在小坑的中點處，$x = \frac{l}{2}$，$\cos \frac{2\pi x}{l} = -1$，故此處的車輪壓力最大，要等於

$$R_{max} = P + W \left(\frac{1 + \pi^2 t_2^2 \delta}{g} \right)$$

(2)

假設 $\delta = 0.2 \text{cm}$，$l = 100 \text{cm}$，$v = 50 \text{m/s}$，則末

$$R_{max} = P + W (1 + 5.7)$$

可見即使路面凹凸很小，但是因凹凸而增加的車輪壓力還是很大，所以設計車輪一方面要盡量減小車輪本身的重量，另一方面還必須用鋼製整車輪和輪轂圈，否則(2)式中的 P 力要直接加在 W 力內計算。這樣，才能減小路面不平的影響。此外，使車輪表面和路面的彈性增加，也可減少車輪的壓力作用。

84. 運動矩

第490圖中，一個質點 A 沿曲線 CD 運動，速率等於 v，它的動量，根據定義，是 $\frac{W}{g} \cdot v$。我們在圖中以向量 \overrightarrow{AE} 表示這一動量。\overrightarrow{AE} 方向跟速度方向——也就是曲線的切線方向——一致。假使 \overrightarrow{AE} 指任一定點，譬如 O 點的垂直距離是 OB，那末動量 \overrightarrow{AE} 跟 OB 的乘積就稱為質點 A 對於 O 點的動量矩。換句話說，如果把質點的動量當作一個作用力，這一作用力對於任何一點的力矩就是質點對同點的動量矩。計算動量矩，最好把動量 \overrightarrow{AE} 分解於 x 和 y 軸方向，求出它的分動量矩：

$$\frac{W}{g} \cdot \overrightarrow{x} \text{和} \frac{W}{g} \cdot \overrightarrow{y}$$

因爲動量的向量性跟力相同，所以一個質點對於任何一點的動量矩，也必定等於它對於同點的各分動量矩的代數和。我們規定質點繞定點發生反時針方向運動的動量矩為正，就可得

$$\frac{W}{g} (\dot{y} x - \dot{x} y)$$

(a)

代表質點 A 對於原點 O 的動量矩。
同様情形，作用於 A 點的力 F 也可以分解為 x 和 y 軸方向的分力 X 和 Y。F力對原點 O 的力矩等於

\[Yx - Xy \] \hspace{1cm} (b) \]

根據(59)式，

\[\frac{W}{g} \dot{x} = X, \quad \frac{W}{g} \dot{y} = Y \] \hspace{1cm} (c)

以 y 和 x 分別乘(c)中第一和第二兩式，然後相減，可得

\[\frac{W}{g} (\ddot{y}x - \dot{x}y) = Yx - Xy \]

上式也可以寫成

\[\frac{d}{dt} \left(\frac{W}{g} (\ddot{y}x - \dot{x}y) \right) = Yx - Xy \] \hspace{1cm} (61) \]

這(61)式說明：質點在任一位置，對於某一定點的動量矩的時間變化率，就等於它上面的作用力合力對於同點的力矩。

(61)式最適宜於解決向心力問題。因向心力對於中心點的力矩永遠等於零，所以根據(61)式，可以判定質點在所有位置的對中心點的動量矩都是不變常數，這也就是說，

\[\ddot{y}x - \dot{x}y = \text{常數} \] \hspace{1cm} (d)

例如第 492 圖中，質點 A 在向心力 F作用下，沿一平面曲線運動。因向心力永遠指向中心點 O，所以根據(d)式，可知速度向量 v 對於 O 點的速度矩必然等於一個常數；

\[v \cdot OB = \text{常數} \] \hspace{1cm} (d')

圖中截斜線的三角形是質點由 A 點運動到 B 點的一段時間 dt 內，它半徑向量所掃過的面積。這面積等於 (vdt/2) OB；也就是，半径向量掃過的面積對於時間的變化率等於(v/2)OB。根據(d)式，這一變化率是固定不變的。可見半徑向量，在相等的時間內一定掃過相等的面積。這一結論，通常又稱為面積速度定理。
更普遍的情形是質點 A（質量等於 m）沿一空間曲線 OAC 運動（第 493 圖）。我們把
質點的動量 $m \mathbf{w}$ 分解為三個主軸 x, y, z 和 \mathbf{r} 方向的分動量。這一質點對於 x, y, z 軸
的動量矩分別是：

$$
\begin{align*}
M_x &= m(\dot{x} - \dot{y}z) \\
M_y &= m(\dot{z} - \dot{z}x) \\
M_z &= m(\dot{y}x - \dot{y}z)
\end{align*}
$$

(6)

這三個「質點對於 x, y, z 軸的動量矩」我們可以由原點 O 出發沿相應各軸線方向圍三個
向量來代表（第 493 圖）。合成的動量矩也是一個向量，它的大小是

$$
M = \sqrt{M_x^2 + M_y^2 + M_z^2}
$$

(7)

它的方向餘弦是

$$
\frac{M_x}{M}, \quad \frac{M_y}{M}, \quad \frac{M_z}{M}
$$

(8)

同様情形，作用力 F 也可分解為三個東軸方向的分力 X, Y, Z。F 力對三軸線的力矩
分別是：

$$
\begin{align*}
M_x &= Y z - Y z \\
M_y &= X z - X z \\
M_z &= Y z - X y
\end{align*}
$$

(9)

所以合成力矩，大小是

$$
M = \sqrt{M_x^2 + M_y^2 + M_z^2}
$$

方向餘弦是

$$
\frac{M_x}{M}, \quad \frac{M_y}{M}, \quad \frac{M_z}{M}
$$

(10)

(69) 式已指出：$\mathbf{x} = X$, $\mathbf{y} = Y$, $\mathbf{z} = Z$，所以我們按照以前處理平面運動的方法，
可得

$$
\begin{align*}
\frac{d}{dt}M_x &= M_x \\
\frac{d}{dt}M_y &= M_y \\
\frac{d}{dt}M_z &= M_z
\end{align*}
$$

(61)

(61') 式也就是說，質點對於各軸機軸的動量矩的變化率相等於質點作用力合力對於相應
的力矩。 不過，其中對某軸軸如何選擇無現任何限制，所以一般說來，質點對於任何一固定軸
慣的動量矩的角速度都將等於作用力合力對同軸的力矩。這一論斷通常稱為質點空間曲線
運動的動量矩定理。

假使用向量來表示動量矩的變化率，則可根據 (31) 式，這一次變換一致等於 (h) 式的力
矩代表向量。

例題和習題

423. 一極重 W 的小球繞在一根繩上如第 494 圖。小球沿水平面作重力等於 r 的團
周均勻運動，速率等於 v。假設穿過圓周中心 O 繩索，使運動平面與水平面為 r/2。
問這時候小球的速率 v 和其中的張力 S 各等於多少？
解：因光滑水平面，繩張力可以不計，故具有張力 S 和互斥的重力及平面反作用力作
用在小球上。 張力 S 水平指向 O 点，對 O 點的力矩始終等於零。 因此，小球對於 O
點的動量矩應該始終保持不變。 這就是說，應該

\[\frac{W}{g} v \frac{r}{2} = \frac{W}{g} \frac{r}{2} \]

故得

\[v_1 = 2v \]

另觀察小球這種情形的動力平衡，又可知張力 S 應等於小球的慣性力，故得

\[S = \frac{W}{g} \frac{v_1^2}{r/2} = \frac{W}{g} \frac{v_2^2}{r} \]

可見這時候的張力等於重力的張力

424. 第 495 圖中，小球重 W，沿在 AOS 線上，以固定速率 v 沿水平面作半徑等於 r 的
圓周運動。 現在牽引 AOS 橫木系 S，使小球上升到 A' 位置，沿半徑等於 r/2 的水平
圓周作均勻運動。設 QA 原來單位等於 l，間 S 端的位移應等於多少?

解：因小球上除重力和 AOS 的張力外，並沒有其他外力，而且重力 W 平行於 OS 軸，
AOS 線的張力又通過 OS 軸，所以小球由 A 位置運動到 A' 位置的過程中，所有外力
的力矩都等於 0，因而質量在 A, A' 兩位置對於 OS 軸的動量矩必然相等。令 t' 代
表小球在 A' 位置的圓周速率，可得
\[\frac{W}{g} v' r = \frac{W}{g} v'' \frac{r}{2} \]

成

\[v' = 2v'' \]

故令 θ 代表 OA' 的水平轉角，T 代表小球在 A' 位置時，AO3 椎中的張力，可得

\[T \cos \theta = \frac{W}{g} \frac{v'^2}{r'^2} = \frac{W}{g} \frac{v^2}{r} \]

和

\[T \sin \theta = W \]

故

\[\frac{W}{g} \cos \theta - \sin \theta = \sqrt{1 - \cos^2 \theta} \]

或

\[\cos^2 \theta + \frac{g^2 v^2}{2 vr^2} - \cos \theta - 1 = 0 \]

因此，

\[\cos^2 \theta = \frac{1}{1 + \frac{g^2 v^2}{2 vr^2}} \]

或

\[\cos \theta = \frac{1}{\sqrt{1 + \frac{g^2 v^2}{2 vr^2}}} \]

所以求的位移等於

\[l - l_1 = l - OA' = l - \frac{r}{2} \cos \theta = l - \frac{r}{2} \sqrt{1 + \frac{g^2 v^2}{2 vr^2}} \]

425. 题第 424 题中小球開始沿牛徑等於 r 的圓周運動。最初的的速度等於 v_0。 球與平面間摩擦阻力等於 F。 試應用 (61) 式算出小球由開始運動到停止運動，所需時間 t 等於多少？

解：因摩擦阻力 W' 始終跟小球的速度 v 平行，故它對於 O 間的力矩始終等於 W't。

根據 (61) 式，知

\[d\left(\frac{W}{g} v_0 r\right) = -W' r \, dt \]

積分上式，得

\[\frac{W}{g} v_0 r = - \int_0^t W' r \, dt \]

故

\[\frac{W}{g} v_0 r = tW' \]

也就是

\[t = \frac{v_0}{W' g} \]
23. 在一長方形的輪軸上沿一個質點，讓它自由運動。如質點運動路徑是第 402 圖的水平面圈周，輪距很小，中心在輪軸上，長短各等於 2a 和 2b。試求質點穿過 x 軸時的速度 v_x 與穿過 y 軸時的速度 v_y 的比值等於多少？

(解: v_x/v_y = a/b)

85. 曲線運動的能量方程式

討論質點的曲線運動時，我們已先定過，一個質點如果速度等於 v，重量等於 W，那末，

\[\frac{Wv^2}{2G} \]

就稱為質點的動能。這一定義同様也適用於質點的曲線運動。

質點發生曲線運動時，它上面的力的作用線並不一定跟質點的位移一致。例如第 406 圖中的質點，它沿曲線 OAB 作動，F 的作用線就跟質點由 A 到 A' 的位移 AA' 合成 (F, s) 彙角。在這種情形下，F 力在質點的微分位移 ds 方向的投影跟 ds 的乘積就叫做 F 力在質點微分位移 ds 中所做的微分功。這一定分功等於

\[Fds \cdot \cos(F, s) \]

計算微分功，最好把 F 力和 ds 位移分解於三個正交坐標軸方向。這樣，可得到 F 的三個分力 X, Y, Z 和 ds 的三個分位移 dx, dy, dz。因合力在任何軸線上的投影等於各分力在同軸投影的代數和，故

\[F \cos(F, s) = X \cos(x, s) + Y \cos(y, s) + Z \cos(z, s) = \]

\[X \frac{dx}{ds} + Y \frac{dy}{ds} + Z \frac{dz}{ds} \]

以 (c) 式代入 (b) 式，就得 F 力的微分功

\[Fds \cdot \cos(F, s) = Xdx + Ydy + Zdz \]

(d) 式說明了：F 力在 ds 位移中所做的微分功，乃等於它三個坐標軸方向的分力 X, Y, Z 在相應的分位移 dx, dy, dz 中所做微分功的代數和。
一個運動質點的「動能(a)」跟它外力合力的「做功(c)」相互間有一定的關係。要確立這一關係，我們可以從運動方程式開始。現在把(59)式寫成下式的形式:

\[
\begin{align*}
md\dot{x} &= Xdt \\
md\dot{y} &= Ydt \\
md\dot{z} &= Zdt
\end{align*}
\] (e)

用 \(\frac{dx}{dt}, \frac{dy}{dt}, \frac{dz}{dt} \) 分別除以上三式，然後相加，可得

\[
m\dot{x}\cdot d\dot{x} + m\dot{y}\cdot d\dot{y} + m\dot{z}\cdot d\dot{z} = Xdx + Ydy + Zdz
\]

或

\[
d\left[\frac{m}{2} \left(\dot{x}^2 + \dot{y}^2 + \dot{z}^2 \right) \right] = Xdx + Ydy + Zdz
\] (f)

因其中 \(\dot{x}^2 + \dot{y}^2 + \dot{z}^2 = v^2 \)，故

\[
d\left(\frac{Wv^2}{2g} \right) = Xdx + Ydy + Zdz
\] (g)

(g)式就是說：質點動能 \(\frac{Wv^2}{2g} \) 在 ds 位移中的變化，乃等於外力合力 F 在同位移內所做的功。這就是質點曲線運動的方程式

令 \(B_1(x_1, y_1, z_1) \) 和 \(B_2(x_2, y_2, z_2) \) 代表運動路線上任意兩點，質點在這兩點的速度分別是 \(v_1 \) 和 \(v_2 \)。積分(g)式，可得

\[
\frac{Wv_2^2}{2g} - \frac{Wv_1^2}{2g} = \int_{x_1}^{x_2} Xdx + \int_{y_1}^{y_2} Ydy + \int_{z_1}^{z_2} Zdz
\] (62)

可見質點在有限位移內的動能變化就等於外力合力在同位移內所做的全部功。 (62) 式通常稱為質點的動能方程式。

應用能等方程式來研究質點在不同位置的速度，最方便。例如第 497 圖中，若發射子彈的射角 \(\alpha \) 和初速 \(v_0 \) 都已知，那子彈在外力的影響下很容易由(62)決定。我們選定坐標軸 \(x, y \) 如圖。若不計空氣阻力，彈頭受到的外力就只有重力 \(W \)，所以 \(X = Z = 0, Y = -W \)，代入(62)式，得

\[
\frac{Wv_x^2}{2g} - \frac{Wv_0^2}{2g} = \int_{x_0}^{x_f} -Wdy = -W\Delta y
\]
故

\[v = \sqrt{v_0^2 - 2gy} \]

假設這一質點的運動路線已經知道，那就最好分解作用力於切線和法線方向，這樣在用軸方向分解更方便。令 \(T \) 和 \(N \) 分別代表作用力的切線分力和法線分力，因質點切線加速度等於 \(\frac{dv}{dt} \)，法線加速度等於 \(\frac{v^2}{\rho} \)，故得

\[
\begin{align*}
W \frac{dv}{dt} &= T \\
\frac{W v^2}{g} &= N
\end{align*}
\] \quad (63)

以 \(v \) 乘 (63) 第一式，可得

\[
\frac{W}{g} v \frac{dv}{dt} = T \frac{ds}{dt}
\]

也就是

\[
d \left(\frac{Wv^2}{2g} \right) = T ds \]

\((h)\) 式說明：質點在位移 \(ds \) 中的動能變化，將等於切線分力在 \(ds \) 位移中所做之微分功（法線分力永遠垂直於位移，不能做功）。

假設 \(B_1 \) 和 \(B_2 \) 是路線上任意兩點，它們沿曲線到某一定點 \(O \) 的距離是 \(s_1 \) 和 \(s_2 \)，積分 \((h)\) 式，可得

\[
\frac{W}{g} \frac{v_2^2}{2} - \frac{W}{g} \frac{v_1^2}{2} = \int_{s_1}^{s_2} T ds \] \quad (64)

\((64)\) 式說明，質點在發生位移 \(s_2 - s_1 \) 過程中的全部動能變化就等於作用力的切線分力沿這位移做的全部功。
例如一個重 W_1 的質點，由 B_1 (x_1, y_1) 處出發，初速 $v_0 = 0$，沿第 498 圖所示的曲線 O_1AB_2 運動。現在要問，質點在自己的重力作用下，運動到圖中 B_2 (x_2, y_2) 處時，速度 v_2 等於多大？這一問題非常簡單，因爲

$$T = -Wrac{dy}{ds}$$

代入(64)式後，就可得

$$\frac{W v_2^2}{2} = \int_{s_1}^{s_2} T ds = - \int_{y_1}^{y_2} W dy = W (y_2 - y_1)$$

故

$$v_2 = \sqrt{2g(y_2 - y_1)}$$

可見結果跟質點自由落下 $(y_1 - y_2)$ 高度的情形完全相同。這也就是說，如果不計空氣阻力，那麼質點在曲線運動中自 B_1 到 B_2 所達到的速度，大小將跟自 B_1 自由下落到 B_2 所達到的速度相同，不過它的方向卻被運動路線改變為跟路線的切線方向相同。

以上討論雖然就平面運動而言，不過實際上，質點的空間曲線運動還是可以應用(63) (64) 兩式。只是式中 $\frac{dv}{dt}, \frac{v^2}{\rho}$ 兩分加速度和 T, N 兩分力都應該在路線曲線的密切面上。

例題和習題

427. 在第 499 圖所示的拋物線形路徑 ACB 上，有一個重 W 的小球，由 A 處開始自由落下。問小球經過 C 點時，它對於路面的壓力等於多大？阻力力可以不計。

解：選定 x 和 y 軸如圖。因不計摩擦力，故小球達到 C 點時的速度應該是

$$v = \sqrt{2g y}$$

命 R 代表 C 點的地面反作用力，觀於小球的動力平衡，可得

$$R = W \left(1 + \frac{v^2}{g \rho_0}\right)$$

式中 ρ_0 是路面在 C 點的曲率半徑。決定曲率半徑必須先求出 ACB 的曲線方程式。拋物線的標準公式是
第499图

\[x^2 = 4ay \] \hspace{1cm} (k)

在本题中，取 \(x = \pm l/2 \) 处，\(y = \delta \) 代入 (k) 式，可得 \(a = R_0 \delta \), 故椭圆方程式应改为如下:

\[y = \frac{4 \delta}{l^2} x^2 \] \hspace{1cm} (l)

曲率半径的公式是

\[\rho = \frac{1}{\left[1 + \left(\frac{dy}{dx} \right)^2 \right]^{\frac{3}{2}}} \]

对 x 整分 (l) 式，可得 \(\frac{dy}{dx} = \frac{8 \delta}{l^2} x \) 和 \(\frac{d^2y}{dx^2} = \frac{8 \delta}{l^2} \), 代入曲率半径公式，使得 \(x = 0 \)，故得

\[\frac{1}{\rho} = \frac{8 \delta}{l^2} \] \hspace{1cm} (m)

再将 \(\rho \) 代入 (j) 式，就可得到

\[R = W \left(1 + \frac{16 \delta^2}{l^2} \right) \] \hspace{1cm} (n)

由结果可以看出，如果 \(\frac{\delta}{l} \) 很大，那么 C 点的反作用力会比小球的重量大得多。

4.28. 此题第427题中的ACB曲框是一根正弦曲柄的一部分，求C点的反作用力等是多大？

[解：\(R = W \left(1 + \frac{2\pi \delta^2}{l^2} \right) \)]

4.29. 一个重 W 小球自第500题中 A 点开始转动，沿铅垂平面中的 ACB 半圆周运动。小球在运动中的位置由小球的垂直向量跟水平线 OA 的交点 θ 决定。求小球在各个位置所受到的圆周表面的反作用力。

[解：\(R = 8W \sin \theta \)]

4.30. 第501图中是一具曲道玩具。一重 W 的小车自图中 A 点出发，沿垂直 ABCD 运动。摩擦力可以不计。求出发处 A 点 B 处的高度
至少要等於多大，小車才不至於在於 B 處脫落？最小高度 h 確立方，問小車在水平直線 CD 部分的速率 u_c 等於多少？

（解：$h_{min} = \frac{v^2}{2} \sin \theta$）

431. 第 502 圖中，一球 W 的方塊放在一個光滑的圓筒表面上。圓筒繞在水平平面，它的半徑等於 r。方塊由 A 點著點，沿 AB 弧運動，到 B 點時，開始離開圓筒表面；沿 BC 線落下；落在 CD 水平平面上 C 點。 C 點到圓筒中心 O 的水平距離等於 h。 AB 弧所轉的中心角等於 ϕ。試求 ϕ 和 h 各等於多大？

（解：$\phi = 48^\circ\ 11^\prime; h = 1.46r$）

432. 一質點由第 503 圖中 A 點出發，沿一光滑的圓柱柱面滑下，到達 B 點時，開始遠離柱面。設柱的軸面長軸等於 $2r$，軸心等於 o，AB 柱面所轉的中心角等於 ϕ，試證明

$$a^2 \cos^3 \phi - 3 \cos \phi + 2 = 0$$

解：定坐标轴如图。椭圆方程式是

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

b 是椭圆的短轴，故

$$b = a \sqrt{1 - e^2}$$

因
\[
\begin{align*}
\alpha &= b \sin \phi \\
\beta &= a \cos \phi
\end{align*}
\]

故

\[
dx = b \cos \phi \, d\phi
\]

从而,

\[
dy = -a \sin \phi \, d\phi = -\frac{a}{b} \sin \phi \cdot dx = -\frac{a}{b} \tan \phi \cdot dx
\]

因此，

\[
d (\frac{dy}{dx}) = -\frac{a}{b} \frac{1}{\cos^2 \phi} \cdot d\phi = -\frac{a}{b} \frac{1}{\cos^3 \phi} \cdot \frac{dx}{b \cos \phi} = -\frac{a}{b^2} \cdot \frac{1}{\cos^4 \phi} \cdot dx
\]

椭圆在 \(P \) 点的曲率是

\[
\frac{1}{\rho} = \frac{-\frac{ab}{1 + \left(\frac{dy}{dx}\right)^2} \frac{1}{\left[1 + \frac{a^2}{b^2} \tan^2 \phi\right]^{3/2}}}{\left[1 + \left(\frac{dy}{dx}\right)^2\right]^{3/2}} = \frac{-\frac{ab}{1 + \frac{a^2}{b^2} \tan^2 \phi}}{(b^2 - a^2) \cos^2 \phi + a^2}
\]

其中 \(\psi \) 代表从点到椭圆的水平偏转角，可得 \(\tan \psi = dy/dx = -\frac{a}{b} \tan \phi \)。也就是

\[
\cos \psi = \frac{1}{\sqrt{1 + \tan^2 \psi}} = \frac{1}{\sqrt{1 + \frac{a^2}{b^2} \tan^2 \phi}} = b \cos \phi \sqrt{\frac{b^2 \cos^2 \phi + a^2 (1 - \cos^2 \phi)}{(b^2 - a^2) \cos^2 \phi + a^2}}
\]

其中 \(h \) 是 \(A, B \) 两点的高度差，根据能量守恒定律，可知物体在 \(P \) 点的速度是

\[
\nu = \sqrt{2gh} = \sqrt{2gh (1 - \cos \psi)}
\]

物体在 \(P \) 点脱离椭圆面意味着它在此处加于椭圆的阻力等于零。也就是

\[
W \cos \psi + \frac{W \nu}{g} \cdot \frac{1}{\rho} = 0
\]

把 (i) (i) (i) 代入 (v) 式中，得

\[
\frac{b \cos \phi}{\sqrt{(b^2 - a^2) \cos^2 \phi + a^2}} = 2a \left(1 - \cos \phi\right) \frac{-ab}{\sqrt{(b^2 - a^2) \cos^2 \phi + a^2}} = 0
\]

或

\[
b \cos \phi \left[(b^2 - a^2) \cos^2 \phi + a^2\right] - 2a^2 b \left(1 - \cos \phi\right) = 0
\]

也就是

\[
(b^2 - a^2) \cos^2 \phi + a^2 - 2a^2 + 2a^2 \cos \phi = 0
\]
(b^3 - a^2) \cos^3 \varphi + 3a^2 \cos \varphi - 2a^3 = 0 \tag{w}

由 (e) 式知 (b^3 - a^2) = -a^2b^2, 故上式也可化成

- a^3c^3 \cos^3 \varphi + 3a^2 \cos \varphi - 2a^3 = 0

或

- a^3 \cos^3 \varphi + 3 \cos \varphi - 2 = 0

最後, 竟得到

a^3 \cos^3 \varphi - 3 \cos \varphi + 2 = 0
第十二章 剛體的定軸旋轉

86. 旋轉的運動幾何

剛體繞一固定軸線旋轉時，它在任何時刻的位置都可由這一時刻的旋轉角 θ 來決定。旋轉角乃是剛體中通過旋轉軸線 $O\alpha$（第 504 圖）的一個平面 OAB 跟一靜止的也通過旋轉 $O\alpha$ 的坐標軸平面（例如 xz 平面）所構成的夾角。旋轉角，在剛體旋轉時，隨時間而變化。如已知旋轉角的時間函數

$$\theta = f(t)$$

那這一剛體的旋轉就完全決定。旋轉角 θ 通常不用度數做單位，而以多少弧度或多少圈周角來計算。

設剛體在相等時間內，不論此相等的時間如何短，它旋轉角的變化始終都相等，那就是均勻旋轉運動。旋轉角對於時間的變化率就稱為角速度。

一般的剛體旋轉運動，旋轉角的變化在相等時間內並不相同，所以是不均勻旋轉運動。設設剛體在相繼的 t_1 及 t_2 時刻的旋轉角各等於 θ_1 及 θ_2，那末

$$\omega_m = \frac{\theta_2 - \theta_1}{t_2 - t_1}$$

(a)

就稱為剛體在 t_1 到 t_2 時間內的平均角速度。

命 $t_1 = t$, $t_2 = t + \Delta t$ 和 $\theta_1 = \theta$, $\theta_2 = \theta + \Delta \theta$，可得 $\omega_m = \frac{\Delta \theta}{\Delta t}$. \(\Delta t \to 0\) 时，$\omega_m$ 的極限值是

$$\omega = \lim_{\Delta t \to 0} \frac{\Delta \theta}{\Delta t} = \dot{\theta}$$
剛體的旋轉運動

這極限值稱為剛體在 t 時刻的角速度。角速度是一種向量，通常以旋轉軸線上一固定方向的線段代表。角速度的方向，按右旋螺絲法則決定。剛體旋轉方向跟螺絲旋轉方向相同，它的代表向量的方向就是螺絲的進退方向；當前進方向為正，後進方向為負。角速度單位用 rad/s。

在工程應用中，等速旋轉機件的角速度，通常以每分鐘的旋轉次數來計算。設每分鐘轉數是 n，機件的角速度就等於

$$\omega = \frac{2\pi n}{60} = \frac{\pi}{30} \cdot n$$

剛體繞固定軸線旋轉時，每一質點，例如距軸線為 r 的 A 點都將沿一固定半徑的圓周運動。設 A 點在 At 時間內沿圓周運動的距離是 As，與 As 相應的中心角是 Aθ，質點 A 的速度就是

$$v = \lim_{At \to 0} \frac{As}{At} = \lim_{At \to 0} \frac{r \cdot A\theta}{At} = r \theta = r \omega$$

不均勻旋轉中，角速度 ω 隨時間變化，變化量對時間的變化率稱為角加速度。設剛體在 t₁ 及 t₂ 時刻的角速度各為 ω₁ 及 ω₂，那末，

$$a_m = \frac{\omega_2 - \omega_1}{t_2 - t_1}$$

就稱為剛體在 t₁ 到 t₂ 時間中的平均角加速度。如 t₁ 到 t₂ 時間很短，

$$a = \lim_{At \to 0} \frac{A\omega}{At} = \frac{d\omega}{dt} = \dot{\omega}$$

就稱為剛體在 t 時刻的角加速度。

第 504 節中，A 點的加速度，根據 § 80，可分解為切線和法線加速度:

$$a_t = \frac{d\xi}{dt} = r\omega = r\dot{\theta}$$

$$a_n = \frac{\ddot{r}}{r} = \omega^2 r = \ddot{\theta}^2 r$$

可见質點的加速度跟剛體的角速度和角加速度間有確定不移的關係。
如已知剛體的角速度和角加速度以及某一質點與旋軸的距離 \(r \)，這些質點的加速度就可由\((67')\)式決定。

例題和習題

433. 聲一物體作旋轉運動的旋轉角方向式是

\[\dot{\theta} = \dot{\theta}_0 + bt + c t^2 \]

試求這物體的角速度和角加速度的一般公式，如物體的起始角速度是 \(2 \pi \text{rad/s} \)；一秒後變為 \(4 \pi \text{rad/s} \)；問式中常數 \(b \) 和 \(c \) 順於多大？

解：由\((66)\)式，知

\[\dot{\theta} = \dot{\theta}_0 + bt + c t^2 \]

若 \(t = 0 \) 和 \(\omega = 2 \pi \) 代入上式，得 \(b = 2 \pi \)。再以 \(t = 1 \), \(\omega = 4 \pi \) 和 \(b = 2 \pi \) 代入上式，又可得

\[4 \pi = 2 \pi + 2c \]

故 \(c = \pi \)。根據 \((67)\) 式，知

\[\alpha = \ddot{\theta} = 2c = 2\pi \]

\(\alpha \) 等於一常數，可見物體的旋轉是均勻旋轉運動。

434. 第 565 頁中，一個固定在一根無軸的圓盤在作扭轉運動，以圓盤的平衡位置作基準，量測軸轉的起點，可得關係式如下

\[\theta = \theta_0 \cos (pt) \]

試求圓盤角速度，角加速度以及各盤點同一點的切線和切線加速度。假設圓盤半徑等於 12cm，最大角速度等於 \(2 \pi \text{rad/s} \)；圓盤每秒轉動 2 次；試求法線和切線加速度等於多大？

解：根據\((66)\)和\((67)\)兩式，知

\[\dot{\theta} = - \dot{\theta}_0 \ p \sin (bt) \]

\[\ddot{\theta} = - \dot{\theta}_0 \ p^2 \cos (pt) \]

故圓盤同一點的切線加速度和法線加速度，根據\((67')\)式，應該是

\[a_1 = r \ddot{\theta} = - r \dot{\theta}_0 \ p^3 \cos (pt) \]

\[a_n = \ddot{\theta} \ r = \dot{\theta}_0 \ p^2 \ r \sin (pt) \]

圓盤每秒轉動兩次，故由

\[\tau = 2 \pi / \omega = 1/2 \]

可得 \(\omega = 4 \pi \)。由\((e)\)式可求得，最大的角速度只能等於 \(\dot{\theta}_0 = 2 \pi \)，故 \(\dot{\theta}_0 = \dot{\theta}_0 \)。把已得的 \(\dot{\theta}_0 \) 和 \(r \) 代入\((g)\)\((h)\)式兩式，求得最大的加速度

\[(a_1)_{max} = \dot{\theta}_0 \ r p^2 = 93 \pi^2 \text{cm/s}^2 \]

\[(a_n)_{max} = \dot{\theta}_0 \ p^2 r = 48 \pi^2 \text{cm/s}^2 \]
435. 某電動機轉子的轉速是

\[n = \text{每分} \times 1800 \] 轉

開啓電流後，轉子以初始轉速角 \(a \) 速度起動，6 秒後開始加速。試求 \(a \) 應該等於多大？又間開啓電流後，轉子旋轉了多少秒才停止？

解：(a) \(a = 10 \pi \text{轉} / \text{秒} \), 又 \(90 \text{轉} / \text{秒} \)。

436. 如第 106 圖中的模型，試求 \(OA \) 條的角速度 \(\dot{\theta} \) 及角加速度 \(\ddot{\theta} \) 的一般公式。

解：自 \(OA \) 條在最大位置時起算時間，那末，

\[\tan \theta = \frac{x}{b} = \frac{v_0}{b} t \]

對時間微分上式，得

\[\frac{\dot{\theta}}{\cos^2 \theta} = \frac{v_0}{b} \]

但

\[\cos \theta = \frac{b^2 + \theta^2}{\sqrt{b^2 + \theta^2}} = \frac{b}{\sqrt{b^2 + \theta^2}} \]

故

\[\dot{\theta} = \frac{v_0 b}{b^2 + \theta^2} \]

再對時間微分上式，就得到

\[\ddot{\theta} = -\frac{2v_0^2 b t}{(b^2 + \theta^2)^2} \]

87. 剛體定軸旋轉的運動方程式

因爲剛體是一個相互剛性連接的質點系，所以可引用動力平衡法
學各質點的慣性力來導出它的旋轉運動方程式。加入慣性力後，因所有剛體內各質點上的力締都應該是一平衡力系，所以就全剛體而言，它
上而所有的力也構成一個平衡力系。其中雖然包括各質點間的內力在

(1) 電機
內，但整個質點系中，所有內力都成對抵消，本身自成平衡，所以只要考量剛體上所有外力及慣性力的合力平衡就能解決問題。若用外力知法決定平衡，那末，剛體上所有外力對於任意一旋轉軸線的力矩代數和就必定跟剛體中所有慣性力對於同軸的力矩代數和互相抵消。

計算慣性力對於某轉軸線的力矩代數和只要考慮慣性力的切線分力；法線方向的分力都通過旋轉軸線是不產生力矩的。如命 \(dm \) 代表剛體中任一質點的質量，\(r \) 代表這質點離開旋轉軸線的距離（第 504 圖）。根據 (87) 式，就知道：這一質點的慣性力對軸線的力矩將是 \(- r^2 \ddot{\theta} dm \)。正沿這力矩，可得全剛體中所有質點的慣性力對於同軸的力矩和。此和應等於所有外力對同軸的力矩代數和（或所有外力的合力對旋轉軸線的力矩）\(M \)，故

\[
- \int r^2 \ddot{\theta} \, dm + M = 0 \tag{a}
\]

因為所有質點的角加速度 \(\ddot{\theta} \) 在同一時刻全相同，所以可以把它放在上式的積分號前面去；所餘的積分 \(\int r^2 dm \) 就跟運動無關，它的大小純粹跟剛體的質量和剛體對於旋轉軸線的形狀而定。可見這積分是屬於剛體的本身性質。這積分用稱號 \(I \) 表示，通常稱為剛體對於定軸的質量慣矩，但也可稱為剛體對於定軸的旋轉質量；

\[
I = \int r^2 \, dm \tag{b}
\]

\(I \) 值如何決定，將在本書附錄中討論。現在將 (b) 式代入 (a) 式中，又可得

\[
I \ddot{\theta} = M \tag{88}
\]

這就是剛體定軸旋轉的運動方程式。此式跟質點直線運動方程式 (88) 形式相同。它說明：力矩的作用就是使物體發生角加速度的原因；角加速度的大小跟力矩的大小成正比，並且方向相同。適用此式可解決兩類問題：(1) 已知運動情形（已知 \(\theta \) 同時間關係），求產生這運動的全部力矩；(2) 已知力矩 \(M \)，求所產生的運動（\(\theta \) 的時間函數）。第一類問題很簡單，只要把所給的時間函數對時間微分，代入 (88) 式，就可以求到力矩 \(M \)。現在先舉一些例子來說明這一類問題。
§871

剛體的定軸旋轉

例題和習題

487. 一飛機重 150kg，直徑等於 50cm，開始以固定角加速度沿螺旋起中心線旋轉，四秒鐘後飛機收到每分鐘 30 轉。試求作用力矩等於多少？又問在此四秒內的週轉次數等於多少？

解：因角加速度固定不變，故角速度跟時間的關係曲線必如第 507 圖是一根直線。從圖上計算出

\[\theta = \frac{30 \times 2\pi}{4 \times 60} = \frac{\pi}{4} \text{ 弧度/秒} \]

對於直徑中心軸的慣量是

\[J = \left(\frac{150}{9} \right) \left(\frac{25^3}{2} \right) = 47.3 \text{kg} \cdot \text{m}^2 \]

把 \(\theta \) 和 \(J \) 代入(68)式，即得

\[M = J \frac{\omega}{\theta} = 47.3 \times \frac{2\pi}{\frac{\pi}{4}} = 37.5 \text{kg} \cdot \text{m} \]

至於飛機在 \(t = 3 \text{秒} \) 時的旋轉角，那顯然是等於圖中三角形的面積，故得

\[\theta = \frac{2\pi \times 3}{2} = 2\pi \]

相當於飛機旋轉一週。

488. 一飛機對於飛機的慣量是 \(I \)，直徑是每分鐘 120 轉。當取去旋轉力矩，飛機自備自重飛行，飛機將因縱軸呈螺旋狀態，開始作等加速旋轉，於 \(x \) 秒後完全停止。求作用的力矩等於多大？

(解：\(M = \frac{2\pi x I}{60} \))

489. 一密度均勻的圓柱，半徑 \(a = 25 \text{cm} \)，重量 \(W = 50 \text{kg} \)，從靜止狀態開始繞一固定軸作等加速旋轉。這轉 \(1 \text{秒} \) 後，轉數達到每分 150 轉，問所加的力矩 \(M \) 等於多大？

(解：\(M = 20 \text{kg} \cdot \text{cm} \))

490. 參第 508 圖所示，圖中曲線上每比 \(OA \) 線的曲率 \(l \) 級為最小。因故，\(OA \) 線的...
則幅角很小，A 軸在鉛垂方向的位移可以完全不計。此外，AB 棵的質量極小，也可以不計。試求曲中 AB 棵內強力 S 等於多大？

解：令 θ 代表曲軸的固定角度，自 O A 在鉛垂位置時起算時間。A 點水平位移是

$$s = r \sin \omega t$$ \hspace{1cm} (d)

令 θ 代表相應的 O A 棵的旋轉角，则

$$\theta = \sin \theta = \frac{s}{l} = \frac{r}{l} \sin \omega t$$ \hspace{1cm} (e)

故

$$\dot{\theta} = \frac{r}{l} \omega^2 \sin \omega t$$ \hspace{1cm} (f)

作用於 O A 棵的外力矩分兩種：(1) AB 棵力 S 對 O 點的力矩；(2) 作用於 O A 棵中心的重力 W 對於 O 點的力矩。故

$$M = Sl - \frac{W_r}{2} \sin \theta$$

若 θ 很小，可令 \(\sin \theta = \theta = \frac{r}{l} \sin \omega t \)，故

$$M = Sl - \frac{W_r}{2} \sin \omega t$$ \hspace{1cm} (g)

以(f)(g)兩式代入 (68) 式，得

$$-I_0 \frac{r}{l} \omega^2 \sin \omega t = Sl - \frac{W_r}{2} \sin \omega t$$

故

$$S = \left(\frac{W_r}{2l} - I_0 \frac{r \omega^2}{l^2} \right) \sin \omega t$$ \hspace{1cm} (h)

計算 I_0，可設定 O A 棵的切面尺寸設與基 i 之小，使

$$I_0 = \frac{W}{y} \frac{b^4}{12} + \frac{W}{y} \frac{a^4}{4} = \frac{W}{y} \frac{b^4}{3}$$ \hspace{1cm} (1)

代入(h)式中，就得到

$$S = \frac{W_r}{l} \left(\frac{1}{2} - \frac{a^2 l}{3g} \right) \sin \omega t$$ \hspace{1cm} (i)

可見 S 值要個 ω 而定。若 ω 很小，上式第二項可以不計，那就

$$S = \frac{W_r}{2l} \sin \omega t = \frac{W_r}{2l} s$$ \hspace{1cm} (i')

S 的正負要看 s 而定，OA 向右為正，向左為負。S 的大小隨著 W 的

增加而逐漸減小，到 $\frac{a^2 l}{3g} = \frac{1}{2}$ 時，S 就等於零。$\frac{a^2 l}{3g} = \frac{1}{2}$ 表示

(1) 參考附錄 II. § 8。
§ 88. 剛體的定軸旋轉

\[\omega = \sqrt{g'/g} \]

故 D 剛軸轉速為

\[\tau = \frac{2\pi}{\omega} = 2\pi \sqrt{\frac{g}{g'}} \]

很顯然的，(7)式也就是 OA 梁的自然振動週期。可見用週期者相同，OA 梁的阻力就不必要 AB 梁的作用力來維持。

設若 \(\omega \) 比 (6) 式所決定的週期大，那 \(\delta \) 就變成負的了。這表示 AB 梁在圈中情形下，將受壓力作用。

441. 一個重 2000kg 的飛輪，轉速每分鐘 180 轉。轉數的最大誤差是 0.01 \(\omega \)。飛輪對於軸的慣性半徑 \(i = 50 \) cm。設輪轉角方程式是

\[\theta = \omega t + \alpha \sin \omega t \]

試求原動機作用於飛輪的扭力矩的時間函數。

解：\(\omega = 180 \times \frac{\pi}{30} = 6\pi \) rad/s，\(\alpha = 0.01 \)，\(I = \left(\frac{2000}{g} \right) \times 50^2 \).

代入(68)式，得

\[M = I\theta = -I\alpha \omega^2 \sin \omega t = -18150 \sin \omega t \text{ kg \cdot cm} \]

88. 不變力矩作用下的旋轉運動

剛體受不變力矩作用的定軸旋轉運動，是已知作用力矩求運動情形的「第二類問題」。因力矩固定不變，(68) 式中 \(M \) 變成一個常數，故積分(68)式可得

\[I\dot{\theta} = Mt + C_1 \]

命 \(\dot{\theta} \) 代表剛體最初角速度，代入(68)式，得積分常數 \(C_1 = I\dot{\theta} \)，故

\[\dot{\theta} = \frac{M}{I} t + \dot{\theta}_0 \]

(69)

再積分(69)式，得

\[\theta = \frac{M}{2I} t^2 + \dot{\theta}_0 t + C_2 \]

(69)

如剛體的最初旋轉角是 \(\theta_0 \)，代入上式，則可得積分常數 \(C_2 = \theta_0 \)，故

\[\theta = \frac{M}{2I} t^2 + \dot{\theta}_0 t + \theta_0 \]

(70)
(69) 和 (70) 兩式可以解決各種簡單的剛體定軸旋轉問題。至於如何應用這兩個公式，我們可以參照 §68 中處理固定力作用下的質點直線移動的方法。

例題和習題

442. 一個質量為 45 kg 的球形體，慣量 $J = 0.159$ kg·m²，半徑 $r = 0.5$ m。假設它以速度 $v_0 = 5$ m/s 在一根水平軸上運動。當它受到一個外力矩 $M = -4.5$ kg·m 的作用後，請問在多少時間後的速度會減為零？

解：由公式 (69) 可得

$$ I = \frac{2W_0^2}{9} = \frac{45}{0.08} \text{ kg·m²} $$

因常規停止時，$\theta = 0$，故應用公式 (70)，可得所求的時間為

$$ t = -\frac{I}{M} \theta = 0.192 \text{s} $$

以 t 值代入 (70) 式，得

$$ \theta = -\frac{I_0}{2M} $$

再以已得各數值代入上式，就得到

$$ \theta = 1.81 \text{ rad}，\text{ 或} 103.8 \text{ deg} $$

443. 一剛體，質量為 M，慣量為 J，旋軸與固定軸垂直。假設在某時刻，固定軸受到力矩 M 的作用。請問在某時刻，固定軸受到力矩為何？若將外力矩去掉後，此軸還可以旋轉多少角度？

（解：$\theta = \omega_0^2/4Mg$）

444. 如第 509 圖中的剎車裝置。剎車同飛輪間的摩擦係數是 μ，飛輪原來速度是 ω_0，試求受圖中 F 力作用後，飛輪還可以旋轉幾次？飛輪重量等於 W；軸承摩擦力可以不計。

解：考察圖中 AB 段的運動平衡，可知剎車部份在接觸點的正交力是

$$ N = P \cdot \frac{1}{a} $$

故摩擦力為

$$ \mu N = \mu P \cdot \frac{1}{a} $$

它所產生的對於飛輪軸線的作用力矩是

$$ M = -\mu Pr \cdot \frac{1}{a} $$

第 509 圖
質點的定積點轉

質點的定積點轉

\[\begin{align*}
Q &= \frac{W_1 \omega_1 r_1^2}{4} \\
Q &= \frac{W_2 \omega_2 r_2^2}{4} \\
Q &= \frac{W_3 \omega_3 r_3^2}{4}
\end{align*} \]

第 510 圖

第 511 圖

解：在摩擦不起作用，\(\omega_1 \rho_1 = \omega_2 \rho_2 \)，故 \(\omega_1 = \frac{\omega_2}{\rho_2} \) 在 1 時間內，A 球角速度必須由 \(\omega_1 \) 降到

\[\begin{align*}
\omega_1 &= \frac{\omega_1}{1} \\
\omega_2 &= \omega_1 \rho_1 \\
\omega_3 &= \omega_1 \rho_3
\end{align*} \]

B 球角速度是

\[\omega_3 = \frac{\omega_1}{\rho_3} = \frac{\omega_1}{\rho_2} \]

又因

\[I_1 = \frac{W_1 r_1^2}{2} \quad I_2 = \frac{W_2 r_2^2}{2} \quad I_3 = \frac{W_3 r_3^2}{2} \]

用所受

摩擦阻力是 \(W_1 \mu_1 \) 故 A 和 B 擦受到的作力矩分別是 \(M_1 = W_1 \mu_1 \rho_1 \) 和 \(M_2 = W_1 \mu_2 \rho_2 \)

把等值放入 (68) 式，即得

\[W_1 \mu_1 = \frac{W_1 r_1^2}{2y} \cdot \omega_1 - \omega_1 \]

\[W_1 \mu_3 = \frac{W_3 r_3^2}{2y} \cdot \frac{r_1}{r_2} \cdot \omega_1 \]

故

\[t = (r_1 \omega_1 - r_1 \omega_1) / 2y \mu_1 \quad \text{和} \quad t = W_2 \omega_1 / 2y \mu_2 W_1 \]

也就是

\[W_1 (r_1 \omega_1 - r_1 \omega_1) = W_2 \omega_1 \]
\[\omega_1 = \frac{W_{10}}{W_1 + W_2} \]

因此得

\[t = \frac{W_{10} \omega_1}{2 \mu_1 W_1} \]

或

\[t = \frac{\omega_1}{(1 + \frac{W_1}{W_2})2 \mu_1} \]

89. 扭轉振動

第 512a 圖的裝置稱為扭振。圖中 M 是一個圓盤，固定在一直軸的下面，圓盤可繞直軸中心作 Oz 軸轉動。直軸上端固定，軸線 Oz 通過圓盤中心，並與圓盤平面垂直，如果加一個外力矩使圓盤旋轉來扭歪直軸，取去外力矩後，圓盤就將作

扭轉振動。 討論這種振動，暫時可不計直軸的質量和阻尼（例如空氣阻尼，直軸非完全彈性等）對於運動的影響。設圓盤對於 Oz 的慣性矩等於 I，旋轉角等於 \(\theta \)（在平衡位置時，\(\theta = 0 \)），所有作用外力對 Oz 的力矩和等於 M，則有

\[I \dot{\theta} = M \quad (a) \]

因圓盤的重力通過旋轉軸線，不產生力矩，外力所形成的力矩只是直軸扭歪後所生靜彈性力對於 Oz 的力矩而已。 在彈性限度內，這一力矩跟旋轉角 \(\theta \) 成正比，

\[M = -k\theta \quad (b) \]

\(k \) 稱為直軸的扭力常數。它的意義就是使直軸扭轉一單位弧度角，所需的外力矩。（b）式中的負號指旋轉角方向跟力矩方向相反。 直軸若是圓柱形狀，則

\[\theta = \frac{Ml}{GJ} \quad (c) \]
(c) 式的來源，可參閱任何材料力學教科書。式中，I 指直軸長度，G 指直軸材料的剪力弾性模數，J 指直軸切面的面積極慣矩（等於 \(ax^4 / 32 \)），比較 (b) (c) 两式，可知

\[k_t = \frac{GJ}{I} \quad (d) \]

以 (b) 代入 (a) 中，可得

\[I\ddot{\theta} = -k_t \theta \]

若令

\[p^2 = \frac{k_t}{I} = \frac{GJ}{II} \quad (e) \]

則

\[\theta + p^2 \theta = 0 \quad (71) \]

此式跟 (41) 式是形式相同的微分方程式，它的通解顯然是

\[\theta = C_1 \cos pt + C_2 \sin pt \quad (72) \]

其中積分常數 \(C_1 \) 和 \(C_2 \)，可按處理質點直線振動的方法決定，結果是：

\(C_1 = \theta_0 \), \(C_2 = \frac{\dot{\theta}_0}{p} \)。

\(\theta_0 \) 是圆盤的最初旋轉角，\(\dot{\theta}_0 \) 是它的最初角速度，

故得

\[\theta = \theta_0 \cos pt + \frac{\dot{\theta}_0}{p} \sin pt \quad (72a) \]

若最初角速 \(\dot{\theta}_0 = 0 \)，則

\[\theta = \theta_0 \cos pt; \quad (72b) \]

若扭擲由突然的衝擊引起振動，\(\theta_0 = 0 \)，則

\[\theta = \frac{\dot{\theta}_0}{p} \sin pt \quad (72c) \]

從 (72) 式也可以看出，圓盤的旋轉是一種週期性運動，振動週期是

\[\tau = \frac{2\pi}{p} = \frac{2\pi}{II / GJ} \quad (73) \]

可見週期跟軸長和圓盤對於旋轉軸線的情矩的平方根成正比，跟直軸
切面積積矩 I 的平方根成反比。若扭桿所有尺寸都加大 n 倍，由 (73) 式即可看到，I 將增大 n^5 倍，J 將增大 n^4 倍，l 將增大 n 倍，所以週期也將增大 n 倍。扭桿的振動週率根據 (73) 式，是

$$f = \frac{1}{\tau} = \frac{1}{2\pi} \sqrt{\frac{GJ}{I}}$$ \hspace{1cm} (74)$$

若在直軸下端，加裝一個軸承來防止直軸的彎曲（第 512 貌），那就任何形狀物體都可裝在直軸下面作 (72) 式所表示的扭轉振動。這個原理可以利用來測量隨便一種物體的質量積矩 I。測量方法很簡單，只要把物體裝在直軸下面，觀察其扭轉振動週率 f 後，由 (74) 式就可算出 I 值的大小。如式中 G, J, l 還不知者，那還可用已知積矩 I_0 的物體來比較觀察。先將已知積矩的物體裝到直軸上去，測出其扭轉振動的週率 f_0，之後，再改裝未知 I 的物體裝上去，測出振動週率 f，由 (74) 式就可

$$I = I_0 \frac{f_0^2}{f^2}$$ \hspace{1cm} (f)$$

應用這方法來測定形狀不規則物體對於一旋轉軸線的質量積矩，最方便。

在工程應用中，常常碰到這樣的情形，就是一根傳動軸，兩端各裝

有一複件，例如透平機的傳動軸，一端是

推進器，一端是輪架（第 513 貌）。傳動

軸兩端各有一相等相反的扭力矩作

用。一旦兩扭力矩突然消失後，立刻

會發生扭轉振動。如不計軸承摩擦力，

在振動中，兩複件的旋轉方向就必然相

反（此現象的解釋見以下第 495 題）。因此，在傳動軸上必有一切面

$n - n$ 存在，此切面在振動時完全靜止，不作扭轉，通常稱為傳動軸的節

切面。由於節切面的存在，我們可以把傳動軸當作各自固定於這一切

面的兩個搖桿處理。節切面與兩端的距離是 a 和 b。因兩扭桿的週

期必須相等，故

$$\tau = 2\pi \sqrt{\frac{I_1a}{GJ}} = 2\pi \sqrt{\frac{I_2b}{GJ}}$$ \hspace{1cm} (a)$$
也就是
\[a:b = \frac{I_2}{I_1} \]
（h）

可見節切面距離傳動軸兩端的長度比例就等於兩端慣件對於旋轉軸線的慣矩 \(I_1 \) 和 \(I_2 \) 的反比。此外，因
\[a+b = l \]
（i）

故由（h）和（i）兩式可得
\[a = \frac{I_2 l}{I_1 + I_2}, \quad b = \frac{I_1 l}{I_1 + I_2} \]
（j）

把（j）式代入（g）式，就得到
\[\tau = \frac{2\pi}{\rho} \frac{I_1 l}{GJ(I_1 + I_2)} \]
（75a）

或
\[f = \frac{1}{2\pi} \sqrt{\frac{GJ(I_1 + I_2)}{I_1 I_2 l}} \]
（74a）

可見振動週率將隨着傳動軸直徑的加大而增加，隨着兩端慣件的慣矩的增大而降低。

在往復式原動機中，曲軸所受推動力的「扭力力矩」並非固定不變，但逐漸增加的扭力力矩中，主要部分的週率一般都屬低周或短週相合。如短週曲軸和扭轉運動系統（包括飛輪等在內）的自然週率相同，將一般高的扭轉振動發生。原動機發生這種現象的振動通常稱為臨界轉速。

扭轉振動在推進器或轉動的設計中最需要注意。多數皆由慣件的慣矩大小由長度振動而至。故須消除共振現象起見，必須使用機的振幅遠離振動系統的自然週率；或改變曲軸的尺寸，使自然週率遠離原動機轉速。如短週曲軸必須在臨界轉速附近，就要求適當的阻尼裝置來減少振動。

問題和習題
417. 項514 図中，水平線 \(AB \)，長度 \(a = 61cm \)，重量 \(W = 1.82kg \)，固定在一根直徑 \(l = 61cm \)的鋼線下面。鋼線直徑等於0.2cm，剪力彈性模數是 \(G = 8.45 \times 10^6 \) kgs/cm²，試計算鋼線的質量和 \(AB \) 線的切面面積。求 \(AB \) 的自轉振動週率。
解：\(AB \) 線的自轉慣矩是
\[I = \frac{W \cdot a^2}{12} = \frac{1.82 \times 61^2}{12} = 576 \text{ kg} \cdot \text{cm}^2 \]
鋼板對旋轉軸線的面積慣性矩是

\[J = \frac{\pi d^4}{32} = 10.3(10)^{-4} \]

把 I 和 J 等代入 (74) 式，就得到

\[f = \frac{1}{2\pi} \sqrt{\frac{GJ}{1^2}} = 0.703 \text{ 大/秒} \]

448. 如第 514 圖中 AB 紙的切面是半徑等於 r 的圆。試證明在這情形下，振動週期較上題
所算結果要小，兩週期的比值將等於

\[\sqrt{1 + \frac{3}{2} \frac{r^2}{a^2}} \approx \sqrt{1 + \frac{3}{2} \frac{1}{a^2}} \]

449. 如第 512a 圖中，圓盤的半徑 a = 15cm，重量 W = 25kg，測出它的振動週期是每秒 1 次。
現想改把另外一種物體放在直軸下面，發現振動週期是每秒 1.2 次，試求後一種物體對於旋
轉軸線的慣性矩等於多大？

（解：I = 1.99kg·m²·cm）

450. 如第 515 圖的振動。AB, CD 是兩個圓盤，由 AC, ED 往返接成一個封閉體。大小適中的任
何形狀物體都可放在盒內作振轉振動。設盒內無物體時，振動週期等於 \(\tau_0 \)；若把一個已知物體放在盒內，那週期就變成 \(\tau_1 \)。
現想改將一個不知道的物體放在盒內，又測得振動週期等於 \(\tau_2 \)，試問 \(J \) 等於多少？

解：令 \(I_0 \) 表示空盒對於旋轉軸線的慣性矩。因 \(\tau_0 = 2\pi \sqrt{\frac{I_0}{GJ}} \)，故 \(I_0 = \frac{GJ}{4\pi^2} \tau_0^2 = K\tau_0^2 \)。其
中 \(K = \frac{1}{2\pi} \sqrt{\frac{GJ}{I}} \)。物體 \(I_1 \) 放在盒中時，振動系統對於旋轉軸線的慣性矩等於 \(I_0 + I_1 \)，
故

\[K^2\tau_1^2 = I_0 + I_1 \]

也就是

\[I_1 = K^2\tau_1^2 - I_0 = K^2(\tau_1^2 - \tau_0^2) \]
可见

\[K^2 = \frac{I}{\tau_1^2 - \tau_2^2} \]

同样理由，

\[I + I_0 = K^2 \tau_2^2 \]

g得

\[I = K^2 (\tau_2^2 - \tau_1^2) = I_1 \left(\frac{\tau_2^2 - \tau_1^2}{\tau_1^2 - \tau_0^2} \right) \]

451. 第513图中是一根绕的细直钢绞，轴心4 m，直径10 cm。它一端装在不转的轴承，轴承重W_1 = 1500 kg，经距半径r_1 = 8 cm。另一端的推力为W_2 = 500 kg，经距半径r_2 = 50 cm。钢索的弹性模数G = 8.1(10)^7 kg/cm²。如不计轴承摩擦阻力，求出推

451. 第513图中是一根绕的细直钢绞，轴心4 m，直径10 cm。它一端装在不转的轴承，轴承重W_1 = 1500 kg，经距半径r_1 = 8 cm。另一端的推力为W_2 = 500 kg，经距半径r_2 = 50 cm。钢索的弹性模数G = 8.1(10)^7 kg/cm²。如不计轴承摩擦阻力，求出推

解：(解：f = 7.85次/s)

452. 假设第513图中，轴的直径沿一半长度增加10%，问线圈振动的速率将比原来增加多少？

解：因直径增加，轴所需断面的面积将会比原来增加 (1+10%) = 1.14倍。一个已定的螺钉

当是所设的轴直径，将会因直径的增加而减少。减少的比值等于(\[\frac{\theta}{2} \times \frac{\theta}{2 \times 1.46} \]) = 0.832×1.1，故直径的螺钉常数将会比原来增加 1:0.842 增大，从而线圈速率将按比值

1/\sqrt{0.842} = 1/0.918 = 1.09 增大。可见速率将比原来增大了 9%。

453. 假设第513图中推力的尺寸沿第451图中所给的数值增加，不过轴直直径沿长度的1/3由10 cm增加到12.5 cm。线圈振动速率等于多大？

解：(解：f = 7.87次/s)

90. 一般力矩与旋转角的旋转运动

在工程问题中，常可遇到这样的情形：一个可以绕一固定

轴线旋转的刚体，旋转后，产生反作用力矩，大小正比于刚体的旋转

角，像第512a图的扭杆是一样。这一刚体若受到扰动而离开平衡位置，

那它就将发生简谐运动形式的旋转振荡。一般的问题的中心就在

于如何决定这种振荡的振荡周期。

例如第516图中O A 槽，一端由一个铰链固定，另一端挂在一根弹簧常数等于 k 的弹簧下面。AO 在平衡位置时，弹簧所受的拉力

等于梁本身重量W 的二分之一。如稍许受到一些扰动，OA 槽将

位于 O 点的旋转振荡。当角代表 OA 在振荡中某一时刻 t 的

旋转角，这时刻的弹簧拉力就将

\[F = k \theta \]
若 OA 樑切面面積很小，則末

$$\frac{W}{a} \quad \delta = \frac{W}{2} \cdot \frac{1}{2} - \left(\frac{W}{2} + kl \right) l$$

也就是

$$\delta + \frac{W}{2} = 0 \quad (B)$$

（b）式是一個跟（71）式相同的微分方程式，（71）式中的 $\frac{1}{2}$ 等於（b）式中的 $\frac{3}{W}$，故根據（71）式計算結果，可知 OA 的搖動週期是

$$t = 2\pi \sqrt{\frac{W}{3kg}} \quad (C)$$

例題和習題

454. 第 517 圖中，懸臂 AB 長 l，重 W。試根據圖中所給各值，求 AB 在鉛直平面上作振幅為 a 的搖動週期 t 等於多少？

（解：$t = 2\pi \sqrt{\frac{l}{2N}} \frac{W}{3kg}$）

455. 第 518 圖中，懸臂 AB 長 l，重 W。懸臂端部和各部分尺寸已在圖中標明。試求 AB
在圖平面中作小振幅運動的振動週期等於多大？

解：

\[\tau = \frac{2\pi}{\sqrt{\frac{WB}{2g(ka^2 + kb^2)}}} \]

456. 如圖 519 圖的装置，彈簧 W 將由 D 後滑指針 A 直滑到 B 處，指針 B 被斜面降下，降下距離 125 cm。 A B 針的質量可以不計，長度等於 90 cm。設圖中 a = 25 cm, b = 25 cm, c = 38 cm，試求重鈎在 B 處時，全系統的振動週期等於多少？

解：\(\tau = 0.152 \text{ s} \)

457. 甲相對乙中，轉子常發生在不斷變化的磁強力矩作用下運動。為減少磁強力矩所產生的磁衰振動，通常用球面錐在電刷與電極之間，如第 520 圖。所用鋼製盤使定子

\[\text{磁強力矩的自然週率比作用力矩的變化週率小。} \]

環形電阻器，彈簧常數均等於 \(l \)，

定子對於電磁式機的轉矩等於 \(l_0 \)，試求定子把電機象的自然週率 \(f \) 等於多少？

解：設想有一力矩作用在定子上，使一端轉動初相，另一端伸長。電力矩若突然消失，定子

\[\theta \text{ 轉會復原運轉。} \]

命 \(\theta \) 代表定子在 \(t \) 時的相角，則電動勢的週期及

\[\text{伸長等於 } \theta - \frac{1}{2} (\text{假定 } \theta \text{ 與等 } \frac{1}{2}) \text{，各個時力矩的大小等於 } \frac{1}{2} \text{。} \]

這些時力矩成

\[\text{力矩等於 } 2 \frac{kN}{2} \cdot l = kN \text{。} \]

458. 第 521 圖中，CD 是一根油繩彈簧，AE 桿相對於迴轉中的轉輪。靜止時，AE 桿於 \(\theta \)

\[\\text{極合: } \text{油 } \frac{1}{2} \text{。} \]

AE 桿在 C 部發出一偏轉角 \(\theta \)，那末油繩彈簧是用彈簧減，將於圖中 C 處產生一力矩

\[\text{作用在 } \frac{1}{2} \text{，作用力小，可以不計。 } \]

設 \(B \) 代表油繩彈簧的彈力

\[\text{矩等於 } \frac{1}{2} \text{。} \]

\[\text{偏轉角 } \theta \text{。} \]

故

\[f = \frac{1}{2\pi} \sqrt{1.15} \]

因此，得

\[f = \frac{1}{2\pi} \sqrt{1.15} \]

解：C 部受轉力矩作用，表示油繩具有單純的擺幅。若以油繩的長度 \(L \text{。} \)

AE 桿的旋轉
角 θ (也就是油管 CE 鍵合前的旋轉角), 可得油管的角加速度 $\frac{d^2 \theta}{dt^2}$, 加所引起的沿油管全長不變的向心力矩 M 应等于 $\frac{B}{l}$。此力矩傳到 AE 條上使 AE 回復原來的平衡位置。因此，可得

$$I\frac{d^2 \theta}{dt^2} = -\frac{B}{l} \theta$$

或

$$\frac{d^2 \theta}{dt^2} + \frac{B}{I} \theta = 0$$

故所求振動週期是

$$T = \frac{2\pi}{\sqrt{\frac{I}{m}}}$$

可見增減油管的長度 l, 增減油管的彎曲力臂長常數，就可以調節 AE 的週期。

由上式還可看到，週期與彎點性大小及其變化有關。

通常油管無阻的振動現象就是如此。無阻的作用越緊張扭管，不過無阻在接成組合
中卻好用，因為它適用於固定不動的設備中。

以上計算中，因 C 點的作用力未加考慮，所以實際上，週期週期不能不跟彎曲的大小，變化有關。因此，在油管中仍需保持彎曲保持固定不變。

459. 試求第 522 圖中 AB 條在水平下可作微小振幅旋轉旋動的週期。

第 521 圖

解：AB 條的振幅轉角等於 θ 時，兩鄰線段所成的交角是

$$\alpha = \frac{\theta}{2l}$$

分解振幅縮力 $\frac{W}{2}$，為鉛直分力和水平分力如第 522 圖。其中水平分力約等於 $\frac{W}{2} \alpha$, 所成的力矩，力矩等於 $\frac{W}{2} \alpha l$, 作用在 AB 上使 AB 回復原來平衡位置，故

$$\frac{W}{g} \frac{\theta}{12} = -\frac{1}{4l} \frac{W}{l} \theta$$

故

$$\frac{d^2 \theta}{dt^2} + \frac{3W}{l} \theta = 0$$
因此，所求振動週期是

$$\tau = \frac{2\pi}{\sqrt{\frac{T}{g}}}$$ (f)

相當然長是等於 1/3 的單體週期。

460. 如果上題中的兩根懸錘的位置改在 AB 條的兩個三等分點時，問振動週期將增加多少倍？

(解：三倍)

461. 假設第 522 圖中的兩根懸錘都不懸垂而是向外與鉛垂線成 β 角，問 AB 的振動週期又將等於多少？

(解：$$\tau = \frac{2\pi}{\sqrt{\frac{l}{g} \cos \beta}}$$)

462. 一個水平的旋轉器，由懸錘連 l 的懸錘經錘在空中。懸錘的位置平均分佈在圓錐周圍。如果圓錘在水平平面中發生旋轉振動，試說明它的振動週期 $$\tau = \frac{2\pi}{\sqrt{\frac{l}{g}}}$$. 91. 習慣

任何一個剛體，如果可以繞一根垂直於 xy 平面的任意水平軸線 O 自由旋轉，就稱為慣習（第 523 圖）。慣習在平衡位置時，它的重心 C 一定要在通過懸點 O 的鉛垂線上，懸點反作用力才能跟重力 W 抵消；否則無法平衡。若把慣慣旋轉一個角度，然後放任它自由運動，則它就將發生繞 O 點的來回擺動。產生這種擺動的作用力是（不計摩擦阻力的影響）

$$M = -Wc \sin \theta$$

式中 c 指懸點 O 到重心 C 的距離。以上式代入 (85) 式，得

$$\frac{W}{g} i_o \frac{d^2 \theta}{dt^2} = -Wc \sin \theta$$ (a)

其中 $$i_o$$ 指慣慣對於 O 點的情矩半径。消去 (a) 式的 W，並假定旋轉角 $$\theta$$ 很小，使 $$\sin \theta \approx \theta$$，則末

$$\ddot{\theta} + \frac{c_1}{i_o} \dot{\theta} = 0$$ (b)
把這一方程式跟單擺運動方程式

\[\ddot{x} + \frac{g}{l} x = 0 \]

比較一下，就可知：複擺的振動週期若跟擺長等於 \(l \) 的單擺週期相等，那末，應該

\[l = \frac{i_o^2}{c} \] \hspace{1cm} (75)

這 \(l \) 稱為複擺的當量擺長，複擺振動週期是

\[\tau = 2\pi\sqrt{\frac{l}{g}} \] \hspace{1cm} (c)

命 \(i_o \) 代表複擺對於重心 \(C \) 的慣矩半徑，因

\[i_o^2 = i_c^2 + c^2 \]

故(75)式又可化為

\[l = c + \frac{i_o^2}{c} \] \hspace{1cm} (75')

可見當量擺長必然大於懸點 \(O \) 到重心 \(C \) 的距離 \(c \)，如第523圖中通過重心 \(C \) 的直線 \(OP \) 長度等於 \(l \)，這 \(P \) 點就稱為複擺的振動中心。

根據(75)式，可知

\[c(l - c) = i_o^2 \] \hspace{1cm} (d)

此式說明，\(c \) 與 \(l - c \) 是互相對應的；如果掉過來以振動中心 \(P \) 為懸點，原來懸點 \(O \) 就變成複擺的振動中心，所以懸點跟振動中心可以互相掉換而複擺週期不變。應用這一互換性，我們可製造任意指定週率的複擺。第524圖是這種複擺的構造形式。如指定週率的當量擺長算出來是等於 \(l \)，懸上兩相向刃口的距離就製成 \(l \)。另外以可以移動調節的兩重體 \(W_1 \) 和 \(W_2 \) 裝置在懸上。調節這兩個重體，使複擺以兩刃口為懸點的振動，週期完全相同。這樣，兩刃口就互相是複擺的懸點和振動中心，複擺的當量擺長就等於兩刃口的距離 \(l \)，從
而,振動週期完全跟指定的相符。

複攜原理可以應用來測定物體對於一定方向的重心軸線的惰惰。以物體上任意一點作爲懸點，質量及懸點到物體重心的距離。觀察得小振幅的振動週期後，就可算出當量搖長等於多少。之後，又以物體上另一點作爲懸點再同樣算出它的當量搖長。經過多次觀察，我們便可精確決定物體對於重心軸線的惰惰。因每一次觀察可得到一個當量長是和懸點重心間的距離 c, 應用 \(i_c^2 = c(l - c) \) 公式就可求到每一次的 \(i_c^2 \) 值;根據多次觀察，取得 \(i_c^2 \) 的平均值，結果自然十分精確。惰矩原等於物體重量 W 跟 \(i_c^2 \) 的乘積，因之，也隨三個精密測定。

若 \(i_c = 0 \)，當量長 \(l \) 就將等於無限大;換句話說，如複攜以重心作懸點，週期就會變為無限大，毫無振動發生。 \(c = \infty \)，\(l \) 也等於無限大，可在 \(c = 0 \) 和 \(c = \infty \) 中間，\(l \) 必有一最小值 (相當於複攜最小的週期或最高的週率)，要決定此最小值，可將 \(l = c + \frac{i_c^2}{c} \) 對變數 \(c \) 微分，令導函數等於零就得

\[
\frac{dl}{dc} = 1 + \left(-\frac{i_c^2}{c^2} \right) = 0
\]

故

\[c = i_c. \] \hspace{1cm} (c)

這結果說明：如果懸點到重心的距離 \(c \) 恰巧等於惰矩半徑 \(i_c \)，複攜就週期最小，週率最高。

例題和習題

463. 一複攜，由一個半徑等於 \(a \) 的圓球和一根長度等於 \(b \) 的鋼桿連接構成。若以鋼桿的自由端作懸點，問當量長長 \(l \) 等於多大?

解：不計鋼桿的質量可得：

\[c = a + b, \quad i_c^2 = \frac{2}{5} a^2 \]

故由(76)式，可得

\[l = a + b + \frac{2}{5} \frac{a^2}{a + b} \]

464. 一正方形複攜，長度等於 \(b \)，半徑等於 \(a \)，以一端作懸點作小振幅擺動，問它的週期等於多大?

解：複攜對於懸軸的惰矩是
\[I_c = \frac{W}{g} \left(\frac{a^2}{4} + \frac{b^2}{12} \right) + \frac{W}{g} \left(\frac{b}{2} \right)^2 = \frac{W}{g} \left(\frac{a^2}{4} + \frac{b^2}{8} \right) \]

故

\[i_0^2 = \frac{a^2}{4} + \frac{b^2}{8} \]

它的質量慣量是

\[I = \frac{i_0^2}{c} = \frac{2}{3} b + \frac{a^2}{2b} \]

設域是

\[\tau = 2\pi \sqrt{\frac{l}{g}} = 2\pi \sqrt{\left(\frac{2}{3} b + \frac{a^2}{2b} \right)} \]

若式中 \(a \) 比 \(b \) 小得多，樁域內第二項可以不計，則域

\[\tau = 2\pi \sqrt{\frac{2b}{3g}} \]

465. 錫鼓軸長是 \(b \) 的節間不是圓柱形節是一個邊長等於 \(a \) 的正方形面柱體，問它的小振幅

旋轉週期等於多少?

解：\(\tau = 2\pi \sqrt{\frac{2b}{3g}} \)

466. 第 525 圖的銀鍍，鍍層是 \(b \) 重 \(W_1 \)，下端接一個半徑等於 \(a \) 的重 \(W_2 \) 圓盤，鍍的切

面積可以不計，問當層\(W_1 \) 等於多少?

解：鍍層對接軸的慣量是

\[I_c = \frac{W_2}{g} \cdot \frac{a^2}{2} + \frac{W_2}{g} (a+b)^2 + \frac{W_1}{g} \frac{b^2}{3} \]

重心到異軸的距離 \(c \) 是

\[c = \frac{W_2(a+b) + \frac{W_1b}{2}}{W_1 + W_2} \]

故

\[I = \frac{\frac{W_2a^2}{2} + W_2(a+b)^2 + \frac{W_1b^2}{3}}{W_2(a+b) + \frac{W_1b}{2}} \]

467. 第 525 圖中的樁域 \(b = 30.58 \text{ cm} \)，\(a = 12.7 \text{ cm} \)，\(W_1 = 0.227 \text{ kg} \)，\(W_2 = 1.362 \text{ kg} \)。問它的

小振幅旋轉的週期 \(\tau \) 等於多大？

（解：\(\tau = 1.32 \text{ s} \)）
468. 第 526 圖中是一個圓環所成的系統，環的內徑是 89 cm。它在圈平面中作緣糾結的運動，運動的週期是 \(T = 2.58 \) s。問這個圈域對於其中的慣量半徑等於多少？

(解：\(r_e = 1.17 \) cm)

469. 第 527 圖中是一個勻速的旋轉，質量 \(W = 1.36 \) kg，以圈中軸線作為千點，在圈平面中作小振幅振動。測出來的振動週期 \(T = 1.57 \) s，試求這一慣性對於曲軸中心的慣量 \(I_o \)。

(解：\(I_o = 0.407 \) kg m²)

470. 如第 528 圖的變形。圈中質點 \(A \) 離開它的穩定平衡位置後，開始作週期振動。如質點 \(A \) 推 \(O \); 使 \(A \) 結構及機件可以不計；旋軸 \(BD \) 與圈軸線所成的角等於 \(\theta \)；質點也可不計，試求質點 \(A \) 的振動週期等於多少？

解：令 \(\theta \) 代表質點所在位置與原來穩定平衡位置所成的固定角。質點受到的重量 \(W \) 可分解為：(1) 分力 \(H = W \sin \alpha \)，平行於 \(OA \); (2) 分力 \(N = W \cos \alpha \)，平行於 \(BD \) 軸。兩分力中只有 \(H \) 產生對於 \(BD \) 軸的力矩 \(M = -W \sin \alpha (l \sin \theta) \)，而等力矩作用方向差於轉角 \(\theta \) 的增加方向相反。因此，

\[
\frac{W}{g} \theta = -W l \sin \alpha \sin \theta
\]

若 \(\theta \) 很小，可令 \(\theta = \sin \theta \)，則上式可化為
\[\theta + \frac{g \sin \alpha}{l} \theta = 0 \]

(1)

故週期

\[\tau = 2\pi \sqrt{\frac{l}{g \sin \alpha}} \]

把 (1) 式與單槓運動方程式比較一下，可知道一振動品質等於 \(\frac{1}{\sin \alpha}\) 的槓桿，

調節旋桿與垂直桿的交角就可使結構桿的槓桿性能變化。\(\alpha\) 很小時，振動週期很

大，週期很短，故用來製造低週率振動，如地震和高大建築內風力的騷動等最合適。

471. 第 529 圖中的長方薄片可以繞 \(AB\) 軸自由旋轉。設 \(AB\) 軸與鉛直桿的交角等於 \(\alpha\)，

薄片重量等於 \(W\)，且質心位於 \(b\) 和 \(a\)，求它的小振幅運動的週期等於多少？

\[\tau = 2\pi \sqrt{\frac{b}{g \sin \alpha}} \]

472. 假設上題的長方薄片是一條邊長等於 \(a\) 的等腰三角形，一邊繞 \(AB\) 軸旋轉，其振動週

期將等於多少？

\[\tau = 2\pi \sqrt{\frac{\sqrt{3} a}{g \sin \alpha}} \]

92. 旋轉運動的慣性力

第 530a 圖中是一個耦合系統。命 \(\theta\) 代表圓盤順時針方向的旋轉

角，\(S\) 代表線中張力，不計摩擦力，可得圓盤的旋轉運動方程式如下:

\[I \ddot{\theta} = S a \]

(a)

此外，重體 \(W\) 的直線移動方程式是

\[\frac{W}{g} a \ddot{a} = W - S \]

(b)
其中，\(a\dot{\theta}\) 是重體的直線加速度，也就是圖盤沿軸線一點的切線加速度。若消去 (a) (b) 兩式的 \(S\)，就可得整個聯合系統的運動方程式如下:

\[
(I + \frac{W}{g}a^2)\ddot{\theta} = Wa
\]

(c)

由(c)式已有可以看出：一個聯合系統的運動問題只要應用慣性力原理，就可以簡化為一個動力平衡問題。致察動力平衡時，可將全部運動系統當作是一個整體，在實際作用力對於某一轉軸軸線的力矩外，再加上各質點的慣性力對於軸的力矩，就可決定動力平衡方程式。例如第 530 圖中，設圖盤中任一質點的質量是 \(dm\)，這質點到旋轉軸線 \(O\) 的距離是 \(r\)。它的切線加速度等於 \(r\dot{\theta}\)，慣性力因之等於 \(-r\dot{\theta} dm\)。此外，重體 \(W\) 的慣性力是 \(-\frac{W}{g}a\dot{\theta}\)。若以 \(O\) 軸作為力矩中心，就得

\[
Wa - \frac{W}{g}a^2\ddot{\theta} - \int r^2 \ddot{\theta} \ dm = 0,
\]

也就是

\[
\left(I + \frac{W}{g}a^2 \right)\ddot{\theta} = Wa
\]

(d)

其中 \(I\) 指圖盤對於 \(O\) 軸的慣性。此式是用慣性力原理導出的，跟(c)式完全符合。若式還可以應用虛位移原理來決定。命圖盤繞 \(O\) 點的微小旋轉角 \(\delta\theta\) 代表虛位移，並假定旋轉方向跟時針相同，根據虛位移原理，可直接求得

\[
\left(W - \frac{W}{g}a\dot{\theta} \right) a\delta\theta - \int r\theta dm \cdot r\delta\theta = 0
\]

也就是

\[
\left(I + \frac{W}{g}a^2 \right)\ddot{\theta} = Wa
\]

結果跟(d)式完全相同。虛位移原理在解決力平衡問題中，非常有用。因爲由虛位移原理來列立動力平衡方程式，全系統的內力可以完全不必考慮，所以十分簡便。
例題和習題

473. 第 531 圖中是一個半徑等於 \(r \)、質量等於 \(W \) 的滑子。它的旋轉慣性矩同滑斜力極小，可以不計。連桿開始對滑子上輸入 \(Q \) 之功勳。滑的一端固定在滑子上。另兩一端綁一個重物 \(Q \)。試問電流 \(Q \) 作下落，\(Q \) 的功勳全數分幾時：滑子的角度將等於多大?

解：考察全系統的運動方程時，必有作用力（包括重性力在內）對於 \(AB \) 軸線的力矩和等於零，就可得

\[
Qr - \frac{Q}{g} r \ddot{\theta} - I \ddot{\theta} = 0
\]

式 \(I = \frac{W}{g} \frac{r^2}{2} \)，故上式可化為 \(\left(\frac{W}{g} \frac{r^2}{2} + \frac{Qr^2}{g} \right) \ddot{\theta} = Qr \)，故

\[
I_s \ddot{\theta} = Qr
\]

其中

\[
I_s = \frac{Wr^2}{2g} + \frac{Qr^2}{g}
\]

因 \(Q \) 固定不變，故可直接引用 § 88 的 (28)，(70) 式式，以 \(\ddot{\theta} = 2\pi \cdot n \) 替代 (70) 式式，將 \(\ddot{\theta} = 0 \) 代入 (70) 式式，就得

\[
\phi = \frac{4\pi^2 I_s}{Qr^2}
\]

這就式係式係全系統所要的時間。因，所求的旋轉角速度是

\[
\dot{\theta} = \frac{4\pi^2 I_s}{Qr^2} = \frac{2\pi}{\sqrt{\frac{Qr^2}{4\pi^2 I_s}}}
\]

474. 第 405 圖的兩重體 \(W_1 \) 和 \(W_2 \) 在圖中位置開始運動。滑車重量等於 \(W_3 \)。如不計摩擦力，試問兩重體在交際時，相對速度等於多大？

解：

\[
\dot{v} = 2 \sqrt{\frac{(W_1 - W_2) W_3}{W_1 + W_2 + W_3}}
\]

475. 第 532 圖中，物體 \(A \) 的重量 \(W_a = 394 \) kg。物體 \(B \) 的重量 \(W_b = 293 \) kg。滑車重量 \(W_3 = 38.6 \) cm，電壓 \(W_a = 145.5 \) kg。斜面傾斜角 \(\alpha = 3.6^\circ \)，接面間的摩擦係數 \(\mu = 0.1 \)，滑車軸承所發生的摩擦力等於 \(11.54 \) kg。假定滑車與滑索開始運動，試求：(1) 兩物體的加速度 \(\dot{v} \)，(2) 其中最大張力 \(S_{max} \)。

解：

\[
\dot{a} = 74 \text{ cm/s}^2, \quad S_{max} = 270 \text{ kg}
\]
476. 第 523 圖的齒輪傳動機構，假定齒輪效率等於 1，試求電動機 M 作用於 A 輪的軸向力 F 作用於 B 輪的節點，加速度 a 等於多少？ 齒輪 I_3 是中間齒輪，所有慣性力皆在軸對本身旋轉軸方向而言。 三個輪的慣性矩是 d_1 : d_2 : d_3 = 1 : 1 : 2。

\[
\theta_3 = \frac{M}{2d_1 + 3d_2 + 4d_3}
\]

第 532 圖 第 523 圖

93. 旋轉機件的內應力

剛體旋轉時，各部分所產生的慣性力在旋轉半徑方向的分力，通常稱為離心力。 機件因離心力所引起的內應力常很可觀，所以設計機件必須使其尺寸適當，以減少或擔當這種內應力。

處理旋轉機件的內應力問題，以箝慣性力原理為最簡便。 我們只要計算機件中所有各質點的慣性力，然後研究全系統的動力平衡，問題就可以解決。 不過慣性力中各質點的慣性力，常常取連續性的分佈力的形式，所以需要應用 §29 和 §35 所討論的方法處理。

例 題 和 習 題

477. 第 524 圖中，直軸 AB 的中點 C 處有一水平桿 CD，以固定角速 \(\omega \) 繞軸旋轉。 不計 CD 電阻 W 所產生的動力矩。 試求 AB 軸所受的最大彎曲力矩。

解：令 q 代表 CD 線單位長度的重量，圖中 dx 部份的慣性力為 \(qdx \) a^2 x。 整個 CD 桿的慣性力則是

\[
\int_a^l \frac{qdx}{g} = \frac{q0^2}{2g} a^2 b = \frac{W}{g} a^2 \frac{1}{2}
\]

這慣性力在水平方向，作用於直軸的中點。 從上式可看到，CD 桿傳導到 AB 軸的全

重慣性力，完全與 CD 的質量全部集中於 CD 電動點的情形一樣。 作用力方向決定，AB 所受的最大彎曲力矩總數

\[
M_{max} = \frac{W \omega^2 l a}{2}
\]
478. 第 535 圖中是一個未練的動輪，四邊有幾根輻條。動輪以固定角速度 \(\omega \) 轉動。每根輻條所受到的摩擦力的運動方向慣性力是 \(S \)。試證明各輻條所於動心的 \(S \) 力跟慣量全部質量集中於它本身動心所產生的慣性力相同。

證：輻條所受某一微分質量 \(dm \) 的慣性力是 \(c^2 \, x \, dm \)，方向在輻射方向，每一輻條的全部慣性力因此是

\[
S = \int r \, c^2 \, x \, dm = \int r \, (x \, \frac{c}{g}) \, dm = \int r \, c \, x \, \frac{W}{g} \, dm
\]

這結果說明，動心的全部慣性力等於全部質量集中在動心所產生的慣性力。

第 534 圖

第 535 圖

479. 一見平軌的鋼製夾紮，等著片切面均一，長度是 25.4 cm，寬度是 12.3 cm，高是 15.2 cm。螺桿的轉速是 1800 轉/分，輸出的單位體積重量是 0.00756 kg/cm³。試求螺桿所引起的螺片最大拉壓力等於多大？

(解：\(\sigma = 642 \text{ kg/cm}^2 \))

480. 假設上題中螺片切面尺寸不均一，而是由螺桿直線增加，到螺旋軸線的切面重量等於等於端切面的一倍。試求最大的拉壓力又將等於多大？

(解：\(\sigma = 474 \text{ kg/cm}^2 \) ）

481. 第 536 圖中，飛輪跟軸線相對運動的垂直平面向右有微小交角 \(\alpha \)，試求此飛輪以固定角速度 \(\omega \) 旋轉時，對於螺桿 A B 所受的彎曲力矩等於多大？（假定螺桿質量全部集中在分佈於飛輪表面同平面一平徑等於 \(r \) 的圖面上）

解：圖中 \(n-n \) 代表飛輪的中平面，\(o-o \) 代表圖中 C 点而跟螺桿垂直的平面。 \(n-n \)
和 $\theta \cdot e$ 两平面的交线就是抛物的水平直角。绕抛物轴角 η 以此直径作为轴线。命θ 代表抛物轴线任一向度量为 $d\theta$ 所跨之中心角。

这一微分分量的惯性力因是 $\frac{\theta^2 d\theta}{g} \cdot \omega^2 - \cos \varphi$

(2) 铅垂分力，大小等于

$$\frac{\theta^2 d\theta}{g} \cdot \omega^2 \sin \varphi$$

因而在 $1, 2, 3, 4$ 级各微分分量 $d\theta$ 的惯性力都可以如此分解，放在 1 和 2 或 3 和 4 级的惯性力的水平分力都将互相抵消。1 和 2 级惯性力的铅垂分力的合力则等于

$$\frac{2\theta^2 d\theta}{g} \cdot \omega^2 \sin \varphi$$

合力的作用距离 $o - 0$ 平面的距离是 $d = \alpha \cdot \sin \varphi$。同样情形，$3$ 和 4 级惯性力的铅垂分力的合力分力大小等于合力相等。方向相反。作圆锥在 $o - 0$ 平面的另一方，距离 $o - 0$ 平面的距离也等于 d。故圆锥的分力将绕成一力等於 $2d$ 的力偶，力偶也等於

$$\frac{2\theta^2 d\theta}{g} \cdot \omega^2 \sin \varphi \cdot 2\alpha \sin \varphi$$

把所有如此的力偶，由 $\varphi = 0$ 到 $\varphi = \pi/2$，合成一个合成力偶。这力偶就代表抛物通过轴心经过抛物轴上的作用力系，它的力矩等於

$$M = \int_{0}^{\pi/2} 2\theta^2 d\theta \cdot \omega^2 \sin \varphi \cdot 2\alpha \sin \varphi = \frac{W_0}{8} \cdot \omega^2 \alpha$$

抛物轴线的力偶作用圆也随著旋转，始终保持过 $n - 1$ 和 $o - 0$ 平面的交线垂直。

487. 试求第 537a 圆中，设 CD 线以固定角度 θ 旋转时，直筒 AB 上的弯曲力矩。CD 线与 AB 成 W 角，且与 AB 成 a 夹角。

解：第 537a 圆中，两弧长微分 dx 重合的联心力矩而成一力偶，力矩等於

$$\frac{d\alpha}{g} \cdot \omega^2 \sin \alpha \cdot 2\alpha \cos \alpha = \frac{\omega^2 \sin 2\alpha \cdot 2\alpha}{g} \cdot dx$$

所以 CD 框上所产生之全部力偶的力矩是

$$M = \int_{0}^{l} \frac{\omega^2 \sin 2\alpha \cdot 2\alpha}{g} \cdot dx = \frac{W_0 \omega^2}{8g} \cdot \sin 2\alpha$$

弯曲力矩 $AEFB$ 因此如第 537b 圆。题中 a 指 CD 框单位长度的重量。

488. 假设第 534 圆中，水平线 CD 的固定直径每微分 $a = 2 \lambda$ 大。另外有一力偶力矩 M 作用在 AB 轴上，使 CD 在四分之一圆弧中。若求角加速度所引起的力矩于 CD 间的最大弯曲力矩等於多少？ 假定 CD 本身重量所引起的弯曲力矩可以不计。
484. 第 538 圖中，一長為 1 的桿架 OA 在固定平面中繞水平軸線 O 轉動。求 OA 受到的最大動力矩是否受於多大？

解：假定轉動的發生是由於 CD 梁最初設為平整有一個很小的交角 α，這樣，轉動的方程式就是

$$\theta = \theta_0 \cos \omega t$$

式中

$$\omega = \sqrt{\frac{y}{1}} \frac{y}{l} = \sqrt{\frac{3}{2}}$$

質點慣性力在 OA 軸本身方向的彎曲影響小，可以不計。質點慣性力在切線上，各質點運動路線的切線方向的力是

$$-\frac{q \sin x}{y} = q \frac{q}{y} \theta_0 \cos \omega t \cdot x \, dx$$

第 537 圖

第 539 圖

此中 q 規 OA 梁單位長度的重量。 (d) 式說明，各慣性力的切線分力沿 OA 軸的分佈是 x 的直線函數，這一分布形態可由圖中的三角形部分來表示。除此之外，還有電力 W 在切線方向的分力沿棒線均勻分佈，由圖中的長方形表示。此分力是

$$q \sin x \cdot \theta_0 \cos \omega t \cdot dx$$

按慣性力原理，OA 梁應在圖中的分佈力以及 O 點反作用力作用下達成動力平

靜，所以現在可以用靜力學平衡公式來決定 OA 梁中的彎曲力矩。由圖繪圖可知，

桿中 x 處切面的切力是

$$Q = \frac{3}{2} q \theta_0 \cos \omega t (1 - \frac{x^3}{1}) - q \theta_0 \cos \omega t (l - x)$$

$$= q \theta_0 \cos \omega t (l - x) \left(\frac{3}{4} \frac{l + x}{l} - 1 \right)$$

觀察 (f) 式，可知切力 Q=0 的切面在

$$x = 1$$ 和 $$x = \frac{l}{3}$$

\[M_{\text{max}} = \int_{1}^{l} \left(\frac{q\theta_0 p^2 y - q\theta_0}{y} \left(x - \frac{1}{3} \right) \cos pt \cdot dv \right) \]

\[= \frac{q\theta_0 p^2}{2y} \cos pt \left(\frac{14p^2}{9} - 2 \right) \tag{h} \]

从式 (h) 可以看到，\(M_{\text{max}}\) 的最大值发生在 \(\cos pt = 1\) 时发生。换句话说，OA 在振动中的最终位置，\(M_{\text{max}}\) 将取绝对最大值。以 \(c)\) 式 \(p^2\) 值代入 \(h)\) 式，就得到最大值的弯矩力矩，是

\[M_{\text{max}} = \frac{q\theta_0 p^2}{2y} \]

根据以上讨论，可知在振动中，OA 上任一切面都有弯曲力矩作用。OA 之所以能保持近似的直线形状，只是由于本身的抗弯性。如果 OA 是一根同样长度的杆，那它就不能抵抗弯曲，在振动中必然要变成曲线形状。振动频率因而不会跟 OA 保持相同。

485. 第 539 图中，圆盘 CD 的半径等于 \(r\)，重量等于 \(W\)，固定在一根 AB 轴上。盘面绕 AB 轴在平面内转动微小的交角 \(\theta\)。假 AB 轴以固定角速 \(\omega\) 旋转，问旋转所引起的 AB 轴承的反作用力等于多大？

(解：\(R_a = R_b = \frac{W \omega^2 r}{4} \)，作用方向如图)

486. 弯第 540 图中，B 端翻转轴切削的某一刹那，A 轴的反作用力等于多大？

(解：\(R_a = W/4)\)

94. 固定轴上的反作用力

现在观察一个可以绕固定轴自由旋转的任意形状物体。例如第 541 图的物体，它可以绕水平轴 AB 自由旋转。如不计轴承摩擦力，这一物体在重心取最低位置时就达到稳定平衡。两轴承 A, B 加于旋转轴的反作用力，只要用静力学方法就能决定。假定 AB 轴上另外一力矩作用，物体自然要发生一个相当角度的旋转，使重力可构成一个跟
扭力矩相等，相反的力矩來維持物體的平衡。此時兩軸所的反作用力仍跟物體在穩定平衡時一樣，並無變化。

![Diagram](image)

第 541 圖

即使物體不復靜止，而是以固定角速 \(\omega \) 線 \(AB \) 軸旋轉，\(AB \) 軸上的扭力力矩的總和必定於零，否則就會有角加速度發生。不過，物體一發生旋轉，兩軸承的反作用力卻可能增大。這種由物體旋轉所引起的反作用力，我們可應用慣性力原理先求出物體各部份的慣性力，然後再根據靜力學方法來解決。計算時, 先指定一正交坐標軸系；定旋軸 \(AB \) 為 \(z \) 軸，命 \(x \) 和 \(y \) 軸隨物體旋轉。物體中任意一質點 \(D \) 的坐標，因此，是固定不變的 \((x, y, z)\)。若這一質點到 \(z \) 軸的距離是 \(r \)，質量是 \(dm \)，那它的加速度就只是半徑方向的向心加速度 \(\omega^2 r \)（因物體等速旋轉, 無切線加速度），相應的慣性力是離心力 \(\omega^2 r dm \)。將離心力分解於 \(x \) 和 \(y \) 軸方向得兩個等於

\[
\omega^2 x dm \quad \text{和} \quad \omega^2 y dm \quad (a)
\]

的分力。這兩個慣性力對於 \(x \) 和 \(y \) 軸的力矩分別是

\[
-\omega^2 y dm \quad \text{和} \quad \omega^2 x dm \quad (b)
\]

力矩的符號仍按右旋螺線法則決定。之後，將所求的兩軸承反作用力也分解為軸線方向分力 \(X_a, Y_a \) 和 \(X_b, Y_b \)。命所有作用力在 \(x \) 和 \(y \) 軸上的投影和等於零，可列出兩個平衡方程式；再命所有作用力對 \(x \) 和 \(y \) 軸的力矩和等於零，又可列出兩個平衡方程式，總共得到四個平衡方程式：
剛體的定軸旋轉

\[\begin{align*}
X_a + X_b + \omega^2 \int x \, dm &= 0 \\
Y_a + Y_b + \omega^2 \int y \, dm &= 0 \\
-\omega^2 l - \omega^3 \int y z \, dm &= 0 \\
+X_l + \omega^2 \int x z \, dm &= 0
\end{align*} \] (c)

這四個方程式顯然可以解決其中四個未知分力 \(X_a, X_b \) 和 \(Y_a, Y_b \)。令（c）式中

\[\int x \, dm = \frac{W}{g} x_c, \quad \int y \, dm = \frac{W}{g} y_c, \quad \int y z \, dm = I_{yz}, \quad \int x z \, dm = I_{xz} \]

其中，前兩個積分依次是物體質量對於 \(yz \) 和 \(xz \) 平面的靜力矩，這在靜力學中已討論過。後兩個積分可依次稱為物體對於 \(y, z \) 軸和 \(x, z \) 軸的慣性矩。慣性矩如何計算，附錄 II 中將詳細說明。上式中 \(x_c \) 和 \(y_c \) 是物體重心的坐標值。把這四個積分值代入（c）式就得到

\[\begin{align*}
X_a + X_b &= -\omega^2 \frac{W}{g} x_c \\
Y_a + Y_b &= -\omega^2 \frac{W}{g} y_c \\
Y_b &= -\frac{\omega^2}{l} I_{yz} \\
X_b &= -\frac{\omega^2}{l} I_{xz}
\end{align*} \] (76)

可見只要已知物體重心的坐標值，和它對於 \(x, z \) 軸和 \(y, z \) 軸的慣性矩，就可以由以上四方程式決定軸承的反作用力。特殊情形，重心恰巧在軸上時，\(x_c = 0 \)，\(y_c = 0 \) 可得：

\[X_a = -X_b, \quad Y_a = -Y_b \]

\(X_a, X_b, Y_a, Y_b \) 各在 \(xz \) 和 \(yz \) 平面上構成一個力偶。這兩個力偶又將在包含軸軸的某一平面內構成一個合成力偶，合成力偶的平面，
隨着物體旋轉，可見軸承必然有一對等速轉動的反作用力作用在旋軸上來構成這力偶。引起這種轉動力的作用力顯然將使軸承座發生強迫振動，故必需加以消滅。從（76）的最後兩式可看出，只要使物體對 y, z 軸和對 x, z 軸的慣性矩及張角等於零，X_a, X_b, Y_a, Y_b 就可消滅；從而軸承也就不會受慣性力的影響。因此，物體的旋軸軸線必需通過物體重心，並且必須跟慣性主軸相重合。總括起來說，只有繞慣性主軸旋轉的物體在軸承才沒有變化不定的反作用力發生。

例題和習題

457. 第 542 圖中，直軸 AB 以固定角速 ω 旋轉，裝在軸上的兩水平板皆各置 b 重 W。求 AB 鍵軸承的反作用力。

解：兩水平板所生的懸心力是

\[\frac{W}{y} \cdot \frac{a^2}{2} \]

這兩個懸心力構成一力偶，力矩等於 Wγb。懸心力的兩個反作用力 R_a 和 R_b 必須構成相等相反的力偶以平衡懸心力，故有

\[R_a = R_b = \frac{W}{y} \cdot \frac{a^2 b c}{2l} \]

這兩個作用力隨着直軸旋轉，方向不斷變化。

實用（76）式自然也能得到相同結果。因旋軸通過物體的重心，由（76）式可求得帶有慣性矩的慣心力中心，由（76）式也可求得慣性矩及慣性張角。再利用（76）式，令

\[X_a = -X_b = R, \]

就得

\[R \cdot I = a^2 \int x^2 \rho \, dx = a^2 \int x \, dx = a^2 e \frac{W}{y} \cdot \frac{b}{2} \]

結果跟以上相同。

458. 一個重物等於 W 的方形鋼板，以等角速 ω 統一對角線旋轉。試求軸承對於它的反作用力 R_a 和 R_b（第 543 圖）。
§93. 刚体的定轴旋转

解: 涌板對 x,y 軸的矩是

\[I_x = W (g \cdot b^2) / 12, \quad I_y = W (g \cdot a^2) / 12 \]

因此, 它對於圖中 x,y 軸的慣性矩是

\[I_{x,y} = \frac{1}{2} \cdot \frac{W}{g} \cdot \frac{b^2 - a^2}{12} - \sin^2 \varphi = \frac{W}{g} \cdot \frac{ab(b^2 - a^2)}{12(a^2 + b^2)} \]

應用(76)中的第4式, 將 \(R_b = X_b, \quad I_{x,y} = I_{x,y} \) 就得

\[R_b = \sqrt{\frac{I_{x,y}}{g \cdot a^2 + b^2}} = -a^2 \cdot \frac{W}{g} \cdot \frac{ab(b^2 - a^2)}{12(a^2 + b^2)} \]

故

\[R_b = \frac{W}{g} \cdot \frac{ab(b^2 - a^2)}{12(a^2 + b^2)} \]

\(R_b \) 與 \(R_b \) 相互相反。它們共同構成一個力偶 (見第 543 圖), 力偶面沿軸旋轉。

§94. 旋轉剛體的均衡

§94 指出: 剛體在旋轉時, 一般都會對於軸承產生動力壓力。(1) 這壓力隨著旋軸旋轉。假使旋軸水平, 我們把這壓力分解為水平方向和垂直方向的分力, 那每一分力就都代表一個週期變化的作用力, 週期等於剛體旋轉一周的時間。要是這一週期剛好跟軸承支撐結構的自然振動週期相同, 那就會發生很危險的共振現象。

§94 說明過, 為消除這種動力效應起見, 應該在設計旋轉機件時, 使它的中心主軸完全跟旋轉軸線相合。不過有時候因實際條件限制, 常常不可能使它們完全合一, 所以必須另外加裝適當的重體來調節機件的中心主軸, 使它仍能跟旋軸相合。底下就討論這種均衡旋轉體的方法。

例 1. 第 544 圖中 1, 2, 3, 4 ……各質點構成一平面的剛性質點系, 其中繞垂直於所在平面的旋轉軸線 O 給定旋轉。各慣性力全通過 O 點。如果它們的方向能構成封閉的力多角形, 合力等於零, 這一質點系統就完全均衡。若力多角形不能封閉, 所合成的合力就將對於軸承產生動力壓力; 若已經知道這一合力的大小和方向, 我們自然不難算出, 使整個系統完全均衡, 應加重體的質量以及它應在的位置。

對於互相剛性連接 (指各質點不能作相對運動的連接) 的質點系, 它們主軸旋轉的問題, 我們可假定全部質量是集結於全系統的重心, 然
後按這假定計算動力壓力。如果重心在旋轉軸線上，重心加速度等於零，那末全系已經均衡;否則就不均衡。這種不均衡，發生的原因是旋轉軸綫雖然是主軸但不通過物體重心，通常稱為靜力失衡。處理靜力失衡問題，只要把軸的兩端放在兩根水平的軌條上，任憑它自由轉動，全系統就會在重力作用下旋轉到全系統的重心達到最低位置時靜止。發現重心位置後，在重心的對方加上適當的改正重量，就可以使全系統完全均衡。這方法稱為靜力均衡法。

一個跟旋轉軸綫正確垂直的飛輪或薄圓盤是比較容易處理的，我們可以假定它們的質量是集中分佈在它們的中平面中，再應用靜力均衡法來均衡就已經可以满意。

假設質點系統中各質點在旋軸長度方向的分佈也不是集中在一個垂直於旋轉軸綫的平面中，那均衡問題就不簡單了。靜力均衡法已經不能消除軸承上的動力壓力。例如第 545 圖中，有兩個相等質量的質點同在含旋轉軸綫的平面內，距離軸線的距離相同，全系統的重心仍在旋轉軸綫上，不過以的方法已經不能撿出它的不均衡性。它在旋轉時，§ 94 已指出，會產生隨軸旋轉的力偶，使軸承受到動力壓力作用。原因是旋軸雖然通過重心，但不是全系統的慣性主軸。這種非旋轉不能覺察的不均衡性稱為動力失衡。

設兩質點不在同一平面，離開軸線的距離又不相等，如第 546 圖所表示的情形一樣，那末旋轉軸綫既非慣性主軸，又非中心軸，全系統將為靜力失衡和動力失衡同時存在的均衡失衡。現在進一步研究最一般的情形。例如第 547 圖中，一系互相剛性連接的慣性質點 1, 2, 3, 4, 5 ……構成一個繞 AB 軸以等角速 ω 旋轉的質點系，在旋轉時，它們沿旋軸方向產生各自旋轉半徑方向的慣性力。分解各慣性力於 x 和 y
軸方向（z 軸跟旋軸軸線相合, x 和 y 軸垂直於旋軸並隨質點系旋轉），然後又分別綜合各分力得 xz 平面的合力 Q 和 yz 平面的合力 P。這樣, 問題就簡化為跟第 546 圖的情形一樣。這就是說, 我們可以將第 546 圖兩質點構成的質點系來替代原系統（兩質點的旋轉半徑互相垂直）。

第 546 圖

第 547 圖

均衡此系統的方法：先在旋軸軸線上任意選定兩點 m 和 n (實際上 m, n 如何選定要看機件的設計情形而定)。過這兩點而垂直於旋軸的平面分別是第 548 圖中的 1 和 2。這兩平面通常稱為修正平面。在 1, 2 跟 xz 平面的交線上分別引 P₁, P₂ 兩力的代表向量, 它們方向跟 P 相反, 並且

\[
\begin{align*}
P₁ + P₂ &= P \\
P₁a &= P₁b
\end{align*}
\] (a)

同樣, 在 1, 2 平面跟 yz 平面的交線上引跟 Q 力方向相反的兩力 Q₁ 和 Q₂ 的代表向量, 並使

第 548 圖
\[
\begin{align*}
P_1, P_2 \text{ 两力可使 } P \text{ 力完全均衡; } Q_1, Q_2 \text{ 可使 } Q \text{ 力完全均衡。它们的合力 } R_1 \text{ 和 } R_2 \text{ (见图)自然也有同样效果,所以只要在 } 1 \text{ 和 } 2 \text{ 平面中 } R_1 \text{ 和 } R_2 \text{ 的作用线上安置两个重 } W_1 \text{ 和 } W_2 \text{ 的物体,使所生的惯性力恰等于 } R_1 \text{ 和 } R_2, \text{ 全系统就可以完全均衡。}
\end{align*}
\]

\[Q_1 + Q_2 = Q \]
\[Q_{1C} = Q_2 d\] (b)

\[W_1, W_2 \text{ 的大小以及它们离开旋转轴线的距离 } r_1 \text{ 和 } r_2 \text{ 可由以下两式决定:}
\]
\[\frac{W_1}{\varphi} \omega^2 r_1 = R_1 \quad \text{(c),} \quad \frac{W_2}{\varphi} \omega^2 r_2 = R_2 \quad \text{(d)}
\]

由(c)(d)可以看到, W_1, W_2 和 r_1, r_2 还可相互调节来凑合制造条件。

一般的旋转装置像飞轮, 电机转子等, 都设计成旋转轴线跟中心主轴合一的旋转体。按理应该没有均衡问题发生。不过事实上, 材料的不均匀, 製造的不精確无法完全避免, 旋转轴线与中心主轴多少必有偏差, 不加均衡, 轴承一定會受到不定的動力压迫作用。要完全消除這種動力效应, 必须在製造完成後, 加以检查, 取加適當的弾度才成。例如第549图中的电机转子, 我们可以设想它是由很多的薄圆盤叠接而成。各圆盤的重心因製造関係不可能恰好都在旋转轴线上, 正跟第547图中的質點分佈情形一样。因此, 也可按前一方法另加兩個適當的弾度重量來使它完全均衡。大型电机的转子外端的表面, 周圍都備有特製的洞孔以便加弾度重量, 所以两端表面也就是弹度平面。这種因製造不精確而引起的失衡, 性質很難确定, 弹度重量不能僅由计算决定, 普通多應用均衡機以反復校验方法来处理。

一般的讨论仅就刚体以等角速 \(\omega \) 旋转的情形而論。至於角速不等的时候, 这种对于等角速已經均衡好的旋转体, 是否仍有动力压力發生, 我们還不曾研究过。現在觀察这种旋转体中任意—微分質量 dm。
它的切線加速度是 \(\dot{\omega} \), 法線加速度是 \(\omega^2 r \), 相應的慣性力是 \(\omega r dm \) 和 \(\omega^2 rd m \)。因這轉體均勻的微分質量的角加速度都等於 \(\dot{\omega} \), 角速度都等於 \(\omega \), 所以整個轉動系中所有因 \(\omega \) 而生的慣性力也達全部等於因 \(\dot{\omega} \) 而生的慣性力的 \(\frac{\dot{\omega}}{\omega^2} \) 倍, 作用方向也是全部互相相交成 90°。所有因 \(\omega \) 而生的慣性力 \(\omega^2 rd m \), 由於機件已經照以上方法完成均衡手續, 所以必然共同是一個平衡力系。現在只把這一平衡力系全部按同一倍數 \(\frac{\dot{\omega}}{\omega^2} \) 放大, 並且它們間相對的作用方向也完全沒有變動, 只是全部旋轉了一個 90°, 這當然不會破壞這一力系的平衡性, 從而不會影響機件已經得到的均衡。所以, 一個已經均衡了的機件, 不論它的角加速度 \(\omega \) 存在已否, 仍然是平衡的轉體, 不會產生對於軸承的動力壓力。

例題和習題

489. 第 550 圖中是一個鋼製圏盤, 在 A, B 兩處鑽有小孔。 圈盤可以繞垂直於本身的 \(\sigma \)

地自由旋轉。現在要在 C 處鑽一個小孔, 使圏盤完全均衡。問此小孔的直徑 \(d \) 及位置 \n
角 \(\phi \) 等於多少? 圈中尺寸以 cm 為單位。

(解: \(d = 5.53 \text{cm} \), \(\phi = 118° \))

490. 一機車車輪, 直徑為 1.83 m, 它上面的荷重包括本身重量在內共 6361 kg, 均勻車輪

的偏心重量等於 90.9 kg, 鑽心半徑為 25.4 cm, 試求機車速度等於每小時 90.5 km 時,軌道所受到的最大和最小車輪反力等於多少?

解: 機車的等速直線前行對於車輪上任何質點因旋轉而引起的慣性力並無影響, 慣性力仍

跟車輪繞一固定軸線旋轉時一樣。因此,仍可以按 § 95 方法求得:

\[
R_{max} = 8791 \text{kg}, \quad R_{min} = 3937 \text{kg}
\]

491. 一圈盤重 65.45 kg, 重心側離軸線為 1 cm。 團盤和軸, 兩邊各有一軸承, 軸承間距

等於 152.4 cm。 團盤平面離一端軸承 A 的距離是 50.1 cm。設軸承間距是每分鐘 \(n = 200 \)

次, 試求離心力所引起的軸承反作用力等於多少? 假設在圓盤的旋轉平面中, 距離旋轉

106.7 cm 处, 加一等效重量 W 使圈盤完全均衡, 問 W 等於多少?

(解: \(R_a = 26.7 \text{kg} \), \(R_b = 17.3 \text{kg} \), \(W = 9.1 \text{kg} \))

492. 第 551 圖中是一曲軸的曲軸。 A, B 代表兩飛輪, 曲軸臂及曲軸箱所產生的慣性力

相當於曲軸旋轉平面中牛徑等於 25.4 cm 處一個重 49.1 kg 的質量。現在假在兩飛輪

平面中, 牛徑等於 61 cm 處, 分別加等效重量 \(W_a \) 和 \(W_b \), 使全系統完全均衡。 問 \(W_a \)

和 \(W_b \) 當量等於多少?

(解: \(W_a = 12.1 \text{kg} \), \(W_b = 9.25 \text{kg} \))
493. 一水平轉動機 AB (第 552 圖) 帶有兩塊心黏點 W₁ = 0.45kg 和 W₂ = 0.31kg，位置如
圖。兩塊各覈心線相等的兩千重相互垂直，轉動係兩端各有一鋼製的均衡重量，厚
2.54cm。現在要在兩圈板上半圈等於 50.8cm 設各鑽一快孔，以使全系統均衡，試問這
兩個孔的直徑 d₁ 和 d₂ 以及孔的位置角 φ₁ 和 φ₂ 等於多少？
(解: d₁ = d₂ = 4.8cm; φ₁ = 18°25'; φ₂ = 71°34')

494. 第 553 圖中是一個三軸曲面體。每一曲面 (包括曲軸與表內) 的動力效應相當於曲軸
運動體中一個牛頓等於 r 的 nucleus W。動力重軸設在曲軸的 D, E 位置，偏心牛頓
等於。試求動力重軸大小位置及角度等於多少？
解: 改正偏心重軸運動曲軸平面等於。兩重軸以運動軸所成的平面，恰等分四曲軸所成兩平
面的交角。兩重軸的重量等於 W₁, W₂。

96. 角動量定理

在第十一章討論「質點曲線移動」時，我們已經知道，一個質點對於任意一固定軸線的動量矩，它的變化率就等於質點作用力對於這軸線的力矩。第 554 圖表示一個剛體繞 z 軸旋轉，它 A 處的微分質量 dm 當開 z 軸的距離是 r，旋轉面垂直於 z 軸，A 點在這平面上的運動路線是一半徑等於 r 的圓周。若剛體的旋轉角度是 θ，A 點的速度
就等於 θr，它對旋轉軸線的動量矩就是
剛體的定軸旋轉

$$r^2 \theta \, dm$$

動量矩的變化率就等於這個質點上所有外力對於 z 軸的力矩。綜合全體物體所有的質點，可得：整個物體的動量矩的總變化率就等於物體上所有外力對旋轉軸線的力矩和 M_z，也就是

$$\frac{d}{dt} \int r^2 \, dm = M_z$$

或

$$\frac{d}{dt} (I_z \theta) = M_z$$

其中，$I_z = \int r^2 \, dm$ 指物體對於 z 軸的慣動；$I_z \theta$ 稱為旋轉體對於 z 軸的角動量。式（77）說明：旋轉體對於某定軸的角動量的變化率乃等於所有外力對於此軸線的力矩和。也就是所謂角動量定理。

![圖](image)

第 554 圖

I_z 若是一個常數，（77）式就變為運動方程式（63）全同。但 I_z 不一定是常數，旋轉體在旋轉過程中因慣性或慣性力的影響，I_z 值就可能變動。式（77）式可以應用於一羣物體繞同一軸線旋轉的旋轉運動。若各物體對軸線的慣矩分別是 I_1, I_2, I_3, \cdots，角速依次是 $\theta_1, \theta_2, \theta_3, \cdots$，則有

$$\frac{d}{dt} (I_z \theta_1 + I_z \theta_2 + I_z \theta_3 + \cdots) = M_z$$

式（77'）

若外力合力對旋轉的力矩等於零，由上式就可斷定，這一羣物體對旋轉的角動量將始終是一個不變常數。

例題和習題

495。試求第 513 節中的旋轉，然後突然放任它自由運動。它兩端的風扇將作擺動振動，試證附節承如果沒有摩擦力，兩端的振動方向必定恰好相反。
解：在開始運動時，因整體不動，全系統的角動量等於零。而承如無摩擦力，重心又恰好在
旋軸上，則除由外力變換的力矩的總和必然等於零。因此，全系角動量不可能發生變
化，故等於零的角動量應該等於零。

這具有如整個靜止或相對轉動才可能，令 \(I_1 \) 和 \(I_2 \) 代表兩個對旋軸的慣性； \(\dot{\theta}_1 \) 和 \(\dot{\theta}_2 \)
代表它們在 \(t \) 時刻的角速度，可得

\[
I_1 \dot{\theta}_1 + I_2 \dot{\theta}_2 = 0
\]

故

\[
\dot{\theta}_1 : \dot{\theta}_2 = -I_2 : I_1
\]

可見兩角速度的符號相反，大小與各自慣性的慣性矩成反比例。

叉因旋轉角(以垂直位置為軸線的旋轉角)設定為正，所以兩盤的運動切面(即不
生扭轉的運動切面)到慣盤的距離也跟慣盤的慣性矩成反比例。

496. 第 555 圖中的 AB 前重 W \(_1\), 摸上兩重體 M, N 同重 W \(_0\), M 和 N 前有鋼絲連結。
整個系統以角速 \(\omega \) 纔作等速傳動時，M 和 N 前的距離可保持等於 \(2h \)。假使鋼
絲突然被切斷，M 和 N 自然將因離心力關係，向 AB 倍側偏動，分別達到圖中 P 和 Q
兩新位置。設問此時全系統的角速 \(\omega_1 \) 等於多大？(假設可能以 AB 重線及 AB
的長度均勻分佈，M 和 N 兩端重量集中在球心)

\[
\begin{align*}
\text{第 555 圖} \\
\text{解}：\text{鋼絲被切斷後，全系統對於} z \text{ 軸的慣性矩是} \\
I_0 = 2 \frac{W_1}{y} l_3^2 + \frac{W_1}{y} \frac{l_0^2}{3}
\end{align*}
\]

鋼絲被切斷後的情況是

\[
I_1 = 2 \frac{W_1}{y} l_3^2 + \frac{W_1}{y} \frac{l_0^2}{3}
\]

因沒有外力矩作用在 \(z \) 軸上，角動量應該始終相等，故

\[
I_0 \omega_0 = I_1 \omega_1
\]

這樣，就得到

\[
\omega_1 = \omega_0 \frac{I_0}{I_1} = \omega_0 \frac{6W_1 l_3^2 + W_1 l_0^2}{6W_1 l_3^2 + W_1 l_0^2}
\]

497. 一個厚度均勻的水平圓盤，半徑等於 \(a \)，重量等於 \(W \)，可以繞中心軸心無軸自轉，
盤中心有一牛徑等於 \(r \) 的同心圆縫（見第 556 圖）。縫縫內有一因 \(Q \) 的重量。最初圓
盤和重物都靜止不動。 之後，重量以相對於盤的固定速度 \(v \) 沿縫縫前進。問圓盤
的角速 \(\omega \) 將等於多大？

\[
\omega = \frac{2Q_0 - v}{W + \omega^2}
\]

48. 一個圓球以固定角速繞一根直徑旋轉。它上面沒有任何外力作用。細球旋轉時，因
受不平靜阻力，其角速度減了 0.1%。問這一阻力的角速受什麼影響？

(解：角速增加 0.2%)

49. 第 557 圖中是一個以固定角速 \(\omega \) 旋轉的飛輪。它受到一改變的扭矩力矩作用，設此
力矩為

\[
M = M_0 \cos \omega t
\]

假設飛輪的均勻旋轉起見，我們在它的軸際上裝上兩個可以自由滑動的電動機

外附器輸得計算這兩個電動機的位置。試問兩電動機心的距離半徑 做此如何變化，電動機才不會因改變力矩的作用而改變轉速？

解：根據(77)式，如

\[
\frac{d}{dt}(I\omega) = M_0 \cos \omega t
\]

因 \(\omega \) 為定，是一個常數

\[
\frac{d}{dt} = \frac{M_0 \cos \omega t}{\omega}
\]

假設飛輪上應對於旋轉的情況等於 \(I_0 \)，可假定

\[
I = I_0 + \frac{2W}{g}
\]

以(4)代入(3)中，得

\[
\frac{2W}{g} \frac{d}{dt}(\omega^2) = \frac{M_0 \cos \omega t}{\omega}
\]

上式積分後，就得到

\[
\omega^2 = \frac{M_0 g}{2W \cos^2 \omega} \sin \omega t + C
\]

如 \(t = 0 \) 時，\(\omega = \omega_0 \)，所求常數 \(C = \omega_0^2 \)，故所求 \(\omega \) 周 \(t \) 的關係是
500. 第 558 圖中是一個測量慣性力矩的試驗器。機械是一模大的天平。木塊重 W，由
鋼絲 OA 網在 O 點，鋼絲的另一端在機械中心 A 夾，從鋼
絲產生角度 θ_0，試求慣性力矩 J 跟慣性最大旋轉角 θ_0 的關係。
解：把鈦絲和機械當作整個運動系統。槍彈在擊中慣性前，全系統對於 O 點的角動量原
等於

$$W_1 \cdot \theta_0$$

當槍彈進入試器中，相對靜止於慣性中時，角動量變為

$$I_0 \cdot \theta_0$$

因慣性進入試器後是一定破壞慣性，慣性時間縮短，於慣性相對於慣性中時，慣性所發
生的影響角度小，即使慣性全系統達到角度 θ_0 時，慣性相對慣性運動也無不可。此
外，慣性體重比慣性上小得多，所以慣性相對於慣性點慣性 I_0 在慣性後，沒有差異也好不可。倒慣性完後，全系統達到角度 θ_0 時，所有慣性對於慣性點慣性一直等
於零，故全系統的慣性不發生變化（這就是慣性慣性

$$W_1 \cdot \theta_0 = I_0 \cdot \theta_0$$

或

$$v = \frac{\sigma \cdot I_0 \cdot \theta_0}{W_1}$$

到這一步，我們已得到慣性慣性的慣性慣性角速度 ω 跟慣性慣性的慣性最大旋轉角 θ_0 的關係。至於 ω 跟慣
性慣性最大旋轉角 θ_0 的關係，我們在第 510 項中再深一步討論。

501. 雙子 A，最初靜止；另一雙子 B，最初角速度 ω_0。設另一連杆 C，突然將兩雙
子連接起來（見第 559 圖），問兩雙子可能達到的共同角速度 ω 將等於多少？ I_a 和 I_b 分
別是雙子 A 和 B 對於連杆軸的慣性。軸承的摩擦力可以不計。

$$(解： \omega = \omega_0 \cdot \frac{I_b}{I_a + I_b})$$
67. 角動量的向量表示

以上說明的雖然只是就物體對於旋轉軸線的角動量而言，但在導出角動量定理的過程中，我們對於軸線的選定並無限制，所以事實上角動量定理對於任何固定軸線都能成立。第 534 圖中，有一個質點 A，速度等於 $r \theta$，質量等於 dm。若分解它的速度於 x 和 y 軸方向，就可得兩個分速度 $y \theta$ 和 $x \theta$。就 x 軸而論，只有 $x \theta$ 才產生動量矩

$$-dm \frac{d}{dt} x \cdot z$$ (a)

這動量矩的變化率即等於 A 點上外力合力對 x 軸的力矩。綜合整個物體所有各質點的動量矩以及物體上所有外力的力矩，就得

$$\frac{d}{dt} (-\theta \int xz \, dm) = \frac{d}{dt} (-I_{xx} \dot{\theta}) = M_x$$ (b)

其中 M_x 是外力合力對於 x 軸的力矩；$(-I_{xx} \dot{\theta})$ 是物體繞 z 軸旋轉時，它對於 x 軸的角動量。同樣理由，又可得

$$\frac{d}{dt} (-I_{yy} \dot{\theta}) = M_y$$ (c)

若 z 軸恰巧就是物體的慣性主軸，慣性矩 I_{xx} 和 I_{yy} 就都等於零。因此，物體在繞主軸旋轉時，對於 x 和 y 軸的角動量全等於零。這樣的場合，根據 (b)，(c) 兩式，可知所有外力的合力對於 x 和 y 軸的力矩也非都等於零不可。

物體對於三坐標軸的角動量可應用各軸線上的向量來表示。它們的正負方向按照力矩的的符號規則確定。求到旋轉體對於三坐標軸的角動量後，應用向量的幾何相加方法，就可得到它的總角動量。總角動量以及外力合力的力矩如分別用向量代表，則末兩代表向量間的關係，自然仍舊是前面所說的，總角動量的變化率要等於外力合力的力矩。這一論斷對於軸線如何選擇，毫無限制，所以是更普遍的角動量定理，適用於一物體或一系物體繞一固定軸線旋轉的任何旋轉運動。

假如有第 580 圖中，一個由質點構成的質點系，它的座標 A, B 以角速 θ 纔 z 軸等速旋轉。假質點質量都等於 m，距離旋軸的距離是 r，假設一平面含旋轉軸的平面中。以質點系的重心 C 作為主軸原點，設軸為 z 軸，令 x 軸位於含兩質點的平面中，y 軸垂直於此平面。各坐標軸定後，可得全系統對於 z 軸的角動量是
2. \(n = 0 \)

因 \(I_{xx} = -mrc \), \(I_{yy} = 0 \), 故全系統對於 \(z \)-軸的角動量等於

\[
0
\]

對於 \(y \)-軸的角動量等於零。現在再設 \(O \) 為熱系統的角速度 \(\dot{\theta} \)。不銹 \(CG \), 全角速度的代表向量 \(\overrightarrow{CG} \) 就要同質點系統 \(\dot{\omega} \), 在空間裏一個正圓錐。 \(\overrightarrow{CG} \)

為直角 \(\theta \) 的弧度速度為全角動量的變化率。
因 \(\dot{G} \) 為直角速度，所以等於 \(\overrightarrow{CF} = mrc \cdot \dot{\theta} \)。所以全角動量變化率等於

\[
\dot{\theta}^2 mrc \]

這一 \(\overrightarrow{G} \) 設置的代表向量應該要與 \(\theta \) 平面。所以根據角動量定理——外力合力的力矩的代表向量應該於 \(\dot{G} \) 速度的代表向量——就可以斷定，外力力偶的作用平面也是 \(\theta \) 平面，力矩大小等於 \(\dot{\theta}^2 mrc \)。假設這外力為外力，就是兩轉角的反作用力 \(R_4 \) 和 \(R_5 \)，所以這兩個反作用力也在 \(\theta \) 平面內。

以上如果應用慣性力勢能計算，也可以得到同樣結果。質點的慣性力勢能等於 \(n \dot{\theta}^2 \), 作用在 \(\theta \) 平面中。慣性力的力矩等於 \(\dot{\theta}^2 mrc \)，等式係數完全相同。

98. 週轉儀

週轉儀主要是一個繞中心軸旋轉的沉重的物體。當高速旋轉時，它所產生的「動力性能」有很大的實際價值。討論週轉儀的這種性能，應用角動量定理最簡便，通常用兩個向量分別來代表旋轉體對於一定點的總角動量以及所有外力對於同點的總力矩。這兩個向量在一般情形下，並不合而為一。但是由總力矩的代表向量，我們可以決定總角動量的時間變化率。假定旋轉體的自旋軸是一根固定軸線。旋轉體對於這軸線的角動量是 \(I \) 和 \(\omega \)，按(77)式，就可得

\[
\frac{d}{dt} (I \omega) = M
\]

由§ 97 的討論已可推論出：只要旋轉軸線是旋轉體的中心軸，旋轉體對於任何一根通過旋軸同時又垂直於旋軸的軸線的角動量，就一定
等於零。迴轉儀的自旋軸，因對稱關係，同時就是中心主軸，所以它對
於自旋軸的角動量 \(L_0 \) 也代表它的全部角動量。總動量的代表方向
因此，就在自旋軸上。如果迴轉儀既無軸承摩擦阻力又無其他外力
力矩作用在 \(x \) 軸，那角動量自然就是一固定不變值。

假使自旋軸並不固定，而是可以繞一定點在空間自由旋轉的軸線，
那末迴轉儀的動力性能馬上就會顯
露出來。例如第 561 圖中的迴轉
儀，自旋軸 \(OA \) 可以繞固定點 \(O \) 自
由旋轉（例如陀螺）。物體自旋角速
是 \(\omega \)。\(OA \) 同時又是物體的中心主軸。取固定坐標軸系 \(x, y \) 和 \(z \) 軸
如圖。 物體在圖中位置時，自旋軸恰好跟 \(z \) 軸相合。

因自旋軸繞 \(O \) 點旋轉，方向變更不息，故物體對於 \(x \) 和 \(y \) 軸必然
也有旋轉。換句話說，物體對於這兩根軸線的角動量將不等於零。總
角動量的計算，因此，將十分複雜。為簡便起見，通常假定自旋角速 \(\omega
非常非常大，相形之下，使自旋軸的旋轉角速顯得十分微小；此外，並使
物體對於自旋軸的情況不比對於 \(x \) 和 \(y \) 軸的情況為小。這樣就可以
使迴轉儀對於自旋軸的角動量比對於 \(x \) 和 \(y \) 軸的角動量大得多；我
們即便認為 \(OM \) 代表的自旋軸角動量 \(L_0 \) 就代表物體的總角動量，也
無甚不可。假使迴轉儀中，既無摩擦阻力又無外力產生對於自旋軸的力
矩，我們按以前的討論，就可以認為物體的總角動量是一固定不變值。

迴轉體的重力 \(W \) 作用在重心 \(C \) 點上。\(W \) 跟 \(O \) 點的反作用力共
同構成在 \(OVM \) 平面中一個力偶，力矩等於 \(Wc \sin \alpha \)，由一個垂直於
\(OVM \) 平面並指向 \(-x \) 軸方向的向量代表。 根據角動量定理，這力矩
應當等於總角動量的變化率，所以總角動量的代表向量 \(OM \) 的終點 \(M
必然有一桿率速度發生。這速度就是總角動量的變化率。 外力力矩
\(Wc \sin \alpha \) 的代表向量既垂直於 \(OVM \) 平面， \(M \) 點的速度自然也應垂直於
\(OVM \) 平面。可以 \(M \) 點將沿一水平圈週運動，圈週的半徑是 \(OM \sin \alpha \)。
= 10 \sin \alpha\)。换句话说，自旋轴本身是在一个圆锥面的表面上运动。OVM 平面内物体的速度 \(v\) 由圆周半径 \(10 \sin \alpha\) 跟 M 点的速率 \(W \sin \alpha\) 决定，

\[\omega_1 = \frac{W_c \sin \alpha}{10 \sin \alpha} = \frac{W_c}{10} \quad (b) \]

\(\omega_1\) 通常称为自旋轴的进动角速度。由 (b) 式可以看到，如果旋转体受空气阻力和摩擦阻力影响导致自旋角速 \(\omega\) 减小，进动角速 \(\omega_1 \) 就反而会增大；如果重心 \(C\) 靠近支点 \(O\) 的距离 \(c\) 减小，\(\omega_1\) 就会随之减小。

地球因月球的引力关系有一极小的自转进动角速度。地球完成一次进动周期 26000 年。

假设进动的支点 \(O\) 就在重心 \(C\) 虚，那么因 \(c = 0\)，因而 \(\omega_1 = 0\)，自转轴在空间的方向将永不改变。目前已有人应用过这一现象来证明地球的自转。例如旋转指向某一恒星，它就将永远指向这一恒星。但地球上观察者来看，自转轴却是沿一个中心轴正对北极星的圆锥表面转动。

利用旋转体高速旋转所产生的保持方向的动性力性能，除海空定向仪外，还有精密仪器中的高精度。不过因为空气阻力的合力并不是正确的通过子弹的重心，所以通过子弹重心包含空气阻力前进速度的铅垂平面中，这一合力将产生一个对于重心的作力矩，此力矩使自旋轴方向逐渐改变，以致弹道会发生偏离上述铅垂平面的偏差。

例题和习题

502. 第 562 题中的圆锥转轴体，它的自旋轴跟中心轴相合。旋转轴可以沿轴线上移动，使重心 \(C\) 可以在支点 \(O\) 之下，也可以在 \(O\) 点之上。试证明自旋轴的进动角速度恰跟第 562 题圆锥轴体的自旋轴的进动角速度方向相反。

503. 第 563 题中的圆锥是一个完全均衡的旋转体。它以角度 \(\omega_1\) 摆 AB 轴作高速旋转。如果 AB 轴是一个固定轴熊，轴承的反作用力自然很容易用静力学方法决定。但是旋转 AB 轴也绕支点旋转，角速等于 \(\omega_1\)。问两轴承 AB 因而增加的反作用力将等于多少？

假定 \(\omega_1\) 比 \(\omega\) 小得多。

解：取圆锥中心作为原点，分别确定坐标轴 XYZ 和 z 如图。因 \(\omega_1\) 比 \(\omega\) 小得多，所以旋转体对于 z 轴的角速度 \(\omega_1\) 比 \(\omega\) 大得多。因此，我们可以认为 \(\omega_1\) 就是旋转轴的转角速度。由于轴上的向量 OM 代表该角速度 \(\omega_0\)。\(\overrightarrow{OM}\) 的方向按右螺旋法
則決定。自旋軸自轉有角速 \(\omega \cdot \overrightarrow{OM} \) 向量的終點 \(M \) 映射將在半徑等於 \(OM = l \omega \) 的水平圓上轉動。 \(M \) 點的速度 \(v \) 大小等於 \(l \omega \cdot \omega \), 方向垂直於 \(yz \) 平面。根據角動量定理，這速度 \(v \) 也就是旋轉動量的變化率 \(\Delta L \) 應當與外力力矩的代表向量相同，所見得外力力矩的力臂必在 \(yz \) 平面中。這一方程由圈面軸因 \(\omega \cdot \omega \) 繞而增加的反作用力 \(R \) 所造成的，故

\[
R \cdot l = l \omega \cdot \omega \tag{c}
\]

或

\[
R = \frac{l \omega \cdot \omega}{l} \tag{d}
\]

AB 動輪的外力作用可以由實驗方法測定，實際測定的结果結果 (d) 式符合。

504，第 504 圖中是一部設在船上的動輪。電動機的皮帶帶好在輪的軸動方向。假設動輪的轉子的角速等於 \(\omega \) ，船結動的方程式是

\[
\theta = \theta_0 \cdot \cos pt \cdot \omega
\]

設求輪手輪承受轉動 \(\omega \) 增加的反作用力最大值等於多少？

解：因爲船的運動週期普通都很小，所以可以假定轉子對於自旋軸的角速是 \(l \omega \) 就是它的轉動角速度。以 \(OM \) 代表這一轉動角速度 \(l \omega \)。在船結動時，\(OM \)的方向點在空間畫出一塊弧，中徑等於 \(OM = l \omega \)。M 點運動方向應當等於這一弧線運動的角速度 \(\theta = -\theta_0 \cdot \sin pt \)，所以 \(M \) 點的最大速度等於 \(l \omega + \theta_0 \cdot \omega \)。這一速度也就是轉子結動量的增大變化率，根據角動量定理，應該結軸承增加的反作用力等於最大力矩相等。因最大值出現於 \(\sin pt = 1 \) 或 \(\cos pt = 0 \) 時。這時時，該轉 \(\theta = 0 \)，M 點的速度恰好在鉛直方向，所以加載增加的反作用力一定是在水平平面中，它們成一個方角，力矩的大小是

\[
R_{\max} \cdot l = l \omega \cdot \omega \cdot p \tag{e}
\]

故

\[
R_{\max} = \frac{l \omega \cdot \omega}{l} \cdot p
\]
505. 假設上題中車輪動的最大旋轉角是 1.5\(^\circ\)，試求週期是 30s；轉子的轉動是每分鐘 1800 次，慣矩 \(I = 350 \text{ kg·m}^2\)；\(l = 80 \text{ cm}\)。試求最大反作用力 \(R_{max}\)。

(解：\(R_{max} = 4.02 \text{ kg}\))

506. 一開車輪半徑等於 \(r\) 的輪槓以速率 \(v\) 等速前行。 試問是 \(I\)，車輪半徑是 \(r\)，車輪對於

輪軸的慣矩是 \(I_0\)。試求因車輪旋轉所引起之外載的壓力增加，以及力載的壓力減少

者等於多少？

\[R = \frac{I}{l} \cdot \frac{v}{\omega} \]

(解：\(R = 0.38 \text{ kg·m/s}\))

507. 第 553 圖中 AB 是一根長 \(l = 90 \text{ cm}\) 的水平槽。 支點就是它的中點 C。 A 端懸掛一個

重物 \(Q = 2.5 \text{ kg}\)。 B 端是一個車輪，重量 \(W = 5 \text{ kg}\)。 車

輪全部質量均勻分布在半徑 \(r = 30 \text{ cm}\) 的圓周上。 車輪

轉速是每分鐘 600 次。 試求 A B 間 C 點離車輪軸心

轉的角速 \(\omega_1\) 等於多少？

(解：\(\omega_1 = 0.38 \text{ rad/s}\))

508. 電動機的電動機，轉動方向跟車輪旋轉方向相反，轉子重 \(271.6 \text{ kg}\)，在最遠的距離是 \(61.5 \text{ cm}\)，轉子對於整體的

慣性半徑等於 \(15.25 \text{ cm}\)。 車輪半徑等於 \(83.38 \text{ cm}\)。 轉子

旋轉一次，車輪旋轉一次。 假定電動機一組等於 30,25 cm 的向直線前進，速度是

6.09 m/s，問電動機上兩端承受的全部壓力等於多少？

(解：左邊承受 136 kg，右邊承受 149 kg)

509. 機車的一道軸承長 \(227 \text{ kg}\)，慣性半徑是 \(76.2 \text{ cm}\)，輪軸直徑是 \(1,829 \text{ cm}\)。 軌距是

1,524 m。 最近機車座 \(6\) 的導向軸心距離 \(72.41 \text{ km}\) 速率前行，試求外載對車輪所增

加的反作用力等於多少？

(解：134 kg)

99. 旋轉體的動能方程式

如果一個物體繞一固定軸線旋轉（第 566 圖），角速率等於 \(\dot{\theta}\)。它上面

的一一點 A 當然就沿著一直徑等於 \(r\) 的圓周運動，運動的速率等於

\(r \dot{\theta}\)，所以這一點的動能是

\[dE = \frac{1}{2} m (r \dot{\theta})^2 \] \hspace{1cm} (a)

積分 (a) 式，可得物體的全部動能:

\[U = \frac{1}{2} \int m (r \dot{\theta})^2 \] \hspace{1cm} (b)

因各質點的角速 \(\dot{\theta}\) 完全相同，所以
\[U = \frac{\theta^2}{2} \int r^2 \, dm = \frac{I \theta^2}{2} \quad (c) \]

其中，\(I = \int r^2 \, dm \) 是物體對於旋轉軸線的慣量矩。把 (a) 式跟 § 85(a) 式比較一下，我們會發現，旋轉物體的動能公式跟移動物體的動能公式在形式上完全相似。

§ 85 中已指出過，一個質點在經過一微分分位移 \(ds \) 後的「動能變化」應等於質點的所有外力在同位移上所做的「功」。對於一個旋轉的物體，我們可以把它所有各質點的外力所做的功加成總和，也可以把它所有各質點的動能變化加成總和。這樣，自然就得到這兩個總和必相等的結論。而且，因爲剛體內各質點間的內力自己會成對抵消，對任何位移都不能做功，所以旋轉體所有各質點動能變化的總和，也就等於所有外力在運動過程中所做的全部功。換句話說，旋轉體旋轉一旋轉角 \(d\theta \) 後，動能的全部變化必等於旋轉體上所有外力在旋轉過程中所做的全部功。

要計算外力所做的功，可以把外力分解於旋轉軸線方向和旋轉軸線的垂直平面上。平行旋轉軸的外力分力，因爲跟質點位移垂直，是不可能產生功的。現在命 \(S \) 代表質點 \(A \) 處的外力 \(F \) 在垂直旋轉軸線平面中的分力，它做的功是

\[r_1 \, d\theta \, S \sin(r_1, S) \quad (d) \]

所以外力所作的功，也可以用等於外力對於旋轉的力矩 \(S \sin(r_1, S) \) 乘以旋轉角 \(d\theta \) 的乘積。根據 (d) 式，整個旋轉體上所有外力在發生旋轉角 \(d\theta \) 過程中做的全部功是

\[\Sigma r_1 \, d\theta \, S \sin(r_1, S) = M d\theta \quad (e) \]

其中

\[M = \Sigma r_1 \, S \sin(r_1, S) \]
指所有外力对于旋转轴线的全部力矩。

根据以上的说明，一个旋转体绕固定轴线旋转一微分旋转角 $d\theta$ 后，它全部动能的变化就等于所有外力做的全部功，所以应用（c）(e)两式，可得

$$
M \frac{dI}{2} = d(\frac{I}{2})
$$

积分上式，得

$$
\frac{I}{2} \theta^2 - \frac{I}{2} \theta_0^2 = \int_{\theta_0}^{\theta} M d\theta
$$

(78)

(78) 式说明：一个刚体绕固定轴旋转一定角度后，速度由 θ_0 变为 θ，它的动能的全部变化，就等于刚体上所有外力在旋转轴自 θ_0 变为 θ 过程中所做的全部功。

（f）式也可改成底下的形式:

$$
\frac{d}{dt} \left(\frac{I}{2} \theta^2 \right) = M \frac{d\theta}{dt}
$$

(79)

这表示，动能的时间变化率应该跟外力所产生的功的时间变化率相等。外力做的功对于时间的变化率通常称为功率。功率的因次是「力 x 长度 / 时间」。

功率的单位，在工业上用 1 kg m/s。这一单位的 75 倍就是所谓的「一马力」。马力是英制单位，—匹马力代表每秒钟产生 550 哩磅功的功率。

例题和习题

510．第 558. 图中的弹道学，阻力等于 W_1，摩擦阻力等于 I_1，惯矩等于 I_0；惯性矩等于 W_1；

假设弹道学受到射击的弹道方向是 θ_m，问弹道学的速度等于多少？

解：假设枪弹落入后，弹道学所达到的最大速度是 θ_m，它的动能就是 $I_0 \theta_m^2 / 2$。弹道学达到最大直线度 θ 时，速度等于零；因有动能，所以(78) 式中的左端只是 $-I_0 \theta_m^2 / 2$ 一项。弹道学上的外力具有重力和摩擦的反作用力，所以外力对于弹道的力矩，不论 θ 何值，都等于 $-W c \sin \theta$（重力推力矩的作用方向跟 θ 的增加方向相反）。外力力矩所做的功，因此，是

$$
- \int_{0}^{\theta_m} W c \sin \theta d\theta = -W c (1 - \cos \theta_m)
$$
§89 剛體的定軸旋轉

代入 (78) 式，可得

\[\frac{I_0 \dot{\theta}}{2} = WC(1 - \cos \theta_m) \]

\[\dot{\theta}_o = r \sqrt{\frac{2gC(1 - \cos \theta_m)}{I_0}} \]

其中 \(I_0 \) 代表慣性矩對於轉動的慣性慣量。我們把上式代入 §88 第 500 項的結果中，

\[v = \frac{W_i}{W_1} \sqrt{\frac{2gC(1 - \cos \theta_m)}{I_0}} \]

511. 第 558 圖中的彈道線，全部長度是 \(W = 1 \) kg，重心 \(C \) 到懸點的距離是 \(r = 82 \) cm，小

振幅的震動週期是 \(\tau = 2.22 \) s。求頻率 \(0.03 \) kg，自水平方向以速度 \(v \) 飛入彈道運的長

度波中心處，設振幅震動的最大旋轉角 \(0 = 25^\circ \), 求 \(v \) 等於多少？

(解: \(v = 0.14 \) m/s)

512. 第 557 圖中 OA 構架 \(W \), 及 \(I \), 懸掛在 \(O \) 點；在圖平面中自由慣動。設 OA 構架巧

能自動調整位置達到水平位置，問 A 端的初始 \(v_0 \) 必須等於多少？

(解: \(v_0 = \sqrt{3W/I} \))

513. 第 512a 圖中的均軸，因直軸的慣矩 \(I \), 實際上不可能等於零，所

以(78) 式所得的運動週期並不十分精確。現在要求正確的週期值

\(\tau \)，試問 \(I_0 \) 的影響應當怎樣計算？

解: 假定直軸時，直軸中各截面的慣性矩正比於這一切直軸和固定端的距

離，那么直軸上距離固定端遠於 \(x \) 處的一段微分長度 \(dx \) 的角速就是

\[\frac{I_0 dx}{\frac{2I}{r}} \left(\frac{x}{r} \right)^3 \]

所以系統的總慣能將等於

\[\frac{I_0 \dot{\theta}_o^2}{2} + \int_0^l \frac{I_0 dx}{2I} \left(\frac{x}{r} \right)^3 \dot{\theta}_o^2 \left(\frac{x}{r} \right)^2 \left(\sqrt{1 + \frac{I}{I_0}} \right) \]

(9)

可見，計算一個直軸週期，如果需要考慮直軸本身的影響，只要在固定端處中加入三分之一
的直軸慣性就可以。

514. 第 512a 圖的直軸的慣性是 \(W = 2.8 \) kg，半徑是 \(r = 25 \) cm；轉軸直軸，直徑是 \(d = 2.5 \) cm，

長度是 \(l = 130 \) cm，單位面積的慣性 \(W = 0.00785 \) kg/cm²，阻力矩係數 \(G = 8.1(10)^6 \)

\(\) kg/cm²。試求整一週期的旋轉週期等於多大？

(解: \(f = 28.8 \) 次/s)
515. 試求第 531 圖中，重錘 Q 自靜止落下時所達到的速度 v 跟位移 (以最初位置為基點) 的公式關係。

解：最初，全系統的動能等於重錘 Q 落下一段距離 x 後，重錘得到一速度 v，重錘得到一角速度 ω = v/r，所以全系統在這段時的動能是

$$\frac{Q}{g} \frac{v^2}{2} + \frac{W}{g} \frac{r^2}{2} \frac{v^2}{v^2} \frac{v^2}{2} \frac{Q}{2g} = \frac{Q + W}{2}$$

(1)

因最終動能等於重，所以這一動能也就是全系統動能的全部變化。不計軸承摩擦力，所有外力所做的功是

$$Qx$$

(1)

全部動能變化(A)應跟外力所做的功(i)相同，故得

$$\frac{v^2}{2g} \left(Q + \frac{W}{2} \right) = Qx$$

或

$$v = \sqrt{2gx \left(\frac{Q}{Q + \frac{W}{2}} \right)}$$

516. 試應用功力公式解第 474 题。

517. 一重 W，高 h 的正固定體，牛頓是 r，可以繞中心軸 o 作自由旋轉 (第 587 圖)。 固定體表面刻有一個光滑的虹吸模型 ABCDE。 模型的水平端是 φ。有一支 Q 的質點自 A 逐點及接續下降。固定體原本靜止，質點落下時，開始繞 o 軸旋轉，試求質點在 E 端離開圓形時，固定體的角速度 ω 等於多大？所有摩擦力完全可以不計。

解：質點離開圓形時，質量對於 o 軸的角動量是

$$\frac{W}{g} \frac{r^2}{2} \omega$$

質點對於 o 軸的角動量 (或動量矩) 是

$$\frac{Q}{g} \frac{r}{r} (r \omega - v \cos \phi)$$

其中 ω 質點對於固定體表面的旋轉。因所有外力對於 o 軸的力矩為零，所以等於零，因此全系統最初的角動量等於零，所以根據角動量定理，可得

$$\frac{W}{g} \frac{r^2}{2} \omega + \frac{Q}{g} \frac{r^2}{2} \omega - \frac{Q}{g} v \cos \phi = 0$$

(1)

質點離開時，固定體的動能是

$$\frac{W}{g} \frac{r^2}{2} \omega^2$$

質點的動能是
4891

剛體的定軸旋轉

\[
\frac{Q}{y} \left(r \omega - v \cos \phi \right)^2 + \frac{Q}{g} \frac{v^2 \sin^2 \phi}{2}
\]

但假若全系统的位能皆為零，所以以上兩式的和及就是全系統的全部動能變化。這一變化
的來源是重力 \(Q \) 爲等高高度 \(h \) 所做的功 \(\cdot h \)，所以

\[
\frac{W_1^2 \omega^2}{4J} + \frac{Q}{g} \frac{(r \omega - v \cos \phi)^2}{2} + \frac{Q}{g} \frac{v^2 \sin^2 \phi}{2} = \phi h
\]

（2）

消去（1）式中的 \(v \) 就得到

\[
\omega = \sqrt{2gh} \cdot \frac{1}{\left(\frac{W}{2Q} \right) \sqrt{\frac{W}{W + 2Q} + \tan^2 \phi}}
\]
第十三章 剛體的平面運動

100. 剛體平面運動的運動幾何

一個運動的剛體在運動過程中，始終有一個平面跟一固定平面相合，這樣，它的運動就叫作平面運動。在這種運動狀態下，剛體內每一個質點都是沿一根平行於固定平面的平面曲線運動。最簡單的例子像一個正圓柱體或一個圓盤在光滑平面上的滾轉，如果中心軸線始終保持本身的相互平行，那這一圓柱或圓盤就是在作平面運動。剛體的這種運動可以完全由剛體在它旋轉軸線的垂直平面上的投影圖形的運動狀況來決定。這一平面圖形的位置又可以由其中一點的位置以及圖形繞過這一點而垂直於運動平面的軸線旋轉的旋轉角來決定。例如，第 569 圖所表示的投影圖形，它們的位置就可以由其中任意一點 A 的坐標值 x_A 和 y_A，以及圖形中任意一直線 AB 跟 x 軸方向所構成的旋轉角 θ 完全決定。這種任意選定的 A 點通常叫做極點。圖形在 xy 平面上運動時，坐標值 x_A, y_A 和旋轉角 θ 隨著時間不斷變化。只要知道表示它們變化情況的底下三式:

$$
{x_A} = f_1(t), \quad {y_A} = f_2(t), \quad \theta = f_3(t)
$$

那運動狀態就已經完全確定了。
§ 108

剛體的平面運動

一個剛體的平面運動，如果已知它的(80)式，則剛體上任何一點的速度和加速度都是很容易決定的。譬如第569a圖中的P點，它跟極點A的距離r以及AP線跟AB線的交角α是它在圖形中的坐標，令φ=α+θ，就可得這P點在運動平面中的坐標：

\[
\begin{align*}
 x &= x_a + r \cos \varphi \\
 y &= y_a + r \sin \varphi
\end{align*}
\]

對時間微分上式可得，因r是一個常數，隨時間變化的只有x_a, y_a和φ，故得

\[
\begin{align*}
 \dot{x} &= \dot{x}_a - r \dot{\varphi} \sin \varphi \\
 \dot{y} &= \dot{y}_a - r \dot{\varphi} \cos \varphi
\end{align*}
\]

（b）式說明：P點在x和y軸方向的分速度分別等於極點A在同方向的分速度同P點因物體繞A點旋轉而產生的速度rφ，在同方向的分速度的相對和。這也就是說，P點的速度乃是極點A的速度同P點對於A點的相對速度的向量和（幾何和）。

將（a）式對時間連續微分兩次，可得P點的兩個分加速度：

\[
\begin{align*}
 \ddot{x} &= \ddot{x}_a - r \ddot{\varphi} \cos \varphi - r \dot{\varphi} \sin \varphi \\
 \ddot{y} &= \ddot{y}_a - r \ddot{\varphi} \sin \varphi + r \dot{\varphi} \cos \varphi
\end{align*}
\]

（c）式右邊第一項是極點A在x和y軸方向的分加速度。第二項是P點對於A點的法線加速度rφ²，在兩垂直方向的分加速度。第三項是P點對於A點的切線加速度在兩垂直方向的分加速度。後二者都是因物體繞A點旋轉而引起的P點相對加速度，所以我們也可以說：P點的加速度就是極點A的加速度同P點對於極點的相對加速度的向量和。總而言之，只要已知平面運動的(80)式，剛體上任何一點的速度和加速度就都可以完全決定。

例題和習題

518。一個正圓柱體沿水平平面作無滑動的運動，設圓柱的中心軸C在某一時刻的速度是\(\dot{x} \)（見第570圖），求按圓柱的D、E兩點在這一時刻的速度。

解：因圓柱同平面間無滑動滑動，故圓柱繞C點旋轉的角速度是\(\dot{\theta} = \frac{\dot{x}}{r} \)，定C點為極點。
519. 梯第 570 圖中, 圖桂中心軸 C 在某時刻除開有速度 \(v_0 \) 外, 還有一水平加速度 \(\dot{x}_0 \)。

試求 E 點加速度在水平和鉛直方向的分加速度 \(\ddot{x}_e \) 和 \(\ddot{y}_e \)。

(解: \(\ddot{x}_e = \ddot{x}_0 + \frac{\ddot{x}_0^2}{r}, \ddot{y}_e = \ddot{y}_0 \))

520. 一 AB 杆, 兩端分別固定在地面和地面上如第 571 圖。A 端以不變速度 \(v_a \) 向圈中所示的方心沿地面運動。問 AB 桿在地面成 \(\theta \) 角時, 它的角速度以及 B 端沿線面下降的速度 \(v_b \) 各等於多少?

(解: \(\omega = \frac{v_a}{r \sin \theta}, \varphi = \frac{v_a}{r \sin \theta} \))

521. 第 572 圖中, AB 桿的 A 端以固定的速度 \(v_a \) 沿地面運動。試求 AB 桿的角速度 \(\omega \) 同 AB 桿沿水平方向的夾角 \(\theta \) 間的關係。

(解: \(\omega = \frac{v_a}{r \sin \theta} \))
§101. 路程的平面運動

522. 第 573 圖中的曲線滑, 曲線半徑 OA = r = 25cm, 推桿 AB 兩 l = 60cm, 隸桿固定是
ω = 60π k/s。設桿中 θ = 45°, 間活桿的速度 n 何加速度 a 何安排如何決定?
解: 先用比例尺繪製出原動桿的圖形如第 573a 圖。然後, 恢復向量圖如第 573b 圖和第
573c 圖, 即可得 n 何 a 何的代表向量。它們的等式是:

\[v_b = 435m/s, \quad a_b = 0150m/s^2 \]

523. 第 574 圖中 AA 何 BB 兩桿的速度各為 v1 何 v2。銅絳在兩鍿桿間的錘盤不何滑
動，只在銅絳桿的角速度 a 何中心 C 的速度 c 何。題中假定 v1 > v2。
解: m 何 n 點的速度, 鍿錘盤與銅絳桿的角速度相等, 設一定也等於 c 何 v2。選定 C 作爲
錘點, 從 m 何 n 點對於 C 點的相對速度 aθ, 設

\[v_1 = v_c + aθ \]
\[v_2 = v_c - aθ \]

解以上兩式, 得

\[v_p = \frac{v_1 + v_2}{2}, \quad a = \frac{v_1 - v_2}{2a} \]

第 573 圖

第 574 圖

101. 瞬時中心

一個平面圖形的位移, 據第 §100 的討論, 在任何情形下都可以看
作由它的「移動」跟它繞極點的「轉動」所組合而成的。譬如第 575
圖中的圖形, 它由圖中 AB 位置運動到 A_1B_1 位置, 我們設想 A 是極
點, 讓圖形先由 AB 位置平行移動到圖中 A_1B_1' 位置; 然後, 又繞極點
旋轉θ 角, 它顯然就可以達到 A_1B_1 位置。不過, 設想 B 是極點, 圖
形先平行移動到 B_1A_1' 位置, 再繞極點旋轉θ 角, 結果還是同一; 圖形
同樣也可達到 A_1B_1 位置。可見圖形的任何平面運動都可以看做是移
動和旋轉的結合。此外，還可以看到，圖形在移動過程中，它極點的位移要看極點的位置如何而定；而它繞極點的旋轉角θ卻完全跟極點的
位置無關，永遠是一個固定值。極點的位移既然要看它們的位置而定，
那自然一定能找到一個位移會等於零的極點位置。例如，第575圖中
的G點，它就是這樣一個極點。圖形只要繞C點旋轉θ角，就能直
接到達A₁B₁位置。至於C點的位置，我們只要引AA₁和BB₁兩連
接線的垂直半分線MC和NC，就可以由兩線的交點來決定。因
為ACAB跟AC₁B₁全等，所以可以由圖形繞C點的旋轉把它們燮合起
來。AB跟A₁B₁既能在位重合，先後兩位置的圖形自然也可完全重合。

研究物體的切面圖形在運動平面中所發生的運動，我們可以把整
個連續不斷的運動看成由一系列的無限小位移所構成。這一系列的位
移次第發生於無限短暫的一瞬間又一瞬間，根據前面的討論，又可看作
是圖形在每一瞬間繞一個特定的極點發生無限小旋轉的結果。這種特
定的極點通常就稱為運動的「瞬時中心」。例如第518題（§100）的圓柱，
因為它只有旋轉，沒有滑動，所以跟水平平面接觸的那一點，速度始終
等於零，那一接觸點就是運動的「瞬時中心」。瞬時中心的意義，圓柱
邊上任意一點的速度當然一定在這一點跟瞬時中心連接線的垂直方
向，大小等於連接線的長度跟圓柱角速的乘積。圓柱運動時，瞬時中心
的位置也隨它沿AB平面運動，所以瞬時中心跟§100所說的「極點」
完全不同。極點在圖形中是一個固定點，瞬時中心卻是不斷變化動的。

已知圖形中任意兩點在某一瞬刻的速度，瞬時中心的位置就容
易確定。例如第576圖中一根長l的AB條，它兩端A，B分別沿x，
y 軸運動。因 A 端速度在水平方向，所以瞬時中心必須在過 A 點的鉛垂線上。另一方面，因 B 端速度在鉛垂方向，瞬時中心又必須在過 B 點的水平線上，所以瞬時中心 C 非在 A 點鉛垂線和 B 點水平線的交點上不可。令 x, y 代表 C 點座標，按圖中關係可得

$$x^2 + y^2 = l^2$$

這表示瞬時中心 C 是沿著一個以原點為圓心，l 爲半徑的圓周在變動。

再如第 577 圖中原動機的推桿 AB。它 A 端沿半徑 OA 的垂直方向運動，B 端沿鉛垂方向運動，所以瞬時中心 C 就在過 B 點的水平線跟 OA 延長線的交點上。

第 576 圖

第 577 圖

若已知一點的速度大小和速度方向以及另外一點的速度方向，那應用瞬時中心來決定切面圖形的角速度，以及其中各點的速度，是最方便。例如第 577 圖中，若已知 OA 的角速 ω，我們就知道了 A 點的速度大小和速度方向，另外，B 點速度是鉛垂方向，也是知道的，按以上方法確定瞬時中心 C 後，我們就可以把推桿 AB 在這瞬刻的運動看作繞 C 點的旋轉。命 θ 代表 AB 桿的角速，可得

$$AC \cdot \theta = r \omega$$

所以

$$\theta = \frac{r \omega}{AC}$$

第 577 圖如果是按比例畫成的，AC 就可以直接在圖上量出來。根據
上式算出 θ 後，${B}$ 點的速度 v_b 又可以按下式計算:

$$v_b = BC \cdot \dot{\theta}$$

BC 當然也可以由圖上量出來。同樣，推論 AB 上任何一點 D 的速度 v_d 也可以決定如下:

$$v_d = DC \cdot \dot{\theta}$$

它的方向垂直於 DC。

例題和習題

524. 試求第 578 圖中曲軸 ${O_1A}$ 和 ${O_2B}$ 的角速度 ω_1 和 ω_2 的比值等於多大?

解：瞬時中心 C 的位置如圖，15

$$\frac{r_1 \omega_1}{AC} = \frac{r_2 \omega_2}{BC}$$

恆得

$$\frac{\omega_1}{\omega_2} = \frac{r_2}{r_1} \cdot \frac{AC}{BC}$$

若已知 r_1, r_2, θ_1, θ_2 和 a 的大小，我們按比例畫出圖來，由圖上量出 AC 和 BC 的長度，就可以算出所求的比值。

525. AB 為長 l，兩端分別沿成 α 角的兩平面運動如第 579 圖。A 點的水平速度 v_a

固定不變，試證明瞬時中心的軌跡是一個以 O 為圓心，$l/\sin \alpha$ 爲半徑的圓周。

526. 假定第 576 圖的 AB 按變它的最高位置開始運動。A 建沿 x 軸等速運動，速度等於 v_a。試求 AB 的角加速度 $\ddot{\theta}$ 與時間的函數關係。

解：瞬時中心 C 已決定。AB 端的角速度是 $\dot{\theta} = v_a AC$。從圖上可以得到

$$AC = \sqrt{l^2 - v_a^2 \sin^2 \alpha}$$

故

$$\dot{\theta} = \frac{v_a}{\sqrt{l^2 - v_a^2 \sin^2 \alpha}}$$
§102. 與設的平面運動

對時間微分上式，就得

$$\dot{\theta} = \frac{v_a}{(r - v_c \cos \theta)^{3/2}}$$

527. AB 絲繩在一一個半徑等於 r 的半圓柱上，如第 580 圖，A 點以速度 v_a 沿水平面做運動。設求 AB 的角速度 θ 跟旋轉角 θ 的關係函數。

$$\dot{\theta} = \frac{v_a \sin \theta}{r \cos \theta}$$

第 580 圖

102. 平面運動中移動和轉動的相互獨立性

重心的運動

第 581 圖中是一個物體的通過重心 C 而平行於運動平面的切面圖形。討論這一物體在 xy 平面中的運動，可選定重心 C 作爲樞點。C 點坐標是 x_c 和 y_c。現在在 C 點再建立一個平行於 x, y 軸並且隨著物體移動的坐標系 ξ, η。這樣，物體中任意一點 A 的坐標，按 §100 中 (a) 式，就將是:

$$\begin{align*}
 x &= x_c + \xi \\
 y &= y_c + \eta
\end{align*}$$

第 581 圖

在圖上很明顯的看得出，其中

$$\xi = r \cos \varphi \quad \text{和} \quad \eta = r \sin \varphi$$

物體發生移動時，x_c 和 y_c 不斷變化；轉動時，ξ, η 不斷變化。

要決定 A 點速度在 x 和 y 軸方向的投影只要對時間微分 (a) 式，就可得:
\[\begin{align*}
\dot{x} &= \ddot{x}_e + \xi \\
\dot{y} &= \ddot{y}_e + \eta
\end{align*} \] (b)

再對時間微分(b)式，又可得 A 點加速度在 x 和 y 軸方向的投影：
\[\begin{align*}
\ddot{x} &= \ddot{x}_e + \xi \\
\ddot{y} &= \ddot{y}_e + \eta
\end{align*} \] (c)

若 A 處的質點的質量等於 \(dm \)，那末這一質點的運動方程式就是：
\[\begin{align*}
dm(\dot{x}_e + \xi) &= X_i \\
dm(\dot{y}_e + \eta) &= Y_i
\end{align*} \] (d)

其中 \(X_i, Y_i \) 代表質點上各自分力在兩軸線方向的分力。

把物體中所有各質點的運動方程式(d)加成總和，就可得：
\[\begin{align*}
\Sigma dm(\dot{x}_e + \xi) &= \Sigma X_i = X \\
\Sigma dm(\dot{y}_e + \eta) &= \Sigma Y_i = Y
\end{align*} \] (e)

其中 \(X, Y \) 是物體上所有外力的合力在兩軸線方向的分力。因爲內力是質點間的作用力和反作用力，自己會成對抵消，對物體運動是沒有任何影響的。

因 \(\xi, \eta \) 是通過物體重心的兩軸線，所以
\[\begin{align*}
\Sigma \xi \ dm &= 0 \\
\Sigma \eta \ dm &= 0
\end{align*} \]

因之
\[\begin{align*}
\Sigma \ddot{x} \ dm &= 0 \\
\Sigma \ddot{y} \ dm &= 0
\end{align*} \] (f)

以(f)最後兩式代入(c)式，就可得：
\[\frac{W}{g} \dot{x}_e = X \quad \text{和} \quad \frac{W}{g} \dot{y}_e = Y \] (81)

其中 \(W/g = \Sigma dm \) 是物體的全部質量。我們把(81)式跟質點運動方程式比較一下立刻就知道，物體發生平面運動時，它重心的運動完全跟所有質量集結在這重心點，所有外力也按原來方向集中作用在這重心
點的情形一樣。此外，因物體上任一個力都能由作用在重心上一個

量力和另外一個力偶來代替，全部外力因此也可以由作用在物體重心
的它們的合力和一個總力偶來代表。(81)式說明了，這外力合力產生
的重心運動完全跟總力偶產生的旋轉無關。

以上的結論雖然是由假定物體作平面運動而得到的。實際上，這一結論也適用於物體的一般運動。我們可以很容易證明，任何物體的

重心運動總永遠像物體質是全部收集於重心並且所有外力也集中在作用
在重心的質點的運動一樣。

根據以上討論，作用在一個物體或一系物體上的外力，若是合力等
於零，那這一個物體或一系物體的重心，就必然只可能作均勻直線運
動。譬如太陽系，若不計其他恆星的引力，那根據這個道理就是不研究
各行星和太陽的個別運動，也可以知道：全系統的重心一定在作均勻直
線運動。

再如炮彈的運動，我們同樣也可以斷定，它的任何旋轉都不會影響
它重心的運動，它重心純然像一個受重力和空氣阻力集中作用的質點。
爆炸時，炮彈上只有內力在變化，自全系統來看內力的總和是等於零。
所以，雖然炮彈飛遠，但炮彈重心仍跟未爆炸前相同，繼續原来的運動，
是可以斷言的。

繞重心軸線的旋轉

在討論平面運動時，物體的轉動，可應用§96的角動量定理來說明。物體繞垂直於xy平面的軸線z旋轉時，它角動量的变化率應當等於所有外力對同軸的力矩。

計算物體(第581圖)的角動量，可令dm代表在任→A點的質點

的質量。這一質點對於圖中z軸的動量矩按定義應該為

\[dm(\dot{y}x - \dot{x}y) \] (a)

根據(a)(b)兩式，這(g)式又應當等於

\[dm \left[(\dot{x} + \dot{\eta})(\dot{y} + \dot{\xi}) - (\dot{x} + \dot{\xi})(\dot{y} + \dot{\eta}) \right] \] (b)
把物體上所有各質點的動量矩加成總和，就得到整個物體對 z 軸的動量矩如下:

\[M_z = \sum dm \left[(\dot{y}_c + \dot{\eta})(x_c + \xi) - (\dot{x}_c + \xi)(y_c + \eta) \right] = \]

\[\sum dm(x_c\dot{y}_c - y_c\dot{x}_c) + \sum dm(\dot{\eta}\xi - \dot{\xi}\eta) + x_c\sum \dot{\eta}dm + y_c\sum \dot{\xi}dm - y_c\sum \dot{\xi}dm - x_c\sum \dot{\eta}dm \]

按 (i) 式，上式最後四項都應用等於零，故得:

\[M_z = \frac{W}{\alpha}(x_c\dot{y}_c - y_c\dot{x}_c) + \sum (\dot{\eta}\xi - \dot{\xi}\eta)dm \] \hspace{1cm} (i)

其中 \(W/\alpha = \sum dm \) 是物體的全部質量。 (i) 式右邊，第一項代表在物體重心處的一個質點的動量矩，這質點的質量跟物體全部質量相等；第二項代表物體對於過重心而平行於 z 軸的軸線的角動量，這角動量由物體繞重心 C 旋轉而來。可見一個作平面運動的物體，它對於垂直於運動平面的軸線的角動量是由底下兩部份構成的：

(1) 把物體看作一個全部質量 \(W/\alpha \) 集結在物體重心的質點，而得到的對於這一軸線的動量矩。

(2) 物體對於通過重心而垂直於運動平面一軸線的角動量。

若令 \(\theta \) 代表物體對於過 C 點而垂直於運動平面的軸線的角速度，(i) 式第二項就等於 \(I_\theta \)，跟繞固定軸線旋轉的剛體的角動量一樣。所以，(i) 式可化為

\[M_z = \frac{W}{\alpha}(x_c\dot{y}_c - y_c\dot{x}_c) + I_\theta \] \hspace{1cm} (i)

其中 \(I_\theta \) 指物體對於過重心 C 而垂直於運動平面的軸線的動量矩。

現在應用角動量定理命 \(M_z \) 的變化率等於所有外力對 z 軸的全部力矩 \(M_z \)，就可得

\[\frac{d}{dt} \left[\frac{W}{\alpha}(x_c\dot{y}_c - y_c\dot{x}_c) + I_\theta \right] = M_z = Xx_c - Yy_c + M_e \]

其中 \(X \) 和 \(Y \) 分別指外力合力在 x 和 y 軸方向的分力；\(M_e \) 指這一合
力對重心 C 的力矩。式經微分後，又可寫成如下形式：

$$
\frac{d}{dt}(x_c\dot{y}_c - y_c\dot{x}_c) + I_c\ddot{\gamma} = Yx_c - Xy_c + M_c
$$

(1)

現在再回頭看(81)式，以 y_c, x_c 乘其中第一、第二兩式，然後相減就可得

$$
\frac{d}{dt}(x_c\dot{y}_c - y_c\dot{x}_c) = Yx_c - Xy_c
$$

(2)

比較(1)(2)兩式，立刻就知道：

$$
I_c\ddot{\gamma} = M_c
$$

(82)

由這一結果可得出兩個重要的結論：

(1) (82) 式跟剛體繞定軸旋轉的運動方程式在形式上完全相同。這說明：物體上的外力所產生的旋轉，跟重心軸線是一根固定軸線時一樣，所以討論物體繞重心的旋轉運動，可以不加慮重心的運動，可以把重心看做靜止不動。

(2) (82) 式也可以改寫成底下這樣的形式：

$$
\frac{d}{dt}(I_c\ddot{\gamma}) = M_c
$$

(82')

可見在剛體的平面運動中，對於一根垂直於運動平面的重心軸線，不論它是不是一根固定軸線，動量定理總是同樣成立的。

103. 剛體平面運動的運動方程式

§100 中已說明過，要完全決定一個剛體的平面運動，需要有三個坐標值：兩個決定剛體中一點的位置，一個決定剛體對於這一點固定軸的旋轉角。計算這三個坐標值，可應用在 §102 導出的(81) (82) 兩式，所以剛體的平面運動方程式歸納起來就是底下三式：

$$
\begin{align*}
\frac{W}{\sigma} x_c & = X \\
\frac{W}{\sigma} y_c & = Y \\
I_c\ddot{\gamma} & = M_c
\end{align*}
$$

(83)
§ 102. 中已指出過，這些運動方程式表明了如下兩個事實：第一，物體重心的運動，完全跟重心處的一個質量等於物體全部質量的質點，在推移到這一點的物體上全部外力的作用下所發生的運動相同。第二，物體的旋轉又完全跟重心軸線是一根固定軸線的旋轉相同。因此，在物體的平面運動中，如何決定物體的重心運動，不過是把一個簡單的質點曲線運動問題；如何決定物體的旋轉，也只是一個簡單的剛體繞定軸旋轉問題。

以上應用角動量定理導出（83）式的過程中，我們用了固定軸 z 作為軸線。其實，用其他軸線，這個式子同樣可以成立。譬如，我們知道物體對於 x 或 y 軸的角動量變化率，那物體上所有外力對於這兩個定軸的力矩就可以自相應的變化率決定。這些外力，假使存在的話，也僅僅是運動平面的垂直平面中的一個力偶，不會在（83）式中出現。它們代表把物體運動限制在平行於某一平面所必需的約束力。不過在工程問題中，重心的運動平面的多數都是物體的對稱平面，所以通過重心 C而垂直於運動平面的軸線也就是物體的慣性主軸。這樣，物體就不需要垂直運動平面的約束力來維持它的平面運動了。

值得注意的是：（83）式中只出現了物體的質量以及它對重心軸線的情矩：物體實際形狀如何並不直接影響運動方程式；一部運動狀況。因此，我們可以任意用一頑物體代替原來物體，只要兩者的質量、重心位置和對重心軸線的情矩三樣都相同，運動就不會改變。

例如，一個重心的運動平面就是對稱面的物體，這物體就可以如第 582 圖用剛性連結的兩個質點來代替。這兩質點同在通過物體重心的直線上，它們的重量 W_1 和 W_2 應該

$$W_1 + W_2 = W$$

（a）

其中 W 是物體的重量。兩質點中有一個質點，它到重心 C 的距離 a 是可以任意選擇的。不過第二個質點到 C 的距離 b 就必須

$$W_1 a = W_2 b$$

（b）

才能使重心位置不改變。此外，因慣量 I_c 也不能改變，所以還必須

第 582 圖
$$I_c = \frac{W_1 a^2}{g} + \frac{W_2 b^2}{g}$$ \((c) \)

由(a) (b) (c)三式，W_1, W_2 和 b 就可决定如下：

$$b = \frac{i_c}{a}, \quad W_1 = \frac{W i_c}{a^2 + i_c^2}, \quad W_2 = \frac{W a^2}{a^2 + i_c^2}$$ \((d) \)

這種把物體簡化爲兩個質點的方法，對於研究桿形物體(譬如，往复式發動機的推桿)的運動最有用。

應用(83)式，可解決兩種問題：(1) 已知物體的運動，求產生這運動的作用力；(2) 已知作用力，求所產生的物體運動。

例題和習題

528. 一圓柱體 W_1，沿一斜面無滑動下落，其滑動摩擦係數等於 μ，試求其個重心 C 的加速度 \ddot{x}_C 及其不滑動的最大斜面傾斜角 α 各等於多大？

解：選定 x, y 為軸系如圖，令 \ddot{x} 代表離重心的加速度，

根據(83)式，得

$$\begin{cases} \frac{W}{g} \ddot{x}_C = W \sin \alpha - F \\ \frac{W}{g} \ddot{y}_C = W \cos \alpha - R = 0 \\ \ddot{z}_C = F \end{cases}$$ \((c) \)

式中 F 是接觸點 A 處的全部摩阻力，R 是斜面物體的反作用力。圓柱不沿斜面滑動，接觸點 A 的速度自然在任何時刻都等於零，可見 A 點就是運動的瞬時中心。因此，圓柱的加速度是 $\ddot{z}_C = \alpha / r$，代入(c)中最後一式，得

$$I_c \ddot{r} = Fr$$ \((f) \)

消去(c)的第一式和(f)式中的摩阻力 F 得

$$\left(\frac{W}{g} \frac{1}{i_c^2} \right) \ddot{x}_C = W \sin \alpha$$ \((g) \)

可見重心 C 滑斜面等於下滑的加速度是

$$\ddot{x}_C = \frac{g \sin \alpha}{1 + \frac{i_c^2}{r^2}}$$ \((h) \)

其中 i_c 為物體對於中心軸線 C 的慣性矩。
如果斜面沒有摩擦力，物體就將按照角度 θ 做等加速度運動。而物體的加速度是 $g \sin \alpha$。物體因摩擦力關係作非等角運動時，他的運動加速度根據 (1) 式可按下式這一比值減少：

$$\frac{g \sin \alpha}{r^2 + i^2}$$

(1)

物體若是一個實心球體，$i^2 = \frac{1}{2} r^2$，這比值等於 $\frac{2}{3}$；物體若是一個質點，$i^2 = r^2$，這比值約等於 $\frac{1}{2}$；物體若是一個實心球，$i^2 = \frac{2}{5} r^2$，這比值就等於 $\frac{5}{7}$。因此，這三種形狀的物體同時自同一角度下憑滑動滑下，則實心球最快，質點其次，質球最慢。

加速度 a 決定後，代入 (e) 中第一式可得到全部摩擦力

$$F = \frac{W \theta \sin \alpha}{r^2 + i^2}$$

(2)

物體沿斜面滑下，如完全沒有滑動，那只有摩擦力 F 小於它的最大值 $\mu W \cos \alpha$ 時才可能；也就是說，必須

$$\frac{W \theta \sin \alpha}{r^2 + i^2} < \mu W \cos \alpha$$

或

$$\tan \alpha < \frac{\mu (r^2 + i^2)}{i^2}$$

(3)

斜面的傾斜角度不能滿足 (3) 式，物體就必然會連繩帶滑而下。這樣，物體加速度 a 跟物體角加速度 θ 就沒有關係上的關係。換句話說，i 不會等於 $r \theta \sin \alpha$。在這種情形下，我們必須將 $F = \mu W \cos \alpha$，代入 (e) 中第一式及第三式內，才能決定這兩種加速度的大小。

523. 一實心質體和一圓球，半徑相同，同時在斜面上，由靜止出發，沿斜面滑動。求滑到通過斜面底端時，物體離它頂端 1.2 m 處，開斜面底端 s 等於多少？

(解：$s = 18 \text{ m}$)

530. 一實心圓柱和一圆球，重量相等於 W，半徑相等於 r，由同一質量可以不計的 AB 條桿及

(解：$x = \frac{4}{7} y \sin \alpha$，$S = \frac{W}{7} \sin \alpha$ 增力)

531. 第 535a 圖中是一一 V 形槽。標軸跟水平面成 α 角度。一質量 W 的圓球，半徑等於 r，沿標軸滑動。槽的截面如第 535b 圖。標軸和槽在 AB 兩接觸的摩擦係數是 μ。求摩擦中心的加速度 x_e 及摩擦不至於發生滑動的 α 角度各是多少？

(解：$x_e = \frac{\mu \sin \alpha}{1 + \frac{2}{h} \frac{1}{\sin \frac{\beta}{2}}}$，$\tan \alpha < \mu \left(\frac{\mu}{2} \sin \frac{\beta}{2} + \frac{1}{\sin \frac{\beta}{2}} \right)$)
§133 剛體的平面運動

533. 一個半徑等於 \(r \)，質量等於 \(W \) 的球柱，由一組彈線在它表面的鋼子捆在一個定點 \(B \) 的下面如第 586 圖。現在讓它自由滑行。覈證明它的重心 \(C \) 一定是沿線作線下降，求出 \(C \) 的加速度 \(\ddot{x} \) 和鋼子的張力：各等於多大？

(解：\(\ddot{x} = \frac{2}{3} g, S = \frac{W}{3} \))

533. 我們沿一磨盤係數等於 \(\mu \) 的水平平面以初速 \(v_0 \) 初角度 \(\theta_0 \) 射出一個半徑等於 \(r \) 的圓球(第 587 圖)。試討論這圓球的運動情形。

解：若 \(v_0 = 0, A \) 點的速度等於零，\(A \) 點就是運動的瞬時中心。在這情形下，圓球只沿轉而不滑動；重心速度的大小是一個固定值。

若 \(v_0 > v_0 \), 接觸點 \(A \) 必然有滑動發生，作用在 \(A \) 點的全部摩擦力就將是圖中的 \(F = \mu W \)。圓球運動方程式因此是:

\[
\begin{align*}
\frac{W}{y} \ddot{x} &= -\mu W, \quad \frac{2}{5} \frac{W}{y} \ddot{\theta} = \mu W r
\end{align*}
\]

積分後得:

\[
\begin{align*}
x_c &= v_0 - \mu y t, \quad \theta = \theta_0 + \frac{5 \mu W t}{2 r}
\end{align*}
\]

這兩式只適用於圓球速度達到 \(x_c = r \) 以前。換句話說，等到

\[
v_0 - \mu y t = r \theta_0 + \frac{5 \mu W t}{2 r}
\]
或

\[t = \frac{v_0 - r_0}{\omega_0 \left(1 + \frac{3}{2} \right)} \] \hspace{1cm} (m)

略，圆盘将开始作圆柱的运动。之后，重力以固定速度与圆筒前进。其值可以由(l)、(m)两式计算，结果是:

\[x_c = \frac{5}{7}v_0 + \frac{2}{7}r_0 \] \hspace{1cm} (n)

若 \(v_0 < r_0 \)，即 A 点还没有滑动发生，不过摩擦力 \(F = \mu W \) 却跟圆筒方向相反。

圆柱运动方程式是:

\[\frac{W}{g} x_c = W \mu, \quad \frac{2}{5} W r_0 \dot{\theta} = - \mu W r \]

积分后，得:

\[x_c = v_0 + \mu gt, \quad \dot{\theta} = \frac{5 \mu \dot{z}}{2r} \]

这两式直到 \(x_c = r \theta \) 时成立。换句话说，直到 \(t = \frac{2}{7} \frac{r_0 - v_0}{\mu g} \) 时，圆盘才开始作纯滑动运动，重力速度与同 (m) 式一样，是

\[x_c = \frac{5}{7}v_0 + \frac{2}{7}r_0 \]

531. 一个半径等于 \(r \)，质量等于 \(W \) 的圆柱在一个半径等於 \(a \) 的空圈筒内作无滑动的圆柱运动 (第 538 图)。假设圆柱离开平衡位置时微小，那么它在圆筒中的运动周期等於多大?

解：由图中可看到，圆柱重心 C 的运动路线是一个半径等於 \((a - r) \) 的圆弧。作用在圆柱上的外力是重力 \(W \) 和圆筒反作用力 \(R \) 以及一个沿切线方向作用的摩擦力 \(F \)。研究圆柱 C 的运动，可以不管圆柱的转动。

为方便起见，我们分解 C 点加速度於运动路线的切线和法线方向。此外，现今 \(\theta \) 代表圆柱所在位置和平衡位置所转的中心角，可得:

\[a_t = (a - r) \ddot{\theta}, \quad a_n = \ddot{\theta} (a - r) \]

把上式代入运动方程式，得:

\[\begin{align*}
\frac{W}{g} (a - r) \ddot{\theta} & = -W \sin \theta + F \\
\frac{W}{g} (a - r) \ddot{\theta} & = R - W \cos \theta
\end{align*} \] \hspace{1cm} (e)

之后，考察圆柱重心轴线的旋转，可得
第31§ 關於的平面運動

\[\frac{W_y}{g} \delta \dot{\theta} = -Fr \]

（p）

四圓柱和圓筒間並無摩擦，OA 弧長原等於 AD 弧，B 點是圓柱原本在平衡位置 O
跟圓筒的接觸點，故 \(r (\theta + \varphi) = a \varphi \)，也就是

\[\theta = \frac{a - r}{r} \varphi \]

（q）

因此，(p) 式可化為

\[\frac{W_y}{g} \delta \left(\frac{a-r}{r} \right) = -Fr \]

（p’）

消去 (o)(p') 式中 \(F_r \)，就得

\[(a - r) \left(1 + \frac{r^2}{g} \right) \ddot{\varphi} = -g \sin \varphi \]

（r）

這問題也可以應用角動量定理處理。我們只要令小圓柱總體轉綫 A 的角動量變

化等於所有外力對於這轉綫的力矩和，也能導出 (r) 式。至於為什麼能應用角動量
定理，那是因為 A 點是運動的瞬時中心，因而在軸上所有各點的運動綫跟 A 點接觸綫

是一個固定軸的瞬時相同。按以上所說，可得

\[\frac{d}{dt} (I \omega) = -Wx \sin \varphi \]

根據 (q) 式，就得到

\[\frac{d}{dt} \left[\frac{W_y}{g} (r^2 + r^2) \left(\frac{a-r}{r} \right) \right] = -Wx \sin \varphi \]

結果跟 (r) 式完全相同。

（r）式跟單調的運動力矩式相同，相應的單調瞬間是

\[l = (a - r) \left(1 + \frac{r^2}{g} \right) \]

可見 \(\varphi \) 很小時，扭矩會在圓筒中作簡單運動，速度是

\[\tau = 2\pi \sqrt{\frac{1}{y}} = 2\pi \sqrt{\frac{(a-r) \left(1 + \frac{r^2}{g} \right)}{g}} \]

（s）

小圓柱若是一個實心圓柱，那末 \(r^2 = \frac{a^2}{3} \)，可得

\[\tau = 2\pi \sqrt{\frac{3(a-r)}{g}} \]

（s'）

小圓柱若是一個空心圓柱，那末 \(r^2 = \frac{a^2}{2} \)，可得

\[\tau = 2\pi \sqrt{\frac{2(a-r)}{g}} \]

（s''）
小圓柱若變為一個半徑等於 \(r \) 的小圖球，則有 \(S = \frac{2}{5} r^2 \)，可得

\[
S = 2\pi \int_{0}^{r} \left(\frac{4}{5} \right) \frac{r}{6} \, dr
\]

（式（1））

以上計算中未使用公式（2）中的第二式，此式具有在决定反作用力 \(R \) 時才需要。

536. 第 589 圖表示一個正四錐體的不穩定平衡。設四錐體受電力 \(W \) 作用而倒下，試說明重心 \(C \) 是沿一斜面直接運動。水平平面的摩擦力可以不計。

538. 有一 \(AB \) 條長 \(l \) 之重 \(W \)，兩端分別被限制在 \(x \) 和 \(y \) 軸上如第 590 圖。假設 \(AB \) 在重力作用下自最初位置開始運動，試求兩端的反作用力 \(R_a \) 和 \(R_b \) 與 \(AB \) 的旋轉角 \(\theta \) 的關係。

第 589 圖

第 590 圖

解：第 394 题已指出，\(AB \) 載的重心 \(C \) 是沿一斜面等於 \(l/2 \) 的圓周運動。周圍的中心就是 \(O \) 點。因此，\(C \) 點的切線和法線速度應該分別是

\[
a_t = \frac{l}{2} \, \dot{\theta} \quad \text{和} \quad a_n = \frac{l}{2} \, \dot{\theta}^2
\]

現在要將 \(AB \) 載當作全部質量集中在重心點的質點看待。這一質點的運動方程式是

\[
\begin{align*}
\frac{W}{g} \cdot \frac{l}{2} \, \dot{\theta} &= W \sin \theta + R_b \cos \theta - R_a \sin \theta \\
\frac{W}{g} \cdot \frac{l}{2} \, \dot{\theta}^2 &= W \cos \theta - R_b \sin \theta - R_a \cos \theta
\end{align*}
\]

（式（2））

要決定 \(AB \) 載的旋轉運動方程式可先求出瞬時中心 \(D \) 如圖，然後應用角動量定理，令 \(AB \) 對於 \(D \) 點軸的角動量變化等於所有外力對同軸的力矩和（這樣，可以只考慮獲得通過 \(D \) 點的 \(R_a \) 和 \(R_b \) 作用而不要考慮），就可得

\[
\frac{d}{dt} (I \cdot \dot{\theta}) = W \frac{l}{2} \sin \theta
\]
$$\ddot{\theta} = \frac{3g}{l} \sin \theta$$

用 $2f = 2 d\theta/ dt$ 乘上式的兩邊，得

$$2f d\theta = \frac{5g}{l} \sin \theta \; d\theta$$

也就是

$$d(\dot{\theta}^2) = \frac{3g}{l} \; d(-\cos \theta)$$

積分後，得

$$\dot{\theta}^2 + C = - \frac{3g}{l} \cos \theta$$

$\dot{\theta} = 0$ 時，$\dot{\theta} = 0$，有 $C = \frac{3g}{l}$，所以以上式化為

$$\dot{\theta}^2 = \frac{3g}{l} (1 - \cos \theta)$$

可見 AB 縫逢到水平位置時，角速度是

$$\dot{\theta} = \sqrt{\frac{3g}{l}}$$

以 (u) 代入 (i) 式，就得到：

$$R_a = \frac{W}{4} (3 \cos \theta - 1)$$

$$R_b = \frac{W}{4} (11 \cos \theta - 9)$$

可見 $\cos \theta = \frac{6}{11}$ （這表示 $\theta = 57^\circ$）後，R_b 的方向會改變；換句話說，如果 AB 條只在

斜線 y 軸上；B 端在 $\theta = 57^\circ$ 後，就會脫離 y 軸而落下。此外，還可以得到：R_a 在 $\cos \theta = 1$，也就是 $\theta = 0^\circ$ 時會等於零，不過不會改變方向。

537. 第 531 圖中，非滑車重 W，半徑等於 r_1；定滑車重 W_2，半徑等於 r_2。圈子 $A B$, A 端固定，B 端懸掛一個重體 Q。全系統在一個黃色平面中。兩滑車可看作兩個圓盤。試不計 $A B$ 圈的重量以及滑車 C_2 的軸承摩擦力，求重體 Q 的下滑加速度 a 等於多大？

（解： $a = \frac{g - \frac{4}{3} W_1}{Q + \frac{4}{3} W_1 + \frac{4}{5} W_2}$）
104. 剛體平面運動的能量方程式

第 581 圖表示一個剛體作平行於 xy 平面的運動。在物體 A 處的
一個質點，質量等於 dm，動能等於

$$
\frac{d}{2}(x^2 + y^2)
$$

(a)

現在將物體中所有各質點的動能加成總和，並應用 § 103 的(b)式：

$$
\dot{x} = \dot{x}_c + \xi \\
\dot{y} = \dot{y}_c + \eta
$$

就可得物體的全部動能

$$
U = \frac{1}{2} \Sigma dm \left[(\dot{x}_c + \xi)^2 + (\dot{y}_c + \eta)^2 \right] = \frac{1}{2} (\dot{x}_c^2 + \dot{y}_c^2) \Sigma dm
$$

$$
+ \frac{1}{2} \Sigma (\xi + \eta)dm + \dot{x}_c \Sigma \xi dm + \dot{y}_c \Sigma \eta dm
$$

(b)

上式最後兩項等於零，故

$$
U = \frac{1}{2} (\dot{x}_c^2 + \dot{y}_c^2) \Sigma dm + \frac{1}{2} \Sigma (\xi^2 + \eta^2) dm
$$

(c)

(c) 式第一項中，\dot{x}_c 和 \dot{y}_c 是物體重心 C 在兩坐標軸方向的分速度；第二項是物體對於重心軸線的旋轉動能。若命 v_c 代表重心 C 的速度，θ 代表物體繞重心軸線旋轉的角速，(c) 式就可化為

$$
U = \frac{W v_c^2}{2} + I_c \dot{\theta}^2
$$

(84)

由(84) 式看得出，作平面運動的物體，它動能是由這樣兩部分構成
的：(1) 調整物體全部質量集中在重心，變成一個質點，這質點的動能；
(2) 物體繞垂直於運動平面的重心軸線旋轉的動能。例如一個實心圓
柱，半徑等於 a，沿一水平平面作無滑動滾轉。如速度等於 v，這圓柱
的全部動能就是

$$
U = \frac{W v^2}{2} + \frac{W r^2 v^2}{2} = \frac{3}{2} \left(\frac{W v^2}{2} \right)
$$

知道一個物體或一係物體的全部動能 U 後，只要命物體在任意兩
位置間的動能變化等於所有外力在相應位移中所做的全部功，就可得
到剛體平面運動的能量方程式。 現在舉幾個例子說明如下：
例題和習題

538. 第 583 圖中，一個質心固定沿斜面作無摩擦滑動。設按能量方程式求物體的速度 \(v_c \)。假定運動開始時，\((x_c)_0 = (y_c)_0 = 0 \)。

解：根據 (34) 式，運動點在任意一時刻的全部動能是

\[
U = \frac{W}{2} x_c^2 + \frac{1}{2} \frac{v_c^2}{r^2} = \frac{W x_c^2}{2y} \left(1 + \frac{v_c^2}{r^2} \right)
\]

物體原來靜止，故無動能，所以 \(U \) 就代表動能的全部變化。至於外力做的功，因外力中反作用力 \(R \) 的方向永遠跟運動方向垂直，無功產生；此外，摩擦力 \(F \) 因物體無滑動，也不做功，所以全部功應等於

\[
W x_c \sin \alpha
\]

(d)(e) 二式必須相等，故得

\[
\frac{W x_c^2}{2y} \left(1 + \frac{v_c^2}{r^2} \right) = W x_c \sin \alpha
\]

式

\[
x_c = \sqrt{\frac{2W x_c \sin \alpha}{1 + \frac{v_c^2}{r^2}}}
\]

將 (f) 式對時間微分一次，得

\[
\frac{W}{2} x_c \left(1 + \frac{v_c^2}{r^2} \right) = W \sin \alpha
\]

結果跟 §103 中 (h) 式完全符合。

應用能量方程式所以能簡化計算手續，就本題覈，顯然是因為 \(R \) 和 \(F \) 不做功，計算中因而可以不考慮這兩個力的存在。如果要決定這兩個力的大小，仍然非按第 529 證中辦法，應用運動方程式不可。

529. 假定第 520 圖中，\(AB \) 棒在重力作用下開始自高重位置向下滑落，試應用能量方程式求出 \(AB \) 棒的角速度 \(\dot{\theta} \) 與旋轉角 \(\theta \) 的關係。

解：我們在圖上已經看得出，\(AB \) 棒的重心 \(C \) 是沿一根以 \(O \) 點為圓心的半徑等於 \(l/2 \) 的圓弧運動，速度是 \(v_c = \frac{l}{2} \dot{\theta} \)。全部動能因此是

\[
U = \frac{W}{2} \left(\frac{l^2}{3} \right) + \frac{1}{2} \frac{I^2}{12} \cdot \dot{\theta}^2 = \frac{1}{6} \frac{W}{g} l^2 \dot{\theta}^2
\]

因 \(AB \) 棒本來靜止，所以 \(U \) 也就代表動能的全部變化。至於外力做的功，當中 \(R_x \), \(R_y \) 始終垂直於位移，不生功，所以全部功就等於

\[
W \frac{l^2}{2} \left(1 - \cos \theta \right)
\]

(h)
命 (g) 等於 (h)，得

\[\frac{1}{2} F \int \omega^2 = W \cdot \frac{l}{2} (1 - \cos \theta) \] \hspace{1cm} (i)

故

\[\omega = \frac{3d}{l} (1 - \cos \theta) \] \hspace{1cm} (ii)

結果跟第 526 図完全符合。 本題重用了能量原理，可以不直接求解直接得到 AB 的角速度，所以在这儿就省略了。

540. 第 592 圖中的兩件 AC 和 BC 都重 W，長 l，由絆線 C 相互連接，放在光滑的水平平面上。 假設 C 點的垂直面是 a，因受拉力作用，兩絆線開始沿 a 軸與垂直面滑動。 試求 C 點落到水平平面時，它的速度 v 等於多少？

(解： v = \sqrt{3gl})

541. 一物體重 W = 380kg 的固定於 a 軸。 距離 a 軸是 r = 0.5m。 推力 F 大小固定，方向取圖中的 AC 方向 (第 593 圖)。 這物體在 a 軸平面沒有滑動發生。 滑動了 x = 3m 的距離後，滑動的速度達到 v = 1m s。 試求推力 F 等於多少？

(解： F = 28.5kg)

542. 第 594 圖中的 AB 條，長度等於 W，長度等於 l = \sqrt{2} r，在重力作用下由圖中位置開始沿 a 軸曲線 ABD 滑動。 這平面曲線由半徑等於 r 的一個四分之一圈弧 AB 及其水平切線 BD 構成。 掹糧為摩擦力，試求 AB 條沿 BD 切線滑動的時速度 v 等於多少？

(解： v = \sqrt{fr})

543. 第 596 圖的物體，這是一個半徑等於 r 的圓柱面，放在一個水平平面上。 現在施加

這一物體使它從\(A \) 端開始一段固定平衡位置，再任其自由滑動。 假設初始的旋轉角 \(\theta_0 \)

很小，接觸處毫無摩擦發生，試用能量原理求動能變化等於多大？

解： 我們選擇如下兩個位置來考察物體的能： ①旋轉角等於最大的 \(\theta_1 \) 的位置 (見圖中虛

線)，物體在這一位置的角速度 \(\omega_1 = 0 \); ②旋轉角等於任意的 \(\theta \) 的位置。 此外，又選擇垂

直於 \(\omega_1 \) 和軸心 \(O \) 位置。 物體重心 C 的位置是：
剛體的平面運動

\[
\begin{align*}
\dot{\theta} &= r_0 - h \sin \theta \\
\ddot{\theta} &= h \cos \theta
\end{align*}
\]

式中 θ 為動角，$\dot{\theta}$ 為動角速度，$\ddot{\theta}$ 為動角加速度。\(r_0 \) 為固定角，h 為動力常數。\(\theta_0 \) 為初動角。\(\dot{\theta}_0 \) 為初動角速度。\(\ddot{\theta}_0 \) 為初動角加速度。

\[W = (\cos \theta - \cos \theta_0) \]

第 504 圖

旋轉角等於 θ 時，物體靜止，沒有動力，所以旋轉角等於 θ 時，物體的動能由旋轉動力的全部變化。若令 W 代表物體的動能，$\dot{\theta}$ 代表它對於動心軸線的動矩半徑，則動能變化就等於

\[
\frac{W}{g} = -\frac{x_0 + y_0}{2} + \frac{W_0}{g} \left(\frac{\theta_0}{2} \right)
\]

表示動能變化的(m)式應等於表示外力所作的功的(l)式。現在以(k)式的 x_0 和 y_0 代入(m)式，就得到

\[
\frac{\theta^2}{2} (r^2 - 2h \cos \theta + r^2) + i^2 = 2gh (\cos \theta - \cos \theta_0)
\]

因 θ 很小，可命

\[
\cos \theta = 1 - \frac{\theta^2}{2}
\]

所以把上式代入(n)式忽略去 θ 的高次方，就可得

\[
\theta^2 ((r - h) + \theta^2) = 2gh (\theta^0 - \theta^2)
\]

對時間微分上式，又可得

\[
\ddot{\theta} + \frac{gh}{(r - h)^2 + \dot{\theta}^2} \cdot \ddot{\theta} = 0
\]

可見 θ 很小時，物體發生的是一種簡諧運動，它的振幅週期是

\[
T = \frac{2\pi}{\dot{\theta}} = 2\pi \sqrt{\frac{(r - h)^2 + \dot{\theta}^2}{gh}}
\]
由（3）式可以得出，這一物體的慣性矩爲

$$I = \frac{(r + h)^2}{h}$$

的單週週期相同。

544. (1) 假設投射物體是一個正方形的一半。假設投射物體的一個半徑等於 r，轉動慣性矩等於 h，求小振幅的振動週期 T 等於多大？

（2）假設投射物體是一個半徑等於 r 的半圓球，振動週期又是開力於多大？

(93): (a) $T = 2\pi \sqrt{\frac{r}{g}}$，(b) $T = 2\pi \sqrt{\frac{r}{g}}$

105. 碰撞及碰撞中心

§ 78 中討論的碰撞現象，只是指碰撞作用力同時通過兩碰撞物的重心的情形。這種碰撞只會使物體重心的速度發生變化，不會使物體本身發生旋轉。現在要進一步討論更一般的碰撞現象。

第 593 圖中表示一個可以在 xy 平面中自由運動的靜止物體，xy 平面通過物體的重心，並且就是它的慣性主軸面。如果它在主軸切面中透過碰撞而發生運動，那就可以應用 § 108 的（83）式來處理。命圖中水平力 X 代表碰撞作用力，a 代表 X 的作用線到物體重心 C 的距車，可得運動方程式:

$$\frac{W}{g} \ddot{x} = X \quad \text{和} \quad I_\theta = Xa$$

以 dt 分乘以上兩式的兩邊，然後就碰撞時間 t 積分，又可得:

$$\frac{W}{g} \ddot{x} = \int_0^t X \, dt \quad \text{和} \quad I_\theta = a \int_0^t X \, dt$$

若命 X_t 代表碰撞力在從 0 到 t 的一段極短時間內所生的衝量，那末，

$$\frac{W}{g} \ddot{x} = X_t \quad \text{和} \quad I_\theta = aX_t$$

(a)

物體上任意一點的速度應該等於重心速度加上這一點繞重心軸線旋轉而引起的速度的向量和。譬如圖中 O 是通過重心 C 而垂直於衡量
作用線的直線上的任意一點，它到重心的距離若等於 c，那它的速度就是

$$v_0 = v_i \left(1 - \frac{a \cdot c}{l \cdot c}
ight)$$

若命 $c = \frac{i_0}{a}$，O 點的速度就將等於零。這 O 點顯然就是物體運動的瞬時中心。所以，通過 O 點面垂直於 xy 運動平面的直線完全可以看作是物體繞着旋轉的一根固定軸線。換句話說，如果有一個可以繞過 O 點面垂直於 xy 平面的固定軸線自由旋轉的物體發生了碰撞，而且碰撞力的衝量作用點 P 到物體重心 C 的距離恰好是

$$a = i_0^2/c$$

那末由於 O 點是物體運動的瞬時中心，上述固定軸線就絲毫不會受到碰撞的影響；這樣決定的 P 點，通常稱為物體的碰撞中心。將 (c) 式跟 § 91 中 (75) 式比較一下，立刻可看出，碰撞中心 P 與固定旋轉軸線間的關係，事實上，完全跟複擺的振動中心與懸點間的關係相同。

工程上常利用這種碰撞中心與旋轉軸線間的特殊關係，來減弱或減少固定軸線所受的碰撞影響。例如撞擊試驗機的撞擊器 (第 597 圖)，它的設計就必須使慣性點 P 恰好在旋軸 O 的碰撞中心處，以免旋軸容易損壞。其餘像彈道駝，銅罐等的設計也無不如此。

碰撞中心可以由一個簡單的實驗來說明。我們在一根手杖上加一根纜子如第 598 圖。反復試驗後，可以在手杖上找到一個 P 點，若在這 P 點上加一水平碰撞力，手杖只會繞纜子旋轉而不會 脫離開纜子；那這 P 點就是手杖的碰撞中心。
假設物體的旋轉軸線恰好通過重心，式中距離 \(c \) 就將等於零。碰撞中心到重心的距離 \(a \) 因而就將等於無限大，這表示旋轉無論如何都不能避免碰撞的影響；換句話說，碰撞力在任何情形下都會傳導到旋軸上去的。

例題和習題

545. 在合球遊戲（俗稱打彈子）中，假使要使合球跟台面間沒有滑動發生，試問擊球的高度 \(h \) 應等於多少？ 設定合球的半徑等於 \(c \) （第 599 圖）。

解：合球對重心軸線的慣性矩是

\[
n = c = \sqrt{\frac{2}{5}} \cdot c
\]

若使合球不發生滑動，它跟台面的接觸點 \(O \) 就必須是選點的準點中心。

\(a \) 代表 \(c \) 式中碰撞力作用線到重心 \(c \) 的距離，可得

\[
h = c + a = c + \frac{a^2}{c} = c + \frac{2}{5} c = \frac{7}{5} c
\]

第 599 圖

546. (a) 假使第 545 題中的合球是一個半徑等於 \(r \) 的圓柱，那末擊球高度又應該等於多少？

(b) 假使第 545 題中的合球是一個半徑等於 \(r \) 的薄圓筒，又如何？

(解：(a) \(h = \frac{3}{2} r \)，(b) \(h = 2 r \))

547. 第 600 圖中的 \(AB \) 槓及 \(l \) 由 \(OA \) 槓直接接一根垂直於圖平面的軸線 \(O \) 上。 \(AB \) 槓固定角速 \(\omega \) 經 \(O \) 軸在光滑的圖平面中旋轉（見圖中虛線）。現在在圖中 \(P \) 端打一個

碰撞時，它重心 \(C \) 的速度恰在圖中 \(x \) 軸方向，速度的大小等於 \(\omega \left(b + \frac{1}{2} \right) \)。

碰撞時，\(AB \) 對於 \(C \) 點的旋轉角速度是 \(\omega \)。命 \(X_1 \), 代 \(P \) 槓所發生的力，根據(a)式，可得

\[
X_1 = - \frac{W}{g} \omega \left(b + \frac{1}{2} \right)
\]

\[
aX_1 = \frac{W}{g} \frac{13}{12} \omega
\]

消去以上兩式 \(X_1 \), 就得到

\[
a = \frac{13}{12} \left(b + \frac{1}{2} \right)
\]

和

\[
r = b + \frac{1}{2} + a
\]
542. 假設一個密度均勻的方板，放在光滑的水平面上繞著重對角線 OO 自由旋轉（圖 601）。現在突然將方板的 A 角固定起來，使方板開始繞圖中 C_1C_1 軸線旋轉。問新角速度 ω_1 將等於多大？

（解：$\omega_1 = \frac{1}{7} \omega$）
第十四章 相對運動

106. 相對運動的運動幾何

以前討論的質點運動或物體運動都只是指質點或物體對於一個固定的坐標軸系的運動；它們對於一個運動着的坐標軸系的運動，還不曾討論過。實驗室裏觀察到的運動全是對於固定在地球上，跟隨地球運動的坐標軸系的運動。地球本身的運動對於一般的工程問題雖然影響極小，可以忽略不計，不過也不是所有問題都如此；有時，我們必須放棄這種運動的影響，決不可把地球當做絕對靜止的坐標軸系看待。

討論物體的相對運動。我們仍從物體的平面運動出發。假使一個剛體在一一個固定的 xy 平面中運動 (第 602 圖)，那這一運動就完全可以由剛體上任意一點 A 的坐標值以及剛體上任意一直線繞 A 點的旋轉角 θ 來決定。現在在 A 點再建立一個固定在剛體 i 的正交坐標軸 ξ, η。假使另外有一 P 點在這一 $\xi \eta$ 平面上運動，P 點對於剛體的位置就可由隨時變化的坐標值 ξ, η 確定。這兩坐標值通常稱為 P 點的相對坐標。至於確定 P 點對於固定坐標軸 x, y 的位置的坐標，通常另稱為 P 點的絕對坐標。P 點的絕對坐標也就是 P 點在 x 和 y 軸上的投影的坐標，故

\[
\begin{align*}
 x &= x_a + \xi \cos \theta - \eta \sin \theta \\
 y &= y_a + \xi \sin \theta + \eta \cos \theta
\end{align*}
\] (85)

將(85)式對時間微分，就得到 P 點絕對速度（對固定坐標軸系的速度）的 x 和 y 軸方向分速度：

\[
\begin{align*}
 \dot{x} &= \dot{x}_a - (\xi \sin \theta + \eta \cos \theta) \dot{\theta} + \xi \cos \theta - \eta \sin \theta \\
 \dot{y} &= \dot{y}_a + (\xi \cos \theta - \eta \sin \theta) \dot{\theta} + \xi \sin \theta + \eta \cos \theta
\end{align*}
\] (86)
其中 ξ 和 η 是相對坐標 ξ 和 η 對於時間的導函數，通常稱為 P 點相對速度的分速度。這相對速度是可以由跟隨剛體一起運動的觀察者測量出來的。式(85)中第一、第二項是將 ξ, η 當作常數的導函數，所以它們也代表當時剛體上跟 P 點重合的一點的分速度。兩式中的第三、第四項是 P 點相對速度在兩固定坐標軸方向的分速度。因此，P 點的相對速度我們可以看作是底下兩個速度的向量和：(1) 剛體上當時跟 P 點重合的一點的速度，這速度通常叫做參數系速度，以 \bar{v} 表示；(2) P 點對於運動剛體的相對速度，以 \bar{v}_p 表示。若用向量方程式來說明，那 P 點的相對速度就是

$$
\bar{v} = \bar{v}_p + \bar{v}_r \tag{86a}
$$

如果把(85)式連續對時間微分兩次，又可得 P 點的相對加速度在兩固定坐標軸方向的分加速度：

$$
\begin{align*}
\ddot{x} &= \ddot{x}_a - (\xi \sin \theta + \eta \cos \theta) \dot{\theta} - (\xi \cos \theta - \eta \sin \theta) \dot{\theta}^2 - 2(\xi \sin \theta + \eta \cos \theta) \ddot{\theta} + \xi \cos \theta - \eta \sin \theta \\
\ddot{y} &= \ddot{y}_a + (\xi \cos \theta - \eta \sin \theta) \dot{\theta} - (\xi \sin \theta + \eta \cos \theta) \dot{\theta}^2 + 2(\xi \cos \theta - \eta \sin \theta) \ddot{\theta} + \xi \sin \theta + \eta \cos \theta
\end{align*}
\tag{87}
$$

以上兩式中，最初三項是將 ξ, η 當作常數的導函數，所以是當時剛體上跟 P 點重合的一點的分加速度，通常稱為參數系加速度的分加速度。其餘三項都是由 P 點對於剛體發生相對運動而來的分加速度；這種加速度又可分為兩種：(1) 含 \ddot{x}_a 和 \ddot{y}_a 的最後兩項，(2) 含 2 的項。前者是 P 點相對加速度在坐標軸上的投影；後者就是所謂相加速度。相加速度的性質可以按如下幾何關係來說明：第 603 圖中 \overline{OB} 代表 P 點的相對速度 \bar{v}_r。這 \overline{OB} 在兩個固定軸 x 和 y 上的投影就是(66)兩式中的最後兩項。當剛體(也就是參數坐標)在 xy 平面運動時，設想 \overline{OB} 同時以角速 $\dot{\theta}$ 繞 O 點旋轉，它的終點 B 因之有 \bar{v}_r 垂直於 \overline{OB} 輪的速度 v_θ。如第 603 圖。\overline{OB} 終點 B 的速度，因為 \overline{OB} 是代表
相對速度 v_r 的代表向量，所以它的加速度跟加速度相同。由第 603 頁可
看到，它跟 ξ 軸交角的餘弦是 $\frac{\xi \sin \theta + \eta \cos \theta}{v_r}$. 因此，它在 ξ 軸
上的投影應該是

$$-v_r \frac{\xi \sin \theta + \eta \cos \theta}{v_r} = -\theta \left(\frac{\xi \sin \theta + \eta \cos \theta}{v_r} \right)$$ \hspace{1cm} (a)$$

它在 η 軸上的投影應該是

$$v_r \frac{\xi \cos \theta - \eta \sin \theta}{v_r} = \theta \left(\frac{\xi \cos \theta - \eta \sin \theta}{v_r} \right)$$ \hspace{1cm} (b)$$

將(a)(b)兩式與(87)兩式式的聯立一起比較一下，立刻可看到，所謂相加
速度也就是相對速度 v_r 的代表向量以角速 θ 旋轉時，它終點的運動速
度的兩倍。

令 \ddot{a} 代表加系加速度，\dot{a}，和 \ddot{a} 分別代表 P 點的相對加速度和
補加速度，P 點的絕對加速度 \ddot{a}，用向量方程式來表示，就是

$$\ddot{a} = \ddot{a} + \ddot{a} + \ddot{a}$$ \hspace{1cm} (87a)$$

以上的討論指 P 點只在 $\xi \eta$ 平面中運動。不過，即使它在 $\xi \eta$ 平
面的垂直方向也有運動，這一方向的運動是不會受剛體平行於 xy 平
面的運動的影響；因此，P 點的加速度在這一方向的加速度，就等
於 P 點相對加速度在同方向的加速度；如此 \ddot{a}，代表 P 點的全部相
對加速度，(87a)式自然還是成立的。

例題和習題

49. 一個質點 P 用固定速度 v_r 並沿半徑等於 ξ 的圓盤的盤面運動。 圓盤同時用角速 ω 向
相反方向繞中心等速旋轉(第 604 圖)。 試求 P 點的相對加速度。

解：P 點的相對加速度 a_r，方向是指向圓盤中心，大小為

$$a_r = \frac{v_r^2}{r}$$ \hspace{1cm} (c)$$

圓盤上與 P 點所在的一點，它的加速度也指向圓盤中心；
這一參考系加速度的大小是

$$a = a_r$$ \hspace{1cm} (d)$$

根據加速度的幾何意義，可知本題 P 點的相加速度是

$$a = 2 \omega v_r$$ \hspace{1cm} (e)$$
它的方向在離開圓盤中心的半径方向。综合以上 (c)(d)和(e)三式，就该 P 點的绝对加速度

\[a = \frac{\omega^2 r^2}{r} + \omega^2 r - 2 \omega^2 \cdot \frac{r}{r} = r \left(\frac{c_1 - \omega}{r} \right)^2 \] (f)

方向是指向圆心。 当 \(c_1 = \omega \) 時，对于圆盘来说，P 點显然是静止不动的；由 (f) 式也可看到，这种情况下的绝对加速度的正弦等于零。

550. 假设第 604 圖中，圆盘的角速度等于 0，角加速度等于 0，P 點仍以固定速率 \(v_r \) 沿圆周方向运动，求 P 點的绝对加速度。

\[a = \sqrt{a_x^2 + a_y^2} \left(\frac{c_1 - \omega}{r} \right)^2 \]

551. 假使第 604 圖中有一質點 P1 沿 AB 軌道以固定相對速度 \(v_r \) 作運動，圓盤仍以固定角速度 \(\omega \) 約中心等速旋轉，求 P1 點在圈中位置的絕對速度和相對速度。假定 P1 點是沿圆盤的旋转方向运动。

\[\begin{cases} v = v_r + \omega r, \text{切線方向} \\ a = \omega^2 r + 2v_r \omega, \text{指向中心} \end{cases} \]

552. 假设第 604 圖中 P1 點沿 AB 軌道的全等角等速圆周運動，週期 \(T = 2\pi/\omega \)；圆盘仍用固定角速度 \(\omega \) 约中心旋轉。試求 P1 點在圈中位置的絕對加速度。

\[a = a_x^2 + \omega^2 v_r^2 \left(\frac{c_1 - \omega}{r} \right)^2, \text{指向中心} \]

553. 假设第 604 圖中，質點 P 由 O 點出發，沿半徑 OP 以固定相對速度 \(v_r \) 作運動；圆盤仍用固定角速度 \(\omega \) 約中心等速旋轉。試求 P 點到達點時的絕對加速度。

\[a = \omega^2 r \left(\frac{c_1 - \omega}{r} \right)^2 + (2v_r)^2 \]

554. 假设第 604 圖中，P 點沿圆盘直径的全等角等速圆周運動，週期 \(T = 2\pi/\omega \)。圆盘仍以固定角速度 \(\omega \) 约中心旋轉；試求 P 點到達點時的絕對加速度。

\[a = 2\omega^2 r, \text{指向中心} \]

555. 第 605 圖中，一質點 P 在一牛徑等於 r 的的圆球表面上，以固定的相對速率 \(v_r \) 沿球面的一条子午圈運動。圆球以角速度 \(\omega \) 沿球心等速徑向旋轉。求 P 點在圈中位置的絕對加速度 (P 點的位置由纬度 \(\varphi \) 表示)。

解：因质面跟 P 點不同的一点沿一牛徑等於 r cos \(\varphi \) 的水平圆周運動，故相对加速度應該方向如图。大小是

\[a = \omega^2 r \cos \varphi \] (g)

因 P 點沿子午圈運動的速率 \(v_r \) 固定不變，故相對加速度顯然將指向球心，大小是

第 605 圖
a_r = \frac{v_r^2}{r} \tag{14}

此外，因相加速度 a_r 等於 v_r 代表向量的延伸以角度 ω 混合至 P 點的速度循環旋轉的
速度的兩倍，故它的大小應該是

$$a_r = 2\omega \cdot v_r \sin \varphi \tag{i}$$

方向由紙面指向讀者。

(g) (h) 和 (i) 三式確定後，取這三種加速度的向量和，就得所求的 P 點絕對加速度。

556. 假設第 605 圖中，P 是流向南方的河流中的一個水質點，速度是 3 m/s，所在地點的
北緯度是 $\varphi = 50^\circ$，地球半徑是 $r = 6.37 \times 10^3$ m，試求這一質點的相加速度 a_r。

(解：$a_r = 0.000324$ m/s²，向東)

107. 相對運動的運動方程式

根據牛頓第二定律，一個質點上的作用力合力 f，等於質點的質量跟
質點的絕對加速度的乘積；合力的作用方向跟絕對加速度相同。所以
(87a) 式兩邊同時乘以質點的質量 W 後，就變成

$$F = \frac{W}{g} (a_r + a_r + a_r)$$

或

$$\frac{W}{g} a_r = F - \frac{W}{g} a_r - \frac{W}{g} a_r$$ \tag{88}

上述右邊的第二、第三兩項可認為是加速度 a_r, a_r 所引起的慣性力。因此，一個質點的相對運動方程式，只要在作用力合力外，設想另有 a_r 和 a_r 引起的慣性力一同作用在質點上，就將完全跟一般運動方程式相
同。 (88) 是一個向量方程式。假使把 F 力和 a_r, a_r, a_r 三加速度投
影於參數系的 ξ, η, ζ 三軸線上，那 (88) 就可以化為相對運動的三個運
動方程式。這裏所謂參數系三軸線指固定在跟質點作相對運動的剛體
上的三正交坐標軸。

若系統 (也就是參數系) 作等速直線運動，加速度 a_r 和 a_r 等於零，
(88) 式就簡化為

$$\frac{W}{g} a_r = F$$
這樣，就跟質點一般運動的運動方程式（32）完全相同。這一事實證明：
質點對於一個等速直線運動的剛體的相對運動，事實上，跟剛體絕對靜止的情形是完全一樣的。因此，在均勻直線運動的車輛中做的動力學
實驗，跟在固定實驗室中做，結果一定完全相同。不過，車輛一旦駛
入彎道，a_2 和 a_3 的影響立刻就會被覺察到。

從（88）式，我們可以導出一個質點的相對平衡方程式。假使相對
速度 v_2 和相對加速度 a_3 都等於零，那末

$$
F - W - \frac{W}{a_3} = 0
$$

就是質點的相對平衡方程式。它說明：一個處於相對平衡狀態的質點，
它上面的作用力合力將跟參數系加速度 a_3 的慣性力共同構成「平衡力
系」，它的向量和等於零。 (89) 是一個向量方程式，所以一個相對平
衡的質點，它上面所有作用力以及 a_3 的慣性力對於任何軸線上的投影
的代數和必然等於零。

關於如何列出一個質點相對運
動的運動方程式，我們舉一個飛輪
的例子來說明。有一種飛輪，它幅
撑上裝有兩個重體 W，可以各自沿
所在的幅桿自由滑動，它們同飛輪
軸間各懸有一根彈簧（見第 606
圖），兩彈簧的彈力常數都等於 k。

圖中 b 代表彈簧開始受壓縮時，重
體離開軸心的距離。飛輪以固定角速 ω 在水平平面中旋轉。在運動
中，兩重體始終保持對於軸心對稱，位置由相對位移 $b + \xi$ 表示。 ξ 的
方向以指向軸心方向為負，離開為正。兩重體的相對加速度顯然是
ξ；參數系加速度等於 $\omega^2(b + \xi)$，朝軸心方向；附加加速度垂直於直徑 AB，
大小等於 $2\omega \xi$，方向如圖。附加加速度的方向，是按「兩重體離開軸心向
外運動時為正」而決定的。

投影所有作用力和加速度於直徑 AB 方向，由（88）式可得每一重
體的相對運動方程式如下：
\[
\frac{W \xi}{g} = -k \xi + \frac{W}{g} (b + \xi) \omega^2 \quad \text{(a)}
\]

若將所有各力和加速度投影於直徑 \(AB \) 的垂直方向，又可得

\[
0 = R - 2 \frac{W}{g} \xi \quad \text{(b)}
\]

其中 \(R \) 指幅懸掛於重體的反作用力。由上式可看到，每一重體上的 \(R \) 力都與加速度方向相反。兩重體對於幅懸掛的壓力當然跟兩 \(R \) 力相等相反，可見兩重體離開軸心運動時，飛輪將受到一個方向恰好跟它旋轉方向相反的力偶作用。現在把\((a) \)式化為

\[
\frac{W \xi}{g} = - \left(k \frac{W}{g} \omega^2 \right) \xi + \frac{W}{g} \omega^2 b \quad \text{(c)}
\]

令 \(\xi = 0 \)，就可得重體的相對平衡方程式，是

\[
\left(k - \frac{W}{g} \omega^2 \right) \xi = \frac{W}{g} \omega^2 b \quad \text{(d)}
\]

其中 \(\xi \)，就是以重體在彈簧將開始受壓縮時位置作爲原點的半徑方向位移。\((d) \) 式表示

\[
\xi = -\frac{\frac{W}{g} \omega^2}{k - \frac{W}{g} \omega^2} \quad \text{(e)}
\]

若 \(\xi \) 是正的，那就應該

\[
k > \frac{W}{g} \omega^2
\]

在這一條件下，根據以上 \((c) \) 式，兩重體發生的是簡諧運動，振動週期是

\[
\tau = \frac{2 \pi}{\sqrt{\frac{W}{g} \left(k - \frac{W}{g} \omega^2 \right)}} \quad \text{(f)}
\]

由此式可看到，重體振動所受到飛輪旋轉的影響，相當於減低彈簧的彈力常數（把 \(k \) 減低 \(\frac{W}{g} \omega^2 \)）。
假使飛輪的角速 \(\omega \) 大到使

\[
W \leq \frac{W}{\eta} \omega^2
\]

兩重體就將始終壓緊彈簧，不會有振動發生。

第二個例子，我們可考察地球自轉對於落體的影響。第 607 圖中，

A 點是落體的所在地，經度等於 \(\varphi \)。\(\xi \), \(\eta \) 和 \(\zeta \) 是固定在地球上，以 A 點為原點的三垂直座標軸。其中 \(\xi \) 軸取 A 點子午圈的切線方向，\(\eta \) 軸取 A 點絞圈的切線方向，\(\zeta \) 軸取 A 點的地球半径方向。事例落體的相對運動方程式主要只要考慮 \(a_\xi \) 和 \(a_\eta \) 兩種加速度：參數系加速度 \(a_\eta \) 對於落體的影響，有人算出過，是個極微小的數值，所以可以忽略不計。現在先表落體的複加速度 \(a_\eta \) 分解 \(a_\eta \) (相對速度) 於 \(\xi, \eta \) 和 \(\zeta \) 軸系方向，以圖中 \(\xi, \eta \) 和 \(\zeta \) 三向量代表分解的結果，再考察這三向量的終點因地球以固定角速度旋轉而引起的速度。這樣得到的三個速度，就決定了複加速度的分加速度；觀察第 607 圖，可知 \(\xi \) 和 \(\eta \) 兩向量的終點的速度應垂直於 \(\xi \zeta \) 平面，各等於 \(\omega \xi \sin \varphi \) 和 \(\omega \zeta \cos \varphi \)，由此可得相應的兩複加速度的分加速度等於 \(2 \omega \xi \sin \varphi \) 和 \(2 \omega \zeta \cos \varphi \)；至於其餘一分加速度，因向量 \(\eta \) 的終點的速度在 \(\xi \zeta \) 平面中垂直於地軸並等於 \(\omega \eta \)，所以相應的複加速度的分加速度是 \(2 \omega \eta \)。

複加速度的各分加速度決定後，我們就可列立 A 處落體的相對運動方程式如下：

\[
\begin{align*}
W_\xi &= -2W \omega \eta \sin \varphi \\
W_\eta &= +2W \omega (\xi \sin \varphi + \zeta \cos \varphi) \\
W_\zeta &= -W - 2W \omega \eta \cos \varphi
\end{align*}
\]
假定落體的初速等於零,積分(\(\sigma\))中第一、第二兩式,就可得
\[
\begin{align*}
\dot{\xi} &= -2\omega \eta \sin \varphi \\
\dot{\zeta} &= -gt - 2\omega \eta \cos \varphi
\end{align*}
\]
(\(k\))

以(\(k\))代入(\(\sigma\))中第二式,得
\[
\dot{\eta} = -4\omega^2 \eta - 2\omega gt \cos \varphi
\]
(\(i\))

因地球自轉的角速極小,故 \(\omega^2\) 項顯然可以忽略不計,故積分(\(i\))式後可得
\[
\eta = -\frac{1}{3} \omega gt^2 \cos \varphi
\]
(\(j\))

以(\(j\))式代入(\(k\))式,並略去含 \(\omega\) 各項,又可得
\[
\xi = 0, \quad \zeta = h - \frac{1}{2} gt^2
\]
(\(k\))

其中 \(h\) 指落體原來的高度。這(\(j\)) (\(k\))兩式完全確定了一個落體在任何一時刻 \(t\) 的位置。其中(\(k\))式跟我們假定地球絕對靜止所得的結果沒有分別；(\(j\))式則說明，落體在鉛垂軸線 \(\xi\) 方向下有向東的運動發生，這也就是說，落體並不是沿鉛垂軸 \(\xi\) 直線落下，而是含有偏東的偏差的。

要決定這一偏差，只要令 \(\zeta = 0\)，代入(\(k\))式，求得落體達到地面的時間：
\[
t = \sqrt{\frac{2h}{g}}
\]

把這一時間值代入(\(i\))中，就可得所求的偏東偏差是
\[
\eta = -\frac{1}{3} \omega \sqrt{\frac{2h^3}{g}} \cos \varphi
\]
(\(l\))

實地測量的結果的確跟這(\(l\))式精密符合。

例題和習題

557. 在第 608 圖的旋轉曲面(指一樞轉繞固定軸線所產生的曲面)上，有一個質點 \(P\) 體子半徑 \(AOB\) 運動。曲面以固定角速 \(\omega\) 無旋轉給錐 \(Oa\) 旋轉。質點的重量等於 \(W\)。試不計摩擦力，求 \(P\) 點在曲面上的相對平衡力程式。

解：質點 \(P\) 受到的作用力是：重力 \(W\)，曲面反作用力 \(R\) 和慣性力 \(-\frac{W}{g}a_t\) (見第 608 圖)。

因 \(a_t = \omega^2 r\)，慣性力應該減去 \(-\frac{W}{g} \omega^2 r\)，方向在旋轉旋轉軸線的半徑方向(見圖)。把
各力投影於 P 點時子午線的切線方向，根據（89）式，得

\[W \cos \alpha - \frac{W}{g} \xi \rho \sin \alpha = 0 \]

化簡上式，就得出所求的 P 點的相對平衡方程式如下：

\[tg \alpha = \frac{g}{w \xi r} \quad (m) \]

558. 第 618 圖中的質點 P 在子午線 AOB 上任一點可以相對平衡，試問旋轉曲面應該是什麼形狀？

解：選定坐標相核如圖。令 \(tg \alpha = \frac{dr}{dz} \)，代入以上相對平衡方程式（m）中，積分後，就可得

\[z = \frac{2g}{w} - x \quad (n) \]

可見旋轉曲面是一拋物線旋轉面。

559. 第 619 圖是兩個化裝試管，管中盛有液體 O₂ 則成相等的交角 \(\alpha_0 \)。試管中裝有液；

等口封閉，共同管 O₂ 液等速旋轉，角度等於 \(\alpha_0 \)。左邊一試管中，放着一個鋼球 \(P_1 \)，右

邊試管中放著一塊載荷的空心球 \(P_2 \)，試說明，\(P_1 \) 的相對平衡是穩定平衡；而 \(P_2 \) 的相

對平衡則是不穩定平衡。

560. 第 610 圖中，一質點 P 在一水平圓盤的直徑方向的凹槽內運動。圓盤以角速 \(\omega \) 繞圓

心軸旋轉，等速旋轉。最初，P 置在槽內具有對於圓心的微小位移 \(\bar{a} \)，且無初速；試求

運動中，槽邊對於 P 點的反作用力等於多大？摩擦力可以不考慮。

解：選定坐標軸 x, y, z 如圖。 P 點的相對運動方程式是：

\[\begin{cases} \frac{W}{g} \xi = \frac{W}{g} \cos \xi \\ R = 2 \frac{W}{g} \cos \xi \end{cases} \quad (o) \]

式中 R 指槽邊對質點的反作用力。 P 點位移 (o) 中第一式的兩邊；得
\[d(\xi)^2 = \omega^2 I(\xi)^2 \quad (p) \]

积分步骤后，设运动开始时，\(\xi_0 = a \) 且 \(\dot{\xi} = 0 \)，故得

\[\dot{\xi} = \omega \sqrt{\xi^2 - a^2} \quad (q) \]

或

\[\frac{d\xi}{\sqrt{\xi^2 - a^2}} = \omega dt \quad (r) \]

积分上式，得

\[\text{arc cosh} \left(\frac{\xi}{a} \right) = \omega t + C \]

或

\[\xi = a \cosh(\omega t) \quad (s) \]

（s）式说明，圆盘中心是质点不稳定的对称位置，质点只要稍微离开该点中心，它就会围绕向外运动。（1）

（o）式表示的是反作用力与相对速度之间的函数关系。如果把（q）式的 \(\xi \) 值代入（o）中，就可得反作用力与质点位移的关系函数，是

\[R = 2 \frac{W}{g} \omega^2 \sqrt{\xi^2 - a^2} \]

假设将时间微分为（s）式，得

\[\xi = a\omega \sinh(\omega t) \]

代入（o）中第二式，那又可得反作用力随时间的函数关系，是

\[R = 2 \frac{W}{g} \omega^2 a \sinh(\omega t) \]

611. 第 611 圖中是一個以角速度 \(\omega \) 絕縁盤中心軸旋轉的水平圓周。在它的 ABC 上，有一

（1）因爲（o）式中，只要 \(a \) 不等於零，不論它多微小，質點的位移 \(\xi \) 都會隨著時間的增加而不斷變大。
重 W 的質點，可以沿 AB 作無摩擦滑動。質點兩邊各有一彈力常數等於 $\frac{k}{2}$ 的螺旋彈簧，把質點跟 AB 縫的兩端連接起來。假定質點對於固定的相對平衡位置是 AB 縫的中點 O。試求質點的振動週期等於多少?

解：設 O 沿 x 軸。四質點的位置可由相對位置 ξ 決定，故 ξ 和 ξ' 显然分別代表質點的相對位置和相對加速度。AB 縫上設質點運動的一點的速度是 $v_1 = \omega \sqrt{h^2 + \xi'^2}$，其中 h 指 AB 縫到圓心 C 的垂直距離，故參考系加速度是

$$\ddot{\xi}' = \frac{c}{h^2 + \xi'^2}$$

質點的補加速度在 AB 縫的垂直方向，大小等於 $2\omega_1 \xi$，方向如圖（假定圖示方向為正方向）

三加速度確定後，把所有各作用力和加速度投影於 ζ 軸方向，根據(58)式，就可得

$$\begin{align*}
\begin{bmatrix}
W - \frac{g}{y} \xi
\end{bmatrix} = -k \xi + \frac{W}{g} - \omega^2 \xi = -(k - \frac{W}{g}) \xi
\end{align*}
$$

這顯然是一個簡諧運動的運動方程式。故得質點的振動週期

$$\tau = 2\pi \sqrt{\frac{W}{g(k - \frac{W}{g})}}$$

(56) 式內皆沒有 h 出現，可見質點在圓周的任何一根繩上都將發生相同的振動。

567. 假設第 561 項中，質點與 AB 縫間有摩阻力存在，設摩擦阻力沿繩的切線方向成正比，試求質點的運動方程式。

解：質點與 AB 縫間的切線阻力是 a_s 和 a_2 的慣性力在這一向的分力所構成的。前一慣性力，大小等於 $2\frac{W}{g} \omega_2 \xi$，方向與 a_s 相反；後一慣性力在這一向的分力，大小等於 $\frac{W}{g} \omega_2 h$，方向向外。令 μ 代表質點和 AB 縫間的摩擦係數，得摩阻力

$$F = -\mu \frac{W}{y} (2\omega_2 \xi + \omega_2 h)$$

其中右邊括弧內第二項的符號，ξ 為正時，為正；ξ 為負時，為負。摩擦阻力確定後，質點的運動方程式就可以列出如下：

$$\begin{align*}
\begin{bmatrix}
W - \frac{g}{y} \xi
\end{bmatrix} = -k \xi + \frac{W}{g} \omega^2 \xi - \mu \frac{W}{y} (2\omega_2 \xi + \omega_2 h)
\end{align*}
$$

值得注意的是 AB 縫就是圓周直徑的特殊情形。在這一情形下，$h = 0$，上式括弧內最後一項將消減；(56) 式即成矩形振動的運動方程式，摩擦力的反映只是對黏滯性的阻礙相同。

568. 假設第 561 圖中 $W = 27$kg，$\omega = 6\text{as}^{-1}$，$k = 26$kg/cm，試不計摩阻力，求質點的振動週期等於多少？
108. 相对運動中的慣性力

應用慣性力原理處理一列質點或一系質點的運動，我們只要把各質點的慣性力和實際外力一起看作質點和質點系的外力，就可以把問題轉化為力系的平衡問題。在相對運動中，質點有三種加速度，所以可以得到慣性力的三個分力。這三個分力就是：

$$\tau = \frac{\omega^2 r}{\omega}$$

其中 m 代表質點的質量，ω, a_1 和 a_2 分別代表相對加速度、等速加速度和相對加速度。這些加速度的相對運動，我們只要把它每一質點上的三個分力以慣性力連同所有的實際外力一起看作作用在質心上的力系，那相對運動的運動方程式，就可以完全由這樣一力系的平衡條件來決定。

例如第 613a 圖中的運轉儀，它的轉子以固定角度 ω 繞中心軸 AB 旋轉，軸架 ADB 以固定角度 ω_1 繞軸心線旋轉。為簡便起見，我們假定轉子的全部質量，完全集中分佈在一個半徑等於 r 的圓周上。這圓周上任意一個質點 P 的相對速度是第 613b 圖中的 v_r；它的相對加速度 a_r，因 P 點的相對運動是繞 AB 軸的等速旋轉，故$\tau = \omega^2 r$，方向是指向中心 C。從整個轉子來說，a_r 所引起的慣性力是平均分佈於質量所分佈的圓周上，所以相對兩質點的 a_r，慣性力全會兩兩抵消；這一慣性力系整個是一個平衡力系，從而它的影響可以完全不考慮。至於 P 點的相對加速度 a_r，我們可根據軸架旋轉時，P 點的運動情形來決定。圖中 ϕ 代表 P 點同中心 C 的連接線 CP 跟水平線所成的交角。當軸架旋轉時，P 點沿一個半徑等於 $r \cos \phi$ 的水
平圆周运动，所以 P 点的参致系加速度应该是 $a_t = \omega_1^2 r \cos \varphi$. 这一加速度所引起的 P 点惯性力恰好跟图中 P1 点的抵消。因此，整个转子上所有各质点因 a_t 而生的惯性力也是一个可以不着虑的平衡力系。剩下的只有附加速度 a_r 的惯性力还需要顾虑。观察图中 P 点相对速度 v_r 的大小和方向后，可知这一 a_r，方向跟 AB 轴平行，大小等于 $2\omega_1 \omega_2 \sin \varphi$ (参看图中圆的 a_2)。a_r 所产生的惯性力，方向跟 a_t 相反，对于转子水平直径的力矩是

$$2dm \ r \ \omega_2 \sin \varphi \cdot r \sin \varphi = 2dm \ \omega_1 \ r^2 \sin^2 \varphi$$ (a)

其中 dm 就是 P 点的质量。令 W 代表转子的全部重量，$d\varphi$ 代表 P 点质量 dm 所跨的圆心角，可得

$$dm = \frac{W \cdot d\varphi}{2\pi r}$$

把它代入 (a) 式，积分后，就得到转子的所有各质点上的惯性力对于水平直径的全部力矩，是

$$M = 4 \frac{W}{2\pi r} \cdot 2\omega_1 \omega_2 \int_0^{\pi/2} \sin^2 \varphi \ d\varphi = \frac{W \ r^2 \omega_1}{g} = I \omega_1$$ (b)

其中 I 指转子全部质量对于 AB 的惯矩。

因所有外力必须跟惯性力共同构成平衡，所以外力系必然将产生一个跟 M 相等相反的对于水平直径的力矩来抵消惯性力的力矩。转子上的外力，除通过水平直径的重力 W 外，只有 A，B 两轴承对
於 AB 軸的反作用力 R，所以，應該

\[R_l = I \omega_1 \omega_1 \]

這結果跟以前 98 中應用角動量定理導出的完全符合。至於上式中
兩反作用力 R 的方向，很顯然的，如果轉子和軸架的旋轉方向都如第
613 圖，A 處的 R 就是鉛直向下，B 處的 R 就是鉛直向上。

例題和習題

185. 第 614 圖中，DE 結是一個迴轉器的轉子。它的質量等於 I，重量等於 W，繞 AB
軸旋轉的角速度等於 ω。這轉子的軸架和水平軸等速旋轉，角速是 ω1。試求
DE 轉動角速度按等於中心 ω1 時，轉子 A 和 B 對於 AB 軸的反作用力在水平和鉛直方
向的分力 R_l 和 R_c。

(解: R_l = \frac{1}{3} \frac{W}{g} \frac{r^2}{I} \omega_1 \sin \omega_1, R_c = \frac{1}{3} \frac{W}{g} \frac{r^2}{I} \omega_1 \cos \omega_1)

569. 第 615 圖中是一個迴轉器。兩葉的重量都等於 W。這回轉器的角速度是每分鐘 120 轉。
圖中 \(\alpha = 45^\circ \) 時，兩葉的相對速度 \(v_r = 15 \text{cm/s} \)，方向如圖。此外，圖中 \(I = 30 \text{cm}^2 \)，
W = 9 \text{kg}。試不計各部件的重量，求迴轉旋錘在 A 處所受到的扭力矩 M 等於多少？

(解: M = -10 \text{kg-cm})

577. 一液體正向南流的河流，流速 v_r 固定等於 91.4 \text{cm/s}。由於地球自轉的影響，它的水
而不能實正水平。設所在地的緯度是 \(\varphi = 50^\circ \)，試求水面與真正水平方向的交角 \(\alpha \) 等
於多少？

(解: \(\alpha = 0.000104 \) 弧度)
附錄 I

平面圖形的面積慣矩

1. 平面圖形對於同平面軸線的慣矩

任何一平面圖形的底部這兩個積分就稱為這一圖形對於平面正交軸線 x 和 y 的面積慣矩，或者簡稱為「慣矩」 (第 1 圖):

$$
I_x = \int_A y^2 \, dA, \quad I_y = \int_A x^2 \, dA
$$

(1)

兩積分中，dA 代表圖形的微分面積。 以上的定義也就是說，每一微分面積與它跟 x 軸或 y 軸的距離的平方後，沿圖形的全部面積積分，所得的積分值就叫做這圖形對於 x 軸或 y 軸的慣矩。

(1) 式的積分值，在簡單的情形下，是很容易計算的。例如，第 2 圖中的長方形。 我們要計算它對於水平中線 x 軸的慣矩，可以取圖形的水平條條作爲圖形的微分面積 (圖中虛線線部份)。任一微分面積的大小是 $dA = bdy$。 故得

$$
I_x = 2 \int_0^{a/2} by^2 \, dy = \frac{ba^3}{12}
$$

(2a)

同樣方法，又可得這一長方形對於圖中 y 軸的慣矩

$$
I_y = \frac{ab^3}{12}
$$

(2b)
以上 (2a) 式還可用來計算第 3 圖中平行四邊形的情矩 I_x。這一平行四邊形可當作由圖中虛線表示的長方形的每一微分面積沿 x 軸方向平行移動而成。因微分面積的大小既未改變，它跟 x 軸的距離也沒有變動，所求的對 x 軸的情矩 I_x 自然跟長方形完全相同。

第 3 圖

計算一個三角形對它底邊的情矩 I_x，我們可將三角形面積按第 4 圖方法分割。任意一離底邊距離等於 y 的微分面積的大小是

$$dA = \frac{b(a-y)}{a} \, dy$$

故得

$$I_x = \frac{b}{a} \int_0^a y^2 (a-y) \, dy = \frac{ba^3}{12}$$ (3)

假使一個圖形能夠分割成為幾部份，而這些部份對軸線的情矩都已經確定，那計算就簡單得多。例如第 5a 圖的梯形切面。它對於水平中軸 x 的情矩，根據情矩定義，顯然等於圖中長方形 ab 跟長方形 a_1b_1 對同軸的情矩差，故得

$$I_x = \frac{1}{12} (ba^3 - b_1a_1^3)$$ (4)

至於第 5b 圖的 Z 形鋼切面以及第 5c 圖的四形鋼切面對各自水平中軸的態矩，很明顯地，計算式將完全跟 (4) 式相同。

以上各例所說明的，是計算平面圖形對於一軸線的情矩的最普通方法；任何一個平面圖形對一軸線的情矩，都可以按這樣的方法來決定，就是：把整個面積分為平行於軸線的微分面積，然後按 (1) 式積分。
不過，如果某一圖形的(1)式積分很難計算，而問題本身又只要求一個
近似的解答，我們就不必積分，直接把圖形分割成若干平行於軸線的狭條面積，在圖上量出各狭條的形心到軸線的距離，
然後，將各狭條的面積跟所量出的距離的平方分別乘得乘積，再加成總和，就得到這一圖形對軸線的慣矩的近似值。

第 5 圖

根據(1)式規定的定義，一個平面圖形的面積對於同平面一根軸線
的慣矩，它的因次是長度的四次方，所以如果把圖形面積去除這一慣矩，就可得到一個因次是長度兩次方的商數。這商數，我們可以當作
某一長度的平方，並稱這長度為圖形對於軸線的慣矩半徑或旋轉半徑。

用符號 i 代表慣矩半徑，可得

$$i_x = \sqrt{\frac{T_x}{A}} \quad i_y = \sqrt{\frac{T_y}{A}}$$ \hspace{1cm} (5)

例如第 2 圖的長方形，它對於兩坐標軸線 x 和 y 的慣矩半徑就是

$$i_x = \sqrt{\frac{b a^3}{12 a^2}} = \frac{a}{2 \sqrt{3}} \quad i_y = \frac{b}{2 \sqrt{3}}$$ \hspace{1cm} (6)

習 題

1. 試求第 2 圖中的矩形對於底邊的慣矩。

(解：$I_{x1} = b a^3 / 3$)

2. 試求第 3 圖的平行四邊形對於底邊的慣矩。

(解：$I_{x1} = 2 a^3 / 3$)

3. 試求第 4 圖的三角形對於圖中 1 軸的慣矩。

(解：$I_{x1} = 3 a^3 / 4$)
4. 求邊長等於 a 的正方形對於它一根軸矩的矩值。
 \[I_a = a^4 / 12 \]

5. 求兩下第 15 圖中的角鋼截面對於它底邊的矩值。
 \[I_x = \frac{h}{4} (a^2 + a h^2 - h^3) \]

2. 平面圖形對於垂直於圖平面的軸線的極矩——極矩矩

一個平面圖形對於一個垂直於圖平面的軸線的極矩，它的定義就是底邊這樣一個積分：

\[J = \int_A r^2 dA \] \hspace{1cm} (7)

其中 r 代表任意一微分面積 dA 到軸線的距離。式(7)式說明：一個平面圖形對於垂直於圖平面的軸線的極矩就是每一微分面積 dA 跟各自到軸線的距離平方 r^2 相乘，然後，沿整個面積積分而得的積分值。設想第 1 圖內，在 O 點有一垂直於圖平面的軸線，那此一圖形對於這軸線的極矩就是

\[J = \int_A r^2 dA = \int_A (x^2 + y^2) dA = I_x + I_y \] \hspace{1cm} (8)

在這一例子當中，因爲所取的距離也就是每一微分面積到 O 點的距離，所以(8)式的極矩又稱為圖形對於 O 點的極矩矩。由(8)式可看到，任何一個平面圖形對於同平面一背 O 的極矩矩總等於圖形對於同平面土過 O 點的任意兩條正交軸線的極矩的總和。

例如第 6 圖中的圓面積，計算它對於同心 O 的極矩矩，我們可以以它內中的同心圓環作為微分面積。任意一微分圓環的面積等於 $2\pi r \, dr$，面積積分等於 $2\pi r \, dr$，故根據定義，它對於同心 O 的極矩矩就等於 $2\pi r^2 \, dr$。把圖內所有圓環對 O 點的極矩矩積成總和，就得到整個圓面積對同軸的極矩矩，是

\[J = \int_0^a 2\pi r^2 \, dr = \frac{\pi a^4}{2} \] \hspace{1cm} (9a)

如果圖內有一個同心圓孔，直徑等於 d_1，那末(9a)中的積分下限就應該是 $d_1 / 2$，而不是 0，故得
7. The four-parabolic segment of the parabola at the origin is given by the integral

\[
J = \int_{d/2}^{d} 2\pi r^2 dr = \frac{\pi}{32} (d^4 - d_1^4)
\]

(9b)

The area of the parabolic segment at the origin is determined by the integral of the parabolic curve. For any rectangular parabola, the area can be easily determined by (8) equation. Since any rectangular parabola has a constant area, the area, by (8), is given by

\[
I_x = I_y = \frac{1}{3} J = \frac{\pi d_1^4}{64}
\]

(10)

7. The four-parabolic segment of the parabola at the origin is given by the integral

\[
J = \int_{d/2}^{d} 2\pi r^2 dr = \frac{\pi}{32} (d^4 - d_1^4)
\]

(9b)

The area of the parabolic segment at the origin is determined by the integral of the parabolic curve. For any rectangular parabola, the area can be easily determined by (8) equation. Since any rectangular parabola has a constant area, the area, by (8), is given by

\[
I_x = I_y = \frac{1}{3} J = \frac{\pi d_1^4}{64}
\]

(10)

7. The four-parabolic segment of the parabola at the origin is given by the integral

\[
J = \int_{d/2}^{d} 2\pi r^2 dr = \frac{\pi}{32} (d^4 - d_1^4)
\]

(9b)

The area of the parabolic segment at the origin is determined by the integral of the parabolic curve. For any rectangular parabola, the area can be easily determined by (8) equation. Since any rectangular parabola has a constant area, the area, by (8), is given by

\[
I_x = I_y = \frac{1}{3} J = \frac{\pi d_1^4}{64}
\]

(10)

7. The four-parabolic segment of the parabola at the origin is given by the integral

\[
J = \int_{d/2}^{d} 2\pi r^2 dr = \frac{\pi}{32} (d^4 - d_1^4)
\]

(9b)

The area of the parabolic segment at the origin is determined by the integral of the parabolic curve. For any rectangular parabola, the area can be easily determined by (8) equation. Since any rectangular parabola has a constant area, the area, by (8), is given by

\[
I_x = I_y = \frac{1}{3} J = \frac{\pi d_1^4}{64}
\]

(10)

7. The four-parabolic segment of the parabola at the origin is given by the integral

\[
J = \int_{d/2}^{d} 2\pi r^2 dr = \frac{\pi}{32} (d^4 - d_1^4)
\]

(9b)

The area of the parabolic segment at the origin is determined by the integral of the parabolic curve. For any rectangular parabola, the area can be easily determined by (8) equation. Since any rectangular parabola has a constant area, the area, by (8), is given by

\[
I_x = I_y = \frac{1}{3} J = \frac{\pi d_1^4}{64}
\]

(10)

7. The four-parabolic segment of the parabola at the origin is given by the integral

\[
J = \int_{d/2}^{d} 2\pi r^2 dr = \frac{\pi}{32} (d^4 - d_1^4)
\]

(9b)

The area of the parabolic segment at the origin is determined by the integral of the parabolic curve. For any rectangular parabola, the area can be easily determined by (8) equation. Since any rectangular parabola has a constant area, the area, by (8), is given by

\[
I_x = I_y = \frac{1}{3} J = \frac{\pi d_1^4}{64}
\]

(10)

7. The four-parabolic segment of the parabola at the origin is given by the integral

\[
J = \int_{d/2}^{d} 2\pi r^2 dr = \frac{\pi}{32} (d^4 - d_1^4)
\]

(9b)

The area of the parabolic segment at the origin is determined by the integral of the parabolic curve. For any rectangular parabola, the area can be easily determined by (8) equation. Since any rectangular parabola has a constant area, the area, by (8), is given by

\[
I_x = I_y = \frac{1}{3} J = \frac{\pi d_1^4}{64}
\]

(10)
相同方法,又可得椭圆对于短轴 y 的惯矩,是

$$I_y = \frac{\pi a^2 b}{4}$$ \hspace{1cm} (13b)$$

最後,应用(8)式可得椭圆对于它中心的惯矩,是

$$J = I_x + I_y = \pi a b (a^2 + b^2) / 4$$ \hspace{1cm} (14)$$

習 題

6. 試求第 2 圖之方形對於形心的慣矩矩。

$$J = \frac{h a^3}{12} + \frac{a b^3}{12}$$

7. 試求第 5c 圖之矩形變截面對於形心的慣矩矩。

8. 試求第 7 圖中重釘部份對於 0 點的慣矩矩。

9. 試求第 2 圖之方形對於一渡角頂的慣矩矩。

$$J = \frac{a b}{3} (a^2 + b^2)$$

10. 試求第 15 圖中角鋼矩面對於垂直軸的慣矩矩。

$$J = \frac{2}{3} h (a^3 + ab^2 - b^3)$$

3. 平行軸柱定理

假使已知一個平面圖形 (第 9 圖) 對於通過它形心的軸聯 x 的慣矩, 那這一圖形對於任何其他平行於 x 軸的軸聯 x_1 的慣矩都可以由下列一式來決定:

$$I_{x_1} = I_x + A b^2$$ \hspace{1cm} (15)$$

式中 A 指圖形的全部面積, b 指 x 軸到 x_1 軸間的距離。(15)式稱為平行軸柱定理, 它的證明如下:

按照慣矩的定義, 知

$$I_{x_1} = \int_A (y + b)^2 dA = \int_A y^2 dA + 2 \int_A b y dA + \int_A b^2 dA$$ \hspace{1cm} (a)$$

式中右邊第一個積分就是 I_x；第二個積分, 因 x 軸通過形心, 將等於零; 第三個積分, 因 b 是常數, 將等於 $A b^2$。因此, (a) 式正就是(15)式; 這就證明了平行軸柱定理。
(15) 式對於計算一個螺旋切面（如第 10 圖）的彎矩特別有用。因
為形螺切面的形心位置以及切面對於平行於切面邊的形心軸線的情
矩，在工程手冊內都可以查到，故螺旋切面對於形圖中 x 和 y 軸這樣
的軸線的彎矩，可以很容易地根據平行軸線來確定。

!圖 9

!圖 10

對於垂直於圖平面的平行軸線，我們也可以導出一個類似 (15) 式
的公式。觀察以上第 9 圖，可知，圖中圖形對於 O 點的極矩是

\[J_{c} = I_{x1} + I_{y1} = I_{x} + A b^{2} + I_{y} + A d^{2} = J_{c} + A d^{2} \] \((16) \)

式中 d 指圖形形心 C 離開 O 點的距離。 (16) 式就是關於垂直於圖平
面的軸線的平行軸線定理。

習題

11. 試應用平行軸線定理求第 4 圖三角形對於平行於 a 軸通過形心的軸線的彎矩。
 (解: \(I_{xc} = \frac{bh^{3}}{36} \))

12. 設第 10 圖中的角鋼尺寸是 4×4×4 cm；此外，\(a = 20 \text{ cm} \), \(b = 1 \text{ cm} \)；試求螺旋切面的 \(I_{xc} \)
 (解: \(I_{x} = 1524 \text{ cm}^{4} \))

13. 第 7 圖中畫斜線部份的形心位置在以第 117 圖中已經求得，試應用平行軸線定理求
 這一圖形對於平行於 x 軸的形心軸線的彎矩。
 (解: \(I_{xc} = 0.000471 \text{ d}^{4} \))

14. 試求以第 173 圖的角鋼切面對於平行於 x 軸的軸線的彎矩，所有各圖角的影響都要
 估計在內。此外，計算一下：如果設計圖角，彎矩的誤差將為多大？

15. 試求以第 177 圖中的切面對於平行於 x 軸的形心軸線的彎矩。

4. 橫矩截面主軸

一個平面圖形（第 11 圖）的底面這樣一個積分就稱為這圖形對於
\(I_{xy} = \int_A xy \, dA \) (17)

积分中的 \(x \) 和 \(y \) 分别指图形中任意一微分面积 \(dA \) 的 \(x \) 和 \(y \) 轴坐标。

（17）式也就是说，我们在把图形中的每一微分面积跟它端点坐标值的连乘积沿整个图形面面积分，所得的总和就叫做对图形沿两轴线的惯矩。（17）式可以正、可以负，完全要看 \(x \) 和 \(y \) 轴的方向而定。譬如，第 11 图图形的惯矩原点 \(O \) 顺时针方向旋转 90°，变为图中的 \(x' \)，\(y' \) 两轴，那每一微分面积的新坐标值 \(x' \)，\(y' \) 同原坐标值 \(x \)，\(y \) 的关系就是：

\[y' = x, \quad x' = -y \]

所以图形对于新轴线 \(x' \)，\(y' \) 的惯矩就变成

\[I_{x'y'} = \int_A x'y' \, dA = - \int_A xy \, dA = -I_{xy} \]

可见惯矩在轴线旋转的过程中会改变，其符号也随之变化。但是惯矩随坐标轴旋转的变化是连续性的。因此，在旋转过程中，必定有某坐标轴方向使惯矩为零。这一方向的轴称 \(x'' \) 和 \(y'' \) 称为图的中心主轴。通常情况下，我们都以图形的中心作为主轴的原点，这样特殊选定的主轴称为图形的中心主轴。如果图形有一对等轴，那么这两对轴称为等轴的坐标轴。因为只有等轴的情形下，不论其他坐标轴的坐标位置如何，图的每一微分面积 \(dA \) 必然有一对共线相等的坐标面积存在，这两微分面积分别跟各自坐标轴的连乘积当然与相互对应的两个相等，所以积分积分和的积分过程的为两两相消，使得（17）式成立。因此，\(x \) 和 \(y \) 轴必然是图的中心主轴（主轴如何决定，见以下 §5）。

坐标轴线如发生平行推移，惯矩的值随之改变。设 \(I_{xy} \) 代表图形对于两正交形心轴线 \(x \) 和 \(y \) 的惯矩，\(x_1 \) 和 \(y_1 \) 代表平行于 \(x \) 和 \(y \)
軸的新軸, \(a \) 和 \(b \) 代表形心的 \(x \) 和 \(y \) 軸坐標（第 13 圖）。因形心面積積分的微分值是：

\[
x_1 = x + a, \quad y_1 = y + b
\]

故整個形心對於新軸 \(x_1 \) 和 \(y_1 \) 的慣性積是

\[
I_{x_1 y_1} = \int_A (x+a)(y+b) \, dA = \int_A xy \, dA + a \int_A y \, dA + b \int_A x \, dA + ab \int_A dA
\] \((a) \)

但 \(x \) 和 \(y \) 軸是形心的形心軸, 故 \((a) \) 式右邊第二、三兩個積分都應該等於零。因此, \((a) \) 式可改為

\[
I_{x_1 y_1} = I_{xy} + AaB
\] \((18) \)

這就是形心慣性積的平行軸定理。

例如第 14 圖的直角三角形, 如果要求它的慣性積 \(I_{xy} \), 我們可把

它分割為平行於 \(x \) 軸的儀條, 每一微分面積等於 \(\frac{a(b-y) \, dy}{b} \), 距離底邊的距離是 \(y \), 按 \((18) \) 式, 可得慣性積, 等於

\[
\frac{a(b-y) \, dy}{b} \cdot \frac{a(b-y) y}{2b}
\] \((b) \)

積分 \((b) \) 式, 就得三角形對於兩坐標軸 \(x \) 和 \(y \) 的慣性積如下:

\[
I_{xy} = \frac{a^2}{2b^3} \int_0^b (b-y)^2 \, dy = \frac{c^2b^3}{24}
\] \((19) \)
16. 試應用（13）式求第 2 圖及矩形對**x**和**y**軸的靜矩。
17. 試應用（13）（19）兩式決定第 3 圖中四邊形的慣矩積**I**_{x'y'}。
18. 試求第 4 圖三角形的慣矩積**I**_y。
19. 試求第 15 圖中的角鋼切面的慣矩積**I**_{x'y'}和**I**_{x'y}'。
 \[\text{解：} I_{xy} = \frac{a^2h^2}{4} + \frac{h^2(a^2-h^2)}{4}, \quad I_{x'y'} = 0 \]
20. 試求第 16 圖 2 形形鋼切面的慣矩積**I**_{x'y}。
 \[\text{解：} I_{xy} = bh^2 \left(\frac{a + a_1}{2} - \frac{a - a_1}{2} \right) \]

5. 主樞及主樞慣矩

假設第 16 圖中圖形的慣矩

\[
I_x = \int_A y^2 dA, \quad I_y = \int_A x^2 dA
\]

和慣矩積

\[
I_{xy} = \int_A xy dA
\]

全都知道，現在要求這一圖形對於圖中一一對新的模軸**x'**和**y'**的**I**_{x'y'}，

I_{y'}和**I**_{x'y}。因圖形中任意一微分面積**dA**的新坐標值是

\[
x' = x \cos \varphi + y \sin \varphi \quad \text{和} \quad y' = y \cos \varphi + x \sin \varphi
\]

其中**\varphi**指**x**軸或**y**軸的交角，故根據慣矩的定義可得

\[
I_{x'y'} = \int_A (y \cos \varphi - x \sin \varphi)^2 dA = \int_A y^2 \cos^2 \varphi dA \\
+ \int_A x^2 \sin^2 \varphi dA - 2 \int_A xy \sin \varphi \cos \varphi dA
\]
§53 平面图形的四分矩

設

\[I_{x'} = I_x \cos^2 \varphi + I_y \sin^2 \varphi - 2I_{xy} \sin \varphi \cos \varphi \] \hspace{1cm} (20a)

上式中如用 \(\pi/2 + \varphi \) 代替 \(\varphi \)，又可得

\[I_{y'} = I_x \sin^2 \varphi + I_y \cos^2 \varphi + 2I_{xy} \sin \varphi \cos \varphi \] \hspace{1cm} (20b)

取 (20a) 同 (20b) 的總和，得

\[I_{x'} + I_{y'} = I_x + I_y \] \hspace{1cm} (21)

可見在坐標軸繞 O 點的旋轉過程中，對應於任何兩個坐標軸的矩邊矩的總和是始終等於一個固定常數的。如果取 (20a) (20b) 的差，又可得

\[I_{x'} - I_{y'} = (I_x - I_y) \cos 2 \varphi - 2I_{xy} \sin 2\varphi \] \hspace{1cm} (22)

應用 (21) 和 (22) 兩式來計算 \(I_{x'} \) 和 \(I_{y'} \)，要比引用 (20) 式直接計算簡便得多。

四分矩對於兩根新軸線的情況是

\[I_{x'y'} = \int_A (x \cos \varphi + y \sin \varphi) (y \cos \varphi - x \sin \varphi) \, dA \]

\[= \int_A y^2 \sin \varphi \cos \varphi \, dA - \int_A x^2 \sin \varphi \cos \varphi \, dA \]

\[+ \int_A xy (\cos^2 \varphi - \sin^2 \varphi) \, dA = \frac{1}{2} (I_x - I_y) \sin 2\varphi + I_{xy} \cos 2\varphi \] \hspace{1cm} (23)

有了這式，我們即可決定 O 點的主軸方向。根據定義，如果 \(x' \) 和 \(y' \) 是圓形的主軸（第 16 圖），那圓形對於 \(x' \) 和 \(y' \) 兩軸的矩邊矩 \(I_{x'y'} \) 就應該等於零；這也就是說，\(x' \) 和 \(y' \) 如若是主軸，必須

\[\frac{1}{2} (I_x - I_y) \sin 2\varphi + I_{xy} \cos 2\varphi = 0 \]

也就是

\[\tan 2\varphi = \frac{2I_{xy}}{I_y - I_x} \] \hspace{1cm} (24)

由這式，我們可以得到兩個 \(2\varphi \) 值，兩值相差 \(\pi \)；也就是兩 \(\varphi \) 值相差 \(\pi/2 \)。決定主軸方向的 \(\varphi \) 值找到後，把它代入 (21) 和 (22) 式中，就可求得圓形的主軸矩邊矩。
從 (20) 式中可以看到，$I_{x'}$ 和 $I_{y'}$ 的大小，隨着 φ 角的增減作連續性的變化，所以我們可以斷定，在變化過程中 $I_{x'}$ 和 $I_{y'}$ 一定有一個最大值或最小值存在。要決定這最大或最小值，只要將 (20a) 和 (20b) 對 φ 微分，令導函數等於零或其上。不過，在任何情形下，我們得到的結果都將是跟 (24) 式完全相同的方程式。這說明，圖形對於兩主軸的慣矩也就分別是慣矩的最大和最小值。

關於決定主軸方向的方法，底下我們舉一個計算例來說明。例如第 5b 圖中的 Z 形形鋼切面，假設 $a=0.15$ cm，$a_1=12.8$ cm，$b=7$ cm，$b_1=5.9$ cm。這一切面可當作出三個長方形組成，故應用 (2)，(15) 和 (18) 三式可得：

$$I_x=1097 \text{cm}^4, \quad I_y=195.4 \text{cm}^4, \quad I_{xy}=338.5 \text{cm}^4$$

把這些結果代入 (24) 式中，就得到

$$\tan 2\varphi = -0.758, \quad 2\varphi = -37^\circ, \quad \text{或} \quad 2\varphi = 143^\circ$$

取前一 2φ 值，那末 x' 軸順時針方向旋轉 $15^\circ 30'$ 後，就是一根主軸 x'. 再把 $\sin 2\varphi = -0.602$ 和 $\cos 2\varphi = 0.799$ ——代入 (22) 式，我們就可由 (21) 和 (22) 兩式算出圖形的主軸慣矩是：

$$I_{x'}=1211 \text{cm}^4, \quad I_{y'}=85.0 \text{cm}^4$$

習題

21. 第 7 圖中，設 $d=4$ cm，試求此鋼柱截面對於中心主軸的慣矩慣矩的。

22. 第 14 圖中，設 $b=2$, 試求三角形的中心主軸的方向。

23. 試求第 15 圖中的切面的主軸慣矩 $I_{x'}$ 和 $I_{y'}$。

24. 第 3 圖中，設 $a=60^\circ, \ b=a$, 試求平行四邊形的中心主軸方向。

25. 試求以第 173 圖（第 59 頁）中角鋼切面對於中心主軸的慣矩。
附录 II

物体的质量矩

6. 刚体的质量矩

假使令 dm 代表一个刚体的微分质量，r 代表这一微分质量 dm 靠近某一固定轴线的距离，那么底下的积分就称为刚体对于定轴的质量矩（或简称质量矩）：

$$ I = \int_V r^2 dm $$

(25)

(25) 式也就是说，我们把刚体的微分质量乘上它到某一定轴的距的平方，然后，沿刚体的全部体积 V 積分，所得到的结果就叫做刚体对定轴的质量矩。按这一定义，可知质量矩的因次是「质量 \times 長度2」，或「力 \times 長度 \times 時間2」。因此，質量矩可以由底下这一公式来表示:

$$ I = \frac{W}{g} i^2 $$

(26)

其中 $\frac{W}{g}$ 代表物体的质量；i 代表某一长度，这长度通常称为物体对于以上定轴的惯矩半径（或旋转半径）。

确定一个物体的惯矩无非就是计算(25)式的积分值。底下我们讨论处理各种具体问题的多种不同的方法。

7. 薄片体的质量矩

如果一个物体厚度十分微小，形状或为一个薄片，那它的惯矩计算就非常简单。这样——物体若密度均匀，厚度一致，我们就可选用它的厚度方向为平面作 x 和 y 轴标轴平面（第 1 图），令 h 和 w 分别代表物体的微小厚度和单位体积的重量，dA 代表中间平面切面图形的微分面积，它的微分质量就是 $\frac{w}{g} h \cdot dA$。按(25)式规定的定义，这一薄片体对
於通過任意一 O 點的三坐標軸 x, y 和 z 的慣量應該是：

\[I_x = \frac{wh}{g} \int_A y^2 dA, \quad I_y = \frac{wh}{g} \int_A x^2 dA, \quad I_z = \frac{wh}{g} \int_A r^2 dA \] (27)

這些公式跟附錄 I 中面積慣量 (17) 兩式只差一個常數因子 \(\frac{wh}{g} \). 可見只要把附錄 I 中各式乘上這個因子 \(\frac{wh}{g} \), 就可以得到各種形狀薄片體的質量慣量。

例如附錄 I 中第 2 圖的長方形, 如果它代表一個厚 h, 重 W 的長方薄片, 則末令 \(\omega \) 代表它單位體積重量, 就可得這一長方薄片對於兩對稱軸 x 和 y 的慣量, 是:

\[I_x = \frac{wh}{g} \frac{bh^3}{12} - \frac{Wh}{g} \frac{a^2}{12}, \quad I_y = \frac{Wh}{g} \frac{b^2}{12} \] (28a)

再應用 (8) 式, 又可得它對於通過重心的 z 軸的慣量, 是

\[I_z = I_x + I_y = \frac{W}{g} \cdot \frac{a^2 + b^2}{12} \] (28b)

同様, 物體如果是一半徑 \(a = \frac{d}{2} \) 的圓形薄片 (第 6 圖), 那它對於通過圓心的坐標軸的慣量就是:

\[I_x = I_y = \frac{wh}{g} \cdot \frac{\pi d^4}{64} = \frac{W}{g} \cdot \frac{a^2}{4}, \quad I_z = \frac{W}{g} \cdot \frac{a^2}{2} \] (29)

比較 (28) 同 (26) 兩式, 可知一長方薄片對於三坐標軸的慣量半徑將分別是:

\[i_x = \frac{a}{2\sqrt{3}}, \quad i_y = \frac{b}{2\sqrt{3}}, \quad i_z = \frac{\sqrt{a^2 + b^2}}{12} \] (30)

它們完全跟長方形面積的慣量半徑相同 [見第 209 頁 (6) 式]。一般說來, 任何密度均勻的薄片體, 它對於一定軸線的慣量半徑, 一定跟它的中平面切面面積對同軸的面積慣量半徑相同。

習 題

28. 一塊密度均勻的三角形薄片, 重量為 W。試求其 (3) 式對於底邊的慣量。

\(\text{解: } I_x = \frac{W}{g} \frac{a^2}{6} \)
27. 一塊密度均勻的圓片，重量等於 \(W \)，形狀如第 53 圖，試求它的 \(I_{xx} \)。

28. 一塊密度均勻的圓形薄片，半徑等於 \(a \)，重量等於 \(W \)，試求它對於圓周上一根切線的慣矩 \(I_o \)。

(解: \(I = \frac{5}{4} \frac{W}{y} a^2 \))

27. 一塊密度均勻的正方形細片，重量等於 \(W \)，每邊長度等於 \(a \)，試求它對於一對角線的慣矩 \(I_{d} \)。

(解: \(I_{d} = \frac{5}{24} \frac{W}{y} a^2 \))

30. 一塊密度均勻的 \(Z \) 形細片，形狀如第 55 圖。設重量 \(W = 1.27 \text{kg} \)，\(a = 5 \text{cm} \)，\(b = 3 \text{cm} \)，\(h = 2 \text{cm} \)，試求 \(I_{x} \) 等於多大？

(解: \(I_{x} = 0.00384 \text{kg} \cdot \text{cm}^3 \))

8. 立體物體的慣矩

立體物體指三方向的長度很相近的物體。計算一個立體物體的慣矩，首先應求出它對於平行於已定軸線的筆心軸線的慣矩，然後歸結到已定的軸線上去。令 \(x, y \) 和 \(z \) 代表通過物體筆心並平行於已定 \(x, y \) 和 \(z \) 三軸的三正交坐標軸線（第 17 圖）。物體的結果 \(x, y \) 和 \(z \) 中的坐標是 \(a, b \) 和 \(c \)。按(25)式所規定的定義，可得物體的 \(z \) 軸慣矩如下：

\[
I_{z1} = \int_V (x_1^2 + y_1^2) dm
\]

\[
= \int_V \left[(a + x)^2 + (b + y)^2 \right] dm = (a^2 + b^2) \int_V dm + 2a \int_V xd \hspace{1cm} \text{(a)}
\]

\[
+ 2b \int_V y dm + \int_V (x^2 + y^2) dm
\]

因 \(x, y \) 和 \(z \) 三軸全通過物體的筆心，故(\(a\))中第二、第三兩積分都應等於零（見 § 49）。若令

\[
d^2 = a^2 + b^2, \quad \text{和} \quad r^2 = x^2 + y^2,
\]

以上(\(a\))式就化為

\[
I_{z1} = \int_V r^2 dm + md^2 = I_1 + \frac{W}{g} d^3
\]
這就是物體質量慣矩的平行軸線定理。這定理說明：物體對於任一軸線的慣矩就等於它對於過重心的平行軸線的慣矩加上物體全部質量跟兩軸線間距離的平方的乘積。

若將(31)式改寫成如下的形式：

\[
\frac{W}{g}i_{z_1}^2 = \frac{W}{g}i_z^2 + Wd^2
\]

就可得物體對於兩軸線的慣矩半徑間的關係如下：

\[i_{z_1}^2 = i_z^2 + d^2\] (32)

至於如何應用平行軸線定理來計算立體物體的慣矩，我們用以下兩例來說明：第一個例子是第 18 圖中的一個密度均勻的實心圓柱。現在要計算它對於圓柱中三座標軸 x, y 和 z 的慣矩。計算 x 軸慣矩時，可設想這個圓柱分解為一層層的薄圓片。任意一薄片的厚度是 \(dz\)，它離開圓柱重心 C 的距離是 \(z\)，重量是 \(\pi a^2 wdz\)（其中 \(w\) 指圓柱的單位體積重量），故應用 (29) 式和平行軸線定理，可得薄片對於 x 軸的慣矩，是

\[
\frac{\pi a^2 wdz}{g} \cdot \frac{a^2}{4} + \frac{\pi a^2 wdz}{g}x^2
\]

加總所有這些薄片對於 x 軸的慣矩，我們就得到整個圓柱對同軸的慣矩 \(I_x\)，故

\[
I_x = \frac{\pi a^2 w}{g} \int -\frac{1}{2} (a^2 + x^2) dx = \frac{\pi a^2 w l}{4g} + \frac{\pi a^2 l^3 w}{12g} = \frac{W(a^2 + l^2)}{g} \] (33)

其中 \(W = \pi a^2 w l\) 指圓柱的全部重量。

因圓柱形狀是對稱的，所以它對於 y 軸或任何其他垂直於長軸的重心軸線的慣矩都可以按 (33) 式計算，也就是說，都等於 \(I_x\)。
若圓柱的長度 \(l \) 比半徑 \(a \) 小得很多，(33) 中的 \(l^2/12 \) 將顯得十分微小，因而可以忽略不計，那物體的慣量就跟圓形薄片相同；(33) 式的結果就跟(29) 式的完全相同。若若圓柱的半徑 \(a \) 比長度 \(l \) 要小得更多，(38) 中的 \(a^3/4 \) 項可以忽略不計，那這一細柱形物體的慣矩就是

\[
I_x = \frac{W}{g} \cdot \frac{l^2}{12} \tag{34}
\]

有時候，我們需要計算一根細柱對於通過它一端的横軸的慣矩 \(I_{x1} \)。這只要聯合應用(34)和(31)兩式，就可得

\[
I_{x1} = W \left(\frac{l^2}{12} + \frac{a^3}{3} \right) = \frac{Wl^2}{3g} \tag{35}
\]

至於圓柱對於 \(z \) 軸的慣矩，我們把圓柱中所有各圓形薄片的 \(z \) 軸慣矩加成總和，就得到

\[
I_z = \frac{W}{g} \cdot \frac{a^4}{2}
\]

第二個例子是一個密度均勻、半徑等於 \(a \) 的實心圓球。現在要計算它對於任一軸線的慣矩。令 \(x, y \) 和 \(z \) 代表通過球心的三正交坐標軸。圓球對這三軸線的慣矩，根據慣矩的定義，應分別是：

\[
I_x = \int_V (y^2 + z^2) \, dm, \quad I_y = \int_V (x^2 + z^2) \, dm, \quad I_z = \int_V (x^2 + y^2) \, dm
\]

因圓球對任何直徑的慣矩都相等，故將以上三式加成總和後，又可得

\[
I_x = I_y = I_z = \frac{2}{3} \int_V (x^2 + y^2 + z^2) \, dm = \frac{2}{3} \int_V r^2 \, dm \tag{b}
\]

其中 \(r \) 指微分質量 \(dm \) 到球心的距離。設想球分解為一層層的薄層球壳，這每一球壳的厚度是 \(dr \)，半徑是 \(r \)，質量因之是 \(4\pi r^2 \, dr \cdot \frac{w}{g} \)（\(w \) 指實球的單位體積質量），以這一質量代入(b)式中的 \(dm \)，就得

\[
I_x = I_y = I_z = \frac{2}{3} \int_0^a 4\pi r^2 \frac{w}{g} \, dr = \frac{8}{15} \cdot \frac{\pi \omega a^6}{g} = \frac{2}{5} \frac{W}{g} a^6 \tag{36}
\]

其中 \(W = \frac{4}{3} \pi a^3 \omega \) 就是實球的全部重量。
習 题

31. 一个密度均匀的圆柱体，底面半径等于 a，高度等于 h，試求它的中心軸線以及對通過圓柱頂部平行於底平面的軸線的慣性矩 I_x 和 I_{xx}

$$I_x = \frac{3}{10} \cdot \frac{W}{g} a^2, \quad I_{xx} = \frac{W}{g} \left(\frac{3a^2 + 12bh}{20} \right)$$

32. 一个密度均匀的长方體，邊長是 a, b, c，求它對於平行於長 a 的一邊的形心軸線的慣性矩 I_x.

$$I_x = \frac{W}{g} \left(\frac{b^2 + c^2}{12} \right)$$

33. 一个密度均匀的立方体，邊長等於 a，試求它對於一邊的慣性矩 I_a.

$$I_a = \frac{2}{3} \cdot \frac{W}{g} a^2$$

34. 一个密度均匀的空心圆球，内外半径分別是 a_1 和 a_2，單位體積極是 w，試求它對於一桿直徑的慣性矩 I_0.

$$I_0 = \frac{8}{15} \frac{\pi w}{g} (a_2^5 - a_1^5)$$

35. 一个密度均匀的半球，半徑等於 a；重量等於 W，球表面有一根平行於底平面的切線，試求半球對於這切線的慣性矩。

9. 情矩積和主軸

「情矩積」是與我們計算物體對於各種不同軸線的情矩非常有用的。一個物體對於三個正交坐標軸 x, y, z (第 17 圖) 計有三個質量情矩積：它們的定義由底下三個積分規定：

$$I_{xx} = \int_V xy \cdot dm, \quad I_{yy} = \int_V yz \cdot dm, \quad I_{zz} = \int_V xz \cdot dm \quad (37)$$

物體情矩積的行為同它慣矩一樣，也是「質量×長度2」。不過慣矩的值可以正；也可以為負，不慣慣矩，永遠是正值。計算物體的情矩積，一般說來，就是求 (37) 式的積分。以下我們舉些例子來說明計算的方法。

計圖一個薄片體的情矩積可取它厚度方向的中平面作為 xy 平面。在這種情形下，(37) 式中的 I_{xx} 和 I_{yy} 都等於零，只需要算出 I_{xy}，故直接引用附錄 I 中 §4 各式，並按 §7 所說的，乘一個常數因子 $\frac{wh}{\theta}$，就可得到薄片體的質量情矩積。例如一個直角三角形薄片 (第 14 圖)，直接應用 (19) 式，就可得到這薄片對於兩直角邊的情矩積。
物體的慣性矩

\[I_{xy} = \frac{wh}{g} \cdot \frac{a^2b^2}{24} = \frac{W \cdot ab}{12} \] (38)

其中 \(W = \frac{whab}{2} \) 指三角形薄片的全部重量。

在一定的情形下，一個立體物體的情矩矩也可以用簡單的方法決定。例如第 17 圖中，如果三正交坐標軸 \(x, y \) 和 \(z \) 全部是物體的對稱軸，那物體的三慣性矩 \(I_{xy}, I_{xz} \) 和 \(I_{xz} \) 就會一起等於零。因 \(xy \) 平面若是物體的一個對稱平面，(37) 式中對於每一正的 \(yzdm \) 或 \(xzdm \) 都必然有一個負的 \(yzdm \) 或 \(xzdm \) 相對存在，所以在積度總和的過程中，它們全部兩兩抵消，以致 \(I_{xy} \) 和 \(I_{xz} \) 非等於零不可。同樣，\(xz \) 平面若是一個對稱平面，那就必然 \(I_{xy} = 0 \)。

慣性矩矩(37)式等於零的兩正交坐標軸通常叫做物體的主軸。物體對於主軸的情矩 (不是慣性矩) 就稱為主軸情矩。

我們如果利用物體對於兩組相互平行的正交坐標軸系的情矩矩間所存在的關係，來計算慣性矩，那手續還可以簡化很多。例如第 17 圖中，\(x, y \) 和 \(z \) 是通過物體重心的三坐標軸: \(x_1, y_1 \) 和 \(z_1 \) 是以任意一點作為原始點的三坐標軸。兩坐標軸系中相應各軸兩兩平行。根據慣性矩的定義可得物體對於 \(x_1, y_1 \) 兩軸的情矩矩如下:

\[
I_{x_1y_1} = \int_V x_1 y_1 dm = \int_V (x + a)(y + b) dm
= b \int_V x dm + a \int_V y dm + \int_V xy dm + ab \int_V dm \quad (a)
\]

因 \(x, y \) 是重心軸線，故上式中第一、第二兩個積分都等於零。第三個積分，按慣性矩矩定義，就是物體對於重心軸線 \(x, y \) 的慣性矩。因此，我們可得

\[I_{x_1y_1} = I_{xy} + \frac{W \cdot ab}{g} \] (39)

這也就是物體質量情矩矩的平行軸矩定理。

慣性矩矩 \(I_{x_1z_1}, I_{x_2} \) 和 \(I_{x_1z_2}, I_{x_2} \) 間自然也有跟 (39) 式相同的關係存在。
關於如何應用(39)式，現在舉一個正方體的計算例來說明。設正方體的邊長等於 a，重量等於 W，它的某一頂角的三邊分別跟已定的三正交坐標軸 x_1, y_1 和 z_1 相合，現在要計算它對於這三坐標軸的慣性矩。因爲平行於已定三軸的重心軸線 x, y 和 z 全都是物體的對稱軸線，故 I_{x_1}, I_{y_1} 和 I_{z_1} 都應等於零。應用(39)式就得

$$I_{x_1y_1} = I_{y_1z_1} = I_{x_1z_1} = \frac{W}{g} \cdot \frac{a^2}{4}$$

(40)

習 項

36. 一個密度均勻的三角形薄片，形狀如第 14 圖，試求它對於平行於 x, y 軸的重心軸線的慣性矩 I_{xy}.

(解：$I_{xy} = -\frac{W}{g} \cdot \frac{ab}{96}$)

37. 一個密度均勻的圓板，形狀如第 15 圖。設 $W = 2.8$kg，$a = 6$cm，$h = 1$cm，試求 I_{xy}.

(解：$I_{xy} = 0.00460$kg·cm2)

38. 試求第 30 圖中 z 形鋼片的慣性矩 I_{xy}.

(解：$I_{xy} = 0.00173$kg·cm2)

39. 第 19 圖中是一個密度均勻，半徑等於 a 的半球。試求這半球對於圖中 x, y 和 z 三軸的慣性矩。

(解：$I_{xy} = \frac{W}{g} \cdot \frac{a^2}{8}$，$I_{yz} = I_{zx} = \frac{5}{8} \cdot \frac{W}{g} \cdot \frac{a^2}{8}$)

40. 該第 19 圖中的半球變為一個正方體，高度是 h，半徑是 a，試求它對於圖中 x, y 和 z 三軸的慣性矩。

(解：$I_{xy} = \frac{W}{g} \cdot \frac{a^2}{8}$，$I_{yz} = I_{zx} = \frac{W}{g} \cdot \frac{ah}{2}$)

第 19 圖

10. 惯性軸線的方向變換

假設已經知道物體對於三正交坐標軸 x, y 和 z 的 I_x, I_y, I_z 和

$I_{x_1}, I_{y_1}, I_{z_1}$，要求出物體對另外三正交坐標軸 u, v 和 w 的各慣性矩和慣性矩（第 20 圖）。兩坐標軸系共同以 O 點作原點；u, v 和 w 三軸在 x, y 和 z 坐標軸系中的方向餘弦分別是：$(\alpha_1, \beta_1, \gamma_1)$，$(\alpha_2, \beta_2, \gamma_2)$，$(\alpha_3, \beta_3, \gamma_3)$. 按導出 (20) 式的方法，我們可求得物體對於 u 軸的慣性矩，是

$$I_u = I_x \alpha_1^2 + I_y \beta_1^2 + I_z \gamma_1^2 - 2I_{xy} \alpha_1 \beta_1 - 2I_{xz} \alpha_1 \gamma_1 - 2I_{yz} \beta_1 \gamma_1$$

(41)
至於 \(I_u \) 和 \(I_w \)，我們自然也求得到跟上式形式相同的結果。

特殊情形，\(x, y \) 和 \(z \) 三軸是物體的主軸時，(41) 式中 \(I_{xx}, I_{yy} \) 和 \(I_{zz} \) 三項矩構形都等於零，就得

\[
I_u = I_x \alpha_x^2 + I_y \beta_x^2 + I_z \gamma_x^2 \quad (41')
\]

物體若是一薄片體，我們可取它厚度方向中平面作 \(xy \) 平面（第 16 圖），\(u, v \) 兩軸當然就在這一平面中。在這種情形下，\(I_{uv} = I_{ux} = 0 \)，故 (41) 式化為

\[
I_u = I_x \alpha_x^2 + I_y \beta_x^2 - 2 I_{xy} \alpha_x \beta_x \quad (42)
\]

此式實際上跟 (20a) 式完全相同，由第 16 圖可看到，\(u \) 和 \(v \) 兩軸就相當於其中 \(x' \) 和 \(y' \) 兩軸。

第 20 圖中，物體對於 \(u, v \) 兩軸的熵矩積可以按照導出 (23) 式的方法來決定。結果是:

\[
I_{uv} = -\alpha_1 \alpha_2 I_x - \beta_1 \beta_2 I_y - \gamma_1 \gamma_2 I_z + (\alpha_1 \beta_3 + \alpha_2 \beta_4) I_{xy} + (\alpha_1 \gamma_3 + \alpha_2 \gamma_4) I_{xz} + (\beta_1 \gamma_3 + \beta_2 \gamma_4) I_{yz} \quad (43)
\]

至於熵矩積 \(I_{uv} \) 和 \(I_{uw} \)，我們自然也可以得到跟 (43) 式形式相同的計算公式。

在 \(x, y \) 和 \(z \) 是物體主軸的特例中，因 \(I_{xy} = I_{xz} = I_{yz} = 0 \) 所以 (43) 式簡化為

\[
I_{uv} = -\alpha_1 \alpha_2 I_x - \beta_1 \beta_2 I_y - \gamma_1 \gamma_2 I_z \quad (43')
\]

物體若是薄片形状，我們可取它厚度方向中平面作 \(xy \) 和 \(uv \) 平面。在這一情形下，\(I_{uv} = I_{ux} = 0 \) 和 \(\gamma_1 = \gamma_2 = 0 \)，因而 (43) 式的熵矩積公式簡化為

\[
I_{uv} = -\alpha_1 \alpha_2 I_x - \beta_1 \beta_2 I_y - (\alpha_1 \beta_4 + \alpha_2 \beta_4) I_{xy} \quad (44)
\]

我們著合

\[
\alpha_1 = \beta_2 = \cos \varphi, \quad \beta_1 = -\alpha_2 = \sin \varphi, \quad \gamma_1 = \gamma_2 = 0
\]
還可以把(44)式的 I_{oo} 改變為跟(23)式中平面圖的 I_{xx} 相同的形式。

習題

41. 一個密度均勻的矩形薄片，重量是 W，邊長是 a 和 b (第2圖)，試求它對於一對角線的慣矩。
 \[
 \text{解：} I_d = \frac{1}{6} \cdot \frac{W}{g} \cdot \frac{a^2b^2}{a^2 + b^2}.
 \]

42. 一個密度均勻的長方體，重量是 W，邊長是 a，b 和 c，試求它對於一對角線的慣矩。
 \[
 \text{解：} I_d = \frac{1}{6} \cdot \frac{W}{g} \cdot \frac{a^2b^2 + b^2c^2 + a^2c^2}{a^2 + b^2 + c^2}.
 \]

43. 一個密度均勻的正方形板，長 W，寬 b，底面半徑等於 a，試求它對於長軸的慣矩。
 \[
 \text{解：} I_d = \frac{3Wb^2}{20g} \left(\frac{a^2 + 6b^2}{a^2 + b^2} \right).
 \]

44. 一個密度均勻半徑等於 a 的圓柱體，重量等於 W，長度等於 l，試求它對於長軸平面中一對角線的慣矩。
 \[
 \text{解：} I_d = \frac{Wa^2}{6g} \left(\frac{6a^2 + 5l^2}{4a^2 + l^2} \right).
 \]

45. 若第2圖中是一個密度均勻的長方體，重量等於 W。在它中平面中有一正交平衡軸系 u 和 v，原點是薄片的中心，其中 u 軸是長方體對角線相交。試求對一薄片對於 u 和 v 軸的慣矩是 I_{uu}。
 \[
 \text{解：} I_{uu} = \frac{Wab}{12g} \left(\frac{14 - a^2}{l^2 + a^2} \right).
 \]
前言
目录
内容
下册 动力学
第九章 动力学原理
60.导论
61.质点的运动
62.牛顿定律
63.质点运动的一般方程式
64.重力单位和绝对单位
第十章 直线移动
66.刚体直线移动的运动几何
67.运动方程式
68.在常力作用下的质点运动
69.作用力是时间函数的质点运动
70.正比于位移的作用力——自由振动(一)
71.自由振动(二)
72.强迫振动
73.强迫振动的应用
74.惯性力—惯性力原理
75.动量和衡量
76.功和能
77.能量不灭定理
78.碰撞
第十一章 曲线移动
79.刚体曲线移动的运动几何
80.法线加速度和切线加速度
81.质点的曲线运动方程式
82.抛射体的运动
83.曲线运动中的惯性力——惯性力原理
84.动量矩
85.曲线运动的能量方程式
第十二章 刚体的定轴旋转
86.旋转的运动几何
87.刚体定轴旋转的运动方程式
88.不变力矩作用的旋转运动
89.扭转振动
90.一般的力矩正比于旋转角的旋转运动
91.复摆
92.旋转运动的惯性力
93.旋转机件的内应力
94.固定旋轴上的反作用力
95.旋转刚体的均衡
96.角动量定理
97.角动量的向量表示
98.回转仪
99.旋转体的能量方程式
第十三章 刚体的平面运动
100.刚体平面运动的运动几何
101.瞬时中心
平面运动中移动和转动的相互独立性
刚体平面运动的运动方程式
刚体平面运动的能量方程式
碰撞及碰撞中心
第十四章 相对运动
相对运动的运动几何
相对运动的运动方程式
相对运动中的惯性力
附录Ⅰ 平面图形的面积惰矩
附录Ⅱ 物体的质量惰矩