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PREFACE TO THE SECOND EDITION

Since the first edition of this book, the subject of stability of structures
has steadily increased in importance, especially in the design of metal
structures. As a result, many engineering schools now offer courses in
this subject, usually as part of a curriculum in applied mechanics. = This
book is intended primarily to serve the needs of the beginning student of
the subject, and the emphasis is on fundamental theory rather than
specific applications.

In this second edition the authors have attempted to bring up to date
the subject matter of the first edition and at the same time to maintain
the presentation which was characteristic of the earlier work. The book
begins with the analysis of beam-columns (Chap. 1) and then proceeds
to elastic buckling of bars (Chap. 2). The latter chapter has been
enlarged to include buckling under the action of nonconservative forces,
periodically varying forces, and impact. In addition, the discussion of
the determination of critical loads of columns by successive approxima-
tions has been expanded. The material on inelastic buckling of bars has
been augmented by the introduction of the tangent modulus and placed
in a new chapter (Chap.3). Chapter 4 describes experiments on buckling
of bars and is about the same as in the earlier edition, since it was felt
that the original material still retains its inherent value.

A new chapter on torsional buckling (Chap. 5) has been added to the
book, and the chapter on lateral buckling of beams (Chap. 6) has been
extensively revised. Chapter 7 deals with the bucklihg of rings, curved
bars, and arches and contains several additions. The chapters dealing
with bending of plates and shells (Chaps. 8 and 10) are substantially
unchanged and are included in the book as prerequisites to Chaps. 9
and 11 on buckling of plates and shells. In Chap. 9 (buckling of plates)
several new cases of buckling are considered, and some tables for caleu-
lating critical stresses have been added. All the important material
from the first edition has been retained in this chapter as well as in
Chap. 11 (buckling of shells). The material added in Chap. 11 consists
of discussion of postbuckling behavior of compressed cylindrical shells
and some new material on buckling of curved sheet panels, stiffened
cylindrical shells, and spherical shells.
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Numerous footnote references are given throughout the text as an aid
to the student who wishes to pursue some aspeet of the subject further.
The authors take this opportunity to thank Mrs. Thor H. Sjéstrand
and Mrs. Richard E. Platt for assistance in preparing the manuseript

and reading the proofs for this second edition.
Stephen P. Timoshenko

James M. Gere

PREFACE TO THE FIRST EDITION

The modern use of steel and high-strength alloys in engineering struc-
tures, especially in bridges, ships, and aircraft, has made elastic insta-
bility a problem of great importance. Urgent practical requirements
have given rise in recent years to extensive mvestlga.tlons, both theo-
retical and experimental, of the conditions governing the stablhty of such
structural elements as bars, plates, and shells. It seems that the time
has come when this work, recorded in various _places and languages,
often difficult of access to engineers who need it for guidance in design,
should be brought together and put in the form of a book.

The first problems of elastic instability, concerning lateral buckling
of compressed members, were solved about 200 years ago by L. Euler.!
At that time the principal structural materials were wood and stone.
The relatively low strength of these materials necessitated stout strue-
tural members for which the question of elastic stability is not of primary
importance. Thus Euler’s theoretical solution, developed for slender
bars, remained for a long time without practical application. Only with
the begmmng of extensive construction of steel railway bridges during
the latter half of the past century did the question of buckling of com-
pression members become of practical importance. The use of  steel
led naturally to types of structures embodying slender compression mem-
bers, thin plates, and-thin shells. Experience showed that such strue-
tures may fail in some cases not on account of high stresses, surpassing
the strength of material, but owing to insufficient elastic stability . of
slender or thin-walled members.

Under pressure of practical reqmrements the problem of lateral
buckling of columns, originated by Euler, has been extensively investi-
gated theoretically and experimentally and the limits within which the
theoretical formulas can be applied have been established. However,
lateral buckling of compressed members is only a.particular case of
elastic instability. In the.modern design of bridges, ships, and aircraft
we are confronted by a variety of stability problems. We encounter
there not only solid struts, but built-up or “lattice-work”’ columns, and

1 Leonard Euler’s “Elastic Curves,” translated and annotated by W. A. Oldfather,
C. A. Ellis, and D. M. Brown, 1933.
vii
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tubular members, where there is the possibility of local buckling, as well
as buckling as a whole. In the use of thin sheet material, as in plate
girders and airplane structures, we have to keep in mind that thin plates
may prove unstable under the action of forces in their own planes, and
fail by buckling sideways. Thin cylindrical shells, such as vacuum
vessels, which have to withstand uniform external pressure, may exhibit
instability and collapse at a relatively low stress if the thickness of the
shell is too small in comparison with the diameter. The thin cylindrical
shell may buckle also under axial compression, bending, torsion, or com-
binations of these. All such problems are of the utmost importance
in the design of airplanes of the modern monocoque type.

In the discussion of these problems and their solutions, it has not been
deemed mnecessary to include an account of the general theory of elastic
stability, which finds its appropriate place in books on the theory of
elasticity. - This book proceeds directly to particular problems showing
in each case under what conditions the question of stability ealls for
consideration. The various methods of solution are presented in con-
nection with the types of problem to which they are best suited. The
_ solutions have in most cases been supplemented by tables and diagrams
which furnish values of critical loads and stresses for each particular case.
While all available information relevant to a prescribed problem has
been given, no attempt has been made to go beyond this into actual
design, since it is a field in which other considerations besides rational
theory and testing play their parts.

The preliminary knowledge of mathematics and strength of materials
taken for granted is that usually covered by our schools of engineering.
Where additional mathematical equipment has been found necessary,
it is given in the book with the appropriate explanations.” To simplify
the reading of the book, problems which, although of practical import-
ance, are such that they can be omitted during a first reading are put in
small type. The reader may return to the study of such problems after
finishing the more essential portions of the book.’

Numerous references to papers and books trea.tmg stability problems

are given in the book. These references may be of interest to engineers

who wish to study some special problems in more detail. They give
also a picture of the modern development of the theory of elastic sta-
bility and may be of some use to graduate students who are planning to
take their work in this field.

In the preparation of this book the contents of a previous book!
dealing with stability problems and representing a course of lectures
on the theory of thin plates and shells, as given in several Russian engi-
neering schools, have been freely drawn upon.

! “Theory of Elasticity,” vol. 11, St. Petersburg, Russia, 1916.

PREFACE TO THE FIRST EDITION ix

To the University of Michigan the author is grateful for financial
support obtained from a research fund and used in the preparation of
numerical tables and diagrams for this book. He also takes this oppor-
tunity to extend thanks to Dr. D. H. Young who read over the complete
manuscript and made many valuable suggestions and corrections, to
Professors G. H. MacCullough and H. R. Lloyd who read some portions
of the manuseript, to Dr. I. A. Wojtaszak and Mr. S. H. Fillion for the
checking of equations and numerical tables, to Dr. Wojtaszak for reading
proofs, to' Miss Reta Morden for the typing of the manuscript, a,nd to
Mr. L. 8. Veenstra for the preparation of the drawings.

8. Timoshenko
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CHAPTER 1

BEAM-COLUMNS

1.1. Introduction. In the elementary theory of bending, it is found
that stresses and deflections in beams are directly proportional to the
applied loads. This condition requires that the change in shape of the
beam due to bending must not affect the action of the applied loads.
For example, if the beam in Fig. 1-1a is subjected to only lateral loads,
such as @, and @, the presence of the small deflections 8, and 5, and slight
changes in the vertical lines of action of the loads will have only an insig-
nificant effect on the moments and shear forces. Thus it is possible to
make calculations for deflections, stresses, moments, ete., on the basis of
the initial configuration of the beam. Under these conditions, and also
if Hooke’s law holds for the material, the deflections are proportional to
the acting forces and the principle of superposition is valid; i.e., the final
deformation is obtained by summation of the deformatlons produced by
the individual forces.

Conditions are entirely different when both axial and lateral loads act
simultaneously on the beam (Fig. 1-13). The bending moments, shear

* forces, stresses, and deflections in the beam will not be proportional to

the magnitude of the axial load. Furthermore, their values will be
dependent upon the magnitude of the deflections produced and will be
sensitive to even slight eccentricities in the application of the axial load.
Beams subjected to axial compression and simultaneously supporting
lateral loads are known as beam-columns. In this first chapter, beam-
columns of symmetrical cross section and with various conditions of
support and loading will be analyzed.?

1.2. Differential Equations for Beam-columns. The basic equations
for the analysis of beam-columns can be derived by considering the beam
in Fig. 1-2a. The beam is subjected to an axial compressive force P
and to a distributed lateral load of intensity ¢ which varies with the dis-
tance z along the beam.. -An element of length dz between two cross
sections taken normal to ‘the original (undeflected) axis of the beam is

1 For an analysis of beams subjected to axial tension see Timoshenko, ““Strength of
Materials,” 3d ed., part II, p. 41, D. Van Nostrand Company, Inc., Princeton, N. J
1956,

1




2 THEORY OF ELASTIC STABILITY

shown in Fig. 1-2b. The lateral load may be considered as having con-
stant intensity g over the distance dz and will be assumed positive when
in the direction of the positive y axis, which is downward in this case.
The shearing force V and bending moment M acting on the sides of the
element are assumed positive in the directions shown.

LQI Q, : le l‘?z
A 3 ¥ B P P
5 —5— % R
) 5
Yo (%)
‘Fi6. 1-1

The relations among load, shearing force V, and bending moment are
obtained from the equilibrium of the element in Fig. 1-2b. Summing
forces in the y direction gives
V4 gqgdr+ (V+dV) =0

av
9= -3 ; (1-1)

Taking moments about point # and assuming that the angle between the
axis of the beam and the horizontal is small, we obtain

or

M+qu§2f+(v+dV)dx,— (M + dM) +P§-de -0

1If terms of second order are neglected, this equation becomes

dM dy
V= 3 P iz 1-2)
If the effects of shearing deformations and shortening of the beam axis

are neglected, the expression for the curvature of the axis of the beam is

dy '
EI = - R -M (1-3)
The quantity EI represents the flexural rigidity of the beam in the plane
of bending, that is, in the zy plane, which is assumed to be a plane of sym-
metry. Combining Eq. (1-3) with Egs. (1-1) and (1-2), we can express
the differential equation of the axis of the beam in the following alternate
forms:

dx, Y+ P = -V (14)

and w v, p2Y dz, =g (1-5)

Equations (1-1) to (1-5) are the basic differential equatibns for bending of
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beam-columns. If the axial force P equals zero, these equations reduce:
to the usual equations for bending by lateral loads only.

Instead of taking an element dz with sides perpendicular to the z axis (Fig. 1-2b),
we can cut an element with sides normal to the deflected axis of the beam (Fig. 1-2c).
Since the slope of the beam is small, the normal forces acting on the sides of the ele-
ment can be taken equal to the axial compressive force P. The shearing force N in
this case is related to the shearing force V in Fig. 1-2b by the expression

d;
N=V+P£ v (@)
and instead of Eqs. (1-1) and (1-2) we obtain
dN dy
q=_7:c_+PdTl (1-1a)
aM
and N = - (1-2a)

Equa.tior.ns (1.-10) and (1-2a) can also be derived by considering the equilibrium of the
element in Fig. 1-2c. Finally, combining Eq. (1-2a) with Eq. (1-3) yields the equation

EI d:t‘ =-N (1-4a)

E:quatiox} (1-5) remains valid for the element in Fig. 1-2c. Thus we have two sets of
differential equations for a beam-column, depending on whether the shearing force is
taken on a cross section normal to the deflected or the undeflected axis of the beam.

1.3. Beam-column with a Concentrated Lateral Load. As the first

. example of the use of the beam-column equations, let us consider a beam

of length I on two simple supports (Fig. 1-3) and carrying a single lateral

,WTFF,TTIW, g*
P o1l P My
4—7;: P

’ —pef f— A4

T =
Y (a)

dy dy

—~——— llll' d_x- d:z dx
P

T ——— N+dN

P

(e)
Fia. 1-2

q
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load @ at distance ¢ from the right end. The bending moments due to the

“Iateral load Q, if acting alone, could be found readily by statics. How-

Q ever, in this case the axial force P
,r_ i " causes bending moments which can-
A : t i—f not be found until the deflections

—
“' ; Ee % are determined. The beam-column
b

l b I is therefore statically indetermi-

] >

nate, and it is necessary to begin by
solving the differential equation for
the deflection curve of the beam.

The bending moments in the left- and right-hand portions of the beam
in Fig. 1-3 are, respectively,

ly
Fra. 1-3

M=Ql£z+Py M=9-(’T‘Q(z—z)+1>y

and, therefore, using Eq. (1-3) we obtain

d2
prdt %o py @
dy QU — ol -2
For simplification the following notation is introduced:
: P )
2 — T _
k = F (1-6)

and then Eq. (a) becomes
dly -
R (ki
The general solution of this equation is ‘ :
y=Acoskz+Bsinka;—%—;x (0

In the same manner the general solution of Eq. (b) is

y = Coos ks + Dsinks — =90 =2 @)

The constants of integration A, B, C, and D are now determined from
the conditions at the ends of the beam and at the point of application of
the load Q. Since the deflections at the ends of the bar are zero, we

conclude that
A=0 = —Dtankl (e)

At the point of application of the load @ the two portions of the deflection
curve, as given by Egs. (c) and (d), have the same deflection and a com-
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mon tangent. These conditions give

Bsink(l—c)——%;(l—c)

= Disin k(I — ¢) — tan kl cos k(I — ¢)] — %‘; )

_a
Bk cos k(I — ¢) Pi
| — Dhlcos k(I — ¢) + tan ki sin k(l — ¢)] + Qﬁ’ﬁ—")
from which i
_ Qsinke _ Qsink(l — o)
B=ptsuil P~ " " Prtmm el

Substituting into Eqgs. (¢) and (d) the values of the constants from (e)
and (f), we obtain the following equations for the two portions of the

" deflection curve:

_ Qsinkec . Qc ]

V= Premmonke—pr 0<z<i-c¢’ -7
_Qsink(l—c¢) . 1—0o)( —

y= Pksinkz_‘s‘“k("”)‘———*Q( 21( 2) l—e<Lz<1

(1-8)

It is seen that Eq. (1-8) can be obtained from Eq. (1-7) by substituting
1 — cforcand! — z for z.

By differentiation of Egs. (1-7) and (1-8) the following formulas, useful
in later calculations, are obtainéd:

%=g:2’$coskz_%‘ 0<z<l—c (1-9)
%:-Q—S;)lei—ffk—_lc-chS‘k(l;x)+mlT;c2 l—e<z<1 (1"107)
L Ly 0<z<l—c (1-11)
%=—9%$T;Qsink(l—z) ’ l—c<z<1l (112

In the particular case of a load applied at the center of the beam, the
deflection curve is symmetrical and it is necessary to consider only the
portion to the left of the load. The maximum deflection in this case is
obtained by substituting z = ¢ = I/2 in Eq. ((1-7), which gives

5‘ = o=tz = 2;10370 (tan%l - -’;—l) @
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To simplify this equation the following additional notation will be used:

w= ﬂ ’\/_ ' (1-13)

Then Eq. (9) becomes

R N LCHENCE

The first factor on the right-hand side of this equation represents the
deflection which is obtained if the lateral load @ acts alone. The second
factor, x(u), gives the influence of the longitudinal force P on the deflec-
tion 5. Numerical values of the factor x(u) for various values of the
quantity u are given in Table A-1 in the Appendix. By using this table,
the deflections of the bar can be calculated readily in each particular case
from Eq. (1-14).

When P is small, the quantity » is also small [see Eq. (1-13)] and the
factor x(u) approaches unity. This can be shown by using the series

tanu=u++ 20 4

and retaining only the first two terms of this series. It is seen also that
x(t) becomes infinite when u approaches /2. When u = x/2, we find
from Eq. (1-13)
2

P= Lf_l (1-15)
Thus it can be concluded that when the axial compressive force
approaches the limiting value given by Eq. (1-15), even the smallest
lateral load will produce considerable lateral deflection. This limiting
value of the compressive force is called the critical load and is denoted
by P.. By using Eq. (1-15) for the critical value of the longitudinal
force, the quantity u [see Eq. (1-13)] can be represented in the following

form:
x ’ P

Thus « depends only on the magnitude of the ratio P/P..
To find the slope of the deflection curve at the end of the beam, we
substitute ¢ = /2 and = = 0-into Eq. (1-9), which gives

a9y _Q@(_1 _
dz)o—0 2P \cos kl/2

Q1 2(1 —cosu) _ QI M) (1—17)>
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Again, the first factor is the slope produced by the lateral load Q acting
alone at the center of the beam and the second factor represents the effect
of the axial load P. Values of the factor A(u) are given in Table A-2
of the Appendix.

By using Eq. (1-11) we obtain the maximum bending moment as

follows:
- dty QkEI Ql tan u
M., = —-EI{-—= = X =7
S 1 (dit’)z.z/z 2P n 2 4 u (1-18)

The maximum bending moment is obtained in this case by multiplying
the bending moment produced by the lateral load by the factor (tan u)/u.
The value of this factor, as well as the previous trigonometric factors
)\(u) and x(u), approaches unity as the compressive force becomes
smaller and smaller and increases indefinitely when the quantity =
approaches »/2, that is, whén the compresswe force approaches the
critical value given by Eq. (1-15).

1.4. Several Concentrated Loads. The results of the previous article
will now be used in the more general case of several lateral loads acting on
the compressed beam. Equations (1-7) and (1-8) show that for a given
longitudinal force the deflections of the bar are proportional to the
lateral load Q. At the same time the relation between deflections and
the longitudinal force P is more complicated, since this force enters into
the trigonometric functions containing k. The fact that deflections are
linear functions of @ indicates that the principle of superposition, which
is widely used when lateral loads act alone on a beam, can also be applied
in the case of the combined action of lateral and axial loads, but in a some-
what modified form. It is seen from Egs. (1-7) and (1-8) that, if we
increase the lateral load @ by an amount @, the resultant deflection is
obtained by superposing on the deflections produced by the load Q the
deflections produced by the load Qs, prov1ded the same axial force acts
on the bar.

It can be shown that the method of superposition can be used also if
several lateral loads are acting on the compressed bar. The resultant
deflection is obtained by using Egs. (1-7) and (1-8) and superposing the
separate deflections produced by each lateral load acting in combination
with the .total axial force. Take the case of two lateral loads Q,
and Q. at the distances ¢, and ¢: from the right support (Fig. 14).
Proceeding as in the previous article, we find that the differential equation
of the deflection curve for the left portion of the beam (z < I — cs) is

dy T Quer
EITY Q—;.—’z—g%c—’z—Py (@)

Now consider the loads @, and Q. acting separately on the conipressed
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bar, and denote by y; the deflections due to @, and by Y the dei?ections
caused by Q.. For these two cases we find the following equations for
the deflection curve for the left portion of the beam:

ay _ Qer
E'I-('ix—2 = ———l xr Pyl
d: Qa2
EIZ% = — X2z — Py

By adding these two equations we find

pr&@tu) _ Qo 06, _ py, 4y,

It is seen that this equation for the sum of the deflections y: and y: is the
game as Eq. (a) for the deflections obtained whe.n the loads @, and Q,
were acting simultaneously. The same conclusion also holds for the
middle and right-hand portions of the bar. Thus wh.en there are sev_eral
loads acting on a compressed bar, the resultant deflections can be thalflled
) by superposition of the deflections

e, lQ’ produced separately by each lateral

QWA - B*—i load acting in combination with the

g ' L_ 2 longitudinal force P.

‘ 6 On the basis of this statement we
© can now write the equation of the
! . deflection curve for any portion of
the bar and for any number of lat-
eral loads. Assume that there are
n lateral forces Qi, Qs, . . . , @ and that their distances from the right
support of the beam are ¢, cs, . ... , €a, Where o << v r 0 < e
Then with the use of Egs. (1-7) and (1-8) for a single Jateral load, 1.;he
deflection curve between the loads Q,, and @41 is given by the equation

ly
Fia. 1-4

t=m imm

_ sin kz . Q] _iz i
y_PksinklZQ'smkc’ P ‘__IQ,
sin k(l — z) . IR Rk z Q:(l —¢) (1-19)
+ “Prsm H 'EHQ'S‘”(’ DT Ly

In the same manner, by using Eqs. (1-9) to (1-12), we can obtaifx the
slope of the deflection curve and the bending moment at any cross sectuzn of
the beam. Thus, when the method of superposition is used in its mod.lﬁed
form, the general problem of calculating deflections for & beam stxbmxtted
to the action of several lateral loads together with an axial force is solved.
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1.6. Continuous Lateral Load. The method of superposition, de-
seribed in the previous article, can be used in the case of continuous loads
also. The formulas of the preceding article can be adapted to this case
by replacing summations by integrations. Let us take the case of a
uniform lateral load of intensity g acting on a compressed bar with hinged
ends (Fig. 1-5), and let ¢ denote the variable distance from the right-hand
support to an element g dc of the
continuous load. Thiselement can q d"—’l e
be considered as an infinitesimally 2 [TTUTTHTTTRITOI]] B
small concentrated force, and the y, *
uniform load can be replaced by a |
system of such infinitesimally small
concentrated forces. Then, using
Eq. (1-19) and replacing the sum-
mation from ¢ = 1 to ¢ ='m by an integration from 0 to { — z and the
summation from ¢ = m + 1 to i = n by an integration from [ — z to 1, we
obtain

Ygde 7
! ]

ly
Fre. 1-5

sinkz [i-= z f[irz
y_P——ksinle qsmkcdc——P—l A gc de
sink(l_x) ! . _ —l-—x 4 _
t Prsnm )y, 1ok — o) de — 5= [ 9 —ode (o)

After integration and using notation (1-13), we obtain the following equa-~
tion of the deflection curve:

_ gt [cos (u— 2uz/l) N N
y= 16ETu* [ cos u 1 SETu? z(l — ) (1-20)

The deflection at the middle of the beam is found by substituting
z = 1/2 into Eq. (1-20). With the aid of some transformations we can
express the result in the form

5qlt 12(2 ) R
8= Whn = gy et 2 B w)
bl
= 38ig7 "™ a-21)

The first factor on the right-hand side of this equation represents the
deflection at the center produced by the lateral load ¢ acting alone, and
the second factor (u) shows the effect of the longitudinal compressive
force P on the deflection. By expanding sec u in the form of a series, it
can be shown that the second factor approaches unity when u approaches
zero and increases indefinitely as u approaches #/2, that is, when P
approaches the critical value [Eq. (1-15)]. Thu8 the effect of the axial
load P on the deflection depends on the value of u and hence on the value
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of the ratio P/P, [see Eq. (1-16)]. If this ratio is small, the effect of P
on the deflection is also small, but as the ratio approaches unity, the effect
of P grows indefinitely. The same conclusion is obtained for other kinds
of lateral loading. Values of the factor #(x) are given in Table A-2 in
the Appendix. :

By differentiating Eq. (1-20) we can find the general expression for the
slope of the deflection curve. In later investigations of bars with fixed
ends we shall require the slopes at the ends of the bar. By substituting
z = 0 into the general expression for the slope, it can be shown that the
slope at the left end of the bar, equal to the small angle of rotation 8 of
the end, is

dy 13 3(tanu —w) _ ¢

b= (d_:v),go —oaml W = mErX®  (-2)
The first factor on the right-hand side is the known formula for the slope
at the end of the beam when the uniform load acts alone. The second
factor is x(u) and represents the effect on the slope of the longitudinal
force P. It was shown before that the factor x(u) approaches unity when
u approaches zero and that it increases indefinitely when u approaches
/2 and P approaches the critical value.

For calculating the maximum bending moment, Eq. (1-20) for y must
be differentiated twice. The maximum bending moment, which in this
case is at the center of the span, is

dy _q*2(1 — cosu) _ ql?

Mo = ~EI (d_ﬂ)z_m =LA _Ew  (1-23)

The same result can be obtained in another way by adding to the moment
¢l*/8 the moment P$§ due to the longitudinal foree. Substituting for é
its value from Eq. (1-21), we obtain

_gq 5qlt 12(2secu — 2 — u?)
Mo =g + 35087 Bt

Substituting into this expression P = k2EI and using notation (1-13),
we can bring this result into the same form as Eq. (1-23). The first
factor in Eq. (1-23) represents the bending moment produced by the
uniform: load alone, and the second factor gives the effect of the longi-
tudinal force P on the maximum bending moment. It was mentioned
before (see p. 7) that the factor A(u) is near unity for small values of
the ratio P/P, and that it increases indefinitely as P approaches P,.
<The method of superposition in the calculation of deflections can be
applied-also in the case where the load is distributed along only a portion
of the span (Fig. 1-6a). To find, for example, the deflection curve for
the portion of the beam to the left of the load, we use Eq. (1-7) for a con-

P

BEAM-COLUMNS . 11

centrated load on the span. The deflection produced by one element
g de of the total load is obtained by substituting ¢ dc for Q in Eq. (1-7).
The deflection produced by the total load is then found by integrating
between the limits¢ = aand ¢ = b. In this way we obtain the deflection
curve for the left portion of the beam in the following form:

5 .
_ gdcsin ke b gc de

y= / Prksim & S0 ke — 2 / Pl ®

If it is necessary to find the deflection at any point m under the load

(Fig. 1-6a), we use Eq. (1-7) for the load to the right of m and Eq. (1-8)
for the load to the left of m. Then the required deflection is

l—z 1 -
y=/ qdcsmkcsinkx—z/ 2 gc de

Pk sin kl Pl
b gdesink(l —¢) . b gde(l— o)l — =
t ). Phemm  Snkl-2) - [_, e C

When j:he integrations are carried out as indicated, the equation for the
deflection curve under the load is obtained. By substituting @ = 0 and
b = [ into that equation we obtain

Eq. (1-20) for a uniformly loaded qldc_' r—c_'l

beam. : 2 [OTTITHTIT] P 4
If ¢ is not constant but is a cer- » " A % *

tain function of ¢, we can obtain the « -

deflection curve from Egs. (b) and Y b—

(¢) by substituting for ¢ the given | 1

function of ¢. For instance, in the
case shown in Fig. 1-6b, the deflec-
tion curve is obtained by substitut-
ing g = goc/l into Eq. (¢) and also
taking ¢ = 0,b = L

. [ 2
In the preceding examples the deflec- Iy (b)
tion curve for a beam-column was found Fia. 1-6
either by using the differential equation )
(1-3) or by superposing certain known results. - An slternate way of determining the
deflection curve is to begin with the differential equation (1-5). For example, for the
beam shown in Fig. 1-5, carrying a uniform load of constant intensity g, the equation is

d
Eldc—‘—’f+P%=q
The general solution of this equation is
y=Asinks +Boosks +Cz+D+ 55 @

where A, B, C, and D are constants of integration that must be evaluated from the
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conditions at the ends of the beam. Since the deflection and bending moment are
zero at the ends of the bar, these conditions are

y—%— atx=0andz =1
Froxh the two conditions at z = 0 we obtain

B=-D=gp

and the conditions at z = I give
' g l—csk ,__ g
%P~ sin kI

Substituting the values of the constants into Eq. (d) gives the equation for the deflec-
tion curve of the beam-column. When some trigonometric substitutions are made and
also Eq. (1-13) is used, this result can be shown to be identical with Eq (1-20).

A=

1.6. Bending of a Beam-column by Couples Knowing the solution

for a single concentrated force @ (Fig. 1-3) it is not difficult to obtain the

equation of the deflection curve for

0, .8, ’(\ “the case when a couple is applied at

4 ¥ i "B f the end of the beam. For this pur-

2 7 ? %,, pose assume that the distance ¢ in

] l I Fig. 1-3 approaches zero and at the

' ‘ ! same time @ is increasing, so that

4 the product Qc remains finite and

Fio. 1-7 equal to M, By this means we

obtain in the limit the bending of the bar by a couple M, at the right end

(Fig. 1-7). The deflection curve is then obtained from Eq. (1-7) by sub-
stituting in this equation sin ke = ke and Qc = ‘M, giving

_ M, (sinkzx =z
¥=7p (sin’ ) z) (1-24)

In our further discussion it will be necessary to have the formulas giving
the small angles of rotation 6, and 6, of the ends of the bar. These
angles are considered as positive when the ends rotate in the direction of
positive bending moment as shown in Fig. 1-7. Taking the derivative
of Eq. (1-24), we obtain

() Mok 1\_Mi3( 1 1

0s = (%)ho P (sin‘kl U] BEIu (sin 2u ﬂ) (1-25)
_ _fdy _ _ My (kcoskl 1 Myl 3 1

b = (d_:c),_; - (sm Kl l_> - mﬂ(ﬁ tan 2u) (1-26)

We see that the known expressions M,l/6EI and Ml/3E1, for the angles
produced by the couple M, acting alone, are multiplied by trizonometric
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factors representing the influence of the axial force P on the angles of
rotation of the ends of the bar. It is not difficult to show that these
factors approach unity when u approaches zero and increase indefinitely
as u approaches /2. In subsequent equations the following notation
will be used in order to simplify the expressions:

1 1
$(u) = (sm 2u ﬂ) (1-27)

3 /1 1
Vo) = (512 "~ tan 2u) (1-28)

Numerical values of these functions are given in Table A-1 in the
Appendix.

;f two couples M, and M, are applied at the ends A and B of the bar
(Fig. 1-8a), the deflection curve can be obtained by superposition.
From Eq. (1-24) we obtain the deflections produced by the couple M,.

M M,
a 9¢ ob . b € e
P42 | i_Frye B, prett
. %I \;\—7 %} T4 > /r*
Y (a) Iy (%)

Fic. 1-8

Then by substituting M, for M, and (I - z) for z in the same equation,
we find the deflections produced by the couple M,. Adding these results
together, we obtain the deflection curve for the case represented in Fig.

1-8a:
_ M (sin kz sin k(I — ) l—=z
¥=17 (smkl )"‘ [ Sin Kl I ] (1-29)
This type of loading occurs where two eccentrically applied compressive

forces P act as shown in Fig. 1-8b. Substxtutmg M, = Pe,and M, = Pe
m Eq. (1-29), we obtain

. (sinkz -z .sinkl— i - ’
y—eb(smkl i)"“"‘[ { z)_— lz]v (1-30)

sin ki

The angles 6, and 6, glvmg the rotation of the ends of the beam in Fig.
1-8a are obtained by using Egs: (1-25) and (1-26) and notations (1-27)
and (1-28). Then, by superposition, we obtain

: Ml
0a ¢(u) + 77 o(%)
3EI 6E1
o I (1-31)
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Using for ¢(z) and y(u) their values from Table A-1, Appendix, the angles.

0, and 65 can be obtained readily from Eqgs. (1-31). These equations will
be used frequently in discussing various cases of beams with redundant
constraints at the ends. ,

In the case of two equal couples M, = M, = M,, we obtain from Eq.
(1-29) ‘

y= 7’—05:—[(07;7m [cos (% - kx) — cos I%l]
,M_Ql_g _2 [cos (u - 2—12:) — cos u] (1-32)

~ BET w?cosu l
The deflection at the center of the bar is obtained by substituting = = 1/2,
which yields the result
8= W)omirr = 8ET  ulcosu  SEI M) - (1-33)
The angles at the ends are found by taking the derivative of Eq. (1-32)
and substituting z = 0. The resulting expression is

dy _ Mitanu
"°="°—(a—z,_.,-m7 (1-34)
The maximum bending moment, which occurs at the middle of the bar, is
obtained by using the second derivative of Eq. (1-32), from which
M. = —EI (‘i’ﬂ) = Mosecu (1-35)
max 42 ) oz

Equation (1-35) can be used in calculating the maximum bending
moment in a bar with eccentrically applied compressive forces (Fig.
1-8b) when both eccentricities are equal. When the longitudinal force
P is small in comparison with its critical value (Eq. 1-15), the quantity
u is small and sec u can be taken equal to unity; that is, the bending
moment can be assumed constant along the length of the bar. As u
approaches /2 and P approaches P, sec u increases indefinitely. At
such values of P the slightest eccentricity in the application of the load
produces a considerable bending moment at the center of the bar. A

discussion of working stresses for such cases will be given in Art. 1.13.
1.7. Approximate Formula for Deflections. In making preliminary
design computations, it is frequently useful to have an approximate
formula for determining the deflection at the center of a beam-column
with simply supported ends. In the preceding articles, equations were
derived for the center deflection under three conditions of symmetrical
loading (concentrated load at center, uniform load, and two equal end
moments). In each case, the deflection is equal to the produect of two
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terms, the first term being the deflection without axial load and the second

term being an amplification factor which depends upon the value of u

and hence upon the ratio P/P, [see Eq. (1-16)]. The amplification

factors for the three cases of loading are x(u), #(u), and A(u), respectively.
An approximate expression for the amplification factor! is

1

1- PJP, (1-36)

This simplified expression can be used with good accuracy; in place of
the exact factors x(u), n(u), and A(w), if the ratio P/P,, is not large. A
plot of the amplification factor is given in Fig. 1-9. For values of P/P,
less than 0.6, the error in the ap-
proximate expression? is less than
2 per cent.

1.8. Beam-columns with Built-in
Ends. By using the results of the
previous articles and the method
of superposition (see Art. 1.4), we
can solve various statically inde-
terminate problems. Take, for in- /
stance, the uniformly loaded and
compressed beam shown in Fig.

1-10. The uniformly loaded beam 105 oz 5 56
is simply supported at end A and - p/p, 4 ’
built in at end B. The statically Fre. 1-9
indeterminate reactive moment M,

at the support B is obtained from the condition that the tangent to the
deflection curve at the built-in end must remain horizontal. Therefore
the rotation of the end B produced by the uniform load [Eq. (1-22)] plus
the rotation from the action of the moment M, [found from the second of
Egs. (1-31)] must be zero. In this way we find

@ 4 M

2.5

Y

15 d

Amplification factor (eq 1-36)

fromwhich M= -2 %%% (1-37)

The negative sign of this result indicates that M, acts opposite to the
direction . assumed in-Fig. 1-10 and produces bending convex upward.
The . calculation of the moment M, can be carried out easily by using
Table A-1, Appendix. Having found M, from Eq. (1-37), we obtain

1 A derivation of this factor is given in Art. 1.11.
2 Expression (1-36) was presented by Timoshenko in Bull. Polytech. Inst.; Kiev, 1909.
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the, deflection curve by superposing on the deflection produced by the
uniform load [Eq. (1-20)] the deflection produced by the moment M,
[Eq. (1-24)}.

If the uniformly loaded beam has both ends built in (Fig. 1-11), the
deflection curve is symmetrical and the moments at the built-in ends are
equal (M, = My = M,). The magnitude of these moments is obtained
from the condition that the rotation of the ends [Eq. (1-22)] produced by
the uniform load is eliminated by the moments acting at the ends [Eq.
(1-34)). Then

M ol tan u
x( ) + 3551 =
. . _ q_lf x(u) .
fr§m which My = 12 (tan 0)/u (1-38)
Again, the minus sign for the result indicates that the moments are in
directions opposite to those assumed in Fig. 1-11. With the end moments

=0

M,

P
A x

Fia. 1-10
M, /q M
A
P_égIHIIIIIIHHIIIIIHIIHIIW
A .. Be /%

ly

Fia. 1-11

Q
M, l——°—*|Mb
PE%A B P
A x

Fia. 1-12

determined, the deflection curve is found by superposing on the deflec-
tions produced by the uniform load [Eq. (1-20)] the deflections produced
by the two equal moments applied at the ends [Eq. (1-32)]. Similarly,
the bending moment at the middle is obtained by superposing the bending
moment produced by the uniform load [Eq. (1-23)] and the moment pro-
dueed by the couples M, [see Eqgs. (1-35) and (1-38)], which gives

_ _ g x(u) _ gl*6(u — sin u)
Moz =g MW = 5 Gnwy/a — 24 wema 139

The trigonometric function appearing on the right-hand side of this
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equation can be evaluated with the aid of Table A-l Appendix, by sub-
stituting » for 2u in the expression for ¢(u).

When the lateral load acting on a beam-column with built-in ends is
unsymmetrical, the moments at the ends are found from the conditions
that the slopes at the ends are zero. Thus, for the beam shown in Fig.
1-12 the equations for finding the end moments M, and M, are

M
= o + 3E1"( w) + 537 #@) =0

Ml

(1-40)

In these equations, the terms 6o, and 8y represent the angles of rotation!
at the ends of the beam with hinged ends when the load @ acts alone and
can be found from Egs. (1-9) and (1-10).

(b)
Fia. 1-13

1.9. Beam-columns with Elastic Restraints. As a more general case
of a statically indeterminate problem, let us consider a bar with elastically
built-in ends. An example of such end conditions is represented in Fig,
1-13a. . A laterally loaded beam AB is rigidly connected to vertical bars
at A and B and is compressed axially by the forces P. If 6, and 6, are
the angles of rotation of the ends, there will be couples M, and M, at the
ends of the beam (see Fig. 1-13b) which we can express in the form

M,=—ab, M,= —86, (1-41)

The moments and angles of rotation are taken positive in the directions
shown in Fig. 1-13. The factors « and B are coefficients defining the

‘1 The angles of rotation and the moments M, and M; are taken positive in the
directions shown in Fig. 1-8a.
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degree of fixity existing at the ends of the beam and are called coeflicients
of end restraint. The coefficient. at one end is equal numerically to the
reactive moment at that end when the angle of retation is equal to unity.
The value of the coefficient may vary from zero for a simply supported
end to infinity for a built-in end. If, for example, EIl, is the flexural
rigidity of the vertical bar at 4 and the vertical bar is assumed to have
hinged ends, the relation between the angle of rotation 6, and the moment
M,is »

o = — Mb
“~  12EI,
12E1,
and therefore a=—3

The angles 6, and 8, can now be determined from a consideration of the
bending of the bar AB. Again denoting by 8..-and 8 the angles calcu-
lated for hinged ends and determining the angles produced by the couples
M, and M, from Egs. (1-31), we obtain

Mil

a=m+$ﬁ«nkmaw

(1-42)

Finally, from Eqs. (1-41) and (1-42), the following equations for determin-
ing the moments at the ends are obtained:

M, Ml
—7—m+wﬂﬁ+wﬂw s
M, Ml

- B = 0w +3EI'/’('“) +€E—I¢(u)

When these equations are used, various conditions at the ends of the
bar AB can be considered. Taking, for instanee, « = 0 and 8 = =, we
obtain the case represented in Fig. 1-10, in which the left end of the bar is
free to rotate and the right end is rigidly built in. - In this case M, = 0
and the moment at the end B, from the second of Eqs. (1-43), is

3EIf0g

If the bar AB is uniformly loaded, we obtain from Eq. (1-22)
' U

Substituting expression (b) into Eq. (a), we obtain for the moment at the
built-in end the same result as was found previously [see Eq. (1-37)].
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By taking a = 8 = «, we obtain the case of a bar with built-in ends,
and Egs. (1-43) reduce to Eqs. (1-40) of the preceding article. Several
applications of Eqgs. (1-43) will be given later in discussing stability prob-
lems (see Art. 2.3).

1.10. Continuous Beams with Axial Loads. Continuous Beams on
Rigid Supports. In the case of a continuous beam on rigid supports with
both lateral and axial loads, it is advantageous to consider the bending
moments at the supports as the statically indeterminate quantities. Let

1,2,3, ... ,mdenote the consecutive supports; My, Ma, . . . , M, the
corresponding bending moments; Ly, I, . . ., ls—a the span lengths;
and %1, %3, . . . , Um—1 the corresponding values of the quantity u for

each span [from Eq. (1-13)]. The compressive force and the flexural
rigidity may vary from one span to the next, but within each span these
quantities are assumed constant.

Let us consider any two consecutive spans between the supports
n — 1, n, and » 4+ 1, as shown in Fig. 1-14. The bending moments at
the supports are assumed positive in the directions shown in the figure,

—éﬁlﬁ—,—;}f‘;% - S

n-—lL

lne1
F16. 1-14

that is, when they cause compression on the top of the beam. The angles
of rotation are taken positive when they are in the same directions as the
positive bending moments.

The relation among the bending moments M, ;, M, and M,y is
obtained from the condition that at the intermediate support n the deflec-
tion curves of the two spans have the same tangent. The angle of rota-
tion 6, of the right end of span n — 1 must be equal in magnitude but

~ opposite in sign to the angle of rotation 6, of the left end of span n, and

therefore
-0, (a)

The angles of rotation are found by considering each span as a simply
supported beam subjected to lateral load and to end moments. The
expression for 8, will therefore consist of two parts, the first depending on
the lateral load and denoted by 6. and the second depending on the
moments M,_, and M, and found from Eqs. (1-31). Thus

n—1ln— nbn—
0 = 00 + 6EII ! $(tn-1) + 3E';" * Y(Un—1)
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A similar expression can be written for the angle 8}, and then Eq. (a)
becomes

M, n—lln—l M.l 1
001: + GEI,,_ ¢( n—l) + 3EI ll/(un—l)
_ I Ml n+1l .
from which
Mo sbns) + 2. W) + 25 52 wm] ‘

l 6EI

+ Mo Ly = plu) = = T (B + 0, (144)
The angles 8, and 65, for any kind of lateral loading can be calculated by
the methods explained in Arts. 1.3 to 1.5, Thus Eq. (1-44) contains only
three unknown quantities, the moments M.y, M,, and M,;,. Writing
Eq. (1-44) for each intermediate support of the continuous beam and also
using the conditions at the first and last supports, we obtain a sufficient
number of equations for calculating all the unknown moments. Equa-
tion (1-44) is the three-moment equatwn for a continuous beam thh axial
loads:.

If uniformly distributed loads of intensities g.—1 and ¢, act on the spans
n — 1 and n, respectively, we have, from Eq. (1-22),

_ qrn,—lln—l.s
O = 2477, ; X0

_ gal?
%n - 24EI X(un)

and Eq. (1-44) becomes

Mocsban) + 20, [ )+ 2 2 ) |

I"_ e lﬂ—2
+ Mo 7 52 ) = — L )
wa® Ino1 1
= I T () (145)

The numerical calculation of bending moments from these equations is
greatly simplified by using values of the functions ¢{(u), ¥(u), and x(u)
from Table A-1, Appendix.

Continuous Beams with Supporis Not on a Streight Line. If an initially straight
compressed bar is held on rigid supports which are not on a straight line, additional
bending is introduced. Let n — 1, n, and n + 1 be three consecutive supports of the
continuous beam (Fig. 1-15); ha_1, ks, and h.1-are the corresponding ordinates to the
supports. We agsume that the differences between these ordinates are small so that
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the angle 8, between the two consecutive spans is given with sufficient accuracy by

the equation

_Pha =Rt hagr — he ‘
B = la1 [ ®

The bending moments M,_1, M,, and M., caused by the differences in elevation of
the supports, are now found from the conditions of continuity. Considering the spans
n — 1 and n as two simple beams, we conclude that the rotation of the ends of these
two beams at the common support » must be such as to eliminate the angle 8,. Then
by using Eqgs. (1-31) we find -

Ml n—lln—l n+lln
3BT ll/(u.._x) + (3] &(Un_1) +3 \p(u,.) + Y i ¢us) =
from which
In—l
Maesblins) + 28, [ Wln) + 72 T vt |
+ Mo - Bt ) = 80t g, (1-40)

This is the three-moment equation for supports not on the same level. If the positions
of all supports are known, 8, can be calculated without difficulty for each intermediate

o ) N
f f ¥
P M, hoo
s wo ow, I ht
a-11"

Fig. 1-15

support. The bending moments at the supports are then determined by solution of
simultaneous equations (1-46) written for each support. If lateral loads also act on
the beam, the three-moment equation is found by combining the right-hand sides of
Eqs. (1-44) and (1-46).

Continuous Beams Rigidly Connected to Columns. If the cross sections at the sup-
ports of a continuous beam are not free to rotate, being rigidly attached to columns
as shown in Fig. 1-16a, the bending moments M, and M, at the two adjacent cross
sections to the left and to the right of the support n are not equal. The relation
between them is given by the equation of equilibrium of the joint n (Fig. 1-16b):

M.—-M +M!=0 (c)
Proceeding now as before, and using Eq. (2), we obtain! )

M.

M, |l
Bon + — 7 —aoiet 4’(“»—1) + \b(un—l)

6E a1 3EI,.
M n+lln

- [9"" 3EI 6EI,

¢<u,)] @47

1 The change in axial forces of the beam due to the horizontal reactions of, the
columns at the supports n — 1, n, and n + 1 is neglected in this derivation.
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or
' ’ lﬂ Iﬂ—
M, _1¢(Un-1) + 2Mup(un) + 2M, — ¥(un)
-1
l,. I, 6EI,._
+ Mo ‘¢<uu) = - Gt ) (48)

Another equation for the same joint is obtained from a consideration of bending of
the column. Assuming that the joint n has no lateral displacement, the moment
M), representing the action of the joint n on the column (Fig. 1-16a), can be repre-
sented by the equation

M, = anba @
where s is the coefficient of restraint [see Eq. (1-41)] for the support n. For instance,
M, M

Mi_q d M,
Bl'l \ Pml
n—1 Vo Y EI, —7 \n+1

TN

Fia. 1-16

in the case of a column hinged at the bottom and having a flexural rigidity EI. and a
length k., we obtain

M!h,

3ET, @

O =

This equation neglects the effect of axial force on bending of the column. From Eq.
(e) we now obtain
3EI.6, 3EI,

1"
M, = —/>* and an =

hn h’l

Thus a, can be found for any particular case.
Returning now to Eq. (d) and combining with Eq. (c), we obtain

11 ?
M, M,-M,
[ 7% [ Y

Noting that the left-hand side of Eq. (1-47) is also equal to 6,, the following additional
equation is obtained for each joint:

O =

1
;(M M) = 0o + =2 ""l"“ & (Un1) + x&(u..-l) (1-49)

(777 3E’I
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For each intermediate support we can write the two Eqs. (1-48) and (1-49). Thus
we have sufficient equations to determine all statically indeterminate moments if the
ends of the beam are simply supported. If they are built in, the two additional equa-
tions expressing the conditions of fixity of the ends should be added.t The solution
of these equations is greatly simplified by using Table A-1, Appendix, for the func-
tions ¢(u) and ¢ (u).

Another means of analyzing continuous beams and frameworks with combined axial
and bending loads is by the method of moment disiribution. This is done by using
values of stiffness factors, carry-over factors, etc., which have been modified to include
the axial load effect. Values of these factors are available in graphical and tabular
form.2 With these factors determined, the moment-distribution  calculations are
carried out in the standard way.

Continuous Beams on Elastic Supports. If the intermediate supports of the beam
are elastic, i.e., such that they deflect in proportion to the reactive forces, Eq. (1-46)
can still be used. However, if the compressive force P is constant along the length of
the beam and the ends are rigidly supported, it is advantageous to take the intermedi-
ate reactions as the statically indeterminate quantities. For determining these
reactions we use Eq. (1-19), p. 8, and change the previous notations accordingly.
The distances of the intermediate supports from the right end of the continuous beam
we denoteby €1, ¢z, . . . , a1 < ¢z <3« - - ), and the corresponding reactions by

Fig. 1-17

Ry, Rs, . . ., RBa (Fig. 1-17). The deflection of the continuous beam at any point
can be calculated as for a simple beam AB of length ! on which are acting a given
lateral loading and the unknown reactions Ry, Bs, . . . . Assume that we have found
in this way the deflection for any support m. The same deflection can be found in
another way, by considering the elasticity of the support. Let am be the load neces-
sary to produce a unit deflection of the support m. Then under the action of the
pressure Rm, equal to the resdction of the support m, the deflection will be Ron/ctm.
Putting this deflection equal to the above calculated deflection, we obtain an equation
containing the intermediate reactions Ri, Bs, . .., B.. We can write as many
equations of this kind as we have intermediate supports, so that there will be enough
equations for calculating all intermediate statically indeterminate reactions.

Take as an example the case of a uniform load ¢ distributed along the beam AB
(Fig. 1-17). Then the deflection produced by this load is given by Eq. (1-20), and

1 A very complete discussion of this'problem can be found in the book by F. Bleich
and E. Melan, “Die gewonlichen und partiellen Differenzengleichungen der
Baustatic,” Berlin, 1927. Seealso F. Bleich, ““Die Berechnung statisch unbestimmter
Tragwerke nach der Methode des Viermomenten satzes,” 2d ed., Berlin, 1925,

2 See B. W. James, Principal Effects of Axial Load on Moment Distribution Analy-
sis of Rigid Structures, NACA Tech. Note 534, 1935. The method is also described in
Niles and Newell, “Airplane Structures,” 3d ed., vol. 2, pp. 120-132, John Wiley &
Sons, Inc., New York, 1943.
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the deflection produced by the reactions Ri, Rs, . . . is calculated by using Eq.
(1-19). Using the notation z,, = I — ca, We obtain then for any support m

‘cos (u - 2uzm
ql* i -1 . ql?

16ETut cos u T 8ETw? Tnll ~ Zm)
in kz i=m i=m
sin kzm . ZTm
~ Pram bl zl Bu sin kei + py _21 Bucs
i= i=

t=n
L z Risin k(l — c) + L 52n Z R - =E (50
f=m+1 f=m+1
There will be as many equations of this kind as we have intermediate supports, and all
statically indeterminate reactions at these supports can be calculated. Equation
(1-50) will be used later in discussing the stability of an elastically supported bar.
Instead of the elastic supports shown in Fig. 1-17, the beam may be supported on a
continuous elastic foundation.” A detailed analysis of this case is given in the book by
Hetényi.!

1.11. Application of Trigonometric Series. In studying deflections of
a prismatic bar, it is sometimes advantageous to represent the deflection
curve in the form of a trigonometric series.? In such a case a single
mathematical expression holds for the entire length of the beam and it is
not necessary to discuss separately each pertion of the deflection curve
between consecutive loads as was done
in Arts. 1.3 and 1.4. [ °4Q

This method of analysis is espe- 4 B—x
cially useful in the case of a beam with % %7

simply supported ends (Fig. 1-18a). £ ! -l
The deflection curve in this case can (a)
be represented in the form of a Fourier
sine series: (b 4 ————
. WL . 27z fa,
y= a;sm—l—-+azs1n——l— () ¥ ——
‘ . 3xx @2
+a3sm—l—+ R (1-51) (d) )
. . . - ey
Each term of this series satisfies the -

cps . Fia. 1-1
end conditions of the beam, since each o 1-18

term and its second derivative become zero at the ends (z = 0 and z = .
Thus the deflections and the bending moments are zero at the ends of the
beam. Geometrically, the series (1-51) means that the true deflection

M. Hetényi, “Beams on Elastic Foundation,” chap. 6, University of Michigan

Press, Ann Arbor, Mich., 1946. .
- *8ee Timoshenko, Application of Generalized Coordinates to the Solution of
Problems on Bending of Bars and Plates, Bull. Polytech. Inst., Kiev, 1909 (Russian).
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curve of the beam AB can be obtained by superposing sinusoidal curves
such as shown in Fig. 1-18b, ¢, andd. The first term in the series is repre-
sented by the curve in Fig. 1-18b; the second term by Fig. 1-18¢; ete.
The coefficients ai, as, as, . . . of the series are the maximum ordinates,
or amplitudes, of the consecutive sine curves, and the numbers 1, 2,
3, . . ., with which = is multiplied, indicate the number of half-waves
in the sine curves.

It can be rigorously proved that, if the coefficients ai, a3, @3, . . . are
properly determined, the series (1-51) can be made to represent any
deflection curve with a degree of accuracy which depends upon the num-
ber of terms taken.! In the following discussion, the coefficients are
obtained by considering the strain energy of bending of the beam, which
is given by the equation? :

_ EI i dzy 2 ,
v= 7/; (d_x’) dz (1-52)
The second derivative of y with respect to z, from series (1-51), is
2. 2 . \
% = —al%sin"—rlE - 2%,% sinz%x - 32a3%sin3%:c _

Substituting in Eq. (1-52), we find that the expression under the integral

-sign contains terms of two kinds:

gt . nax nimirt . nxr . mwz
T‘ s T a.nd 2qna,,. T sm T S T

By direct integration it can be shown that

] ]

., AT l . nwr . mrx

/ sin? - dz = and / sin — sin ——dz = 0
o 0

Ay

2 l l

Hence in expression (1-52) all terms containing the products of coefficients
such as @.a. vanish and only the terms with squares of those coefficients
remain. The expression for strain energy then becomes

ne oo

4
U =" (o + 200 + 80 + -+ ) = T z na,? (1-53)

n=1

If we give to the beam (Fig. 1-18a) a very small displacement from the
position of equilibrium, the change in the strain energy of the beam is
equal to the work done by the external load during such a displacement.

1 The reader is referred to any standard textbook on advanced calculus for a detailed
discussion of Fourier series.

* See Timoshenko, ““Strength of Materials,” 3d ed., part I, p. 317, D. Van Nostrand
Company, Inc., Princeton, N.J., 1955.
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This follows from the principle of virtual displacements,-and we shall use
it in determining the coefficients of the series (1-51). Small displace-
ments of the beam from the position of equilibrium can be obtained by
small variations of the coefficients ay; as, @s, . . . . If any coefficient a,
is given an increase da,, we have the term (a, -+ da,) sin (nxz/I) in series
(1-51) instead of the term a, sin (nxz/I).  The other terms of the series
remain unchanged. Thus the increase da, in the coefficient a, represents
an additional small deflection of the beam given by the sine curve
da, sin n—’;x

superposed upon the original deflection curve.. The work done by the
external load during this additional deflection can now be calculated.

In the case of a single lateral load @ applied at the distance ¢ from the left-

support (Fig. 1-18a), the point of application of the load undergoes a
vertical displacement da, sin (nwxc/l) and the load produces the work

Q da. sin ﬁ;’—"

The change in strain energy [Eq. (1-53)] of the beam due to the increase
da, in a, is

4
ﬁjdanerI

da. 203 nta, da,
5.

Equating the change in strain energy to the work done by the load, we
obtain an equation for determining the coefficient a..:

=El , . mwe
o M0n = QsmT
)13
from which a, = 1%21%4 sin ?

Substituting this expression for the coefficient a, in the series (1-51),
we obtain the equation for the deflection curve in the series form

3
= 20 (sin’r—l-csin’%+2—l4$in2_rfsin2%x+ - )

V=Bl I
3
o SDYE PRI (1-54)
N n=1

Through use of this series, the deflection for any value of z can be
calculated. C T '

As an example, let us consider the case in which the load is applied
at the center of the span. In order to calculate the deflection under the
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load, the values x = ¢ = I/2 are substituted into Eq. (1-54), which gives

2Q13 i
6=<y),_,,2=;%(1+31_4+51_4+...)

The series is rapidly converging, and the first few terms give the deflec-
tion with a high degree of accuracy. Using only the first term of the
series we obtain
‘ 5= 208 _ Qi
El  487E]

Comparison with the exact solution shows that we obtained 48.7 instead
of 48 in the denominator of the expression. Thus the error in using only
the first term of the series, instead of the entire series, is about 1} per cent.
This accuraey is sufficient for many practical purposes.

The solution for a single load (Eq. 1-54) having been obtained, other
cases of loading can be solved by using the method of superposition.
Consider, for instance, a beam carrying a uniformly distributed load of
intensity g. Each increment of load, gdec, at distance ¢ from the left
support can be considered as a concentrated load, and the corresponding
deflections, which we denote by dy, are obtained from Eq. (1-54) by sub-
stituting ¢ de for Q. Then

n=w

_ 2qdcl? 1 in P7C i TAT
YERET Liwt T T

Integrating this expression with respect to ¢, between the limits ¢ = 0
and ¢ = I, we obtain the deflection curve for the case when the uniform

. load is distributed along the entire span:

n=eo
_ Aqlt 1 . nrx
= ©WET ST
n=13,5,...

Agam we obtain a rapidly converging series. Taking, for instance, only
the first term and calculating the deflection at the center, we find
sl s gt
= EI = 76.5E1
The exact solution for this case gives

5o Bal _ gt
"~ 384FE1  T68EI

Thus the error in taking only the first term is less than one-half of 1 per

cent in this case.
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The representation of the deflection curve in the form of the trigono-
metric series (1-51) is especially useful in cases where the beam is submitted
to the simultaneous action of a lateral load and an axial force. Consider,
for example, the beam represented in Fig. 1-19. In determining the
coefficients a1, as, . . . , of the series (1-51), we consider as before an
infinitely small displacement da, sin (nwz/l) from the equilibrium deflec-
tion curve of the beam, The corresponding change in the strain energy
of bending is the same as in the previous case. However, in calculating
the work done by the external forces during this displacement, we must
consider not only the work Q da, sin (nxc/l) produced by the lateral
load, but also the work done by the longitudinal forces P. Any change
in the shape of the deflection curve usually results in some displacement

of the movable support B, and the force P acting on this support produces
’ work. Let us consider first the dis-

‘ c—o@ placement of B which occurs during
P | At pdx B P the deformation of the bar from its

% - 7%;_2 initial straight form to the equilib-
ds ; 1 rium curve, shown in Fig. 1-19.

This displacement is equal to the

Fra. 1-19 difference between the length of the

deflection curve and the length of

the chord AB if we consider the bar as inextensible. Denoting this dis-

placement by A and observing that the difference between the length of

an element ds of the curve and the corresponding element dz of the chord
is equal to

2 2

_1 [t{dy\*
N=3 /; (ﬁ) dz (1-55)

Substituting in this expression the series (1-51) for y and taking into
account that . . ,

(] ]
coszn—”dx=—l coswcosﬂw—xdx=0
0 { 2 ° l l

Iy

we obtain!

7= o

s
we find A= "—l z n'a,? (1-56)

n=1

1 For a more general expression for ), in which the effects of initial curvature of the
column and eccentricity of the end loading are considered, see T. H. Lin, Shortening
of Column with Initial Curvature and Eccentricity and Its Influence on the Stress
Distribution in Indeterminate Structures, Proc. 1st Natl. Congr. Applied Mech.,
ASME, New York, 1952.
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If we take now a small displacement from the position of equilibrium by
giving to a coefficient @, an increase da., the corresponding small dis-
placement of the hinge Bis - ' :
oA n?
; d)\~£‘da,.-—wa,da,.

Equating the change in strain energy of bending to the work done by
the external forces during the small displacement da, sin (n=z/l), we
obtain the following equation for determining any coefficient a, of the
series (1-51): ' '

4 y 2
7——;’31 n'a, da, = Q da, sin Z";r—c + P % a, da,

from which

=2 sin 2%¢ 1
G = BT I n%n* — (PE/x?ED)]

To simplify the equations, we denote by a the ratio of the longitudinal
force P to its critical value [Eq. (1-15)]; then
2Q . nxc 1

%= BT T wim =)

Substituting in the series (1-51), we obtain
2Q0[ 1 . we . ax . . ‘
y= ’_—4%—1 [1—_ 25T smll-x + 2———,(2,1_ ) Sin 2T"sm2_;'x + .- ]
2Q03 . .
= 14—%% z h’(T’l:E sm?sm ﬁ;—? (1-57)
n=1 '

Comparing this equation with the series (1-54) for the case when only
the lateral load @ is acting, we see that each coefficient in the series is
increased because of the action of the compressive force P. It is seen
also that when P approaches the critical value and « approaches unity,
the first term in the series (1-57) increases indefinitely.

It was shown before that the first term of the series (1-51) gives a
satisfactory approximation for the deflections of the bar when only
lateral load is acting. Then, denoting by 3, the maximum deflection of
the bar produced by lateral load Q alone, we conclude from the com-
parison of series (1-54) and (1-57) that, in the ease of simultaneous action
of lateral load Q and longitudinal compressive force P, the maximum
deflection is approximately )

o

8=1—a

(a)
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Thus the deflection 8 due to lateral load only is increased by the ampli-
fication factor 1/(1 — o) when an axial load is also present. This
amplification factor was discussed previously in Art. 1.7.

Having determined the deflection curve [Eq. (1-57)] for the case of one
lateral load Q, we can, without difficulty, obtain the deflections for any
kind of lateral loading by using the principle of superposition. In the
case of a uniform lateral load on a compressed bar, we substitute g de
instead of Q in the series (1-57) and integrate this series by varying ¢
within the limits of the loaded portion of the beam. If the load covers
the entire span, the integration limits are 0 and [ and we obtain

‘_'iq_li ———I——Sinw
Y= rE1 L Wt —a) !

Again we have a rapidly converging series, and the first term gives a
satisfactory approximation so that a formula analogous to Eq. (a)
can also be used in this case and the deflection can be calculated by
multiplying the deflection o, produced by lateral load alone, by the factor
1/(1 — @). This formula is very accurate for small values of . With
an increase of «, the error of the approximate formula increases also and
approaches one-half of 1 per cent when P approaches its critical value.
By moving the load @ to the left support (Fig. 1-19) and making ¢
infinitesimally small, we approach the condition of bending of the bar
by a couple Qc applied at the left end. Substituting sin (nwc/l) = nac/l
into Eq. (1-57) and using the notation Qc = M,, we obtain the following
series giving the deflection curve of a compressed bar bent by a couple

at the end:

oM, 1 g te ®)
Y= % ET ( n(n* = a) l

If there are two moments M, and M; applied at the ends, the deflection
curve is obtained by superposing deflections produced by each of the
moments. Assuming, for instance, My = M, = M, and using Eq. (b),
we obtain, for the case of two equal moments, the deflection curve

n=w

2M 12 z 1 . NET
Yy = e SI0 —5—

~El 4 n(n® — a) l
2M 2 1 . nr(l — )
Bl zl n{n? — a) s i
_AM 2 1 s maT
= 3BT 2 et (©
nw]135,...
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?lxlncse the cllxlrve in this case is symmetrical with respect to the center of
e beam, the terms with even values of # do not appear in th i
The deflection at the middle is ppe ° S“Tl'les ©

4M 2 [ 1 1 ] @

6= L= t—4 —
W) mEl |1 — 3(9—-a)+ o

1;Ilf) t:;le cotéples at the ends are produced by compressive forces P applied
at both ends with the same eccentricity ¢, we put Pe i i
o e y e, p e instead of M, in

4ea 1 Y
5 = =& -
.r[l—-a 3(9—a)+ ]

Agam tl%e series is a rapidly converging one and we can obtain the deflec-
g;n ¢ with sufficient accuracy by taking only the first term of the series. -

us

5= 4ea
' @

In the general case where M, and M, are not equal, we can always
replace them by two equal moments M’ of the same sign, equal to
#(M, + M,;), and two equal moments e
M" of the opposite sign, equal to
(M. — M;). Only the first two mo-
ments produce deflection at the mid-
dle. Hence, if compressive forces P
are applied at the ends with the ec- Fia. 1-20
cent}xl'icities e1 and e, the deflection o :
at the middle is obtained from Eq. (¢) by substituting® 1(e

1.1?. The Effect of Initial Curvature on Deﬂectionsg. f\(?Vlh;l;l e;)lf:: ie;
submitted to the action of lateral load only, a small initial curvature of
the Par has no effect on the bending and the final deflection curve is
obtam('ed by superposing the ordinates due to initial curvature on the
deﬂectlogs calculated as for a straight bar. However, if there is an axial
force acting on the bar, the deflections produced by this force will be
substantially influenced by the initial curvature..

Let us consider, as an example, the case in which the initial shape of
the axis of the bar is given by the equation (see Fig. 1-20)

Yo = asin 1% (a)

Thus the .axis of the bar has initially the form of a sine curve with s maxi-
mum ordinate at the middle equal to a. If this bar is submitted to the

1The eccentricities should be taken iti i i
positive when they result in positi ding
moments at the ends, and negative in the reversed case. positive ben



32 THEORY OF ELASTIC STABILITY

action of a longitudinal compressive force P, additional deflections y.
will be produced so that the final ordinates of the deflection curve are

Y=Yy +u ®
and the bending moment at any cross section is
M = P(yo + y1)

Then the deflections y: due to deformation are determined in the usual
way from the differential equation

Ezg’;-y-l = —P(yo + v ©

or by substituting Eq. (a) for yo and using the notation k% = P/EI, we
obtain

& yl + k= —k’asmflE
The general solution of this equation is
( i 1 . WL
‘ 0 y1=Asmkx+B°°sm+(7er?ﬁT—_1“smT @

To éatisfy the end conditions (y:1 = 0, for z = 0 and for z = 1) for any
value of k, we must put A = B =0. Then, by using the previous
notation « for the ratio of the longitudinal force to its critical value, we

obtain

P P k22 )
=P FEIE - w (1-58)
and =73 z = asme (1—59)

The final ordinates of the deflection curve are

- . TT o . KT a . W
y=yufy1=as1n7+1—_—c(asm7=i—_—;sm—i—_ (1-60)

This equation shows that the initial deflection a at the middle of the bar is
magnified in the ratio 1/(1 — a) by the action of the longitudinal com-
pressive force. When the compressive force P approaches its critical
value and o approaches umty, the deflection ordinates y increase
indefinitely.

If the initial shape of the bar is given by a series!

yo—alsm +azsm21x+ <.

1 See Timoshenko, Bull. Soc. Eng. Tech., St. Petersburg, 1913 (Russian). See also
T. H. Lin, loc. cit.
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we substitute this expression for g, in Eq. (c); then, proceeding as before
with each term of the series, we obtain

. @ . 7T a; . 2%z
yl_a(lTxx81nl+22—asm 7.t )

(1-61)

Since « is always less than one and approaches unity when P approaches
P.., the first term in this expression is usually predominant and is seen to
coincide with Eq. (1-59).

Solution by Equivalent Lateral Load. The problem of bending of an
initially curved bar can be approached in a different way by replacing the
effect of the initial curvature on the deflections by the effect of an equiva-
lent lateral load. The equivalent lateral load must produce the same
bending-moment diagram for a straight bar as the longitudinal forces
produce on the initially curved bar when only the initial deflections are
taken in calculating the bending moment. Take, for instance, the case
in which the initial curvature is given by Eq. (a). The effect of this
curvature on deflections of the ¢ompressed bar is the same as the effect
of a distributed lateral load producing in the bar bending moments
M = Pa sin xz/l, since the differential equations of the elastic curve (o)
are identical for both cases. Then the expression for the intensity ¢ of
the equivalent lateral load is obtained by using the known relation
between ¢ and M, namely,

_ _aM _ x%P in ™%
1=~z ~ p 807

The deflections produced by this lateral load are obtained by using
the general method of the previous article. Substituting into the general
expression (1-57) the quantity ‘

=P sin xc
12 ]

de

for @ and integrating from ¢ = 0 to ¢ = I, we obtain

nem o

- 2 raP / sin 2% d 1 sin 7% gin ™%
hW=rEr e T ( Wt —a) T l
Since ’
1
[)sin lcsmn—l—wdc=0 when n » 1
1

™ ge =

and ﬁ sin® dc 3

all the terms of the above integral, except the first, disappear and we
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finally obtain

. XT
Y1 = asmT

l1—a

This expression coincides with Eq. (1-59) previously derived. .
As another example, take the case in which the initial deflection curve

of the bar (Fig. 1-20) is a parabola:
) ®

The corresponding equivalent lateral load is

dr? T
After this expression is substituted for ¢ in Eq. (1-20), the expression
for the deflection curve becomes = ~

R e Tt BT B %)

in which u is given by Eq. (1-13). Superposing on these deflectionis the
initial deflections [Eq. (e)],' we find the total ordinates of the bent bar:

_ 2a]cos (u — 2ux/l)
y=yo+y1—ﬁ[—~m— 1

If the initial shape of the bar consists of two straight-line portions AC
and CB, as shown in Fig. 1-21, the equivalent lateral load becomes a
concentrated load @ at C, since this gives the same shape of bending-
moment diagram as that produced by P in Fig. 1-21. The magnitude of
the equivalent load is obtained from the equality of the moments

Pa = %@
Pal
from which Q= c_(l%

Substituting this expression for @ in Egs. (1-7) and (1-8), we obtain the
deflections y;: for this case.

The Phenomenon of Reversal of Deflections. It is interesting to note
that the deflections produced by the compressive force P in an initially
curved bar may reverse direction during a continuous increase in the
value of P. This occurs because of the nonlinear relation between the
deflections and the compressive force. To illustrate this behavior, let us
consider that the bar in Fig. 1-22 has the initial curvature ’

. 2m
yo=a;sianz+agsm—l£
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If the amplitude a, is small in comparison with @z, the initial curvature
will have the shape shown by the solid line in the figure. The deflections
produced by the force P are found from Eq. (1-61) as

ady

ads . 2xx
l—a 2 o

sin ’-Tx + 2 a7 @
When the compressive force P is small in comparison with the critical
load, the quantity o is also small. Then, since a, is small in comparison
with ay, it can be concluded that the second term in Eq. (g) is of greater
importance and the deflections are approximately as indicated by the
dotted line in Fig. 1-22. At a cross section such as mn the deflection is
upward.

Assume now that the force P is gradually increased until it approaches
the critical value. Then « approaches unity and the first term in Eq.
(9) becomes predominant. The bar now has approximately the deflected
shape of a half sine wave, and the direction of the deflection at section mn
is downward.

P A, ¢ ] B P
Z ! u._—————-‘%‘—x
d =F ,

Y=

Fra. 1-21 Fia. 1-22

Bar with Lateral Loading. If a beam-column with initial curvature is
subjected to lateral or end loading, the total deflection is obtained by
superposing on the deflections due to curvature, which were discussed
above, the deflections due to lateral load calculated for s straight bar.
The superposition of these two deflections is justified by the fact that the
effect of initial curvature can be replaced by the effect of an equivalent
lateral load, and it wasshown in Art. 1.4 that the principle of superposition
in a modified form holds for all types of lateral loading.

As an example, consider the case of an initially curved bar carrying
eccentrically applied end loads P, as shown in Fig. 1-23. The initial
deflection y, of the bar is assumed to be given by Eq. (¢). The eccen-
trically applied end loads can be replaced by statically equivalent loads
consisting of centrally applied loads P and end moments M, = Pe.
Then the total deflection will be the sum of the deflection due to initial
curvature [Eq. (1-60)] and the deflection due to the: moments My. This
latter deflection is found from Eq. (1-32) by substituting Pe for M,.
The result of this superposition of deflections is

_ e . 7z ‘e kl kl :
V=1 2" T Y smi2 ["“ (E - ’“”) — cos 5] »
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The maximum deflection occurs at the center of the bar (z = l/2) and is

5=(y)z=t/2=lza+e(seclc2—l—1) O]
The bending moment at any section z of the beam is
M =P(e+y)
=P [1—%—& sinzlE + 6&%7 cos (lcz_l - kx)] )]
and the maximum moment at the center of the beam is
Mo =P (1—1-—“ + c—(;sfm) : (k)

When the principle of superposition is used in this manner, any other case

of lateral or end loading on a bar with initial curvature can be analyzed.!
Bar with Fized Ends. If the ends

of the compressed bar are fixed in-

stead of simply supported, bending

moments will be produced at the

ends during compression. The mag- Fo. 1-23

* nitude of these end moments can be
obtained readily from the condition of fixity of the ends: Assume, for
example, that the initial curvature of the fixed-end beam is given by Eq.

(a); that is,

. ®X
yo=asmT

If the ends of the bar were free to rotate, the deflection of the: bar due to
the axial force would be found from Eq. (1-59) and the magnitude of the
angle of rotation of each end would be

dys _ o Twa

Az )oo 1 —al
To counteract these rotations, moments M, must be applied at the en.d,s,
and their magnitude can be found [see Eq. (1-34)] from the following

equation:?

a 76 “Mol tanu _ o
l1—al 2EI wu
1 Equations for several specific cases of end loading were worked out by H: K.

Stephenson, Stress Analysis and Design of Columns, Highway Research Board,

Proc. (34th annual meeting), January; 1955.' o o
2 In this equation M, is assumed positive in the direction shown in Fig. 1-8a.
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from which
a 2xaEl u
" i1-—a P tanu U]

My =

The resultant deflection of the bar is obtained by superposing the deflec-
tion due to the moments M, [Eq. (1-32)] on the deflection due to curva-
ture [Eq. (1-60)]. In this manner we find that the deflection at the center
(x=1/2)is

a Mil22(1 — cos u)

6=1—a+ 8EI wulcosu

or, by using Eq. (I),

R a 7al — cosu

8—1—a<1,—7 usinu) (m)
The bending moment at the middle is now obtained from the equation
M = P§ + M,, where M, is given by Eq. (I).

In the above discussions we considered in each case a bar compressed by force P
applied at the ends. The case of a bar with initial curvature and intermediate axial
load has also been considered.!

1.13. Determination of Allowable Stresses. In the design of steel
beams subjected to the action of lateral loads only, the working stress is
ordinarily selected as a certain fraction of the yield-point stress. Thus
we have the relation

oyp
ow = (a)
where n is the factor of safety. The cross-sectional dimensions of the
beam are so chosen that the maximum stress does not exceed the working
stress from Eq. ().

The same procedure can be used also in cases of the simultaneous action
of lateral loads and an axial compressive force provided the longitudinal
force remains constant and only the possibility of an increase in the
lateral loads must be considered. From the principle of superposition
(Art. 1.4) it follows that if the working stress is found from Eq. (a),
we obtain a beam of proportions such that the maximum stress becomes
equal to the yield-point stress when the lateral loads are increased by the
factor n. This assumes that Hooke's law is valid up to the yield point of
the rhaterial, which is a justifiable assumption for a material such as
structural steel. : '

There are cases, however, in which the longitudinal force increases
simultaneously with the lateral loads. The structure shown in Fig. 1-24
is an example of such a case. It is seen that the tensile force T in the

! See 8. I. Sergev, Univ. Wash., Eng. Ezpt. Sta. Bull. 113, 1945.
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wire AC and the corresponding compressive force P in the bar AB
increase in the same proportion as the lateral load @ acting on the beam.
In such cases the deflections and maximum stresses will increase at a
greater rate than the lateral loads, and this fact must be considered in
choosing the working stress in order to assure the desired factor of safety.
To make the factor of safety equal to n, it is necessary to determine the
cross-sectional dimensions of the beam in such a manner that the maxi-
mum fiber stress will become equal to the yield-point stress when all
loads acting on the beam, including the longitudinal force P, are taken n
times greater. This requires the use of a smaller working stress than the
value given by Eq. (a).
To illustrate the procedure for selecting the cross-sectional dimensions
of such beams, let us consider the case of a column compressed by eccen-
trically applied loads P (Fig. 1-8b)
and assume that both eccentricities
are equal to e and that bending oc-
curs in the plane of symmetry of the
" beam, The maximum bending mo-
ment [from Eq. (1-35)] is

My, =P LR b
max — eseczdﬁ ()

Denoting by r the radius of gyra-
tion of the cross section and by ¢
the distance from the neutral axis
to the extreme fiber, we find the maximum stress at the middle cross sec-
tion to be .

Fie. 1-24

PMc
e =ZtT

P, e 1 [P -
=20+ﬁmgdm§ (1-62)

This is the well-known secant formula for the maximum stress.

The quantity r2/c will be denoted by the symbol s and is called the
radius of the core, since it defines the core of the cross section within
which a compressive force can act on a short column without causing
tensile stress in any extreme fiber. The core radius is equal to the ratio
of the section modulus Z of the cross section to the area, so that!

§=F'=1=_ (1-63)

1The ¢ore radius is discussed in Timoshenko, ‘“Strength of Materials,” 3d éd.,
part I, p. 254, D. Van Nostrand Company, Inc., Princeton, N.J., 1955.
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In the case of a rectangular cross section of width b and height h, for
example, the core radius is
s = bh%/6
bh

Using the notation s for the core radius, we can write the secant formula
in the form ‘

2 ©

_ P e 1 [P
amx"Z(l'l—EsecZ‘- AE (1-64)

For given dimensions of a column and for a known eccentricity e, the
slenderness ratio I/r and the ratio ¢/s are known, and hence Eq. (1-64)
represents the.relation between the maximum compressive fiber stress

e_. /e e.n;|B
E:1/8-05  JE-oi
R it AR
|
3r A
B pel
S 2t s
e e e . —— —— —
gl.ﬁ
o
|
1 P2|, 1 1 p1 1 lc 2 -8
% 65 10 15 20 25 a0

Fra. 1-25

and the average compressive stress o, = P/A. Fora given value of the
modulus of elasticity £, this relation can be represented graphically by
taking PI?/ Ar? as the abscissa and ¢,.,./%/7? as the ordinate. Three curves
of this type are plotted in Fig. 1-25 for the three eccentricity ratios
¢/s = 1,0.5, and 0.1. The modulus of elasticity is taken as

- E = 30,000,000 psi

There is shown also a straight line 04 which gives the maximum fiber
stress for the case where the load is centrally applied and e/s = 0. This
line gives the maximum fiber stresses up to the critical value of the aver-
age compressive stress. The critical value is indicated in the figure by
the vertical line CAB. =~ All curves similar to the three shown in the figure
will have this vertical line as their asymptote; since sec (I/2r) \/P/AE
in Eq. (1-64) becomes infinitely large when P = P,. As the eccentricity
¢ becomes smaller and smaller, the corresponding curves come closer and
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closer to the straight lines 04 and AB. Having a series of curves like
those in Fig. 1-25, we can easily find, for a given column, the maximum
fiber stress produced by a given compressive force applied with a known
eccentricity.

The same curves can also be used to determine, for a given column
and a given eccentricity, the amount of compressive load which can be
applied with a given factor of safety. Assume, for instance, that the
yield-point stress for the material of the column is 40,000 psi, that the
desired factor of safety is 2.5, that ¢/s = 0.1, and that the slenderness
ratio I/r = 100. Drawing the horizontal line mp for .. = 40,000 psi
to the intersection point p with the corresponding curve for ¢/s (Fig. 1-25),
we find on the horizontal axis the point p; which gives the value of the
average stress o, which produces a maximum fiber stress equal to the
yield-point stress. This value of average stress will be denoted (oc)ve-
If the factor of safety is to be 2.5, the allowable average stress should be
0.4 times the value given by point p,. In Fig. 1-25 this value is indicated
by point p; where P/A = 9,700 psi. The corresponding ordinate to the
curve for e/s = 0.1, equal to Oms., gives the maximum fiber stress '

Omax = 11,400 psi

which must be taken as the working stress in order to have the desired
factor of safety. It is seen that the value of the working stress obtained
in this manner is considerably less than the stress of 16,000 psi which
would be obtained by using Eq. (a).

In designing an eccentrically loaded column, we begin by assuming
probable cross-sectional ‘dimensions. Then, proceeding as explained
above, we obtain the safe value of the load that the column can carry.
If this load differs substantially from the actual load, the assumed cross-
sectional dimensions should be changed 'and the calculations repeated.
Thus, by using the trial-and-error method we can always find satisfactory
cross-sectional dimensions for the column.

Instead of using the above curves, we can use the secant formula
[Eq.(1-64)] directly in designing eccentrically loaded columns. If P
denotes the safe load on the column and n is the factor of safety, then nP is
the load at which the maximum fiber stress should become equal to the
yield-point stress. Equation (1-64) for this load becomes

nP e 1 [nP
T =g 1+§S"°27\/XE~) @
We can always solve this equation for P/A by using the trial-and-error
method and in this way obtain the safe average stress P/A for a given

column. Assuming certain values for ove, 7, and e¢/s and using Eq. (d),
we can caleulate a table of safe values of the average compressive stress
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¢. = P/A for various values of the slenderness ratio I/r. This relation
between o, and I/r can be represented graphically in the form of a family
of curves.

To make these curves independent of the factor of safety n, values of
nP/A = (¢.)ve can be plotted against I/r so that the values of the average
compressive stress (¢.)yr, at which yielding begins, can be taken directly
from the curves and any desired factor of safety can be obtained simply
by dividing the ordinates of the curve by the desired value of n. Figure
1-26 represents a set of curves! for structural steel and is plotted for
E = 30,000,000 psi, oyr = 36,000 psi and for values of e/s from 0.1 to
1.0. Having such curves, no difficulty is encountered in determining by
;rialgand error the necessary cross section for an eccentrically compressed

ar.
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Fic. 1-26

Similar curves can be calculated also for other cases of lateral loading
acting on a beam with an axial compressive force.> For instance, in the
case of a beam with a uniform load it is necessary to use Eq. (1-23) in
the same manner as Eq. (1-35) was used above.

In the case of compressive forces applied with two different eccentrici-
ties ¢, and e, (Fig. 1-27), we use Eq. (1-30). This case is of practical
importance in discussing stresses in compression members of trusses.
Because of the rigidity of the joints of a truss, secondary stresses are

1 These curves were calculated by D. H. Young, Rational Design of Steel Columns,
Trans. ASCE, vol. 101, p. 422§ 1936. ) :

2 A large number of curves of this type, calculated from the secant formula and
suitable for design use, were given by H. K. Stephenson and K. Cloninger, Jr., Stress
Analysis and Design of Steel Columns, Texas Eng. Expt. Sta. Bull. 129, February, 1953.

3 Several tables of this type were prepared by S. Zavriev, who was the first to devel(;p
this idea; see Mem. Inst. Engrs. Ways of Commun., St. Petersburg, 1913,
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always present and each compression member is subjected to bending by 36,820
moments at the ends. If the magnitudes of the bending moments are _51 \ I I
known from a secondary stress analysis,! the maximum stresses in each 32 i i —
particular case can be obtained in a manner analogous to that discussed -5 283 : \\ \2 B=0.5 1—
above for the case of two equal end moments.? - Assuming that e, is the 24— \\ &, |
numerically larger eccentricity, we shall introduce the notation § = es/ea. S 208 N \o l
The value of 8 thus varies from -1 when the eccentricities are equal and = 16004 i &,
in the same direction to —1 when the eccentricities are equal and in £, _\ 9
opposite directions. . S \\ i

In the case of comparatively short bars, the maximum fiber stress will = 8 X
occur at the end A, where the eccentricity is larger. The magnitude of 4 St
this stress is easily calculated from the usual formula for combined com- 00 [—t—1
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pression and bending, and the aver- Values of Slenderness Ratio
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el ] gl“e',,— age compressive stress at which ylgld Fre. 1.28
r% 7974 % ing begins is given by the equation .
7
‘ 4 36120
[ ! . (edve = 722~ ) 32 B0i— l| < \
Fic. 1-27 +eafs 28 :u02—+ AN :
In the case of slender bars, the maxi- T 04 04 - \\\ \ =Q0
mum stress occurs at an intermediate eross section and the value of il = N .
the average compressive stress at which yielding begins is given by the § 20 =y = ol
equation? 16 \
(s \ 06,>
(Ive = T * 8, ) °’
TeIYP = T X (e/s)¥ cOSEC 2u > 38 AN -
in which 4 g
. oL ]
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2u=kl=1,5%7 and ¢=+F—28cos2u+1 Values of Slenderness Ratio
. Fia. 129
The limiting value of the slenderness ratio I/r, up to which Eq. (¢) should 36
be used, is found in each particular case by using the equation a2 50 \ \
=0, ;
I : . 02
AN CAN I 28 =03 NN
—1 = - _— ! ] y
cos™ B =~ \/ i ’ 1)) = TN [,_05
o 06
which is obtained by equating Eqs. () and (). S 200 =
The results of calculations made with Egs. (e), (f), and (g) are repre- ..e16 Ay Lo
sented by the curves in Figs. 1-28 to 1-31. These curves are plotted for 12 N \E
structural steel with E = 30,000,000 psi ang ove = 36,000 psi. The L3 h S
1 8ee, for example, Timoshenko and Young, “Theory of Structures,” pp. 398-403, 4 "~ -
McGraw-Hill Book Company, Inc., New York, 1945. . 0 '

0 40 80 120 160
Yalues of Slenderness Ratio 20

Fie. 1-30

2 This problem was discussed fully by D. H. Young, Stresses in Eccentrically Loaded -
Steel Columns, Publ. Intern. Assoc. Bridge Structural Eng., vol. 1, p. 507, 1932.
3 See ibid.
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curves are drawn for values of e,/s from 0.1 to 1.0, and each graph is
plotted for a different value of 8. With the use of these curves, the value
of the average compressive stress (o.)vre at which yielding begins can be
obtained easily. The dotted curves in Figs. 1-28 to 1-30 are obtained
from Eq. (g) and represent the dividing line between the ranges of applica-
bility of Egs. (¢) and (f). o o

When the eccentricity e. approaches zero, the average stress (o) ye fora
short column is equal to ove. For slender columns with larger I/r the
value of (s.)vr approaches the value P./A, where P is the critical load
given by Eq. (1-15). This latter curve is labeled “Euler curve’’ in the
figures, since the critical load is also known as the Euler load.

In a similar manner we can determine the safe load for the case of an
initially curved and compressed column. Take, for instance, the case

36 K |
32 0. o
28 o &,
- Y \: =10
824 [— ;C“ s
(=) VO <®
S 20 o8 <
<169 B\
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£12 \\
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4
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4
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Frc. 1-31

in which the initial deflection of the column is a sine curve yo = a sin xz/l
as shown in Fig. 1-20. If a compressive force F, is centrally applied at
the ends, the total deflection at the middle is found from Eq. (1-60) by
substituting z = I/2 and using the notation a = P/P,, which gives

a

’= i —P/P.

and the maximum compressive stress will be

ron= 5 (142 p7m) ®

in which s denotes the core radius of the cross section. Denoting as
before by (o)ve the average compressive stress, which produces a maxi-
mum fiber stress equal to the yield-point stress, the equation for deter-
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mining (¢.)ye, from Eq. (h), becomes

71 -
1— (oc)ve l_2 (2)

mE r?

ayr = {6o)yr | 1 +%

This is a quadratic equation for (¢.)v» which can be solved for any values
of the ratios a/s and I/r.

) Ha:wng d.etermined the average compressive stress (¢.)ye at which
yielding begins, the allowable average compressive stress for an initially
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curjled column can be obtained simply by dividing this stress by the
desired fsf,ctor of safety. In Fig. 1-32 are given curves! for the average
compressive stress at which yielding begins, calculated for structural steel
with E = 30,000,000 psi and ¢ve = 36,000 psi. The curves are drawn
for values of a/s from 0.1 to 1.0. Through the use of these curves, the
allowable compressive load. for a. column with a given initial cﬁrvajture
and fqr any desired factor of safety can be calculated by trial and error.
It should be noted that the curves in Fig. 1-32 are very similar to the
curves in Fig. 1-26 for corresponding values of a/s and ¢/s.

1 These curves are from D. H. Young, Rational Design of Steel Col
ASCE, vol. 101, p. 422, 1936, ' = el Golumas, Trans




CHAPTER 2

ELASTIC BUCKLING OF BARS AND FRAMES

2.1. Euler’s Column Formula. In the previous chapter the value of
the critical load for a compressed bar was obtained by considering the
simultaneous action of compressive and bending forces or by assuming an
initial curvature. In the former case the eritical load was found by
determining the value of axial force which would cause large lateral
deflections even when the lateral load - itself was very small [see Eq.
(1-15)]. Similarly, for a bar with small initial curvature the lateral
deflections were found to grow without limit when the compressive force
approached the critical value [see Eq. (1-60)].

The critical load for a compressed bar can be obtained in another man-
ner by considering the behavior of an ideal column, which is assumed
initially to be perfectly straight and compressed by a centrally applied
load. Let us consider first the case of a slender, ideal column built in
vertically at the base, free at the upper end and subjected to an axial
force P (Fig. 2-1a).! The column is assumed to be perfectly elastic, and
the stresses do not exceed the proportional limit. If the load P is less
than the critical value, the bar remains straight and undergoes only axial
compression. This straight form of elastic equilibrium is stable, which
means that if a lateral force is applied and ‘a small deflection produced,
the deflection disappears when the lateral force is removed and the bar
returns to its straight form. If P is gradually increased, a condition is
reached in which the straight ferm of equilibrium becomes unstable and a
small lateral force will produce a deflection which does not disappear when
the lateral force is removed. The critical load (or Euler load) is then
defined as the axial force which is sufficient to keep the bar in such a
slightly bent form (Fig. 2-1b). ,

The critical load can be calculated by using the differential equation of

1 This is the case which was solved originally by Leonhard Euler and published in
the appendix, “De curvis elasticis,”” of his book ‘ Methodus inveniendi lineas curvas
maximi minimive proprietate gaudentes,” Lausanne and Geneva, 1744. An English
translation of the appendix was published in Isis, vol. 20, no. 58, p. 1, November, 1933
(reprinted in Bruges, Belgium). For a more complete historical discussion see
Timoshenko, “History of Strength of Materials,”” pp. 30-36, McGraw-Hill Book
Company, Inc., New York, 1953.
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the deflection curve (see Art. 1.2). When the coordinate axes are taken
as indicated in Fig. 2-1b and also the column is assumed to be in a slightly
deflected position, the bending moment at any cross section mn is

M= —P@—y)
and the differential equation (1-3) becomes

dy
Bl 5= PG —y) (2-1)
Since the upper end of the column is free, it is apparent that buckling
of the bar will occur in the plane of minimum flexural rigidity, which we
assume is a plane of symmetry. This minimum value of EI is used in

LP ' lp LP P
x
\ » A Y

b Law.——y WL

(a) (b) (c) (d)
Fia. 2-1

Eq. (2-1). Using the previous notation

P
2 o
k EI
we can write Eq. (2-1) in the form
. .
Y+ ky = ks (@)

The general solution of this equation is
* y=Acoskzr + Bsinkz + 8 : ®

in which A and B are constants of integration. These constants are

determined from the following conditions at the built-in end of the bar:

_dy _ -
y=g= atz =0

These two conditions are fulfilled if

A=-5 B=0
and then y = 8(1 — cos kz) (2-2)
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The condition at the upper end of the bar fequires that

y=48 atz=1
which is satisfied if
Scoskl =0 (o

Equation (¢) requires that either § = 0 or coskl = 0. If § = O, there is
no deflection of the bar and henee no buckling (Fig. 2-1a). If cos kl = 0,
we must have the relation

= (2n —,1)5 (2-3)

where n =1, 2, 3, . ... This equation determines values of k at
which a buckled shape can exist. The deflection § remains indeterminate
and, for this ideal case, ean have any value within the scope of small-
deflection theory.!

The smallest value of %I which satisfies Eq. (2-3) is obtamed by taking
n = 1. The corresponding value of P will be the smallest critical load,

and we have
kl = lJ =3

. 2 EIl
from which P, = i |
This is the smallest critical load for the bar in Fig. 2-1a, that is, it is the
smallest axial force which can maintain the bar in a slightly bent shape.
The quantity kz in Eq. (2-2) varies in this case from 0 to /2, and the
shape of the deflection curve is therefore as shown in Fig. 2-1b.

Substituting n = 2, 3, . . . into Eq. (2-3), we obtain for the cor-
responding values of the compressive force

2B T 2572 E1
P o« = T P or — —41—’—— A

The quantity kz in Eq. (2-2) varies in these cases from 0 to 3x/2, from 0 to
5x/2, . . . , and the corresponding deflection eurves are shown in Fig.
2-1c and d. For the shape shown in Fig. 2-1¢ a force nine times larger
than the smallest critical load is necessary, and for the shape in Fig. 2-1d
a force twenty-five times larger is required. Such forms of buckling can
be producéd by using a very slender bar and by applying external con-
straints at the inflection points to prevent lateral deflection. Otherwise
these forms of buckling are unstablé and have little practical mean-
ing because the structure develops large deflections when the load reaches
the value given by Eq. (2-4).

1 Note that the differential equation (2-1) is based upon an approximate expression
for curvature and is valid only for small deflections.

(24)
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The critical loads for columns with some other end conditions can be
obtained from the solution of the preceding case. - For example, in the
case of a bar with hinged ends (Fig. 2-2) it is evident from symmetry that
each half of the bar is in the same condition as the entire bar of Fig. 2-1.
Hence the critical load for this case is obtained by substituting /2 for I
in Eq. (2-4), which gives

2
P.=T @)
The case of a bar with hinged ends is probably assumed in practice more
frequently than any other; it is called the fundamental case of buckling of a
prismatic bar.

If the bar has both ends built in (Fig. 2-3), there are reactive moments

that prevent the ends of the column from rotating during buckling.

P

y

x —% 2
r‘vﬁ' T
_'4- .
j

N e .
% : Vi . 4
A 2 T / A
3
) P P
P (a) ’ (b)
Fia. 2-2 . F1a. 2-3 Fia. 2-4

These end moments and the axial compressive forces are equivalent to
forces P applied eccentrically as shown in the figure. Inflection points
are located where the line of action of P intersects the deflection curve,
because at these points the bending moments are zero. The inflection
points and the mid-point of the span divide the bar into four equal regions,
each of which is in the same condition as the bar in Fig. 2-1b. Hence
the critical load for a column with built-in ends is found by substituting
/4 for lin Eq. (2-4), which gives ‘
4B
li
As a final example, consider the column shown in Fig. 2-4a. This bar
is free to displace laterally at the upper end but is guided in such a manner
that the tangent to the elastic curve remains vertical. At the lower end
the column is built in. - Since there is a point of inflection at the center of

P, = (2-6)
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the bar (Fig. 2-4b), the critical load is found by substituting I/2 for I in
Eq. (2-4), and thus it is seen that Eq. (2-5) holds for this case also.

In each of the preceding cases it was assumed that the column was free
to buckle in any direction, and hence EI represents the smallest flexural
rigidity. If a column is constrained in such a manner that buckling is
possible in one principal plane only, then ETI will represent the flexural
rigidity in that plane.

It was assumed in the previous discussion that the bar was very slender,
so that the maximum compressive stresses which occurred during buckling
remained within the proportional limit of the material. Only under
these conditions will the preceding equations for the critical loads be
valid. To establish the limit of applicability of these formulas, let us
consider the fundamental case (Fig. 2-2). Dividing the critical load
from Eq. (2-5) by the cross-sectional area A of the bar and letting

_\/Z
T=44

where r represents the radius of gyration, the critical value of the com-
pressive stress is .
_ P, =E

T AT

@7

This stress depends only on the modulus of elasticity E of the material
and on the slenderness ratio I/r. The expression is valid as long as the
stress ¢, remains within the proportional limit. When the proportional
limit and the modulus E are known for a particular material, the limiting
value of the slenderness ratio I/r can be found readily from Eq. (2-7).
For example, for a structural steel with a proportional limit of 30,000 psi
and E = 30,000,000 psi, we find the minimum I/r from Eq. (2-7) to be
about 100. ‘Consequently, the critical load for a bar of this. material,
having hinged ends, can be calculated from Eq. (2-5) if I/r is greater than
100. If I/r is less than 100, the compressive stress reaches the propor-
tional limit before buckling can occur and Eq. (2-5) cannot be used. . The
question of the buckling of bars compressed beyond the proportional
limit is discussed in the next. chapter. ,

Equation (2-7) can be represented graphically by the curve ACB in
Fig. 2-5, where the critical stress is plotted as a function of [/r. The curve
approaches the horizontal axis asymptotically, and the eritical stress
approaches zero as the slenderness ratio increases. The curve is also
asymptotic to the vertical axis but is applicable in this region only as long
as the stress o, remains below the proportional limit of the material.
The curve in Fig. 2-5 is plotted for the structural steel mentioned above,
and point C corresponds to a proportional limit of 30,000 psi. Thus
only the portion BC of the curve can be used.
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Referring now to the cases represented in Figs. 2-1a and 2-3 and pro-
ceeding as for a bar with hinged ends, we find .the following expressions
for the critical stresses:

2K =2E
Ca = 757733 Ou = o3
(2t/r)? /2r)*

It is seen that in these two cases equations analogous to Eq. (2-7) for the
fundamental case can be used in calculating the critical stress. These
equations are obtained from Eq. (2-7) by substituting in place of the
actual length I of the bar a reduced length L. Thus we can write in
general

=2E

T = (L-/T)z (2—8)

In the case of a prismatic bar with one end built in and the other end
free, the reduced length is twice the actual length (L = 2{). In the case

4-10*
3-104

2-10*

Gy PSi

10

Fia. 2-5

of a bar with both ends built in, the reduced length is half the actual
length (L = 1/2). Thus the results obtained for the fundamental case
can be used for other cases of buckling of bars by using the reduced length
instead of the actual length of the bar.

2.2. Alternate Form of the Differential Equation for Determining Critical Loads.
In the preceding article it was shown that the critical load for an ideal column could
be found by beginning with the differential equation (1-3), which expresses the curva-
ture of the bar in terms of the bending moment. An alternate method is to begin with
Eq. (1-5). Since in determining critical loads of buckled bars the lateral load vanishes,
the differential equation for the column is

L'} dy
| Bl + P =
or, substituting k* = P/EI,
d a
R - 2-9)
The general solution of this equation is

y = Asinkz + Beoskz + Cx + D (2-10)
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The constants in this equation and the value of the critical load are found from the end
conditions of the bar. A number of particular cases will now be considered.

Column with Hinged Ends.” In the case of a bar with hinged ends (Fig. 2-6a) the
deflection and the bending moment are zero at the ends, and hence we have the
conditions

=" = atz =0andz =1
x

Applying these conditions to the general solution [Eq. (2-10)] gives
B=C=D=0 sinkl =0

and therefore kl = nr - (a)

This equation determines the values of the critical load and for n = 1 gives th‘e‘;')revi-

ous result, Eq. (2-5). The shape of the deflection curve is given by the equation

y—Asmkz—-Asmn—l-n . ®)
where the constant A represents the undetermined amplitude of the deflection.  For

the lowest critical load (n = 1) the buckled shape is shown in Fig. 2-6a. Forn = 2,

’ |
\
x 3
A 1 __T_
4
2 :
o Ly < I—L 3
J
P .
Aa) (b) (e)
Fm 2-6 . )
3, . higher values of the critical load are obtained from Eq. (a) and the correspond-

ing buckled shapes are shown in Figs. 2-6b and c.
Column withOne End Fized and the Other Free. For the bar shown in Fig. 2-la,
fixed at the base and free at the upper end, the conditions at the lower end are

-9 _ -
; ;y—dx—ov catx =0
At the free end (z = ) the bending moment and shearing force must be zero. Refer-
ring to Eqgs. (1-3) and (1-4), Art. 1.2, we see that these conditions mean that
aty _ 0

dx’
d'”+k= =0 atz=1

atz =1

From the conditions at the lower end of the bar we obtain
B=-D C= -4k
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and the last two conditions give
Asinkl + Beoskl =0 C=0
Therefore we finally conclude that C = A = 0 and

- @2n — Dr

cos kI =0 kl 5

which agrees with Eq. (2-3) of the preceding article.

Column with One End Fized and the Other Pinned. This case is illustrated in Fig.
2-7, where the lower end of the bar is built in and the upper end is hinged. When
lateral buckling occurs, a reactive force R is developed at the pinned end. The
direction of this reaction is determined by noting that it must op-
pose the reactive moment at the built-in end. The end conditions
for this column are

Using these conditions with the general solution (2-10) gives the
following equations for the constants:

B+D=0

Ak +C =0

Cl+D=0 ) ZT
Asinkl + Beoskl =0 Fra. 2-7

All four of these equations will be satisfied by taking A = B = ¢ = D = 0, in which
case the deflection [see Eq. (2-10)] vanishes and we have the straight form of equi-
librium. In order to have the possibility of a buckled shape of equilibrium, we need a
solution -of the equations other than the frivial one. Solving for A in terms of B
from the first three equations and substituting into the last.equation gives

_B sm kl

+ Becoski=0

and hence,
tan ki = ki (2-11)

Thus, in order to get a curved shape of equilibrium satisfying the end condmons of
the bar, the transcendental equation (2-11) must be satisfied.

To solve Eq. (2-11) a graphical method is useful.! The curves in Fig. 2-8 represent
tan kl as a function of kl. These curves are asymptotic to the vertical lines kl = »/2,
37/2, . . . since for these values of kI, tan kI becomes infinite. The roots of Eq.
(2-11) are represented by the intersection points of the above curves with the straight
line y = kl. The smallest root, corresponding to point 4, is

kl = 4.493
and the corresponding critieal load is

20.19E1 -~ =3Bl
B T (0.6990)2

1 Also, solutions of Eq. (2-11) are tabulated in Jahnke and Emde, “Tables of Func-
tions,” 4th ed., p. 30 of Addenda, Dover Publications, New York, 1945,

Py = ’(2-1'2)
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Thus the critical load is the same as for a bar with hinged ends having a reduced length
equal to 0.699] [see Eq. (2-8)].
Fized-end Column. If both ends of the bar are fixed (Fig. 2-9a), the end conditions
are
dy

y___%=0 atz =0and z = [

These conditions give the following equations for determining the constants in Eq.
(2-10):

B+D=0

Ak +C =0

Asinkl + Beoskl4+Cl+D =0

Akcoskl — Bksinkl +C =0

©

Investigating the possibility of curved forms of equilibrium, we observe that the only
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way to have a nontrivial solution of these four equations is to have the determinant of
the coefficients equal to zero. This determinant is

0 1 0 1 ’
k 0 1 0
sinkl  coskl 1 1 l
kcoskl —ksinkl 1 O

and setting it equal to zero gives the equation
2(coskl — 1) + kisin kl =0

Noting that sin kI = 2 sin (kl/2) cos (kI/2) and cos kl = 1 — 2sin?(kl/2), we can
write this equation in the form

sin’%l(lgcos%l—sin%l)=0 (d)
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One solution of this equation is

sin%l =0
and therefore kIl = 2nx and
_ An%2E]
Py = T (2-13)

Noting that sin kl = 0 and cos kl = 1 whenever sin kl/2 = 0, we find from Eqgs. (¢)
the following values of the constants: )

A=C=0 B = —D

and the equation for the deflection curve is

y=B (cos 2"1” -~ 1) (2-14)

If n = 1, we obtain the lowest critical load [see Eq. (2-6)] and the column assumes the
symmetrical buckled shape shown in Fig. 2-95.

P P

[« &

‘\"g ‘

-~

{c)

(@) 1—ic ® dc
Fia. 2-10

A second solution of Eq. (d) is obtained by setting the term in parentheses equal to
zero, giving the equation

tany =—’g

2

The lowest robt of this equation is kl/2 = 4.493, and therefore

_ 8.18+*E!

P i

(2-15)
which corresponds to the antisymmetric buckling pattern shown in Fig. 2-9¢. .. How-
ever, since this critical value is larger than the previous value for symmetrical buckling,
it is of practical interest only in the case of a column with lateral support at midheight.

Column with Load through a Fized Point. In the preceding examples the direction
of the compressive force P was assumed to remain constant during buckling of the bar.
Let us consider now a case in which a change in direction of the force P
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occurs. Assume, for example, that the force P is produced by the tension of a cable
which always passes through the fixed point C on the z axis, as shown in Fig. 2-10.
The lower end of the column is built in, and the upper end is free to move laterally.

This problem differs from the usual Euler case (see Fig. 2-1) because during buck-
ling there is a shearing force at the upper end of the bar. This force is equal to the
horizontal component of the tensile force P in the cable (Fig. 2-10b), and since for
small deflections the vertical component of the force can be taken equal to P, we
obtain

V=22
[4

Substituting this expression for V into the general equation for the shearing force
{Eq. (1-4)] gives the following condition at the upper end of the bar (z = I):

ey 2 3y
or dz' -l- k z
A second condition at the upper end of the bar is that the bending moment is zero, or

&y _ g

azi atz =1

At the lower end of the bar the conditions are
% _ -
v=7g 0 atz =0

Again evaluating the constants in the general solution (2-10), we obtain from the
conditions at the lower end

B+D=0 Ak+C=0
and from the conditions at the upper end
é
C=-
Asinkl + Beos kl = 0

L

Solving these equations for the cornsta.nts and then substituting into Eq. (2-10),
we obtain

= & [(tan kD)(cos kz — 1) + ke — sin ka] ©

As a final condition, the deflection at the upper end of the bar is 3, and hence, from Eq.
(e), we conclude that

tan K = ki (1 = {) ' (2-16)

Equation (2-16) gives the value of the critical load for any particular value of the
ratio ¢/l. The solution of this equation is facilitated by the use of tables! of the
function (tan z)/z. Table 2-1 gives values of kI and P, for various values of ¢/l as
determined from Eq. (2-16).

1 Bee ilh'd., p- 32 of Addenda.
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TasLE 2-1. CriTicaL Loaps For CoLuMN WITH Loap THROUGH A F1xED PoInT
[From Eq. (2-16)]

f 0 02 |04 |06 |os8 1.0 1.2 | 1.5
4.493 | 4.438 | 4.346 | 4.173 [ 3700 | & 2.654 | 2.289
Le_ 1905 |2.00 |1.01 |1.76 |1.46 | 1 0.714
SRR |2 . . , , . 0.531
; 2.0 (3.0 |40 |50 |80 |10 20 w
7] 2.020 | 1.837 | 1.758 | 1.716 | 1.657 | 1.638 | 1.602| 2
Lo 104170302 | 0.313 | 0208 | 0.278 | 0.272 | 0.260 | 0.2
ZmE | O . . : . . i .25

If ¢ is greater than [, as assumed in Fig. 2-10b, the right-hand side of Eq. (2-16) is
negative and the smallest value of kI which satisfies the equation! is between x/2 and
= (see Fig. 2-8). This means that the critical load is greater than x2EJ /412, which was
found previously for the case shown in Fig. 2-1. This can be explained by noting that
the transverse force P3/c counteracts the tendency for lateral buckling and hence a
larger critical load is required. If ¢ increases, the value of kI approaches the value
=/2, and when c finally becomes infinitely large, we have

nEl
412

which is the same result as for the previous case (Fig. 2-1) when the load remains
always vertical.

When ¢ = |, the fixed point C coincides with the lower end of the bar (Fig. 2-100),
the right-hand side of Eq. (2-16) vanishes, and we obtain

»EI
i3

kl=g P, =

kli=x Py =

which is the same as for the fundamental case of buckling. This can be explained by
noting that when the line of action of P passes through the base of the column, the
bending moment at that point vanishes and the bar is in the same condition as a bar
with hinged ends.

If the distance ¢ is less than [, the right-hand side of Eq. (2-16) is positive and the
smallest value of kI which satisfies the equation is somewhere between = and 3x/2.
The deflection curve then has an inflection point D as shown in Fig. 2-10d. Finally,
when ¢ = 0, Eq. (2-16) becomes the same as Eq. (2-11) and we have the case of a bar
pinned at the top and fixed at the base (Fig. 2-7).

Bar with Rounded Ends. When a bar with rounded ends buckles laterally (Fig.
2-11), there will be a displacement b of the line of action of the compressive forces P.

! The trivial solution, kI = 0, is excluded as usual.
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Sin;ze the angle of rotation 8 of the end of the bar is small, the displacement (see Fig.
ill be

2-11b) w b = Eo "

i i i i d of the bar.

here R is the radius of the hemispherical en | . .

" zssuming a symmetrical shape of buckling (Fig. 2—114:31 z:;n;ihtahngt:l!:; ;n;gl;\dcg
i lude at once that the cons
coordinates at the center of the bar, we conc! : psag
i his can be seen from the condition

in the general solution (2-10) must be zero. T 1 0 on
:;'mme%ry which requires that the terms in Eq. (2-10) give a d.ei.iectlon curv_e: vgh::lllxelz
symmetrical about the center of the bar.! From the condition that y =

P P
x l‘-b
S B
1 o y
S X
4
(a) (¢)
' Fie. 2-11
z = 0, we get B = — D, so that the equation of the deflection curve becomes
= Y
y = D — cos kz) ()

The bending moment at any section of the column is equal to
M=-P@—-b-y) ()
and the bending momént at the end B is
. dy
(M); 2 = Pb = PR =~ PR o~

Thus we have the following condition at the upper end of the bar:
2 d l
EI;T{=-—PR£ atz =3

Using this condition with Eq. (g) gives'
' 1+ kRtan S =0

M, H_ 1 @17)
or 33 T TR

1 The following end conditions can be used to establish the same result: dy/dz = 0
atz =0,y =datz=1/2andz = =1/2.
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TasLe 2-2. CriTicAL Loaps ror CoLuMn witTE Rounpep Enps
[From Eq. (2-17)]

2%012468101520304050»
%’ x2.798(2.4592 043[1.874]1.791(1.743]1.682[1 .653[1. 6251 . 611(1 .603|
Por 4]3.17| 2.45| 1.69| 1.42] 1.30] 1.23) 1.15 1.11] 1.07] 1.05] 1.041
B 17| 2.45| 1.69 1.42] 1.30| 1.23] 1.15| 1.11| 1.07] 1.08] 1.

Equation (2-17) can be used to determine the critical load for symmetrical buckling.
If R is equal to zero, we obtain
K« wE]
'2' = § P er = T \ (2'18)
which agrees with the usual result for a bar with pin ends. As R increases indefinitely,
we approach the condition of a bar with flat ends and Eq. (2-17) gives

k 4x*El
g =7 Pe = B

which is the critical load for a fixed-end column. Table 2-2 gives values of kI/2 and
P, from Eq. (2-17) for various values! of the ratio I/2R. .

2.3. The Use of Beam-column Theory in Calculating Criticsl Loads.
Instead of the differential equation of the deflection curve being used for
calculating critical loads, as was done in the two preceding articles, the
problem can be solved in many cases by using results already obtained
for beam-columns. It was shown in Chap. 1 that at certain values of the
compressive force P the deflections and bending moments in a beam-
column tend to increase indefinitely. Those values of the compressive
force are evidently critical values.

As an example, let us consider the case of & beam-column AB pinned
at one end and fixed at the other, as shown in Fig. 1-10. If the beam is
subjected to a uniform lateral load ¢, the bending moment at the built-in
end [see Eq. (1-37)] is

_ ¥ x(w) _ _ gP4(tan 2u)(tan u — u) @
8 yY(u) 8  u(tan 2u — 2u)
This moment increases indefinitely when the denominator of the .expres-

sion approaches zero, provided the numerator does not also approach zero.
This condition gives

M, =

tan 2u = 2u

! Equation (2-17) is solved readily using tables of the function z tan z; see dbid.,
p. 32 of Addenda. - Skt
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or, substituting ki = 2u [see Eq. (1-13)},
tan kl = kl

This result is the same as obtained previously by integration of the differ-
ential equation [see Eq. (2-11)]. Thus the critical value of the compres-
sive force is that value for which the bending moment at the built-in
end becomes infinitely large regardless of the magnitude of the lateral
load.

The same procedure can be used to determine critical loads for a bar
with elastically restrained ends (Fig. 1-13). When the bar is subjected
to a lateral load, the moments acting at the ends are obtained from Eqgs.

(1-43):

M. . Ml Ml
- = 0os + 3ET Y(u) + oET o(u) (2-19)
My Ml M
-5 = 0w + 377 v + 557 o(u) (2-20)

In these equations a and g are coefficients of end restraint [see Eqgs. (1-41}},
8. and g represent the angles of rotation at the ends due to lateral load
only, and the functions ¢(u) and y(u) are given by Egs. (1-27) and (1-28).
The moments M. and M; are end moments acting on the member AB
(Fig. 1-13) and are positive in the directions shown. Solving Eqs. (2-19)
and (2-20) for the moment M, gives

b [}3 + -é—éﬂ(u)] + [6%, ¢(u)] I
[}! + 3—,%¢(u)] [}3 + gﬁw‘(u)] ~ [6—;7 ¢(u)]2

The solution for My is obtained similarly and has the same expression in
the denominator. Therefore the moments M, and M, become infinitely
large when the denominator of Eq. (b) becomes zero. Thus the equation
for determining the eritical condition is

[i- + ok ¢(u)] [% T w(u)] - [a’,;—l"ﬁ(u)]’ -0 (21

M, =

. For particular values of o and g, this equation can be solved for u and the
critical load determined. This method of caleulation is useful in analyz-
ing rigid frames and continuous beams, as discussed in the- following
articles.

In the particular case of symmetry (Fig. 2-12), we have

a=8 =0 M.=M ()
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and Eqgs. (2-19) and (2-20) are replaced by the single equation

M, M M.,l’
~ % = bt 3pp ¥ + g7 W) (2-22)

Solving this equation for M, and setting the denominator of the resulting
expression equal to zero, we obtain the equation for the critical load:

1 l ‘ 1
;+3—E7'l’(u) + G—ETI¢(u) =0
Now substituting the expressions for ¢(u) and ¢(u) from Egs. (1"-27) and
(1-28) and also noting that tan v = (1 — cos 2u)/sin 2u, we write this
equation in the form - o

tan u 2E1

v  al : (2-23)

Values of u found from this equation lie between the limits »/2 and =.
The value x/2 corresponds to o = 0, which means that the ends of the
bar are free to rotate, and the-critical load is given by Eq. (2-5) for the

M, M -
P ; 0“ 1Q B . ° C %
= T
1 i i t i 1

Fia. 2-12 Fic. 2-13

fundamental case. . When the ends of the bar are rigidly built in, the
coefficient a becomes infinite, the value of u is =, and the critical load is
P, = 4xEI/1*. For intermediate values of @ Eq. (2-23) can be solved
readily using tables! of the function (tan z)/z.

If the loading on the symmetrically supported bar is antisymmetrical
(Fig. 2-13), we have ’

ax = ﬂ 00¢ = —00(, ) Ma' = —Mb (d)
and the critical load is determined by the equation
1 l l
_ a+3—E‘jlﬁ(u)—m¢(u)=0
3/(1 1 6EI
or 22— — Y= 222
u (u tan u) al (2-24)

Value.s of the critical load from this equation correspond to antisymmetric
bu'cklmg patterns. The equation is solved easily for any value of a by
using Table A-1, Appendix, since the expression on the left-hand side is

1 Ibid.
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the function ¢ but with u in place of 2u. As one of the limiting cases we
have a = 0 for pin ends; hence 4 = = and P, = 4x*EI/I?, which cor-
responds to the antisymmetric buckling shape shown in Fig. 2-6b. For
fixed ends, o becomes infinite, u = 4.493, and the critical load is given

by Eq. (2-15). '
2.4, Buckling of Frames.! Since each member of a framework with
rigid joints is in the condition of a bar with elastically restrained ends,
the method described in the preceding article will be used for considering
the buckling of frames. As a simple example, let us consider a frame
ABCD which is symmetrical with respect to horizontal and vertical axes
(Fig. 2-14). The vertical members of the frame are compressed by axial
forces P, and it is assumed that lateral movement of the joints is pre-
vented by external constraints. When the load

P ’____E 1 - P P reaches its critical value, the vertical bars be-

A B gin to buckle as indicated by the dotted lines.

TP —h This buckling is accompanied by bending of the

ﬁ/ \ ,I - two horizontal bars AB and CD. These bars

| v exert reactive moments at the ends of the ver-

| tical bars and tend to resist buckling. The mo-

| \ ments at the ends are proportional to the angles

/ \ of rotation of the joints, and hence the vertical

Cee—— D members are examples of bars with elastically
P Er, P built-in ends.

The coefficient of restraint at the ends of the
vertical bars is found from a consideration of the
bendmg of the horizontal bars by couples at the ends. Denoting by EI,
the flexural rigidity of the horizontal bars, the expression for the coeﬁi—
cient « is

Fic. 2-14

o= 20 @

Since the vertical members buckle in a symmetrical shape, the critical
load can be obtained from Eq. (2-23) of the preceding article. If the
flexural rigidity-of the vertical bars is denoted by EI, this equation
becomes

tan u I

~ =TTl ()
and the critical load can be found from this equation in each particular
case. .

1 The first discussion of problems of the stability of members of a rectangular frame
was given by F. Engesser, “Die Zusatzkrifte und Nebenspannungen eiserner Fach-
werkbriicken,” Berlin, 1893. See also H. Zimmermann, “Knickfestigkeit der Stab-
verbindungen,”’ Berlin, 1925.
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If the frame in Fig, 2-14 consists of four identical bars, Eq. (b) becomes

tanw _ 1
u
and the lowest root of this equation is
kl
U=5 = 2.029
and hence P, = 16.%;717}1

If the horizontal bars are absolutely rigid, the right-hand side of Eq. (b)
becomes zero and therefore tan = 0, 4 = x, and
4r2E]

lz
This is the case of a bar with fixed ends. Finally, if I = 0 we obtain
u = x/2 and

P, =

m2ET P P

Pu.'—"—lz— Q EI! Q

as for a bar with pinned ends.

If the horizontal members of the frame are
subjected to the action of compressive forces @, O Elf
as shown in Fig. 2-15, the coefficients of end
restraint a will be diminished. Instead of Eq.

(a) we must use the expression Q Q
V= 2B _w P th P
; b tan u; (@ F1a. 2-15

which is obtained from Eq (1-34). The quantity u; for the horizontal

member is
_b [T
“ = 3NEL

In calculating the critical value of the compressive force P, we again use
Eq. (2-23) of the preceding article and obtain

tanw  Ibtan tan u

u = . Ill Ui (2-25)

With the quantities on the right-hand side of this equation known, the

critical force P can be found assuming that the horizontal bars do not
bucklie first.

If it is desired to determine ecritical values of the force @ (F1g 2-15),
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the above procedure will give the equation

tan uy _ _Qtﬂ
% Ib u

which is the same as Eq. (2-25). Thus Eq. (2-25) defines limiting values
of the two axial forces P and Q. For example, if the frame is square with
all members having the same flexural rigidity, Eq. (2-25) becomes

tanw _ _ fanw (2-26)
u U

This equation is plotted graphically in Fig. 2-16. If the values of P and
Q locate a point on the curved line in the figure, buckling will occur. Itis

20
16.47 l
18 Q . (Unstable __| .
~ region) p P

P \ | T
EIji? 10 ) Critical |

T —————
T ———

< load curve
5— (Stable \
region) / 1
l : 1647 il !
oL , : | i
0 5 10 15 20 \ \
_Q V —=m——]
Bl B L P
' Fie. 2-16 Fe. 2-17

seen that the critical value of P decreases as @ increases, and vice versa,
as would be expected. . If the values of P and Q locate a point below the
curved line, no buckling will oceur; hence the portion of the graph below
the curve represents a stable region.

Other forms of buckling for the frame in Fig. 2-14 are possible. For
example, in Fig. 2-17 is shown a buckled configuration in which the mem-
bers have infle¢tion points at their mid-points. This case corresponds
to the antisymmetric buckling case of the preceding article, and the criti-
cal load is found from Eq. (2—‘24),by substituting

a —’ 3 ' |
which represents the coefficient of end restraint. Critical loads for the
buckling mode of Fig. 2-17 are larger than those for the symmetrical
mode of Fig. 2-14 and hence are not usually so important.
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I the flexural rigidities of the two horizontal members of the frame in
Fig. 2-14 are different, the end conditions for the compressed vertical
members are no longer the samé and the critical load w111 be obtamed
from Eq. (2-21) of the preceding article.

In the case shown in Fig. 2-18a the vertical bar is rigidly built in at the

base and elastically supported at the top. Then 8 is infinite, « is finite,!
and Eq. (2-21) becomes

w2

This equation can be solved for each particular case by trial and error,
using Table A-1, Appendix, for values of the funetions ¢(u) and ¢(u). -

For the case shown in Flg 2-18b the coefficient 8 is zero and « is finite.
When 8 approaches zero in Eq (2-21),

the fact P Ple—
e tactor _1- ] = E”' b;—%«‘

El -
T+ | - e e

oW (@
must approach zero also and the equa- EI| 1 CEHL
tion for calculating the critical load is
obtained by equating expression (¢) to Pin
zero. This gives the relation
_ _8EI G ®)
Y = - = (2-28) Fro. 218

When the horizontal member is considered as a beam with one end built
in and the other hinged and the flexural rigidity of this member is denoted
by EI,, the magnitude of « in Eq. (2-28) is 4E1,/b and the equatlon for
the critical load becomes

Y(uw) = — %3 t , . (2-29)

Assuming, for instance, that b = [ and I = I, we find from Eq. (2-29)

that

— 14.7E1
8

In the limiting case where a becomes infinite, Eq. (2-28) coincides with
Eq. (2-11) and we have the solution for a column fixed at one end and
pinned at the other (Fig. 2-7).

V() = ,—;13- 2u="Fkli =38 P,=

1 In order for this discussion to be exact, it must be assumed that the compressive
force P is applied to the vertical bar before the rigid connection is made. Then there
will be no bending in the horizontal bar before buckling oceurs. The small changes in
the lengths of the bars at buckling are neglected also.
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In the previous discussion it was assumed that the ends of the com-
pressed members do not displace laterally. Let us consider now the case
" shown in Fig. 2-19 in which a frame with compressed vertical members is
free to move laterally at the top. If the frame has a vertical axis of
symmetry, each vertical member can be considered separately as a com-
pressed bar free at the lower end and elastically built in at the upper end.
Taking the coordinate axes as shown in the figure, the differential equa-

tion of the deflection curve of the bar AB is

X b
B P ¥ P C - d y
=97| 311 EId = — Py
-0
t  The solution of this equation, satisfying condi-
EI El tions at the lower end, is
A D ’ Yy = A sin kz (f)
Y . '
v At the upper end the angles 6§ and 8, must be
Fic. 2-19

equal and since the horizontal bar BC is bent by
two couples, each equal to P(y)s, the condition at the upper end is

dy\ _ b '
(?E),_, = Pggr, W=

or, by using expression (f),

 Pbsin ki
k cos kl = —gmr— T ()
If the horizontal bar i is a.bsolutely l'lg'ld E I, = o, and we obta.m
P n2E]
cos kl = 0 kl = 5 P, = i
In the general case, Eq. (g) can be represented in the following form:
61, .
kl tan kl = T » (ﬂ)

and the critical value of the load P can be found for any numerical value
of the ratio I,l/Ib. Assuming that all three bars of the frame are identi-
cal, we obtain ,
kltankl = 6
from which
1.82E71
l2

‘2.5. Buckling of Continuous Beams. In calculating critieal com-
pressive forces for continuous beams, we can again make use of beam-

kl = 1.35 and P, =
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column formulas.. Previously, formulas were derived for the bending of
continuous beams subjected to longitudinal compression in addition to
transverse bending (see Art. 1.10). The critical values of the compressive
forces will now be obtained as the values at which even a slight lateral
load will produce infinite deflection. As in Art. 1.10, the compressive
forces in the continuous beam are assumed to be constant within each
span but may vary from one span to the next.

Considering two consecutive spans of a bar on several supports (Fig.
1-14) the relation between the three consecutive bending moments at the
supports is given by Eq. (1-44):

Mosd(uns) + zMn[ V) + 2L gty »]
’ I n— 6 6EL, .
+ My Lo ‘qs( 9= =Bt i) (o

There will be as many equations of this type as there are statlcally indeter-
minate moments, provided the ends of the continuous beam:are simply
supported. If the ends are fixed, then P 2 3p

two additional equations, expressing the i i
e b,

condition of fixity, must be used in addi- —_]
tion to Eqs. (a). The coefficients in
these equations contain the functions
¢(u) and ¢(u) and depend on the magnitudes of the compressive force P.
The critical values of these forces are those values for which the bending
moments, as solved from Eq. (@), become infinitely large. This requires
that the determinant of the left-hand side of Eqgs. (a) be made equal to
zero. In this way an equation for calculating the critical values of the
compressive forces is obtained.?

Let us consider a bar oy three supports, with hinged ends, and com-
pressed by forces P applied at the ends (Fig. 2-20). In this case there is
only one unknown moment M, and Eq. (a) becomes -

LI ;b( 2)] 6EI;

The critical value of the compressive force is now obtained from the
condition that M becomes infinite, which means that

lzI 1

Fia. 2-20

2M2 l:tﬁ(ul) + — (002 + 6% 2) |

W) + 21 v = 0 L ®

! There is an exceptional case in which buckling may occur with all bending moments
at the supports equal to zero. This takes place when all spans of the bar have such

proportions and such compressive forces that u: = us = u; = - - - . . In this case

buckling of each span is not influenced by the adjacent spans and the critical values of
the forces are calculated for each span as for a bar with hinged ends. -
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Assuming that the cross section of the bar is the same for both spans, we

have .
R A LN
1= "2 T 2NEI 1T 79 T 2VEI

ul_h
uy b

Equation (b) can now be put in the form

Yu) _ L
Y(uala/l) - L ©

which can be solved by using values of the function ¥(u) from Table A-1
in the Appendix. If we take l» = 2L, Eq. (c) becomes

Yy
Y@y = 2

and from Table A-1 we find 2u; = 1.93, whence

p. - (1L93)EI _ 3.72EI 14.9EI
o _ 12 B 7 R A

It is seen that the value of the critical load lies between the two values
x2EI/1,? and x°E1/1:?, calculated for separate spans as if each were a bar
P b with hinged ends. The stability of the

—  ghorter span is reduced, owing to the

o
1 m action of the longer span, while the sta-
bility of the longer span is increased.

P P
,,;,;\_L/’ ,ﬁ: - j, When t.he length I, approaches I,
Fra. 2.21 the quantity us approaches u; and the

’ root of Eq. (¢) approaches the value
2u; = 2us = 7. In this case the bending moment at the middle support
is zero and each span can be considered as a bar. with hinged ends (see
footnote on p. 67). The next root of Eq. (c), for u. approaching u,, is
2uy = 2u; = 4.493. Then

P - 20.19E1 _ «'EI
T TR T (0!

The two forms of the buckled bar are shown in Fig. 2-21. Only the first
form, corresponding to the smallest compressive force, is of practical
significance.

As a second example, let us consider a bar on four supports (Fig. 2-22)
and assume that I, = I and I; = I;. Spans 1 and 3 are compressed
axially by forces P and may be considered as bars having one end hinged
and the other end elastically built in. It can be seen that the shape of
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the buckled bar will be approximately as shown in Fig. 2-22b and, from
s¥mmetry, the bending moments at supports 2 and 8 will be 'equal.
Since the compressive force in the second span is zero, we obtain

d(u) = ¢(u2)‘ =1
and Eq. (a) gives
' 31,
WL 0 @

T!lis equation coincides with Eq. (2-28) of the previous article if we sub-
stitute & = 2E1,/l, in that equation.

As a last example, let us consider the case shown in Fig. 2-23. A
compressed bar AB is rigidly connected to a column at C, so that any
lateral buckling of the bar must be accompanied by bending of the col-
umn. In the solution of this problem Eqs. (1-48) and (1-49) of Art.
1.10 will be used. If M, and M are the values of the bending moments in

2¥(u1) +

- P P2 3P 4P

e e

1

[ )
e ™
P [ P L"--- ],' 77 7)—'-

w "’ T 12"““’l
Fia. 2-22 Fic. 2-23

the twq adjacent cross sections to the left and to the right of support C
respectively, and if there is no lateral load, these equations become ’

2M A (w1) + 2M, %%w(uz) =0 (e)
B o, MJ

in Whi(?h. EI’ and h are the flexural rigidity and the length of the column.
Tl.le critical value of the compressive force is found by setting the deter-
minant of Egs. (¢) and ( f) equal to zero, which yields

vom) 4y B 14 2T 4] =0 @

This equatif)n can be solved in each particular case by using Table A-1.
In the particular case where I = I, and I, = I,, Eq. () becomes

| b |2+ AL | -0

1
from which
2hI,

W) =0 or ) = - 2D
: 1




70 THEORY OF ELASTIC STABILITY

‘The first of these two solutions gives the same value for P, as that
obtained for the bar shown in Fig. 2-7. It corresponds to a deflection
curve symmetrical with respect to C, in which the column does not bend
at all. The second solution, which gives a smaller value for P,, cor-
responds to a nonsymmetrical shape of the buckled bar as shown in Fig.
2-23. Only this second solution has any practical significance. For any
particular case it is obtained readily from Table A-1. Taking, for exam-
ple, 2hI,/L,I' = 1, we find from the table, 2u; = kl; = 3.73 and

13.9E1

lL?

“2.6. Buckling of Contindous Beams on Elastic Supports. A compressed member
may be supported at several intermediate points by supports which are not completely
rigid. For example, a compression member of a truss may be supported laterally at
one or more intermediate points by other members of the truss.! The general method
of solving such problems consists of using Eqs. (1-46) for a continuous bar with sup-
ports not on a straight line. Let us consider, as an example, the case of a bar on three

P, =

P 2 3 P2

supports (Fig. 2-24) in which the mjddle support is elastic. If the bar buckles under
the action of the compressive forces, the center reaction R; will be proportional to the
deflection 5.. Let s be the spring constant of the support, that is, the load which will
produce unit deflection of the support, so that

Ry = asls : (@)

All the supports of the beam are such that the cross sections of the beam at the sup-
ports can rotate freely during bending. ~ Considering the two adjacent spans as simply
supported beams acted upon by forces Py, Py, and couples M, (Fig, 2-24b), the reaction
R,, from statics, is .
P 182 P 203 M 2 M 3
L S S ey , ®
1 The first problems of the type discussed in this article were solved by Jasinsky,
who considered the lateral buckling of compression diagonals of lattice trusses. See
“Scientific Papers of F. S. Jasinsky,” vol. 1, p. 145, St. Petersburg, 1902. This
important paper by Jasinsky on the buckling of columns also appeared in a French
translation; see- Ann. ponts chaussées, 1894. See also H. Zimmermann, “Die Knick-
festigkeit eines Stabes mit elastischer Querstiitzung,” W. Ernst and Sohn, Berlin,
1906, and his papers in Sitzb. Berlin Akad. Math. physik. Kl., 1905, p. 898; 1907, pp.
235 and 326; 1909, pp. 180 and 348.
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From (a) and (b) we obtain
_ P 15: P;Bg M 2 M 2
asl; = + = Al ity o v (¢)

Another equation for support 2 is obtained from the general Eq. (1-46). Observ-
ing that the moments M; and M, for the supports 1 and 3 are zero and that the
angle B for the middle support (see Fig. 1-15) is

B = ;—2 +l£"
. 1 2
Eq. (1-46) becomes

oM, [w(ul) +hD

fow]| =0 (24 2)

Buckling of the bar becomes possible when Egs. (¢) and (@) yield a solution for M,
and 3; different from zero. Hence the critical values of P, and P: are found by setting
the determinant of these two equations equal to zero, which gives

2[aa =P - o) + v | = - FRGER

In this equation P, and‘Pz are unknown; if the ratio between them is given, their values
can be found by using Table A-1. In the particular case where Py = Psand I, = I,,
Eq. () can be simplified by using the expression for ¥ (u) [see Eq. (1-28)] and finally

@

. represented in the following form:

-« .. - . lll2 P -
8in 2u; sin 2us = 2(u: + ug) sin 2(u; + u,) [(11 iy AT Ralon; e lz)] [¢2)
In a more general case where there are several intermediate elastic supports, we can
write for each support two equations similar to (¢) and (d); the critical values of the
compressive forces are determined by equatmg the determinant of this system of
equations to zero.

If the cross section is constant and the compressive force the same for all spans, it is
advantageous to use Eqs. (1-50) instead of Eqs. (1-46) in calculating the critical value
of the compressive force. To illustrate this method of solution, let us consider again
the beam on three supports (Fig. 2-24). Equation (1-50) for this case becomes

) 2 )
q(ll + lz)‘ [008 (1 ll + l!) u — 1] —_ q(ll + l!)’lll’

16EIut o8 u 8ETu?
sm kl] . lllg R:
~ PEsin k(h Ty Besin ks + gy B @

The critical value of the compressive force is that value at which the deflections, and
hence the reaction R,, begin to increase indefinitely.! This requires that. the coef-'
ficient of R in Eq. (g) becomes zero. Thus, in calculating the eritical load, we obtain
the following equation:

sin kl[ sin klz lllg 1 _
TPk I W TPG A Tt ®
Observing that kl, = 2u, and kl, = 2us, we find that Eq. () coincides with Eq.
(f) obtsined before in another way.
'If there are two equal spans, buckling may occur in such a way that Rs = 0.
In this case the buckling condition of each span is the same as that of a bar with hinged
ends and it is not necessary to consider the continuous bar.
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In discussing solutions of Eq. (f), let us begin with several simple cases. Ifas = o,
Eq. (e), from which Eq. (f) is obtained as a particular case, coincides with Eq. (b)
of the previous article (see p. 67), which was obtained for a bar on three rigid sup-
ports Thus we can use the solution from that article.

If a2 approaches zero, the second term in ‘the pa.rentheses on the right side of Eq.
(f) approaches infinity, and the equation can be satisfied only if sin 2(u; + us)
approaches zero simultaneously. The critical load is then obtained from the equation

sin 2(u; + ug) =sink( +1:) =0
. ‘EI
from which P (ll + lz)’

This coincides with the critical load for a bar with hinged ends and of length I = I; + I,.
If the two spans are equal, we have u;, = uz, U1 = lz = 1/2, and Eq. (f) can be putin
a simpler form:

sin 2u, [— sin 2u, + 8u, cos 2u; 4 ,l)] =0 - @)

The upper limit for the critical value of the compressive force is obtained by assuming

tha.t the mtermedia.te support is absolutely rigid (az = «). Then the shape of the
“buckled bar is that shown in Fig. 2-25a and

‘jP l‘ ] 1 ‘iP the critical value of the compressive force is
—0 ”%” obtained from the equation
L[ l > 2uy = 7w
a) 2 2
L ¢ P which gives Py = T—lﬁ” = 4«le ! €))
(Y] The lower limit for the critical load is ob-
Fre. 2-25 tained by assuming that the intermediate

support is absolutely flexible (az = 0). The
shape of the deflection curve of the buckled bar is then as in Fig. 2-25b, and we have
»2El

x
2’u1—§ Py = 7 (k)

For any intermediate value of the rigidity of the elastic support we have

% <2u; <'x o

There are two possibilities for the left side of (i) to become zero. Either sin 2u; = 0,

which gives for the critical load the value (j), or the expression in the brackets may

become zero. From the inequality () it can be concluded that sin 2u, is positive and
cos 2u; negative. Hence, the expression in bra.ckets may become zero only if

' P_1

>

ad =

and the oorrespondmg smallest value of P is
asl
_ = (m)
If this value is larger than (j), the condition sin 2u; = 0 determines the critical value

of the load and the shape of the buckled bar is that shown in Fig. 2-25¢. ‘The limiting
value of the rigidity of the support at which this shape of buckling occurs is obtained

:
3
£
£
|
2
H
i
:
2
g

S ———————
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from Eq. (m) by substituting for P the value (j). Then
4x2El sl

[
. 16x2E1

from which e = —p— ()
For smaller values of a3, the flexibility of the intermediate support should be con-
sidered; the value of P, is obtained by determining the value of P at which the expres-
sion in the brackets of Eq. (s) becomes zero.

] I.n.Flg 2-26 a curve is plotted which shows the variation of the critical load with the
rigidity of the intermediate support. In this curve the ratios Pe:#2EI/I? = P,:P,
are taken as ordinates and the ratios

agl:w2EI/12 = as/P,

a,s,ab.scissa,s. ’.I‘he curve deviates but very little from a straight line so that the critical
load increases in approximately the same proportion as the rigidity of the support.

4
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Fre. 2-26

If the spans are not equal, the general Eq. (f) should be considered in calculating
th.e .critica.l load. The lower limit for P is given, as before, by Eq. (k). For deter-
mining the upper limit we assume a2 = ». Then the right side of Eq. (f) becomes
zero when

2(ur + uz) = 2« (0)

At the same time the left side is negative, since one of the two angles 2u, and 2u. is
larger and the other smaller than ». Both sides of Eq. (f) can be made equal (...,
the upper limit for P will be found) by taking for 2(u; + u,) a quantity somewhat
smaller than 2x. This indicates that in the case of rigid supports any lateral displace-
ment of the intermediate support from the mlddle position dimmlshes the value of the
critical load.

After the upper and lower limits for P are determined by taking a: = « and as = 0,
the critical value of the compressive force for any intermediate value of az is obtained
Eg' :o;ving Eq. (f) by the trial-and-error method. This solution is simplified if we note

at for

P +1
ar = P AR ®

the right side of Eq. (f) is zero. Assuming I, > l,, the smallest value of P which
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makes the left side of the equation equal to zero is obtained from the equatipn
Sin 2u1 =0

from which 2u; == and (2u; + us) = #l/li. If we take a2 smaller thal): (p?,
the value of 2(u1 -+ us) must be smaller than xl/l; found above; at the same txmel_lt
must be larger than the value = found for a; = 0. Hence, the root of Eq. (f) must lie
within the limits
= @
r < 2(uy + ug) <-l—1

i ity 2(u; + u2) will be larger
For values of a: larger than that given by (p), the quantity 1
than #l/l, and at the same time it must be smaller than 2r, as was explained before.

Hence the limits for the root of Eq. (f) are

}Ll < 2(uy + us) < 2% ()
1

By using (¢) and (r), Eq. (f) can be solved by the tria.l-and-er;or method for any
particular value of as.

o 1 1 1 1 1 1 3 - .
0 10 20 30 40 50- 60 70 80
ol

P ()

Fic. 2-27

As another problem of the stability of a bar on elastic supports, let us cqnglder a c?:;
tinuous beam of constant cross section simp!y suppor'ted at the ends on I‘lg.ld. ;Pppo e
and having several equally spaced intermedxate‘; t?la.smc suppqrts of eql.xal rigie 1tyr.t
is soinetimes necessary to select the common rigidity oi.” the intermediate supp;) : :2
that they will not deflect when the bar buckles,. and will, therefore, be equiva :gi o
absolutely rigid supports.! We have a.lready discussed the case of ;)llileh ué;;erm art
support and obtained Eq. (n) for deternaxmng the value of as at which the suppo!

ugh it were absolutely rigid. ‘
bel’]l?al:;essa&:l:h:roilem can be solved with little difficulty in the ge{leral cz;).se of a'x:{
number of intermediate supports by using Eqs: (1-50). Takea con.tmuous eam wi
two intermediate supports each having a spring constant of a (Fig. 2-27b). Equa-

1 This problem was first discussed by J. G. Boobnov, “Theory of Structure of

i lso W. B. Klemperer and H. B.
Ships,” vol. 1, p. 259, St. Petersburg, 1913.  See al
Gibrl)aséns, Z. a’ngew. Math. u. Mech., vol. 13, p. 251, 1933 and M A. Lazard, A?Ln.
inst. tech. baliment et trav. publ., no. 88, September, 1949.
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tions (1-50) for three equal spans, each of length 1/3, are

sing’f! sin]il
K21 3 K, 1.1 R
“PEema g t3p By~ prammBesing tgpRag =
(s)
sin X sin &1
Kl 3 WA A\ R,
‘PksinklR’sm§_PksinklR’sm?"‘?F(R’ﬁ"'R’ﬁ)‘Z

If the supports are absolutely rigid, the bar buckles, so that there will be inflection
points at the supports and each span is in the same condition as a bar with hinged
ends of length /3. The critical value of the compressive force is then obtained from
the equation

H_
3 =7
from which, P, = 9"";21”

Assume now that the supports are elastic and that their rigidity approaches the
limiting value at which the supports behave as though they were absolutely rigid.
In this case the critical value of the compressive force approaches the value obtained
above for absolutely rigid supports, and we can assume that

-l;—l =x — A ®

where A is a small quantity. Substituting () in Eqs. (s) and neglecting small quan-
I 21 1

9—PR2+(9—P—;)R;=0
20 1 l

(Q—P —;)R:-I-g-}—,R: =0

tities, we finally obtain

()

The value of « at which the critical load approaches that for absolutely rigid supports
is obtained by equating the determinant of Eqs. (u) to zero. Then

. ﬂ_l)i_(i)s_o
9P 9P)
9P

from which @ = ®

where P-= 9_';&7

The variation in the critical load due to an increase in the rigidity of the supports
can be handled in the same manner as was explained for one elsstic support. The
results of such an investigation! are shown in Fig. 2-27a, in which the ratio Py /P,
is plotted against al/P, where P, = x*EI/l*. When the rigidity of the supports is
small, the deflection curve of the buckled bar has no inflection points (Fig. 2-27b).
The curve AB in Fig. 2-27a corresponds to this condition. For greater rigidity of the
supports an inflection point occurs at the middle (Fig. 2-27¢). This condition is repre-
sented in Fig. 2-27a by the curve BC. When « approaches the magnitude given by
Eq. (v), the critical load approaches the value 9x2EI/I? and the points of support
become inflection points. = A further inerease in the rigidity of the supports has no
effect on the buckling of the bar. ‘ '

1 See Klemperer and Gibbons, loc. cit.




76 THEORY OF ELASTIC STABILITY

Proceeding in the same way for m equal spans of length I/m, we obtain for the neces-
sary rigidity of the elastic supports, at which they behave as if absolutely rigid, the
expression

mP
a="7 (2-30)
in which m is the number of spans, v a numerical factor which depends on the number
of spans, and P = m2r*EI/I? is the critical load calculated for one span as for a bar of
length I/m with hinged ends. Several values of the factor v are given in Table 2-3.
1t is seen that v diminishes as the number of spans increases and approaches the value
¥ = 0.250.

TapLE 2-3. VALUES oF THE Factor v IN Eq. (2-30)

m 2 3 4 5 6 7 9 1

L% "0.500 | 0.333 | 0.203 | 0.276 | 0.268 | 0.263 | 0.258 | 0.255

2.7. Large Deflections of Buckled Bars (The Elastica).- In the.dis-
cussions of the preceding articles of this chapter it was found that the
deflection of a‘bar was indeterminate at the erit-

T~ ical load. This indicated that at the critical
; load the bar could have any value of deflection,
AL provided the deflection remained small. This
conclusion is reached because of the nature of
4 the differential equations which were used for
calculating the critical loads. These equations
N . were based upon the approximate expression
O'e d?y/dz? for the curvature of the buckled bar.
If the exact expression for curvature is used,
there will be no indefiniteness in the value of

N Xa

Y A , ol )
AN the deflection. - The shape of the elastic curve,
Yo X when found from the exact differential equation,

Fic. 228 is called the elastica.! -

_ Let us begin by considering the slender rod
shown in Fig. 2-28, fixed at the base and free at the upper end. If the
load P is taken somewhat larger than the critical value [Eq. (2-4)], a large
deflection of the bar is produced. Taking the coordinate axes as shown
in the fizure and measuring the distance s along the axis of the bar from
the origin O, we find that the exact expression for the curvature of the bar

is'de/ds. ' Since the bending moment in the bar is equal to the flexural '

1 The problem of the elastica was first investigated by Euler, loc. cit., and also by
Lagrange, Sur la figure des colonnes, Misc. Taurinensia, vol. §, 1770-1773.
Lagrange’s work is reprinted in “Qeuvres de Lagrange,” vol. 2, pp. 125-170, Gauthier-
Villars, Paris, 1868. - For a historical discussion see Timoshenko,  History of Strength
of Materials,” pp. 30-40, McGraw-Hill Book Company, Inc., New York, 1953.
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rigidity times the curvature, the exact differenti i
ROty tina 3 ential equation of the deflec-
do
As in our previous discussions, the change i
. I ge in length of th,
compression will be neglected.’ 1 . © column due to

Differentiating Eq. (a) with respect to s and using the relation

Z—z = gsin @
. az
we obtain EI d_sg = —Psin 6 ®)

Thus the differential equation of the deflection curve is of the same form
as the: differential equation for the oscillations of a pendulum. In th
fequajclon for the pendulum the quantity EI is replaced by the m.omént o(t2
inertia o.f the pendulum with respect to the axis of rotation, s is replaced
by the time, and P by the weight of the pendulum multipli:ad by the dis-
tance of the center of gravity from the axis of rotation. This analo
bgtwgen the.deformation of a slender rod loaded only at its ends and tﬁ’
rotat',lon of a rigid body about a fixed point was diseovered by Kirchhoff?
and is knf)wn as Kirchhoff’s dynamical analogy. '
gri: i:fg),lx::%hl:g. ), we beglg by multiplying both sides by d¢ and inte-

d26 do
/@a}d8= —k’jsinodo

where k* = P/EI. This equation can be expressed in the form

1 d [do\?
5/3} Es) ds = —k?/sinddﬂ

and upon integrating we obtain

1 /do\?
5(%) =k%cos 0 + C

w.h.ere C is a constant of integration which is determined from the con-
d'ltlons at the upper end of the bar. ~ At the upper end we have df/ds = 0
since the bending moment is zero, and also # = &. These conditions givé

C = ~k’cosa

: 'é'hilsta%su‘un]llx‘):i;n is justified for the usual structural materials,
- R. Kirchhoff, J. Math. (Crell¢), vol. 56, 1859, The analogy was furth -
oped by W. Hess, Math. Ann., vol. 25, 1885, : gy e further dovel
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do\:
and therefore =) = 2k?(cos 6 — cos a)
de
or %=ik\/§\/coso—comx

Since d6/ds is always negative, as seen from Fig. 2-28, the positive sign
will be dropped from this equation. Solving for ds gives

do
kv/2+/cos — cos a

and the total length of the bar, after the hmlts of integration are inter-
changed, is

[ds fkacosﬂ—cosa

2k/ \/
gin? S 53~ sin? -

This integral can be simplified by using the notation p = sin (a/2) and
by introducing a new variable ¢ in such a manner that

ds = —

(©

. @ . .__ .o .
sm.2.=psm¢—sm—2m¢ ()]

Tt is seen from these relations that when 8 varies from 0 to «, the quantity
gin ¢ varies from O to 1; hence ¢ varies from 0 to /2. 'We also find from
Eaq. (d), by differentiation, that

2pcosdde _  2pcos ¢ de (©
cos (8/2) V1T = ptsin¢

Substituting in Eq. (¢) and noting that

A ’sinzg - sinzg = P CO8 ¢ ]
we obtain

1 [+ d¢ 1
=1 v ==K
| : kj; VT=piemig FP @

The integral appearing in Eq. (g) is known as a complete elliptic integral
of the first kind and is designated by K(p). The value of the integral K
depends only on p and is tabulated numerically, for various values of
p = sin /2, in many engineering handbooks.. With such a table availa~

de =

B R U RO BRI 5 b o
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ble, the value of p (and hence the value of the angle « at the top of the
bar) can be found readily for any value of the load P.

When the deflection of the bar is very small, a and p will also be small
and the term p?sin? ¢ can be neglected in companson with unity in Eq.
(9). Then we have

_1"/2 E1
’“EA d$ = g7 = \/

and : ) P=Pﬂ=ﬁ..

which is the value of the critical load given by Eq. (2-4).

As the value of a increases, the integral K and the load P increase also.
For example, take the case where a =60°and p =sina/2 =% Froma
table of elliptic integrals we find that K (3) = 1.686 and therefore

_ El _ 2.842E1
l = 1.686 \/ P P = —
Taking the ratio of P to the critical load gives

4(21842) - 1152

IT,
Thus a load which is 15. 2 per cent greater than the Euler load, at which
buckling first begins, will produce a deflection such that the tangent at
the top (Fig. 2-28) has an angle of 60° with the vertical.

In Table 2-4 are glven values of the ratio P/P, for Vanous values of
the angle a.

TABLE 2-4. LoAD-DEFLECTION DATA FOR A BUCkLED BAR (Fia. 2-28)

a 0°7.20° | 40° | 60° | 80° | 100° | 120° |. 140° 160° 176°

P/Pe |1 ]1.015/1.063]1.152 1.29311.518 1.é84 2.541| -4029| 9:116
za/l 110.970{0.881 | 0.741(0.560 | 0.340 { 0.123 | —0.107 } —0.340 | —0.577
ve/l |0 (0.220]0.422/0.59310.719(0.792/0.803| 0.750| 0 625] 0.421

In calculating defléctions of the bar we note that

sin 6 d¢
k+/2+4/cos8 — cos a

Then the total deflection of the top of the bar in the horizontal dlrectlon
(Fig. 2-28) is

dy =sinfds = —

” =if . sin 0.do
2k Jo +/sin? a/2 — sin? 6/2

®




80 THEORY OF ELASTIC STABILITY

From Eq. (d) we have sin 8/2 = p sin ¢ and therefore
cosg = 4/1 — p?sin? ¢
TUsing the relation sin 8 = 2(sin 6/2)(cos 6/2), we now find that

sin § = 2p sin ¢ /1 — p*sin® ¢ )
Substituting expressions (¢), (f), and (¢) into Eq. (k) and changing
the limits accordingly, we obtain
P/B, | R
. B b= [Tsingds =L ()
S .
AN Thus the deflection of the bar can be
calculated by first selecting a value
of a (or p), then determining % (and
hence P) from Eq. (g), and finally find-
ing y, from Eq. (j). For example,
o %/!  again taking « = 60°.and p = }, we
Fie. 2-29 have kl = K(2) = 1.686 and
a=0"  ga20° l
Ya = 1686 = 0.5931
Numerical results obtained in this way
for various values of « are given in the
last line of Table 2-4.

The relation between the deﬂectlon
e and the load P is shown graphically
in Fig. 2-29 by the curve AB. The
curve is tangent to the horizontal line

= P, at point A where the deflec-

—
|
|
|
|

load P, corresponding to a small incre-
ment of deflection, is a small quantity
of second order. This explains why
the deflection was found to be indefi-
nite in magnitude when the approxi-

160° mate expressmn for curvature was
used. It should be noted that the
a=176° curve AB can be used only up to the

proportional limit of the material.
Beyond this limit the resistance of the
bar to bending diminishes and a curve similar to that indicated by the
dotted line BC is obtained.

F1a. 2-30

tionis zero. Thus the increase in the’
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"The coordinate distance z, (Fig. 2-28) can be ca.lculated in a similar
way, and the result is

Xy =

/ V1 — p?sin? ¢ d¢—l
E(p —1 ‘ (k)

?rlm Ll ]

where E(p) is the complete elliptic integral of the second kind. Numerical
results obtained from this equation are given in Table 2-4.

The coordinates of intermediate ppints along the deflection curve can
be calculated also, using elliptic integrals. The shapes of the deflection
curves for various values of « are given in Fig. 2-30. It is apparent that
a slight increase of the load above the critical value is suﬁiment to produce

Ca large deflection of the bar.!

Fia. 2-31

In the above discussion it was assumed that the bar was built in at one
end and free at the other. The results obtained can be used also in the
case of a bar with hinged ends. In this case the curves of Fig. 2-30
represent only one-half of the length of the bar. The curves shown in
Fig. 2-31, representing possible forms of equilibrium of a thin wire, can
all be obtamed by -combining curves from Fig. 2-30. Thus, the forces
necessary to produce such bending can be found from Table 2-4. If the
deflections of a bar with hinged ends remain small, the relation between

1 Numerous investigators, in addition to those already mentioned, have dealt with
the problem of the elastica. A modification of Kirchhoff’s theory to include bars with
initial curvature was given by A. Clebsch in his book “Theorie der Elasticitat fester
Korper,” Leipzig, 1862 (French translation by Saint-Venant, 1883). Numerous
gpecial caseés of large deflections were discussed by L. Saalschiitz, *“ Der belastete Stab,”
Leipsig, 1880. See also E. Collignon, Ann. ponis et chaussées, vol. 17, p. 98, 1889;
C. Kriemler, “Labile und stabile Gleichgewichtsfiguren,” Dissertation, Karlsruhe,
1902; M. Born, Dissertation, Gottingen, 1909; and A. N. Krylov, Bur les formes
d’équilibre des pidces chargées debout, Bull. acad. sci. USSR, 1931, p. 963.
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the deflection & at the center and the load can be represented by the
following approximate formula:!

1o ) ®

2.8. The Energy Method. From the previous discussions it is seen
that if the centrally applied compressive force is smaller than its critical
value, a compressed bar remains straight and this straight form of equi-
librium is stable. If we increase the load slightly above its critical value,
there are, theoretically, two possible forms of equilibrium. One pos-
sibility is for the bar to remain straight; and the other is for the bar to
buckle sideways. Experiments show that the straight form is unstable
and that a bar will always buckle sideways under the actlon of a load
greater than the critical value.

The question of the stability of various forms of equilibrium of a com-
pressed bar can be investigated by using the same methods as are used in
investigating the stability of equilibrium configurations of rigid-body
systems. Consider, for instance, the three cases of equilibrium of the

ball shown in Fig. 2-32. It can be con-

cluded at once that the ball on the con-
: cave spherical surface (@) is in stable
, equilibrium, while the ball on the convex

(o) (b)

spherical surface (b) is in unstable equilib-
Fra. 2-32 rium. The ball on the horizontal plane
(c) is said to be in indifferent or neutral
equilibrium. The type of equilibrium can be ascertained by considering
the energy of the system. In the first case (Fig. 2-324) any displacement
of the ball from its position of equilibrium will raise the center of gravity.
A certain amount of work is required to produce such a displacement;
thus the potential energy of the system increases for any small displace-
ment from the position of equilibrium. In the seéond case (Fig. 2-32b),
any displacement from the position of equilibrium will lower the center
of gravity of the ball and will'decrease the potential energy of the system.
Thus in the éase of stable equilibrium the energy of the system is a mens-
mum and in the case of unstable equilibrium. it is a mazimum. If the
ethbnum is indifferent, (Fig. 2—320), there is no change in energy dur-
ing 4 displacement.
" For each of the systems shown in Fig. 2-32 stability depends only on the
shape of the supporting surface and does not depend on the weight of the
ball. In the case of a compressed column (see Arts. 2.1 and 2.2) we find

1 This formula can be obtained by representing the deflection at the center of the
bar in series form and taking only the first few terms.
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that the column may be stable or unstable, depending on the magnitude of
the axial load. A model representing such a condition is shown in Fig.
2-33. A vertical bar AB, considered to be infinitely rigid, is hinged at
the bottom and supported by a spring BC at the top. The bar carries a
centrally applied load P. For small values of this load the vertical posi-
tion of the bar is stable, and if a disturbing force produces lateral dis-
placement at B, the bar will return to its vertical position under the action
of the spring. The critical value of the load P can be found from a con-
sideration of the energy of the system. Assume that a small lateral dis-
placement occurs at B, so that the bar becomes inclined to the vertiedl by
a small angle «, Fig. 2-33a. Owing to this displacement, the load P is
lowered by the amount

ot T foi
l(l—cos:x)z7 (a) BL c B‘l "C
A MMAN%—‘-
and the decrease in the potential en- ‘\— g ‘
ergy of the load P, equal to the work \\
done by P, is \
Pla? A ea
2 \
At the same time the spring elongates \
by the amount «l and the increase in A ]
strain energy of the spring is “
. (a) (b)
Blad)® Fra. 233
2

where 8 denotes the spring constant. The system will be stable if
B(al)? S Pla?-

2 2
and will be unstable if
" Blal)? < Plo?
2 2
Therefore the critical value of the load P is found from the condition that
B(al)® _ Pla®

2 2

from which P, = gl. ' :
The same conclusion can be reached in another way by considering the

equilibrium of the forces acting on the bar. If by some disturbance the

bar is brought to a slightly inclined position (Fig. 2~33b), there will be

two forces acting on the upper end B of the bar, the vertical force P and

the horizontal force Bal of the spring. If the moment of the force in the
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spring with respect to point A is larger than the moment of the force P,
that is, if
Bal? > Pal

we shall evidently have stable equilibrium and the force in the spring
will restore the bar to its initial vertical position. Conversely, if

Bal? < Pal

the vertical . pos1t10n will be unstable and the system will collapse after a
slight disturbance. The critical value of ’P is found from the equation

Bal? = Pal

which gives P,. = 8l as before. Thus we have two methods for finding
the critical value of the force. We can obtain it from energy considera-
tions or from equations of statics.

In using the energy method we begin by assuming some small lateral
deflection of the system. This deflection means an increase AU in the
strain energy of the system. At the same time the load P will move
through a small distance and do work equal to AT. The system is stable
in its undeflected form if ,

AU > AT .
and unstable if -
k AU < AT

Thus the critical value of the load P is found from the equation
AU = AT (2-31)

which represents the condition when the equilibrium configuration
changes from stable to unstable.

As a second example of the use of the energy method, considet the system shown in
Fig. 2-34a, consisting of three equal bars of length 1/3. The bars are assumed to be
rigid and are joined by pin connections at the-supports. The supports at A and D
are unyielding, while the supports at B and C cobsist of elastic springs defined by the
spring constant 8..' If the axial compressive force is sufficiently large, the system may
buckle, resulting in deflections 3; and 3. at supports B and C (Fig. 2-34a). For small
deflections, the angle of inclination a; of the bar AB is 351/!, the angle as = 35,/1, and
the angle between bar BC and the horizontal is (35; — 35,)/l. The distance A moved
by the force P is found by using Eq. (a) for each of the three bars, giving

RGO (3—"’ )+ ()]
% (82 — 5152 + 84%) - '

and the work done by the force P is AT = P,
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The strain energy stored in the elastic supports during buckling is
AU = 3 (61 4 8:%)
The eritical condition is found from Eq. (2-31) as follows:
a0 — b+ ) =B + o)

and therefore )

_Bl_ a*+3s2 ~ _pIN ®)
6 5,2 — 8,5, -+ 8.2 6D

where N and D represent the numerator and denominator, of the fraction. To find
the critical value of P from Eq. (b) we must adjust the deflections 3, and 3z, which are

A } B C 1 D p
% a; > 01 A 5 @, ”
RJ ’ l le
L« U3 3 ! 3 N
(a)

Pl N ‘ - _51 i Pl
"\V -
: ()
B o <&
> 3, 8, )
e
Fie. 2-34

unknown, so as to make P a minimum value. The minimum condition is expressed
by the equations

1%

oP a
F A T ©
and from the first of Egs. (c) we obtain ]
P _ pLD(N/as) — N@D/as) _
3 6 D
N _NaD _,
or a5, _ Das, S
Combining this last equation with Eq. (b) we obtain
aN 6PaD _ C )
o6 " flan "0 : @
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and in a similar manner, the second of Egs. (¢) gives
AL L ®

Substituting the values of N and D from Eq. (b) into Eqgs. (d) and (e), we obtain the
following two equations for the deflections 8, and &2:

R R

Except for the trivial solution when 8, = 3; = 0, the only possibility for a solution
of Eqgs. (f) is if the determinant is zero, which gives

( 1-— ﬂ’)’ - (3£

Bl Bl
This equation has two solutions for the critical load P, depending upon whether we
take a positive or negative sign for one of the square roots. The solutions are

=% wma p=F )
If we use the critical load P, in Egs. (f), the deflections are §; = -8, which corre-
sponds to the buckling mode shown in Fig. 2-34b. The critical load P, gives 81 = &,
and the buckling mode is shown in Fig. 2-34c.

The same problem can be solved readily by using equations of equilibrium. Con-
sidering the equilibrium of the entire system AD (Fig. 2-34a) and noting that the
reactive force of the spring at B is 88; and at C is 853, we obtain for the reactions at the
ends

R, = 388, + 3852
Rs = B35, + §Bs:

Another equation for R, is found by taking moments about point B for bar AB,
which gives

_RJ
P51 = 3
and similarly, for CD,
Ps, = R_dl

Combining these four equations we obtain
51(2—93—}1’)+5z=0
P
51 + 52 (2 ot % = 0
which have solutions P, = 81/9 and P, = Bl/3 as before.

The same two general methods for solving problems of stability can
be applied in the case of buckling of elastic bars. In the previous
articles of this chapter the critical load was calculated from the differ-
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ential equations which expressed the conditions for equilibrium of the
buckled bar. Let us now apply the energy method to these cases and use
Eq. (2-31). The quantity AU in that equation will represent the strain
energy of bending added to the bar when it is deflected laterally,! and AT
will represent the work done by the compressive force P. 4

Consider first the column shown in Fig. 2-1b fixed at the base and free
at the upper end. The deflection curve of the shghtly buckled bar is
given by the equation [see Eq. (2-2)]

y = 6(1 — cos’é—;:) (h)

The bending moment at any cross section is

M=—~-P(6—y)= —Ps cosﬂ (2-32)

and the corresponding strain energy of bending is?
tM2dx _ P23% ,
AU = ﬁ 9EI ~ 1EI ®

The vertical movement of the load P during bucklmg is found from Eq.

(1-55):
__1— 4 g‘,_/ 2 _5%:
)‘_2A<dx) dz = 161

and the corresponding work produced by P is

Pt .
AT =@ )

Substituting expressions (z) and (j) into Eq. (2-31), we obtain for the
critical load the same value as given by Eq. (2-4). The exact value of
the critical load is obtained, since the correct expression for the deflec-
tion curve {Eq. (k)] was used. This expression was obtained previously
by integration of the differential equation.
In a similar way, the buckled shape of the deflection curve for the
fundamental case (see Fig. 2-6) is

y = Asinzr——;;

t There is also a change in the strain energy of compression, but a more detailed
investigation shows that this small change of energy'can be neglected and the bar
considered as inextensible; see Timoshenko, Z. Math. u. Physik, vol. 58, p. 337,
1910, and A. Pfliger, ‘“‘Stabilititsprobleme der Elastostatik,” Springer-Verlag,
Berlin, 1950.

2 See Timoshenko, “Strength of Materials,” 3d ed., part I, p. 317, D. Van Nostrand
Company, Inc., Princeton, N.J., 1955.
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and the bending moment is

M=Py=PAsin'—l”

R tM2dx _ P2A2l
from which AU = / SET =
242
and also . AT =P\ = I%
Equating AU and AT gives '
x:EI
.=

which is the Euler load for a pin end column. Again we see that the
energy method gives the exact value of the critical load when the true
shape of the deflection curve is known. In many cases the true shape of
the buckled bar is not known, however, and then the energy method can
be used to find an approximate value of the critical load, as discussed in
the following article.
2.9. Approximate Calculation of Critical Loads by the Energy Method.
The principal use of the energy method in problems of buckling is the
determination of approximate values of critical loads for
_:tS '~— cases in which an exact solution of the differential equa-
-—Q tion of the deflection curve is either unknown or too com-
plicated. In such cases we must begin by assuming a
reasonable shape for the deflection curve. While it is not
essential for an approximate solution that the assumed
curve satisfy completely the end conditions of the bar, it
should at least satisfy the conditions pertaining to deflec-
W'—""y tions and slopes.

Fro. 2-35 As a first example, econsider again the case of a bar fixed
at the base and free at the top (Fig. 2-1) and assume that
we do not know the exact shape of the deflection curve. An approxima-
tion to the shape of the deflection curve is obtained from the deflection
curve of a cantilever beam loaded at the free end, as shown in Fig. 2-35.
The equation of this curve is

V= @-2) =2 @~ a) (@

This curve is different from the true curve, given by Eq. (%), p. 87, but it
satisfies the required end conditions, since it has a vertical tangent at
the lower end and zero curvature at the top. The strain energy of bend-
ing of the buckled bar is [see Eq. (2-32)]

I M2de P [!
AU = om“mﬂ“—wd’”
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Now substituting Eq. (a) we find

17 P23
35 2ET

The vertical displacement of the load P is

_1 [tfdy\e _352‘
*-2ﬁ(dx)d”-57

Equating AU and AT, we obtain
17 Pwl 3 Ps?

AU =

352ET 5 1
. 42 EI _ EI
from which P, = 7 8 2.4706 T
The correct value of the critical loa,d is
pP. == jf -2 46742

and,we see that the error of the approximate solution is only 0.13 per cent.

The energy method gives a very satisfactory approximation to the
true critical load, provided the shape of the assumed curve is reasonably
close to the exact curve. -Usually it is especially important, for good
results, that the end conditions of the bar be satisfied by the assumed
curve. However, there are cases when even a very rough assumption will
still give a satisfactory result. For instance, we might assume the deflés-
tion eurve in the above example to be a parabola given by the equation

ox?
=% : ®)
and then
tM*de  P25? z?\2 8 P22
AU = / 2ET 2EI/<1‘?) 9 = 15 351
The vertical displacement of the upper end of the buckled bar in this cage
is ’ s
_ dy _ 28
__/(dz) @ =37

8 P32 2 Ps?

and Eq. (2-31) gives

; 152ET 3 T
from which P, —250% )

The error of this approximate solution is about 1.3 per cent; A satis-
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factory approximation for the critical load is thus obtained, although the
assumed parabolic curve is a very poor representation of the true curve.
It does not satisfy the end conditions, since it has constant curvature
along the length while in the actual curve the curvature is zero at the top
of the bar and a maximum at the bottom.

In the calculation of the strain energy of bending, the expressmn

T M2 dx L P(3 — y)2dx

AU= | Sgr = |, — 2EI

(2-33)

was used in the above discussion. An alternate form of this expreésion is
d2y\? .
av =5 [(2) @ (2:34)

Equations (2-33) and (2-34) are both exact as long as the true expression
for the deflection curve is being used. However, when an assumed curve
is used, expression (2-33) is preferable, since then the accuracy of the
approximate solution will depend on the accuracy of y, whereas if expres-
gion (2-34) is used, the accuracy of the solution will depend on the
accuracy of d%/dz? In the selection of a deflection curve, y is usually
.obtained with mueh better accuracy than d?y/dz?.}

The energy method always gives values of the eritical load which are
larger than the true value unless the assumed deflection curve happens
to be the correct one. = This follows from the fact that the true shape is
the only one which represents a deflection configuration for which each
element of the bar is in equilibrium. To have the bar in equilibrium
with an incorrect shape of buckling requires that additional constraints
be introduced in order to maintain that shape. The additional con-
straints naturally can only increase the rigidity of the bar, and hence the

critical load becomes larger than its true value. Thus, if several assumed

deflection curves are used, the lowest cntlcal load found from those
assumed curves will be the most accurate.

A further improvement in the energy -method can bé made by taking,
for the assumed deflection curve, an expression which involves several
parameters. The shape of the deflection curve can then be altered by
changing the values of the parameters. - The most accurate result for the
critical load P will correspond to values of the parameters such that P
has a minimum value.? :

1 For a mathematical proof that the use of Eq. {2-33) resultg in better accuracy than
is given by Eq. (2-34), see H. A. Lang; Quart. Appl. Math., vol. .5 p. 510, 1947,

2 See Timoshenko, Bull. Polytech. Inst., Kiev (in Russmn), 1910, and later, Sur la
stabilité des systémes élastiques, Ann. ponis ef chaussées, Paris, 1913. This latter
paper appears in ‘“The Collected Papers of Stephen P. Timoshenko,” pp. 92—224
McGraw-Hill Book Company, Inc., New York, 1954.
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As an example, let us take a prismatic bar with hinged ends (Fig. 2-36)
and assume that the bar has buckled under the action of the compressive
forces P. Any shape of the deflection curve of such & bar can be repre-
sented by the trigonometric series (see Art. 1.11)

y=alsm +aasm2"+a:sm3—ﬁ+-'- ©

By varying the parameters a1, @z, . . . , we can obtain P
various shapes of the deflection curve. The strain energy
of bending of the buckled bar is

_ ‘Mz _ P [t .
AU‘[, 3E1 ‘275_1/-’/‘*c

or, by substituting the series (¢) for y and performing the
integration (see Art. 1.11), we obtain

N

- y
P
AU = iET Z a,? P
v n=1 Fia. 2-36
During buckling the forces P produce the work [see Eq. (1-56)]
_ _P ! dy 2 =P N
AT"P)"'fA (% dngl Zn"a,.z
n=1
Then Eq. (2-31) becomes
n=wo ne=w ’
P3 2
27 z w =T ), mo
. nel n=1
and we obtain
7=
n2a,?
»EI =
P=—7 e @)
AN
n=]
To find the critical value of the compressive force P we must adjust the
parameters @i, as, . . . in such a manner as to make expression (d) a

minimum. This is readily accomplished in this case on the basis of the
following considerations: Imagine a series of fractions of the type

ace

'5: 377) .- .. (e)

in which each of the numbers q, b, ¢, . . . is assumed positive. If we
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add the numerators &nd denominators together, we obtain the fraction

atetet - ' _
b+d+f+ - v

This fraction is evidently of some intermediate value between the largest
and the smallest of the fractions (¢). - Expression (d) is analogous to the
fraction (f). Therefore, it follows that if we wish to make expression (d)
8 minimum, we must take only one term of the series in the numerator
and denominator. In other words, we must take all parameters a,,
s, 3, . . . , except one, equal to zero. It is seen also that the parame-
ter different from zero must be as, since it has the smallest coeflicient n2.
Then Eq. (d) gives

2El
P er — _ZT
and the corresponding deflection curve is
. ®T
Yy =asinr

In this way we arrive at the same result as was obtained before by inte-
gration (see Art. 2.1).

Expression (c) for the deflection curve of a buckled bar with hinged
ends can be used in more complicated cases when the cross section of the
bar is variable or when the compressive forces are distributed along its
length. Then the true deflection curve is no longer a sine curve, and by
taking the first few terms in the series (c) we can obtain a satisfactory
approximate solution. Assixme, for example, that the first two terms of
the series (c) are to be used. Then the quantities AU and AT can be
calculated readily in terms of @, and az. Equating AU and AT then gives
an equation from which P is found in terms of 4, and a,. Finally, the
values of a; and a» must be determined in such a way that P has a mini-
mum value, and therefore we have the equations

oP ; P

Fr 0 2 = 0 ()]
Equations (g) determine the critical value of the load P and also give the
ratio ai/d,;, thereby defining the shape of the approximate deﬂectxon
curve. This method will be illustrated in subsequent articles.

In a more general case we can assume that the buckling curve is represented by
the equation

¥ = afi(®) + asfa(®) +aafsl) + - - - ®

in which f1(z), f:(z), . . . are functions of z satisfying the conditions at the ends of

the bar and @, a3 . ... are constants defining the amplitudes of the terms. Tor
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example, in the case of & bar with hinged ends (Fig. 2-36) the end conditions for each
function f;(z) are!

fiz) = i) =0 atz =0andz =1 )

Assuming that the work of the external forces and the change in strain energy during
buckling are given by the expressions

P2 4
T == 4 =
a / W)rdz AU 2E1ﬁ; yids
we obtain from Eq. (2-31) . -
1
Bl ﬁ, ) dz

P=—y— (2-35)
[ v
0
‘To find the value of P., we have to select the coefficients a1, as, . . . inexpression ()

so as to make expression (2-35) a minimum. This requires that the derivatives of
expression (2-35) with respect to each coefficient a; must vanish, and we obtain equa~
tions of the form

fivag [ wra- (yf)’dz%ﬁy’dz =0

or, using Eq. (2-35),

a ft ,
f, wra - Em‘/ pds=0 0)
Observing that, from Eq. (k),
Y _ . % _ ‘
2, =@ oo =)
we obtain from Eq. (5)
/ yfi(z) dz — / (@) dz =0 (k)
If we substitute expression (k) for y into this equa.txon and perform the indicated inte-
grations; we obtain a homogeneous linear equation in a;, as, . . ., The number
of ?qua.tlons (k) will be equal to the number of coefficients a1, as; . . . . We can
satisfy these equations by putting a: = @3 = a; = - - - .= 0, but then the deflection
(k) vanishes and there is no buckling. To have buckling, at least some of the quan-
tities a1, as, . . . must be different from zero, and this is possible only if the deter-

mmalft of Eq. (k) vanishes. Thus, setting this determinant equal to zero gives the
equation for caleulating P.,.
Integrating by parts, we can transform the first term of Eq. (k) as follows:

v e = s - [ivi@a ®

Observing that fi(z) vanishes at both ends of the bar, as follows from the conditions

.(@) for a bar w1th ‘hinged ends, we conclude that the first term on the nght-hand side of

! The primes denote differentiation with respect 1o z, that is, f; (z) = dfi(z)/dz,
[ @) = d¥u(z) /d?, . Y =dy/dz, y' = d¥y/dx?, . ‘ i
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Eq. () vanishes. Equation (k) will then be represented in the form
. .
[ (v +gv)r@a =0 .

The- differential equation of the deflection curve of the Buck.led bar (Fig. 2-36) is
" £ =
y' + El y= 0 . (ﬂ)

The exact expression for y must satisfy this equation, but if we wish to find an approxi-
mate solution for y having the form (h), the coefficients a1, as, . . . must be selected
80 that the left-hand side of Eq. (m) vanishes. Substituting the approximate expres-
sion (k) into Eq. (m) and using the notation

P
k= 71
we find that the linear equations for determining ai, a3, . . . take the form

Lo Lo,
af,) /@ + BA@IE) de + s [[ 1@ + BH@ISE &+« - =0 (@)

The determinant of this system of equations, when equated to zero, gives the equation

for determining the approximate value of P...
Equation (n) for the buckling of a prismatic bar with hinged ends is very 31mple,
and we can obtain easily the exact value of P... -Often, however, the differential
equation will be more complicated. For example, if the cross section

x|P of the bar in Fig. 2-36 is variable, then I in Eq. (n) is no longer con-
stant and the rigorous solution of the equation becomes complicated.
We can then use for y the approximate expression (h) and calculate
for P, an approximate value, proceeding as explained above.!

L 2.10. Buckling of a Bar on an Elastic Foundation. If
there are many equally spaced elastic supports of equal
rigidity, their action  on the buckled bar (Fig. 2-37) can be

—Y replaced by the action of a continuous elastic medium. The
reaction of the medium at any crass section of the bar is then
proportional to the deflection at that section. If « is the
spring constant of the individual supports and a is the distance between
them, the rigidity of the equivalent elastic medium is expressed by the
quantlty :

P
Fic. 2-37

=12 (@)

The quantity g is called the modulus of the foundation and has the dimen-
sions of a force divided by the square of a length. It represents the

1 This method of obtaining approximate solutions of differential equations was
developed by Bwiss scientist Walter Ritz; see his famous papers in Z. reine u. angew.
Math., vol. 135, pp. 1-61, 1908, and Ann. Physik, vol. 28, p. 737, 1909. - See also his
“Gesammelte Werke,” Paris, 1911, ) '
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magnitude of the reaction of the foundation per unit length of the bar if
the deflection is equal to unity.

In calculating the critical value of the compressive force, we can use the
energy method.! The general expression for the deflection curve of a bar
with hinged ends can be represented by the series

y—axsm +0281n2 +assm3%x+"' (b)

The strain energy of bending? of the bar is [Eq. (1-53), p. 25]

AU, = 5 / ) = %'IE;I 2 nia,? (©

In calculating the strain energy of the elastic foundation, we note that the
lateral reaction on an element dx of the bar is By dz and that the cor-
responding energy is (8y2/2) dz. Then the total energy of deformation of
the elastic medium is

AU¢=g/;y*dz

or, substituting series (b) for y,

AU, =%l 2 as? - @

n=1

The work done by the compressive forces P, from Eq. (1-56), is

AT = %’—;— 2 n2a? (e)

Substituting (c), (d), and (¢) in Eq. (2-31), we obtain

n=w . n=co nw o

g-;f;’l z ot + & pl z 0 = P4_"l’ nia,? ¢

nml n=1 nw]l

18ee Timoshenko’s paper in Bull. Polytech. Inst., St. Petersburg, 1907. Another
method of solving the problem is given by H. Zimmermann, Zenir. Bauverwaliung,
1906. The case in which a bar is elastically supported along only a portion of its
length has been discussed by Hjalmar Granholm, “On the Elastic Stability of Piles
Surrounded by a Supporting Medium,” Stockholm, 1929,

? For convenience, we use here Eq. (2-34) instead of Eq. (2-33). The results of this
analysis are exact and hence there is no question of relative accuracy involved.
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from which
14
riEi ,.Z.l et T?EI ne=l “ \
P="3%" T (2-36)
nza”z
nml

To determine the cntlcal value of the load P, it is necessary to find a
relation between the coefficients @, a, . . . whmh will make expression
(2-36) a minimum. This result is accomplished by making all the
coefficients except one equal to zero, as explained in the preceding article.
This means that the deflection curve of the bar is a simple sine curve, and
if we let a.. be the coefficient different from zero, we obtain

y=onsin T ‘ <9)
and the ecritical load ist .

_ =*EI Bl '
=z ("" + mwm) (2-37)

where m is an integer. Equation (2-37) gives the critical load P as a
function of m, which represents the number of half sine waves in which the
bar subdivides at buckling and the properties of the beam and of the
foundation. Thus the lowest critical load may occur with m = 1, 2,
3, . . ., depending on the values of the ofher constants.

In order to determine the value of m which makes Eq. (2-37) a mini-
mum, we begin by considering the special case when 8 equals zero. - Then
there is no resisting foundation, and from Eq. (2-37), we see that m must

be taken equal to 1. This is the familiar case of buckling of a bar with'

hinged ends. If B is very small, but greater than zero, we must again
take m = 1 in Eq. (2-37). Thus, for a very flexible elastic medium, the
bar buckles without an intermediate. inflection point. By gradually
increasing 8, we finally arrive at a condition where P in Eq. (2-37) is
smaller for m = 2 than for m = 1. At this value of the modulus of the
elastic foundation the buckled bar will have an inflection point at the
middle. The limiting value of the modulus 8 at which the transition
from m = 1 to m = 2 occurs is found from the condition that at this
limiting value of 8 expression (2-37) :should give the same value for P
independently of whether m = 1 or m =2.  Thus we obtain

ﬂl ‘_ gl
1+ =51 4+ gy Bl

1 Note that in thm case the energy method gives exact results.
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For values of 8 smaller than that given by Eq. (h), the deflection curve
of the buckled bar has no inflection point and m = 1. For 8 somewhat
larger than that given by Eq. (h), there will be an inflection point at the
middle and the bar, will be subdivided into two half-waves (m = 2).

By mcreasmg B8, wé obtain conditions in which the number of half-

wavesism = 3, 4, . . To find the value of B at which the number of
half-waves changes from mtom+1, we proceed as above for m = 1
and m = 2 In this way we obtain the equatlon

e B Bl
R0 Sl G Ve i e sy
from which —4% = m¥m + 1)? (2-38)

For given dimensions of the bar and for a glven value of 8, this equation
can be used for determining m, the number of half-waves. Substituting
m in Eq. (2-37), the value of the critical load is obtained. It is seen that
in all cases formula (2-37) can be represented in the form

©El

1‘),,r = ? ) ‘ (2-39)

where a reduced length L is substituted for the actual length I of the bar.
A series of values of L/l, calculated from Eqgs. (2-37) and (2-38), are given
m Table 2-5 for various values of Bl4/16E1.

TaBLE .2-5. RepUCED Llsj.l}:G:tH L ror A Bar on aN Evrastic FounpaTion!

BlY/(16ED) 0 1 3 5 ‘10 15 20 30 40 50 75 100

L/ 1 0.927(0.819/0.741 | 0.615 0./537 0.483 [ 0.437 | 0.421 ( 0.406 | 0.376 | 0.351

B14/(16ED | 200 | 300 | 500 | 700 1,000 |1,500(2,000 3,000 4,000 5,000] 8,000 |10, 000

LN 0.28610.263 | 0.235 (0.214 {0.195 (0.179 [ 0.165 { 0.149 | 0.140 | 0.13210.117 | 0.110

1 Note that the table is calculated for _va.lues of pl4/18EI rather than for gls/x4EJ.

.As 8 increases, the number of half-waves also increases. Then, when
1 is neglected in comparison with m, Eq. (2-38) becomes

gle i l ‘ET -
;‘FI_ = m* or ﬁ =7 Tﬂ— (2-40)
By substltutmg this value of the wave length l/m in Eq. (2-37), we obtain
. 2m2x*EIl
P o« = lg (2'41)
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and P, is two times larger than for a hinged bar of length I/m. An
example of a long bar elastically supported is found, for instance, in the
case of welded railway rails. At high temperatures considerable compres-
sive stress may be produced in the rails, and lateral buckling may occur
if the resistance of the foundation to lateral movement is not sufficient.

In the above discussion a continuous distribution of lateral reactions

- was assumed. The above formulas can be used also with rea.sonable
accuracy in the case of isolated elastic supports, provided the proportions
of the bar and the lateral rigidity of the supports are such that not less
than three supports correspond to one half-wave of the buckled bar. If
there are fewer than three supports per half-wave length, the critical
value of the load should be calculated as explained in Art. 2.6.

2.11, Buckling of a Bar with Intermediate Compressive Forces. In
the design of compression members, the case of a bar compressed by
intermediate axial forces is sometimes encountered. A simple example of

this type is shown in Fig. 2-38, in which a bar with hinged
o P ends is compressed by forces applied at the ends and also

I B by a force P applied at an intermediate crosssection.! If
u the compressive forces exceed their critical value slightly,
L dc s\ ¢ the bar buckles as shown by the dashed line in Fig. 2-38.
*;2.‘_)1':?- Let & be the deflection at C where the load P, is applied;
LY then the lateral reactions @ at the supports become
/A
J_L Q y ’ _ 3P 2
Alp+P, : Q=
Fia. 2-38

Assuming, for generality, that the upper and lower parts
of the bar have two different cross-sectional moments of inertia I, and
I, the differential equations of the deflection curve for the two portions
of the bar are

2 S , |
ELEY = Py - QU-2) = Py - (-2 @

dx? )
dzyz .
EIz‘a;{’_Ply2_Q(l_x)+P2(8—y2)
= —Py = 20— ) + Pao - 1) ®
Usmg the following notations
P1 Pz P1 + Pz : Ps
2 - 1 2 L2 2 211 L2 2 - -2
W=gr, M=-gr, ®-—fF, =g

1 This problem was discussed by Jasinsky, loc. cit. Additional cases were con-
sidered by W. J. Duncan, Engineering, p. 180, 1952. The case where the bar has an
initial curvature was discussed by 8. I. Sergev, Univ. Wash. Eng. Ezpt. Sta. Bull. 113,
1945.

e
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the general solutions of Eqs. (a) and (b) are
o sk '
—Clsmk,x+C’zcosklz—7’?—,(1—:3) . <z<1
Casmk;:c+04cosk3x+ k,x 0<z<1l,

The constants of integration Cy, C3, Cs, and C, are obtained from the
following end conditions of the two portions of the buckled bar:
W1 =0 W)ty =8 Yot =8  (U2)emo =
From these conditions we find

ook + k4’l1) cos kil

Cl = klzl sin ’C1ll
Cs = —C;tan kyl

(ks — ka?ls) _
C= Fsmks, OO0

Substituting these values in the eondition of continuity at C

dyr\  _ (99
dz Tely dz 2l
we obtain the following equation for calculating the critical loads:

E —- klzl +,k42l1 . k_22 kszl - kzzlz
k.? ky tan klll - ks? + ks tan ksl, (2-42)

In each particular case, knowing the ratios

P+ Py, Iy L
P ™ L= P ©

we can find, by trial and error, the smallest value of the load P, + P,
at which Eq. (2-42) is satisfied. This is the eritical value of the compres-
sive force. It can always be represented by the formula

»E1,
L2

in which L is the reduced length of the bar. In the particular case where
I, = l;, which is commonly encountered in desngn, the values of L can
be obtained from Table 2-6.

" The above method of calculating critical values of compressive loads
can be used also where axial forces are applied at several intermediate
cross sections, The differential equation for each portion of the deflec-
tion curve between any two consecutive forces can be easily set up, but
the amount of caleulation necessary to obtain the final criterion for deter-

(Py + Pj).. = (2-43)




100 THEORY OF ELASTIC STABILITY

TapLE 2-6. VaLuEs oF L/l For CoLumn IN Fic. 2-38, witH L, = L

V 1.00 {° 125 150 | 175 2000 | 3.00
n

1.00.| 1.00 | 0.95 0.91 | 0.89.| 0.87 0.82
1.25! 1.06 | 1.005 | 0.97 | 0.94 | 0.915
1.50 1.12 | 1.06 1.02 | 0.99. | 0.96
1.75] 118 | 1.11 1.07 | 1.04 | 1.005
2.00] 1.24 | 1.16 1.12 | '1.08 | 1.05

: mlmng critical loads, analogous to Eq. (2-42), incr?ases rapidly wi!;h
an inerease in the number of intermediate loads. It is advantageous in
such cases to use one of the approximate methods.

Applying the energy metbod to the above example (Fig. 2-38) and assuming as &
first approximation that the deflection curve is a sine curve,

y=5§in'—f

we find that the bending moments for the two portions of the curve are, for the case
when I; =1y = 1/2,
3P,
M, =P1y+T(l—z)
P
My = (P + Py — =
Substituting in the expression for the strain energy of bending we obtain
[} Mrdey (2MAdz B (palypal g pp
aU = | e, +Jo 2EL, ~zER\PratPiatBhig N
at 1 1 _]
t g P+ Prg Py — PP+ PO 5] @
The work done by the forces P; and P, during buckling is
| B8 a4 B [ (@) - 22 (P41R) @
8T=% Jo d_z)d“"z o \&) =gtz
Substituting (d) and (¢) in Eq. (2-31) (see p. 84) and using notations (c), we obtain

(P1 + Pi)er .
=B/} (m + 1) (2-49)

T EERY R oL R

Substituting in this formula various values for m and n and compa,.ring the results with
those given in Table 2-6, we find that in all cases ‘th,e formula gives errors less than
1 per cent, which is sufficient accuracy for all practical purposes.

2.12. Buckling of a Bar under Distributed Axial Loads. If longitudin.a.l
compressive forces are continuously distributed along a b:?.r, the dif-
ferential equation of the deflection curve of the buckled bar is no longer

A ———
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an equation with constant coefficients. The solution of the equation
usually requires the application of infinite series or recourse to one of the
approximate methods, such as the energy method. Both of these
methods will now be illustrated by an example. v

Consider the problem of buckling of a prismatic bar (Fig. 2-39) due
to its own weight.! The lower end of the bar is vertically built in, the
upper end is free, and the weight is uniformly dis-

tributed along the length. If the bar buckles as BT 2N .
shown by the dotted line, the differential equation : PR
of the deflection curve is C _r________j
d ] :
BTG = [fan—va @ | |2
where the integral on the right-hand side of the } 1
equation represents the bending moment at any 3 M /
cross section mn produced by the uniformly dis- 1
tributed load of intensity ¢. Differentiating Eq.
(a) with respect to z, we obtain the equation s
&y dy 7 ’
El 5= —9l—2) 5 ®) Fie. 2-39

To simplify the discussion, let. us now introduce, instead of z, a new
independent variable z by taking

2
e - ©
- Then, by ‘diﬂ'erentiation, we obtain ‘

dy _  dy B g
d _ (3 g \(l ,dy_ ,d% :
d:c’_(2EI) (ﬁ"_a‘“}d_zz ©)
dy 3 g (1 .dy dy_  dYy
dx3—2EI(9z T @ T SR

! This problem was discussed first by Euler, but he did not succeed in obtaining a
satisfactory solution; see 1. Todhunter and K. Pearson, “History of the Theory of
Elasticity,” vol. 1, pp. 39-50, Cambridge, 1886. The problem was solved by A. G.
Greenhill, Proc.’ Cambridge Phil. Soc., vol. 4, 1881, In his paper Greenhill indicates
a variety of buckling problems which can be solved by using Bessel functions.  Inde-
pendently, the same problem was discussed in a very complete manner by F, 8.
Jasinsky, loc. cit. Bee also J. Dondorff, “Die Knickfestigkeit des geraden Stabes
mit verdnderlichem. Querschnitt und veriinderlichem Druck, ohne und mit Quer-
stiitzen,”” Dissertation, Ditsseldorf, 1907, and N, Grishcoff, Bull. acad: sci., Kiev, 1930,
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Substituting in Eq. (b) and letting

%=u ()]
we obtain
2 1du . 1
%+E£+(1-@)u=o ®

This is Bessel’s differential equation, and its solution can be expressed in
terms of Bessel functions.! These functions are evaluated by taking the
solution of the equation in the form of an infinite series:

u=z™as + az + az? + az® + - - ) )
Substituting this series and its derivatives in Eq. (h), we obtain
2{ao(m® — )zt + al(m + 1) — §le' +ao +arl(m +2)° — 3]
F+@t+alm+3)?—§he+ -} =0 ()

In order for this equation to be satisfied, the coefficient of each power of z
must be zero. From the first term we obtain .

m—%(=0 m=1}
The second term then gives a; = 0, the fourth term a; = 0, etc., and it is
seen that the terms in series (¢) involving odd powers of z must vanish.
The third term in Eq. () gives
Qg = — — 20
P om 2t
and by considering additional terms we arrive at the general relation

G
e i @

Corresponding to the two values of m, there are two series which satisfy
Eq. (k). By evaluating the coefficients in those series from Eq. (k), we
can write the general solution of Eq. () in the form
Cu = 3.9 L.
u—C;r*(l 8% +320z )
: 3 9
t _— 22 A S
+¢z2 (1 16 ° +8962, ) )
In this equation C, and C; are constants of integration, and the series,
except for constant factors, represent Bessel functions of the first kind,
of orders —} and 43, respectively.

i See, for example, T. V. Kdrm4n and M. A. Biot, “ Mathematical Methods in
Engineering,” chap. 2, McGraw-Hill Book Company, Inc., New York, 1940.
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The constants C, and C: must be determined from the end conditions
of the bar. Since the upper end of the bar is free, we have the condition

d%y _
(w)z—l - 0

Observing that z = 0 when z = [ and also ilsing Egs. (¢) and (g), we
can express this condition as

1 du
=z 127 =
(3 u + 2 dz),_o 0

Substituting Eq. (I) for » into this equation, we obtain C; = 0 and hence

320
At the lower end of the bar the condition is

dy _
(%)z-o - 0

With the use of Eqgs. (c), (d), and (g), this condition is expressed in the
form

u=.012‘*(1—gz’+iz4—'...) (m)

_ _ 2 g3

u=0 when z = 3\ET

The value of z which makes 4 = 0 can be found from Eq. (m) by trial
and error or from a table of values of the Bessel function of order —3.
Tables giving the zeros of the Bessel functions are also available.! The
lowest value of z which makes u = 0, corresponding to the lowest buckling
load, is found to be z = 1.866, and hence

2 /ql‘_

837E
or (@) = Z87EL (n)

This is the critical value of the uniform load for the bar shown in Fig. 2-39.

When the same method is used, the case of the combined action of a uniform com-
pressive load ¢l and a compressive force P applied at the ends can be studied. If the
conditions at the ends are like those shown in Fig. 2-39, and if the uniformly dis-
tributed load g is absent, the critical value of the load P applied at the top. is

_ =Bl
7T

! Bee, for example, Jahnke and Emde, op. cit., p. 167.

Pe

S
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The uniform load ¢l reduces the critical value of the load P and we can put

mEI

7 (2-45)

P, =

where the factor m, smaller than x?/4, gradually diminishes when the load ¢l increases
and approaches zero when gl approaches the value given by Eq. (n). Using the

notation :

. =Bl
ned g

the values of the coeflicient m in Eq. (2-45) for various values of n can be computed
and are given in Table 2-7.1 ’

TaBLE 2-7. VALUES oF m IN Eq. (2-45)

n 0 0.25(0.50/0.75|1.0 {2.0 |3.0 {3.18] 4.0 5.0 | 10.0

m x3/4 12.28/2.08(1.91(1.72|0.96(0.15| 0 | —0.60| —1.56| —6.95

In calculating the effect of the uniform load ¢l on the magnitude of Pe, we can

" obtain a reasonably good approximation by assuming that the effect of ¢l is equivalent

to a load 0.3¢! applied at the top of the bar. (The value 0.3¢l was calculated from the
data in Table 2-7.) = Thus the critical load is .

x2E]
an

Py =~ — 0.3¢¢

When the uniform load is larger than that given by Eq. (r), Po becomes negative and
a tensile force P must be applied in order to prevent the bar from buckling.

In the caleulation of the critical value of the distributed compressive
loads, the energy method can also be used to advantage. In the case
represented in Fig. 2-39 for instance, we can take as a first approximation

for the deflection curve
Y= (1 — cos %lf) (o)

This is the true curve for the case where buckling-occurs under the action
of a compressive load applied at the end [see Eq. (2-2)]. In the case of a
uniformly distributed axial load, the true curve is more complicated,
as was shown in the previous discussion. Nevertheless, the curve given
by Eq. (o) satisfies the geometrical end conditions and can be taken as a
suitable curve for an approximate calculation. '

The bending moment at any cross section mn (Fig. 2-39) is -

M= f: q(n — y) d¢ o (»

18ee Grishcoff, loc. cit.
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Substituting Eq. (o) for y in this expression and also observing that
- — cos TE
n=2: (1 cos 2l)

_ _ w2/ . wx
M—qs[(l x)cosﬁ ;(1 Sm2l)]

Substituting this equation in the expression for the strain energy of bend-
ing, we obtain
_ [*M2dz  ¢?3f1 , 9 32
AU‘A BT “2E1<6+F_F) @
The work done by the distributed axial load during lateral buckling
will be calculated next. Owing to the inclination of an element ds of the
deflection curve at the cross section mn (Fig. 2-39), the upper part of the
load undergoes a downward displacement equal to

_ 1 /dy\?

and the corresponding work done by this load is

1 dy 2

Therefore, the total work produced by the load during buckling, by using
Eq. (o), is :

1 [t dy\* . _w%% (1 1
Substituting (¢) and (r) in Eq. (2-31), we obtain as a first ‘approximation
for the critical value of the weight

7.89E1
(ql e = 2

we obtain

Comparing this result with Eq. (n), obtained by integration of the dif-
ferential equation, it is seen that the error of the first approximation is
less than 1 per cent, and thus it is accurate enough for any practical
application. :

An even better approximation can be obtained by taking ¥ as a function of several
parameters and then adjusting the parameters so as to make (g))cr & minimum. To
illustrate this method, let us again consider the column in Fig. 2-39 and assume that

y=61(1—cos;—f)-]-6,(l—cosa';—7 (s)

This equation satisfies the geometrical conditions at the ends of the bar and contains
two parameters & and 8. Substituting in expression (p) for the bending moment,




106 THEORY OF ELASTIC STABILITY
we obtain
= 2] . ®T
M=q61[(l—z)cosg —;(1 ~ sin 57 ]
3rz , 20 . 3wz
+ ¢ [(l —z) cos 5 + 3. (1 +smzw)]

Now substituting in Eq. (g) for the strain energy of bending and performing the
integration, we find that

273
AU = % (5% + 26:8:8 + 8sy) 0)
in which
1,9 32_ _32 1 _
a=3+3 -2 = 004650 = o — s = 0.10622

1,1, 32 _

Substituting expression (s) into expression (r), we obtain

2
AT = L= (0%’ + 28:88 + 8:27) @)
where o = i - % =0.14868 8 = % = 0.30396

rL9_ 1
¥ =3 — o = 214868

Substituting (¢) and (u) in Eq. (2-31), we obtain

_ mEI 5% + 28:8.8' + 8.2y’
e = 35 e+ 25058 T 3ty @

The conditions for (gl).: to be a minimum are

a(ql)cr =0 (gD =0

881 [
or
2
:,4%{6161 (3%’ + 28:18:8" + 8:*7') — (Der a—l}l (3r%x + 281328 + 85%y) = 0
=2EI o

T g3, 0 + 2008+ 022) — (gD 5. (0% + 28,68 + b2%) = 0
After differentiation we obtain
0[S — 2] + 5[5 o - 2000e8] =0
b [T~ 2@0eb | + 0 [Ty ~ 2ghe | =0

The possibility of buckling occurs when these equations give for 8, and §; solutions
different from zero. This requires that the determinant of the equations must be
equal to zero; i.e., -

or

2
4ty = ) ~ 200 " (@ + o'y = 268) + @ — 8 () = 0

£
i
3
5
)
3
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Solving this quadratic equation for (gl).. and substituting numerical values for the
constants, we obtain

. 7.84E1
(ql)cr = 7

This value practically coincides with that given in Eq. (n).

TaBLE 2-8. VALUEs oF m IN Eq. (2-46)

n 0 0.25 0.50 0.75 1.0 2.0 3.0

m 2 8.63 7.36 6.08 4.77 —.6567 —4.94

By using the energy method we can also consider a vertical bar hinged at the ends
and submitted to the action of its own weight ¢/ in addition to compressive forces P
applied at the ends (Fig. 2-40). The critical values of P can be rep-

resented by the equation P
p. ="M @46) - ‘%
in which the numerical factor 7 depends on the value of the ratio }‘
2
n=gql + T—II:J—I 1
Several values of the factor m are given in Table 2-8.

An approximation for the critical load P is obtained by assuming 4
that one-half of the weight gl of the bar is applied at the top, ie., by - 4 :
taking Plql

Bl q
Pe="p -5 Fic. 2-40

For large values of n, P is negative, which indicates that in such cases tensile forees P
should be applied at the ends to prevent the bar from lateral buckling.

The energy method can be applied advantageously in various cases of distributed
compressive loads acting on a bar. With the use of this method the integration of
equations with variable coefficients, requiring the use of infinite series, is replaced by
the simple problem of finding the minimum of a certain expression, such as the right-
hand side of Eq. (v) above. When the number of terms in the expression for the
deflection curve is increased, as in Eq. (s) above, the accuracy of the solution can
be increased, although the first approximation is usually sufficient for practical
applications. : J

2.13. Buckling of a Bar on an Elastic Foundation under Distributed Axial Loads.
In this article we shall consider the buckling of the bar shown in Fig. 2-41a. Thebaris
subjected to a distributed axial load ¢ and supported by a continuous elastic founda-
tion. The axial load ¢ will be assumed to have the distribution shown in Fig. 2-41a
and b; that is, the intensity of distributed load at the ends is go and the load is directed
toward the center of the bar. The load ¢ decreases linearly to the center, where it
has zero value. This distribution of load represents approximately the variation in
compressive stress in the top chord of a bridge truss, as will be shown later. The
modulus of the elastic foundation is denoted as 8 (see p- 94) and, when multiplied by
the deﬂectiqn ¥, gives the reaction of the foundation per unit length of bar.

The beam of Fig. 2-41a can be analyzed by solving the differential equation of the
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deflection curve of the buckled bar. The equation can be integrated by the use of
infinite series, as explained in the previous article. The same restﬂt however, can
be obtained more easily by using the energy method. The deflection curve of the
buckled bar in the case of hinged ends can be represented by the series

y = a,sin - + assin =~ + as sin ~— + - (a)

Assuming that the cross section of the bar is constant along its length, the strain

mn

——f- :
‘A
g R g

1
/
h
i
l—u
L
\
\
X
A ;
®

T ——

%\rﬁ\‘\!\ /l/i/‘/l/l/qo
(®)

Fic. 2-41

energy of bending! of the bar, together with the stram energy of the foundation, is
(see Art. 2.10) :

n o= T paw .
AU="fT’f’ z u4a,*+%-l zla,.* ®
n=l n=

In calculating the: work produced by the distributed compressive load during
bending, we note that the intensity of this load at any cross sectlon, distance x from

the left support (Fig. 2-415), is
. Q—-qo(l-,'—l-) - ©

where ¢o is the intensity ¢ of load at the ends. Considering. an element of the bar
between.two consecutive cross sectlons mm and nn, the axial load to the nght of the
cross section mm will be dxsplaced toward the immovable. support A, owing to the
small inclination of this element during bucklmg, by the amount 3(dy/dx)? dz and will

produce the work® ) )
2y dz/ (1; )da:= 2l — 2) Z—Z)’a

The total work produced by the compresslve load dunng bending is

ATug-‘; z(l——z)( ) dz

1 For convenience, Eq. (2—34) is used mstead of Eq. (2-33) Since this may mean
poor accuracy if only one term of series (a) is used, it is necessa.ry to consxder two- and
three-term approximations also. : : .

‘
g
%
:
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Substituting in this expression the series (a) for y and using the formulas

1 2 1
j;)xcos’wdz—l— /;)z’c m'zd:c— + L

4 { 4mix?
1
/;)zcos-l—cos—dz=0 when m + =z is an even number
i nrz 20! m? 4 n? ' .
ﬁ)zcosTcos 7 dz=—$(1n—,:—’;,)—, when m + n is an odd number
i nxz mrz 2018 m2 4 n? win
/0 3 cos 1 cossz = (mE = i)t (—1)m+

we finally obtain o »
SR PRECE R R

where the double series in the brackets contains only terms in which the sum (m -} »)
is even and m is not equal to n.. Substituting (b) and (d) in Eq. (2-31), we obtain for
the compressive force the expression

T;ﬁl n‘an’ +%’ z a" -
gl n=1 n=1 )
s e (e)

X ot (55 1) -4 D e AR

The quantity go/4 represents the compressive force at the center of the bar. Next,
the problem is to find such relations between the coefficients ay, as, a;, . . . as to
make expression (¢) a minimum. Proceeding as before and equating to zero the
derivatives of this expression with respect to ay, @2, . . . , we finally arrive at & system
of homogeneous linear equations in ay, @s, . . . of thé following type:

[(n‘ + P)xt — 2a ("3 )] + 16"2 nngn-:— n’;‘:) =0 »

in which, for simplification, we use the notation

o A‘-x’EI s s )

=% T h Y= ET @
The summation in the second term of Eq. (f) is extended over all values of m different
from n such that (m + =) is an even number. Thus, Eq. (f) can be subdivided into
two groups, one conta.mmg the coeflicients a., vnth all values of m taken odd and the

second with all values of 7 taken even.
The equations of the first group are

[a+n= —%(g'—‘l)]al+a(-1—2§a.’+v18as +iga+ ) =0

12”5"““+[<3‘+“r>1r’—201(3«’—1)1a.+vt(Tas+—a, +0) =0

ggaa1+ 5 aa.+[(54+.,),,z ga(__,g__l)]a._l_ (1295 )=0

-l%saa:+ a ;+1295aas+[(7‘+'y)r’—2a(-r’—1)]a7+
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The equations of the second group are:
[(2‘+‘Y)f’—2a(3f’—1)]az+a o+ Bat - )=0
190 s + [ 4t + ot = 2 (Gt - 1)]a4+a( '35 ac+ - - ) -

%aa; 122548 [(64+1)-K’_2a 3—611—1)]05*}' =0

Buckling of the bar becomes possible when one of the above two systems of equations
gives for coefficients a a solution different from zero, i.e., when the determinant of
system (h) or of system (i) becomes equal to zero. The system (h) corresponde toa
symmetrical shape of the buckted bar, while system (i) corresponds to an antisym-
metrical shape of the buckled bar.

Let us begin with the case where the rigidity of the elastic medium is very small.
In this case the deflection curve of the buckled bar has only one half-wave (gee Art.
2.10) and is symmetrical with respect to the middle. Therefore Egs. (k) should be
used. The first approximation is obtained by taking only the first term in the series
(a) and putting a; = a5 = - - - = 0. Then the first equation of () will give for a,
a solution different from zero only if

W+ -2a(F-1)=0

. (1 + )
from which ) a = m
Using notations (g), we finally obtain
qd Bl »*(1 + ) .
( ) B 23— 1) @

If there is no lateral elastic resistance and if the bar is compressed by axial load dis-
tributed as shown in Fig. 2-41b, the quantity v in Eq. (j) becomes zero [see notations

(¢)] and we obtain
(‘1“) =215 "EI 1)

Thus the critical load is more than twice as large as in the case where the bar is com-
pressed by loads applied only at the ends.

To obtain a better approximation for the critical compressive force, we take the
two terms in expression (a) with coefficients @, and a;  The corresponding two equa-
tions, from system (k), are

[(l + y)xt —2&(!3—’ - 1)]01 +1—25aa, =0
3 a0 + [@* + 7)#* — 2a(3e? ~ Dia; = 0

Taking v equal to zero and equating to zero the determinant of the above two equa-
tions, we obtain

[r’ -2 (’-:';' - 1)] [sw - 2a(3x? — 1)] (15) -
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Solving this equation for «, we obtain

a = 2.06 (q"l) "’E ! ®

With the use of three terms of the series (a) with the coefficients a1, a3, and a; and
the three equations of system (k), a third approximation can be calculated. Such
calculations show that the error of the second approximation, given by Eq. (1), is less
than 1 per cent, so that further approximations are of no practical importance and we

ean put
gqol =El _  £EI
( ) =206 75~ = 10.6961)

Thus the reduced length in this case is
L = 0.696]

- 'When a greater restraint is supplied by the elastic foundation, the buckled form of
the bar may have two half-waves, and we obtain an inflection point at the middle of
the bar. To calculate the critical load in such a case, the system () should be used.

8->Iﬁ

R
-7_, Sy

e 37 —>

-héf-ﬁg

e—c—>] A

| L >
‘ 175} (b)

Fic: 2-42

With a further increase of 8, the buckled bar has three half-waves, and we must again
use the system of equations (k) in calculating the eritical value of the compressive load.
In all these cases the critical load can be represented by the equation

(qol) =EI . , (247)

in which the reduced length L depends on:the rigidity of the elastic foundation.
Several values of the ratio L/l are given in Table 2-9. It is seen from the table that,

TaBLe 2-9. Repucep Lencte L 1N Eq. (2-47)

Bl*/16EI|{ O 5 10 | 15 |22.8{56.5| 100 162.8[ 200 | 300 | 500 |1,000

L/t ]0.696/0 5240.4430.3960.3630.3240.2900.259!0.2460.2250.2040.174

when the ngxdxty of the elastic foundation i increases, the ratio L/l a.pproaches the
values obtained before for'a umformly compressed bar (see Table 2-5).

The results derived above for the bar in Fig. 2-41a can be applied to the problem of
the stability of the upper chord of a low-truss bridge, or pony truss (Fig. 2-42¢ and b).
In the absence of upper chord bracing, the lateral buckling (see Fig. 2-42b) of the top
chord is resisted by the elastic reactions of the vertical and diagonal members of the
truss. At thie supports there are usually frames or bracing members of considerable
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rigidity, so that the ends of the chord ean be considered as immovable in the lateral
direction. Thus the upper chord can be considered as a bar with hinged ends com-
pressed by forces distributed along its length and elastically supported at intermediate
points. A general method of solving problems of this type is discussed in Art. 2.6.

However, the amount of wark necessary to obtain the critical value of the com-
pressive force increases rapidly with the number of elastic supports.! - The stability of
the compressed chord can be increased by increasing the rigidity of the lateral sup-
ports. For a constant cross section of the chord and a constant compressive force, the
minimum rigidity, at which the supports begin to behave as though they were abso-
lutely rigid, is found from Eq. (2-30). If the proportions of the compressed chord and
verticals of the bridge (Fig. 2-42) are such that the half-wave length of the buckled
chord is large in comparison with one panel length of the bridge (say the half-wave
length is not less than three panels), a great simplification of the problem can be
obtained by replacing the elastic supports by an equivalent elastic foundation and
replacing the concentrated compressive forces, applied at the joints, by a continuously
distributed load. Assuming that the bridge is uniformly loaded, the compressive
forces transmitted to the chord by the diagonals are proportlona.l to the distances
from the middle of. the span, and the equivalent compressive load distribution is as
shown in Fig. 2-41b by the shaded areas.

In calculating the modulus 8 of the elastic foundation, equivalent to the elastic
resistance of the verticals;? it is necessary to establish the relation between the force B
applied at the top of a vertical (Fig. 2-42b) and the deflection that would be produced
if the upper chord were removed. If only bending of the vertlcal is taken into account,
then
Ra?
3ET,
where I, is the moment of inertia of one vertical member. Taking into account the
bending of the floor beam and -using notations indicated in the figure, we obtain

Ra? + R(a + b)*d
3ET, 2EI,

where I, is the moment of inertia of the cross section of the floor beam. The force
necessary to produce a deflection § equal to unity is then

1
a? + (a + b)*d
3EI, 2EI,

and the modulus of the equivalent elastic foundation is

oo Be

[4

$ =

&=

Ro=

where ¢ is the distance between verticals.

! Several numerical examples of calculations of the stability of a compressed
chord as a bar on elastic supports can be found in the book by H. Miiller-Breslau,
‘“Graphische Statik,” vol. 2, part 2, 1908. See also paper by A. Ostenfeld, Beton
u. Eisen, vol. 15, 1916.  An analysis using the moment-distribution method was given
by F. Kerekes and C. L. Hulsbos, Elastic Stability of the Top Chord of a Three-span
Continuous Pony Truss Bridge, Towa Eng. Expt. Sta. Bull. 177, 1954.

* Sinee the diagonals are tension members, their rigidity is small in comparison with
that of the struts and can be neglected.
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If the truss has parallel chords and a large number of panels, the maximum intensity
go of the axial load is, from statics,

-9
=3

where @ is the total load on one truss and % is the depth of the truss.

With 8 and g, thus determined, the critical load can be caleulated for the upper
chord in the manner described above.?

The method developed above for the case of a bar of uniform cross section supported
by an elastic medium of constant modulus along the length of the bar can be extended
to include cases of chords of variable cross section and cases where the rigidities of the
elastic supports vary along the length.?

2.14. Buckling of Bars with Changes in Cross Section. An examina-
tion of the bending-moment diagram for a buckled bar indicates that a
bar of uniform cross section is not the most economical form to carry
compressive loads. It is evident in
the case of a compressed bar with
hinged ends, for example, that the sta-
bility can be increased by removing a
portion of the material from the ends
and increasing the cross section over
the middle portion (see Fig. 2-43b).
In steel structures such bars are very
often used. The cross section usually
changes abruptly, since the increase in
section is accomplished by riveting or
welding additional plates or angles P
along portions of the column. A sim- ' Fre. 243°
ple case of such a column was discussed
previously in Art. 2.11. Another example is shown in Flg 2-43a.  To
determine the critical value of the load P in this case, it is necessary to

& |-

[T WY

L
— Nl“'—"
13
oy s e

A

.write separately the differential equation of the deflection curve for each

portion of the column. If I, and I, are the moments of inertia of the
cross sections for the upper and lower portions of the column respec-
tively, these equations are

! In this form the problem of the stability of low-truss bridges was first discussed
by Jasinsky in “Scientific Papers of F. 8. Jasinsky,” vol. 1, p. 145, St. Petersburg, 1902,
Some. corrections. of Jasinsky’s results were discussed by Timoshenko by using the
energy method, in Bull. Polytech. Inst., Kiev (in Russian), 1910, and Sur la stabilité
des systdmes &lastiques, Ann. ponts et chaussées Paris, 1913. Bee also Tlmoshenko,
Problems Concerning Elastic Stability in Structures, Trans.  ASCE, vol. 94; 1930.

1 Several applications of the energy method in design of through bridges are given
in the paper by 8. Kasarnowsky and D. Zetterholm, Der Bauingenieur, vol. 8, p.
760, 1927. See also papers by A. Hrennikoff and by K. Kriso in Publ. Intern. Assoc.
Bridge Structural Eng., vol. 3, 1935.
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d2
EII$=P(s—y1> R
dty, {(a)
EI’ dzz = I:)(5 - yﬁ)
Using the notations,
P P
2 = - 2 - =
k*=gr, * =z,

and taking into account the conditions at the built-in end of the column,
we find that the solutions of Egs. (a) are

11 = & + C cos kiz + Dsin kyx
ys = 8(1 — cos kox)

The constants of integration C and D are obtained from the conditiohs
that at the top of the column the deflection is & and that at z = I the
deflection is the same for both portions. Hence, :

it

8§+ Ccoskil+ Dsinkyl =4
5 4+ Ccos kils + Dsin kils = (1 — cos kals)
from which
d cos kglz (1033 kll

C = —Dtankd D= oin kol

Since the two. portions of the deflection curve have the same tangent at
z = ly, we obtain the equation

3’03 sin kdg = —Ckl sin kll: + Dk; €08 ]Gllg

Substituting for C and D the-above values, we finally obtain the tran-
scendental equation

tan ks tan kols = 7’2—: ()]
for calculating the critical load. Knowing the ratios I/, and l,/1,, the
solution of this equation ecan be found in ea.ch particular case by a trial-
and-error method.

By the substitution of a/2 for. lg and /2 for 1, the results obtained from
Eq. (b) can be applied also for a column with hinged ends and sym-
metrical with respect to the middle cross section (Fig. 2-43b). The
critical value of the load in this case can be represented by the formula

mEI,
l’

in which m is a numerical factor depending on the ratios a/l and I,/I..

P, = (2-48)
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TaBLE 2-10. VALUES oF THE FACTOR m N Eq. (2-48)

a/l
0.2 0.4 0.6 0.8
I/

0.01 0.15 0.27 0.60 2.26
0.1 1.47 2.40 4.50 8.59
0.2 2.80 4.22 6.69 9.33
0.4 5.09 6.68 8.51 9.67
0.6 6.98 8.19 9.24 9.78
0.8 8.55 9.18 9.63 9.84

Several values of this factor, calculated from Eq. (b), are given! in Table
2-10.

This same method ean be used also if the number of changes in the
cross section of the bar is greater than that considered above. Naturally,

~ with an increase in the number of changes, the derivation of the equation

for calculating the critical load and the solution of this equation become
more complicated,? so that it is advisable to use one of the approximate
methods.

Solution by Energy Method. Considering again the case represented in Fig. 2-43a
and using the energy method, we can take as a first approximation for the deflection
curve )

y=6(l—cos%) ‘ (©)

Proceeding as before, we find the following expressions for the strain energy of bend-
ing and for the work done by the compressive forces P during buckling:

l:M’dz lM’dz P32 I L 3 Iz =z
AU = f 2EnL T : 2EL, 2EI:(.L 0s* 97 4% _/ c0s* 57 d’)

1
P332 I 2l . xls
2EI,[ "‘121 = 1"' s“‘_] @
2
i /’ ( f’Pa ©
Substituting (d) and (e) in Eq. (2-31) gives
_ =El,

Pe = 413 lg ll Ig 1 (I: 1) (2'49)

+3n - sin -

1 Table 2-10 was calculated by A. N. Dinnik, “Design of Columns of Varying Cross
Section,” translated from the Russian by M. Maletz, Trans. ASME, vol 54,1932. A
similar table for bars with fixed ends is also given in this paper. -

* Several examples of this type of problem have been discussed by A. Franke, Z.
Math. u. Physik, vol. 49, 1901. See also Timoshenko, Buckling of Bars of Variable
Cross-Section, Bull. Polytech. Inst., Kiev, 1908, and 8. Falk, Ingr-Arch., vol. 24,
p- 85, 1956, ' :
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For a bar with hinged ends (Fig. 2-43b), by substituting a/2 for I, and 1/2 for [,
Eq. (2-49) becomes

T’EI 2
Pa = ? a l—aI, ( )m (2-50)
S — 1) sin 5
l ]
Comparison of the results obtained from Eq. (2-50) with values of m from Table 2-10
shows that this approximate solution gives very satisfactory results if the ratio 7,/Ix
is not very large. Taking, for instance, I1/I: = 0.4 and a/l = 0.2 and 0.6, we
obtain from Eq. (2-50) m = 5.14 and 8.61, respectively, instead of the numbers
5.09 and 8.51, as given in Table 2-10, which is sufficiently accurate for all practical
purposes.!

This same procedure can be used for a bar consisting of several pertions of different
cross sections. In such cases additional integrals appear in Eq. (d), one for each
portion of the bar, but these integrals are readily evaluated numerically.

The use of the method of successive approximations for buckling problems of this
type is described in the next article.

2.15. The Deterniination of Critical Loads by Successive Approxima-

tions. The method of successive approximations is used to determine -

critical loads in cases where the exact solution is unknown or very com-
plicated. Whereas the energy method always gives a value for the
critical load which is higher than the true value (see p. 90), the method of
successive approximations provides a means of obtaining both lower and
upper bounds to the critical load. Thus the accuracy of the approximate
solution is known, and the successive approximation procedure can be
continued until the desired accuracy is obtained.

In the determination of critical buckling loads by this method, a deflec-
tion curve for the buckled bar is first assumed. Based upon these
assumed deflections, the bending moments in the bar are calculated in
terms of the axial force P. Then, knowing the bending moments, we can
determine the deflections of the bar by any of the standard methods of
strength of materials, such as the conjugate-beam method or double-
integration method. Equating the originally assumed deflections to the
latter values gives an equation from which the critical load is calculated.
This process is now repeated, using the final set of deflections from the first
caleulations as a new approximation to the true values. The result of
this ‘second approximation will be another equation for the critical load,
giving a more accuraté value than the first equation. The process is
continued until there is very. little difference between the assumed and
calculated deflections, in which case the critical load is neatly exact.

The assumed deflections and the corresponding calculated values can
be equated at any point along the axis of the bar in obtaining. the equation
for the critical load. The lowest value of the cntxcal load found in this

1 Solution of several exa.mples of this kind can be found in the book by E. Elwitz,
“Die Lehre von der Knickfestigkeit,” vol. 1, p. 222, Diisseldorf, 1918.
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way represents a lower limit, and the highest value represents an upper
limit. Thus, at each step of the calculations the critical load is known
to be within certain limits. A more accurate value of the critical load is
obtained by using average values of the deflections, as will be shown in
the examples to follow.?

In order to illustrate the method of successive approximations, we shall
begin with the simple case of a bar with hinged ends (Fig. 2-44a) for

£, LI o
T
¥ (a) :
M, ﬁ

I:mdx 3

N 1" 3EI
By= 3EI (b)

EIG. 2-44

which the exact solution is known. As a first approximation, assume that
the deflection curve for the buckled bar is a parabola:

This equation gives an-assumed deflection curve which has zero value at
the ends and maximum deflection at the center equal to é;. The bending
moment at any section of the bar is M, = Py,, and the deflection caused
by these moments can be found readily by the conjugate-beam method.?
The conjugate beam is shown in Fig. 2-44b and is considered to be

1 The procedure for determining critical loads described in this article is equivalent
to an integration by successive approximations of the differential equation for a
buckled bar. This method of solving differential equations has been used widely. It
was originated by H. A. Schwarz, “Gesammelte Werke,”” vol. 1, pp. 241-265. See
also P. Funk, Mitt. Hauptvereines deut. Ingr. Tschechoslowaki, Nos. 21 and 22, Briinn,
1931. The application of the method to buckling problems is due to F. Engesser,
Z. Osterr. Ingr. u. Architek. Vereines, 1893. ' The graphical method is due to L.
Vianello, Z. Ver. deut. Ingr., vol. 42, p. 1436, 1898. A mathematical proof of the,
convergence of the method was given by E. Trefftz, Z. Angew. Math. u. Mech., vol. 3,'
p. 272, 1923; see also the book by A. Schleusner, *“Zur Konvergenz des Engesser-
Vianello-Verfahrens,”” Berlin, 1938.

2 See, for example, Timoshenko, “Strength of Materials,” 3d ed., part I, p. 155, D.
Van Nostrand Company, Inc., Princeton, N.J., 1955. )
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loaded with the fictitious load M/EI. The desired deflections are
numerically equal to the bending moments in the conjugate beam. The
fictitious reactions of the conjugate beam are

_ Pl3
R, = 3E1 )
and the bending moment at any section z, is
= P
Rz, — /(; E_yIl (1 — z) dz (c)

Substituting Egs. (a) and (b) into expression (c), we find the second
approximation for the deflection to be

Pis 2z2 3
we (1= ) @

The critical load is found by equating the deflection y; and the deflec-
tion y: at some section along the beam. For exa.mple, at the center of
the beam we have

5P1%8,

Y1) amiiz = 51 (yz)kz/z‘= 8 = BT (e
and equating these expressions gives
p  48EI _ 9.6EI
== "5 I

which is about 2.7 per cent smaller than the true critical load. To obtain
a more accurate result, we can calculate average values of the deflections
y1 and y. as follows:

2
Y = 1 ﬁ thdz = 3 LY ; (2'51)
1l _ Pps,
(¥2)ar. = 7/; yadz = 13E1 (2-52)
Equating the average values of y; and y: gives
/ 10E7
P.,‘ = l’

which is about 1.3 per cent higher than the correct value. Finally, if it is
desired to determine upper and lower bounds on P,., we need to find the
maximum and minimum values of the ratio y;/yz From Egs. (e¢) and
(d) we obtain ;
12EI Bl —«x)

Pt 13— 227 4 2

y—-=
Ys
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which has a maximum value at x-=-0-and a minimum value at z = /2.
These values are
12E1 0 9.6E1
y, e PE Y2/ min = Pl2

and therefore the critical load is between the values

9.6E1 12E1
I <P.< -

The suecessive approximation cycle can now be repeated, using i
from Eq. {d) as the assumed deflection. This expression can be written
in the form :

__ 160z 21:’
V2= TE

where 32 equals the deflection at the center of the bar [see Eq. (¢)].  The
bending moment in the bar (Fig. 2-44a) is then Py,, and the load on the
conjugate beam is My/EI = Pys/EI. Caleculating the fictitious bending
moments in the conjngate beam gives the third approximation for the
deflection as

+

Equating the deflections y. and y; at the center of the beam gives
P 61,125,
600E7
from which p, = 28381

which is about 0.35 ‘per cent below the correct value. If the average
values of ¥, and y; are equated, we find that

9.882E1
P, = —p
wh;ch is approximately 0.12 per cent above the true value. The ratio
of the deflections is

ye  30EI DP(P — 220 4 2%

Ys P2 305 — 52 + 324 — 2*

Delf;lermlmng maximum and minimum values of this ratio leads to the
result

9.836E1 10EI
T <Pu< -
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Thus, by the method of successive approximations we can obtain upper
and lower limits to-the critical load, and the method can be continued
until the results are as accurate as desired. It is seen that values of the
critical load obtained by using average values of the deflections are usually
more accurate than those obtained by selecting .at random the deflection
at a particular section of the bar, such as the center.

Numerical Procedure. When the bar has a cross section which varies along the
span, s numerical procedure of successive approximations is useful. Instead of
assuming the deflection y as some function of z, the beam is divided into segments

1, /%
a a b c
Il1 m \ 7 r
L——d—j d d——J
Roum Rusn R,
d ‘ ,
am=(2a+5) R =%(a+4b+c)
- R,,.,.-%(26+a) :

(a) (b)

T _—
a b ™ a b
n € ¢
m n \
) d d 7! 1L—-'d d
Rpm Ryun ' R,

d
Ram=55(Ta+6b~-
nm 24 (70 o R, ——(a+10b+c)

R,,,,.=214(3a+105 -¢)

(c) (d)
Fie. 2-45

and & numerical value of deflection assumed for.each division point, or station, along
the beam. Then subsequent calculations are made in tabular form, calculating
ordinates to the M /EI diagram and deflections in the conjugate beam at each station.
Comparing the final deflectiong with the initially assumed values determines the
critical load, as explained above.

This method will be illustrated by determining the critical load for the hinged end
column! shown in Fig. 2-46. Only the left-hand half of the bar is shown, since the

1 This numerical procedure was presented in very complete form by N. M. New-
mark, Numerical Procedure for Computing Deflections, Moments and Buckling
Loads, Trans. ASCE, vol. 108, p. 1161, 1943. This paper also gives examples of
bars with other end conditions. The method is applicable to bars with any variation
in cross section and to bars with varying axial load.
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column is symmetrical about the center. The ratio I,/I, = 0.4, and the ratio
a/l = 0.6, where a equals the length of the enlarged central portion of the bar (sce
Fig. 2-43b). The bar is divided into a total of 10 segments, each of length /10, and
the division pomts are designated by station numbers.

The first step is to assume a set of deflections y1 representmg a first approxlmatmn
The values selected in Fig. 2-46 are ordinates to a sine curve. For convenience in
the calculations the values are multiplied by 100 and divided by 3,, which is the deflec-
tion at the center of the bar. The common factors in each case are shown in the
right-hand column. On the next line, values of M,/EI are tabulated and represent
the intensities of load on the conjugate beam at the station points. These values are
equal to Py,/EI and are expressed in terms of the common factor listed at the right.

The fictitious load on the conjugate beam is represented by an irregular load dia-
gram and it is convenient, therefore, to replace the actual load by a series of concen-
trated loads acting at the station points. The values of the concentrated loads,
denoted by R in the table, are computed from the formulas! in Fig. 2-45. If the
fictitious loading (M /EI diagram) between two stations varies linearly or is assumed
linear, then the formulas in Fig. 2-45a¢ and b can be used. In these figures, d repre-
sents the distance between stations while ¢ and b are the ordinates to the M/EI
diagram.  Figure 2-45b is used when the fictitious load is continuocus over the station

-point. If the M/EI diagram has an abrupt change at the station, then the formulag

of Fig. 2-45a must be used separately for the loads on either side of the station.
If the M/EI diagram is represented by a smooth curve, as is usually the case, a
suitable approximation is obtained by calculating the fictitious concentrated loads

‘on the basis of a second-degree parabola. The parabola is determined so as to pass

through three consecutive points on the M/EI fictitious loading curve (see Fig.
2-45c and d) and gives a good approximation to the true curve. The formulas in Fig.
2-45¢ give the equivalent concentrated loads due to a distributed load between stations
n and m only. Thus, these formulas are used when the load changes abruptly at the
station point. The ordinate to the M/EI diagram labeled ¢ may be an extrapolated
value if, for some reason, no actual value exists. The formula in Fig. 2-45d is used
when the curve is continuous over the station point.

. Returning now to Fig. 2-46, the value of the concentrated load R, at station 1 is
det,ermmed from Fig. 2-45d, and we have

R;—-—(a+10b + ¢)

o u P& _ .. Pl
T3 10 +10(78) + 148) o2 F00ET; 7.7 {6OBT.

At station 2 there is an a,brupt change in the M /EI diagram and therefore Fig. 2-45¢
must be used for the ségments on each side of station 2. The computation is as
follows:

Bu =g (7a +6b —¢)

° 1 37 170148) + 6(78) — 0] 101:,2,, =63 1%’.(%
R,,='——(7a+66—0) :

= 2 1r(59) + 681) — 9] 10’;21 =33 %ﬁ:ﬁr—,
Be = By + Rir =96 1(;61:711
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At stations 3, 4, and 5 the formula of Fig. 2-45d is used agam and the results are shown
in the table. The value of the concentrated load at the end of the beam is not calcu-
lated, since it will have no effect on the determination of fictitious moments in the

conjugate beam.

12
t 0.3!
r
P _[6 a2 2 3 K 5
EI, —
“ EL ¢
Station t Common
number 0 1 2 3 -4 5 factor
" 0 31 59 81 - 95 100 Tao‘%
M, [EI 7 il
1/ 0 78 148 59 81 a5 100 _L—IOO ET,
: ~ : P31
R 77 . 9.6 8.0 94 99 100ET,
Average ' Pé1
slope 396 319 223 143 49 100ET,
o Pa,1?
A ‘ 39 715 938 1081 1130 | yoo8T,
, El,
»17; 783 825 8.64 879 8.85 -Pl—z
¥ 0 350 633 830 95.7 100 'l—f.%’
M ‘ P5,
2/EI [ 875 1582 633 830 95.7 100 100ET,
Pl
R 8.61 10.32 824 9.50 9.93 100ET,
Average Ps,l
slope 41.63 33.02 22.70 14.46 496 100ET,
Y3 4163 7 465 9.735 11.181 11.677 P6212
5 g . . A 100ET,
-,
Y, /.73 8.407 8.480 8.526 8.559 8.564 Pz
Fi6. 2-46

The next step is to ealculate the fictitious shearing forces in the conjugate beam.
These forces are constant between the stations and represent values of average slope
in the actual bar. The first value given in the table represents the fictitious reaction
of the conjugate beam and is obtained by the following evident calculation:

7.7 496 +8.0 + 9.4 + 3(9.9) = 39.65

This value is recorded in the table as the fictitious shearing force, or average slbpe, in
the first segment of the beam. The shear in the next segment is obtained by sub-

!
i
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tracting the value of the concentrated load from the shear in the previous segment, and
this process is continued until the middle of the bar is reached.

The deflections in the bar are calculated directly from the values of average slope,
noting that the deflection at station 1 is equal to the value of average slope in the first
segment times the distance between stations; the deflection at station 2 is equal to
the deflection at 1 plus the next value of average slope times the distance between
stations; ete. Finally, the ratios of the assumed deflections y: to the new values ys
are determined. Considering the maximum and minimum values of the ratios, we
see that the upper and lower limits for P are

7.83EI; 8.85E1,
f2)

2

To calculate an approximate value of the critical load, we replace Eqs. (2-51) and
(2-52) by summations and obtain ; .

< P <

(yl)“=‘li ndz 65

(yz)sv =_;‘ z Y2 Az (9)

The ratio of (y1)av 10 (ys)av is equal to the ratio of the sums of the deflections y; and
¥, since the segment length Az is constant. In summing up the values of y; and y.
we must take into account both halves of the beam. Thus for the ratio of the sums

v of the deflections we have

(e _ 2031 +59 +81 +95) +100 _ EIL
(¥)er  2(3.96 + 7.15 + 9.38 + 10.81) + 11.30 PP*
- 855 Elx
= 855 pp

and the critical load is approximately.

.55E1
P“'=85?4 3

The exact value (see Table 2-10) is P, = 8.51EI,/I%, and thus it is seen that very
accurate results are obtained with only one eycle of successive approximation
computations.

The results can be improved by repeating the cycle of calculations, as shown in
Fig. 2-46. 'The second cycle begins with deflections y», which are proportional to the
deflections y: found from the first set of computations. These values can be multi-
plied by any constant factor in order to adjust the order of magnitude of the figures.
In this case they are multiplied by 100/11.3 in order to give 5, as the deflection at the-
center.” The results of the second cycle show that the load P, is between the values

8.40;15’1, <P, < 8.56le[:
and the value obtainied by taking the ratio of the sums of the deflections is
8.52E1.
P, = 32250

which is practically the same as the exact value.
Graphical Method. A graphical method of successive approximations can also be
used for the calculation of critical loads. In this method the first step, as previously,
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is to assume a shape for the deflection curve of the buckled bar. This curve will also
represent the bending-moment diagram for the ‘bar, but to a different scale, since
M = Py. Now considering the bending-moment diagram- divided by EI as 8
fictitious lateral load and constructing the corresponding funicular curve, we obtain
the new deflection curve: If, by adjusting the value of P, the new eurve can be
brought into complete coincidence with the assumed curve, this w111 indicate that the
assumed curve is the true deflection curve and that the corresponding P is the correct
value of the critical load. Usually the two curves will be different, but by adjusting
the value of P we can make the deflections equal at any one point, such as at the mid-
dle of the span. In this way we obtain an approximate value for the critical load.
To get a better approximation, we take the constructed funicular curve as a s.econd
approximation for the deflection curve and repeat again the same construction as
above. S .

Instead of calculating the critical load from the condition that the deflections of
the two_consecutive curves at a certain point are equal, we can use average values of

o r T : 031
=2 t v
d1 &
D
\.__E F
%\ (@)
[4
) =
Load scale in units of £
L GO A 001 Y —
ol 047/ Y, ~
0 0O

Fic. 247

the deflections, as before, and take the ratio of the areas under the two deflection
curves. The critical load 'is calculated by equating this ratio to unity. Proceeding
with the construction of consecutive funicular curves in the same way and calculating
the critical load after each cycle, we can approximate the critical load more and more
closely.t - :

Toyillustrate the graphical method, let us consider again the column shown: in
Fig. 2-46, with I,/I; = 0.4 and &/l = 0.6. The graphical solution for the critical
load is shown in Fig. 2-47. Since the bar is symmetrical with respect to the center G,
only balf of the construction is given.

A portion of a siné curve ABCDEF is selected as the trial deflection curve. The
bending-moment diagram for any compressive force P is the area AB . . . FGA with
ordinates multiplied by P. The load for the conjugate beam is the bending-moment

1 The mathematical proof of this statement is discussed by R. von Mises, Monals-
schr. Math. Physik, vol. 22, p. 33, 1911, and by E. Trefitz, Z. angew. Math. u.AMQch.,
vol. 3, p. 272, 1923. See also A. Pfliger, “Stabilitats-probleme der Elastostatik,”
Pp. 200, Springer-Verlag, Berlini, 1950. . . )
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diagram divided by EI. Therefore, the area ACHJGA with ordinates multiplied by
P/EI, is this load when' the bending-moinent ordinates ot the middle portion of th
column have been reduced by the ratio I,/I,. . : - - .. o o

This load is divided into sections, as shown by the dotted lines. Each section is
replaced by an equal load acting at its centroid, as indicated by the arrows.! These
loads are plotted on the load diagram abedef (Fig. 2:47b).

Point 0, is the position of the pole of the force potygon for which the corresponding
funicular polygon passes through A and horizontally through F. The curve tangent
to this latter polygon:is the deflection curve for the assumed bending-moment diagram.
Since the two curves do not check very closely, the new curve;is used for a second trial.
The new load diagram is a’b’c’d’e’f’ and the new pole is found to be 0,. Its corre-
sponding funicular polygon is found practically to coincide with the one previously
drawn, showing that the second trial curve was very close to the actual curve of
buckling. B :

To find the value of P necessary to keep the column in this deflected position, the
deflections at the center are equated. The assumed deflection was 5, and the deflec-
tion obtained by construction is the product of the pole distance of the force polygon

Piz
/3 . Pullill
o O,f’ = 0.04715 BT,
and the ordinate & in the equilibrium: polygon. Then
pir
0.04715 L d=3
and  Pe=2120 o gag Bl

which is very close to the exact value. )

In this problem a sine curve was used for the first trial curve, although it can easily
be seen that, since it is the true curve of buckling for a uniform bar, it will not have
sufficient curvature along the portion AC of the curve. Had the sine curve been

- deliberately altered to give more eurvature along this portion, a satisfactory value

for P, would have been obtained with only one approximation. For example, using

a parabola as a trial curve, we find the first pole distance to be

. P
Of = 0.0472 71
from which the critical load is '
EI
Pa =8485}

_Thus the accuracy of this first approximation (for an assumed parabolic curve) is

equal to that of the second approximation when a sine curve is used. The fact that
the two curves checked very closely when starting with a parabola indicated that a
second trial was unnecessary. : s ) ‘

2.16. Bars with Continuously Varying Cross Section. In order to

decrease the weight of compression members, columns with gradually
changing cross section are sometimes used. . The differential equation of

. the deflection curve for these cases was derived by Euler, who discussed

1 Alténiatixiely, loads may be placed at points 4, B, C, D, E, and F, as was done in
the numerical solution, provided they are evaluated accordingly. ’




126 THEORY OF ELASTIC STABILITY

columns of various shapes, including a truncated cone and pyramid.?
The stability of bars bounded by a surface of revolution of the second

“degree was discussed by Lagrange.?

A case of considerable pra.ctlca.l importance, in which the moment of
inertia of the cross section varies according to a power of the distance along
the bar, has also been investigated.* Let us begin by considering a bar
with the lower end built in and the upper end free (Fig. 2-48a). I
the moment of inertia of the cross section varies as a power of the distance

T 0
o
1
y
ymllln ™
LI
x@ (b) ©

Fia. 2-48

from the fixed point O, we can express the moment of inertia at any eross

section mn in the form
L=I (;)" @

where I, is the moment of inertia at the top of the bar. By taking vari-
ous-values for n, we obtain various shapes of the column. Whenn =1,
we obtain the case of a column in the form of a plate of constant thickness

1A Gérman translation,of this work can be found in Ostwald’s “Klassiker der
exakten Wissenschaften,” no. 175, Leipzig, 1910.
% Loc. cit. Other problems of this same type were discussed by A. N. Dm.mk Phil.
May., vol. 10, p. 785, 1930.
- 38ee A. N. Dinnik, Jsvest. Gornogo Inst., Ekaterinoslav, 1914, and Vesinik Ingenerov,
Moseow, 1916. The principal results of these papers have been translated into
: Design of Columns of Varying Cross Section, by A. N. Dinnik (translated
by M. Maletz), Trans. ASME, vol. 51, 1929, and vol. 54, 1932. Independently

- the same problem’ was discussed by A. Ono, Mem. Coll. Eng., Kyushu Imp. Univ.,

Fukuoka, Japan, vol. 1,1919. See also L. Bairstow and E. W. Stedman, Engineering,
vol. 98, p. 403, 1914, and A. Morley, Engineering, vol. 97, p. 566, 1914, and vol. 104,
p- 295, 1917.
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t and of varying width (Fig. 2-48b). The assumption n = 2 represents,
with sufficient accuracy, the case of a built-up column consisting of four
angles connected by diagonals (Fig. 2-48¢c). In this case the cross-sec-
tional area of the column remains constant and the moment of inertia is
approximately proportional to the square of the distance of the cen-
troids of the angles from the axes of symmetry of the cross section.
Finally, by taking n = 4, we obtain such cases as a solid truncated cone
or a pyramid.

In discussing the deflection curve of the buckled bar, we shall take the
coordinate axes as shown in Fi . 2-49. Then the differen-

tial equation of the deflection curve is L) 0
z\" d¥/ P
EI, (E) d_Ii = —Py (b) 4
This equation can be solved by means of Bessel functions L
for any value of n. In the particular case of n = 2, how-
ever, the solution can be obtained in a very simple manner.
For n = 2, Eq. (b) has the form X
EI R
BL %Y _ _py (€)  Fic. 249

dxz

which can be reduced to an equation with constant coefficients by the
substitution

ks @

From Eq. (d) we obtain dz/dx = 1/z and therefore
dy _dydz _1ldy

d’y_d(ldy) ~1ddy'+dyd1A 1dy 1ldy 0

dr? dz\zdz)  zdzdz ' dzdzz 2 de® ' dz
Rearranging expression (f) then gives
dy _dy _dy
’-—-—=—-———
T T % & @

which, when substituted into Eq. (c¢), gives the following differential

equation with constant coefficients:

dy_dy Pt _ @

&~ & T ELY
The general solution of Eq. »(h) is
y = Ve (A sin Bz + B cos fz) @
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where A and B are constants of integration and the quantity

- [Pa? 1 ’ ‘
ﬁ=\’E—'I_1—Z . 6))

is assumed to be real and positive. 'Using Eq. (d),vthe solution (7) is
expressed in the form :

y= \/3;1- [A sin (ﬁ In %) + B cos (ﬂ lné)] R )

From the condition at the upper end of the bar (y =0 at z = a), we
find B =:0. At the lower end of the bar we have the condition

‘;—Z = atrz =a +l
which gives o . ,
" tan(ﬁlnai—l) +28=0 0)

Knovﬁﬁé the dimensions @ and I in each particular case, we can find the
smallest value of 8 which satisfies Eq. () by trial and error. Then, from
Egq. (j), the lowest critical load can be obtained. This value can be

represented by the general formula

P, ="E (2-53)

where I, is the moment of inertia at the lower end of the column
(z = a +1). Thefactor m depends on the ratio a/! only, and values are
given in Table 2-11. Note that as I,/I, approaches unity, the factor m
approaches #%/4. ,

TasLe 2-11. VALUES oF TEE Facror m IN Eq. (2-53) ForR n = 2

I/I;| 0O 0.1 02| 03] 0.4 0.5 06 07|08} 09 (10

m |0.250]1.350|1.593|1.763|1.904 |2.0232.128 2.223 | 2.311°|2.392 | x*/4

v In the case of a solid conical baf, we put % = 4 in Eq. (b), and the differential

equation for buckling becomes

]%I.-' z‘%{ = —Py ' (m)
If the substitution z = 1/¢ is made, this equation can be brought to the form
dy  2dy | Pat
wtiaTEY "0 ) @

which is a form of Bessel’s differential equation andha.s the solutién
y = N4 4at) + BaY_y(ed)] ' ()

A AR AN AN A s, SR
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whera 4, and B; are constants of int i resent Besse
era egration, J_j(af) and Y _3(af
functions of the order —% of the first and second kind, respec;i*‘(l:l;,r:ﬁd ¢ :

e =P
EI, (»)

The Begsel functions of order —% are expressible in the form

J_i(at) = C08.(cf)
‘( ) vV (x/2)ad
Y_i(d =M
1 = e

and therefore the solution of Eq. (n) is

1 .
v=q \/}—a [4: cos (at) + By sin (af)]

and the general solution of Eq. (m) is

= S PR 4
Y z[Acosz+Bsm;] (@)
whert:; 4 and B are constants of integration. P
Using the conditions at the two ends of the bar gives Ay
the equation ’ ’ 1
al - _a A
MG FD T TaFl , L
tan v a -
or T = - ‘— (2—54) . a_?z
where el _ L P@ 2
YSa@+p "a+1 VEL 2-55)
Equation (2-54) can be solved readil 3
> / ly for v, for any par-
Plcular va.lue.o‘f a/l, by using tables! of (tan z)/z. Know- 3
ing -, the .crltlcal load can be found from Eq. (2-55) and ki P
expressed in the form given by Eq. (2-53). Several values (b
of m for this case are given in Table 2-12, ’ Fia. 2-50

By substituting /2 for I in Eq. (2-53), we can use all th i
re.sults to obtain the critical load for a bar with hinged endst s‘;'lflzzifil;gl
mﬁl respect to the middle cross section (Fig. 2-50a). ,

‘A more general case is obtained by combining the soluti
with that of the differential equation for a prisxgnatic bar. o?nof;h]?sq.wg))
we can (_)btain the critical load for a bar with hinged ends having a centfz
prismatic portion .(Fig. 2-50b). The end regions may be of various
shapes: ?orrespondlng to various values of the exponent n in Eq. (a)
The critical load can be represented again by Eq. (2-53). Values of ﬂl(;
factor m are given for this case in Table 2-13.- e o

! Bee p. 32 of Addenda to Jahnke and Emde, op. cit.
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“TaBLE 2-12. VALUES oF THE FACTOR m IN Eq. (2-53) ror n = 4

Il/I: 0102|0304 05f(06|07]08]09]10

m 1.20211.505]1.710| 1.870 [ 2.002 | 2.116 [ 2.217 | 2.308 | 2.391 /4

TaBLE 2-13. VALUES OF THE FACTOR m IN EqQ. (2-53) FOR THE BAR IN

Fic. 2-50b
a/l
I|/Ig n
0 0.2 0.4 0.6 0.8 1
1| 6.48 | 7.58 | 863 | 9.46 | 9.82
0.1 2 | 5.40| 6.67 | 8.08 | 9.25 | 9.79 .
: 3 | 501 | 632 | 7.88 | 014 | 97 [ 7
4| 48 | 6.11 | 7.68 | 9.08 | 9.77
1| 701 | 7.99 | 891 | 9.63 | 9.8
0.2 2 | 637 | 749 | 8.61 | 9.4¢4 | 9.81 .
: 3 | 6.14 | 7.31 | 8.49 | 9.39 | 9.81
4| 602 | 720 | 842 | 9.38 | 9.80
1| 787 | 859 | 9.19 | 9.70 | 9.8
04 21 761 | 842 | 9.15 | 9.63 | 9.8 | _,
. 3 | 752 | 838 | 9.12 | 9.62 | 9.84
4| 748 | 833 | 9.10 | 9.62 | 9.84
1| 861 | 912 | 955 | 9.76 | 9.85
0.6 2 | 851 | 9.04 | 9.48 [ 9074 | 9.8 | _,
- 3] 850 | 902 | 9.46 | 9.74 | 9.85
4 | 847 | 9.01 | 945 | 9.74 9.85
1| 927 | 954 | 969 | 9.8 | 9.8
0.8 2| 9.24 | 950 | 9.69 | 9.82 | 9.8 }
e 3 9.23 9.50 9.69 9.81 9.8 |
4| 9.23 | 9.49 | 9.60 | 9.81 | 9.86
1.0 2 - =2 x? x? =2 2

When various values are taken for the ratios I;/I2 and a/l and various
values of the number n, a variety of cases of practical importance can be
solved by using this table.!

Column with Disiributed Azial Load. If a column of variable cross section is sub-
mitted to the action of a distributed axial load, the differential equation of the deflec-

 This table was calculated by Dinnik, loc. cit. Examples illustrating the use of the
table are given in that paper and also in Timoshenko, “Strength of Materials,”
3d ed., part II, p. 169, D. Van Nostrand Compaay, Inc., Princeton; N.J., 1956.

ELASTIC BUCKLING OF BARS AND FRAMES 131

tion curve of the buckled column can always be integrated by usi i
cur ed o ! y using Bessel functio:
provided the flexural rigidity and the intensity of the distributed load can be repnr::

sented by the equations
= z\* zy*
EI = EI, (l ) qg=q: (l—) )

where I3 and g; are the moment of inertia and thé intensity of load at the lower built-in

55

X 92
Fia. 2-51

92

end of the column (see Fig. 2-51). The critical value i .
¢ . . of the
always be given by the equation © compressive forco will

be= o () - 050

Several values of the f: i f .
Table 2-14. e factor m for various values of n and p in Eqgs. (r) are given! in

TasLe 2-14. VALUES oF THE Facror m v Eq. (2-56) For CoLuMn

N Fie. 2-51
P
n

<
-

2 3 4 5

16.1 27.3 41.3
. 23.1 36.1 52.1
‘9.87 18.9 30.9 45.8 63.6
- 6.59 14.7 25.7 39.5 '

W -
990!\1
=3
SEE

[
[’
[~

By substituting I/2 for I in Eq. (2-56), we obtain the criti¢al compressive force for

“a'bar with hinged ends which is symmetrical (and symmetrically loaded) with respect

to the middle cross section.
Column of Minimum Weight. It is sometimes of practical interest to find the shape

of a solid column such that its weight, for a given value of the critical load, will be a

minimum. Lagrange was the first to undertake the solution to this problem.? " He

_stated that the problem was to find the curve which, by its revolution about an axis

in its plane, determines the column of greatest efficienc i jon (incorrect,
3 ] y. His eonclusio:
was tha!; the most efficient column is a column of constant circular crossnsg:;(ifn A)
further investigation of the same problem was made by Clausen.? He left the f.onn
1 This table was calculated by Dinnik, loc. cif. '
2 Lagrange, loc. cit.
3 Bull. phys.-math. acad., St. Petersburg, vol. 9, pp. 368-379, 1851. See also E. L.

Nicolai, Bull. Polytech. Inst., St. Petersburg, vol. 8, p. 255, 1907, and H. Blasius, Z.

Math. u. Physik, vol. 62, pp. 182-197, 1914.
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ined and assumed only that they were smﬂa.r g.nd
his investigation was that the most efficient colum}il
has a volume +/3/2 times the volume of the cylindrical colur.nn of tl-le sa.::; us:sri!;g:hé
A. Ono! also arrived at approximately the same result by using various values of the
ex.ponent nin Eq. (). He found that the value of n for a mu.umu?:‘ 1:; humo of the
bar was n = 0.93 and that the corresponding volume is 87 per cent of
prismatic bar of the same strength..
When exact results are not available,
described in the preceding article-can be used to
of varying cross section.

9.17. The Effect of Shearing Force on the Critical Load. In the pre-

ceding derivations of the equations for the critical ldads, we used the

i i i f shearing
i i i he deflection curve in which the effect o
differential equation of the e e rours, however,

force on the deflection was neglected. W ]
there will be shearing forces acting on the cross sections (;)iszhe b;,ri..or '1;1112
effect of these forces on the critical load will now be usse

of the cross sections undeterm
gimilarly placed. The resuft of

the method of successive approximations
determine critical loads for columns

R 1 4
x P
\2+dQ
[ T /~n
dx di
¥ i o
l e
P
(c)
@) 7777 y
Fic. 2-52

The shearing forees @ a.cting on an element

column shown in Fig. 2-52a. are shown in Fig.

of length dz, between two cross sections m and 71?

9.52h. The magnitude of this shearing force? (see Fig. 2-52¢) is
-p¥ @
Q=" dz

The change in slope of the deflection curve I?roduced byftthlfsl:;igr:lg
force is nQ/AG, where A is the total c.ross-sectlonal area o i lf oo R
q the mddﬁlus in shear, and n a numerical factor (%ependu:;g (:n el; 1’p26
of the eross section. For a rectangular cross seetion the factor n .2,

. - —1i1l
d for a cireular cross section # 1.'1 ran ! t al
;')!;nor axis of the cross section (that is, bent in the plane of the flanges)

the factor n ~ 1.24/A;,, where A, is the area
1 Ono, loc. cit.

1 Note that the shearing forces @ act on cross sections which are normal torthe

axis of the bar.

For an I beam bent about the

of the two flanges. This

ELASTIC BUCKLING.OF BARS AND FRAMES 133

value lies within the range 1.4 to 2.8 for the usual I beam and plate girder
sections. If an I beam bends in the plane of the web (about the major
axis) the factor n ~ A/A,, where A,, is the area of the web. For this
case, values of n from 2 to 6 are typical for rolled steel sections.

The rate of change of slope produced by the shearing force @ represents
the additional curvature due to shear and is equal to

AG dx = AG da?

The total curvature of the deflection curve is now obtained by adding
the curvature produced by the shearing force to the curvature produced
by the bending moment. - Then, for the column in Fig. 2-52, the differ-
ential equation of the deflection curve becomes

dy P —y) , nPdy

dz* = EI T AGdz*
dy - P )
o dz* ~ EIQL = nP/AG) @ — ¥ ®

This equation differs from Eq. (2-1) only by the factor (1 — nP/AQ) in
the denominator on the right-hand side. Proceeding as in Art. 2.1, we
obtain for the critical value of the load P the equation

P____x
EI(I = nP/AG) ~ 12
. Pe
from which P, = T nPJ4G (2-57)

where P, = n?EI/41* represents the Euler critical load for this case.
Thus, owing to the action of shearing forces, the critical load is diminished
in the ratio? .
1 .
T ¥ npP.j4G : @

This ratio is very nearly equal to unity for solid columns, such as a
column of rectangular cross section or a column with I cross section.
Hence in these cases the effect of shearing force can usually be neglected.
For built-up columns consisting of struts connected by lacing bars or
batten plates, the shear effect may become of practical importance and is

-considered further in Art. 2.18. A graph of Eq. (2-57) is given later in

Fig. 2-54. . v
! This result was obtained first by F. Engesser, Zentr. Bauverwaltung, vol. 11, p. 483,

L1801, See also F. Nussbaum, Z. Math. u. Physik, vol. 55, p. 134, 1907. A refine-

ment to expression (c), taking into account Poisson’s ratio, was given by R. Gran
Olsson, Det Kongelige Norske Videnskabers Selskab, Forhanilinger, vol. 10, no. 21,
p- 79, 1937 (in German). =~ . .. s
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ing i i i tion of the deflection curve,
By using the appropriate differential equa . .
analigous to Eq. (b), the effect of shear can be investigated for com-
pressed bars with any other end conditions. :
Energy Method. When the effect of shearing forces on the critical load is con-

gidered, the energy method can also be used. Take, as an exa.mple! a bar with hinged
ends (F,‘ig. 2-36). The general expression’ for the deflection curve 18

y=a:sin’—r-f +a:ﬂn-T+a:8m—l—'+ ..
Taking into account the strain energy of shga.r, we find

i, [0 L P (Vg 2B [1(8) g
aU = [ 3Er + Jo2a6% = 381 Jo V' * T 246 Jo \az) &

P2 nx3P?
- 21""'*47—01 zlm*a.- @
“

The work done by the forces P during buckling is
298 == 0
ar =2 z miaat ©
] -4 m=l
Substituting in Eq. (2-31), we obtain
»3EI Zmian?
P = 12 1 mr’EIm’) ot 2
Z( + Ao

The smallest value of P is obtained by taking oﬁly the first term in the series of
expression (f). Then )

_ ='EI 1 ’ (2-58)
« = 1 4 aP./AG -
x2EI
in which =
Thus, owing to shear, the critical load is diminished in the ratio (¢), provided the
P, is taken for a bar with hinged ends. . .
Eﬁrodl:;id Siar Equation. In the preceding discussion of the ‘ effect of. ghear,
Eq. (¢) was used for the evaluation of the shearing force Q. Al}othet expression can
be obtained by considering the deformation of an element mn (Fig. 2-53) cut out from
the column shown in Fig. 2-52, The angle dg in tlfe figure represents the chfmge. in
slope due to the bending moment M = P(3 — y), with o'measured from th? du'ectx_on
of the z axis (vertical) to the normal N to the cross section. Due to shearing mth )
+, there is an additional slope measured from the normal N to the t?ngent T to the
o io of the deflected column. Thus the slope of the deflected curve is
» d.V - L )
d_x =0+ 0+ AG (ﬂ
i i irecti Pcos ¢ ~Pand a—
The axial force P has a component in the direction N equal to
component Q = P sin ¢ =~ Po. Substituting in Eq. (9) the slope becomes
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dy_, nPo_ 0 aP
iz 0+AG’ -—0(1 +‘Z§) : (0]
Observing that d6/dz = M/EI = P(5 — y)/EI we obtain from Eq. (h) the following

expression for curvature:

By _P@-u(, P
== 2 (1+5%) | @

The difference between Eq. (¢) and the previous Eq. (b) is due to the fact that in the
derivation of Eq. (b) the shear force is calculated from the total slope dy/dz of the
deflection curve [see Eq. (a)] whereas in the derivation of Eq. (i) only the angle of
rotation of the cross section is used. Solving this equation in the same manner as
before (see Art. 2.1) we find that the critical load is )

5 V1 ¥ mP,JAG ~ 1 -
Po = 2n/AG (2-59)

where P, = x2EI/41. The differences in the results obtained from Eqs. (2-57) and
(2-59) are negligible for solid columns. However, for cases in which the effect of

10
N N
\\\Q\ Fq. 2-59) —
\\ ]
ay 2.5/ | T~
¥ os Eq. (2-57) -
ml) .
0 ] :
0 05 10
nP, [AG
Fia. 2-54

shear is unusually Iarge, as in the buckling of helical springs (see Art. 2.19), Eq. (2-59)
may be more accurate, although Eq. (2-57) is more on the safe side. For a column
with hinged ends Eq. (2-59) can also be used, provided P, is taken as the Euler eriti-
cal load for a bar with hinged ends. A graph of Eqs. (2-57) and (2-59) is given in
Fig.2-54 for comparison, ] )

2.18. Buckling of Built-up Columns. Laced Column. The critical
load for a laced column is always less than for a solid column having the
same cross-sectional area and the same slenderness ratio I/r. This
decrease in the critical load is due primarily to the fact that the effect of
shear on deflections is much greater for a laced column than for a solid
bar. The actusl value of the critical load depends upon the detailed
arrangement and dimensions of the lacing bars. B

If the laced column (Fig. 2-55a) has a large number of panels, Eq.
(2-57), derived for a solid bar, can be adapted to the calculation of the
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critical load. We can write Eq. (2-57) in the form
- P : (2-60)
Pu=1¥PJP:

where P, is the Euler critical load and the quantity 1/P; for a la.ce.d
column corresponds to n/AG for a solid bar. Thus tl.le factor 1/Pg is
the quantity by which the shearing force Q is multiplied in order to ol;ltaa.m
the additional slope v of the deflection curve dug toshear. Thus we have
. S e , | °
v LAy - o

and to determine the quantity 1/Pa in any particular case fWe must
iﬁvéétigate the lateral displacements prodl.lced'by the shearing lcl)rce.dis_
Consider first the laced column shown in Flg.. 2-55a. The_ sk el::.r is
pla.cetﬁent is due to the lengthening and shortening of the lacing bars 1n

¢ by e
e T SAL T 00T
s L\ e\ S s
LER e /( I [ // |
{ 'l./,/ . W e
‘ »
P (b) @
)
Fi1c. 2-55

! (S i f these bars are neg-
h panel (Fig. 2-55b and ¢). The deformatlpns ol e eg-
;’::tetf when -tﬁe deflection produced by bending mo_ment alone is con1
sidered. Assuming hinges at the joints, the elongation of the dlggona
(Fig. 2-55b) produced by the shearing force Qis
) Qa
, AgE sin ¢ cos ¢ . .
in which ¢ is the angle between the diagonal and horizontal bars, Q/cc;sanlﬁ
is the tensile force in the diagonal, a/sin ¢ .is the length of Fhe d.lagg é
and A, is the cross-sectional area of two diagonals, one on’each si g of
the column (Fig. 2-55a). The corresponding lateral displacement is,
AL N )
o 1_'A.;E’sin«pco‘s’«fa .
Consideri 1 rteni battens, or horizontal lacing bars
Considering next the shortening of the : , or horizontal lacir
(Fig. 2-55c), we find that the corresponding lateral displacement is

8’=Z;_E‘-
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where b is the length. of the battens between hinges and A4, is the cross-
sectional area of two battens, one on each side of the columin.

The total angular displacement produced by the shearing force Q is
obtained from Egs. (b) and (c) as follows: oo

_hit 8y Q Qb ‘
__ a  AiEsin ¢ cos? ¢ + adE (@)
From Eq. (a) we then obtain . L ) |
1 1 b SRR
P:~ AEsmécost ¢ T GAE @

When this value is substituted in Eq. (2-60), the critical load for a strut
with hinged ends (Fig. 2-55a) is? '

P - =:EF : 1 i
oo 14 MBI ( 1 b )
I? \A4E sin ¢ cos? ¢ + aAE
In this expression I is the moment of inertia of the cross section of the
strut. If the cross-sectional areas A, and 4, are small in comparison with
" the area of the channels (Fig. 2-55a) or other main mem-
bers, the critical load from Eq. (2-61) may be consider- P [P [P
ably lower than the Euler value. Thus the laced column
may be considerably weaker than a solid strut with the
same E1, but since the amount of material used isless, the ¢-
laced column may be more economical, ‘
An equation similar to Eq. (2-61) can be obtained when
there are two diagonal lacing bars in each panel (Fig.
2-56a). Under the action of a shearing force, one diago-
nal is stressed in tension and the other in compression. @ ® (@
' The battens do not take part in the transmission of shear-
ing force,; and the system is equivalent to that shown in
- Fig. 2-56b. The critical load is obtained in this case from Eq. (2-61) by
_omitting the term containing 4, and doubling the cross-sectional area Ag4.
"Thus we have

(2-61)

Fia. 2-56

=2E] 1
Pu = i rEl 1 (2-62)

I+ A Eemecort d

.~ ! Equation (2-61) was derived first by F. Engesser, Zentr. Bawverwaltung, vol. 11,
: P. 483, 1891. For a further discussion of the same problem, in connection with the

pse of the Quebec Bridge, see the following papers: F. Engesser, ibid., vol. 27,
609, 1907, and Z. Ver. deut. Ingr., p. 359, 1908; L. Prandtl, Z. Ver. deut. Ingr.,
}217; and Timoshenko, Buckling of Bars of Variable Cross Section, Bull. Polytech.
8t., Kien, 1908. . - T
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in which A, denotes the cross-sectional area of four diagonals, two on
each side of the column in the same panel. Equation (2-62) can be used
also in the case of a single system of diagonal bars (Fig. 2-56¢), provided
Ag is the area of two diagonals and ¢ is measured as shown.

Columns with Batien Plates. In the case of a strut made with battens -

only, as in Fig. 2-57, to obtain the lateral displacement produced by the
shearing force Q, we must consider the deformation of an element of the
strut between the sections mn and mn,. Assuming that the deflection
curves of the channels have points of inflection at these sections, the
bending of the element will be as shown in Fig. 2-57b. The lateral
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deflection consists of the sum of the displacements 8:, due to bending of
the batten, and &8s, due to bending of the channels. There are couples
Qa/2 acting at the ends of the batten, and the angle of rotation at each
end of the batten is '

g =200

~ 12ET,

where b is the length of the batten and EI, is its flexural rigidity. The
lateral displacement 3, produced by this bending of the batten is
. Oa'_r’ Qa?
, 2 24EL o
The displacement 5, can be found from the expression for the deflection of

81?
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a cantilever beam. Thus we obtain

_Q(ay 1 _ Q&

=3 (2) 3ET, ~ LT, @
in which EI, is the flexural rigidity of one of the vertical channels. The
total angular displacement produced by the shearing force @ is

Gt d_ Qab |, Qa?
Y= "1a T 12EL, ' 24EI, &)

and from Eq. (a), we obtain

1 _ _‘L + _a
P; 12EI, ' 24EI,

Substituting 1/P; into Eq. (2-60), we obtain
P = xE] 1
oo xEI( ab at
1+ 5 (12151,. + 24EI¢)

in which the factor x2EI/I? represents the critical load for the entire
column calculated as for a solid column. It is seen that when the flexural
rigidity of the battens is small, the critical load is much lower than that
given by Euler’s formula.!

In the calculation of the angular displacement v, the shear in the batten

can be taken into consideration also. From Fig. 2-57b it can be seen that
the shearing force in the batten is

(2-63)

Qa
b

and the corresponding shearing strain is

nQa
bA bG (i)

where A, is the cross-sectional atea of two battens and n equals 1.2,
since the battens have a rectangular cross section. Adding expression
(%) to the previous Eq. (k), we obtain

P =1’EI 1
T wEl( ab + a? + e
2 12E1, ' 24EI. ' bAG

(2-64)

instead of Eq. (2-63).

1 Another equation for the critical load of a column with batten plates is given on
p. 151.
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If the vertical channels of the built-up column represented in Fig. 2-57
are very flexible, or if the distance between battens is large, collapse of the
column may occur as a result of local buckling of the channels between
two consecutive battens. To take. this possibility of buckling into
account, let us consider an element of the column between two battens
and assume that it is buckled as shown in Fig. 2-58.. - Assuming that the
rigidity of the battens is very large, the critical value of the compressive

force at which the assumed buckling will occur (gee

£ £ Fig24)is
_ 2x%El, G)
-T-_ ‘l H T a? Y
|
/ | The effect of the axial load P/2 on the bending of the
a / / vertical channels can now be taken into account by
v L writing Eq. (g) in the form [see Eq. (a), Art. 1.11]
_ Qa? 1
P I3 | %= RELI-a ()
2 2 7 P
Fre. 2-58 where @ = 55pT 7a }: 7o (]

Using expression (k) for &;, we express the critical load P, for the strut
in Fig. 2-57 in the form

~2ET 1
- Py = B i +1r’EI ab N a? 1. . na (2-65)
7| 12BT, T 24BL. (0 = a). ' bAG

Since a depends upon P,;, this equation can be solved only by trial and
error. It should be noticed also that the critical load for the column
between battens (Fig. 2-58) is always less than given by Eq. (5), inasmuch
as the battens are not rigid. This means that the true value of « is larger
than given by Eq. (1), and hence the true critical load is less than obtained
from Eq. (2-65). However, these differences are not of practical sig-
niﬁca.nce, since the term in the denominator of Eq. (2-65) containing I.
is usually small compared with the term containing Is.

Expenments have been made! which show satisfactory agreement with -

Eq. (2°65) in all cases in which the number of panels (Fig. 2-57a) is
larger than six. The design of built-up columns is discussed in Art. 4.6.

Columns with Perforated Cover Plates.? The cross section of a typical
column with perforated cover plates is shown in Fig. 2-59a. In the
calculation of the cross-sectional area and moment of inertia of the col-

1 See Timoshenko, Ann. ponts et chaussées, series 9, vol. 3, p. 551, 1913.

2 A very complete report concerning columns of this type was made by M. W.
White and B. Thirlimann, Study of Columns with Perforated Cover Plates, AREA
Bull. 531, 1956. .
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umn, the properties of the net area (section nn) can be used with sufficient
accuracy for most practical purposes. In determining the lateral dis-
placement due to shearing force §, we again consider an element from the
column (Fig. 2-59b). This element is similar to the element from the
column with batten plates (Fig. 2-57b), except that instead of a narrow
batten plate we have the portion of the cover plate between perforations.
Thus we finally obtain the idealized element of Fig. 2-59¢, where the
horizontal cross member can be considered as infinitely rigid. The
lengths of the vertical projections, which are treated as cantilever beams,

A
v

O
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D

|
N

Q Q
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(a) L
. Fie. 2-59

will be somewhere between ¢/2 and a/2, where c is the length of a per-
foration.. The value 3¢c/4 is reasonable and gives results which agree
with experiments.!

The equations:for a column with batten plates can now be modified for
this case.” Since the cross member (analogous ter a batten) is infinitely
rigid, we can substitute I; = « in Eq. (f) and obtain §; = 0. The dis- *
placement §; is determmed as the deﬂectlon of a cantllever [Eq. (g)],‘

and we obtain . . ,
s _Q3\ 1 . 9Qc.
. % ( ) 3EI, ~ 128EI, , tm)
1 Ibid, g
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where I, represents the moment of inertia of the “flange’’ of the column,
that is, the entire effective area of the column on one side of the z axis,
taken about the centroid of the flange (axis 1-1). The angular displace-
ment due to @ is ,

48 9Qe
Y= "3a " 64aEl,
1 9

and therefore P, ~ 64aET, (n)
from which we obtain

=2ET 1

Po="x TEI[ 0 (2-66)
1+7% 64aE“I,>

as the critical load for a column with perforated cover plates.

2.19. Buckling of Helical Springs. The problem of lateral buckling of compressed
helical springs! is of practical interest and can be investigated by the same methods as
were used for prismatic bars. For buckling of springs, however, it becomes necessary
to take into account the change in length of the spring during compression. In all
previous discussions this effect was not considered, since for materials such as steel
and wood the change in length of the bar is small in comparison with the original
length. For a prismatic bar of material such as rubber or for a spring, the length of
the bar after compression rather than the initial length must be used in determining

the critical load.
- 'The spring is assumed to be helical and close coiled, so that each coil lies in a plane
which is nearly perpendicular to the spring axis. The following notation is used:
1o = initial length of spring
he = pitch of helix
no = number of coils, o that noke = lo
R = radius of helix :
1 = length of spring after compression
«s, Bo, vo = flexural, shearing, and compressive rigidities of the unloaded spring
(analogous to EI, AG/n, and AE for a solid bar)

a, B, v = rigidities of loaded spring

The number of coils per unit length of spring increases by the factor lo/l when the

spring is compressed. Hence the rigidities decrease by the factor 1/l,, g.nd we have -

a-mi. ﬁ-ﬂ-ll. 'y=1oll-; _ (@)

1The first investigation in this field was made by E. Hurlbrink, Z. Ver. deut. Ingr.,
vol. 54, p. 138, 1910. The problem was further discussed by R. Grammel, Z, angew.
Math. u. Mech., vol. 4, p. 384, 1924; C. B, Biezeno and J. J. Koch, ibid., .vol. 5, p.
279, 1925; and H. Ziegler, Ingr.-Arch., vol. 10, p. 227, 1939. The final form of the
buckling equations was obtained by J. A. Haringx, Proc. Konink. Ned. Akad.
Wetenschap., vol. 45, p. 533, 1942 (in English). A very complete presentation of
the buckling of springs was given by Haringx, Philips Research Repts., vol. 3,
1948, and vol, 4, 1949, published by Philips Research Laboratories, Eindhoven,
Netherlands, :
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The effect of shearing force is important in determining the eritical load for a spring,
and Eq. (2-59) will be used. For a spring with hinged ends we have

. P, =7 ®

- and substitution into Eq. (2-59) gives

p, = Y1+ {ra/lg) —1

2/8
Next, substituting Eqgs. (a), we obtain
V1 + (dxtao/I?80) — 1 }
, P = 20o/Bl @
From a consideration of the compression of the spring, we have
=t _Pa l=lo(1—£‘5) @
[N 0 70
Substituting Eq. (d) for [ into Eq. (), we obtain the following equation for the critical
load: -
PuY (10 _ ) Pua _wlao
: ‘Yo) (Bo 1)+ T 0
‘from which

P, % \L- 7.,'3? (1 - ﬁ) @6
7 2(1 -
Bo

Since only the lower value of Pe/7v0 is of practical interest, the minus sign should be
used in Eq. (2-67). The compressed length of the buckled spring can now be found
from Eq. (d).

For a spring with wire of circular cross section the flexural and shearing rigidities
are! o

_EN; 1 ‘ ©
* T Bno 1 + E/2G

_ Ell, . k
Bo = oy ¢)]

where I is the moment of inertia of the eross section of the circular.wire about a diam-
eter. The compressive rigidity is? : :
_ G, :
70 = g5, ()]
Substituting Eqs. (¢) to (g) in Eq. (2-67) and also taking E/G = 2.6, wl.ﬁf:h corre-
sponds to Poisson’s ratio of 0.3, we obtain the following expression for the critical load:

ﬁ:—:' = 0.8125 [1. £ 1 - 27.46 (f—:-)'] - (2-68)

i See Timoshenko, “Strength of Materials,” 3d ed., part II, Eq. (264), p. 297, and
Eq. (0), p. 298, D. Van Nostrand Company, Ine., Princeton, N.J., 1956.
* Tbid., part I, Eq. (162), p. 293, 1956. -
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Figure 2-60 shows a graph of P /v a8 a function of lo/R. The solid-line curve was
obtained using the minus sign 1n Eq. (2-68), and the dotted curve was obtained using
the plus sign. The graph shows that there is a critical value (I/E = 5.24) below
which the spring will not buckle. These calculations are in good agreement with
experiments, providing the number of coils is not small and the coils do not touch
before buckling occurs.?

2.20. Stability of a System of Bars. Several problems dealing with buckling of
built-up columns were discussed in Article 2.18 on the basis of certain simplifying
assumptions. To obtain a more satisfactory solution of these problems, an applica-
tion of the general theory of stability of a system of elastic bars is necessary.? Let us
begin with a consideration of trusses which have hinged joints and consider as a
first problem the simple case of a system consisting of only two bars (Fig. 2-61), such
that under the action of a vertical load P the vertical bar of the system is compressed
and there is no force in the inclined bar.

Assuming that the vertical bar is absolutely rigid but the inclined bar remains
elastic, the critical value of the compressive force P can be obtained easily by using the

1er e ity SIB-
' ///’ ‘ / ~*
12} / [
2 / | |
= osf ! [}
8’ | U
04| /
I
1] 1 1 1 I §
0 4 8 12 16 20 o ——
lo/R_ - c
Fie. 2-60

energy method or the equilibrium method (see p. 84).. Using the second method and
assuming that under the action of the vertical load the system may have a form of
equilibrium as indicated by the dashed lines, we must determine the magnitude of the
load necessary to keep the system in equilibrium in such a displaced position. If 3is
the small displacement of joint B, the tensile force in the inclined bar is A4ES cos a/d,
where d is the length of the inclined bar, « its angle of inclination, and A, its cross-
sectional area. The equation of static equilibrium of joint B, (Fig. 2-61) in the hori-

1 For the results of experiments, as well as an analysis considering other end con- -

ditions of the spring and other shapes of cross section of the spring wire, see Haringx,
loc. cit.

2 Such a theory was developed by R. von Mises Z. angew. Math. u. Mech., vol. 3,
p. 407, 1923. It was applied to various cases of laced columns by R. von Mises and
J. Ratzersdorfer, ibid., vol. 5, p. 218, 1925, and vol. 6, p. 181,1926. - Other cases were
discussed by H. Miiller-Breslau, “Die Neueren Methoden der Festigkeitslehre und
der Statik der Baukonstruktionen,” 4th ed., p. 398, Leipzig, 1913, and 5th ed., p.
380, Leipzig, 1924; L. Mann, Z. Bauwesen, vol. 59, p. 539, 1909; K. Ljungberg, Der
Eisenbau, p. 100, 1922; M, Griining, “Die Statik des ebenen Tragwerkes,” Berlin,
1925; Wilkelm Wenzel, “U'ber die Stabilitit des Gleichgewichtes ebener elastischer
Stabwerke ” Dissertation, University of Berlin, 1929.
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zontal direction is
l
Apleste 8 cos -p ]
from which P, = A.;E sin a cos? a (a)

To obtain a more accurate solution of the problem, the elasticity of the vertical bar
should be considered also. Under the action of the load P this bar will be compressed.
There is no force in the inclined bar if we base our calculations on the initial unde-
formed configuration of the system, as is usually done in calculating forces in bars.
Therefore any compression of the vertical bar produces lateral displacement of the
system, and joint B begins to move laterally at the beginning of loading. In such a
case there does not exist a definite critical value of the load P at which lateral dis-
placement becomes possible. To eliminate the necessity of considering the above
lateral displacement, let us assume the vertical bar to be compressed by the load P
first; only after this deformation is the inclined bar attached to joint B. Thus we
finally have the bar BC in a vertical position with the compressive force P acting on it
and the inclined bar free from stresses. In calculating the critical value of P, we
proceed as before and assume a small lateral displacement of joint B. Owing to this
displacement, a force in the inclined bar and a change in compressive force in the
vertical bar will be produced. Hence, any lateral displacement § of joint B will be
accompanied by a vertical displacement 3, of the same joint, due to change in com-
pression of the vertical bar. If X denotes the tensile force produced in the inclined
bar, the corresponding increase in the compressive force in the vertical bar is Xsina

" and 1ts shortening is

Xlsin &
AW

in which A, is the cross-sectional area of the vertical bar. The total elongation of the
inclined bar is equal to &cos @ — 5;sin o. . Then the force X is found from the
equation

l@__“os _Xisinta
4E """ T AR
i _ AGES cos a
from which X = d[l + (A4/4,) sin? a]

Writing the equation of equilibrium of joint B as

X(:05m=PT‘s

and substituting the above expression for X, , we obtain

A4E sin « cos? a ®)
1 4+ (44/A,) sin*

Comparing this with expression (a), obtained before, it is seen that the effect of com-
pression of the vertical bar is given by the second term in the denominator of formula
o).

The critical lead calculated from Eq. (b) will be of practical interest only when it is
smaller than the critical load for the vertical member considered as a bar with hinged
ends, since otherwise the system will fail owing to buckling of the vertical bar, and
not as a result of the lateral displacement shown in Fig. 2-61. Thus we can write
the equation

P, =

AJEsin acosta — xEAr?
i+ @gdyanias B
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in which I/r, is the slenderness ratio of the vertical bar. Assuming that E is the same
for both bars, the above equation ¢an be written in the following form:

2 ain3
Agsin acos*a ’”::r' +A.,;r,’1rpsm @

Remembering that (r./I)? is usually a very small quantity, it can be concluded that
the kind of instability represented in Fig. 2-61 can occur only if A4 is very small in
comparison with A, or if the angle « is very small. In both cases the second term in
the denominator of formula (b) is very small and can be neglected; thus formula (a)
is sufficiently accurate for practical purposes.

In the foregoing discussion it was assumed that the vertical bar was compressed
first by the load P and that only after this was the inclined bar attached. If the
system is assembled in the unstressed condition, then, as was mentioned before, the
application of any vertical load P will produce some lateral displacement. This
condition will be analogous to that of a bar compressed by forces applied with a small
eccentricity. From the very beginning of compression such a bar starts to bend, but
this bending is very small and begins to increase rapidly only as the load approaches
the critical value calculated for a centrally compressed bar. The same action occurs
in the above system, and the lateral displacement begins to increase rapidly only as
the load P approaches the value given by formula ().

Let us consider now the general case of a truss with hinged jvints, and for simplifica-
tion, let us assume that all joints are in the same plane. If we denote the initial length
of a member between any two joints ¢ and k by l: and the length of the same member
after loading by a.x, then the force in the member produced by the loading is AwE(a:
— L) /lix, where A is the cross-sectional area of the member. Equations of equi-
librium for any joint k can be written in the usual form:

z AaE(an ;,,l“) cosek w0

©

€
z AuBlan —Lu)sinoie _ . _ g
lix E

where ai; denotes the angle between the member ik and the z axis after the deformation
of the truss; X and Y; are the components of any external load applied at joint k,
and the summation is extended over all members meeting at joint k. In calculating
the critical value of the load, we proceed as before and assume an infinitely small
displacement of the system from the position of equilibrium and find the value of the
load necessary to keep the system in equilibrium in this displaced position. This
value will be the critical load. Let 3z and sy denote the components of the small
displacement of a joint k and 8z; and sy; the same for a joint 7; then from a simple
geometrical consideration (Fig. 2-62) it can be seen that the small change dai: in the
length of a member ik and the small change 3« in the angle aix corresponding to the
above small displacements are

dai = (821 — 3&!.) cos air + (Syr — 8y:) sin aux
b = L (—(bz2 ~ 42 sin aux + (g4 — 39.) <08 aal
Substituting @ + g for air, and oix + daus for au in Egs. {(c), the equations of

equilibrium for the new configuration of the system are- obtained. Remembering
that the displacements 8z and 8y are infinitely small, and using Egs. (c), the above

@
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equations become

Z cos a.lg
)

M‘t E sin @ AaE(aa ~ l.b) -0

llk
- 10}
ZSin - AZ?E sam + z cos ait AaE(au l.k) N y
- ik - Lix
3 1]

Writing equations of this form for all joints! and substituting for sa;; and g their
values from Eqgs. (d), we obtain as many homogeneous linear equations for determining
5z and 8y as the number of independent displacements 3z and 3y. The assumed dis-
placed form of equilibrium becomes possible when these equations may yield, for the
displacements 5z and 3y, solutions different from zero. Thus we arrive at the con-
clusion that the critical value of the load is obtained by equating to zero the deter-
minant of those equations.

Let us apply this method in the case discussed previously (Fig. 2-63). Since hinges
1 and 3 are fixed, there are only two independent displacements 8z: and 3y.. The

/{ 5\/2

Fic. 2-62 Fi6. 2-63

changes of the lengths a1s and @42, and of the angles a; and ass, from Eqgs. (d) are

dayz = 52: €os ajs + 8y, sin o 8333 = dys
52]

Sayy = — ( 8z2 sin a1 + ay, cOoB dn) dazs = — —a--
33

Substituting in Eqs. (¢), we obtain

sze ( — £ + AuE cos? au) + W AuE sin ays CO8 agg =0
au‘ a1z G12
oze AE sin a;s €08 a2 + oy (AI,E sin? ajs + AnE _ 0
a1z a1z Azs

Equating to zero the determinant of these equations, the critical value of the load P
is obtained, which agrees with the value (b) given before.

Applying the same method to the case shown in Fig. 2-64 and denoting by I and 4
the length and the cross-sectional area of the horizontal bars and by I; and A, the cor-

1 In the case of a joint at a fixed support, 5z and 8y are zero. In the case of a joint
on rollers, only one of the displacements éz and 3y is independent.
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responding values for the inclined bars, we find that the critical value of the load P is!
AE

P, = )]
e 20, A
cot? a (3 + IA, cos? a
In the case of very rigid inclined bars it becomes
AE
Por = 3cot? a @

This latter result can be obtained from a simple consideration of the displaced form of
equilibrium shown in Fig. 2-64 by dotted lines. If X is the decrease in the compressive
force in the upper horizontal bar due to the assumed displacement of the system, the
increase in the compressive force of the lower horizontal bars is X and the additional

F1a. 2-65

shortening of these bars is Xi/(2EA). Taking into account this shortening and also
the deflection & of the middle joint of the lower chord, we note that the elongation of

the upper horizontal bar is equal to 2 (l""s slm z . 4‘%—2) and the force X can be

found from the equation

[] 4AE  2AE
which gives X = —MEZ:;?’sma

Substituting this in the equation of equilibrium for the displaced system
Ps = Xl;sin a

which is obtained by passing a section through the truss and by taking moments about
the displaced position of the middle joint of the lower chord, we obtain the above value
(g) for the critical load.

i See R, von Mises and J. Ratzersdorfer, Z. Math. u. Physik, vol. 5, p. 227, 1925,
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In the case of a truss with many panels (Fig. 2-65), assuming that the diagonals are
very rigid, we obtain for the critical value of the compressive force!

2Bl

(2P)r = m 7

(2-69)

ovs . .
- Un o 2 tan? 4nw_ 5 n = number of panels

_AR* _ A ltana
(n__)l I=5-=3 )

A = cross-sectional area of a chord member

where

It is seen that, when n increases, the factor m approaches unity and the critical valiie
of the axial compressive load 2P approaches Euler’s value for a solid bar of length %,
and with I = Ah2/2 (Fig. 2-65).

In another extreme case, where the chords are very rigid in comparison with the
diagonals and where n is large, the result of rigorous calculations coincides completely
with formula (2-62), obtained before by an approximate method. The same result‘is
obtained also when the diagonals and the chords have

rigidities of the same order of magnitude.? p PM
The above results were obtained by assuming ideal ‘_> 8 I(‘—M I \

hinges at all joints. If we assume that the chords A_]:\‘-—— 7;-M

are continuous bars and that only the diagonals are M [ /

attached by hinges, rigorous calculations show? that
the additional rigidity can be calculated approxi-
mately by the method used in deriving Eq. (2-63).
Hence the approximate Eqgs. (2-62) and (2-63) can
always be used in practical caleulations provided the
number of .panels is not small, say not less than six.

In discussing frame structures, we begin with the
single frame shown in Fig. 2-66. Let I and ! be the
cross-sectional moment of inertia and the length of
verticals and I; and b the corresponding quantities
for the horizontal bar. Assuming that under the
action of the vertical loads P the frame buckles sideways as shown in the figure and
denoting by M the moments at the rigid joints, we find the differential equation for
the deflection curve of a vertical is

BI j’y PG —y) - M *)
jt,he solution of which is -
y=2Acoskr +Bsinkz + 5 f%
. P
where k? = i

Determining the constants A and B from the condltmns at the bullt-m end, we
obtain

y=(5——)(1~coskx) N o G

. 18ee R. von Mises and J. Ra.tzersdorfer Z. angew. Math. Mech., vol. 5, p 218 1925,
and vol. 6, p. 181, 1926.
* Ibid.
2 Sec Wenzel, loc. cit.
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The conditions at the upper end of the vertical are
dy _ Mb .
Wemt = 8 d_x),_z = 8EL (6))

Substituting Eq. (7) for y, we obtain

'3 cos ki +%(1 —coskl) =0
(k)

'sksmkl——(lcsmkl+ =0

6EI,

When the determinant of these equations is equated to zero, the following equation
for calculating the critical value of the load P is obtained:

kil 6l
, tnE - T B ®
If the horizontal bar is absolutely rigid, then I; = « and we obtain
!EI .
Kl=x Pg= ’—'T,— , (m)
In another extreme case, where I; = 0, we obtain from Eq. ()
x ¢ »El
kl = § P, = —41?' (ﬂ)

For all intermediate cases the value of P, is obtained by solving Eq. (I).

In the above discussion the changes in lengths of the verticals at buckling have been
neglected. From Fig. 2-66 it is seen that, owing to the action of the moments M,
tension in the left vertical and compression in the right vertical equal to 2M /b will be
produced. The corresponding change in length is 2M1/(AEb) and the resulting
rotation of the horizontal bar is 4M1/(AEb?). Hence the second condition of (j)
becomes

' 4+ AM 4M1
(d:c 2 6EI 1 AEb

Making the corresponding changes in Eqgs. (k), we finally obtain for determmmg
the critical value of the load P

K _ e 1 ©
tan & o 1+ 24,740

The last factor on the right side of this equation represents the effect of the axial
deformation of the verticals on the magnitude of the critical load. Since I, is usually
very small in comparison with 452, this effect is small and usually can be neglected.

In the case where the frame (Fig. 2-66) is not symmetrical or is not symmetrically
loaded, the problem of determining the critical value of the load becomes more com-
plicated, since it is necessary to consider displacements and rotations of both upper
joints.!

In the case of a square frame with all members equal and equally compressed (Fig.
2-67), buckling will occur as shown in the figure and each bar is in the condition of a
bar with hinged ends, so that the critical compressive force is given by Eq. (2-5). For
any regular polygon with n equal sides and with each member compressed by the same
axial force (Fig. 2-68), the critical force in the bars is given by the following equations:?

1 Several examples of this kind are discussed by Mises and Ratzersdorfer, loc. cit.
* Ibid.

" chaussées, series 9, vol. 3, p. 551, 1913.
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2
Forn >3 P (41) E1

Forn =3 P, = (1.237)’l—

(2-70)

For more complicated framed structures, a general theory of stability has been
developed.! Using a method analogous to that applied above for trusses with hinged
joints, the critical values of the loads are found by equating to zero the determinant of
the system of homogeneous linear equations representing the conditions of equilibrium
of the joints of the system in a slightly deflected condition.

Applying this method to the case of columns with batten plates (Fig. 2-57) and using
the same notations as in Art. 2.18, we obtain the following expression for the cntlcal
load in the case of very rigid battens:

2 "
P, = 2L @71)
The numerical factor 2 is obtained from the transcendental equation
4, 1 —cos(x/n) sinz
e e —— ®»

ADE T cos (a/n) —cosz z

where n = [/a denotes the number of panels in the column, A, is the cross-sectional
area of one channel, b is the length of a batten, equal to the distance between the center

Q Q
Q Q
/ \
|
! |
\ 1!
\ o 1
Q Q o ce
Fia. 2-67 ‘ Fia. 2-68 ..

lines of the channels, and I, is the moniént of inertia of the c.ross-seaﬁonal area of one
channel: Calculations show that the approximate equation (2-64) 1s in satisfactory.

- agreement with the more rigorous solution Eq. (2-71).

. Take, as a numerical example,?
Ab?

7yl 180 n =10

1 =21 +22 - 36,
Substituﬁng these data into Eq. (p), we obtain
z = 2.583

1 Ibid.
* These numerical values are taken from the dimensions of the specimens used by
Timoshenko in experiments with models of batten-plate columns, see Ann. ponts et _
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and the critical load, from Eq. (2-71), becomes

P rEI

The approximate Eq. (2-64) gives, for I, = « and 4y = o,

=Bl 1 =*EI
21+ xta?/2410% = 0.403 7~ N

P, o, =
Thus in this extreme case, where the critical load for the batten-plate column is only
about 40 per cent of that calculated for the corresponding solid column, the error of
the approximate equation is about 9 per cent. For cases where the critical load does
not differ much from the value calculated for a solid column, Eq. (2-64) represents a
better approximation and can be used with sufficient accuracy in practical design and
also in cases where the flexural rigidity of the batten plates is not large.

The stability of a framework  with rigid joints can be investigated by.using the
moment-distribution method. In the use of this method, a particular set of values of
the external loads is assumed and the corresponding axial forces in the bars are deter-
mined, assuming that the truss has pin joints. Then an arbitrary moment is applied
to one of the joints of the frame and the moments in the frame are distributed in the
usual way. However, stiffness and carry-over factors used in the moment-distributi?n
computations are modified to include the effect of axial load.! If the moment-dis-
tribution computations converge to finite values for the final end moments, the frame
is, in general, stable. The entire process is then repeated using increased loads on the
structure but maintaining the loads in the same proportion. If the loads are above
the critical value, the moment-distribution computations will not-converge, in gen-
eral, to finite values of the end moments in the bars. Thus by successive applications
of this procedure, the critical load is determined.?

2.21. The Case of Nonconservative Forces. In many of the preceding articles we
began our analysis by considering a slightly buckled form of the column, but no men-
tion was made of the manner in which the deformation varied between the initial
straight form and the final buckled form. This was permissible, since we dealt only
with conservative forces, for which the work done during a displacement depends only
on the initial and final positions and is independent of the path of the point of applica-
tion of the force. For example, the work done by a gravity or weight force depends
only on the lowering of the center of gravity of the object. We made use of this fact
in calculating critical loads by the energy method, sinice the work done by the qxternal
forces was taken as AT = P), where X represented the distance bétween the initial
and final locations of the point of application of the force P, measured in the direction
of the force. Likewise, when the differential equation of equilibrium was used, the
existence of a buckled form was assumed and the smallest force required to maintain
the bar in that form was determined from the end conditions. This critical force was
independent of the path of the bar in reaching the assumed buckled shape. )

In the case of nonconservative forces both of the above methods, called siafic
methods, may prove inadequate, and we must use instead a dynamic criterion of

1 Modified values of these factors were determined by B. W. James, NACA Tech.
Note 534, 1935. .
..2The validity of this method was established by N. J. Hoff, J. Aerenaut, Sci.,
vol. 8, no. 3, pp. 115-119, 1941. See also N. J. Hoff, B. A. Boley, 8. V. Nardo, and
8. Kaufman, Trans. ASCE, vol. 116, p. 958, 1951.
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stability.! An example of a nonconservative force acting on a column is shown in
Fig. 2-69¢. It is assumed that a constant compressive force P is applied to the column
and always acts during buckling in the direction of the tangent to the deflection curve
at the top of the column. In this case it is not possible to calculate the work done by
the force P durmg buckling on the basis of the initial position A and the final position
A’ only. It is necessary also to know the direction of the tangent at every ‘inter-
mediate position. - To show: this, let us resolve the force P into a vertical component
P1, which can be taken equal to P if the deflections remain small, and a horizontal
component H (Fig. 2-695). If the tangent at A remains vertical dunng buckling; as
"shown by the dotted line, and ‘then is allowed to rotate only after reaching point A’
there will be no work produced by the horizontal component H. ‘Thus the total
work done would be the same as in the usual case of a column with vertical load.
A different result is obtained if the tangent at ‘A and the force P rotate continuously
during buckling, since then the horizontal component H also produces work:- It is
apparent that a definite value of the work
done by the force P can be obtained only if
additional information regarding the deflec-
tion curveof the column during buckling is
available. This conclusion shows that the
energy method cannot be used in this case for
caleulating P.,.
If we attempt to use the dlﬁ'erentxal equa- !

tion (2-9) for determining P., we observe

that the lower end of the column is fixed (Fig.
2-69a), and therefore the conditions are

y=§—’;=o atz =0, @ P
‘ (a) ()
At the upper end of the column the bending Fig. 2-69
moment is zero and the shearing force V is
—H, which is equal to —P dy/dz. Thus from Eqs. (1-3) and (1-4), Art. 1.2, we
have the conditions

P

«
dy _dy =0 atz =1 ()]

dz* = dg?

Using these conditions for determining the four constants of integration in the general
solution [Eq. (2-10)], we find that the conditions can be satisfied only by taking all the
constants equal to zero. A From this we would conclude that only the straight form of
equilibrium is possible within the elastic range. This is the conclusion from s static
point of view. Let us next mvestlga.te the stability of the column from a dynamlc
point of view. -

In stating the dynamic criterion of st&blhty, we begin by assuming that the loaded
column is subjected to an initial disturbance which produces small vibrations. If
these vibrations decrease with time, we can conciude that the straight form of equi-
librium of the column is stable. The initial vibrations gradually die out owing to
damping action, which is always present, and after an interval of time the column
returns to its initial straight form. On: the other hand, if the external forces acting
on the eolumn are such that the amplitude of the vibrations begins to grow without
limit, the stra.lght. form of equilibrium of the column is unsts.ble

18ee the papers by H. Ziegler in Advances in Appl Mech., voL 4, pp. 357-403,
1956, and Irngr.-Arch., vol. 20, no. 1, p. 49, 1952,
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i i i tive forces, it was shown (see p. 84)
the previous cases dealing with conserval . .
thzlx if :h:,) load was below the critical value, any deflection of tl.le _column fro:;:t;:;s
initial straight form corresponded to an inerease of th:ttl:\ttlxl a%(;bentl.lfa; :::ng]; :m‘m:
i oad).
train energy of the bar plus potential energy of the ‘ g
iﬁ:i?:tgj energy is imparted to the column by an initial ;mpulse zx}lld 1:;1;1;1::‘31 ebnste nxe(;
it inei f conservation of energy tha
it can be concluded from the principle o o r no
i i tical loads determined by t
for the vibrations to grow. Hence ‘the cri 1
::g:ngethods will satisfy the dynamic criterion of stab;h];y ;.ls:: Inft:;f (t:::e 3::
rvati iti i t. If small vibrations of the
nservative forces, the conditions are differen ; . : X °
;oi::lf:ted the forees ma,y produce positive work, which wﬂl _result in a progressive grow-
ing of th’e amplitude of vibrations. Sucha condition indicates that we have the case
'Of ;:tt:::ﬂg ‘-to our preﬁous example of v.a bar subjected to a nonct?nserv?.tive force
(Fig. 2-69) and using the dynamic eriterion of stability, we. h?ve t&(_)fmves}t;ga: ;r)nzlyl
. i is vibration is found from Eq.
i jons of the column.! The equation for th.ls vib
;li)x::hlg?;ilembert’s principle and substituting inertia forces for the lateral load. In
this way we obtain the equation

*y  pd 13 _, . @
EIGA+P i+

in which ¢/g is the mass per unit length of the eolumn. Dividing by EI and using the
notation

P =2
R A @
we obtain .
a y . % _
6_34_;,:@_,_“&’_ ©

The solution of this differential equation with constant coefficients can be taken in
the form

y = Af(x)e (6]

where i = v/ —1. Substituting into Eq. (¢), we obtain for f(z) the ordinary differ-
ential equation

aI@) | g d——:ﬁf) - (@) =0

dx(
for which the general solution is
j@) = A cosh Mz + Bsinh Mz + Ccos Mz + Dsin Asz N0
where A= [Vﬂw’ -+ i '5] »

- R " e
. ' M= [ Voot +5 + 5]
3 v inati i lution (g) we have the four end
: For the determination of the constants in the 80l i ve .
conditions given by (@) and (b). Substitutmg Eg ;g) 1'1;‘ tho:?;o:gle:u:: :;:i :::::1;
us linear equations for 4, B, C, an . To satisfy e eq
f::::::n :;ge:e; = .( = D = 0, which gives the straight form of equilibrium of the

is investigation was made eck, Z. Mah. u. Physik, vol. 3,
1This investigation was made by Max Beck, Z. angew. Physik
p.225,1952. Independently the same problem was discussed by K. 8. Dejneko and
M. J. Leonov, Appl. Math. Mech. (Russian), vol. 19, p. 738, 1955.
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column. To obtain another solution, the determinant of the equations-must vanish,
This gives the frequency equation . :

2a0? + k* + 2aw? cosh M\l cos M\l + k? v/aw? sinh A, sm )\J =0 (2-72)

from which the radian frequency w can be calculated for any value of the force P,

It is seen that for w = 0, that is, for the static condition of the column, there is no

value of ¥*, different from zero, which can satisfy Eq. (2-72). This means that there

is no value of P at which the column ean stay in a slightly buckled condition, and we

thus reach the same conclusion as in the previous calculations using the:static method.
Now considering « different from zero and also taking P = 0, we obtain

B=0 A==Vt
and Eq. (2-72) becomes

cosh (I v/ qw’) cos (I Vaw?) = —1 - (O]

This is the known frequency equation for a prismatic cantilever bar! and the first two
frequencies w; and w; are given in the second column of Table 2-15.

TasLE 2-15. F#pqtmﬁcms oF CoMprEssED COLUMN (rrom Eq. 2-72)’

25 ’

~E 0 0.5 1.0 1.5 | 2.0 2.001
alt

‘w?— | 0125 | 0.26 | 0.30 | 0.46 | 0.96 | 0.98
il
alt .| .

w— | 4.86. 4.2 3.3 2.6 1.02 | "0.99
- >

If we now consider increasing values of P and take continually larger values of k?
in Eq. (2-72), we obtain the squares of the first two frequencies w; and w,, as given in
the second and third lines of Table 2-15. The values of w? are positive, and when the
corresponding values of « are substituted into Egs. () and (f), we obtain solutions
of Eq. (¢) in the form ’

~y=flx)sinef and -y = f(z)coswl

These equations represent, simple harmonic vibrations of constant amplitilde, and
thus we conclude that the column is stable. There is, however, a definite value of P
at which the character of the vibration of the column changes. We see from Table
2-15 that the values of w;? and ws? approach each other as P increases, and a more
refined calculation shows that for .

P : . o
: ET = 2008 Lo
these values coincide; that is, the frequency Eq. (2-72) has a double root. With a
further increase of P t_he roots become complex and of the form w = m + in, where
m and » are real numbers. Substituting in Eq. (f), we obtain solutions of the form

y = f(x)er+mt  and gy = f(zg)et~ntime

18ee Timoshenko, “Vibration Problems in Engineering,” 3d ed. in collaboration
with D. H. Young, p. 338, D, Van Nostrand Company, Inec., Princeton, N.J., 1955.
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Since either n or —n is ;z positive number, the corresponding value of y increases
indefinitely with time, indicating that the column is unstable. Thus from Eq. (j) we
obtain the critical value of the force P as

- Z.OO?I’EI (2-73)

Thus by applying the dynamic concept of stability we obtained for the tangential
force P a definite critical value which we were unable to find by static considerations.
No definite conclusion can be made (as yet) regarding the practical value of this result,
since no method has been devised for applying a tangential force to a column during
bending.

A gimilar problem arises if we assume that compressive forces are distributed along
the axis of the column and always act in the direction of the tangent to the deflection
curve. .
Compressed and Twisted Shaft. As another example of buckling under the action of
nionconservative forces, let us consider the case of & shaft subjected to the action of an

axial compressive force P and a twisting couple M,,

Per

M, X Fig. 2-70. The ends of the shaft are assumed to be
B :5_ P P attached to the supports by ideal spherical hinges, or
) universal joints, and are free to rotate in any direction.

Let us assume also that during buckling the forces P
and the couples M; retain their initial directions.
x! x' Under such conditions the couple M, is not conserva-
tive, since its work depends on the manner in which
the tangent at the end of the bar moves during buck-

yr_€ ling. To show this, let us consider the lower end 4
z of the shaft. The tangent to the slightly buckled
shaft at A can be brought to its inclined position by
rotation about the y and z axes through angles dz/dz
My A z A and dy/dz. During such rotations the couple M,,

745 P Ip which always lies in a horizontal plane, does not pro-
Yy ’ duce any work. However, the tangent can be brought
(@) (b) (c) 1o the inclined position in another way. We can, for

6. 2-70° example, rotate the tangent about the y or z axis by

the angle (4/dy* + dz?)/dz and then bring it to the

final position by rotation about the z axis. During the latter rotation the couple pro-

duces work, and thus it is evident that we have a nonconservative system of loading.

Assuming that the behavior of the twisting couples is ascertained in some way, let us

determine the critical loads from the equations of equilibrium of the buckled shaft,
using the usual static approach.

The defléction curve in this case will not be a plane curve, and we must consider
the two projections of the curve as shown in Fig. 2-70b andc. We agsume also that the
principal moments of inertia of the cross section of the bar are equal, so that any two
central perpendicular axes in the plane of the cross section can be taken as the principal
axes.! -Considering any cross section mn of the bar and taking the principal axes
parallel to y and 2, we find that the directions of these axes after buckling will be
v and 2. In deriving the differential equations of the deflection curve, we consider
the upper portion of the bar and caleulate the moments of the forces applied to this
part of the bar with respect to the y’ and 2’ axes. Taking the moments positive as

_.*The .case. of & shaft with two different flexural rigidities was discussed by R.
Grammel, Z, angew. Math, u, Mech., vol. 3, p. 262, 1923,

3
!
3
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indicated in the figures, we find that the moments, with respect to the y’ and 2’ axes,
?f the compressive force P are Pzand — Py, respectively. The moments of the twist~
ing couple M, with respect to the same axes are —M,dy/dz and —M, dz/dz. The
differential equations of the deflection curve in each plane now become

d%z d;
EIS = —P: + M,Ez’!
dty d (k)
EIZY = —Py - M, 3-:
The general solutions of these equations are
-y = Asin (mz + 1) + Bsin (max + as)
z = A cos (iz + a1) + B cos (maz + as) ®

in which 4, B, a1, and a; are constants of integration and m, and m. are the two roots
of the quadratic equation

EIm* 4+ Mm — P =0 (m)

Substituting (l)'into Eqgs. (k), it can be shown that these equations are satisfied.
thFor :lisetermmmg the constants 4, B, ai, and as we have the following conditions at
e ends:

W)smo = 0 @)zt =0 (2)ze0 = 0 (@) =0 (n)

Substituting expressions (I) for y and z, we obtain:

Asina, + Bsinas =0 Acosay +Beosas =0
A sin (myl 4+ ;) + Bsin (mol + as) = 0
A cos (mil 4+ a1) + Beos (mal + as) =0

On substituting for B sin a» and B cos a; from the first two equations in the second
two, we find that

Afsin (i + o) — sin (mal + a1)] = 0
Alfcos (myd + 1) — cos (mal + ay)} = 0

from which it follow§ that m and m,! differ by a multiple of 2r. The smallest values
for M, and P at which buckling will occur are obtained from the condition

mil — mgl = £%x
or, by using Eq. (m),

M2 Bl
@ tP =5 (2-74)

When Mf is zero, this equation gives the known Euler formula for the critical load.
When P is equal to zero, we obtain the value of the torque, which, acting alone, will
produce buckling of the shaft.! If the shaft is in tension, the sign of P in Eq. (’2-74)
must be changed. Thus the stability of the shaft against buckling produced by a
torqu.e is increased if a tensile force is applied. )

This same pl:oblem was discussed by the use of the dynamic concept of stability,
and from a consideration of the lateral vibration of the shaft the same expression (2-7 4;

! Formula (2-74) was obtained by A. G. Greenhill, Proc. Inst. Mech. Engrs. (Lon-
do.n), 1881?,. Further discussion of the problem is given in the papers by E. L. Nicolai,
D]s;:rtiagggn, St. Petersburg, 1916 (Russian), and Z. angew. Math, u. Mech., vol. 6,
p. 30, .
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was obtained.! The problem of buckling of shafts with other end conditions was
discussed by several authors,? but again, in the ease of nonconservative forces, the
question of how to apply the forces ‘mechanically remains unanswered. Thus at
present there is no experimental wverification of the results. In the theory of struc-
tures in the elastic range we usually encounter stationary conservative loads and a
static approach to stability problems is satisfactory. On the other hand, the dynamic
concept of stability is essential in the analysis of problems where
P+S¢0s 0t the forces vary with time. Some examples of this type will be
% discussed in the next article.
7.

2.22. Stability of Prismatic Bars under Varying Axial Forces.
Let us begin the discussion with the simple case of & uniform bar
with hinged ends (Fig. 2-71) subjected to the action of the axial
compressive force

P 4 Scos (@)

This force consists of a stationary part P and a periodically vary-
ing part S cos ¥, having amplitude 8 and radian frequency €.
The total axial compressive force therefore varies between P + S
and P — 8. Experience has shown that a slender bar can with-
stand without buckling & maximum force P + S which is larger
than the Euler load P, = x*EI/I*. Also, at certain values of the
frequency € of the pulsating force, violent lateral vibrations of the
bar are produced, so that the bar is unstable at these frequencies.?
Fia. 2-71 In studying this problem the dynamic concept of stability will be
used. We shall assume that the bar is straight and perfectly
elastic and that small lateral vibrations are produced by some impulse. During these
vibrations the upper end of the bar moves glightly up and down and, at certain fre-
quencies, the external pulsating force may produce positive work, resulting in increas-
ing amplitude of the vibrations. This indicates the condition of instability.*
In studying the lateral vibrations we shall use the differential equation (c) of the
preceding article which in the case of the pulsating load (a) becomes®

. 2,
Ezg;—”;+(P+scosm)g—;+§%=o ®

18ee H. Ziegler, Z. angew. Math. u. Phys., vol. 2, p. 265, 1951, and A. Troesch,
Ingr.- Arch., vol. 20, p. 258, 1952.

2 A review of these cases is given in the paper by H. Ziegler in Advances in Appl.
Mech., vol. 4, pp. 357-403, 1956. :

3 A similar phenomenon can be demonstrated easily by applying to a string a pul-
sating tensile force. At certain frequencies of the foree violent 1ateral vibrations of
the string can be produced.

4 This problem was first solved by N. M. Belajev, Engineering Structures and
Structural Mechanies, *Collection of Papers,” pp. 149-167, Leningrad, 1924. See
also E. Mettler, Mitt. Forsch. Anst. GHH-Konz., vol. 8, p. 1, 1940, and K. Klotter,
Forsch. Ing.-Wesen, vol. 12, p. 209, 1941, A similar problem in the case of a bar with
built-in ends was discussed by F. Weidenhammer, Ingr.-Arch., vol. 19, p. 162, 1951.
Numerous problems on stability of structures under pulsating loads are given in the
book by B. B. Bolotin, “Dynamic Stability of Elastic Systems,” Moscow, 1956 (in
Russian).

s It is assumed here that the period of the pulsating foree is very large in comparison
with the period of the fundamental longitudinal vibration of the bar and therefore we
can take the axial force as constant along the length of the bar.
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Let us take the solution of this equation in the form

= in 2 '
Y= AfQ) sin %] : ©

:;:ici];s:lfisfﬁ:s th«; coz;dli:ions at 'the hinged ends of the bar and represents the deflec
) rm of a sine wave. Substituting Eq. (¢) i i .
following equation for determining the function f%t) :q (€) fnto . (), we obtain th'e

&f() | ge (Bl
o (T —P)r0 - (8o at)0 =0 @

In the particular case when S = 0 and P
= < x2E1/1?, we have a static load small
than the Euler load and Eq. (d) gives a simple ha.rm’om'c vibration with’frequen:;

_ grt (x*E]
o = (5 -P) O
For P = 0 we have
,  gr'EI
wo Iz (€3]

l':.’:rxs wlist ltlhe tsqufa!.]r‘lelof thle radian frequency of lateral vibration for a pin end prismatic
: out axi oad: From Eq. (¢) we see that with an increase in the load P the
l:-.c:aquency  decreases al'ld when the load reaches the Euler value, the frequenc;
omes zero. U?Jder this load there will no longer be any vibration ;md the bar is iZ
ethbnu.m. in a slightly deflected form. Thusfor S = 0, Eq. (d) giv;s the same val
for the cntlca'l load as found previously from static considerations e
Let us consider now the case when S is not zero and the bar is subl;litted to the action

of a pulsating load. To simpli it i
of o :i’ons; g loa: o sxmphfy the writing of Eq. (d) we introduce the following .

=B 8
P=P. °*TPR @
Then Eq. (d) becomes
drf(t
s . % + wd*(l — p)f(t) — wet(s cos () =0 ®

§_ow let us replace ¢ by a new variable r defined by the relation

ek i T=Q
o e O
; dr?
kq (k) becomes ’
& (r )
T 4 @ +beosn)ft) =0 )
_ @ 2 @ 32
a——ﬁo,-(l—p) b=—§°;s »

h particular case the quantities a and b can be | il

eac ase the calculated readily by usin; .
Fand (g). ;Investxgatxon shows? that the characteér of the solution of yEq.y(ic) deieEnfl;s
/e numerical values of a and b. At certain values of these quantities the solution

iBee Timoshenko, “Vibration Problems in Engineering,” 3d ed. in collaboration
D. H. Y:mmg,‘p. 332, D. Van Nostrand Company, Inc., Princeton, N.J., 1956

*8uch an investigation was made by M. J. O, Strutt, Z. Physik, V(;l 6.9.’ 597

1, and Ergeb. Math., vol. 1, p. 24, 1932, ’ TR B
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gives a vibration which grows with time and thereby indicates an unstable condition.
This is shown in Fig. 2-72, where values of @ and b given by coordinates of -points in
the unshaded areas represent an unstable condition. The shaded areas indicate
regions of stability.!

Starting with the case of small values of 8 we have to consider points in the vicinity
of the horizontal axis, and we see that instability occurs whene = 4,1,2}, . . .. If
we take p = 0, we reach the first critical value of @ when @ = 2w, which shows that a
small periodically varying axial force may produce violent lateral vibration of the
bar if its frequency is twice the fundamental frequency of lateral vibration of the bar.?
The next critical condition corresponds to @ = 1, or @ = we. When p is gradually
increased from 0 to 1, the critical values of @ decrease. Taking, for example, p = 4,
we get for the first critical frequency @ = A/2 wo. When the magnitude of the varia-
ble portion of the load increases, b will increase also; then the regions of instability
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in Fig. 2-72 become wider and, instead of critical points, we get for @ gradually widen-
ing critical ranges. o

In the preceding discussion the effect of damping was not considered. If it is taken
into consideration, the curves in Fig. 2-72 must be somewhat altered, as shown by the
dotted lines. The regions of instability are reduced, and finite values of S are required
to produce lateral vibrations in the region of the critical points. Furthermore the
required values of S are seen to increase with the order of the critical frequencies, and
thus frequencies of higher orders become of no practical importance.

We see also from Fig. 2-72 that the maximum compressive force P 4 S, consistent
with stability, may become much higher than the Euler load. Let us take, as an
example, the values p = 0 and 1 <a < 1. We see that between these values of a

1 Equation (k) is known as the Mathieu equation, and additional references on the
theory of this equation are given in the paper by 8. Lubkin and J. J. Stoker, Quart.
Appl. Math., vol. 1, no. 3, p. 215, 1943. .

* This is readily apparent if we note that the pulsating load produces positive work
when it is in compression and when the vibrating bar is moving from the middle
position to the extreme position. Likewise, it produces positive work when it is in
tension and the bar is moving from the extreme fo the middle position.
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there are values of b greater than 2 in the region of stability. This means that the
maximum compressive force can be more than twice the Euler load without producing
1ateral buckling of the bar. It is assumed that the bar is sufficiently slender that the
maximum stress always remains below the elastic limit of the material.

As another example of the action of a force which varies with time, consider again
the bar in Fig. 2-71 and imagine that the lower end of the bar is stationary while the
upper end A moves downward! with a constant velocity ¢. Assuming an initial
crookedness of the bar

vo=asin T} (m)
the differential equation for the lateral displacement y, of the center of the bar during

loading was derived and integrated. The results of this integration for one particular
case are represented in Fig. 2-73. The vertical axis of the graph gives values of the

5 4 T
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Fig. 2-73 Fia. 2-74

dimensionless quantity y./r, where y. is the deflection at the center and r is the radius
of gyration of the cross section. The horizontal axis represents time and is expressed
in dimensionless form. The graph is plotted for an initial crookedness given by the
ratio a/r = 0.25 and also for the value of the parameter

_ =%Elry

a = oy = 2.25

For comparison, the static deflection of the bar for the same displacement of the
upper end A is also plotted in the figure. Owing to the inertia forces, the dynamic
deflections of the bar at the beginning of loading lag behind the values for static load-
ing. With a further increase in time the bar is accelerated sufficiently to cause the
deflections to increase rapidly. Finally the deflections exceed the static values, and
lateral vibrations of the bar ensue. The corresponding values of the axial compressive

1This problem was discussed by N. J. Hoff, J. Appl. Mech., vol. 18, p. 68, 1951.
See also N. J. Hoff, 8. V. Nardo, and B. Erickson, Proc. 1st U.S. Nail. Congr. Appl.
Mech., ASME, New York, 1952,
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force are shown in Fig. 2-74. In this example the velocity ¢ of the upper end of the
bar was about 4 in. per sec.

The problem of 1ateral buckling of an initially eurved slender bar was studied also
in the case in which a constant compressive force P acts for a short interval of time.?
Assuming again that the time interval during which the force P acts is large in com-
parison with the period of longitudinal vibration of the bar, we may consider the com-
pressive force as constant along the bar. The equation for lateral motion of the bar
then becomes

oty g 3%
Bl 4P Z ) +150 =
in which y, dehotes the initial deflection of the axis of the bar from the straight form
and y + y, represents the total deflection. Again, assuming the deflection for a bar

with hinged ends in the form
w=asin  y =470 snT}

we obtain for f(f) a differential equation with constant coefficients which can be solved
readily in each particular case. In this way it can be shown that the bar can with-
stand safely compressive forces P larger than the Euler critical load provided the dura-
tion is sufficiently short.

Similar problems were discussed in the case of buckling of thin plates, and again it
was shown that plates can carry stresses in the middle plane higher than the critical
values provided the duration of action of the external forces is very short.?

1 8ee the paper by C. Koning and J. Taub, Lufifahrt-Forsch., vol. 10, p. 55, 1933.
An English translation appears in NACA Tech. Mem. 748, 1934.  See also the paper
by J. H. Meier, J. Aeronaut. Sci., vol. 12, p. 433, 1945. '

% See the paper by G. A. Zizicas, Trans. ASME, vol. 74, p. 1257, 1952,

CHAPTER 3

INELASTIC BUCKLING OF BARS

3.1, Inelastic Bending. Before beginning the discussion of inelastic
buckling, let us review the theory of bending of beams when the material
is stressed beyond the proportional limit.! The theory is based upon the
assumption that cross sections of the beam remain plane during bending,
and hence longitudinal strains are proportional to their distances from
the neutral surface. Let us assume also
that the same relation exists between stress
and strain as in the case of simple tension
and compression, represented by the stress-
strain diagram in Fig. 3-1.

Let us begin with a beam of rectangular
cross section, Fig. 3-2, and assume that the €2 @
radius of curvature of the neutral surface 0 __l
produced by the bending moments M is / a
equal to p. In such a case the unit elonga-
tion of a fiber at distance y from the neutral / '
surface is J

@

Denoting by h; and h; the distances from
the neutral axis to the lower and upper surfaces of the beam, respectively,
we find that the elongations in the extreme fibers are

(4 B

L.
]
© i

Fi1a. 3-1

a=— eg=—- ()

It is seen that the elongation or contraction of any fiber is readily obtained
provided we know the position of the neutral axis and the radius of curva-
ture p. These two quantities can be found from the two equations of

! For a more complete discussion of inelastic bending, see Timoshenko, “Strength
of Materials,” 3d ed., part II, chap. 9, D. Van Nostrand Company, Inc., Princeton,
N.J., 1956. .
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statics: .
/AadA=bf__hady=0 ©
/AaydA =bf_’_':“aydy=M @

The first of these equations states that the sum of the normal forces
acting on any cross section of the beam vanishes, since these forces repre-
sent a couple. The second equation states that the momfent of the same
forces with respect to the neutral axis is equal to the t?e_ndmg moment M.

Equation (c) is now used for determining the position of the neutral

axis. From Eq. (a) we have
Y = pe dy = pd€ (E)

Substituting into Eq. (c), we obtain
h @ _
[Rody=p[lcde=0 f)

Hence the position of the neutral axis is such that the integral L ) o de
vanishes. To determine this position we use the curve AOB in Fig. 3-1,

be— b —»]

" B

: —

hy hy
B

Fia. 3-2

N

L

which represents the tension-compression test diagram for the material
of the beam, and we denote by A the sum of the absolute values of the
maximum elongation and the maximum contraction, which is
hy , ha _h

A=€1—€2=;1+f=-p @)
To solve Eq. (f), we have only to mark the length A on the horizontal axis
in Fig. 3-1 in such a way as to make the two areas, shaded in the figure,
equal. In this manner we obtain the strains e and e in the extreme
fibers. Equations (b) then give
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2 ®

hs

which determines the position of the neutral axis. Observing that the
elongations ¢ are proportional to the distance from the neutral axis, we
conclude that the curve A0B also represents the distribution of bending
stresses along the depth of the beam if k is substituted for A.

In calculating the radius of curvature p we use Eq. (d). Substituting
for y and dy their values from Eqgs. (e), we represent Eq. (d) in the follow-
ing form:

€1
€2

bp? f: ore-de =M (’i)

By observing that p = h/A from Eq. (g), we can write Eq. (2), after a
simple transformation, as follows:

bht112 [« .
I—Z-FB‘/;'G'EdC-_—M (])

Comparing this result with the known equation

Bl _
p

(k)

for bending of beams following Hooke’s law, we conclude that beyond the
proportional limit the curvature produced by a moment M can be
calculated from the equation
4
FP—I -M 3-1)

in which E’ is defined by the expression

12 €

F=%].

ge de (3-2)
The integral in this expression represents the moment with respect to the
- vertical axis through the origin O of the shaded area shown in Fig. 3-1.
Since the ordinates of the curve in the figure represent stresses and the
- abscissas represent strains, the integral and also E’ have the dimensions of
pounds per square inch, which are the same dimensions as the modulus E.
The magnitude of E’ for a given material, corresponding to a given
eurve in Fig. 3-1, is a function of A or of h/p. Taking several values of A
i and using the curve in Fig. 3-1 as previously explained, we determine for
gach value of A the corresponding extreme elongations ¢; and e and from
kB (3-2) determine the corresponding values of E. In this way a curve
‘ presenting B’ as a function of A = h/p is obtained. In Fig. 3-3 such a
¢ is shown for structural steel with E = 30 X 10¢ psi and the propor-
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tional limit equal to 30,000 psi. In this case, for A < 0.002, E’ remains
constant and equal to E. With such a curve the moment corresponding
to any assumed curvature can be readily calculated frem Eq. (3-1), and
we can plot a curve, Fig. 3-4, giving the moment M as a function of A.
For small values of A the material follows Hooke’s law, and the curvature
is proportional to the bending moment M, as shown in Fig. 3-4 by the
straight line OC. Beyond the proportlonal limit the rate of change of
the curvature increases as the moment increases.

If the tension and compression portions of the stress-strain dlagram are
the same, the neutral axis passes through the centroid of the cross section

30-10°
M /
//

~, 20-10%- y
£ /
) , ;
B 10-106 cs

{ ] 1 1 i I ! !

00 0.010 0.020 0 0005 0010 0.015
A=hip A=h/p
Fi6. 3-3 Fic. 3-4

and we obtain the following simplified expressions:

h
hi=hi=3
- ~a
61——62—2
24 [or2
7 = ==
E—A,[) oe de

Also, within the elastic limit we have o = Ee and
a2
p=-2%5 / @de = E

so that Eq. (3-1) reduces to ‘the usual equation for elastic bending.
If instead of & rectangle we have any other symmetrical shape of cross
section, the width b of the cross section is variable and Eqs. -(¢) and (d)

. must be written in the following form:

f_h;,,b”dy=bf:bade=0 0
" boydy = p* [Cbocde=M (m)
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Take as an example the case of a T section, Fig. 3-5. If we denote by
¢ the longitudinal strain at the junction of the web and flange, Eqg. (l)
and (m) can be written in the following

form: aakdne
f o’de-i-/ Lode =0 (n) I
. 2
bpz(/!a'ede—l-/, 3a'ede)=M (o) & %
. . S ‘ I hy
We see that in this case the ordinates of i L
the tensile test curve AOB, Fig. 3-8, in the
region corresponding to the flange of the ‘<—-——b‘1——|
cross section must be magnified in the ratio  Fre. 35

bi/b. 1In determining the position of the

neutral axis we proceed as in the preceding case and use the tension-
compressien test diagram, Fig. 3-6, and mark on the horizontal axis the
position of the assumed length A = h/p such that the two shaded areas
become numerically equal. In this manner the strains ¢; and ¢, in the
extreme fibers are obtained. The strain ¢ at the junction of the web and
flange is obtained from the equation

1o

//( €6 — ¢ _¢

f A h
4+ in which ¢ is the thickness of the flange
B (Fig. 3-5). = Having determined the posi-
LT tion of the neutral axis and observing
d that the expression in the parentheses
of Eq. (o) represents the moment of the
€ o N shaded areas in Fig. 3-6 with respect to
€ " € the vertical axis through the origin O, we
e can readily calculate from Eq. (o) the
— T moment M corresponding to the assumed
value of A = h/p. In this manner a
y A curve similar to that shawn in Fig. 3-4
L can be constructed for a beam of T sec-

tion. An I beam can be treated in a
F1a. 3-6 . .
similar manner.

3.2. Inelastic Bending Combined with Axial Load. In the case of
simultaneous bending and compression of a beam, such as produced by
an eccentrically applied compressive force, we can analyze the bending of
the beam by the same method as deseribed in the preceding article Let
us consider & rectanglar beam and again denote by e; and e, the strains
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in the extreme fibers on the convex and concave sides of the beam, respec-
tively. Also, using the notation A = & — ¢, we can determine the radius
of curvature p from Eq. (g) of the preceding article. The position of the
neutral axis is determined by the values of ¢; and e, and is shifted from its
position for pure bending by an amount de-
A | -~ fined by the strain ¢; caused by the centrally
applied load P (see Fig. 3-7).
€ The force acting at any cross section of
1 the beam can be reduced to a compressive
le— €2 force P applied at the centroid of the cross
5 1 ¢ section and a.bending couple M. The val-
€, — ues of P and M can be ealculated in each
particular case from statics by using the
stress-strain diagram (Fig. 3-7). . If y repre-
/ sents the distance from the neutral axis to
/ any fiber of the beam (Fig. 3-2), the strain
J )/ at any point is
A
Fi6. 3-7 €=c¢c + % (@)

A—

Rearranging Eq. (a) we obtain y = p(e — ¢) and hence dy = pde. The
magnitude of the compressive force P is then

k1 €1 ' €@
P=—b/ 0dy=—bp/ade=-—%/ ¢ de
—hs . € €@

Dividing this by the cross-sectional area bh, we obtain the average com-
pressive stress )

< p 1 [«
c¢=m=—z/;ade (3-3)

The integral in this expression represents the area under the stress-strain .

diagram, that is, the shaded area of Fig. 3-7. The area corresponding to
compression is taken negative, and the area representing tension is posi-

. tive. From Eq. (3-3) we can calculate the value of e; corresponding to

any assumed value of ¢, provided the axial load P is known, or we can
assume both ¢; and e, and calculate the corresponding value of P.
The bending moment is given by the expression

M '=,b/_h;uaydy = bp’/:a(e — &) de
or, since A = h/p and I = bh3/12, '

—B{ .‘de—e »
=2 [t — ®
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The integral in this expression represents the static moment of the shaded
area of the stress-strain diagram (Fig. 3-7) with respect to the vertical
axis AA. Thus the value of M can be calculated for any assumed values
of e and &2.  Equation (b) can be represented in the form

El'
M= pI (34)
where B =22 ("o — e de ; (3-5)

These equations have the same form as Eqgs. (3-1) and (3-2) and reduce
to those equations if the compressive loa.d. vanishes (and hence ¢, = 0).
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By varying ¢; and e, in such a manner that ¢, remains constant, we obtain
E" as a function of A = ¢; — ¢, = k/p for any given value of o,. The
resulting relation can be expressed graphically as shown in Fig. 3-9, -
which was plotted! for a structural steel baving the stress-strain diagram
shown in Fig. 3-8. - When these curves are used with Eq. (3-4), the bend-
ing moment M can be represented as a function of A for each value of

! The curves in Fig. 3-9 are taken from the paper by M. Ro&, Proc. 2d Intern. Congr.
Appl. ‘Mech., Zirich, p. 368, 1926. The curves with o, > 37,000 psi are obtained
assuming that bending occurs after yielding is produced by the compressive force.
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. s shown in Fig. 3-10. (In Fig. 3-10, the intermediate curves are calcu-

lated for the same values of o, as shown in Fig. 3-.9.)
The shape of the deflection curve for an eccentrically loaded bar can be

obtained by using the curves of Fig. 3-10 and applying approximate

3067108
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F1a. 3-10 Fic. 3-11

methods of graphical or numerical integration.! For example, consider
the bar shown in Fig. 8-11, symmetrical about the middle'O, and of st.eel
having the stress-strain curve shown in Fig. 3-8. We begin by assuming
definite values of ¢; and e, for the center cross section and then caflculate
the corresponding values of P and o, from Eq. (3-3). Next, using the

1 Several methods of integration are discussed in the paper by T. V. Kdrmén,
Forschungsarb., no. 81, Berlin, 1910.
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curves of Fig. 3-10 we find the moment M which corresponds to this
value of o.. Thus the bending moment and the compressive force for
the cross settion at the center ¢f the beam are determined, and the dis-
tance 8o = M/P locates the line of action of the compressive force (Fig.
3-11b). Next we construct an element 0-1 of the deflection curve of
small length a by using the radius p = h/A calculated for the middle of
the bar. The deflection at the cross section 1 is approximately the same
as for a flat circular arc. Thus we have §; = a?/2p, and the bending
moment is My = P(8, — §). With this moment, M,, we find from Fig.
3-10 the corresponding value of A, denoted by 4, and also calculate
p1 = h/AnY Using this new radius, we construct the second portion 1-2
of the curve and calculate the deflection ;. Continuing these calcula-
tions, we arrive finally at the end A of the compressed bar and determine
the deflection & at this end and the eccentricity e of the load P correspond-
ing to the assumed values of ¢, and e, Making such caleulations for
several values of e; and ¢, and selecting these values in each case so as to
make P always the same, we finally obtain for P the deflection § as a
function of the eccentricity e.

The above caleulations for the deflection curve can be generalized and
expressed in dimensionless form, independent of any particular cross-
sectional dimensions b and h of the rectangular column. First, it is
apparent that the force P, producing certain deflections in a column, is
proportional to the width b of the cross section. Thus if this width is
changed, the force P must be changed in the same proportion in order to
have the deflection curve unchanged. Second, to make the results inde-
pendent of the depth A, we can make the calculations in terms of the
dimensionless ratios p/h, 8/h, and I/h instead of the quantities p, 8, and L.

Following this procedure, we begin by assuming certain values for
€1 and e; and then determine the quantity

A=¢ —e=~—
Next, the average compressive stress o, is found from Eq. (3-3) and the
bending moment from Eq. (3-4); that is,
—_ E” h 2
=25 bh (c)

The position of the line of action of the force P (Fig. 3-11b) is defined
by the distance &, for which we have 8o = M/P = M /e.bh or, using

Eq. (9,

S _ E" h
h 120, p
! A better approximation is obtained if we repeat the calculation for the first inter-

-val by taking the radius (p + p1)/2 before going to the second interval.
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For the deflection 8, at the end of the small interval a (Fig. 3-11b), we
have 8; = a?/2p or

8 a*/h?

b 2(p/R)

Thus, when we continue in this manner, the calculations are carried out in
terms of dimensionless ratios and we finally obtain, for particular values
of o, and eccéntricity ratio e/h, the deflection 8/h as a function of the
length I/h of the column. This function can be represented graphically
by a curve. Several curves of this kind, calculated! for various values of
o, and for efh = 0.005, are shown in Fig. 3-12. Instead of values of
I1/h, values of the slenderness ratio I/r are taken as ordinates in this
figure. It isseen that each of the curves has a certain maximum ‘value of

L . =34,100 psi
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I/r. For values of I/r below this maximum, we obtain two different
values for the deflection, such as shown in the figure by the points M
and N on the curve for o; = 42,000 psi. The point M, corresponding to
the smaller deflection, represents the deflection which actually will be
reached by a gradual increase of the load P from zero up to the final
value equal to o.bh.

To obtain the deflection corresponding to the point N, we must apply
gome lateral forces to the column. If by using such forces we bring the
bent column to the shape defined by the point N, we arrive again at &
position of equilibrium. This equilibrium is unstable, however, since
any further increase in the deflection does not require an increase of the

1 These curves were calculated by T. V. Kérmdn, op. cit., for steel having a yield-
point stress equal to about 45,000 psi.
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load but, instead, deflection proceeds with a diminishing of the load. To
obtain, for instance, the deflection correspondmg to the point: Q, only
40,900 psi average compressive stress is required instead of 42,000 psi.
For each of the maximum points; such as point K, the two possible forms
of equilibrium eoincide and the corresponding va.lue of I/r is the maximum
slenderness ratio at which the column can carry the compressive load
P = ¢bh, with an eccentricity ratio equal to 0.005. Thus, by using
curves similar to those in Fig. 3-12, the relation between the slenderness of
the column and the maximum load which it can carry can be established
for any value of eccentricity.

34103
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Fia. 3-13

The same limiting values of the compressive loads can be obtained in
another way. It is seen in Fig. 3-12 that the points of intersection of
horizontal lines and the curves, such as points M, N, and Q, give the rela-
tion between the direct compressive stress o, and the deflection & for a
given slenderness ratio I/r and an assumed eccentricity e. This relation
can be represented by another curve. Several curves of this kind, calcu-
lated! for various values of the initial eccentricity and for a slenderness
ratio I/r = 75, are given in Fig. 8-13. It is seen that for any initial
eccentricity it is necessary to increase the load at the beginning in order
to produce an increase of deflection, while beyond a cerfain limit, given
by the maximum point of the curve, further deflection may proceed with

2 Iid,
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a diminishing of the load. Thus the maximum points of the curves in
Fig. 3-13 represent, for the given slenderness ratio and assumed eccen-
tricity, the limiting value of the load which the column can carry.

The determination of the limiting values of the load can be simplified
by assuming' that the deflection curve for the column in Fig. 3-11 is

given by the equation .
y=3 (1 — €OS 1rl_:c)
4

Then, from the usual approximate expression for the curvature of the
deflection curve,? we find the curvature at the middle of the column to be

1 [d% _w%
= (). -7
o PA
%  h

from which 8= (3-6)
For any assumed values of &; and ¢; at the middle, we next obtain the
value of the compressive force from Eq. (3-3) and the deflection 8 from
Eq. (3-6).

Next, let us assume that ¢ and e are chosen in such a manner that
the compressive force P remains constant and that at the same time
A = ¢ — ¢ is increasing. Then M and 8 = M/P (Fig. 3-11) are

increasing also. If the rate of increase of 8o is greater than the rate of

increasewaf 3, the assumed deflection curve can be produced only by
increasing the eccentricity e of the load (Fig. 3-11). If we have a reversed
- condition, the assumed deflection curve will be a curve of equilibrium
only if we reduce the eccentricity e; otherwise the column will continue to
deflect under the constant load P. Thus the limiting value of the eccen-
tricity e for a given value of the compressive force P is that value at
which the rates of change of & and of 8 are the same. This means that

dby _ db
dA ~ dA
Substituting 8, = M/P and using formula (3-6), we obtain
aM 2P
@ = = &7
18uch an approximate solution was proposed by M. Ro§ and J. Brunner. See

M. Ro&, loc. cit.

% More accurate calculations, made by E. Chwalla, Sitzber. Akad. Wiss., Wien,
vol. 137, Ila, p. 469, 1928, show that in the case of comparatively small eccentricities
(e/h < %), the limiting compressive force producing failure is attained at a maximum
deflection of less than 0.5h. At such a deflection the elastic line is s flat curve, and
the usual approximate expression for the curvature can be applied with sufficient

8CCUracy.
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Thus, to determine the limiting value of e for the assumed value of P,
we need only to find on the corresponding curve in Fig. 3-10 a point for
which the slope is given by the right-hand side of Eq. (3-7). Knowing
the abscissa A and the moment M of this point, we easily obtain the values
of 8o = M/P, 5 given by Eq. (3-6),ande = 8, — 3. When such calcula-
tions are repeated for several values of P, the carrying capacity of the
column for a given value of e can be established.

The approximate method for determining the compressive load producing failure
can be used also in the case of a column having a certain initial curvature. Assume,
for instance, that the initial shape of the center line of the column (Fig. 3-14) is given
by the equation

Y1 = a cos TTI (d)

and that, under the action of the compressive forces P, an additional
deflection

Y2 = & cos 'Tx (e)

is produced. Then the change of curvature at the middle of the

beam is
1 1 d?y,’ Cow?
o= ._(_:)z_o=5;’? )

v'Assuming that the strains in the outermost fibers at the middle of
the column are ¢, and ¢;, we obtain A = ¢ — ¢; and the coerresponding
change in curvature is equal to

1_1 =4 @ Fic. 3-14

From Eqs. (f) and (g) an equation, equivalent to Eq. (3-6), for calculation of & can
be obtained. ‘The corresponding compressive force is obtained from Eq. (3-3), and
the bending moment M at the middle from the curves in Fig. 3-10. Then the initial
deflection a, which the column should have in order that the assumed bending can be
actually produced by forces P, is obtained from the equation

Pla+8) =M

In order to obtain the limiting condition at which the load P brings the eolumn to
failure, we must proceed in exactly the same manner as in the case of an eccentrically
loaded column and use Eq. (3-7). The results obtained in this way can be presented
in the form of curves, each of which corresponds to a given initial deflection a and
gives the values of the direct compressive stress o, producing failure, as functions of
the slenderness ratio I/r of the column. '

3.3. Inelastic Buckling of Bars.. Fundamental Case. From the dis-
cussion of the preceding article (see Fig. 3-13). we see that the maximum
load which a column can carry up to complete failure increases as the
eccentricity of the applied axial load decreases. By gradually decreasing
the eccentricity we finally arrive at the case of inelastic buckling of a
perfectly straight, centrally loaded column. To obtain the corresponding
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critical stress, represented in Fig. 3-13 by point A, the Engesser-Kérmén
theory! has been applied.

It is assumed in this theory that up to the critical condition the column
remains straight, and the critical load P, is calculated as the force
required to maintain the column in a shape which is slightly deflected

from the straight form of equilibrium. In

7 . discussing bending stresses corresponding
/ c to this small deflection, we observe that be-

/ C cause of bending, there will be a small in-

/ / cr crease in the total compressive stress on the

/ concave side of the column and a decrease

/ in stress on the convex side. If the curve

B / OBC in Fig. 3-15 represents thé compres-
/ sion-test diagram for the material of the

/- column and point C corresponds to the crit-

0 ¢ ical condition, then the stress-strain relation
Fia. 3-15 ‘ on the concave side of the column during

small deflections is determined by the slope

of the tangent CC’, called the tangent modulus E;. On the convex side,
where the stress diminishes because of bending, the stress-strain relation
is defined by the slope of the line CC”, that is, by the initial modulus of
elasticity E of the material. Then assuming that plane cross sections
of the bar remain plane during bending, we find that the small bending

h
h, h,
En
.y il £
] 4
I o}
En, | |+ T
1
p e
Fig. 3-16

stresses, superposed on the direct compressive stresses, will be distributed
along the depth of the cross section as shown in Fig. 3-16. If p denotes
the radius of curvature of the deflection curve, the maximum tensile and
compressive stresses are Eh,/p and E:hs/p, respectively, and the position
of the neutral axis O is found from the condition that the resultants of
the tensile and compressive forces must be equal. In the case of a rec-
tangular cross section of depth h this condition requires that

Ehy* = Ehg? (@
1F. Engesser, Z. Ver. deut. Ingr., vol. 42, p. 927, 1898; T. V. Kérm4n, loc. cit.
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Noting also that h; + h: = h, we obtain
hy = h \/E hy = _h_\/—@’___ ®)
VE + VE. VE + VE,

If b is the width of the rectangular cross section; the bending moment
represented by the stresses shown in Fig. 3-16 is

Ehbhy2, _ b 4EE,
e 23" " 1% (/E + VE)

This equation can be made to coincide with Eq. (1-3) for the deflection
curve by introducing the quantity

M= (©

AEE,
B = ———eer 3-8)
(VE + VE)? 3)
which is called the reduced modulus of elasticity. With this notation we
then obtain
E. I
== 3-9
- : (3-9)
or Py = —E1%Y (3-10)
From the derivation of expression (3-8) for L_ by e _!
the reduced modulus, it is apparent that the Fra. - 172

magmtude of E, depends not only on the me-
chanical properties of the material of the column but also on the shape of
the cross section..

Let us take as a second example an idealized I sectlon in which it is
assumed that one-half of the cross-sectional area is concentrated in each
flange and the area of the web is disregarded (Fig. 3-17). The forces in

* the flanges due to bending are -

Ehi A By A
- 32z ad =73
hy_ By
80 ‘that n-F
Again using the relation h; + k2 = h, we obtain
b= PB4 _ _RE_
; '"E¥E " E+E
Since the moment of the internal forces is
_ Ah* 2EE,
M= ETE
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we obtain finally
_ 2EE,
E, = T+ B (8-11)

In a similar way, the expression for E, can be found for any other shape of
column cross section. The values of E, from Egs. (3-8) and (3-11)
reduce to the modulus of elasticity E when E; is constant and equal to E.
Returning now to Eq. (3-10) we see that it is of the same form as Eq.
(2-1) for elastie buckling, except that E, takes the place of E. Inte-
grating this equation, we obtain for the critical load for a bar with
hinged ends
2K, 1

(P rlexr = B (3'12)
and the corresponding critical stress is
’ 2
- TE, (3-13)

(a'r)c’r ““ (l/T)2

Hence we see that Euler’s column formula, derived previously for
materials following Hooke’s law, can also be used for inelastic materials
by substituting® the reduced modulus E, for the modulus of elasticity E.

In the preceding discussion it was assumed that the central compressive
force (P,).. was applied first and then maintained at this constant value
while a small lateral deflection was given to the column. During the
testing of an actual column, the axial force increases simultaneously with
lateral deflection. In such a case, the decrease of stress on the convex
side of the column during the initial stages of bending may be com-
pensated by the increase of direct compressive stress due to the con-
tinually increasing axial foree. Thus the actual deformation may pro-
ceed without any release of stress in the fibers on the convex side, as
was assumed in Fig. 3-16, and the stress-strain relation for the entire

column is defined by the tangent modulus E;. The differential equation -

of the deflection curve then becomes
d%y

Py=-EITY (3-14)
and for a column with hinged ends the critical load is
| (@ =T (3-15)
and the critical stress is
(@D = G /g‘, (3-16)

These latter expressions for critical load and critical stress differ from
t This theory of buckling is called the reduced modulus theory.
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Egs. (3-12) and (3-13), since they contain the tangent modulus E,, which
is somewhat smaller than the reduced modulus E, and independent of the
shape of the cross section. From this discussion! it follows that under a
continuously increasing load the column begins to buckle as soon as the
load reaches the value (3-15). Experimental results? obtained in testing
solid circular rods of aluminum alloy are in satisfactory agreement with
the tangent modulus theory. These results, represented in Fig. 3-18,
show that for larger values of slenderness ratio the experimental points
lie on Euler’s curve and for shorter rods they agree with the tangent
modulus curve. To construct such s curve we take several values of
o, and determine for each value the corresponding values of E; from the
compression-test diagram. Then, substituting the values of o, and E;

60 T T
‘\ Curve for \
.. E, \
A)
\7“345:\\ \ /— Euler curve
Nz' 401 Curve for \‘A‘\ \
= ] N
¢ 20
\0
00 20 40 60 80 100
ir
Fie. 3-18

into Eq. (3-16), we find the corresponding values of the slenderness ratio
lr.

Formulas (3-14) to (3-16) evidently can be applied in calculating critical
loads in the case of perfectly elastic materials which do not follow Hooke’s
law. In such a case, if a small amount of bending occurs, the bending
stresses are defined by the magnitude of the tangent modulus E,.

It was already stated that the assumption that there is no release of stress on the
convex side of the buckled column is correct only at the yery beginning of buckling.
If we wish to investigate deflections of a column with hinged ends beyond the value
of the load given by Eq. (3-15); we have to take into account the Telease of stress on
the convex side. This release of stress takes place primarily in the middle portion of
the column where the bending stresses are greatest and occurs when the deflection of

1 This theory, called the tangent modulus theory, was developed by F. R. Shanley,
J. Aeronaut. Sci., vol. 14, p. 261, 1947.

2 See the paper by R. L. Templm R. G. Sturm, E. C. Hartmann, and M. Holt
Aluminum Research Laboratories, Aluminum Company of America, Pittsburgh,
1938.
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the column increases beyond the small initial deflection at the onset of buckling. The
calculation of column deflections under this condition represents an involved problem,!
and we shall give here only some final results of such an investigation. The solution
can be simplified if the compression-test diagram is given by an analytic expression so
that a formula for the tangént modulus can be obtained by differentiation. In the
case of materials such as structural steel with a well-defined yield-point stress oyp, We
shall use for the tangent modulus the expression?

g{ ~E~EZE=C 3-17)
which gives E; = E for o = 0-and E; = Oforo = oyp. ‘The corresponding ecompres-
sion-test diagrams for several values of the parameter ¢ are shown in Fig. 3-19. Note
that ¢ = 1 corresponds to Hooke’s law; that is, 0 = Ee. For structural steel the
values ¢ = 0.96 to 0.99 can be taken with good accuracy. With the use of Eq. (3-17)

1.0;
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ayp //
04 s
02 ,/
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E
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for the tangent modulus, the maximum load Py, at which the column fails was calcu-
lated® for an idealized I section. The results of these calculations, for various values
of the parameter ¢, are given in Fig. 3-20. The dotted line of this figure was used for
constructing the dotted-line curve in Fig. 3-21. In ‘this latter figure the curves for
(or)er. a0d (07)e: from Egs. (3-13) and (3-16) for two kinds of steel (eyp = 51,200 psi
and ovp = 34,100 psi) are given also. - It is seen that thé stresses calculated on the
basis of Puax are very close to (o1)er, and therefore the latter can be recommended for
practical application. - Similar results were obtained also for columns of rectangular

. 1 Bee the papers by J. E. Dubergand T. W. Wilder, NACA Tech. Note 2267, 1951;
U. Miillersdorf, Der. Bauingenieur, vol. 27, p. 57, 1952; A. Pfliiger, Ingr.-Arch., vol. 20,
p. 291, 1952; L. Hannes Larsson, J. Aeronaut. Sei., vol. 23, p. 867, 1956. The results
given in ‘the following discussion are taken from the last paper.

* This expression for tangent modulus was suggested by Arvo Ylinen, Teknillinen
Atkakauslehts, vol. 38, p. 9, 1948 (Finland). See also his paper in Publ. Intern.
Assoc. Bridge Structural Eng., vol. 16, p. 529, 1956,

# See L. Hannes Larsson, loc. cit.
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cross section, and it can be concluded that for materials with a well-defined yie_ld
point, such as structural steel, the change from E, to E; does not result in a substantial
change in the magnitude of o.,.

When Eq. (3-17) is used for mate- 1.0
rials which do not have a definite yield _
point, the stress oyp should be replaced (Y —.
by ous Suggested values of_ the pa- N \\0.9;,\\
rameter ¢ are ¢ = 0.875 for pine wood n,::a n‘:: 06 3.;95\\
and ¢ = 0 for concrete. S5 \ g: géi\\\

In conclusion, it is important §|-° 04 Q’”\&;\
to observe the differences in the I -
typical load-deflection curves for 0.2
elastic and inelastic (or plastic)
buckling. In the case ?f slender %.5 06 o7 08 D510
bars which buckle -elastically, the (B,
ideal load-deflection curve has Ao,
the shape shown in Fig. 2-29. If Fre. 3.20

there are inaccuracies presént, the

curves have the forms shown in Fig. 4-3. However, in all cases, an in-
crease in the deflection requires an increase in the load. The phenomenon
of buckling is not sudden in character, and if the inaccuracies are reduced,
it is possible to determine P,, experimentally with good accuracy.
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In the case of inelastic buckling the phenomenon is quite different.
From the curves in Fig. 3-13, it is apparent that when the load reaches
the critical or maximum value, there is a rapid diminishing of the load
with respect to an increase in deflection. - This accounts for the sudden-
ness with which inelastic buckling occurs. It is seen also that small
inaccuracies have considerable influence on the value of the load P,
which the column can carry. Furthermore, at each value of the load
there are two positions of equilibrium corresponding to points such as
B and C in Fig. 3-13. Thus, as we approach the maximum load, an
accidental force may cause the column to jump suddenly from the stable
position B to the unstable position C. All these factors explain why
experimental results become scattered in the plastic region. In later
portions of this book we shall find in some cases of buckling of shells that
curves similar to those in Fig. 3-13 are obtained also in the elastic region.
As soon as such conditions occur, we can expect a character of sudden-
ness in the buckling phenomenon and a wide scatter of experimerital
results.

3.4. Inelastic Buckling of Bars w1th Other End Conditions. The
methods which were applied in the preceding article to the fundamental
case of a bar with hinged ends can be applied also to bars with other end
conditions. Columns with various end conditions were discussed for
elastic buckling in Arts. 2.1 and 2.2. Since the compressive stress in
each of these cases is constant along the length of the bar, the differential
equation of the deflection curve of the slightly buckled bar, when com-
pressed beyond the proportional limit, is of the same form as that used
within the elastic region. The only difference is that the constant
modulus E is replaced by the tangent modulus E;. The mathematical
expressions for the end conditions also remain unchanged. Hence the
formulas for critical loads beyond the proportional limit will be obtained
from the formulas previously derived for elastic conditions by replacing
E by E.. The values found previously for reduced lengths also remain
unchanged.

In the case of bars with elastically built-in ends, the problem is more
complicated and the reduced length beyond the proportional limit
depends not only on the degree of fixity at the ends but also on the mag-
nitude of I/r. Take, as an example, the case of the rectangular frame
shown in Fig. 2-14. The critical value of the compressive forces P
within the elastic limit [see Eq. (b), Art. 2.4] is obtained from the equation

u T EI

tan u EIb (@)
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Beyond the proportional limit the flexural rigidity of the vertical com-
pressed bars becomes E.J while the flexural rigidity of the horizontal
bars rémains unchanged. Hence the factor on the right-hand side of
Eq. (a) changes with the value of o, and the root of this equation, which
defines the reduced length, changes also.

As an example, let us consider a square frame with I = I,. Within
the elastie limit Eq. (a) for this case is

tan u

u -1
and gives u = 2.029
w2EIl
‘ 80 that P, o = W

and the reduced length is L = 0.774l. Beyond the proportional limit,
Eq. (a) for the square frame becomes v

tanu _ _ E

- " & ®)
h _1 Z_L\/Z
where “T3INEI T 7 \E

Since E; is smaller than E, the root of this equation determining the
critical load is larger and the corresponding reduced length is smaller
than that obtained above for elastic conditions. Taking a series .of
values for o, and the corresponding values of E;, we can calculate from
Eq. (b) the corresponding values of I/r and can represent by a curve the
relation between the value of o,; and the slenderness ratio I/r. In this
way it can be.shown that the reduced length in this case varies from
L = 0.774] when E, = E to L = 0.5] when E; = 0.. Thig result should
be expected, since, with an increase of a.., E: and the flexural rigidity of
the vertical bars decrease while the flexural rigidity of the horizontal
bars remains unchanged. Thus the relative fixity at the ends of the
vertical bars is' increasing, and when o, approaches the yield-point
stress, the end conditions approach those of a bar with rigidly built-in
ends, for which case L = 0.5

We have similar conditions in the case of contmuous compressed bars
on elastic supports and bars on elastic foundations. Beyond the propor-
tional limit the relative rigidity of the supports and foundation is larger
than within the elastic limit and the reduced length is smaller than that
dalculated before (see Arts. 2.5, 2:6, 2,10) on the basis of Hooke’s law.

In the case of prismatic bars compressed by forces distributed along
the length, the compressive stress is not constant along the length of the

" bar. Therefore in the case of buckling beyond the proportional limit,
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the tangent modulus E, also is not constant for the entire length, so that a
bar with variable flexural rigidity is obtained. As an example, consider
the column shown in Fig. 2-38. If a compressive stress beyond the pro-
portional limit is produced at the lower end of the bar, the stress in the
upper portion of the bar continues to be within the elastic limit. For
caleulating the critical load in this case, it will be necessary to consider
the lower portion of the bar as a portion with a variable flexural rigidity
E,I while the upper portion has a constant flexural rigidity EI. Thus,
the problem of calculating the critical load beyond the proportional limit
becomes very complicated in this case. For an approximate calculation
of the critical load, we can use the same formula as was obtained for
elastic conditions [see Eq. (2-43)] and substitute for E the tangent modulus
E,, calculated for the lower end of the bar. This will be equivalent to the
assumption that beyond the proportional limit the bar continues to
possess a constant flexural rigidity and that this rigidity is the same as
that at the lower end of the bar which is subjected to the highest com-
pressive stress. Quite naturally, such an assumption results in too low a
value for the eritical load, and in using it we shall always be on the safe
side.

A similar problem is also found in the case of bars of variable cross
section. If the compressive stress varies along the length of the bar, an
accurate calculation of the critical load beyond the proportional limit
requires the introduction of the tangent modulus E; for the inelastically
compressed portions of the bar. If E, is constant along these portions,
as in the case shown in Fig. 2-38, the accurate calculation of the critical
load can be accomplished without much difficulty. But the problem
becomes more complicated if E; is variable. We shall always be on the
safe side if in such cases we use formulas derived for elastic conditions and
substitute in them for E the tangent modulus E; calculated for the cross
section with the maximum compressive stress. ‘

In the case of built-up columns the critical load beyond the propor-
tional limit can be calculated also by introducing E; instead of E. Take
the case shown in Fig. 2-57. Under the action of an axial load the chords
of the columan will be uniformly compressed while the battens are
unstressed. Hence in calculating the critical load beyond the propor-
tional limit, we can use formula (2-64). It will be necessary to substitute
E, for E only in those terms relating to the chords and to keep E and G in
those terms relating to the battens. Thus, if compression of the column
exceeds the proportional limit, the battens become relatively more rigid
and the properties of the buﬂt—up column approach those of a solid
column,

CHAPTER 4

EXPERIMENTS AND DESIGN FORMULAS

4.1. Column Tests. The first experiments with buckling of centrally
compressed prismatic bars were made by Musschenbroek.! As a result
of his tests, he concluded that the buckling load was inversely propor-
tional to the square of the length of the column, a result which was
obtained by Euler 30 years later from mathematical analysis. At first,
engineers did not accept the results of Musschenbroek’s experiments and
of Euler’s theory. For instance, even Coulomb? continued to assume
that the strength of a column was directly proportional to the cross-
sectional area and independent of the length. These views were sup-
ported by experiments made on wooden and cast-iron columns of com-
paratively short length. Struts of this type usually fail under loads
‘much less than Euler’s critical load, and failure is due principally to
crushing of the material and not to lateral buckling. E. Lamarle® was
the first to give a satisfactory explanation of the discrepancy between
vtheoretlcal and experimental results. He showed that Euler’s theory is
'in agreement with experiments provided the fundamental assumptions of
the theory regarding perfect elasticity of the material and ideal conditions
at the ends are fulfilled.

Later experimenters* established definitely the validity of Euler’s
formula. In these experiments great care was taken to fulfill the end
conditions assumed in the theory and to secure central application of the
compressive load.® The tests showed that experimental values of or

‘1P, van Musschenbroek, “Introductio ad cohaerentiam corporum firmorum,”
;: Lugdum, 1729. See also a French translation by P. Massuet, ”Essa.l de physique,”
i Leyden, 1739.

- See Coulomb’s memoir in the “Mémoires . . . par divers savans,”” Paris, 1776.
1’3;(:5& Lamarle, Ann. trav. publics de Bely., vol. 3, pp. 1-64, 1845; vol. 4, pp. 1-36,
¢ *1. Bauschinger, Mift. mech.-fech. Lab. tech. Hochschile, Miinchen, no. 15, 1889;

A’ Considére, Congr. intern. des procédés de construct., Paris, vol. 3, p. 371, 1889; L.
Tetmajer, “Die Gesetze der Knickung- und der zusammengesetzten Druckfestigkeit
: der technisch wichtigsten Baustoffe,” 3d ed., Leipzig and Vienna, 1903.

E 5 Considére was the first to introduce an a.djusta,ble arrangement at the ends so that
¢ the point of application of the load could be shifted slightly with the column under

185
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fall on Euler’s curve provided the slenderness ratio of the column is
such that buckling occurs at a compressive stress below the proportional
limit of the material. Figure 4-1 represents some test results® obtained
with mild structural steel specimens of various shapes of cross section.
It is seen that for I/r > 105 the results obtained follow Euler’s curve
satisfactorily. The value of I/r above which Euler’s formula can be
applied depends on the proportional limit of the material and for high-
strength steels such as used in bridges is about 75.

Further progress in the experimental study of buckling problems was

“accomplished by Kérmén.? In his.experiments rectangular steel bars
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with a proportional limit of 35,000 psi and a yield point of 46,000 psi
were tested. Freedom of rotation of the ends of the columns was assured
by the use of knife-edges for applying the load, and the experimental
results checked Euler’s formula with an accuracy of 13 per cent. Kér-
mén extended his experiments into the region of plastic deformation also.
By calculating the reduced modulus from the compression-test diagram,
as explained in Art. 3.3, he showed that Euleris formula can be applied
also in the case of shorter bars in which the critical stress exceeds the pro-
portional limit of the material. The upper curve in Fig. 4-2 gives values
of o.; as a function of the slenderness ratio calculated from Euler’s formula

1 From Tetmajer, op. cit.
2 T. V. Karmén, Forschungsarb., no. 81, 1910, Berlin.
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by using the reduced modulus. The lower curve in the same figure gives
the ultimate? stress when the load is applied with an eccentricity equal to
0.005h (see Fig. 3-13), where h is the depth of the cross section. - It is
seen.that most of the experimental results, shown by the small circles,
are within the region between the two curves. For I/r > 90, the experi-
mental results follow Euler’s curve very closely. Between the propor-
tional limit and the yield point the experimental results are in good
agreement with the results obtained theoretically by using the reduced
modulus. For I/r < 40, the critical stress is above the yield point of the
material and the curve of o, turns sharply upward. Such values for
critical stresses can be obtained experimentally only if special precautions
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are taken against buckling at the yield-point stress; thus they have no
practical significance in the design of columns. '
In experimenting with the buckling of columns, it is usual practice to
represent the deflections of a column as a function of the centrally applied
load. Inan vi&e/a"l case there will be no deflection up to the critical value
of the load, and above this point the load-deflection curve is as shown in
Fig. 2-29. Owing to various kinds of imperfections, such as some
unavoidable initial curvature of the column, eccentricity in application of
the load, or nonhomogeneity of the material, the column begins to deflect
with the beginning of loading and usually fails before Euler’s load is
reached. The shapes of the load-deflection curves depend on the
accuracy with which the theoretical assumptions are fulfilled. Several

1 The stress corresponding to the maximum load.
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curves of this kind, as obtained by various experimenters working within

the elastic range, are shown in Fig. 4-3. . As the experimental techniques -

improved and the end conditions approached more closely the theoretical
assumptions, the load-deflection curves approached more and more closely
the horizontal line corresponding to the critical load:

Very accurate experiments were made in the Berlin-Dahlem materials
testing laboratory by using a special construction for the end supports of
the columns.! In Fig. 4-4 some experimental results obtained in this
laboratory are shown. The material tested was a structural steel with a
pronounced yield point at about 45,000 psi. It is seen that for I/r > 80
the results follow Euler’s curve very satisfactorily. For shorter bars the
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yield-point stress should be considered as the critical stress. Hence, for
short columns it may be economical to use materials with a high yield
point, whereas for long, slender columns this offers no advantage, since,
for steel, the modulus of elasticity is practically unchanged.

The significance of the yield-point stress in column tests was indicated
also by the experiments of the ASCE Special Committee on Steel Column
Research.? In this investigation special roller-bearing blocks were used
to obtain hinged-end conditions. This arrangement proved very useful
for large columns requiring the application of considerable axial load,

! 8ee paper by K. Memmler, Proc. 2d Intern. Congr. Appl. Mech., Ziirich, p. 357,
1926, and the book by W. Rein, ‘‘ Versuche zur Ermittlung der Knickspannungen fiir
verschiedene Baustéhle,” Springer-Verlag, Berlin, 1930.

*Bee Trans. ASCE, vol. 89, p. 1485, 1926; vol. 95, p. 1152, 1931; and vol. 98,
p. 1376, 1933. . ’
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which cannot be transmitted easily through knife edges. Figure 4-5
represents some of the results obtained by the committee in testing H-sec-
tion columns under eccentrically applied loads. In one series of tests
the eccentricities were in the plane of the web, and in the other series
they were in the plane perpendicular to the web. The ratio e/s of the
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eccentricity to the core radius was taken equal to unity in both cases.
The average compressive stresses o, = P/A, producing failure, are
plotted in the figure against the slenderness ratio i/r.. The small black
-circles give the ultimate strength when the columns are bent in the plane
of the web, and the light circles give the ultimate strength if bending is
perpendicular to the web. For comparison, there is also plotted in the
figure a curve that gives the average compressive stress at which yielding
begins in the outermost fiber. The ordinates of this curve are calculated
from Eq. {d), Art. 1.13, by taking an average value for the yield-point
‘stress (oyp = 38,500 psi) as obtained from tension tests of specimens
taken from various portions of the columns. It is seen that for I/r > 60
the ultimate values of the average compressive stress are very close to
the values producing the beginning of yielding in the outermost fibers.
For shorter columns, bent in the plane of the web, the ultimate strength
is somewhat higher than the load at which yielding begins, but the differ-
ence is not larger than 10 per cent of the ultimate load. When a short
column is bent in the plane perpendicular to the web, the ultimate loads
are considerably higher than the loads producing the beginning of yield-
ing. 'This result should be expected if bending beyond the yield point is
considered, as explained in Art. 3.2. Similar results were obtained by
M. Rds.! Extensive series of tests on eccentrically loaded steel wide-
flange columns have been carried out by Johnston and Cheney? at Lehigh
University and by Campus and Massonnet.?

When a load-deflection curve similar to those shown in Fig. 4-3 is
obtained experimentally, the magnitude of the critical load is usually
obtained by drawing the horizontal asymptote to the curve. A very
useful method of determining the critical load from the test data within
the elastic region was suggested by Southwell.* Assuming that the
deflection of a column under a load that is below the critical value is due
to initial curvature, we can use for the deflections the general expression
(1-61) in the form of a trigonometric series. When the load approaches
the critical value, the first term in the series (1-61) becomes predominant
and it can be assumed that the deflection & at the middle of the column,
measured at various stages of the loading, will be given with sufficient
accuracy by the equation

(33
8= m’—_—I (a)

in which @, is the initial deflection corresponding to the first term in

. 1 M. Rds, Proc. 2d Intern. Congr. Appl. Mech., Ziirich, p. 368, 1926.
2 B. Johnston and L. Cheney, Steel Columns of Rolled Wide Flange Section, AISC
Progr. Repts. 1 and 2, 1942.
*F. Campus and C. Massonnet, Compt. rend. recherches, I.R.S.LA., no. 17,
Brussels, April, 1956.
¢ R. V. Southwell, Proc. Roy. Soc., London, series A, vol. 135, p. 601, 1932.

the deflection at the middle of the column is
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series (1-61). From this equation we obtain

[}

P
which shows that, if we plot the ratio 5/P against the measured deflection
4, the points will fall on a straight line (Fig. 4-6).! This line will cut the
horizontal axis (3/P = 0) at the distance a, from the origin, and the .
inverse slope of the line gives the critical load.

If, instead of assuming an initial curvature, we assume that bending of
the column is due to eccentri¢ application of the load P, it will be found
that the deflection at the middle can be represented with sufficient
accuracy by expression (), Art. 1.11; that is, "~

4e 1
b= PP -1 @
Considering a general case of the combined
effect of an initial curvature and some eccen- .

tricity in application of the load, we find that /]

P.—s=a ' ®)

3
[4

1 P
(al + )P“/P -1 C Fie. 4-6

and an equation, analogous to Eq. (b), again holds. Thus for any ’
combination of initial curvature and eccentricity in application of the
load, the critical load can be obtained as the inverse slope of a straight
line such as shown in Fig. 4-6.

It is seen from Eq. (d) that, by takmg e = —xa1/4, we can eliminate
the deflections at the middle of the column produced by a load below the
critical value. This explains why a very accurate value for P, can be
obtained by using an adjustable support for the ends of the column. In
such experiments the magnitude of the eccentricities is determined by
adjusting the point of application of the load i in such a way as to com-
pensate for the initial curvature.

It should be noted that an approximate value for the deflection due to
eccentricity has been used in the derivation of Eq. (d). If the exact
value of that deflection is used [see Eq. (1-33)], it can be shown that at
the beginning of loading the column may deflect in one direction and
later on suddenly buckle in the opposite direction.?

! This graph is usually called the Southwell plot. It has alzo been used for measured
strains; see M. 8. Gregory, Civil Eng. (London), vol. 55, no. 642, 1960, and Australian
J. Appl. Sci., vol. 10, pp. 371-376, 1959.

2 This phenomenon of a reversal in the direction of deflection has been investigated
by H. Zimmermann, Sitzber. Akad. Wzss Berlin, vol. 25, p. 262, 1923; see also his
book, “Lehre vom Knicken auf neuer Grundlage,” Berlin, 1930.  Experiments are in’
s&tlsfactory agreement with this theory; see K. Memmler, loc. cit.
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In the case of shorter bars for which the eritical load is above the
proportional limit of the material, the load-deflection curves have the
form indicated in Fig. 3-13. It is seen that at a very small deflection the
load reaches its maximum and then the column buckles suddenly, since
the load necessary to maintain any further deflection falls off rapidly as
the deflection is increased. The maximum load reached in the experi-
ment is usually taken as the critical load. It can be seen that this maxi-
mum approaches the critical value calculated from Euler’s equation by
using the tangent modulus, when the eccentricity in the application of the
load approaches zero. The shape of the deflection curve of the buckled
bar in this case is no longer sinusoidal, the permanent deformation being
concentrated primarily at the middle, where the bending moment is a
maximum.

From the discussion of this article it can be seen that, owing to various
kinds of imperfections, actual columns will behave under load quite
differently from ideal columns. To take this into account in determining
working stresses, three rather distinct approaches can be made to the
problem of designing columns in structures: (1) the ideal-column formu-
las can be taken as a basis of column design, and a suitable factor of
safety applied to compensate for the effect of various imperfections;
(2) a factor of safety can be applied to an empirical formula, certain con-
.stants of which have been a,d,]usted to make the formula fit the results of
tests; and (3) the column can be assumed from the very beginning to
have certain amounts of imperfection, and the safe load can be deter-
mined as a certain portion of the load at which yielding of the material
begms Each of these methods of designing columns will be dlscussed
in the following articles.

4.2, Ideal-column Formulas as a Basis of Column Design. The
experiments discussed in the previous article indicate that, in the case of a
straight column with a centrally applied compressive force, the critical
value of the compressive stress can be calculated with sufficient accuracy
if the compression-test diagram for the material of the column is known.
Euler’s formula must be used for the calculations within the elastic range,
while beyond the proportional limit the modified Euler’s formula must
be applied, using the tangent modulus E, instead of E. As a result of
such calculations a diagram representing o,, as a function of the slender-
ness ratio can be obtained. In Fig. 4-7 are shown two diagrams of this
kind, calculated for two different kinds of structural steel (steel No. 54
with ovp = 50,000 psi and steel No. 37 with oye ~ 34,000 psi).* Up to

1 These curves are taken from the paper by W. Gehler, Proc. 2d Intern. Congr.
Appl. Mech., Ziirich, p. 364, 1926. E, instead of E; was used in these calculations,
and there are given also the necessary portions of the compression-test diagrams and
the curves representing the reduced moduli as functions of the direct compressive
stress. '
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the proportional limit Euler’s curve is used in each case, and above that
limit curves based on the reduced moduli are used. At I/r =~ 50 the
critical-stress diagram turns upward and o, begins to increase with a
further decrease in the slenderness ratio.- This increase of s, above the
yield-point stress should not be considered in practical design, since it
can be obtained only if special precautions are taken to prevent the
column from buckling at the yield-point stress.

For practical application, each of the above diagrams can be replaced
in the inelastic region by two straight lines, a horizontal line for the
portion above the yield-point stress and an inclined line for the portion
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between the yield point and the proportional limit. In this way a com-
plete critical-stress diagram is obtained provided the yield point and the
proportional limit of the material are: determined from experiments.
Such approximate-diagrams are shown in Fig. 4-7 by dotted lines.
When the diagram of critical stress is known, the allowable stress is
obtained for any value of the slenderness ratio by dividing o,. by the factor
of safety. The selection of a proper factor of safety presents considerable
difficulty in the design of columns. The principal cause of this difficulty
lies in the fact that the behavior of columns under compression is different
from that assumed in Euler’s theory and is determined primarily by the
magnitudes of the various imperfections, such as initial curvature of the
column, eccentricity in application of the load, and nonhomogeneity of
the material. The same types of imperfections are encountered also in
other structures, such as beams subjected to the action of lateral loading,
but in those cases the effect of the imperfections is negligible, while in
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the case of columns imperfections have a great effect on the deformation.
There is little known about the magnitude of imperfections encountered
in actual construction, and this fact is frequently compensated for by
choosing a larger factor of safety. , _ ,

The simplest method of choosing the factor of safety for columns is to
assume that the effect of the various imperfections on the deformation
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of the slenderness ratio and cross-sectional area, it is usual practice to
neglect the rivet holes.! )

4.3. Empirical Formulas for Column Design. Instead of the critical-
stress diagrams discussed in the previous article, empirical formulas are
sometimes used in column design. One of the oldest formulas of this
kind ‘was originated by Tredgold? and later adapted by Gordon to repre-

and maximum fiber stress is independent of the slenderness ratio. Then

th? factor of safety will be constant for all values of l/r. For exampl.e, formula was given by Rankine, and so it is called the Rankine formula or

using a safety factor of 2.5 for the steel represented by the lower curve in 1 the Rankine-Gordon formula. The allowable average compressive stress
, Fig. 4-7, we find that the allowable stress for I/r < 60 will be 13,700 psi L by this formula is , : ’

[ and for I/r = 100 it will be 12,000 psi if the proportional limit of the

|

sent the results of Hodgkinson’s experiments. The final form of the

material is taken equal to 30,000 psi and the yield point is 34,000 psi. (o)w = ITF—;IW (a)
If it is assumed that as the slenderness ratio increases, such imperfec- 3 '
tions as an initial curvature of the column are likely to increase, it is
reasonable to introduce a variable factor of safety which increases with
‘f the slenderness ratio.  In present German specifications, for instance,
/ the factor of safety increases from 1.7 for I/r = 0 to 2.5 for large values of
| l/r. To simplify the calculations, these specifications give a constant
allowable stress, the same as for simple tension, and compensate for
column action by multiplying the force acting in the member by a mag-

in which a is a stress and b is a numerical factor, both of which are con-
stant for a given material. Tetmajer® showed that, to bring this equa-
tion into agreement with experiments, the factor b cannot be constant and
must diminish as I/r increases. This fact is usually disregarded, and
Eq. (a) still is used often in column design. By a proper selection of
constants, it can be made to agree satisfactorily with the results of experi-
ments within certain limits. For instance, the American Institute of

nification factor w, which is equal to the ratio of the allowable stress in
tension to the allowable stress in the column for the corresponding value
of I/r. Having a table of values of w, we can select the proper cross
section of a column very readily by the trial-and-error method.

In the above discussion we assumed the fundamental case of buckling
of a column with hinged ends. Working stresses established for this
case can be used also in other cases provided we take a reduced length
instead of the actual length of the column. The magnitude of the
reduced length depends on the conditions at the ends of the column,
on the manner of distribution of the compressive loads:along the length
of the column, and on the shape of the column if the cross section is not
constant. Numerical data necessary for the calculation of the reduced

length in the elastic range of the material were given for various cases in

Chap. 2. In discussing buckling of columns beyond the proportional
limit (see Art. 3.3), it was shown that the design will always be on the
safe side if the reduced length is taken the same as in the elastic range and.
if, in calculating the reduced length, the cross section with the maximum
compressive stress is taken as a basis.

The preceding discussion applies to solid columns and to columns
built up of rolled sections, provided the sections are properly riveted or
welded together.! The presence of rivets does not reduce appreciably
the load capacity or flexural rigidity of the column, and in the calculation
tThe question of required distances between rivets will be discussed in Art. 4.6.

Stefal Construction (AISC) specifications of 1949 give for the safe stress
(psi) on the gross section of a secondary compression member

(e)w = — 13000
<% = T 1/18,000r

for I/r between 120 and 200. This same formula is given in the Building
Code of New York City (1945) for main members with I/r between 60
and 120 and for secondary members with !/r between 60 and 200. For
l/r < 60, an allowable stress of 15,000 psi is specified.

The straight-line formula gives the allowable average compressive stress
in the form o

(e)w =a — b; ®)

in which t%xe constants a and b depend upon the mechanical properties of
the material and the safety factor. One such formula is used in the

! The question of the effect of rivet holes on the magnitude of the buckling lo#d has

‘been investigated by A. Foppl, Mitt. Mech.-Tech. Lab. Tech. Hochschule, Minchen,

no. 25, 1897. See also paper by Timoshenko in Bull. Polytech. Inst., Kiev, 1908.

2 Regarding the history of the formula, see E. H. Salmon, “Columns,” London,
1921; ’J.'.‘odhunter and Pearson, “History of the Theory of Elasticity,” vol. 1, p. 105,
Cambridge, 1886; Timoshenko, “History of Strength of Materials,” p. 208, McGraw-
Hill Book Company, Inc., New York, 1953.

3 Tetmajer, loe. cit.
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Chicago Building Code and is given as
- 1
(eo)w = 16,000 — 70; , (¢)

for 30 < l/r < 120 for mtﬁnr members and for 30 < 1/r < 150 .fqr
secondary members. For values of I/r <30, (¢)w = 14,000 psi 1s
used. ‘ i _
The above formula was obtained as a result of experm'lents by Tetmajer
and Bauschinger! on structural steel columns with hinged ends. ’I"he
experiments suggestéd for the critical value of the average compressive

stress the formula
’ @
. = 48,000 — 210;

Tetmajer recommended this formula for l/r < 110. Forrpula (c) is
obtained from (d) by using a safety factor of 3. ] The Aluminum Com-
pany of America (ALCOA)? specifies a straight-line column formula for
values of I/r below a certain limiting value and the Euler formula for
I/r above that limit. ‘ '

The parabolic formula proposed by J. B. Johnson?® is als9 in common use.
Tt gives for the allowable value of the average compressive stress

@ow=a-b(1) | ©

in which the constants a and b depend upon the mechanical propgrties of
the material and the safety factor. For example, the AISC specifies Lhe
formula o I\
(0u)w = 17,000 — 0.485 (;)

for l/r < 120. The American Railway Engineering Associ‘ation (AREA)
and the American Association of State Highway Officials (AASHO)
specify v .

18ee F. 8. Jasinsky, “Scientific Papers,” vol. 1, St. Petersburg, 1_902, and Ann
ponts et chaussées, T série, vol. 8, p. 256, 1894. . See also an extensive analysis qf
experimental results made by J. M. Moncrieff, Proc. ASCE, 'vol. 45, 1900, and his
book “The Practical Column under Central or Eccentric Loa.dmg_,” Ne?v York, 1901.

1 ¢ Alcos Structural Handbook,” Aluminum Company of America, Plt.tsburg‘h, Pa.,
1056.- For the results of tests on aluminum alloy columns and comparison with thg
formulss see R. L. Templin, R. G. Sturm; E. C. Hartmann,. and M. Holt, Column
Strength of Various Aluminum Alloys, Tech. Paper 1, I}lummum Research Lal_:ora—
tories, Aluminum Company of America, 1938; H. N. Hill and J. W Clark, Stralght-
line Col_mﬁn Formulas for Aluminum Alloys, Teck. Paper 12, Aluminum Company of
America, 1955. : .

31 8ee C. E. Fuller and W. A. Johnston, “Applied Mechanies,” vol. 2, p. 359, 1919.
See also the paper by A. Ostenfeld, Z. Ver. deut. Ingr., vol. 42, p. 1462, 1898. -
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(0a)w = 15,000 — 1(5)2
, ° U 4 \r
for I/r < 140.

A variety of other column formulas have been derived by using the
modified Euler formula [Eq. (3-13)] and taking the reduced modulus E,
as a function of the critical compressive stress. Formulas of this type
were derived by Strand! and Frandsen.?

4.4. Assumed Inaccuracies as a Basis of Column Design. In the
discussion of the application of Euler’s formula in column design (Art.
4.2), it was indicated that the prineipal difficulty lies in the selection of a
proper factor of safety to compensate for the various imperfections in a
column. Under such circumstances it is logical to assume from the
beginning that certain inaccuracies exist in the column rather than to
assume an ideal case. Then a formula can be derived that contains
not only the dimensions of the column and the quantities defining the
mechanical properties of the material but also the values of the assumed
inaccuracies. When these inaccuracies explicitly appear in a design
formula, the selection of a safety factor can be put on a more reliable basis.

The principal imperfections that make the behavior of an actual column
different from an ideal column are (1) unavoidable eccentricity in the
application of the compressive load, (2) initial curvature of the column,
and (3) nonhomogeneity of the material. In the discussion of load-
deflection curves obtained from experiments with columns, it was shown
(see p. 191) that the effect on the deflection of eccentricity in load applica-
tion can be compensated for by assuming a properly chosen initial curva-
ture of the column. Lack of homogeneity of the material can also be
compensated for in an analogous manner. Assume for simplicity that a
column consists of two parallel bars of different moduli joined together.
To have uniform compression without lateral bending-in such a column,
the load must be applied at some point other than the centroid of the
cross section. The position of this point depends not only on the shape of
the cross section but also on the ratio of the two moduli. Hence, the
effect of the nonhomogeneity of the material in this case is equivalent to
the effect of a certain eccentricity and can also be compensated for by a

‘properly chosen initial curvature of the column. v :

Many investigators have tried to establish the amount of eccentricity
in load application by analyzing available experimental data on deflec-
tions of compressed columns. These calculations usually assume a

~ 8trand, Torbjorn, Zenir. Bauverwaltung, p. 88, 1914. See also R. Mayer, “Die
Knickfestigkeit,” p. 74, Springer-Verlag, Berlin, 1921.

2 P. M. Frandsen, Pub. Intern. Assoc. Bridge Structural Eng., Ziirich, vol. 1, p. 195,
1932. See also the paper by W. R. Osgood, Natl. Bur. Standards Research Paper 492,
1932, ’
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constant eccentricity at both ends of the column and a certain value for
the yield-point stress; then, from the magnitude of the load producing
failure, the value of the eccentricity can be calculated. Analyzing
Tetmajer’s experiments in this way, Marston! and Jensen? found as
average values of the ratio of the eccentricity to the core radius the values
e/s = 0.06 and ¢/s = 0.07. The same values have been obtained also
from the analysis of Lilly’s experiments.? Instead of assuming that the
eccentricity is proportional to the core radius, it seems more logical to
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assume that it depends on the length of the column.t On the basis of a
comparative study of experimental data, Salmon recommends, for

instance;,
e = 0.0011 (a)

The question of initial curvature also was studied by various experi-
menters. The results of these investigations were collected by Salmon®
and are given in Fig. 4-8, in which the initial deflection a (the maximum
distance of any point on the center line from the straight line joining the
centroids of the end cross sections) is plotted against the length of the

1 A. Marston, Trans. ASCE, vol. 39, p. 108, 1897,

t C. Jensen, Engineering, London, vol. 85, p. 433, 1908.

3'W. E. Lilly, Trans. ASCE, vol. 76, p. 258, New York. Considerable data regard-
ing inaccuracies in columns was collected by E. H. Salmon, “ Columns,” London, 1921.
See also his discussion in T'rans. ASCE, vol. 95, p. 1258, 1931.

4 Several empirical formulas expressing the ratio ¢/s as a function of slenderness
ratio are given in Salmon, op. cit.

§ Ibid.
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column. It is seen that practically all the points are below the straight
line ,

: l

%= 750 ®
which is proposed for calculatlng the probable initial deflection in actual
columns.

In addition to the effect of eccentrmty in load application and initial
curvature, the effect of nonhomogeneity of the material and unavoidable
variation in the cross-sectional area of the column should be considered.

All the preceding imperfections can be replaced by an equivalent initial
deflection of the column. To obtain this deflection from experiments,
the load-deflection curves should be studied. From the discussion of the
compression of initially curved bars (Art.-1.12) we know that for small
loads an irregular behavior in the lateral deflection of the column can be
expected. This conclusion was verified by a number of experimenters.
When the load approaches the critical value, the first term in the series
representing the deflection curve [see Eq. (1-61)] becomes predominant
and we can find the equivalent initial deflection by plotting straight lines
as shown in Fig. 4-6. There is little experimental data of this kind, and
in choosing the value of an equivalent initial deflection, it is necessary to
rely on the experimental data previously discussed. Assuming that all
inaccuracies increase in proportion to the length of the column and con-
sidering load eccentricities as given by Eq. (a) and an initial deflection
as given by Eq. (b), we can finally take as an initial deflection

o= ©
which will be sufficient to compensate for all probable imperfections in a
column.!

If this method of design is adopted, the design of a column is reduced
to the problem of compression of an initially curved bar, such as shown
in Fig. 3-14. A solution for this case has been developed? by using
Fourier series to represent the initial and final deflections. The results of
the analysis are shown in Fig. 4-9 for steel having a yield point of 36,000
psi and proportional limit 30,000 psi. The curves give the limiting values
of the average compressive stress o, producing fa.ﬂure, for several values of
the initial curvature a/s. The curves show that, in the case of combined
bending and compression and especially for small eccentricities, the yield

! H. Kayser, in a paper in Bautechnik, Berlin, vol. 8, 1930, by working backward
from test results to find the amount of initial deflection that must have been pres-
ent, found values of @ ranging from /400 to 1/1,000. He recommended the use of
a = 1/400.

2 H/ M. Westerga.ard and W. R. Osgood, Trans. ASME, vol. 50, 1928
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load and the failure load are much nearer to éach other than in the case
of bending by transverse loading. Thus it seems logical to take as a basis
for determining the allowable stresses the load that first produces the
yield point stress in the column (see Art. 1.13). This method of pro-
cedure will eliminate the necessity of making the laborious computations
required in the investigation of bending beyond the proportional limit. -

If the initial deflection of the bar is given, the value of the average
stress (¢.)v» at which the yield-point stress is reached at the outermost
fiber can be obtained with sufficient accuracy from curves similar to
those in Fig. 49. From these curves it is possible to derive also a set of
curves for various ratios of the initial deflection a to the length! of the
column . Since the ratio of the core radius s to the radius.of gyration
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depends on the shape of the cross section, the above curve will also depend
on the shape of the cross section. In Figs. 4-10 and 4-11 two series of such
curves? are shown calculated for a solid rectangular cross section and for a
theoretical cross section in which all the material is assumed concentrated
in the flanges. It is assumed that the structural steel has a yield-point
stress of 36,000 psi and that the imperfections in the column are equiva-
lent to an initial deflection a at the middle such that a/l has the values
shown in the figures. These curves also indicate how (¢.)vr varies when
the inaccuracies in a column increase. ;
Having such curves, we can obtain the value of the average compressive

1 In such case the initial deflection @ increases with the slenderness ratio, and as a
result of this (oc)vp decreases more rapidly than that given by the curves in Fig. 4-9.

2 These curves are taken from the paper by D. H. Young, Trans. ASCE, vol. 101,
1936. Anslogous curves, calculated on the assumption that the imperfections of the
column are compensated for by a certain eccentricity, proportional to the length of
the column, are given in the paper by Timoshenko, Trans. ASME, Applied Mechanics
Division, vol. 1, p. 173, 1933.
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stress (vc)ve at which yielding in the outermost fiber begins for any
slenderness ratio I/r. It was noted above that the loads producing the
beginning of yielding do not differ much from the loads producing com-
plete failure and that they approach these loads as the slenderness ratio
increases (see Fig. 4-9). By taking (o.)vr as a basis for calculating the
allowable compressive stress (o.)w and using a constant factor of safety,
we shall be on the safe side in all practical cases.! The margin of safety
with respect to complete failure will be somewhat larger for smaller values
of the slenderness ratio. '
In the previous discussion it was assumed that the imperfections in a
column are proportional to the length of the column and become very
small for a column with a small slenderness ratio. Several authors have
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proposed dividing all imperfections into two kinds, one of which is inde-
pendent of the length of the column and can be compensated for by an
initial deflection proportional to the core radius s and another which can
be compensated for by an initial deflection proportional to the length of
the column.? Through the use of the curves shown in Fig. 4-9, a curve
for (¢.)ve for any values of the above two types of imperfection can be
readily obtained. In Figs. 4-12 and 4-13 are shown two curves of this
kind calculated on the assumption that the initial deflection compensating
for all imperfections is given by the formula

a=0.ls+%)

1 Actually, for very small values of a/s the load obtained on the basis of the yield-
point stress may be somewhat greater than the failure load. This discrepancy is on
the unsafe side but is not of consequence, since in practical design of columns larger
values of a/s are assumed.

*Buch a proposition was made first by F. S. Jasinsky, loc. cif. See also H. S.
Prichard, Proc. Eng. Soc. Western Penn., Pittsburgh, Pa., vol. 23, p. 325, 1908, and
O. H. Basquin, J. Western Soc. Eng., Chicago, vol. 18, p. 457, 1913. .
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One of these curves assumes a solid rectangular cross sgction, and the
other a theoretical cross section in which all the material is concentra'tgd
in the flanges. For comparison, the previous two curves (from Figs.
4-10 and 4-11), calculated for @ = [/400, are also s.how1.1 in the ﬁgurest
4.5. Various End Conditions. In the discussion in the preceding
article it was assumed that the ends of the compressed colum were free
torotate. There are cases where actual conditions approach this assump-
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tion, but the ends of columns, as encountered in practice, usually are
restrained to some degree and cannot rotate freely. The critical value
of the load in such cases depends on the magnitude of the coefficients of
restraint and becomes a maximum when the ends are completely fixed.
Let us begin with a discussion of this extreme case. If the ends of the
column are not free to rotate during compression, any eccentricities in
the application of the compressive forces do not result in bending of the
column and a straight column ‘will undergo only a uniform compression.
Hence, in the discussion of imperfections in eolumns with built-in ends;
only initial curvature need be considered. The bending stresses due to
this factor naturally will depend on the shape of the ‘
initial curvature of the column. Assuming, for ex- —{&e

ample, an initial curvature (Fig. 4-14) as given by “
the sine curve y = a sin wz/l, we conclude that for ‘zﬂ
small loads P, where the defleetions due to bending
can be neglected in comparison with the initial de-

flections, there must be an eccentricity equal to 2a/x *-i:f—m(l"zi)
at the ends. This value of eccentricity is found by |
considering the total bending-moment ares, shown |
shaded in the figure. The total area must vanish in
order to give zero rotation of one end of the column J_Zil =
with respect to the other. i
With an increase of the compressive load, the ad- <_o,f,
ditional deflection due to bending should be con- Fic. 4-14

sidered. By using Egs. (}) and (m) of Art. 1.12, we
find that the bending moments M, at the ends and the bending moment
M, at the middle are

_ _ _aP Ta _ aP __Ta )
M, = (1 ~a)2utanu M, = 1—a (l 2u sin u) (@)
. . P2 l |P
in which @ =57 U =5 \ET )

For small values of the load P we can assume that u ~ sin v ~ tan % and
neglect « in comparison with unity. Then
M1=—£D M2=aP(1—-g) (c)
ks T
which requires an eccentricity of 2a/7 in the application of the load, as
mentioned above. It is seen that the moments at the ends are larger
than the moment at the middle, and the ratio! of these moments is

1Tt should be noted that this ratio depends on the shape of the initial curvature.
Assuming, for instance, that the initial curve is a parabola symmetrical about the
middle of the bar, we find that M,/M, = —2. ‘
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This result is valid in the case of short columns for which the ultimate load
is usually small in comparison with the Euler load.

With an increase of the load P the bending moments M, and M,
increase also, and at the sanie time their ratio diminishes. Take, for
instance, P = x2EI/l* i.e., a compressive load equal to one-quarter of
the critical load for a column with built-in ends. Then irom Egs. (a)

we find that
x P ) _1raP ﬂ’
y Mi=—-= M=3
l M
| and ﬁ; ~ —1.57

| " In the case of slender columns, the ultimate load, for a

small initial curvature, approaches the value 4x2E1/I* and

2 I‘E the quantity % in Egs. (a) approaches the value ». The

moments M, and M, at such values of « increase indefinitely,

and their ratio approaches unity. The conditions of bend-

I ing of the column approach those in which the initial curva-
) Y ture of the column is given by the equation

P .
a 2rx
F16. 4-15 ) : = § (1 — CO08 T)

In this case (see Fig. 4-15) the moments at the ends and at the middle are

always numerically equal and the maximum stress is the same as for a -

compressed column with hinged ends having a length equal to //2 and an
initial deflection represented by a sine curve with the deflection a/2 at
the middle. “The expression for the maximum bending moment in this
case is [see Eq. (1-60)]

aP
2(1 — a/4)

The ratio of the absolute value of the moment M,, from Egs. (a), to

the moment M is
[24
M, 2V (l - 74‘)

M (1 - a)tan (r Va/2)
For small values of « this ratio approaches the value 4/x. With an
increase of the load P, « increases and the ratio diminishes. Fora =1
the ratio is equal to 3r/8. When « approaches the value 4, correspond-
ing to Euler’s load for a column with built-in ends, the ratio of the
moments approaches the value 8/3x. :

M=
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From this discussion it can be concluded that if the column repre-
sented in Fig. 4-14 is a slender column which fails principally because of
bending stresses, we shall be on the safe side in taking the reduced length
of the column equal to half of the actual length and in using the curves
calculated for columns with hinged ends (Figs. 4-10 and 4-11).- In the
case of short columns the maximum bending stress may be somewhat
larger than that obtained by using the above procedure, but in such
columns the bending stresses at failure are usually small in comparison
with the direct stress; hence, it seems satisfactory to use also in this case
the reduced length I/2 and the curves in Figs..4-10 and 4-11. Such
procedure is further justified if we note that, in the discussion of columns
with hinged ends, the magnitude of the initial curvature was chosen: so as
to compensate not only for the erookedness of the column but also for
eccentricity in application of the load and that in the case of built-in
ends this eccentricity is absent. Thus, discussing the design of columns
with built-in ends on the basis of assumed inaccuracies, we arrive at the
same conclusion regarding reduced length as we did when the diagram of
critical stresses was used for determining working stresses.

Up to this point we have considered only two extreme cases, columns
with hinged ends and columns with built-in ends. Compressed members
in structures usually- have intermediate end conditions, the restraint at
the ends being dependent on the rigidity of adjacent members of the
structure. - The degree of fixity of the ends can be obtained only on the
basis of investigation of the stability of the entire structure. : Several
examples of such investigations were discussed in Chap. 2, and it was
shown that in each particular case the critical load for a compressed mem-
ber of a structure can be calculated as for a column with hinged ends
having a certain reduced length. When this reduced length is known,
the design of the compressed member can be made by using curves such
as those in Figs. 4-12 and 4-13.

Only in the case of the simplest structures can the stability conditions
be established without much difficulty. Generally, in the design of com-
pression members of a structure, the reduced length of these members is
taken on the basis of some approximate consideration. For instance, in
discussmg the stability of the compressed top chord of a truss, it can be
seen that the wind bracing and the members in the plane of the truss do
not provide a large amount of resistance to lateral buckling of the chord
members in alternate directions in successive panels. It is common
practice to consider these members in lateral buckling as pin-ended
columns, so. tha.t the actual length between the theoretical hinges should
be used in this case. The same conclusion can be made also regarding
the lateral buckling of compressed diagonals and verticals of a truss.

In considering the buckling of compressed members in the plane of a
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truss, it should be noted that, owing to rigidity of the joints, certain
bending moments will be produced at the ends of these members. Tl}e
magnitude of these moments can be calculated by the methods used in
analyzing secondary stresses in trusses. In this analysis the effect of
axial forees on the bending of truss members is usually neglected,! so that
the moments are proportional to the loads. “Under such a condition each
compression member can be considered as an eccentrically loaded column
with known eccentricities at the ends, and the allowable average com-~
pressive stress can be obtained by interpolation from the curves given in
Figs. 1-28 to 1-31. The presence of initial curvature in a compressed
member will add to the bending stresses and should be allowed for by
superposing at each end an equivalent eccentricity ¢ on the actual eccen-
tricities mentioned above and calculated from the secondary stress
analysis. These modified values of the eccentricities will then be used in
calculating working stresses from the curves in Figs. 1-28 to 1-31.. Ina
gimilar manner, the deflection of a compressed member due to 1t.s.own
weight can be compensated for by introducing certain additional
eccentricity. )

4.6. The Design of Built~-up Columns, In discussing the buckhng. of
built-up columns in Art. 2.18, we obtained Eq. (2-61) for calculating
critical loads for laced columns and Eq. (2-64) for batten-plate columns.
When these equations are used, the actual built-up column is replaced
by an equivalent column of a reduced length, which is to be determined,
in the case of a laced column (Fig. 2-55a), from the equation

wEIf 1 b , 1)
L=’\/1+ B \A.,Esinqbcosw"'AT,Ea‘) S

and, in the case of a batten-plate column (Fig. 2-57), from the equation

* EI at na - 49

= l\/ 1+ (12EI., +oamr, t bA,,G> (42)
These formulas, derived for the case of buckling in the elastic range, can
be used also beyond the elastic limit by replacing the modulus of elasticity

E with the tangent modulus E; (see Art. 3.3) in the expressions for the
flexural rigidity EI of the column and flexural ngldlty EI, of one chord.

When the reduced length of a built-up column is determined, the.

allowable stress for the corresponding value of L/r is found from curves

1 This can be justified if we note that the slenderness ratio of the chord members is
usually small, so that the acting compressive forces are small in comparison with the
Euler loads. The slenderness ratio of diagonals and verticals may be larger, but they
are very often bent in an § shape. Under such conditions the effect of the axial
forces on deflections; as can be concluded from the gemeral discussion of Art. 1.11,

is small.
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such as are shown in Figs. 4-10 and 4-11 with a proper factor ‘of safety.
The use of these curves for built-up columns amounts to assuming that
the imperfections are-a function of the reduced length L rather than the
true length. This means that a slightly higher factor of safety will be
used in the case of built-up columns, which seems satisfactory.

A considerable number of experiments have been made with built-up
columns,® but only in a few cases were the experiments made with the
intention of verifying any theory. Of particular importance are experi-
ments made by Petermann? and by J. Kayser,® dealing with batten-
plate columns. The flexibility of such columns in the plane parallel to
the batten plates depends very much on the dimensions of the battens
and the distance between them. Experimental values of critical loads
are in satisfactory agreement with those calculated by using Eq. (4-2).

In the design of built-up columns the proper dimensioning of the lacing

- bars and batten plages is of great practical importance. In these calcula-

tions we shall proceed as before and, as a basis for determining stresses
in these parts, assume some imperfections in the column, such as initial
curvature or eccentricity in load application. When this has been done,
it will be possible to evaluate the maximum shearing force Q,,, that arises
for any value of the compressive load P. This maximum shearing force
will then be calculated for the value of the load P at which yielding in the
extreme fibers of the column begins. It is logical to design the lacing
bars and batten plates on the basis of this maximum shearing force, so
that they will yield simultaneously with the extreme fibers of the column.

The imperfections in a column should be so assumed that we have the
most unfavorable condition as far as shearing forces are concerned.
Possible types of imperfection, consisting of an initial curvature or an
initial eccentricity in the application of the load, are shown in Fig. 4-16.
The value of the initial deflection a or initial eccentncxty e will be taken
proportional to the length, which in this case is the reduced length of the
column, calculated from Eq. (4-1) or (4-2). ' Considering the case in
which the initial curvature is represented by one half-wave of a sine curve
(Fig. 4-16a), we find that the maximum shearing force occurs at the ends
of the column. For the small deflections which occur in practice we can
take Q... = P6. In the case of an S-shaped initial curvature (Fig.
4-16b), each half of the column can be considered as a column of the
previous type but of length l/2'and deflection 8/2. The initial shearing

1 A discussion of some of these expenments is given in the report of the ASCE Special
Committee on Steel Column Research, loc. cit. See also R. Mayer, “Die Knick-
festigkeit,” p. 387, Berlin, 1921, and D. Riihl, “Berechnung gegliederter Knickstibe,”
Berlin, 1932.

2 Baumgemeur, vol. 4, p. 1009, Berlin, 1926, and vol. 9, p. 509, 1931.

* Bauingenieur, vol. 8, p. 200, 1930.
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forces at the ends will be the same as in the previous case, but the value
of the shearing force at failure will be smaller, since, regardless of its
initial shape, the column will buckle in one half-wave at the critical load
for the length [, which is smaller than the critical load for the length 1/2.
The case of two equal eccentricities in the same direction (Fig. 4-16¢)
is also more favorable than the case in Fig. 4-16a. Assuming that the
eccentricity e is such that both columns fail a} the same load P, we find
that the bending moments at the middle will be equal at failure for both
cages; hence the corresponding values of 8, 0, and Q.. will be smaller for
case (¢) than for case (a). In the case of equal eccentricities in opposite
directions (Fig. 4-16d) there will be horizontal reactions at the ends equal
to 2Pe/l and the maximum shearing force, equal to 2Pe/l + P8, occurs

Fia. 416

at the middle. It is possible that under certain conditions this case will
be more unfavorable than case (a). Thus, finally, we conclude that cases
(@) and (d). should be considered in detail.*

Beginning with case (a) and using Eq. (1-60) for the deflection curve,
we find that the angle 6 at the ends is ‘ o
dy e :
dzJome 11 — @) (a)

where a = PI?/x*E1, and we obtain for the maximum shearing force

0=

_ 7a
Qo = P —y |
Dividing both sides of this equation by the cross-sectional area A and

1 This question is discussed by D, H. Young, Proc. ASCE, December, 1934, and
Publ. Intern. Assoc. Bridge Structural Eng., Zirich, vol. 2, p. 480, 1934.
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Psing the notation (o.)ve for the average compressive stress when yielding
in the extreme fiber of the column begins, we find that the value of the
maximum shearing force per unit of cross-sectional area at which yielding
begins is

Qs = () ]
A' c)YP l(l — a) (4—3)

For any slenderness ratio I/r and a given initial defléction a, we find (¢,)ye
from curves such as shown in Figs. 4-10 and 4-11, with a proper factor of
safei.:y. _Thez} Qu.x is calculated from Eq. (4-3). This calculation can
!)e simplified if we solve Eq. (7), Art. 1.13, for a and substitute its value
in Eq. (4-3). We obtain, then,

Orax _ 7S

4 = ‘Z—[GYP — (oc)vr] 49
Knowing ove and ‘using the curves in Figs. 4-10 and 4-11, with a safety
factor, for determining (o.)ye, we can represent Q.../A as a function of
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the slenderness ratio I/r for any value of the initial deflection a. In
Fig. 4-17 are shown two curves of this kind calculated for a/l' = {45 and
a/l = 73y It is assumed that all the material of the column is con-
centrated in the flanges; hence we have s = r. . :

In case (d), the angle of rotation 8 of the middle cross section of the
column is found by considering each half of the column as a compressed
beam of span I/2 simply supported at the ends and bent by a couple Pe.

Then, from Eq. (1-25),
‘ _e kl
o= l(sinkl/2 - 2)

where ’ k=
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The maximum shearing force is

, _ 2Pe _Pe K ‘
- Quex = - + PO =7 20175 ®)

In the case of short columns, failure occurs at a load that is small in
comparison with Euler’s load; then kI/2 is small and we can assume that
sin kl/2 =~ kl/2. Equation (b) gives in this case

2Pe
Qe =77

That is, the maximum shearing force is equal to the lateral reaction at
either end (Fig. 4-16d). In the case of slender columns, in which the load
P may reach the Euler load before the maximum fiber stress reaches the
yield-point stress, kl/2 approaches the value r/2 and we see from Eq.
(b) that the maximum shearing force may become 57 per cent higher than
the value of the lateral reactions 2Pe/I.

Dividing Eq. (b) by the cross-sectional area, we obtain the maximum
shearing force per unit area for the beginning of yielding in the extreme
fiber: ’

Quax e Kkl
1= (Vc)vr'lm (4-5)

For any values of eceentricity ¢/l and slenderness ratio I/r the value of
(05)xe can be obtained from the curves in Fig. 1-31. Then, with the use
of Eq. (4-5), the value @,../A can be calculated for various values of

e/l and I/r. Such caleulations show that in general the assumption of an -

initial curvature results in a larger value for @, and should be taken as a
basis for the design of the details of built-up columns if the imperfections
given by a or e are proportional to the length I. If the eccentricities in
case (d) are given some constant value instead of being assumed propor-
tional to 7, a much higher shearing force will be obtained from Eq. (4-5)
for small values of the slenderness ratio I/r.. Curves are shown in Fig.
4-17, in which values of e/s = 0.2,.0.3, 0.4, 0.6 have been used.

The curves shown in Fig. 4<17 take account of shearing force due to
initial imperfections only. When a' compressed member in a truss is
subjected to secondary end moments as discussed on p. 206, the shearing
force may become very large, and it seems logical to design the details of
such members to resist the shearing forces that actually arise because of
end moments.! -

With curves such as shown in Fig. 4-17 available, the procedure for the
design of a built-up column will be as follows: Assume certain cross-sec-
tional dimensions of the column and also dimensions for the details.

! This problem is discussed in the paper by D. H. Young, loc. cit.
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Then the reduced length of the column will be calculated from Eq.
(4-1) or (4-2) and the allowable average compressive stress will ‘be
obtained from the curves in Figs. 4-10 and 4-11, with a proper factor of
safety. The use of this trial-and-error method will establish the neces-
sary cross-sectional dimensions. The necessary strength of the lacing
bars or batten plates and the necessary number of rivets at the joints
should now be checked by using the curve in Fig. 4-17. The same curve
can be used also for checking the distance between rivets in riveted
columns.

It is assumed in this discussion that buckling of the column occurs in
the plane parallel to the batten plates or lacing bars. Sometimes the

F1c. 4-18

possibility of distortion of the cross section of a built-up column should
be considered. For instance, in the case of a column consisting of four
longitudinal bars connected by lacing bars (Fig. 4-18), a distortion may
occur ‘such as shown in the figure by dotted lines. To eliminate the
possibility of such distortion, certain bracing in the cross-sectional planes
of the column or use of diaphragms is necessary. Between the two planes
with cross-sectional bracings or two diaphragms, each longitudinal bar
can be considered as a strut with hinged ends elastically supported along
the length by lacing bars. With the use of the energy method, the
required distance between the braced cross sections can be checked.

In the case of built-up columns consisting of comparatively thin plates,
local failure may occur owing to buckling of the compressed plates if the
unsupported width of these plates exceeds certain limits. The require-
ments regarding unsupported width of plates and the methods of rein-
forcing plates by stiffeners will be discussed in Chap. 9.




CHAPTER 5

TORSIONAL BUCKLING

5.1. Introduction. In the previous discussions of buckling, it was
assumed that a column would buckle by bending in a plane of symmetry
of the cross section. However, there are cases in which a column will
buckle either by twisting or by a ¢ombination of bending and twisting.
Such torsional buckling failures occur if the torsional rigidity of the sec-
tion is very low, as for a bar of thin-walled open cross section. In the

next two articles of this chapter the subject of torsion of bars of thin-

walled open section will be discussed. Then, in the remaining articles,
the theory of torsional buckling will be presented.
5.2. Pure Torsion of Thin-walled Bars of Open Cross Section. If a

bar is twisted by couples applied at the ends and acting in planes normal .
to the axis of the bar, and if the ends of the bar are free to warp, we have

the case of pure torsion. The only stresses produced are the shearing
stresses at each .section of the bar, .The distribution of these stresses
depends on the shape of the cross section and is the same for all sections.
For a beam of thin-walled open section it can be assumed with reasona-
ble accuracy that the shearing stress at any point is parallel to the cor-
responding tangent to the middle line of the cross section and is propor-
tional to the distance from that line.
The angle of twist per unit length 0 is gwen by the formula.
. M, : |

=& o (5-1)
where M, denotes the torque and C is the torsional rigidity of the bar.
The torsional rigidity can be represented in the form .

C=aJ (5-2)

where G is the shearing modulus of elasticity and J is the orsion constant.
For a bar of thin-walled open section of constant thickness ¢, we can take
the torsion constant® as

J = ime (5-3)

1 See Timoshenko, “Strength of Materials,” 3d ed., part II, pp. 240-246, D. Van
Nostrand Company, Inc., Princeton, N.J., 1956.
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where m is the length of the middle line of the cross section. If the cross

section consists of several portions of different thicknesses, we can’ assume
that :

J ='§'z"niti3 / , : G

where the summation is extended over all portions of the cross section.
Formulas for J are given in Table A-3, Appendix, for several shapes of
cross section.

‘The initially straight longltudmal fibers of the bar are deformed during
twist into helices which, for small angles of twist, can be considered as
straight lines inclined to the axis of rotation.” I p denotes the distance of

Fig. 5-1

the fiber from the axis of rotation, the angle of inclination of the fiber to
the axis is pf.

Warping of the cross section in the case of a thin-walled open section
can be visualized readily if we observe that there is no shearing' stress
along the middle line of the cross section.. This indicates that the ele-
ments of the middle line remain normal to the longitudinal fibers after
torsion.. For example, the warping of the cross seetion of & twisted I

‘beam is shown in Fig. 5-1.! During twisting with respect to the 7 axis,

the central fibers of the flanges, distance /2 from the 2z axis, become
inclined to the z axis by the angle 6h/2. The middle lines of the flange

cross sections will therefore make the same. a.ngle with the z axis; as
shown in the ﬁgure .

"+ ¥ The rotation of the cross seétions is not shown.
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- Let us consider next a more general case in which the middle line of the
ceross section is of arbitrary shape (Fig. 5-2). -Assuming that during tor-
sion the cross sections of the bar rotate with respect to an axis through
point A parallel to the longitudinal axis, we find that any longitudinal
fiber N in the middle surface of the wall becomes inclined to the axis of
rotation by the angle pf. The fiber N is defined by the distance s meas-
ured along the middle line of the cross section. The tangent to the middle
line at N remains perpendicular to the longitudinal fiber, and the small
angle between this tangent and the zy plane, after torsion, is pf cos & = r4.
The distance r from the tangent at N to the axis of rotation is taken
positive if a vector along the tangent and pointing in the direction of
increasing s acts counterclockwise about the axis of rotation. Thus the
distance r shown in Fig. 5-2a is a positive quantity. Letting w denote

y

Fic. 5-2

the displacements of the middle line of the cross section in the z direction
and considering the torque to be positive as shown in Fig. 5-1, we have
the relation

ow ,
F remiia (a)

By inteération we then obtain
w='wo—0/;)‘rds 5-5)

where wy denotes the displacement in the z direction of the point from
which s is measured. - Since the area of the shaded triangle in Fig. 5-2a
is r ds/2, it is seen that the integral on the right-hand side of Eq. (5-5)
represents the doubled sectorial area swept by the radius p as we move
along the middle line of the cross section from the point s = 0 up to the
point N under consideration. The swept area is taken positive when the
radius o is rotating in the positive direction, that is, counterclockwise
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about A. The value of the integral for s = m will then be represented by
twice the algebraic sum of the three shaded areas in Fig. 5-2b.

In the preceding discussion it was assumed that the: cross section
rotated with respect to an arbitrary point A. Let us now investigate the
effect on warping of a displacement of the center of rotation. Assume,
for example, that the centeér of rotation is moved from 4 to B (Fig. 5-3).
Considering an element ds of the middle line of the cross section and
denoting by z, y the coordinates of point N and by z,, y. the coordinates o
the center of rotation A, we see from :
the figure that y

rds = (ya — y)der — (s — z) dy *a 0_3.1
If the center of rotation is moved » 1.
from A to B, the coordinates of the ) e
center of rotation become z, + ¢ and \
Ya -+ b; hence
reds =rds+ bdr —cdy

To calculate the warping produced ds
by rotation about B, we have to sub- N; %
fe— x ‘I dx

a’i

stitute rz ds in place of r ds in Eq.
(5-5). This gives

/osrgds = /Osrds.+f0‘ (bdx — 9dy)
=/08rds+bx—cy+a

where a is a constant. It isseenthat Fic. 53

a change in the position of the cen- .

ter of rotation results in a change of the previously calculated displace-
ments [Eq. (5-5)] by an amount

0(br — cy + a)

Since this displacement is a linear function of r and y, it does not require
any additional deformation of the bar and is accomplished by moving the
bar as a rigid body.. - Therefore, we conclude that in the case of pure tor-
sion of a bar with free ends, the selection _()f the axis of rotation is/} imma-
terial and any line parallel to the centroidal axis can be taken as the axis
of rotation. o

The average value ¥ of the warping displacement can be calculated
from Eq. (5-5). as follows: . .

w=%ﬁmwds;‘wo—l,%»,ﬁm[/:rds]ds ‘ :{i(b)v’
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Subtracting this value from the displacement given by Eq. (5-5) gives
the warping of the cross section with respect to the plane of average warp-
ing. - Continuing to use the symbol w for displacements with respect to
the new reference plane, we obtain. .

w=2 m[/ards]ds—f)/srds (@
m Jo 0 0

To simplify the writing of this expression, we introduce the notation -

W, = /,rds

o (5-6)
@y = — w, ds

m jo

The quantity w,, called the warping function, represents the .doubled

y

L

ol ——

h
Bk (h-e) S
2 ;

Fic. 5-4 -

sectorial area corresponding to the arc s of the middle line of the cross
section, while &, is the average value of w,. Using notation (5-6), we
find that the expression for warping becomes

w = 6(d, — w,) (57
From this equation the warping displacements for pure torsion can be

calculated for any bar of thin-walled open section. . ‘ o
As an example of the use of Eq. (5-7), let us consider accross section in
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the form of a channel (Fig. 54). Assuming that rotation ecears about a
longitudinal axis through O, the shear center,! we find the followmg
expressions for the warping functlon

co.=A’rds-—/ ds-82h 0<s8<b -
w.=22}—"-—ﬁ'eds=l—)2é+be—se' b<s<b+h
bh * h |
“"_f_h +‘A+h'2-d8 P
. |
- —he %+% b+h<s<2+h

Using the above expressions for w,, we obtain the average value of the
warping function as

[)‘mw.ds
b b
[/’s—@ds+/+h(@+be—se)ds
o 2 b 2
2b+4 2
TRERN
b+h 2

Wy =

8= 3=

1A .
-alhe-o@+ w]
and since m = 2b + h, this becomes

Substltutmg into Eq (5-7), we obtam the followmg expressxons for the
warpmg displacements:

w=0§(b—e—s). . 0<s<h : (d)
w;ae(—b—ngs)' b<s<b+h )
w=00Gb+eth—s) b+h<s<2+h 0

The variation of w along the middle line of the cross section is shown by
the shaded areas in Fig. 5-4.

If the cross section consists of thin rectangular elements whxch mter-
sect at a common point (Fig. 5-5), and if the axis of rotation is taken
hrough the shear center O, the distance r vanishes for all points of the
dhniddle line and hence there is no warping of this line during torsion.

-1 For a discussion of shear center, see Timoshenko, o0p. cit., part I, p. 235.
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. .5.3. Nonuniform Torsion of Thin-walled Bars of Open Cross Section.
In the preceding article we discussed the case of pure torsion, in which it is

assumed that the torque is applied at the ends of the bar only and that
cross sections of the bar are free to warp. Under such conditions warping
is the same for all eross sections and takes place without any axial strain
of the longitudinal fibers. The case of nonuniform torsion occurs if any
cross sections are not free to warp or if the torque varies along the length.
of the bar. In these cases warping will vary along the.bar during torsion,
and hence there will be tension or compression of the longitudinal ﬁbers.
In addition, the rate of change 8 of the angle of twist will no longer be
constant but will vary along the axis of the bar.

WL

Fi16. 5-5

Let us begin the discussion by considering the simple case of nonuni-
form torsion of a symmetrical I beam (Fig. 5-6). One end of the beam is
assumed to be rigidly built in; thus, there is no warping of the cross
section at the support. The torque M, is applied at the free end. It is
evident that the resistance of the beam to torsion is greater when the end
of the beam is built in than when the ends are free to warp, since in the
former case torsion is: accompanied by bending of the flanges.  The
torque M, is balanced partially by shearing stresses due to pure torsion,
as discussed in the preceding article, and partially by the resistance of
the flanges to bending. These two parts of the torque will be denoted by
M, and M, respectively. The torque My is proportional to the rate of
change of the angle of twist along the axis of the beam. Denoting this
angle by ¢ and using Eq. (5-1), we obtain

My=c® (@)

In this equation the angle ¢ is assumed positive according to the right-

hand rule of signs; that is, the direction of positive rotation is the same
as’the-direction of positive M; (shown in Fig. 5-6).

“ The second part of the torque is found by con51der1ng the bendmg of

the flanges. Since the beam cross section is symmetrical, we conclude

that each cross section will rotate with respect to the centroidal z axis,

¥
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, end hence the lateral deflection of the lower ﬂange of the beam is

U = ¢ 2
The bendlng moment M, in the lower ﬂange is

du _ Elhd? ‘
=Bl =5~ dz? . ®

where I, is the moment of inertia of one flange about the y axis.- The

shearing force in the lower flange is, therefore, -

_dM, _ELhd

In the tOI.) ﬂapge there will be a shearing force of the same magnitude but
opposite in direction. The couple formed by these two shearing forces
represents the second part of the torque; that is,

_EIhrd*¢
2 dz? @

My=—-Vh =

The equation for nonuniform torsion of an I beam becomes, then,
_ _ ~d¢  EIh*d%¢
Mer¢1+Mzz—CE;— 3 dat

The angle of twist ¢ can be found by integration of this equatlon, pro-

vided M, is a known function of z. Then, when ¢ is known, the two

portions M n and M, of the torque can be found and, finally, the stresses
produced in the beam by each of these portions can be calculated.

(5-8)

Nl

ol

Fra. 5-6
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It should be noted that Eq. (b) was used in analyzing bending of the
flanges of the I beam. This means that the effect of shearing stresses in
the flanges on the curvature was neglected and only the effect of normal
stresses o, was considered, which is the usual practice in analyzing bending
of beams. : . o ,

The method used above for the analysis of nonuniform torsion of an
I beam can be applied to the analysis of a thin-walled bar of any open
cross section. Assume that a bar of arbitrary shape (Fig. 5-7) is built in
at one end and subjected to a torque M; at the free end. If a transverse
force is applied at the shear center O’ of the cross section at the free end,

Fia. 5-7,

there will be bending of the bar without torsion. Hence, on the basis of
the reciprocal theorem, we conclude that the torque M, applied at the
free end will produce no deflection of point 0’. The shear center axis
00’ therefore remains straight during torsion, and the cross sections of
the bar rotate with respect to that axis. Again denoting by ¢ the angle
of rotation of any cross section, we find that the part My of the torque,
producing stresses of pure torsion, is given by Eq. (a).

In calculating the second part M,, of the torque, corresponding to
bending of the flanges in the case of an I beam, we shall proceed as before
and neglect the effect of shearing stresses on deformation of the middle
surface of the bar. Then the axial displacements w, which define the
warping of the cross sections, will be. found in the same manner as for
pure torsion [see Eq. (5-7)]. For the case of nonuniform torsion, how-
ever, the constant angle of twist per unit length ¢ is replaced by the
variable rate of change of the angle of twist d¢/dz. Thus we obtain

0= (6~ ) 52 (5-9)
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Since d¢/dz varies along the length of the bar, adjacent cross sections will
not be warped equally and there will be axial strain e, of the longitudinal
fibers of the bar. Observing that &, and w, in Eq. (5-9) are independent
of 2, wevobtain for the axial strain the expression e
| _w_ B L
» E.—-—a;—(ﬁl.— ,a? . (d)
Assuming that there is no lateral pressure between the longitudinal
fibers, we obtain the normal stresses produced during honuniform torsion
from Hooke’s law: R . .

o = Ee = B, — o) 5 CED)

This expression shows that the normal stresses on any cross section are
proportional to the warping displacements w, and hence a diagram show-
ing the variation in warping along the middle line will also represent, to a
suitable scale, the distribution of the stresses o,. For example, the dia~
gram of Fig. 5-4 represents the variation in axial stresses during non-
uniform torsion of a channel section. :

In order to show that the stresses o, give no resultant force in the axial
direction and give no moments about the z and y axes, we can use the
reciprocal theorem. Let us assume that normal stresses of intensity p
are distributed uniformly over the end cross section of the bar in Fig,
5-7. These stresses produce no rotation of the bar, and as a result, there
will be no work:done by the torque M;. From the reciprocal theorem we
conclude that the work done by the stresses p on the displacements w
produced by the torque must vanish also. Thus we have

/; wptds-—p_a—z—/; (@ — w)tds =0
and hence [) " (@ ~ w,)tds =0 (e

which shows that the axial resultant of the normal stresses (5-10) vanishes.
Let us now apply to the end of the bar bending stresses of intensity
Pumasl/¢, Where y is the distance from the z axis to any point in the cross
section atid c is the distance to the extreme fiber. Thus the stresses are
proportional to the distance from the z axis and have a maximum inten-
SItY Pmer. Such stresses produce pure bending of the bar with no rota-
tion about the z axis. ' ‘Since the torque M, produces no work during this
bending, we conclude that the work of the bending stresses during torsion
must vanish also; hence o ot ' C

” p,.;,y _&-_-xbd_'# [ 5 _ wtds = O
/;thds— p dz_/; (@ — w,)ytds =0
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This result shows that the moment with respeet to the x axis of the stresses
(5-10) vanishes. In a similar way it can be proved that the axxal stresses
give no moment about the y axis.

The normal stresses ¢, produce shea.'rmg stresses of the same type as
those discussed in considering bending of the flanges of an I beam.
These shearing stresses constitute the second part M, of the torque. To
calculate the shearing stresses, let us considér an element mnop (see Fig.
5-8) cut out from the wall of the barin Fig. 5-7. If the walls of the bar
are thin, it can be assumed that the shearing stresses = are uniformly dis-/
tributed over the thickness ¢ and are parallel to the tangent to the middle
line of the cross section. - ~Along the middle line the stresses vary with the

distance s from the .edge of the section and can be calculated from an
L

r+g—:ds
m__e———
do,
o+ —dz
0z Oz

F16. 5-8

equation of static equilibrium of the element mnop (Fig. 5-8). Pro-
jecting all forces onto the 2z axis and observing that the thickness ¢ may
vary with s but is independent of -z, we obtain the equation

a(rt) do, _
Ts—dsdz +t¢ gdsdz =0

8rt) _ _, 90, )

or s 9z

Substitution of expression (5-10) for ¢, into Eq. (f) gives

- 3(r?)
as

= ,_Et(- wc) Zz? | ) (g)

Integrating (g) with respect to s and observing that ¢ is mdependent of
-8 and that 7 vanishes for s = 0, we obtain

The portion M, of the torqué is obtamed by summation along the middle

line of the section of the moments of the elemental shear forces 7t ds about
the shear center. Thus we obtain
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N m .
M t2 = Tir ds
0

- %¢ U (w,—w,)tds]rds‘ | )

This equation can be snnphﬁed if we observe from the first. of Eqgs.
(5-6) that

r ds = d(w.)
or, since &, is independent of LA

_ d(@ ~ w,)
s ds

From this last éxpression it is seen that

/m[/‘ (@, — w.)tds]rds = — ﬂm[/' (5,; _ a;.)tds] d(&.d: w')ds

Integrating the right-hand side of the equation by parts and also usmg
Eq. (), we obtain . ,

A"‘M (@0 - w.)tds]rds = [" @ — w)uds
Substitution into Eq.‘ (k) then yields the following expression for M,:

rds =

®

di¢ [m _
Ma=-£% A (@ — wp)% ds )
Introducing the notation
C:=E / (@ — wi)? ds (5-12)
we can write Eq. (7) in the form
d3¢
M, = —Cigy (k)

This is the portion of the torque due to nonuniform torsion and non-
uniform warping of the cross sections and will be referred to as the warp-
ing torque The constant C; is called the warping rigidity and for con-
venience can be expressed in the form .
C, = ~ (5-13)
where the quantity C,, called the warpmg constant, is glven by the
expression!
Co = / (@ — )7t ds  (514)

It is seen that C,, has units of length to the sixth power.
1 8everal symbols, including Csr, Cap, Cs, and T, have been used in the literature

to denote the warping constant,
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The differential equation for nonuniform torsion, obtained by com-
bining Eqgs. (@) and (k), is
il (5-15)

This equation applies to any bar of thin-walled open cross.secti(')n.
Equation (5-8) for an I beam is a particular case! of Eq.' (5-15) in which
the warping rigidity is €, = EI/?%*/2. When Eq. (5-15) is solved and the
expression for the angle of twist ¢ is known, the torques M, and M,
can be obtained from Eqs. (@) and (k), respectively. The stresses pro-
duced by My are calculated in the same way as for pure torsion. The
normal and shearing stresses produced by M;: can be found from Eqs.
(5-10) and (5-11), respectively.

As an example of the calculation of the warping constant €, let us
consider again the channel section shown in Fig. 5-4. -The values of the
warping displacements w, given by Eq. (5-7), are shown in the figure.
The values of the quantity @ — w, are found from Egs. (d), (e), and ( j:),
Art. 5.2, by dividing the expressions for w by 6. In this way we obtain
for C, the expression®

bh!
C..=f—(b-—e—s)’tds
) o 4

+ /Hhe’(—b _k + s)zt ds
» . 2

wrh b+e+h—9 ds
o+ 4 ‘

- ‘-1"—; [he? + 2b* — 6eb(b — €)]

Substituting for e its expression from Table A-3, Appendix, we obtain
th*b? 3b + 2h

=R

For cross-sectional shapes consisting of thin rectangular elements Which
intersect at a common point (see Fig. 5-5), the warping constant C. can
be taken equal to zero. Formulas for C,, for other shapes of cross section
are given in the Appendix.

1 The equation for this particular case was derived by Timoshenko, B1{,ll. Polytech.
Inst., St. Petersburg, 1905. Extension of the equation to I beams with unequal
fianges was made by C. Weber, Z. angew. Math. u. Mech., vol. 6, p. 85, 1926. Further

i i i ions i H. Wagner, Tech.
extension of the.equation to all thin-walled open sections is due to 3
Hochschule, Danzig, 25th Anniv. Publ., 1929; translated in NACA Tech. Mem. 807,

1936. :

2 Note that the first and last integrals in this particular expression for C have the

same value.
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8.4. Torsional Buckling. There are cases in which. a thin-walled bar
subjected to uniform axial compression will buckle tarsionally while its
longitudinal axis remains straight. In order to show héw an axial com-
pressive load may cause purely torsional buckling, let us consider as an
example the doubly symmettic bar in Fig. 5-9. The bar is of cruciform
section with four identical flanges of width b and thickness £ The
z and y axes are the symmetry axesof the cross section. Under compres-
sion, a ‘torsional buckling, as shown in Fig. 5-9, may occur. The axis of
the bar remains straight, while each A L
flange buckles by rotating about the i
z axis. In order to determine the o
compressive force which produces NI IITIES  1TOIT I TP
torsional buckling, it is necessary.to S
consider the deflection of the flanges !
during buckling. i

To explain the method to be used }

I
|

in the analysis of the flanges, let us
return to the simple case of the buck-
ling of- & ‘pin-end strut, Fig. 5-10.
Initially; the strut is straight and
subjected to the centrally applied
force P. Now let us assume that
the force P reaches its critical value
so that the strut can have a slightly
deflected form of equilibrium. Be-
cause of this deflection there will be
bending stresses superposed on the
initial uniformly distributed com-
pressive stresses. At the same time,
the initial compressive stresses will
act on slightly rotated cross sections,
such as m and # in Fig. 5-10a:and b. Fia. 59

The differential equation for the de-

flection curve in this case is found from Eq: (1-5) by substituting ¢ = 0.
Denoting the deflection of the strut in the y direction by v, we can write
Eq. (1-5) in the form »

-

(o)
TRFFFTFreeT y

Y dw
BLag= P
This equation was used in Art. 2.2 for calculating the critical value of the
compressive force P. We see from Eq. (5-16) that the deflection curve
of the strut and the corresponding bending stresses can be found by
assuming that the strut is loaded by a fictitious lateral load of intensity
—Pd/dz2.

(5-16)
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(@) ‘ ®)
Fia. 5-10

In an approximate discussion of the problem of torsional buckling of
the column in Fig. 5-9, we can state that at the critical condition the
buckled form of equilibrium is sustdined by the compressive stresses
acting on rotated cross sections of the longitudinal fibers. Let us con-
gider an element ‘mn (Fig. 5-9) in the form of a thin strip of length dz,
located at distance p from the z axis and having cross-sectional area ¢ dp.
Owing to torsional buckling, the deflection of this element in the y direc-

tion is
v = pd ' (@

where ¢ is the small angle of twist of the cross section.! The compres-
sive forces acting on the rotated ends of the element mn are of dp, Where

= P/A denotes the initial compressive stress. These compressive
forces are statically equivalent to a lateral load of intensity

d»
— (ot dp) e

which can be written in the form [see Eq. (a)]

&
—etp dp 7

The moment about the z axis of the fictitious lateral load acting on the

element mn is then " '

° % f dz tp’ dp
Summing up the moments for the entire cross section, we obtain the
torque acting on an element of the buckled bar mcluded between two

consecutive cross sections. This torque is
R 2 .
¢ 4 tp’dp=—a:§—z?dzIo

—0 gz

where I, is the polar moment of mema of the cross section about the
shear center O, coinciding in thls case Wlth the centroid. Finally, using

1t is assumed that the shape of the cross sectlon does not change during twisting.
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the notation m, for the torque per unit length of the bar, we obtain

d2
e 2o ®

Expression (b) holds for any shape of cross section provided the shear
center and centroid coincide.

To establish the differential equation for torsional buckling, we can use
Eq. (5-15) for nonuniform torsion of a bar of thin-walled open sectlon
Differentiation of this equation w1th respect to z glves

aM. _ d2¢ did ;
dz dz? ~ Vlggt (@

The positive directions of M, and m, are given by the right-hand rule,
and hence these torques act on an element of a twisted bar in the direc-
tions shown in Fig. 5-11. Consideration of the equilibrium of this
element gives

m; = —

__dM,
me = — —~ (@)
and therefore Eq. (c) takes the form
d'¢ _ d%
g O =™ 6w

Substituting for m, the value given by expression (b) we obtain
d4¢ d2
Cige — (€ —ol) 22 =0 Gy
The critical value of the compressive stress 7, and hence also the cntlcal

load, can be calculated from Eq. (5-18). ~This equation holds for any
shape of cross section as long as the shear center and eentroid coincide.
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For the column shown in Fig. 5-9 the warping rigidity G, yanishe§;
thereforé, it is seen that, in the case of torsional buckling, Eq. (5-18) is
satisfied if

C—o0lp=0
, . c b3@ G2 ;
which gives O =T = %ﬁ;‘— =37 o (e)

The above result shows that in this case the critical value of the compressive stress
is independent of the length of the bar. ' This conclusion _is re:sched bfecaufse in thg
preceding derivation the resistance of the flanges to bending in the directions per-
pendicular to the flanges was neglected. To obtain a more accul:ate result, it is
necessary to consider each flange as a uniformly compressgd plate glmply supported
é.iong three sides and completely free along the fourth side. This more accurate
investigation! shows that the critical stress is

b? G )
"“*(0'456-’-1_’)6_(”1—‘—_1:)?’ - )

The second term in parentheses gives the influence of the Iength of the bar on the
critical stress. For bars of considerable length this term can be neglected, and we

obtain ‘
. _ 075 G @

au_l—v‘b’

For » = 0.3 this value is about 7 per cent greater than the valué from Eq. (e).

For cases in which C; does not vanish, the critical compressive §tress is
obtained from the solution of Eq. (5-18). Introducing the notation.

s _0lo—C
P = Cl
we find that this solution is

'4,;A,sinpz'+Azcospz‘+A,z'+‘A. (520

The eonstants of integration A;, 4, A; and A4 arefound from the end
conditions of the bar. For example, if the ends of the con.u?ressed bar
cannot rotate about the z axis, we have the following conditions at the
ends:

¢=0  atz=0andz=1 (5-21)

If the ends of the bar are free to warp, the stress ¢, at the ends will be
zero and the conditions are [see Eq. (5-10)]

dz?

For built-in ends the warping displacements w must vanish, and hence,

1 8ee Timoshenko, Bull. Polytech. Inst., Kiev, 1907, and Z. Math. u. Physik, vol. 58,
p. 337, 1910.

(5-19)

a*¢ _ 0 atz=0andz=1 (6-22)
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'~ from Eq. (5-9), we have
| -0 ats=Oamdz=1 = (523

As a first example, let us consider the case of a bar with simple supports
for which the ends cannot rotate about the z axis but are free to warp.
Applying the conditions (5-21) and (5-22) to the general solution (5-20),
we find that S :

o Ay =A43;=4,=0
and also . ginpl =0 ‘
from which pl = nx

Substituting for p its value from Eq. (5-19), we obtain! ,
, 1 nixr?
=T (C + 5 Cl) (5-29)

The smallest critical stress is found for n = 1, which corresponds to a
buckled shape of the form o

Equation (5-24) gives the critical stress for torsional buckling of a column

in which the ends do not rotate but are free to warp.

As a second example, consider the case in which both ends of the bar
are rigidly built in and cannot warp. Then the conditions at the ends
are given by (5-21) and (5-23), and we find that

A4=_A3 A1=A3=0,
pl = 2nx

The critical compressive stress for this case is. -
| L(,  4ntr\
or = T (C + O Cl) _. (5-25)

It should be kept'in mind that the column also may buckle becsuse of
lateral bending about the x or y axes at a stress given by Euler’s column
formula. Thus theré are three critical values of the axial load, and only
the lowest value is of practical interest. In general, torsional buckling is
itiportant for columns having wide flanges and short lengths. ~
~ 6.5. Buckling by Torsion and Flexure. In the general case of a column
of thin-walled open cross section, buckling failure usually Gecurs by a
combination of torsion and bending. In'order to investigate this type of
buckling, let u§ consider the unsymmetrieal cross section shown in. Fig.
6-12. The 'z and y axes are the principal centroidal axes of the cross

! This solution was obtained by Wagner, loc. cit, - I S
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section and o, yo are the coordinates of the shear center 0. During
buckling, the cross section will undergo translation and rotation. The

translation is defined by the deflections v and v in the z and y directions, -

respectively, of the shear center 0. Thus, during translation of the cross
: section, point O moves to 0’ and point

CtoC’. Therotation of the crosssec-

tion about the shear center is denoted

by the angle ¢, as before, and the final

position of the centroid is C”’. There-

c x fore the final deflections of the centroid

C during buckling are!

- A ,
k 5 ‘ %+ yod v — 2od

¢ - If the only load acting on the col-
c S umn is a central thrust P, as in the
L) case of a_pin-end column, the bending
moments with respect to the principal
07 - axes at any cross section ar
. 7] Xe! y n are

M, = —P{® — z0¢)
M, = —P(u + yoo)

:-The sign.convention for moments M,
and M, is shown in Fig. 5-13, where

-—xo—-

Fia. 5-12

positivée moments are shown acting.on an element dz of the bar. The .

differential equations for.the deflection curve of the shear-center axis
become
d*u

El, 73 = +M, = —P(u + yo9) (5-26)
, E’I,g—;, = +M, = —P(v — 70¢) (5-27)

These two equations for bending of the bar contain u, v, and ¢ as unknown
quantities. A third equation is found by considering the twisting of the
bar.

To obta.m the equation for the angle of twist ¢, we can follow the same
method as in the preceding article and take a lo_ngltpdmal strip of cross
section ¢ ds defined by coordinates z, y in the plane of the cross section.
The components of its deflection in the z and y directions during buckling
are, respectively, .

i u+ (o —9é v~ (30— )9
Takmg the second ‘derivatives of these expressions with respect to 2
and again considering an element of length dz, we find that the compres-
1The angle ¢ is considered to be & small quantity.
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sive forces of ds acting on ‘the slightly rotated ends of the element give
forces in the z.and y directions:of intensity

| —(otds) T3 [u + @o — 1)l @
— (ot ds) ;—; [v - (@0 — z)¢) ®)

Taking the moment about the shear-center axis of the above forces, we

o

i N ‘
& [ 3 9 C A/ o
M, M,

(a) P
Fra. 5-13 i

olll)ta.m for one longitudinal strip the following torque per unit length of
the bar:

dm, = —(atds)(yo )] [dz’ + (y" y) dzz]
+ (ot ds)(zo — x) [dz’ (@0 — ) %]

Integrating over the entire cross-sectional area 4 and observing that -

a-/;tds=P /Aztds=/Aytds=-jO
/;y’td8=I, Lzztds=1,

Io=I.+ I, 4+ A(zo® + Yo%)

_ _ ol dw  dw )
m, /;dm,—P[xaﬁ—yoF]—-Iszz (c)

In these expressions, I, and I, are the principal centroidal moments of

we obtain

_inertia of the cross section and I, is the polar moment of inertia_about

the shear center O. Substltutmg expressmn (c) into Eq. (5—17 ) for non-

umform torsion, we find that

el (4 Iop\d? du_
- (c 2 P) B SRR M (s28)

Equa.tlons (5-286), (5—27), and (5-28) are the three smultaneous dlﬂ"er-
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ential equations! for buckling by bending and torsion and can be used to
determine the-eritical loads. It is seen that the angle of rotation appears
in all three equations, so that, in the general case, torsional buckling
and bending of the axis occur simultaneously.

In the particular case when the shear center coincides with the cen-
troid, we have zo = yo = 0 and Eqs. (5-26) to (5-28) become

d*u
Ydzt

dv ‘
EI’E—zz = —Py

d¢ (o _lop\d®¢ _
Cldzy(c AP>dz,_o

EI = —Pu

Each of these equations contains only one unknown quantity and can be
treated separately, so that torsional buckling is independent of buckling
by bending. The first two equations give the values of the Euler critical

loads for buckling in the two principal planes. The third equation is -

the same as Eq. (5-18) and gives the critical load for purely torsional
buckling, as discussed in the preceding article. Only the lowest of the
three values of the critical load is of interest in practical applications.
Returning now to the general case [Egs. (5-26) to (5-28)], let us assume
that the bar has simple supports, so that the ends of the bar are free to
warp and to rotate about the z and y axes but cannot rotate about the
2 axis or deflect in the z and y directions. In such a case the end condi-

tions are

u=v=¢=90 atz=0andz =1
du _dv _ d’¢ _ - -
il = Rl =0 atz=0andz =1

These end conditions will be satisfied if the solutions of Eqs. (5-26) to
(5-28) are taken in the form

u=Ausin® o= AsnF p= AT @

Substitu’cing expressioné () into Eqs. (5-26) to (5-28) gives the following

1 A system of equations equivalent to Egs. (5-26) to (5-28) was obtained first by
R. Kappus: see “Jahrbuch der Deutschen Luftfahrt-Forschung,” 1937, and Luftfahrt-
Forsch., vol. 14, p. 444, 1937 (translated in NACA Tech. Mem. 851, 1938).  Torsional
buckling has also been discussed by J. N. Goodier, Cornell Univ. Eng. Expt. Sta. Bull.
27, December, 1941, and 28, January, 1942; see also the book by V. Z. Vlasov, “Thin-
walled Elastic Bars,” Moscow, 1940, and Timoshenko, J. Franklin Insi., vol. 239,
nos. 3, 4, and 5, April and May, 1945. Regarding experiments with torsional buck-
ling, see A. 8. Niles, NACA Tech. Note 733, 1939, and H. Wagner and W, Pretschner,
Luftfahrt-Forsch., vol. 11, p. 174, 1934 (translated in NACA Tech. Mem. 784, 1936).
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three equations for determining the constants Ay, Ay and A,
, ; ,
(P - EI,-,;L,) A1+ Pyod; = 0
. (P — EIle) A; — Prod; = (5-29)
P:I/oAi L P:toAz —_ (01;; + C — :IigP) A; =0
One solution of these equationsis A, = A, = A, : i 4
0 lonsis Ay = A, = A; = 0, which corresponds
to the straight form of equilibrium. For a buckled f;)'rm of equilibrium,

the constants 4, 4,, 4; must not vanish simultaneously, which is pos-

sible only if the determinant of E i
1 qs. (5-29) vanishes, impli
expressions, let us introduce the notation ) ' o Slmphfyv the

*E1 ’
P, z = r £ = - A 2
7 P=Tt Pe= (C + ¢ ;L,) (5-30)

where P, and P!, are the Euler critical loads for buckling about the z and
z alygeis, respectively, and P, is the eritical load for purely torsional

uckling [see Eq. (5-24)]. Then, equating to zero the determinant of
Eqgs. (5-29), we obtain . -

P~p, 0 Pyo
0 P_Pz —Pxo

=0
Pyo —Pzo %’ (P - P,

Expanding the determinant gi i i ;
I gives the followin, i
lating the eritical values of P: § ctble equation for caleu-

P .
Zo (P — Py)(P ~ P)(P — P,) — Py,(P — P,) — PP — P,) = 0

or (5-31)

I, A
TP+ [ a4 o) = (a4 P, 4 Py P -
+ (PP, + P.P, + P,P)P = P.P,P, =0 (5-32)
where I, = I, + I, denotes the pola inerti
troid C of the crossvsection. © polar moment of Inertia ?bo‘lt the cfen.

t,hTo find 'r:he critical load in any particular case, We begin by ca.lculé,ting
; ‘numem‘:al values.of the coefficients in Eq. (5-32). Solution of the
cublc equation then gives three values of the critical load P, of which the

“smallest will be used in practical application. - Substitution of the three
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values of the critical loads into Eqs. (5-29) yields the ratios A;/4; and
A,/ Ay for each of the corresponding three forms of buckling. These

ratios establish the relations between rotation and translation of the cross |

sections and define the deflected shape of the shear-center axis.

An important conclusion regarding the; relative magnitudes of the
critical loads can be obtained from Eq. (5-31). Considering the left-
hand side of this equation as a function f(P), we wish to determine the
sign of this function for various values of P in order to obtain information
concerning the values of P which make f(P) vanish.. For very large
values of P the polynomial f(P) takes the sign of the term with highest
power. This term is P#Io/A and is positive. If P = 0, the value of f(P)
is —P,P,P,Io/ A, which is negative. Now let us assume that P, < P,,
that is, that the smaller Euler load corresponds to bending in the yz plane.
If P = P,, we have

 f(P) = —P:oX(P. — P)
whlch is posxtlve and if P = P,, we find that
f(P) = —P,2yo*(P, = Pz)

which'is negative. Thus we see that Eqgs. (5-31) and (5-32) have three-

positive roots, one of which is less than P., one greater than P,, and one
between P, and P,. A similar result is obtained if we assume that
P, > P,. It can be shown also that the smallest value of P is less than
P,, for if P, is less than both P, and P,, we find that f(P) is positive for

P = P;. Likewise, the.largest Toot must always be greater than P,.

Thus we finally conclude that, in all cases, one critical load is less than
P,, P,, or P4 and one is greater. The third critical load is always inter-
mediate between P, and P,. This means that when we take into con-
sideration the possibility of torsion during buckling, we always obtain a
critical-load smaller than either. the Euler load or the purely torsional
buckling load. '

If the bar has wide flanges and short length I, P, may become small
compared with P, and P,. In such a case the smallest root of Eq. (5-32)
approaches the value P;. Substituting this root in Eqs. (5-29), we find
that A, and A, are small in eomparison with the rotational displace-
ments, which mdwates that the buckling approaches purely torsional
bucklmg In the case of narrow flanges and large length, P, will be
large in:comparison with P, and P, and the -smallest root of Eq. (5-32)
approaches either P, or P,. The effect of torsion on the critical load in
such a case is small, and the Euler column: formula glves satisfactory
results. Co - ;

< The preceding discussion was based on the solution (d). Without any
comphcatmn we can take the solution in a.more general form and ‘assume
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u—A1 i n;rz v=Agsin$ ‘¢=A3sinnT’rz (6)
which corresponds to the assumption that during bucklinig, the bar sub-
divides into n half sine waves. Our previous conclusions will hold in
this ease if the values n%r?/12 are substituted for x2/I2 in expressions (5-30).
The corresponding critical loads are larger than those obtained for n = 1
and are of practical interest only if the bar has intermediate equidistant
lateral supports. ‘

Bar with Buili-in Ends. If the ends of the bar are built in, the end
conditions become :

u=v=¢=0 atz=0andz =1
du _dv _do _ L ‘
dz_E—E_O at;z—Oandz=l

Since there are moments at the ends of the bar during buckling, we shall
have, in place of Egs. (5-26) and (5-27), the following equations:

d2

El, d;: = —P(u + yo¢) + EI, (Z;:) (5-33)
d %

BLEY « PO - 209) + BLL ( dzz) (5-34)

These equations, together with Eq. (5-28)," define the buckled shapes of
the bar and the corresponding critical loads. The three equations and the
end conditions are satisfied by taking a solution in the form

u=A(1—cosg1lr—z) v=A,(1—cosz—;rf> ¢#As(1—cosgl"z)

= Substituting these exbressions into Eqs. (5-28), (5-33), and (5-34), we

again obtain the cubic equation (5-32) for calculating the critical loads;
it is only necessary to use 4x2%/I? instead of #?/1 in the notation (5-30).
Cross Section with One Azis of Symmetry. Let us assume that the
z axis is an axis of symmetry, as illustrated by the channel section in Fig.
5-14. In this case we have yo = 0 and Eqgs. (5-26) to (5-28) become

d*u

El, ;5 = —Pu (5-35)
7 d% o
Bl 5 = —P(v — %0¢) o (5-36)
d¢ I 2 ‘
e 2? ( A"P)Z‘f POZ—Z—O  (53)

1 Equation (5-28) was developed from a consideration of an element of the bar be-
tween two adjacent cross sections and is not affected by changes in the end conditions.
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The first equation does not contain ¢ and shows that buckling in the
plane of symmetry is independent of torsion and that the corresponding
critical load is given by Euler’s formula. Buckling perpendicular to the
plane of symmetry is combined with torsion and is given by Egs. (5-36)
and (5-37). : ,

If we assume that the ends of the bar
are simply supported, that is, free to
warp and to rotate about the z axis but
restrained against rotation about the 2
axis, the end conditions become-

v=¢=0 atz=0andz =1

dv _ d% _ = -
i d_z?_dz’_o atz‘—Oandz—l
Proceeding as before and taking a solution
..in the form
y . - . :
Fic. 5-14 v=A4, sin"-rlE ¢ = A, sin‘%z
wé obtain for calcixlating the critical loads the equation
P-P, —Pz '
I =0
| .ijo VZQ(P — Py) |
which gives . / ’
RP-P)P-P)-Pui=0 (53
or P = (Pt PIP+ PPy =0 (5-39)

This quadratic equation gives.two solutions for the critical load P, one of
which is smaller than either P, or P,, while the other is larger than either.
The smaller of these, roots or the Euler load for buckling in the plane of
symmetry represents the critical load for the column. A graph of the two
critical loads obtained from Eq. (5-39) is shown in Fig. 5-15. Note that
when P,/P, is small, the lower critical load is wvery close to P, and the
mode of buckling is essentially torsional, whereas the upper critical load
represents buckling which is primarily bending., For large P,/P. the
lower critical load corresponds to a form of buckling which is primarily
bending. For an equal-legged angle section the value of Io/I. is 1.6,
and the corresponding curve in Fig. 5-15 can be used for this case. For
other: sections. with one -axis of symmetry, such as a channel section,
To/ 1. must be eomputed for each individual case.
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6.6. Combined Torsional and Flexural Buckling of a Bar with Continuous Elastic
Supports. Let us consider the stability of a centrally eompressed bar which is sup-
ported elastically throughout its length in such a way that lateral reactions propor-
tional to the deflection will develop during buckling. Let us assume that these reac-
tions are distributed along an axis N parallel to the axis of the bar (Fig. 5-16) and
defined by coordinates k. and k,. Again denoting the components of the deflection
of the shear-center axis by u and » and the angle of rotation with respect to that axis

VT

9 A

Y

3

2 A, —w’
/ /\}4\' oo
» RPN
Q\t;, / y RIS
' 7 /
1 ) 1.0 ?cr =B

/f}’ 1.6:]

B /P,
Fig. 5-15

by ¢ (see Fig. 5-12), we find that the components of deflection of the N axis, along
which the reactions are distributed, are K

ut@o—h)é v —(z0— ko

The corresponding reactions per unit length, assumed positive in the positive direc-
tions of the z and y axes, will be L

~kidu + (o — k)4l —hulo '~ (2o ~ hu)e] (@

. where k. and k, are constants defining the rigidity of the elastic support in the z and
"y directions. These constants, or moduli, represent the reactions per unit length

when the deflections are equal t6'inity and have dimensions of force divided by length
squared. To the above reactions we must add the lateral forces obtained from the
action of the initial compressive forces acting on slightly rotated cross sections of the
longitudinal fibers. These forces give reactions per unit length [see expressions (a)
and (b) of Art. 5.5] equal to - o :
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3,
—f atds[ 2u+(yo—y)37'f]
d2
and —/Actds[d?—(zo—z)de]

Integrating the above two expressions and again observing that

c/Atds=P /Aa:tds=fAytds‘=0

we obtain the following expressions for the intensities of lateral force distribution:

P (T4 +vo 5t ®)
d*¢
-F (dz’ Togr @
The equations for bending of the bar about the y and z axes are
EI, d—zT =g. : (6-40)
L 3% - g, (5-41)

and using for the intensities of the distributed loads expressions (a), (b), and (c), we
obtain

B, 3 +P(dz’ +90 52 ) + kol + (o — k)9l = 0 (5-42)
s = sy - Zo dz,) + ko — (30 — ha)el = 0 (5-43)

Since the lateral loads ¢ and ¢, are not distributed along the shear-center axis, there

will be, in addition to bending, some torsion of the bar. The intensity m. of the

torque distributed along the shear-center axis will be equal to the couple developed by
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the loads given by expressions (a), (b), and (c) plus the torsional reaction developed
by the elastic support. Denoting by k¢ the torsional modulus of the elastic support,
we find this latter torque to be

kg @

The torque due to the lateral reactions (a), which act at point ¥, will be
~kalu + Wo — h)$lo — k) + ko — (o — ha)$l(zo— ) ©

The torque due to the forces given by expressions (b) and (¢) was evaluated in the
preceding article and is given by Eq. (¢), p. 231. Adding this value to (d) and (e)
above gives the total torque

ma = P (2055 — vo %) = 2P 2 — kutu + w0 ~ h#Itwo — h)
+ ko — @0 = h)l(zo — ha) — ket (D

Substltutmg expression (f) for m, into Eq. (5-17) for nonuniform torsion, we obtain
the following equation for the angle of twist:

* 2
Clg —(c-2P) 52— P (roim — voT2) + halu + (o ~ helo — by
—ky[v — (zo — hs)el(xo — hs) + ke = 0 (5-44)

Equations (5-42), (5-43), and (5-44) are three simultaneous differential equations for
the buckling of a bar supported elastically along its length.t

If the ends of the bar are simply supported, that is, free to warp and to rotate about
the z and y axes but with no rotation about the z axis; we can take the solution of
Eqgs. (5-42) to (5-44) in the form - .

1

Substitution of these expressions into the differential equations leads to a cubic equa-
tion for the critical loads, in the same manner as described in the preceding article.
Solving for the lowest root of the cubic equation will give the smallest critical load.
Let us consider now some particular cases. .

Cross Section with Two Azxes of Symmetry. In the special case where the cross
section has two axes of symmetry, the centroid and shear center coincide and zo =
yo = 0. Let us assume also that the elastic reactions are distributed along the
centroidal axis. Then we have h, = h, = 0 and Eqgs. (5-42) to (5—44) take the simple
form

%= A,sin 2% u=,A,sin$‘ ¢ = 41sin 2F @

EI,,dz‘+P———+k,u—0 o (5-45)

E’I,d—4+P +kv—-0: T (546)
(s (c I"P) Fhp =0 (5-47)

These equations show that buckling of the bar in the planes of symmetry is independ-
ent of torsion and the three forms of buckling can be treated separately.
Taking the solution in the form (g), we find from the ﬁrst equation that

nixt n’r’

EI, % +k =0

! These equations were obtained first. by Vlasov, loc. cit.
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_ «*EI, Uk, "
or Pa =3 ("’ ¥ neET, (5-48)

This result agrees with the value previously obtained for a bar on elastic foundation
[see Eq. (2-37)]. A similar result is obtained also from Eq. (5-46). The last of the
three equations gives the critical load for torsional buckling as

P = @ T/B)Cy + C + (13/uir)ky
- Io/A

In each particular case, knowing C; and ky, it is necessary to select the integer value of
n which makes expression (5-49) a minimum. When ks = 0, the lowest critical load
is obtained by taking n = 1 and Eq. (5-49) gives the value obtained previously for
purely torsional buekling [see Eq. (5-24)].

Cross Section with One Azis of Symmetry. - If the z axis is taken as the axis of sym-
metry, we shall have yo = 0.. Let us assume further that the elastic reactions are
distributed along the shear-center axis so that k. = zo and hy = 0. Then Egs.
(5-42) to (5-44) become B

(5-49)

dw | o d
EL 4 +P It +hu=0 . (550)

d d?y 42
ELTi+Po+ho —Pro Tt =0 (5-51)

a%

Z==0 (5-52)

4, 2
e (c- %’P):L—f + k¢ — Pzo
From the first equation we see that buckling in the plane of symmetry is independent
of torsion and can be treated separately. The last two equations are simultaneous,
and hence buckling in the y direction is combined with torsion. .
If the end conditions are such that the solution of the differential equations can be
taken in the form (g), we obtain, from Eqs. (5-51) and (5-52), the following deter-
minant for caleulating the critical loads:

4 2 :
BLET PR Ly, Pz ™7
-0 (553)
Pao T etr+(c-%p)2r 1,

‘This equation is quadratic in P and ean be solved in each particular case for the two
values of the critical load, of which only the lower value is normally of importance.
If both k4 and k&, vanish, the smaller load will occur with n = 1 and Eq. (5-53) gives
the same result as derived previously [see Eq. (5-39)].

Bar with Prescribed Awxis of Rotation. Using the differential equations (5-42) to
(5-44), we can investigate buckling of a bar for which the axis about which the cross

sections rotate during buckling is prescribed. To obtain a rigid axis of rotation,

we have only to assume that k; = &k, = ». Then the N axis (Fig. 5-16) will remain
straight during buckling and the cross sections will rotate with respect to this axis.
For this case, Eqs. (5-42) and (5-43) give

tt+@o—h)p=0 v—(20—h)¢=0
and hence T u= —(go ~h)p 0= (xo— h)o

Differentiating these expressions gives

2 . 4
Rt PE-s U JR PN ®

7 ds
R B S gy OL< ®
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We also have, from Eqgs. (5-42) and (5-43), the relations

dtu du ¢ .
kefu + (o — hu)#l = —EI, 7 — P (5= + o 73 @
d% dty dz¢
o = (o — ho#] = ~EL gt~ P (3~ so ®

An equation for the angle of rotation ¢ can be obtained now by substituting (h) a:nd
(3) into (j) and (k) and then substituting () and (k) into Eq. (5-44). The resulting
equation is .

d4
[C1 + EL,(o = b)* + EL(s0 — h)1 ¥

Io 2 . dt¢ _ n
- [C’——ZP'-I—P(J:O’-I-yo’) — P(h,® + b)) a + kop = 0 (5-54)

Taking the solution of this equation in the form (g), we can calculate in each particular
case the critical buckling load.

If the bar has two planes of symmetry, we have zo = yo = 0 and Eq. (5-54)
becomes

d* I a2 _

€y + ELhy? + ELh) 58 — (C ~Lop _pas - Ph,z) B¢ 4 koo =0 (555)
Taking the solution in the form ¢ = A;sin (nwxz/l) and substituting into Eq. (5-55),
we find that

_ (Ci + BLh2 + EIRY) (n*x2/) + C + ko (12/n?x?) (5-56)
" ke + hyt + (To/4) A
In each particular case we must take the value of » which makes expression (5-56) a .
minimum.

If the fixed axis of rotation is the shear-center axis, we shall have h, = zo, by = yo,
and Eq. (5-54) becomes

P,

d‘e 1 d*¢ _
C;E—\(C——ZOP)d—F+k¢¢—O (657
Again taking a solution in the form ¢ = A, sin (nxz/l), we obtain
P, = Ci(n*x2/1?) + C + ke(12/n*x?) (5-59)
Io/A

This expression is valid for cross-sectional shapes which may be either symmetr.ical-
or unsymmetrical, provided the shear-center axis is restrained against deﬂect}on.
When k, vanishes, the minimum value of P occurs for » = 1, and Eq. (5-58) gives
the same result as Eq. (5-24), as expected. o

As another special case, let us assume that the fixed axis of rotation is infinitely
distant from the bar. For example, if h, becomes infinite, Eq. (5-54) reduces to

d* d:
LGt +P gt =

and this equation gives for P, the known Euler load for buckling in the zz plane. )

Bar with Prescribed Plane of Deflection. In practical design of columns, the situa-
tion arises in which certain fibers of the bar must deflect in a known direction du.ring.
buckling. For example, if a bar is welded to a thin sheet, as in Fig. 5-17, the fibers of
the bar in contact with the sheet cannot deflect in the plane of the sheet. ‘Instead,
the fibers along the contact plane nn must deflect only in the direction perpendicular to
the sheet.
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In discussing problems of this type it is advantageous to take the centroidal axes'

z and y parallel and perpendicular to the sheet. Usually this means that the axes
are no longer principal axes of the cross section, and therefore the differential equations
of the deflection curve must be obtained in a different form. For this more general
case, when the x and y axes are not principal axes, the bending moments in the bar are
given by the expressions!

d% d?u

M. = EL 3; + EL, 55 _ ®
@ 2

M,=ElL 5 +EL, 3 (m)

In these expressions I,, represents the product of inertia of the cross section, and the

| enee——
x
C x
%
] ———— =n 0
o]
y y
Fi16. 5-17 Fic. 5-18

assumed positive directions for the bending moments M, and M, are given in Fig.
5-13. Observing that
_dM, d*M,
gz = 2zt 9y = dz?

whelze' ¢- and ¢, are taken positive in the positive directions of the z and Y axes, we
obtain from Egs. (I) and (m) the differential equations vfdr bending:

dt :
o = EL 7% + BL, 3% (5-59)
gz = EI:[ @ + EIzy Z‘%’: (5—60)

Considering & bar of arbitrary cross section, Fig. 5-18, let us assume that a longi-
tudinal fiber N with coordinates h,-and h, is prevented from deflecting in the z direc-
tion. Again denoting by u and v the deflections of “the shear-center axis 0, we find for
the deflections of N the following expressions:

! For a discussion of bending of an unsymmetrical bar when the axes are not princi-
pal axes, see Timoshenko, “Strength of Materials,”” 3d ed., part I, pp. 230-231, D.
Van Nostrand Company, Inc., Princeton, N.J., 1955. ‘
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uv =u+ (Yo —h)p =0 (n)
vy =9 — (o — h)db (@

Owing to the restraint at fiber N, there will be reactions of intensity go distributed
continuously along N and acting in the direction parallel to the z axis (Fig. 5-18).
The quantity ¢. in Eq. (5-60) will be found by adding to go the lateral force obtained
from the action of the compressive force in the bar acting on the rotated cross sections
of longitudinal fibers. This latter value is found from expression (b) and therefore,
we have

dtu d*¢
g = —P'(E + ﬂoaz—,) + go
The intensity of force in the y direction, from expression (c), is
) d d*¢
w= P (G- =gt

Substituting into Egs. (5-59) and (5-60), we obtain

20 2 du d%
go=P ("—,, + yo d—l‘f) +ElL g7 + ElLy g ®
ty d*e .
EI ‘_11: + Elsud—r + p,ﬂ; — p,,.o_f = @

We can eliminate u from the latter equation by solving for u from Eq. (rn) and sub-
stituting into Eq. (g), which gives .
d4 d2
ELYS + PTY — BL,@o — k) 52 — Poo Gt = (5-61)
A second equation for » and ¢ is obtained by considering the torsion of the bar. For
this purpose we can use Eq. (5-44). - Assuming that there are no torsional reactions
and no reaction in the y direction and substituting into Eq. (5-44) the following
expressions: :
ky =k =0
—ks[u + (yo. — hy)d] = g0
we obtain
di¢ . I d*¢ d d2u _
.52~ (C -f}f) a. —P(zod? -0 52) — golwo — ) = 0
Substitut;ing in this équation the value of u from Eq. (r) and the value of go from
Eq. (p), we find that

4 d’
€1+ BL@o — )15t — (¢ - 2P + Py - Pr?) T2

&
— EL,(yo— hy) Z—;'j ~ Pz =0 (562)

Equations (5-61) and (5-62) can be used to find the critical buckling loads.!
As an example, let us consider again the case of simple supports and take the solu-
tion in the form
vaA‘gsin%z ¢=A,sin'-;-z .
! These equations were obtained By Goodier, Cornell Univ. Eng. Expt. Sta. Bull.
27, December, 1941. .
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After substitution into Eqs. (5-61) and (5-62), we obtain
(EI,"IL: - P) Ay — [EI,,(yo W - on] A =0
[—Elzy(yo ~h) G+ Pa:o] 4; '
+ [ + Brwo — bt + € — 2P +Puot —Phy| 4= 0

Equating to zero the determinant of these equations, we obtain a quadratic equation
for P from which the critical load can be calculated in each particular case.

If the bar is symmetrical with respect to the y axis, as in the case of the channel,
Fig. 5-19, the = and y-axes become principal axes. Then, with the substitution of
I., = 0-and 7o = 0, the above two equations become

(EI,;;: —P)A, -0
2
[0.3 + BLwo - b +C — 2P+ Pyot = Pht ] 41 =0

The first of these equations gives the Euler load for buckling in the plane of symmetry.
The second equation gives

_ Ci(x*/1*) + EI,(yo — * b)) 4 C
(To/A) — yo* + hy?

-| M

P er
(5-63)

C which represents the torsional buckling load
1 for this case. The axis of rotation lies in the
hy plane of the thin sheet. Equation (5-63) could

Y ;! be obtained also by substituting

l lo | 2o =h; =ky =0 ¢=A;sin"72

into Eq. (5-54).

Fie. 5-19 End Moments. In the previous articles we

have considered the buckling of columns sub-

jected to centrally applied compressive loads only. Let us now congider the case when

the bar is subjected to the action of bending couples M; and M at the ends (see Fig.

5-20) in addition to the central thrust P. 'The bending couples My and M are taken

positive in the directions shown in the figure, that is, in the directions which cause
posltlve bending moments in the bar (see Fig. 5-13).

It is assumed in our analysis that the effect of P on the bendmg stresses can be
neglected Then the normal stress at any point in the bar is independent of z and is
given by the equation

P_My Ma L (569

in which z and y are centroidal principal axes of the cross section. The initial deflec-
tion of the bar due to the couples M, and M will be considered as very small. In
investigating the stability of this deflected form of équilibrium, we proceed as in the
preceding articles and assume that additional deflections v and v of the shear-center
axis'and rotation ¢ with respect to that axis are produced Thus the deflections » and
v and the rotation ¢ result in a new shape of the axis of the bar, differing slightly from

y ’ 5.7. Torsional Buckling under Thrust and
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the initial curved shape produced by the couples M, and M,. In writing equations of
static equilibrium for this new form of the bar, 'we neglect the small initial deflections
due to M, and M and proceed as in the preceding cases in which the axis of the bar
was initially straight. Thus the components of deflection of any longitudinal fiber
of the bar, defined by coordinates z and y, are /

u+ o —y)¢ v —'(v0—2)e lp om,
S

The intensities of the fictitious lateral loads and distrib-
uted torque obtained from the initial compressive forces
in the fibers acting on their slightly rotated cross sections
are obtained as in Art. 5.5 and are given by the equations

g = —/A (vtds)gz:,[u + (yo — »)9]
[, @t b — o — el
~ [, @t d9wo — 0 5 lu + @o — w1l
R dz
+ [, @@ - Fiv - @~ 91 | | y

v

m.

Bubstituting expression (5-64) for ¢ and integrating, we V) M,
'obtain 2 Loa x

0 o,
d2u M
q,=_P—-(Po—M1)d4’ , L !

_.p_ + (sz — Mz) Fre. 5-20

9y
me = =(Pro — M) T + (oo — M) 52 — (M8 + Mgy + PL2) 54

where the following notation is introduced:

. .
o= (f s+ [ ovaa) - 20

; _
B2 =—I:(/Az’dA +/Azy’dA) — 220

(5-65)

" The three equations for bending and torsion of the bar [Egs. (5-40), (5-41), and (5-17)]

then become
Er, %% dz. P T Py~ BE 0 (5-66)
E1, %2 - L P — (Pzo — Mz) =0 (5-67)
gld“" (c M.p,—M,ﬁ,—P% dz,+(Pyo—M1) — (Pzo — M’)_=0
(5-68)

These are tl}e three equations of equilibrium for the buckled form of the bar. From
these equations the critical values of the external forces can be calculated for any
given end conditions.

Eccentnc Thrust. Let us begin by considering that the force P is applied eccen-
trically (Fig. 5-21). Denoting the coordinates of the point of application of P by
e, and e, we have )

M 1 = P, ey M 2 = P [
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and Egs. (5-66) to (5-68) become

E1, %% dz4 +P " P(yo — e,,) o (5-69)
EI, d v +P — P{zo — e,) =0 (5-70)
4 I d2y d2y
C‘d¢ (C Pe,,ﬁ;—Pe,Bz—Po '£+P(y0_e")’d7"P(”0_e=)d_zz=
(5-71)
In the case of simply:supported ends, the end conditions are
u=v=9¢=0 atz =0and z =1
diu _ dw _ d%¢ _ _ _
-d—z,-d—z,—w—o atz=0andz =1
These conditions are satisfied by taking u, v, and ¢ in the form
u=AisinT  v=AsinT 4= AsinT
and after substitution into Egs. (5-69), (5-70) and (5-71), we obtain
2
(Ely% - P) A, — P(?/o - e,,)A; =0 (5-72)
2
(BL % - P) As + PGao — e ds = 0 (5-73)

2
—P(yo — €)A1 + P(zo — e.)As + (cl% + C — PeyBy — Peops — P%) A =0
. (5-74)

Equating to zero the determinant of these equations gives a cubic equation for ealcu-

lating P.,. It is seen from these equations that, in general, buckling of the bar occurs

P
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by combined bending and torsion. - In each particular case the coefficients in Eqs.
(5-72) to (5-74) can be evaluated numerically and the cubic equation solved for the
lowest value of the critical load.
The equations become very simple if the thrust P acts along the shear-center axis.
We then have )
e = To ey = Yo

and Eqs (5-69) to (5-71) become independent of one another. In this case lateral
buckling in the two prmcxpa.l planes and torsional buckling may occur independently.
The first two equations give the usual Euler formulas for critical buckling loads, and
the third equation gives the critical load corresponding to purely torsional buckling
of the column. '

Another special case occurs when the bar has one plane of symmetry. Let us

assume that the yz plane is the plane of symmetry and that the thrust P acts in that
plane. Then e. = zo = 0 and Egs. (5-72) to (5-74) become

(El,,!l; - P) Ay — P(yo — e)As = 0
(El, - P) A =0 (5-75)
2
~Po — e)ds + (C + € —Pep —P2) 41 = 0

From the second of these equations we see that buckling in the plane of symmetry
occurs independently and the corresponding critical load is the same as the Euler load.
Lateral buckling in the zz plane and torsional buckling are coupled, and ‘the cor-
responding critical loads are obtained by equating to zero the determinant of the first
and third of Egs. (5-75). This gives

BI, —P P
o - —Pyo — &)

2 I
—P(yo—e)  Ci3+C —Pepp —P7
Using the notation :
=2EI,

P, =15

2’
Py =%,(C+C‘%)

and expanding the determinant, we obtain the following quadratic equation for calcu-
lating the critical loads:

® -P[%p - (eym A)] CPo—ar=0 67

It should be noted ‘that the left-hand side of this equation is positive for very small
values of P and negative when P = P,. Hence there is a root of Eq. (5-76) smaller
than P,, i.e., smaller than the Euler load for buckling in the zz plane.

If the compressive force P is applied at the shear center, we have e, = yo and Eq.
(5-76) becomes

® -P[7 P¢—P(e,m+A)]=o

The two solutions of this equation are

P¢ )
1 + e,81(4/I0)

P=P, P=
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The first solution corresponds to flexural buckling in the zz plane, and the second to
purely torsional buckling.

Since the left-hand side of Eq. (5-76) is positive when P is small and gradually
diminishes as P increases, we conclude that the smallest root of the equation will be
increased by making the last term vanish, i.e., by taking e, = yo. Hence the critical
load reaches its maximum value when the thrust is applied at the shear center.

If the load is applied at the centroid so that e, = 0, Eq. (5-76) becomes

R B S

which is of the same form as Eq. (5-38) previously obtained for centrally applied
thrust.

If the cross section of the bar has two axes of symmetry so that the shear center and
the centroid coincide, we must substitute yo = 1 = 0 into Eq. (5-76), yielding

2
(P —P)(P —Py) =Pt 42" = 0
: Ae,?
or pr (1 - £ ) — PPy + Ps) +PyPy = 0 6-17)

The left-hand side of this equation is positive when P = 0 and negative when P = P,
or P = P,. Thus there is one critical load less than either P, or Py. If Ade,2/Io <1,
the left-hand side is positive for large values of P, which shows that the second critical
load is greater than either P, or Py. If the eccentricity e, approaches zero, these two
critical loads approach the values P, and Py. If Ade,?/Io > 1, the left-hand side is
negative for large positive and negative values of P, indicating that the equation has
one positive and one negative root. The negative root indicates that if the eccen-
tricity is large, the bar may buckle under the action of eccentric tension. When
Aey?/Io = 1, one root of Eq. (5-77) is

"
P_P1+P¢

and the other root becomes infinitely large.
The preceding discussion of eccentrie thrust applied to bars with simply supported
ends. If the ends are rigidly built in, the conditions are
Uu=9v=¢=0 atz=0and z =1

—= === =0 atz=0&ndz=i

We can satisfy these end conditions by taking

u=A;(1—cos?_) v=A,(1—cos2%z)
¢ = A (1 ‘—kcosz—;—z)

Substituting into Eqs. (5-69) to (5-71) and equating to zero the determinant of the
resulting equations, we obtain an equation for calculating the critical loads. This
equation will be similar to the equation derived for simply supported ends, the differ-
ence being only that 4x?/I? is substituted for »?/i2.

Pure Bending. If the axial force P becomes zero (Fig. 5-20), we have the case of
pure bending of a bar by couples M; and M, at the ends. Substituting P = 0 into
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Eqs. (5-66) to (5-68) gives the following three equations:
d*u de
EI, @ -M3t =0 (5-78)
d?
EL, % 2+ M, 52 = (5-79)

d*. ) d*u
C'1 ¢ —(C— M — zﬂz)ﬁ—'sz,—+Mzg=0 (5-80)
By t‘aking the appropriate triggnometric expressions for u, v, and ¢, we can derive
readily the equation for calculating eritical values of the moments M; and M.

Of particular inferest is the case where the bar has flexural rigidity in one principal .
plane many times larger than in the other and is bent in the plane of greater rigidity

¥ ' y
“ 3
c : 2 k C x
(a) (b)
y ¥ y y
c x Lk C x c
—
ik | —
) (d) (e) i) @
’ Fia. 5-22

Let us assume that the yz plane is the plane of greater rigidity and that the bar is bent
in this plane by couples M, (Fig. 5-22a and b). The critical value of M; at which
lateral buckling occurs is obtained from Eqs. (5-78) and (5-80). When M; =0 is
substituted these equatlons become

EI-,,,. -Gt -0 &-81)

da‘$
gt --us Pt - u, ::f =0 (5-82)

If the ends of the bar are simply supported, the expressions for u and ¢ can be taken
again in the form

u -‘Ax_'sin? ¢ = Arsin T

By substituting these expressions into Eqs. (5-81) and (5-82) and equating to zero the
determinant of the resulting equat:ona, we obtain the following equation for calculat-
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ing the eritical values of the moment M:

2EI

(c+afk - M) — Mt =0 (@

Again using the notation

*EI A :
P, =T P¢=E(C+Clz’;—)

we can express Eq. (a) in the form

Myt +PiMy — PPy =0 (5-83)

ar)e = - 25 N(B2) + 2 PPy -84)

In each particular case, two critical values of the moment M, are obtained from this

equation.
If the cross section of the bar has two axes of symmetry, as in the case of an I beam

(Fig. 5-22c), B vanishes and the critical moment is

e = + PPy = + T \EL, (c +G ;L,') ' (5-85)

This equatlon also holds for a bar with cross section having point symmetry, such as
the z section in Fig. 5-22d, since §1 = 0 for this case also.

from which

For a bar of thin rectangular cross section (Fig. 5-22¢), having thickness ¢ and height

h, the warping rigidity C1 = 0 and the torsional rigidity is, approximately,

_ Ghe?

C=GJ =3

Hence the critical moment, from Eq. (5-85), is
Me = + T EG

If the cross section of the bar has one axis of symmetry, and if the bending couple
acts in the plane perpendicular to that axis (Fig. 5-22f), we again find that 8, = 0 and
Eq. (5-85) can be used. If the bending couple acts in the plane of symmetry, as in
Fig. 5-22g, f1 does not vanish and Eq. (5—84) must, be used for calculating the eritical
value of M.

It was assumed in the above dlscussmn of ;pure bending that EI, is small in com-
parison with EI,. If C and C) are also small, buckling will occur at small-values of M,
and hence at small bending stresses in the bar. If EI. is of the same order of magni-
tude as EI,, lateral buckling will occur at small stresses only if C and C) are very
small. This condition can be fulfilled if the cross section is of cruciform shape (see
Fig. 5-9), since C: vanishes in this case and C is very small if the flange thickness is
small.

In this discussion we have considered the bending of a bar by couples a.pphed at the
ends. Only in this case are the normal stresses [see Eq. (5-64)] independent of z, so
that we obtain a set of differential equations with constant coefficients [see Eqgs.
(5-66) to (5-68)]. If the bar is bent by lateral loads, the bending stresses vary with z
and: we obtain a set of equations with variable coefficients. The calculation of critical
values of lateral loads on beams is discussed in the next chapter.

CHAPTER 0

LATERAL BUCKLING OF BEAMS

6.1. Differential Equations for Lateral Buckling. It was shown in
the preceding article that a beam which is bent in the plane of greatest
flexural rigidity may buckle laterally at a certain critical value of the load.
This lateral buckling is of importance in the design of beams without
lateral support, provided the flexural rigidity of the beam in the plane of
bending is large in comparison with the lateral bending rigidity. As
long as the load on such a beam is below the critical value; the beam will
be stable. As the load is increased, however, a condition is reached at
which a slightly deflected (and twisted) form of equilibrium becomes
possible. The plane configuration of the beam is now unstable, and the
lowest load at which this critical condition occurs represents the critical
load for the beam.

Let us begin by considering the beam with two planes of symmetry
shown in Fig. 6-1. This beam is assumed to be subjected to arbitrary
loads acting in the yz plane, which is the plane of maximum rigidity. We
assume that a small lateral deflection occurs under the action of these
loads. Then from the differential equations of equilibrium for the
deflected beam we can obtain the critical values of the loads. In deriving
these equations, we shall use the fixed coordinate axes z, y, z, as shown in
the figure. In addition, the coordinate axes £, 9, { are taken at the cen-
troid of the cross section at any section mn. The axes £ and 4 are axes of
symmetry and hence principal axes of the cross section, and { is in the
direction of the tangent to the deflected axis of the beam after buckling.
The deflection of the beam is defined by the components « and ¢ of the
displacement of the centroid of the eross section in the z and y directions,
respectively, and by the angle of rotation ¢ of the cross section. The
angle of rotation ¢ is taken positive about the z axis according to the
right-hand rule of signs, and » and » are positive in the positive directions
of the corresponding axes. Thus the displacements v and v of point €’
in Fig. 6-1 are shown negative.

In later discussions, the expressions for the cosines of the angles
between the coordinate axes z, y, z and £, 9, { will be needed. When
the quantities u, , ¢ are considered as very small, the cosines of the
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angles between the positive directions of the axes have the values given
in Table 6-1. ) )

The curvatures of the deflected axis of the beam (Flg.. 6-1) in the zz
and yz planes can be taken as d?u/dz? and d%/dz?, respectively, for small

X
m &

-]

m
IR &R y’z
4] z . £ C x

n / -t
L c
, { l
() s Pad
(c)
Fic. 6-1

deflections.  For small angles of twist ¢ we can assume that t}le curva-
" tures in the £ and n¢ planes have the same values. Thus the differential

TaBLE 6-1. CosiNES OF ANGLES BETWEEN AxEs IN Fia. 6-1

z Yy 2z
. du
¢ 4 &
‘ dv
L] —¢ ) &
du dy
4 — — 1
dz dz

equations for bending of the beam become.
. .
. EI e%z =M, (6-1)
du
T dz?

EI =M, (6-2)
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In these equations I; and I, are the principal moments of inertia of the
cross section about the £ and 5 axes, respectively. The quantities M tand
M, represent the bending moments about-the same axes, with assumed
positive directions as shown in Fig. 6-2.

The equation for twisting of the K
buckled bar [see Eq. (5-15)] is v .
¢ _ o & _ : M, . M
CL—CE =M (63 C SRy Y,
where ¢ = GJ is the torsional rigidity -/

and C, = EC, is the warping rigidity.!
The twisting moment M is taken posi-
tive in the directions shown in Fig. 6-3, £
which shows the twisting couples acting
on an element of the beam.

Equation (6-3) is valid for a beam of "C

thin-walled open cross section, such as
the I beam in Fig. 6-1. The three
differential equations (6-1), (6-2), and
(6-3) represent the equations of equilib- Fia. 62
rium for the buckled beam and from |»

them we can find the critical values of

the load. In the following articles we § ;
o
v

L&

shall consider various particular cases

of loading. : C ¢
6.2. Lateral Buckling of Beams in M, > M
Pure Bending.? 7 Beam. IfanI beam 7

is subjected to couples M, at the ends
(Fig. 6-4a and b), the bending and twist-
ing moments at any cross section are found by taking the components
of Moabout the £, 4, and { axes. Thus, using the values given in the first
column of Table 6-1, and also considering the positive directions of the
moments (Figs. 6-2 and 6-3), we obtain

Fia. 6-3

Mi=My, M,=¢M, M,=—gz'—‘M.,

Substituting these expressions into Eqgs. (6-1), (6-2), and (6-3) gives the
following equations for 4, v, and ¢: - ‘

! Formulss for J and C,, are given in the Appendix.

? Various cases of lateral buckling of I beams were discussed by Timoshenko, Bull.
Polytech. Inst., St. Petersburg, 1905. Further development is due to V. Z. Vlasov,
“Thin-walled Elastic Bars,” Moscow, 1940, and to J. N. Goodier, Cornell Univ.
Eng. Expt. Sta. Bull. 27, December, 1941, and 28, January, 1942.
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EIgd—;—_Mo=0 (6-4)
&u
EI, d? Mo =0 (6-5)
do
c T dz3 + M 0= 0 . (6-6)
By differentiating the last equation with respect to 2, and eliminating
y .
CMO MDO | ||
o z ‘l[
: l ol
(@ . () )

Fig. 6-4

d?u/dz? by combining with Eq. (6-5), we obtain the following equation for

the angle of twist ¢:
4 2
¢, d ? c ¢ d*¢ M2

& T EL*T
d'¢ d ¢
or a2 20 75 — B = 0 (6-7)
' - C M2 :
Where o = 2—(:11 B E I Cl (6—8)
The general solution of Eq. (6-7) is ' .
¢ = A;sinmz + Ascosme + A + Age™ (a)

in which m and n are positive, real quantities defined by the relations

m=vV—at+vath n=Vatatp ®)

The constants of integration Ay, 4s A;, and A4 must be determined
from the conditions at the ends of the beam. Assuming that the ends of
the beam cannot rotate about the z axis (Fig. 6-1) but are free to warp,
we find that the conditions at the ends are (see p. 228)

=@ _ atz=0andz=1 o (c)

dz?
From the conditions at z = 0 we conclude that
' A’z = 0 Aa = —A4
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and therefore the angle of twist ¢ can be represented in the form -

¢ = A1s1nmz = 2A,sinh nz
Now usmg the conditions at z = [ we obtain the equatlons

Alsmml—2A4smhnl—0 :
" Aym? gin ml -+ 2Am’ sinh nl = : @

Setting the determinant of these equatlons equal to zero yields
(sin ml){n? sinh nl 4 m? smh nl) =0
Since m and n are positive, nonzero quantltles, we conclude tha.t
sinml =0 o (e)

a:nd froxp Egs. (d) we also obtain' 4, = 0. Theiefore the form of buck-
hpg is given by the equation -

¢ = A,sin mz -

and the beam buckles in the shape of a sine wave.
The smallest value of m satisfying Eq. (e) is

m=7

l

or, using expression (b), :
—a+VarF8= ’lL:

Substituting expressions (6-8) and solving for the critical value of the

moment M, from the last equation, we find!

_ Ciw
(Mo)ef = \/EI c (1 +g zz) (6-9)
This expregsion*for the eritical load can be represented in the form
(Mo = 3 YELC (6-10)

where v, is a dimensionless factor defined as

C1 ‘l"

Nn=rx 1+Cl’

(6-11)

Values of v, are given in Table 6-2.
By taking higher roats of Eq. (e), we find larger values of the cntlcal
moment than given by Eq. (6-9). These critical moments correspond to

1 This same result was obtained in Art. 5.7 see Eq. (5-85)].
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buckled shapes having one or more points of inflection, such as occur
when the beam is supported laterally at intermediate points.

The magnitude of the critical moment given by Eq. (6-9) does not
depend on the flexural rigidity EI; of the beam in the vertical plane.
This conclusion is obtained as a result of the assumption that the deflec-
tions in the vertical plane are small, which is justifiable when the flexural
rigidity EI; is very much greater than the rigidity E1I,. If the rigidities
are of the same order of magnitude, the effect of bending in the vertical
yz plane may be of importance and should be considered.! Some numeri-
cal results obtained from calculations in which this effect is considered are
given in Art. 6.3 for a beam of narrow rectangular cross section.

" TaBLE 6-2. VALUES OF THE FACTOR 11 ror I Beams 1N Pure BENnpING

[Eq. (6-11)]}

" ;
l—q 0 0.1 1 2 4 6 8 10 12
Cy .

7 ® 31.4 | 10.36 | 7.66 5.85 5.11 4.70 4.43 4.24
[
T 16 20 24 28 32 36 40 100 [

1
1 4.00 | 3.83 3.73 3.66 3.59 3.55 3.51 3.29 T

After the critical value of the moment has been determined from Eg.
(6-10), the critical stress is found from the flexure formula; that is,

_ Mo)u
0w = )

where Z; is the section modulus of the beam ‘cross section taken with
respect to the ¢ axis. The stress calculated from Eq. (f) represents
the true value of the critical stress only if it is below the proportional
limit of the material. B

Narrow Rectangular Beam. TFor a beam of narrow, rectangular section®
(Fig. 6-4c) we can take the warping rigidity C, 28 zero (see p. 224) and
instead of Eq. (6-7), we obtain the equation

cii)_i_ Ml 6=0 _ (6-12)

1 This question was discussed by H. Reissner, Scizber. Berlin Math. Ges., 1904, p. 53.
See also A. N. Dinnik, Bull. Don. Polytech. Inst., Novotcherkassk, vol. 2, 1913; and K.
Federhofer, Sitzber. Akad. Wiss. Wien., vol. 140, Abt. 1la, p. 237, 1931.

2 This problem was discussed by L. Prandtl, “Kipperscheinungen,” Dissertation,
Munich, 1899, and A. G. M. Michell, Phil. Mag., vol. 48, 1899.
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This equation can be solved readily for ¢, and since the angle ¢ must be
zero a.t the ends of the beam, we obtain the following trgnscendental
equation for determining the critical load: :

M
EIC =

The smallest root of this equation gives the lowest critiéal loﬂ:

sin ] 0

(M. = T V/ETT - (613)
In this equ?,tion, the torsional rigidity C for a thin rectangle usually can-
be taken with sufficient aceuracy from the formula

C = GJ = G ‘ @

6.3. I.,atefa} Buckling of a Cantilever Beam. I Beam. ‘Let us';begin
by considering a cantilever beam acted upon by a force P applied at the

\ f _‘u ¥4 A
ﬂ_ﬁ ,
.Top view :

(a)

z —» ’ ! —u

’((’)
v ‘ ; Fie. 6-5
centroid of the end cross section (Fig. 6-5). As the load P is increased

.gradually, we ﬁn_a.]ly reach the critical condition where the deflected shape
in the yz plane is unstable and lateral buckling occurs as shown in the

-figure. For determining the critical load, we again use the three equa-

tions of equilibrium,‘ Eqgs. (6-1) to (6-3). ' Considering the equilibrium of
the part of the cantilever to the right of section mn (Fig. 6-5b), we find




258 THEORY OF ELASTIC STABILITY

that the moments of the vertical load P with respect to axes through the

) centr01d ab sectxon mn parallel to the z, y, and z axes are

M,=—P(l—z) My, =0 M,=Pl—ui+u) (a)

The quantity u; represents the deflection of the free end of the beam,
assumed positive when in the direction of the positive z axis. Taking
components of the moments (a) about the £, 7, and ¢ axes by using
Table 6-1 for the cosines of the angles between the axes and neglecting
small quantities of higher order than the first, we obtain

M; = —P(z ~2 M = —Po(l — 2)
= P{l — z) P(u1 = u)

Substituting these moments into Eqs (6-1) to (6-3), we obtain the follow-
ing three differential equatlons

,EIEIFJ;P(Z—;) “0  (614)

EI., d—z, £ Pol—2)=0 (6-15)

di¢ _ _ —n % _ -

An equation for the angle of twist ¢ is obtained by differentiating Eq.
(6-16) with respect to z and eliminating d?u/dz? by combining with Eq.
(6-15). The resulting equation for ¢ is

d* d? P?
e - gra—ae=0 ®)

Introducing a new variable
s=1l—2
we write Eq. (b) in the form :
d¢ _ Cd Pz o ,
d T Cde CELGO? 0 €-17)
This equation can be solved by takmg a solution in the form of an
infinite series (see Art. 2.12). Then, from the ¢onditions at the ends, a
transcendental equation for calculating the critical values of the load P
is obtained. The results of these calculations® can be represented in the
form S )
 Pe=pYELC ~ (6-18)

*The calculations were:made by Txmoshenko, Z. Math. u. Phys:k vol. 58, pp. 337-
385, 1910. This paper is reprinted in “The Collected Papers of Stephen P. Timo-
shenko,” McGraw-Hill Book Company, Inc., New York, 1954,
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in which v; is a dimensionless factor depending on the ratio 12C/C,.
Several values of v are given in Table 6-3. As the ratio 12C/C; increases,
the factor v, approaches-the limiting value 4.013, which corresponds to
the critical load for a beam of narrow rectangular cross section (C; = 0),
as discussed in the next section. For large values of {2C/C,, an approxx-
mate value of 72 is given by the equation

4.013
(1 — vV C/IEC)?
For example, if 12C/Cy = 40, the value of v, from Eq. (6-19) is 5.66 as
compared with the exact value of 5. 64

72 = (6-19)

TABLE 6-3. VALUES OF THE FACTOR v: FOR CANTILEVER Beams or I Smction -’

{Eq. (6-18)]
R -
l—g 0.1 1 2 3 4 6 8
C] :
Y2 44.3 15.7 12.2 10.7 9.76 8.69 8.03
E 10 12 14 16 24 32 40
C, )

After the value of the critical load is determined from Eq. (6-18), the
corresponding value of the eritical stress is obtained from the equation

\ Oor = 1;’;1 o ()
This stress must be below the proportlonal limit of the material in order
for Eq. (6-18) to be valid.

Narrow Rectangular Beam. If the cross section of the beam in Fig.
6-5-consists of a narrow rectangle with width b and height h, we obtain,
instead of Eq. (b), the followmg equation for the angle of twist ¢:

d ¢ _
’ ;T = E I “(l—2)’¢ =0 _ @
Again introducing the new variable s = l — z and also using the notation
P2
b= EIC (6-20)

we find that Eq. (d) becomes

d_;? +Bi%% =0 o (6-21)
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The general solution of Eq. (6-21) is
¢ = x/s[AlJ* (% s2) + 440 (% s)] (6-22)

where J* and J_; represent Bessel functions of the first kind of order
1 and —}, respectively.

The constants A; and A, in the general solution (6-22) are obtained
from the end conditions. At the built-in end the angle of twist is zero,
and hence the first condition is

¢=0 ats =1 ~ (e)

At the free end the torque M, is zero, and therefore the second condition
[see Eq. (6-3)] is

ds

Using condition. (f) with the general solution (6-22) gives A; = 0,
and then, from condition (e), we find

14 (§r) =0 | @

The lowest root of this equation? is

’3—‘ I* = 2.0063
from which? p, =013 013 VEIC (6-23)

The buckling shown in Fig. 6-5 corresponds to this value of the load. By
taking larger roots of Eq. (g), we obtain deflection curves with one or more
inflection points. These higher forms of unstable equilibrium are of no
practical significance unless the beam is supported laterally at some
intermediate points.

Formula (6-23) gives the correct value of the critical load only within
the elastic region. Beyond the elastic limit buckling occurs at a load
smaller than that given by the formula. To establish the proportions of
cantilever beams for which formula (6-23) can be used, let us calculate
the maximum bending stress in the cantilever. Observing that the maxi-
mum bending moment is P, and that the section modulus is 27;/h, we
obtain

Pl h
%u = ST, —2006" VEIC

1 See, for example, the tables of zeros of the Bessel functions, Jahnke and Emde,
“Ta.bles of Functions,” 4th ed., p. 167, Dover Publications, New York, 1945.
* This result was obtained by Prandtl, loc. cit.

i‘?_o ats =0 ,‘ (f);
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or, substituting I, = hb%/12, I; = bh®/12, and using expression (g),
Art. 6.2, with Poisson’s ratio taken as 0.3,

b?
Cu=248T B Q)

It is seen from this result that, for a material such as steel, buckling in the
elastic region may occur only if the quantity b%/hl is very small.

Usually it is necessary to consider lateral buckling only in the case of a very nar-
row rectangular cross section where b/h is a small quantity. Theoretically [see
Eq. (k)] buckling may occur also in the case where b/k is not very small but where the
length ! is very large. In this case a large deflection in the plane of the web will be
produced before lateral buckling occurs, and this deflection should be considered in
the.derivation of the differential equations of equilibrium. More elaborate investi<
gations! show that in this case we obtain in formula (6-23), instead of the constant
numerical factor 4.013, a variable factor which dépends on the ratio b/h. . Taking b/h
equal o 1'y, §, and §, we obtain values of this factor equal to 4.085, 4.324, and 5.030,
respectively.

It was assumed in the previous discussion that the load P was applied at the cen-
troid of the cross section. The effect on the critical load of having the point of
application of the load above or below the centroid of the end cross section has also
been investigated.? If a denotes the distance of the point of application of the
load vertically above the centroid (Fig. 6-5), the approximate formula for calculating
the ecritical load can be put in the form

P = 4013\/W (1 @) ; ©28

It is seen that application of the load above the centroid of the cross section diminishes
the critical value of the load. Formula (6-24) can be used also when the load is
applied below the centroid. It is only necessary to change the sign of the displace-
ment a.

If a distributed load acts on the cantilever beam, the same phenomenon of lateral
buckling may oceur when the load approaches a cerfain critical value. - Assuming
that a uniform load of intensity g is distributed along the center line of the cantilever,
the critical value of this load, as obtained from the equations of equilibrium of the

buckled cantilever,? is
12.85 v/ EI,C
@ = T *

Comparing this result with formula (6-23), it can be concluded that the eritical value
of the total uniformly distributed load is approximately three times larger than the
critical value of the concentrated load applied at the end.

I the intensity of the distributed load is given by the equation

2= (1. - '7)‘ @)

1 8ee Dinnik and Federhofer, loc. cit.
2 See Timoshenko, Bull. Polytech. Inst., Kiev, 1910, and also A, Koroboff, ibid., 1911,
* This result was obtained by Prandtl loc. cit.

(6-25)
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the critical value of the total load again can be represented by a formula analogous to
formula (6-25).! It is only necessary to replace the numerical factor 12.85 by another
factor, the value of which depends on the exponent n in Eq. (7). Forn =14, §, §,
and 1, these factors are 15.82, 19.08, 22.64, and 26.51, respectively.

The problem of buckling of a cantilever with a narrow rectangular cross section has
been solved also for the case where the depth of the cross section varies according to

the law?
=n(1-3) @
In all cases the critical value of the total load can be represented by the formula

Qn = 2 VELC ®

in which the numerical value of the factor vs; depends on the type of loading and
on the value of n in Eq. (7). The quantities EI, and C are the flexural and tor-
sional rigidities for the fixed end of the cantilever. Several values of v; are given in
Table 6-4.

TABLE 6-4. VALUES. OF THE FACTOR v, IN Eq. (k)

n 0 i 3 3 1
Uniform load............ 12;85 12.05 11.24 10.43 9.62
Concentrated load at the 4.013 3.614 3.214 2.811 | 2.405
free end

It is seen from this table that in the case of a cantilever with depth decreasing uni-
formly to zero at the free end [z = 1 in Eq. (5)], the critical value of the concentrated
load at the end is approximately 60 per cent and the critical value of the uniformly
distributed load is approximately 75 per cent of the load calculated for a ca.ntllever
of constant cross section [n = 0 in Eq. (])]

6.4.. Lateral Buckhng of Smply Supported I Beams. Concenirated
Load at.the Middle. - If a simply supported beam is bent in the yz plane
by a load P applied at the centroid of the middle cross section (Fig. 6-6),
lateral buckling may occur when the load reaches a certain critical value.
It is assumed that during deformation the ends of the beam can rotate
freely with respect to the principal axes of inertia parallel to the z and
y axes, while rotation with respect to the z axis is prevented by some
constraint (Fig. 6-6). Thus the lateral buckling is accompanied by some
twisting of the beam. In calculating the critical value of the load, we
assume that a small lateral buckling has oceurred, and then we determine
from the differential equations of equilibrium and the conditions at the
ends the magnitude of the smallest load required to keep the beam in
this slightly buckled form.

1 8everal cases of this kind were investigated by Dinnik and Federhofer, loc. cit.
t 8ee K. Federhofer, Repis. Intern. Congr. Appl. Mech., Stockholm, 1930,

\
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Considering a portion of the beam to the right of any cross section mn,
it is seen that the external forces acting on this portion reduce to a single
vertical force P/2 acting at point B;. The moments of this force with
respect to axes through the centroid of cross section mn, parallel to the
z, ¥, and z axes, are

2\2

In the expression for M,, u, represents the lateral deflection of the centroid
of the middle cross section and u:the deflection at any cross section mn.
Both of these quantities are taken positive in the positive direction of the

‘M,=£(£—z)' M, =0 M.=k—>§(—u1+u) @

m
b 2 i
] J —z h
} YpP H y\ kb
P2 2 L 12 e () td)

(b) :
- Fiq. 6-6

£ axis. Using the system of coordinate axes £, 7, and { as in the preceding
articles and projecting the moments (a) onto those axes.by using the
table of cosines (see p. 252), we obtain

| Pl d » . ®
. u
M‘g- = — E(ﬁ — Z) 2z (U1 u)

Substituting expressions (b) into Egs. (6-1) to (6-3), the-following differ-
ential ‘equations of ethbnum for the buckled beam (Fig. 6-6) are
obtained:
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- Ezgg;g(%—z)=o . (6:26)
Ez,% _ -23(% - z) 6=0 (627
%‘f—cl‘%f+§(%—z>fi—'z‘—§(u,-u)=o (6-28)
Eliminating « from the second and third of these equations, we ob@in
C;%—C%}—Z%(%—z)’¢=0  (6-29)

Integrating this equation by the method of infinite series and using .the
conditions at the ends of the beam, it can be shown! that the critical
value of the load can again be expressed in the form (6-18). Several
values of the factor v, are given in the second line of Table 6-5.

TaABLE 6-5. VALUES OF THE FACTOR 73 FOR SIMPLY SUPPORTED I BrEaMS WITH
CoNCENTRATED Loap AT THE MippLe [Eq. (6-18)]

1»C
Load A
applied
at 0.4 4 8 16 24 32 48
15.0 14.9 14.8
Upper flange 51.5 20.1 16.9 15.4
Cglxl)troid 86.4 31.9 25.6 21.8 20.3 19.6 18.8
Lower flange 147 50.0 38.2 30.3 27.2 25.4 23.5
; 2c
Load ‘ A
applied
at 64 80 96 160 | 240 | 320 | 400
15.6 15.8
Upper flange 15.0 15.0 15.1 15.3 15.5
C:)!lx):roid ¢ 18.3 18.1 17.9 17.5 17.4 17.2 17.2
Lower flange 22.4 | 217 21.1 | 20.0 19.3 19.0 18.7 ‘

Instead of the critical load for lateral buckling of a beam be%ng deter-
mined by integration of the differential equations, the stram—energy
method can be used to advantage in many cases.? Let us apply this
method to the beam of Fig. 6-6. When the beam buckles laterally 1.:he
strain energy increases since bending in the lateral direction and twisting

1 i . . u. Physik, vol. 58, pp. 337-385, 1910. -

b4 g:eve?:ln::::lﬁ:s’ ,i tfl{aatu};e of thiz method are gil\’ren in Timoshenko, Bu.ll. Polytech.
Inst., Kiev, 1910 (in Russian), and later, Sur la stabilité des systémes éla.si}xques, Ann.

Ponts et chaussées, Paris, 1913,
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about the longitudinal axis are added to the bending in the plane of the
web. At the same time the point of application of the load P is lowered
and the load produces a certain amount, of work. The critical value of
the load is determined from the condition that this work is equal to the
strain energy of lateral bending and twisting [see Eq. (2-31)]. The small
change in the strain energy of bending of the beam in the plane of the
web, which occurs during buckling, can be neglected in applying the
energy method. This is equivalent to the previous assumption that the
curvature in the plane of the web is infinitely small and can be neglected
in deriving the differential equations of equilibrium. The results
obtained on the basis of this assumption would be exact if the rigidity of
the beam in the plane of the web were infinitely large. For beams in
which the rigidity in the plane of the web is very large in comparison
with the rigidity in the lateral direction, the assumption gives sufficiently
accurate results for practical purposes.

In calculating the strain energy of bending and torsion, we use the
general expression for strain energy

_ EI, [t({dw\? g’d_qS’ C: [t [d2\?
in which the three terms represent, respectively, the strain energy due to
lateral bending, twisting, and warping of the beam.! Taking into con-

sideration the symmetry of the buckled form of the beam (Fig. 6-6), we
find that the increase in strain energy due to lateral buckling is

_ /2 fd2u\2 . fi/2 do\? 1/2 d*¢\?
s - bt [ (5 k0 (%Y ae o, [7(22Y a
' (6-31)

For determining the lowering of the load P during lateral buckling, let us
consider an element dz of the longitudinal axis of the beam at the point D
(Fig. 6-6a). Owing to bending of this element in the £¢ plane and with
the cross section mn considered as fixed, the end B of the beam describes

an infinitely small are
a*u (1

in the & plane, the vertical component of which is

¢%‘(§—z)dz ©

1 The last term in Eq. (6-30) can be obtained by substituting Eq. (5-10) for o, into
2
the expression for strain energy, U = f ;—'-E dV, and integrating over the volume V of
the beam. . '
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The lowering of the point. of application of the load P due to latersl
buckling of the beam is obtained by summation of the vertical com-
ponents (c) for all elements of the beam between z = 0 and 2z = I/2.
Thus we obtain the following expressmn for the work done by the load
P durmg lateral buckling:
L[ dufl

The equation for determmmg the critical value of the load [see Eq. (2-31)]
now becomes :

) /2 [d2y d¢
/¢dz2(— 'z)dz=E'I,,ﬂ (dz)d+0/ (d>dz
1/2 d2¢2

or, substituting for d?u/dz* its expressio:n from Eq. (6-27), ;
pr vz (1 3 12 d_¢ 2 V2 (d2¢\?
m/; ¢(— z)dz—-Cﬁ (dz dz + C, . \az, dz
: (6-33)

To determine the critical value of the load, it is necessary to assume for
¢ a suitable expression, satisfying the conditions at the ends of the beam,
and substitute it in Eq. (6-33). - Taking this expression with one or more
parameters and adjusting these parameters in such a way as to make
the expression for P, as obtained from Eq. (6-33), a minimum, we can
calculate the value of P, with great accuracy.

If the conditions of constraint are as shown in Fig. (6—6) , We can take
the angle of twist ¢ in the form of a trigonometric series

¢=a1008—+020083—‘+ ' @

m whxch each term together Wlth its second- denvatlve vanishes at the
ends of the beam as required by the conditions of constraint. =By taking
one, two, or more terms of the series (d), calculating the corresponding
value of P, from Eq. (6-33), and comparing with the results obtained by
the integration of Eqs. (6-26) to (6-28), we can investigate the accuracy
of the energy method. In‘this manner it can be shown that, when only
the first term of the series (d) is taken, the critical load obtained from Eq.
(6-33) is only one-half of 1 per cent in error. When two terms of the
series (d) are taken, the critical load is obtained with an error of less than
one-tenth of 1 per cent. -Thus the energy method, which simplifies con-
siderably . the calculation of the. critical load, gives results which are
accurate enough for practical applications. As explained in Art. 2.9,
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approximate values of the critical load found by the energy method are
always larger than the exact value.!

It is assumed in the previous derivations ,tha.t the load P is applied at
the centroid of the middle eross section of the beam. It is apparent that
thfe critical value of the load is decreased when the point of application is
raised and increased when it is lowered. The extent of this effect on
the critical load can be obtained by the energy method; it is only necessary
to take into consideration the additional lowering or raising of the load P
during lateral buckling due to rotation of the middle cross séétion. If
&0 is this angle of rotation and a is the vertical distance of the point of
application of the load from the centroid of the cross section, positive
when above the centroid, the additional lowering of the load is

a(l — cos ¢p) =~

ag’
2

Then, instead of Eq. (6-33), we obtain

Page? - Pt [V (1] U2 (dg\t
5 +4’_—EI,,[) ¢2<— —z) dz = C'/(; (E) dz ,

' /2

+C [) (d “’) dz (6-34)

This equation can be solved for the critical value of P by taking ¢ in the
form of the series (d). The results of such calculations are given in
Table 6-5 for two cases: (1) The load is applied at the upper ﬂan'ge of the
beam, and (2) the load is applied at the lower flange. It is seen that
raising or lowering the point of application of the load has the greatest
effect on the critical load when the quantity 12C/C} is small.

Uniform Load. The method described above for the case of a con-
centrated load at the middle can be used also when the beam (Fig. 6-6)
carries a uniformly distributed load. The critical value of this load can
be expressed in the form

VEI
(@)er = 74 53 'C' o (6-35)

in which the numerical value of v; depends on the ratio I2C/C, and on the
position of the load. Values of the factor y, are tabulated in Table 6-6
for cases in which the load is applied along the upper flange, the centroidal
axis, and the lower flange, respectively.

! A method of successive approximations, analogous to that discussed in the chap-
ter on columns (see Art. 2.15), can also be used successfully in investigating lateral
buckling of beams. See F. Stiissi, Schweiz. Bauztg., vol. 105, p. 123, 1935, and Publ.
Intern. Assoc. Bridge Structural Eng., vol. 3, p. 401, 1935.
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TaBLE 6-6. VALUES OF THE FACTOR v, FOR SIMPLY SUPPORTED I BEaMs
wite UnirorMm Loap {Eq. (6-35)]

£2£
Load C.
applied -
st 0.4 4 8 16 24 32 48
Upper flange 92.9 36.3 30.4 | 27.56 | 26.6 26.1 gﬁg
Centroid 143 53.0 | 42.6 | 36.3 | 33.8 | 32.6 a5
Lower flange 223 774 | 50.6 | 48.0 | 43.6 | 40.5 .
' ee
-Load c
applied
at 64 80 128 | 200 | 280 | 360 | 400
4 | 265 | 26.6 | 26.7
Upper flange 25.9 25.8 26.0 26.
szl:troid ¢ 30.5 | 30.1 | 29.4 | 29.0 | 28.8 | 28.6 - gg.g
Lower flange 36.4 | 35.1 33.3 32.1 31.3 31.0 .

6.5. Lateral Buckling of Simply Supported Beam of Narrow Rectangular f:ross
Sec%ion. If & beam of narrow rectangular cross section is bent by a load P apphedzgt
the centroid of the middle cross section (see Fig. 6—6d)., we can use Eqgs. (6-26) to to(ﬁ-mi:
of the preceding article in investigating lateral bu‘ckhn‘g.‘ .It is only necessary oti
the terms in those ecjuations containing the warping rigidity C.. Thus, the equation
for the angle of twist ¢ becomes

d*¢ P (l _ )’ -0 @
Car taEr\z %) ¢

Introducing the new variable ¢ = 1/2 — z and using the notation
B2 = "\ ,_f’__ ®)
* 4EL,C o

P 1 oo =0 @

we find that Eq. (a) becomes

for which the general solution is
B
=1 [Am (%’ t’) + AT (Eﬁ z=)] @
. L .
where J3 and J_3 represent Bessel functions of the first kind of order + and —%,
respectively. For a beam with simply supported ends the’condmons are

d _1
=0 att =0 —d;f=0 att—§
From the first condition we find that As = 0 and then, noting that

de . A8 4 (% u)
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we obtain from the second condition
‘ B\ _ .

J. -3 (-—g—) =0

From a table! of zeros of the Bessel function of order —$, we find that
2

Eg— = 1.0585

o [see notation (b)] P, = BHVELC (6-36)

The critical value of the load can be found also by using the energy method, as
described in the preceding article. It has been shown? that if one term of the series
(d), Art. 6.4, is taken as a first approximation, the error is about 1.5 per cent. If two
terms of the series are taken, the error is less than 0.1 per cent.

If the load P is applied at distance a above the centroid of the middle cross section
of the beam, we can use Eq. (6-34) with C; set equal to zero. If the distance a is
small, the first term on the left-hand side of this equation will be small in comparison
with the other terms, and it is sufficiently accurate to substitute in that term the
value (6-36) for P. Then, using one term of the series (d), Art. 6.4, we obtain the
following approximate formula:

16.94 / EI,C 1.74a _ |ET,
Po = Yk (1— 4 \/T') (6-37)

When the load P is applied at distance ¢ from one support, instead of at the middle
of the span, we can represent the critical load by the formula

VELC
l!

Po =y (6-38)

in which the numerical factor s depends on the ratio ¢/I. Values® of s are given in
Table 6-7. It is seen that the value of the critical load increases when its point of
application is to one side of the middle of the span. However, this effect is not large
as long as the load réemains within the middle third of the span.

TaBLE 6-7. VALUES oF THE FaCTOR +v; IN Eq. (6-38)

0.056 {0.10 [ 0.15 0.20 | 0.25 | 0.30] 0.35 ‘0.40. 0.45 [.0.50

~lo

¥s 112 56.0137.9 291 ]241(21.0(19.0|17.8! 17.2 |16.94

If a simply supported beam carries a load uniformly distributed along the centroidal
axis, the critical value of the total load is given by the formula*

(@D = 283 \Z{EI.,C (©-39)

. *Such a table is given on p. 384 of “Tables of Bessel Functions of Fractional Order,”
vol. 1, Columbia University Press, New York, 1948,
"2 See Timoshenko, loc. ¢it.
*See Koroboff, loc. cit., and also A. N, Dinnik, Buil. Don. Polytech. Inst., Novo-
tcherkassk, vol. 2, 1913,
¢ This solution is due to Prandtl, loc. cit.
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6.6. Other Cases of Lateral Buckling. Beams with Intermediate Lateral Support.
To increase the stability of a beam against buckling in the lateral direction, various
kinds of lateral constraints are used. The effect of these constraints on the magni-
tude of the critical stress can be investigated by using the same methods discussed in
the preceding articles. Let us consider the case where, owing to an additional con-
straint, the middle cross section of a beam is prevented from rotating with respect to
the center line of the beam. Such & condition is obtained when two parallel beams
are braced at the middle as shown in Fig. 6-7a. Owing to this bracing, the deflection
curve of the beam buckled in the lateral direction must have an inflection point, as
shown in the top view of the beam, Fig. 6-7b. Assumlng that the beam undergoes
pure bending in the yz plane and has a narrow rectangular cross section, the critical
value of the bending moment can be obtained from Eq. (6-12). To take account of
the lateral constraint, it will be necessary, in discussing the resulting transcendental
equation, to take the root equal to 2w instead of the smallest root , which was

X

— 3
(a) ' : (5)
F16. 6-7

taken before for the beam without lateral constraint at the middle. In this manner
we obtain o

). = ZYELC @
Hence, owing to lateral constraint, the critical value of the bending moment is doubled
in this case. In an analogous way the problem of lateral buckling of a beam with a
constraint at the middle can be treated for the case of I sections and for other kinds
of loading.

If a load P is applied at the centroid of the middle cross section of the I beam shown
in Fig. 6-7, Eq. (6-18) must be used for calculating the critical value of the load.- The
values of the numerical factor v in this equation are larger than in the case of a beam
without latefal constraint and are given in Table 6-8.

TaBLE 6-8. VALUES OF THE FACTOR v: FOR SiMpLY SuProrTED I Brams
WITH LATERAL SUPPORT AT THE MIDDLE AND WITH CONCENTRATED
Loap at THE MippLe [Eq. (6-18)]

i2C

o 0.4 4 8 16 32 96 128 200 400
1

72 466 154 | 114 86.4‘ 69.2 | 54.5 52.4 49.8 47.4

If the beam is uniformly loaded, the critical value of the total load is given by
Eq. (6-35). Values of the factor v, are given in Table 6-9 for cases in which the
load is distributed along the upper flange, the centroidal axis, and the lower flange,
respectively. .
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TABLE 6-9. VALUES oF THE FACTOR v, FOR SIMPLY SupPorTED I BEAMS WITH
LaTeERAL SUPPORT AT THE MIDDLE AND WITH UNIFORM LOAD [EqQ. (6-35)]

Load E

applied G

at

0.4 4 8 16 64 96 128 200

Upper 587 | 104 | 145 | 112 91.5 | 73.9 | 71.6 | 69.0
flange . -
Centroid | 673 | 221 | 164 | 126 | 101 79.5 | 76.4 | 72.8
Lower 774 | 251 | 185 | 142 | 112 8.7 | 81.7 | 76.9
flange

Beams with Lateral Constraint at the Ends. ~ Let us now consider the case in which
the ends of the beam are prevented from rotatlng with respect to the vertical y axis
during buckling, so that the deflection curve in the lateral direction has two inflection
points (see Fig. 6-8). It is assumed that there are no constraints to prevent the ends
from rotating about the horizontal z axis; hence the beam is simply supported when
bending in the yz plane i is considered.

X

A

L .
FiG. 6-8

] In the casé of an I beam with load P applied at the centroid of the middle eross sec-
tl'on, t'he critieal value of the load is given by Eq. (6-18). - Values of the factor v: are
given in Table 6-10. A comparison of the figures in this table with those in Table 6-5

_shows that the effect of lateral constraint at the ends is larger in the case of short

beams than in the case of long beams.

TaBLE 6-10. VALUES OF THE FACTOR y; For I BEAMS WITH LATERAL 7
ConsTRAINT AT THE EnpDs (F16.” 6-8) ANp WrtH CONCENTRATED
Loap AT THE MiopLe [Eq. (6-18)]

o T —
A 0.4 » 4 8 16 24 32 64 128 200 (- 320

e 268» 88.8165.550.2|43.6{40.2 (34.1| 30.7 1 29.4 | 28.4

" In Table 6-11 are given data for an'T beam uniformly loaded along the centroidal
axls and having lateral constraint as in Fig. 6-8.

" Inthe case of a beam of narrow rectangular cross section with load P applied at the
oentmxd of the middle cross section, the critical value of the load is!

26.6 /EI,C
l:

Pu = ' (6-40)

18ec 7bid.
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TaBLE 6-11. VALUES OF THE FACTOR v, FOR I BEaMs WITH LATERAL
ConsTRAINT AT THE ENDs (FIG. 6-8) AND WiTH UnirorM Loap

[Eq. (6-35)]

e

o 0.4 4 8 16 32 96 128 200 400

Y4 488 | 161 | 119 | 91.3 73.0}58.0| 55.8 | 53.5 | 51.2

If the beam is loaded by couples M, applied at the ends in the yz plane, there will be
inflection points at distance I/4 from the ends. Thus the middle portion of the beam,
of length 1/2, is in the same condition as the beam shown in Fig. 6-4. In this case the
critical value of the couples M, can be found from Eq. (6-13) by substituting /2 for I
which gives

Mo = & VEL,C (6-41)

In each of the preceding discussions it is assumed that the maximum stress in the
beam is below the proportional limit of the material. Otherwise it is necessary to
consider inelastic lateral buckling, as discussed in the next article.

6.7. Inelastic Lateral Buckling of I Beams. If an I beam is stressed
beyond the proportional limit of the material, the critical load can be
calculated by using the tangent modulus E;, varying with the stress,
instead of the constant modulus of elasticity E. The method is analogous
to that.used before in investigating buckling of columns beyond the
elastic limit (see Chap. 3). It was shown in the preceding articles that
the critical load for lateral buckling within the elastic region depends on
the magnitude of the lateral flexural rigidity EI,, which is proportional
to the modulus E in tension, and also on the magnitude of the torsional
rigidity C, which is proportional to the shear modulus G.  Beyond the
proportional limit the lateral flexural rigidity diminishes in the ratio
E,/E. We assume in the following discussion that the tarsional rigidity
diminishes also in the same proportion,! and therefore the ratio I*C/C,
remains unchanged.

Let us begin with pure bending. Since in this case the stress in the
flanges is constant along the span, the tangent modulus will be the same
for all cross sections of the beam bent beyond the proportional limit and
the same differential equations of equilibrium as in the elastic region can
be used: It is necessary only to replace the flexural and torsional rigidi-
ties of the beam by their corresponding values obtained by using the

1 This assumption can be considered as being on the safe side. The lateral flexural
rigidity is due primarily to the rigidity of the flanges; hence it diminishes beyond the
proportional limit in the ratio E:/E. The torsional rigidity depends on the rigidity
of the web as well as the flanges, and since a portion of the web remains always elastic
and retains its initial rigidity, we can expect that the torsional rigidity diminishes in
& proportion smaller than E/E.

é
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_tangent modulus. The critical value of the bending moment is then given

by the equation

9. =T EIC (l +7 ’zrz) (642)

which has the same form as Eq. (6-9) except that E is replaced by E;
and the notation '

c=c @

is introduced.
]mi}nce the ratio C:/CI? remains unchanged beyond the proportional
t, it can be concluded from (6-42) that the critical value of the
moment is less than the value of the same moment calculated on the.
assumption of perfect elasticity, in the ratio E,/E. If the magnitude
of this ratio for each value of the stress is known, the critical bending
moment for each value of the stress can be calculated easily by the trial-
and-error method. We assume a certain value for (Mo).., calculate the
value of the maximum bending stress, and take the corresponding value
of the tangent modulus E;, With this modulus the critical value of the
bending moment is obtained from Eq. (6-42). If the value calculated in
this way coincides with the assumed value, it represents the true value of
(M¢),. Otherwise a new assumption regarding (Mo)e should bednade
and the calculations repeated. Such calculations should be repeated
as many times as is necessary to obtain a satisfactory agreement between
the assumed value of (Mo).. and that calculated from Eq. (6-42).

In the case of bending of beams by eoncentrated or distributed loads,
the bending moment and the stress in the flanges vary along the span of
the beam. Hence, beyond the proportional limit, the tangent modulus
E, will vary also along the span and the differential equations of equilib-
rium for lateral buckling will be of the same kind as for beams of variable
cross section. 'To simplify this problem and obtain an approximate value
Jor the eritical stress, we take a constant value for E;, namely, the value
'orrespondmg to the maximum bending moment, and substitute it in

.he differential equations of ethbnum of the buckled beam. In this

w