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ELECTRONIC AND THERMAL
PROPERTIES OF CARBON FIBERS

J.-P. Issi

1 Introduction
Despite the great deal of attention that carbon nanotubes (CN), the “ultimate” carbon fibers,
is attracting because of their fascinating scientific aspects, the physical properties of the
macroscopic version of carbon fibers remain a topic of great interest. Transport properties
are no exception, since the various structures of carbon fibers and their particular geometry,
have lead to interesting observations, which could not be made on bulk carbons and
graphites. To this should be added the practical aspects since carbon fibers find unique
applications, particularly in the form of composites. Also, as is the case for the bulk mate-
rial, some carbon fibers may be intercalated with various species leading to a significant
modification of their physical properties.

Because of their large length to cross section ratio, DC electrical resistivity measurements
are relatively easy to perform on fibrous materials, in contrast to the case of bulk graphites
(see Section 2). This allowed to separate the electronic and lattice contributions to the ther-
mal conductivity using the Wiedemann–Franz law (Section 4). It also made possible high
resolution electrical resistivity measurements leading to the discovery of quantum transport
effects on intercalated (Piraux et al., 1985) and pristine fibers (Bayot et al., 1989). Also car-
bon fiber-based composites exploit their unique mechanical and thermal properties for
which they find applications as light mechanical systems and heat transfer devices.

Transport properties have been reported for all varieties of carbon fibers including single
wall (SWNT) and multiwall (MWNT) carbon nanotubes. Among macroscopic fibers, vapor
grown carbon fibers (VGCF) are the most adequate for basic studies. They have the highest
structural perfection when heat treated at high temperature. In that case, their transport prop-
erties are much like those observed for highly oriented pyrolytic graphite (HOPG). They
display the highest electrical and thermal conductivities with respect to other carbon fibers.
Also, they may be intercalated with donor and acceptor species which results in higher elec-
trical conductivities, as is the case for HOPG. Similarly, their thermal conductivity and 
thermoelectric power are notably modified by intercalation.

The transport properties of carbon fibers are governed by the in-plane coherence length
which mainly depends on the heat treatment temperature (cfr. e.g. Dresselhaus et al., 1988;
Issi and Nysten, 1998). Some commercial pitch-derived carbon fibers (PDF) heat treated at
high temperature have low electrical resistivities and thermal conductivities close to 1,000
Wm�1K�1, which largely exceeds that of copper. These high thermal conductivities associ-
ated to the fact that they may be obtained in a continuous form make them the ideal 
candidates for thermal management applications (Allen and Issi, 1985).
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PAN-based fibers (PAN) are also continuous fibers, but they are generally disordered and
their conductivity levels are rather low. One exception is the Celanese GY70, which exhibits
a room temperature thermal conductivity of almost 200 Wm�1K�1 when it is heat treated at
very high temperature (Nysten et al., 1987).

Some carbon nanotubes may have electrical conductivities comparable to VGCF heat
treated at high temperature (Issi and Charlier, 1999). The thermal conductivity has not been
measured on a single CN, but one may expect for such materials very high values associ-
ated to their unique mechanical properties.

VGCF’s heat treated at high temperature are semimetallic with very few charge carriers
as compared to metals. Also, like HOPG, they have generally more than one type of charge
carriers, which complicates the analysis of electronic transport properties data. Owing to the
small density of charge carriers, associated with a relatively large lattice in-plane thermal
conductivity, heat is almost exclusively carried by the lattice vibrations above the liquid
helium temperature range.

Because of the favorable length to cross section ratios (Chieu et al., 1982; Issi, 1992),
four-probe electrical DC measurements may be readily performed on intercalated fibers
contrary to the case of the bulk material. High resolution electrical resistivity measurements
have thus been performed on graphite fibers allowing the investigation of weak localization
effects and the separation of the ideal resistivity from the residual resistivity in spite of their
very low residual resistivity ratio (RRR) – the ratio of the resistance at 300 K to that at 4.2 K
(Piraux et al., 1986a,b).

A few comprehensive reviews have been recently published on the transport properties of
pristine and intercalated carbon fibers (Dresselhaus et al., 1988; Issi, 1992; Issi and Nysten,
1998). We shall refer to them when necessary for more detailed information.

In chapter 3, volume 1 of this series, to which we shall refer hereafter as I, we have 
discussed the basic aspects of the transport properties of carbons and graphites (Issi, 2000).
We have pointed out in I that there were no qualitative differences between the basic trans-
port phenomena in bulk and fibrous materials. So, we will mainly concentrate here on the
specific aspects related to fibers which were not discussed in detail in I. These are essen-
tially due to their geometry and their very small cross sections. We will also discuss in some
detail the thermal conductivity of fibers, since it was not presented in I. We will refer, when 
necessary, to the basic concepts developed in I. Thus, in this chapter emphasis will be 
placed on:

� the thermal conductivity of pristine fibers;
� the effect of intercalation on the transport properties;
� the thermal and, to a lesser extent, the electrical conductivity of composites;
� the experimental difficulties associated to measurements on fibrous materials.

The chapter is organized as follows. First, we shall point out some experimental aspects
specific to fibrous materials, including CNs (Section 2). Then we shall discuss the electri-
cal conductivity (Section 3) the thermal conductivity (Section 4) and the thermoelectric
power (Section 5) of various types of pristine carbon fibers. The effect of intercalation on
these transport properties will be discussed in Section 6. Then, after briefly showing how
transport measurements may be used to characterize carbon fibers (Section 7), we will 
consider the situation for carbon fiber composites (Section 8).
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2 Experimental challenges
There are some specific problems associated to the measurement of the transport properties
on fibrous materials which are not encountered in bulk materials. It is obvious that this
should be the case for measurements on individual nanotubes where samples are of submi-
cronic sizes and are quite difficult to handle. For other reasons (cfr. below), it also applies
for the measurement of the thermal conductivity on carbon fibers.

For fibers with diameters around 10 �m, electrical resistivity, magnetoresistance, and
thermoelectric power measurements do not generally present serious problems. The prob-
lems encountered in the case of electrical resistivity measurements are due to the nature of
the samples. Indeed, the diameters of the fibers are not the same along a given filament and
from one filament to another of the same batch. Also, the cross sections of the samples are
not always cylindrical. This makes it difficult to calculate the conductivity (or resistivity)
from the measured resistance. So, the determination of the fiber cross section introduces
large uncertainties in the estimation of the absolute values of the resistivities or conductivi-
ties. Since electrical parameters such as electrical current and voltage, may be measured
with great accuracy, the data obtained are more accurate with regard to temperature varia-
tion than with regard to absolute magnitudes. Fortunately, for the interpretation of the exper-
imental results it is more important to know the temperature variation than the absolute
values. These problems are not met in magnetoresistance and thermoelectric power meas-
urements since the knowledge of the samples cross sections is not needed to calculate these
transport coefficients.

More generally speaking, it is a rather easy task to measure the electrical resistivity,
except for extreme cases of very low or very high values. However, the measurement of sam-
ples of submicronic sizes requires a miniaturization of the experimental system, which may
in some instances attain a high degree of sophistication. This is particularly true for the case
of single CNs, where one has to deal with samples of a few nm diameter and about a �m
length (Issi and Charlier, 1999). One has first to detect the sample, then apply to it electri-
cal contacts, which means, in a four-probe measurement, four metallic conductors, two for
the injected current and two for measuring the resulting voltage. This requires the use of
nanolithographic techniques (Langer et al., 1994). Besides, one has to characterize the CN
sample which electrical resistivity is measured in order to determine its diameter and 
helicity, which leads to the knowledge of the electronic structure.

Thermal conductivity is a very delicate measurement to perform on a single fiber and pro-
hibitively difficult on a single CN. This explains why little attention had been paid to the
thermal conductivity of carbon fibers until the beginning of the 1980s and while still no data
are available on single CNs. More generally, thermal conductivity measurements are time
consuming and very delicate to perform. This is particularily true for samples of small cross-
sections, as it is the case for carbon fibers (Piraux et al., 1987). Indeed, since the fibers are
usually of small diameters (~10�5 m) it is difficult to make sure that the heat losses in the
measuring system do not by far exceed the thermal conductance of the samples measured.
The thermal conductance is defined as the heat flow through the sample per unit tempera-
ture difference. One may measure a bundle of fibers to increase the thermal conductance
with respect to heat losses, but it is not always possible to realize samples in the form of bun-
dles. Moreover, in order to be able to get an insight into the mechanisms of the thermal con-
ductivity of these fibers, it is necessary to measure the temperature variation of this property
over a wide temperature range on a single well characterized fiber, as was done for VGCFs
(Piraux et al., 1984).
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In order to measure the temperature variation of the thermal conductivity of a single
VGCF or a small bundle of continuous fibers one should use a sample holder specially
designed to reduce significantly heat losses. This sample holder, which was designed for
measuring samples with very small thermal conductances, is described in detail elsewhere
(Piraux et al., 1987). It is based on the principle of a thermal potentiometer, adapted to
measure the thermal conductivity of brittle samples of very small cross-sections and low
thermal conductances (10�6–10�2 WK�1) over a wide temperature range.

In some cases the fibrous geometry presents some advantages with respect to bulk car-
bons and graphites. In lamellar structures like that of graphites the electrical conductivity is
highly anisotropic. This anisotropy is even higher in their acceptor intercalation compounds
where it may exceed 106. In that case measuring the in-plane DC electrical resistivity on
bulk samples presents a real problem, since one needs a sample of extremely large length to
cross section ratio to insure that the electrical current lines be parallel. Fibers have very high
length to cross section ratios and thus electrical resistivity measurements could easily be
realized on them.

3 Electrical resistivity
We have introduced in I what we believe are the most important features pertaining to the
electrical resistivity of carbons and graphites. We have insisted on the effect of the semi-
metallic band structure on the electronic behavior in general, and, more particularly, on elec-
tron scattering mechanisms in these materials. This applies also for VGCFs heat treated at
high temperatures and to some CNs. We have also discussed in some length the effect of
weak localization. Incidentally, the particular geometry and the defect structure of carbon
fibers have allowed the observation of these quantum transport effects for the first time in
carbons and graphites (Piraux et al., 1985).

We have seen that the Boltzmann electrical conductivity for a given group of charge carri-
ers is proportional to the charge carrier density and mobility. Concerning the scattering mech-
anisms, the main contributions to the electrical resistivity of metals, �, consists of an intrinsic
temperature-sensitive ideal term, �i, which is mainly due to electron–phonon interactions and
an extrinsic temperature independent residual term, �r, due to static lattice defects.

As is the case for any solid, the temperature dependence of the electrical resistivity of var-
ious classes of carbon-based materials is very sensitive to their lattice perfection. The higher
the structural perfection, the lower the resistivity. Samples of high structural perfection
exhibit room temperature resistivities below 10�4
 cm, while partially carbonized samples
exhibit resistivities higher than 10�2
 cm which generally increase with decreasing tem-
perature. An intermediate behavior between these two extremes is represented by curves
which depend less on the heat treatment temperature (HTT) and does not show significant
temperature variations (cfr. I).

The first comprehensive measurements of the temperature dependence of the electrical
resistivity of pitch-based carbon fibers were performed by Bright and Singer (1979). They
investigated radial as well as random samples heat treated at various temperatures ranging
from 1,000 to 3,000 �C. They have shown that the magnitude of the resistivity, as well as its
temperature variation, depends on the heat treatment temperature. The same kind of obser-
vations were made for VGCFs.

In I we have presented the temperature dependence of the electrical resistivity of many
carbon materials, including fibers. As an additional illustrative example we show in Fig. 3.1
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how this temperature dependence may vary with the heat treatment temperature, i.e. with
crystalline perfection. In this figure the temperature dependence of the electrical resistivity
of six samples of pitch-based carbon fibers heat treated at various temperatures are com-
pared (Nysten et al., 1991a). Except for the E35 fibers, the resistivies of all the samples
investigated decrease with increasing temperature. This dependence was also observed on
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Figure 3.1 Temperature dependence, from 2 to 300 K, of the zero-field electrical resistivity of 
six samples of pitch-based carbon fibers heat treated at various temperatures (Nysten
et al., 1991a).

Figure 3.2 Transverse magnetoresistance for ex-mesophase pitch carbon fibers heat treated at
different temperatures ranging from 1,700 (sample D) to 3,000 �C (samples ABCF).
Samples A, B, C, and F, which were heat treated at the same temperature, exhibit 
different residual resistivities (measured at 4.2 K): 3.8, 5.1, 7.0, and 6.6 � 10�4 
 cm
respectively. Samples G and E were heat treated at 2,500 and 2,000 �C, respectively
(from Bright, 1979).
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other carbon fibers (Bayot et al., 1989) and pyrocarbons (cfr. I, Figs 3.3 and 3.4). Such a
behavior was explained in the frame of the weak localization theory (Bayot et al., 1989).

As explained in I, weak localization generates an additional contribution to the low tem-
perature electrical resistivity which adds to the classical Boltzmann resistivity. Indeed, in the
weak disorder limit, which is also the condition for transport in the Boltzmann approxima-
tion, i.e. when kF.l �� 1, where kF is the Fermi wave vector and l the mean free path of the
charge carriers, a correction term, ��2D, is added to the Boltzmann classical electrical con-
ductivity, �2D

Boltz.:

�2D � �2D
Boltz. � ��2D (1)

The additional term ��2D accounts for localization and interaction effects which both 
predict a similar temperature variation (cfr. I).
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Figure 3.3 (a) Comparison of the temperature variation of the thermal conductivity of pristine 
carbon fibers of various origins. Since scattering below room temperature is mainly on the
crystallite boundaries, the phonon mean free path at low temperatures, i.e. below the max-
imum of the thermal conductivity versus temperature curve is temperature insensitive and
mainly determined by the crystallite size. The largest the crystallites the highest the 
thermal conductivity. Note that some VGCF and PDF of good crystalline perfection show
a dielectric maximum below room temperature. For decreasing lattice perfection the max-
imum is shifted to higher temperatures (Issi and Nysten, 1998); (b) Temperature depend-
ence of the thermal conductivity of the six samples of pitch-based carbon fibers heat treated
at various temperatures, the same fibers with electrical resistivity is presented in Fig. 3.1
(Nysten et al., 1991b).
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A magnetic field destroys this extra contribution (Bayot et al., 1989) and restores the clas-
sical temperature variation predicted by the standard two band model (Klein, 1964). This
results in an apparent negative magnetoresistance.

We have briefly discussed in I the positive and negative magnetoresistances in carbons
and graphites and the interpretation of the latter in terms of weak localization effects. The
positive magnetoresistance at low magnetic fields depends essentially on the carrier mobil-
ities. The negative magnetoresistances, which was first observed in pregraphitic carbons by
Mrozowski and Chaberski (1956) and later on in other forms of carbons, is a decrease in
resistivity with increasing magnetic field. This effect was also observed in PAN-based 
fibers (Robson et al., 1972, 1973), pitch-derived fibers (Bright and Singer, 1979), and 
vapor-grown fibers (Endo et al., 1982) and was interpreted later on in the frame of the weak
localization theory for two dimensional systems (Bayot et al., 1989).

We present in Fig. 3.2 the results obtained by Bright (1979) for the transverse magne-
toresistance at 4.2 K for ex-mesophase pitch carbon fibers heat treated at different tempera-
tures ranging from 1700 �C (sample D) to 3,000 �C (samples A, B, C, and F). It is worth
noting that the four samples A, B, C, and F were all heat treated at the same temperature,
but exhibited different residual resistivities (measured at 4.2 K); 3.8, 5.1, 7.0, and 6.6,
10�4
 cm respectively. Higher residual resistivities correspond to higher disorder. Samples
G and E were heat treated at 2,500 and 2,000 �C respectively.

It should be also noted that highly graphitized fibers, i.e. those heat treated at the highest
temperatures, present large positive magnetoresistances, as expected from high mobility
charge carriers. This explains why samples A and B which exhibit the lowest residual resis-
tivities exhibit also large positive magnetoresistances, even at low magnetic fields. With
increasing disorder, a negative magnetoresistance appears at low temperature, where the
magnitude and the temperature range at which it shows up increase as the relative fraction
of turbostratic planes increases in the material (Nysten et al., 1991a).

The results obtained, which are presented in Fig. 3.2, were later confirmed by Bayot et al.
(1989) and Nysten et al. (1991a), who found the same qualitative behavior on different 
samples of pitch-derived carbon fibers.

Figure 3.4 Dependence on the interlayer spacing d002 of the in-plane coherence lengths and the
phonon mean free path for boundary scattering, lB (Nysten et al., 1991b).
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4 Thermal conductivity

4.1 Electron and phonon conduction

Around and below room temperature, heat conduction in solids is generated either by the
charge carriers as is the case for pure metals or by the lattice waves, the phonons, which is
the case for electrical insulators. In carbons and graphites, owing to the small densities of
charge carriers, associated with a relatively large in-plane lattice thermal conductivity due
to the strong covalent bonds, heat is almost exclusively carried by the phonons, except at
very low temperatures, where both contributions may be observed. In that case, the total
thermal conductivity is expressed:

� � �E � �L (2)

where �E is the electronic thermal conductivity due to the charge carriers and �L is the 
lattice thermal conductivity due to the phonons.

We will show in Section 6.6 that, because of their large length to cross section ratio, it is
possible to separate �E and �L in carbon fibers, when they contribute by comparable
amounts as it is the case at low temperature for pristine fibers and at various temperatures
for the intercalated material.

In Fig. 3.3a we present the temperature variation of the thermal conductivity of pristine
carbon fibers of various origins and precursors. In Fig. 3.3b we compare the temperature
dependence of the thermal conductivity of the six samples of pitch-based carbon fibers heat
treated at various temperatures (Nysten et al., 1991b). These are the same set of fibers which
electrical resistivity is presented in Fig. 3.1.

4.2 Lattice conduction

It was shown that the lattice thermal conductivity of carbon fibers is directly related to the
the in-plane coherence length (Nysten et al., 1991b; Issi and Nysten, 1998). Thus thermal
conductivity measurements allow to determine this parameter. It also enables to compare
between shear moduli (C44) and provide information about point defects.

In Fig. 3.4, the dependence of the in-plane coherence lengths, La, and the phonon mean
free paths for boundary scattering, lB, on the interlayer spacing d002 is presented (Nysten 
et al., 1991b). One may see that the phonon mean free path for boundary scattering is almost
equal to the in-plane coherence length as determined by x-ray diffraction, La. Thermal con-
ductivity measurements may thus be used as a tool to determine this parameter, especially
for high La values where x-rays are inadequate. One may also observe that the concentration
of point defects such as impurities or vacancies, decreases with increasing graphitization.

A naive way to understand how lattice conduction takes place in crystalline materials, is
by considering the case of graphite in-plane, assuming that it is a two-dimensional (2D) sys-
tem, which is not too far from the real situation around room temperature. The atoms in such
a system may be represented by a 2D array of balls and springs and any vibration at one end
of the system will be transmitted via the springs to the other end. Since the carbon atoms
have small masses and the interatomic covalent forces are strong, one should expect a good
transmission of the vibrational motion in such a system and thus a good lattice thermal con-
ductivity. Any perturbation in the regular arrangement of the atoms, such as defects or
atomic vibrations, will cause a perturbation in the heat flow, thus giving rise to scattering
which decreases the thermal conductivity.
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In order to discuss the lattice thermal conductivity results of isotropic materials, one 
generally uses the Debye relation:

(3)

where C is the lattice specific heat per unit volume, v is an average phonon velocity, the
velocity of sound, and l the mean free path which is directly related to the phonon relaxation
time, �, through the relation l � v �. For a given solid, since the specific heat and the phonon
velocities are the same for different samples, the sample thermal conductivity at a given
temperature is directly proportional to the phonon mean free path.

VGCF’s heat treated at 3,000 �C, may present room temperature heat conductivities
exceeding 1,000 Wm�1 K�1 (Fig. 3.3a). The thermal conductivity of less ordered fibers may
vary widely, about two orders of magnitude, according to their microstructure (Issi and
Nysten, 1998). At low temperature, the lattice thermal conductivity is mainly limited by
phonon-boundary scattering and is directly related to the in-plane coherence length, La.

When scattering is mainly on the crystallite boundaries, the phonon mean free path
should be temperature insensitive. Since the velocity of sound is almost temperature insen-
sitive, the temperature dependence of the thermal conductivity should follow that of the spe-
cific heat. Thus, the largest the crystallites the highest the thermal conductivity. Well above
the maximum, phonon scattering is due to an intrinsic mechanism: phonon–phonon umk-
lapp processes, and the thermal conductivity should thus be the same for different samples.

Around the thermal conductivity maximum, scattering of phonons by point defects (small
scale defects) is the dominating process. The position and the magnitude of the thermal con-
ductivity maximum will thus depend on the competition between the various scattering
processes (boundary, point defect, phonon, …). So, for different samples of the same mate-
rial the position and magnitude of the maximum will depend on the point defects and La,
since phonon–phonon interactions are assumed to be the same. This explains why, by 
measuring the low temperature thermal conductivity, one may gather information about the
in-plane coherence length La and point defects. This shows also that by adjusting the
microstructure of carbon fibers, one may tailor their thermal conductivity to a desired value.

Some VGCF and PDF of good crystalline perfection show a maximum below room 
temperature and, with decreasing lattice perfection the maximum is shifted to higher 
temperatures (Issi and Nysten, 1998).

Recently, the thermal conductivities of ribbon-shaped carbon fibers produced at Clemson
University and graphitized at 2,400 �C and those of commercial round fibers graphitized at
temperatures above 3,000 �C were measured and the data were compared. It was shown that,
in spite of the difference in the heat treatment temperature, the two sets of fibers presented
almost the same electrical and thermal conductivities. This clearly shows that, for a given HTT,
spinning conditions have an important influence on the transport properties of pitch-based
carbon fibers. By modifying these conditions, one may enhance these conductivities, which is
important for practical applications since HTT is a costly process (cfr. Part 1, § 2 of this issue).

Oddly enough, though the electrical and thermal conductivities of pristine carbon fibers
are generated by different entities, charge carriers for the electrical conductivity and
phonons for the thermal conductivity, a direct relation between the two parameters is
observed at room temperature (Nysten et al., 1987). This is related to the fact that both
transport properties depend dramatically on the structure of the fibers. They both increase

�g � 

1
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with the in-plane coherence length. As a practical result of the direct relation between these
transport coefficients for fibers with the same precursor, once the electrical resistivity is
measured one can determine the thermal conductivity.

5 Thermoelectric power
We have introduced in I the two mechanisms responsible for the thermoelectric power, 
a diffusion and a phonon drag mechanism and have given an expression for the diffusion 
thermoelectric power. From this expression, it was found that the diffusion thermoelectric
power for a degenerate electron gas varies as the inverse of the Fermi energy, or carrier den-
sity. This explains why semimetals like graphites exhibit higher partial diffusion thermo-
electric powers than metals or graphite intercalation compounds (GICs). We have also
presented in I the temperature variation of the thermoelectric power of a graphite single
crystal.

We present in Fig. 3.5 the temperature dependence of the thermoelectric power of six
samples of pitch-based carbon fibers heat treated at various temperatures. The samples
investigated are the same whose electrical resistivities are presented in Fig. 3.1 and thermal
conductivities in Fig. 3.3b. In Fig. 3.6 the earlier results of Endo and co-workers (1977) on
the temperature dependence of the thermoelectric power of vapor grown (benzene-derived)
carbon fibers are shown. In this figure VGCFs heat treated at two different temperatures are
compared to the as-grown material.

It may be seen from all these curves that, as is the case for the bulk material, the thermo-
electric power of carbon fibers is very sensitive to lattice perfection. For as grown fibers or
fibers heat treated at low temperatures, the thermoelectric power is low and does not vary
significantly with temperature; the room temperature thermoelectric power may even be
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Figure 3.5 Temperature dependence of the thermoelectric power of six samples of pitch-based
carbon fibers heat treated at various temperatures, the same fibers with electrical
resistivity is presented in Fig. 3.1 and thermal conductivity in Fig. 3.3b (Issi and
Nysten, 1998).
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negative. Fibers heat treated at higher temperature exhibit a marked temperature dependence
and higher magnitudes for the thermoelectric power. Then, if the heat treatment temperature
is further increased the thermoelectric power decreases.

This behavior should naturally be correlated to that of the in-plane coherence length, La,
or the 2D cristallites sizes, In I we have presented the room temperature thermoelectric
power of various experimental pitch-based carbon fibers versus in-plane coherence length,
La (fig. 3.5b in I). It was shown that the thermoelectric power increases first rapidly with La,
reaches a maximum, then decreases first rapidly then slowly with La. For La larger than 300
nm the thermoelectric power is positive around room temperature.

The temperature variation of the thermoelectric power of bundles of SWNTs has been
measured from 4.2 to 300 K by Hone et al. (1998). They have also reported on the tempera-
ture dependence of the electrical resistivity of their samples in the same temperature range.
Three samples were investigated, two pristine and one sintered. Their thermoelectric powers
exhibited the same qualitative behavior and almost the same magnitudes (Fig. 3.7). They
were found to be positive over all the temperature range investigated. They increase first 
linearly at low temperature, then tend to reach an almost constant value around 100 K, to
increase slowly again with temperature around 200 K. The room temperature values, around
50 �VK�1, are considerably higher than that of metallic samples (a few �VK�1), but com-
parable to those observed in semimetals. Oddly enough, the temperature variation resembles
more that observed in graphite intercalation compounds (Fig. 3.12) than in the pristine material,
though the room temperature value measured in SWNTs is about twice that reported for GICs.

In general, the interpretation of thermoelectric power data in most materials is a delicate
job and this is particularily true for the case of carbons and graphites. We have seen for
example that the relation between the thermal conductivity or electrical conductivity versus
in-plane coherence length is straightforward. We observe an enhancement of these properties
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Figure 3.6 Temperature dependence of the thermoelectric power of three VGCFs heat treated at
two different temperatures compared to the as-grown material (Endo et al., 1977).
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with increasing La. This is due to the fact that both the electron and phonon mean free paths
increase with La, i.e. with crystalline perfection. For the thermoelectric power the situation
is different. This is due to the fact that the thermoelectric power is much more sensitive to
the carrier density than to the scattering mechanism. In addition, when electrons and holes
contribute to conduction, they have opposite effects on the thermoelectic power since the 
latter is negative for electrons and positive for holes. So, unless one knows with some accu-
racy the band structure of the sample and the scattering mechanism, it is difficult to predict
which contribution, electron or hole, will dominate the scene.

6 Fibrous intercalation compounds

6.1 Introduction

Since the early 1980s, a large amount of experimental data has been published on the tem-
perature variation of the electrical resistivity of intercalated carbon fibers of various origins.
Fewer results are available on the thermal conductivity of these compounds (Issi, 1992). This
is due to the difficulties associated with thermal conductivity measurements on samples of
small cross sections that we discussed in Section 2.

The charge transfer resulting from intercalation increases the carrier density, while
defects due to the intercalation process reduces the electronic mobility, but generally in a
smaller relative amount. The net result of intercalation is thus an increase in electrical con-
ductivity (Fig. 3.8). Most types of fibers have been intercalated and some fibrous acceptor
GIC were found to exhibit room temperature electrical conductivities comparable to that of
the best metallic conductors. The situation is different for the thermal conductivity which,
depending on the compound and the temperature range investigated, may increase or
decrease after intercalation.

Acceptor GICs are highly anisotropic electronic systems and their charge carriers, origi-
nating from the charge transfer from the intercalate, form 2D hole gases. Their Fermi sur-
faces consists in circles for stage-1 compounds and in cylinders for higher stage compounds
(Blinowsky et al., 1980). It is interesting to note that the same 2D model may be applied for

Figure 3.7 Temperature dependence of the thermoelectric power of three single wall carbon 
nanotube samples (Hone et al., 1998).
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all acceptor compounds and the value of the Fermi level, which is directly related to the
magnitude of the charge transfer, determines the value of the ideal resistivity.

For donor compounds, since the anisotropy varies considerably with the intercalated
species, and from one stage to another for a given intercalate, the situation is far more com-
plicated. This is why, despite the considerable amount of theoretical work performed on the
band structure of donor compounds, the situation is not as clear as it is for acceptor com-
pounds. This has a direct bearing on our understanding of the transport properties of these
compounds.

As a direct consequence of the anisotropic band structure, the electrical resistivity of
acceptor GICs is also highly anisotropic. The ratio of the in-plane conductivity to that along
the c-axis may reach six orders of magnitude at room temperature for some acceptor GICs
(Dresselhaus and Dresselhaus, 1981).

Since it is dependent on the phonon spectrum, which is less anisotropic than the electron
distribution, the lattice thermal conductivity is also less anisotropic than the electrical resis-
tivity (Issi et al., 1983). The thermoelectric power presents a smaller anisotropy than that of
the two other transport properties (Issi, 1992).

6.2 Electrical resistivity

As a typical example among others, we present in Fig. 3.8 the effect of intercalation on the
temperature variation of the electrical resistivity of a VGCF heat treated at 2,900 �C (Chieu
et al., 1983). We may see that there is a significant decrease in resistivity due to the inter-
calation of either donor (Rb) or acceptor (FeCl3 and CoCl2) intercalated species. The tem-
perature variation of the intercalation compounds thus obtained exhibit metallic behaviors
with a room temperature electrical resistivities 3–4 times that of pure copper.

Figure 3.8 Effect of intercalation by a donor (Rb) and acceptor (FeC13) intercalate on the tem-
perature variation of the electrical resistivity of a benzene-derived VGCF heat treated
at 29,000 �C (Chieu et al., 1983).
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The in-plane resistivity data in acceptor GICs is interpreted by considering the 2D hole
gas in the graphene host layers, which is fully described once its Fermi energy is known.
This 2D hole gas interacts with the phonons and defects which are present in the host lay-
ers generating a finite resistivity. In the presence of weak disorder hole–hole interaction may
also take place at low temperature.

The ideal electrical resistivity, which is due to electron–phonon scattering, should vary as
T n with n � 5 at very low temperature. Then n should gradually decrease with increasing
temperature until it reaches unity around and above the Debye temperature. The temperature
dependence of the ideal resistance in GICs was found instead to fit the relation (see 
e.g. Dresselhaus and Dresselhaus, 1981):

R(T) � BT � CT2 (4)

where B and C are constants, which may vary according to the compound considered.
In acceptor GICs the ideal electrical resistivity depends on the carrier density, N, and on

the phonon spectrum of the host material (Issi and Piraux, 1986), which determines the 
electron-phonon relaxation time. The amount of charge transfer generating N varies with the
nature of the intercalate and with the stage of the compound. The phonon dispersion rela-
tions do not vary significantly from one compound to another. Thus, if the same 2D band
model is assumed for all acceptor GICs, the differences in ideal resistivities for fibrous GICs
samples should be entirely ascribed to different Fermi energies. For metal chlorides GICs,
since their Fermi energies are almost the same for a given stage and do not vary significantly
from one stage to the other for lower stages, the ideal resistivities are not expected to be
much different from one compound to another (cfr. I).

We have discussed in I the electron–phonon interaction in pristine carbons and graphites
and concluded that, contrary to 3D metals, the charge carriers interact with subthermal
phonons except at very low temperatures. In the case of acceptor GICs the situation is inter-
mediate between that of 3D metals and that of the pristine material. This means that 
electron–phonon interactions are weaker in GICs than in 3D metals at a given temperature,
but stronger than in the pristine material (Issi and Nysten, 1998).

Measurements performed on various low stages fibrous acceptor GICs confirmed 
the validity of relation (4). An almost linear variation of the ideal resistivity at low 
temperature and an almost T2 behavior around room temperature was observed. Oddly
enough, contrary to what is generally predicted and observed, a higher power law is 
found at higher temperature. This is difficult to ascribe to an electron–phonon scattering
mechanism all over the temperature range. Instead, in the presence of weak disorder, the
relaxation time for 2D hole–hole interactions should vary linearly at low temperatures. 
Thus, it is reasonable to ascribe the low temperature linear dependence to strong hole–hole
interactions.

The residual resistivity of acceptor GICs, is due to hole-defect scattering. The defects are
those which were initially in the pristine host material to which are added those introduced
during the intercalation process. Scattering from the defects of both origins will combine in
the temperature region where the mean free paths associated to the two scattering processes
are comparable in magnitude. The residual resistivity will then depend on the host material
and on the intercalated species. In pristine fibers the defect structure varies widely according
to the type of fiber, heat treatment temperature and quality of the precursor for a given type
of fiber. Thus, since carbon fibers provide a large variety of host defect structures in GICs,
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fibrous acceptor GICs are ideal candidates to investigate 2D weak localization and 
interaction effects (Issi, 1992).

First, acceptor GICs are natural 2D electronic systems, since the 2D behavior results from
the distribution of the charge carriers, which are strongly localized in the graphene planes
and which may be considered as quasi free carriers – though weakly localized – only for
motion along these planes. This leads to the 2D electronic band structure. Second, the pos-
sibility of varying the defect structure of the host material over wide ranges in acceptor GICs
allows large experimental possibilities for investigating the phenomena of weak localization
and electron–electron interactions. Finally, the Fermi level may be modified by varying the
nature of the intercalate and its concentration.

Figure 3.9 Low temperature dependence of the resistance for low-stage fibrous acceptor GICs,
with various hosts and intercalates, showing the logarithmic increase in resistivity
with decreasing temperature, charateristic of localization and electron–electron 
interaction effects. All data are normalized to the minimum value of the resistance
(Piraux, 1990).
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In low stage acceptor graphite fiber intercalation compounds high resolution low tem-
perature resistivity measurements performed by Piraux and co-workers (1985) displayed
logarithmic increases of the resistivity with decreasing temperature for different host struc-
tures and intercalates. In most cases, 0.1% to 1% increases in electrical resistivities were
detected over a decade of temperature in the liquid helium range (Fig. 3.9). Except for the
case of fluorine intercalation compounds, the increase in resistivity was thus found to be
usually small above 1.5 K, the lowest temperature at which measurements were performed.
The better the samples are, the smaller is the increase in resistance due to localization
(Piraux, 1990). This increase in zero-field resistivity is accompanied by a negative magne-
toresistance.

The most spectacular effects of the localization and Coulomb interaction effects were
observed on fiber-based compounds of low crystalline perfection. This is the case for fluorine
compounds where intercalation may lead to significant distortion of the graphene layers.

Weak localization effects have been observed in the electrical resistivity of all intercalated
carbon fibers of low structural perfection, whether PDFs or VGCFs. The compounds inves-
tigated were found to verify the weak disorder condition kF l �� 1. The temperature depend-
ence of the resistivity increase was found consistent with the 2D electronic structure and the
results obtained concerning the temperature and magnetic field dependences of the effect
were found to fit the theoretical predictions (Piraux, 1990).

Finally, for comparison, we present in Fig. 3.10 the effect of intercalation by donor 
(Fig. 3.10a) and acceptor (Fig. 3.10b) species on the temperature dependence of the resis-
tivity of SWNT samples. In both cases, we observe, as for the case of bulk fibers, a decrease
of resistivity after intercalation (Lee et al., 1997).

6.3 The limits of electrical conductivity

Earlier work on the electrical resistivity of graphite intercalation compounds was stimulated
by the promise of realizing electrical conductors with conductivities that could reach or even
exceed that of copper. A question which might be raised now is to what extent one could
increase the electrical conductivity of GICs. We now know the answer for the particular case
metallic chlorides GICs (Issi, 1992).

In the 2D model derived for acceptor compounds (Blinowski et al., 1980), the carrier den-
sity, N, varies as kF

2 and the effective mass, m*, varies linearly with kF, the Fermi wave vec-
tor. Thus, we may express the 2D electrical conductivity:

�2D ~ kF · � (kF) (5)

and since the relaxation time, �(kF), should decrease with increasing wave number or carrier
density:

� (kF) ~ kF
�a (6)

One may see from relations (5) and (6) that, if a is larger than 1, the electrical conductivity
decreases when the kF or N increases. Since at room temperature one should expect a value
of a equal or higher than 1, the conductivity should either remain constant or decrease when
the charge transfer increases, provided we remain in the range where the dispersion relation
is linear in k. If scattering by in-plane graphitic phonons is the dominant mechanism, a � 1
(Pietronero and Strässler, 1981), then � (kF) ~ kF

�1, and in this case one should expect 
a conductivity independent of charge transfer.
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So, at least for metallic chloride GICs, the resistivity could hardly be less than roughly 
5 � 10�6Ω cm, the value of the intrinsic resistivity at this temperature. However, one should
add to this intrinsic resistivity that of the residual resistivity. Since the latter is governed by
lattice defects and there are defects inherent to the intercalation process, the resistivities of
metallic chloride GICs should in practice be higher than 5 � 10�6Ω cm.

6.4 Thermal conductivity

We have already pointed out in Section 4 the mechanisms which contribute to the thermal
conductivity of solids and discussed the case of pristine carbons and graphites. Let us 
consider now how intercalation is expected to modify the thermal conductivity of pristine
fibers.
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Figure 3.10 (a) The effect of potassium intercalation on the temperature dependence of the resistivity
of a bulk SWNT sample. Curve a, pristine material from a different batch than in 
Fig. 3.6; curve b, after doping with potassium; curve c, after heating in the cryostat vac-
uum to 580 K overnight; curve d, after 3 days at 580 K (Lee et al., 1997). (b) The effect
of Br2 intercalation on the temperature dependence of the resistivity of a bulk SWNT
sample. Curve a, pristine material; curve b, saturation doped with Br2; curve c, after 
heating in the cryostat vacuum to 450 K for several hours (Lee et al., 1997).

© 2003 Taylor & Francis



On one hand, according to the Wiedemann–Franz relation, which relates the electronic
thermal conductivity, �E, to the electrical conductivity, �:

�E � L T � (7)

one should expect an increase in the electronic thermal conductivity in intercalation com-
pounds. On the other hand, because of lattice defects introduced by intercalation, the lattice
thermal conductivity should decrease. This is what is observed. The net result of intercala-
tion is a decrease of the total thermal conductivity at high temperature and an increase at
low temperature with respect to that of the pristine material (Fig. 3.11) (Issi, 1992). Here
also, as is the case for the pristine material (cfr. Section 4), from the low temperature lattice
thermal conductivity, one may estimate the size of the large scale defects and the concen-
tration of point defects.

It is worth noting that when the electrical conductivity and electronic thermal conductiv-
ity may both be expressed in terms of the same relaxation time, the Lorenz ratio, L, takes
the value of the Lorenz number (Lo � 2.44 � 10�8V2K�2). This holds for a degenerate free
electron system which undergoes elastic collisions. Thus L � Lo for metals in the tempera-
ture ranges where this last conditions apply. This is the case in the low temperature residual
resistivity range when scattering is dominated by impurities and lattice defects. The
Wiedemann–Franz law holds also around and above the Debye temperature when large
angle intravalley electron–acoustic phonon interaction is the main scattering mechanism.

In Fig. 3.11 we present on a log-log plot the temperature dependence of the thermal con-
ductivity of a benzene-derived carbon fiber (BDF) intercalated with CuCl2 (Piraux et al.,
1986). For comparison we have presented on the same figure the temperature dependence
of the thermal conductivity of the pristine material heat treated at the same temperature
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Figure 3.11 Temperature dependence of the thermal conductivity of CuCl2 intercalated 
benzene-derived carbon fibers compared to that of pristine fibers (open circles) heat
treated at the same temperature (3,000 �C). The total measured thermal conductivity
of the intercalated sample (black squares) is separated into its electronic (curve) and
lattice (crosses) contributions (Piraux et al., 1986).
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(3,000 �C). Starting from the liquid helium temperature range, the thermal conductivity
increases with increasing temperature up to nearly 230 K. Using the Wiedemann–Franz rela-
tion, the total measured thermal conductivity was separated into its electronic and lattice
contributions (cfr. Section 6.5).

It may be seen in Fig. 3.11 that, in contrast to the pristine material, electronic conduction
in GICs may contribute to heat transport well above the liquid helium temperature range.
This is due to the large increase in the charge carrier concentration in GICs resulting from
charge transfer and is more pronounced at low temperatures where the lattice thermal 
conductivity of the pristine material decreases almost quadratically with temperature.

It is worth adding that, contrary to the case of intercalated HOPG, where the thermal con-
ductivity of both acceptor and donor compounds have been investigated, for intercalated
fibers, only a few acceptor compounds have been studied. The results obtained with HOPG
and fibers as hosts were found to be qualitatively the same.

6.5 Separation of the electronic and lattice contributions

Contrary to the case of pristine fibers where the thermal conductivity is generally dominated
by the lattice contribution above the liquid helium temperature range, in GICs an electronic
contribution may be important at any temperature. In that case, in order to interpret the
results it is necessary to be able to separate the two contributions. One of the great advan-
tages of measuring the thermal conductivity on intercalated fibers is that, contrary to bulk
graphites this separation can be done. For that purpose, one has to measure on the same sam-
ple the electrical and thermal conductivities. In fibers, this resistivity can be measured by
means of a DC method (cfr. Section 2). Then, introducing the values obtained in the
Wiedemann-Franz relation (relation 7), one may readily calculate the corresponding elec-
tronic thermal conductivity at a given temperature. By subtracting the latter from the total
measured thermal conductivity (relation 2), one obtains the lattice contribution. This method
is applicable in the temperature range where the Wiedemann–Franz ratio is equal to Lo, the
free electron Lorentz number.

Generally, intercalated fiber exhibit high residual resistivities which may dominate the
total resistivity up to relatively high temperatures (Issi and Nysten, 1998). In that case the
Wiedemann–Franz law is expected to be valid over a wide temperature range. This is par-
ticularily true for pitch-derived fibers of poor structural perfection, where the electrical
resistivity is very weakly temperature dependent (Issi and Nysten, 1998). In that case the
electronic thermal conductivity can be directly computed over a large temperature range
from the measured electrical resistivity via the Wiedemann–Franz law using the free elec-
tron Lorentz number (Piraux et al., 1985, 1986).

So, the fibers present two major advantages with respect to HOPG when we need to sep-
arate the two contributions to the thermal conductivity. First, one can measure electrical and
thermal conductivities on the same sample, and second the Wiedemann–Franz law applies
over much wider temperature ranges. The result of such a separation for a CuCl2 fibrous
compound is presented in Fig. 3.11.

6.6 Thermoelectric power

In Fig. 3.12 we present the temperature dependence of the thermoelectric power of the 
BDF intercalated with CuCl2 (Piraux et al., 1986), which thermal conductivity is presented
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in Fig. 3.11 and discussed in Section 6.4. The thermoelectric power is positive over the entire
temperature range, indicating that hole conduction dominates. The temperature dependence
is typical of that of all low-stage GICs whether fibrous or bulk. It starts with a linear depend-
ence in the lowest temperature range, then increases more rapidly and finally tends to 
saturate around 200 K.

From the low temperature linear temperature dependence of the thermoelectric power of
stage-2 compounds at low temperatures, Piraux and co-workers (1988) were able to estimate
the Fermi energies of a few compounds.

Also, a thorough analysis of the data obtained on the thermoelectric power of various
acceptor intercalation compounds lead to the conclusion that there is a dominant phonon
drag contribution for low stage acceptor GICs in the high temperature range (Issi, 1992).
This is a unique situation which should be attributed to the particular 2D nature of 
acceptor GICs.

7 Sample characterization
We have recently shown (Issi and Nysten, 1998) how the residual resistivity and the mag-
netoresistance, provide information about the lattice defects, while the interpretation of the
temperature variation of the ideal electrical resistivity shed some light on electron–phonon
and electron–electron interactions. We have also seen that thermal conductivity measure-
ments were a useful source of information about lattice defects.

One may characterize and determine the defect structure of various types of carbon fibers,
whether pristine or intercalated. This approach usefully complements the information
obtained by means of more powerful techniques which probe the material at the microscopic
level, such as SEM, high resolution TEM, X-ray diffraction, STM, AFM, … Contrary to
these microscopic techniques, which are very localized and thus only probe a very tiny por-
tion of the sample, electrical and thermal transport data give an overall view over the entire
macroscopic sample. In addition, in some cases transport data are sensitive to defects which
could not be detected by other techniques.
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Figure 3.12 Temperature dependence of the thermoelectric power of CuCl2 intercalated 
benzene-derived carbon fibers, which thermal conductivity is presented in Fig. 3.11
(Piraux et al., 1986).
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As was seen above, thermal conductivity measurements performed in the liquid nitrogen
temperature provide a direct way to determine the in-plane coherence length in pristine
fibers. This is also true for the intercalation compounds. Thus, from comparative measure-
ments on pristine and intercalated samples, one is in a position to appreciate how the inter-
calation process affects the in-plane coherence length. Electrical resistivity measurements,
though they are extremely sensitive to defects revealing very large differences in residual
resistivies for samples with different defect structures, are more delicate to analyze in detail
in the case of pristine fibers. In principle, magnetoresistance measurements probe the
mobilities, thus are essentially sensitive to the scattering mechanism. The thermoelectric
power is very sensitive to the carrier densities, and although it depends on the nature of the
scattering mechanism, it is not affected by its intensity. As it is the case for the electrical
resistivity, the thermoelectric power data are delicate to interpret in pristine carbons and
graphites.

8 Carbon fiber composites

8.1 Introduction

One may look at Polymer–matrix composites filled with carbon fibers in two ways. The first
approach consists in considering the exceptional mechanical properties or thermal conduc-
tivity of carbon fibers associated to their specific geometry and decide to use these proper-
ties in order to realize a practical device. Since the tiny and breakable fibers are usually
delicate to handle, the solution is to embed them in a matrix which will distribute the
mechanical stresses and connect the fibers to the macroworld via the matrix. One may then
use the composite wherever lightweight mechanical structures or efficient bulk thermal 
conductors are needed.

Alternatively, one may think of improving the electrical or thermal properties of poly-
meric materials, which are generally electrical insulators and poor thermal conductors, by
realizing polymer matrix composites filled with conductive fibers.

From the previous sections it was obvious that it is possible to tailor carbon fibers at the
microstructural level to obtain specific electrical or thermal conductivities, since these prop-
erties are very sensitive to the in-plane coherence length. This was found to be particularly
interesting for the case of the thermal conductivity. Indeed, by choosing adequately the pre-
cusor and by increasing the heat treatment temperature higher thermal conductivities are
obtained. We were tailoring in fact the conductivity at the microscopic level. In a similar
way, composites allow to tailor the properties of a given material at a macroscopic level. By
this way, one is able to realize efficient heat transfer devices and in some cases heat hyper-
conductors, with the highest thermal conductivities which could be attained in a practical
material.

8.2 Electrical conductivity

Polymer–matrix composites filled with a high enough percentage of carbon fibers may be
electrically conductive. To attain this goal, the percentage of fibers should exceed the per-
colation threshold, which is relatively low for these fillers because of their high aspect ratio,
i.e. their high length to cross section ratio. A transition from insulating to electrically 
conductive behavior occurs at the percolation threshold (see e.g. Carmona, 1988).
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The typical dependence of the electrical resistivity of the composite on the fiber volume
fraction is as follows (Carmona, 1988; Demain, 1994). For low concentrations, the dilute
concentration regime, the fibers are randomly distributed in the matrix forming small aggre-
gates or single inclusions which are separated by the polymer matrix. Since the latter has a
very high electrical resistivity, the electrical resistivity of the composite is very high. An
increase in the fiber concentration leads to an increase of the number and size of the aggre-
gates. Eventually, some growing aggregates get in contact with their nearest neighbors and
merge into larger clusters. For larger concentrations, an “infinite” cluster is formed. Around
this concentration, i.e. at the percolation threshold, the electrical resistivity of the compos-
ite dramatically drops by 10–15 orders of magnitude. This results from the creation of a 
continuous path of electrically conductive fibers across the entire sample.

With further increase of the fiber concentration, new electrically conductive paths may be
created inside the infinite cluster or may link to this cluster aggregates which were previ-
ously isolated. This leads to a monotonic decrease of the composite electrical resistivity with
further increase in fiber content.

8.3 Thermal conductivity

The need for high thermal conductivity materials is increasingly recognized nowadays for
technical applications. This is true when we need to improve heat exchanges in practical
devices or during a manufacturing process. In that context polymeric matrix composites
present the great advantage of having very low specific gravity as compared to metals and
their alloys. This is particularly interesting for applications in space and airborne systems.
To this advantage, one must add their relatively high chemical resistance, their ease of 
processing and energy saving.

For unidirectional composites with highly conductive continuous pitch-based carbon
fibers, room temperature thermal conductivities comparable to that of pure copper are now
readily attained (Nysten and Issi, 1990). With chopped fibers, thermal conductivities supe-
rior to that of metallic alloys may be obtained in composites, as will be seen below. Thus,
with carbon fibers one may tailor at the macroscopic scale the thermal conductivity of 
composites to the desired values for practical applications.

For the case of composites containing aligned highly conducting continuous carbon
fibers the result of fiber addition on the total thermal conductivity of the composite is
straightforward. It was shown experimentally in that case that the thermal conductivity of
the composite along the fiber axis direction obeys the simple law of mixtures. Since the ther-
mal conductivity of the polymer is generally negligible with respect to that of the fiber, this
means that it is equal to the product of the fiber volume fraction and thermal conductivity.
In order to check that, the thermal conductivity of the fibers were first determined and the
result was compared with those obtained for the composite as a function of fiber volume
fraction (Nysten and Issi, 1990). With the composites investigated, thermal conductivities
higher than that of pure copper were obtained. This result is obvious when we consider that
pitch-derived carbon fibers with thermal conductivities exceeding 1,000 Wm�1K�1 are now
available.

The case of composites with chopped fibers is far more complicated to deal with. In that
case, though there is a relation between the thermal conductivity of the fiber and that of the
composite, this relation is not staightforward as for the case of unidirectional composites
with continuous fibers. In addition to the volume fraction and fiber conductivity, there is 
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a large variety of parameters to control in order to improve the thermal conductivity of the
composite (Demain, 1994): fiber length, length to diameter ratio, average orientation of the
fibers in the composite, the fiber-matrix interface, …

As an example, we present in Fig. 3.13 the room temperature thermal conductivity of
chopped fiber-polycarbonate matrix composites versus the thermal conductivity of the
fibers (Demain, 1994), all other parameters being almost the same. We may see that for car-
bon fibers with a thermal conductivity of 550 Wm�1K�1, one may elaborate a composite
with a thermal conductivity of ~10 Wm�1K�1, which compares fairly well with that of
metallic alloys. Figure 3.14 shows the relation at 300 K between the thermal conductivity
of a chopped fiber–polycarbonate matrix composite versus fiber volume fraction for fibers
of different lengths. The heat flow is parallel to the plane of the composite which is in the
form of a plate.

We have seen above that for the case of electrical conductivity (Section 8.2), the transi-
tion from electrically insulating to electrically conductive state, which is explained in the
frame of the percolation theory, is abrupt. However, such a rapid transition does not occur
in the case of thermal conductivity. The reason for that is that the mechanisms responsible
for electrical and thermal conduction are different. Electrical conductivity is always gener-
ated by charge transport, while the thermal conductivity of the fibers at room temperature
and of the polymeric matrix is due exclusively to phonons. Besides, while the polymeric
matrix is an electrical insulator and thus cannot carry electrical current, it may still conduct
heat to some extent and thus may still transfer some heat from one fiber to the other.

Thus the dependence of the composite thermal conductivity on the fiber concentration
(Fig. 3.14) is expected to be different from that of the electrical conductivity discussed above
(Section 8.2). We may tentatively explain this behavior as follows (Demain, 1994). Within
the aggregates of fibers, the conductance of the polymer separating the fibers which are very
close to them is of the same order of magnitude as that of the fibers, yielding thus highly
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Figure 3.13 Room temperature thermal conductivity of chopped fiber-polycarbonate matrix
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volume fraction. For each experimental point the corresponding type of fiber is 
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thermally conductive regions inside the composite. At low fiber concentrations, those
aggregates are separated from each other by resin rich regions which are less conductive and
thus reduce the heat transfer across the sample.

One may consider the polymer loaded with particles whose sizes and geometries are 
those of the aggregates and whose thermal conductivity is intermediate between that of the
polymer and the filler. When the concentration is increased, the average distances between
the aggregates decreases thus increasing the conductance of the polymer separating them
and hence increasing the thermal conductivity of the composite. Finally, when the fiber con-
centration exceeds the percolation threshold, an infinite aggregate is formed. In the absence
of resin rich regions between the aggregates, the conductance of the polymer close to the
fibers dominates the composite thermal conductivity. Any further increase of the fiber con-
centration increases the number of paths for the heat and areas for heat transfer from one
fiber to another.

Hence, the transition from a concentration range where the thermal conductivity of the
composite is depending on the conductance of the polymer between aggregates to a con-
centration range where the conductance within the aggregates dominates, could explain the
change from a linear to a non linear Kc(Vf). This interpretation is corroborated by results of
electrical resistivity measurements which were used to probe the type of arrays formed by
the fibers in the matrix.

When we compare the results relative to in-plane and out-of-plane thermal conductivities
(Demain, 1994), we observe that for the same fiber volume fraction, in-plane thermal 
conductivities are always much larger than out-of-plane thermal conductivities. Also, both
in-plane and out-of-plane conductivities increase linearly with fiber concentrations in the
range 0–30%, whereas they generally increase more rapidly for larger concentrations.
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Figure 3.14 Room temperature dependence of the thermal conductivity of a chopped fiber (P55)-
polycarbonate matrix composite versus fiber volume fraction (Demain, 1994). The
heat flow is parallel to the plane of the composite in the form of a plate. The differ-
ent sets of experimental points are relative to composites with fibers of different
average lengths: roughly 40 gm for BP55c, 100 gm for BP55, and 360 gm for SP55.
From this figure one may also appreciate the effect of fiber length on the conductiv-
ity for a given volume fraction.
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Concerning the effect of the average fiber length for concentration ranging from 0% to
30%, it was shown that thermal conductivities comparable to that of a composite filled with
continuous random in-plane fibers could be attained with samples whose average fiber
lengths are around 500 �m.

It is interesting to note that as for the case of fibers, transport measurements may be used
to characterize to some extent composites. For example, electrical resistivity and magne-
toresistance measurements may be used to gain information on the fiber orientation and the
way the fibers are dispersed in the matrix (Demain, 1994).

9 Conclusions
In this chapter our aim was to outline the specific aspects of transport in carbon fibers with
respect to bulk carbons and graphites in particular, but also, more generally with respect to
other solids. We have considered carbon nanotubes as one variety of fibers, but have refrained
in discussing in detail their properties, since they are the object of other chapters in this series.

We have shown that, in addition to practical aspects, the various structures of carbon
fibers and their particular geometry have lead to interesting observations, which could not
be made on bulk carbons and graphites. This is the case for high resolution electrical resis-
tivity measurements which lead to the discovery of quantum transport effects on carbons
and graphites. We have also shown that it was possible to separate the electronic and lattice
contributions to the thermal conductivity in intercalated fibrous compounds

Leaning heavily on the basic concepts which we have discussed in I, we have mainly 
concentrated in this chapter on the specific aspects related to fibers which were not already
discussed in detail in I. Emphasis was thus placed on the thermal conductivity of pristine
fibers, the effect of intercalation on the transport properties, and the electrical and thermal
conductivities of composites. Besides, we have discussed in brief the experimental difficulties
associated to measurements on fibrous materials.

Note added in proof

Since this chapter was written the thermal conductivity and thermoelectric power of indi-
vidual multiwalled carbon nanotubes has been measured (Kim et al., Phys. Rev. Letters, 87
(2001)). As expected, the room temperature thermal conductivity was found to exhibit very
high values (3000 Wm�1K�1).
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