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Two-dimensional textile structural
composites

6.1 Introduction
The term 'textile structural composites' is used to identify a

class of advanced composites utilizing fiber preforms produced by
textile forming techniques, for structural applications. The recent
interest in textile structural composites stems from the need for
improvements in intra- and interlaminar strength and damage
tolerance, especially in thick-section composites. Textile composites
offer the potential of providing adequate structural integrity as well
as shapeability for near-net-shape manufacturing (Chou and Ko
1989).

Textile structural composites provide the unique capability that
the microstructure of fiber preforms can be designed to meet the
needs of the performance of composite structures. Textile structural
composites can be fabricated directly to their final shapes or can be
assembled or readily machined to specified contours and dimen-
sions. A total system approach is necessary to optimize the
composite performance through the consideration of preform avail-
ability, cost, ease of processing, needs for secondary work such as
machining, joinability of parts, and the overall performance of the
composite structure. Chapters 6 and 7 discuss the fundamental
characteristics of two- and three-dimensional textile preforms and
the analysis of composite behavior based upon these preforms. The
following discussions of yarn assembly, as well as textile preforms
and characteristics, are based upon the review of Scardino (1989).

The forming of textile preforms requires knowledge of the
structure of yarns and fibers. Yarns are linear assemblages of fibers
formed into continuous strands having textile characteristics, i.e.
substantial strength and flexibility. Figure 6.1 illustrates the ideal-
ized models of yarn structures; a yarn may consist of (a) single or
(b) multiple continuous fibers, or (c) short (staple) fibers, where a
substantial amount of twist or entanglement is needed to overcome
fiber slippage. Yarns made from staple fibers are referred to as spun
yarns. Figure 6.1(d) and (e) show that two or more single yarns can
be twisted together to form ply or plied yarns. Plied yarns can be
further twisted to form multiples (f). Spun yarns can also be
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286 Two-dimensional textile structural composites

combined to form plied yarns. Advanced textile structural compos-
ites are mostly based upon continuous filament yarns.

The relative density of fiber packing in the yarn cross-section is
quantified by the fiber packing fraction, which is the ratio of fiber
specific volume (volume/mass) to yarn specific volume. Fiber
packing fractions are determined by a number of factors, including
the number of fibers in a yarn, fiber cross-sectional shape, yarn
tension, level of yarn twist and yarn manufacturing method. The
yarn structures determine the translation of fiber properties into
yarn properties. Consider, for example, the axial yarn elastic
modulus (Ey). Hearle, Grosberg and Backer (1969) have predicted
that Ey = cos2 6E{, where E{ is the fiber elastic modulus and 6
denotes the helical angle of the fibers in a yarn. The translation
efficiencies reflect the effect of fiber orientation relative to the yarn
axis due to the twist as well as the fiber entanglement in the yarns.
The efficiency of fiber packing in a yarn and the fiber-to-yarn
strength and modulus translation need to be taken into account in
the selection of yarns for textile preforms. Further discussions on
the packing of fibers in a yarn are given in Chapter 7.

The selection of fiber preforms as reinforcements for composites
requires additional considerations to those at the yarn level. The
most basic ones, according to Scardino, are the manipulative
requirements in dimensional stability, subtle conformability and

Fig. 6.1. Idealized models of various yarn structures. (After Scardino
1989.)
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Textile preforms 287

deep draw shapeability. A high degree of dimensional stability is
required in pultruded, flat panel or laminated composites. Some
conformability is desirable in slightly curved structural parts.
Considerable extensibility of the preform is necessary for deep-draw
molded composites. These factors not only are pertinent to the
selection of composites processing techniques, but also dominate
the fiber preform microstructure in the finished product. It should
be noted that the orientations of fibers in a preform before and after
matrix impregnation can be very different, and can thus have
significant implication on composite performance.

6.2 Textile preforms
The major textile forming techniques for composites rein-

forcement are weaving, knitting, braiding and stitching. There is the
lack of a definitive criterion for separating textile preforms into the
two-dimensional and three-dimensional types. In Chapters 6 and 7,
a rather loose criterion is applied to distinguish these two types,
based upon the degree of integration of the yarns as well as the
extent of strengthening in the thickness direction of the preform.
Consider, for instance, the traditional weaving, knitting and braid-
ing processes; the interaction of yarns (i.e. interlacing, interlooping)
in the thickness direction is limited to two or three yarn diameters.
As a result, the strengthening effect due to yarn penetration,
although higher than that for conventional laminated composites, is
fairly small. Therefore, these preforms are considered to be two
dimensional. On the other hand, the more recently developed
preforms, such as angle-interlock wovens and solid braids, are fully
integrated structures, and there is a significant degree of strength-
ening in the thickness direction. Thus, these preforms can be
categorized as three-dimensional. The foregoing definitions are
independent of the actual dimensions of the preform.

The uncertainty in the separation of two- and three-dimensional
preforms arises when the integration of yarns in the thickness
direction is of limited extent and the resulting strengthening is not
very significant. An example can be found in multiaxial warp knits.
The layers of essentially straight fibers in such a construction are
connected by knitting yarns. The degree of strengthening in the
thickness direction depends on the type of knitting yarns used.

Figure 6.2 summarizes the major manufacturing techniques for
two-dimensional textile preforms. It is feasible to insert laid-in yarns
into the basic knitted or braided fabric given in Fig. 6.2, thus
significantly modifying the directional stability of the fabric. The
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288 Two-dimensional textile structural composites

great varieties of fabric geometry so induced are not shown in Fig.
6.2 for the reason of simplicity. A brief discussion of wovens, knits
and braids for reinforcing composites is given below.

6.2.1 Wovens
Woven fabrics, formed on a loom by interlacing two or

more sets of yarns, are essentially two-dimensional constructions.

When two sets of yarns are interlaced at right angles, the Ion-

Fig. 6.2. Manufacturing techniques for two-dimensional textile preforms.

Two-dimensional textile preforms

Weaving Knitting Braiding
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Biaxial
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Fig. 6.3. Examples of woven fabric patterns: (a) plain weave (ng = 2); (b)
twill weave (ng = 3); (c) four-harness satin (ng = 4); (d) eight-harness satin
(ng = 8). (After Ishikawa and Chou 1982a.)
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Textile preforms 289

gitudinal yarns are known as the warp, and the widthwise yarns are
known as the filling or weft. The individual yarns in the warp and
filling directions are also called an end and a pick, respectively.
Figure 6.3 shows examples of orthogonal woven fabrics. According
to Lord and Mohamed (1982) and Schwartz, Rhodes and Mohamed
(1982), the manufacture of woven fabrics based upon high speed
power looms requires four operations or primary motions: (1)
shedding, (2) filling insertion, (3) beat-up, and (4) warp and fabric
control. Following Lord and Mohamed, and Schwartz, Rhodes and
Mohamed, a brief introduction is given for these four motions.

Shedding involves the movement of the warp yarns to provide a
path for the insertion of the weft yarn. One of the techniques of
shedding uses heddle wires which are grouped into several frames,
known as harnesses or shafts (Fig. 6.4). Each harness is operated by
a separate cam; the purpose of the cam is to lift or lower the
harness. As a result of the movement of the harness, the shed is
formed. A cam loom is generally limited to designs repeating on six
or fewer picks (Schwartz, Rhodes and Mohamed 1982). Besides the
cam system, traditional fabrics are often woven on a dobby head
loom. A commercially available dobby mechanism uses a maximum
of about 24 harnesses, and thus allows the control of interlacing 24
different groups of warp yarns. The Jacquard head provides control

Fig. 6.4. Shedding in fabric weaving. (After Lord and Mohamed 1982.)
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290 Two-dimensional textile structural composites

of every individual yarn across the width of the fabric, and it does
not have the limitation of the dobby loom. Thus, the yarn
interlacing possibilities are greatly enhanced and they are only
limited by the number of warp yarns used.

The number of harness frames required for the shedding opera-
tion depends on the type of weave. Two harnesses are used for
weaving plain fabrics (Fig. 6.3a), and their relative motion is carried
out in two weaving cycles. In one cycle, the front harness is in the
top position and the back harness is in the bottom position. In the
next cycle, the harnesses change positions, and the sequence is
repeated. Obviously when the two sheets of warp yarns are at the
same level, the shed is closed (Schwartz, Rhodes and Mohamed
1982).

Filling insertion, as the term implies, involves the passing of a
filling yarn through the open shed. Figure 6.5 shows schematically
the conventional way of filling insertion by a shuttle. In order for
the filling insertion motion to take place, the shed has to be
sufficiently open and remain open for an adequate period of time.
Consequently, the speed of the weaving process is dominated by the
speed at which the shuttle travels through the shed. The transit time
of the shuttle involves its acceleration and deceleration. Further-
more, it is desirable to remove the filling supply package from the
filling carrier so the carrier could be made smaller and the yarn
movement in the shedding is reduced. All these considerations
provide the impetus for using shuttless looms.

Fig. 6.5. Filling yarn insertion in fabric weaving. (After Lord and
Mohamed 1982.)
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Textile preforms 291

The commonly used shuttless systems include rapiers, gripper
projectiles, air jets, and water jets. A rapier is a device made of
metal or a composite material with an attachment on the end to
carry the filling yarn through the shed. For the case of a single rigid
rapier, its length should be at least equal to the loom width. In
order to improve the loom speed, double rigid rapiers have been
used. These consist of a 'giver', which picks up the filling yarn and
carries it to the center of the shed, where the filling yarn is
transferred to a 'taker' for transporting the yarn to the other end of
the shed. The reduction in carrier traveling time thus doubles the
number of picks that can be inserted per unit time. The gripper
loom uses a small projectile to transport the filling yarn. It is
feasible to use many projectiles which may be initiated from both
ends or one end of the loom. In the case of fluid jet looms, the
filling yarn is carried by a high pressure air or water jet.

Finally, the purpose of beat-up is for incorporating the filling yarn
into the body of the fabric after the filling is inserted. This is
accomplished by the use of a wire grate called a reed, through
which the warp yarns are threaded. The reed is first moved
backward to allow the insertion of the filling yarn. When the
insertion is finished, the reed moves forward and drives the filling
yarn into the fabric. For a continuous operation of the weaving
process, it is also necessary to supply the warp yarns continuously,
and to remove the fabric from the loom. It should be noted that the
repeated actions of shedding and beating induce cyclic tension
variations in the yarns (Schwartz, Rhodes and Mohamed 1982). The
control of warp and filling yarn tension is essential in the weaving
process.

Orthogonal woven fabrics exhibit good dimensional stability in
the warp and weft directions. Woven fabrics offer the highest yarn
packing density in relation to fabric thickness. The pure and hybrid
woven fabrics used in composites are mostly in the forms of plain,
basket, twill and satin weaves. Wovens are available in tubular and
flat forms.

Woven fabrics provide more balanced properties in the fabric
plane than unidirectional laminae; the bidirectional reforcement in
a single layer of a fabric gives rise to enhanced impact resistance.
The ease of handling and low fabrication cost have made fabrics
attractive for structural applications. On the other hand, the limited
conformability, poor in-plane shear resistance, and reduced yarn-to-
fabric tensile translation efficiency due to yarn crimp are some of
the disadvantages of woven fabrics.
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292 Two-dimensional textile structural composites

Triaxial woven fabrics, made from three sets of yarns which
interlace at 60° angles, provide higher isotropy and in-plane shear
rigidity than orthogonal wovens. However, no woven fabric con-
struction provides sufficient extensibility for deep-draw molding
(Scardino 1989).

6.2.2 Knits
A knitted structure is characterized by its interlacing loops.

Two basic types of knits can be defined according to the general
direction of travel of a looped thread in the fabric (Thomas 1971).
In weft knitting, the thread runs widthwise, and the loops are
formed by a single weft thread (Fig. 6.6a). The loops in a horizontal

Fig. 6.6. Knitted fabrics: (a) weft knit structure; (b) warp knit structure.
(After Thomas 1971.) (c) Knitted fabric with weft and warp laid-ins.
(After Wray and Vitols 1982.)
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Textile preforms 293

row are built up one loop at a time. In practice, many weft threads
are used simultaneously in weft knitting. In warp knitting, the
orientation of a looped thread is warpwise, and all the loops making
up a single horizontal row are formed simultaneously (Fig. 6.6b).

The principal mechanical elements used in knitting are needles.
According to Schwartz, Rhodes and Mohamed (1982), there are
three major needle types: the latch needle, the bearded needle and
the compound needle. The latch needle has been used most often
and it contains a latch which can be closed in the knitting process.

The loops in knitted fabrics are formed essentially on a very
similar principle. Following Thomas (1971), the looping process is
demonstrated for a single latch needle by the consecutive steps
shown in Fig. 6.7. Consider the needle which has at its stem a loop
already formed during the course of the knitting process (Fig. 6.7a).
A thread is then placed under the hook of the needle. The loop is
restrained in its position whereas the needle is allowed to move
through it. As the needle moves downward, the existing loop will
push the latch and close the hook (Fig. 6.7c). When the top of the
hook reaches the level of the existing loop (Fig. 6.7d), this loop is
pulled out of the way by the yarn tension. Then as the needle moves
upward again, the thread in the hook opens up the latch, and it
becomes the next 'existing' loop. More loops are generated as the
process repeats. Depending on the type of knitting machine, a
variety of needle configurations and looping cycles is available. A
detailed discussion of the knitting processes and knit fabrics has
been given by Schwartz, Rhodes and Mohamed (1982).

Simple weft and warp knits can provide extensibility in all

Fig. 6.7. The latch needle cycle in fabric knitting. (After Thomas 1971.)
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294 Two-dimensional textile structural composites

directions and are thus suitable for deep-draw molding techniques.
Directional stability can be established by adding laid-in (non-
knitting) yarns in the desired directions. According to Scardino,
weft inserted warp knits offer flexibility in performance, from
complete dimensional stability to engineered directional elongation.
Furthermore, weft inserted warp knits with laid-in warp systems
offer high yarn-to-fabric translation efficiencies and greater in-plane
shear resistance than comparable wovens. An example of a knitted
fabric with weft and warp laid-ins is shown in Fig. 6.6(c).

6.2.3 Braids
Braided fabrics are constructed from intertwined yarns. In

order to understand the characteristics of braided preforms, it is
useful to review the basic mechanisms involved in maypole
braiders. The paths traced by the carriers of a maypole braider are
similar to those of the dancers around the maypole.

Douglass (1964) has explained the operation of some common
types of maypole braiders. A simple slide plate machine consists of a
deck, a driving mechanism and a superstructure with the take up
facility and the braiding guide. The deck has two metal plates.
Serpent-like tracks are cut in the upper plate. Between the base
plate and the track plate is a train of gears. Each horngear has a
circular flanged top which is slotted to engage the bottom driving
lugs of the spool carriers. Furthermore, the horngears are so
arranged (Fig. 6.8) that the slots in the top flanges of two
neighboring horngears will meet at the intersection of the tracks.

Fig. 6.8. Horngears and tracking in a tubular braider. (After Douglass
1964.)

Base plate

Horngears Track plate
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Textile preforms 295

Consider a carrier with its lug engaged in one of the horngear slots
and moving in the track; the contour of the track enables the carrier
lug to be transferred from one horngear to the next at the
intersection. Consequently, this process can be repeated and each
carrier can follow a chain of interconnected figure eights in a
continuous manner.

According to Douglass (1964), some common types of maypole
braiders are the 'Soutache' braider, circular (tubular) braiders and
flat braiders. The machine used for Soutache braiding is the
simplest of all the braiders, consisting of two horngears which are
slotted to take 3, 5, 7, 9, 11, 13 or 17 carriers. Figure 6.9 shows a
three-carrier soutache set-up for demonstrating the mechanism of
braiding. Circular braiding machines, on the other hand, have an
even number of carriers, starting with eight and increasing by steps
of four.

Braiders for flat products are characterized by the tracking
system, which does not completely encircle the braiding center (Fig.
6.10). The two horngears at the ends of the track have an uneven
number of hornslots. Unlike the circular machines, a yarn carrier in
this case reverses its path at the terminal gears and as a result flat
braids can be accomplished.

The geometric configurations of some two-dimensional braids are
given in Fig. 6.11. Figure 6.11(a) shows the braid with a 2/2
intersection repeating pattern, and it is known as a regular, plain or
standard braid. Figure 6.11(b) gives a diamond or basket braid

Fig. 6.9. Horngears for a three-carrier 'soutache' braider. (After Douglass
1964.)
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296 Two-dimensional textile structural composites

which is characterized by a 1/1 intersection repeating pattern.
Figure 6.11(c) shows a regular braid with warp in-laids and it can be
made by either a circular or flat braider. There are certain significant
similarities and differences between woven and braided fabrics.
Both fabrics utilize two sets of yarns; these are the warp and weft
yarns in weaving and the yarns moving in clockwise and counter-
clockwise directions in circular braiding. As far as interlacing
patterns are concerned, they are unlimited in weaving and very
limited in braiding (normally 1/1, 2/2 and 3/3). The angle of

Fig. 6.10. Horngears and tracking in a flat braider. (After Douglass 1964.)

Track plate ^ - ~ - j - ^ Horngears

Base plate

Fig. 6.11. Geometric configurations of (a) flat braid, (b) diamond or
basket braid and (c) flat braid with warp in-laids. (After Du, private
communication, 1990.)
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Textile preforms 297

interlacing between the two sets of yarns is 90° in orthogonal woven
fabrics and less than 90° in braided fabrics.

The braiding technique is highly versatile and a great variety of
geometric patterns can be produced. This is demonstrated by the
figured (fancy) braids which have more complex cross-sections (for
example, I and T sections) than the traditional braids, or variable
cross-section shapes along the axial direction. Figure 6.12 shows a
flat-cord-flat fabric, and the tracking system employed for producing
such a fabric (Yokoyama et al. 1989). The figured braids are
categorized as two-dimensional fabrics for the reasons stated
earlier. These fabrics could be considered as three-dimensional

Fig. 6.12. (a) A figured braid of flat-cord-flat construction; (b) configura-
tion of the tracking system. (After Yokoyama et al. 1989.) Parts A and B
are fabricated by flat braiding, and part C is fabricated by a tubular
braiding mechanism. The spindles indicated by the open circles move on
section C of the track and spindles represented by solid circles move
through all sections of the track in the sequence (A)-(C)-(B)-(C)-(A).

Fiber bundle

(a)

Spindle

(A)
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Table 6.1. Directional behavior of two-dimensional preforms in unjammed configuration

After Scardino (1989).

Preform Directional Directional Substantial Substantial
construction stability conformability directional in-plane shear

extensibility resistance

MD CD BD MD CD BD MD CD BD MD CD BD

Woven
Biaxial x x x x
Triaxial x x x x x x

Knitted
Weft
Warp
Braided
Circular

(tubular)
Flat

x
X X X

X

X

X

X

x

X

X

X

X

X

X

X

X

MD = machine direction; CD = crosswise direction; BD = bias direction.
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Textile preforms 299

provided sufficient structural integration and reinforcement are
achieved in the thickness direction.

A braided fabric exhibits dimensional stability under tension
along the 0° orientation if there are axial laid-in yarns, and along
the ±6° directions of the braiding yarns. Without axial laid-in
yarns, the dimension of a braid can be changed by applying tension
in the 0° and 90° directions. Yarn jamming in a fabric can occur
essentially in two ways. First, for a fabric without laid-in yarns,
application of a tensile force along the 0° or 90° direction will stretch
the fabric until it is jammed and no further movement of the yarns
is possible. Second, yarn jamming could occur during fabrication.
This condition is characterized by the situation that the yarn
covering factor = 1, i.e. there is no void space in between the yarns
of a fabric. Thus, the fabric shape cannot be deformed under load.
The first concept concerning yarn jamming is useful when the focus
is on conformability and large deformation of a fabric. The second
concept is important when one is concerned about, for instance, the
maximum fiber volume fraction in a composite, and the control of
the preforming process. Chapter 7 provides examples of yarn
jamming in the fabrication of three-dimensionally braided preforms.
The major limitations in machine-made braids at the present time
are restricted width, diameter, thickness and shape selection.

There are also non-woven fabrics which are essentially sheet
materials composed of randomly oriented fiber segments bonded
together. There is a lack of geometrically defined arrangements in
non-wovens as compared to wovens, knits and braids. The key
methods of fiber bonding in non-wovens are: sticking fibers together
as in fiber mats, entangling the fibers to give frictional interaction,
stitching through the non-woven web with a textile yarn, and
adhesive bonding. Hearle (1989) has given in-depth treatment of
the mechanics of non-woven fabrics.

Scardino (1989) has examined the behavior of various fabric
structural forms under uniaxial and shear stresses in the machine
(0°), crosswise (90°) and bias (±45°) directions. Table 6.1 sum-
marizes the directional characteristics of two-dimensional preforms.
Based upon such knowledge it is feasible to design fabric preforms
with a specific directional behavior while accommodating certain
manipulative requirements in composites manufacturing.

The analysis and modeling of two-dimensional textile structural
composites in this chapter focus on woven preforms. The models so
developed can be extended to treat braided composites. Composites
based upon knitted and non-woven preforms are not considered.
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300 Two-dimensional textile structural composites

Sections 6.3 to 6.11 are excerpted from the work of Chou and
Ishikawa (1989).

6.3 Methodology of analysis
The objective of the analysis in Section 6.3 is to model the

thermomechanical behavior of two-dimensional orthogonal woven
fabric composites. The fabrics are composed of two sets of mutually
orthogonal yarns of either the same material (non-hybrid fabrics) or
different materials (hybrid fabrics). Here, the term 'yarns' repre-
sents individual filaments, untwisted fiber bundles, twisted fiber
bundles or rovings.

An orthogonal woven fabric consists of two sets of interlaced
yarns. The length direction of the fabric is known as the warp, and
the width direction is referred to as the filling or weft. The various
types of fabric can be identified by the pattern of repeat of the
interlaced regions, as shown in Fig. 6.3. Two basic geometrical
parameters can be defined to characterize a fabric: nfg denotes that
a warp yarn is interlaced with every nfgth filling yarn and nwg denotes
that a filling yarn is interlaced with every nwgth warp yarn. The present
treatment is confined to the case of /twg = nfg = ng for both hybrid
and non-hybrid fabrics. Fabrics with n g >4 are known as satin
weaves. As defined by their ng values, the fabrics in Fig. 6.3 are
termed plain weave (ng = 2), twill weave (ng = 3), four-harness satin
(ftg = 4), and eight-harness satin (rcg = 8). The regions in Fig. 6.3
enclosed by the dotted lines define the 'unit cells' or the basic
repeating regions for the different weaving patterns. It is also noted
that the top sides of the fabrics in Fig. 6.3 are dominated by the filling
yarns, whereas the reverse sides are dominated by the warp yarns.

The theoretical basis of the present analysis is the classical
laminated plate theory, which is given in Chapter 2. Only the key
equations are recapitulated in the following for ease of reference.
Under the assumptions of the Kirchhoff hypothesis, the constitutive
equations are expressed in the condensed form as

Here, N and M are membrane stress resultants and moment
resultants, respectively; e° and K are the strain and curvature of the
laminate geometric mid-plane, respectively. The components of the
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Methodology of analysis 301

stiffness matrices A, B and D are evaluated as follows:

(Ay, BiJ} Di}) = i f * (1, z, z2)(Qtj)k dz (i, / = 1, 2, 6)

(6.2)

where the reduced stiffness constants Qti corresponding to the
lamina defined by hk and hk_1 in the thickness direction are used in
the calculations. The subscripts 1, 2 and 6 in Eq. (6.2) indicate, in
the xyz coordinate system, the x direction, the y direction, and the
x-y plane, respectively. More explicitly, Eq. (6.2) can be written as

Aa=

(6.3)

The inverted form of Eq. (6.1) is given by

l i c i B'
(6.4)

When the effect of temperature change is taken into account, the
constitutive relation of Eq. (6.1) should be written as

N

where

Gn G12 Gw

Gl2 G22 2 2 6

'On G12 Qi6

G12 G22 G26

LGl6 G26 Qte]

z dz

(6.5)

(6.6)

(6.7)

*xyj k

AT indicates a small uniform temperature change, and a denotes
the thermal expansion coefficients. After inversion, Eq. (6.5)
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302 Two-dimensional textile structural composites

becomes

fe°l [A' I B'l(N) (A1)

where

( A 1 ' ) X A ' I R ' K A ^

(6.9)

The constants Ar and B' represent, respectively, the in-plane
thermal expansion and thermal bending coefficients.

Based upon the iso-stress and iso-strain assumptions, the above
constitutive equations can be used to obtain the bounds of the
thermoelastic properties. The upper bounds of compliance con-
stants are obtained from the iso-stress assumption; the lower
bounds of stiffness constants are then obtained by inverting the
compliance constant matrix. Similarly, the upper bounds of stiffness
constants are derived from the iso-strain assumption; the lower
bounds of compliance constants are then obtained by inverting the
stiffness constant matrix. Three techniques for modeling the
stiffness and strength properties of fabric composites are introduced
in Sections 6.4-6.6 based upon the laminated plate analysis. They
are known as the 'mosaic model', 'crimp (fiber undulation) model',
and 'bridging model'. The prediction of thermal expansion
coefficients of fabric composites is given in Section 6.8 based upon
these three models. The analytical techniques so developed are also
applied to hybrid fabric composites (Sections 6.9 and 6.10). Finally,
the thermoelastic behavior of two-dimensional textile structural
composites reinforced with triaxial fabrics is presented in Section
6.11. The following discussions are based on the work of Ishikawa
and Chou (1982a-c, 1983a-d), Ishikawa (1981), Chou (1985, 1986,
1989a&b), Yang and Chou (1986, 1987) and Byun and Chou (1989).

6.4 Mosaic model
The basis of idealization of the 'mosaic model' can be seen

from Fig. 6.13. Figure 6.13(a) is a cross-sectional view of an
eight-harness satin. The consolidation of the fabric with a matrix
material is depicted in Fig. 6.13(b), which can be simplified as the
mosaic model of Fig. 6.13(c). The key simplification of the mosaic
model is the omission of the fiber continuity and crimp (undulation)
that exist in an actual fabric.

In general, a fabric composite idealized by the mosaic model can
be regarded as an assemblage of pieces of asymmetric cross-ply
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Mosaic model 303

laminates. Figure 6.14(a) shows the mosaic model of a unit cell for
an eight-harness satin composite. The elastic stiffness constants of a
cross-ply laminate (Fig. 6.14b) can be derived on the basis of Eqs.
(6.3). Assuming that fibers are aligned along the x direction, the
stiffness constants, Qijy of a unidirectional lamina, which has

Fig. 6.13. Idealization of the mosaic model, (a) Cross-sectional view of a
woven fabric before resin impregnation; (b) woven fabric composite; (c)
idealization of the mosaic model. (After Ishikawa and Chou 1983b.)

(a)

(b)

(c)

Fig. 6.14. The mosaic model, (a) Repeating region in an eight-harness
satin composite; (b) a basic cross-ply laminate; (c) parallel model; (d)
series model. (After Ishikawa and Chou 1983b.)
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304 Two-dimensional textile structural composites

orthotropic symmetry in the x-y plane, are given by

EJDV vl2E22/Dv 0

vv2iEn/Dv

0

E22/Dv

0
0 (6.10)

where

Dv = 1-v12v2i (6.11)

Here, En and E22 are the Young's moduli, G12 is the in-plane shear
modulus, and v12 denotes the Poisson's ratio relating the transverse
strain in the x2 direction and the applied strain in the xx direction.
The Qij constants are symmetrical, i.e. Qtj = Qn (see Chapter 2).

From Eqs. (6.3) and (6.10), the elastic stiffness constants of the
cross-ply laminate shown in Fig. 6.14(b) can be derived. The
laminate is composed of two unidirectional laminae of thickness
h/2. The total laminate thickness is h and the x-y coordinate plane
is positioned at the geometrical mid-plane of the laminate. Thus, in
Eqs. (6.3), k = 1 and 2 define, respectively, the laminae with fibers
in the y and x directions. The non-vanishing stiffness constants are

Axl= A22 = (Eu + E22)h/(2DV)

A12=v12E22h/Dv

A66 = G12h

fin = ~B22 = (En - E22)h
2/(SDV) (6.12)

A i = D22 = (Eu + E22)h3/(24Dv)

D12=vl2E22h3/(12Dy)

The extension-bending coupling constants Bn and B22 do not vanish
because Eu¥

zE22- Also, it is understood that Aijy Bijy and Ay are
symmetrical constants.

Using Eqs. (6.12), Eq. (6.1) can be written in the following
explicit form:

Ny \ =

Mx]
My\ =

Mxv\

An

An
_ 0

'Bn
0

0

Al2

An
0 .

0

-Bn
0

0
0

4«

0

0

0

Bn
0
0

0

-Bn

0

l 2

A,
0

(6.13)

0

0

D('66 J
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Mosaic model 305

Inverting Eqs. (6.13), the following are obtained:

~A'n A[
2 0

A[2 A'n 0
. 0 0 4 J

Ny

+
B'n B[2 0

-B[2 -B'u 0

0 0 0

Mx

Mv

B'n

-B[2

0

-B[2 0

-B'n 0

0 0

Nr

(6.14)

+
D'n D[2 0
D[2 D'n 0

. 0 0 D'66J Mr

In the bound approach, the two-dimensional extent of the fabric
composite plate is simplified by considering two one-dimensional
models where the pieces of cross-ply laminates are either in parallel
or in series as shown in Figs. 6.14(c) and (d). In the parallel model,
a uniform state of strain, e°, and curvature, KY in the laminate
midplane is assumed as a first approximation. For the one-
dimensional repeating region of length n^a, where a denotes the
yarn width, an average membrane stress, Nx, is defined as

nRa JQ NXdy

f B Kxx) dy l
-1

= (Ane°x + Al2e°yy) + — [aBT
u + (nsa - a)

nea

(6.15)

The factor (1 — 2/ng) appears because the terms Bu for the
interlaced region (#n) and non-interlaced region (Bh) have
opposite signs, namely, Bj

x = -B\x. It is noted that B\x is derived
for a cross-ply with the same configuration as in Fig. 6.14(b), where
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306 Two-dimensional textile structural composites

the upper surface (z > 0) shows fibers in the x direction. Bjx is for a
cross-ply obtained by exchanging the positions of the two laminae in
Fig. 6.14(b). Other average stress resultants can be written similar
to Eq. (6.15) for uniform mid-plane strain, e°, and curvature, K.
The moment resultant, Mxy for example, is

1 r&a

Mx =— Mxdy
nga J0

= DUKXX + D12Kyy + ( l - )B\1S°XX (6.16)

Let Ay, Bijy and Dlj be the stiffness constant matrices relating the
average stress resultant N and moment resultant M with e° and K.
Then

^ (6-17)

Ay = Dtj

These components provide upper bounds for the stiffness constants
of the fabric composite based upon the one-dimensional model. If
these stiffness constants are inverted, lower bounds of the elastic
compliance constants can be obtained. All the elastic stiffness
constants A, B and D are computed using the basic laminate where
the top layer is composed of the filling yarn (Fig. 6.14b).

In the series model, the disturbance of stress and strain near the
interface of the interlaced region is neglected. Let the model be
subjected to a uniform in-plane force, Nx, in the longitudinal
direction. The assumption of constant stress leads to the definition
of an average curvature. For instance, the average curvature, kxx,
along the x direction is

dx
1 r«g«

KXX = KX

nga Jo

= — [fB'nNxdx+r B'nNxdx]
nga Uo Ja Jg

1

nga

= (1--)B[\NX (6.18)
\ flo
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Mosaic model 307

It is also understood that the terms Bf
n for the interlaced region

(B[J) and non-interlaced region (B[\) are equal and opposite in
sign. Other average curvature and mid-plane strain expressions can
be written similar to Eq. (6.18) for uniformly applied N and M. Let
A[j9 Bljy and D\j be the compliance constant matrices relating the
average mid-plane strain, e°, and curvature, R, with the stress
resultant, N, and moment resultant, M. Thus

(6.19)

Equations (6.19) give the upper bounds for the composite com-
pliance constants and, after inversion, the lower bounds for the
stiffness constants.

In summary, both upper and lower bounds for the elastic stiffness
and compliance constants can be obtained from the mosaic model.
Numerical results demonstrating the relationship between these
bounds and l/ng are shown in Fig. 6.15 for Au and A'n and in Fig.
6.16 for B'n. The material properties of a carbon/epoxy composite
given in Table 6.2, with fiber volume fraction in the impregnated
yarn of 60%, are adopted in the calculations. Bidirectional fiber

Fig. 6.15. Variations of A'n and Au with l/ng. (After Ishikawa and Chou
1983b.)
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308 Two-dimensional textile structural composites

composites are represented by the limiting case of lMg—»0 («g—
 »°°)

and the upper and lower bounds of the elastic constants coincide
with each other. Plain weaves are represented by the case of
l/ng = 0.5. The coupling effects for plain weave composites vanish,
as can be seen from Eqs. (6.17) and (6.19), and both the upper and
lower bounds of B-j (fi/y) are identical, i.e. zero. However, the
bounds of AVl do not coincide for plain weave composites.

6.5 Crimp (fiber undulation) model
The crimp model is developed in order to consider the

continuity and undulations of fibers in a fabric composite. Although
the formulation of the problem developed in the following is valid
for all ng values, the crimp model is particularly suited for fabrics
with low ng values. The crimp model also provides the basis of
analysis for the bridging model (Section 6.6).

Figure 6.17 depicts the geometry of the model where the
undulation shape is defined by the parameters hx{x), h2(x), and an.
The parameters ao= (a — au)/2 and a2 = (a + au)/2 are automati-
cally determined by specifying au, which is geometrically arbitrary
in the range from 0 to a. Because a pure matrix region appears in

Fig. 6.16. Variations of the average coupling compliance with l/ng. (After
Ishikawa and Chou 1983b.)
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Table 6.2. Material properties of unidirectional laminae

Material Fiber
volume
fraction in
impregnated
yarns

£n(GPa) £22(GPa) G12(GPa) eb
2 Thickness

(mm)
7°C) ar2(l(T7°C)

Carbon/epoxy1

Glass/polyester2

Glass/polyimide3

Kevlar/epoxy4

60%
65%
60%
50%
65%

113
132
47.5
41.2
85.3

8.82
9.31

15.9
15.7
5.5

4.46
9.31
6.23
15.7
2.54

0.3 —
0.28 —
0.27 0.38%
0.3 0.5%
0.4 —

0.4
0.4
0.4
0.244

-25.0 2.7

0 . 4 3.2

(1) Ishikawa, Koyama and Kobayashi (1977), Ishikawa (1981), Ishikawa and Chou (1983b). (2) Kimpara, Hamamoto and Takehana
(1977). (3) Ishikawa and Chou (1982b). (4) Chou and Ishikawa (1989).
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310 Two-dimensional textile structural composites

the model, the 'overall' fiber volume fraction, V{, can be different
from that in the yarn region.

To simulate the actual configuration, the following form of crimp
is assumed for the filling:

hi(x) =

0

ht/2

(0<x<ao)

(ai2<x<nga/2)
(6.20)

The sectional shape of the warp yarn is expressed by

{ ht/2 (0<x<ao)

( H ) ^ 4 <°°*x*ai2)
h2(x)={

(a2<x<nial2)

(6.21)

It is assumed that the laminated plate theory is applicable to each
infinitesimal piece of the model along the x axis. Thus, Ay, B^, and

Fig. 6.17. Fiber crimp model. (After Ishikawa and Chou 1982b.)
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Crimp (fiber undulation) model 311

;> are expressed as functions of x (0 < x < a/2) by

rhx(x)-h,l2

Aij()\ij(x)=\ Qfdz
J-h/2

fh2(x) M2

Q7dz+\ Qfdz

= Qf[h1(x)-h2(x) + h-hJ2]

+ Q%0)hJ2 + Qf[h2(x) - hx(x)] (6.22)

Btj(x) = Mjid^ix) - ht/4]ht + \Q%[h2{x) -hx(x)]ht

Dtj{x) = \Qf{[hx(x) - ht/2f - h\(x) + /i3/4}

+ 3htf(x)/2] + hQ%[h\{x) - h\(x)\

where superscripts F, W and M signify the filling yarn, warp yarn
and matrix, respectively. Similar expressions can be written for
a /2 <x <nga/2.

The local stiffness of the filling yarn, Qfj(O), in the above
equations is calculated as a function of the local off-axis angle, 0(x),
which is defined as

(6.23)

Consider a filling yarn composed of parallel fibers. The fiber direction
is denoted as the 1 direction; the 2 and 3 directions are perpendicu-
lar to the fiber and they define the transversely isotropic plane.
Then, from the Young's moduli (Eu, E22= E33), shear moduli
(G12 = G13, G23) and Poisson's ratio (v12) of the filling yarn, the
elastic constants of the filling yarn with respect to the xyz axes in
Fig. 6.17 can be defined (Lekhnitskii 1963). Here, the angle
between the 1 and x axes is 6:

1 cos /1 2v21\ , „ . , „ sin4 8
+ b ^ - — cos26sin20 i s

XX(O) En \G U £22' E22

^ 2\ -
 - (6.24)

1 cos2 8 sin2 6
= 1

G12 G23

: v21 cos2 6 + v32 sin2 0
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312 Two-dimensional textile structural composites

It is also understood from the assumption of transverse isotropy of
the filling yarn that v12 = Vi3, En/vu = E22/v2i> v23 = v32, and
G23 = £22/2(1 + v23).

Thus, the local stiffness constants of the undulated portion of the
filling yarn, referring to the xyz coordinate axes, are given as
functions of the fiber orientation angle 6

EF
X(6)/Dy EF

x(d)vF
yx(6)/Dv 0

EF
xx(8)vF

x(8)/Dv EF
yy(8)lDv 0

0 0 GF
y(6

(i,y = l,2, 6) (6.25)

where

Dv = 1- (vF
yx(0))2EF

x(0)/EF
yy(d) (6.26)

By substituting Eq. (6.25) into Eqs. (6.22), the local plate stiffness
constants can be evaluated. The local compliance constants, Afij(x)y
Bfij{x)y and D,y(x) are then obtained by inverting the stiffness
constants Ay(*)> Btj{x)y and Dtj{x).

Define the average in-plane compliance of the model under a
uniformly applied in-plane stress resultant by

Af = — I"" AyWdx (6.27)
nga Jo

where the superscript C signifies the crimp model. Since AyOO is a
constant within the straight yarn portion of Fig. 6.17, Eq. (6.27) can
be rewritten as

/ 2a \ 2 C2

A'f=V~nJA'li + n~a) A'"^x)dx <6-28)

where Ay m the first term on the right-hand side of Eq. (6.28)
denotes the compliance of the straight portion of the yarns, namely
a cross-ply laminate, and is independent of x. The other average
compliance coefficients B'f and D'f are obtained in a similar
manner.

B\f = (l - - W + — f Blj(x) dx (6.29)

f̂ ) (6.30)
na L
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Crimp (fiber undulation) model 313

In the case of ng = 2, B'f vanishes because B[
j(x) is an odd function

with respect to x = a/2, the center of undulation, due to the
assumed form of hx(x). Furthermore, Eqs. (6.28)-(6.30) coincide
with the upper bounds of the compliance of Eqs. (6.19) as an tends
to zero. The integrations in Eqs. (6.28)-(6.30) are conducted
numerically because of the complexity of the integrands. The final
results of the average elastic stiffness, Afj9 Bft and Dfjy for the entire
strip can be reached by the inversion of A'f, B\f and D'f. If this
procedure is applied in the warp direction, balanced properties such
as /in = A22 can be realized.

Numerical results demonstrating the relationship between the
in-plane stiffness, An, and l/ng are given in Fig. 6.18 based upon
the unidirectional lamina properties of a carbon/epoxy system
(Table 6.2). In Fig. 6.18, UB and LB represent, respectively, the
results of the upper and lower bound predictions of the mosaic
model; CM denotes the crimp model; circles indicate finite element
results. Figure 6.18 demonstrates the reduction in An due to fiber
undulation, and the reduction is most severe in plain weave
(l/rtg = 0.5) as compared to cross-ply laminates (l/ng = 0).

The relationship between the coupling compliance B'n and l/ng is

Fig. 6.18. A^ vs. \/ns for carbon/epoxy composites, Vf = 60%. Finite
element results are indicated by (O) for the mosaic model and by (•) for
the crimp model. mosaic model; crimp model. (After
Ishikawa and Chou 1982b.)

0.

s

0.0 0.1 0.2 0.3 0.4 0.5

Cambridge Books Online © Cambridge University Press, 2010
Downloaded from Cambridge Books Online by IP 218.1.68.132 on Mon Apr 14 03:29:51 BST 2014.

http://dx.doi.org/10.1017/CBO9780511600272.007
Cambridge Books Online © Cambridge University Press, 2014



314 Two-dimensional textile structural composites

demonstrated in Fig. 6.16. The results from the crimp model
coincide exactly with those of the upper bound predictions. This is
due to the fact that the second term on the right-hand side of Eq.
(6.29) vanishes due to the assumed asymmetrical shape of fiber
undulation and, hence, the odd function representation of B'tj with
respect to x — a12,

6.6 Bridging model and experimental confirmation
The crimp model which is based upon a single fiber yarn

has led to the concept of a bridging model for general satin
composites. Such a model is desirable because the interlaced
regions in a satin weave are often separated from one another. The
hexagonal shape of the repeating unit in a satin weave, as shown in
Fig. 6.19, is modified to a square shape (Fig. 6.19b) for simplicity of
calculation. A schematic view of the bridging model is shown in Fig.
6.19(c) for a repeating unit which consists of the interlaced region
and its surrounding areas. This model is valid only for satin weaves
where ng>4. The four regions labeled I, II, IV and V consist of

Fig. 6.19. Concept of the bridging model: (a) shape of the repeating unit
of eight-harness satin; (b) modified shape for the repeating unit; (c)
idealization for the bridging model. (After Ishikawa and Chou 1982b.)
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Bridging model and experimental confirmation 315

straight filling yarns, and hence can be regarded as pieces of
cross-ply laminates of thickness ht. Region III has an interlaced
structure with an undulated filling yarn. Although the undulation and
continuity in the warp yarns are ignored in this model, their effect is
expected to be small because the applied load is assumed to be in
the filling direction.

The in-plane stiffness in region III, where «g = 2, has been
derived in Section 6.5 and has been found to be lower than that of a
cross-ply laminate. Therefore, regions II and IV carry higher loads
than region III; all three of these regions act as bridges for load
transfer between regions I and V. It is also assumed that regions II,
III and IV have the same average mid-plane strain and curvature.
Then, the average stiffness constants for the regions II, III and IV
are

(6.31)

Afj and Dfj for the undulated portion III in Fig. 6.19 are obtained
from Af and Df of Eqs. (6.28) and (6.30), and Bf = Q. Aijy Bijy

and Dtj in Eqs. (6.31) for the cross-ply laminates of regions II and
IV in Fig. 6.19 are given in Eqs. (6.12).

It is also postulated that the total in-plane force carried by regions
II, III and IV is equal to that by region I or V. Then, the
following average compliance constants are derived:

(6.32)

- , s _ 1
iJ~7n~g

where A'ijy B'ijy and D[j are determined by inverting Eqs. (6.31) and
the superscript S denotes properties of the entire satin plane.
Finally, Afjy Bfj and Dfj can be obtained by inverting Eqs. (6.32).
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316 Two-dimensional textile structural composites

The fiber crimp model is effective for plain weave composites
whereas the bridging model is valid for satin weave composites.
This is because there are no straight yarn regions surrounding an
interlaced region in the plain weave. Therefore, no bridging effect is
expected in plain weave composites, and the analysis based on
the fiber undulation model provides a reasonable prediction of the
behavior of plain weave composites.

Numerical results for the relationship between the in-plane elastic
stiffness A\x and l/ng are indicated in Fig. 6.20, also using the
unidirectional laminar properties of Table 6.2. A prediction by the
present theory agrees with experimental results (Ishikawa and Chou
1982b). It should be noted that the overall fiber volume fraction of a
fabric composite is slightly less than that of the impregnated yarns
due to the resin rich region in the vicinity of the undulation. For
instance, for a fiber volume fraction of 65%, the average overall
fiber volume fraction in a repeating unit (Fig. 6.19) for ng = S,
ht = h, and au = a is around 62%.

Ishikawa, Matsushima, Hayashi and Chou (1985) have conducted
experimental verifications of the analytical models for elastic moduli

Fig. 6.20. As
u vs. l/ng for carbon/epoxy composites, Vf = 65%.

Upper and lower bounds; bridging model solution; (A, • ) ex-
perimental results for a cross-ply laminate and eight-harness satin,
respectively. (After Ishikawa and Chou 1982b.)
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Bridging model and experimental confirmation 317

of fabric composites. The experimental materials used include plain
weave and eight-harness satin fabric reinforced composites of
carbon/epoxy. Ply numbers are 1, 4, 8 and 20 for plain weave
fabrics and 2 for eight-harness satin. Yarn orientations are [0°/90°],
[157-75°], [307-60°] and [±45°], as defined by the angles between
the loading axis and the yarn direction.

Experimental and theoretical results are compared in Figs.
6.21-6.23. Figure 6.21 presents results of the in-plane stiffness, An,
non-dimensionalized by the corresponding An of the cross-ply
laminate as a function of l/ng. Experimental results of four-ply plain
weave and two-ply 8 harness weave composites are given. The
symbol $ signifies both the averaged value indicated by the solid
circle, and the scattering indicated by the horizontal bars. Theoreti-
cal predictions of the bridging model (BM) are adopted for n g >4
and the crimp model (CM) for A > ng > 2 according to the reason
stated earlier. Abbreviations LWC and LWA denote, respectively,
the limiting cases where local warping is completely constrained and
allowed. Also, UB and LB are, respectively, upper bound and
lower bound predictions of the mosaic model.

A good correlation between theory and experiments can be
observed for eight-harness satin composites. The experimental data

Fig. 6.21. Relationships between non-dimensionalized in-plane stiffness
and l/wg; $ experiments. (After Ishikawa et al. 1985.)
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318 Two-dimensional textile structural composites

lie in between the LMC and LMA predictions. These results suggest
good predictability of the theory based upon the bridging model for
satin weave composites. There exists a significant discrepancy
between the LWC and LWA curves of plain weave composites even
though slight improvement is achieved over the simple bound
theory.

Constraint of local warping is another factor governing the
in-plane modulus. Neighboring layers in a fabric laminate tend to
suppress the warping of one another. Thus, a dependence of elastic
moduli on ply number appears for plain weave composites. This
effect is demonstrated in Fig. 6.22 where experimental results of
specimens of four different ply numbers are indicated. The in-plane
stiffness Au of the fabric composite is non-dimensionalized by An

of the cross-ply. Small variations in the theoretical predictions are
caused by the scattering of the measured hi a. The in-plane modulus
increases from the value for one-ply, which is slightly higher than
the LWA prediction, and reaches values slightly lower than the
LWC prediction.

The in-plane off-axis elastic moduli results are presented in Fig.
6.23. The off-axis behavior is symmetric with respect to 0 = 45°
because it is assumed that the elastic properties in both the filling
and warp directions are identical.

In summary, the experimental results of eight-harness satin
composites coincide very well with theoretical predictions. There is

Fig. 6.22. Dependence of in-plane stiffness on ply number in plain weave
composites: LWC; LWA; ^ experiments. (After Ishikawa
etal 1985.)
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Analysis of the knee behavior 319

still a discrepancy in the predictions of elastic moduli of plain weave
composites based upon two limiting cases: local warping completely
prohibited or allowed. All on-axis measured moduli fall in between
the two predictions.

6.7 Analysis of the knee behavior and summary of stiffness
and strength modeling
Both the crimp model and bridging model described above

are now extended to the study of the stress-strain behavior of
woven fabric composites after initial fiber failure, known as the
knee phenomenon. The essential experimental fact for the knee
phenomenon is that the breaking strain in the transverse layer, e\,
is much smaller than that of the longitudinal layer in cross-ply
laminates. Only the failure of the transverse yarns, which occurs in
the warp direction in the present model, is considered. Thus, a
failure criterion based upon maximum strain is adopted.

In the following, the crimp model is utilized and attention is
confined to the one-dimensional behavior of fabric composites

Fig. 6.23. Off-axis moduli of plain weave and eight-harness satin. E =
axial Young's modulus; G = in-plane shear modulus; LWC; :
LWA. (After Ishikawa et al. 1985.)
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320 Two-dimensional textile structural composites

under an applied stress resultant Nx. Then Eq. (6.4) is reduced to

" " (6.33)

where Mx is the locally induced moment resultant due to the
application of Nx. By assuming first that no bending deflection by
the coupling effect is allowed along the x axis,

This assumption can be realized only if the fabric composite plate is
symmetrical with respect to its mid-plane. However, in practical
multi-layer fabric composites arranged symmetrically to their mid-
planes, this assumption is expected to be approximately true. From
Eqs. (6.33) and (6.34)

e°xx = A'[xNx (6.35)

where Ann=A[
l-B[21/D'n.

The quantity A[
x may be referred to as a modified in-plane

compliance and it is a function of x. Since Nx is uniform along the x
direction, A'[x(x) represents a strain distribution before the first
transverse matrix cracking. Figure 6.24 depicts two examples of the
mid-plane strain distribution relative to that at the point x = 0 in
Fig. 6.17 and for au = a. It can easily be seen that the fiber
undulation causes local softening and that the maximum strain
appears at the center of undulation (x = a/2). Also, the strain along
the thickness direction at each section is uniform and equal to exx

owing to the classical plate theory and the absence of bending.
Although the strain distribution calculated from finite element
analysis (Ishikawa and Chou 1983b) deviates slightly from the
assumed uniform distribution, the present idealization provides a
simple method for analyzing the knee phenomenon.

Assume that the region of the highest strain reaches the trans-
verse failure strain e\ first, and the damaged area in the warp yarn
propagates as the load increases. It is further assumed that clas-
sical lamination theory is still valid in this failure process, and that
the effective elastic moduli of such a failed region in the warp yarn
are much lower than those of a sound area and can be expressed as

(6.36)

"gn/100 Qn/100 0

G12/100 Q% 0
0 0 (
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Analysis of the knee behavior 321

Here, Q'™ denotes the reduced stiffness of the warp yarns after
failure, and it is assumed that, with the exception of Q™2, the Qtj

components are reduced by a factor of 1/100 to reflect the
weakening effect of transverse cracking. The assumption of the
applicability of the classical lamination theory implies that the
complex stress and strain fields around the failed region are
neglected. Such a successive failure process will continue until the
lowest strain in the region reaches E\. At that time, all the warp
regions have failed completely. Beyond this point, the stress-strain
curve becomes a straight line again until the final failure of the
filling yarns.

Next, consider the case where the restraint on bending is
removed. From the classical lamination theory (Chapter 2)

EXX{Z) = E°XX + ZKXX (6.37)

The strain state under an in-plane stress resultant, Nx, is given by

exx{z) = {A[l + zB'n)Nx (6.38)

Thus, the strain field under the prescribed Nx is determined from
A'n, B'n, and z. Since the strain in a vertical section is distributed
linearly according to Eq. (6.37), it is necessary to determine the
height, h3, where the strain reaches the critical value, E\. If the

Fig. 6.24. Relative strain distribution along the x axis in the fiber crimp
model without bending, au = a; carbon/epoxy; glass/
polyester. (After Ishikawa and Chou 1982b.)
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322 Two-dimensional textile structural composites

strain at the outer edge of the warp yarns, £2(̂ 2) according to Eq.
(6.37), is larger than e\, then, for ao<x <a/2,

= h2-(h2-hl)
e2(h2) - £2(/ix)

(6.39)

Based upon the h3 value, the plate stiffness in Eqs. (6.22) needs to
be modified after the initial failure. For instance, for a o <x<a /2 ,

AiJ(x) = Qff[h1(x) - h2(x) + h- hJ2]

(6.40)

Modifications similar to Eq. (6.40) are made for Btj and D,y in Eqs.
(6.22).

Figure 6.25 presents two numerical examples for a glass/polyester
plain weave composite of au = a and overall Vf = 36.8% with and
without bending. The finite element analysis and acoustic emission
results of Kimpara, Hamamoto and Takehana (1977) are also given.
Basic material properties are shown in Table 6.2. The prediction for

Fig. 6.25. Stress-strain curves for plain weave composites of
glass/polyester, Vf=36.8%, and experimental data of acoustic emission;

analytical results for no bending; - - • analytical results for uncon-
strained bending; finite element simulation; ( ) total count in
acoustic emission measurement. The vertical arrow indicates the specified
value of e\. (After Ishikawa and Chou 1982b.)

0.
O

1.0

Cambridge Books Online © Cambridge University Press, 2010
Downloaded from Cambridge Books Online by IP 218.1.68.132 on Mon Apr 14 03:29:51 BST 2014.

http://dx.doi.org/10.1017/CBO9780511600272.007
Cambridge Books Online © Cambridge University Press, 2014



Analysis of the knee behavior 323

the case without bending compares very favorably with the finite
element simulation. It is quite reasonable that the case with bending
shows much lower stiffness because it is not subjected to lateral
constraints.

In actual plain weave composites, local bending deformation
caused by the coupling effect in each interlaced region is con-
strained by adjacent regions for which the stiffness constants Btj

have opposite signs. Therefore, as far as plain weave composites are
concerned, one-dimensional analysis for the case without bending
should give a reasonable prediction of the knee behavior under
in-plane loading.

The bridging model and the process of successive warp yarn
failure can be combined to analyze the knee behavior in satin
composites. The approaches for plain weave composites are
adopted here. First, define the stiffness of the fabric composite
under an applied stress resultant Nx without bending to be A*x. It is
noted that A*x = 1/AX1 and the compliance A[

x follows the definition
in Eq. (6.35). The average stiffness for regions II, III and IV of
Fig. 6.19 is denoted as A\x and calculated by taking the volume
average:

A\x = (l/V*g)A?iC + (1 - 1/VngMfa (6.41)

Then the compliance of the whole satin composite is calculated
from an average over its length. Define the compliance Ax

l = 1/A*1.
The assumption of uniformity of Nx along the x direction leads to

where the superscript S indicates satin composites. Finally, the
stiffness of the whole satin composite can be obtained as

At? = l/A"ns (6.42)

It should be noted that the inversion of the compliance and stiffness
constants cannot generally be achieved by merely taking the
reciprocal of the respective components (i.e. Ci} ¥= 1/Sy). However,
under the assumptions made in the derivations of Eqs. (6.33)-
(6.35), Eq. (6.42) is valid for this one-dimensional problem.
Expressions similar to Eqs. (6.41) and (6.42) for the case of
unconstrained bending can also be obtained but are omitted here.
The rest of the procedure for analyzing the knee phenomenon
follows that for the plain weave case. The initial failure of the warp
yarns occurs at the point of highest strain, for example the center of
undulation in the case without bending. Also, since there are
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324 Two-dimensional textile structural composites

regions of uniform strain such as the bridging zones in this model,
the entire area of these regions may fail simultaneously, according
to the present assumptions.

Figure 6.26 compares numerical and experimental results for
stress-strain curves of an eight-harness satin glass fabric/polyimide
composite (Table 6.2). Since the test pieces were nearly symmetri-
cal with respect to their mid-planes, the analysis of the case without
bending is selected for comparison; the agreement is quite good,
particularly for strain values up to the knee point. A theoretical
stress-strain curve for a plain weave composite of the same material
is also shown in Fig. 6.26. Here, a knee point is defined by a
deviation of 0.01% in strain from the linear strain. Then, the knee
stress in the eight-harness satin is higher than that of the plain
weave, although knee strains are nearly identical. It can be
concluded that the elastic stiffness and knee stress in satin compos-
ites are higher than those in plain weave composites due to the
presence of the bridging zones.

The following is a summary of the stiffness and strength models
for two-dimensional orthogonal woven fabric composites:

(1) A fabric composite can be idealized as an assemblage of
pieces of asymmetric cross-ply laminates. The upper and

Fig. 6.26. Theoretical and experimental stress-strain curves for glass/
polyimide composites, Vf = 50% in impregnated yarns; bridging
model solution without bending for eight-harness satin (overall Vf =
47.7%); fiber undulation model solution without bending for plain
weave (overall Vf = 40.9%); experimental curve; (•) knee points.
(After Ishikawa and Chou 1982b.)
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Analysis of the knee behavior 325

lower bounds of elastic stiffness and compliance of fabric
composite plates in such a 'mosaic model' are obtained
under the assumption of constant strain and constant stress.

(2) The 'crimp model', which is a one-dimensional approxima-
tion and takes into account fiber continuity and undulation,
is particularly suited for predicting elastic properties of
plain weave composites. The analytical results based upon
the crimp model demonstrate that fiber undulation leads to
a softening in the in-plane stiffness as compared to the
mosaic model. However, fiber undulation has no effect on
the coupling constants. Therefore, the solution of the
coupling compliance based upon the mosaic model is
considered to be reliable.

Both the results of the crimping model and of the mosaic model for
the compliance constants A'n and B'u compare very favorably with
the results of a finite element analysis (Ishikawa and Chou 1983b).

(3) In the case of Dn, Ishikawa and Chou (1983b) have
adopted a transverse shear deformation theory for a modi-
fication of the mosaic model, and examined the response of
a fabric composite plate under both cylindrical bending and
lateral force. Numerical results of Dr

u based upon the
modified transverse shear deformation theory coincide well
with the finite element results.

(4) The effect of fiber undulation shapes on A[\ in the crimp
model is shown in Fig. 6.27. The geometrical parameters a
and h are chosen to be 1.0 and 0.4, respectively. The
calculations are performed for the range of ajh values
from 0 to a/h, where the case au—>0 corresponds to the
configuration of a mosaic model. The results show that A[\
is susceptible to the shape of undulation, particularly at
small ng values. The highest A[\ value, i.e. the lowest
in-plane stiffness, is obtained at around ajh = 1. On the
other hand, the A[\ values at ajh =0 and a/h are not far
apart. Because in actual fabrics ajh — a/h, the mosaic
model (ajh = 0) seems to be effective in evaluating the
in-plane stiffness of a fabric.

(5) The crimp model has been applied to examine the knee
phenomenon of plain weave composites. The predicted
knee behavior of a glass/polyester composite without bend-
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326 Two-dimensional textile structural composites

ing shows excellent agreement with the stress-strain
curve obtained by using a finite element analysis.

(6) The bound method based upon the mosaic model is useful
for a rough estimation of fabric composite stiffness prop-
perties. The crimp model offers better predictability than
the mosaic model for the in-plane and bending moduli.
However, the crimp model is inadequate for evaluating the
elastic properties of satin weave composites with large ng.

(7) A bridging model has been developed to examine the
stiffness and strength of general satin composites. The
interlaced regions in a satin fabric are often separated from
one another by the non-interlaced regions. Since the
regions with straight yarns surrounding an interlaced region
have higher in-plane stiffnesses than the latter, they carry
higher loads and play the role of load transferring bridges.

(8) The initial elastic stiffness of satin composites can be
predicted by the bridging model. The analysis of an
eight-harness satin carbon/epoxy composite demonstrates
good agreement with experimental data.

Fig. 6.27. Relationship between average in-plane compliance and undula-
tion length. (After Ishikawa and Chou 1983b.)
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In-plane thermal expansion and bending coefficients 327

(9) The concept of successive failure of the warp yarns and the
bridging idealization have been combined to study the knee
behavior in satin composites. The theoretical results for an
eight-harness satin glass reinforced polyimide composite
compare favorably with the experimental curve. It can be
concluded that the bridging regions surrounding an inter-
laced region are responsible for the higher stiffness and
knee stress in strain composites than those in plain weave
composites.

6.8 In-plane thermal expansion and thermal bending
coefficients
The constitutive equations of a laminated plate taking into

account the effects of a small uniform temperature change are given
in Eqs. (6.5)-(6.9). In the following, the analytical techniques
developed for the mosaic model, crimp model, and bridging model
are applied to analyze the thermal problem.

First, for applying the mosaic model, a long strip of the fabric
composite (Fig. 6.14a) is again considered. The laminate is free of
externally applied load. The average strains and curvatures of a
one-dimensional strip of width a along the filling or warp direction
due to a uniform temperature change, AT, can be expressed in the
following forms:

£°xx = — f 8 ATAf
x(x) dx = ATA[

nga Jo
(6.43)

Ky = — f^ &TA'y(y) dy = ATA2
nRa JQ

1 f "e" n —1
kxx= ATB'x(x) dx = A T - 8 B'x

nga Jo ne

1 ff" n — 2
kyy = n~a I ATS'y(y) dy = A T ^ T §'y

(6.44)

It should be noted that B'x has opposite signs in the regions x = 0-a
and x = a-(ng — \)a\ the same is true for B'y.

Because of the nature of the cross-ply laminates Axy and B'xy

vanish. From Eqs. (6.43) and (6.44), the average thermal expansion
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and thermal bending coefficients for the mosaic model are given by

Ax — s\x> y — y

- I 7 \ - I ? \ (6.4o)
B'X=[1--)BX, By=(\--)By

\ nj \ nj
Next, the crimp model is applied; the forms of fiber crimp for the

filling and warp yarns follow the assumed shapes of Eqs. (6.20) and
(6.21), respectively. By assuming no in-plane force and moment and
following the derivations of Eqs. (6.43) and (6.44), the fiber crimp
model gives

= , c_ / 2au\ -, 2 p -
\ noal x noa )„

(6.46)

B'x
c=(l-l)B'x + ̂ -\ B'x(x)dx

Here,, the superscript C signifies the crimp model. It is understood
that A'xf and B'x^ vanish for cross-ply constructions. Since B'x and B'y
are odd functions of location with respect to the center of
undulation (Eq. (6.20)) the integration in Eqs. (6.47) vanishes and

(6.48)

The expressions of B' from Eqs. (6.45) and (6.48) are identical.
Thus, fiber crimp has no effect on the thermal bending coefficients.
The same conclusion has been obtained for the extension-bending
coupling constant in Section 6.5.

For the in-plane thermal expansion coefficient, it is necessary to
evaluate the integration in Eqs. (6.46). This is done on the
assumption that the classical laminated plate theory is applicable to
each infinitesimal piece of width dx of the one-dimensional strip
shown in Fig. 6.17. The following steps are taken to obtain A'x(x)
and Ar

y(y). Consider A'x{x) as an example. First, Ax(x) and Bx(x)
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are evaluated from Eqs. (6.6) and (6.7) for 0 < j t < a / 2 , and the
results are

Ax(x) = qf(hx(x) - h2(x) +h- ht/2) +
+ qx

v{h2{x)-hl{x)) (6.49)

Bx(x) = iqF
x(6){h,{x) -ht/4)ht + \q?(h2{x) -hx{x))h, (6.50)

where the superscripts F, W and M signify the filling yarn, warp
yarn, and matrix region, respectively. Next, from Eq. (6.6),
qx = Qn<Xxx + Q\i<xyy + Q\6<*xy\ q¥x{Q)y in particular, is determined
from the local stiffness matrix Qfj(d), following the procedures
outlined in Section 6.5. Furthermore, the off-axis thermal expansion
coefficients are given by

a¥xx(6) = cos2 daF
n + sin2 d 8a¥22

y ( 6 ) = a¥22 (6.51)

where an and oc22 denote, respectively, thermal expansion
coefficients parallel and transverse to the fiber direction in a
unidirectional fiber composite. Thus, Ax(x) and Bx(x) can be
determined from Eqs. (6.49) and (6.50). Then, the A,'(x) and B[{x)
components are obtained by inverting At{x) and Bt{x) as in Eq.
(6.9).

Numerical integration of Eqs. (6.46) has been conducted and the
results for A'x

c and B'x
c as functions of l/ng are given in Fig. 6.28.

The balanced thermal property such as Ax = A'y for a fabric
composite can be realized if the above procedure of calculation is
conducted for one-dimensional strips along both the filling and warp
directions.

Lastly, the bridging model is applied to analyze the thermal
properties. It has been noted in Section 6.6 that regions II and
IV of Fig. 6.19 are stiffer than the crimped region III and, hence,
they carry more load when an external force is applied in the x
direction. Regions II, III and IV are termed bridging regions. For
the thermal property analysis, assuming no mechanical loading, the
equilibrium of the bridging regions requires

where the superscript C again denotes the crimped region, and N
and M without superscripts are for the cross-ply laminate. Further-
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330 Two-dimensional textile structural composites

more, under the assumption of uniform strain and curvature in the
bridging regions II, III and IV, it is defined that

{KC} = {k}
(6.53)

where the bar denotes the average of the bridging regions.
Substituting Eq. (6.5) into Eq. (6.52), and taking into account

Eqs. (6.53), the results are expressed in the condensed form

ng)-l)|-j) (6.54)

Fig. 6.28. Variation of the thermal deformation coefficients with l//tg for
carbon/epoxy composites, Vf = 60_% and aja = 1.0; A'x\
B'x\ ( • ) experimental results of B'x at 300°K. (After Ishikawa and Chou
1983a.)
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The quantities on the left-hand side of Eq. (6.54) can be related to
the average elastic stiffness in the bridging regions as

Hence, Eq. (6.54) can be written as

( 6-5 6 )

Here, A'ijy B-Jy and D-j are obviously obtained by inverting An, Bih

and Dy. In comparison to Eq. (6.8) the quantities in the parentheses
on the right-hand side of Eq. (6.56) can be regarded as the average
v_alues for the bridging regions and hence they are denoted by
A* and B*. Thus, we obtain, in index notation

( 6 . 5 7 )

Finally, the whole satin composite of Fig. 6.19 can be regarded as
a linkage of regions I, II-III-IV and V in series. The average
strain and curvature for the entire model are given in condensed form
as

where the superscript s signifies the properties of the satin compos-
ite, and s° and K denote, respectively, mid-plane strain and
curvature for the cross-plies in regions I and V of Fig. 6.19. From
Eq. (6.58), the components of the thermal expansion and thermal
bending coefficients of the satin composite are expressed as

Figure 6.28 shows the numerical results of the analysis based
upon the elastic properties of Table 6.2. Also, an = 0.0 and
a22 = 3.0 x 10~5/°C. The general characteristics of the variations of

Cambridge Books Online © Cambridge University Press, 2010
Downloaded from Cambridge Books Online by IP 218.1.68.132 on Mon Apr 14 03:29:51 BST 2014.

http://dx.doi.org/10.1017/CBO9780511600272.007
Cambridge Books Online © Cambridge University Press, 2014



332 Two-dimensional textile structural composites

thermal deformation coefficients with l/ng are very similar to those
of the compliance constants Ar

n and Bf
n as discussed earlier. For

the thermal bending coefficients, there is considerable discrepancy
between the results obtained from the one-dimensional models and
the bridging model.

The geometrical shape of the fiber undulation also affects A'x\ this
is demonstrated in Fig. 6.29 using the carbon/epoxy properties of
Table 6.2. The results indicate that the in-plane thermal expansion
coefficient of satin weave composites is less sensitive to ajh than
that of plain weave composites. Furthermore, the fiber crimp model
predicts a larger effect on A'x due to ajh than the bridging model.
In general, the bridging model predictions are also less sensitive to
the ng values than the crimp model predictions. In both models, the
maximum in A'x occurs at ajh ~ 1.

Experimental data on thermal expansion coefficients of fabric

Fig. 6.29. The effect of fiber undulation on A'x of carbon/epoxy compos-
ites; solid lines: crimp model; broken lines: bridging model. (After
Ishikawa and Chou 1983a.)
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In-plane thermal expansion and bending coefficients 333

composites are quite limited. Rogers et al. (1977, 1981) and Yates et
al. (1978) have performed measurements of thermal expansion of
carbon fiber reinforced plastics. These experiments, however, are
based upon thick specimens with 15-25 plies. Due to the constraint
of the neighboring layers, an individual ply in the laminate is not
free to bend. As a result, modifications to the analysis developed
above are necessary for making a meaningful comparison with
experiments.

It is assumed that the thermal expansion of a lamina without
bending can be realized if there exist bending moments {M}, under
a temperature change, AT, and no in-plane force is allowed. Thus,

(6.60)

Equations (6.8) and (6.60) give

[Df]{M} + AT{Bf} = 0 (6.61)

Then,

~l{Bf} (6.62)

Substituting Eq. (6.62) into Eq. (6.8), and from the expression of
e°, a modified in-plane thermal expansion coefficient for the case
without in-plane force and external bending can be defined as

{A"} = {A'}-[B'][DTl{B'} (6.63)

Equation (6.63) can be evaluated for the mosaic, crimp and
bridging models provided that the appropriate constants are given
for a particular model. Also, note the presence of elastic com-
pliance constants in Eq. (6.63). Thus, it is necessary to evaluate, for
instance, B'f and D[f for calculating A"s, and B'f and D'f for A"c.
The above modifications are of practical significance because it is
desirable to overcome the anti-symmetrical behavior such as that of
B\ by suitable stacking in laminate constructions.

Figure 6.30 gives the variation of A[ with l/ng. The theoretical
predictions are based upon both the crimp and bridging models
using the thermoelastic properties of the unidirectional carbon/
epoxy composite of Table 6.2. The experimental results of Rogers
et al. (1981) for five-harness satin composites are also shown in
Fig. 6.30. Two estimated values for a/h were used for the
analysis, and a/au is assumed to be unity. The bridging model
prediction coincides fairly well with experimental results. It is also
obvious that the in-plane thermal expansion coefficients are more
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334 Two-dimensional textile structural composites

sensitive to ng in the case without bending (Fig. 6.30) than in the
case of unconstrained bending (Fig. 6.28).

In summary, the following can be stated regarding the thermal
property modeling of two-dimensional woven fabric composites:

(1) The mosaic model provides a simple means for estimating
thermal expansion and thermal bending coefficients.

(2) The one-dimensional crimp model predicts slightly higher
in-plane thermal expansion coefficients and the same ther-
mal bending coefficients compared to those obtained from
the mosaic model. The limited experimental data on
thermal bending coefficients coincide rather well with the
predictions of the mosaic and crimp models.

Fig. 6.30. Comparison of theoretical predictions with the experimental
results of Rogers et aL (1981) for five-harness satin carbon/epoxy
composites; a/h = 3.75; a/h =7.5; aja = 1.0; CM and BM
indicate fiber crimp and bridging models, respectively; (•) experimental
results at 300 K. (After Ishikawa and Chou 1983a.)
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Hybrid fabric composites: mosaic model 335

(3) The bridging model is particularly suited for the prediction
of thermal expansion constants for satin composites. The
experimental results on in-plane thermal expansion
coefficients for a five-harness satin composite agree well
with the theory.

6.9 Hybrid fabric composites: mosaic model
Hybrid woven fabrics provide a wide variety of material

selection for designers with a new degree of freedom in tailoring
composites to achieve a better balance of stiffness and strength,
increased elongation to failure, better damage tolerance, and
significant improvement of cost-effectiveness in fabrication. A basic
difference between hybrid and non-hybrid composites is that
material variation as well as geometrical variation come into play
for the former case.

Figure 6.31 shows an example of a hybrid fabric composite for
ng = 8. The front view is dominated by filling yarns and the back
side by warp yarns. There are two kinds of fiber materials, denoted
by a and jS, although there is no restriction regarding the number of
fiber materials in a hybrid fabric. For the case of Fig. 6.31, the
pattern of arrangement of fiber types in the filling direction repeats

Fig. 6.31. A hybrid woven fabric with ng = S, nfm = 2 and nwm = 3. (a)
Front view; (b) back view. (After Ishikawa and Chou 1982a.)
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336 Two-dimensional textile structural composites

for every two warp yarns; thus it is defined that nfm = 2. In the warp
direction, the pattern of arrangement of fiber types repeats for
every three filling yarns, and rcwm = 3. The subscript 'm' indicates a
material parameter. The following analysis is limited to fabrics
containing only two types of fiber densely woven in both directions,
i.e. no gaps are allowed (Ishikawa and Chou 1982a, 1983d).

6.9.1 Definitions and idealizations
It has been adopted that ng (=nfg = nwg) specifies the fabric

geometrical pattern, and nfm and nwm define the fabric material
arrangements. The notation nm will be used when consideration of
the material parameter is not restricted to any one direction.

In the following, the discussions are first focussed on the pattern
of hybrid fabrics in one dimension, along the filling or warp
direction. Under the assumption of the mosaic model (Section 6.4),
a fabric composite can simply be regarded as an assemblage of
pieces of asymmetrical cross-ply laminates.

If ng and nm are numbers not divisible by each other in a given
direction, warp or filling, the pattern of the hybrid fabric will repeat
in that direction for every ng x nm yarns in the orthogonal fabric.
For instance, for ng = 5 and nfm = 3, Fig. 6.32 shows the pattern of
fabric repeats in the filling direction for every 15 warp yarns. In
general, the pattern of a fabric is repeated in the filling direction
after every nf warp yarns, where nf is the least common multiple
(LCM) of nfg and rcfm, or nf = LCM(nfg, nfm). Similarly, it is defined
that nw = LCM(« ) .

Although the size of a basic repeating unit in the filling direction,
for instance, is determined by nf, the detail of fiber arrangement

Fig. 6.32. A fabric where ng and nfm are not divisible by each other in the
filling direction; a and fi denote two types of fibers. (After Ishikawa and
Chou 1982a.)
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may vary. Figure 6.33 shows two cases of fabric pattern in the filling
direction for nfg = 8. Here, a and /? denote the two types of fiber
material of the hybrid. The notation § is used to indicate that the
filling yarn can be of either a or /? type. It is obvious from Fig. 6.33
that the different repeating patterns are generated by continuously
shifting the positions of the warp yarns in the filling direction. In
general, the number of repeating patterns in the filling direction for
a given nf is equal to the greatest common measure (GCM) of nfg

and nfm and is denoted by nn = GCM(rtfg, nfm). Naturally, nfl = 1 for
the case of Fig. 6.32. Again the notation nx can be used if the
discussion is independent of the direction.

Further comments are necessary for identifying the nature of the
interlaced regions of a hybrid fabric. In Fig. 6.33 the interlaced
region is 'homogeneous' if the yarns are identical or 'heterogeneous'
if the yarns are of different types. The notations HOla, HES'', etc.
are simply for identification purposes pertaining to later discussions.
The types of interlacing are termed 'mixed' if both homogeneous
and heterogeneous interlacing appear in a repeating pattern. This
can occur when ng and nm are numbers not divisible (Fig. 6.32) or
divisible (for instance ng = 8, nfm = 4) by each other.

Fig. 6.33. Homogeneous and heterogeneous interlacings. (a) nfg = S,
n{m = 2 (nf^ = n g n = l ) ; (b) /ifg = 8, nim = 4 « m = 3, «fm = l) . (After
Ishikawa and Chou 1982a.)
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Fig. 6.34. Two-dimensional basic repeating unit of a hybrid fabric for ng = 8 and nfm = 4. (a) nwm = 3;
ng and nwm are not divisible by each other, (b) nwm = 4; ng and «wm are divisible by each other;
(1) mixed interlacing; (2) homogeneous interlacing. (After Ishikawa and Chou, 1982a.)
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Next, hybrid fabric patterns in two dimensions are identified on
the basis of the above definitions established for one-dimensional
considerations. Figure 6.34 shows hybrid fabric patterns for ng = 8,
rtfm = 4, and nwm = 3 (Fig. 6.34a) and nwm = 4 (Fig. 6.34b). It should
be noted that all the interlacing patterns of Fig. 6.33(b) appear in
Fig. 6.34(a). The area denoted ABCD in Fig. 6.34(a) is a possible
repeating unit of the fabric. However, there are repetitions in the
geometrical and material patterns within this area. The patterns of
AGIE and IFCH are identical. So are the patterns of GBFI and
EIHD. Consequently, the smallest repeating unit of the fabric in
two dimensions can be represented by either AGHD or EFCD. The
area EFCD, for instance, contains 12 (ngnwm/ (ng/ nfi)) filling yarns.
It can be further concluded that if ng and nm are numbers not
divisible by each other in one direction (filling or warp) there exists
only one kind of basic repeating unit for defining the two-
dimensional fabric. This is true regardless of whether ng and nm are
numbers divisible or not by each other in the other direction.

On the other hand, there exists more than one type of basic
repeating unit in the two-dimensional fabric if ng and nm are
numbers divisible by each other in both directions. This is illus-
trated in Fig. 6.34(b). In Fig. 6.34(bl) both homogeneous and
heterogeneous interlacing in the filling direction occur and the
pattern is considered to be 'mixed' in two dimensions. The pattern
is homogeneous in two dimensions for Fig. 6.34(b2). Two other
mixed patterns exist: [HOI", HE2/S, HO3", HE1"] and [HE1*

HO2" HO3" HE1"], and no heterogeneous pattern exists for the
geometrical and material parameters given in Fig. 6.34(b).

Let If and /w be the edge lengths of a basic repeating unit in a
two-dimensional fabric. If ng and nwm are numbers not divisible by
each other for the repeating unit AGHD in Fig. 6.34(a).

'w = (nZmCa + nwmCp)ng
(6-64)

lt = n?mCa + nLCp

Ca and Cp denote yarn widths as shown in Fig. 6.31. The area of the
two-dimensional repeating unit is then given by

Ar = ng(nZmCa + nLiCpXnSnC + nLCp) (6.65)

This equation is valid for ng and nm, which are numbers not
divisible by each other in either the filling or the warp direction as
well as in both directions.

Cambridge Books Online © Cambridge University Press, 2010
Downloaded from Cambridge Books Online by IP 218.1.68.132 on Mon Apr 14 03:29:51 BST 2014.

http://dx.doi.org/10.1017/CBO9780511600272.007
Cambridge Books Online © Cambridge University Press, 2014



340 Two-dimensional textile structural composites

Alternate expressions for Eqs. (6.64) can be given by considering
the repeating unit of EFCD in Fig. 6.34(a):

/w = (nZmCa + nwmCp)nfi

(6.66)
U = (n?mCa + nfmCp)ng/nti

When ng and nm are numbers divisible by each other in both
directions

Ax = — (nZmCa + n^CpXnLCa + nLCp) (6.67)

for nw > %, and

Av = — (nZmCa + nlmCp){n?mCa + n$jCp) (6.68)

for nf > nw.
In summary, the pattern of a regular hybrid satin fabric can be

determined by the parameters Ca, Cp, ng, nm and, hence, nx, n{ and
nw. The 'regularity' of fabrics deserves some comment. The concept
of regularity is based on the geometrical consideration. For in-
stance, in the regular satin weave of Fig. 6.3(d), the geometrical
distribution of the interlaced regions in two dimensions can be
determined uniquely by two vectors, i.e. (3,1) and (1,3). The
vector (3,1) translates to an interlaced region by three yarns in the
filling direction and one yarn in the warp direction. Other combina-
tions of vectors are also possible, for instance (3,1) and (—2, 2) or
(2,-2) and (1,3). An example of an irregular satin is shown in Fig.
6.3(c), where ng = 4 and a set of two vectors cannot be found to
generate the locations of all the interlaced regions. The term
'balanced' hybrid fabric is also used in the analysis. In such a fabric,
the total number and arrangements of yarns of each material in the
filling and warp directions are identical. Hence, the relations
An=A22y DU = D22 and Bn = —B22 hold for a balanced hybrid
fabric.

6.9.2 Bounds of stiffness and compliance constants
On the basis of the idealizations given in Fig. 6.13, the

hybrid fabric composite can be modeled as an assemblage of pieces
of cross-ply laminates. It is further assumed that the shear deforma-
tion in the thickness direction is neglected.
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There exist four different types of material combinations in a
cross-ply asymmetrical laminate as depicted in Fig. 6.35, where the
upper lamina is assumed to be composed of filling yarns. In the
superscripts used in Fig. 6.35 the first Greek letter identifies the
upper layer material and the second letter is for the lower layer.
The derivations of the components of Aijy Btj and Dtj of Eqs. (6.3)
for the hybrid fabric composites are straightforward. Also, it is
understood that the cross-terms A16, A26y B16, B26, Dl6 and D26 for
these asymmetrical cross-ply laminates vanish; this is also true when
the upper lamina is composed of warp yarns.

6.9.2.1 Iso-strain
The distributions of stress resultant (and moment) and

strain (and curvature) over the laminate mid-plane vary with
location in the hybrid fabric composite. As a first approximation,
the assumption of iso-strain in the mid-plane is adopted. Equations
(6.3) are then applied to a fundamental region in the laminate. This
region, if repeated, should reproduce the geometrical and material
arrangements of the entire idealized fabric. Thus, the behavior of
the fundamental region should reflect that of the whole laminate.
The dimensions of the fundamental region are denoted by lf and /w
in the filling and warp directions, respectively. It is also defined that
r = <VCa (see Fig. 6.31).

Fig. 6.35. Material combinations in a cross-ply asymmetrical laminate.
The elastic constants for the plies are denoted by: (a) A?", B™, D™,
A'f, B'«" and D[°"*; (b) Af, Bf, Df, A\f, B\f and D\f\ (c) A?«,
Bf, Df, A\fa, B\fa and D\fa; (d) Af, Bf, Df, A1™, B\ffi and D',^.
(After Ishikawa and Chou 1982a.)
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(A) Aif and Ay
The average stress resultant Nx, for example, is given as an

average over the fundamental region in the x-y plane:

1 f'- ('<

/ w Jo Jo

M w •'0 Jo

(6.69)
Here, £ and rj stand for the a and /? material phases. From Eq.
(6.69) the following expressions for the effective stiffness constants
of a hybrid fabric composite are given:

{Av, Bir Ay) = v f f" f (Ap, B|n, Of) ck dy (6.70)
* f * w JO JO

These averages, in their simple forms, provide upper bounds for
the fabric composite stiffness. If these stiffness constants are
inverted, lower bounds for the elastic compliance constants can also
be obtained.

Both Ap and Dp for the upper ply are identical to those for the
lower ply; general expressions of An and Ay can be written
regardless of the relative magnitude of ng and nm. For instance,

A nfmr)(nZ

+ n?mnimAl«)r + ntnLAfr2] (6.71)

where n?m and nfm denote the number of a and /3 yarns,
respectively, within the repeating length of nfm yarns in the filling
direction. Naturally, n?

m + n$m = nfm, and <m + n£m = /twm. The
expression for Ay can be obtained if Ap(%,r] = a,(3) in Eq. (6.71)
are replaced by Dp. Finally, it should be noted that A,y and Ay can
be reduced to the special case of non-hybrid fabric composites
(Ishikawa and Chou 1983b). The upper bounds of Ati and Ay thus
obtained are identical to those of Ati and Dtj of intermingled hybrids
in cross-ply laminate form.

(B) %
The Bij constants can be obtained with the same approach

as for Ay and Ay- However, here it is necessary to distinguish the
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weaving pattern as indicated by ng and nm. Hence, the algebra is
more complicated. If ng and nm are numbers not divisible by each
other in one direction

(6.72)

In the case where ng and nm are numbers divisible by each other
in both directions, the expression of #,7 depends upon whether the
interlacing is homogeneous, heterogeneous or mixed. For instance,
for the case of homogeneous interlacing where n{ > nw

x [(ngn?m - 2nfl)nZmB?ja + /ig(w{U™«f

+ n?mnlmBla)r + (ngnfm - 2n^mBf r2] (6.73)

Similar expressions can be derived for heterogeneous interlacing. In
the case of mixed interlacing, the expressions depend upon the
details of the material arrangement. However, the differences
among the Bi}s for homogeneous, heterogeneous and mixed inter-
lacings are, in general, not significant within the usual range of r,
around unity. Therefore, Eq. (6.73) can be used as an approxima-
tion of Bij for such r values when ng and nm are numbers divisible by
each other in both directions.

6.9.2.2 Iso -stress
As another method of estimating the bounds of elastic

moduli the assumption of iso-stress is made. Derivations similar to
that of Eq. (6.69) can be performed to obtain the average strain
expression of the hybrid fabric composite. The average elastic
constants are then given by

(A'o, B',, D$ = T ^ f f (>tf, Blf, D&) dx dy (6.74)

By replacing Afy Bf and Dp in Eqs. (6.71)-(6.73) by A^, B'&
and D'^n, explicit expressions of Eq. (6.74) can be obtained. These
are upper bounds for the composite compliance constants; they can
be inverted to obtain the lower bounds for the stiffness constants.
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6.9.3 One-dimensional approximation
The approximate solution presented below is based upon a

combination of the series model of Ishikawa (1981) for non-hybrid
fabric composites and the mechanics of materials approach for
unidirectional composites. The basic assumptions are that the
hybrid fabric composite can be divided into repeating regions in the
form of one-dimensional strips, and the equilibrium and com-
patibility conditions are not exactly satisfied. Figure 6.36 shows that
the hybrid fabric composite is divided into strips along the filling
and warp directions. It is then assumed that the stress resultant (N)
is uniform in each strip.

The division of the strips is made according to the elastic moduli
under consideration; along the filling (x) direction for Au, Bn,
Dn, A'n, B'n and D'n and along the warp (y) direction for A22y

B22, D22, A22) B22 and D22. Either the x or the y direction is
admissible for determination of all the other non-zero constants.

Evidently the average strain in an a yarn is different from that of
a /? yarn. The one-dimensional average strain for the a yarn, for
instance, can be written by considering the stress and moment
resultants in the x direction only:

1 f/f

Kax=j\ £°xxdx

~-\N ['A1^
~ I \ x n

1{L Jo

dx+Mx (6.75)

Fig. 6.36. One-dimensional model of hybrid fabric composites. (After
Ishikawa and Chou 1982a.)
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where £ and rj stand for a and /?. For the case where ng and nfm are
numbers not divisible by each other in the filling direction, the
following expressions for the averaged compliances are obtained for
the ar-filling yarns:

P ) (zAr
ntmr
) ) B\r + nLB'^r) (6.76)

"g \nfm + ntmr)

f)'a — („<* r\'aa-\- nP n'aPr\
\jifm + n{mr)

Naturally, expressions of Afjy Bfj and D,y for the ar-filling yarns can
be obtained by inverting A\"y &[" and D\j* of Eqs. (6.76). A similar
procedure can be applied to the /3-filling yarns.

Finally, if the average strain and curvature in the ar-yarns ( S A and
ka) are not very much different from those in the /3-yarn, it is not
unreasonable to approximate the entire composite plate with a
uniform strain field. Thus, the stiffness constants can be obtained
from a volume average. For example,

1 (6.77)

6.9A Numerical results
Consider the numerical example for the case of a carbon/

Kevlar fabric in an epoxy matrix. The basic elastic properties of
the constituent unidirectional laminae used in this idealized mosaic
model are given in Table 6.2. The fiber volume fraction is chosen to
be 65% in order to match that of the experimental systems.

Figure 6.37 shows the relationship between An/h and relative
fiber volume fraction for 'balanced fabrics' where An=A22- The
carbon and Kevlar yarns are designated as a and jS yarns,
respectively. Fabric parameters are chosen so as to coincide with
those of Zweben and Norman (1976): ng = 8, nfm = 4 and nwm = 4,
while rif

m, nfm, nZm, and n^m vary from 0 to 4. The numbers in
parentheses correspond to values of «£,, nfm, nZm, and n^,m. The
ratio of the yarn width, r, varies from zero to infinity as the relative
fiber volume fraction changes. Since ng and nm in this example are
numbers divisible by each other, the lower bound predictions are
affected by the weaving patterns. Only the lower bound for the case
(3, 1; 3, 1) is shown for the full range of relative fiber volume
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fractions. Also, only homogeneous interlacing types are considered
in Fig. 6.37. The upper bounds are identical to one another for
these three weaving patterns and are shown by a straight line similar
to the predictions of the rule-of-mixtures. The circles and triangles
represent the experimental results of Zweben and Norman for
carbon/Kevlar hybrid fabrics and laminates composed of unidirec-
tional laminae of the parent components. The fabrics used in the
experiments are equivalent to, in the present terminology, the
categories of (3, 1; 3, 1) and (2, 2; 2, 2). The relative yarn width is
close to r = 1 and the interlacing pattern is of the homogeneous
type. These results fall in between the bound predictions.

The effect of fabric geometrical patterns of the parent composites
on the bound prediction is worth examining. The bound prediction
of Kevlar/epoxy is represented in Fig. 6.37 by either n"m = nZm = 0
or r = Cp/Ca—* 0°. Similarly, the carbon/epoxy system corresponds

Fig. 6.37. An/h vs. relative fiber volume fraction, h denotes specimen
thickness; UB, upper bound; LB, lower bound. Experimental results of
Zweben and Norman (1976); (•) fabric; (A) laminate. (After Ishikawa
and Chou 1982a.)
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Hybrid fabric composites: mosaic model 347

to the case of either nfm = n£m = 0 or r = 0. The lower bound
predictions based on different combinations of ng and nm yield
different results. Point A in Fig. 6.37 indicates the combination
ng = 8 and n?m = nZm = 0- Point B is for the limiting case of ng = 8,
(1, 3; 1, 3) and for R—»°°; this case is equivalent to ng = 6 and
"frn = ftwm =: 0. Point C is obtained from the case of ng = 8, (3, 1; 3,
1) and r—»°°. The same weaving pattern can be achieved for ng = 2
and rifm = 0. Discussions similar to the above can be made for the
case of the carbon/epoxy system. Point D is for ng = 8 and
«fm = nim = 0. Point E is for ng = 8, (3, 1; 3, 1) and r ->0 ; this is
equivalent to ng = 6 and n%m = n1m = 0. The transition of the
geometrical pattern from ng = 8 to either ng = 2 or 6 as r approaches
the limiting values can be understood from Figs. 6.38(a) and (b), as
well as Eqs. (6.71) and (6.73).

Fig. 6.38. The transition of fabric geometrical pattern as affected by r. (a)
ng = S (3, 1; 3, 1) and r = \; this pattern becomes ng = 6 as r—>0. (b)
ng = 8, (3, 1; 3, 1) and r = 8; this pattern becomes ng = 2 as r—»o°. (c)
Homogeneous interlacing for ng = 8, (2, 2; 2, 2) and r = J; this pattern
becomes ng = 4 as r—>0, (d) Heterogeneous interlacing for ng = 8, (2, 2; 2,
2) and r = \ ; this pattern becomes a cross-ply laminate as r—>>0. (After
Ishikawa and Chou 1982a.)
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348 Two-dimensional textile structural composites

The relationship between Bn/h
2 and the relative fiber volume

fraction is demonstrated in Fig. 6.39 for ng = 8 and nfm = rcwm = 4.
Results for both homogeneous and heterogeneous interlacings are
shown. In the case of homogeneous interlacing, i.e. (1, 3; 1, 3), (2,
2; 2, 2) and (3, 1; 3, 1), the basic trends of the lower bounds are
similar to the predictions shown in Fig. 6.37. However, the upper
bound predictions in this case are also affected by the fabric
parameters. In the case of heterogeneous interlacing (2, 2; 2, 2),
both the upper and lower bound predictions tend to be very large
values when r=0 and r—>°°. As a result, extremely large coupling
effects are seen in these limiting cases.

6.10 Hybrid fabric composites: crimp and bridging models
Although the bounds for the elastic properties of hybrid

fabric composites can be conveniently estimated by the mosaic
model, the upper and lower bounds are rather far apart. An
improved analysis based upon the 'crimp model' and 'bridging
model' developed for non-hybrid fabric composites is described.

In the following analysis, we specify ng= 8 and the fiber material
repeating parameters (n"m, nfm; < m , «wm) are of three types: (3,

Fig. 6.39. Bu/h
2 vs. relative fiber volume fraction; upper and lower

bound predictions for homogeneous interlacing; upper and
lower bound predictions for heterogeneous interlacing; one-di-
mensional approximate solution. (After Ishikawa and Chou 1982a.)
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Hybrid fabric composites: crimp and bridging models 349

1; 3, 1), (1, 1; 1, 1) and (1, 3; 1, 3). Also, homogeneous interlacing
is considered in the analysis. Furthermore, the calculation proce-
dure for the system (1, 3; 1, 3) is the same as that for the system (3,
1; 3, 1) by interchanging the a and j3 materials. Therefore, only the
systems of (3, 1; 3, 1) and (1, 1; 1, 1) need to be considered in the
analysis.

6.10.1 Crimp model
The crimp model takes into account fiber continuity;

sectional shapes of some typical interlacing regions are shown in
Figs. 6.40(a) and (b). The sinusoidal type functions used in Section
6.5 for describing the undulation shapes are adopted here. For the

Fig. 6.40. Typical structures of interlaced regions of hybrid fabric compos-
ites; h denotes plate thickness and ht indicates the total thickness of the
yarns, (a) Filling: a material; warp: a or p material, (b) Filling: /3
material; warp: a or p material. (After Ishikawa and Chou 1983d.)

(a)
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350 Two-dimensional textile structural composites

case where the filling yarn is composed of a material (Fig. 6.40a),
the height of the filling yarn is given by

0
(6.78)

When the filling yarn is composed of /3 material, the height of the
filling yarn is given by

(6.79)

where /*t denotes the total thickness of the yarns.
Corresponding to the cases of Eqs. (6.78) and (6.79), the heights

of the warp yarns are given, respectively, by

x
2

(6.80)

hl(x) = •
1 - :

hl

(6.81)

It should be noted that Eqs. (6.78)-(6.81) are written for the
portion of the undulated region where the filling yarn is beneath the
warp yarn.

A key assumption made in the fiber crimp model (Ishikawa and
Chou 1982b) is that the classical laminated plate theory is applicable
to each infinitesimal slice of material of width dx. Then the local
plate extensional stiffness coefficients for the portion where the
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filling yarn is composed of a material, are given by

A a%/ \ _ /)M u _^1_L. U<*(Y\ — ha(r\\Aij \X> ~~ Kij'I " y + n l \ x ) n2\X)j

where the superscripts F, W and M denote the filling yarn region,
warp yarn region, and pure matrix material, respectively; £ stands
for a or fi material, and h denotes the total laminate thickness,
including the pure matrix layers. Furthermore, the first superscript
of Atj indicates the filling material and the second one the warp
material. This convention is followed for all the stiffness and
compliance constants throughout this analysis.

Likewise for the portion of the laminate in Fig. 6.40(b), where
the filling yarn is composed of /3 material,

+ Q?(x) | + QP(hl(x) - *?(*)) (6.83)

Similarly, expressions for Bf(x), Bf(x)y Df(x) and Df(x) can
also be obtained.

The local thermal deformation coefficients can be obtained by
replacing Qtj in Eq. (6.83) by <2//O} (Eqs. (6.6) and (6.7)). For
instance,

(h - 1 + hftx) - hft

+ qF
x
a(x) | + q7Kh%(x) - /!?(*)) (6.84)

where qx = Qxxocxx + Q12Qcyy + Qie&xy Explicit expressions of off-
axis properties in the filling yarn region, Qjf(x), are given in
Section 6.5. The local compliance constants A'if'

1(x), B'i^
r'{x) and

D£\x) are obtained by inverting Ap(x), Bfp(x) and Dfp, where £
and rj indicate a or /3 material. Then, the thermal coefficients A'^11

and B'^n can be obtained from Eq. (6.9).
Finally, consider again the one-dimensional idealized model of a

hybrid laminate. The average extensional compliance for the
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portion containing a yarns is defined as

Af<* = - f/2A (̂x)dx = (l-^W^ + - fVMd*
Q JQ \ z / a jao

(6.85)

For the case of /3 filling yarns,

AfK = (l - U-)Ar + - r A'tix) Ax (6.86)

The superscript 'C in Eq. (6.85) signifies the fiber crimp model. The
other averaged compliance constants B'f"*, B'0

CK, D'iJ
Cali and t)fK

can be obtained in a similar manner. Expressions for the averaged
in-plane thermal expansion coefficients can be obtained from Eqs.
(6.85) and (6.86) by replacing A[j by the appropriate A\. Also, the
thermal bending coefficients can be easily obtained. However, it
should be noted that B\f^n and B\c%n do not vanish when the
integrations in Eqs. (6.85) and (6.86) are carried out over the entire
length of a(l + r)/2 (Fig. 6.40), unlike the cases of non-hybrid
fabrics. This fact is caused by the difference in yarn width and
properties of the constituent fibers of the fabric. Finally, the
averaged stiffness constants Af^, B^ and £>ffn can be obtained by
inverting these averaged compliance constants. Then the averaged
thermal constants Af^n and Bf^ are obtained from the inverted
form of Eq. (6.9). It should be noted that the thermoelastic
constants derived here are based upon the definitions of hx{x) and
h2(x) given in Eqs. (6.78)-(6.81), i.e. the filling yarn is situated
beneath the warp yarn. Thus, the coupling stiffness constants for the
right-hand portions of Figs. 6.40(a) and (b) for instance, are
denoted by -B%af> and -B^Pa, respectively.

6.10.2 Bridging model
The case of fabrics with ng = 8, «m, nfm; < m , ni

m) = (3, 1;
3, 1) and homogeneous interlacing pattern is considered first. A
possible shape of the minimum repeating unit is indicated in Fig.
6.41 as the area ABCD. The three-dimensional view of this
repeating unit showing the interlaced configurations of the a and ft
yarns is given in Fig. 6.42, which consists of five regions Rlf R2,
R3, R4 and R5, arranged in series along the loading direction.
However, other choices for the division in regions are possible. It is
assumed in the following analysis that the resultant force in the
loading direction of every region is identical.
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Hybrid fabric composites: crimp and bridging models 353

To exemplify the analysis of the bridging model, region R2 is
considered. Region R2 consists of four sub-regions labeled R\, R\,
R\ and R\ (see Fig. 6.43). By assuming an iso-strain condition for
the sub-region, the average compliance constant of each region can
be found. Then, the averaged stiffness constants of each sub-region
are obtained by inverting the corresponding compliance constants.
On the basis of the assumption of iso-strain, the average stiffness of
the entire region R2 can be determined. The elastic constants of the
other regions can also be determined following this procedure.

For the fabric composite of Fig. 6.42, it is assumed that each

Fig. 6.41. A hybrid fabric with homogeneous interlacing, for «g = 8,
%m = wwm = 4; a and ft indicate two types of yarn material; ABCD and
EFGD denote two choices of repeating units. (After Ishikawa and Chou
1983d.)

(S material

• a material

3" Interlaced
region

D

Fig. 6.42. A bridging model for ng = S and the (3, 1; 3,1) case (region
ABCD of Fig. 6.41). (After Ishikawa and Chou 1983d.)
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/ Nx, Mx
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354 Two-dimensional textile structural composites

region, Rl9 R2, R3, R4, or R5 carries the same load Nx. Thus, the
compliance constants of the entire composite can be regarded as the
volume average of the compliances of the individual regions. Then,
the inversion of the compliance constants gives the stiffness
coefficients of the entire composite unit cell, Ay, By and Di}. The
basic idea of the analysis briefly outlined above is identical to that of
the 'bridging model' of Section 6.6 in which only non-hybrid
composites are considered. The details of the derivations of elastic
and thermal deformation constants can be found in Ishikawa and
Chou (1983d).

Both regions ABCD and EFGD of Fig. 6.41 can be treated as
repeating regions for the entire fabric composite. A three-
dimensional view of region EFGD can also be found in Ishikawa
and Chou (1983d). As to the case of the (1,3; 1,3) material
combination, the thermoelastic constants can be obtained from the
above procedure by simply interchanging the a and /? materials.
Ishikawa and Chou (1983d) have also examined the case of a fabric
of ng = 8 with homogeneous interlacing and material repeating
parameters (2,2; 2,2). The cases of (3,1; 3,1), (1,3; 1,3) and
(2,2; 2, 2) give all possible fiber material combinations for homoge-
nous interlacing in hybrid fabrics with the given fabric parameters.

6.10.3 Numerical results and summary of thermoelastic properties
Numerical work has been performed to examine the thermo-

elastic properties of a carbon/Kevlar/epoxy hybrid fabric compos-
ite. The basic material properties of unidirectional laminae of
carbon/epoxy and Kevlar/epoxy are given in Table 6.2. The fiber
volume fraction of all the unidirectional laminae is assumed to be

Fig. 6.43. Detailed view of region R2 in Fig. 6.42. (After Ishikawa and
Chou 1983d.)
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Hybrid fabric composites: crimp and bridging models 355

65%, which is slightly higher than the total fiber volume fraction of
the fabric composite due to the presence of pure matrix layers.

Figure 6.44 shows the predictions of the extensional stiffness of
the bridging model as well as those from the bound approach (Fig.
6.37) of Ishikawa and Chou (1982a) for a carbon/Kevlar/epoxy
system of ng = 8. Three different material repeating parameters are
presented and the theoretical curves are obtained by changing r, the
yarn width ratio of a and /3 materials. Because values of r far from
unity are impractical, the curves in Fig. 6.44 are truncated. The
predictions based upon the bridging concept fall in between the
upper and lower bounds and compare very favorably with the
experimental data of Zweben and Norman (1976).

The following is a summary of the analysis of thermoelastic
properties of hybrid woven fabric composites:

(1) The structural characteristics of woven hybrid fabrics have
been identified by the material parameter nm (nfm and nwm)
as well as the geometrical parameter ng (nig and nwg). If the

Fig. 6.44. Axx/h vs. relative fiber volume fraction of carbon/Kevlar/epoxy
composites with «g = 8; bound theory; bridging model; ( •
and A experimental data for fabric and cross-ply laminate composites,
respectively; (h = ht, h/a = 0.4). (After Ishikawa and Chou 1983d.)
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356 Two-dimensional textile structural composites

ng and nm of a fabric are numbers not divisible by each
other in one or both directions (filling and warp) there is a
unique interlacing pattern. There is more than one type of
interlacing pattern if ng and nm are numbers divisible by
each other in both directions.

(2) In the analysis of the mosaic model, the fabric composite is
regarded as an assemblage of asymmetrical cross-ply lamin-
ates. Upper and lower bounds for the elastic stiffness
and compliance of hybrid composites have been obtained
assuming iso-strain and iso-stress, respectively. The in-
fluence of fabric parameters on elastic properties can be
assessed using this model.

(3) The magnitude of the coupling terms of Btj and B'tj depends
on whether ng and nm are numbers divisible by each other.
In the case where ng and nm are numbers divisible by each
other in both the warp and the filling directions, the upper
and lower bounds of Btj and the lower bounds of Atj and Dtj
are influenced by the interlacing types.

(4) The transition of ng from one value to another occurs as the
ratio of yarn width of the component fibers approaches zero
or infinity. In such extreme cases, the magnitude of the
coupling terms becomes very large, especially for heteroge-
neous interlacing. The distinct interlacing types for given ng

and nm, however, render nearly identical solutions for the
bounds when the yarn width ratio is around unity.

(5) The one-dimensional fiber undulation or crimp concept has
been modified to treat the interlacing of two different types
of fibers, and it has been incorporated into a general
'bridging model' for predicting thermoelastic properties of
hybrid fabric composites.

(6) The predicted values of the axial elastic stiffness constant
are insensitive to the choice of a repeating unit of the fabric
material.

6.11 Triaxial woven fabric composites

6.11.1 Geometrical characteristics
Biaxial woven fabrics exhibit relatively low elastic moduli

or low resistance to extension when deformed along the bias
direction (45° to warp and filling) as compared with deformation in
the warp and filling directions. A triaxial woven fabric (Doweave
fabric), is composed of three sets of yarns (two sets of warp yarns
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and one set of filling yarn), which intersect and interlace with one
another at 60° angles as shown in Fig. 6.45.

For the purpose of identification, the warp yarns are called 'one
o'clock' and 'eleven o'clock' warps. The filling yarn is horizontal
and is interwoven with the warp yarns in different sequences
depending on the fabric style. The geometry of the fabric can vary
from a very open but stable construction, such as basic weave, and
stuffed basic weave (which has additional yarns in the filling
direction), to a tightly packed construction, such as the bi-plane
weave. Figure 6.46(a) shows a schematic diagram of the stuffed
basic weave. The bi-plane weave is quite similar to the basket
weave of biaxial woven fabrics. As shown in Fig. 6.46(b), the filling
yarns in a bi-plane weave are woven both over and under two sets
of warp yarns to form a closed construction.

With the load bearing yarns arranged in three instead of two
directions, the triaxial woven fabrics yield more isotropic responses
to both tensile and shear deformations, offering an alternative to
the inherent structural weakness of conventional biaxial fabrics. The
ability of the triaxial woven fabrics to maintain structural integrity

Fig. 6.45. Triaxial woven fabric. (After Yang and Chou 1989.)

Fig. 6.46. The geometries of (a) stuffed basic triaxial woven fabric and (b)
bi-plane weave triaxial woven fabric. (After Yang and Chou 1989.)

(a)
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358 Two-dimensional textile structural composites

even with a very open construction is quite unique among textile
structures.

The filling yarn of a triaxial woven fabric may be composed of
bundles of different size and material from the warp yarns.
Therefore, hybrid fiber constructions are available for triaxial
woven fabrics as for biaxial woven fabrics. Also, by proper
selection of material combinations, yarn sizes and fabric weaving
patterns, a wide range of geometrical and mechanical properties can
be engineered in triaxial woven fabrics.

Although considerable effort has been made to investigate the
mechanical behavior of triaxial woven fabrics (see Dow 1969; Dow
and Tranfield 1970; Skelton 1971; Scardino and Ko 1981; Schwartz,
Fornes and Mohamed 1982; Schwartz 1984), the properties of
composites reinforced with triaxial woven fabrics have not been
adequately evaluated. Dow (1982) developed an analytical method;
the geometrical model used for the calculation of the fiber volume
fraction and elastic properties of the triaxial woven fabric composite
resembles the crimp model of Fig. 6.17. The undulated yarns are
divided into segments and each of these segments is treated as an
off-axis short-fiber composite lamina. The elastic properties of the
triaxial fabric composite unit cell are calculated by averaging the
contribution from each of the short-fiber composites.

In the following, a more refined analytical model is developed to
predict the thermoelastic properties of triaxial fabric composites.
An outline of the methodology of analysis is given first. It is then
extended to biaxial, non-orthogonal woven fabric composites.
Numerical results of the thermoelastic properties are presented as a
function of the fabric construction parameters. The contents of
Sections 6.11.2 and 6.11.3 are excerpted from Yang and Chou
(1989).

6.11.2 Analysis of thermoelastic behavior
For the purpose of analyzing the thermoelastic constitutive

relations of triaxial woven fabric composites, a unit cell of basic
triaxial weave is identified, as shown in Fig. 6.47, which contains
three impregnated yarn bundles oriented in space and interstitial
matrix regions. Repeating the unit cell in the fabric plane obviously
reproduces the complete triaxial woven structure. This methodol-
ogy can easily be extended to treat other types of weaving patterns.

The concept of the 'crimp model' (Ishikawa and Chou 1982b) is
extended to the following analysis. In this model, each impregnated
yarn bundle is further idealized as an undulated unidirectional
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lamina as shown in Fig. 6.48. The geometrical configuration of each
undulated lamina can be simulated as follows. First, consider the
lamina of filling yarns. The upper boundary for the undulated
configuration is given by (Fig. 6.48a)

(6.87)

Here, xx coincides with the x axis and Ht is the thickness of the
undulated lamina.

Next, the form of fiber undulation in the one o'clock warp lamina
as shown in Fig. 6.48(b) is

2-
ljjfj^ (0<x2<2/2) (6.88)

Here, x2 is in the direction of 60° from the x axis. Similarly, in the
eleven o'clock warp lamina (Fig. 6.48c), the form of fiber undula-
tion is

(6.89)

where x3 is in the direction of —60° from the x axis.
The crimp in the undulated laminae reduces the composite

stiffness as compared with that of straight reinforcements. The
local off-axis angle of each undulated lamina along the xly x2 and x3

Fig. 6.47. Unit cell structure of the basic triaxial woven fabric composite.
(After Yang and Chou 1989.)
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directions can be obtained by

6 = tan"
dx,

(i = 1, 2 or 3) (6.90)

The effective thermoelastic properties of each undulated lamina
can be derived through the following procedures. First, the undu-
lated lamina can be regarded as an assemblage of many small pieces

Fig. 6.48. Geometrical configurations of undulated filling and warp
laminae. (After Yang and Chou 1989.)

(a)

H,

(b)

(c)
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of unidirectional lamina. Each of these segments is uniquely
characterized by an off-axis angle as defined in Eq. (6.90). The
reduced effective thermoelastic properties in the x direction for the
filling lamina are the same as those given in Eqs. (6.24) and (6.51).

By assuming that each of these short composite laminar segments
is subjected to the same stress, the strain in each segment is

(6.91)

The normal strains averaged over the length 2/x along the x
direction are

1 f2/'

IIX JQ

(6.92)
2/l

The average longitudinal Young's modulus, transverse Young's
modulus and Poisson's ratio can be obtained as

Exx = J * Eyy = E22 vxy= - y (6-93)

The average in-plane shear modulus can be obtained by assuming
that each of these segments is subjected to the same shear strain.
Thus,

r 2 / i Gxy(6)dx (6.94)

Thus, the averaged stiffness constants of the undulated filling lamina
can be obtained by using Eq. (6.10).

The average thermal expansion coefficients along the x and y
directions are defined as

1 f2/l
&xx = — • (#n cos2 6 + a22 sin2 6) d6

ayy=~r \ awC0) d* = a22 (6.95)

-J_f2''xy 2 / , Jo
 xy
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The procedures outlined above can be applied to obtain the
effective thermoelastic properties of both one o'clock and eleven
o'clock warp laminae along the x2 and x3 directions, respectively.
However, the x2 and x3 directions are, respectively, at 60° and —60°
off-axis orientations with respect to the x axis. The effective
properties of these two warp laminae in the x—y plane can be
obtained by the following coordinate transformation (Jones 1975):

Gn = Gii cos4 0 + 2(Q12 + 2g6 6) sin2 0 cos2 0

+ Q22 sin4 0

G12 = ( 2 n + Q22 ~ 4e6 6) sin2 0 cos2 0

+ Gi2(sin4 <f> + cos4 4>)

Q22 = Qu sin4 0 + 2(<312 + 2Q66) sin2 0 cos2 0 + Q22 cos4 0

Gi6 = (Gn - G12 " 2G66) sin 0 cos3 0

+ (G12 - G22 + 2G66) sin3 0 cos 0

G26 = (Gn - G12 - 2G66) sin3 0 cos 0
(6.96)

+ (G12 - G22 + 2G66) sin 0 cos3 0

G66 = (Gn " G22 " 2Gi2 - 2G66) sin2 0 cos2 0

+ G66(sin4 0 + cos4 0)

axx = ocxx cos2 0 + ayy sin2 0

ocyy = axx sin2 0 + ayy cos2 0

«xy = (&xx - ocyy) sin 0 cos 0

?y = Q\2«xx + QllOCyy + G ^ ^ y

Qxy = G l 6 ^ x + G26<*yy + Gee*^

Here, 0 represents +60° and —60°, respectively, for one o'clock
and eleven o'clock warp yarns.

Upon knowing the effective thermoelastic properties of each
undulated lamina in the x-y plane, the composite properties can be
derived under the assumption that each of these undulated compos-
ite laminae is subjected to the same strain along the x direction.
Thus, the effective in-plane thermoelastic properties of the triaxial
fabric composite unit cell are given as (Rosen, Chatterjee and
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Kibler 1977)

Q* = t V<">Gj?>

n = \

n = \

(6.97)

where V is volume fraction and (n) denotes the yarns in the xlt x2

and x3 directions. The thermal expansion coefficients of the triaxial
woven fabric composite are found from

= S*nq*x

= St2q*x + SWy + SU% (6.98)

Here, S*} is the inversion of Q- of Eqs. (6.97).
By assuming that the yarns have a circular cross-section with

diameter d, and lx = 12 = 13 = I for the unit cell of Fig. 6.47, the
highest fiber volume fraction that can be obtained for a basic
triaxial weave is about 43%. For the yarn spacing/diameter ratios
(l/d) of 2, 3, 4, 5 and 6, the fiber volume fraction (Vf) values are,
respectively, 42.5, 24, 17.5, 14.2 and 11. Higher volume fractions
can be obtained by changing the weave pattern to stuffed basic
weave or bi-plane weave. As the l/d ratio increases, the fiber
volume fraction decreases and the crimp can be minimized. Thus,
the unit cell structure approaches a [0°/ ±60°] laminate composite
with straight reinforcements.

Figures 6.49(a)-(c) demonstrate the variation of longitudinal
Young's modulus, in-plane shear modulus and longitudinal thermal
expansion coefficient of triaxial woven carbon fabric reinforced
epoxy composites with yarn spacing/diameter ratios. The results of
[07 ±60°] laminate composites as functions of fiber volume fraction
can also be found in these figures. These results all indicate that as
l/d increases, the difference in thermoelastic constants between
woven structures and straight laminae is reduced as expected.
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364 Two-dimensional textile structural composites

Even though the stiffness reduction of triaxial woven fabric
composites as compared with [0°/±60°] laminates is quite severe
when l/d is small, it is feasible to place additional laid-in yarns
(non-crimp yarns) in the filling direction to enhance the axial
properties as shown in Fig. 6.46(a). Furthermore, fiber hybridiza-

Fig. 6.49. Comparisons of the predicted thermoelastic properties of
triaxial woven fabric composite (carbon/epoxy) and [0°/±60°] angle-ply
laminate composite (carbon/epoxy) as functions of yarn spacing ratio
(l/d). (a) Longitudinal Young's modulus, (b) In-plane shear modulus, (c)
Longitudinal coefficient of thermal expansion (CTE). (After Yang and
Chou, 1989.)
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tion allows considerable design flexibility in meeting the requirements
of high performance composites. Thus, by the proper selection of
material combinations and fabric structural geometry, a wide range
of mechanical properties can be engineered.

6.11.3 Biaxial non -orthogonal woven fabric composites
Biaxial non-orthogonal woven fabric composites can be

produced by flat braiding, or they could occur in the fabrication of
bi-axial orthogonal woven fabric composites. The flow of matrix
material and the curvature of the mold surface could distort
orthogonal yarns into non-orthogonal positions. The geometry of a
non-orthogonal woven fabric is depicted in Fig. 6.50. It can be
treated simply as a triaxial woven fabric without the filling yarn.
Consequently, the methodology developed for the triaxial woven
fabric composites can be readily applied. The composite unit cell is
composed of two undulated laminae interlaced together at any
angle, the magnitude of which depends upon the braiding pattern or
the distortion of the fabric.

Figure 6.51 illustrates the variation of Young's modulus with the
braiding angle or the angle of a biaxial non-orthogonal woven
fabric composite. Yang and Chou (1989) have also shown that as
26 decreases below the right angle, the thermal expansion
coefficient increases along the y direction and decreases along the x
direction; the in-plane shear modulus decreases with the decrease in
the bias angle.

Fig. 6.49 (cont.).

4

u

00
c
o

Triaxial fabric composite

[0°/±60° laminate

_J
4

lid

(c)

Cambridge Books Online © Cambridge University Press, 2010
Downloaded from Cambridge Books Online by IP 218.1.68.132 on Mon Apr 14 03:29:51 BST 2014.

http://dx.doi.org/10.1017/CBO9780511600272.007
Cambridge Books Online © Cambridge University Press, 2014



366 Two-dimensional textile structural composites

6.12 Nonlinear stress-strain behavior
The nonlinear stress-strain behavior of fabric composites

due to transverse crackings initiated in warp yarns has been
discussed in Section 6.7. Although transverse cracking can account
for the nonlinearity at small strains, both the filling yarns and the
matrix rich regions contribute to the overall nonlinear behavior of
fabric composites.

Ishikawa and Chou (1983c) first adopted a one-dimensional
(crimp) model to examine the material nonlinearities in the filling
yarn and the pure matrix region. This approach is then extended to

Fig. 6.50. A non-orthogonal woven fabric composite and its unit cell for
analysis. (After Yang and Chou 1989.)

Fig. 6.51. The predicted longitudinal Young's modulus of non-orthogonal
carbon fabric/epoxy composites as a function of bias angle (Vf = 60%).
(After Yang and Chou 1989.)
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Nonlinear stress-strain behavior 367

the bridging model for satin weave composites, and combined with
the analysis of transverse matrix cracking to provide a more
comprehensive description of the nonlinear elastic stress-strain
behavior of fabric composites.

The essence of the treatment of Ishikawa and Chou can be
understood by considering the filling yarn depicted in Fig. 6.17.
Segments of this yarn are subjected to off-axis loading in the x—z
plane due to fiber undulation. Thus, nonlinear shear deformation is
induced in the filling yarn due to the axial load. Following Hahn
and Tsai (1973), the nonlinear shear strain-stress relation is
assumed to be

ezx = S55azx + S5555{ozxf (6.99)

Here, S55 and S5555 represent, respectively, the linear and nonlinear
compliance constants. As to the nonlinear shear behavior of the
matrix material under tensile loading, the constitutive relation is
assumed to follow the same form as Eq. (6.99)

e£ = S M + S E n ( O 3 (6.100)

Ishikawa and Chou have performed a numerical analysis of the
stress-strain relation for glass/polyimide. The basic properties of a
unidirectional lamina are given in Table 6.2 and S5555 = 37.0 (1/GPa3).
The major ambiguity of the analysis lies in the value of the
nonlinear shear compliance, S5555. Because of the lack of ex-
perimental data, an estimated value based upon the stress-strain
curve for a glass/epoxy composite (Jones 1975) is used. The elastic
properties of polyimide are £ = 4.31GPa and v = 0.36. The non-
linear extensional compliance S™u = 9.88 (1/GPa3) is also assumed
to be the same as that of epoxy. Other assumptions are that
a = au = 0.4 mm, h = ht = 0.244 mm, and the bending-free state of
deformation is valid.

Figure 6.52 indicates the numerical results of this nonlinear
analysis (solid line) and the result from the consideration of
transverse cracking only (dashed line) for the glass/polyimide
composite. Both eight-harness satin (ng = S) and plain weave
(ng = 2) composites are indicated. The experimental stress-strain
data of an eight-harness satin as indicated by the dots are included.
The nonlinear analysis compares better with the experiment in the
range of large strain than the results given by Ishikawa and Chou
(1982b) for matrix cracking only. It is also observed that the
contribution from shear nonlinearity increases at higher stress
levels and for lower ng values. Furthermore, the effect of non-
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368 Two-dimensional textile structural composites

linearity on the composite behavior from the filling yarn far exceeds
that from the pure matrix region.

6.13 Mechanical properties
The microstructure of two-dimensional woven fabric com-

posites is responsible for some unique mechanical properties
which are not found in their equivalent cross-ply laminates. The
tension-tension fatigue behavior of woven fabric composites has
been examined by Schulte, Reese and Chou (1987). In the
following, the structure-property relationships are demonstrated in
terms of the friction and wear behavior, and the notched strength of
woven fabric composites.

6.13.1 Friction and wear behavior
When two surfaces interact, contact is made at their

asperities. With the application of a normal load and relative
motion, plastic deformation at the asperity contact zones occurs. As
a result, adhesive junctions are formed which, under the influence
of motion, tend to get fractured. Fracture occurs not at the original
point of contact, but at some point within the softer material.

Fig. 6.52. Non-linear stress-strain relations of glass/polyimide fabric
composites with a=au = 0.4 mm and h=ht = 0.244 mm. (After Ishikawa
and Chou 1983c.)
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Hence material is transferred from one surface to the other.
Subsequently, these transferred particles come loose due to the
repeated contact.

In sliding wear, material loss is dominated primarily by adhesive
mechanisms and secondarily by surface fatigue and abrasion; the
abrasive component increases with increasing surface roughness. As
compared with the abrasive wear conditions, the sliding wear
process is much milder and is, consequently, extremely sensitive to
the microstructure of the surface being worn. This is especially true
for composite systems (Mody, Chou and Friedrich 1988).

In sliding wear, the sliding velocity (v) effects are manifested in
frictional heating generated at the sliding interface. At some critical
velocity, steady-state wear will no longer prevail, and the coefficient
of friction and/or the wear rate will increase sharply. Reinforcing
fibers usually increase the critical velocity of polymeric matrices.
The influences of contact pressure (p) on sliding wear and of
temperature on limiting pv values are also of major concern. Other
factors include humid environments, counterface properties (i.e.
surface roughness, density and height of the asperities), and the
state of sliding interface (i.e. lubricants, films). The issue of fiber
reinforcement raises additional important parameters, such as the
type of fiber preforms, volume fraction and fiber orientation.

Woven forms of fiber reinforcement have demonstrated superior
wear characteristics for self-lubricating bearings. Mody, Chou and
Friedrich (1988) have investigated the sliding friction and wear of a
neat thermoplastic matrix (PEEK), and examined the changes
achieved by the incorporation of unidirectional continuous and
two-dimensional woven carbon fibers. In their experiments, a
pin-on-disc type wear testing machine is used; the specimen
temperature, the torque generated at the sliding interface, the
sliding velocity (in terms of revolutions per minute), the sliding
distance (in terms of the number of revolutions made), and the
sliding time are monitored. The sliding counterface is a polished
steel surface.

The dimensionless wear rate (w), in the units of um/m (depth
worn per unit distance slid), is computed by using the measured
mass loss (Am) and density (p), along with the apparent contact
area (A) and the sliding distance (L) in the following form:

w = Am/(ALp) (6.101)

The wear resistance of a material is the reciprocal of the wear rate
(w"1). The experiments show that, initially, wear progresses in a
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370 Two-dimensional textile structural composites

non-linear fashion. Later, as a definite sliding interface is estab-
lished, the steady-state condition prevails, and the mass loss
increases linearly with increases in sliding time.

Because of the anisotropic nature of fiber composites, it is
important to identify the sliding directions relative to the fiber
orientations. Three principal directions for the unidirectional con-
tinuous fiber composite have been identified, as shown in Fig.
6.53(a). Fibers in the plane of sliding and parallel to the direction of
sliding are termed parallel (P). In-plane fibers oriented transverse to
the direction of sliding are termed anti-parallel (AP), and fibers that
stand normal to the plane of sliding are designated as normal (N).
Following Mody, Chou and Friedrich (1988), six sliding directions
are defined for a five-harness satin composite (Fig. 6.53b). The
warp direction of the fabric, which has 80% of the fibers oriented in
the direction of sliding, is referred to as the parallel direction (P).
On the other hand, the filling direction of the fabric, which has 20%
parallel to the sliding direction, is referred to as the anti-parallel
direction (AP). Having thus defined the P and AP directions for the
woven fabric system, consider a face perpendicular to the warp
direction. This face will have a combination of fibers that stand
normal to it, and parallel or transverse to it, depending on the
direction of sliding on this face. Similarly, for the face orthogonal to
the filling orientation of the fabric, the same reasoning prevails.
From Fig. 6.53(b) it can also be concluded that the pair NP(N P) and
NP(N,AP) is the same as the pair NAP(NP) and NAP(N AP), if the warp
and filling fiber yarns are the same fiber type. (The notations within
the parentheses represent fibers of those orientations which are
being slid.)

Sliding wear experiments have been conducted by Mody and

Fig. 6.53. Sliding directions with respect to the fiber orientation for (a) a
unidirectional continuous fiber composite, and (b) a two-dimensional
woven fabric composite. (After Mody, Chou and Friedrich, 1988.)
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colleagues for unreinforced PEEK matrix, unidirectional continuous
fiber composites, and two-dimensional woven fabric composites at
three temperatures (50, 150 and 240°C) and three pv values (0.3,
0.6 and 0.9MPam/s). Here p denotes contact pressure and v is
sliding velocity. The variations of wear rate for these three material
systems at 50°C and pv = 0.3 MPa m/s are summarized in Fig. 6.54.
The wear rate of unreinforced PEEK is relatively high. In the case
of unidirectional carbon/PEEK composites, the wear rates are
highly anisotropic with the AP direction showing nearly twice the
wear rate of the P and N orientations. For two-dimensional woven
fabric composites, owing to the equivalence of the sliding directions
NP(N,P) to NAp(NP), and of NP(N,AP) to NAP(N,AP), four unique sliding
directions are identified. These include the P-oriented surface, the
AP-oriented surface, the surface containing a combination of N-
and P-oriented fibers (N, P), and the fourth, which has a combina-
tion of N- and AP-oriented fibers (N, AP). Wear rates of these four
surfaces at 50°C turn out to be quite uniform, and thus only their
average value is indicated in Fig. 6.54. Models for the wear
mechanisms of composites as functions of fiber orientation have
been presented by Mody, Chou and Friedrich (1988, 1989).

6.13.2 Notched strength
Curtis and Bishop (1984) and Bishop (1989) have assessed

the strength behavior of woven fabric composites. It has been

Fig. 6.54. Comparisons of the sliding wear rates of unreinforced PEEK, as
well as unidirectional and two-dimensional fabric carbon/PEEK compos-
ites, at 50°C and pv = 0.3 MPa m/s. (After Mody, Chou and Friedrich
1988.)
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372 Two-dimensional textile structural composites

concluded that the woven fabrics are effective in limiting the growth
of damage in laminated composites. It is suggested that woven
fabrics be utilized in the 45° layers of a [0°/±45°] laminate with the
unidirectional non-woven layers providing the needed stiffness and
strength in the loading direction. Bishop has devised a scheme for
laying up balanced fabric laminates without warping and unneces-
sary residual stresses; the line of crimped fibers in the fabric is an
important parameter in the design of the lay-ups. The mechanical
performance of plain and notched laminates under tensile, com-
pressive and fatigue loadings has been reported by Bishop (1989).

To further demonstrate the damage tolerance of woven fabric
composites, the example of molded-in holes is discussed below. The
process of molding holes into the fabric at the laminate fabrication
stage, instead of drilling the holes in the finished laminate, takes
advantage of the microstructure of the woven preform. As a result,
in the vicinity of the hole the fiber volume fraction is increased at
regions where the stress concentrations are high, and the continuity
of fiber is maintained.

Chang, Yau and Chou (1987) and Yau and Chou (1988) have
examined the notched strength in tension and compression for
Kevlar/epoxy and carbon/Kevlar/epoxy hybrid laminates. Speci-
mens with molded-in holes exhibit tensile failure strengths which
are up to nearly 40% higher than those of drilled specimens. Figure

Fig. 6.55. Molded-in holes in a carbon-Kevlar/epoxy [0°]4s laminate.
(After Chang, Yau and Chou 1987.)
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6.55 shows the fiber geometry around molded-in holes in a
carbon-Kevlar/epoxy [0°]4s hybrid laminate. The compression be-
havior of woven carbon fiber reinforced epoxy composites with
molded-in holes can be found in the work of Ghasemi Nejhad and
Chou (1990a&b).
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