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2 Thermoelastic behavior of laminated
composites

2.1 Introduction
Laminated composites are made by bonding unidirectional

laminae together in predetermined orientations. The basis for
analysis of thin laminated composites is the classical plate theory.
When the thickness direction properties significantly contribute to
the response of the laminate to an externally applied elastic field,
the classical plate theory breaks down.

Fundamental to the treatment of thin laminates is the knowledge
of the thermoelastic properties of a unidirectional lamina. These
properties are predictable from the corresponding properties of
constituent fiber and matrix materials as well as the fiber volume
fraction. Having established the elastic response of a unidirectional
lamina, the behavior of laminated composites is then analyzed from
the strain and curvature of the mid-plane of the laminate as well as
the force and moment resultants acting on its boundary edges.
Because of the complexity of the constitutive equations for a
general anisotropic laminated plate, simplifications of the stress-
strain relations are accomplished through the manipulation of the
geometric arrangement of the laminae. The lamination theory is a
relatively mature subject; its treatment can be found in text books
of, for instance, Ashton, Halpin and Petit (1969), Jones (1975),
Vinson and Chou (1975), Christensen (1979), Tsai and Hahn
(1980), Carlsson and Pipes (1987), and Chawla (1987), and in the
review articles of Chou (1989a and b). A modification of the classical
plate theory is in the inclusion of higher order terms in the
displacement field expansion to account for the transverse shear
deformation. An outline of such modifications adopted by various
researchers is presented.

The classical thin laminated theory has been extended to take
into consideration the effects of thermal and moisture diffusions,
with particular emphasis on the transient behavior. Because of the
large differences in the magnitudes of the thermal conductivity and
moisture diffusion coefficients, the thermal and hygroscopic prob-
lems can be solved separately and their linear elastic fields can be
superposed. Stress concentrations due to transient thermal effects
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30 Thermoelastic behavior of laminated composites

are of particular interest in the study of laminate thermal shock
resistance.

The mechanics of the thermoelastic behavior of laminated com-
posites is fundamental to the understanding of the strength, fracture
and fatigue behavior of all continuous-fiber composites including
those reinforced with textile preforms.

2.2 Elastic behavior of a composite lamina

2.2.1 Elastic constants
It is well known that for a homogeneous isotropic material

(i.e. the material properties are independent of the location and
direction), two independent material elastic constants are sufficient
to specify the constitutive relations. These could be any two of the
five constants commonly used: E (Young's modulus), v (Poisson's
ratio), G (shear modulus), K (bulk modulus), and k (plane strain
bulk modulus). The relations among these constants are

G = E/2(l + v)

K = E/3(l-2v) (2.1)

k = £72(1 - v - 2v2)

Twenty-one independent constants are necessary to describe the
elastic stress-strain relation of a generally anisotropic material (i.e.
the material properties are different in different directions). How-
ever, due to the material symmetries, the number of the independ-
ent constants can be greatly reduced. Consider a lamina (Fig. 2.1)
composed of unidirectional straight fibers in a matrix. Assume that

Fig. 2.1. A unidirectional fiber composite lamina.

JC3 (thickness direction)

2 (transverse direction)

x i (fiber direction)

Cambridge Books Online © Cambridge University Press, 2010
Downloaded from Cambridge Books Online by IP 218.1.68.132 on Mon Apr 14 02:50:20 BST 2014.

http://dx.doi.org/10.1017/CBO9780511600272.003
Cambridge Books Online © Cambridge University Press, 2014



Elastic behavior of a composite lamina 31

it is homogeneous on a scale much larger than that of the inter-fiber
spacing. Then, the unidirectional lamina can be treated as a
homogeneous orthotropic continuum (i.e. having three mutually
perpendicular planes of symmetry). The coordinates x1—x2—x3

shown in Fig. 2.1 are known as the material principal coordinates,
where xx is parallel to the fibers and x2 lies in the plane of the lamina.
For circular cross-section fibers randomly distributed in a unidirec-
tional lamina, the lamina can be further assumed macroscopically as
transversely isotropic, namely the material properties in planes
transverse to the fiber direction are isotropic. Then, there are only
five independent constants. The commonly used engineering elastic
constants for the transversely isotropic lamina, referring to the fiber
(xx) and in-plane transverse (x2) directions, are denoted by En

(longitudinal Young's modulus), E22 (transverse Young's modulus),
v12 (Poisson's ratio due to loading in the xl direction and contrac-
tion in the x2 direction), and G12 (in-plane shear modulus). These
four independent elastic constants can be determined experimen-
tally by three simple tensile tests of composite specimens with fiber
orientations of 0°, 90° and [±45°]2s; the relevant testing standards
are ASTM D3039-76 and ASTM D3518-76. The fifth independent
constant, representing the transverse isotropic properties, could be
either v23 (transverse Poisson's ratio) or G23 (transverse shear
modulus); the two are related by

(2.2)G2 3

;r enj

v2 i =

£ 3 3 =

G13 =

V32 =

y =

£ 2 2

2(1 + v23)

gineering c

E u
V l 2

£ 2 2

G12

v23

V12

(2.3)

V 3 1 = V 2 i

Various micromechanical models are available for predicting the
elastic properties of unidirectional laminae from their constituent
properties. Most of the matrices and some of the fibers used in
composites can be considered as isotropic. Let the elastic constants
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32 Thermoelastic behavior of laminated composites

of Eq. (2.1) for the isotropic fiber and matrix materials be denoted
by the subscripts f and m, respectively. Also, the fiber volume
fraction of the composite is indicated by Vf. Assuming no void in the
composite, the volume fraction of matrix is

Vm = l-Vt (2.4)

The following relations due to Hashin and Rosen (see Rosen 1973)
are quoted for their concise forms and, hence, ease in application.

Gm

— + —
kt km

(2.5)

where

*f = £ f / 2 ( l -v f -v? )

km = £m/2(l-vm-v2
m)

t + (Vfkf+Vmkm)Gm
k* —-

Vmkf+Vfk
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Elastic behavior of a composite lamina 33

Fibers such as carbon and Kevlar exhibit anisotropic behavior;
their thermoelastic properties along and transverse to the fiber axis
are significantly different. These fibers are considered to be trans-
versely isotropic, and thus five independent constants are needed to
describe their elastic properties, namely, Eu, E2f, G12f, v12f and
G23f. The following expressions, due to Chamis (1983), describe the
elastic properties of a unidirectional lamina composed of anisotropic
fibers in an isotropic matrix:

£^22 - ^ 3 3 -

G,2 = G,3 =

G23 =

1 - V£l - EmIE2()

Gm

1 - V t(l - Gm,/G12f)

Gm

(2.7)

- Vf(l - GJG23t)

X2 = Vi, = v1,fVf + vV

E22 t= 1

Halpin and Tsai (1967) have developed some semi-empirical
relations for the laminar elastic properties. These expressions
contain certain parameters which are influenced by the geometry of
the reinforcing phases, their packing in the composite, and the
loading conditions. Estimates of the values of these parameters can
be obtained by comparing the Halpin-Tsai equation predictions
with the numerical solutions employing formal elasticity theory
(Halpin 1984). The effect of interfacial debonding on elastic
properties has been discussed by Takahashi and Chou (1988).

2.2.2 Constitutive relations
Consider a unidirectional lamina exhibiting orthotropic

symmetry. The constitutive relations, referring to the material
principal coordinates x1-x2-x3, assume the general form (Vinson
and Chou 1975):

/en\
£22

£33

2f23
2£13

/Su

sl2
513
0
0

\o

512
522

523

0
0
0

5,3
523

533

0
0
0

0
0
0

S44
0
0

0
0
0
0

s5S
0

0\ M,\
0 x v

0 0 3 3

0
0

(2.8)
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34 Thermoelastic behavior of laminated composites

Here oijy the stress tensors, are defined in Fig. 2.2. efy are the strain
tensors defined in a manner analogous to the stress components; it
should be noted that the engineering shear strain yl7 = 2e;/ (i =£/). Stj

denote the components of the compliance matrix. For the case of a
transversely isotropic lamina with the x2-x3 plane being isotropic,
the compliance constants are related to the engineering elastic
constants as:

1

•^22 — £33 —
£,22

"J12 ~ "13 ~ "Z ~ ^ (2.9)

S44 = —

55 ** G12

Fig. 2.2. Stress tensor components.

JC3
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Elastic behavior of a composite lamina 35

Equation (2.8) can be inverted to obtain the following stress-
strain relations

(2.10)

where Ciy are the components of the stiffness matrix. Again, for the
case of transverse isotropy in the x2-x3 plane, the following
relations hold:

Cn = Eu(l-v
2

23)/A

C22 = C3 3 = £ 2 2 (1 - v12v21)/A

(°u\
o22
o33

O23

o13

\oJ

ICn
Cx2

Cn
0
0

3 0

Cu

c22C23
0
0
0

Cn
c 1 3

C33
0
0
0

0
0
0

C44

0
0

0
0
0
0

c550

o\
0
0
0
0

' 6 6 /

/£11\

£ 2 2

£ 3 3

2£23

2 £ L 3

\2el2

C44 = G
23

(2.11)

= (v1Cn = Cn = (v21

C23 = (v23 + v12v21)£22/A

A = 1 - 2v1 2v2 1 - v i a - 2v12v21v23

For a unidirectional composite lamina where the thickness is
much smaller than the in-plane (xx-x2) dimensions, it is sufficient to
consider the two-dimensional constitutive relations. Following the
convention used in the composites literature, the following con-
tracted notations, OT and eif are introduced for the stress and strain
components, respectively. Their relations to the tensorial stress and
strain components are:

o3= o33,

£2= £
22>

o3 = o 3 3 ,

= £3

and o6=cr12(=r12)

and

Under plane stress condition (i.e. A33 = o13 = o23 = 0), and using
the contracted notations, Eq. (2.8) can be reduced to

(2.12)
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36 Thermoelastic behavior of laminated composites

where the compliance constants Stj are given in Eq. (2.9). Also
£3 = Sl3ox + S23o2 and s 4 = s 5 = 0. By inverting Eq. (2.12), the
following two-dimensional stress-strain relations are obtained:

(Qn Qn 0 \ / £ , \

= G12 Q22 0 £2 (2.13)
\ 0 0 QJ\EJ

Here , the lamina exhibits orthotropic symmetry. The Qkj in Eq.
(2.13) are known as the reduced stiffness constants, and are related
to the engineering constants as follows:

rr
Qu=-

v12v21

^ (2.14)
1 - v 1 2 v 2 1

g _
1 - v12v21

066 = G12

It should be noted that the Qtj s o obtained by assuming the plane
stress condition of the unidirectional lamina are not identical to the
Ctj given in Eq. (2.11). In fact, the difference between Ctj and Qtj

increases as the lamina becomes more isotropic. The inter-relations

Table 2.1. Inter-relations among the different forms of elastic constants.
After Chou (1989b)

Engineering E u E22 v12 v21 G12

Compliance 1/SU 1/X,, S^/Su -S,,/S,, l/566

Reduced (G,,Q22-e"2)/Q22 ( O i " ^ " 0?2)/Gii C2/G22 Gi2/Qn QM,
stiffness

Compliance su S22 5 n S^

Reduced G22/G11G22 " Q\2) QUKQUQH- On) Gu/(Qi,G22 - Qi2) l /0«,
stiffness
Engineering l / E u l /£2 2 - v 1 2 / E u UGl2

constant

«ed«c<;rf G, , G2 2 G l 2 Q66

Engineering # n / ( l - v12v21) £22(1 - V12V2l) v1 2£2 2 / ( l - v12v2I) G12

constant
Compliance S22/(SnS22 - S2

I2) 5n/(5,,522 - 5,,) -512/(S,,S22 - S2
l2) 1/S«,
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Elastic behavior of a composite lamina 37

among the engineering constants, compliance constants and reduced
stiffness constants are summarized in Table 2.1.

For a unidirectional lamina oriented at an angle 6 with respect to
the reference axes x-y (Fig. 2.3), the stress-strain relations in the
x-y coordinates are

« \ / G n G12 QisN/fixxX
"yy = Gl2 Q22 G2 6 (2.15)
J \Gl6 G26 G 6 6 ,

where Qijy the transformed reduced stiffness, are given by

Gn = Gn cos4 6 + 2(<212 + 2<266) sin2 6 cos2 6 + Q22 sin4 6

G12 = (G11 + G22 - 4G66) sin2 0 cos2 6

Q22 = Gn sin4 6 + 2(G i 2 + 2G66) sin2 0 cos2 6 + Q22 cos4 0

Gi 6 = (Gn - G12 - 2<266) sin 9 cos3 6
(2.16)

G26 = (Gn1 - G12 - 2Q66) sin3 6 cos 8

+ (G12 - G 2 2 + 206 6) s in0 cos3 0

G66 = (Gn + G22 - 2Gi2 - 2G66) sin2 6 cos2 6

+ G66(sin4 6 + cos4 0)

Fig. 2.3. Fiber axis at an angle 6 from the lamina reference axis x.

z, X) (thickness direction)

X2 (transverse direction)

x\ (fiber direction)
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38 Thermoelastic behavior of laminated composites

Note that in the x-y coordinate system the notations of xxy and yxy

are introduced for the shear stress and strain, respectively. The
unidirectional lamina referred to the x-y axes is termed generally
orthotropic.

Equation (2.15) can be inverted to obtain the strain-stress
relations in the following general form:

(2.17)

in which the S/y- are the transformed compliance constants and their
relations to 5,-,- and 8 are

S n = Su cos4 8 + (2512 + S66) sin2 8 cos2 8 + S22 sin4 6

Sl2 = 512(sin4 0 + cos4 0) + (5n + S22 - S66) sin2 8 cos2 0

522 = Su, sin4 0 + (25 i2 + 566) sin2 0 cos2 0 + S22 cos4 6

S16 = (2Sn - 2Sl2 - S66) sin d cos3 6

- (2S22 - 2S12 - S66) sin3 6 cos 8 (2.18)

526 = (2Sn, - 2512 - 566) sin3 0 cos 0

— (2S22 — 2S12 — S66) sin 8 cos3 0

S66 = 2(25n, + 2,S22 - 4S12 - 566) sin2 8 cos2 0

+ 566(sin4 8 + cos4 0)

The engineering constants of the unidirectional lamina referring
to the x-y axes, which are not aligned with the material principal
directions, can be expressed as functions of the off-axis angle, 8, by
using Eqs. (2.9) and (2.18)

^ ^ ) sin2 8 cos2 8 + ^ s i n 4 8

1 1 1 , ,
— + — sin2 8 cos2 8

(2.19)
1 1 / 1 2v \ 1

— = sin4 8 + 1— sin2 8 cos2 8 + cos4 8
Eyy £7,1 \G,2 £ , , / £22

l £-22

(sin4 0 + cos4

12
+ (sin4 0 + cos

G
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Elastic behavior of a composite laminate 39

The variations of Exx, Gxyy and vxy, with fiber orientation angle,
6, for a Kevlar-49/epoxy composite are shown in Fig. 2.4.

Jones (1975) discussed the extremum (largest or smallest) values
of composite elastic properties, which do not necessarily occur in
the principal material directions. It can be shown that Exx is greater
than both En and E22 for some values of 6 if

G12>, (2.20)
2(l + v12)

and that Exx is less than both En and E22 for some values of 6 if

G1 2>
2{EjE22 + vl2)

(2.21)

2.3 Elastic behavior of a composite laminate

2.3.1 Classical composite lamination theory
Based upon the constitutive relations for a lamina com-

posed of a generally orthotropic material, Eq. (2.15), the constitu-
tive relations for a laminate formed by bonding several laminae

Fig. 2.4. Variations of engineering elastic constants with fiber orientation
angle, 6, for a Kevlar-49/epoxy composite with Vf = 0.6, £ H = 76GPa,
E22 = 5.5 GPa, G12 = 2.3 GPa and v12 = 0.34.

0 30 60 90

Fiber orientation, 6 (degrees)
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40 Thermoelastic behavior of laminated composites

together is presented in this section. The orientation and material
system of each lamina are general. Figure 2.5 depicts the geometry
of an Az-layered laminate of thickness h; the x—y plane coincides
with the laminate geometric middle plane. Following the approach
of the classical, linear, thin plate theory, the following assumptions
are made (see Vinson and Chou 1975).

(1) A lineal element of the plate extending through the plate
thickness, normal to the middle surface {x-y plane) in the un-
stressed state, upon the application of load: (a) undergoes at most a
translation and a rotation with respect to the original coordinate
system, and (b) remains normal to the deformed middle surface.

This assumption implies that the lineal element does not elongate
or contract, and remains straight upon load applications.

(2) The plate resists lateral and in-plane loads by bending,
transverse shear stress, and in-plane action, not through block-like
compression or tension in the plate in the thickness direction.

Based upon the foregoing assumptions, also known as the
Kirchhoff hypothesis for plates, the strain components can be
derived

(2.22)

Fig. 2.5. An n-layered laminate.
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Elastic behavior of a composite laminate 41

Here, e°x, e°y and yxy are the laminate mid-plane strain, which are
expressed in terms of the mid-plane displacements u° and v° in the
x and y directions, respectively:

3u°

dy
du° dv°
dy dx

^T (2-23)

The mid-plane curvatures are related to the z direction mid-plane
displacement w°

32w°
2w°32w

Krr = —
32w°
dx dy

(2.24)

Note that Kxy represents the twist curvature of the mid-plane.
Figure 2.6 depicts the deformation associated with a typical
cross-sectional element in a thin plate.

Also, following the approach of the classical plate theory, the
resultant forces and moments, instead of the stresses, are utilized in
the constitutive relations. Referring to Figs. 2.7 (a) and (b), the
force and moment resultants of the laminate are obtained by
integrating the stresses of each lamina, through the laminate
thickness, h\

rh/2rHU
(Nx, Ny, Nxy) = (oxx, oyyy rxy) dz

•>-h/2

rh/2

(Mx, My, Mxy) =
J-h/

, Oyy,

(2.25)

(2.26)
-h/2

Fig. 2.6. Deformation of a typical cross-sectional element in a thin
laminated plate.

A

B *

C

D

Undeformed cross-section Deformed cross-section
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42 Thermoelastic behavior of laminated composites

Substitution of Eqs. (2.15) and (2.16) into Eqs. (2.25) and (2.26)
results in the following:

Nx An A12

A16 A2

BX2 B22 B26 II Ayy (2.27)

16 #26 #66

Fig. 2.7. (a) In-plane force resultants, (b) In-plane moment resultants.

(a)

M,

(b)
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Elastic behavior of a composite laminate 43

(2.28)

where

k=l

^J{Qli)k{hl-h\.l) (2.29)
k=l

In Eqs. (2.27)-(2.29), Aijf Bijy and Dtj are called extensional
stiffness, extension-bending coupling stiffness, and bending stiffness,
respectively. The summation in Eqs. (2.29) is carried out over all
the laminae; (QIJ)K refers to the reduced stiffness of the A:th layer.
Eqs. (2.27) and (2.28) are often expressed in the condensed form as

(2.30)

where [K] is composed of KXX, Kyy and 2Kxy.
The constitutive relations of Eqs. (2.27) and (2.28) can be

rearranged into other useful forms by partially or totally inverting
them. The totally inverted forms of Eqs. (2.27) and (2.28) are given
in the following condensed matrix expressions:

[K] = [B'][N] + [D'][M]

where

[A'] = [A*]-[B*][D*-1][C*]

[fi'] = [fl*][D—] = -[D*-'][C*]

[D>] = [D* " ' ]
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44 Thermoelastic behavior of laminated composites

and (2.32)

An application of Eqs. (2.31) is found, for instance, when the
stress and moment resultants acting on a laminated plate are
specified. Then, with the knowledge of the elastic constants, the
mid-plane strain and curvature of the laminate can be determined.
The strain components of a specific lamina in terms of the plate
reference axes can be derived from Eq. (2.22) and the correspond-
ing stresses from Eq. (2.15). The existing criteria for laminar
failure, due to combined in-plane stresses or strains, require the
knowledge of stresses and strains along the fiber as well as the
transverse directions. This information can be readily obtained by
transformation of the stress and strain components to the principal
material directions. Thus, the correlation between external loading
on the laminated plate and the failure of an individual lamina can
be established.

2.3.2 Geometrical arrangements of laminae
It has been established in Eqs. (2.29) that the elastic

behavior of a composite laminate composed of unidirectional
laminae is determined by the constituent material properties as well
as the orientation and location of the individual laminae. These
geometric aspects of the laminae are indicated by following the
convention of the composites literature. For example, [0°/45y
-45°,/455/0°] indicates the stacking sequence of a laminate with one
layer at 0°, two layers at 45°, four layers at —45°, two layers at 45°,
and one layer at 0°. Because of the mid-plane symmetry, this
stacking sequence can also be expressed as [0°/45y— 455]s. Follow-
ing this convention, the basic arrangements of laminae can be
expressed as [0°] for unidirectional, [0°/90°] for cross-ply, and
[+6/ — 6] for angle-ply. The implications of the laminar geometrical
arrangements on the laminar elastic behavior, namely, the [A], [B],
and [D] matrices, are discussed below.

The [A] matrix relates the stress resultants with the mid-plane
strains. The couplings between normal stress resultants and mid-
plane shear strains, as well as shear stress resultants and mid-plane
normal strains, are due to the components Al6 and A26- There is

Cambridge Books Online © Cambridge University Press, 2010
Downloaded from Cambridge Books Online by IP 218.1.68.132 on Mon Apr 14 02:50:20 BST 2014.

http://dx.doi.org/10.1017/CBO9780511600272.003
Cambridge Books Online © Cambridge University Press, 2014



Elastic behavior of a composite laminate 45

also the coupling between mid-plane stress resultants and the
bending and twisting of the laminate through the [B] matrix.
In particular, the components Bl6 and B26 relate normal
stress resultants with the twisting of the laminate. The [B]
matrix also plays a role in the coupling between the moment
resultants and in-plane strains. Finally, the Dl6 and D26 terms are
responsible for the interaction between the bending moment and
twisting.

The various coupling effects in laminated composites can be
minimized or eliminated through suitable choices of the laminae
stacking sequence. As can be seen from Eqs. (2.29), the Btj terms
involve the squares of the z coordinates of the top and bottom faces
of each lamina. Each term of Btj vanishes if for every lamina above
the mid-plane there is a lamina, identical in properties and
orientation, located at the same distance below the mid-plane. Such
mid-plane symmetry arrangements eliminate the bending-stretching
coupling. The terms A16 and A26 both vanish under either of the
following conditions: (a) all of the laminae assume 0°, 90° or
cross-ply [0°/90°] configuration; (b) for every lamina of +0
orientation there is another lamina of the same property and
thickness with a —6 orientation. The terms D16 and D26 are zero for
the cases: (a) all of the lamina assume 0°, 90° or cross-ply
configuration; and (b) for every lamina oriented at + 0 at a given
distance above the mid-plane there is an identical layer at the same
distance below the mid-plane oriented at - 6. It is obvious that the
D16 and D26 terms are not zero for any mid-plane symmetric
laminate, except for the cases of all 0°, all 90° and cross-ply.
However, the magnitude of these terms can be made small by
increasing the number of layers in the angle-ply configuration.
Table 2.2 shows the effect of stacking sequence on the [A], [B] and

Table 2.2. Effect of stacking sequence on [A], [B] and [D] matrices. After

Chou (1989b)

Al6, A26

Bn> B22, Bu,

BX6> B26

D i 6 , D26

6 = o°, 90°

zero
£66 zero

zero
zero

0°/90°

zero

zero
zero

+ 0 2 / -0 , /
+ 0 , / - 0 , . . .
(anti-symmetry)

zero
zero

zero

+ 0 2 / -0 ,
- 0 , / + 0 , . . .
(symmetry)

-

zero
zero
-

Same
number of
+ 6 and - 6
layers

zero
-
-
-
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46 Thermoelastic behavior of laminated composites

[D] matrices. The optimization of laminate design for strength has
been discussed by Fukunaga and Chou (1988a and b).

2.4 Thick laminates
The term 'thick laminates' here is used to describe compos-

ite plates of which the thickness direction properties significantly
contribute to the response of the material. Exact elasticity solutions
of thick plates have demonstrated that the classical lamination
theory of Section 2.3 is not applicable to the thick laminates.
Experimental results (for example, Whitney 1972, and Stein and
Jegley 1987) have shown significant departure from lamination
theory predictions, for such properties as maximum deflections and
natural frequencies, when (a) the plate thickness-to-width ratio and
(b) the in-plane Young's modulus to interlaminar shear modulus
ratio become high.

One reason for the departure of thick plate behavior from
classical thin plate theory prediction is the presence of transverse
shear deformation. The effect of transverse shear deformation is
pronounced in anisotropic materials with high ratios of in-plane
Young's moduli to interlaminar shear moduli; this is typical in
laminated composites. Other assumptions of the classical plate
theory (see Section 2.3) such as negligible transverse normal strains
(ez = 0), and the linear in-plane strain variation with the z
coordinate all contribute to the limitations of the theory. Further-
more, the strong interlaminar shear existing in thick laminates is
responsible for delamination, particularly near the free edges. Thus,
it is imperative to determine the magnitude and distribution of
interlaminar shear in thick laminates.

In the following, the three-dimensional constitutive relations
of a thick composite lamina are introduced first. Then, the classical
and higher order theory for thick laminated composites is
discussed.

2.4.1 Three-dimensional constitutive relations of a composite
lamina
The three-dimensional constitutive equations of a compos-

ite lamina referring to the principal material coordinate system
xl-x2-x3 (Fig. 2.1) have been introduced in Eqs. (2.8) and (2.10),
for the case of orthotropic symmetry. The relations between the
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Thick laminates 47

stiffness constants and engineering elastic constants are:

Cn = En(l- v23v32)/A

C22 = £ 2 2 (1-v 1 3 v 3 1 ) /A

C33 = E33(l - v12v21)/A
C44 = G23

C55 = G13

(2.33)

C12 = (v2i + VaaVgOfin/A = (v12 + v13v32)E22/A

C13 = (v31 + v21v32)En/A = (v13 + v12v23)£33/A

C23 = (v32 + v12v31)£n/A = (v23 + v13v21)£33/A

A = 1 - v12v21 - v23v32 - v13v31 - 2v13v21v32

The general three-dimensional constitutive relation of a compos-
ite lamina referring to the reference coordinate x—y—z (Fig. 2.3) can
be obtained from Eq. (2.10) by tensor transformation:

(2.34)

Here, the x-y plane coincides with the xx-x2 plane and the angle
between the xx and x axes is 6. The stress and strain tensors in these
two coordinate systems are related by

(2.35)

oj
Oyy

OyZ

Cn

c 1 2
C13
0
0

c 1 6

c 1 2
c 1 2
C23
0
0

C26

c1 3
C23

C33

0
0

C36

0
0
0

C44

C45

0

0
0
0

C45

cS5
0

c ^
c26
c36
0
0

[oxx

Oyy

Ozz

Oyz

Oxz

\Oxy,

- rri"1

jon\
O22
o33

O23

On

\ol2j

/£xx\

yy

Zzz

£yz

£xz

[£xvl\ £xy/

/£ll\

£22

£33

£23

£13

V1 2 /
The transformation matrix is

sin2 0 0 0
cos2 0 0 0

0 1 0
0 0 cos
0 0 s in6

m=

cos2e
sin2

0
0
0

\—cos 6 sin 6 cos 6 sin 6 0 0

0
0
0

—sin 8
cos 8

0

2 cos 6 sin 9 \
- 2 cos 0 sin 9

0
0
0

cos2 6- sin2 0 /

(2.36)
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48 Thermoelastic behavior of laminated composites

[T]"1 is obtained by changing 6 to - 0 in [T]. The stiffness matrix is
derived from

[C] = [T]-l[C][T]~l (2.37)

with t indicating the matrix transpose and the explicit expressions of
[C] are

C n = C n cos4 6 + 2(C12 + 2C66) sin2 0 cos2 0 + C22 sin4 0

C12 = ( C u + C22 - 4C66) sin2 0 cos2 0 + C12(sin4 0 + cos4 0)

C13 = C13 cos2 0 + C23 sin2 0

C16 = ( C n - C12 - 2C66) sin 0 cos3 0

+ (C12 - C22 + 2C66) sin3 0 cos 0

C22 = C n sin4 6 + 2(C12 + IC^) sin2 0 cos2 0 + C22 cos4 6

C23 = C13 sin2 6 + C23 cos2 0

C26 = ( C n - C12 - 2C66) sin30 cos 6
(2.38)

+ (C12 - C22 + 2C66) sin 6 cos3 0

c 3 3 = c 3 3

C36 = (C 1 3 - C23) sin 6 cos 6

C44 = C44 cos2 6 + C5 5 sin2 0

C45 = (C 5 5 — C44) sin 6 cos 0

C55 = C55 cos2 0 + C44 sin2 6

C66 = ( C n + C2 2 — 2C 1 2 - 2C66) sin2 6 cos2 6

+ C66(sin4 0 + cos4 0)

2.4.2 Constitutive relations of thick laminated composites
The classical laminated plate theory does not take into

account the effect of transverse shear stress and strain. The
inclusion of transverse shear deformation in the classical thin plate
theory is achieved by allowing the transverse shear strains, exz and
eyz, to be non-zero. This gives rise to definitions of the shear force
resultants:

(Gx, Qy) = \ K z , Oyz) dz (2.39)

These shear force resultants can be related to the transverse shear
strains through the appropriate constitutive relations, Eq. (2.34)
(see Vinson and Chou 1975).
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Thick laminates 49

Several higher order plate theories have been proposed to
account for the transverse shear deformation. This is achieved by
retaining higher order terms in the displacement field expansions,
which are assumed in the form of power series of the z coordinate.
The accuracy of these theories is generally greater for a greater
number of terms retained in the series, but the complexity of the
governing equations places severe limits on the number of terms for
which solutions are realistically attainable.

Among the various proposed displacement field expansions, the
simplest one includes the linear term in z; it has been adopted by
many workers (for example, Reissner 1945, Whitney and Pagano
1970),

u(x, yy z) = u°(x, y) + ztyx{x> y)

w(x, y, z) = w°(x, y)

where u, v and w are the displacement components in the x, y and z
coordinates (Fig. 2.2), respectively; w°, v° and vv° denote the
mid-plane displacements of a point (JC, y); and xpx and ipy are the
rotations of the normal to the mid-plane about the y and x axes,
respectively. It is noted that, unlike the classical plate theory, due
to the existence of transverse shear deformation,

dw°
dx

(2.41)
dw°

The new curvatures expressions, which are different from Eq. (2.24)
are given by

dx dx

d% d2w°

dy dy2 (2-42)

xy2\dy + dxI dxdy
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50 Thermoelastic behavior of laminated composites

Then, the strain-displacement relations of linear elasticity are

_ du _ du° d\px

dv_ dv° d%
e = — = — + z ——yy dy dy dy

(2.43)

e - 1 !

B - 1 !xz 2 '

txy = ^ 1

(dv

{— H

dw\

dw\

"dxJ

dv\

l - V v +

1 2 \

1 [du°
2 L dv

dw°\
1

dw°\

du° /ay

By substituting Eqs. (2.34) and (2.43) into Eqs. (2.25), (2.26)
and (2.39), the constitutive relations of the laminated plate in
terms of stress resultants and displacement variables can be
obtained as

Mx

Ny

Nxy

Mx

My

Au
A12

A16
Bu

B12

A12
A22

A26

Bl2
B22

A16

A26

Aee
B16

B26

Bn
B12

B16
A i
D12

Bl2

B22

B26

Dl2

D22

D

\dy dxj

(2.44)
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Thick laminates 51

and

(
3w° \
dy+%\

a o (2-45)

dx *x)
where

r
a dz (1, 7 = 1, 2, 4, 5, 6)

(fl,y, Ay) = I Qj(z, z2) dz (i, j = 1, 2, 6)

and ck in Eq. (2.45) is a correction factor for the fcth lamina which,
according to Lo, Christensen and Wu (1977a), is determined by
matching the approximated solution with the exact elasticity sol-
ution in order to satisfy appropriately the requirements of vanishing
transverse shear stress on the top and bottom surfaces of the thick
plate.

Having obtained the constitutive relations, the problem of thick
laminated plates can be solved by substituting Eqs. (2.44) and
(2.45) into the plate equation of motion. Then, a set of partial
differential equations in terms of the displacement variables w°, v°,
n>°, tyx and xpy can be derived. These unknowns can be solved with
the appropriate initial and boundary conditions, which are deter-
mined from the total energy of the system (Whitney and Pagano
1970).

The approach outlined above demonstrates an example of the
high order laminated plate theories, where only the in-plane
displacement terms linear in z are included in Eqs (2.40); and it
differs from the classical plate theory only by the terms \px and \py as
shown in Eqs (2.41). As pointed out by Lo, Christensen and Wu
(1977a&b), despite the increased generality of the shear deforma-
tion theory, the related flexural stress distributions show little
improvement over the classical laminated plate theory. Thus, it is
apparent that higher order terms are needed in the power series
expansion of the assumed displacement field to properly model the
behavior of thick laminates.

Among the various higher order displacement fields proposed,
Lo, Christensen and Wu (1977a&b) suggested the following dis-
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52 Thermoelastic behavior of laminated composites

placement forms:

u = u° + z*l>x + z2%x + z3c/)x

v = v° + z\py + z% + z3<py (2.46)

w = w° + zipz + z2%z

where the cubic terms in z for the in-plane displacement field and
the square terms in z for the out-of-plane deformations are used; a
total of 11 displacement functions (M°, V°, VV°, ipx, \pyy ipz, %xy %y,
!-z, 4>x and (t>y) are involved. Much improvement over the classical
theory predictions is observed; however, the complexity of the
analysis has increased tremendously.

The format of solution to higher order systems generally involves
the application of the principle of potential energy to derive the
pertinent governing equations of equilibrium. Using the strain-
displacement relations and the assumed displacement field, in
conjunction with the equations of equilibrium, a set of partial
differential equations in terms of the displacements used is derived.
The number of equations is determined by the number of terms
retained in the assumed displacement form. With the appropriate
initial and boundary conditions, the solution of these equations
describes the elastic behavior of the plate. The details of such
approaches can be found, for example, in the work of Whitney and
Pagano (1970), Whitney and Sun (1973), Lo, Christensen and Wu
(1977a&b), and Reddy (1984).

Although accounting for the higher order plate deformation in
thick laminates involves a great deal more complexity than the
classical thin plate approach, it is evident that the extra effort to
accurately describe their fundamentally different elastic behavior is
required. The numerical results of the flexural stress distribution in
an infinite [+30, — 30]s laminate of carbon/epoxy composite, sub-
jected to a pressure q, on the top surface (z = h/2) of the form

JTX

q=qosm— (2.47)

are shown in Fig. 2.8 (a) and (b) (see Lo, Christensen and Wu
1977b). Here the length L characterizes the load distribution. The
in-plane stress oxx is normalized as oxx = oxx/q0S

2, S = L/h. The
results indicate that the higher order theory is necessary for
determining the deformation of plates with small L/h ratio.

Sun and Li (1988) and Luo and Sun (1989) have adopted a
global-local method for the analysis of thermoelastic fields of thick
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Thick laminates 53

(a)

Fig. 2.8. (a) Flexural stress distributions for a [+30, -30] s angle-ply
laminate for L/h = 10. (b) Flexural stress distributions for a [+30, -30] s

angle-ply laminate for L/h = 4. exact elastic solution; . . . . higher
order laminated plate theory; classical laminated plate theory.
(After Lo, Christensen and Wu 1977b.)
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54 Thermoelastic behavior of laminated composites

laminated composites consisting of a repeating sublaminate (the
typical cell). The effective moduli and thermal expansion
coefficients are obtained from the sublaminate and used to obtain
the global (average) stress and strain solutions. A refining proce-
dure is then introduced in which the global solution is used directly
to recover the stresses in the lamina or used as boundary conditions
in a sublaminate to perform the exact thermoelastic analysis.

2.5 Thermal and hygroscopic behavior
Besides externally applied load, deformations in laminated

composites can also occur due to changes in temperature and
absorption of moisture. This is known as the hygrothermal effect.
As polymers undergo both dimensional and property changes in a
hygrothermal environment, so do composites utilizing polymers as
the matrix. Since fibers are fairly insensitive to environmental
changes, the environmental susceptibility of composites is mainly
through the matrix. Consequently, in a unidirectional composite the
temperature-moisture environment has a much greater effect on
the transverse and shear properties than the longitudinal properties.

The thermal diffusivity and moisture diffusion coefficient are used
as measures of the rates at which the temperature and moisture
concentrations change within the material. In general, these para-
meters depend on the temperature and moisture concentration.
However, over the range of temperature and moisture concentra-
tion that prevails in typical applications of composites, the thermal
diffusivity is usually several orders of magnitude greater than the
moisture diffusion coefficient. Consequently, thermal diffusion takes
place at a rate much faster than moisture diffusion, and the
temperature will reach equilibrium long before the moisture con-
centration does. This allows one to solve the heat-conduction and
moisture-diffusion problems and the resulting elastic fields
separately.

The knowledge of anisotropic heat conduction is basic to the
solution of thermal stresses in laminated composites. Investigations
of such problems have been performed by Poon and Chang (1978),
and Chu, Weng and Chen (1983) using transformation theory, by
Chang (1977), Huang and Chang (1980), and Nomura and Chou
(1986) using Green's function method, by Tauchert and Akoz
(1974) using a complex variable method, and by Katayama, Saito
and Kobayashi (1974) using a finite difference technique. The
solution of the steady-state thermoelastic problem of anisotropic
material appears to be initiated by Mossakowska and Nowacki
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Thermal and hygroscopic behavior 55

(1958), Sharma (1958), and Singh (1960). Then Takeuti and Noda
(1978), Sugano (1979), and Noda (1983) have examined the
transient temperature and thermal stress fields of transversely
isotropic elastic medium.

In the category of thermally and elastically orthotropic media, the
steady-state temperature and thermal stress field have been investi-
gated for problems of semi-infinite domain (Akoz and Tauchert
1972), a slab bounded by two parallel infinite planes (Tauchert and
Akoz 1974) and a rectangular slab (Akoz and Tauchert 1978). The
transient thermal stress analysis of thermally and elastically or-
thotropic laminae has been performed by H. Wang and Chou (1985,
1986), Wang, Pipes and Chou (1986), and Y. Wang and Chou
(1988, 1989); their approaches are recapitulated in the following.

In Section 2.5.1, the thermoelastic constitutive equations for a
three-dimensional orthotropic material are introduced. These equa-
tions are then simplified to the two-dimensional case of unidirec-
tional laminae, and the classical lamination theory is generalized to
take into account the thermal and hygroscopic effects. Then, three
transient thermal and hygroscopic problems are discussed to illus-
trate the formulation of the boundary value problems and the
solution techniques. The first problem is for the diffusion of
moisture through the thickness of a laminated composite (Section
2.5.2). It is assumed that the diffusion equation is one-dimensional
(z direction), while the elastic field is two-dimensional (x—y plane).
The second problem focuses on the effect of heat conduction on
interlaminar thermal stresses (Section 2.5.3). It is assumed, in this
case, that heat flows across the width of a laminated plate
(one-dimensional heat conduction) and the resulting thermal stress
field is three dimensional. Finally, a two-dimensional heat conduc-
tion problem is formulated for a rectangular-shaped unidirectional
lamina subjected to thermal boundary conditions at its four edges.
The two-dimensional thermal elastic field is obtained. In all three
problems, the thermal transient effects on stress distribution are
demonstrated.

2.5.1 Basic equations

2.5.1.1 Constitutive relations
Deformations of a unidirectional lamina resulting from

hygrothermal effects can be described by a modified set of linear
constitutive equations: i.e., the total strain minus the non-
mechanical strain is linearly related to the stress.
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56 Thermoelastic behavior of laminated composites

The non-mechanical strain is measured from a stress-free re-
ference state, and the elastic moduli used in the calculation are
taken at the final environmental conditions. For example, in the
fabrication of polymer matrix composite laminates, the curing of an
individual ply results in different deformations along the fiber and
transverse directions. The constraint of deformation of a single ply
due to the presence of other plies in a multi-directional laminate
gives rise to residual stresses. Since most of the cross-linking in the
polymer occurs at the highest curing temperature, the polymer
matrix can be considered as still viscous enough to allow complete
relaxation of the residual stress. Thus, the highest curing tempera-
ture can be regarded as the stress-free temperature.

By taking into account the non-mechanical strain in Eq. (2.10) for
hygrothermally induced deformation, the laminated plate analysis
developed in Section 2.3 can be modified to determine the overall
elastic response. The stresses due to moisture absorption and
temperature change are identically analogous, in that they are
dilatational and self-equilibrating when the whole laminate is
considered. In general, the longitudinal properties of polymer
matrix composites are far less sensitive to temperature and moisture
than the transverse and shear properties of unidirectional compos-
ites, because of the excellent retention of mechanical properties by
the fibers. The greatest reduction in properties occurs when
temperature and moisture are combined, such as in hot and humid
environments. However, the combination of temperature and
moisture could render a laminate free of residual stresses. This can be
understood by considering, for example, a [0°/90°] cross-ply based
upon a resin matrix. The thermal stress induced from fabrication
is tensile in the transverse direction of a ply, while the residual
stresses induced by moisture absorption are compressive. Some
details of analysis of such phenomena are developed in the following.

Referring to the principal material coordinate axes of a unidirec-
tional lamina, the three-dimensional orthotropic stress-strain rela-
tions of Eq. (2.10) can be written as

M
<733

^23

W

0 0 0 l
c12 c 1 3 0

c12c22C23 c 2 3 C33 0

0 0 0 C44
0 0 0 0
0 0 0 0

0
0
0

C55

0

0
0
0
0

^ 6 6 /

a22T-

£ 3 3 -

\

a22T-
#33 T — /333/n

2e2 3

2e1 3

2el2

(2.48)
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Thermal and hygroscopic behavior 57

where au are the coefficients of thermal expansion and /?l7 are the
coefficients of hygroscopic expansion; the subscripts of these
coefficients indicate the principal material axes xt (i = 1-3). Also, T
denotes a small uniform temperature change from the 'stress-free'
temperature; m is the change in moisture concentration referring to
a 'moisture-free' environment. Both ocuT and pum indicate non-
mechanical strains.

Referring to the reference axes x-y and following Eq. (2.34), Eq.
(2.48) can be rewritten as

Oyy
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(2.49)

where

a^x = O"n cos2 0 + ar22 sin2 8 pxx - f3u cos2 9 + /322 sin2 9

&yy = a22 C°S2 0 + C£ \ \ 6 y = /32 2 cos2 6 + p n sin2 0

— a-22) sin 6 cos 6 = (j8n-j322) sin6 cos

(2.50)

and 0 is defined in Fig. 2.3.
The relations given in Eq. (2.49) require that the thermoelastic

deformations of the medium are accurately described by linear
coefficients of thermal expansion over the range of temperatures of
interest, an often used assumption. Similarly, the deformations
induced by the hygroscopic nature of the medium are characterized
by linear coefficients of hygroscopic expansion, an assumption
which follows from existing experimental data.
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58 Thermoelastic behavior of laminated composites

The elastic constitutive relations for a laminate subjected to both
thermal and hygroscopic environments have been formulated by
Pipes, Vinson and Chou (1976). For the purpose of laminar
analysis, Eq. (2.49) is reduced to

' oxx\ Qn Qii 2I6\ / £xx -axxT- /3xxm \

= ( G i 2 G22 2 2 6 11 8yy - ayyT ~ /3yym I (2.51)

WGi6 Q26 Qe6/ \2£Xy- axyT -pxy

Substituting Eq. (2.51) into Eq. (2.25) and following the notation
of Eq. (2.30), the constitutive equation is expressed in the following
condensed form:

[N] = [A][e°] + [B][K] - [N]T - [N]m (2.52)

In Eq. (2.52), the effective thermal force resultants, [N]T, and
effective hygroscopic force resultants [N]m are introduced with the
following definitions:

rh/2

Nj= (Quaxx + Ql2«yy + Ql(,axy)T(z, t) dz
J-h/2

J-A/2

(Qi2a
xx + Q22a

yy + Q26a
xy)T(z, t) dz (2.53a)

J-h/2

rh/2

= (Ql6<Xxx + Q26ttyy + Q<&ocxy)T{z, t) dz
J-A/2

/-A/2

= (Gllflc. + Ql2pyy + Q\6PXy)m(z> 0 dz
J-A/2

J-A/2

(QuPxx + Q220yy + Qxfixy)m(z, t) dz (2.53b)
- A / 2

rh/2

(Q ,6PXX + Qlrfyy + Q6(,l3xy)m(z, t) dz
J-A/2

A?
J-h/2

-h/2

NT
xy

J-h/2

where t denotes time. Consider the A:th layer of the laminate; and
define J2 r(£ 0d£ = R(z, t) and J"zm(|, 0 d | = H(z, t). Then,
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Thermal and hygroscopic behavior 59

Eqs. (2.53) are written as summations

k=\

+ Q2(,<Xyy + Q
k = \

x[R(hk,t)-R(hk_ut)]
(2.54a)

i k , t) ~ H{hk.x, t)]

y.[{H{hkli)-H{hk.1,t)\
(2.54b)

Parallel to the treatment of in-plane response, the flexural
response of the laminate is obtained by substituting Eq. (2.51) into
Eq. (2.26)

[M] = [B][e°] + [D][K] - [MY - [M]- (2.55)

Here, the effective thermal moment resultant, [M]T, and effective
hygroscopic moment resultant, [M]m, are defined as

rfl/2

Mj = (Qu«xx + Ql2«yy + Qx6<xxy)T{z, t)z dz
J-hli

rh/2

M,'J = I(Qi2<xxx + Q22<xyy + Q26« xy)T (z, t)z dz (2.56a)
J-h/2

rh/2rh/Z

= (6 l6*« + Q26<*yy + Q66axy)T(z, i)z dz
J-h/2

J -h/2
(Gllfc* + Ql2pyy + Ql6PXy)m(z, t)Z dz

-ft/2
•̂ft/2

M™ = (G12&* + Q22fiyy + Q26Pxy)m(z, t)z dz (2.56b)
J-h/2J-h/2

rh/2

= (Gl6j8« + G26/3y, + Q66pxy)m(z, t)Z
JJ-h/2
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60 Thermoelastic behavior of laminated composites

By introducing the integrals of R(zy t) (i.e., S(zy t) = Jz R(%, t) d§),
and H(z,t) (i.e., /(z,i) = f//(§,0dg), Eqs. (2.56) are also
expressed as summations:

n

MTX = 2 ( G n * « + Qxioiyy + Qi6«xy)k[hkR(hk, t)
k = l

k^, t) - S(hk, t) + S(hk_u t)]

k, t)

_u t)]

KR Qlk, t)

_u t)]

^, t) - S(hk, t)

+ QlfiOCyy + 066

k.l, t) - S(hk, t)+S(hk_ut)

AC = S (Gn/5« + Qufiyy + QufiMWhk, t)

- hk.xH{hk_u t) - J(hk, t) + J(hk^, t)]

E pyy + Q26pxy)k[hkH(hk, t)AC == E (Gi2j8« + e
k=\

- hk_lH(hk_l) t) - J(hk, t) + J(hk_u /)]

ACy = {Qlffixx + + Q(*PXy)k[hkH{hk, t)

t_!,t)-J(hk,t)+J(hk_ltt)]

Finally, Eqs. (2.52) and (2.55) are combined as

/N,\ / Nx\ lN?\
Ny

NXy

Mr

My

Mxyj

I A n

Al2

AX6

# 1 1

f i .2

l#16

Ny
NXy

Ml
Mj

\Ml/Mj
Ai2

A22

A26

# 1 2

B 2 2

fi26

M™
Af™

\M?yj

AX6 BX]

A R

A R
^^66 ^ 1 6
f i l 6 D n

B26 D l 2

B 6 6 Dl6

#12 # , 6 \ / ^ \

#22 #26

#26 #66

A2 A6
D22 D26

D26 Djj

e°
tyyy°
YxyKxx

Kyy

2KXJ

(2.57b)

(2.58)
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Thermal and hygroscopic behavior 61

The response of a laminate subjected to known mechanical force
and moment resultants, and both thermal and hygroscopic effects,
can be determined by calculating the effective thermal and hygro-
scopic resultants and inverting Eq. (2.58). The inversion would
yield laminate mid-plane strains, £°, and curvatures, K. The strains
of the laminae could then be calculated by Eq. (2.22). Given the
strains, the stresses within each lamina could be determined
according to Eq. (2.51).

2.5.1.2 Thermal and moisture diffusion equations
The three-dimensional heat conduction equation for a

general anisotropic solid of constant conductivity coefficients is
given by (Ozisik 1980)

Krr— :T-I-/CVV~ ^+/C,,— r + 2/Cru— - \-2,K
3xz yy dy1 3z2 y 3x dy 3x 3z

x B2T BT
+ 2Kjz ——- =pCp — (2.59)

Here, Kjj denote the coefficients of heat conduction, p is mass
density, and Cp is the specific heat. The temperature of the elastic
medium, T, is a function of location (x, y, z) and the time, t. It is
understood that there is no internal heat generation of the elastic
body.

For a thermally orthotropic material, with respect to the re-
ference axes x—y—zy Eq. (2.59) is simplified as

KT^l+KT^l+KT^I=pC 3T

Here, the thermal conductivities Kjxy Kjy and KT
ZZ are related to the

conductivities along the material principal direction, i.e. Kj
x, Kj2

and Kj3 using transformation equations identical in form to those
given in Eqs. (2.50).

An equation identical in form to Eq. (2.59) can be written for
moisture diffusion. Consider, for instance, the diffusion of moisture
along the laminate thickness (z) direction, the governing equation is
reduced to

,„ 2m dm
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62 Thermoelastic behavior of laminated composites

where K™z is the moisture diffusion coefficient and m=m(z,t)
denotes the moisture concentration distribution. Equation (2.61) is
further discussed in Section 2.5.2.

In Section 2.5.3, the transient interlaminar stress induced by heat
conduction through the laminate width (y) direction is discussed.
Then, T = T(yy t), and Eq. (2.59) for each lamina is reduced to

K ^ = pc»Tt £ . 6 2 )

In Section 2.5.4, heat conduction in the plane of a unidirectional
composite is considered. The governing equation for heat conduc-
tion becomes

K + K ^ C ( Z 6 3 )

2.5.2 Hygroscopic behavior

2.5.2.1 Moisture concentration functions
Pipes, Vinson and Chou (1976) assume that the classical

diffusion equation (see Jost 1960) governs the absorption and
desorption of moisture by a hygroscopic material as given in Eq.
(2.61). Consider first the case of moisture absorption. If the
laminate is assumed to be initially moisture free, while its surfaces
z = ±h/2 are exposed to a moisture concentration Mo, then
moisture concentration in the laminate at position z and time t is

m(z, t) = Mo\l - 2) mn cos(anz) (2.64)

where

_ (2n + 1)JT

and

4 f (-1)"

From Eq. (2.64), the effective hygroscopic force resultant can be
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Thermal and hygroscopic behavior 63

readily determined by combining Eqs. (2.54b) and (2.64):

Nf =E (Gll/8« + QllPyy +

\hk- hk_x - X —- (sin(anhk) - sin(anftJt_1))

= ' „ n ( 2 - 6 5 )
T A m , . ]
L n=0 an " J

x\hk- hk_l - 2 —2

The effective hygroscopic moment resultant is then determined
from Eqs. (2.57b)

U(hl - Al-,) - £ — (A* sin(aBAft
L «=o ««

f (anAfc_0)
- I

a (2.66)

V m" z' \ / 1
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64 Thermoelastic behavior of laminated composites

hl - h U ) - i — (hk sin(aA)
n=0 an

- hk_x %m(anhk^)

~ S -f (cos(anhk) - cos{anhk_x))

Next, consider the desorption of moisture. The laminate contain-
ing a uniformly distributed moisture concentration, Mo, is exposed
to a moisture-free environment on its surfaces z = ±h/2. The
solution of the diffusion Eq. (2.61) corresponding to these boundary
conditions is

m{z, t) = M o E mn cos(anz) (2.67)

The corresponding effective hygroscopic force and moment resul-
tants are

m

(2.68)

x (sin(anhk) -

^Z —-(A* sin(anhk)
n=0 «n

S "T (cos(a«/iit) - c
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Thermal and hygroscopic behavior

k = \

x E — (hk sin(anhk) - hk_x s i n (
Ln=O fl«

+ Z - £ (cos(anhk) - cos(anhk_x))J
«=o«« -I

65

(2.69)

x 2 —

n=0
(anAft_!))

2.5.2.2 Hygroscopic stress field
Pipes, Vinson and Chou (1976) have illustrated the hygro-

scopic effects on a carbon-epoxy system (T300/5208) comprising a
six-ply laminate of [0°/+45°/—45]s, where each lamina is of the
thickness h. It is assumed that the diffusion coefficient, K™z) and the
coefficients of expansion, a and /?, are constant over the ranges of

Fig. 2.9. Moisture distribution profiles during absorption. (After Pipes,
Vinson and Chou 1976.)

z/fc 0 m/Mo

- 3 L
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66 Thermoelastic behavior of laminated composites

temperature and moisture concentration of interest. The material
properties are E n = 143GPa, E22 = 10.1 GPa, v12 = 0.31, G12 =
4.14 GPa, pn = 0, /322 = 6.67 x 10~3/wt% and h=0.1397 mm.

Figure 2.9 illustrates the moisture profiles across the laminate
which is moisture free at time t = 0, and then exposed to an
environment on both surfaces of moisture concentration Mo. The
range of K™zt values is between 1 x 10~5 and 5 x 10~4. It is seen
that by K™zt = 5 x 10~5 the moisture concentration at the mid-
surface is 20% of that at the surface.

Figure 2.10 shows the profiles of oxx, which is compressive in the
outer, 0°, laminae, because of the expansion caused by the moisture
gradients of Fig. 2.9, and the inner four laminae at ±45° are all in
tension. Stress values are maximum at the outer surfaces. The
profiles of oyy follow the same trend as oxxy and oyy > oxx at each
time. In both cases the steady state is achieved at K™zt > 5 x 10~4.

Figure 2.11 shows that txy = 0 in the outer two layers because
they are at the orientation of 6 = 0°; the same would occur for any

Fig. 2.10. Distribution of stress, oxx during moisture absorption. (After
Pipes, Vinson and Chou 1976.)

- 3
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Thermal and hygroscopic behavior 67

layers at 6 = 90° in balanced laminates. The in-plane shear stresses
increase with time, because of the increasing strains caused by
increased moisture content; by the time of steady state (Kztlzt>
5 x 10~4) the shear stresses are much larger than either the oxx or
oyy stress. These large shear stresses imply large interlaminar shear
stresses, ozx and ozy, near laminate discontinuities.

2.5.3 Transient interlaminar thermal stresses

2.5.3.1 Transient temperature field
Consider an x direction infinite laminated plate subjected to

a temperature field T =To on two edges (y = ±b) at time t = 0+

(Fig. 2.12). By assuming that the temperature field in each layer is
independent of the thickness direction, i.e. T = T(y, t), the heat
conduction equation for each lamina follows Eq. (2.62).

Fig. 2.11. Distribution of stress, rxy, during moisture absorption. (After
Pipes, Vinson and Chou 1976.)

z/h
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68 Thermoelastic behavior of laminated composites

The boundary and initial conditions are

T(±b,t)=To T(y, 0) = 0 (2.70)

The solution of the governing equation Eq. (2.62) by the method of
separation of variables is

(2.71)

where

(2n

K
y

2.5.3.2 Thermal stress field
Y. Wang and Chou (1989) have considered the transient

thermal stresses in an orthotropic composite laminate. Since the

Fig. 2.12. Geometry of an angle-ply laminate for analytical modeling.
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Thermal and hygroscopic behavior 69

thermal boundary conditions are uniform along the surfaces y =
±b, the displacements are independent of the x axis and expressed
as:

(2.72)

u = u{y,z,t)

v = v(y,z,t)

w = w(y, z, t)

The stress-strain
follow Eq. (2.49):

n — C F 4

oyy = Cl2exx 4

°zz = Cl3exx +

Oyz Z-L^44CyZ

°xz = 2C55£XZ

where

a- = ^ J . C 1 1 +

a-2= ar^C12 +

6c3 = axxCn +

a6=aC [C1 6 +

i

relations

" Cl2eyy 4

' (--22£yy +

' C23£yy +

• C26£yy +

<XyyCl2 +

0tyyC22 4-

+ayyC23 +

Xyy C26 4

for such an orthotropicl

C16exy -

C26exy -

C36sxy -

C36£zz +

a z z C 2 3 ;

azzC33

+azzC3t,4

z42C16exy-

h 2C26exy -

z+ 2C36sxy -

h 2C 6 6 £ x y ~

- a^Ci6

4 axyC26

+ ^ c 3 6

4 ar,yC66

lotrc

*2r

&6T

(2.73)

(2.74)

The equilibrium equations can be written in terms of the
displacements:

d2u cfu a2u d2w _ _ dT
Cs6

 5 / + Cs5 az2 + Cz6 a / + C36 ay 3 z " a 6 dy

(-26 n 2 + ("22 - 2
 + ^44 _ 2

 + I*-'23 + *--44; _ - — *2 _

3y 3>> dz dy dz dy

C (Q C) C ^ °C36 aidz + (C44 + C23) did~z + c" I f + ^ a ? =
(2.75)

The equilibrium equations can be solved by a singular perturbation
technique (Van Dyke 1975). It is assumed by Y. Wang and Chou
(1988, 1989) that, for h/b sufficiently small, i.e. <10% (see Fig.
2.12), the linear and higher order terms of h/b can be neglected and
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70 Thermoelastic behavior of laminated composites

a zeroth order perturbation approach (Hsu and Herakovich 1976,
1977) is applied. The solution of Eqs. (2.75) for the A:th layer in the
interior region (Y = y/b < 1) of a laminate is

D(Y,t) (2.76)

2w

where

2z

q2Qi(Y,t)-qiQ2(Y,t)

Qi(X, t) = i ( ^ a3 - &i) Tk(Y, t)h^ (2.77)

k = \

h{k) = A:th layer thickness

, 0 = l Tk(Y, t) dY

The subscript k indicates the A:th lamina of the n-layer laminate.
Following Hsu and Herakovich (1976, 1977), a stretching trans-

formation parameter is introduced to obtain the solution for the
boundary layer region (Y ~ 1):

f? = (1 - Y)/(h/b) (2.78)
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Then the equilibrium equations (2.75) become

- c?V- 3 2 W / A W & 6 \ 3 T_/h\( &
~ \b)\C66 3rj

2 55 3Z2 26 3ri
2 3n rj dZ \b)\CmJ 3Y

32U - &V 32V - 32W
C26 ^TT + C22 T~2 + C44 T ^ ~ ^L23 + L44J

(2.79)
_ / A \ / &2 \ 3T - 32U - - 32V

\b/\Cmi,J 3Y 36dridZ 23 44 3r)3Z
m

c

where Cti — CijICmaiX, and Cmax is the largest among all the Cfy

values. The following expressions of the displacement field are
assumed for matching the solutions in both interior and boundary
layer regions, based upon Prandtl's matching principle:

= B(Y,t) + PeXri cos(dZ)

V(k) = D(Y, t) + Relr> cos(dZ) (2.80)

Here, 5(F, t)> D{Yy t) and £(y, r) are the interior region solutions
(Eqs. 2.77); P, R and 5 are coefficients to be determined for the
correction terms; 6 is an undetermined positive constant; A is the
negative characteristic of Eqs. (2.79). It is seen from Eqs. (2.80) that
away from the boundary layer region (77 » 1), the correction terms
have no influence on the displacement field; their effects become
significant in and near the boundary layer region.

Substituting the U(k\ V(k) and W(k) expressions into the
equilibrium equations (2.79), the six roots of A for non-trivial
solutions of P, R and S are obtained:

A 3 , 4 = ± M (2.81)

A5>6 = ±ck8

where ak, bk and ck are three positive constants. The positive roots
of A are dropped to avoid divergence in the displacement field.
Thus, the displacements for both the interior and boundary layer
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72 Thermoelastic behavior of laminated composites

regions can be written as follows:

U(k) = B(Y, t) + (P1e-ak6ri + P2f
bk6ri + P3e"c*6f|) cos(<5Z)

= D(Y, t) + (Rtf-""6" + R2e-bk6r> + R3e-c*Sri) cos(<5Z)

= E(Y, t)Z + (S^-""6" + S2e-btSri + S3e-Cta") sin(<5Z)

(2.82)

There are ten unknowns for the displacement solution of the A:th
layer (Pl9 P2, P3, Ru R2, R3, Su S2> S3 and d).

The available equations for the solution of these constants are: (i)
three stress boundary conditions, oyy(b, z) = oxy(by z) = oyz(b, z) =
0; (ii) six equilibrium equations (2.79); and (iii) the integrated
equilibrium condition

f1/2J = j ox
1\

Y,-)bdY (2.83)

A four-layer angle-ply composite is taken as a numerical ex-
ample. Each layer is 5 mm in thickness h(k\ 200 mm in width (b).
The SiC/borosilicate glass laminate is used as a baseline composite
system for demonstration of the results. The transient interlaminar
normal stress distribution of a [—45°/45°]s SiC/borosilicate glass
laminate, which is subjected to a sudden edge heating of the
magnitude To = 1°C at t = 0+, is demonstrated in Fig. 2.13. No stress
singularity is found as a consequence of the assumed displacement

Fig. 2.13. Transient interlaminar thermal stress of a SiC/borosilicate glass
[-45°/45°]s laminate for Vf = 30% and To = 1°C. (After Y. Wang and Chou
1989.)
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Thermal and hygroscopic behavior 73

field, but it is apparent that the interlaminar normal stress con-
centration increases very significantly as approaching to the free
edge of the plate (Y = 1). The stress at Y = 1.0 is about three to
twenty times higher than that at Y = 0.90 for t = 10 s to ». As the
heating proceeds, the overall interlaminar normal stress increases
smoothly, while the stress which is very close to the boundary
remains almost constant. Also, the interlaminar normal stress tends
to zero away from the free edge of the laminate due to the adoption
of the classical lamination theory in the interior region.

Figure 2.14 shows the results of a parametric study of the stress
solution sensitivity to the composite elastic and thermal properties.
Here the [—45°/45°]s SiC/borosilicate glass laminate is taken as the
baseline system, and A indicates an increment. The Young's
modulus (£33) and thermal expansion coefficient (a33) along the plate
thickness direction have a more significant effect on the stress ozz than
the thermal conductivity (K33) and specific heat (Cp). The transient
thermal stress analysis can be applied for the characterization of
thermal shock resistance capability of composite materials. (See, for
example, Cheng 1951; Kingery 1955; Y.Wang and Chou 1991.)

2.5.4 Transient in -plane thermal stress
Having discussed the thermoelastic field due to one-

dimensional heat and moisture diffusion in Sections 2.5.2 and 2.5.3,

Fig. 2.14. Parametric studies of stress solution sensitivity to composite
elastic and thermal properties. The base material is a SiC/borosilicate glass
[-45°/45°]s laminate. Calculations of \Aozz\/azz are based upon £ = 2min
and Y = 0.99. (After Wang and Chou 1989.)
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74 Thermoelastic behavior of laminated composites

a two-dimensional transient heat conduction problem is examined in
the following. The model material considered is a unidirectional
lamina. The interaction of thermal stresses among the layers of a
laminate is thus not included in order to clearly demonstrate the
effect of transient heat conduction.

2.5.4.1 Transient temperature field
Consider the two-dimensional problem of an orthotropic

slab with a rectangular region (0 < x < /X, 0 < y < /2) as shown in
Fig. 2.15. The slab is initially held at a uniform temperature and
then the edge y = l2 is suddenly subjected to an arbitrary tempera-
ture distribution or heat flux f(x). The two-dimensional tempera-
ture distribution, T{x> y\t) in the rectangular region is assumed to
satisfy the heat conduction equation (2.63).

The initial condition is

T(x,y;0) = 0 for f = 0 (2.84)

The boundary conditions of the rectangle assume the following

Fig. 2.15. Thermal stress variations with time for K = 0.1 at the cross-
section x = 0. (After H. Wang and Chou 1985.)
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general forms:

dT
-a1- — +b1T = 0 fo rx=0 (2.85a)

dT
a 2 - + b2T = 0 iorx = h (2.85b)

dT
-a3— +b3T = 0 fo ry=0 (2.85c)

dy

dT
a4 — + b4T=f(x) for y=l2 (2.85d)

dy

Here, at (i = 1, 2, 3, 4) are conductivities for the respective direc-
tions, and bi are the coefficients of surface heat transfer. The
various types of boundary conditions can be obtained through the
proper selections of the constant ratio bja i (see, for example,
Carslaw and Jaeger 1959). Equations (2.85a)-(2.85c) correspond to
zero surface temperature or heat flow, whereas the non-
homogeneous boundary condition of Eq. (2.85d) is for an arbitrary
variation of surface thermal condition.

Equation (2.85d) suggests the use of the principle of superposi-
tion. The problem has a steady-state solution as f-» °°. it is assumed
that

T{x,y\t) = 4>(x,y)+V(*>y\0 (2.86)

such that <j)(x, y) and ip{x, y\ t) satisfy

xx - 2 ^ W T ^ - U (2.87)

a 1 - z + fe1rf) = O forx=0 (2.88a)

d(b
— + b2<p = 0 forx = l1 (2.88b)

' ox

dd>
a3—t — + b3(t) = 0 fo ry=0 (2.88c)

3
3 y

3d)
^ + b4<f)=f(x) for y = l2 (2.88d)
dy
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and

d~t

for f = 0

for x = 0

for x = /,

for y = 0

for y —12

(2.89)

(2.90)

(2.91a)

(2.91b)

(2.91c)

(2.91d)

dtp
1 3x

rx
dtp

°3 dy
dtp

ttA dy
H. Wang and Chou (1986) have obtained the general solution of <p
and ip with the unknown constants in the infinite series expressions
to be determined by the boundary conditions of Eqs. (2.88) and
(2.91) and initial condition of Eq. (2.90).

An example of this solution technique is given by H. Wang and
Chou (1985) for a slab initially held at a constant temperature and
suddenly subjected to an arbitrary temperature variation along one
of its edges. The constants in Eqs (2.85) are ax = —1, a2 = a3 = b{ =
0, and b2 = b3= l. The temperature field solution is

T(x, y;t)= 2 1n cos dnx sinh -=y

+ E 4m cos dnx sin -^y exp[-d(d2
n + n2

m)t]\

(2.92)

where

U A x x / p i _ p , A — P^yyl r^xX

2 K 6
Lm(on, Und = j2 4(5n) 77-71—;—-jsinh -^ l2

h
Kl \K,

2 1 r/, (2-93)
«)

on , onl2 . oj2a4 — cosh — - + b4 sinh ——
A A A

— - — J T n = 1,2, 3, . . . ,

1 f".

-jT\ i cos dnx Ax
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Also, fim/K are the positive roots of

If a4 = 0 and b4 = 1,

^ = ̂ jt = om m = ly2,3y...,
<*> (2.94)

A /2

H. Wang and Chou (1986) have tabulated the solution of tempera-
ture field from the various combinations of aly a2y a3y bXy b2 and b3

values of Eqs. (2.85).

2.5.4.2 Thermal stress field
Consider a unidirectional fiber composite; let the principal

material directions xx and x2 coincide with the reference axes x and
y, respectively. The stress-strain relations follow Eq. (2.49) with
the Cij replaced by Ci}. Depending upon the thickness of the elastic
medium in the z direction, the thermoelastic problem is in the state
of either plane strain or plane stress. In the case of plane strain, the
stress components in the x—y plane are related to the in-plane
displacements, u{xy y\i) and v(xyy\t)y and the temperature,
T(xy y; t)y by substituting the strain-displacement relations into the
stress-strain relations of Eqs. (2.73). The results are

oxx = Cu — + Cn — -alT(x,y;t)

du dv
Oyy = C12 — + C22 — - a2 T(x, y; t)

(2.95)
du dv ,

tfzz = C13 — + C23 — - a3 T(x, y; t)

where

drj = Cn<xn +

&2 = Cl2an + C22a22 + C23a33 (2.96)

6c3 = CX3axx + C23a22 + C33a33

The relations corresponding to Eqs. (2.95) for plane stress condition
are obtained by replacing Ciy and at by Ctj — C3J/C33 and at —
6c3C3iIC33y respectively.
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78 Thermoelastic behavior of laminated composites

The displacement equations of equilibrium governing the plane
strain conditions are

dtu ^a,fr Mr ,J^L_- SJL

(2.97)

32u 3 ^ ^ _ ^ L _ - 3 T

The equilibrium equations are solved by introducing the displace-
ment potentials iply xp2 and 0 defined by

(2.98)

^ + V2p + X^
dy dy dy

where vx, v2 and A are unknown constants. Also, 0 is the
homogeneous solution and \pl and ip2 are particular solutions of
Eqs. (2.97).

An example of the transient thermal stress solution is given by H.
Wang and Chou (1985) for a rectangular slab (-/x<JC</x and
0 < y < / 2 ) with fibers oriented in the x direction. The initial
temperature of the slab is T = 0. Then the following form of
temperature rise at the upper edge (y = l2) is adopted:

T=f(x) = T0cos^-x fovt>0 (2.99)

while the temperature over the remainder of the boundary is
maintained at the initial value. All edges of the rectangle are
assumed to be traction free:

oxx = oxy = 0 for x = ±lx
(2.100)

Oyy = OXy = 0 f°r y = ®> h

The thermal and elastic properties as given by Akoz and Tauchert
(1978) simulating a boron/epoxy composite are adopted for the
numerical calculations. Owing to the symmetry of the assumed
temperature rise, only one half of the rectangle ( 0 < x < /x) needs to
be considered. Thus, the boundary condition Eq. (2.85d) is reduced
to a4 = 0 and bA = 1. For the convenience of presenting the
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numerical results, the following dimensionless quantities are intro-
duced for temperature stress, time, and lamina dimension, respec-
tively: T = T(x,y;t)/To; otj = otj{xyy;t)/&2TO9 R = DT/L2LY and 1 =
klh-

Figure 2.15 shows the y direction variation of thermal stresses at
the cross-section x = 0 for the various dimensionless time intervals.
It is clear that large longitudinal stresses oxx occur in the vicinity of
the heated boundary, where the relatively large temperature
gradient, dT/dy, exists. On the other hand, the transverse stresses,
oyyy and the shear stresses oxy are fairly small. Also, for axxy the
maximum transient tensile stress is 25% higher than that in the
steady state; the maximum transient compressive stress near the
upper edge (y = l2) is 78% higher than the corresponding steady-
state stress. An examination of the plots of oxx and oxy at a given
time interval indicates that each stress is in self-equilibrium when
the slab is free to deform, i.e. no boundary constraints. This is
consistent with the nature of thermal residual stresses.
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