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Nonlinear elastic finite deformation of
flexible composites

9.1 Introduction
Flexible composites, which are described in Chapter 8,

behave very differently from conventional rigid polymer composites in
the following ways:

(1) Flexible composites are highly anisotropic (i.e. longitudinal
elastic modulus/transverse elastic modulus » 1). Figure 9.1
compares the normalized effective Young's modulus
(Exx/E22) vs. fiber orientation for two types of unidirec-
tional composites. The upper curve obtained from Kevlar-
49/silicone elastomer shows that the stiffness of the elas-
tomeric composite lamina is very sensitive to the fiber
orientation. At a 5° off-axis fiber orientation, for example, a
1° change in fiber angle causes the effective stiffness to
change by 53%. The lower curve obtained from Kevlar-
49/epoxy shows less than 7% change at the same off-axis
angle.

(2) Flexible composites show low shear modulus and hence
large shear distortion, which allows the fibers to change
their orientations under loading.

(3) Flexible composites have a much larger elastic deformation
range than that of conventional rigid polymer composites.
Thus, the geometric changes of the configuration (i.e. area,
direction, etc.) need to be taken into consideration.

(4) The nonlinear elastic behavior with stretching-shear cou-
pling, due to material and geometrical effects, is pro-
nounced in flexible composites under finite deformation.

Therefore, the conventional linear elastic theory, based on the
infinitesimal strain assumption for rigid matrix composites, may no
longer be applicable to elastomeric composites under finite
deformation.

The theories of non-linear and finite elasticity made a major
advancement during the Second World War, in response to the
development of the rubber industry. M. Mooney, in 1940, advanced
his well-known strain-energy function. Rivlin and colleagues (for
example, Rivlin 1948a&b; Rivlin and Saunders 1951; Ericksen and
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Introduction 475

Rivlin 1954), in a series of publications starting in 1948, successfully
predicted the large deformation of rubber-like incompressible
isotropic material. These works have greatly enhanced and stimu-
lated the development of nonlinear finite elasticity. The fundamen-
tal aspects of finite elasticity can be found in advanced text books
(for example, Truesdell 1966; Fung 1977; Malvern 1969; Spencer
1972; Lai, Rubin and Krempl 1978).

To predict the large deformation of fiber reinforced rubber
material, Adkins and Rivlin (1955) treated the nonlinear, aniso-
tropic, and finite deformation problem by using the 'ideal fiber
reinforced material theory'; the assumptions of volume incompres-
sibility and fiber inextensibility are basic to the analysis. Further
developments of this theory can be found in the work of Rivlin
(1964), Pipkin and Rogers (1971) and Spencer (1972). Difficulties
often arise in applying this theory to composites with complicated
fiber geometries and in cases where the extension of the fibers
cannot be neglected.

Fig. 9.1. Variation of effective Young's modulus with fiber orientation.
(After Luo, 1988.)
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476 Nonlinear elastic finite deformation

The ability of flexible composites to sustain large deformation and
fatigue loading, and still provide high load carrying capacity, has
been mainly analyzed in textile cord/rubber composites and coated
fabrics. However, most of the existing analyses on the mechanics of
pneumatic tires are primarily based on the composite lamination
theory for small linear deformation. Chou (1989) has provided a
review of the mechanics of flexible composites.

In recent years, the constitutive relation of biological materials
has been a subject of considerable research interest. A variety of
biological materials are incompressible, viscoelastic, and anisotro-
pic; they often demonstrate nonlinear behavior with a large
deformation range (Fung 1981). For instance, Aspden (1986)
considered the influences of fiber reorientation in biological mate-
rials during finite deformation by using a fiber orientation distribu-
tion function and assuming that the fiber carries only axial tension.
However, the finite deformation and the rigid body rotation of
fibers, as well as the shear property of the matrix material, which
greatly influence the fiber reorientation during deformation, are not
adequately considered in the analysis. Humphrey and Yin (1987)
presented a constitutive model based upon a pseudostrain-energy
function, and compared the theoretical analysis with both uniaxial
and biaxial experimental results. The parameters used in the energy
function are dependent on the experimental data; the fiber spatial
arrangements, which are responsible for the geometric nonlinearity,
are ignored in their analysis.

Various response functions have been proposed to represent the
experimentally determined nonlinear stress-strain curves in prin-
cipal material directions. Petit and Waddoups (1969) employed the
increment method. Hahn (1973) and Hahn and Tsai (1973) used the
complementary energy density to derive the stress-strain relation,
which is nonlinear in shear but linear in tensile properties. Jones
and Morgan (1977) used an orthotropic material model in which the
nonlinear mechanical properties are functions of the elastic energy
density. The nonlinear elastic behavior of textile structural com-
posites has been examined by Ishikawa and Chou (1983). How-
ever, these analyses are restricted to a small strain range.

In an effort to provide a rigorous treatment of the finite
deformation problem, two analytical approaches, considering both
geometric and material nonlinearities, have been employed in this
chapter to predict the constitutive relations of flexible composites
(R. S. Rivlin, private communication, 1986; Luo and Chou, 1988a,
1990a&b).
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Introduction 477

(1) In the first method (Section 9.3), a closed form repre-
sentation of the constitutive equations has been derived
based on the Lagrangian description. The strain-energy
density is assumed to be a function of the Lagrangian strain
components referring to the initial principal material coord-
inate X (Fig. 9.2a).

(2) In the second approach (Section 9.4), a nonlinear constitu-
tive relation has also been developed based upon the
Eulerian description where the deformed configuration of
the composite is used as the reference state. A stress-
energy function, referring to the moving principal material

Fig. 9.2. A rectangular element of composite lamina before and after
loading (a) in the Lagrangian system, (b) in the Eulerian system. (After
Luo and Chou 1988a.)
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478 Nonlinear elastic finite deformation

coordinate x (Fig. 9.2b), provides the basis for deriving the
constitutive relations; and an iterative calculation method is
employed.

The constitutive relations obtained from Sections 9.3 and 9.4
have been applied to study the nonlinear elastic behavior of flexible
composites with wavy fibers in Section 9.5. Section 9.2, which is
based upon Luo (1988), provides the basis for the theoretical
treatment of this chapter.

9.2 Background

9.2.1 Tensor notation
Some brief descriptions of the notations and operations of

tensors are shown in this section. These are taken from various
sources, including Fung (1965, 1977), Rivlin (1970) and Lai, Rubin
and Krempl (1978). It is not intended to provide a comprehensive
coverage of tensor analysis. Only the subjects that are relevant to
the present work are described. For simplicity, only Cartesian
tensors are used, and thus the distinction between contra variance
and covariance disappears and all indices of the tensor components
can be written as subscripts. Furthermore, tensors are printed in
bold-faced letters.

Einstein summation convention
The following three equations have the same meaning:

= ailX1 + ai2X2 + 0/3*3 + * ' * + 0«n*n (9.1)

The first line of Eq. (9.1) follows the rule of Einstein summation.
Here, / is known as the dummy index, which repeats once, denoting
a summation with respect to that index over its range, and i is a free
index, which appears once in every term of the equation, assuming
the numbers of 1, 2 or 3. The following are two other examples:

(1) For the two vectors a = a,e,, and b = biei (/ = 1,2,3), the
scalar product is defined by

3 3

c = a • b = 2 E «A(e, • e,) - a,&y(e, • e,) (9.2)
, - = l y = l
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Background 479

(2) For the matrices a = [atj\ and b = [Z>,y] (i = 1,2,3, ; = 1,2,3),
the product of these two matrices is

[c,y] = ab = (9.3)

Kronecker delta
The Kronecker delta 6 is defined as

or

fl for
10 for

[du 8
°2i $

d3l 6

i=j

22 <523

32 O 3 3 _

=

1

0

0

0

1

0

0

0

1

(9.4)

(9.5)

The following relations are useful:

(1) <5,y = 3 (9.6)
(2) 6itnTmJ = 7-0 (9.7)
(3) For the mutually perpendicular unit vectors el5 e2 and e3,

(9.8)

Permutation symbol
The permutation symbol is defined as

{ 1 if ijk is even permutation of 1, 2, 3

— 1 if ijk is odd permutation of 1, 2, 3

0 otherwise (i.e. if two of the indices are equal)

(9.9)

where the even and odd permutations are indicated as

Even permutation Odd permutation
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480 Nonlinear elastic finite deformation

The following relations are also used in this chapter:
vectors a = a & , and b = bfii, then

(1) For the two

a X b = eijkaibjek

where the unit vector . ,
.s normal to .he plan, con t a in i

det(m) =
m n

m22

(9.H)

undeformed and
considered as a 'mappi
find the transformation
lar Cartesian coordinates
configurations, respective!
inside the domain £>o is '

used in finite elasticity. The d - j j ^ a f t j r e l a t ^ ^ ^ ^

\ and D (Fig. 9.3). To
be two fixed rectangu-

u wiui — original and deformed
position of a —*tedc particle P

Position veCt°f X " *
1; this partide assumes
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Background 481

figuration can be described mathematically by the coordinate
transformation between Xj and xt.

The coordinate system Xl-X2-X3 is chosen as the reference
system. The description of deformation, of which the independent
variable is the particle position vector X in the original state, is
known as the Lagrangian description. The reference system X is
known as a Lagrangian coordinate. The transformation equation in
terms of Xj is

xi=xi(XuX2>X3) (9.12)

where the specified function XT (Xu X2y X3) is assumed to be
continuous and differentiate. It follows, then:

dx^-^dXj^XtjdXj (9.13)

where the dummy, or repeating, index,7, denotes a summation over
its range. The matrix form of Eq. (9.13) can be written as
[dx] = [g][dX], where the deformation gradient matrix [g] is

The strain tensor associated with the Lagrangian system is called
the Lagrangian strain (£,y), also known as the Green's or St.
Venanfs strain, and it is defined in matrix form as

where [g]T is the transpose of the deformation gradient matrix [g],
and [6] is the Kronecker delta. The explicit form of Eq. (9.15) is
given by

= 1 / 3*i 3*! dx2 dx2
11 2\3X9X 3XdX

\ldxx dx> 3x2 dx2 \

X2aX2 dX2aX2 I

= 1 /dxx dxi dx2 dx2
12 21 2 \3Xl 3X2 3XX 3X2

On the other hand, the coordinate system x1-x2-x3 can be chosen
as the reference system. Then the description, in which the
independent variable is the particle position vector x in the de-
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482 Nonlinear elastic finite deformation

formed state, is known as the Eulerian description, and the
reference system x is known as an Eulerian coordinate. The
transformation equation in terms of xt is Xt — Xt (xXy x2, x3). Then,

[dX] = [gHdx] (9.17)

where [g]"1 is the inverse matrix of [g] with the components

e^1 = —z_J^°A£j/ZJ_ (9 18")
dXj det g

where [co(g,y)]
T is the transpose of the cofactor matrix of gijy and

det g is the determinant of [g].
The strain tensor associated with the Eulerian system (in terms of

the deformed configuration) is termed the Eulerian strain (e,y), which
is also known as AlmansVs strain for large deformation and Cauchy's
strain for infinitesimal deformation (Fung 1977). It is defined as

or

x dxx

) (9.20)

(axlax1 ax2ax2\

2el2 = 2e2l= - I — + - -—
V ox i dx2 dXi dx2

Equations (9.16) and (9.20) can be rewritten in terms of the
displacement vectors U and u, which are associated with the
coordinate systems X and x (Fig. 9.3), respectively, and can be
expressed as

U = u = x - X (9.21)

Then, the alternate formulas for Lagrangian and Eulerian strain
tensors are

and

1 ldui duL_ duJi duh\M^^^) (9-23)

Cambridge Books Online © Cambridge University Press, 2010
Downloaded from Cambridge Books Online by IP 218.1.68.132 on Mon Apr 14 03:53:12 BST 2014.

http://dx.doi.org/10.1017/CBO9780511600272.010
Cambridge Books Online © Cambridge University Press, 2014



Background 483

If the displacement gradients are sufficiently small, the quadratic
terms in Eqs. (9.22) and (9.23) can be neglected in comparison with
the linear terms. Then, the Lagrangian and Eulerian strain tensors
are reduced to the linear forms, and both are equal to the strain
(e,y) for infinitesimal deformation

En = ~ • + - (9.24)

The force acting per unit area is known as stress. In the case of
finite deformation, the area and normal direction of a surface of an
undeformed element may be quite different from those of the same
surface in the deformed state. Thus, the stress can be defined by the
force per either undeformed or deformed area; the former is known
as the Piola-Kirchhoff stress or Lagrangian stress (n,y), and the
latter is known as the Cauchy's stress or Eulerian stress (a,y).

For the purpose of illustration, consider a rectangular element
ABCD of unit thickness, which is deformed into A'B'C'D' under a
uniaxial load P (Fig. 9.4), and neglect the dimensional change in the
thickness direction. The Eulerian stress is defined as the force per
unit deformed area,

orr =-CD'
(9.25)

The Lagrangian stress is defined as the force, which is acting on the
deformed surface, divided by the original surface area (correspond-

Fig. 9.4. A force P acting on a deformable body.
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484 Nonlinear elastic finite deformation

ing to the deformed area),

P
n*x~~cb

From Eqs. (9.25) and (9.26),

oxxC'D' = UxxCD = P

(9.26)

(9.27)

The general relations between the two stress descriptions can be
found by analyzing the deformation of a generic two-dimensional
element as shown in Fig. 9.5. Let QR, with area 6A and normal N,
be the edge surface of the element OQR in the undeformed state.
The corresponding edge surface in the deformed state is Q'R' with
area da and normal n. The coordinates xx-x2 are fixed on the
deformed element. Also let the surface force vector per unit area of
the deformed surface {Q'R') be f (traction), then the total surface
force acting on Q'R' is ida. The nominal traction, F, acting on the
undeformed edge surface (QR) is so defined that

F6A = (da = P (9.28)

Fig. 9.5. The correspondence between Lagrangian stress and Eulerian
stress.

Undeformed element OQR

0 ,2

Deformed element O'Q'R'
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Relations based on the Lagrangian description 485

where P is the actual force acting on the surface element Q'R' in
the deformed state. By neglecting the body force and assuming that
the displacement rate with respect to time is very small, the
following relation from force equilibrium can be obtained:

f^Ojtn, (9.29)

where f and nj denote the components of f and n, respectively.
Similarly,

i? = iyv} (9.30)

where Ft and Nj denote the components of F and N, respectively.
Substituting Eqs. (9.29) and (9.30) into Eq. (9.28) and applying

the relation

/ i y ^ ^ (9.31)

the result is

a = (detg) - 1
gn (9.32)

or

^(detgr^JI*, (9.33)

where detg is the determinant of g. The inversion of Eq. (9.32)
gives

n = (detg)g'1a (9.34)

or

nji=(detg)gjk1aki (9.35)

Note that the Eulerian stress tensor is symmetric (i.e. otj = ay7)
whereas the Lagrangian stress tensor (Eq. (9.34)) is not symmetric.
However, the following quantity

PAB = ~dt n B i = (det Z)gA>gBi °i> (9.36)

is symmetric, and PAB is known as the second Piola-Kirchhoff stress
tensor, or simply the Kirchhoff stress.

9.3 Constitutive relations based on the Lagrangian description

9.3.1 Finite deformation of a composite lamina
A basic element in a flexible composite is assumed to be a

thin lamina consisting of straight, parallel continuous elastic fibers
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486 Nonlinear elastic finite deformation

embedded in an elastic matrix which can sustain large deformation.
It is also assumed that the lamina is homogeneous on a scale much
larger than that of the inter-fiber spacing. Then, the flexible
composite lamina can be treated as a homogeneous two-
dimensional orthotropic elastic continuum. In this section, the
constitutive equations for such an element under finite deformation
are derived based on the Lagrangian description.

Figure 9.2(a) illustrates a unidirectional flexible composite lamina
under a finite deformation, where the initial fiber orientation is at
an angle 6O with respect to the Xx axis. The rectangular Cartesian
coordinates l-t are along the initial fiber and transverse directions,
respectively. Under loading, the rectangular element ABCD in the
undeformed lamina is deformed into a quadrilateral element
A'B'C'D' in the deformed lamina. There is an angle A6 between
AD and A'D1. Corresponding to this change, the current fiber
orientation /' is at an angle 6 with respect to the Xx axis, and

6 = eo + A6 (9.37)

Because of the low shear modulus of the matrix and the highly
anisotropic nature (En» E22) of flexible composites, A0 may be
quite large and the effective elastic properties of the composite
become very sensitive to the fiber orientation. The geometric
nonlinearity of a flexible composite is mainly caused by the
reorientation of fibers. The material nonlinearity is also pro-
nounced in elastomeric composites under large deformation.

The deformation of the basic element ABCD (Fig. 9.2a) is
further examined in Fig. 9.6. Let the rectangular Cartesian coordin-

Fig. 9.6. Deformation of a rectangular element of a composite lamina,
referring to the principal material coordinate system. (After Luo and Chou
1990b.)
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Relations based on the Lagrangian description 487

ate system X coincide with the initial principal material coordinates
l-t, where the axis Xx is parallel to /. Here, a quantity with an over
bar refers to the initial principal material coordinates. Then, the
Lagrangian strain matrix in the system X is written as

(9-38)

The deformation of the element shown in Fig. 9.6 can be
expressed in terms of these Lagrangian strain components. Let the
line elements AD — dlo and AB = dto in the undeformed lamina;
also A'D' = dl and A'B' = dt in the deformed lamina. Then, the
following relations can be found:

2E n = [(dl)2-(dlo)2]/(dlo)2

2E22 = [(dt)2-(dto)2]/(dto)2 (9.39)

2E12 = -sin(A0)V(l + 2£n)V(l + 2E22)

where

A(j) = LB'A'D' - LBAD = (f) - Ji/2 (9.40)

9.3.2 Constitutive equations for a composite lamina

9.3.2.1 Strain-energy function
Rivlin (1959) made the following remarks concerning the

strain-energy function: 'It was realized that the physical properties
of an elastic material can be characterized by a strain-energy
function and that this cannot depend on the nine displacement
gradients in a completely arbitrary fashion. And also if the material
has symmetry, the dependence of the strain-energy on these strain
components cannot be arbitrary either.' Following R. S. Rivlin
(private communications, 1986-7), the strain-energy density treated
here is assumed to be a function of the Lagrangian strain com-
ponents referring to the principal material coordinates. In the
two-dimensional case, referring to Eq. (9.39), the strain-energy per
unit volume is written as

W = W(En,E22,E12) (9.41)

Since W is unchanged by the following permutation, namely,

Xx—*—Xi and x1->—Jc1

or

X2-+-X2 and x2-> -x2 (9.42)
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488 Nonlinear elastic finite deformation

the strain-energy function must be an even function of El2. Then,
Eq. (9.41) is rewritten as

W = W(En,E22,E
2
12) (9.43)

Finally, the strain-energy per unit volume of the undeformed
lamina is assumed in the following fourth-order polynomial form:

W = \CXXE\ + \CnxE\ + \CnilE\ + Cl2ExE2

faEf, + ̂ CfftfaEf,

(9.44)

~%C222E2 + -\C2222E2

where Cijy Cijky and Cijkt are elastic constants. The short-hand
notations are used, namely, Ex = En, E2 = E22y and E6 = 2El2.

9.3.2.2 General constitutive equations for a unidirectional lamina
The stress matrix referring to the material principal coordi-

nate system X1-X2, is given in terms of W (Rivlin 1970),

(9.45)
dW

Using Eqs. (9.38) and (9.43), it follows that

_ dW\
ljl 28ip\3Ejp

 + dEpj)

r { Wngngn + W22gi2gj2 (9.46)

where

dW

3EU

dW

dW= - = CnEu + CinEn + Cmi£n + Cl2E2
nE

dW
22 = - ^ = C22E22 + C222E

\
2 + C2222EL + C12£u (9.47)

ot22

dW
n = - ^ = 4 (C 6 6 E 1 2 + 4C6 6 6 6£?2)

6E12
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Relations based on the Lagrangian description 489

To derive the general constitutive equations with reference axes
other than the principal material directions, a two-dimensional
rectangular Cartesian coordinate system Xx-X2 is chosen in the
plane of the lamina. The angle between Xt and Xt is 0o (Fig. 9.7).
Let [a] be an orthogonal transformation matrix,

rcos0o -sin0ol

Lsin 6O cos 6O J

and [X] = [a] • [X]. Then, the transformation relations for the
deformation gradient and Lagrangian strain between coordinate
systems X and X are:

[£] = [a]T[g][a] (9.49)

and

[E] = [a]T[E][a] (9.50)

With Eq. (9.48), Eq. (9.50) yields

Eu = 5£n(l + cos 20O) + El2 sin 20O + \E22{\ - cos 20 O)

E22 = \En{l - cos 20O) - E12 sin 20O + \E22(\ + cos 20O)

E12 = E2X = \{E22 - Eu) sin 20O + E12 cos 20O

(9.51)

The stress matrix referring to the coordinate system X is

[°] = [a][o][a]T

(9.52)

With Eqs. (9.46) and (9.49), Eqs. (9.52) are expressed as

On = -7-—gipgjq{ap\aq\ Wn + ap2aq2W22

(9.53)

and

n>/ = gip{aplanWn + ap2aj2W22 + h(aPiaJ2 + ap2an)Wn}

(9.54)

Then, from Eq. (9.48), Eq. (9.54) is given in the following explicit
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490 Nonlinear elastic finite deformation

form:

n n = [gnc
2 + gi2cs]Wn + [gns

2 ~ gi2cs\ W22

n + [g22c
2 - g2lcs]W22

(9.55)
n 1 2 = [g22cs + g2lc

2] Wu + [g2ls
2 - g22cs] W22

= [gncs + gi2s
2]Wn + [gl2c

2 - gncs]W22

1
2gu(c

2-s2)]W12

where c = cos 6O and s = sin 0O.
Equations (9.55) are the general constitutive equations for a

composite lamina under finite deformation, where the deformation
gradients, giJf represent the geometric nonlinearity influenced by
the configuration changes of the lamina. The nonlinear expressions
of Wij (Eqs. (9.47)) represent the material nonlinearity of the
composites. If the deformation of the composite lamina is in-
finitesimal (i.e. gij = dij) and only the linear terms (i.e. C,7) remain
in the expression of Wijy Eqs. (9.55) can be easily reduced to the
familiar linear stress-strain equation used for rigid composites.

For a specific deformation, the deformation gradient matrix, [g],
is calculated from Eq. (9.14); the Lagrangian strain referring to the
principal material coordinates, [E], is obtained from Eqs. (9.15)
and (9.51); and Wtj are obtained by introducing [E] into Eqs. (9.47).
Then, the corresponding Lagrangian stresses, [II], can be deter-
mined from Eqs. (9.55). In the following Sections 9.3.2.3-9.3.2.5,
this procedure is illustrated by some specific examples.

9.3.2.3 Pure homogeneous deformation
Consider the rectangular lamina of Fig. 9.7; its edges are

parallel to the axes of the coordinate system X. The lamina is
subjected to a pure homogeneous deformation with principal
extension ratios Xx and A2 defined along the axes of the coordinate
system X. The deformation is described by

x \ AI-AI
(9.56)

x2 — A2̂ V2
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Relations based on the Lagrangian description

Consequently, referring to Eqs. (9.14) and (9.15),

and

From Eqs. (9.51) and (9.58), the following can be obtained:

En = J[(A? + A l - 2 ) + (A?- X2)cos20O]

£22 = i[(Af + A| - 2) - (A? - Al) cos 20O]

491

(9.59)

Then, the components of the Lagrangian stress are obtained from
Eqs. (9.55) and (9.57) as

(9.60)

n n = lx{c2Wxl + s2W22 - csW12)

n22 = X2(s
2Wn + c2W22 + csW12)

n 1 2 = A2[cs(Wi! - W22) + \{c2 - 52)W12]

n 2 1 = ^[csiWu - W22) + Kc2 - s2)Wn]

where Wn, W22 and W12 are given by Eqs. (9.47) and (9.59).

Fig. 9.7. Pure homogeneous deformation. (After Luo and Chou 1990b.)
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492 Nonlinear elastic finite deformation

9.3.2.4 Simple shear
Suppose that the rectangular lamina, with its edges parallel

to the axes of the coordinate system X, is subjected to a simple
shear of amount K in the direction of the Xx axis (Fig. 9.8). Then,
the deformation is described by

KX2
(9.61)

For this deformation, referring to Eqs. (9.14), (9.15) and (9.51),

LU 1 J LA A J

and

£12 = l[K2 + (2K sin 20O - K2 cos 20O)]

£22 = i[#2 - (2K sin 20O - K2 cos 20O)] (9.63)

£12 = l[K2 sin 20O + 2/C cos 20O]

Then, the components of the Lagrangian stress are obtained from
Eqs. (9.55) and (9.62):

n n = [c2 + Kcs]Wu + [s2 - Kcs]W22

+ [-cs + i
2K(c2-s2)]Wl2

n 2 2 = s2Wn + c2W22 + csWl2 (9.64)

n , 2 = csWn - csW22 + x2{c2 - s2)Wl2

n 2 1 = [cs + Ks2]Wn + [Kc2 - cs]W22 + [Kcs + \{c2 - s2)) Wl2

Fig. 9.8. Simple shear deformation. (After Luo and Chou 1990b.)
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Relations based on the Lagrangian description

Considering the example of 6O = 45°, Eqs. (9.63) yield

493

(9.65)

Then Eqs. (9.64) give

n u = i{(i + K)wu

K)Wn

- K)w22 - w12}

- l)W22 + KWX2)

(9.66)

Figure 9.9 shows the theoretical prediction of the stress-strain
relation (Eqs. (9.64)) for Kevlar/silicone elastomer laminae with
various initial fiber orientations under simple shear deformation. The
elastic constants used in the analysis are shown in Table 9.1 (Luo
1988). The result shows that the simple shear properties of a
composite lamina under finite deformation are significantly influenced
by the fiber orientation. Figure 9.10 gives the comparison between
analytical predictions and experimental results of a 0° specimen
under simple shear. Figure 9.11 shows the same comparison on a

Fig. 9.9. Theoretical predictions of simple shear deformation of
Kevlar/silicone elastomer composite laminae for various initial fiber
orientations. (After Luo and Chou 1990b.)
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494 Nonlinear elastic finite deformation

Table 9.1. Elastic constants of Kevlar-
491silicone flexible composites {After Luo,
1988).

Si ,
C

S22

•$2222

5 6 6

"J6666

"^2266

cn
^1111

c,2
c22
£ - 2 2 2 2
c66
(-6666

(MPa)1

(MPa)-'
(MPa)1
(MPa)1

(MPa)3

(MPa)-1

(MPa)"3

(MPa)-2

(MPa)"3

(MPa)
(MPa)
(MPa)
(MPa)
(MPa)
(MPa)
(MPa)

0.114 x 1 0 - '
0

-69.9 x10~6

0.306
0.563
0.387

77.5 x 10"'
3.43 x 10"6

56.3 x 1 0 '
8.6 x 10'
0

-1.3
2.77

-12.5
2.55

-2.45

Fig. 9.10. Comparisons between theoretical predictions and experimental
data of simple shear response of 0° Kevlar/silicone elastomer composite
laminae. (After Luo and Chou 1990b.)
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Relations based on the Lagrangian description 495

90° specimen; the experimental data, which are obtained from
three-rail shear tests (Whitney, Daniel and Pipes 1982), are lower
than the predicted values at large shear deformation. This is caused
by the edge effects, and fiber pull-out from clamped edges for 90°
specimens at large deformation.

9.3.2.5 Simple shear superposed on simple extension
A rectangular lamina, with the edges parallel to the axes of

the rectangular Cartesian coordinate system X, is first subjected to
the pure homogeneous deformation described by Eqs. (9.56),
followed by a simple shear of magnitude K. There are two cases for
the direction of the shear deformation: (1) parallel to the Xl axis,
and (2) parallel to the X2 axis; both are discussed in the following:

Case 1
Figure 9.12(a) illustrates this deformation, which can be

specified as

X\ — A\X\ ~\~ K.A2X2

X2 = A^A- 2

(9.67)

Fig. 9.11. Comparisons between theoretical predictions and experimental
data of simple shear response of 90° Kevlar/silicone elastomer composite
lamina. (After Luo and Chou 1990b.)
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496 Nonlinear elastic finite deformation

From Eqs. (9.14), (9.15) and (9.51),

:A,A2 I
+ D-iJ

(9.68)
and

- 2 -A! - A| cos 2 0 O

£22 = i[(A? + A| - 2 + A|A:2) - (A? - A| - k22K2) cos 20O

- 2ArA,A2 sin 20O] (9.69)

£12 = i[(Al - A2 + A2,*:2) sin 2QO + IKXJ^ cos 2do]

The components of the Lagrangian stress are obtained from Eqs.

Fig. 9.12. Simple shear superposed on simple extension. (After Luo and
Chou 1990b.)
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Relations based on the Lagrangian description 497

(9.55) and (9.68):

+ Kk2cs]Wn + [kxs2 - Kk2cs]W22

+ [-Axcs + \Kk2{c2 - s2)]Wl2

n 2 2 = A2[s2Wn + c2W22 + csW12]

n 1 2 = k2[csWn - csW22 + \{c2 - s2)W12] (9.70)

II21 = [Ajcs + KX2s
2]Wn + [/CA2c

2 - Xxcs]W

+ [KX2cs + Ui(c2 ~ s2)]W12

Case 2
Figure 9.12(b) shows the deformation defined by

x\ =
 AXA i

(9.71)
x2 — KAiJC i 4" A2JC2

For this deformation, referring to Eqs. (9.14), (9.15) and (9.51),

(9.72)
and

£n = i[(Af + A| - 2 + A2AT2) + (A2 - Â  + A2/C2) COS 2 6 O

+ 2A:A!A2sin20o]

fi22 = 4 [(Ai + A| - 2 + A2AT2) - (A2 - Al + A? /C2) COS 2 0 O

0 0 ] (9.73)

= 4[(Ai - * ? + A2A:2) sin 20O + 2 /a i A 2 cos 20O]

The components of the Lagrangian stress obtained from Eqs. (9.55)
and (9.72) are:

n 2 2 = [A25
2 + KXxcs]Wu + [A2C

2 - Kk1cs]W22

+ [X2CS + kKX^c2 - s2)]W12

(9.74)
]W22

n 2 1 = A,[csWu - csW22 + \{c2 - s2)Wl2]
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498 Nonlinear elastic finite deformation

Figure 9.13 illustrates an off-axis specimen under uniaxial tension.
It is understood that the clamping of the specimen at the ends
induces a local non-uniform strain field. However, if the length-to-
width ratio of the specimen is sufficiently large, a uniform state of
stress and strain prevails at the center of the specimen (Pagano and
Halpin 1968), and the central lines of the specimen remain straight
in the Xx direction. Then, this deformation corresponds to Case 1,
namely, 'simple shear superposed on simple extension'. The uni-
axial loading condition can be described as nn¥=0, n22=0 and
n21 =0. Then, from Eqs. (9.74),

u + s2W22 - csW12]

(9.75)

0 = csWn - csW22 + \{c2 - s2)W12

where Wtj are obtained by from Eqs. (9.68) and (9.47). The three
unknowns XXy k2 and K in Eqs. (9.75) can be solved from these
equations. Figure 9.14 shows the comparison between analytical
predictions and experimental results for the off-axis response of
Kevlar/silicone elastomer laminae under simple tension. The fiber
initial orientations are 10°, 30° and 60°. The elastic constants used in
the calculation are shown in Table 9.1.

Fig. 9.13. Off-axis specimens of flexible composite laminae (a) without
loading, (b) with loading. The 15° one is tirecord/rubber, and the 10° and
30° ones are Kevlar/silicone elastomer. (After Luo and Chou 1988a.)
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Relations based on the Lagrangian description 499

9.3.3 Constitutive equations of flexible composite laminates

9.3.3.1 Constitutive equations
The analytical methodology developed in Section 9.3.2 for

composite laminae is applied to study the constitutive relations of
laminated flexible composites (Fig. 9.15) under finite plane defor-
mation (Luo and Chou 1989). The stress resultant in Lagrangian
description (Ny) is defined as

rh/2

= ]
J-h/2

UtJdz (9.76)

where h is the initial laminate thickness. Ntj so defined gives the
total force in the i direction per unit length of the undeformed
laminate.

Assume that the laminate is composed of n layers of unidirec-
tional laminae. By neglecting the interlaminar shear deformation,
the deformation gradient, gi} (Eq. (9.14)), has the same value for all
the layers; this is also true for Etj (Eq. (9.15)). For an arbitrary A:th
lamina within the laminate, let 8(

o
k) be the fiber orientation angle

Fig. 9.14. Comparisons between theoretical predictions and experimental
results on 10°, 30° and 60° off-axis stress-strain response of Kevlar/silicone
elastomer composite laminae.
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500 Nonlinear elastic finite deformation

with respect to the coordinate Xlt and a\P the values given by Eq.
(9.48) for 6O = 6(

o
k). Also, for the kth lamina, let E\V be the values

of Eij given by Eqs. (9.51), and W\p the values of Wtj given by Eqs.
(9.47). Then, from Eqs. (9.54) and (9.76) the following can be
derived:

If the laminae are identical in thickness, t> then

(9.77a)

?a$+a (9.77b)

Equations (9.77) are the general constitutive equations for
flexible composite laminates under finite deformations. The ap-
plications of the constitutive relations are exemplified in the
following.

9.3.3.2 Homogeneous deformation
The homogeneous deformation of a composite laminate

(Fig. 9.16) is defined by

X\ —
(9.78)

Fig. 9.15. A composite laminate. (After Luo and Chou 1989.)
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Relations based on the Lagrangian description 501

where Xx and A2 are the extension ratios in the Xx and X2

directions, respectively. Thus, referring to Eqs. (9.14) and (9.15),
for all laminae:

t ]'
The Lagrangian strains referring to the principal material coordin-
ate for the kth lamina are obtained from Eqs. (9.51)

Eft = i(Aj cos2 0<*> + A| sin2 6™ - 1)

Eg A 2 sin2 0<*> + A2 cos2 0<*> - 1) (9.80)

Eg = i ~ A?) sin 0(*> cos 0^>

Then, the components of the Lagrangian stress resultant are
obtained from Eq. (9.77b)

" cos 26(ok)) - W(£ sin 2 6

k=\

+ Wg(l + cos 2d(ok)) + W & sin 20

= | A2 2 {(W^ - W^) sin

(9.81)

cos

sin 20<*> + Wg cos 20
k=l

Fig. 9.16. A symmetric flexible composite laminate under a uniaxial load.
(After Luo and Chou 1989.)
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502 Nonlinear elastic finite deformation

where W{\ \ W(£ and W& are obtained from Eqs. (9.47) and
(9.80) with two variables Ax and A2.

9.3.3.3 Simple extension of a symmetric composite laminate

(A) Tensile stress-strain relation
The state of homogeneous deformation is assumed for a

symmetric composite laminate with fiber orientation sequences of
+ 6o/—6J—dJ + do under unidirectional tension. Because En and
£"22 a r e e v e n functions of 0O, and E12 is an odd function of 6O (Eqs.
(9.80)), Eqs. (9.47) become

W(
22

e) (9.82)

-w\2-
6)

Then, Eqs. (9.81) can be reduced to

+ Wg\l - cos 20O) - W[e2> sin 20o}

h (9-83)
N22 = \A2{w[V(i-cosieo)

+ H\1 + cos 20O) + W(
tf > sin 26O}

M2 = N21 = 0

where h is the thickness of the laminate; W\p, obtained from Eqs.
(9.47) and (9.80), is a function of Xl and A2. With the uniaxial
loading condition and the values of elastic constants, the two
unknowns, Xx and A2, in Eqs. (9.83) can be solved.

For example, let 0O = 45°, from Eqs. (9.47), (9.80) and (9.83),

NJh = AX{C66(A? - A2
2) + }CWA? - Al)

3}

N22/h = 0

= (D - 4C66)A? - (D + 4C66)A| (9.84)

+ i ( C m + C222)(A? + Ai-2)2

+ l6(Cim + C'2222)(A1 + A2 — 2) + C6666(A2 — Aj)

where D = C n + 2C12 + C
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Relations based on the Lagrangian description 503

Figure 9.17 shows the comparison between the theoretical predic-
tions and experimental results of the stress-strain relation of [±45°]s

Kevlar/silicone elastomer composite laminates under uniaxial load.
Reasonable agreement has been found.

(B) Effective Poisson's ratio
The Poisson's ratio is defined as the negative ratio of the

strain in the Xj direction to the strain in the Xt direction due to an
applied stress in the Xt direction. The Poisson's ratio of a symmetric
composite laminate was derived by Posfalvi (1977) based upon a
finite deformation consideration. Although experimental results of
large deformation were presented, the comparison of theory with
experiments was still limited to the small deformation range.

From the above analysis the effective Poisson's ratio in the finite
deformation range can be readily predicted. For example, for a
[+0O/-0O]S laminate under unidirectional load, the effective
Poisson's ratio at a given strain level can be determined from Eqs.
(9.79) as

A l - 1
(9.85)

Fig. 9.17. Comparisons between theoretical predictions and experimental
data of stress-strain response of a [±45°]s Kevlar/silicone elastomer
composite laminate under uniaxial load. (After Luo and Chou 1989.)
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504 Nonlinear elastic finite deformation

where the relation between kx and A2 can be obtained from Eqs.
(9.83) with N22 = 0.

The approximate order of the ratio E22/ Eu can be obtained by
neglecting the non-linear terms (i.e. Cm, . . . , C6666, etc.) in the
expressions of Eqs. (9.47) for Wtj, Then

Ai— 1 At (9-86)
where

A = Cn cos2 6O sin2 0O + C12(sin4 do + cos4 0O)

+ C22 cos2 6O sin2 6O — 4C66 cos2 6O sin2 6O

B = Cn sin4 6O + 2C12 cos2 6O sin2 6O + C22 cos4 6O

+ 4C66 cos2 0o sin2 0o

For example, for 6O = 45°, Eq. (9.86) yields

A = (Cn + 2C12 + C22)-4C66

Since the shear modulus C66 for flexible composites is relatively
small, it can be assumed A/B ~ 1. Then, Eq. (9.85) becomes

^ = - 1 (9.88)
£11

Furthermore, if the flexible composite is very stiff in the fiber
direction (i.e. Cu»Cijy ij¥= 11) and 8o^0, Eq. (9.86) becomes

fs.Mzi __•!»£. (9.89)
En Af — 1 sin 6O

The results of Eq. (9.89) can also be derived by using the 'ideal
fiber reinforced material theory' (Adkins and Rivlin 1955).

Figure 9.18 gives the comparison between theoretical predictions
and experimental results of the ratio A2/Ax for [±0o]s

Kevlar/silicone elastomer composite laminates under uniaxial load.
The initial fiber orientations are 15°, 30° and 45°. Very good
agreement has been found.

Also, using the definition of Posfalvi (1977), the current Poisson's
ratio at a given strain level can be derived from Eq. (9.86) as
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Relations based on the Lagrangian description 505

Referring to Fig. 9.16, the current fiber orientation, 6 ( k \ of the
kth lamina, can be expressed in terms of klf A2 and the initial fiber
orientation 0^' as

= A,
J ' Aa c o s 0 J , ' A,

(9.91)

where kx and A2 are obtained by solving Eqs. (9.83).

9.3.4 Determination of elastic constants
In Section 9.3.2.1, the strain-energy per unit volume of an

undeformed lamina is assumed in a polynomial form (Eq. (9.44)).
The elastic constants in the strain-energy expression need to be
determined experimentally. Some experimental methods for char-
acterizing these constants are summarized below (Luo 1988).

9.3.4.1 Tensile properties
The constants Cn, C n l , Cnll, C22, C222, C2222, a nd C12

are associated with the tensile behavior of flexible composites and
are determined by unidirectional tensile tests. Consider a composite
lamina under a unidirectional load (i.e. I ln^O, n22 = 0 and

Fig. 9.18. Comparisons between theoretical predictions and experimental
results of the ratio A2/Al of [±0O]S Kevlar/silicone elastomer composite
laminates under uniaxial load. (After Luo and Chou 1989.)
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506 Nonlinear elastic finite deformation

n 1 2 = 0). For do = 0°, Eqs. (9.47) and (9.60) yield

A2 — 1\ 3 /A2 —
- I + C12I -

For 0O = 9O°, Eqs. (9.47) and (9.60) yield

2 - l \ 3/A2-l\
C2222\ - I + C22221 2 ; T L i 2 v 2

2 / \ 2
]2 _ 1 \ 3 / i 2 _

n n , Ax and A2 are measured experimentally from both 6O = 0° and
90° unidirectional tensile tests. The constants C n , C12, and C22 in
Eqs. (9.92) and (9.93) are related to the initial slope of these
experimental curves of n n / A , vs. (A2 — l)/2. The constants C m and
C222 are the nonlinear terms associated with the bi-modulus
properties of the composite; and the constants CU11 and C2222 are
the fourth-order nonlinear terms in Eq. (9.44). Cm, C222, C i m ,
and C22222 are determined by fitting the theoretical curves of Eqs.
(9.92) and (9.93) to the longitudinal and transverse experimental
curves of Hu/ki vs. (A2 - l)/2, respectively.

9.3.4.2 Shear properties
C66 and C6666 are the elastic constants associated with the

shear properties. Two test methods have been used for characteriz-
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ing the shear behavior: (1) three-rail 0° simple shear, and (2) simple
tension of [±45°]s specimen.

First, consider the simple shear test in which the applied shear
force is parallel to the fiber direction. From Eqs. (9.64), for 0 = 0,

= K(C22E2 + C222E2 + C2222E2) + C66E6 + C6666El

= K(C22 + 2C222K + lC2222K
4) + C^K + C6 6 6 6K

(9.94)

Since the values of C22, C222 and C2222 are already known from
tensile property measurements, C66 and Cg^ can be determined by
fitting the experimental data of U2l vs. K.

Next, consider the tensile test using [±45°]s specimens. For a
[±45°]s laminate specimen under a tensile load, Eqs. (9.84) can be
rewritten as

Nn/hX, = CM. - A|) + iC6666(A? - A!)3 (9.95)

By measuring h, Nu, Xx and A2, the curve of Nn/hkx vs. (A? — Ai)
can be determined experimentally. Then a curve fitting method can
be used to identify the constants C66 and C6666. Experiments using
both simple shear and tensile tests on Kevlar-49/silicone elastomer
composites have yielded comparable results of the elastic constants
as shown in Table 9.1.

The tensile experiment on [±45]s specimens has been quite often
used to determine the shear modulus of conventional rigid polymer
composites (see ASTM Standard D 3518-76). The basic equation
for this experiment is

oxxl2 = Gl2(exx-eyy) (9.96)

where the engineering stress (oxx) and strains (exx and eyy) are
measured experimentally.

In order to compare Eq. (9.95) with Eq. (9.96) the following
relations are introduced:

Ax = 1 + exx

A2=l + eyy (9.97)

Nn =Uxx 1 =oxxA2

2hkx~ 2 Ax~ 2 Ax

Cambridge Books Online © Cambridge University Press, 2010
Downloaded from Cambridge Books Online by IP 218.1.68.132 on Mon Apr 14 03:53:12 BST 2014.

http://dx.doi.org/10.1017/CBO9780511600272.010
Cambridge Books Online © Cambridge University Press, 2014



508 Nonlinear elastic finite deformation

Substitution of Eqs. (9.97) into Eq. (9.95) gives

°~f = J~ [Cee[(exx — eyy) + (<& - <&)]
Z* J- ~i &yy

+ C6666[(exx - £yy) + (e2
xx - E2

yy)f (9.98a)

For linear elastic materials (i.e. Cf^ = 0) under small deformation,
and by neglecting the higher order terms of strain, Eq. (9.98a) can
be rewritten as

~ y ~ 7~7 [C66(£xX ~ Eyy)\ (9.98b)
Z* 1. ~l &yy

Since the initial shear modulus G12 = C66, the difference between
Eqs. (9.96) and (9.98b) is the geometric factor (1 + exx)/(l + £yy).
Obviously, for infinitesimal deformation (1 + exx)/(l + eyy) = 1 and
Eqs. (9.96) and (9.98b) are identical. However, if the deformation
is not infinitesimal, G12 determined from Eq. (9.96) may not be
accurate because of the omission of the geometric factor. For
instance, let the strain £^=0 .02 and use the relation of Eq.
(9.98a); the error is (1 + exx)l{l + eyy) = 4 .1%.

The elastic constants of Kevlar-49/silicone elastomer obtained
from the above methods are listed in Table 9.1. The higher order
elastic constants (i.e. Cm and Cuii) are determined by a regression
curve fitting to the experimental data. Thus, they are valid only
within the strain level at which they are obtained experimentally.

9.4 Constitutive relations based on the Eulerian description
In the above, the Lagrangian system has been used to

derive the closed form constitutive equations for flexible compos-
ites, based upon a strain-energy function, for both lamina and
laminate. These equations can be used to predict the nonlinear
elastic behavior of flexible composites under different cases of finite
deformation. It should be mentioned that the Lagrangian stress,
defined as force per undeformed area, is a nominal stress and the
real force equilibrium is established in the deformed or contem-
porary configuration. Furthermore, the anisotropic elastic pro-
perties of the composite always refer to the deformed configuration.
For example, the current Young's modulus describes the stiffness in
the current fiber direction which rotates during deformation.
Therefore, in some cases, it is convenient to use the deformed body
as the reference to describe the constitutive relation.
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Constitutive relations based on the Eulerian description 509

In this section, a nonlinear constitutive relation has also been
developed based upon the Eulerian description where the deformed
configuration of the composite is used as the reference state (Luo
and Chou 1988a). A stress-energy function, referring to the current
principal material coordinate x (Fig. 9.2b), provides the basis for
deriving the constitutive relations.

9.4.1 Stress -energy function
In finite elasticity, the energy densities in terms of either

the Eulerian or Lagrangian stresses are not unique referring to a
fixed coordinate; this can be demonstrated through the considera-
tion of a 'rigid-body rotation' (Fung 1969). As an example, consider
a bar which is subjected to a simple tension and rotating about the z
axis. At one instant, the bar is parallel to the x axis so that oxx i=0
and oyy = 0. At another instant, when the bar becomes parallel to
the y axis, the stress state is given by oxx = 0 and oyy =£0. Thus a
rigid-body rotation changes the stress tensor, even though the state
of stress in the bar remains unchanged. A complementary energy
function referring to a fixed coordinate may be defined based upon
the second Piola-Kirchhoff stress tensor PAB. However, as indi-
cated in Eq. (9.36), the second Piola-Kirchhoff stress still involves
the displacement gradient. Thus, the use of complementary energy
in terms of /̂ y does not really make the constitutive relation simpler.

In order to establish the stress-energy function, a moving
Eulerian coordinate system is introduced in this section. Figure
9.2(b) illustrates a unidirectional flexible composite lamina under a
finite deformation in the Eulerian system. Unlike Fig. 9.2(a), here
the deformed configuration has been chosen as the reference state,
and the rectangular element A'E'F'D' in the deformed body is
considered. The sides A'D' and A'E' coincide with the current
principal material coordinate system V-t' or xx-x2, with /' referring
to the current fiber direction. The underline of a quantity refers to
the current principal material coordinates xl-x2. Thus, the element
AEFD corresponds to the element A'E'F'D' in the undeformed
state. One may assume that the rectangle A'E'F'D' undergoes two
stages of deformation in restoring to its initial shape AEFD. These
stages are illustrated in Fig. 9.19. First, A'E'F'D' becomes a
smaller rectangle A"E"F"D" by removing the normal stresses; then
it reverses to AEFD by removing the shear stress.

The deformations depicted in Fig. 9.19 can be related to the
Eulerian strain components. Let the line elements AD = d/o and
AE = dto in the undeformed lamina (Fig. 9.19c); also define
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510 Nonlinear elastic finite deformation

A'D' = d/ and A'E' = dt in the deformed lamina (Fig. 9.19a). Then,
the physical significance of the Eulerian strains can be explained as

2en = [(dl)2-(dlo)2]/(dl)2

2e22 = [(dt)2-(dto)2]/(dt)2 (9.99)

2e12 = siny12(V(l - 2*n)V(l - 2e22))

where etj are the Eulerian strains referring to the current principal
material coordinates xx-x2y and y12 is the angular deviation from a
right-angle as shown in Fig. 9.19.

The stress-energy per unit area of the deformed lamina
(A'E'F'D') is assumed to be a function of the Eulerian stress
components referring to the current principal material coordinate

Fig. 9.19. Illustration of the deformation of a rectangular element in the
Eulerian system. (After Luo and Chou 1988a.)
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Constitutive relations based on the Eulerian description 511

Xy-x2> namely W* = W*(gu, o22, o\2). The following expression is
adopted:

• S2266g
jg2

6 (9.100)

where gt are the Eulerian stresses referring to the current principal
material coordinates xl-x2. Also, the short-handed notations are
used, i.e. gl = on, o2 = o22 and g6 = gl2. Sijy Sijk and Sijkl are the
compliance constants. Equation (9.100) is similar to the expressions
of Hahn and Tsai (1973) in their mathematical forms. However, due
to the finite deformation, it should be mentioned that: (1) The
Eulerian coordinate x used here is a moving coordinate, which is
chosen to coincide with the current fiber longitudinal and transverse
directions, /' and t''. Therefore, the energy function satisfies the test
of rigid-body rotation. (2) The Eulerian stresses, giJ} used in the
energy function are the current stress state of the deformed lamina.

9.4.2 General constitutive equations
The complementary energy per unit volume of a deformed

a lamina is W* = g^e^ — W(f/7). Here, W(e,7) = g^Se^ is the strain-
energy density. Then,

dW
<5W* = CT,,(5e,, + eHdOjj 6eh (9.101)

' ' ' ' 3Sij '

Since

dW
(9.102)

"" Be,'

the following can be obtained from Eq. (9.101):

dW* = eijdgij (9.103)

or

dw*
Si,=—— (9.104)
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512 Nonlinear elastic finite deformation

Substituting Eq. (9.100) into Eq. (9.104), the Eulerian strain
components referring to the coordinates xx-x2 are obtained as

£i = SnQi + S\nQ\ + Simgi + Sl2o2 + SX66gi

e2 = S22g2 + S222g22 + S2222g\ + ^12^1 + 2S2266g2g
l (9.105)

S(,= S(,(,g(, + •J6666£J6 + 251g6cx1o
r
6 + 2S226(,g2g6

Here ex — en, e2 = e22y e6 = 2eX2. The choice of compliance con-
stants in Eq. (9.100) is made on the following basis. First, Sn, 522,
S12 and 566 are associated with the linear deformation. Second, the
terms Sn and 5222 are adopted for representing the bi-modulus
behavior in the axial and transverse directions, respectively. Third,
the nonlinear deformations are represented by 511U, 52222 a nd 56666.
Lastly, the greatest uncertainty involves the coupling terms between
the normal and shear deformations. Unlike in rigid composites, the
coupling effects may not be negligible in flexible composites. Two
terms, 5166 and 52266, are retained to represent the interactions
between axial and shear deformations in Eqs. (9.105).

Having established the constitutive relations with respect to the
principal material coordinates xx-x2y the general constitutive rela-
tions of a composite lamina referring to the fixed coordinates xx-x2

(Fig. 9.2b) can be derived from Eq. (9.105) and the tensor
transformation relation,

[e] = [r]T[S][r][(j] = [S*][a] (9.106)

where

• S , ,

S12 S22 + S222g2 + S2222g2

2 S 1 6 6 C T 6 2S2 2 6 6g2CT6

{a} = \o2\, and [T] =

c2 s2 2cs

s2 c2 —2cs

—cs cs c2 — s

Here, c = cos 6 and s = sin 6, where 6 denotes the current fiber
orientation angle. Also, et and OT are, respectively, the Eulerian
stress and strain referring to the coordinates xx-x2. The full
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Constitutive relations based on the Eulerian description 513

expression of [S*] in Eq. (9.106) is

[S*] =

_S6*i S62

+s%2 -
c2s2Su + (c4 + s4)Sl2

i r2 2o _ . 2 2r
T t A O22 C A ^66

c3sSn — cs(c2 — s2)Sl2
-cs3S22-\cs{c2-s2)S

+c2s2S22 -

—cs S csS66

-s2)Sl 2 cs(c2 — s2)S12
3 c _1_I ^2 2\c

C SS22
 +

 2CS\C S )^6fy

2c3sSu-2cs(c2-s2)Sl2
-2cs3S22-cs(c2-s2)S('66

lcs(c2 - s2)Sl2

$,6-cs(c2-s2)See

+ 5222^1)

c2s2

c2s2 c2s2

2c2s2Su - 4c2s2Sl2
+2c2s2S22 + \{c2 - s2)Sb6 -

2c3s

2cs3

c3s

c2s2

cs 2cV_

-2cs3~

c2s2 -2c3s

c2s2

—cs -c3s -c3s3s2

c2s2

-cs2

-c2s2

—c s

—cs(c2 — s2)

cs(c2-s2)

_ - l
2cs{c2 - s2) x2cs{c2-s2) h{c2-s2)

-3c3s c3s - 2cs3 c4 - 5cV

+ Stf^Of, 2c35 — 2cs3 3cs3 -s4 + 5c252

c4 - 2c2s2 -s4 + 2c2s2 3c3s - 3cs3

-Acs3 2cs3-2c3s -2s4 + (

+ S2266o2O(, 2cs3 — 2c3s 4c3s 2c4 — 6c252

_ -s4 + 3cV c4 - 3cV Acs3 - 4c3s

(9.107)

The stresses in the current principal material directions, gh are
also obtained as

(9.108)
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514 Nonlinear elastic finite deformation

Referring to Fig. 9.2(b) the current fiber orientation angle is

9 = 0o + A6 (9.109)

The fiber reorientation angle (AS) due to finite deformation can be
determined as follows. First, the angles DAD' and EAE' are
defined as a and /?, respectively. Then,

(9.110)

Here, the symmetric part of A6, (a + /3)/2, equals y12/2; the
antisymmetric part of A0, (a — p)/2, is defined as co. It is
understood that co is the rigid-body rotation, which is independent
of the coordinate system but dependent on the boundary condi-
tions. If co can be expressed in terms of the strain tensors, from
Eqs. (9.99) and (9.110)

2e12A0=-sin"1

Introducing Eq. (9.111) into Eq. (9.109), the current fiber orienta-
tion angle 6 is expressed as a function in terms of the strain tensor.
Then the general constitutive relations can be completely deter-
mined from Eqs. (9.106) and (9.111). The following are two
illustrative examples.

9.4.3 Pure homogeneous deformation
The pure homogeneous deformation, with principal exten-

sion ratios At and A2 defined along the axes of the fixed coordinate
system X, is shown in Fig. 9.7 and described by Eqs. (9.56).
Referring to Eqs. (9.14) and (9.20),

r I fAi 0"l[ g ] = | _ 0 A2J'

and

2[e] =
0

"1x;
o

0"

1

0

(9.112)

(9.113)
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Constitutive relations based on the Eulerian description 515

Eq. (9.113) gives

1

(9.114)

- 2e22)

Referring to Fig. 9.7 the current fiber orientation can also be
written as

d = tan = tan"1 -f-
UiCosflJ

Substituting Eqs. (9.114) into Eq. (9.115),

(9.115)

(9.116)

The substitution of Eq. (9.116) into Eq. (9.106) results in three
independent equations. It is known from Eq. (9.113) that e12 = 0.
Thus, by giving any two values of the following five variables in Eq.
(9.106): stresses ou o2y o6> and strains elf e2 (or Ax and A2), the
remaining three can be solved.

Finally, it is worth noting that from Eqs. (9.35) and (9.112), the
Lagrangian stresses can be written in terms of the Eulerian stresses
as

(9.117)

9.4.4 Simple shear superposed on simple extension
The deformation of 'simple shear superposed on simple

extension' (Case 1) is shown in Fig. 9.12(a) and expressed by Eqs.
(9.67). Using Eqs. (9.14) and (9.20), it can be found

n 1 2 = A2a12

" [o *£]•
" l

Ai

0

K~

1
(9.118)
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516 Nonlinear elastic finite deformation

and

2[e] =
K

A!

A:

A2

L u , / \ A 2 / J _
Invert the above equation to obtain

(9.119)

A9 =
-2en)

- 2 e u ) ( l - 2 e 2 2 ) ~ '
(9.120)

1 - 2eu

Also, referring to Fig. 9.12(a), the current fiber orientation can be
expressed as

A2 tan 8O
I =ian \-.—0 = tan-1f-'l=tan-1

A, tan 6O

(9.121)

The substitution of Eq. (9.121) into Eq. (9.106), results in three
independent equations. If the values are known for any three of the
following six variables: stresses alt a2y o6, and strains ely e2> e6 (or
Ax, A2 and K), the remaining three can be solved.

As mentioned in Section 9.3.2.5, for an off-axis specimen
under uniaxial loading, with a length/width ratio » 1 , the central
lines of the middle section of the specimen remain straight in the
loading direction. Then, this deformation can be referred to as
'simple shear superposed on simple extension (Case 1)'. Using the
uniaxial loading conditions, au =£0, a22 = o2\ = 0, and Eqs. (9.106),
(9.120) and (9.121), the deformation parameters kx, A2, and K (or
etj) can be solved.

Figure 9.20 shows the comparison between analytical predictions
and experimental results for the off-axis responses of Kevlar/
elastomer composites under simple tension based upon the
Eulerian approach. The fiber initial orientations are 10°, 30° and
60°. The same comparisons for tirecord/rubber composite speci-
mens are shown in Fig. 9.21. The fiber initial orientations are 15°,
30° and 60° in this case. The predicted results are based upon Eqs.
(9.106), (9.120) and (9.121) and an iterative calculation method.
The elastic constants are shown in Table 9.1.
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Constitutive relations based on the Eulerian description 517

9.4.5 Determination of elastic compliance constants
The compliance constants in Eq. (9.100) can be determined

experimentally (Luo and Chou 1988a). The second-order constants
(Sn, S22, Su and S66) are based on the linear behavior. The other
constants are obtained by fitting the theoretical curves to ex-
perimental data. For example, for unidirectional tensile test in the
Xi direction (i.e. ox ¥= 0 and g2= g6 = 0), Eq. (9.105) becomes

Snig\ + Snng\ (9.122)

where the underline denotes the current principal material coordin-
ate. Then, Sn is obtained from the initial slope of the experimental
Qy-ex curve (i.e. Sn = I/Young's modulus). S m (which reflects
bi-modulus behavior) and 51U1 are determined by fitting the
theoretical curves to experimental data in both tension and com-
pression. With the unidirectional load applied in the x2 direction,
S22> 5222 and 52222> can be determined by the same procedures as in
the X1 direction.

Fig. 9.20. Comparisons between theoretical predictions and experimental
results of 10°, 30° and 60° off-axis stress-strain response of Kevlar/silicone
elastomer composite laminae (Eulerian description). (After Luo and Chou
1988a.)
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518 Nonlinear elastic finite deformation

The remaining constants are related to shear (S66 and 56666) and
stretching-shear coupling (S166 and 52266). If S166 and S22(y6 are
negligibly small, the shear constants can be determined experimen-
tally as described in Section 9.3.4.2, with proper stress and strain
transformations from the Lagrangian system into the Eulerian
system as described in Section 9.2.2.

The shear constants including the stretching-shear coupling listed
in Table 9.1 are obtained by off-axis tensile tests at various fiber
off-axis angles. For the unidirectional tensile condition (oll¥

z0,
o22 = a12 = 0), Eq. (9.106) can be rewritten as

[c4Sn + 2c2s2S12 + s4S22]on/(cs)-en/(cs)

= S66g6 + S6666gl " (3c/s)S166o
i + (*s lc)S2266gl (9.123)

where c = cos# and s = sin 6, g6 = csou. The fiber orientation
angle, 6, and the stress-strain relations are measured experimen-
tally. In Eq. (9.123), there are four unknown constants, 566, 56666,
5166 and 52266- The relations between O6 and the values of Eq.
(9.123) which are determined by experimental measurements of ou,

Fig. 9.21. Comparisons between theoretical predictions and experimental
results of 15°, 30° and 60° off-axis stress-strain response of tirecord/rubber
composite laminae (Eulerian description). (After Luo and Chou 1988a.)
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Flexible composites reinforced with wavy fibers 519

e n , 0 and the elastic constants related to the tensile properties (Sn,
Sl2 and S^)- 566 is t h e initial slope of the stress-strain curve. Given
sufficient experimental data (the number of specimens with different
initial fiber orientations should be larger than the number of
unknown constants), the remaining compliance constants S6666, S166

and S2266 can be determined by a regression technique to fit the
theoretical curve of Eq. (9.123) to the experimental curves.

9.5 Elastic behavior of flexible composites reinforced with
wavy fibers

9.5.1 Introduction
In Chapter 8, an iso-phase model for flexible composites

containing sinusoidally shaped fibers (Fig. 8.13) is presented and the
analysis of the elastic behavior of such composites is based upon a
step-wise incremental technique and the classical lamination theory.
Being a well established analytical technique, the lamination theory
does provide a convenient tool for describing the basic characteris-
tics of flexible composites. However, because of the use of super-
position techniques for nonlinear finite deformation problems, the
limitation of incremental analysis is obvious. In an effort to provide
a rigorous treatment, Luo and Chou (1988a&b, 1990b) applied the
constitutive models based upon the Lagrangian (Section 9.3) and
Eulerian descriptions (Section 9.4) to study the nonlinear elastic
behavior of flexible composites with wavy fibers under finite
deformation.

The deformation of the iso-phase flexible composite (see Fig.
8.13) is best understood by examining a representative element
which contains a full wavelength of the sinusoidal curve (Fig. 9.22).
This element is further divided into sub-elements along the x1 axis.
Each sub-element of the composite between xx and XX + AXX is
approximated by an off-axis unidirectional fiber composite, in which
fibers are inclined at an angle 6^ to the xx axis. Referring to Eq.
(8.14), the initial fiber orientation of sub-element (n), for example,
is given as

, lina
n —— cos

+ tan~' — cos — ^ (9.124)
\ A A / J
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520 Nonlinear elastic finite deformation

It is also assumed that the stress and strain of a sub-element are
homogeneous under axial loading. This assumption is supported by
the photoelastic analysis (Luo and Chou 1988a). Figure 9.23 is a
photoelastic view of a flexible composite sample under longitudinal
loading; it shows that relatively uniform strain is maintained in
distinct regions along the longitudinal direction. It should be noted
that although all the experimental data collected are based upon a
Kevlar-49/silicone elastomer system, the photograph shown in Fig.
9.23 is based upon graphite fiber as a reinforcement materials, so
better contrast between the fiber and matrix in the photograph can
be achieved.

Based upon the above assumptions, the analysis for the iso-phase
model consists of two steps: (1) The constitutive relation of an
off-axis sub-element under finite deformation is examined based
upon the analysis developed in Sections 9.3 and 9.4. (2) The total
deformation of the composite is the summation of the deformations
of all these sub-elements.

9.5.2 Longitudinal elastic behavior based on the Lagrangian
approach
Under the uniaxial tensile force Fx in the xx direction, the

following plane stress condition of the flexible composite is

Fig. 9.22. Deformation of a sub-element of a flexible composite containing
sinusoidally shaped fibers under longitudinal tension. (After Luo and Chou
1990b.)
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Flexible composites reinforced with wavy fibers

assumed:

521

(9.125)

=o
where Ao is the initial cross-sectional area perpendicular to the x1

axis.
Figure 9.22 shows the deformation of a typical sub-element

PQQ'P' pqq'p' represents the configuration in the deformed state.
Due to the iso-phase fiber arrangement, the edge qq' remains
perpendicular to the Xx axis. Let x\n) be the coordinates of an
arbitrary particle in PQQ'P1', and x\n) be the corresponding
local coordinates of this particle in pqq'p'. Here, the superscript
refers to the sub-element \n). This deformation is specified as

(9.126)

Equations (9.126) specify a deformation equivalent to Case 2 of
Section 9.3.2.5, namely 'simple shear superposed on simple exten-
sion'. Using Eqs. (9.74) and the stress boundary condition of Eqs.

Fig. 9.23. A photoelastic view of a flexible composite lamina under
longitudinal tension. (After Luo and Chou 1988a.)
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522 Nonlinear elastic finite deformation

(9.125), the following can be obtained:

0 = n 2 2 = s2Wxl + c2W22 + csW12 (9.127)

0 = n 2 1 = csWn - csW22 + \{c2 - s2)W12

Here, Wtj is a function of K(n\ k[n) and A£
°, and it is given by Eqs.

(9.47) and (9.73). The initial fiber orientation 0(
o
n) is given by Eq.

(9.124). Then, the three unknowns, K(n), A(/° and A2
n) can be solved

from Eqs. (9.127). It is interesting to note that H12 does not vanish,
and it can be found from Eqs. (9.74)

n12 = K™n n (9.128)

The current fiber orientation, 0(n), of the sub-element (n) (Fig.
9.22) is

6(n) = tan"1[A™ + ̂  tan 0gl
)l (9.129)

The average extension ratio of the wavelength in the Xx direction
can be derived as

l^y^i"1 (9-130)

9.5.3 Longitudinal elastic behavior based on the Eulerian
approach
Under the uniaxial tension force Fx in the longitudinal

direction, the following stress states in the Eulerian system are
assumed:

oxl = FxIAy O 2 2 = O L 2 = 0 (9.131)

where A is the area of the section perpendicular to the longitudinal
direction in the deformed state. From Eqs. (9.126) the deformation
of the sub-element (n) can be written in the Eulerian system as

1

(9.132)
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Using Eqs. (9.18) and (9.20), it can be found

1

523

[g]"1 =
0

K(") (9.133)

and

2[e] =
MGF)'-©!

i \2 (9.134)

Invert the above equation to obtain

(9.135)

where A(xrt) and A^n) are the extension ratios of the sub-element (n) in
the longitudinal and transverse directions, respectively; and K(n) =
tan O(n) as shown in Fig. 9.22. The current fiber orientation
is obtained from Eq. (9.129). Then, X[n\ X(

2
n), and K{n) can

be determined by an iterative calculation from Eqs. (9.106),
(9.131) and (9.134). Also, the average extension of a wave-
length in the longitudinal direction, Xlf can be determined by Eq.
(9.130).

The predictions of the longitudinal constitutive relations based
upon the Lagrangian and Eulerian approaches are compared to
experimental results and an incremental analysis in the finite
deformation range (Luo, Kuo and Chou 1988). The model compos-
ite system consists of silicone elastomer reinforced with sinusoidally
shaped Kevlar fibers (a/A = 0.09). Due to fiber waviness, the
volume fraction may vary among the sub-elements. An average
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524 Nonlinear elastic finite deformation

fiber volume fraction Vf = 9% is used in the calculation. Also, the
elastic constants are given in Table 9.1. Figure 9.24 compares the
analytical predictions with experimental results. The heavy solid
line indicates theoretical predictions of the Lagrangian approach
(Luo and Chou 1988b, 1990b); the thin solid line indicates
theoretical predictions based upon the Eulerian approach (Luo and
Chou 1988a, 1990a); and the dotted line is from the incremental
analysis (Kuo, Takahashi and Chou 1988). Experimental results are
also presented.

Furthermore, the local strains in the sub-element can be pre-
dicted directly from Eqs. (9.127). The current fiber orientation
angle of the sub-element is given by Eq. (9.129). These results show
that the maximum local tensile strain of the fiber occurs at the

Fig. 9.24. Stress-strain relations of Kevlar/silicone elastomer composite
laminae containing sinusoidally shaped fibers for a/A = 0.09. (After Luo
and Chou 1990b.)
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Flexible composites reinforced with wavy fibers 525

region where the initial fiber orientation angle equals zero (i.e.
Xx = ±A/4). The maximum local shear strain of the composites
occurs in the region where the initial fiber orientation is a maximum
(i.e. Xx = 0, A/2). Hence, the strength of the flexible composites
may be determined by the maximum tensile strain at Xx = XIA and
the maximum shear strain at Xl = 0.
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