
Cambridge Books Online

http://ebooks.cambridge.org/

Microstructural Design of Fiber Composites

Tsu-Wei Chou

Book DOI: http://dx.doi.org/10.1017/CBO9780511600272

Online ISBN: 9780511600272

Hardback ISBN: 9780521354820

Paperback ISBN: 9780521019651

Chapter

5 - Hybrid composites pp. 231-284

Chapter DOI: http://dx.doi.org/10.1017/CBO9780511600272.006

Cambridge University Press



Hybrid composites

5.1 Introduction
The term 'hybrid composites' is used to describe composites

containing more than one type of fiber materials. Hybrid compos-
ites are attractive structural materials for the following reasons.
First, they provide designers with the new freedom of tailoring
composites and achieving properties that cannot be realized in
binary systems containing one type of fiber dispersed in a matrix.
Second, a more cost-effective utilization of expensive fibers such as
carbon and boron can be obtained by replacing them partially with
less expensive fibers such as glass and aramid. Third, hybrid
composites provide the potential of achieving a balanced pursuit of
stiffness, strength and ductility, as well as bending and membrane
related mechanical properties. Hybrid composites have also dem-
onstrated weight savings, reduced notch sensitivity, improved frac-
ture toughness, longer fatigue life and excellent impact resistance
(Chou and Kelly 1980a). Some of the pioneering studies on this
topic can be found in the work of Wells and Hancox (1971),
Hayashi (1972), Kalnin (1972), Hancox and Wells (1973), Bunsell
and Harris (1974), Harris and Bunsell (1975), Walton and Majum-
dar (1975), Aveston and Sillwood (1976), Bunsell (1976), Harris
and Bradley (1976), Zweben (1977), Arrington and Harris (1978),
Badar and Manders (1978, 1981a,b), Marom, Fischer, Tuler and
Wagner (1978), Rybicki and Kanninen (1978), Summerscales and
Short (1978), Aveston and Kelly (1980), Wagner and Marom
(1982), Fukuda (1983a-c), and Harlow (1983)4.

Depending upon the arrangements of fibers and pre-preg layers,
hybrids can be categorized into the following types. In the first type
the different fiber materials are intimately mixed together and
infiltrated with a matrix simultaneously. The hybrid in this case is
described as intermingled (Aveston and Kelly 1980) or intraply
(Chamis and Lark 1978) (Fig. 5.1a). The second type of hybrid is
made by bonding together separate laminae each containing just
one type of fiber in a matrix, and is known as interlaminated
(Aveston and Kelly 1980) or interply (Chamis and Lark 1978) (Fig.
5.1b). The third category of hybrids consists of fabric reinforce-
ments where each fabric contains more than one type of fiber and it
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232 Hybrid composites

can be termed as interwoven (Chou and Kelly 1980a) (Fig. 5.1c).
Hybrid composites consisting of resin composite plies, metal composite
plies and metal foils also have been explained. When a laminated
hybrid is composed of plies of different matrices it needs to be
fabricated by a consolidation procedure that is compatible with all
matrix materials.

Optimization of composite properties can usually be achieved
through a suitable combination of fiber types. Reinforcements for
hybrids include boron, carbon, glass and aramid fibers. Limited
applications of ceramic and metallic filaments have been explored
(Renton 1978). Intermediate modulus epoxies, thermoplastics and
polyimides are the common polymeric matrices for hybrid compos-
ites. Current applications of hybrid composites can be found in
aircraft fuselage, wing and tail structures, helicopter rotor blades
and automobile parts as well as in an array of sports equipment,
ranging from sailboats and racing cars to bicycle frames and hockey
sticks.

The fundamental questions pertinent to the study of hybrid
composites are (a) how is the load shared among the constituent

Fig. 5.1. Types of hybrid composites: (a) intermingled; (b) interlaminated;
and (c) interwoven.
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Stress concentrations 233

fibers? (b) are there synergistic effects among the different types of
fibers? and (c) will certain combinations of fiber types and micro-
structure designs produce an overall desirable structural performance?
In order to gain a basic understanding of these problems, the
various aspects of the mechanical behavior of hybrids are examined.
To simplify the consideration of deformation, the following discussions
are primarily restricted to unidirectional composites and their
laminates. Woven hybrid composites are examined in Chapter 6.

5.2 Stress concentrations
The load redistribution in unidirectional continuous fiber

hybrid composite laminae due to fiber breakages is examined in this
section. Stress concentration factors are obtained for both inter-
mingled and interlaminated hybrids. The solution techniques are
demonstrated for both static and dynamic responses. The ter-
minologies of low modulus (LM) and high modulus (HM) are used
to distinguish the two kinds of fibers in the model lamina. For
hybrid composites such as glass/carbon and Kevlar/carbon com-
binations, LM and HM fibers correspond to HE (high elongation)
and LE (low elongation) fibers, respectively. The fiber ductility or
elongation to break does not enter into the present analysis in an
explicit manner. The shear-lag technique demonstrated in Chapters
3 and 4 is again adopted in the following.

5.2.1 Static case
Consider a unidirectional lamina composed of HM and

LM fibers in alternating positions. Each pair of neighboring HM
and LM fibers is designated as the group m. Asterisks (*) are used
to denote quantities related to LM fibers.

Fukuda and Chou (1983) have examined the three types of
combinations of fiber discontinuity depicted in Fig. 5.2. Let nx and
n2 be the number of broken HM and LM fibers, respectively. Thus,
in Fig. 5.2, (a) nx = n> n2 = 0; (b) nx = n, n2

 = n — l; and (c)
nl = n2 = n. The counting of broken fibers starts at m = 0 and ends
at m = n — 1.

The axial loads of the mth pair of fibers are denoted by pm{x) and
Pm{*)\ the displacements are um{x) and u^{x), and x = 0 denotes
the plane of fiber fracture. Based upon the assumptions of shear-lag
analysis (Hedgepeth 1961; Ji, Hsiao and Chou 1981), the force
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234 Hybrid composites

equilibrium equations of the rath HM and LM fibers are,
respectively.

E*d
d2«* G
dx2 h

(5.1)

Here, E and G denote the fiber extensional modulus and the shear
modulus of the matrix, respectively. The lamina is assumed to be
of unit thickness; d and h denote, respectively, fiber width and
spacing.

Under the assumption of linear elastic deformation, the force-
displacement relations become

—, (5.2)

Fig. 5.2. Arrays of discontinuous fibers: (a) nl = n, n2 = 0; (b) nl = n,
n2

 = n — l; (c) nl = n2 = n, nx and n2 are, respectively, the number of
discontinuous HM and LM fibers. (After Fukuda and Chou 1983.)
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Stress concentrations 235

The boundary conditions are

Pm(°°)=P

(5.3)
pm(0) = 0, pm(0) = 0 for broken fibers

"m(0) = 0, um(0) = 0 for unbroken fibers

To simplify Eqs. (5.1)-(5.3), the following dimensionless para-
meters are introduced:

n __Pm p* Pm
rm— rm —

E-f) «4>/(¥) ™
R=E*d*/Ed

Thus, Eqs. (5.1) and (5.2) become

^ - ^ + £/* + f/* _, -2Um = 0

(5.5)

R^-¥?+Um+, + Um-2U*=0

(5.6)

m — t\ , .

By adopting the concept of influence functions proposed by
Hedgepeth (1961), the dimensionless displacements are expressed
as
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236 Hybrid composites

where V, V*, W and W* are the influence functions. Then, from
Eqs. (5.5), the following two sets of equations in terms of the
influence functions are obtained:

(I)

(5.8)
d2V*

p + y + v 7 v n

with the boundary conditions of

Vm(0) = l (m=0) Vm(0) = 0 (m*0)

V*(0) = 0 (5.9)

dK,(°°) = 0 W*mH _ Q

d§ d§

(II)

d2W

(5.10)
d2W*

f+W W
with the boundary condition of

Wm(0) = 0

W*(0) = l (m=0) W*(0) = 0 (»i#0) (5.11)

df d§
Since Eqs. (5.8) and (5.10) are identical in form, only the solution

procedure of Eqs. (5.8) is given below. For solving Eqs. (5.8), the
following Fourier series expressions are introduced

V= 2 K»e"™° V*= S V*e-""e (5.12)

or, inversely,

If- 1 f -
Vm = —\ Veimedd F* = —\ y*e™ed0 (5.13)
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Stress concentrations 237

Then,

where

multiplying

d2? ^

d2V*

Eqs.

_

(5.

U fi
r D

.8)

• 1 /

by e "" and summing over all m gives

(5.14)

Also, from Eqs. (5.9),

0, 6) = \ V*(0, 6) = 0
(5.16)

The solutions of Eqs. (5.14) under the boundary conditions of Eqs.
(5.16) are

K = C,e-Al5 + C2e-A25

(5.17)
V* = C3e~k^ + C4e"A^

where

A! = V[a + V(a 2 -^) ] A2 = V[a - V(a2 - b)]

(5.18)

izA r
l ~ i 2 12 C 2 - ,2 12

A^ A2 Aj A2

_ (2-A2)(2-Al) _

Substituting Eqs. (5.17) into Eqs. (5.13) and considering a, b, klt

b , Cly C2 and C3A as even functions with respect to 6, the
following results are obtained for the influence functions:

i r
Vm=-\ (C]e"A|? + C2e"A2§) cos(m0) d0

n Jo
(5.19)

r C 3 A ( e e ) ^ i71 Jo 2(1 + cos 6)
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238 Hybrid composites

Differentiating Eqs. (5.19) and substituting the result for £ = 0 into
Eqs. (5.7) and the third condition of Eqs. (5.3), the values of Uk(0)
(0 < k < nx - 1) and Ut(0) (0 < k < n2 - 1) can be obtained.

The dimensionless axial loads, Pm and P£ are calculated by
substituting Eqs. (5.7) into Eqs. (5.6). The stress concentration
factor of the mth group of fibers is defined as Pm(0)/Pm(<») or
P*(0)/P*(»).

(5-20)

For an HM or an LM fiber adjacent to a discontinuous fiber, the
stress concentration factor can be calculated by substituting the
corresponding value of m into Eqs. (5.20). For instance, the stress
concentration factors for fibers B and A of Fig. 5.2 are, respectively,
Pl-m/Pl-iH and Pni(0)/Pni(«>).

Fukuda and Chou (1981, 1983) have evaluated Eqs. (5.20) and
the results are presented for (a) comparisons with the solutions of
Hedgepeth (1961) for non-hybrid composites, and (b) hybrid
composites. First, for a non-hybrid composite, there is only one
type of fiber in the lamina and R = l. Two limiting cases are given
below.

(A) n l = l and n2 = 0
Consider, for instance, Fig. 5.2(a). The fiber immediately

adjacent to the broken fiber is the one designated as an LM fiber in
the m = 0 pair. Therefore, the stress concentration factor is

dV* 4
P:(0)/P*o(o°) = l+-rf Uo(0) = - (5.21)

ds -J

This result coincides with that of Hedgepeth (1961), as expected.
The same conclusion can be reached by considering the case of
«j = 0 and n2 = 1 in Fig. 5.2(a).
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Stress concentrations 239

(B) n1 = n2 = 1
The stress concentration factor is given by

4W6
3A5

(5.22)

Next, for the unidirectional hybrid lamina (R i= 1), Eqs. (5.20)
have been solved by numerical integrations using a trapezoidal rule.
The results are shown in Figs. 5.3-5.5.

The limiting case of the fracture of one HM fiber (n1 = l, n2 = 0)
is demonstrated in Fig. 5.3. The fibers adjacent to the broken HM
fiber of particular interest are the LM fiber of m = 0 and the HM
fiber of m = 1. The stress concentration factors of these two fibers
(K^M, ^HM) are plotted in Fig. 5.3 as functions of the stiffness ratio
R = E*d*/Ed. For R = 1 (i.e. non-hybrid case), #LM=1.33 is
obtained from Eq. (5.21). The limit of /£— »0, on the other hand,
indicates that the extensional rigidity of the LM fiber is in-
finitesimal. Then Fig. 5.3 again becomes a model with only one type
of fiber. The fiber nearest to the broken fiber in this case is the HM
fiber of m = 1 and therefore KHM^> § at the limit R —»0.

Figure 5.3 also indicates that the stress concentration factor of the

Fig. 5.3. Stress concentration factor vs. stiffness ratio R = E*d*/Ed =
extensional stiffness of LM fiber/extensional stiffness of HM fiber. (After
Fukuda and Chou 1981.)
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240 Hybrid composites

HM fiber in the hybrid lamina is lower than 3 because of the
presence of the LM fiber between the discontinuous and continuous
HM fibers. For example, at R = 0.5, A"LM = 1.67 and KHM = 1.11.

Figure 5.4 depicts the relations between stress concentration
factors and the total number of broken fibers, nx + n2, for the case
of R = l. The letters A—F correspond to fibers A—F in Fig.
5.2. Curves D and E show the stress concentration factors of the
fibers immediately adjacent to the broken fibers. Curves C and F
give the results for the second nearest fibers to the broken fibers.
The cases of A and B in Fig. 5.2 give stress concentration factors
insensitive to the number of broken fibers.

Figure 5.5 shows the stress concentration factors for R = 3 which
approximately corresponds to carbon/glass hybrid composites. The
stress concentration factor of the HM fiber nearest to the discon-
tinuous fibers, i.e. fiber C or E in Figs. 5.2(b) and (c), respectively,
is smaller than that of fiber D (Fig. 5.2b) for a fixed number of
broken fibers. This means that, as far as the HM fibers are
concerned, the stress concentration is reduced in a hybrid compos-
ite. Thus, it is possible for the high modulus fibers in a hybrid

Fig. 5.4. Stress concentration factors vs. total number of broken fibers for
R = l. (After Fukuda and Chou 1983.)
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Stress concentrations 241

composite to sustain higher loads than in the all-high modulus fiber
composite, and a 'hybrid effect1 could be realized.

The stress concentration factors of the LM fibers are shown by
curves D and F in Fig. 5.5. A comparison of curves D of Figs. 5.4
and 5.5 indicates that the stress concentration on the LM fiber
increases as R is reduced. This implies that the LM fibers are more
susceptible to fracture in a hybrid composite than in a non-hybrid
composite.

When the number of fibers in the composite model is high, the
solution procedure of the governing equations becomes very com-
plex. Fukunaga, Chou and Fukuda (1984) have evaluated the stress
concentration factors using an eigenvector expansion method.
Tables 5.1 and 5.2 show the numerical results of their analysis based
upon a glass/carbon intermingled hybrid composite (R = 5). The
solid and open circles represent HM and LM fibers, respectively.

Fig. 5.5. Stress concentration factors vs. total number of broken fibers for
a hybrid composite of R = \. (After Fukuda and Chou 1983.)
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242 Hybrid composites

Table 5.1 gives the stress concentration factors for various VHM
values, where KiJtk, for instance, is the stress concentration factor of
the kth fiber due to the breakage of the /th and /th fibers for various
fiber relative volume fractions. The fiber arrangements given in
Table 5.1 are repeated to generate the composite, but the position

Table 5.1. Stress concentration factors (SCF) for various VUM

values. After Fukunaga, Chou and Fukuda (1989)

SCF

Kl,2
A-,.3
Kh4

K 2 l

K2,3

K2A

* 3 . .

K32

KXi

K4l

K4,2
K4,3

^12.3

^12,4

^13.4

K l 3 2

^14,2

^14 ,3

^23.1

^23 .4

^24,1

^24 ,3

^34.1

^34,2

•^123,4

^234,1

^341.2

^412,3

1.0

1 2 3 4

1.333
1.067
1.029
1.333
1.333
1.067
1.067
1.333
1.333
1.029
1.067
1.333

1.600
1.143
1.419
1.802
1.412
1.412
1.600
1.600
1.419
1.802
1.143
1.600

1.829
1.829
2.022
2.022

).75

1 2 3

L.356
1.077
[.041
[.347
1.347
1.102
1.077
L.356
L.727
L.007
1.018
1.128

L.654
L.221
L.832
L.772
L.378
L.210
L.654
>.275
L.362
L.494
L109
L.478

2.116
L.768
L.914
L.822

VHM

0.5
o # o # o
4 1 2 3 4

1.777
1.121
1.060
1.131
1.131
1.030
1.121
1.777
1.777
1.010
1.030
1.131

1.412
1.135
1.952
2.767
1.817
1.261
1.412
2.038
1.146
1.270
1.172
2.038

2.510
1.522
3.105
1.569

0.25
otoo
1 2 3 4

1.141
1.036
1.017
1.829
1.829
1.208
1.036
1.141
1.311
1.017
1.036
1.318

2.144
1.304
1.340
1.291
1.180
1.359
2.144
1.913
1.886
2.252
1.077
1.258

2.175
2.382
1.418
2.612
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Stress concentrations 243

of the fractured fiber (or fibers) is not repeated. In the numerical
calculations 80 fibers are used in each composite model.

Table 5.2 presents the effect of fiber bundle size on stress
concentration for the relative fiber volume fraction of VHM = 50%.
Two (case 2), three (case 3) or four (case 4) fibers of the same type
can be placed adjacent to one another besides the alternating
arrangement of one HM and one LM fiber (case 1). It is evident
that the stress concentration factor is sensitive to the microscopic
fiber arrangements. Knowledge of the stress concentration factors
in various hybrid fiber arrays is essential to the evaluation of hybrid
composite strength.

5.2.2 Dynamic case
The dynamic stress concentration in hybrid composites due

to fiber breakage has been examined by Ji, Hsiao and Chou (1981).
Figure 5.6 shows an interlaminated hybrid composite for the
analytical model; it is composed of a layer of HM fiber and a layer
of LM fiber embedded in a common matrix. The fibers are aligned
along the x axis, and h1 and h2 denote the fiber spacings. A fiber in
each array is numbered by an integer n (-°°<w<°°). The
displacement field of a fiber as a function of location and time is
denoted by un(x, t) for an HM fiber, and by u*(x, t) for an LM
fiber. Similarly, the axial forces in the fibers are denoted by pn(x, t)
and Pn(x, t). Ji and colleagues have analyzed the dynamic stress

Table 5.2. Stress concentration factors for various bundle sizes.
After Fukunaga, Chou and Fukuda (1989)

Case
Case
Case
Case

Fiber location

Case
Case
Case

Case

1
2
3

4

1
2
3
4

O •
% #

• o
o o
1

1.777
1.376
1.354
1.082
1.343
1.079

O
O

o
o

1 2
• ; O •

• •
• : • •

2

X

X

X

1.366
X

1.365

3
O
O
•

•

4

• : o •

o:o o
o:o o

3

1.777
1.762
1.354
X

1.351
X

O
O
#

o

•
o
•
4

1.121
1.175
1.113
1.763
1.112
1.764
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244 Hybrid composites

concentration factor of the fiber n = 1 or — 1 in the HM fiber array
when the fiber n = 0 suddenly breaks.

The fundamental equations governing the deformation of the HM
and LM fibers are approximated by

rr,i 92un _ Ghlt Gh2

&r h2

32un
= Y dt2

EM
dx1 +

(5.23)

U1-2u*n+u*n.1) + ~(nn-K)

dt2

for all n (= -oo, . . . , - 1 , 0, 1, . . . , <*>). In Eqs. (5.23), m and ra*
are the fiber masses per unit length, £* and E are the fiber Young's
moduli, A* and A denote fiber cross-sectional areas, and G is the
matrix shear modulus.

The boundary conditions are

pQ(o,o = o
Mn(0, t) = 0 (n¥=0) pn(±°°, t)=p (alln)

= 0 (all n) K(±°°.0 =
E*A*
EA

(5.24)
p (all n)

Fig. 5.6. A model of interlaminated hybrid composite. (After Ji, Hsiao
and Chou 1981.)
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Stress concentrations 245

The initial conditions are

for all n.
The forces and displacements of the fibers are related by

By introducing the following dimensionless parameters,

pn--

Un-

R

_£? p*—Pn
"n —

P P

un l/EAGh1

np V \ A2

V \EAh2r

E*A*

EA M

\ j

) L

m*

m

!"-p Vl
\ / 1 *
V \mh2,

hi

EAGhl

A2

r

Eqs. (5.23) can be rewritten as

R

(5.25)

(5.26)

(5.27)

~ 2

(5.28)

Also, Eqs. (5.24) become

PO (0 ,T) = 0

Un(0, R) = 0 (n# 0), PB(±«, T) = 1 (all n) (5.29)

t/;(0, T) = 0 (alln), P : ( ± » , T) = /J (all n)
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246 Hybrid composites

and Eqs. (5.25) can be written in terms of displacements only as

0) =

(5.30)

Equations (5.28)-(5.30) can be solved following the approach of
Hedgepeth. Three essential steps are involved: the Laplace trans-
form in time, the use of the technique of influence function, and the
Fourier series representation of the unknown functions. Ji and
colleagues have evaluated the dynamic stress concentration factor of
the HM fibers immediately adjacent to the broken fiber. The most
severe stress concentration factor #i(0, r) occurs at § = 0. It is
interesting to note that the solution of K^O, r) is composed of two
parts which are related to the HM and LM fibers, respectively.
Figures 5.7-5.9 depict the variation of the stress concentration
factor K1(0) R) with the dimensionless time rfor m*/m = 1, 2 and 6,
respectively. The two components of the solution are denoted by K[
and K'[. Also in these figures, E*A*/EA = h2/h1 = 1. Figure 5.7 is for
the case of non-hybrid composites and the solution of Hedgepeth
for a unidirectional lamina is also shown. The summation of K[ and

Fig. 5.7. The variation of stress concentration factor Kx with dimension-
less time r for m*/m = E*A*/EA = h2/hl = 1. K[ and K'[ are the two
components of Kx. (After Ji, Hsiao and Chou 1981.)
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Tensile stress-strain behavior 247

K'[ gives the total stress concentration factor. As the difference in
mass density of the HM and LM fibers increases, the locations of
the peak values of K[ and K'{ are out of phase. As a result, the
maximum value of K[ + K'[ is reduced (Figs. 5.8 and 5.9).

The analysis of Ji and colleagues concludes that the time
variations of the stress concentration factors related to the two
component fiber materials are always out of phase in a hybrid
composite with fibers of different mass densities. The parent HM
fiber composite always provides the upper bound for the stress
concentration of the hybrid, since this is the case where there is no
difference in phase and magnitude of the K[ and K'[ values.
Furthermore, the magnitudes of the K[ and K'[ are determined by
the extensional stiffnesses of the component fibers.

5.3 Tensile stress-strain behavior
An idealized stress-strain curve of a hybrid composite

containing both high elongation (HE) and low elongation (LE)
fibers is depicted in Fig. 5.10 (Aveston and Kelly 1980). For hybrids
with good bonding between the component phases, the stress-strain
curve is given by OABC. The important features of this curve
include the elastic behavior indicated by OA, the first cracking

Fig. 5.8. The variation of stress concentration factor KA with dimension-
less time T for m*/m = 2, and E*A*/EA = h2/hl = i. K\ and K'[ are the
two components of Kx. (After Ji, Hsiao and Chou 1981.)
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248 Hybrid composites

Fig. 5.9. The variation of stress concentration factor Kx with dimension-
less time T for m*/m = 6, and E*A*/EA = h2/hl = 1. K[ and K'[ are the
two components of Kx. (After Ji, Hsiao and Chou 1981.)
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Fig. 5.10. A typical stress-strain curve of hybrid composites. (After
Aveston and Kelly 1980.)
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strain £Lu, the relatively flat portion of the curve AB, the
subsequent rise of the curve at a smaller slope (BC) and the final
failure strain of the hybrid given by the point D. The subscripts H
and L are used to denote parameters related to high and low
elongation fibers, respectively. The various features of the stress-
strain curve are discussed in the following.

5.3.1 Elastic behavior
Theoretical predictions of the elastic moduli of multi-phase

short-fiber composites have been performed by Chou, Nomura and
Taya (1980) using a self-consistent approach, Nomura and Chou
(1984) based upon a bound approach, and Taya and Chou (1984)
employing a combination of Eshelby's (1957) equivalent inclusion
method and Mori and Tanaka's (1973) back stress analysis.

For unidirectional hybrid composites composed of continuous
fibers, Chamis and Sinclair (1979) have examined the elastic
properties based upon composite micromechanics approach, linear
laminate theory, and finite element analysis. It has been concluded
that these methods predict approximately the same elastic pro-
perties. The through-the-thickness properties predicted by the
micromechanics equations are in good agreement with the finite
element results.

For simplicity, the results from the micromechanics approach
are introduced below. The analytical model is an intermingled
hybrid composite composed of two components, termed primary
composite and secondary composite by Chamis and Sinclair (Fig. 5.11).
Since these two components are interchangeable, they can be

Fig. 5.11. An intermingled hybrid composite lamina composed of primary
(HM) and secondary (LM) phases.
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250 Hybrid composites

considered the high modulus (HM) and low modulus (LM) com-
ponents. In the following, the subscripts 1, 2 and 3 denote,
respectively, the directions along the fiber, transverse to the fiber
and through the thickness in an intermingled hybrid lamina.

The effective longitudinal Young's modulus is approximated by
the iso-strain assumption along the 1-direction:

En = E™ + (E^-E^)VLM (5.31)

Here, Ef™ and E\™ denote the longitudinal Young's moduli of the
HM and LM composites, respectively. FLM is the volume fraction of
the LM composite and VLM + VHM = 1. Both E ™ and EnM can be
expressed in terms of the properties of the fiber and matrix as given
in Eqs. (2.7).

The transverse Young's modulus is obtained by assuming that the
HM and LM components are connected in series in the 2-direction

_ rHM
( 5 . 3 2 )

Here, is™ and E22™ are the transverse Young's moduli of the HM
and LM composites, respectively, is™ and E2™ can also be
expressed in terms of fiber and matrix elastic properties as well as
the fiber volume fraction of each component phase (Eqs. (2.7)).

The effective Young's modulus in the through-the-thickness
direction has been modeled by Chamis and Sinclair assuming that
the component phases are in parallel in the 3-direction. Thus,

rHM {t33 - E33 )KLM (5.33)

Here, £" M and E\™ are the transverse Young's moduli of the
unidirectional composites composed of HM and LM fibers, respec-
tively. Since the unidirectional all-HM or all-LM fiber composite is
assumed to be transversely isotropic the expression of E33 (=E22) of
Eqs. (2.7) can be used to relate E\f*(E3™) to the constituent
material properties. However, it should be noted that for a
yarn-by-yarn unidirectional intermingled hybrid lamina, E22=£E33

and thus the composite is not transversely isotropic.
The in-plane shear modulus G12 is obtained by an iso-stress

approximation

(5.34)
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Similarly, the interlaminar shear modulus G23 is expressed as

(5.35)

The interlaminar shear modulus G13 is obtained by assuming that
the component phases are connected in parallel in the 3-direction.
Thus analogous to Eq. (5.31) the following expression can be
obtained:

13 = "13 + ( G
\ ? —"13 J^LM (5. 36)

in Eqs. (5.34)-(5.36), the shear moduli of the component phases
can again be related to the constituent fiber and matrix properties
by using Eqs. (2.7).

The Poisson's ratios v12 and v32 are derived by assuming parallel
elements in the 1- and 3-directions.

v12 = v?2
M + (v\™ - v™)VLM (5.37)

v32 = v?2M + (v!f2M - v3
H

2
M)VLM (5.38)

For the derivation of v13, the iso-strain and iso-stress states
are assumed in the 1- and 3-directions, respectively. The result is

v f VLM _ HM\
v _ ,.HM . ^LM^Vl3 Vl3 ) , - „„ .v v + pjy;

33

Experimental measurements of the elastic properties of inter-
mingled hybrid composites can be found in the work of Chamis and
Sinclair (1979) and Gruber and Chou (1983). The thermal prop-
erties of unidirectional intermingled hybrid composites have also
been examined by Chamis and Sinclair (1979). It has been
recommended that linear laminate theory be used to predict the
thermal expansion coefficients.

5.3.2 First cracking strain
The linear portion of the stress-strain curve often extends

beyond the failure strain of the pure LE fiber composite (point A'
in Fig. 5.10) and the first cracking of the LE fibers occurs at the
strain £Lu (point A in Fig. 5.10). This phenomenon is known as a
'hybrid effect'. The treatment of fiber first cracking strain of
Aveston and Kelly (1980) is introduced below.

A unidirectional hybrid composite composed of both high and
low elongation components can continue to bear the total load after
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252 Hybrid composites

the first cracking of the low elongation component if the following
condition is satisfied:

- O
(5-40)

Here, au denotes the failure stress, V indicates fiber volume
fraction, the subscripts L and H denote the LE and HE com-
ponents, respectively. Also, o'H (=£LuEH) is the stress of the HE
component at the failure strain of the LE component. For both HE
and LE components behaving elastically up to £Lu, the above
condition can also be expressed in terms of the failure strain of the
high elongation component

£HU^£LU(1 + " ) (5.41)

where

« = f ^ (5-42)

and E denotes the Young's modulus. Obviously the effect of stress
redistribution due to fiber breakage is not considered here.

The magnitude of the first cracking strain £Lu and the extension of
the curve between A and B in Fig. 5.10 can be understood using the
concept of multiple cracking and constrained failure (Chapter 3). It
has been established that the first failure strain is size dependent.
The term size means essentially the effective diameters of fiber tows
and their spacings at a fixed fiber volume content as well as the
thickness of lamellae in an interlaminated hybrid.

When an interlaminated hybrid composite is deformed beyond
the first cracking strain, parallel cracks will appear in the low
elongation phase with the crack planes normal to the loading axis.
The spacing of the cracks depends on the bonding (i.e. elastic or
frictional) between the component plies, after the initial cracking. If
they remain elastically bonded, the crack spacing is determined by
the maximum interfacial shear stress at the crack, rmax. On the
other hand, if load transfer occurs through frictional bonds between
the component phases, the crack spacing is determined by the
limiting bond strength R. In both cases, the formation of a crack
through the ply thickness of the low elongation component results
in the relaxation of the material in this ply on both sides of the
crack. The nearly flat portion of the composite stress-strain curve,
i.e. AB in Fig. 5.10, is the consequence of multiple cracking of the
low elongation phase and the associated extension of the specimen.
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The stress originally carried by the low elongation component on
the crack plane has to be shifted to the high elongation phase. The
maximum additional stress thrown onto the high elongation phase
can be estimated by

aa oaEnB

Ao = - - — (5.43)
'HE

where aa is the applied stress and Ec is the Young's modulus of the
composite. The first term on the right-hand side of Eq. (5.43) is the
stress on the crack plane while the second term gives the stress away
from the crack plane in the high elongation component. The
additional load carried by the high elongation component induces
an extension 61 of the specimen ends.

The idea of load transfer between the HE and LE components
explains why the strain £Lu, at which first cracking occurs, depends
upon the dispersion of the component phases. When thinner fibers
or lamellae are used, the interfacial area per unit volume between
the two component phases increases. This also means increased
efficiency of load transfer from the HE component bridging the
crack back to the LE layers. As a result, the additionally strained
length of this component and, hence, the displacement of the
specimen ends, 61, are decreased. The product of 61 and £c£Lu gives
the upper limit of the work available from the loading system to
form the crack. Assuming a constant surface work of fracture y, the
decrease in 61 will reach such a point that eLu must increase above
the value for the pure LE composite before the required work of
fracture can be extracted from the system. In the case of inter-
laminated hybrids with an elastically bonded interface the cracking
strain of the low elongation phase of thickness d can be estimated
by (Aveston and Kelly 1980)

) ( 5 -4 4 )

where a is defined in Eq. (5.42). Equation (5.44) predicts that £Lu

varies with the inverse square root of ply thickness. This prediction
of the hybrid effect is consistent with the experimental observation
of carbon/glass sandwich laminates that the carbon ply failure strain
is greater when its absolute thickness is smaller.

The theory of multiple cracking in fiber composites has very broad
applicability. Multiple cracking occurs in the brittle phase which
could be either the matrix or the fiber phase of an aligned fiber
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254 Hybrid composites

composite, the low elongation layers of a non-hybrid laminated
composite, or the layers reinforced with LE fibers in an interlamin-
ated hybrid composite. Multiple cracking of non-hybrid composites
has been examined in Chapter 3. Aveston and Kelly (1980) have
summarized the analytical expressions of the minimum crack
spacings, the first cracking strain and the maximum interfacial stress
for hybrid and non-hybrid composites with both elastic and sliding
friction bonds.

The above discussions have provided the answer to the question
posed in Section 5.1 concerning synergistic effects in hybrid
composites. The answer to the question of load sharing is also
positive. The bond between the fiber and matrix in a hybrid ensures
that the LE fiber continues to carry part of the applied load and to
contribute to the overall stiffness after first cracking (Bunsell and
Harris 1974). The load sharing by the LE fiber is evident from the
observation of multiple fractures in well bonded interply hybrids
and by the bursts of acoustic emission accompanying the repeated
load drops on the stress-strain curve. Finally, the rise of curve
BC in Fig. 5.10 is attributed to the loading of the high elongation
fibers. The failure strain of the hybrid composite (point D) is lower
than that of the high elongation fiber composite (point G). This is
because the multiple fracture of the LE fibers and partial debonding
between the HE and LE fiber reinforced laminae. Consequently,
the HE layers in an interlaminated hybrid composite cannot be
stretched uniformly along their length to the ultimate strain level.
On the other hand, if the debonding is complete at the first fiber
cracking strain, £Lu, the stress-strain curve follows the path OAEF.
Note that EF and BC in Fig. 5.10 have the same slope.

5.3.3 Differential Poisson 's effect
Another factor that needs to be taken into account in the

deformation of hybrid composites is the interlaminar stress induced
due to differential Poisson's effect (Aveston and Kelly 1980). It is
understood that this effect exists in laminated composites with or
without fiber hybridization. To demonstrate the magnitude of the
Poisson's strain and its effect on longitudinal splitting of laminated
composites, a three-layer non-hybrid cross-ply laminate is con-
sidered. The central LE (90°) layer in this case is sandwiched
between two HE (0°) layers. Thus the conclusions derived from this
example are applicable to interlaminated composites in general. The
strain induced by the differential Poisson's effect depends only on
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the volume fraction of the component phases. However, cracking of
the lamina can be minimized by making the LE layers sufficiently
thin.

The critical strain for causing longitudinal split due to Poisson's
effect can be derived based upon Fig. 3.25. Let the subscripts 1 and
2 denote the longitudinal and transverse fiber directions, respec-
tively, and x-y-z are the reference axes of the cross-ply. Under a
simple extension eyy, the following strains are induced in the 0° and
90° layers, if they are deformed independently:

(5.45)
exx(90°)=-v2,£yy

For the composite laminate subjected to eyy, the strain induced in
the x direction is exx. Referring to Fig. 3.25, the transverse strains
induced in the 0° and 90° layers due to the Poisson effect
are

Aexx{W) = exx - exx(0°) = exx + vl2eyy

(5.46)
Ae«(90°) = exx - exx(90°) = exx + v21eyy

Thus

Aexx(0°) - &exx(90°) = (v12 - v21)eyy (5.47)

The stress oxx is built up in each layer due to the requirement of
compatibility in normal strain in the x direction. These stresses are
given approximately by

a«(0°) = Aexx(0°)E22

(5.48)
oxx(90°) = Aexx(90°)Eu

The force equilibrium of the laminate in the transverse direction
requires

axx(0°)b + axx(90°)h = Aexx(0°)E22b + Aexx(90°)Euh = 0
(5.49)

From Eqs. (5.47) and (5.49), the transverse strain induced in the 0°
layer due to the Poisson's effect is
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256 Hybrid composites

where Ec = E22(b/h + b) + En(h/h + b) is the effective Young's
modulus along the x direction.

If the 0° and 90° layers in the laminate of Fig. 3.25 are of different
materials, then it is necessary to distinguish the elastic constants in
Eq. (5.50)

£ l l (9O>[v 1 2 (O°) -v 2 1 (9O°)K y
xA } bE22(0°) + hEn(90°){}=En ( j

5.3.4 Differential thermal expansion
Additional strain may be induced in a laminated hybrid

composite due to differential thermal expansion of the component
phases. The carbon/glass hybrid system is a typical case where the
axial thermal expansion coefficient of the glass laminae is much
larger than that of the carbon layers. Upon cooling down from the
stress-free temperature, compressive stress develops in the carbon
layers as a result of the differential thermal expansion. This
thermally induced compression can partially account for the hybrid
effect often observed in carbon/glass hybrids (Bunsell and Harris
1974). The constrained thermal strain in such a hybrid with high and
low elongation fibers can be expressed as (Aveston and Kelly 1980)

T ATEHEVHE
£LE = = ( <*LE - «HE) (5.52)

E

T ATELEVLB

£HE = = ( »HE ~ ^LE) (5.53)
Ec

where AT = stress-free temperature — service temperature, and aLE

and arHE denote the thermal expansion coefficients. The thermal
strain components are independent of fiber or lamina dimension.
The relation between the cracking strain and the dimension of the
low elongation phase is identical under external load and thermal
load. Hence, the treatment of multiple cracking can still be applied
in this case.

5.4 Strength theories
Discussions on the strength of hybrid composites begin

with an introduction on the rule-of-mixtures type of approach which
delineates the contributions of the high elongation and low elonga-
tion fibers to the load carrying capacity of the hybrid. In this
approach, the fibers are assumed to be of uniform strength and the
local stress redistributions due to fiber breakage are not taken into
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account. This is then followed by the probabilistic strength theories.
The synergistic effects between the LE and HE fibers in local stress
concentration and fiber strength distributions are modeled to
predict the first failure strength and ultimate failure strength of
hybrid composites.

5.4.1 Rule-of-mixtures
The ultimate tensile strength of a unidirectional hybrid

composite can be estimated from the contributions of the com-
ponent phases at different volume fractions. Consider a binary
composite with low elongation fibers. The addition of a small
amount of higher elongation fiber decreases the strength of the
composite. The ultimate hybrid composite tensile strength, ACU, is
given by (Aveston and Kelly 1980)

tfcu = CJLU VLE + £ L U £ H E VHE ( 5 . 5 4 )

where £Lu is the failure strain of the LE fiber in the hybrid. The
failure of the low elongation fiber leads to the fracture of the hybrid
and there is no multiple fracture.

As the content of the high elongation fiber increases, a transition
in failure mode occurs when there is sufficient volume of these fibers
to carry the load upon the fracture of the low elongation fibers. The
fracture mode is multiple fracture of the brittle fibers. The ultimate
tensile strength is represented by

OCU=OHUVHB (5 .55)

The volume fraction of HE fibers should exceed the lower limit,
given by Eq. (5.40), to bear the total load at the first cracking
strain. Aveston and Kelly (1980) applied Eqs. (5.54) and (5.55) to
analyze the experimental data of Kalnin (1972), who studied the
failure stress of interlaminated carbon/glass/epoxy hybrids. Figure
5.12 shows the variation of hybrid composite ultimate tensile
strength with the relative glass fiber content. The stress is calculated
by dividing the load by the cross-sectional area of the fiber and,
thus, the contribution of the epoxy matrix is neglected. Aveston and
Kelly suggested that for this particular experimental system the
fracture of carbon fibers did not produce a large stress concentra-
tion leading to the weakening of the glass fibers.

5.4.2 Probabilistic initial failure strength
It has been shown in Section 5.3.2 that the phenomena of

initial failures of unidirectional hybrid composites and cross-ply
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laminates share the same basic physical principle. In unidirectional
hybrid composites consisting of LE and HE fibers, the failure strain
of the LE fibers under tension is often greater than that in the all
LE fiber composite. On the other hand, in the non-hybrid [±
0°/9O°]s (0° < 6 < 90°) laminates the failure strength (strain) of the
90° (LE) layer under tension is greater for smaller thickness of the
inner 90° layers. It is also known that the failure strength (strain) of
the inner 90° layer depends on the material properties of the outer
±6° layers. Thus, in composites which consist of laminae with two
different types of material properties such as hybrid composites and
[±0°/90°]s non-hybrid laminates, the failure strength (strain) of the
LE layers is not an intrinsic material property and it depends on the
HE material properties and the geometric arrangement of the
layers.

Fukunaga, Chou and Fukuda (1984) and Fukunaga et al.
(1984a&b) have examined the initial failure strength of both hybrid
and non-hybrid composites based upon a statistical approach. The
hybrid composite under consideration is a sandwiched structure
composed of unidirectional glass fiber and carbon fiber laminae
(Fig. 5.13a). The non-hybrid composite is a carbon composite with
the [±6°/90°]s configuration (Fig. 5.13b). Both composites can be
depicted by the HE and LE representations of Fig. 5.13(c) where
MHE and MLE denote, respectively, the number of HE and LE

Fig. 5.12. Tensile strength of aligned carbon/glass/epoxy hybrids vs.
relative fiber content. (After Aveston and Kelly 1980.)
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layers. Thus, the total number of layers in the hybrid composite,
M = MHE + M L E .

Fukunaga and colleagues modeled the composite as a chain of
short laminates in series as shown in Fig. 3.17. Each laminate has
the length 6 equivalent to the ineffective length, and the specimen
length / = NS. In order to obtain the first ply failure strength of the
whole laminated composite, the following two-parameter cumula-
tive Weibull distribution functions of failure strain for the LE and
HE short layers are assumed

(5.56)

Here e* and /? denote the scale and shape parameters, respectively.
Then, the cumulative distribution function HC(S) for the first ply
failure strain of the composite can be obtained from the weakest
link model

i/c(e) = l - [ l - Gc(e)]" (5.57)

where Gc(s) is the cumulative distribution function for the first ply
failure strain of the short laminate and it is given by

GC(E) = 1 - [1 - (5.58)

Fig. 5.13. (a) Carbon/glass hybrid laminate, (b) [±0°/9O°]s non-hybrid
laminate, (c) Model for analysis. (After Fukunaga et al. 1984c.)
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Substitution of Eq. (5.58) into Eq. (5.57) yields

(5.59)

It should be noted that Eq. (5.59) is concerned with the first ply
failure strain of the composite laminate not the LE phase of the
composite. This is because, from a probabilistic viewpoint, the
failure of the LE layer does not always precede that of the HE
layers. Similar to Eq. (5.59) the cumulative distribution function
/JLE(£) for the first ply failure strain of the all LE fiber composite
(of the same size as the hybrid composite) is given by

#LE(£) = 1 ~ exp[-A^M(£/eLE)^IE] (5.60)

Fukunaga and colleagues have compared the failure strains for
the HE/LE/HE laminate and the pure LE laminate for the failure
strains at 50% failure probability. From Eqs. (5.59) and (5.60)

; MHE / er \^HE In 2
+ -

M \£LE/ M \ETMJ NM
(5.61)

E In 2
\ e i J NM

where ec and £LE denote, respectively, the median failure strains of
the hybrid and LE composite. In order to obtain an explicit relation
between the ratio of median failure strains, £C/£LE> and the relative
volume fraction of the LE material, MLB/M, the case of /3LE =
/3HE = p is considered. Then, Eqs. (5.61) become

fHML E + y ( £ * ) " P (5-62)
£ L E \ M /

where E* = £H E /£ L E . The ratio £C/£LE in Eq. (5.62) is independent
of the size of the composite. By assuming linear stress-strain
relations for the HE and LE layers, the first ply failure strength
ratio crc/aLE is readily obtained

where E denotes the Young's modulus in the loading direction,
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Numerical calculations of Eqs. (5.62) and (5.63) have been
performed for carbon/glass/epoxy unidirectional hybrid composites.
It is assumed that e* = 3.0 and EHE/E^E = 3. Figure 5.14 shows the
comparison of Eq. (5.62) with the experimental results of Bader
and Manders (1981a&b) for HTS carbon/glass hybrid laminates.
The analytical results for jS = 10 seem to show good agreement with
experimental results. Figure 5.15 indicates the variation of initial
composite failure strength with the relative volume fraction of LE
and HE layers. Points A and D in Fig. 5.15 represent the strengths
of glass and carbon composites, respectively. Line BD(oc/o^E =
EJELB) indicates the stress in the hybrid at which failure of the
carbon layer takes place. Line AE(oJal^E = MHE/(MLE + MHE))
represents the stress in the hybrid assuming that the LE layer
carries no load. As the shape parameter ft decreases, the first ply
failure strain and strength of the hybrid composite increase relative
to those of the all carbon fiber composite. When )3—o°, that is for
composites without scattering in the failure strains of the LE and
HE layers, the first ply failure strain of the hybrid composite is
identical to that of the pure LE composite. This relation at /?-» °° in
Fig. 5.15 is equivalent to the rule-of-mixtures for the initial failure
in hybrids.

Fig. 5.14. Comparisons of the analytical predictions of Fukunaga et al.
(1984c) and the experimental results of Bader and Manders (1981a&b) for
HTS carbon/E-glass hybrid laminates. (After Fukunaga et al. 1984c.)
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262 Hybrid composites

The trend of variation of £C/£LE with the relative 90° layer volume
fraction for [±#790°]s laminates is similar to that given in Fig. 5.14.
For a given value of shape parameter, EJELB decreases with the
increase in the angle 6.

In summary, the probabilistic strength analysis of Fukunaga,
Chou and Fukuda (1984) and Fukunaga et al. (1984a) for the initial
failure in hybrid and non-hybrid composites has demonstrated a
volumetric relation. It has been shown that the initial failure strain
or strength is greater in composites composed of low elongation and
high elongation materials than in the all low elongation fiber
composite. This is the result of a 'size effect'; that is the failure
probability is lower in the composite with the smaller size of the low
elongation material.

5.4.3 Probabilistic ultimate failure strength
In this section three analytic approaches are presented for

predicting the ultimate tensile strength of hybrid composites. All
these methods consider the variability in fiber strength and the
stress redistribution at fiber fracture. First, the analytical model of
Zweben (1977) assumes that the LE and HE fibers are arranged in
alternating positions in a unidirectional lamina. The fracture of an

Fig. 5.15. Composite initial failure strength ac (normalized by aL E) in
glass/carbon/glass laminates. )3LE = PUE = P> £ H E - £ LE = 3 .0 and
£ H E / £ L E = 3- (After Fukunaga et al. 1984c.)

Cambridge Books Online © Cambridge University Press, 2010
Downloaded from Cambridge Books Online by IP 218.1.68.132 on Mon Apr 14 03:24:15 BST 2014.

http://dx.doi.org/10.1017/CBO9780511600272.006
Cambridge Books Online © Cambridge University Press, 2014



Strength theories 263

LE fiber induces, in the vicinity of the fiber fracture, a local stress
(strain) concentration. The HE fibers will break at the points of
stress (strain) concentration. Zweben hypothesizes that the strain
level at which the first overstressed HE fiber is expected to break is
a lower bound on the ultimate strain of the hybrid composite.

Next, in order to obtain a more realistic view of the multiple
fracture of the LE fibers in a hybrid composite, Fukuda and Chou
(1982a&b) adopted a Monte-Carlo simulation of the ultimate failure
of a unidirectional hybrid composite. The method demonstrates the
diffused nature of fracture of the LE fibers. The constraint on the
propagation of the LE fiber fractures due to the presence of HE
fibers as well as the stress-strain relation of the hybrid composite as
influenced by multiple fiber fractures has been demonstrated.

Thirdly, Fukunaga, Chou and Fukuda (1989) have adopted a
more rigorous approach by applying the methods of Harlow and
Phoenix (1978a&b). The effects on the ultimate strength of hybrid
laminates due to the scatter of laminar strengths, relative fiber
volume fractions, composite size and laminate stacking sequence
have been identified.

The analytical model of Zweben is composed of a single layer of
fibers of axial length / with the same arrangement as that shown in
Fig. 3.17. High elongation (low modulus) fibers and low elongation
(high modulus) fibers are arranged in alternating positions. The
total number of fibers in the composite is M, of which M/2 are LE,
and M/2 are HE fibers. The term 'fibers', according Zweben,
represents both single fibers and yarns.

It is assumed that the fibers support all of the applied load and
the fibers break under load in a random fashion throughout the
composite. Attention is focussed on what happens in the vicinity
of the breaks in the LE fibers. The strain of the composite is
adopted as the independent variable. When an LE fiber breaks at
the strain level e, the two adjacent HE fibers are subjected to a
strain concentration of Khs, where Kh is the strain concentration
factor associated with a single broken LE fiber. Because of the
linear elastic deformation assumed in the model, Kh is also the
stress concentration factor. Since the model assumes that the fiber
axial stress depends only on the axial strain, the stress in these two
HE fibers increases from EHBe to KhEHB£. The axial distance over
which the fiber stress is perturbed due to a fiber breakage is known
as the ineffective length (Rosen 1964). Zweben denoted the
ineffective length associated with a broken LE fiber in the hybrid by
< 5
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264 Hybrid composites

Similar to Fig. 3.17, the hybrid composite is composed of a series
of links with axial dimension <5h. The total number of links is
Nh = //<5h. Failure of the composite results from the propagation of
fiber breaks due to local strain concentrations.

The cumulative distribution functions for the failure strains of the
LE and HE fibers of length / are assumed in the form of Weibull
distributions:

FLE(e) = 1 - expi-ple")
(5.64)

where py q, r and s are Weibull parameters. The composite strain at
which the fracture of the first overstressed HE fibers occurs in the
hybrid is given by

eh = [Af(pr5 h (^ h - l ) ] - 1 ' ^> (5.65)

For a composite reinforced with M fibers of the same type, say the
LE fibers, Eq. (5.65) becomes

e = [2Mlp2SBB(KlB - l )]"1 / 2 « (5.66)

Here, X"LE and <5LE are, respectively, the strain concentration factor
and ineffective length of the LE fiber composite.

From Eqs. (5.65) and (5.66), Zweben has obtained the ratio of
the lower bounds of failure strain of a hybrid to that of a LE fiber
composite of the same length

£h_ [MlPr6b(Kll)Y
e [IMlp^UKll)]-112" l }

Equation (5.67) indicates that the ratio of the failure strains
depends on the Weibull strength parameters p> q, r and s> the
specimen length /, the ineffective lengths <5h and <5LE, and the strain
concentration factors KBB and KUB. Zweben has derived approxi-
mate expressions of these parameters in terms of the fiber elastic
properties and the geometric parameters of fiber arrangements in
the composites.

For the convenience of assessing the failure characteristics of
hybrid composites, Eq. (5.67) can be simplified by assuming that
both LE and HE fibers have the same coefficient of variation in
tensile failure strain. It can be shown that for this case q = s and Eq.
(5.67) becomes
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Strength theories 265

From Eq. (3.54a) the mean strains of the LE and HE fibers for the
gauge-length / are given by

(5.69)

where T is a gamma function. Thus, for q=s, Eqs. (5.68) and
(5.69) yield

Equation (5.70) can be further simplified if the fiber coefficient of
variation is small (i.e. 5% or less) and thus the shape parameter is
large (q > 25). For this case Kq

HE - 1 « #HE and Kq - 1 « Kq
y and

Eq. (5.70) is reduced to

XifrV(£)
Equation (5.71) indicates that the ratio of the lower bounds of
failure strains is sensitive to the mean fiber failure strains and the
strain concentration factors and it is less sensitive to the ineffective
lengths under the assumption of low fiber coefficient of variations.
For the case of an intermingled Kevlar 49/Thornel 300 hybrid
composite, Zweben obtained Kh = 1.462, K^E = 1.293, 6J6LB =
1.573/1.531 = 1.03, and CREOLE = 1.63. The fiber strain coefficients
of variation for both HE and LE fibers are assumed to be about 6%
if the Weibull parameter q = 20 is adopted. Using these values, Eq.
(5.71) gives R = 1.22.

In spite of the simplifying assumption used, Zweben's model, in
essence, predicts that the introduction of HE fibers into a LE fiber
composite enhances the failure strain of the hybrid composite. This
effect is attributed to the ability of HE fibers to redistribute the
local stress concentration and act like crack arrestors at the
micromechanical level.

Fukuda and Chou (1982a) have examined the strength of hybrid
composites using the method of Monte Carlo simulation. Figure
5.16 shows an idealized intermingled hybrid composite sheet of unit
thickness. The LE and HE fibers assume alternating positions. For
the purpose of numerical calculations, a five-fiber region with three
LE fibers and two HE fibers is considered. Following the notations
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266 Hybrid composites

of the chain-of-links model given in Fig. 3.17, M = 5 and N = 20 are
adopted for Fig. 5.16. Also the extensional rigidity ratios R(=
E*d*/Ed) are assumed to be unity (for a non-hybrid composite)
and I (for simulating a glass/carbon composite).

Using a shear-lag analysis, the stress concentration factors are
evaluated. The fiber breakage patterns considered by Fukuda and
Chou include all the combinations of one-, two-, three- and
four-fiber fracture in a transverse plane. A shear-lag analysis is
applied to evaluate the stress concentration factors of all the intact
links in the layer where fiber breakage has taken place. Results for
two kinds of fiber composites are presented below.

In the first case, there is only one type of fiber; its strength
follows a normal distribution with an average normalized strength
of unity and a standard deviation of 0.1. A typical sequence of link
failure is shown in Fig. 5.17(a), where 0 indicates that the link is
intact and the other numbers show the sequence of fracture of links.
In this model, the link of i = 14, j = 2 breaks first; the link of / = 5,
j = 4 breaks second; finally the failure occurs at the transverse plane
of i = 14. In a total of 100 links, six links are broken. One hundred
iterations have been performed by Fukuda and Chou and the
number of broken links of each iteration is found to be either five or
six. Generally speaking, multiple fiber fractures are not extensive in
non-hybrid composites.

Fig. 5.16. Model
Chou 1982a.)

LE fiber
/ HE fiber

/

for the Monte Carlo simulation. (After Fukuda and

N
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Strength theories 267

Figure 5.17(b) shows the failure sequence of links in the hybrid
composite. It is seen that the LE fibers tend to break at the initial
stage of loading and that a total of 16 links are broken for this
model to fail at the plane of / = 10. A minimum of five and a
maximum of 32 link failures are observed during 100 iterations, and
the average number of broken links in one iteration is 16.3. The
degree of multiple fiber fracture is considerably more extensive in
the hybrid composite than the non-hydrid case.

Figure 5.18 shows the examples of stress-strain relations of both
non-hybrid and hybrid composites. The stress ac and strain ec of
composites are normalized by the average ultimate stress (<XLINK)
and average ultimate strain (eLiNK) of the links of LE fibers. The
initial failure strains of the LE fiber composite and the hybrid
composite are nearly the same. However, in the hybrid composite,
initial multiple failures of the LE fibers are arrested by the HE
fibers. As a result, the hybrid composite can withstand more
deformation and hence a higher ultimate failure strain. According

Fig. 5.17. Examples of the fiber link failure sequence, (a) Non-hybrid
composite, (b) Hybrid composite. (After Fukuda and Chou 1982a.)
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268 Hybrid composites

to this example, the ultimate strain increases approximately 50%
over that of the LE fiber composite.

Although the total number of fibers utilized in this numerical
model is extremely small the progressive nature of failure as
indicated in the stress-strain curve resembles that of the ex-
perimental curves obtained by Bunsell and Harris (1974) of
carbon/glass hybrid composites.

The ultimate strength of the hybrid predicted in Fig. 5.18 is lower
than those of the LE and HE fiber composites and the ultimate
strain of the hybrid is lower than that of the HE fiber composite.
This can be understood from the fact that, with the exception of
those on the crack plane, the links of the HE fibers are constrained
by the surrounding LE links and cannot be deformed to their
ultimate strain. As a result, the strength potential of the HE links
is not fully realized.

Fukunaga, Chou and Fukuda (1989) have extended the treatment
of Harlow and Phoenix (1978a&b) to analyze the ultimate tensile
strength of hybrid composites. In their model, the laminate is also
treated as a chain of N short segments arranged in series. Each
segment has a length 6 and the total length of the composite is
/ = Nd. There are four layers in the laminate. Figure 5.19 shows the
stacking sequence of the laminates consisting of LE and HE fiber
layers. The strain concentration factors for the various configura-
tions of layer breakage have been evaluated by the eigenvector
expansion method (Fukunaga, Chou and Fukuda 1984).

Fig. 5.18. Normalized stress-strain relations of non-hybrid and hybrid
composites. (After Fukuda and Chou 1982a.)
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Strength theories 269

The strength analysis is performed on the basis of the knowledge
of the stress redistribution due to layer breakage. It is assumed that
each layer follows a two-parameter Weibull probability distribution
function and the ultimate failure is defined as the failure of all the
layers. The cumulative distribution functions for the ultimate strains
of the LE and HE layers are denoted by FLE(e) and FHE(£),
respectively. They are expressed as in Eqs. (5.56). The failure
patterns of the four-layered hybrid are shown in Fig. 5.20 where the
circles and crosses denote the intact and broken layers, respectively;
the possibilities of one, two, three, and four fractured layers are
given. According to Fukunaga and colleagues, there are altogether
75 possible failure sequences which can be grouped into eight

Fig. 5.19. Stacking sequences of laminates. (After Fukunaga, Chou and
Fukuda 1989.)
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Fig. 5.20. Failure patterns of the four-layered hybrid composite. (After
Fukunaga, Chou and Fukuda 1989.)
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270 Hybrid composites

different types. The number of different failure sequences in each
type has been identified. A typical failure sequence in each type and
the corresponding failure probability are given in Table 5.3 where
F(x) stands for FLE(f) for the LE layer and FHB(e) for the HE
layer, and Kijtk denotes the strain concentration factor of the A:th
layer due to the fracture of the ith and yth layers.

The cumulative distribution function, G(e), in failure strain for a
laminate segment of length 3 is given by the summation of the
failure probabilities of failure sequences no. 1 through no. 75.
When G(e) is given, the cumulative distribution function with
respect to the average stress, G(a) can be obtained from the
relation o = Ece, where Ec is the effective axial Young's modulus of
the hybrid laminate. Finally, the cumulative distribution function,
H(a), for the hybrid composite of length / = N6 is given by the
weakest link theory as follows:

H(a) = l - [l - G(a)]N (5.72)

Two limiting cases are considered. In the case of non-hybrid
composites, FLE(£)

 =
 FUB(S), the above results can be reduced to

those of Harlow and Phoenix if the local load sharing (equal load
sharing) rule is used for the strain redistribution. Another case
deserving attention is the situation of high failure probability, for
which the first ply failure may trigger the complete failure of the
laminate. The cumulative distribution function for the first ply
failure strength of a laminate segment is then given by Eq. (5.58)

Table 5.3. Failure sequence and failure probability of the
four-layered hybrid composite

Type

I

II

III

IV
V

VI
VII
VII

Nos.

1-24

25-36

37-48

49-60
61-4

65-70
71-4
75

Failure
sequence

abflp

ablp

abfp

aflp
abp

afp
alp
ap

Failure probability

F(x)}{F(Ku3x)
{F(Kl23 4x)

F(x){F(Kl2x)

F(x){F(K, ,x)
{F(Kl2 4x) -

F(x)2{F(K,2 r

F(x){F(K, 2*)
F{x)}

F(x)2{F(K^ ,;
F(xf{F(Kl234x)

F(x)4

-F(x)}{F{Kl2

-F(Kl24x)}
-F(x)}{F(K,

-F(x)}{F(Kl
-F(K,4x)}
x ) - F(x)}{F(Kl

-F(JC)}{F(K,4

x ) - F(x)}{F(Kl

4x) - F(x)}

u3x)-F{KX3x)}

x)-F(x)}{F(K12,Ax)-

3x) - F(K, 3x)}

2 3 4 x) — F(KV 4JT)}

x)-F(JC)}{F(K,4x)-

23x)-F(x)}
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with e replaced by a. Fukunaga and colleagues have shown that
G(a) can be expressed on the Weibull probability paper in the
following form:

1n + j31n
ao M L E + MUBE

ln(ML E + MHBEP) (5.73)

where M = MLE + MHE, - = EUB/EL and oo is the scale
parameter.

Numerical results of the hybrid ultimate strength have been
obtained for p = /3LE = /3HE , £ H E /£ L E = ^ and £HE = £LE = 3.
Figure 5.21 shows the median strength for FLE = 0.5 and four
different laminate configurations. It can be seen that the strength of
hybrid laminates with LE layers clustering together (cases A and B
in Fig. 5.21) is lower than that for the situation where the LE layers
are dispersed more evenly among the HE layers. This obviously
results from the higher stress concentration factors in cases A and B
than in cases C and D.

Figure 5.22 shows the median strength variation with VLE for the
case of TV =100. The points A (A') and D (£>'), respectively,
represent the strengths of an all HE fiber composite and an all LE
fiber composite. Line BD (B'D') represents the stress in the

Fig. 5.21. Effects of stacking sequences on the median strength. (After
Fukunaga, Chou and Fukuda 1989.)
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272 Hybrid composites

hybrid at which failure of the LE fiber takes place. Line AC
{A'C) represents the stress in the hybrid assuming that the LE
fibers carry no load. According to the rule-of-mixtures, line
AED {A'E'D') marks the ultimate failure strength of the hybrid.
Increases in strength above the rule-of-mixtures are known as a
hybrid effect. The present results show that the strength of hybrid
laminates is lower than that of the all LE and all HE fiber
composites. This finding is consistent with the experimental meas-
urements of hybrid laminate strength (Ji 1982). Some other effects
on the strength can also be seen from this figure. These are the
scatter of the lamina strengths, the LE fiber relative volume fraction
and the laminate stacking sequence. The median strength for /? = 10
is greater than that for /J = 5, whereas the hybrid effect is greater
for jS = 5 than that for /3 = 10. The strength varies with the laminate
stacking sequence as well as the LE fiber relative volume fraction.
The symbols in Fig. 5.22 correspond to the four types of fiber
arrangements (A, B> C and D) in Fig. 5.21. It can also be seen that
the hybrid effect is greatest for the case of V^E = 0.5.

The probabilistic analysis of Fukunaga, Chou and Fukuda (1989)
has led to the following conclusions: (1) The hybrid composite

Fig. 5.22. The median strength vs. relative fiber volume fraction. (After
Fukunaga, Chou and Fukuda 1989.)
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ultimate strength is greater for larger values of shape parameters,
whereas the hybrid effect is greater for smaller values of shape
parameters. (2) The hybrid effect on the probabilistic ultimate
failure strength is most pronounced for VLE = 0.5. (3) Both the
magnitude and scatter of strengths vary with the length of hybrid
composites. (4) The strength is also affected by the lamina stacking
sequences because of the difference in stress redistributions result-
ing from laminar fracture. For a given relative fiber volume
fraction, laminates with the LE layers uniformly dispersed among
the HE layers are stronger than the laminates with the LE layers
clustering together.

5.5 Softening strips
The idea of using softening strips in laminated composites

has been developed for the purpose of modifying the local stress
state and thus enhancing the load-carrying capability of composite
structures. The process of introducing a softening strip involves
replacing the low elongation plies with high elongation layers in
selected regions, thus forming an interlaminated hybrid composite.
Sites of stress concentrations in composites are particularly de-
sirable for the use of softening strips. This concept is demonstrated
below for notched laminates.

Sun and Luo (1985) have used three composites for fabrication of
the hybrid specimens, i.e. AS4/3501 carbon/epoxy by Hercules,
S2/CE9000-9 glass/epoxy by the Ferro Corp., and Scotchply 1002
glass/epoxy by the 3M Co. The base-line carbon/epoxy laminates
have the lay-up of [±457070707=F45°] and [±4570°]s. Each
laminate contains a circular hole at the center. To create the
softening strips, two plies of S2/CE9000-9 glass/epoxy are used to
replace the three 0° carbon/epoxy plies in the [±457070707*45°]
laminate, and one ply of Scotchply glass/epoxy is used to replace
the two 0° carbon/epoxy layers in the [±45°/0°]s laminate. Each
strip is placed along the axial direction in the center of the laminate.
The width of the softening strip is about twice of the hole diameter.

Table 5.4 summarizes the average failure load of all-carbon and
hybrid composites. For both laminate systems, there is a significant
increase in failure load (22-8%) in the notched hybrid system over
the corresponding all-carbon system. However, the unnotched
hybrid system shows lower strength than the corresponding all-
carbon system as expected. The enhancement in failure load is
realized only in the notched specimens. This can be understood
from a stress analysis of the hybrid and non-hybrid laminates.
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Figure 5.23 presents the results of finite element analysis of the
normal stress along the transverse cross-section through the center
of the circular hole. The distance in Fig. 5.23 is measured from the
edge of the hole. There is a drastic reduction of the stress
concentration in the hybridized region due to the presence of the
low modulus material. This is believed to be the reason for the
higher ultimate strength of the hybrid composite. The stress level
outside of the softening strip is elevated.

Table 5.4. Average maximum load. After Sun and Luo (1985).

[±457070707 * 45° [±4570°]s

all-carbon
(kN)

hybrid A
(kN) (%)*

all-carbon
(kN)

hybrid A
(kN) (%)*

unnotched
notched
A (%)t

51.6
27.3

-47.0

41
35

-14

.0

.0
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-20.
28.

5
3

30.2
15.6

-48.2

21
19

-10

.4

.1

.9

-29
22
.2
.0

* A(%) = hybrid maximum load/carbon maximum load - 1
t A(%) = notched maximum load/unnotched maximum load - 1

Fig. 5.23. Finite element analysis of axial normal stress distribution along
the transverse section in the notched laminate of [±45o/0°/0o/0°/ =F 45°]
through the center of the circular hole. (After Sun and Luo 1985.)
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The combination of low elongation and high elongation materials
in interlaminated hybrid composites also offers improved fatigue
and crack growth properties. A typical example of this kind is the
aramid aluminum laminate (also known as ARALL) originated in
the Netherlands. (See, for instance, Marissen 1984; Marissen,
Trautmann, Foth and Nowack 1984; Mueller, Prohaska and Davis
1985; Vogelesang and Gunnink 1986; Bucci, Mueller, Schultz and
Prohaska 1987; Kenaga, Doyle and Sun 1987; Chen and Sun 1989.)
ARALL can be considered as a hybrid of aramid fiber laminae
sandwiched in between sheets of high strength aluminum alloy. The
hybrid composite is 15% less dense than the monolithic aluminum
alloy and shows a 100-1000 fold improvement in fatigue life. The
tensile properties of the hybrid are reported to be 15-30% better.
Thus, ARALL is desirable for fatigue dominated sheet applications
such as in lower wing skins, fuselages and tail skins of aircraft.

Other examples of combinations of high elongation and low
elongation sheets of materials can be found in the use of adhesive
layers in controlling free edge delamination and impact damage.
(See, for instance, Chan, Rogers and Aker 1976; Sun and Norman
1988; Sun and Rechak 1988.)

5.6 Mechanical properties
This section discusses briefly the fracture, impact and

fatigue characteristics of hybrid composites. In the case of inter-
laminated hybrid composites the failure mode is the fracture of the
low elongation plies transverse to the loading axis. It has been
observed in carbon/glass hybrids that the main transverse fracture is
typically of cruciform shape and debonding occurs between the
carbon and glass plies outwards from the line where the transverse
crack intersects the carbon-glass interface. Ultimately most of the
hybrid becomes debonded and the strength and stiffness approach
those of the glass plies alone as shown in Fig. 5.10 (Bader and
Manders 1978; Pitkethly and Bader 1987).

It is important to note that the initial fracture in the carbon plies
does not propagate across the glass plies and load can be progres-
sively diffused back into the carbon plies away from the fracture
plane (Section 5.3.2). These processes of multiple cracking in the
low elongation phase and the associated debonding have a sig-
nificant effect on the total work of fracture in hybrid composites.
The extension of debonding decreases as the absolute thickness of
the carbon layers and volume content of carbon fiber decrease. It
also has been suggested that debonding could be inhibited if the
thickness of the carbon layers is made sufficiently thin.
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The subject of work of fracture has received some attention
(McColl and Morley 1977; Kirk, Munro and Beaumont 1978). It has
been pointed out that fracture mechanisms at the microscopic level
in binary fiber composites can be combined to give different kinds
of macroscopic fracture behavior in hybrid composites. Therefore
the fracture of the carbon/glass hybrid system, for instance, is
expected to show characteristics of the individual composite
systems.

The impact resistance of composite materials can be modified
through a broad range of methods. Jang et al. (1989) have reviewed
the major techniques including the control of fiber/matrix interfa-
cial adhesion, matrix modifications, lamination design, through-the-
thickness reinforcements, fiber hybridization, and utilization of
high-strain fibers. Among these approaches, hybrids offer the
benefit of improving the impact resistance of composites based upon
high modulus fibers.

The total strain-energy of a composite at its ultimate tensile
strength is inversely proportional to the fiber tensile modulus. Thus,
high modulus fibers are not desirable for impact resistance from the
viewpoint of energy absorption. The same is true when the work of
fracture or toughness is considered. Aveston and Kelly (1980) have
assessed the effectiveness of hybrid composites in energy absorp-
tion. Their analysis is recapitulated in the following. Consider the
idealized stress-strain curve of Fig. 5.10, and compare the total
energy per unit volume absorbed in a hybrid up to its ultimate
tensile strength with the sum of energies of its components. By
assuming a mean crack spacing of 1.5JC (for crack spacing between x
and 2x), the strain at the limit of multiple cracking is £Lu(l + (f)a)
where a is given in Eq. (5.42). The ultimate failure strain of the
hybrid is 8Uu - (|)AELU, where £Lu and eUu are the ultimate strains
of the LE and HE components, respectively.

Based upon these strain values, the area under the stress-strain
curve OABC of the hybrid composite is

U, = laEce
t
u + l

2e
2
HuEHEVHB (5.74)

When the HE and LE components are completely debonded, the
stress-strain curve follows the path OAEF. Then the energy
absorbed at ultimate failure is

U2 =
 hEceln + ^ H E VHEEHU " ^ H E V H E E L (5.75)

Aveston and Kelly have concluded that for Ul > U2y oc should be
greater than three. For the combination of glass and carbon fiber
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composites, this can be achieved with a carbon fiber volume fraction
of over 30%. Furthermore, the condition of multiple cracking (Eq.
(5.41)) requires that a>7.1 for eUu = 2 3 % and eLu = 0.28%. This
implies YLE = 48%. Thus, toughening through fiber hybridization
and multiple cracking can be accomplished in carbon/glass compos-
ites with carbon fiber volume fraction between 30% and 48%.

Experimental studies of the impact behavior of hybrid composites
can be found in the work of Chamis, Hanson and Serafini (1972),
Beaumont, Riewald and Zweben (1974), Adams (1975), Adams
and Miller (1975, 1976), Dorey, Sidey and Hutchings (1978);
Adams and Zimmerman (1986); and Jang et al. (1989). Several test
methods have been employed to measure the impact resistance of
composite materials. The Charpy impact test and Izod impact test
have been performed mainly on unidirectional composites, whereas
the drop-weight impact test is usually used for laminated compos-
ites. Other tests such as longitudinal impact, transverse impact and
pure shear impact tests on unidirectional fiber composites have also
been considered.

Both notched and unnotched specimens have been used in
Charpy tests. Instrumented Charpy impact tests can be used to
determine the maximum load on the specimen, as well as to
differentiate between the energy required to initiate damage and the
energy absorbed during damage propagation. The relative sizes of
the two regions for failure initiation and propagation under the
load-time curve provide a qualitative measurement of the ductility
of a composite under impact loading. Two materials with the same
total Charpy energy may have quite different proportions of the
component energies and, thus, distinct mechanisms of failure
(Beaumont, Riewald and Zweben 1974). Most composite materials,
especially laminated systems, can dissipate a considerable amount of
energy in the fracture propagation phase even though the initial
fracture may be of a brittle cleavage mode (Adams and Miller
1975). Interlaminated hybrid composites have been found to
increase delamination under impact loading. Jang et al. (1989) have
reported that the impact energies of the interlaminated hybrids
generally show a negative hybrid effect, i.e. slightly lower energy
dissipation than that predicted by the rule-of-mixtures.

As to the fatigue behavior of hybrids, Phillips (1976) has reported
significant improvements in fatigue resistance of glass composites by
hybridization with carbon fibers. At the stress level of 300 MPa or
about 50% of ultimate, the fatigue life of the three-to-one volume
fraction of glass/carbon hybrid is improved by about 100 fold over
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the all-glass control. This probably arises from the increased
stiffness and, hence, the decreased strain for a given stress.

Figure 5.24 shows the stress vs. log life curves for unidirectional
carbon/Kevlar hybrids tested in repeated tension (minimum
stress/maximum stress = 0.1) reported by Fernando et al. (1988).
The stresses in Fig. 5.24 are peak stresses. The <xmax/log Ncurves show
a uniform variation from the linear form of the curve for plain
carbon/epoxy towards the pronounced step-function shape of the
curve for the plain Kevlar-49/epoxy composite. Adam et al. (1989)
have examined a series of carbon/Kevlar-49/epoxy unidirectional
hybrid composites; the fatigue behavior has been established as a
function of composition and the ratio of the minimum to maximum
stress in cyclic tension and tension/compression. This enables them
to represent all data in a single two-parameter fatigue curve.

Other mechanical property data can be found in the literature for
the non-linear tensile stress-strain relation (Takahashi and Chou
1987), compressive behavior (Chou, Steward and Bader 1979; Chou
and Kelly 1980b; Gruber, Overbeeke and Chou 1982; Kretsis 1987;
Yau and Chou 1989), flexural behavior (Fischer and Marom 1987;
Marom and Chen 1987) and shear property (Kretsis 1987).

Fig. 5.24. Stress/log life (omax/\og N) curves for the family of unidirec-
tional carbon/Kevlar hybrids tested in repeated tension (minimum
stress/maximum stress = 0.1). (After Fernando et al 1988.) amax is the
peak stress. The percentages indicate relative fiber volume fractions of
carbon and Kevlar.
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5.7 Property optimization analysis

5.7.1 Constitutive relations
A method is presented in this section to determine the

concentration of components which can simultaneously optimize
certain mechanical, thermal and electrical properties of a hybrid
composite. This analysis, developed by McCullough and Peterson
(1977) is essential in the pursuit of balanced material properties of a
multi-component system.

The basis of this optimization analysis is the assumption that the
constitutive relations for several major properties can be cast into
simple linear form. Although the hybrids under consideration are
restricted to unidirectional composites, the general format of this
treatment is applicable to structural elements with more complex
fiber arrangements. The constitutive equations for estimating the
longitudinal properties of ternary composites are summarized below.
Here, the volume fractions of the components are denoted by V, and
the weight fraction by w. The subscripts 1, 2 and 3 refer to the
components of the ternary system.

Mechanical properties

modulus E = VXEX + V2E2 + V3E3

strength a = (V1E1 + V2E2 + V3E3)e* (5.76)

Poisson's ratio v = Vxvv + V2v2 + V3v3

Thermal properties

coefficient of a = [VlEla1 + V2E2a2 + V3E3a3]/

expansion [VjE! + V2E2 + V3E3] (5 77)

thermal conductivity K = V, Kt + V2K2 + V3K3

Electrical property
1 Vi V2 V3

resistivity - = 1 1 h —
P P l P 2 P 3 (5.78)

Weight density d = Vldl + V2d2 + V3d3

Cost

cost/weight C = Clw1 + C2w2 + C3w3 (5-79)
In the strength expression it is assumed that £* = min(e1, e2, e3)
and failure occurs when the composite strain reaches the lowest
failure strain of the three components. Clearly, this assumption
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underestimates the longitudinal strength. In the cases of coefficient
of expansion and resistivity, E, a and p are treated as property
variables. Also, w, is the weight fraction of the /th component.

It is often useful to examine the performance of a composite in
terms of certain 'specific' properties (i.e. the property per unit
weight). A specific property P can be related to the property P and
its weight density d as

(5.80)

where wt is defined by the term in the square brackets. The
equations for mechanical, thermal and electrical properties, as well
as density, have volume fraction as the composition variable while
the specific property equations and the cost equation have weight
fraction as the composition variable. Volume fraction and weight
fraction are related by

Wi = dtVi/d (5.81)

Both weight fraction and volume fraction can be used as concentra-
tion variables in the analysis of performance.

A typical property map for ternary systems can be represented by
triangular diagrams as shown in Fig. 5.25. Each side of the
equilateral triangle is unity in length and it expresses the volume
fraction of a component. The volume fraction of a ternary system is
represented by a point inside the triangle. For example, the hybrid
composite denoted by point R in the property map contains 35%,
25% and 40% of matrix, fiber 1 and fiber 2, respectively. These
concentration readings are obtained by drawing lines from point R
parallel to the three sides of the triangle. The volume fractions of
binary systems and pure components are represented, respectively,
by points located on the sides and the apices of the triangle.

A straight line within the triangle of Fig. 5.25 specifies arbitrarily
selected property levels available to the ternary system. Thus,
line DE represents the various ways of combining the three
components to achieve a specified property level, P, of the
composite. Point E, for example, indicates that the combination of
55% volume fraction of matrix, 0% volume fraction of fiber 1 and
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45% volume fraction of fiber 2 will result in a composite with
property P. This same property level P can be achieved by
concentration levels represented by all the other points on line
DE. Also shown in Fig. 5.25 is the shaded area defined by the
concentration line for 20% of matrix material. This particular
volume fraction represents a square array of fibers of equal size. By
determining the minimum desirable volume fraction of matrix
material, the region in the triangle representing a matrix content
below the minimal level can be excluded from further consideration
in the optimization process.

Figures 5.26(a) and (b) present the various levels of longitudinal
specific modulus and longitudinal specific strength of the hybrid
system. The lines of constant properties are constructed from the
following property data for the carbon/boron/epoxy system:
Young's modulus in GPa (345/410/3.4); tensile strength in GPa
(2.1/3.1/0.035); density in 103 kg/m3 (1.66/2.71/1.1); critical strain
in % (0.6/0.7/10).

Fig. 5.25. Typical format of a ternary property map. (After McCullough
and Peterson 1977.)
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5.7.2 Graphical illustration of performance optimization
Figure 5.27 illustrates the property map for two different

composite properties P and Q. For clarity only one of the constant
property levels of property P is shown. It can be readily dem-
onstrated that a designer can achieve a specified property of the
hybrid by simultaneously adjusting the component properties.

Fig. 5.26. Selected property maps for the system carbon/boron/epoxy. (a)
specific modulus, (b) Specific strength. (After McCullough and Peterson
1977.)
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Any combination of fiber and resin that falls on line P will yield a
composite with property P. Similarly, a line denoted by Qj
represents a specified level of property Q achieved by combinations
of fiber and resin properties. Any combination of components that
falls simultaneously on lines P and Qj will yield a hybrid composite
with properties P and Qj. Consequently, the intersection of lines P
and Qj uniquely determines the concentrations of the three com-
ponents to achieve properties P and g r

Suppose that Q1 < • • • < Qt < • • • < Q7. If a hybrid composite is
desired such that for a specified property P (e.g. modulus), the
property Q (e.g. strength) is a maximum, then the intersection of P
and Q7 should give the proper combination of concentrations of the
components.

It often occurs in the optimization of hybrid composite design
that, instead of a specified property, a level of performance is
required. For instance, a property level P or greater (or P or less
for properties such as density and cost) may be required. Figure 5.28
illustrates superimposed maps for properties P and Q. The require-
ments are

(5.82)

and

P>P*

Q>Q*

Vmatrix>V0

Fig. 5.27. Superimposed property maps for properties 'P' and 'Q\ (After
McCullough and Peterson 1977.)
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Fig. 5.28. Superimposed property maps illustrating bounding ranges on
performance requirements. (After McCullough and Peterson 1977.)

Q<Q
v •
Kresin

The shaded regions in Fig. 5.28 represent the concentration ranges
which fail to meet any one or all of the above requirements.
Naturally, the concentration ranges in the unshaded area of the
figure will meet or exceed the specified requirements. The op-
timization of hybrid composite performance can thus be carried out
based upon the basic information given in the property maps of the
type shown in Fig. 5.26.

This schematic treatment illustrates the basic notions for a
performance optimization of multicomponent systems. When the
number of components exceeds three, the graphical method is no
longer applicable. McCullough and Peterson (1977) have developed
algebraic relationships of the properties of multicomponent systems
and the optimization procedure has been structured in the form of a
classical linear programming problem.
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