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3 Strength of continuous-fiber composites

31 Introduction

Fiber-reinforced composites are a valuable class of en-
gineering materials because they can exhibit both high stiffness and
strength simultaneously, in contrast to more homogeneous materials
which are generally brittle and defect sensitive. In fiber composites,
the inherent lack of toughness of the reinforcing fiber, or its
sensitivity to microstructural defects, is overcome by the local
redundancy of the composite structure, so that its strength may be
utilized effectively. Individual fibers are relatively weakly coupled
by the matrix so that failure of one fiber does not generally
precipitate immediate failure of the composite as a whole, allowing
high strength and stiffness to be achieved in the fiber direction.

The tensile failure of a fiber-reinforced material is a complex
process which involves an accumulation of microstructural damage.
Unlike homogeneous brittle materials, fiber composites do not
contain a population of observable pre-existing defects, one of
which ultimately precipitates failure. Instead, an accumulation of
fiber or matrix fractures develops as the material is loaded and this
constitutes a ‘critical defect’ in a macroscopic view of the fracture.
Fracture mechanics may successfully account for the strength of
single fibers, but it is inadequate to extend its application to
unidirectional fiber composites when the overall behavior is domin-
ated by the probability of defects in fibers propagating under the
stress concentrations surrounding previous fiber fractures as well as
the probability of defects in the matrix which are responsible for the
multiplication of transverse cracks. Consequently, the statistical
process of damage development in composites needs to be em-
phasized (Manders, Bader and Chou 1982).

The development of a rigorous analysis of fracture, considering
all the sequences of fiber and matrix fractures which result in
fracture of the composite, is a formidable task, and for this reason
the strength of composites with realistic dimensions is much less
well understood than their elastic properties.

This chapter treats the strength of continuous fiber composites
with a combination of statistical and fracture mechanics approaches.
The statistical analysis of unidirectional composites is better de-
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Rule-of -mixtures 81

veloped than that for cross-ply laminates. No comprehensive
statistical methodology is available at this time for treating the
strength and failure of composites from the fiber and bundle level
up to composite laminates. Thus, the fracture mechanics approach
to laminate failure is necessary.

In this chapter, the classical approximation of the rule-of-
mixtures is adopted as a starting point for composite axial strength.
This approximation is substantially altered due to stress concentra-
tions induced at fiber breakages. The statistical variations of fiber
and bundle strengths are then discussed. The knowledge of the
stress redistribution at fiber breaks is then incorporated into the
statistical strength analysis of unidirectional fiber composites. Next,
the strength analysis is extended to the case of cross-ply laminates
which serve as model systems for laminate composites. Finally, an
attempt is made to shed some light on the failure of laminated
composites in general where both inter- and intralaminar failures
play key roles in the failure modes. A method of analysis based
upon the fracture mechanics approach is introduced. Section 3.4.6.2
is contributed by S. L. Phoenix, and Sections 3.4.7.4 and 3.4.8 are
contributed by A. S. D. Wang.

Another approach to the strength and damage of fiber composites
is based upon the overall properties degradation. The strength
behavior can be modeled by regarding the composite with damage
as a continuum with changing microstructure. A phenomenological
theory of constitutive behavior then provides relationships between
the severity of damage and the overall stiffness properties of a
composite (Reifsnider, Henneke, Stinchcomb and Duke 1983;
Talreja, 1985, 1986, 1987, 1989).

Strength theories dealing with short-fiber and hybrid composites
are discussed in Chapters 4 and 5, respectively.

3.2 Rule-of-mixtures

The classical approximation of unidirectional continuous-
fiber composite strength takes the form of the rule-of-mixtures. By
assuming equal strain in the fiber and matrix phases, the stress in
the composite under uniaxial loading can be expressed as (see Kelly
and Nicholson 1971 and Vinson and Chou 1975)

o.=0oVi+o,(1-V)) (3.1a)
where o and V; denote, respectively, stress and fiber volume

fraction. The subscripts ¢, f and m are for composite, fiber and
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82 Strength of continuous-fiber composites

matrix, respectively. Then, the ultimate composite strength is
0= O, Vi + 0, (1 = V) (3.1b)

Here, the subscript u denotes ultimate strength. Equation (3.1b) is
valid provided that both the fiber and matrix have the same ultimate
strain.

Equation (3.1b) is not sufficient in determining the strength of
continuous-fiber composites. Aveston, Cooper and Kelly (1971)
have discussed the strength of composites based upon the transfer
of load at the fiber/matrix interface and the mode of failure. For the
case of brittle fiber-reinforced ductile matrix, the matrix ultimate
strain is often higher than that of the fiber (Fig. 3.1a); then single
fractures of the composite occur when

Ofu‘/f + U;nu(l - ‘/f) > Umu(l - ‘/f) (31C)

Fig. 3.1. (a) Stress—strain relation of a brittle fiber/ductile matrix compos-
ite. (b) Composite strength vs. fiber volume fraction for brittle
fiber/ductile matrix composites. (c) Stress—strain relation of a ductile
fiber/brittle matrix composite. (d) Composite strength vs. fiber volume
fraction for ductile fiber/brittle matrix composites.

Oy — — — — — —
|
1
|
Soufpmr — — f— — — r—— - - — =
U;nuL - - - - = !
| |
| |
0 | |
Efu €mu
(@
Multiple
fracture
Single fi
of fiber | ingle fracture B
r—-———"" - - - — — — — — — Oty
omu
’ ~ —
[T | -~ - -
I =~
0 1

Ve
(b

Downloaded from Cambridge Books Online by IP 218.1.68.132 on Mon Apr 14 02:56:52 BST 2014.
http://dx.doi.org/10.1017/CB09780511600272.004
Cambridge Books Online © Cambridge University Press, 2014




Rule-of -mixtures 83

where oy, is the stress in the matrix when the fibers fail. The matrix
is unable to withstand the additional load transferred to it due to
the fiber fracture, and thus single fracture prevails at sufficiently
high fiber volume fractions. At low fiber fractions,

Ufu‘/f"" G;nu(l - ‘/f) < Umu(l - ‘/f) (31d)

and the load is essentially born by the matrix material. The failure
of the composite is characterized by multiple fractures of the fibers
into shorter and shorter segments as the strain on the matrix
increases (Fig. 3.1b). Experimental data on the ultimate strength of
unidirectional fiber composites usually fall within the triangular
region of Fig. 3.1b specified by the solid line segments.

Provided the failure strain of the matrix is sufficiently large, the
fibers are fractured into lengths between x and 2x. Assuming a
constant fiber—matrix interfacial shear stress t, the fiber fracture

Fig. 3.1. (cont.).
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84 Strength of continuous-fiber composites

spacing is determined from a simple force balance

Ot
2T

(3.2)

where r denotes fiber radius.

The above analysis does not fully account for the fact that the
strength of a fiber is a statistical quantity which results from flaws
being randomly distributed along the length, as is discussed later.
One result is that the strength depends on the fiber length, and thus
is not really a fixed quantity og. Using the accepted
Poisson/Weibull model, Henstenburg and Phoenix (1989) have
developed a modified version of Eq. (3.2) which includes a factor
connected to the variability in fiber strength. The revised formula
typically produces values which are 15 to 20% larger. Also, these
authors have delved further into the nature of the statistical
distribution for fragment length, and experimental examples can be
found in Netravali, Henstenburg, Phoenix and Schwartz (1989).

For the case of ductile fiber-reinforced brittle matrix composites,
multiple fracture of the matrix occurs when the fiber ultimate strain,
&g, 1s higher than that of the matrix, &, (Fig. 3.1c). The condition
of multiple fracture, according to Aveston, Cooper and Kelly (1971), is

a;u‘/f-’_ o'mu(l - ‘/f) < ofu‘/f (33)

Here, oy, is the stress in the fiber at the failure strain of the matrix.
A single fracture of the composite occurs if the fibers cannot
withstand the increase in loading due to the matrix failure (Fig.
3.1d).

The spacing between two adjacent matrix cracks can again be
determined from a simple force balance, and the separation
distance is between x’ and 2x’

!

X

_1_‘/famur

3.4
Vi 2r 34

In deriving Eq. (3.4), it is understood that the number of fibers per
unit area transverse to the fiber direction is given by V;/xr’.

Composites containing ductile fibers in a ductile matrix have
shown work-hardening behavior. Mileiko (1969) has theorized that
the instability or necking of the matrix can be suppressed due to
the constraint of the matrix, and the ultimate strain of the composite,
in this case, is shown to lie in between the ultimate strains of the fiber
and matrix materials.
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Stress concentrations due to fiber breakages 85

33 Stress concentrations due to fiber breakages

Fiber breakages in a continuous-fiber composite can occur
at fabrication or during the early stage of loading. Stress redistribu-
tion takes place in the vicinity of a fiber breakage because load can
no longer be transferred along the fiber in a continuous manner.
The resulting stress concentrations in the neighboring fibers are
detrimental to the strength of continuous-fiber composites. In the
following, the shear-lag analysis is introduced to examine both the
static and dynamic stress concentrations in unidirectional
continuous-fiber composites.

3.3.1  Static case

The problem of static stress concentration in composites has
been treated by the shear-lag method (see Hedgepeth 1961;
Hedgepeth and Van Dyke 1967; Fichter 1969, 1970; Van Dyke and
Hedgepeth 1969; Zweben 1974; Fukuda and Kawata 1976a, 1980;
Goree and Gross 1979, 1980; Hikami and Chou 1990), elasticity
theory (see Burgel, Perry and Scheider 1970; Takao, Taya and
Chou 1981), and numerical methods (see Carrara and McGarry
1968; Chen 1971).

Among these approaches, the shear-lag method, which is based
upon simplified assumptions, often provides good physical insights
of rather complex problems. The shear-lag method was first
adopted by Hedgepeth (1961) to treat multi-filament failure prob-
lems of unidirectional composites. The technique also has been
extended to include the effects of plasticity of the matrix (Hedge-
peth and Van Dyke 1967; Goree and Gross 1979; Hikami and Chou
1984a), and the condition of interfacial debonding (Van Dyke and
Hedgepeth 1969). The major assumptions of this method are that:
(1) the fibers sustain only the axial loads, and (2) matrix between
fibers transmits only the shear force.

In the following the single filament failure model of Fukuda and
Kawata (1976a) is reproduced first to demonstrate the fundamentals
of this method, and the nature of stress redistribution in unidirec-
tional composites. Next, the work of Hikami and Chou (1990) is
introduced for the explicit solutions of multi-filament failure
problems.

3.3.1.1 Single filament failure

Figure 3.2 shows the model of analysis by Fukuda and
Kawata (1976a) which contains three parallel fibers with the middle
one being broken. This model can also be considered as the
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two-dimensional representation of a laminate with a broken middle
layer. Because of symmetry, only half of the model needs to be
considered and the fibers are denoted as n=1 and 2. The
equilibrium of forces in the fibers in the free-body diagram of Fig.

3.3 gives
1dP,
EE?IHI:O (3.5)
dp,
=2 L= 3.6
dx Ty (3.6)

n=1

2

P

Fig. 3.2. A three-fiber composite model for shear-lag analysis.
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Fig. 3.3. Free-body diagrams for the ‘unit cell’ of the composite shown in
Fig. 3.2
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Stress concentrations due to fiber breakages 87

where P, and P, denote fiber axial force per unit thickness, and ; is
the matrix shear stress. Let the displacement of the nth fiber be
denoted as u,,. Then,

P.(x)= Eddu:T(x) n=1,2 (3.7)
0 = 7 (1) ~ () 69

where E is the Young’s modulus of the fibers; G is the effective shear
modulus of the matrix; 4 is the effective fiber spacing; d is the fiber
width; and the lamina is of unit thickness.

Using Egs. (3.7) and (3.8), and the following non-dimensional
parameters

E=x/d (3.9)
a=Fh/Gd (3.10)
Equations (3.5) and (3.6) become
d’u
%a@;‘}'uz_u]:o (311)
d’u
aE;+u1—u2=0 (3.12)

From Eq. (3.11), u, can be expressed by u, and its derivatives as
follows:

d*u
—yy — 1,2 "1
U, =U; — 3 a2 (3.13)
Substitution of Eq. (3.13) into Eq. (3.12) yields
d*u, 3d%u,
haihad St S 3.14
d§4 o dEZ ( )
The general solution of Eq. (3.14) is
u;=A+ BE+ Ce**+ De™* (3.15)

where A=V(3/«) and A, B, C and D are integration constants.
Substituting Eq. (3.15) into Eq. (3.13), the general solution of u, is
obtained as

u,=A+ BE—3Ce** —iDe ¢ (3.16)
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88 Strength of continuous-fiber composites

A, B, C and D in Egs. (3.15) and (3.16) can be determined from
Eq. (3.7) and the following boundary conditions:

(42)g=0=0,  (P)g=0=0, (P)s—==Fh (3.17)
Finally, the fiber displacements and axial loads are obtained
k(1 1 —AE)
w=p (z+E+se
(3.18)
_k (i+ £ _ie—ﬁ)
“TELT T2

Pl = Po(l "‘e_lg)

3.19
P,=P,(1+ 1) 319

Values of P, and B, in Eq. (3.19) are shown in Fig. 3.4. The stress
concentration factor of this model, (P/P,)s_, is 1.5. According to
Eq. (3.19), the distributions of fiber displacements and axial loads
are functions of the material constant A. However, the stress
concentration factor is independent of A. The above treatment has
been extended to composites containing a finite number of fibers
with any number of adjacent fiber breakages on the same transverse
plane.

3.3.1.2 Multi-filament failure
Hikami and Chou (1984b, 1990) have examined the two-
dimensional multi-filament failure problem of unidirectional fiber

Fig. 3.4. Variations of fiber axial forces.
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Stress concentrations due to fiber breakages 89

composites, focussing specifically on the stress concentration factors
of fibers adjacent to the cracks. The physical problems are analyzed
by the two-dimensional shear-lag method under two loading condi-
tions: (A) uniform tensile force applied to all fibers at infinity (Fig.
3.5), and (B) concentrated force dipole applied at a particular fiber,
n =b —a, on the crack plane (Fig. 3.7).

These analyses are unique in that the general solution of the
governing equations of the elastic field has been obtained in explicit
forms in terms of the Legendre polynomials for the loading
condition (A). Based upon this solution, closed form expressions of
stress concentration factors in all fibers have been derived. These
analyses also provide rigorous proofs of both Hedgepeth and Van
Dyke’s inspection (1967) on the general form of the tensile stress
concentration factor at the tip of a crack and Fichter’s inspection
(1969) on the general form of the shear stress concentration factor
for the loading condition (A). Since there exists a reciprocal
relation between the influence function matrices for the loading
conditions (A) and (B), the solution for the condition (B) can be
readily derived from the solution for the condition (A).

The analyis considers a two-dimensional unidirectional con-
tinuous-fiber composite containing a slit notch in the transverse
direction, as shown in Fig. 3.5. The fiber direction is taken along
the x axis. The broken fibers are denoted as n=1, 2, 3,..., b,
starting from the left tip of the notch with b being the total number
of fibers in the notch.

Under the assumption of shear-lag analysis, the matrix material
transfers only shear force, 7,(x), per unit fiber length between two
adjacent fibers. Thus 7,(x) is related to the difference of displace-
ments u,(x) in the fiber direction as

) = 7t s() — 1,00} (3.20)

where G is the effective shear modulus of the matrix, and 4 is the
effective fiber spacing. The tensile force P,(x) per unit thickness in
the nth fiber is related to the displacement by
du,(x)
P,(x)=FEd——— 3.21

€9 ™ (3.21)
where d is the width of the fiber. The equilibrium of forces in the x
direction gives

dP,
ot T T =0 (3.22)
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90 Strength of continuous-fiber composites

The non-dimensionalized axial force, displacement and coordin-
ate are given, respectively, by:

F,(8) = Bu(x)/P,
U,(8) = u,(x)V(EdG/hP?) (3.23)
£ =V(G/Edh)x

Then, the equilibrium equation (3.22) can be written as

d*U,(8)
d&’

=2Uu(8) ~ U, 4(85) ~ Up—i(8) (3.24)

The boundary conditions are:
E0)=0 (1=n=b)
U,(0)=0 (n=0,n=b+1) (3.25)
E(x=)=1 (all n)

Fig. 3.5. Model of a multi-filament crack in a unidirectional composite
under uniform force at infinity (After Hikami and Chou 1990.)
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Stress concentrations due to fiber breakages 91

for loading condition (A), and

E,(0)=0 n=12,...,b—a—1,b—a+1,...,b)
U,(0)=0 n=0,n=b+1

© ( ) (3.26)
E,(x»)=0 (all n)
F‘b—a(o)z_l

for loading condition (B).

The general solutions of the multi-filament failure problem have
been obtained explicitly by Hikami and Chou (1990) using the
Legendre polynomials and Fourier transformation. The stress
concentration factors in all fibers on the crack plane are given in
closed forms. First, for the loading condition (A), the stress
concentration factor of the sth fiber ahead of the tip of a crack
containing b broken fibers is given by

»p=(b+2s—-1)

y 25 - (25 +2)- (25+4)--- (25 +2b—2)
2s—1)-2s+1)-2s+3)---(2s+2b-3)-2s+2b—-1)
(3.27)
As a special case of Eq. (3.27), the stress concentration factor in
the first intact fiber (s = 1) adjacent to b broken fibers is
, 4-6-8---(2b+2)
Kb =
3-5-7---(2b+1)
Hedgepeth (1961) deduced Eq. (3.28) by inspecting the numerical
results of the cases b =1, 2,..., 6. This inspection on the general
form of the stress concentration factor has been rigorously proven
by Hikami and Chou. Figure 3.6 depicts the numerical results for
K.

Furthermore, the maximum shear stress takes place in the matrix
at the tip of the crack. Thus, the dimensionless displacement at the
crack tip U,(0) is termed the maximum shear stress concentration
factor, Spax- Hikami and Chou (1990) have obtained

x(2b —1)!
(b - )P
Fichter (1969) deduced the above result by calculating the cases of
b=1,2,...,6. The axial stress in fibers away from the crack plane

has also been obtained.
In the case of loading condition (B), Fig. 3.7, Hikami and Chou

(3.28)

Spmax = (3.29)
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92 Strength of continuous-fiber composites

Fig. 3.6. Stresses concentration factor Kj, in the (b + s)th fiber. b denotes
the number of broken fibers; s =1 corresponds to the special case of
Hedgepeth (1961). (After Hikami and Chou 1990.)

2.5

s=1

Fig. 3.7. Model of a multi-filament crack in a unidirectional composite
under concentrated force dipole in the (b — a)th fiber on the crack plane.
(After Hikami and Chou 1990.)
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Stress concentrations due to fiber breakages 93

(1990) assume that a unit force dipole is applied on the (b — a)th
fiber. Then the more general cases with multiple dipoles can be
obtained by the linear combination of the solutions of the simple
problem.

The closed form solution of the stress concentration factor at the
sth fiber in front of the tip of a crack containing b fibers and a unit
force dipole at the n (=b — a)th fiber is given as

e 1@a+DNEb=22-DNEs =3 2s+2b -2 1
DT Qa)t@2b—2a -2 (25— 25 +2b - D! (s +a)
(3.30)

where !! denotes double factorial (i.e. n!! = (n!)!). The highest fiber
stress concentration takes place at the edge of the crack (s = 1)
Kla— Qa + 1)1 (2b6 —2a — 1)1 2b)!!
P a+ 21 (2b —2a —2)!! (2b + D!

(3.31)

Figure 3.8 depicts the numerical results for K3 “.
For a semi-infinite crack the stress concentration factor at the sth
fiber from the crack tip due to the unit applied force dipole at the

Fig. 3.8. Stress concentration K, * in the (b + 1)th fiber when the unit load
is applied at the (b — a)th fiber. b denotes the number of broken fibers.
(After Hikami and Chou 1990.)
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94 Strength of continuous-fiber composites

ath fiber has the following value:

. ea_ 1 (2s+ 1! (25 =3
dm K = e Ta) @) (s—2) (3-32)
The axial fiber stress distributions away from the fracture plane for
both loading conditions (A) and (B) also have been obtained by
Hikami and Chou (1990). Also Fukuda and Kawata (1980) have
shown in their analysis of a finite number of fibers that the stress
concentration factor tends to that of Hedgepeth as the total fiber
number increases.

The static stress concentration factors in a layer of unidirectional
composites containing dacron fibers imbedded in a polyure-
thane elastomer have been measured by Zender and Deaton
(1963). The number of fiber breakages in this experiment
is controlled by partially slitting the specimens in the transverse
direction. The slit length determines the number of broken
fibers. The results of the experiments show reasonably close
agreement with the theoretical analysis. It should be noted that
although the broken fibers induce the adjacent fibers to fail in the
vicinity of the cut, the chances are that such a location is not
the weakest location of the fiber. This has to do with the statistical
nature of fiber strength distribution and will be discussed in
Section 3.4.

The problem of static stress concentration factors in a three-
dimensional fiber array has been examined by Van Dyke and
Hedgepeth (1969). They consider square and hexagonal arrays
where a specified number of fibers are broken. Other stress
concentration problems including the effects of finite length of fibers
(Fichter 1970), relative locations of fiber breaks (Chen 1973), holes
(Kulkarni, Rosen and Zweben 1973) and notches (Zweben 1974)
also have been treated.

3.3.2  Dynamic case

When fibers are suddenly broken in a composite under
stress, the load in the broken fibers must be transferred through the
matrix to the adjacent fibers in order to restore equilibrium. Of
interest is not only the resulting static stress, but also the dynamic
overshoot which occurs during the transient phase. Hedgepeth
(1961) examined the dynamic aspect of stress concentration for the
two-dimensional fiber array as shown in Fig. 3.5. The analytical
model is also based upon the assumptions of the shear-lag analysis;

Downloaded from Cambridge Books Online by IP 218.1.68.132 on Mon Apr 14 02:56:52 BST 2014.
http://dx.doi.org/10.1017/CB09780511600272.004
Cambridge Books Online © Cambridge University Press, 2014




Stress concentrations due to fiber breakages 95

that is, it is composed of tension-carrying elements connected by
purely shear-carrying material.

The formulation of boundary value problem for the evaluation of
dynamic stress concentration is outlined below. The fibers are
separated by a constant distance and are numbered from n = — to
n = (Fig. 3.5). The coordinate along the fiber is denoted by x and
the displacement of the nth fiber at the location x and time ¢ is given
by u,(x, t). Similarly, the force per unit thickness in the nth fiber is
denoted by P,(x, t) and is given in terms of «, by

ou,,
ox

P,=FEd (3.33)
where E and d are, respectively, the fiber Young’s modulus and
width. The equilibrium of an element of the nth filament then
requires

u, G u,

e + m Uy = 2u, + Uy )=m— (3.34)

Ed
ar?

Here, G and h denote matrix shear modulus and width, respec-
tively; m is the mass per unit area of the nth filament.
In general, for b broken filaments, let 1=n =<5, denote the

broken filaments. The boundary conditions are:
P,(0,6)=0 (1=n=b)

(3.35)

u,(0,t)=0 (n=0 orn=b+1)

For large x, of course, the force in each filament approaches the
uniform applied force per unit thickness, P,. Thus

P (1=, t)=P, (3.36)

For the time-dependent problem, the following initial conditions are
required:

P,(x,0)=P,
du, (3.37)
0O=0
ot (x, 0)

Using a Laplace transform of the time-dependent differential
equation and boundary conditions, the resulting equations are
similar in form to those of the static problem discussed in Section
3.3.1. The variation of stress concentration factor with time is shown
in Fig. 3.9 for one, two and three broken fibers. As can be seen
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96 Strength of continuous-fiber composites

from Fig. 3.9, the stress concentration factor, K;, varies with the
dimensionless time ¢ (=t/V(md/G)), and approaches the steady-
state value. In all cases, the first peak is the largest one and the
value of the stress at this peak determines the dynamic
overshoot.

Hedgepeth (1961) defines the dynamic-response factor as the
ratio between the maximum stress and the static stress. Values for
one, two and three broken fibers are, respectively, 1.15, 1.19 and
1.20. It can be shown that the dynamic-response factor approaches
1.27 as the number of broken fibers tends to infinity. Further
discussions of dynamic stress concentration factors are given in
Section 3.4.9.

Following the approach of Hedgepeth (1961), Ji, Liu and Chou
(1985) have investigated the variation of dynamic stress concentra-
tion along the length of a fiber next to a broken fiber. Define the
dimensionless parameter in fiber axial location as

X

= (3.38)
V(E)-a

The asymptotic expressions of the stress concentration factor

Fig. 3.9. The variation of dynamic stress concentration factor K with
dimensionless time ¢ for b =1, 2 and 3 (After Hedgepeth 1961.)

25

2.0

05

(=]
L
~
S
O

Downloaded from Cambridge Books Online by IP 218.1.68.132 on Mon Apr 14 02:56:52 BST 2014.
http://dx.doi.org/10.1017/CB0O9780511600272.004
Cambridge Books Online © Cambridge University Press, 2014




Stress concentrations due to fiber breakages 97

Ki(E, ©) for the fiber s =1 at x =0 due to the fracture of the fiber
n=>b =1 (see Fig. 3.5) has been obtained. The results are depicted
in Fig. 3.10, and the following observations can be made: (a) the
fiber axial stress is always tensile at £=0. For £+#0, the initial
stress induced by fiber fracture is compressive, and the magnitude
of this initial compressive stress increases with &; (b) the dynamic
stress concentration factor, which is defined by the maximum initial
tensile stress, decreases as & increases, i.¢. away from the plane of
fiber fracture; (c) the dynamic stress concentration factor is appreci-
able (say, Ki (& 7)>1.1) within the range of 0<&=1. When
t>10, the dynamic stress concentration factor results for &<1
approach the static stress concentration values. The change of stress
concentration factor with the location on a fiber needs to be taken
into account when there is a scattering in fiber strength and
variation of fiber strength with fiber length. The results of Ji, Liu
and Chou indicate that the variation of stress concentration is
significant for & =1, namely x is of the order of fiber diameter times

Fig. 3.10. Dynamic stress concentration factor K} with dimensionless time
ffor 0=&=1. (After Ji, Liu and Chou 1985.)
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98 Strength of continuous-fiber composites

V(E/G). For £=1.0-2.0, the dynamic response diminishes with
increasing f value, and the static stress concentration factor ap-
proaches 1.0; there is virtually no static stress concentration. On the
other hand, dynamic response in fiber stress concentration exists at
small 7 even for £ =2; this factor needs to be taken into account in
the statistical composite strength models.

The variation of stress concentration along the length of a fiber
has implications on the dynamic failure characteristics of fiber
composites. For instance, in the experimental observation of Ji
(1982), carbon composite specimens often fracture at locations near
specimen end-tabs. The reflection and hence magnification of the
stress waves at specimen ends could cause fiber fractures at
locations away from the plane of the existing fiber breakages.

34 Statistical tensile strength theories

3.4.1  Preliminary

Statistics is concerned with scientific methods for collecting
and analyzing data, as well as drawing valid conclusions and making
reasonable decisions on the basis of such analysis. Spiegel (1961)
and Kirkpatrick (1974) provide introductions to the basics of
statistics. Statistical treatment of composite strength has emerged as
an important analytical tool for the obvious reason that the
strengths of brittle fibers and yarns are statistical in nature, and not
deterministic such as in metals. A concise outline of the fundamen-
tals in statistics based upon Spiegel (1961) is given below.

In collecting data concerning characteristics of a group of objects,
it is often impractical to observe the entire group or population if it
is large. A small part of the group examined is known as a sample.
Valid conclusions can often be inferred from analysis of the sample.
Because such inference cannot be absolutely certain, the language
of probability is often used in stating conclusions.

When summarizing large masses of raw data, it is often useful to
distribute the data into classes or categories. The number of
individuals belonging to each class is called the class frequency.
Figure 3.11 gives a graphical representation of the frequency
distribution of the measured strength of carbon fibers (M. G. Bader
and B. Gul-Mohammed, private communication, 1990; see also
Dhingra 1980). The relative frequency of a class is the frequency of
the class divided by the total frequency of all classes and is generally
expressed as a percentage. A histogram can be approximated by a
continuous frequency distribution curve as shown schematically in
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Statistical tensile strength theories 99

Fig. 3.12. Also shown in Fig. 3.12 is the cumulative frequency,
which, for a particular class or strength level, is the total frequency
of all classes observed at equal to and less than this particular class.
Cumulative frequency can also be presented on a relative or
percentage basis.

Several types of averages can be defined for a given frequency
distribution. The most commonly used ones may include the
arithmetic mean, geometric mean, quadratic mean (root mean
square), median and mode. The degree to which numerical data
tend to spread about an average value is called the wvariation or
dispersion of the data. The standard deviation is often used to
measure dispersion, and is defined as the root mean square of the

Fig. 3.11. Distributions of carbon fiber tensile strength in air at gauge-
lengths of 5, 12, 30 and 75 mm. (After Bader and Gul-Mohammed 1990.)
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100 Strength of continuous-fiber composites

deviations from the mean. Furthermore, the variance is defined as
the square of the standard deviation, and the coefficient of variation
is the ratio of the standard deviation to the mean. The coefficient of
variation is independent of units used and it fails to be useful when
the mean is close to zero.

The probability of occurrence of an event e is denoted by

Pr = P{e) (3.39)
The probability of non-occurrence of the event is denoted by
1—=Pr=P{note}=1—P{e} (3.40)

Some basic relations of probabilities of events are summarized
below. Consider two events e; and e,. The probability that e, occurs
given that e, has occurred is the conditional probability of e,
relative to e;; it is denoted by P{e2|el}. If e, and e, are
independent events and hence the occurrence or non-occurrence of
e, is not affected by ¢,, then

Ple, l e} = P{ey} (3.41)

Otherwise, they are dependent events. The probability that both e,
and e, occur is denoted by

Ple,e;} = P{e,} P{e, | e} (3.42)
Fig. 3.12. Relative frequency and cumulative frequency vs. fiber tensile
strength.
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Statistical tensile strength theories 101

For independent events, the above equation is simplified to
Ple.e,} = P{e,} P{e,} (3.43)

In the case of three events e, e, and e;, Eq. (3.42) is modified to
become

P{e ezes} = Ple } P{e, | e} P{e; | e} (3.44)

If e, and e, are mutually exclusive events, namely the occurrence of
one excludes the occurrence of the other, Eq. (3.42) becomes

P{ee,} =0 (3.45)
Finally, the event that either e, or e, or both occur is given by

P{e,+e;} =Ple .} + Ple,} — Pleen) (3.46)
For the special case of n mutually exclusive events e;, e,, ..., ¢,,

the probability of occurrence of either e, or e, or - - - ¢, is then
Ple,+e,+ - +e,} =Ple} +Ple,} +-- -+ Ple,} (3.47)

The applications of these relations to the probabilities of various
events in composite failure are given in this chapter as well as in
Chapters 4 and S.

The function representing the frequency distribution in Fig. 3.12
is also known as the probability density function. The knowledge of
the probability density function is fundamental to any analysis based
upon a statistical approach. One of the well-known probability
density functions is the normal distribution given by

p(x)= Mﬁexp( —% (f;_ff) s>0 (3.48)

where ¥ and s are the mean and standard deviation, respectively. It
can be shown, for normal distribution, that 68.27% of the cases are
included between (¥ —s) and (x +s), and 99.73% of the cases are
between (¥ —3s) and (x +3s). Given a continuous probability
density function p(x) the cumulative distribution function is defined
by

P(x)= fmp(x) dx (3.49)

Other commonly used distribution functions may include the
binomial distribution, Bernoulli distribution, and Poisson distribu-
tion. However, the Weibull distribution (Weibull 1939a&b, 1951) is
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102 Strength of continuous-fiber composites

probably best known in composite strength theories. Weibull
proposed a cumulative distribution function in the general form of

0 X=X,

P(x)=1;_ exp(_ (x"xi")"v x>, (3.50)

where m is a shape parameter and x, is a scale parameter. The
function (x —x,)"/x, has the characteristics of being positive,
non-decreasing and vanishing at constant value of x,, which is not
necessarily equal to zero.

3.4.2  Strength of individual fibers

Coleman (1958) examined the strength of long fibers from a
common source (say, from the same spool) for the case that their
tensile strengths are independent of the rate of loading. To obtain a
form for the cumulative strength distribution function P(oy),
Coleman observed that (a) when a fiber is tested it breaks at its
weakest cross-section, (b) the strength of a fiber must be positive
regardless of the fiber length, and (c) P(o;) must be a monotonically
increasing function of o;. Coleman postulated that a fiber may be
regarded as composed of a set of N non-interacting unit lengths (or
links). It is further assumed that all the links in a fiber have the
same cumulative strength distribution function P(oy).

The probability that a link has a strength greater than o; is
1—- P(o;), and the probability that all links do not fail at o is
[1 - P(op)]" (Eq. (3.43)). It follows then the probability that at least
one link breaks at o; is

P(o)=1-[1—-P(o)]" (3.51)

P{0;) can be regarded as the cumulative distribution function of the
strength of fibers.

Coleman has shown that P(o;) has the form of a Weibull
distribution. For long fibers (N— «), Eq. (3.51) gives the cumula-
tive probability of failure

oe\P
P(o)=1— exp[—L(o—) ] (3.52)
P{(oy) is the probability of failure of a fiber at a stress level equal
to or less than o;. Here, L is the length ratio with respect to a
reference length, o, is the scale parameter for unit fiber length ratio
(i.e. L=1), and B is the shape parameter. Equation (3.52) implies
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Statistical tensile strength theories 103

a probability density function of

B
pio) = Lo PRof ! exp[—L(-g—f) ] (3.53)
Following Coleman, the mean fiber strength, &;, and standard
deviation, s, are given by

1
G, = aoL—"ﬁr(l + B> (3.54a)

5= aOL—“l’\/[r<1 + %) - r2(1 + %)] (3.54b)

where T" denotes the gamma function. An important feature of Eq.
(3.54a) is that the fiber strength depends upon the fiber length. The
coefficient of variation, which is a function of f only, is

S_ _F(l +%> -1 (3.55)
O r2<1 +%> '

Over the range of practical interest,  is approximately equal to
1.2/(coefficient of variation). Thus, 8 is an inverse measure of the
dispersion of material strength. For values of 8 between 20 and 2,
the coefficient of variation can be expressed approximately as
B7%%% Values of B between 2 and 4 correspond to brittle fibers,
whereas a value of 20 is appropriate for a ductile metal. § is about 4
for carbon fibers, between 2.7 and 5.8 for boron fibers and about
11 for glass fibers. The factor o,L™"# in Egs. (3.54) is often
referred to as a characteristic strength level of the fibers (Kelly
1973, Rosen 1964).

Manders and Chou (1983a) have shown that the scale and shape
parameters of the Weibull distribution function for fiber strength
can be estimated from experimental measurements in a number of
ways. First, by taking logarithms of Eq. (3.54a), it is seen that a
graph of In(&,) against In(L) is linear and has gradient —1/p. The
shape parameter can be obtained in this way by testing single fibers
of a range of gauge-lengths. The second procedure is to plot the
cumulative distribution on appropriate logarithmic axes as follows.
The cumulative probability of survival is simply

P=1-P (3.56)
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104 Strength of continuous-fiber composites

and Eq. (3.52) can be rewritten after taking logarithms as
AN
In(P,) = —L<0—> (3.57)

Taking logarithms a second time with a change of sign
In(=In(P,)) = In(L) + B In(o;) — B In(0,) (3.58)

shows that a graph of In(—In(P)) against In(o;) is linear with
gradient § (at fixed gauge-length).

The procedures outlined above rely on testing many separate
fibers. If a single fiber could be uniformly stressed along its length it
would fracture into a series of unequal fragments of which the
average length would decrease with higher applied stress. The
distribution of lengths between fractures at any given stress should
be exponential following Eq. (3.57), and plotting In(P,) against L
should give a straight line passing through the origin with gradient
—(o¢/ 0,)P. Taking logarithms with a change of sign gives

In(—gradient) = f In(o;) — B In(o,) (3.59)

so that a graph of In(—gradient) against In(oy) is linear with gradient

B.

3.4.3  Strength of fiber bundles

Having examined the strength of single fibers, the strength
theory of fiber bundles can be developed (see Daniels 1945, Epstein
1948, Coleman 1958, Kelly 1973, Phoenix 1974). Following the
treatment of Coleman (1958), a bundle composed of a very large
number, M, of fibers of equal length is considered. The fibers are
further assumed to have the same cross-sectional area and the same
shape of stress—strain curves, but differ in their values of the
elongation at break. It can be shown that the probability density
function of bundle tensile strength o, (breaking load for the
bundle/total fiber cross-sectional area) tends for large M toward a
normal distribution (Eq. 3.48)

—(on— 6b)2] (3.60)

1
op) = .
Pe(0) syV(27) exp[ 2s%
with a mean bundle strength

O, = Om[1 — P 0¢m)] (3.61)
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Statistical tensile strength theories 105

and standard deviation
Sp = Ufm\/{Pf(Gfm)[l - Pf(afm)]}M_l/2 (3-62)

Here, P(og,) is the cumulative fiber strength distribution function
and oy, is the value of fiber stress o; which gives oi{1 — P(oy)] its
maximum value, namely

d
do, {o{l - P09} 60, =0 (3.63)

Equation (3.63) implies that the maximum fiber stress oy, is found
from the condition that at failure the load borne by the bundle is a
maximum.

Assuming P{o;) follows the Weibull distribution of Eq. (3.52) for
fiber length L, Eqgs. (3.61) and (3.63) give, respectively,

O = 0o(LB) VP (3.64)
and
&, = 0,(LBe)" VP (3.65)

where e =2.71828 - - - . Equation (3.65) implies that the proportion
of surviving fibers is exp(—1/8). The strength of loose bundles is
lower than the mean strength of single fibers of the same length by
the ratio of Eq. (3.65) to Eq. (3.54a), which is termed the ‘Coleman
factor’

%E: [ﬂ”” exp(B™Y) r<1 +%)]_1 (3.66)

It is noticed that when there is no dispersion in the strength of the
component fibers of a bundle 6, = 6;. As the coefficient of variation
of the fibers increases above zero, however, the bundle strength
efficiency decreases monotonically and approaches zero in the limit
of infinite dispersion. G,/6;=70% for the coefficient of variation
about 17%.

The ratio given in Eq. (3.66) is independent of the length of the
fibers so that the strength of loose bundles decreases with length in
the same way as the mean strength of single fibers. The Weibull
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106 Strength of continuous-fiber composites

parameters can therefore be obtained by plotting In(strength of
loose bundle) against In(length) as described above for single fibers.

The above analysis is concerned with single bundles, whereas
some situations are better modeled as a chain-of-bundles, such as a
moderately twisted yarn where the link length is a frictional load
transfer length among fibers. A review of this problem is given by
Smith and Phoenix (1981).

3.4.4  Correlations between single fiber and fiber bundle strengths

Equation (3.54a) indicates that the Weibull shape para-
meter of single fiber strength can be determined from the measure-
ment of strength at several fiber gauge-lengths. There are short-
comings in such measurements. First, it is rather tedious to extract
individual fibers from a bundle and to perform numerous tests on
fibers with very small diameters. Second, the extraction of fibers
from a bundle inevitably has ‘selected’ the stronger ones, since the
weaker fibers are prone to damage and fracture in the process.
Third, experiments based upon laser diffraction fringes have shown
that the measured fiber diameters vary along the fiber length due to
fiber twist and the non-circular fiber cross-section.

In this section, following the approach of Chi, Chou and Shen
(1984), a theoretical expression of the load—strain relationship for a
bundle of fibers under tension is derived first. Then, two methods
for determining the two parameters of Weibull distribution for
single fiber strength are developed. This is done by analyzing the
characteristics of the load—-strain curves. The open circles in Fig.
3.13 show the experimental results of a displacement-controlled
test for a loose bundle of carbon fibers.

3.4.4.1 Analysis

The correlation between single fiber and fiber bundle
strengths is established based upon the following assumptions: (1)
the single fiber strength under tension obeys the cumulative Weibull
distribution function, P(o;), of Eq. (3.52); (2) the relationship
between stress, oy, and strain & for a single fiber obeys Hooke’s law
up to fracture:

O = Efgf (367)

where E; is the fiber Young’s modulus; (3) the applied load is
distributed uniformly among the surviving fibers at any instant
during a bundle tensile test.
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Statistical tensile strength theories 107

To establish the tensile load-strain (F-¢) relation, Eq. (3.52) is
rewritten in terms of fiber strain:

Ple)=1- exp[—L(?)ﬁ] (3.68)

o

Here, &, is the scale parameter for unit fiber length ratio (i.e. L =1)
and is given by

£,=0,/E; (3.69)

Assume iso-strain conditions for the fibers in a bundle. At an
applied strain, g;, the number of surviving fibers in a bundle, which
consists of N, fibers, is

N= No[l - Pf(gf)] = No exp[_L(Sf/gu)ﬁ] (370)
N can be related to the applied tensile force, F, on the bundle by
F = 0,AN = AE &N, exp[— L(&¢/ &,)") (3.71)

Fig. 3.13. Comparison of a theoretical F—g; curve (solid line) with
experimental data (open circles) for carbon fiber, E;= 225 GPa, d;=7 um,
N, =1000, B =4.5 and ¢, = 0.026. (After Chi, Chou and Shen 1984.)
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108 Strength of continuous-fiber composites

Equation (3.71) is the relationship of F—g; for a bundle of fibers
under tension, where A is the cross-sectional area of a single fiber.
If A, N,, L, E;, €, and B are known, the F-g; curve for a bundle of
fibers can be drawn. The solid line in Fig. 3.13 shows the result of
the theoretical prediction.

According to Eq. (3.71), the F—g; curve is continuous and
smooth. After reaching the point of maximum load, F,,,, the
tensile force on the bundle decreases gradually to zero. The slope of
the curve, S, at &,=0is

S,=AEN, (3.72)

and the tensile load defined by the tangent line of the F—¢g; curve at
g=~01is

F* = AE(N, & (3.73)
Based upon the F-g; relation, the survivability of single fibers in the
bundle can be determined from Egs. (3.71) and (3.73)

F
I 1—Pfe) =P, (3.74)

Next, the strain corresponding to the maximum load on the F-g;
curve, g, is obtained from dF/de;=0

um () o

Thus, the maximum load is
1/8
Fmax=ANoE o<—> 3.76
t€ I ﬁe ( )

From Egs. (3.72), (3.75) and (3.76), the slope of the straight line
connecting the origin and the point (F,,,,, €,) in Fig. 3.13 is

1 1/8
S=F ol tm= S"(;) (3.77)
As a result,
EnSo
B= 1/ln<F ) (3.78)

max

3.4.4.2 Single fiber strength distribution
Based upon the analysis of the fiber and bundle strength
relations, Chi, Chou and Shen (1984) proposed the following two
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methods for determining single fiber strength distribution (shape
parameter f§ and scale parameter &,) from measurements on fiber
bundles, and constructing the theoretical F—¢; curve.

Method (A)
The method is based upon Eqgs. (3.68) and (3.74) and the
experimental F—g; curve. The procedure is outlined below:

(1) Calculate S, from Eq. (3.72) and the data of A, E; and N,
of the fiber bundle.

(2) Calculate F* from Eq. (3.73), F* = S,E;. Measure F from
the F—g; curve. Then determine from Eq. (3.74) the fiber
survivability as a function of strain, P(g;) = F/F*.

(3) The shape parameter, §, can be obtained from the gradient
of the graph of In(—In(P,)) vs. In(g;), based upon the
relation

In(—In(P)) =1In(L) + B In(gr) — Bln(e,) (3.79a)

(4) The scale parameter, £,, is determined either from Eq.
(3.75) using the measured ¢, value, or from the value of
In(L) — B In(g,) measured from the graph of In(—In(P,)) vs.
In(ey).

Method (B)
In this method, F,,, and &, are known from experiments.
The calculation steps are:

(1) Determine S,, B and ¢, from Eqgs. (3.72), (3.78) and (3.75),

respectively.
(2) From Egs. (3.71) and (3.72), the F—g; relation can be
written as
gr\P
F=S8,¢& exp(—L(—) > (3.79b)
£

o

3.4.5  Experimental measurements of Weibull shape parameter

It is understood that the shape parameter f gives a
measurement of the scattering of the strength data. On a py(o;) vs.
o; plot, the range of strength distribution is narrower for higher
values. The discussions of Sections 3.4.2-3.4.4 for the estimation of
the Weibull shape parameter are summarized below (see Manders
and Chou 1983a; Chi, Chou and Shen 1984).
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110 Strength of continuous-fiber composites

Single fibers

(i) Variation of mean strength with length: The method
requires tests at different gauge-lengths. Fiber diameters
are measured to obtain true stress.

(i) Distribution of strength at fixed gauge-length: Diameters
are measured to obtain true stress. The method measures
both inherent variability, and also artificial scatter intro-
duced by experimental techniques.

(iii) Distribution of lengths between multiple fractures of a
single fiber: Estimate is based on strain, not stress. The
method requires correction for non-uniformity of strain
near fractures.

Loose bundles

(iv) Variation of mean strength with length: The method
assumes identical fiber diameters and stiffness.

(v) Proportion of surviving fibers is obtained from the
load—strain curve. Estimate is based on strain not stress.
The method assumes fibers are identical.

(vi) Determination of the initial slope of the load/strain curve
and the strain corresponding to the maximum load on the
bundle.

Manders and Chou (1983a) have established the Weibull shape
parameter based upon the methods (i)—(v) by performing tests on
a single batch of PAN-based carbon fiber (Hercules AS-4, 12 000
filament unsized tow) while the loose bundle tests (iv) and (v) are
carried out with the E-glass fiber (St. Gobain, vetrotex type DCN56
filament, unsized tow). Chi and Chou (1983), and Chi, Chou, and
Shen (1984) have examined methods (i), (ii), (v) and (vi) using
Thornel-300 carbon fibers and bundles containing 1000 fibers.

3.4.5.1 Single fiber tests

In order to obtain the strengths of single filaments and their
distributions, it is necessary to measure the diameters and ultimate
tensile load of the filaments. For the measurement of filament
diameters, Chi and Chou (1983) used a helium—neon laser, and the
diameters were determined from the laser diffraction fringes (see
Lipson and Lipson 1981) The results indicate an average filament
diameter of 7.12 um with the standard deviation of 0.2 um.
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Statistical tensile strength theories 111

Fiber strength measurements are performed for fiber gauge-
lengths of 10, 30 and 60 mm, and the number of measurements are
80, 81 and 64, respectively. The results are presented on the
Weibull probability paper as shown in Fig. 3.14. Here o; denotes
fiber ultimate strength; P(o;) is the fiber cumulative probability of
failure at stresses equal to or less than o; and In{—In[1 — P{oy)]} is
a representation of failure probability. The variations of fiber failure
probability with strength can be approximated as linear with the
exceptions of the low strength range for 60 mm length fibers, and
the high strength range for 10 mm and 30 mm length fibers.

The Weibull shape parameter, , can be obtained by following
method (i), by plotting the mean fiber strength In(&;) vs. fiber
length In(L) (see Eq. (3.54a)) as shown in Fig. 3.15. A measure-
ment of the slope of the straight line gives the value of B =6.2. It is
worth noting that because of the high scatter in strengths a large
number of tests needs to be performed to determine with high
accuracy whether the Weibull distribution is an accurate description
of strength, and this is where the loose bundle approach is

Fig. 3.14. Strength distributions of single filaments on Weibull probability
paper. (After Chi and Chou 1983.)
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112 Strength of continuous-fiber composites

advantageous. If method (ii) is followed, then the slope is measured
from the linear portion of the data of Fig. 3.14 for In{In{1 — P(ay)]}
vs. In(oy) (see Eq. (3.58)). The distributions of the three sets of data
are reasonably linear and parallel, and an average of the approxim-
ate gradients is taken to obtain the shape parameter of 5.3.
Method (iii) requires multiple fracture tests of a single fiber. In
the experiments of Manders and Chou (1983a), single carbon fibers
are bonded to the surface of a 2 mm thick filled PVC carrier sheet
using a film of polystyrene adhesive approximately 50 ym thick. The
fiber is strained to successively higher levels by bending the carrier
strip around mandrels of decreasing radii. The strain in the fiber is
virtually uniform because the ratio of the carrier thickness to fiber
diameter is ~200. The combination of adhesive and carrier is found
to be quite resistant to repeated straining, and facilitates visual
location of the fiber fractures. At each strain level the lengths
between fiber fractures are measured by travelling microscope and
are ranked and plotted as the cumulative distribution on the
logarithmic axes. According to Eq. (3.57), the distributions should
be linear and pass through the origin, but, while they are relatively
straight, they intersect the fracture spacing axis at some positive
intercept. The minimum crack spacing given by the intercept
represents the effective ‘unstressed’ length of fiber over which the

Fig. 3.15. Relationship between filament average strength and gauge-
length. (After Chi and Chou 1983.)
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load builds up. The logarithm of the gradient has been plotted
against the logarithm of strain and at low strains, the curve is
relatively linear with a gradient corresponding to 8 =6.4. At high
strain the curve becomes horizontal because the fiber debonds from
the adhesive film and no new fractures occur. Despite this short-
coming the technique is able to measure the shape parameter for
shorter fibers than the other techniques.

Henstenburg and Phoenix (1989) have considered the probiem of
measuring the Weibull parameters for fiber strength using data from
a multiple fracture test of a single fiber. Using a Monte-Carlo
approach they arrived at a simple method which applies to fibers of
length equal to the mean fragmentation length.

3.4.5.2 Loose bundle tests

In the loose bundle tests of Manders and Chou (1983a),
based on method (iv), tows of different lengths are cemented into
grooved end-tabs while particular care is taken to ensure that none
of the fibers are slack. Manders and Chou obtained between five
and ten results for each gauge-length, and they are plotted in the
same way as for the single fiber tests in Fig. 3.16. The cross-sectional
area of the tow is calculated from the manufacturer’s value of its
density and weight per length. Because each failure of a loose
bundle involves the independent fracture of many fibers, there is
much less scatter than for the single fibers. According to Manders
and Chou, the mean strength ratios of loose bundles and single
carbon fibers of the same length range from 0.67 to 0.85 for fibers
with lengths between 10 and 200 mm, and this compares quite well
with the theoretical Coleman factor which ranges from 0.65 to 0.76
for fibers with B equal to 5 and 10, respectively (Coleman 1958). The
discrepancy may be due to the fact that the strengths are not
perfectly Weibull distributed, and that the optical technique for
measuring fiber diameter overestimates the cross-sectional area of
non-circular crenelated fibers. Also, fiber breaks may be pre-
existing in the bundle, becoming more noticeable at longer bundle
lengths.

It has been noticed that both single fibers and loose bundles show
an increase in strength variability at longer gauge-lengths. This
could be interpreted as the influence of a relatively small population
of severe and broadly distributed flaws. The majority of short
gauge-lengths would not contain one of these severe flaws and the
population would have little influence on the mean strength, but
longer fibers would be more likely to contain one or more such
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114 Strength of continuous-fiber composites

flaws and their mean strength would be significantly lowered. The
observation of similar behavior in glass fiber suggests that a ‘double’
Weibull distribution with two shape and scale parameters may be
more appropriate (Metcalfe and Schmitz 1964; Harlow and Phoenix
1981a & b). It is also noticed, in the case of loose bundles, that the
recoil and entanglement of failed fiber causes neighboring fibers to
fail, thereby weakening the bundle.

In the loose bundle tests of Chi, Chou and Shen (1984), the shape
parameter and scale parameter were determined based upon
methods (v) and (vi), which correspond to methods (A) and (B) of
Section 3.4.4.2. The relevant data are: N, = 1000, fiber diameter =
7 um, E;=255GPa and gauge-length =60 mm. The shape para-
meters obtained from methods (v) and (vi) are 4.6 and 4.5,
respectively. The scale parameter, ¢,, corresponding to a fiber of
unit length (1 mm in this case), is 0.026 for both methods. The
experimental data points indicating the load—strain (F-g) relation-
ship are shown in Fig. 3.13. The consistency between the theory and
experiment is rather satisfactory in the range of bundle strain not
much greater than &,,.

Fig. 3.16. Variation of mean strength with length for loose bundles of
carbon and E-glass fibers. (After Manders and Chou 1983a.)
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3.4.6  Strength of unidirectional fiber composites

This section deals with statistical strength theories of
unidirectional fiber composites. Upon the fracture of a fiber, the
load originally carried by the fiber needs to be transferred to its
neighboring fibers. A simple approximation of the load redistribu-
tion is to assume that the load is shared equally by all the unbroken
fibers. A more precise treatment takes into account the local
concentration of load on neighboring fibers. A Monte-Carlo simula-
tion is also presented to illustrate the statistical nature of composite
failure.

3.4.6.1 Egqual load sharing

In general, the high-strength high-stiffness fibers used in
composites are brittle and their tensile strength should be charac-
terized statistically. Parratt (1960) notes that the tensile failure of
composites reinforced with brittle fibers occurs when the fibers have
been broken up into lengths so short that any increase in applied
load cannot be transmitted to the fibers because the limit of
interface or matrix shear has been reached. Rosen (1964), following
Gucer and Gurland (1962), considers fibers as having a statistical
distribution of flaws or imperfections that result in individual fiber
breaks at various stress levels. The fracture initiated in a fiber is
contained by the matrix material. Composite failure occurs when
the remaining unbroken fibers, at the weakest cross-section, are
unable to resist the applied load. Then composite failure results
from tensile fracture of the fibers. In Rosen’s failure model, the
composite is assumed to be strained uniformly and the load in a
broken fiber is distributed equally among the remaining unbroken
fibers in a cross-section. Harlow and Phoenix (1978a) have labelled
such a model as equal load sharing. Scop and Argon (1967) also
have dealt with the problem of equal load sharing in their treatment
of the strength of laminated composites.

Figure 3.17 depicts Rosen’s failure model. In the vicinity of an
internal fiber end in such a composite, the axial load carried by the
fiber is transmitted by shear through the matrix to adjacent fibers
(see Section 3.3.1). A portion of the fiber at each end is, therefore,
not fully effective in resisting the applied stress. At some distance
from an internal break, the fiber stress will reach a given fraction of
the undisturbed fiber stress. Rosen considers that the fiber length §,
measured from the fiber end, over which the stress is less than a
given fraction (i.e. 90%) of the uniform stress that would exist in
infinite fibers, as ineffective. & is thus known as the ineffective
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116 Strength of continuous-fiber composites

length. The model composite in Fig. 3.17 is assumed to be
composed of a series of layers of height 8. The segment of a fiber
within a layer may be considered as a link in the chain that
constitutes the fiber. Each layer is then a bundle of such links and
the composite is a series of such bundles.

The treatment of a fiber as a chain of links is appropriate to the
hypothesis that fracture is a result of local imperfections in the
fibers. The links may be considered to have a statistical strength
distribution that is equivalent to the statistical flaw distribution
along the fibers. Rosen defines the link dimension by a shear-lag
analysis of the stress distribution in the vicinity of a fiber end (see
Section 3.3.1). The length of the composite specimen is designated
by L and the number of links is given by N =L/é.

The relationship between fiber strength and the strength of links
has been briefly discussed in the formulation of Eq. (3.51).
Obviously, the probability density function p,(o,) for fiber links can
be characterized if the experimental data on fiber strength distribu-
tion p¢(o;) are known. Suppose that the fibers are characterized by a
strength distribution of the Weibull type (Eq. (3.53)), the link
strength density function can be readily written as

pi(01) = 60;PBol ™! CXP[—é(?Y] (3.80)

(o]

Fig. 3.17. Chain-of-links model for a unidirectional fiber composite.
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For a bundle of links and a large number, M, of fibers, the
distribution of bundle strength p,(o,) and the mean bundle strength
0y, are given by Egs. (3.60) and (3.61), respectively.

The bundles may be treated as links in a chain, which now
represents the whole composite of Fig. 3.17. The weakest link
theorem can again be applied to define the failure of the composite.
For N bundles forming a chain (composite) the probability density
function p.(o.) for the average fiber stress at composite failure, o,
is given by

pe(00) = Npyp(0)[1 = P(0 )]V (3.81)
where

Rod= " pu(0) do (3.82)

The notations of p.(0.), pu(0s), pi(or) and p\(o;) have been used to
denote the strength density functions of the fibers at the level of
composite, bundle, fiber and link, respectively. Thus, it is under-
stood that 0., 0,, 0; and o, all refer to stresses in the reinforce-
ments; the contribution of matrix to composite strength is not
considered.

The most probable composite failure stress o7 is obtained by setting

4

dGC [pC(OC)]Gc:U:: 0 (383)

Following Rosen (1964), the substitution of Eq. (3.81) into Eq.
(3.83) yields

loglog N + log 4x
2V(2 - log N)

It can be seen from Eq. (3.62) that, for composite dimensions large
relative to fiber cross-section (M > 1), s,—0 and Eq. (3.84) is
reduced to the mean bundle strength expression of Eq. (3.65)

ok = a,(8Be)” P (3.85)

When the fiber volume content is considered, the tensile strength of
the composite is given by V; o. In Eq. (3.85), the ineffective length
6 can be determined from the stress analyses discussed in Section
3.3.1. It is obvious that the composite strength is enhanced due to a
reduction in fiber ineffective length and fiber strength dispersion.
The statistical nature of fiber fracture and the resulting weakest link

mode of failure have been demonstrated experimentally in a

O;k=(_7b—sb\/(2-logN)+Sb

(3.84)
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118 Strength of continuous-fiber composites

glass/epoxy system by Rosen (1964). This experiment also points
out the very significant phenomenon in brittle fiber composites:
fiber breakages may exist in a composite of continuous fibers at
stress levels well below the maximum load.

If the composite strength (Eq. (3.85)) is compared with the mean
strength of the tested fibers of length L (Eq. (3.54)), some
interesting conclusions can be drawn (Rosen 1970). Figure 3.18
shows that for reference fibers of ineffective length o, the strength
of the composite is less than the mean fiber strength. When the fiber
length is greater than J, the composite strength is larger than the
mean fiber strength of a fiber bundle of length L >76. Also for a
fiber strength coefficient of variation (s/0) less than 15% (or the
shape parameter 8 > 8), the composite strength is close to the mean
fiber strength, as shown in Fig. 3.18.

3.4.6.2 Idealized local load sharing

When a fiber breaks in a composite there is inevitably a
redistribution of load in the vicinity of the fiber breakage. Thus,
local load sharing takes place (see Zweben 1968; Scop and Argon
1969; Zweben and Rosen 1970; Fukuda and Kawata 1976b; Harlow
and Phoenix, 1978a&b; Harlow 1979; Phoenix 1979). The localized
nature of stress redistribution around a random fiber break has been
discussed in Section 3.3. Zweben (1968) first considered the

Fig. 3.18. Composite strength/mean fiber strength vs. 8 at various L/&

values.
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micromechanical stress transfer process and the probabilistic aspects
of the generation of clusters of breaks to form catastrophic breaks.
Fukuda and Kawata (1976b) generalized the original concept of
Zweben and derived the cumulative strength distribution for the
composite.

In the following, an analysis is presented under the Weibull
distribution for fiber strength, and somewhat simplified assumptions
on local fiber load sharing but with the advantage that various
quantities can be worked out either exactly or asymptotically. The
result is that insight can be gained on the approximate Weibull
behavior for composite strength where the Weibull parameters for
the composite will be connected to various fiber and matrix
properties, and in particular to the composite volume. The size
effect law for the composite will also be discussed. Most of the
features have been experimentally observed but have been difficult
to explain. The ideas for this section are taken from Harlow and
Phoenix (1978a&b, 1979, 1981a&b); Smith (1980, 1982); Phoenix
and Smith (1983); Smith et al. (1983); and Phoenix, Schwartz and
Robinson (1988).

The model considered is the planar, chain-of-bundles model
of Fig. 3.17 where M is the number of fibers and N is the number of
bundles each with fiber elements of length §, which might better be
termed ‘the effective load transfer length’. Following the notation of
Phoenix, the cumulative distribution function for the failure of a
single fiber element of length 6 is taken as the Weibull distribution
and expressed as

F(o)=1-exp{—(o/0s)’} o0=0 (3.86)

where o is the fiber stress, and B and o, are the Weibull shape and
scale parameters, respectively. (At this point it should be men-
tioned that 6 should take into account certain statistical aspects of
fiber strength which modify its magnitude somewhat as described by
Harlow and Phoenix (1979), and Phoenix, Schwartz and Robinson
(1988). Roughly, O varies inversely as the shape parameter f.)
According to principles discussed earlier, the strength of a fiber
element of length d can be expressed in terms of those for a longer
reference length L (used, say, for tension tests) according to
6)—1/[3

Os = UL<_

. (3.87)

where oy is the Weibull scale parameter for fiber strength at the
reference length. Often o5 will be about double o, in magnitude.
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120 Strength of continuous-fiber composites

The local load-sharing rule is ‘idealized’ as follows: In a bundle, if
the stress is nominally o (ignoring the matrix), a surviving fiber
element carries load K,o, where

K,=1+r/2, r=0,1,273,... (3.88)

and r is the number of consecutive failed elements immediately
adjacent to the surviving element (counting on both sides). At the
same time a failed fiber element carries no stress over length 6.
Essentially the load of a failed fiber is shifted equally onto its two
nearest surviving neighbors, one on each side. This rule is more
severe than the true situation where the stress redistribution is
somewhat more diffuse, as described say by Hedgepeth (1961), but
it captures the essential features and has the advantages of
simplicity and being fully described for all configurations.

Before proceeding with an approximate analysis of this model, it
is useful to review an extensive numerical analysis performed by
Harlow and Phoenix (1978a&b), where the basic insight into its
behavior was uncovered. To eliminate boundary effects, they
considered circular bundles (composite tubes), and studied the
behavior of the cumulative strength distribution as the bundle size
M increases. They defined Gy (o) as the cumulative distribution
function for failure of a bundle with M fibers under the stress o, and
worked out exact formulas for G, (o) for M up to 5 by considering
all configurations of failed and surviving fibers and all ways that
failure could proceed through these configurations and then sum-
ming all probabilities for these ways. For example, for M =2,

G,(0) = F(0)* + 2F(0)[F(20) — F(0)]
=2F(0)F(20) — F(0)? (3.89)
where in the intermediate step the first term represents direct
failure under the applied stress of both fiber elements, and the
second term represents the two ways one element can fail under the
direct stress and the other under the overstress, which is naturally
taken as 20 in this situation (rather than 30/2). For M =4, they
obtained by a tedious calculation
G4(0) =16F(40)F(20)F(30/2)F(0) — 4F(40)F(20)F(0)*
—4F(40)F(30/2)’F(0) + 4F(40)F (o)’
—8F(20)°F(30/2)F (o)
+2F(20)*F(0)* — 8F(40)F(30/2)F(0)*
+4F(30/2)*F(0)* — F(0)* (3.90)
Downloaded from CambLidge Books Online by IP 218.1.68.132 on Mon Apr 14 02:56:52 BST 2014.

ttp://dx.doi.org/10.1017/CBO9780511600272.004
Cambridge Books Online © Cambridge University Press, 2014
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Generally no simple pattern emerged except that each term
involved a product of M quantities in F. The evaluation procedure
was automated on a computer, but results were only obtained at
that time for M up to 9 because of the tremendous increase in
computational complexity resulting from the increasing number of
ways the bundle can fail as the bundle size increases. (Even with
present supercomputer capability the limit is still about M = 14.) At
the same time we desire results for M orders of magnitude larger.

Suspecting an eventual weakest-link type relationship, Harlow
and Phoenix (1978b) considered plotting the ‘renormalization’

Wu(0)=1-[1- Gyu(a)}"™ (3.91)
since in reverse this yields the weakest-link relation

Gu(o)=1—[1— Wy (o)™ (3.92)
They discovered an extremely rapid numerical convergence

Wy(o)— W(o) as M —x (3.93)

where W (o) was called the characteristic distribution function for
failure. This convergence is shown in Fig. 3.19 for the Weibull
shape parameter =15, which is typical of brittle fibers. The
coordinates are Weibull coordinates (In{—In(1 — W)} vs. In(a/0;))
wherein a Weibull distribution always plots as a straight line. For
each value of o the convergence is abrupt at some value of M,
which increases slowly with decreasing values of o. Also the
convergence becomes complete far into the lower tail of W(o)
(probabilities below 107'%) for M =9. In an extremely complex
calculation, Harlow and Phoenix (1981a&b) uncovered the analyti-
cal character of W(o) in terms of the largest eigenvalue of a
Markov recursion matrix. It suffices to say here that W(o) has
no simple analytical form, though shortly we will develop an
approximation which will give us considerable insight.

The importance of W (o) is that, from Eq. (3.92), the distribution
function for bundle failure can be given extremely accurately by the
approximation

Gu(o)=1-[1-W(o)¥ (3.94)

and this works for M many orders of magnitude larger than the
values used in the calculation of W(o) on the computer. Perhaps
one should note that any boundary effects, which may come into
play for small bundles, are being ignored.
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122 Strength of continuous-fiber composites

Because the composite is seen as a weakest-link arrangement of
its N bundles (Fig. 3.17), and the bundles are treated as statistically
independent, the cumulative distribution function for the failure of
the composite, denoted as Hy, (o), is given as

Hy,n0)=1-[1=Gyu(a)]” (3.95)
Combining Eqs. (3.94) and (3.95) and writing V = MN yields the
accurate approximation

Hy Mo)=1-[1—-W(a)}¥ (3.96)

which surprisingly, perhaps, is a result which is symmetric in M and
Fig. 3.19. Convergence of the renormalized distribution functions W,,(o)

to the characteristic distribution function W(o) as M increases. (After
Harlow and Phoenix 1978b.)
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N. Note that by the binomial expansion Hy p{(0) = VW (o). Thus if
V is large, say 10° elements, it is necessary to know W (o) where its
value is much less than 107°. As mentioned, this is provided for in
Fig. 3.19. Note that despite the fact that Eq. (3.96) is a ‘weakest-
link’ relation, in terms of V = MN elements, there is no identifiable
and independent material element to which one can attach W (o).
At best, W(o) characterizes the effects of local failure events which
are actually statistically dependent.

Figure 3.20 displays W (o) for values of g from 3 to 50. Now Fig.
3.20 can be used to construct a figure for Hy, n(o) upon noting that
In{~In(1 — H)} =In{-In(1 — W)} +In V, which on Weibull prob-

Fig. 3.20. Characteristic distribution function W(o) for various values of
the Weibull shape parameter f for fiber strength. (After Harlow and
Phoenix 1978b.)
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124 Strength of continuous-fiber composites

ability paper amounts to a simple translation of each curve upward
(or the left-hand scale downward) the amount In(V) on the
right-hand scale provided for this purpose. Figure 3.21 shows the
result of such a translation for V = 10° elements, which amounts to
a display of the original region on Fig. 3.20 below 107>, This yields
plots of the cumulative distribution function of composite failure,
Hys n(0), for various B for a relatively small composite specimen.
Several features of Fig. 3.21 warrant discussion. First, all the lines
are approximately straight over a very wide probability range,
which suggests that the strength of a composite approximately (but
not exactly) follows a Weibull distribution. In fact, an empirical plot
to cover the probability range shown would require testing about

Fig. 3.21 Cumulative distribution function H,, (o) for composite strength
for volume MN = 10° and various values of the fiber shape parameter .
(After Harlow and Phoenix 1978b.)

0.90
0.75

0.50

0.25

0.10

Hy v(0)

1074

: PR N /S TR
0.4 0.5 06 07 081.0

olog

Downloaded from Cambridge Books Online by IP 218.1.68.132 on Mon Apr 14 02:56:52 BST 2014.
http://dx.doi.org/10.1017/CB09780511600272.004
Cambridge Books Online © Cambridge University Press, 2014




Statistical tensile strength theories 125

20000 specimens, and using standard statistical techniques it is
probable that a Monte-Carlo simulation would noft lead to rejection
of the hypothesis that the Weibull distribution is actually the correct
distribution! Second, the lines show only a modest change in slope,
by a factor of less than three, as the original Weibull shape
parameter for the fiber § decreases from 50 to 3, which is a factor of
more than ten. Since the slope is directly proportional to the
Weibull shape parameter, this indicates that the effective Weibull
shape parameter for the composite decreases modestly, from about
50 to 20 as that for the fiber decreases drastically, from about 50 to
3. On the other hand, the horizontal location of the plots is quite
strongly influenced by the value of B, which suggests that an
increase in variability in fiber strength substantially decreases
composite strength. It is seen, for example, that the median
strength drops from about 0.750,, to about 0.20, as 3 drops from
50 to 3. Note also that the median strength of the composite is much
less than that for a fiber element of length 8, being only about 3 for
the typical case # =7. On the other hand, standard tension tests on
fibers are performed at gauge-lengths L about two orders of
magnitude larger than 8, and by Eq. (3.87) their strengths are
about one-half of o5. Fortuitously then, the strength of the
composite will be little different from the strength of the fiber from
typical laboratory tension tests as is often observed. Finally, the
method of constructing Fig. 3.21 indicates that there is a mild size
effect in composite strength and a mild shift in the effective Weibull
shape parameter for the composite. Had a larger volume V =10’
been chosen rather than 10°, the curved nature of the graphs on Fig.
3.20, from which Fig. 3.21 was derived, would produce a slightly
lower strength and a slightly higher effective shape parameter for
the composite depending on .

Attention is now turned toward a simple but approximate
theoretical explanation based on some key ideas motivated by the
above numerical analysis and results. First, the range for the
composite failure stress lies << g5, as we saw from Fig. 3.21. (Note
that both the median and the stress at 0.99 probability of failure lie
well below g for typical values of § below 15.) Second, the ‘initial’
failures, that is fiber elements which fail directly under the applied
stress ¢, are viewed as ‘seeds’ for the growth of failure clusters,
which are lateral strings of adjacent fiber breaks contained within
bundles. Third, the number of such seeds is easily seen to follow the
binomial distribution with parameters MN and F(o) (the number
depends, of course, on o) with the mean number being MNF(0o).
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126 Strength of continuous-fiber composites

Fourth, cluster growth from a seed is viewed for calculation
purposes in terms of the sequential failure of adjacent fibers in a
bundle, with growth in either direction to form a string. Fifth,
instability occurs when a string of k breaks occurs such that
F(K,_,0)<3%, say, but F(K,0)~1; thus, subsequent fiber failures
become almost certain leading to catastrophic growth of a trans-
verse ‘crack’ and failure of the composite. This value of k, which
depends on the stress level o, is called the critical crack size, and in
view of Eq. (3.88) is better defined as the k value for which

K,_i0=0s<K0o (3.97)

Sixth, the following analysis is based on the Weibull shape
parameter 3 for fiber strength being ‘large’, but fortunately the
results work quite well for f down to about 4.

Proceeding with the analysis, it is first important to realize that
the initial breaks or ‘seeds’ are actually quite far apart. For
example, from Fig. 3.21 we recall that the median composite
strength was about 0.270, for f =35, and F(0.270,) = 0.0014. This
means that the average spacing of seeds along a fiber is the inverse
of this value times &, or about 7006, and laterally in a bundle is
about 700 fiber diameters. Moreover this spacing grows larger as the
composite volume increases due to the size effect. To see why, we
note that the size effect means that the median strength will
decrease as the volume increases. As an example, repeat the
process used to develop Fig. 3.21 from Fig. 3.20 but for a volume
MN = 10° instead of 10°. One can see that the median strength will
now be only 0.220; instead of 0.2705 and since F(0.220;) =
0.00052, the average spacing is almost 20008. Note that aithough
the seeds are now farther apart (fewer per unit volume), there are
more of them in the composite because the volume grew by a factor
of 10°. (It may come as a surprise to the reader that a small
composite will show lots of single breaks per unit volume just
before failure, but a large composite will show relatively few!)
Thus, as a first approximation we can ignore the possible interac-
tions of two clusters growing near each other since the critical k will
turn out to be quite small.

The probability of a given fiber element becoming a seed and its
immediate neighbors developing further into a failure string of size
k is approximately

P{seed and string} = F(0)2F(K,0)2F(K,0) - - - 2F(K;_,0) (3.98)

where the factors 2’ appear because, at each step of the growth
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Statistical tensile strength theories 127

beyond the seed, there are two choices for the next failure (one on
each side) which approximately doubles the probability for that
step. Thus, such a string can stretch out variously to the left, or to
the right, or be centered relative to the original break. Clearly Eq.
(3.98) ignores considerable detail about the events of cluster
growth, as discussed more fully in Phoenix and Smith (1983), but it
works mainly because F(K;0)>> F(K;_;0) when B is large. (The
nature of the simplification can be appreciated upon studying Egs.
(3.89) and (3.90) for small bundles where in each case the first term
will dominate all the others when f is large.) Using a Taylor series
expansion in (o/0,)” it can be seen that

F(0)=(0/0,)* (3.99)

This is especially true when o << g5, but it turns out that for present
purposes we can take this as a good approximation for 0 = g = ¢;,
particularly in Eq. (3.98). Substituting Eq. (3.99) in Eq. (3.98), we
have

P{seed and string} =2*"'(0/0,)?(K,0/05)" - - - (Kx_,0/05)"
=2"YK\K> - -+ K )P (0] 05)P  (3.100)

This factorization and collapse of terms, to yield an exponent of kf§
instead of B, is an important feature which follows from the use of
the Weibull distribution. It is the point at which the effect of
micromechanical ‘redundancy’ in the composite emerges as a
reduction in variability.

In the composite there are MN potential seed fibers, each of
which may produce a string, and the composite will fail if at least
one such event occurs. Treating the MN seed and string events as
statistically independent (which works because of the wide spacing
mentioned above), we actually have a weakest-link situation so that
the probability of composite failure is

Hy v(0)=1—[1— P{seed and string}]""
1= [1 = 25" (K K - - - Ki_y)P(0]05) ¥ 1" (3.101)
From the calculus, (1 —ao”)"— exp{—nac”} as n— = so that
Hy n(0)=1—exp{—MN2*"(K\K; - - - K;_))’(0/05)""}
(3.102)

which is of the Weibull form, though & depends on the stress o
following Eq. (3.97).
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128 Strength of continuous-fiber composites

Before discussing several important features of Eq. (3.102), it is
useful to develop a connection to the characteristic distribution
function W(o). For k=1, 2, 3,.. ., let

F¥(0) =1 - exp{—di(0/05)*F} (3.103)
where
dk = 2k_1(K1K2' b Kk_l)ﬁ (3104)

Equation (3.103) gives us a family of Weibull distributions with
increasing shape parameter kf8 in k. Furthermore, following Eq.
(3.97) we can partition the important stress range 0 < g < g, into
the segments

Ua/Kk<O'S oé/Kk—l k=1, 2, 3, (3105)

and for each k restrict the corresponding distribution to its
appropriate stress range. Then Eq. (3.102) becomes

Hiyy n(0) ~ 1 —[1 — F¥(g)]MY (3.106)

where k and o are chosen to follow Eq. (3.105). An approximation
to W (o) then follows from a comparison of Eqs. (3.96) and (3.106)
yielding

W (o) =~F¥l(g) (3.107)

where again k and o satisfy Eq. (3.105).

Figure 3.22 shows a plot of W(o) for =35 together with the
family of Weibull distributions F*}(g) for k=1,2,3,..., where
each is extended over the whole stress range 0 < o < g5. For each
stress level o one of these Weibull distributions comes very close to
W (o), and indeed it is normally the one whose k value satisfies Eq.
(3.105). Unfortunately, Eq. (3.107) has a jagged appearance when
plotted because of small ‘jumps’ occurring as k changes at the
transition stresses of the boundaries of Eq. (3.105). A graphically
pleasant ‘repair’ with a smooth appearance is to work with the inner
‘envelope’ of the family of Weibull distributions, that is

W (o) ~min{F"(0), F*(0), F*(0), .. .} (3.108)

Figure 3.22 indicates that this approximation works extremely well.

In principle we could develop similar graphs to Fig. 3.22 for the
other cases $=3,7,10,...,50 in Fig. 3.20. In developing Fig.
3.21 from Fig. 3.20 for a given volume V, it is quickly seen that one
of the Weibull cases, that is one value of k, would ‘dominate’ for
each value of 8, which is why each line in Fig. 3.21 is approximately
straight. For each plot, the appropriate k and Weibull shape
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Statistical tensile strength theories 129

parameter kf3 would be determined through Eq. (3.105) from the
relevant stress range in Fig. 3.21, especially near the median. For
example, for B = 10, the case k = 3 is appropriate in developing Fig.
3.21, as the effective Weibull shape parameter for composite strength
is about 3 X 10 = 30 (as determined from the slope of the § = 10 line
in Fig. 3.21).

It is now possible to determine the appropriate Weibull distribu-
tion for each plot in Fig. 3.21. Substituting the appropriate Weibull
distribution F*)(¢) into Eq. (3.106) (which actually returns us to
Eq. (3.102)) yields the following Weibull approximation for
composite strength:

Hy ;(0) =1~ exp{ = (0/ 01 un)*"} (3.109)
where
Ormn = 05 (MNd,)~VEP (3.110)

For each value of §, this Weibull approximation closely fits the plot
on Fig. 3.21, provided k is chosen by the above graphical scheme.

Fig. 3.22. Envelope construction from Weibull family F*l(¢) to ap-
proximate the characteristic distribution function W(o) for composite
strength. Reprinted with permission from International Journal of Solids
and Structures, 19, Phoenix and Smith, Copyright © (1983), Pergamon
Press, plc.
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130 Strength of continuous-fiber composites

Of course k will change if the volume V =MN is changed
significantly.

At this stage it is important to recall the interpretation of k as the
‘critical crack size’. It is now appreciated that given the composite
volume MN and the Weibull shape parameter S for the fiber
strength, a special value of k emerges which is the size of the
longest crack or string of fiber breaks when such a composite
fractures. This value of k also determines the effective Weibull
shape parameter for composite strength, k. Thus far, the calcula-
tion of the appropriate k value has been performed graphically, but
it is possible to estimate k explicitly. The method is given in
Phoenix and Smith (1983), and begins by the study of

s/ Ki < Opsin < 05/ Ki_1 (3.111)

For large MN, this leads to the appropriate £ being the value which
satisfies

y(k)>In(MN)/B > y(k — 1) (3.112)
where
y(r)=rIn(K,) — {In(K,) + In(K,) + - - - + In(K,_;)} (3.113)

for r=1,2,3,... and y(0)=0. For K;=1+j/2, we obtain the
values given in Table 3.1. According to Eq. (3.112) the critical
value of k depends on the ratio In(MN)/B, and thus it increases
slowly as the composite volume is increased but decreases more
rapidly as the variability in fiber strength is decreased (f is
increased).

As an example, for the case =5 on Fig. 3.21, the graphical
procedure puts the stress range near (0.270s which by Fig. 3.22 or
Eq. (3.105) puts k = 5. On the other hand, In(10°)/5=2.76, and by
Eqgs. (3.112) and (3.113) and Table 3.1 one also obtains k = 5. Thus
the effective Weibull shape parameter for the composite being
represented is kff = 25.

Table 3.1.

r yr) r y(r)
0 0 s 315
1 0405 6 395
2 0981 7 478
3165 8 562
4 238 9 648
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Statistical tensile strength theories 131

Finally, it is interesting to consider the ultimate size effect for the
composite. In the case of a Weibull distribution, we recall that the
strength decreases as the volume V in proportion to V~"£ On the
other hand, the curvatures of the lines on Figs. 3.20 and 3.21,
together with our finding that & slowly increases as the volume
V = MN increases suggest that the strength of the composite will
not ultimately have a Weibull size effect, but one which is
increasingly milder as V increases. Smith (1980, 1982) considered
this question and concluded that

composite strength =~ 82! # g, /In(V) (3.114)

which indicates that the strength decreases as the inverse of the log
of the volume. It turns out that Eq. (3.114) tends to be an
overestimate and a composite must be astronomically huge (V >
10?°) for this result to be accurate.

In conclusion, a few extensions and limitations of the above
analysis should be mentioned. As stated earlier, the results given
are based on S being ‘large’. This allowed us to write the
approximation Eq. (3.98), which led us to Eq. (3.100) and then to
the definition of d, in Eq. (3.104). As mentioned earlier, the
calculation of the event implied in Eq. (3.98) is more complex if
‘double counting’ of certain failure possibilities is to be avoided. For
example, for £ =2, a more accurate rendition is

P{seed and string} ~2F(0)[F(K,0) — F(0)] + F(o)*
=2F(0)F(K,0) — F(0)?
~[2(K)* — 1)(0/05)*" (3.115)

so d, should be [2(K,)”? — 1] rather than just 2(K,)?. The same sort
of analysis shows that d; should actually be 4(K;K,)? — (K,)*! —
(K»)?—2(K;)?+1 and so on for higher k. But it turns out that
these refinements make very little difference, especially when
calculating the scale parameter values o, ,n in Eq. (3.110) where
the error is typically one or two per cent.

The above results were developed for the idealized case of local
load sharing defined by Eq. (3.88), but appear also to work for
more realistic cases provided one chooses K, to be the largest load
sharing constant at the edge of a failure configuration. Generally
such values of K, tend to be smaller than 1+ r/2 (see, for example,
Hedgepeth 1961). Following through the above analysis, the main
effects are not only to increase the scale parameters for strength,
thus increasing the composite strength itself, but also to increase the
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132 Strength of continuous-fiber composites

critical k values thus reducing the composite variability. Second, an
analysis has been carried out by Smith er al. (1983), for three-
dimensional composites, with the parallel fibers forming a two-
dimensional hexagonal array. Here the clusters of broken fibers can
take on many different geometric configurations other than a linear
string, but for large f3 one still comes up with a form for d, that is
similar in structure to Eq. (3.104) except that 2! is replaced by a
much more complex configurational constant. Many of the ideas
carry through except that one no longer finds quite the same simple
relationship between the critical cluster size k and the effective
Weibull shape parameter for composite strength. The strength of
such a three-dimensional composite is typically larger than in the
two-dimensional planar case described above. The reason is that
while there are many more failure configurations, the load sharing
occurs over many more fibers at the boundary of a failure cluster so
that the reduction in the K, values more than compensates for the
increased number of failure possibilities, especially for larger B.

Finally, experimental data to illustrate the above features have
been presented by Phoenix, Schwartz and Robinson (1988), who
also extend the ideas, through viscoelasticity of the matrix, to
explain creep rupture phenomena under constant stress.

3.4.6.3 Monte-Carlo simulation

The Monte-Carlo method is a numerical technique suitable
for simulating complicated stochastic processes, and it has been
employed to analyze a wide range of physical processes of a
statistical nature (Oh 1979). The Monte-Carlo simulation of com-
posite strength can be regarded as testing the composite materials
‘analytically’ in an automated fashion. In each Monte-Carlo experi-
ment, random numbers are generated and assigned to the underly-
ing random variables and the outcome of the process of interest can
be observed. When the number of such independent experiments
is sufficiently high, the observations will yield a good assessment of
the statistical characteristics of the process. In dealing with the
strength of fibers as well as composites, the Monte-Carlo experi-
ment involves the partitioning of fiber or a composite into elements,
then random numbers are assigned to the strength of the elements.
For a given applied load, the stress in the elements of a fiber or a
composite can be determined as described in Section 3.3. From the
assigned strength value and the arrangement of breaks of elements
the failure load is then obtained. In the following, fractures of fibers
as well as composites based upon the Monte-Carlo simulation
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Statistical tensile strength theories 133

(Fukuda and Kawata 1977; Oh 1979; Manders, Bader and Chou
1982) are considered. Several common procedures for generating
the normal random numbers are available.

Fukuda and Kawata studied the fracture of a two-dimensional
fiber composite based upon the Monte-Carlo method by choosing a
mean strength of 100 and a standard deviation of 10. A simulation
of the fracture process is shown in Fig. 3.23 for E{/E,, =20, and
M = N =20, where M and N are defined in Fig. 3.17. The elements
or links in the partitioned composite specimen are specified by the
position (i, j). Here, 0 indicates that the link is not broken and the
other numerals indicate the sequence of link breakage. As the
initial condition, each link (i, j) is assumed to have a stochastic
strength, STR(i, j), which is the normal random number with a
specific value of mean and standard deviation. Both the Weibull
distribution and normal distribution have been used for expressing
the link strength distributions. Stress concentration factors of all
links, SCF(i, j), are initially assigned as 1. A link with the least
value of STR(, j)/(SCF(i, j) is sought, and let this link be (i, J,)-
The link breaks first at the tensile stress of STR(i,, j,). When this
link breaks, stress concentration occurs in the two adjacent links
(iy, jo £ 1). The values of STR(, j)/SCF(i, j) are again calculated
for the remaining M X N — 1 links. A link which has the least of this
value breaks second. This procedure is repeated until all the links in
a plane transverse to the loading direction (j=1,2,..., M) are
broken.

Fig. 3.23. Monte-Carlo simulation of fiber link fractures. (After Fukuda
and Kawata 1977.)

ey w
OO e
W
®OO

%)
mOOO

P

'S

=N

w

Noooo-rocoo
N

oy
—_

ey

» g
COOOO0OOONOCODONDOODOOOOOO

(oA}
NO OO DO WOODOOhLhOOODODOOODON

n
QOO0 0O WOOOOUNONODOOOOO

wn
OO OO ONOOOO 2000

(o)
OO0 ONOODOOIROOOOO
w

COO0O O OO OWOOO
(%l
COO0OO0COO0OPOQUODOOCODODODOOOOO

w
CO0O0OCOWOOOOOOOOOOOOO

[*4]

w

43

IS
OROOOOCOVWOOO 20O

N

(222

[=2]

w
COO0QOOONQOQOOOOOOOOOROQ

—
OCNWOOOCMODODOOOODOOODODOOOO

[
W

—

ny
OPLhOOQOCONODODOOODODOOOCOOOOO

NN

(%]
Y

w
N
QOO OO0 O0OO0COOCOOOOOOOOCO
—
[\
ONOOOOOWOOOOLOOCOQOOOCOO
nN N
[eNoRE Nl I NoNoNeNoNeNeol oY eNo o NeNo o Nol
W
_

N
QOO OONO OO OOOOWOOOOOO

n
OPhOODOCONCOOOOCOOOO

Ny
ONOOQOCOUNOOCOOO0ODO0ODOCODOOOOO
OO OO OPLPOO0OO0CTCOOTTOODOOTO

WOOOQOQO 0000000000000

-

Downloaded from Cambridge Books Online by IP 218.1.68.132 on Mon Apr 14 02:56:52 BST 2014.
http://dx.doi.org/10.1017/CB09780511600272.004
Cambridge Books Online © Cambridge University Press, 2014




134 Strength of continuous-fiber composites

The result given in Fig. 3.17 resembles the sequence of fiber
failure observed in the experimental work of Rosen (1964). The
predictions of composite strength are shown in Fig. 3.24. It should
be noted that the Monte-Carlo approaches are generally limited to
MN <50 000 under current supercomputer power which may not be
enough for a realistic composite. Also the Monte-Carlo approach is
inherently poor at handling the lower tails of the distributions.

3.4.7  Strength of cross-ply composites

Cross-ply construction is the simplest form of lamination of
unidirectional laminae. This simple geometric configuration facilit-
ates the understanding of the fundamental problems concerning
laminate strength. It provides a model system for investigating the
matrix cracking of laminates under tensile loading. This section
analyzes the problem from both deterministic and statistical view-
points. The treatment of Aveston, Cooper and Kelly (1971) of
multiple fracture, although it deals with unidirectional composites, is
basic to matrix cracking of laminated composites in general. Hence,
it is outlined first.

3.4.7.1 Energy absorption during multiple fracture
Section 3.2 discusses the mode of fracture of unidirectional
composites as affected by the ultimate failure strains of the fiber and

Fig. 3.24. Numerical results of Monte-Carlo simulation. (After Fukuda
and Kawata 1976b.)
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Statistical tensile strength theories 135

matrix materials as well as the fiber volume fraction. The energy
absorption of composites during the failure process was first
investigated by Aveston, Cooper and Kelly (1971). Contributions
to the fracture surface energy during single fracture may be
derived from deformation of the fiber or matrix, the work done
in fracturing the fiber—matrix interfacial bond, and work
done in pulling the fibers out of the matrix against frictional
forces. It is found that the work of fracture increases with
increasing fiber diameter and decreasing fiber—matrix interfacial
strength.

Multiple fracture of fibers occurs in ductile matrix composites at
low fiber volume fraction. Multiple fracture of matrix, on the other
hand, takes place in brittle matrix composites at high fiber volume
fraction, as a result of applied tensile loads or thermal stresses
induced by cooling from the stress-free temperature. The energy
consideration for the development of multiple matrix cracking in a
unidirectional lamina subject to axial tensile loading is introduced
below (see Aveston, Copper and Kelly 1971; Aveston and Kelly
1973, 1980; Kelly 1976).

Consider the formation of a single matrix crack normal to the
fiber direction, at the strain ¢, under conditions of fixed load. It is
assumed that the stress in the matrix is equal to the matrix fracture
stress and there is a decrease in the combined energy of the
specimen and the loading system. The energy changes due to the
formation of a crack at a fixed load include AW = the work done by
the applied load per unit area of the composite, yq, = energy
absorbed per unit area of debonded fiber, U, = the work done per
unit area of the composite against the frictional force between the
fiber and matrix, AU, = the elastic strain energy lost due to the
relaxation of the strain in the matrix, and AU;=the increase in
strain-energy of the fibers per unit area of the composite. If the
surface energy in forming a matrix crack is y,, a crack will occur
provided

2yl = V) + yao + U + AU = AW + AU, (3.116)

The terms in Eq. (3.116) have been evaluated by Aveston, Cooper
and Kelly under the assumption that the changes in stress (strain) in
the matrix and fiber due to the formation of the crack vary linearly
with distance from the crack surface. By further assuming purely
frictional bond between the fiber and matrix, Eq. (3.116) yields the
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136 Strength of continuous-fiber composites

following expression for the failure strain of the matrix:

{ 12ty EVE }“3
Emu= VT3 o o
™ \E.E r(1 - V)

where 7 = fiber—-matrix interfacial shear strength (See Eq. (3.2)),
r = fiber radius, and £ = Young’s modulus with the subscripts f, m
and c indicating fiber, matrix and composite, respectively. Equation
(3.117) indicates that the composite strain at the formation of the
transverse matrix crack can be enhanced by suitable control of the
elastic moduli of the fiber and matrix, fiber volume fraction and
diameter, matrix surface energy, and the fiber—matrix interfacial
strength.

Budiansky, Hutchinson and Evans (1986) have generalized the
results of Aveston, Cooper and Kelly for unbonded, frictionally
constrained slipping fibers initially held in the matrix by thermal or
other strain mismatches. The other case considered by Budiansky et
al. for the onset of matrix cracking involves fibers that initiaily are
weakly bonded to the matrix, but may be debonded by the stresses
near the tip of an advancing matrix crack. McCartney (1987) has
used an energy-balance calculation for a continuum model of brittle
matrix cracking in a uniaxially fiber-reinforced composite and
confirmed that the Griffith fracture criterion is valid for matrix
cracking.

(3.117)

3.4.7.2 Transverse cracking of cross-ply laminates

Multiple transverse cracks in the matrix of unidirectional
fiber composites have been observed in a number of systems, for
example, glass-reinforced cement, and gypsum reinforced with
polyvinyl chloride or glass, where the failure strains of the fibers are
greater than those of the matrices. Transverse cracking also occurs
in the 90° plies of cross-ply laminates. Experimental observations
and analytical modeling of this behavior have been made by Bailey,
Garrett, Parvizi, Bader and Curtis (see Garrett and Bailey
1977a&b; Parvizi and Bailey 1978; Parvizi, Garrett and Bailey 1978;
Bader, Bailey, Curtis and Parvizi 1979; Bailey, Curtis and Parvizi
1979; Parvizi 1979; Bailey and Parvizi 1981 who followed
Aveston and Kelly’s shear-lag approach and interpreted this pheno-
menon by the concept of constrained cracking). Manders, Chou,
Jones and Rock (1983) proposed a statistical treatment of multiple
cracks. Wang, Crossman, Warren and Law (see Wang and Crossman
1980; Crossman, Warren, Wang and Law 1980; Crossman and
Wang 1982; Wang 1984), on the other hand, theorized it based
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based upon the strain-energy release rate of crack extension. The
theory of Bailey et al. is introduced in this section. The work of
Manders et al. is discussed in Section 3.4.7.3 and that of Wang et al.
is introduced in Section 3.4.7.4.

(A) Cross-ply laminate

The cross-ply construction of [0°/90°/0°] is shown in Fig.
3.25. For the cases of glass/epoxy and carbon/epoxy systems, the
mechanical properties of unidirectional laminates are shown in
Table 3.2. The glass/epoxy 0° test curves are essentially linearly
elastic to fracture but the 90° specimens show a pronounced knee at
a strain of about 0.3%, after which a whitening effect can be
observed. The 0° carbon/epoxy test curves are elastic to failure but
they are not linear, there being an increase in the modulus with
increasing strain. The 90° carbon/epoxy is linear to failure with no
knee or acoustic emission prior to failure. The failure strains of the
90° specimens in both systems are characteristically low due to
strain concentrations in the matrix (see Kies 1962).

Fig. 3.25. Hlustration of a {0°/90°/0°] specimen.
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138 Strength of continuous-fiber composites

When extended in tension, initial failure of the cross-ply laminate
is usually in the central 90° ply, which cracks in a direction normal
to the applied tension and parallel to the fibers in that layer (Fig.
3.26). The failure sequence in both laminates follows a similar
pattern. Two knees appear on the stress—strain curve of
glass/epoxy, first at 0.3% strain, associated with the visual whiten-
ing effect and at 0.5% strain due to transverse cracking, but this is
not apparent in the carbon/epoxy laminate. On further extension,
more cracks are formed until the whole gauge portion of the
test-piece is filled with a regular array of cracks. The strain at which
the first crack occurs increases as the thickness (24) of the 90° layer
is reduced and at the same time the crack spacing tends to become
smaller. In the case of the thinnest transverse layers, transverse
cracking is not observed at all before the final catastrophic failure of
the test-piece. Microscopy has shown that the earliest indications of
failure are debonds at or near the fiber/matrix interface. These
occur at strains even lower than those at which the whitening is
observed in the glass/epoxy systems. The next stage is a coalescence
of a number of debonds to form a microcrack, which grows rapidly
when it reaches a critical size, about three to four fiber diameters.

Longitudinal splitting is observed to occur in the 0° plies of the
cross-ply laminate at strains intermediate between the transverse

Table 3.2. Mechanical properties of unidirectional laminates (after
Bader et al. 1979), Reprinted with permission from Mechanical
Behaviour of Materials-Copyright © 1979, Pergamon Press, plc.).

0° 0° 90° 90°

Property CFRP*  GRP** CFRP GRP  Units
Low-strain

Young’s

modulus 127 42 8.3 14 GPA
Fracture

stress 1.7 0.92 0.039 0.056 GPa
Fracture

strain 1.2 2.2 0.48 050 %
Poisson’s

ratio 0.29 0.27 0.02 0.09 -

* CFRP: carbon fiber-reinforced plastic
**GRP: glass fiber-reinforced plastic
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cracking strain for the 90° plies and final failure (Fig. 3.27).
Longitudinal splitting is due to mismatches in the Poisson’s ratios
and the coefficients of thermal expansion of the 0° and 90° plies.
The strain to initiate splitting increases as the thickness of the
longitudinal plies is reduced. Splitting has not been observed in the
carbon/epoxy cross-ply laminates.

(B) Transverse crack spacing

The low strain failure behavior was first explained by Kies
(1962), who predicts the magnification of strain in the matrix
when a unidirectional composite is stressed in the transverse
direction. In the limit when the fibers are almost touching one
another, the strain magnification factor approaches the value
E{/E,. It should be noted that even at comparatively low fiber
volume fractions there are invariably regions in the lamina where
fibers almost touch one another. The glass fibers are nearly

Fig. 3.26. Transverse-ply crack in a [0°/90°/0°] carbon fiber-reinforced
cross-ply laminate with an inner-ply thickness of 2k =0.125 mm. (After
Bailey, Curtis and Parvizi 1979.)
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140 Strength of continuous-fiber composites

isotropic, but the transverse Young’s modulus of carbon is much
lower than its longitudinal modulus and it is this modulus which
should be used for calculating the strain magnification factor. The
first matrix crack usually forms between fibers which are touching or
nearly touching along a direction perpendicular to the loading axis.

The crack density, and hence the crack spacing, is related to the
geometry of the laminate. These can be explained by the cross-ply
laminate shown in Fig. 3.25. When the strain has reached the
fracture strain, &, of the 90° ply, the first crack occurs in the
transverse ply, and an additional stress Ao is placed on the
longitudinal plies. From a shear-lag analysis similar to that given in
Section 3.3.1,

Ao = Aa,exp(—V(P)y) (3.118)
where

¢_Eﬁ_n<b+h>

" E Ex \ bh?

Fig. 3.27. Longitudinal-ply splitting in a {0°/90°/0°] glass fiber-reinforced
cross-ply specimen. (After Bailey, Curtis and Parvizi 1979.)
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E. is the laminate Young’s modulus in the y direction, E;; and E,,
are the Young’s moduli of a unidirectional ply in the fiber and
transverse directions, respectively, and G, is the shear modulus of
a unidirectional ply. This additional stress has its maximum value
Ao, in the plane of the crack (y =0) and decays with distance y
from the crack plane as some load is transferred back into the
transverse ply through interlaminar shear stress
ri=—bqu (3.119)
dy
The tensile load in the transverse ply is zero at the crack plane
but builds up by shear transfer from the longitudinal plies. At a
given distance y from the crack, the load F in the inner ply is given
by

Y
F=J' 2ctydy (3.120a)
0

where c is defined in Fig. 3.25. The first crack in the transverse ply
occurs when the load carried by it is equal to 2cho, where oy,
denotes the ultimate tensile strength of the 90° ply in the cross-ply
laminate, which may be different from the transverse tensile
strength of a unidirectional ply. This load is then transferred onto
the longitudinal plies. Another crack can only occur when the
transverse ply is again loaded to 2cho,,. The transverse ply will not
be loaded to this value except at infinity and Ao, = 0,,h/b, if the
applied stress on the laminate is maintained at o, = E g, after the
first cracking. For another crack to occur, o, and hence Ao, must
be increased to such a value that F = 2choy,.

If the first crack is assumed to take place in the middle of the
specimen (y = 0) of length a, the following cracking sequence will
oceur:

(1) Initial crack at o,= E g, and
F =2bc Ao [1—exp(~V($)y)] (3.120b)

(2) Second and third cracks occur simultaneously at the ends of
the specimen when the applied load increases to such a
value that

Ao, =0y, g [1—exp(—V(¢)a/2)]™" (3.121)

The crack spacing is a/2.
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142 Strength of continuous-fiber composites

(3) The next series of cracks will occur midway between the
present cracks. The total shear stress between two existing
cracks is

7= b Ac,V(¢){exp(— V(¢)y)

—exp[V(¢)(y —a/2)]} (3.122)
and from Eq. (3.120a)

F =2bc Ao [1+exp(— V(¢p)a/2)
—2exp(— V(¢)a/4)] (3.123)

The value of Ao, when the cracks occur now at intervals of
a/dis

80, = 03 11+ exp(= V(@)al2)

—2exp(— V(¢)a/4)] ™! (3.124)
(4) For crack spacing of a/8

80, = 0 11+ exp(~ V($)al4)

—2exp(— V(¢)a/8)] ! (3.125)

This crack sequence will continue until the strength of the lon-
gitudinal plies is exceeded or the spacing between neighboring
cracks is so small that the normal stress in the 90° ply cannot be
built up to o,,.

(C) Transverse cracking constraint
The strain required to initiate transverse cracks is greater

when the transverse lamina is thinner, and in some cases cracking is
constrained completely up to the strain at which the longitudinal
laminae fail catastrophicaily. This phenomenon of constrained
cracking is attributed to the fact that in order for a crack to form it
must be both mechanistically possible and energetically favorable.
The former requirement is satisfied for cross-ply laminates from the
viewpoint of strain magnification as discussed in (B). The effect of
lamina thickness on the transverse failure strain can be understood
from the viewpoint of energetics.

For a specimen under constant load, a crack initiates if the
following condition is satisfied:

AW > AU + Up +27A (3.126)
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where AW is the work done by the applied stress per unit area of the
specimen, AU is the increase in stored energy per unit area of the
specimen, Uy, is the energy loss per unit area due to any dissipative
processes present (e.g. sliding friction between debonded fiber and
matrix), y is the fracture surface energy per unit fracture surface
area, and A denotes the fracture surface area. It has been found
that for practical ply thicknesses the interface between the lon-
gitudinal and transverse plies remains bonded during the cracking of
the transverse ply and the laminate behaves in a fully elastic
manner, thus Eq. (3.126) becomes

h
AW>AU+2—— 3.127
htb' ( )
Here, y, is the fracture surface energy of the transverse ply in a
direction parallel to the fibers. Since half of the work done by the
applied stress is stored as elastic energy of the specimen, it follows
that

1AW > 2y, —— (3.128)

h+b

When the first crack occurs in the transverse ply at a strain of g,
an additional stress Ao, Eq. (3.118), is thrown onto the outer plies
and the laminate increases in length by da, given by

al2 A
da=2 f b (3.129)
For a/h > 1, Eq. (3.129) becomes
2hE €,
da=—-"7— 3.130
bE,V($) (3.130)

The work done by the applied stress o, at the strain of first
transverse failure is

AW = dao, (3.131)
Hence
2hEcE22£tzu
AW =———F7— 3.132
bEWV(9) (3.132)

The substitution of Eq. (3.132) into Eq. (3.128) yields the minimum
value of the transverse failure strain

_ _ 2bE117t\/(¢)
(€c)min = (£)min = \/ [7@ T b)E, E] (3.133)
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144 Strength of continuous-fiber composites

The theoretical values of the minimum cracking strain have been
calculated from Eq. (3.133) as a function of 4 and are compared
with the experimental results in Fig. 3.28 for glass/epoxy laminates.
Close agreement is observed between theory and experiment in the
region where h <0.25 mm, indicating an energy controlled crack
propagation. For the thicker laminates, however, this theory does
not apply and cracking occurs at a constant strain of 0.5% which is
close to the cracking strain of the unidirectional 90° lamina.

According to Bader er al. (1979), microscopic cracks usually
develop in glass- and carbon-reinforced plastic laminates in regions
where fibers lie normal to the principal tension axis, at strains which
are, at the most, only 30% of the final failure strain. Thus designers
are faced with a dilemma: whether to base the design on strains
below the cracking threshold (typically 0.5% for glass-reinforced
plastics) or the ultimate failure strain, which might be 1.5% or
more. Microcracks which do not appear to be detrimental to the
short-term mechanical properties of laminates may act as nuclei for
further local damage leading to ultimate failure under cyclic loading
and a hostile environment. Experimental evidence suggests that the
formation of transverse cracks and longitudinal splitting can be con-
strained or inhibited by constructing the laminate from thinner
individual plies.

Fig. 3.28. Plot of the theoretical and experimental transverse cracking
strain, (€.)min, as a function of the inner-ply thickness, 2k, for glass-
reinforced sandwich laminates. The outer ply thickness is 0.5 mm. — Eq.
(3.133); --- cracking strain of the unidirectional 90° lamina; @ experiment.
Reprinted with permission from Bader et al. in Mechanical Behaviour of
Materials, Copyright © (1979), Pergamon Press plc.

(&)min (%)

0 1.0 2.0 3.0 4.0 5.0
2h (mm)

Downloaded from Cambridge Books Online by IP 218.1.68.132 on Mon Apr 14 02:56:52 BST 2014.
http://dx.doi.org/10.1017/CB09780511600272.004
Cambridge Books Online © Cambridge University Press, 2014




Statistical tensile strength theories 145

3.4.7.3 Statistical analysis
The deterministic multiple cracking theory of Garrett,
Bailey and Parvizi attempts to account for the measured distribution
of crack spacing in [0°/90°/0°] glass fiber/resin matrix laminates.
Manders et al. (1983) have proposed a statistical model which fits
the experimental data and predicts a dependence of strength on
size. The origins and implications of this variability of strength are
discussed below after descriptions of the experimental observations.
The three-ply [0°/90°/0°] laminates of Manders et al. are composed
of Silenka E-glass fibers in an Epikote epoxy resin. The central 90° ply
is 1.1 mm thick and is sandwiched between two 0.55 mm plies. A
close match between the refractive indices of the fiber and matrix
makes the laminate virtually transparent so that cracking and
microscopic damage in the 90° can be closely observed (Fig. 3.29).

Fig. 3.29. Photographs of specimens at the indicated strain levels (%)
under bright-field ((a) to (1)) and dark-field ((j) to (r)) illumination,
showing multiple transverse cracks in the 90° ply, stress ‘whitening’ and
longitudinal splitting in the 0° plies. (After Manders er al. 1983.)
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146 Strength of continuous-fiber composites

The pattern of cracks is photographed at regular intervals of applied
load using either bright- or dark-field illumination. The dark-field
illumination shows fiber—matrix debonding (‘stress whitening’ which
scatters light) with good contrast, whereas bright-field illumination
gives better definition of the cracks, although in this case the
fiber—matrix debonding appears dark with relatively poor contrast.
The thermal residual tensile strain of the 90° ply is estimated to be
about 0.22% due to cooling from the postcure temperature of 150°
to ambient.

As the specimens are loaded the initial whitening progressively
increases, most noticeably at about 0.34% strain (Fig. 3.29k). A
knee is visible in the stress—strain curve of Fig. 3.30 at about 0.1%
which is attributed to the onset of fiber—matrix debonding. Cracks
appear instantaneously at about 0.4% strain, often in the bands
of more pronounced whitening (Fig. 3.291 and m). It is concluded
from this observation that a crack forms by the joining up of the
fiber—matrix debonds. The beginning of multiple cracking is re-
flected on the stress—strain curve by a second knee. The rate of
crack formation with applied strain decreases throughout the
loading. At higher strains the crack spacing becomes more uniform.
At a strain of about 0.7% stress whitening appears in the lon-
gitudinal 0° ply (Fig. 3.29n-r); this is seen as darkening in Figs.

Fig. 3.30. Low-strain portion of a stress-strain curve. Changes of gradient
are associated with a rapid increase in stress whitening and with the
beginning of multiple cracking. (After Manders et al. 1983.)
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3.29(b)~-(i), and it develops into longitudinal cracks at about 1.8%
strain.

Manders et al. have measured the positions of every crack in a
photograph by traveling microscope and calculated the spacings
between cracks and their cumulative distribution functions for each
load. These distributions illustrate the overall trend towards closer
spacing at higher strains. In their study of the variation of crack
spacing with stress, Manders et al. assume that the 90° ply is an ideal
homogeneous brittle material with an inherent distribution of
strength which is described by a cumulative distribution function
termed S, for failure of a unit volume. It is also expected that the
strength of the 90° ply will be statistically the same throughout its
volume; i.e. the constituent volumes which are substantially larger
than the microstructure should have strengths which are independ-
ent of each other and which are identically distributed.

Thus, the cumulative distribution function of strength S, for a
volume V can be written as

1-8,=(1-8,)" (3.134)

Then the ‘risk of rupture’, Ry, proposed by Weibull (1939a and b) is
given by

In(1—-S,)=VIn(1-S,)=—-R, (3.135)
et In(1-S,)=—¢(0) (3.136)
then the risk of rupture dR for a volume element dV is

dR = —In(1 - §,)dV = ¢(0) dV (3.137)
For a non-uniform state of stress

Ry = f ¢(o)dV (3.138)
and Y

Sy=1—exp(—Ry)=1- exp[ - J;/ ¢(0) dV] (3.139)

Assuming that the stress is uniform in the cross-sectional area, A,
the volume integral may be replaced by an integration over the
length L. Then Eq. (3.135) becomes

In(1—Sy)=—-A¢(c)L (3.140)

The quantity A¢ is found from the gradient when In(1-S;) is
plotted against L.
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Manders et al. adopted a two-parameter Weibull distribution for
the strength of the 90° ply in which

o\F e\h

A =A<—> =A(—> 3.141

p=4(,) =4, (3.141)

The constants o, and €, are the scale parameters in terms of stress

and strain, respectively, and B is the shape parameter. Taking
logarithms of Eq. (3.141) gives

In(A¢)=FIne—Plne,+InA (3.142)

It is seen from Eq. (3.142) that a graph of the gradients obtained
from In(1 — Sy) vs. L and applied strain is linear with gradient g if
the Weibull distribution is valid. This is demonstrated in Fig. 3.31,
which shows two linear regions intersecting at a strain of about
0.4% (corrected for thermal residual strain), or 0.6% of applied
strain. The values of § are about 8.5 and 1.0, respectively, for low

Fig. 3.31. Variation of gradients with 90° ply strain, corrected for residual
thermal strain. Solid and open circles correspond to two nominally
identical specimens. (After Manders et al. 1983.)
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strain and high strain. The two intercepts (InA — S 1n ¢,) for the
two linear segments are 47 and 11.

Finally, Eq. (3.140) can be evaluated after substitution of Eq.
(3.142) using the fitted values of B =8.5 and intercept =47 to
obtain median crack spacings (S, =0.5) as a function of strain. The
results of the theoretical correlations are shown by the solid curve in
Fig. 3.32.

It is suggested by Manders et al. that the deterministic model of
Garrett, Bailey and Parvizi and the probabilistic models are
complementary. At low strains, the crack spacing is large and the
length necessary to build up stress in the 90° ply on either side of a
crack is relatively small. Therefore, most of the region between
cracks is fairly uniformly stressed and the positions of new cracks
are determined by the distribution of flaws in the matrix; a new
crack rarely forms exactly midway between two existing cracks.
Consequently, the distribution of crack spacings covers a wider
range than the factor of two predicted by Garrett, Bailey and
Parvizi. At high strains the opposite is true. The region between
cracks is non-uniformly stressed. Since the highest stress is found
midway between two existing cracks, this is where the new crack
forms as described by the deterministic model. When the crack

Fig. 3.32. Crack spacing vs. strain. Solid curve is based upon the statistical
model predictions. (After Manders et al. 1983.)
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spacing is significantly higher than the ‘unstressed length’ (approxim-
ately equal to the 90° ply thickness) the probabilistic model is
appropriate, and when it is of similar magnitude the deterministic
model is more appropriate.

Further analytical treatments of the statistical strength of cross-
ply laminates can be found in the work of Fukunaga, Peters,
Schulte and Chou (1984) and Peters and Chou (1987).

3.4.7.4 Transverse cracking and Monte-Carlo simulation

The occurrence of transverse cracks in cross-plied laminates
under ascending tension can be regarded as a kind of stochastic
process due to the presence of randomly distributed microflaws. As
discussed in Section 3.4.6.3, a stochastic process can be simulated
by the Monte-Carlo procedure. In this case, it is postulated that
‘intralaminar flaws’ exist randomly in the unidirectional ply, which
lie in the ply thickness direction and align with the fibers, Fig.
3.33(a). When the transverse ply in the cross-plied laminate is
subjected to tension, these flaws effect the observed transverse
cracking. For purpose of simulation, the identity of the intralaminar
flaws is represented by randomly generated ‘effective flaws’. The
effective flaws are not, of course, the real flaws. However, if chosen
properly, they represent an inherent property of the ply system and
effect the essential characteristics of the transverse cracking process
in the simulation model.

Wang and Crossman (1980) first conducted an energy analysis to
predict the onset of a single transverse crack based on the classical
fracture mechanics concept, in conjunction with the effective flaw
postulation. Their analysis was validated by a series of experiments
(see Crossman, Warren, Wang and Law 1980; Crossman and Wang
1982). Later, Wang, Chou and Lei (1984) and Wang (1984, 1987)
incorporated the energy method into a Monte-Carlo procedure to
simulate the stochastic nature of multiple cracking. In this section,
the work of Wang et al. is discussed in some detail.

(A) Ply-elasticity and three-dimensional stress states

At the outset, it is useful to describe briefly the basis of the
energy method. The method is simply derived within the confines of
ply elasticity and the classical theory of fracture mechanics. The
theory of ply elasticity regards each unidirectional ply as a three-
dimensional, elastic, homogeneous and anisotropic solid; and the
laminate is modeled as a three-dimensional layered medium con-
taining flaws. An individual effective flaw is handled as a small
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crack; hence the elastic stress field surrounding the flaw is almost
always three-dimensional. Under certain simplifying assumptions,
however, some three-dimensional fields may be reduced to general-
ized plane-strain fields. Even then, numerical techniques are usually
required for solutions (see Pipes and Pagano 1970; Wang and
Crossman 1977).

(B) Effective flaw distribution

The exact mechanism of transverse cracking is rather
complicated when viewed at the fiber—matrix scale. It is usually
postulated that the crack is caused initially by the coalescence of
material microflaws which lie aligned with the fibers in the
transverse ply. When viewed at the ply scale, however, a transverse

Fig. 3.33. Schematic view of (a) effective intralaminar flaws, and (b)
effective interlaminar flaws. (After Wang 1987.)
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crack represents a separation of the transverse ply along the
fiber—matrix interface (see Fig. 3.29). To facilitate a mathematical
description of the event at the ply level, the concept of effective
flaws is now introduced. Assume that in each unidirectional ply
there exists a characteristic probability density distribution of
effective flaw sizes as shown in Fig. 3.34. The linear size of the flaws
is denoted by 2a and the location by x. Then, the discrete random
variables {aq;,i=1,2,..., M} and {x,i=1,2,..., M} char-
acterize the size and the location distributions of the flaws.
When two or more plies are grouped together, such as in the
[0°/90°,/0°] laminate (with n >1), the flaw size distribution in the
grouped 90° plies is represented by the volumetric rule (see Lei
1986):

Ain= ai(")ZM (3.143)

where i=1,2,..., M and A is a constant related to the distribu-
tional characteristics of {a,}.

For simplicity, the flaw location distribution in the grouped 90°
plies is assumed to be independent of #

x,-,,,=x,- = 1, 2, ey M (3.144)

Fig. 3.34. (a) The size (24;) and location (x;) of an intralaminar flaw. (b)
The probability density distribution of effective intralaminar flaw size in
transverse plies. (After Wang 1987.)
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© Onset of the first transverse crack

The [0°/90°,/0°] laminate shown in Fig. 3.34a is now used to
illustrate the energy method. Consider that the laminate is under
both the applied tensile strain ¢,, and the temperature change AT
(AT is positive for a temperature drop). Let the distribution of the
flaws be characterized by Eqs. (3.143) and (3.144), Fig. 3.34b. With
the size and the location of a particular flaw known, an elastic stress
analysis can be performed; and by treating the flaw as a small crack,
one can also calculate the crack-tip strain-energy release rate
G(a; ,, &, AT) (see Wang 1987). The condition governing the
propagation of the small crack into a full transverse crack is then
given by

G(ai,m Exxs AT) = GIc (3145)

where Gy is the material fracture toughness for mode I matrix crack
propagation.

Now, for the first crack to form, it is assumed that the crack is
caused by the largest of {a,,}, denoted by a,. The critical
laminate strain (g, ). for the onset of the first crack is then
determined from Eq. (3.145) by setting a, ,, = dn,.,. Now, this first
crack is physically detectable.

(D) Shear-lag effect
When the first transverse crack is formed, the local tensile
stress o,, formerly existing in the unbroken 90° plies is now zero. If
the 0°/90° interface bonding is strong, a localized interlaminar shear
stress T,, is then developed in the vicinity of the transverse crack, as
shown in Fig. 3.35. This interlaminar shear stress decays exponen-
tially a small distance away from the transverse crack; while within
the same distance, the tensile stress o,, in the 90° plies regains its
original magnitude. This local stress-transfer zone, or the shear-lag
zone, is proportional to the thickness of the grouped 90° plies, 2nt.
When there is an effective flaw located near a transverse crack,
Fig. 3.36, the flaw may be under the shear-lag zone of the
transverse crack. The degree of the shielding effect depends on the
relative spacing, s/nt. Specifically, if the size of this flaw is 2a and
the associated strain-energy release rate at the flaw tip is
G(a, &, AT, s), then the shear-lag effect on the strain-energy
release rate can be expressed by the factor, R(s), defined by

R(s) = G(a, &, AT, 5)/G(a, &, AT) (3.146)
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where G(a, &,,, AT) is calculated without the influence of shear-
lag. It may be noted that the range of the retention factor R(s) is
between zero and unity over the range of the shear-lag zone, as
shown in Fig. 3.36, for a carbon/epoxy composite.

When a flaw is situated between two consecutive transverse
cracks, then it is under the shear-lag effect from both cracks. The
associated strain-energy release rate, G*, is given by

G*(a, &, AT)Y= R(s)G(a, €, AT)R(sR) (3.147)

where s and si are the distances from the flaw to the left crack and
to the right crack, respectively.

(E) Multiple cracks as a function of loading

After the formation of the first crack from the largest flaw
in {a;,}, subsequent cracks can form from the remaining flaws at
laminate strains appropriately higher than (¢,,).. A search is then

Fig. 3.35. (a) A transverse crack in a cross-ply laminate. (b) Local stress
transfer caused by transverse cracking and the shear-lag zone. (After
Wang 1987.)
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commenced to determine the next flaw that yields the highest
strain-energy release rate G* (with due regard to the shear-lag
effect cast by the existing cracks). The applied laminate strain
corresponding to the next crack, which should be higher than
(£xx)er» is determined by using G* in Eq. (3.145).

Successive searches for the next most energetic flaw follow, and
the entire load sequence of transverse cracks is simulated until it is
no longer energetically possible to produce any more transverse
cracks, or until some other failure modes (e.g. delamination, fiber
break, etc.) set in during the loading process.

(F) Determining the effective flaw distribution

One difficulty in the above simulation procedure lies in the
fact that the effective flaws are hypothetical quantities, and that
they must be chosen properly to yield the essential features of
transverse cracking. Appropriate experiments are required to de-
termine the effective flaw distribution.

In the work of Lei (1986), the effective intralaminar flaw
distribution in the AS4-3501-06 carbon-epoxy unidirectional ply
was determined by testing [0°,/90%); tensile coupons. In the test,
transverse cracks were detected by X-radiography and were re-
corded as a function of the laminate tensile stress. The shaded band

Fig. 3.36. The energy retention factor, R(s), vs. s/nt due to the shear-lag
effect (after Wang 1987.)
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in Fig. 3.37 is formed by plotting data obtained from four
specimens, in terms of crack density (cracks per unit length of
specimen) versus the applied laminate stress. This band, repre-
senting a cumulative formation of the transverse cracks during
loading, resembles a form of the output from a certain stochastic
process.

It is noted that the experimental band possesses a certain position
on the stress scale, a certain characteristic curvature in the
coordinate plane and an asymptotic value on the crack density scale.
These features will now be used to determine the effective flaw
distribution in the [90°%] layer. To do so, a random number
generator is used to form a set of M random values in the interval of
(0,1). These M values are assigned to be {x;}, the locations of M
flaws along the unit length of the [90°] layer. The sizes of the M
flaws {a; ,} are assumed to fit a Weibull cumulative function,

F(a)=1-exp[ — (a/@)”] (3.148)

Fig. 3.37. Cumulative crack density (number of cracks per millimeter
specimen length) vs. applied laminate stress for [0°,/90°]; laminates. The
shaded data band indicates experimental range of four specimens. The
dots represent results of Monte-Carlo simulations. (After Wang 1987.)
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At this point, the parameters M, « and f are assumed known.
And a new set of M random values is again generated in the interval
(0,1). These values are assigned to {F}, corresponding to the
values of F(a) at a =a,;, The flaw size {g;,} is then determined
using Eq. (3.148).

With the assumed values of @, B and M, a simulation of the
transverse cracking process as described earlier can now be per-
formed. An appropriate choice of &, f and M is one that simulates
closely the experimental data band shown in Fig. 3.37.
Generally, « affects primarily the curvature of the band, f shifts the
band along the stress scale, and M determines the asymptotic value
of the band on the crack density scale (see Lei 1986). Figure 3.37
shows also the simulated crack density vs. laminate stress data from
five simulation specimens. Properly selected values of o, B and M
can fit the experimental data band very well.

Once the values «,  and M are chosen, the effective flaw size
distribution in any number of grouped 90° plies can be found using
Eq. (3.143); and then the transverse cracking in the grouped 90°
plies in laminates can be simulated. Figure 3.38 shows the simulated
results for four [0°,/90°], coupons along with the experimental data
band from four test specimens. Figure 3.39 shows a similar
comparison between experiment and simulation for four [0°,/90°,];
coupons. In both Figs. 3.38 and 3.39, the simulated data were based
on the flaw distribution found from the [0°,/90°%], coupons in
conjunction with Eq. (3.143).

As was mentioned in Section 3.4.6.3, the Monte-Carlo method
depends on the nature of the input random variables; and in this
case, the input is the distribution of the assumed effective flaws. In
the examples discussed above, the values of «, f and M determined
by fitting the experiment could not be proved unique. Nevertheless,
the simulation, which is performed in conjunction with fracture
mechanics analysis, provides not only a quantitative description of the
mechanisms but also an assessment of the statistical characteristics
of the transverse cracking process.

3.4.8 Delamination in laminates of multi-directional plies
Delamination is another mode of failure in multi-directional
laminated plates and shells. At the ply level, delamination may be
viewed as a plane crack propagating in the interface between two
adjacent plies, Fig. 3.40. Cracking of this kind is peculiar because
the crack plane is parallel rather than perpendicular to the applied
tension; the driving force stems from the interlaminar stresses. As most

Downloaded from Cambridge Books Online by IP 218.1.68.132 on Mon Apr 14 02:56:52 BST 2014.
http://dx.doi.org/10.1017/CB09780511600272.004
Cambridge Books Online © Cambridge University Press, 2014




158 Strength of continuous-fiber composites

laminates are designed to carry in-plane loading, interlaminar
stresses are generally absent throughout the laminate except near
free edges, cut-outs, large defects and other such locations where
local interactions from mismatched ply properties cause stress
concentrations. Again, these local stress fields are almost always
three-dimensional in character.

The three-dimensional stress analysis model and the energy
method discussed in Section 3.4.7.4 can be applied to describe the
initiation and propagation of delamination. Crossman et al. (1980)
and Wang and Crossman (1980) followed this approach and
investigated free-edge delamination in laminates loaded in uniaxial
tension; Wang, Slomiana and Bucinell (1985) considered free-edge
delamination in compressively loaded laminates; and Wang,
Kishore and Li (1985) examined delamination near interacting
laminate defects. In all cases, experimental correlation was per-
formed to validate the analysis.

Fig. 3.38. Cumulative crack density (number of cracks per millimeter
specimen length) vs. applied laminate stress for [0°,/90°,], laminates. The
shaded data band indicates experimental range of four specimens. The
dots represent results of Monte-Carlo simulations. (After Wang 1987.)
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Fig. 3.39. Cumulative crack density (number of cracks per millimeter
specimen length) vs. applied laminate stress for [0°,/90°,]; laminates. The
shaded data band indicates experimental range of four specimens. The
dots represent results of Monte-Carlo simulations. (After Wang 1987.)
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Fig. 3.40. Inter-ply cracking (edge delamination) in a multi-ply laminate.
(After Wang 1987.)
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For conciseness, the problem of free-edge delamination in
laminates loaded in uniaxial tension is discussed in this section, and
only the logic underlying the formulation of the analytical method is
presented.

3.4.8.1 Free-edge delamination

The free-edge delamination problem has attracted con-
siderable interest for both its scientific challenge and engineering
importance. Early laboratory tests have shown that laminate tensile
strength can be greatly reduced if free-edge delamination occurs
during the course of loading (Pagano and Pipes 1971; Bjeletich,
Crossman and Warren 1979). A similar effect on laminate compres-
sive strength has also been confirmed (Wang, Slomiana and
Bucinell 1985). Further analyses of the delamination mechanisms
have established that the physical behavior of delamination is
profoundly influenced by ply stacking sequence, ply fiber orienta-
tion, individual ply thickness and laminate width to thickness ratio
(Crossman and Wang 1982).

While there have been many predictive models describing de-
lamination growth, the energy method developed by Wang and
Crossman (1980) accounts for all these intrinsic and extrinsic factors
operating in a severely concentrated three-dimensional stress field
near the free edges.

To illustrate this method, the symmetric laminate having straight
edges shown in Fig. 3.40 is considered as an example. Assume that
the laminate under the applied laminate tensile strain ¢, is such
that free-edge delamination is induced in one of its ply interfaces.
The problem is then to determine which interface is most likely to
delaminate and at what load.

For long, symmetrically stacked and finite-width laminates, it may
be assumed that the laminate stress field is independent of the
loading axis, x. Hence, it can be described by ply elasticity
formulation under the generalized plane strain condition (Pipes and
Pagano 1970). The induced free-edge delamination would then
extend uniformly along the length of the laminate and advance from
the free edges toward the center of the laminate piece, as shown in
Fig. 3.40; and the delamination crack can be considered as a
self-similar line crack with a linear size, a, propagating in the
preferred ply interface.

(A) Effective interlaminar flaws and conditions for propagation
To render a prediction for delamination initiation, the
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assumption of effective flaws (Section 3.4.7.4) will again be invoked
here. In this case, random interfacial flaws are assumed to exist in
each ply interface of the laminate as illustrated in Fig. 3.33(b). In
particular, along the laminate free edges there is a dominant
interlaminar edge flaw. It is further assumed that this flaw is located
in a known interface and has a linear size, 4, in the sense depicted
in Fig. 3.40. This flaw is treated as a starter delamination crack,
with its size a, still a random variable. Thus, one can proceed to
calculate the crack-tip strain-energy release rate G(a,, &,,) if the
elastic constants of the unidirectional plies, the ply stacking
sequence, the ply fiber orientations and the ply interface in which a,
is residing are known.

The general character of G(a,, €,,) as a function of a, is shown in
Fig. 3.41 (for a unit of the applied laminate strain ¢,,). G rises
sharply from zero at a, =0, and reaches an asymptotic value, Gy,
as a, becomes greater than a,,. It should be noted that in Fig. 3.41,
G,y can be expressed in terms of €2,. The physical meaning of a,, is
that, at this size, the delamination no longer interacts with the
free-edge boundary. Generally, this boundary effect extends
roughly to a distance of about one-half the thickness of the laminate.
Beyond this distance, the delamination problem merely involves the
extension of cracks between two anisotropic elastic media and the
free-edge effect vanishes.

The calculated strain-energy release rate G may be expressed

Fig. 3.41. Variation of the strain-energy release rate G with delamination
crack size a,, for a given ¢, value. (After Wang 1984). Copyright ASTM,
reprinted with permission.)
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explicitly in terms of the applied laminate strain &,,:
G(a,, &) = Celay)2te2, (3.149)

with C.(a,) an exclusive function of delamination size a,. In the
above, 2¢ is this thickness of the ply.

Effects of thermal residual stresses due to cooling in fabrication
can be readily included in the calculation of G. If the laminate
stress-free temperature is 7y and the ambient temperature is 7, then
the laminate is exposed to a temperature drop of AT =T, — T. The
calculated strain-energy release rate G can be expressed in explicit
terms of £, and AT as

G(ao, &0y AT) = [V(Co)ew + V(Cr) ATP2t (3.150)

where Cr is also an exclusive function of a,,.
From fracture mechanics, the condition governing the onset of
delamination is given by:

G(a,, &, AT) =G, (3.151)

where G, is the fracture toughness of the laminate under
delamination.

Equation (3.151) provides a prediction for the critical laminate
strain &, at the onset of delamination when the delaminating
interface, the values of a, and G, are given. These values, however,
are not readily available; a further analysis of the problem is still
needed.

(B) The effective edge flaw size

Given the functional character of G(a,, ¢,,) shown in Fig.
3.41, a one-to-one relationship between the critical ¢,, and a, can
be obtained from Eq. (3.151) assuming the delaminating interface
and the associated G. are known. If a, is represented by some
probability density function, f(a,), then there is a corresponding
range of ¢, for which Eq. (3.151) is satisfied (see Fig. 3.42). The
limiting value of ¢, as a, becomes equal to or greater than a,, is
determined by setting G,,,/G.=1. This serves as the lower-bound
of the critical strain, &,,. Since a,, is about one-half the thickness of
the laminate, it is small compared to the observable delamination
_size in relatively thin laminates. In effect, the lower-bound value for
&, is usually regarded as the critical strain at the onset of
delamination.
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(©) The critical delaminating ply interface

Given a specific laminate, the most probable delaminating
interface cannot be presupposed from experience. It requires an
analysis in which the values of G,,,/G. on all possible interfaces
can be compared. According to Eq. (3.151), delamination shall
occur on the interface which yields the largest value of G,,/G. (for
the same ¢, ).

While G,,, at each interface can be calculated readily, the G,
associated with each interface may differ from one interface to
another. To elucidate this fact, consider a specific example: the
[£25°/90°], laminate made of the AS4-3501-06 carbon—epoxy
system. Based on the generalized plane strain model mentioned
earlier, the entire laminate stress field is calculated first. Of interest
are the interlaminar stresses near the free edges before delamina-
tion. Figure 3.43 shows near the free edge, the through thickness
distribution of the interlaminar normal stress o,,. Note that o, is
tensile and unbounded approaching the —25°/90° interface; and is
tensile but bounded on the laminate mid-plane (90°/90° interface).
Figure 3.44 shows the interlaminar shear stress t., near the free
edge. Here, an unbounded t,, exists on both the 25°/—25° and the
—25°/90° interfaces. These results suggest only qualitatively that
free edge delamination may occur either in the 90°/90° interface as
a mode I crack, or in the —25°/90° interface as a mixed-mode
(mode I and mode III) crack.

Further energy analysis provides (Gy),s, for mode I cracks in the

Fig. 3.42. Relation between applied strain ¢,, and flaw size a,. Flaw size
distribution f(a,,) is shown schematically. (After Wang 1987.)
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mid-plane, and (G;+ Gu)asy for the mixed-mode crack in the
—25°/9(r interface. In the latter, the mixed-mode ratio for G/ Gy is
also obtained.

Fracture toughness for mode I delamination may actually be
different from that for mixed-mode delamination. Indeed, interfa-
cial fracture of various mixed modes often manifest themselves

Fig. 3.43. The distribution of normal stress o,, through the laminate
thickness. (After Wang 1987.)
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Fig. 3.44. The distribution of shear stress t,, through the laminate
thickness. (After Wang 1987.)
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through differences in the fractured surface morphology, which in
turn implies differences in the G, value measured on the ply
scale (Bradley and Cohen 1985). Laboratory tests using carbon—
epoxy specimens have shown that G, for mode 1 delamination is
generally lower than G, for mixed-mode delamination. And, the
latter often increases with the amount of the shearing mode. The
cause for variable G, in mixed-mode delamination is complex;
several recent studies cited local crack-tip matrix yielding and fiber
bridging across the crack surfaces possibly due to shear deformation
(see Russell and Street 1985). To use Eq. (3.151) for mixed-mode
delamination, G. must be first obtained as a function of mixed-
mode ratio.

For the example problem, as it turned out, mid-plane delamina-
tion was predicted because it yielded a larger G,,,/G, than the
—25°/90° interface. The prediction agreed with the experiment (see
Wang, Slomiana and Bucinell 1985). It should be noted that besides
Eq. (3.151) many other fracture criteria for mixed-mode cracks
have been suggested in the literature.

3.4.8.2 General delamination problems
The free-edge delamination problem discussed above serves
to illustrate the basic rationale in the formulation of the energy
method. The assumption of effective interfacial flaws allows a
fracture analysis from which the onset of delamination could be
determined. The assumption may seem awkward at first glance;
but it is no more inconvenient than to assume the existence of a
stress-based interlaminar strength that is used to determine de-
lamination onset in the highly concentrated free-edge stress fields.
It should also be remarked that delamination problems encoun-
tered in practice are very complicated. Frequently, the delamination
plane has a two-dimensional contour. To describe the growth of a
contoured delamination may require a criterion which is direction-
ally dependent, due to different material characteristics along the
contoured crack front. In addition, delamination growth in practical
laminates is almost always accompanied and/or preceded by other
types of damages such as transverse cracks. Interactions amongst
the various local cracks with delamination can be both deterministic
and probabilistic in nature. The energy method discussed in this
section appears to have sufficient generality for application to the
more complex delamination problems. Generic extension of the
method could conceivably be developed which can provide quan-
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titiative, if approximate, predictions for a wide class of delamination
problems.

3.49 Enhancement of composite strength through fiber

prestressing

The scattering in fiber strength has been attributed to the
existence of surface and bulk defects (See Section 3.4.2). Owing to
the statistical strength distribution of fibers, it is necessary to design
fiber composite structural components based upon a high level of
survivability. The enhancement of composite strength can be
achieved by eliminating some of the weak spots or defects in the
fibers. One way of attaining this goal is to stress the fibers and to
induce fracture at the defect sites before they are incorporated into
the matrix.

Mills and Dauksys (1973) were the first to adopt the concept of
fiber prestressing. In their work, carbon fiber prepregs are pre-
stressed at temperatures as low as —18°C. The prestress of prepregs
by bending induces non-uniform tensile stress which reaches maxi-
mum values at the outer surfaces with fibers near the center of the
prepreg stressed the least.

Manders and Chou (1983b) provide a theoretical analysis of
enhancement of strength in composites reinforced with previously
stressed fibers. The basis of their reasoning is as follows. The failure
of a fiber in an aligned composite causes a stress wave to propagate
outwards placing a dynamic overstress on the neighboring fibers
(see Section 3.3.2). The resulting dynamic stress concentration is
generally greater than the static stress concentration which prevails
after the system has settled, and increases the probability that
adjacent fibers also fail, weakening the composite. This analysis
shows how weak fibers may be prefractured to eliminate the
dynamic overstress, thereby increasing the strength of the compos-
ite. Manders and Chou discussed this strength enhancement with
reference to the level of prestress, fiber variability, stress concentra-
tions, and size of the composite.

Chi and Chou (1983) have measured in a systematic fashion the
effect of fiber prestressing on the mean strength of composites as
well as the dispersion of composite strength. Thornel-300 carbon
fibers are used as the reinforcement materials for composites. A
loose bundle contains 1000 fibers with a fiber diameter of 7 um. In
order to obtain consistent results in composite strength enhance-
ment, it is essential that all the defect sites of the fibers with
strength less than a certain value should be broken when they are
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subject to prestressing at a given level. It would be most ideal if a
uniform tensile stress could be applied uniformly to each small
segment of a fiber with length comparable to the ineffective length
of the fiber. However, this is impractical in real experiments, where
the gauge-length for fiber testing is much larger than the ineffective
length. Thus, a fiber already broken at its weakest site can no
longer be stressed under tensile loading.

The prestressing of carbon fibers is achieved by pulling the bundie
through a pair of circular bars of the same diameter at a tensile
force of 30g. The relationship among the maximum prestress in
fibers, o,, the bar diameter, D, and the fiber diameter, d, is

0,= Ed/D (3.152)

where E; denotes the fiber axial Young’s modulus. The stress in the
fiber caused by the applied tensile force is much smaller than o, and
hence it is neglected. Composite specimens are fabricated by
impregnating prestressed and non-prestressed fiber bundles in

Fig. 3.45. Negative strength enhancement in composites reinforced with
prestressed loose carbon fiber bundle. (After Chi and Chou 1983.)
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epoxy resin. The strength data obtained for prestressed fiber
composites with gauge-length of 76.2 mm are shown in Figs. 3.45
and 3.46, using Weibull probability paper. Here, o, denotes
composite strength, P(o.) is the cumulative strength distribution
and In{—In[1 - P(o.)]} indicates the failure probability. The D
values for specimens presented in Figs. 3.45 and 3.46 are 0.711 mm
and 1.168 mm, respectively; the resulting o, values are 2.21 GPa
and 1.35GPa. The mean strength of the composites with non-
prestressed fiber bundles is 3.01 GPa. The strength data of Fig. 3.45
show negative enhancement while significant strength enhancement
can be seen in Fig. 3.46. It is noted that the strength data of
prestressed composites can be fitted approximately by straight lines.
Chi and Chou (1983) have concluded that the composite strength
for high survivability (low failure probability) is low. These low
strength tails can be eliminated by stressing the loose fiber bundles.
Enhancement in strength as high as 25% for survivability of
99.9% has been achieved.

Fig. 3.46. Positive strength enhancement in composites reinforced with
prestressed loose carbon fiber bundle. (After Chi and Chou 1983.)
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