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7 Three-dimensional textile structural
composites

7.1 Introduction
Three-dimensional textile preforms are fully integrated

continuous-fiber assemblies with multi-axial in-plane and out-of-
plane fiber orientations (Chou, McCullough and Pipes 1986; Ko
1989a). Composites reinforced with three-dimensional preforms
exhibit several distinct advantages which are not realized in
traditional laminates. First, because of the out-of-plane orientation
of some fibers, three-dimensional preforms provide enhanced
stiffness and strength in the thickness direction. Second, the fully
integrated nature of fiber arrangement in three-dimensional pre-
forms eliminates the inter-laminar surfaces characteristic of lamin-
ated composites. The superior damage tolerance of three-
dimensional textile composites based upon polymer, metal and
ceramic matrices has been demonstrated in impact and fracture
resistance. Third, the technology of textile preforming provides the
unique opportunity of near-net-shape design and manufacturing of
composite components and, hence, minimizes the need for cutting
and joining the parts. The potential of reducing manufacturing costs
for special applications is high. The overall challenges and oppor-
tunities in three-dimensional textile structural composites are very
fascinating.

Three-dimensional textile preforms can be categorized according
to their manufacturing techniques. These include braiding, weaving,
knitting and stitching, as shown in Fig. 7.1.

There are three basic braiding techniques for forming three-
dimensional preforms, namely 2-step, 4-step and solid braidings. In
the case of 2-step braiding, the axial yarns are stationary and the
braider yarns move among the axials. Thus, the axial yarns are
responsible for the high stiffness and strength in the longitudinal
direction and relatively low Poisson contraction. A high degree of
flexibility in manufacturing can be achieved in 2-step braiding by
varying the material and geometric parameters of the axial and
braider yarns.

Flexibility in the manufacturing of 4-step braids is somewhat
less than that of 2-step braids. All yarn carriers change their
positions in the braiding process and do not maintain a straight
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Introduction 375

configuration. As a result, the preforms exhibit relatively high
Poisson contractions. In order to enhance the longitudinal stiffness
and strength, straight laid-in yarns are often employed.

It can be demonstrated that 4-step and 2-step braidings are
merely variations of a general braiding scheme. By inserting some
axial yarns and placing braiding yarns at proper locations on the
braiding machine, a 4-step braiding process can be converted to a
2-step braiding process.

Besides the more recently developed 2-step and 4-step braidings,
which involve the sequential and discrete movement of yarn
carriers, the maypole type braiding technique is also capable of
producing three-dimensional solid braids. Both square and circular
shapes are feasible. The technology of solid braiding has been well
developed, and commercial machines are available with the maxi-
mum number of carriers currently limited to 24. The application of
solid braids to composite materials is limited to simple shapes.

In woven preforms, there are two major categories. The angle-
interlock multi-layer weaving technique requires interlacing the
yarns in three dimensions. The warp yarn in this three-dimensional
construction penetrates several weft layers in the thickness direc-
tion, and therefore the preform structure is highly integrated. In
orthogonal wovens, the yarns assume three mutually perpendicular
orientations in either a Cartesian coordinate system or a cylindrical
coordinate system. The yarns in the Cartesian weave are not wavy,
and as a result matrix rich regions often appear in the composites.

The process of stitching is mainly based upon an existing
technology for converting two-dimensional preforms to three-
dimensional ones. Because of the simplicity of the stitching opera-
tion, it is feasible to join composite parts continuously in a
cost-effective manner. Both lock stitch and chain stitch have been

Fig. 7.1. Three-dimensional textile preforms.
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376 Three-dimensional textile structural composites

utilized. Major concerns of the stitching operation include depth of
penetration of the stitching yarns and, hence, the thickness of
two-dimensional preforms that can be stitch-bonded, as well as the
degree of sacrifice of the in-plane properties due to the damage to
in-plane yarns.

The technique of knitting is particularly desirable for producing
preforms with complex shapes because the variability of the
geometric forms is almost unlimited. The large extensibility and
conformability of the preforms enable them to be designed and
manufactured for reinforcing composites subject to complex loading
conditions. The versatility of knitted preforms offers a new dimen-
sion in textile structural composites technology.

In this chapter the discussion of knitting is focussed on the
conversion of two-dimensional structures (for example, unidirec-
tional laminae) to three-dimensional ones through knit-loop-
bonding. In this process, the two-dimensional layers or structures
are formed at the same time when they are bonded. The technology
of multi-directional multi-layer warp knit, for instance, is attractive
because it enables the bonding of the unidirectional lamina by
knitting yarns whereas the yarns in an individual lamina remain
straight. In other words, unlike the stitch-bond of woven fabrics,
the yarns in the two-dimensional structure are not wavy and hence
do not sacrifice their stiffness and strength in the principal material
directions. The manufacturing process is highly integrated, and the
properties in the through-the-thickness direction depend upon the
density and material of the knitting yarn. The potential of knitting
in producing cost-effective thick laminates is attractive.

7.2 Processing of textile preforms
This section outlines the processing techniques of braiding,

weaving, stitching and knitting for making three-dimensional textile
preforms, with particular emphasis on braiding and weaving.
According to Du, Popper and Chou (1991), braiding can form
shapes either by overbraiding mandrels in conventional circular
machines or by using new braiding patterns to form solid shapes
directly. Weaving can be done by using either conventional looms
with multi-layer constructions or entirely new equipment. Knitting
can be used to interconnect fiber arrays that have been arranged by
other techniques. Stitching has been used to interconnect layers of
two-dimensional fabrics for achieving desired thickness and inter-
laminar strength.
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Processing of textile preforms 377

7.2.1 Braiding
Three-dimensional braids have been produced on tradi-

tional horn-gear machines. At the present time, horn-gear based
braiding machines use a small number of yarn carriers (<24) and
cannot form complex shapes. Their applicability is therefore lim-
ited. A number of new machines have been developed to create
complex shapes. These newer braiding processes include 2-step
(Popper and McConnell 1988), AYPEX (Weller 1985), interlock
twiner (Cole 1988), and row and column (Florentine 1982), which
is also referred as Omniweave, Magnaweave, or 4-step in the
literature.

A schematic view of a set-up for the three-dimensional braiding
process is shown in Fig. 7.2. Axial yarns, if present in a particular
braid, are fed directly into the structure from packages located
below the track plate. Braiding yarns are fed from bobbins mounted
on carriers that move on the track plate. The pattern of motion of
the braiders and the presence/absence of axial yarns determine the
type of braids, as well as the microstructure. The processes of 2-step
and 4-step braiding are introduced below.

7.2.1.1 2-step braiding
The preform structure of a 2-step braid includes a large

number of parallel (axial) yarns aligned for efficient reinforcement
and a smaller number of braiding yarns (braiders) that interconnect

Fig. 7.2. A set-up for three-dimensional braiding. (After Du, Popper and
Chou 1991.)
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378 Three-dimensional textile structural composites

the axial yarns and form the fabric shape. The axial array can be
arranged in essentially any shape, including I-beams, box beams,
circular tubes, etc., whereas the braiders are arranged around the
perimeter of the axial array as shown in Fig. 7.3. In the braiding
process, the braiders move through the axial array in two sequential
steps. In the first, the braiders all move in one diagonal line but in
alternating directions (Fig. 7.3a). In the second, they move along
the other diagonal line (Fig. 7.3b).

Although the machine action consists of only two steps, each
braider moves through a larger portion of the structure. This can be
seen by tracing the path of a single braider subjected to the
repeated 2-step machine action. The paths followed by all braiders
will completely intercinch the axial yarns and lock them in the
desired shape.

Compared with other three-dimensional braiding processes, 2-
step braiding has several distinct advantages. A relatively simple
sequence of braider motions can form a wide range of shapes.
During each step of the process, all the braiders are simultaneously
outside of the axial array, and thus it is possible to add various
inserts to the structure or even rearrange the axial array geometry
to change the preform cross-section. Furthermore, this structure can
be made with a high level of fiber packing and a large number of
axially oriented fibers as needed in many applications (Du, Popper
and Chou 1989, 1991).

The 2-step process has motivated a number of researchers. Li and
El Shiekh (1988) modeled the microgeometry using idealized

Fig. 7.3. 2-Step braiding pattern showing the relative motion of yarns.
(After Du, Popper and Chou 1991.)
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Processing of textile preforms 379

circular yarns. Ko, Soebroto and Lei (1988) and Whitney (1988)
have evaluated the mechanical properties of consolidated 2-step
composites.

7.2.1.2 4-step braiding
The 4-step braiding process, so named by Li, Kang and El

Shiekh (1988), requires four distinct Cartesian motions of the yarns
in the fabric cross-sectional plane in each machine cycle. Following
G. W. Du (private communication, 1990), the 4-step braiding
process is depicted in Fig. 7.4 for a 1 x 1 set-up in which the yarn
carriers are arranged in a rectangular plane with eight columns
(m = 8) and four layers (n = 4). Here, the yarn carriers are
indicated by the circles, and can move along the y and z direction
tracks. The process is termed 1 x 1 if the distance traveled by a
carrier in each machine step is equal to the inter-yarn spacing in the
y ox z direction. Other braiding patterns (i.e. 1 x 2 , etc.) are
feasible, which require machine set-ups different from that of Fig.
7.4. It is noted that the carriers occupy alternating positions on the
perimeter of the set-up. The total number of carriers in the m x n
rectangular slab for the l x l braiding pattern is (Li, Kang and El
Shiekh 1988):

N = mn+m+n = (m + l)(n + 1) - 1 (7.1)

Thus, for the 8 x 4 array, there are 44 carriers.
Consider the starting carrier positions as shown in Fig. 7.4(a). In

step-1 of the machine cycle, all the rows of carriers move in the
y direction; adjacent rows move in opposite directions as indicated
by the arrows. In step-2 of the machine cycle (Fig. 7.4b), all the
columns of carriers move vertically; adjacent columns move in
opposite directions as indicated by the arrows. Note that in step-1
and step-2 movements, the carriers on the perimeter of the set-up
remain stationary. The displacement of an individual carrier can be
identified (for example, carriers marked A and B in Fig. 7.4a). Step
3 (Fig. 7.4c) is similar to step-1 except that the directions of
movement of the same row are opposite to each other. The same
comparison can be made between step-2 and step-4 (Fig. 7.4d).
These four steps comprise a machine cycle, because at the end of the
cycle (Fig. 7.4e) the carrier arrangement is the same as that at the
beginning of the machine cycle, although the individual carriers
have changed their locations.

It is interesting to note that the 44 carriers in the slab of Fig.
7.5(a) can be divided into four groups. These are denoted as groups
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380 Three-dimensional textile structural composites

Fig. 7.4. Yarn carrier configurations and movements in a 4-step braiding
set-up. (After G. W. Du, private communication, 1990.)
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Processing of textile preforms 381

Fig. 7.5. The four yarn carrier groups in an 8 x 4 slab. Each group defines
a unique yarn path, (a) Yarn carrier location; (b) carrier path for group 1;
(c) carrier path for group 2; (d) carrier path for group 3; and (e) carrier
path for group 4. (After G. W. Du, private communication, 1990.)
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382 Three-dimensional textile structural composites

1, 2, 3 and 4. Within each group the carriers are labeled in
alphabetical order from a to k. The characteristic of each group is
that all the carriers within the group share the same path of motion.
For example, carrier la in group 1, moves along the path of
\a^> l&-> lc-> lrf-> le-> 1/-* lg-» l/i-> li-> l/-> lfc-» la (Fig.
7.5b). All the other carriers in this group follow the same path. The
paths of groups 2, 3 and 4 are indicated in Figs. 7.5(c), (d) and (e),
respectively. The path for group 1 carriers in Fig. 7.5(b) is not
marked directly on the carriers to avoid overlapping and confusion;
the same is true for Fig. 7.5(c). The movement of a carrier, for
instance, from position la to lb, or lb to lc, etc. requires one
machine cycle which comprises the steps as shown in Fig. 7.4. The
complete cycle of movement of a carrier, i.e. la—>lfe— >- • -—»la
(returning to the original position) is termed a repeat.

Li, Kang and El Shiekh (1988) have shown that the number of
yarn groups in an m x n slab is given by

G = mn/LCM(m, n) (7.2)

where LCM(m, n) denotes the least common multiple of m and n.
Furthermore, each group has the same number of carriers, which is
N/G. The number of machine cycles required for all the carriers to
return to their original positions is thus also equal to N/G. It should
be noted that the above discussions are valid only for the l x l
braiding pattern.

7.2.1.3. Solid braiding
The term solid braiding is used here to describe the

category of three-dimensional preforms produced by the continuous
intertwining of yarns in the maypole fashion. Figure 7.6(a) shows
the horn-gear set-up for square braiding. The longitudinal and
cross-sectional views of some square braids are given in Fig. 7.6(b).
Solid braids with circular cross-sections are also available. However,
it is not feasible to produce three-dimensional preforms with
complex shapes using solid braiding.

7.2.2 Weaving
Advances in textile manufacturing technology are rapidly

expanding the number, type and complexity of preforms which offer
reinforcements in the through-the-thickness direction. The tradi-
tional weaving technique for producing two-dimensional fabrics has
been modified to achieve a much higher degree of integration in
fiber geometry in the thickness direction. Angle-interlock weaving
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Processing of textile preforms 383

and orthogonal weaving are the two distinct techniques by which
the fibers are incorporated at an angle and parallel to the thickness
direction, respectively.

7.2.2.1 Angle-interlock multi-layer weaving
Angle-interlock multi-layer woven fabrics for thick section

composite applications can be produced on either a dobby loom or
a Jacquard loom. The cam-system is limited to fabricating double-
or triple-layer cloth. Yarns or fibers in angle-interlock multi-layer
wovens are interlaced in a manner similar to two-dimensional
woven structures, except that warp fibers may penetrate more than

Fig. 7.6. (a) Horngear set-up for square braiding. (After Ko 1989a.) (b)
Examples of square braids. (After Steeger 1989.)

(a)
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384 Three-dimensional textile structural composites

one layer of weft yarns. The warp direction again coincides with the
machine direction, just as in two-dimensional wovens, whereas the
filling yarn insertion takes place in the transverse direction. Many
other preform configurations are possible, such as those with laid-in
non-crimp yarns (to reduce Poisson's effect), or a combination of
different fiber materials within the same preform (Whitney and
Chou 1988, 1989).

Many variations in the basic geometry of angle-interlock preforms
are feasible, depending on the number of layers interlaced, the
pattern of repeat, and the presence of laid-in yarns. Whitney (1988)
has discussed the fiber architectures in which all warp yarns
interlace the same number of weft yarns. In order to demonstrate
the geometric variability of angle-interlock fabrics, a highly ideal-
ized example is given in the following. Discussions are based on the
fabric structure of the l x l pattern, i.e. the warp yarn orientation
can be represented by one inter-yarn spacing in the horizontal
direction and one inter-yarn spacing in the vertical direction, as
shown in Fig. 7.7.

Following Byun, Leach, Stroud and Chou (1990a), the key
geometric parameters for identifying the preform microstructure
include the number of weft yarns in the thickness direction (nf), as

Fig. 7.7. Three-dimensional angle-interlock woven preforms as identified
by [nf, nft]: (a) [5, 2], (b) [5, 4], and (c) [6, 6]. (After Byun et al. 1990.)

Warp yarn
«fi . / , Weft yarn

(a) (b)

(c)

Cambridge Books Online © Cambridge University Press, 2010
Downloaded from Cambridge Books Online by IP 218.1.68.132 on Mon Apr 14 03:40:14 BST 2014.

http://dx.doi.org/10.1017/CBO9780511600272.008
Cambridge Books Online © Cambridge University Press, 2014



Processing of textile preforms 385

well as the number of weft yarns interlocked by a warp yarn in the
thickness direction (nit) and in the length direction (nn). Parametric
relations are obtained based on the preform structures which have
the following restrictions: (1) The fabric structure is symmetric in
the thickness direction with respect to the mid-plane. (2) The weft
yarns have the same degree of interlocking by warp yarns. (3) The
number of weft yarns in the thickness direction is the same along the
warp direction. Employing the notation of [nu nft\, the woven
preforms of Figs. 7.7(a), (b) and (c) can be identified as [5, 2], [5, 4]
and [6,6].

The following relationship needs to be satisfied to ensure the
interlocking of weft yarns by warp yarns for the l x l pattern:

nft = nn (7.3)

With the above condition, a maximum number of warp yarns can be
achieved in the preform. For a [nfy nn] weave, the total number of
warp yarns (nw) is 2nf. However, not every warp yarn interlocks
with nft weft yarns. This can be seen from Figs. 7.7(a) and (b)
where the warp yarns at the top and bottom faces only interlace
with the weft yarns in the surface layers. The degree of reinforce-
ment in the thickness direction is related to the number of warp
yarns (nwi) that interlock with the nn weft yarns. When nf = nft, all
the warp yarns interlock with all nft weft yarns, i.e. nwi = 2nft. When

ft, nwi is given as follows:

wi = 2knit for k < nf/nft < k + 1 (7.4)

nwi = (2k - l)ntt for nf/nft = k (k>2) (7.5)

where k is an integer. For the fabrics of Figs. 7.7(a), (b) and (c), the
nwi values are, respectively, 8, 8 and 12.

Thus, the number of warp yarns (/?wn) which do not interlace n{t

weft yarns is

nwn = 2nf-nwi (7.6)

In Figs. 7.7(a) and (b), nwn = 2 and in these cases each warp yarn at
the surface only interlace with one layer of weft yarns. However,
the nwn warp yarns can also interlace with the multi-layer of weft
yarns. Consider a fabric preform with the [5,3] weave pattern and
nwn = 4. Figures 7.8(a) and (b) show the two possible configurations
of the warp yarns near the free surfaces.

When the condition of Eq. (7.3) is not satisfied, the resulting
fabric is not highly integrated and there are non-interlaced yarns. In
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386 Three-dimensional textile structural composites

the following, the case of three-dimensional weaves with non-
interlaced weft yarns is discussed. An additional geometric para-
meter, nws, is identified; it denotes the number of weft rows shifted
by adjacent warp planes. Using the notation of [n{, nfu nws], the
fabrics of Figs. 7.9(a), (b) and (c) can be identified as [6,2,1],
[5,3,0] and [5,3,1], respectively.

Finally, the total number of warp yarns can be obtained as

nf = 2ntt

for nft = 2

for nft > 3
(7.7)

Thus, the number of warp yarns interlaced through the nft weft
yarns is

, - 2 / iw snwi = n (7.8)

It should be noted that the parametric relations for a three-
dimensional weave in which every weft yarn is interlocked with
warp yarns can also be obtained in the case that Eq. (7.3) is not
satisfied.

Fig. 7.8. Two variations of the [5,3] weave with «wn = 4. the two warp
yarns near the surface interlace with (a) one weft yarn layer or (b) two
weft yarn layers. (After Byun et al. 1990.)

(a) (b)

Fig. 7.9. Three-dimensional angle-interlock woven preforms as identified
by [nf,nft,nws]: (a) [6, 1, 1], (b) [5,3,0], and (c) [5,3, 1]. (After Byun et
al 1990.)

"fl

(a) (b) (c)
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Processing of textile preforms 387

7.2.2.2 Orthogonal weaving
Figure 7.10 shows an orthogonal woven fabric where the

yarns are placed in three mutually orthogonal directions. Because of
the nature of fiber placement, matrix rich regions are created in
composites reinforced with orthogonal woven preforms. Since the
thickness direction yarns are incorporated into the preform in the
weaving process, they do not cause damage to the in-plane fibers.
This is different from the case of stitching bonding of two-
dimensional fabrics. Orthogonal woven fabrics can be fabricated by
maintaining one stationary axis either by predeposition of the yarn
system or a space rod which is subsequently retracted and replaced
by axial yarns. The two sets of yarns in the plane perpendicular to
the axial yarns are then inserted in an alternating manner (Ko
1989a). Both Cartesian and cylindrical woven fabrics are available.

7.2.3 Stitching
The process of stitching for making three-dimensional

preforms is relatively simple. The basic needs include a sewing
machine, needle and stitching thread. The processing variables are
stitch density (stitch/unit length), the size of the stitch thread, and types
of stitch. Both lock stitch and chain stitch are available (Fig. 7.11).
A lock stitch becomes unbalanced if the tension in either the bobbin
thread or the needle thread is higher than that in the other thread.
The necessary clearance between the feed and dog as well as the
length of the needle stroke in the case of lock stitching, for instance, are

Fig. 7.10. An orthogonal woven fabric. (After Chou, McCullough and
Pipes 1986.)
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388 Three-dimensional textile structural composites

Fig. 7.11. (a) Lock stitch and (b) chain stitch seams. (After Ogo 1987.)

Balanced lock stitch Unbalanced lock stitch

1 1 1 = 1 1 3Bobbin
thread

(a)

Chain stitch

(b)

Needle
thread

Bobbin
thread

Fig. 7.12. Schematic of the lock stitch process. (After Ogo 1987.)
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Processing windows for 2-step braids 389

determined by the thickness of the two-dimensional preform to be
stitch-bonded. Figure 7.12 shows the schematic of a lock-stitching
process for bonding fabric layers. The needle thread needs to be
abrasion resistant and can be bent to small curvature in the needle
hole.

7.2.4 Knitting
Three-dimensional knitted fabrics can be produced by

either a weft knitting or warp knitting process. For additional
strengthening in the 0° and 90° directions, laid-in yarns can be
placed inside the knitting loops. Figure 7.13 shows a weft knit fabric
with laid-in weft and warp yarns.

The most promising knitted preform which provides a high
degree of structural integration in the thickness direction is perhaps
the multi-axial warp knit. It consists of warp (0°), weft (90°) and bias
(±6) yarns held together by a chain of tricot stitch through the
thickness of the assembly (Fig. 7.14). Different kinds of multi-axial
warp knits have been developed. The main attraction of the knitted
construction is that it possesses the advantage of unidirectional
laminates while also providing enhanced stiffness and strength in the
thickness direction (Ko, Pastore, Yang and Chou 1986).

7.3 Processing windows for 2-step braids
The purpose of the following discussions is to demonstrate

that knowledge of the microgeometry and structure of textile
preforms provides the basis for understanding flexibility in
processing. The work of Du, Popper and Chou (1991) in 2-step
braiding is recapitulated as an example of such an approach. The

Fig. 7.13. Weft knit with laid-in weft and warp yarns. (After Ko 1989a.)
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390 Three-dimensional textile structural composites

key inputs of the analysis are (1) the size, type and shape of
braiders and axial yarns, (2) the braid pattern (size of axial yarn
array), and (3) the advance rate during braiding. The key outputs
are braid dimensions, fiber orientation, inter-yarn void content,
fiber volume fraction, and geometric limits imposed by yarns
jamming against each other. The modeling work is for preforms of
rectangular cross-section. However, the methodology regarding
yarn cross-sections, unit cells, and yarn jamming can be used to
analyze more complex shapes, as well as other types of three-
dimensional fabrics.

The major assumptions are: (1) Multi-filament yarns are used for
both braiders and axial yarns. These yarns are composed of a large
number of fibers, and their cross-sections can be readily deformed
to prismatic shapes. (2) Fiber cross-section is round. (3) Fibers are
parallel along the yarn length, i.e. zero twist. (4) Yarn tension is
high enough to ensure a straight yarn path, except for the braider
yarns, which are bent around the braid surface. (5) Filaments are
inextensible.

7.3.1 Packing of fibers and yarn cross-sections
The fiber volume fraction of a three-dimensional preform

depends on the level that fibers pack against one another in a yarn
and the level to which yarns pack against one another in the
structure. Two methods for estimating inter-fiber packing are
described in this section. Section 7.3.3 discusses yarn packing in
preforms.

The geometry of inter-fiber packing in yarns has been studied
primarily for textile applications (see Hearle, Grosberg and Backer

Fig. 7.14. Mult-axial warp knit fabric. (After Chou, McCullough and
Pipes 1986.)
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Processing windows for 2-step braids 391

1969). Two basic idealized packing forms can be identified: open
packing (Fig. 7.15a) and close packing (Fig. 7.15b), in which
the fibers are arranged in concentric and hexagonal patterns,
respectively.

In open-packed yarns the packing fraction, defined as the
fiber-to-yarn area ratio, has been computed as a function of the
number of fibers. If the outer ring is completely filled and the fibers
are circular, the yarn packing fraction is

(7.9)
° (2Nr-l)2

where NT is the number of rings, and its relationship to the number
of fibers, N{, is given by

For a large number of fibers, KO approaches 0.75.
In close-packed yarns, for any number of circular fibers if the

outer layer is completely filled, the yarn packing fraction equals the

Fig. 7.15. Fiber packing in yarns, (a) Open packing in a circular yarn, (b)
Close packing in a hexagonal yarn, (c) Open packing in a diamond-shaped
yarn, (d) Close packing in a diamond-shaped yarn. (After Du, Popper and
Chou 1991.)
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392 Three-dimensional textile structural composites

area ratio of a circle to the hexagon in which the circle is inscribed:

K =
K

:2\/3
= 0.91 (7.11)

The yarn packing fractions predicted by the two models assume
circular and hexagonal yarn cross-sections. However, as shown in
Figs. 7.15(c) and (d), they apply equally well to other shapes if the
number of fibers is sufficiently large. Factors that affect both the
packing of fibers in a yarn and the packing of yarns in a preform
include yarn tension, inter-yarn contact, yarn twist, fiber cross-
section, fiber straightness, manufacturing method, and preform
geometry.

In addition to the level of yarn packing fraction, the yarn
cross-sectional shape plays a significant role in determining how
many fibers can be packed into a fabric. In the textile literature, the
yarns are often assumed to have a circular cross-section (see Peirce
1937; Brunnschweiler 1954). However, it has been shown that the
cross-section of even highly twisted yarns deviates significantly from
a circular shape and the yarn cross-section varies considerably for
different types of preforms. Many attempts have been made to
develop more realistic geometric models for yarns in fabrics by
assuming elliptical and race-track cross-sections (Hearle, Grosberg
and Backer 1969).

Fig. 7.16. Cross-sections of axial yarns in a rectangular braided preform
before consolidation. (After Du, Popper and Chou 1991.)
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Processing windows for 2-step braids 393

In the following, a model for the yarn cross-section in 2-step
braids is developed. It is observed from composite specimens that
the yarns in the preform have cross-sections as shown in Fig. 7.16.
After matrix addition and consolidation in a mold, the fabric is
observed to be flattened, as shown in Fig. 7.17. The axial yarns
have different cross-sections depending on their locations in the
preform. Central yarns, which form the bulk of the structure, are
diamond-shaped. Axial yarns on the side and corners of the
preform are pentagonal. Braiding yarns, which occupy the space in
between the axial yarns, are rectangular.

The aspect ratio of axial yarns, /a , is related to the inclination
angle of the braiders (Figs. 7.16 and 7.18) and is given by

/a = ^ = tan0 (7.12)

where /a is influenced by braider yarn tension or external lateral
compression applied at the forming point during the process. It can
also be changed by compacting the entire braided preform during
matrix consolidation. These aspect ratios affect the shape of the
final braid as well as the braider yarn orientation angle (a) and fiber
volume fraction (Vf). With unit axial aspect ratio (6 = JI/4), the
cross-section of the center axial yarns becomes square. In this
special case, the fiber volume fraction is at a maximum.

The axial yarn dimensions can be calculated from the cross-
section of the consolidated braid in Fig. 7.17. These relations are

Fig. 7.17. Cross-sections of axial yarns in a rectangular braided composite.
(After Du, Popper and Chou 1991.)
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394 Three-dimensional textile structural composites

given in terms of yarn area and inclination angle. The yarn area is in
turn evaluated from its linear density and the fiber packing fraction
and fiber density:

pa*-a sin(20)

0.5Aa

, sin 6
(7.13)

Sn=
0.5Aa

aKa cos 6

The parameters Aa and p a are the linear density and the fiber
density of axial yarns, respectively. The packing fraction, tca, is
assumed to be constant for all axial yarns.

Fig. 7.18. Path of one braiding yarn in the fabric: (a) braid pattern ; (b)
top view; and (c) front view. (After Du, Popper and Chou 1991.)
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Processing windows for 2-step braids 395

For, only one braider yarn is shown in Fig. 7.18 for two steps of
the braiding process. These yarns are assumed to be rectangular
with aspect ratio fh. The aspect ratio is usually much less than unity
because of compression by the axial yarns. The dimension of a
braider yarn can also be calculated from its packing fraction (jcb),
yarn linear density (Ab), and fiber density (pb):

<714>

7.3.2 Unit cell of the preform
In order to understand the microscopic arrangements of

yarns, it is necessary to identify the 'unit cell' of the fabric preform.
By definition, a unit cell constitutes the smallest repeating entity in
the structure. The complexity of three-dimensional preform struc-
tures often makes the identification of unit cells a difficult task.

The unit cell of the 2-step braid is composed of four sub-cells,
labelled A, B, C and D in Fig. 7.19. The repeat of these four
sub-cells will generate the whole braided structure. Because of
geometric similarity, any one of these four can be utilized to derive
the basic structural characteristics. The length of the unit cell in Fig.
7.19 is the length of braid formed in one machine step. This length
is actually half of the fabric pitch length (P), as shown in Figs.
7.18-7.20. Five layers are shown in Fig. 7.19. The number of
columns has been assumed to be very large so that the rather
complicated edge configuration of the preform can be avoided.
Figure 7.20 shows the difference between finite and infinite columns
and their effects on braider paths. Figure 7.20(a) shows the yarn
path on the surface of a specimen seven columns wide. Note that
the trace of the braider yarns lies on an inclined line. In an infinitely
wide specimen (Fig. 7.20b) the trace of the braider yarns is
perpendicular to the braiding direction.

The width and thickness of the braided preform can be computed
from Figs 7.17 and 7.18 in terms of m (number of axial columns)
and n (number of axial layers) as well as yarn geometric and
material parameters:

w = (m- l)(25a cos 0 + J j ^ ) + 2(5m + /bSb) (7.15)

t = {n- l)(sa sin 6 + ^ ^ ) + 2(Sn +/b5b) (7.16)
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396 Three-dimensional textile structural composites

From Eqs. (7.15) and (7.16), the aspect ratio of the braided
preform can be obtained as

f = z. (7-17)

The braider yarn orientation can be determined by computing the
projected length (i.e. segment P1P2 in Fig. 7.18b) of one braider
over one half of the pitch length. Note that the angle between a
braider and the axial yarns (a) appears to vary on the front view in
Fig. 7.18(c). This apparent variation occurs because a segment of a
braider yarn in the interior of the preform has a different projected
angle compared to a segment on the preform surface. The projected

Fig. 7.19. Unit cell model of a 2-step braided preform showing four
sub-cells. Each sub-cell includes a braider yarn and a number of axial
yarns. (After Du, Popper and Chou 1991.)
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length Lp of the segment PXP2 in the axial direction is

Lp = t esc 6 + 2Sn(l - esc 6) + 2Sa cos 6

The braider yarn angle is then given by

The total length of one braider yarn in a unit cell is

sin a 2 cos a

(7.18)

(7.19)

(7.20)

Then the volume of the braider yarn (vh) and the volume of axial
yarns (va) in a unit cell and the total volume of a unit cell (vt) can
be determined:

vb = LbfbSl

P
va = - Sa[(n - l)5a sin(20) + 4Sn cos 0]

(7.21)

(7.22)

-fbSb[(n - l)5a + Lp] (7.23)

The fiber volume fraction Vf (total fiber volume/unit cell volume),
the braider fiber volume fraction Vb (braider fiber volume/unit cell
volume), and the volume fraction of the void Vy (volume of

Fig. 7.20. Effect of fabric width on braid geometry: (a) finite-width
preform; (b) infinite-width preform. (After Du, Popper and Chou 1991.)
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398 Three-dimensional textile structural composites

inter-yarn voids/unit cell volume), can then be obtained:

(7.24)

(7.25)

V=l- (7.26)

7.3.3 Criterion for yarn jamming
The allowable microstructural states of a fabric preform are

limited by the condition at which the yarns jam against one another.
Knowledge of yarn jamming is essential in identifying the
processing windows of fabric preforms. Although jamming is
discussed frequently in the textile literature, it is often neglected in
the analysis of composites.

In 2-step braids, the braider angle becomes very small as the
braider yarns become parallel to the axial yarns. However, as the
pitch length is reduced, the braider angle increases, and a limiting
state is reached in which the yarns jam against one another. If all
other parameters remain constant, the pitch length cannot be
reduced further. The state of jamming is illustrated in Fig. 7.21
where the yarn-to-yarn contact is shown. This rather complex

Fig. 7.21. Surface geometry of braid at jamming. (After Du, Popper and
Chou 1991.)
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Processing windows for 2-step braids

limiting state, however, can be described simply by

1 sin a

399

(7.27)

where Pj denotes the pitch length at jamming. Equation (7.27) is
applicable to specimens of finite width.

Due to the edge effect of finite-width structures, the orientation
angle, a, of all braiders are not equal. In a braiding step, the
braiders on the side surface of the preform will have shorter length
than those in the interior. However, since all yarns advance at the
same pitch length, the 'edge' braiders will lie at a somewhat lower
angle than those passing through the center of the structure.

Du, Popper and Chou (1991) have conducted experiments to
measure the geometric and material parameters of 2-step braids. A
comparison of measured and predicted values of two samples are
given in Table 7.1. Braid I is rectangular in cross-section, consisting
of 12-column by five-layer axial yarns (Kevlar-49 with a linear

Table 7.1 Material and geometric parameters of 2-step braided
preforms. After Du, Popper and Chou (1991)

Parameters

K (g/m)
K (g/m)
m
n
P(mm)

/ a

/ b

K a

Kb

t (mm)
w (mm)

«oVf (%)

Braid I

Measured Computed

9.57
2.39

12
5

17.8
0.78
0.12
0.70
0.70
9.0

63.0
65.0
56.0

8.9
62.9
65.9
56.8

Braid II

Measured Computed

3.33
0.25
7
5
4.98
1.32
0.05
0.78
0.78
7.0

15.0
75.0
73.0

7.3
14.6
76.7
73.6

Braid I: bare fiber preform.
Braid II: infiltrated with matrix.
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400 Three-dimensional textile structural composites

density of 9.57 x 10"3 kg/m) and 15 braider yarns (Kevlar-49 with a
linear density of 2.39 x 10~3kg/m). Braid II is also rectangular in
cross-section, with seven-column by five-layer axial arrays and ten
braiders. In Braid II, all axial yarns are made of Kevlar-29 with a
linear density of 3.33 x 10~3 kg/m: Kevlar-49 is used for the braider
yarns which are much finer than the axial yarns with a linear density
of 2.53 X 10 4 kg/m. Braid II was impregnated with an epoxy by
resin transfer molding.

Based upon the relations between process variables and fabric
geometry, it has been shown that the range of allowable fabric
structures is dictated by effects such as yarn jamming and fiber
packing. Figure 7.22 demonstrates the processing window for 2-step
braids when the braider yarn orientation angle and pitch length,
total fiber volume fraction, and yarn linear densities are considered.
The processing window is bounded by two limiting states: yarn
jamming and zero braider angle. Preform constructions correspond-
ing to the curved 'jamming' line are at their tightest possible state,
and constructions corresponding to the a = 0 curve have infinite
pitch length. As the dimensionless pitch length P/Sa increases, the

Fig. 7.22. Fiber volume fraction vs. braider-to-axial linear density ratio.
The allowable process window is shown (*:a = 0.8, ieb = 0.8, 6 = 38°,
fh = 0.2, n = 5). (After Du, Popper and Chou 1991.)
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Processing windows for 2-step braids 401

fiber volume fraction decreases. Increasing the ratio of braider-to-
axial yarn linear density causes the maximum allowable fiber
volume fraction to go through a minimum. At fixed levels of pitch
length, an increase in Ab/Aa first reduces the fiber volume fraction
because the inclusion of larger braider yarns creates more void
space. However, at large Ab/Aa ratios, a higher fiber volume fraction
is realized. At a ratio of about 200, the fabric reaches a limiting
state in which the braider yarn angle approaches zero due to the
infinite pitch length. The fiber packing in the yarns, taken as 0.8,
limits the maximum fiber volume fraction in the fabric.

A 'microstructure map' of 2-step braids, which gives the relation-
ship among fiber volume fraction, pitch length, braider yarn
orientation angle and braider yarn volume fraction, is shown in Fig.
7.23. The minimum allowable fiber volume fraction increases with a
reduction in braider yarn pitch length. For a fixed pitch length and
above the minimum allowable fiber volume fraction, both Vf and a
increase with an increase in braider fiber volume fraction. This map
demonstrates that a wide range of orientation angle and fiber
volume fraction can be achieved by varying the pitch length and the
amount of braider yarns relative to the axials. Maps of microstruc-
tures provide guidance in designing preforms for a specific
application.

Fig. 7.23. Property volume fraction (Vf) vs. fiber orientation angle (a) for
various pitch length and volume fraction of braider yarns (ica = 0.8,
jfb = 0.8, 9 = 38°, /b = 0.2, n = 5). (After Du, Popper and Chou 1991.)
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402 Three-dimensional textile structural composites

7.4 Yarn packing in 4-step braids
Knowledge of yarn packing in three-dimensional structures

is essential for determining the unit cell configuration of a fiber
preform as well as the condition for yarn jamming. In a 4-step
braiding process, the braiding yarn carriers move in a two-
dimensional grid with two sets of perpendicular tracks (Fig. 7.4).
For the sake of simplicity, the following discussions are restricted to
4-step braids without laid-in yarns.

7.4.1 Unit cell of the preform
When the specimen cross-sectional area is large, the domi-

nant unit cell configuration can be represented by a parallelepiped
(Fig. 7.24) with the size of PaxPbxPc. The braiding axis is
assumed to coincide with the x axis. Obviously, for a 1 x 1 braid,
Pb = Pc. A unit cell contains four yarns situated along the diagonals.
It is understood that in Fig. 7.24 the yarns are idealized as
geometric lines and, thus, they intersect at the center of the unit
cell.

The details of the yarn arrangement in a 1 x 1 braid can be
visualized by taking the 123'4' cross-section of the unit cell. This is

Fig. 7.24. Unit cell of a 4-step braided preform. (After Yang, Ma and
Chou 1986).
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Yarn packing in A-step braids 403

shown in Fig. 7.25. Referring to Fig. 7.24, the yarns along the
diagonals 13' and 4'2 are contained in the cross-section, and are at
an angle a to the braiding axis. Yarns of type 4'2 are shown in
Fig. 7.25 by the inclined sections. Yarns of types 1'3 and 2'4
show elliptical sections. Yarns of type 13' are also parallel to the
cross-section and they are blocked by the other three types of yarns
in the cross-sectional view of Fig. 7.25.

It should be noted that Fig. 7.25 is valid for a < 58°, which is the
critical angle for yarn jamming (Section 7.4.2). The pitch length, P,
which is the preform take-up length for one machine cycle (four
steps), is defined in Fig. 7.25, along with the braider yarn
orientation angle a.

7.4.2 Criterion for yarn jamming
The condition for yarn jamming in a 4-step braided preform

can be understood from the yarn geometric arrangements. The
following assumptions are made in the derivation of the yarn
jamming criterion: (1) the braiding yarns are circular in cross-
section, with diameter d, (2) the yarns are in a stable configuration,
namely, each yarn in Fig. 7.24 is in contact with the other three,
and (3) the braid is of the 1 x 1 type.

Fig. 7.25. Fiber configuration in the cross-section 4'3'21 of Fig. 7.24.
(After G. W. Du, private communication, 1990.)
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404 Three-dimensional textile structural composites

Figure 7.25 shows the yarn configuration of the cross-sectional
plane 123'4' before yarn jamming. The pitch length and fiber
diameter are denoted by P and d, respectively. From the relation of
tangency between an ellipsoid (yarn 1'3) and a line (yarn 24'), the
distance OA can be obtained:

OA = - V(l + sec2 a) (7.28)

Another geometric relation for this yarn configuration is

P tan a = Ad = d{\ + sec a + V(l + sec2 a)) (7.29)

which yields the braider yarn angle and aspect pitch length (P/d):

or = 41.4°; P/d = 4.54 (7.30)

As compaction of preform continues, the yarn configuration
finally reaches a limiting state where both the yarns 2'4 and 1'3
touch the yarn 24'. Figure 7.26 shows the yarn configuration at
jamming. The geometric relation for this case is:

P t<in a = 4d = d(sec a + V(l + sec2 a)) (7.31)

Thus, the criteria for yarn jamming are

a = 57.8°; P/d = 2.52 (7.32)

and the conditions a>57.8° and P/d < 2.5 are physically not
feasible. It is interesting to note that jamming in 4-step braids
occurs at a unique yarn orientation angle, which is independent of
the yarn material and processing parameters.

Fig. 7.26. Yarn configuration at jamming (After G. W. Du, private
communication, 1990.)
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The consequence of such a characteristic of 4-step braiding is the
absence of a processing window for providing the flexibility of
manufacturing. However, such a window can be created by using
two or more types of braiding yarns and inserting laid-in yarns, thus
expanding the ranges of fiber geometric and material parameters.

7.5 Analysis of thermoelastic behavior of composites
The analysis of thermoelastic behavior of three-dimensional

fabric composites can be made based upon the knowledge of the
microstructure of the preforms. For the preforms reviewed in
Section 7.2, their unit cell structures are sufficiently well
established.

For braided composites, the unit cells of both 2-step and 4-step
braids are well known, whereas the unit cells for solid braids
depend on the specific preform designs. In the case of weaving, the
unit cell of an angle-interlock woven may occupy the entire preform
thickness. This is true for the preforms shown in Fig. 7.7 where
there are no repeating units in the thickness direction. The unit cell
structures of orthogonal wovens and stitch-bonded preforms are
similar. Because the thickness direction yarns in both cases are
normal to the free surfaces, they can be considered as limiting cases
of the angle-interlock configuration.

The knitting yarns in a multi-axial wrap knit are severely curved.
Because the knitting yarns usually have fine dimension and low
stiffness, their contributions to the composite thermoelastic pro-
perties are perhaps negligible. When high stiffness knitting yarns
are used, their contributions to the thickness direction properties
need to be taken into account. Because of the low volume fraction
of knitting yarns, relative to that of the in-plane fibers, it is not
unreasonable to neglect the in-plane behavior of the knitting yarns
in the composite.

Unlike the case of unidirectional laminates, the thermoelastic
behavior of three-dimensional composites is complicated by the
fiber configuration in the thickness direction. In the following, three
different analytical approaches are outlined. Among them, the
energy approach considers the elastic strain energies due to the
interaction of yarns at an interlock. The fiber inclination model is
based upon the lamination analogy, whereas the macro-cell ap-
proach utilizes stiffness tensor transformation and an averaging
technique.
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406 Three-dimensional textile structural composites

Besides these three modeling techniques, a micro-cell approach
has been adopted by Whitney (1988) and Whitney and Chou (1989)
for analyzing angle-interlock woven composites. This technique is
also based upon the lamination analogy. In view of the large
geometric variability of angle-interlock wovens, their elastic be-
havior perhaps can be more efficiently analyzed by the macro-cell
approach.

7.5.1 Elastic strain-energy approach
An elastic strain-energy approach has been adopted by Ma,

Yang and Chou (1986) to derive the elastic stiffness of three-
dimensional textile structural composites. Although their analysis is
for a 4-step braided composite, the methodology has general
applicability.

In the general case, the unit cell structure of Fig. 7.24 can be
considered as composed of three sets of mutually orthogonal yarns
as well as yarns assuming the diagonal positions. The unit cell is
centered on an 'interlock' of these yarns. The analytical model then
then focuses on the interaction of the yarns at the center of the unit cell.

The following assumptions are made in the analysis: (1) The
baseline and diagonal yarns are regarded as 'composite rods' after
being impregnated with matrix materials. The stiffness and strength
of the composite are mainly derived from the three-dimensional
composite rod structure. (2) The composite rods are homogeneous
and linearly elastic, and have uniform circular cross-sections that do
not flatten under external loading. (3) The composite rods possess
tensile, compressive, and bending rigidities. (4) A jamming
force exists at the region of contact between two interlocking
composite rods. The rods can be treated as either compressible or
incompressible under the action of jamming forces.

Because of the complexity of the yarn configurations at their
interlocking positions, the model does not simulate each individual
'lock' separately. The interactions among the yarns are dealt with in
approximate fashion by projecting the yarn positions onto a set of
mutually orthogonal planes. Within each two-dimensional projec-
tion, the interactions between two yarns are taken into account.

Consider, for instance, the interaction of two baseline composite
rods (Fig. 7.27). Three types of elastic strain energies in the
composite rods are taken into account. These include the strain
energies due to bending, extension and compression over the region
of fiber contact. Based upon the knowledge of the elastic strain
energy of the baseline and diagonal composite rods, the elastic
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Analysis of thermoelastic behavior of composites 407

properties of the composite can be obtained through the application
of an energy principle.

7.5.2 Fiber inclination model
The fiber inclination model developed by Yang, Ma and

Chou (1986) can be understood also by considering the yarn
arrangements in a 4-step braided preform. Consider again the unit
cell structure based upon the yarns oriented along the four body
diagonals in a 4-step braided fabric (Fig. 7.24). The three-
dimensional composite can thus be regarded as an assemblage of
unit cells as shown in Fig. 7.28(a), where the emphasis is placed on
the yarn orientation rather than the interaction among yarns. Here
only one set of diagonal yarns in the composite is shown for clarity.
The zig-zagging yarn segments are not confined to one layer only.
Each yarn in the composite extends through the whole length of the
material and changes its orientation at the interlocks. Furthermore,
straight laid-in yarns along the edges of the unit cell can be added in
the present formulation.

The methodology for the analysis of the fiber inclination model
is based upon a modification of the classical laminated plate theory.
The following geometrical characteristics are assumed by Yang, Ma
and Chou (1986): (1) All the yarn segments parallel to a diagonal
direction in the layer ABCD (Fig. 7.28a), for instance, are treated
as forming an inclined lamina (Fig. 7.28b) after matrix impregna-
tion. (2) Fibers within a lamina are considered to be straight and

Fig. 7.27. Yarn interaction at the point of interlock.
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408 Three-dimensional textile structural composites

unidirectional. Fiber interlocking and bending due to the change of
orientation from one diagonal direction to another at the corners
of the unit cell are not taken into account. (3) A unit cell in Fig.
7.24(a) can be further considered as an assemblage of four inclined
unidirectional laminae. The intersections among the four inclined
laminae are ignored. Each unidirectional lamina is characterized by
a unique fiber orientation and all the laminae have the same
thickness. Furthermore, the fiber volume fraction of each lamina is
assumed to be the same as that of the composite.

The laminate approximation of the unit cell structure is shown
schematically in Fig. 7.29. The geometrical configuration and
stacking sequence of the inclined laminae composed of yarns in four
diagonal directions in the unit cell are given below. First, the
?i — £i — Vi and %2~ b— ?l2 coordinate systems are assigned to

Fig. 7.28. (a) The idealized zig-zagging yarn arrangement in the braided
preform, (b) Schematic view of the inclined laminae representing the
diagonal yarns of the 'fiber inclination model'. (After Yang, Ma and Chou
1986.)
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Analysis of thermoelastic behavior of composites 409

lamina 4'2'24 and lamina 1'3'31, respectively, as shown in Fig.
7.24(b). Referring to Figs. 7.24 and 7.29, the equations describing
the height of each lower surface of laminae 1 and 3 and the height
of each upper surface of laminae 2 and 4 measured from the base
plane (z = 0) of the unit cell are:

lamina 1 (yarn 4'2): //i(£i) = -4— (0 < ^t < L)

(7.33)

lamina 2 (yarn 1'3): H2(%2) = -j1 ( 0 < | 2 < L)

(7.34)

lamina 3 (yarn 42'): //3(§0 = Pc( l - j -

(7.35)

lamina 4 (yarn 13'): //4(§2) = pjl -—) (0< lj2< L)

(7.36)

where L = V(Pa + Pb)-
The yarn orientation angles a, /3 and y in Fig. 7.24 are denned as

a = tan

(7.37)

With the above geometrical relations and assumptions, the
three-dimensional braided composite of Fig. 7.24 can be modeled
based upon the classical lamination theory. The approach is
essentially an extension of the fiber crimp model of Section 6.5.
Thus, the constitutive equations of a laminated plate follow Eq.
(6.1). The stiffness constants, Qijy are given by Eq. (6.10).

Since the undirectional yarns in each of the four laminae of Fig.
7.29 are at an angle, y, with respect to the ^-direction (see Fig.
7.24b), the effective elastic properties of lamina 1 in the §-£ plane,
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410 Three-dimensional textile structural composites

for example, are given by Eq. (6.74) as

cos4 y

12 £.22

cos2y (7.38)

= 21 c o s 2 y + sin2 y

The transverse isotropy in the plane perpendicular to the yarn
direction has been taken into account. Then the stiffness matrix,
Qij(y), similar to Eq. (6.25) can be written in terms of E^, E^,
Ggj, v&, and Dy = l — v2-j=(y)£5?(y)/£c?.

For lamina 1, the yarn segments in an inclined lamina also form
an off-axis angle, /?, with respect to the braiding direction (x axis).
Thus, the effective laminar elastic properties in the x direction are

Fig. 7.29. Four unidirectional laminae representing the inclined yarns.
(After Yang, Ma and Chou 1986.)
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Analysis of thermoelastic behavior of composites 411

further reduced, and the stiffness constants of the laminae become

GV
P, r) = On Ql2 Qj6

Q26 G « d
where

cos4

x cos2 £ sin2 /3 + — sin4 /3

-
G26 =

2G c(y)]

C O S3 ^ s i n

3cos ft sinJ

(7.39)

(7.40)

x cos2 p sin2 p + G§c(y)[cos4 p + sin4 P]

Knowing the effective laminae properties with respect to the
x—y coordinate system, the local plate stiffness matrices Atj{x),
Bij(x) and Dtj{x) can be calculated from the lamination theory:

[(A0(x), Bijix), Dv(x)] = 2 fj G,y(i8, y)[l, z, z2] dz

(7.41)
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412 Three-dimensional textile structural composites

The integration is performed through the thickness of the unit cell
of Fig. 7.29. By neglecting the contribution of the pure matrix
region, the extensional stiffness matrix Atj{x)y for instance, can be
evaluated as follows:

Aqix) = Q$\p, y) dz + f(/i, y) dz
J«l(ll) JH2(.£2)-h'

Qf(p,
JH3(5I)

«4(?2)

Qf(fi,Y)Az
(7.42)

where the superscripts (1), (2), (3) and (4) correspond to the
laminae in Fig. 7.29. Also, h' = h/cos y, where h is the thickness of
a lamina. It should be noted that the signs of the angles /3 and y of
the laminae 2, 3 and 4 depend on the fiber orientations. In order to
avoid over-estimation of the composite properties, the portions of
the laminae which lie outside of the unit cell (such as the region
above 0a'32 in Fig. 7.29) have been excluded from the integration
in Eq. (7.41). The lamina thickness is so determined that the total
cross-sectional area of laminae (1), (2), (3) and (4) in the x-z
plane is equal to that of the unit cell.

The inversion of the local stiffness matrices Atj{x), Btj{x) and
Dij(x) of Eq. (7.41) yields the local laminate compliance matrices
Afa), B'ij(x) and D[j{x). The average in-plane compliances of the
unit cell under a uniformly applied in-plane stress resultant are

(7.43)

Then, the averaged stiffness matrices Aijy Bijy and D/; for the unit
cell can be obtained by the inversion of A\j, 5,y, and D[

j. Finally,
effective laminate engineering constants Exx, Eyyy vxy and Gxy can
be expressed as functions of the stiffness constants Atj and the unit
cell thickness.

Figures 7.30 and 7.31 show the comparisons of theoretical
calculations for the axial Young's modulus and Poisson's ratio with
experimental data for three-dimensional braided carbon/epoxy
composites (Yang, Ma and Chou 1986). The basic material
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Analysis of thermoelastic behavior of composites 413

properties are Ef= 234A GPa and vf = 0.22 for Celion 12K carbon
fiber, and £m = 3.4 GPa and vm = 0.34 for epoxy matrix. The
average yarn angle in the braided preform is denoted by a.

As the braiding angle becomes smaller, the performance of the
inclined laminae approaches that of the unidirectional laminae. The
interchange of the stacking sequence of the four inclined laminae in
the unit cell does not affect the effective in-plane properties. The

Fig. 7.30. Predicted axial elastic moduli of three-dimensional braided
composites as functions of fiber volume fraction, V{, and fiber orientation
angle, a. • , A, • and X: experimental data. (After Yang, Ma and Chou,
1986.)
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Fig. 7.31. Predicted Poisson's ratios of three-dimensional braided compos-
ites as functions of fiber volume fraction, Vf, and fiber orientation angle, a.
# , • , and X: experimental data. (After Yang, Ma and Chou, 1986.)
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414 Three-dimensional textile structural composites

Poisson's ratio of three-dimensional composites based upon 4-step
braiding is considerably higher than that of a unidirectional com-
posite with the same fiber volume fraction. The Poisson's contrac-
tion can be minimized by introducing laid-in yarns in the axial
direction.

7.5.3 Macro-cell approach
The approach of the macro-cell model is different from that

of the unit cell. Instead of considering the smallest repeating unit in
a preform, the macro-cell is established for the entire cross-section
of the specimen. It takes into account the arrangements of the yarns
around the edges of the specimen. However, the most distinct
advantage of this approach perhaps is its capability of dealing with
specimens of 'thick' cross-sections, since the elastic properties are
derived from tensor transformations. In order to apply such a
model, it is necessary to have detailed knowledge of the fiber
geometric configurations.

In the following, the macro-cell model (Byun, Du and Chou
1991) is applied to the analysis of elastic properties of 2-step braided
fabric composites. The treatment is excerpted from Byun, Whitney,
Du and Chou (1991).

7.5.3.1 Geometric relations
Consider the 2-step braided composite depicted in Fig.

7.17. The variation in the braider yarn orientation along its length is
taken into account by introducing the average yarn orientation
angle. The average is identified by considering one braider yarn
which travels through the length of the macro-cell. For an m-
column by n-layer braided preform, a braider yarn travels m + (n +
l)/2 pitch lengths before it repeats its spatial position. Thus, for the
preform of Fig. 7.17 the repeating length is ten pitch lengths. Figure
7.32 shows the schematic view of the braider yarn location and

Fig. 7.32. Schematic view of a braider yarn extending through ten pitch
lengths. The numbers indicate the braider yarn carrier locations in Fig.
7.3. (After Byun et al. 1991.)
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Analysis of thermoelastic behavior of composites 415

orientation; the numbers indicate the positions of braider yarn
carriers in Fig. 7.3.

In order to identify the reinforcing direction of braider yarns, the
yarn segments generated due to the carrier movement from position
1 to 7' in Fig. 7.32 are projected onto the y-z (Fig. 7.33) and z-x
(Fig. 7.34) planes. Thus, all the yarn segments are identified
according to their directions with respect to the x—y—z coordinate.
Lhh Lby and Lhz denote the total projected length of braider
yarns which are inclined to the x, y and z axes, parallel to the x-y
plane, and parallel to the z-x plane, respectively. Then, from Fig.
7.17 and the parameters defined in Eqs. (7.12)-(7.14),

sbfb
sin26)

Lby = 2[(n - l)Sm + 2(m - l)5a cos 0]

(7.44)

(7.45)

Lb2 = 2[2mSn + {n- l)5a sin 6] (7.46)

where m and n denote the column and layer numbers, respectively.

Fig. 7.33 Projections of the yarn segment 11 '77' of Fig. 7.32 onto the y-z
plane. (After Byun et al. 1991.)

Fig. 7.34. Projections of the yarn segment 11'77' of Fig. 7.32 onto the x—z
plane. (After Byun et al 1991.)
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416 Three-dimensional textile structural composites

The average angle between the braider yarn and the braid axis is
given by

whereLt( = Lbi + Lby + Lbz) is the projected length of the braider
yarn onto the y-z plane. Based upon the average braider yarn
orientation angle, the total length of braider yarn (Lb) is approxi-
mated as

Lh = -^z (7.48)
sin a

The lengths of braider yarns inclined to the xyz axes and parallel to
the x-y and z-x planes can be obtained in a similar manner. Thus
the volumes of braider yarns of these three orientations are given by

Vhi = S2
bfh(Ljsin a)

Vhy = S2bfb(Lby/sina) (7.49)

Vbz = S2
bfh(Lbz/sin a)

The axial yarns have three different cross-sections as shown in Fig.
7.17. The total volume of the axial yarns is

Va = h[(m - l)(n - l)Sl sin(20) + 4(m - l)SaSn cos 6

+ 2(n - l)SaSm sin 6 + 4SmSn] (7.50)

Using Eqs. (7.15) and (7.16), the total macro-cell volume is

Vt = wt (7.51)

The fiber volume fractions of braider yarns of different orientations
can therefore be obtained from Eqs. (7.49)-(7.51); they are used
for evaluating the volume average of the stiffness constants.

7.5.3.2 Elastic constants
For the purpose of predicting the composite elastic pro-

perties, the yarns are treated as unidirectional composite rods. The
direction cosines between the reference coordinate system, xyzy and
the 123 coordinate system associated with the unidirectional com-
posite can be established by setting the 2 axis perpendicular to the z
axis (Fig. 7.35):

llx = cos /3 cos y l2x — —sin (3 l3x = —cos /3 sin y

lly = sin /3 cos y l2y = cos/? l3y = —sin jS sin y (7.52)

llz = sin y l2z — 0 l3z = cos y
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Analysis of thermoelastic behavior of composites All

Considering the average angle of braider yarn a instead of a in Fig.

7.35, the angles ft and y can be expressed in terms of a and the

aspect ratio of axial yarns, /a, as

V ( 1 + / 2 ) J (7.53)

-tf sin0 "I _t[ /a sin a ]
7 " t a n LV(cot2a + cos20)J"tan l_V(l+/2cos2*)J

(7.54)

Using these direction cosines, the compliance matrix (S) of the
unidirectional composite (OO' in Fig. 7.35) referring to the 123
coordinate system can be transformed to that referring to the xyz
coordinate system:

S'ijmn = ipil s0", / , W, Hy p, q,V,S = 1, 2 , 3)

(7.55)

From symmetry conditions and using contracted notation, Eq.
(7.55) is reduced to a simple form:

'n = qmiqnjSmn (h j , m,n = 1-6) (7.56)

where qti denotes the element belonging to the /th row and yth
column of the transformation matrix (see Lekhnitskii 1963). For a
unidirectional composite with transverse isotropy, the compliance
matrix has five independent constants.

In order to determine the effective stiffness matrix of the
composite, the compliance matrix is inverted and then averaged

Fig. 7.35. Orientation of the braider yarn (OO'). (After Byun et al. 1991.)
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418 Three-dimensional textile structural composites

over the macro-cell volume. The average should include all four
yarn orientations in Fig. 7.33, namely the axial yarn (13 = 0, y = 0),
braider yarn (BA) parallel to the x~y plane (/? = dr, y = 0), braider
yarn (BC) parallel to the z-x plane (/3 = 0, y = a) and inclined
braider yarn (CD) in the interior of the macro-cell (p =
f(&>fa)> Y = g(&>fa))- Thus, the effective stiffness of the composite
Q is

q=2(Q)»^ (7.57)

where (C,7)n and Vn/Vt are, respectively, the stiffness matrix and
volume fraction of the unidirectional composite for an individual
reinforcing direction. Finally, the stiffness matrix of the composite is
inverted to obtain the compliance matrix S». The engineering elastic
constants are then obtained from the compliance matrix. For
example, Exx = 1/Sn, Eyy = I/S22 anc* vxy = —S\2IS\2, etc.

Experimental measurements of the elastic properties of 2-step
braided composites have been reported by Byun et al. (1991). The
composites are the same as for Braid II given in Table 7.1.
Experimental observations of specimen cross-section confirm the
yarn shapes assumed in the analysis. Based upon the input data of
Table 7.1, the macro-cell model predicts the following composite
geometric parameters: thickness (t) = 7.1 mm, width (w) = 15.3 mm,
average braider angle (a) = 11.1° and fiber volume fraction (Vf) =
73.2%. Table 7.2 shows the comparison of elastic properties based
upon the macro-cell predictions and experiments.

Table 7.2. Comparisons of composite elastic properties from the
macro-cell model predictions and experiments. After Byun et al.
(1991).

Elastic constants

Exx (GPa)
Eyy (GPa)
Ezz (GPa)
Gxy (Gpa)
Gyz (GPa)
Gxz (GPa)
Vxy

vxz

Macro-cell model

48.4
7.83
7.95
2.58
2.68
2.59
0.33
0.35
0.36

Experiment

52.4(5*)

1.45 (4*)

0.53 (3*)

: Number of tests.
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Structure-performance maps of composites 419

The analytical predictions deviate significantly from experimental
results for the in-plane shear modulus and Poisson's ratio. Some
reasons of uncertainty in the measurements of fabric composite
elastic properties are discussed in Section 7.7.

7.6 Structure-performance maps of composites
Considerable effort has been devoted by researchers to

evaluate the effectiveness of various reinforcement concepts.
However, the analyses and experiments performed on advanced
composites are usually reported for individual systems; it is thus
difficult to acquire a more comprehensive view. Chou and Yang
(1986) and Chou (1989), motivated by the concept of deformation
mechanism maps of Ashby, Gandi and Taplin (1979), Gandi and
Ashby (1979) and Frost and Ashby (1982) as well as the work of
Dow (1984) have integrated the results of studies in the modeling of
thermoelastic behavior of unidirectional laminated composites, as
well as two-dimensional (2-D) and three-dimensional (3-D) textile
structural composites. Through the construction of structure-
performance maps, the relative effectiveness and uniqueness of
various reinforcement concepts can be assessed. These maps
provide guidance in material selection for structural design, and in
identifying the needs of future work.

In order to assess the capability of various reinforcement con-
figurations with different fibers and matrix combinations, Chou and
Yang conducted parametric studies of the structure-performance
relationship. The geometric parameters considered include fiber
orientation in unidirectional laminated constructions, weaving para-
meters in two-dimensional fabrics, and braiding parameters in
three-dimensional constructions. The material parameters are fiber
and matrix thermoelastic properties. Four types of reinforcement
forms are presented below: laminated angle-plies based upon
unidirectional layers with the off-axis angle (6) ranging from 0° to
90°; [0°/90°] cross-plies; two-dimensional woven fabrics with ng

ranging from 2 (plain weave) to 8 (eight-harness satin); and 2-step
and 4-step braided composites. For 2-step braids, yarn linear
density, pitch length and aspect ratio are allowed to change. The
braiding angle between a fiber segment and braiding axis in the case
of 4-step braids varies from 15° to 35°. The analytical tools
employed in the construction of these maps include the lamination
theory for cross-ply and angle-ply laminates, the crimp and
bridging models (Chapter 6) for two-dimensional fabrics, the fiber
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420 Three-dimensional textile structural composites

inclination model for 4-step braided composites, and the macro-cell
model for 2-step braided composites.

Several maps are presented here to illustrate the correlation
between reinforcement configurations and the thermoelastic be-
havior of composites. The fiber volume fractions of the composites
are assumed to be 73% for 2-step braided composites and 60% for
all other composites. Figures 7.36-7.39 present the thermoelastic
behavior of carbon, Kevlar and glass reinforced epoxy composites.
Figure 7.40 shows the variation of thermal expansion coefficients for
PEEK matrix composites. Figure 7.41 gives the elastic properties of
C, SiC and A12O3 fiber reinforced Mg matrix composites. Figure
7.42 demonstrates the elastic properties of glass matrix composites
reinforced with C, SiC and A12O3 fibers. The three-dimensional

Fig. 7.36. Exx vs. Eyy for carbon/epoxy ( • unidirectional angle-ply; A
two-dimensional woven; + three-dimensional braided), Kevlar/epoxy (A
unidirectional angle-ply; • two-dimensional woven; x three-dimensional
braided), and glass/epoxy ( • unidirectional angle-ply; O two-dimensional
woven; • three-dimensional braided) composites, (p) = plain weave;
(s) = eight-harness satin. (After Chou and Yang 1986.)
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Structure-performance maps of composites All

preforms discussed in Figs. 7.36-7.42 are based upon 4-step
braiding.

Figures 7.43 and 7.44 show the variations of elastic properties of
2-step braided composites of Kevlar/epoxy with fabric geometric
and processing parameters. The linear density ratio of axial and
braider yarns, the pitch length of braider yarns, and the aspect
ratios of axial and braider yarns are considered. The structure-
performance maps are constructed by starting with a set of values of
these parameters, and then varying each parameter independently
while keeping the other parameters at their original values. The
ranges of these values are denoted on the curves in Figs. 7.43 and

Fig. 7.37. Exx vs Gxy for carbon/epoxy ( • unidirectional angle-ply; A
two-dimensional woven; + three-dimensional braided), Kevlar/epoxy (A
unidirectional angle-ply; • two-dimensional woven; x three-dimensional
braided), and glass/epoxy ( • unidirectional angle-ply; O two -dimensional
woven; • three-dimensional braided) composites, (p) = plain weave;
(s) = eight-harness satin. (After Chou and Yang 1986.)
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422 Three-dimensional textile structural composites

7.44 where the calculations are performed at equal intervals as
indicated by the symbols on each curve (Byun et al. 1991).

It is noted from Figs. 7.43 and 7.44 that the Young's moduli and
shear moduli are insensitive to the axial yarn aspect ratios between 1
and 3. The maximum volume fraction of axial yarns is achieved
when the yarn aspect ratio is around unity, which also gives the
maximum Exx and Gyz. Increases in the linear density ratio of axial
yarn to braider yarn result in an increase in axial yarn volume
fractions while the braider yarn volume fraction becomes smaller.

Since the stiffness increases of the 2-step braided composite in the
longitudinal and transverse directions are primarily due to the
contribution of the axial yarns and braider yarns, respectively,
the increase of the axial yarn volume fraction improves Exx. In the
meantime, Eyy and Gyz become smaller due to the reduction in
braider yarn volume fraction. Furthermore, the increase in the
aspect ratio of the braider yarns results in an increase in their
thickness, which in turn gives a larger volume of matrix pockets in the
composite. Since the total fiber volume fraction is reduced due to

Fig. 7.38. Exx vs. vxy for carbon/epoxy ( • unidirectional angle-ply, A
two-dimensional woven, + three-dimensional braided) composites. (After
Chou and Yang 1986.)
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Structure-performance maps of composites 423

the increase in volume of the composite, all the components of
Young's moduli and shear moduli in Figs. 7.43 and 7.44 are reduced
as the braider yarn aspect ratio becomes bigger. Finally, longer
braider yarn pitch length gives a small volume fraction and orienta-
tion angle of braider yarns. Consequently, Eyy and Gyz are reduced
as the braider yarn pitch length increases.

Chou and Yang (1986) have compared the unique thermal and
elastic characteristics among various reinforcement configurations.
In general, the in-plane thermoelastic properties of unidirectional
lamina depend strongly on the fiber orientation. The unidirectional
reinforcement provides the highest elastic stiffness along the fiber
direction. The Young's moduli of off-axis unidirectional laminae are
lower than that of the unidirectional lamina.

The [0°/90°] cross-ply yields identical thermoelastic properties in 0°
and 90° orientations. Their in-plane shear rigidity is poor. The
longitudinal Young's modulus of an angle-ply laminate is lower than

Fig. 7.39. ccxx vs. ayy for carbon/epoxy ( • unidirectional angle-ply; A
two-dimensional woven; + three-dimensional braided), Kevlar/epoxy (A
unidirectional angle-ply; • two-dimensional woven; x three-dimensional
braided), and glass/epoxy (# unidirectional angle-ply; O two-dimensional
woven; • three-dimensional braided) composites, (p) = plain weave; (s)
eight-harness satin. (After Chou and Yang 1986.)
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424 Three-dimensional textile structural composites

that of a unidirectional lamina. But better transverse elastic
property and in-plane shear resistance can be achieved through the
stacking of the unidirectional laminae with different fiber orienta-
tions. For ±45° angle-ply, the in-plane stiffness drops to a mini-
mum, while the shear modulus reaches its maximum.

The two-dimensional biaxial woven fabric composites can provide
balanced in-plane thermoelastic properties within a single ply. They
behave similar to [0°/90°] cross-plies, although the fiber waviness
tends to reduce the in-plane efficiency of the reinforcements. As the
fabric construction changes from plain weave to eight-harness satin,
the frequency of crimp due to fiber cross-over is reduced, and the
fabric structure approaches that of [0°/90°] cross-plies.

The thermoelastic properties of braided composites also show a
strong dependence on fiber orientation. Three-dimensionally
braided composites have demonstrated good in-plane properties,
which are comparable to those of unidirectional angle-plies with the

Fig. 7.40. axx vs. ayy for carbon/PEEK ( • unidirectional angle-ply; A
two-dimensional woven; + three-dimensional braided), Kevlar/PEEK ( •
unidirectional angle-ply; • two-dimensional woven; x three-dimensional
braided), and glass/PEEK ( • unidirectional angle-ply; O two-dimensional
woven; • three-dimensional braided) composites. (After Chou and Yang
1986.)
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same range of fiber orientation. The longitudinal Young's moduli
and in-plane shear rigidities of three-dimensional braided
composites with braiding angles ranging from 15° to 35° are better
than those of two-dimensional woven fabric composites. But
the transverse Young's moduli are lower and the major Poisson's
ratios higher than those of two-dimensional woven fabric compos-
ites. However, three-dimensional braided composites are unique in
providing both stiffness and shear rigidity along the thickness
direction. Also, because of the integrated nature of the fiber
arrangement, there are no interlaminar surfaces in three-
dimensional composites.

Furthermore, a comparison of their elastic behavior indicates that
the performance of 2-step braided composites is much more
versatile than that of 4-step braided composites. The presence

Fig. 7.41. Exx vs. Eyy carbon/magnesium ( • unidirectional angle-piy; A
two-dimensional woven; • three-dimensional braided), SiC/magnesium
(A unidirectional angle-ply; O two-dimensional woven; x three-
dimensional braided), and Al2O3/magnesium ( • unidirectional angle-ply;
• two-dimensional woven; + three-dimensional braided) composites.
(After Chou and Yang 1986.)
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426 Three-dimensional textile structural composites

of both axial and braider yarns in 2-step braids allows much
flexibility in the design of the preform microstructure. However,
such flexibility can be achieved in 4-step braided composites if
laid-in axial yarns are used.

The structure-performance maps can form the basis for material
selection and component design; these findings can be easily
extended to generate a wider range of information. Take the woven
fabric composite as an example; although the properties shown in
the maps are primarily along the filling and warp directions, the
off-axis properties can be readily obtained through proper tensor
transformation. Upon knowing these properties, it would be feas-

Fig. 7.42. Exx vs. Gxy for carbon/borosilicate glass ( • unidirectional
angle-ply; A two-dimensional woven; • three-dimensional braided),
SiC/borosilicate glass ( • unidirectional angle-ply; O two-dimensional
woven; + three-dimensional braided), and Al2O3/borosilicate glass (A
unidirectional angle-ply; • two-dimensional woven; x three-dimensional
braided) composites and three-dimensional carbon/carbon composites
( • ) . (After Chou and Yang 1986.)
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Fig. 7.43. The variations of Exx and Eyy with material and processing
parameters (intervals of the parameters, axial yarn aspect ratio: 1, pitch
length:2, linear density ratio: 0.05, braider yarn aspect ratio: 0.02). (After
B / . 1991.)
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428 Three-dimensional textile structural composites

ible to tailor composite structures with various combinations of
reinforcement forms, or with different material combinations such
as hybrid unidirectional laminate, hybrid woven fabric structures, or
hybrid laid-in three-dimensional structures.

It should be noted that the analytical modeling techniques
employed in the construction of the structure-performance maps
assume 'defect-free' composites, i.e. perfect fiber/matrix interfacial
bonding, perfect fiber alignment, void-free matrix materials, etc. It
is understood that in actual composites defects are frequently
introduced in the fabrication and handling process. Limited studies
in this regard have been made, including the effect of fabrication
induced fiber distortion on the thermoelastic properties of two-
dimensional fabric composites (Yang and Chou 1989), the effects of
fiber/matrix interfacial debonding on the effective elastic properties
(Takahashi and Chou 1986), void content of as-fabricated polymeric
matrix composites (Yoshida, Ogasa and Hayashi 1986), cracking of
polymeric matrices in fabric composites (Ishikawa and Chou 1982),
and the effect of fiber bundle size and distribution on the behavior
of three-dimensional braided Al2O3/Al-Li composites (Majidi,
Yang and Chou 1986). It is expected that with the advancement in
mathematical modeling and experimental techniques, performance
maps for strength and failure of various two- and three-dimensional
composites can also be constructed.

7.7 Mechanical properties of composites
This section summarizes the strength, fracture, and damage

tolerance behavior of three-dimensional fabric composites. The
material systems cited here include both polymer and metal based
composites.

7.7.1 Tensile and compressive behavior
Majidi, Yang, Pipes and Chou (1985) examined the

tensile and compressive behavior of 4-step braided composites of
alumina fiber in an aluminum-lithium matrix. The continuous,
polycrystalline a-alumina yarn (Fiber FP manufactured by the
Du Pont Co.) contains 210 filaments of approximately 20 jum dia-
meter. The properties of Fiber FP are: tensile strength = 1380 MPa,
tensile modulus = 345-79 GPa, elongation to failure = 0.4%, density
= 3.90g/cm3, and melting point = 2045°C (Dhingra, Champion
and Krueger 1975). The aluminum matrix is alloyed with 2-3 wt%
lithium for an enhanced chemical bond between the fiber and the
matrix.
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Mechanical properties of composites 429

Figure 7.45 depicts the tensile stress-strain curves of FP/Al-Li
composites of unidirectional laminates and three-dimensional
braided composites at Vf=17% and 36%; the tensile behavior of
the pure Al-Li matrix is also given. A bilinear behavior is observed
for all composites; the 'knees' on the stress-strain curves occur at
about 0.02%. Yielding of the matrix appears to be responsible for
the bilinearity. Since the bilinear behavior has also been observed in
the unidirectional composites, it is believed to be a material
property rather than an effect caused by the braided structure. The
in situ strength of the matrix may well be higher than that measured
for the bulk material. Such a phenomenon has been discussed by
Kelly and Macmillan (1966). When the fiber spacing is very small
(<10,um), as is the case in the material studied by Majidi and
colleagues, the yield stress of the matrix is controlled by the
Orowan stress and it is higher than that of the bulk matrix. The
yield stress and work hardening increase with decreasing spacing
between the fibers. While the yield stress goes up, the strain at
which the matrix starts yielding in the composite drops for very
small fiber spacing (Kies 1962).

The ultimate tensile strengths of three-dimensional braided com-
posites with a braiding angle of about 20° are 189 MPa and
383 MPa for Vf=\l% and 36%, respectively. These values are
slightly lower than those predicted for ±20% angle-ply laminates of

Fig. 7.45. Axial tensile stress-strain responses of (a) unidirectional
FP/Al-Li composite (Vf = 0.50), (b) three-dimensional FP/Al-Li compos-
ite (Vf = 0.36), and (c) the unreinforced matrix. (After Majidi and Chou
1987.)
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430 Three-dimensional textile structural composites

the same fiber volume fraction. Microscopic examination of the
fracture surfaces reveals brittle fracture of fibers and considerable
deformation in the matrix between the fibers.

The measured initial Young's moduli are 97 GPa and 171 GPa for
Vf = 17% and 36%, respectively, which agree well with theoretical
predictions based upon the fiber inclination model (Yang, Ma and
Chou 1986). The secondary Young's moduli can be approximated
by assuming that the contribution of the matrix to the composite
modulus is negligible after yielding. The measured Poisson's ratios
are 0.30 (Vf= 17%) and 0.27 (Vf = 36%). It should be noted that a
certain degree of damage to brittle fibers often occurs in the
braiding process. Thus, the in situ fiber stiffness and strength
properties need to be estimated from, for instance, those measured
on unidirectional composites.

Figure 7.46 shows the compressive stress-strain behavior of the
same material as in Fig. 7.45(b). The curve demonstrates an initial
linear region up to a strain of about 0.15% followed by nonlinear
behavior. Other compressive properties include a failure strain of
about 1.8% and a major Poisson's ratio of 0.3. Kinking appears to
be the primary mode of failure in compression.

In transverse tension of three-dimensional braided FP/Al-Li
composites the stress-strain curve is highly nonlinear. The onset of
nonlinearity is at a strain of about 0.5%. The ultimate strength is

Fig. 7.46. Compressive stress-strain responses of FP/Al-Li composite.
(After Majidi et al. 1985.)
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Mechanical properties of composites 431

considerably lower than that for the axial specimen and, thus,
significantly smaller than that of the unreinforced matrix material.
Transverse cracks initiate within the matrix-rich regions
between fiber bundles, most likely at microscopic voids in the
matrix.

7.7.2 Shear behavior
Majidi et al. (1985) have examined the shear behavior of

FP/Al-Li composites with a 4-step braided preform. Both intralami-
nar (in-plane) and interlaminar shear measurements are made. It
has been shown that the short beam shear test (ASTM Standards,
D2344-84 1987) causes premature failure by a flexural mode on the
tensile surface of the specimen even for a fairly small specimen
span-to-depth ratio. It is due to the high ratio of interlaminar shear
strength to tensile strength in three-dimensional braided compos-
ites. The two-rail shear test (ASTM Standards, D4255-83 1987) also
proved inadequate. The tests suitable for the measurement of the
shear strength of three-dimensional composites are the Iosipescu
shear test originally proposed by Iosipescu (1967) for isotropic
materials and applied to composite laminates by Walrath and
Adams (1983a&b), and the double-notch shear test.

The in-plane shear strength parallel to the braiding direction
measured with the Iosipescu shear test for Vf= 17% is 139.6 MPa,
which is comparable to the theoretical shear strength of 151 MPa for
[±20°] angle-ply laminates of the same material and fiber volume
fraction. Majidi, Remond and Chou (1987) reported the shear
properties of three-dimensional braided FP/Al-Li composite tubes,
with the tube axis parallel to the braiding axis and braiding
angles of approximately ±20°. The in-plane shear strengths meas-
ured from torsion tests are 141.8 MPa for Vf=17% and
102.1 MPa for Kf=36%. The shear moduli are 36.6 GPa and
39.0 GPa for V{=17% and 36%, respectively.

The interlaminar shear strength measured by the double-notched
shear test is 144.5 MPa. The calculated interlaminar shear strength
for 0° unidirectional laminates is 100.8 MPa. This improved inter-
laminar shear property in the thickness direction of three-
dimensional braided composites gives much improved fracture and
impact resistance over the conventional laminates. Some dfficulties
in the testing of three-dimensional textile structural composites
exist. Machining of specimens should be avoided as much as
possible because it destroys the integrated nature of the fiber
preform and thus results in lower strength. It is also difficult to
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432 Three-dimensional textile structural composites

obtain meaningful readings of the shear strain and, hence, shear
modulus from the Iosipescu specimens. This is due to the relatively
small size of the region of pure shear, the highly non-homogeneous
three-dimensional braided structure based upon large bundles and
the small size of the strain gages used. All these factors indicate
the difficulties in the testing of textile structural composites in
general.

7.7.3 Fracture behavior

7.7.3.1 In-plane fracture
The fracture and toughness characteristics of unidirectional

and three-dimensional braided FP/Al-Li composites have been
examined by Majidi, Yang and Chou (1986, 1988). Metal matrix
composites, particularly those incorporating ceramic fibers, offer
very high strength and stiffness, but often significantly lower
fracture toughness than unreinforced metallic matrices. The
reduced toughness is due to the restriction of plastic deformation in
the presence of the stiff fibers and a strong fiber/matrix bond which
eliminates or restricts fiber debonding and pullout.

Majidi and colleagues have measured fracture toughness using
compact tension tests on the basis of the linear elastic fracture
mechanics approach and the notched three-point bend test (Tat-
tersal and Tappin 1966), which involves measurement of the
work of fracture (fracture surface energy averaged over the whole
fracture process).

Figures 7.47(a) and (b) show the load versus crack opening
displacement (COD) curves for repeated loading and unloading of a
three-dimensional braided composite and a unidirectional laminate
under compact tension tests. The stress intensity factors are
calculated from PQ and the maximum load Pmax indicated in Fig.
7.47(a). PQ is determined by drawing a straight line with a slope 5%
less than the slope of the linear part of the load-COD curve and
finding the corresponding load at the intersection of this line with
the curve. For Figs. 7.47(a) and (b), the crack propagation is
perpendicular to the braiding axis of the three-dimensional braided
composite and the fiber direction of the unidirectional laminate,
respectively. In both cases, the first part of the load-COD curve is
highly non-linear and, therefore, PQ is considerably lower than
Pm3LX. F°r subsequent loading cycles, however, the sharpened crack
removes the non-linearity in the curve and Po approaches Fmax.
Then, the stress intensity factors KQ and Kmax can be calculated
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from PQ and Pmax, respectively (Annual Book of ASTM Standards,
E399 1978). Since the Kmax values are reasonably constant within
the range of crack length to specimen width ratio, Majidi, Yang and
Chou (1986) adopted the average Kmax as the critical stress intensity
factor, Kc. Remond (1987) has characterized the fracture behavior
of three-dimensional braided metal matrix composites with Vf =
36%. For the notch perpendicular to the principal reinforcement
axis, the unidirectional laminate (Xmax = 30.7 MPaVm) appeared
tougher than the three-dimensional braided composite (Kmax =
27.3 MPaVm)- For the notch parallel to the principal reinforce-
ment axis, the three-dimensional braided composite (KmsiX =
21.5 MPaVm) is tougher than the unidirectional laminate (Kmax =
19.0 MPaVm)- The [±20°] angle-ply laminate appears less tough than
the two other composites, the longitudinal toughness being Kmax =
24.6 MPaVm and the transverse toughness Kmax = 16.4 MPaVm.

Electron microscopy investigations of the fracture surfaces indi-
cate virtually no pull-out of the individual fibers. However, oc-
casionally the whole fiber bundle has been pulled out over a small
length of 1-2 mm. This is accompanied by some debonding between
the fiber bundle and the surrounding matrix. The mechanism of
crack propagation perpendicular to the braiding axis is believed to
be the fracture of fibers and eventual fracture of the fiber bundle
ahead of the crack tip. The above behavior differs greatly from that
of the unidirectional FP/Al-Li composite, which shows a rapid

Fig. 7.47. Load-crack opening displacement (COD) curves obtained from
compact tension tests on (a) three-dimensional braided FP/Al-Li compos-
ite (Vf=17%), and (b) unidirectional FP/Al-Li composite (Vf = 34%).
(After Majidi, Yang and Chou 1986.)
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434 Three-dimensional textile structural composites

crack propagation from the outset and the fracture surface has a
flat, brittle appearance with no macroscopic dimples.

In the case of notched three-point bend tests, unidirectional
composites fracture in a much more brittle and less controlled
manner than braided composites, and the load-deflection curve
shows the sharp drop of load. The work of fracture, yf, which is
measured from the total energy absorbed for the complete fracture
of the specimen, or the area under the load-deflection curve, are
7.92 ± 1.27 kJ/m2 for the braided composites and 4.56 ± 0.44 kJ/m2

for unidirectional laminate for Vf= 17%.
The difference in the strength and fracture behavior between

textile structural composites and traditional laminated composites
has been further demonstrated for the FP/Al-Li composites by
Majidi, Yang and Chou (1986). In the case of unidirectional
composites, the contributions from fiber debonding and pull-out are
negligible since the critical load transfer length, /c, is only 0.34 mm.
This is calculated from the equation lc = afd/(2r) where af is the
fiber ultimate strength (1380 MPa), d is the fiber diameter (20jUm),
and R is assumed to be equal to the shear yield strength of the
matrix (—40 MPa). The strong fiber/matrix interface also reduces
the length on either side of the broken fiber over which the matrix
deforms plastically (see Cooper and Kelly 1967). For unidirec-
tional composites with V{ = 34% and matrix tensile strength of
160 MPa, this length is only 0.04 mm. Therefore, plastic deforma-
tion is severely restricted in the unidirectional system, and the lack
of fiber pull-out and the limited plastic deformation in the matrix
are responsible for the planar fracture and the low yf.

In three-dimensional braided composites, fibers are not
uniformly distributed in the matrix as in the unidirectional laminae,
and each fiber bundle can be regarded as an individual reinforce-
ment. The volume fraction of fibers within the bundle is approxi-
mately 50%, and the volume fraction of bundles in the composite is
approximately 40%. Using the diameter of 2 mm and tensile
strength of 586 MPa for the bundles, it is found that lc= 12.6 mm
and the length over which the matrix deforms plastically is 4 mm.
Although factors such as fiber inclination and interactions
among bundles are not considered above, these values illustrate the
beneficial effect of fiber clustering on the extent of matrix plastic
deformations and on the pull-out and debonding mechanisms. The
non-homogeneous microstructure, therefore, appears to be at least
partially responsible for the higher work of fracture of the three-
dimensional braided composites as compared with the unidirec-
tional laminate which shows a catastrophic planar fracture.
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Majidi, Yang and Chou (1986) have also examined the effect of
thermal treatment on the fiber/matrix interface strength and, hence,
the fracture toughness of three-dimensional braided composites.
The fiber/matrix interface deteriorates after isothermal heating at
500°C. There is a decrease in the fracture load and an increase in
the amount of bundle pull-out which results in larger work of
fracture (yf = 20.30 ± 14.35 kJ/m2 after 72 hours of thermal treat-
ment). This reflects the weak nature of the interfacial reaction zone
which grows intergranularly towards the center of the fiber.

Guenon, Chou and Gillespie (1989) reported the in-plane frac-
ture toughness, Klc, of carbon/epoxy composites with a three-
dimensional orthogonal interlock fabric preform. The Klc values
for three-dimensional fabric composites are 28.56 MPaVm and
29.45 MPaVm in two principal material directions, which are higher
than that of laminates (21.22 MPaVm). The through-the-thickness
yarns are beneficial to the in-plane toughness by arresting and
deviating the crack. The interaction between a crack and in-
homogeneities, simulating fiber arrays, has been examined by
Fowser and Chou (1989, 1990a&b).

7.7.3.2 Interlaminar fracture
Traditional laminated composites exhibit low interlaminar

fracture toughness and are susceptible to delamination when
subjected to interlaminar stress concentrations. Improvements in
damage tolerance to date have focussed on utilizing tougher
matrices (Hunston 1984) or interleafing concepts (Masters 1987).
Through-the-thickness reinforcement provides an alternative ap-
proach to substantially increasing the resistance to delamination
(see Whitney, Browning and Hoogsteden 1982; Guess and Reedy
1985; Mignery, Tan and Sun 1985; Dexter and Funk 1986; Fowser
1986; Guenon, Chou and Gillespie 1987; Ogo 1987).

The orthogonal interlock fabric architecture (Fig. 7.10) retains the
in-plane performance while enhancing out-of-plane properties, by
including a small amount of through-the-thickness reinforcement.
The 'z direction' fibers are also known to be detrimental to the
in-plane tensile and compressive properties. The interlocking proc-
ess avoids the cutting of fibers, as it occurs in the stitching process.
However, it creates matrix pockets that reduce the volume fraction
of the in-plane fibers relative to the analogous two-dimensional
laminates. The z direction fibers also tend to be deformed in the
processing of the fabric composites.

Guenon, Chou and Gillespie (1989) have studied the effect of
fiber geometry on the interlaminar and in-plane fracture behavior of
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orthogonal interlocked fabric composites. The experimental work is
based upon a T300/3501-6 carbon/epoxy system. Referring to Fig.
7.10, the fabric preform can be described as a [0°/90°] laminate in
which some through-the-thickness yarns are interlaced. The in-
plane yarns contain 6000 filaments per yarn and the through-the-
thickness yarns have 1000 filaments per yarn. The spacing between
two z direction yarns in both plate directions is 2.8 mm and the
plate contains about 13 z direction yarns/cm2. The total number of
plies is 27, with 14 and 13 plies in two mutually orthogonal
directions. The overall volume fraction is 50%, while the volume
fraction of the z direction is 1%.

(A) Mode I interlaminar fracture
Guenon, Chou and Gillespie (1989) have adopted two test

methods for Mode I interlaminar fracture, the double cantilever
beam (DCB) test and the 'tabbed DCB', which uses long aluminum
tabs bonded along both sides of the specimen to prevent the
deviation of crack propagation from a self-similar manner. Both
types of specimens are pin-loaded in tension in displacement-
controlled mode.

The load-deflection curves for the three-dimensional composite
specimens show a nonlinear unloading sequence and an appreci-
able permanent deformation after unloading. The crack tip did not
completely close after unloading. These features can be explained
by the crack closure process of the three-dimensional fabric
composite. Most of the z direction yarns do not break in the plane
of the crack. Instead, they fracture near the outer surface of the
specimen where they are curved by the weaving process, and then
debonded and pulled out. Figure 7.48 shows the fracture surface
with the z direction yarn protruding out of the plane of fracture.
During unloading, the pulled-out yarns do not resume their initial
locations and therefore progressively undergo compressive stresses
that lead to a nonlinear unloading behavior and a permanent
deflection of the specimen after a zero load is reached.

Two data reduction methods have been adopted by Guenon,
Chou and Gillespie (1989) for the three-dimensional fabric compos-
ites. These are the area method, based upon energy considerations,
and the compliance method, based upon the linear elastic beam
theory. The interlaminar critical strain energy release rate, Glc,
values from the area method are 0.307 kJ/m2 (two-dimensional
regular DCB), 0.286 kJ/m2 (two-dimensional tabbed DCB) and
3.85 kJ/m2 (three-dimensional tabbed DCB). The compliance
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method gives Glc values of 0.235 kJ/m2 (two-dimensional regular
DCB), 0.179 kJ/m2 (two-dimensional tabbed DCB) and 2.66 kJ/m2

(three-dimensional tabbed DCB). The compliance method only
takes into account the energy of crack initiation. In the case of
two-dimensional unidirectional laminates, the crack propagation
energy is generally equal to the initiation energy and therefore both
methods give similar results. In three-dimensional fabric composites,
the fracture, debonding and pull-out of z direction yarns as well as
the bridging of the crack by the z direction yarns dissipate energy.
Therefore, the area method gives a higher and more accurate result
of interlaminar fracture toughness.

The mode I delamination problem of three-dimensional or-
thogonal interlock fabric composites has been further examined by
Byun, Gillespie and Chou (1990b) using a finite element analysis.
The material systems and specimen geometries including two-
dimensional regular DCB, two-dimensional tabbed DCB and three-
dimensional tabbed DCB (see Guenon, Chou and Gillespie 1989)
are simulated in this numerical work. Specifically, the mode I
fracture behavior of carbon/epoxy composites is examined for

Fig. 7.48. Fracture surface of the orthogonal interlock fabric composite
showing a pulled-out yarn. (After Guenon, Chou and Gillespie 1989.)
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various initial crack lengths. The strain energy release rates, Gr, are
evaluated based upon the crack closure method (Rybicki and
Kanninen 1977) to ascertain the influence of through-the-thickness
fibers on crack driving force. Byun and colleagues also have
considered the effect of progressive debonding of the z axis yarns on
the strain-energy release rate.

In the finite element model, the length of an element side is the
crack increment utilized in the study (Aa = 0.5562 mm). The initial
crack length is 25.4 mm and the locations of the through-the-
thickness fibers are 3Aa, 8A0, 13Aa and 18A«. A vertical unit
displacement of 1 mm is applied to simulate the displacement
controlled loading conditions used in the experimental work of
Guenon and colleagues. Three types of through-the-thickness fiber
debonding are modeled: perfect bonding, moderate bonding, where
the z axis fiber is debonded over 25% of the specimen thickness,
and complete debonding, where the load is carried by the fibers
only. The z axis yarns are assumed to be initially perfectly bonded;
partial or complete debonding does not occur until the crack front
passes the reinforcement. Also, fiber fracture is not considered by
Byun and colleagues.

Figure 7.49 demonstrates the effect of through-the-thickness
yarns and bonding conditions on the strain-energy release rate. The
strain-energy release rate for the two-dimensional laminate mono-
tonically decreases with increasing crack length as one would expect

Fig. 7.49. Numerical strain-energy release rates of two-dimensional lamin-
ated and three-dimensional orthogonal woven composites as functions of
crack length: — two-dimensional laminate; O fully debonded; + moder-
ately bonded; # perfectly bonded. (After Byun, Gillespie and Chou 1990.)
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under fixed grip conditions. The introduction of through-the-
thickness yarns reduces the local strain-energy release rate sig-
nificantly in the case of perfect bonding condition as the crack
approaches the first array of z axis yarns at 3Aa. The crack driving
force for interlaminar crack growth decreases because the load is
transferred to the z axis yarns. The crack opening displacement is
also reduced by the presence of the vertical fibers. As debonding
occurs, the decrease of strain-energy release rate is less significant
because the crack tip opening displacement increases.

In the numerical analysis, Byun and colleagues assume that the
crack continues to propagate without fiber fracture. Consider the
perfect bonding case of Fig. 7.49 when the crack propagates beyond
the first array of yarns to 4Aa. Tfie strain-energy release rate is
observed to increase slightly but is still significantly less than the
two-dimensional specimen. This is due to the increase in deforma-
tion of the z axis yarns as load transfer occurs, which results in an
increase in the crack tip opening displacement. Due to the presence
of the z axis yarns at 8Afl, the strain-energy release rate begins to
diminish as the crack tip approaches the next site of through-the-
thickness fibers where a second reduction in crack driving force is
observed. The process continues until the strain-energy release rate
is identically zero.

Figure 7.50 shows the tensile stress in the through-the-thickness
yarn as a function of crack length. As the crack approaches the first
yarn at 3Afl, the load in the fiber increases rapidly. Additional crack

Fig. 7.50. Tensile stresses in the z axis fiber arrays as functions of crack
length for perfect fiber-matrix bonding: — first array; O second array; •
third array (After Byun, Gillespie and Chou 1990.)
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growth results in an asymptotic value of load in the first yarn as the
second yarn begins to carry load. The process continues until the
stress in the next array of yarns is zero. At this point, the applied
load is being carried exclusively by multiple z axis yarns bridging
the crack surface and the crack driving force is identically zero. The
information presented in Figs. 7.49 and 7.50 demonstrates the load
bearing and transferring mechanisms in the interlaminar fracture
process of a three-dimensional fabric composite. This information
enabled Byun and colleagues to predict the macroscopic critical
load for mode I interlaminar fracture. More importantly,
understanding of the load redistribution at the microscopic level is
beneficial to the design of fabric preform structure for enhanced
damage tolerance.

(B) Mode II interlaminar fracture
The mode II interlaminar fracture toughness of three-

dimensional orthogonal fabric composite has been assessed by Liu
and Chou (1989). The mode II fracture toughness tests are
performed on both three-dimensional composites and two-
dimensional laminates of the same carbon/epoxy system using
end-notch-flexural (ENF) specimens.

Byun, Gillespie and Chou (1989), following the work of Liu and
Chou (1989), have conducted a finite element analysis for evaluating
the mode II strain-energy release rate. Similar to the mode I
interlaminar fracture, the crack driving force for mode II interlami-
nar crack growth decreases as the crack approaches the z axis yarns
because the load is being transferred to these yarns.

7.7.4 Impact
Majidi and Chou (1986) reported the impact behavior of

both three-dimensional braided and unidirectional FP/Al-Li com-
posites. The average fiber volume fractions are 17% and 34% for
three-dimensional braided and unidirectional composites, respec-
tively. Instrumented drop-weight impact tests have been carried out
on un-notched impact panels, which do not require machining and,
hence, do not sustain damage to the integrated fiber structure.
Figure 7.51 compares the load-deflection traces obtained from
through-the-thickness penetration impact tests. The three-di-
mensional braided composites absorb significantly higher energy
and show larger deflection than the unidirectional composite during
both damage initiation and propagation stages. By definition, the
initiation energy is the area under the load-deflection curve up to
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Fig. 7.51. Load-deflection traces obtained from through-the-thickness
penetration impact tests, (a) Al-Li alloy; (b) three-dimensional braided
FP/Al-Li composite; (c) unidirectional FP/Al-Li composite. (After
Majidi and Chou 1986.)
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Fig. 7.52. Cross-sectional views of the FP/Al-Li composite specimens
impacted at 54 J of incident energy, (a) Three-dimensional braided,
Vf = 0.17; (b) three-dimensional braided, Vf = 0.36; (c) [±20°] angle-ply;
(d) unidirectional laminate. (After Majidi and Chou 1987.)
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the maximum load. The total impact energy absorbed by the
three-dimensional braided composites is close to that of the matrix
material. The unidirectional composite fractures like a brittle
material with cracks propagating through the entire specimen, while
in the braided composite damage is restricted to a small region, and
the specimen shows a ductile type of behavior. A comparison of the
cross-sectional views of the FP/Al-Li composite specimen impacted
at 54 J of incident energy is shown in Fig. 7.52.

Additional information on the mechanical behavior of three-
dimensional fabric composites can be found in the work of Kregers
and Teters (1982), Ko and Pastore (1985), Crane and Camponeschi
(1986), Ko (1986), Yau, Ko and Chou (1986), Simonds, Stinchcomb
and Jones (1988), Ko (1989b), and Whitcomb (1989).
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