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8 Flexible composites

8.1 Introduction
The term 'flexible composites' is used hereinafter to identify

composites based upon elastomeric polymers of which the usable
range of deformation is much larger than those of the conventional
thermosetting or thermoplastic polymer-based composites (Chou
and Takahashi 1987). The ability of flexible composites to sustain
large deformation and fatigue loading and still provide high
load-carrying capacity has been mainly analyzed in pneumatic tire
and conveyor belt constructions. However, the unique capability of
flexible composites is yet to be explored and investigated. This
chapter examines the fundamental characteristics of flexible
composites.

Besides tires and conveyor belts, flexible composites can be found
in a wide range of applications. Coated (with PVC, Teflon, rubber,
etc.) fabrics have been used for air- or cable-supported building
structures, tents, parachutes, decelerators in high speed airplanes,
bullet-proof vests, tarpaulin inflated structures such as boats and
escape slides, safety nets, and other inexpensive products. Hoses,
flexible diaphragms, racket strings, surgical replacements, geotex-
tiles, and reinforced membrane structures in general are examples
of flexible composites.

Following Chou (1989, 1990), the nonlinear elastic behavior of
three categories of materials is examined: pneumatic tires, coated
fabrics, and flexible composites containing wavy fibers. These
materials provide the model systems of analysis with elastic be-
haviors ranging from small to large deformations.

The performance characteristics of pneumatic tires are primarily
controlled by the anisotropic properties of the cord/rubber compos-
ite. The low modulus, high elongation rubber contains the air and
provides abrasion resistance and road grip. The high modulus, low
elongation cords carry most of the loads applied to the tire in
service. According to Walter (1978), the first quantitative study of
cord/rubber elastic properties in the tire industry was published in
Germany by Martin (1939), who analyzed bias ply aircraft tires
using thin shell theory to approximate toroidal tire behavior.
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444 Flexible composites

Martin's analysis of the orthotropic composite elastic constants
assumes that the fibers are inextensible and the matrix stiffness is
negligibly small; this approach has been referred to here as the
classical netting analysis. Studies of the cord/rubber properties
became active worldwide in the 1960s as represented by the work of
Clark (1963a&b, 1964) in the USA, Gough (1968) in Great Britain,
Akasaka (1959-64) in Japan, and Biderman et al. (1963) in the
Soviet Union.

The existing analysis on tire mechanics is primarily based upon
the well developed anisotropic theory of rigid laminated composites
for small linear elastic deformation. Thus, the problems of vis-
coelasticity, strength behavior, fatigue and large non-linear be-
havior are often ignored.

In the case of coated fabrics, limited attention has been given to
the material stress-strain response to arbitrary loading paths and
histories. Experimental studies of the biaxial stress-strain behavior
can be found in the works of Skelton (1971), Alley and Fairslon
(1972) and Reindhardt (1976). Attempts have also been made by
Akasaka and Yoshida (1972) and by Stubbs and Thomas (1984) to
analytically model the elastic and inelastic properties of coated
fabrics under biaxial loading. Some of these results are briefly
recapitulated in this chapter.

Section 8.4 focusses on the understanding of the large nonlinear
deformation of flexible composites. To this end, model material
systems for analytical purposes need to be identified. The large
nonlinear deformation could originate from two sources, i.e.
matrix and fiber. In order to fully realize the ability of the
elastomeric matrix to sustain large deformation, the fibers must be
able to deform accordingly with the matrix. This can be achieved by
(a) using short fibers, (b) arranging continuous fibers in such an
orientation that they are allowed to rotate as the load increases, and
(c) using reinforcements in woven, knitted, braided, or other wavy
forms.

Possibility (c) is particularly interesting in that it utilizes the
waviness of the fibers. The gradual straightening of the wavy fibers
under external loading results in enhanced stiffness with an increase
in deformation. The linear and nonlinear elastic behavior of two- and
three-dimensional textile structural composites has been examined
by Ishikawa and Chou (1983), Chou (1985), and Chou and Yang
(1986) based on small deformation theory. The nonlinear finite
deformation analyses of flexible composites are presented in Chap-
ter 9.
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CordIrubber composites 445

8.2 Cord/rubber composites
Cord/rubber composites for pneumatic tires are examined

in this section from the viewpoint of the mechanics of anisotropic
materials. Cord/rubber composites are complex elastomeric com-
posites composed of (a) the rubber matrix of usually quite low
modulus and high extensibility, (b) the reinforcing cord of much
higher modulus and lower extensibility than the matrix, and (c) the
adhesive film which bonds the cord to the matrix. The combination
is subjected to (a) fluctuating loads, mostly tensile but on occasion
compressive, (b) temperatures as high as 125°C, and (c) moisture.
Obviously substantial stress develops at the cord-rubber interface.
Some of the discussions presented herein on the materials and
mechanics aspects of pneumatic tires are based upon the review
articles of Walter (1978) and Clark (1980).

The construction of tires involves calendering sheets of rubber
around an array of parallel textile cords to form a flat, essentially
two-dimensional anisotropic sheet. The cords usually have substan-
tial twist and often are made up of two or three oppositely twisted
yarns. These composite sheets are then assembled into various tire
configurations. Figure 8.1(a) shows the typical bias or angle-ply
design which utilizes two or more, usually an even number, of plies
laid at alternate diagonal angles to one another. Figure 8.1(b)
depicts a typical radial tire construction involving radially oriented
cords while the tread area is reinforced by a belt structure of
relatively small angle with respect to the tire center line. The radial
tire construction provides stiff longitudinal reinforcement for the
tread area (and, hence, is less subject to slip) and flexibility for the
vertical deflection. In the terminology of laminated composites, bias

Fig. 8.1. (a) Bias tire, (b) Radial ply tire. (After Clark 1980.)

(b)
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446 Flexible composites

and radial tires can be categorized as laminates with [+0/ — 6] and
[+6/—6/90°] orientations with respect to the tire center line.

8.2.1 Rubber and cord properties
For relatively small strain, rubber may be treated as a

homogeneous and isotropic material. The Young's modulus, deter-
mined from the initial slope of the stress-strain curve, may be as
low as 0.69 MPa (100 psi) for non-reinforced (unfilled) elastomers to
as high as 689 MPa (100 000 psi) for highly vulcanized (high sulfur)
compounds such as ebonite. The Young's modulus of rubber is
affected by the conditions of physical testing (i.e. strain rate,
temperature, cyclic load history) and chemical vulcanization para-
meters (i.e. the compounding ingredients, state of cure) (see Clark
1980).

The assumption of negligible volume change of rubber leads to
the following values of Poisson's ratio (v), bulk modulus (K),
Young's modulus (E) and shear modulus (G):

(8.1)

Rubbers used in calendered plies of tires have E values of 5.51 MPa
(800 psi) for textile body ply, 20.67 MPa (3000 psi) for textile tread
ply and 13.78 MPa (2000 psi) for steel tread ply. The v value for
these materials is 0.49.

The Young's moduli for tire cords vary with cord constructions.
The following values are for belt ply: 109.55 GPa (15.9 x 106 psi) for
steel, 24.8 GPa (3.6xl06psi) for Kevlar, and 11.02 GPa (1.6 x
106 psi) for rayon. The values for body ply are: 3.96 GPa (575 x
103psi) for polyester, and 3.45 GPa (500xl03psi) for nylon.
Experiments have shown that textile cords can carry some load in
compression, although compressive loads are believed to be the
source of many textile failures and should be avoided whenever
possible.

Twisting of the cord is needed in order to provide adequate cord
fatigue life under service conditions. However, twisting of fiber into
tire cord can result in as much as a one-third decrease in tensile
Young's modulus for belt ply cords, and a one-half decrease in
Young's modulus for body ply cord. It has been predicted that the
axial Young's modulus of a single twisted fiber yarn is approx-
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Cord / rubber composites AA1

imately equal to 1/(1 + 4JT2R2T2) of that of the untwisted yarn. Here,
R and T denote yarn radius and twist (number of turns per unit
length), respectively (Hearle, Grosberg and Backer 1969). The
twisted and multi-plied cords should be considered as transversely
isotropic, although they are commonly approximated as isotropic.
Textile cords normally show substantial nonlinearity in their
stress-strain behavior. However, since the rubber behavior is
relatively elastic in the small strain range, and the cords in a
laminate are often aligned at an angle to the load direction, the
composite acts more like a linearly elastic solid than the cord itself.
Figure 8.2 shows the stress-strain curve of a tubular specimen using
rayon yarn in a rubber matrix. The fibers in this specimen are in
angle-ply arrangement. According to Clark (1980), most pneumatic
tires do not operate with strain much in excess of 10%.

8.2.2 Unidirectional composites
The linear elastic behavior of a unidirectional cord/rubber

composite can be easily deduced from the basic equations given in
Section 2.2. By assuming that

Ef»E

vm = 0.5

(8.2)

Fig. 8.2. Load-strain curve of a cylindrical tube with rayon yarns in a
rubber matrix. (After Clark 1980.)
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448 Flexible composites

The following relations can be obtained:

En = EtVf»E22

v21 = 0

£m (l + 1.3Vf)£m

12 = C2 — = (l +Vf) —

where cx and c2 denote two coefficients.
Akasaka (1989) considered the same assumptions as Eqs. (8.2)

and obtained the simpler form slightly different from Eqs. (8.3), with
the coefficients cx = % and c2 = 1. Then,

(8.4)

Akasaka (1989) has noted that the relation of Gl2 ~ E22/4- is
independent of cord volume fraction and has good predictability as
compared to existing formulas and experimental results (Walter
and Patel 1979; Clark 1980). Also, cx = c2 = \ has been used by
Jones (1975).

Based upon Eqs. (8.4), the variation of lamina transformed
reduced stiffness with cord off-axis angle 6 follows from Eqs. (2.16)
and can be approximated as (Akasaka and Hirano 1972):

E22

G12

4 £ m

3V

Gm

V
E22

4

Q 2 2 ~

E22 + En

E22 + £ l

E22/4 + E

! cos

! sin4

En sin2 6cos2 8
(8.5)

G12 « £22/2 + En sin2 6 cos2 6

<216~ £ u sin 6 cos3 6

<226 ~ Eu sin3 6 cos 6

When a unidirectional cord/rubber sheet is subjected to simple
tension, an interesting deformation behavior occurs, which is not
observed in most of the rigid composites. This can be elucidated by
using Eq. (2.17) for the relation between yxy and the applied oxx as
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CordIrubber composites 449

well as the approximations of Eqs. (8.4)

—2 sin # cos3 0

,22
(2 - tan2 8)axx (8.6)

Thus, the stretching-shear coupling vanishes at 0 — 54.7°, and
Yxy < 0 for 0 < 54.7° and yxy = 0 for 8 > 54.7°.

8.2.3 Laminated composites
The constitutive equations for the laminated cord/rubber

composites are of the same general form as Eqs. (2.25)-(2.30).
However, they can be simplified by using the approximated
expressions of Eqs. (8.5) for Q//- Also, the engineering elastic
constants, referring to the x-y coordinate system, for the angle-ply
laminated composite can be deduced. Using the results of Eqs.
(8.4), the following expressions of engineering elastic constants of a
± 6 laminate in terms of the properties of fiber and matrix as well as
the fiber volume fraction are obtained under the assumptions of
Ef»Em and vm = 0.5 (See Akasaka 1989, and Clark 1963a&b):

Exx = EiVi cos4 8 4 G

1-V t

[EfV, sin2 d cos2 6 + 2Gm/(l - Vf)]
2

Eyy EfVfsin4
i - vf

[EfVf sin2 6 cos2 0 + 2Gm/(l - Vf)f

EfVt-cos4 6 + 4Gm/(l - Vt)

Gxy = EfVf sin
2 6 cos2 0 + -^~ (8.7)

_ EfVf sin
2 6 cos2 6 + 2Gm/(l - Vf)

Vxy~ £fVfsin40 + 4Gm/(l-V f)

_ EfVf sin
2 0 cos2 6 + 2Gm/(l - Vf)

V

The approach for obtaining Eqs. (8.7) based upon the assumptions
of ±6 cord angles and specially orthotropic symmetry is known as
the modified netting analysis.
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450 Flexible composites

The classical netting analysis which assumes inextensible cords
(E{-»°°) simplifies Eqs. (8.7)

Exx = 4Gm(l - Vf)(cot4 6 - cot2 0 + 1)

Eyy = Exx(jt/2-6)

Gxy = EfVf sin2 6 cos2 0 + Gm/(1 - Vf)

vxy = cot2 6

vyx = tan2 6

(8.8)

Figures 8.3-8.5 show the results of analytical predictions based
upon Eqs. (8.5) for Exx, Gxyy and vxy, respectively, as functions of
the off-axis angle 6. These results coincide very well with the
experimental data, as reported by Clark (1963a&b) and based upon
£ n = 1440MPa and E22 = 6.9MPa. It is evident that Poisson's
ratios well in excess of one-half exist in cord/rubber composites.

Because of the incompressibility of the rubber matrix and the
relatively small volume change associated with the cord materials,
due to its high stiffness, it can be assumed that the cord/rubber
composite is incompressible. Thus, for small strain, exx + eyy +
ezz = 0, and

vxz = -EZZ/EXX = 1 + eyY/Exx = 1 - vx (8.9)

Figure 8.6 indicates the analytical results of Eq. (8.9) and the
experimental data of vxz as a function of 6 (Clark 1980) for

Fig. 8.3. Young's modulus, Exx, vs. cord angle, S, for a two-ply laminate.
— Eqs. (8.7); (x) experimental data. (After Clark 1963a.)
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CordIrubber composites 451

£ n = 294MPa and £I22
 = 6.6MPa. One of the solid lines is based

upon the vxy expression of Eqs. (8.7), and the simplifying expres-
sion of Eqs. (8.4), namely

En sin2 0 cos2 6 + E22/2
V = ( 8 1 0 )

The other solid line is based upon the vxy expression of Eqs. (8.8).

Fig. 8.4. Shear modulus, Gxy, vs. cord angle, 6, for a two-ply laminate. —
Eqs. (8.7); (x) experimental data. (After Clark 1963a.)
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15 30 45 60

Cord angle, 9 (degrees)

Fig. 8.5. Poisson's ratio, vxy, vs. cord angle, 6, for a two-ply laminate.
Eqs. (8.7); (x) experimental data. (After Clark 1963a.)
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452 Flexible composites

It is interesting to note that for a range of 6 values, vxz is negative;
the laminate becomes thicker under axial load.

The interlaminar stresses ozzy RZX and rzy are not considered in
the classical lamination theory. These stresses and their correspond-
ing strains do exist in appreciable magnitude which promote a
reduction in the apparent stiffness of cord/rubber laminates. As a
result, the composite becomes more flexible and exhibits lower
natural frequencies of vibration and static buckling loads (Walter
1978).

Walter (1978) reviewed the work of Kelsey, who considered a
two-ply [±0] cord/rubber laminate, simulating the behavior of the
belt in a radial tire. Assuming the belt of finite width in the y
direction is loaded in the x (circumferential) direction, yyz vanishes
due to symmetry and ezz is assumed to be negligibly small. yxz is
maximum at the free edge of the belt and can be approximated, for
the case of inextensible cords (Zsf— »<»), by the simple expression

^ = exx(2 coi2 d - l ) (8.11)

Equation (8.11) indicates that yxz vanishes when the two plies are
oriented at 6= ±cot~1V(l/2) = ±54.7°. The magnitude of yxz

decays exponentially away from the free edge and vanishes along
the belt center-line (y = 0). It is interesting to note that 6 = 54.7° is
also the angle for which the normal stress and shear strain are
uncoupled and each off-axis ply behaves as specially orthotropic.

Fig. 8.6. Poisson's ratio, vxz, vs. cord angle, 6, for a two-ply laminate.
Eqs. (8.8) and (8.10); (x) experimental data. (After Akasaka 1989.)
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Cord I rubber composites 453

lnterlaminar shear strains have been observed by inserting
straight pins normal to the ply surface in a cord/rubber belt system
and observing its rotation under extensional load (Bohm 1966) or
by scribing a straight line on the edge of the specimen and
monitoring the rotation of the line under load. Figure 8.7 shows the
interlaminar shear strain measured by X-ray technique for a two-ply
polyester-rubber as a function of cord angle 0 (Lou and Walter
1978). The solid line is based upon the predictions of Eq. (8.11).
The importance of interlaminar shear decreases as the number of
plies increases.

Walter (1978) has presented values of the 18 elastic constants of
Aij, Bij and Dtj for bias, belted-bias and radial constructions; the
material combinations of nylon and rayon body plies with steel,
PVA and rayon belt plies are included. For the case of a specially
orthotropic laminate (A16 = A26 = Dl6 = D26 = Btj= 0) with respect
to the x—y axes, the out-of-plane flexural rigidities are

(EI)X=Anh
2112 = £n/i

3/12(l-VxyVyx)
(EI)y = A22h

2112 = E22h
3/ ^A2>- vyxvxy)

where / is the area moment of inertia, and h denotes ply thickness.

8.2.4 Cord loads in tires
According to Clark (1980) the key to good tire design is

long fatigue life. The loads on typical textile cords in pneumatic

Fig. 8.7. Interlaminar shear strain, yxz, vs. cord angle, 0, for a two-ply
polyester rubber. — Eq. (8.11); (x ) experimental data. (After Lou and
Walter 1978.)
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454 Flexible composites

tires are extremely complex and the sources of loads can be
identified as follows: (a) inflation load, (b) vertical load, (c) steering
forces, (d) road irregularities, (e) camber, (f) speed, and (g) torque.

The tensile cord load due to inflation pressure can be predicted
with some certainty by considering the axisymmetric nature of
inflation and approximating the tire geometry as a thin toroidal
shell. However, this task is complicated by the fact that the tire
does not maintain a constant geometry during inflation. Further-
more, the membrane forces obtained from the thin shell analysis
may not adequately represent the force distributions in the bead
and tread regions. Figure 8.8 shows schematically the cross-section
of a pneumatic tire and the designation of the locations (Clark
1980).

The measurement of cord loads is important to the analysis and
design of tires. Various techniques have been employed; these
include the use of grid or elongation marks for outer plies, X-ray
photography relying on metal markers for inner plies, and resis-
tance foil strain gages imbedded in the tire for direct cord load
measurement in a tire under operating conditions. The force
transducers using resistance foil strain gages are much smaller than
the clip gages, the rubber-wire gages, or the liquid-metal
gages. Details of these measurement techniques can be found in
Clark and Dodge (1969), Patterson (1969), and Walter and Hall
(1969).

The measurements of tire cord loads have indicated that the loads

Fig. 8.8. Location description in a cord/rubber pneumatic tire. (After
Clark 1980.)
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Cordlrubber composites 455

induced by normal direct inflation account for about 10-15% of
cord strength. Another simple type of cord load is induced due to
the load carried by the tire. The cord load at a given location can
fluctuate fairly widely as the tire rolls. Also, the typical cord load
cycle varies with the locations on the tire, i.e. crown, sidewall or
shoulder region. Steering induces additional loads. Relatively small
amounts of steer could induce very large increases in the cord loads.
Figure 8.9 shows the basic characteristics of cord load fluctuation in
a rolling tire (Clark 1980). It should be noted that compressive cord
loads are possible. The characteristics of other cord loads due to
road irregularities, speed and torque are even more difficult to
quantify in a systematic manner.

The measurement of tire cord loads provides the basis of analysis
of the response of cord/rubber composites to the specified boundary
conditions. The netting theory, which only takes into account the
deformation of the cord and neglects completely the contribution of
the matrix rubber, was adopted in the earlier research on bias
constructions. The uncertainty of the orientation of the cord in the
net structure at different stress levels of inflation has limited the
applicability of this theory.

The theory of laminated composites has undoubtedly provided an
efficient means of analysis of cord/rubber composites. It is under-
stood that the theory has its limitations due to the following reasons:

(1) Textile cord strains of several per cent could develop at
some locations in the tire; even larger and nonlinear strains
could develop in the rubber.

Fig. 8.9. Basic characteristics of cord load fluctuation in a rolling tire.
(After Clark 1980.)
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456 Flexible composites

(2) Interlaminar deformations are not taken into account in the
theory, assuming plane stress condition.

(3) Cord/rubber composites usually exhibit bimodulus behavior
(Bert and Kumar 1981; Bert and Reddy 1982).

(4) The viscoelastic behavior is assumed to be small and is
often neglected in the analysis.

(5) Perfect cord/rubber interfacial bonds are assumed.
(6) The membrane forces in the bead and tread regions may be

very complex.
(7) Fatigue and hygrothermal loadings may also complicate the

problem.

However, in spite of its limitations, the lamination theory has been
applied with some success for investigating a number of tire
mechanics problems including stress analysis, obstacle enveloping,
treadwear, and vibration. It is thus an efficient tool based upon
linearly elastic, homogeneous and anisotropic material properties
for the representation of nonlinear viscoelastic, heterogeneous
calendered plies of cord/rubber tire composites (Walter 1978). The
large nonlinear deformation of flexible composites is treated in
Chapter 9.

8.3 Coated fabrics
Coated fabrics used in load bearing environments, for

instance, those for air- or cable-supported building structures, tents,
and inflated structures such as escape slides, must exhibit specific
mechanical properties. Some of the general requirements include
retaining flexibility over a wide temperature range, sufficient tensile
and tear strength, low air permeability, and sufficient dimensional
stability (Skelton 1971).

It has been recognized that coated fabrics generally exhibit
nonlinear stress-strain behavior due to straightening of the
crimped yarns under uniaxial or biaxial tension. As noted by
Akasaka (1989), the microscopic deformation behavior of the
woven yarns embedded in the matrix and subjected to membrane
loading is very complex. Thus, modeling of the strength behavior of
these materials requires reasonably precise knowledge of the
deformation of the yarns as a function of load configuration and
magnitude.

The linear elastic properties of laminates composed of coated
fabrics can be readily derived based upon the lamination theory of
Section 2.3. Akasaka and Yoshida (1972) presented explicit expres-
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Coated fabrics 457

sions for elastic moduli of laminates of coated fabrics; the analytical
predictions were compared with experimental data of laminates of
canvas.

Skelton (1971), among others, reported the biaxial stress-strain
behavior of coated orthogonal fabrics. It is concluded that the
stress-strain response at various stages of manufacture of coated
fabrics is dependent mainly on the crimp in the two sets of yarns.

Fig. 8.10. (a) A section of the fabric along warp yarns in off-loom (top),
heat set (middle) and coated (bottom) states, (b) A section of the fabric
along filling yarns in off-loom (top), heat set (middle) and coated (bottom)
states, (c) Surface feature of the fabric in heat set state. (After Skelton
1971 © ASTM. Reprinted with permission.)

(a)

(b)

(c)
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458 Flexible composites

The balance of crimp is determined by the restraints imposed on the
fabric during the heat setting process, which precedes the coating
operation. If the fabric is set under tension in the warp direction,
the warp yarns tend to become straight and the yarns in the filling
direction become highly crimped. Thus, when such a fabric is
subjected to biaxial loading, it is almost inextensible in the warp
direction. Consequently, Skelton concluded that if a balanced fabric
is required with similar biaxial tensile behavior in the warp and
filling directions, the fabric must be heat set with both warp and
filling directions under restraint.

It is interesting to recapitulate the experimental observations of
Skelton (1971) for the biaxial testing of coated fabrics. Figures
8.10(a) and (b) show, respectively, the section views of a plain
weave fabric based upon high tenacity polyester. Since the fabric is
set under tension along the warp direction during heat setting, the
warp crimp is minimum and the filling crimp is relatively high.
Three stages, i.e. off-loom, heat set and coated state, are dem-
onstrated. Figure 8.10(c) shows the surface features of the fabric in
the heat set state.

Figure 8.11 shows the biaxial load-elongation curves for this

Fig. 8.11. Bi-axial load-elongation curves for a fabric; load ratio
(warp/fill) = 1:2. WL = warp direction, loom state; FL = filling direction,
loom state; WH = warp direction, heat set; FH = filling direction, heat set;
WC = warp direction, coated; FC = filling direction, coated. (After
Skelton 1971 © ASTM. Reprinted with permission.)
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Nonlinear elastic behavior - incremental analysis 459

fabric with load ratio (warp/filling) = 1:2. The biaxial behavior can
be understood by bearing in mind that in the heat set state the
crimp is unbalanced; the warp yarns are essentially straight and the
filling yarns are highly crimped. Thus, according to Skelton, the
extension of the highly crimped direction of the filling yarns brings
about an increase in crimp and reduction in width in the warp
direction, in spite of the applied load in that direction. Conse-
quently, the load-elongation curve shows negative elongation in the
warp direction at low load level.

The elastic and inelastic responses of coated fabrics have been
studied by Stubbs and Thomas (1984) and Stubbs (1988) using a
space truss model. The model is capable of accounting for arbitrary
loading sequences.

8.4 Nonlinear elastic behavior - incremental analysis
The flexible composites discussed in this section are also

composed of continuous fibers in an elastomeric matrix. Because of
the low shear modulus of the matrix and the highly anisotropic
nature (En»£22) of the composites, their effective elastic pro-
perties are very sensitive to the fiber orientation. The geometric
nonlinearity of the flexible composite is mainly caused by the
reorientation of fibers. The material nonlinearity is also pro-
nounced in elastomeric composites under large deformation.

In order to fully realize the ability of the elastomeric matrix
composite to sustain large deformation, Takahashi and Chou (1986),
Takahashi, Kuo and Chou (1986), Chou and Takahashi (1987), and
Takahashi, Yano, Kuo and Chou (1987) have predicted the
nonlinear constitutive relation of flexible composites with sinusoid-
ally shaped fibers based upon a step-wise incremental analysis and
the classical lamination theory. In this section, the work of Chou
and Takahashi is recapitulated. Both fiber geometric nonlinearity
and matrix material nonlinearity have been taken into account.
Because of the superposition of the infinitesimal solutions from
lamination theory, the limitation of this approach is obvious.
However, being a well established analytical technique in the
composites field, the lamination theory does provide a convenient
tool for discerning the basic characteristics of flexible composites.

Comparisons are made between the analytical predictions and
experimental data for tire cord/rubber, and glass and
Kevlar/silicone-elastomer flexible composite laminae. Since com-
posites with fibers in wavy form have been used as a model system,
the geometric aspects of curved fibers are examined first.
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460 Flexible composites

8.4.1 Geometry of wavy fibers
To demonstrate the effect of fiber extensibility from ge-

ometric design, a flexible composite composed of continuous fibers
with sinusoidal waviness in a ductile matrix is used as a model
system. Perfect bonding between the fibers and matrix is assumed.
The geometric relations among the wavelength (A), amplitude (a),
and fiber length (s) of a sinusoidally shaped fiber are identified first.
Then, two types of fiber arrangements are considered: the
iso-phase model, and the random-phase model. The fibers are
assumed to maintain the sinusoidal shape of which the geometric
parameters A, a and s vary with the increase of applied load.

The spatial position of a typical fiber in the xyz coordinates is
given by:

y = a sin -
2JTX

(8.13)

where the parameters a and A of the curved fiber are shown in Fig.

Fig. 8.12. Geometrical relationships between aIk, s/X and 0max, where
0max is the maximum angle between the fiber and x axis. (After Chou and
Takahashi 1987.)
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Nonlinear elastic behavior - incremental analysis 461

8.12. The angle 6 between the tangent to the fiber and x axis is a
function of x:

dy 2na 2JTX
tan 6 = — = ——cos— (8.14)

dx A A

The length of fiber, ds, between x and x + dx is

ds = V(ck2 + dy2) = dxJ\l + c• c o s 2 ( ^ ) l (8.15)

where

Obviously, the maximum value of tan 6 occurs at

(8.16)

\ A, /

The fiber length, s} between x = 0 and A is given by

A C2
r A C

s= \ds=— V ( l + c • cos2 P) dp (8.17)
J 2JT JO

By the use of an elliptic integral of the second kind,

1 I2 •3 I2 • 32 • 5

(8.18)
where

k2 = T+^ (8.19)

Equation (8.18) can be rewritten as

A y/(l-k2)

-Tilf-fijf--)
By the use of Taylor expansion, we have

s (k2\ (k2\2 Ik2

r l + 2(-) + 13(-) +90(¥

/ \ /A:2\5

+ 6 4 4 - + 4 7 0 8 . 5 - + • • • • ( 8 . 2 1 )
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462 Flexible composites

In the following analysis, terms up to (k2/S)5 in Eq. (8.21) are
taken into account, and the range of a/k is limited to below 5. The
relationship between a/k and s/k is shown in Fig. 8.12 where 0max is
the maximum angle between the fiber and the x axis. For example,
for 0max = 2O°, a l l = 0.058 and s/k = 1.032. The curved fiber
composite with a/k = 0.10 can be extended up to 9.23% of its
original length only by the straightening of the fiber, if the matrix
stiffness is negligible.

Two kinds of arrangements of the curved fibers in the composite
have been considered: the iso-phase model and random-phase
model. The iso-phase model is defined in Fig. 8.13, where all the
fibers are in the same phase in the x direction. The distance
between the fibers in the y direction is assumed to be constant. In
the random phase model (Fig. 8.14), the axial locations of sinusoid-
al shaped fibers do not assume any regular pattern.

8.4.2 Axial tensile behavior
The nonlinear tensile stress-strain behavior of flexible

composites containing wavy fibers has been investigated according
to the iso-phase and random-phase models. The lamination theory
described in Section 2.3 is the basis of this analysis. The applied
load is parallel to the axes of the sinusoidally shaped fibers.

8.4.2.1 Iso-phase model
The linear elastic stress-strain relations are derived first.

Consider Fig. 8.13; each volume element between x and x + dx is

Fig. 8.13. Iso-phase model. (After Chou and Takahashi 1987.)
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Non-linear elastic behavior — incremental analysis 463

approximated by a unidirectional straight fiber composite, in which
fibers are inclined at an angle 6 to the x axis, as defined by Eq.
(8.14). The transformation of coordinates between the composite
reference axes (xyz) and the fiber local axes (LTz) is given by:

L\ I cos 8 sine 0
T I = I -sin 8 cos 8 0

0 0 1
(8.22)

The positive direction of 6 is defined in Fig. 8.13. Under the
uniaxial tension, oxx, Eq. (2.17) gives

exx = Sn o XJ

Yxy =

(8.23)

It is interesting to note the stretching-shear coupling represented by
516. Figure 8.15 shows schematically the yxy induced by an applied
stress axx.

The average tensile strain of the iso-phase composite, exx, is

.-If* £„ dx (8.24)

Fig. 8.14. Random-phase model. (After Chou and Takahashi 1987.)
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464 Flexible composites

From Eqs. (8.14) and (8.23),

(8.25)

The effective Young's modulus of the iso-phase model in the x
direction is given by

E* = •
*-* rr —

(1 + c),3/2

1 c - (1 + c)3 / 2)s2 2 + ^ (2512 + 566)

(8.26)

In a small volume element between x and x + dx, the tensile
strain of the fiber along its axial direction is expressed by

EL = sxx cos2 6 + eyy sin
2 6 + yxy sin 0 cos 0 (8.27)

Substituting Eqs. (8.23) into Eq. (8.27) and integrating over s, the
average fiber axial strain is

et = - f eL ds = [(Sn - S12)F(*) + S12]CT
s =[

where

(8.28)

(8.29)

Fig. 8.15. Schematic illustration of the deformed shape of the iso-phase
model under uniaxial tension oxx. (After Chou and Takahashi 1987.)

Oxx
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Nonlinear elastic behavior - incremental analysis 465

Here, the relations among s, x and A, Eqs. (8.14)-(8.20), and the
elliptic integral are used in the derivations.

8.4.2.2 Random-phase model
In the case of the iso-phase model, the stretching-shear

coupling constants 516 and S26 do not vanish. This coupling effect
could be eliminated through the random positioning of wavy fibers
along the x-direction:

y=a sin(2^(x - d)/k) (8.30)

where d is the translation of the fiber in the x direction. A random
distribution of d ( 0<d<A) is assumed in this model. That is, in
each infinitesimal section, dx, fibers with any arbitrary
orientation angles exist with the same probability. Therefore, it is
assumed that exx is uniform throughout the sample under uniaxial
tension. The stress in a fiber segment depends on its orientation, 6:

2jta 2jta
— ^ tan 0 < ——
A A

By these assumptions, the classical lamination theory can again be
applied.

The stress-strain relations of a unidirectional lamina consisting of
straight fibers are given by Eq. (2.13) with the reduced stiffness Qtj

given by Eqs. (2.14). The transformed stress-strain relations of an
off-axis lamina, referring to the x-y coordinate system, are given by
Eqs. (2.15) and (2.16). The small element of the random-phase
composite situated between the sections at x and x + dx is treated as
a laminate with different orientations. The fibers with the orienta-
tion angle 6 which lies in the range defined by

^ ) (8.31)
\ A I

have the probability dx/A.
Therefore, the stress-strain relation of the laminate can be

rewritten as

(8.32)
\%J \C?6 C2*6 CtJ\yx

where

2mn{d)Ax (8.33)
A Jo
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The average stiffness constants of Eq. (8.33) are

Cn = ( 1 ^3 /2 [Gn(l + 0 + (G« + 2Q66)c

• - c

= (l + cf2 [{Qn + Ql2 ~ I \

= ( 1 H [(Gn + G22 - 2Q12 - 2G66)

C*6= C|6 = 0

Inversion of Eq. (8.32) leads to

(8.35)

66/ \^xy/

where
S*n = (C^CSs - C2*6

2)/D

52*2 = (CriC6*6-C1*62)/£>

(8.36)

— *"11*- 22 ̂ 6 6 <-'12»-'66

Following Eqs. (2.9), the Young's modulus and Poisson's ratio in
the x direction of the random-phase model are given by:

E*xx=\IS*n

v * _ c*/c* (8-37)

If the random-phase model is subjected to uniaxial tension, axx,
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the strain components are

xx (8.38)

The strain of the fiber in its axial direction is calculated by
substituting Eqs. (8.38) into Eq. (8.27) and averaging over s (Eq.
(8.28))

eyy (8.39)

where F(k) is given by Eq. (8.29).

8.4.2.3 Nonlinear tensile stress-strain behavior
The nonlinear axial (X direction) tensile stress-strain

behavior of the flexible composite is examined using the stepwise
incremental analysis of Petit and Waddoups (1969). Consider an
incremental tensile strain Aexx, applied on either the iso-phase or
random-phase model. Here, Aexx = A///; A/ and / are the
incremental length and the current length, respectively. Using the
initial Young's modulus Exx, the first stress increment, Aoxxy is
calculated by the linear elastic relation:

Aoxx = E*xxAexx (8.40)

where the expressions of Exx are given by Eqs. (8.26) and (8.37) for
the iso-phase and random-phase models, respectively. The nth
stress increment is added to the previous stress state after n - \
increments to determine the current total stress:

(a = (On-i + (AO« (8.41)

For the iso-phase model, the average tensile strain increment of
the fiber along its axial direction, Ae£, is obtained by substituting
Eq. (8.40) into Eq. (8.28):

Aet = [(Su - S12)F(k) + 512] Aaxx (8.42)

For the random-phase model, the transverse strain increment, Aeyy,
is determined from Aexx and v*y:

Aeyy = -v*xyAexx (8.43)

Then, the tensile strain increment of the fiber is calculated by
substituting Aexx and Aeyy into Eq. (8.39):

Ae*L = (&exx - Aeyy)F(k) + Aeyy (8.44)
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468 Flexible composites

The total strain, referring to the current specimen length, after n
increments is

(8-45)
;=i /=!w/

Replacing A/ by the infinitesimal increment, dl, it follows:

f'd/ . /f'd/ /
exx = — = In y = ln(l + exx) (8.46)

Here, exx is the tensile strain referred to the initial specimen length

' o

(8.47)

In the range of large strain, the use of exx is more convenient than
the summation of Aexx. From Eq. (8.46)

exx = exp(exx) - 1 (8.48)

Then, the total strain, after the nth increment, in the axial direction
(exx), transverse direction (eyy) and the fiber (el) are given by:

(£,,)„ = exp[2 (AO,1 - 1 (8.49)
L/=l J

(eyy)n = e x p [ i (Aew),1 - 1 (8.50)
L/=l J

l (8.51)

Finally, the change of fiber shape under loading needs to be taken
into account. Due to the tensile loading in the x direction, the
wavelength of the curved fiber is changed to

X = Xo(l + exx) (8.52)

where A and Ao are, respectively, the current and initial values of
the wavelength, and the total strain exx is given by Eq. (8.49). The
current value of the fiber length is

s = so(l + et) (8.53)

where so is the initial fiber length and E£ is the total fiber strain
given by Eq. (8.51).
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Nonlinear elastic behavior - incremental analysis 469

In order to determine the shape of the fiber, it is assumed that the
fiber maintains a sinusoidal waviness during deformation while
varying its amplitude (a) and wavelength (A). The current value of
the amplitude, a, can be determined by Fig. 8.12 from the given
current values of A and s. The values of k2 = c/(l + c), c =
(ijtalX)2, Exx and v*y after the nth step are determined from the
current values of A and a, and these values are used in the (n + l)th
step of the incremental analysis. Eqs. (8.41) and (8.49) give the
uniaxial tensile stress-strain relation of the flexible composite.

The elastic constants of fibers (Chamis 1984) and matrices
(Modern Plastics Encyclopedia 1983) used in the numerical calcula-
tions of Chou and Takahashi (1987) are shown in Table 8.1. Linear
elastic stress-strain relations are assumed for glass and Kevlar
fibers. Rubber elasticity (James and Guth 1943; Treloar 1973) is
assumed for PBT and the other elastomeric polymers:

(8.54)

where ££, is the initial Young's modulus of the matrix, and a is the
extension ratio:

a=l + exx (8.55)

The secant Young's modulus of the matrix, £m, is determined from
the current tensile strain, exxy (Eqs. (8.49) and (8.55)):

£m = -r^- = ̂ r ( l + A) (8-56)
dexx 3 V a

Numerical examples of the stress-strain relations predicted by the
incremental analysis are shown in Figs. 8.16 and 8.17. The results
indicate that Kevlar is less effective than glass fiber in contributing

Table 8.1. Elastic constants and elongations (Chou and Takahashi 1987)

Glass
fiber

Kevlar
PBT

matrix

EL ET

(GPa) (GPa)

72.52

151.6 4.13
2.156

ELET

(GPa)

29.7

2.89
0.77

0.22

0.35 0.35
0.4

e b ( % )

4

3.5
50-300

Isotropic relation G = E/2(l + v) is assumed.
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Fig. 8.16. Comparisons of the effects of glass and Kevlar fibers on the
tensile stress (axx)-strmn (exx) curves for an iso-phase composite at
various £^. Rubber elasticity is assumed for the matrix. Crosses (x) show
average fiber axial tensile strain; e* reaches 4% and 3.5% for glass and
Kevlar fibers, respectively. vm = 0.4, Vf = 50%, fl/A = 0.1. (After Chou
and Takahashi 1987.)
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Fig. 8.17. Tensile stress (a^J-strain (exx) curves of Kevlar/PBT polymer
composites predicted by using the iso-phase (solid line) and random-phase
(dotted line) models. £ ° = l G P a , vm = 0.4 and Vf=50%. Crosses (x)
show average fiber axial tensile strain; £* reaches 3.5%. (After Chou and
Takahashi 1987.)
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Nonlinear elastic behavior - incremental analysis 471

to the stiffness of curved fiber composites, because the transverse
Young's modulus of Kevlar is lower than that of glass. After the
wavy fibers are stretched, however, Kevlar becomes increasingly
more effective with regard to stiffness and strength (Fig. 8.16). For
a given wavy fiber composite, the random-phase model predicts
higher Young's modulus and lower elongation than those of the
iso-phase model (Fig. 8.17).

8.4.3 Transverse tensile behavior
The transverse tensile behavior of wavy fiber composites

has been analyzed for both iso-phase and random-phase models by
Kuo, Takahashi and Chou (1988). The lamination theory is again
the basis of the incremental analysis.

8.4.3.1 lso-phase model
Consider the small volume element situated between y and

y + Ay in the iso-phase model as shown in Fig. 8.13. It is assumed
that the transverse stress oyy is uniformly distributed along one
wavelength A. Then an element of the size dy dx can be treated as
an off-axis unidirectional lamina. From Eq. (2.17) and plane stress
condition, the strain components in this element are

Exx — d\2Oyy yy = S22oyy y xy = S26oyy (8.57)

Then the transverse strain averaged over the wavelength of the
iso-phase model is

eyy (k (8.58)

The effective Young's modulus in the y direction is

(l + c)

+ cf2 - 1 - | ) s n + (l + C-)s22 + ̂  (2512 + S66)

(8.59)

Following the approach of Section 8.4.2.1, the average tensile strain
along the fibers due to transverse tension is obtained by substituting
Eqs. (8.57) into Eq. (8.27) and averaging over the length s:

+ Sn]ayy (8.60)

F(k) is given by Eq. (8.29).
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Kuo, Takahashi and Chou (1988) also analyzed the transverse
tensile behavior based upon the constant strain assumption. This
assumption is validated by the observation during transverse tension
experiments that the elongation of the specimen is uniform through-
out its width away from the specimen ends. Although the
constitutive relations are not of the same form for constant stress
and constant strain analyses, the numerical calculations in Kuo,
Takahashi and Chou (1988) yield the same result. This is the direct
consequence of the approaches, namely the stress (or strain) is
considered in the average sense along the x direction.

8.4.3.2 Random-phase model
The transverse Young's modulus and minor Poisson's ratios

are given by

E*vv = l/S*2*

* _ _ o * / n *
Vyx — >J12/ J 22

(8.61)

Fig. 8.18. Comparisons between theoretical predictions and experimental
data of transverse tension of an iso-phase model. Specimen initial
a/k = 0.05-0.07 and V{= 1.337% for Thornel-300/silicone elastomer com-
posites. (After Kuo, Takahashi and Chou 1988.)
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Under the transverse stress, oyyy the strain components are

£xx = -(v*x/ E;y)oyy

eyy = oyy/Eyy (8.62)

Again, the average tensile strain along the fiber is obtained from
Eq. (8.39).

Figure 8.18 depicts the comparison between theoretical curves
and experimental data of an iso-phase model under transverse
tension. The experimental material system reported by Kuo,
Takahashi and Chou (1988) is based upon Sylgard 184 silicone
elastomer reinforced with Thornel-300 carbon fiber. A loose fiber
bundle contains 1000 filaments, with a filament diameter of 7 jum.
The specimen fabrication technique follows that given by Luo and
Chou (1988). The initial aIA values of the specimens are in the
range of 0.05-0.07. The fiber volume fraction is very low, about
1.34%.
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