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Short-fiber composites

4.1 Introduction
Composites reinforced with discontinuous fibers are catego-

rized here as short-fiber composites. The fiber aspect ratio
(length/diameter = I Id) is often used as a measurement of fiber
relative length. Depending upon the dispersion of fibers in the
matrix, the relevant d values may include those of the filaments,
strands, rovings, as well as other forms of fiber bundles. Although
discontinuous fibers such as whiskers have been used to reinforce
metals and ceramics, the majority of short-fiber composites are
based upon polymeric matrices. Discontinuous fiber-reinforced
plastics are attractive in their versatility in properties and relatively
low fabrication costs. The concern of the rapid depletion of world
resources in metals and the search for energy-efficient materials has
contributed to the increasing interest in composite materials.
Discontinuous fiber-reinforced plastics will constitute a major por-
tion of the demand of composites in automotive, marine and
aeronautic applications.

A discontinuous fiber composite usually consists of relatively
short, variable length, and imperfectly aligned fibers distributed in a
continuous-phase matrix. In polymeric composites the fibers are
mostly glass, although carbon and aramid are also used; non-fibrous
fillers are often added. The orientation of the fibers depends upon
the processing conditions employed and may vary from random
in-plane and partially aligned to approximately uniaxial.

The understanding of the behavior of short-fiber composites is
complicated by the non-uniformity in fiber length and orientation as
well as the interaction between the fiber and matrix at fiber ends
(Chou and Kelly 1976, 1980). These factors are examined in the
following discussions on the physical and mechanical properties of
short-fiber composites.

4.2 Load transfer
Various attempts have been made to evaluate the stress

transfer from the matrix to the fiber in a short-fiber composite.
Analyses based upon the shear-lag theory, elasticity theory, and
finite element method have been performed. Considerations re-
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170 Short-fiber composites

garding fiber aspect ratio (Fukuda and Kawata 1974), the effects of
bonded ends and loose ends as well as the geometric shapes of fiber
ends (Burgel, Perry and Schneider 1970), and the distribution of
radial and circumferential stresses near the interface at fiber ends
(Haener and Ashbaugh 1967; Carrara and McGarry 1968) have
been made. Experimental measurements of interfacial strength have
been made using a single fiber pull out test (Favre and Perrin 1972),
a fiber fragmentation test (Wadsworth and Spilling 1968), a
microtension test (Miller, Muri and Rebenfeld 1987) and a micro-
compression test (Mandell, Grande, Tsiang and McGarry 1986).
(Also see Piggott 1987 and Piggott and Dai 1988.)

Although the shear-lag approach is not as rigorous as the other
methods, it does provide a simplistic analysis for gaining some
insights into a complex problem and it will be employed in the
following. The fiber axial and interfacial stresses are discussed with
or without the consideration of interactions among neighboring
short fibers.

4.2.1 A single short fiber
Cox (1952) first dealt with the problem of a single short

fiber embedded in an infinite matrix material. In this essentially
one-dimensional approach the load on the fiber is considered to be
built up entirely due to the generation of shear stress in the matrix.
Under the assumptions of shear-lag analysis no tensile stress is
permitted to transmit across a fiber end.

Consider a long cylindrical composite of radius R which contains
a fiber of radius ro and length / along the cylinder axis. The
composite as a whole is subjected to a normal strain e in the
direction of the fiber. The assumption of the shear-lag analysis leads
to the following relation:

^ = H(u-v) (4.1)

where u(x) is the displacement of the fiber at the point x\ v(x) is
the matrix displacement; H is a constant; and P is the fiber axial
force. The force-displacement relation of the fiber is

P = EtAt^ (4.2)

where E{ and Af denote the fiber axial Young's modulus and cross-
sectional area, respectively. Substituting Eq. (4.2) and du/djc =
constant = e into Eq. (4.1), and applying the boundary conditions
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Load transfer 111

P = 0 at x =0 and /, the fiber axial stress, crf, and interfacial shear
stress, r, are obtained:

where

T =

/5 =

cosh/3(//2-jt)-
cosh (pi/2) J

sinhp(l/2-x)
(4.3)

Here, Gm and Ef are the matrix shear modulus and fiber Young's
modulus, respectively. Figure 4.1 shows schematically the variation
of Of and r along the length of the fiber. The largest axial stress in
the fiber occurs at the center and it reaches Efe for a very long fiber.
The magnitude of T reaches its maximum at the fiber ends, i.e., at
x = 0 and /, and it vanishes at the middle point of the fiber.

4.2.2 Fiber-fiber interactions
The interactions among fibers in a short-fiber composite are

more complex than those in a continuous fiber composite. This is
because the axial load carried by a short fiber has to be transferred
to the neighboring fibers at locations near its ends. To illustrate the
load transfer in a short-fiber composite, the work of Fukuda and
Chou (1981a) is recapitulated in the following. This approach,
based upon the shear-lag model, introduces axial load into the

Fig. 4.1. The variation of of and r along a short fiber.
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172 Short-fiber composites

matrix, and the fiber ends are assumed to be bonded to the matrix.
These assumptions of the modified shear-lag analysis are valid if the
bonding between the fiber and matrix at the fiber end is perfect such
as the cases often observed in metal matrix composites and in
polymeric matrix composites under compression.

The two-dimensional model for analysis is given in Fig. 4.2,
where the hatched parts of the matrix sustain axial load and behave
as if they are fibers with a Young's modulus different from the actual
fibers. The fiber diameter and matrix layer width are denoted by d
and h, respectively. A representative region in Fig. 4.2 containing
fiber ends is divided into n parts along the fiber direction x. Fibers
in this region are numbered from / = 1 to / = ra. Figure 4.3 shows a
free body diagram of a fiber and the adjacent matrix. The
equilibrium of forces in the x direction gives

dx

dPi, i = 2, . . . ,m-\) (4.4)

dPm)

dx-

Fig. 4.2. The general model of analyses,
Chou 1981a).
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Load transfer 173

where Pti and R,Y are, respectively, the axial force of the ith fiber and
the interfacial shear stress in the yth region. The condition of linear
elastic deformation leads to the following stress-strain relations:

dx
(4.5)

where E, G and u denote the Young's modulus of the fiber, shear
modulus of the matrix, and displacement of the fiber, respectively.
The subscripts / and y indicate the ith fiber and yth region as shown
in Fig. 4.2. Thus, Etj is either E{ (Young's modulus of the fiber) or
Em (Young's modulus of the matrix).

The above general formulation is now applied to a model
composite shown in Fig. 4.4. This model is composed of a row of
short fibers of equal length and two surrounding long fibers. This
simple model is adopted for demonstrating the load transfer of short

Fig. 4.3. Free body diagram of the ith fiber. (After Fukuda and Chou
1981a.)
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174 Short-fiber composites

fibers. Given i (=1 and 2) and; (=1 and 2) as shown in Fig. 4.4, the
following general solutions of u^ and Ptj are obtained from Eqs.
(4.4) and (4.5):

un =

P2l = £ f{S i - U i
(4.6)

M22 = A2

where

~

£ = */<*, atj = EvhlGd

k = EjEf

aya2)

l1( Bly Cly Dlf A2, B2, C2 and D2 are unknown constants.
The axial force and boundary conditions of the model of Fig. 4.4

are
(i) symmetry conditions

=e, (4-7)

Fig. 4.4. An example of a three-row fiber model. (After Fukuda and Chou
1981a.)
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Load transfer 175

(ii) continuity conditions

(Mll)§ = §0 = (M l2)i = §0, (W2l)§ = §o = (M22)i = §o.

(Ai)g=to
 = (^12)5=?,,, (^2i)g=go

 = (^22)5=5,,

(ii) equilibrium of force

Pn + 2P21 = 3PO, P12 + 2P22 = 3FO (4.9)

where 3FO denotes the total applied load, and §o and ^ are given in
Fig. 4.4. The above conditions provide nine equations, of which
eight are independent, to determine the eight integral constants of
Eqs. (4.6). Finally, the axial load distribution becomes:

h A ~ k)
 2 ( ^ - go) cosh At§Pn/Po 1

it

P2JP0 = 1 + Xi{\~k) sinh A2(|, - | o ) cosh A,§

(4.10)

I 1 + 2 A z ( V ̂ ) sinh Al?o cosh

3 f A;A n k}

P22/P0 = YTk\l — I F s i n h k^°cosh A z (^ " §

where

F = kk2 cosh 2(gi g o) s m n i ? o
2 + A:

+ ^ ~ Ai sinh A2(gx - go) cosh A ^

The displacement field can also be obtained with the given
boundary conditions.

Limiting cases such as a single short fiber, a semi-infinite fiber and
two semi-infinite fibers separated by a gap can be deduced from Fig.
4.4. Furthermore, the solution for the case where no load is
transferred at fiber ends can be obtained by setting k = 0 in Eqs.
(4.10). Figure 4.5 shows the axial load distributions, for several
Ef/Em values, in the continuous and discontinuous fibers. Fukuda
and Chou (1981a) also concluded that the axial load distributions
near the fiber ends are essentially the same for fibers of different
length for given hid and Ef/Em values. This is demonstrated in Fig.
4.6 for the fiber configuration of Fig. 4.4. This finding is consistent
with Rosen's (1964) definition of ineffective length (Section 3.4.6.1)
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176 Short-fiber composites

which is independent of the actual fiber length (Chen 1971; Fukuda
and Kawata 1977). Fukuda and Chou (1981b) have also considered
the effects of load transfer at fiber ends and plastic deformation in
the matrix.

4.3 Elastic properties
The elastic behavior of short-fiber composites has been

extensively studied. It is convenient to subdivide short-fiber com-
posites into three categories, according to their fiber orientations,

Fig. 4.5. Effect of Ef/Em on fiber axial load distribution, for h/d = l,
%Jd = 100, %Jd = 120. go and | t are defined in Fig. 4.4. (a) Continuous
fiber, and (b) discontinuous fiber. (After Fukuda and Chou 1981a.)
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Fig. 4.6. Axial load distribution for fiber 1, and definition of fiber
ineffective length. h/d = l, Ef/Em = 20, and 6 = ineffective length. (After
Fukuda and Chou 1981a.)
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Elastic properties 111

for the purpose of stiffness discussions: (1) unidirectionally aligned
short fibers, (2) partially aligned short fibers, and (3) random short
fibers.

4.3.1 Unidirectionally aligned short-fiber composites
For unidirectionally aligned short-fiber composites, the

focus is on the effect of fiber length. Two major approaches are
presented for the prediction of elastic moduli of aligned short-fiber
composites. The first one is based upon a self-consistent model and
the second one gives the upper and lower bounds of elastic moduli.
The validity of some semi-empirical and numerical solutions is also
examined.

4.3.1.1 Shear-lag analysis
Using Cox's fiber stress expression of Eqs. (4.3), the

average fiber stress is

Based upon Eq. (4.11), the effective axial Young's modulus of the
short-fiber composite is approximated by

-Vf) (4.12)

where

and it represents a reduction of the composite elastic modulus due
to the finite length of the fiber.

4.3.1.2 Self-consistent method
The self-consistent method is a rigorous approach based

upon the assumptions that the fiber and matrix materials are
isotropic, homogeneous and linearly elastic, the fiber-matrix inter-
facial bonding is perfect, and the composite with aligned fibers is
macroscopically homogeneous and transversely isotropic. As re-
viewed by Chamis and Sendeckyj (1968), there exist two basic
variants of the self-consistent approach, namely the method by Hill
(1965a&b) and that used by Kilchinskii (1965, 1966) and Hermans
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178 Short-fiber composites

(1967). Hill followed the method proposed by Kroner (1958) for
aggregates of crystals and modeled the composite as a single long
fiber embedded in an unbounded homogeneous medium which is
macroscopically indistinguishable from the composite. The model of
Kilchinskii and Hermans, on the other hand, consists of three
concentric cylinders: the innermost cylinder has the elastic pro-
perties of the fiber, the middle one simulates the pure matrix
material, and the outer one is unbounded and has the properties of
the composite. Hill has shown that the prediction of the self-
consistent method is more reliable at low and intermediate fiber
contents.

The approach of Hill has been adopted by Chou, Nomura and
Taya (1980) to treat the stiffness of short-fiber composites. In their
work, a single inclusion is assumed to be embedded in a continuous
and homogeneous medium (see Hill 1952; Eshelby 1957; Hashin
and Rosen 1964; Mura 1982). The inclusion has the elastic
properties of a short fiber while the surrounding material possesses
the properties of the composite. It is the unknown elastic property
of the composite that needs to be found. The work of Chou et al.
does not restrict the number of component phases in the composite
and is hence applicable to hybrid composites (Chapter 5). Numeri-
cal examples of this self-consistent approach are given for the
special case of a binary system of one kind of fiber in a matrix.
Figure 4.7 shows the variation of longitudinal modulus En of a
glass/epoxy system with inclusion volume fraction V{ at three
different inclusion aspect ratios {lid). For lid =100 the self-
consistent theory predicts that the inclusions behave like continuous
fibers and the rule-of-mixtures is valid. Also shown in Fig. 4.7 are
the predictions of the semi-empirical relation of Halpin and Tsai
(see Halpin 1984). The discrepancy between the self-consistent
theory and the Halpin-Tsai equation is most pronounced at
intermediate values of the aspect ratio. Comparisons of the self-
consistent approach with experiments are given in Section 4.3.2,
where the effect of fiber misorientation is taken into account.

The predictions of elastic stiffness for particulate-filled composites
have been performed by a number of investigators, including
Kerner (1956), van der Poel (1958), Hashin and Shtrikman (1963)
and Budiansky (1965). The self-consistent theory reduces to
Budiansky's solution for the special case of l/d = 1.

4.3.1.3 Bound approach
Nomura and Chou (1984) also adopted an alternate ap-

proach to short-fiber composite effective moduli by deriving their
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Elastic properties 179

upper and lower bounds. This approach was motivated by the work
of Eshekby (1961), Hashin (1965a), Kroner (1967, 1972, 1977),
Dederichs and Zeller (1973), Zeller and Dederichs (1973), Wu and
McCullough (1977), and Christensen (1979). Nomura and Chou
adopted a perturbation expansion of the composite local strain
based upon the elastic Green's function. The effective elastic
constants can be expressed in infinite series form. When the series
are written in terms of the stiffness constants, the first term is the
well known Voigt average (1889). The first term of the series
represents the Reuss average (1929) when the expression is written
in terms of the compliance constants. Based upon the assumptions
that the short fibers are modeled as aligned ellipsoidal inclusions
and distributed in the matrix material in a statistically homogeneous
manner, Nomura and Chou have evaluated the series expressions of
the elastic constants up to the third-order term. A variational
treatment has been utilized to derive the bounds of the effective
elastic moduli of the unidirectional short-fiber composite.

Fig. 4.7. The variation of Ell/Em with V{ at various l/d values for
EjEm = 20, vf = 0.3 and vm = 0.35. self-consistent approach;
Halpin-Tsai equation. (After Chou, Nomura and Taya 1980).
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180 Short-fiber composites

Figure 4.8 illustrates the variation of the axial Young's modulus En

(normalized by the matrix modulus Em) with fiber volume fraction
Vf at fiber aspect ratios IId = 1,5 and °°, for glass/epoxy compos-
ites. The solid lines indicate the upper and lower bound predictions;
the predictions of the self-consistent model of Chou, Nomura and
Taya (1980) are indicated by broken lines. The self-consistent
model prediction is close to the lower bound at low fiber volume
fraction and approaches the upper bound at high fiber volume
fraction. The gap between the bounds at a fixed fiber volume
fraction narrows as the fiber aspect ratio increases. For long
continuous fibers, the bound approach and the self-consistent model
all predict the rule-of-mixtures relation. Although fiber volume
fraction in the full range of 0 to 1 is used in Fig. 4.8, it is understood
that the maximum attainable fiber volume fraction in a composite is
determined by the fiber geometric packing and fiber cross-sectional
shape.

Figure 4.9 shows the comparison of the bound approach with
Hashin's (1965a) results for the effective axial shear modulus Gl2 of
continuous fiber composites. The theory of Nomura and Chou
(1984) predicts tighter bounds than those of Hashin. This is due to

Fig. 4.8. The variation of En/Em with Vf for £f/£m = 20, vm = 0.4 and
vf = 0.3 bound approach; self-consistent model. (After
Nomura and Chou 1984).
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Elastic properties 181

the fact that Hashin's result is equivalent to the evaluation of the
series expression of the elastic constants up to the second-order
term. The bounds of effective elastic moduli of multi-phase systems
such as hybrid composites can also be examined by this approach.

4.3.1.4 Halpin—Tsai equation
The Halpin-Tsai equation (see Halpin 1984) was obtained

by reducing Hermans' solution (1967) to a simpler analytical form
while the filament geometries are taken into account through the
use of some empirical factors. The pertinent relations are

+

(4.14)

Fig. 4.9. The variation of G12/Gm with Vf for Ef/Em = 20, vm = 0.4,
vf = 0.3 and l/d—>*>. bound approach; self-consistent model;

bounds of Hashin and Shtrikman. (After Nomura and Chou
1984).
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182 Short-fiber composites

where

P = En, E22, G12 or G23

Pf = E{ (for E n and E22) or Gf (for G12 and G23)

Pm = Em (for E u and £22) or Gm (for G12 and G23)

Other solutions of effective elastic constants can be found from,
for instance, the numerical work of Conway and Chang (1971), and
Chang, Conway and Weaver (1972). Experimental data on short-
fiber composite elastic properties have been reported by Lees
(1968), and Blumentritt, Vu and Cooper (1974).

4.3.2 Partially aligned short-fiber composites
It is usually desirable to orient the fibers for enhanced

stiffness and strength properties. However, perfect alignment of
short fibers in a composite is normally very difficult to achieve.
Partial fiber alignment is typical in, for example, injection molded
composites. Several different approaches have been adopted by
researchers to predict the stiffness of short-fiber composites with
biassed fiber orientation. The following discussions of these ap-
proaches begin with a brief summary of the original treatments on
misaligned continuous fibers.

The first attempt in examining the effect of fiber orientation is
attributed to the work of Cox (1952), who studied the elastic
properties of paper and other fibrous materials. Cox's model is
concerned with continuous fibers of negligible thickness with
orientations either random or defined by some distribution rules.
The contribution of matrix to stiffness is ignored. It is also assumed
in this model that under load the fibers do not slide across each
other at the points of intersection (see Cook 1968).

Cook (1968) provides the elastic properties of continuous fiber
composites in three dimensions. The systems of misorientation
examined by Cook include the axially symmetric type, a fan shaped
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Elastic properties 183

array and systems of crossed fibers. Fiber orientation distribution
functions are generated analytically to describe the characteristics of
these systems. A case of most practical significance is the axially
symmetric fiber distribution, which is also termed the witch's broom
by Cook. The degree of fiber scatter from perfect alignment is
described by the root-mean-square deviation of orientation from the
symmetry axis

run

r](6)e2sin Ode (4.15)•-r
Jowhere r\{6) is the fiber orientation distribution function. According

to Cook, for a composite such as glass fibers in a polymer resin
(VfEf/VmEm~20) the orientation effect can be minimized if the
fibers are sufficiently long and, hence, a high degree of orientation
can be achieved. On the other hand, for whisker reinforced
composites the reduction in stiffness may be significant if the fibers
are short and alignment becomes a difficult technical problem. Cook
reported that for a silicon nitride whisker reinforced epoxy resin
composite examined, stiffness reduction of 4-19% could occur for
the root-mean-square scatter between 4.5° and 10°.

Fukuda and Kawata (1974) considered the Young's modulus of
short-fiber composites and took into consideration variations in
both fiber length and orientation. The analysis is based upon the
plane stress elasticity solution of load transfer between the fiber and
matrix in a single short-fiber model, and the assumption of
negligible interactions between neighboring fibers. The prediction
of the composite Young's modulus is given in the general form

Ec G CeEM + EM- Vf) (4.16)

The factors Cz and Ce reflect the effects of fiber length and
orientation distributions, respectively. Both Q and Ce are unity in
the case of aligned continuous fibers.

Figure 4.10 shows the variations of Q with the factor
(l/d)(Ef/Em) where IId denotes the fiber aspect ratio. The open and
solid circles in Fig. 4.10 are experimental values of Anderson and
Lavengood (1968) for glass/epoxy and boron/epoxy, respectively.
The solid line is obtained from a two-dimensional analysis and the
broken line is the modified result when the fiber circular cross-
sectional shape is taken into account. Figure 4.11 shows the
variations of Ce with r](6), which is the probability density of fibers
at the orientation angle 6. Fukuda and Kawata assume that
Jo/2 Tj(O) dd = 1. Three forms of rj(6) are assumed: rectangular,
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184 Short-fiber composites

sinusoidal and triangular. 6O defines the range of fiber angular
distribution. Comparisons of the predictions of Eq. (4.16) with the
measured modulus of an ar-SiC whisker/aluminum composite
(Schierding and Deex 1969) are favorable.

The above discussions have centered upon either continuous
fibers or short fibers in planar arrangement. A treatment of the
three-dimensional fiber orientation effect has been developed by
Chou and Nomura (1981). They considered an axially symmetrical
fiber orientation distribution. Referring to Fig. 4.12, the general
orientation of a short fiber can be considered as derived from the

Fig. 4.10. Relation between C, and (l/d)/(Ef/Em). (After Fukuda and
Kawata 1974).
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Elastic properties 185

original position along the z axis by two rotations. The cor-
responding rotational angles are cp and Q, as indicated in Fig. 4.12.
The transformation matrix, from the original coordinate system to
the current system, is defined as

sin 6 cos cp sin 6 sin cp cos 6

cos 6 cos (p cos 6 sin q? —sin 6

—sin (p cos (p 0
(4.17)

Let the bold-faced letter indicate a tensor. The transformation of an
elastic stiffness tensor C (or compliance tensor S) of a unidirection-
ally aligned short-fiber composite can be performed through the
application of the T matrix and the resulting tensor is denoted by C
(or S')« The effective elastic tensor of a misaligned short-fiber
composite is then given by

Z" = jci(d,cp)rl(e,cp)dA

= [ dcp j C'(0, cp)r)(0, cp) sm dd6
Jo Jo

(4.18)

Here, rj(6y cp) in the above equation is the probability density
function of fiber orientation determined from experiments. The
integration is carried out over the surface area of a unit sphere to
include all the fibers in the composite.

Fig. 4.12. Reference coordinate axes.
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186 Short-fiber composites

Two cases of fiber orientation distribution are of practical
importance. In the case of injection molded objects, fiber orienta-
tion distribution is independent of the angle cp if the direction of
flow is along the z axis, and rj = rj(6). The composite in this case is
isotropic in the plane transverse to the z axis, and C" is independ-
ent of cp. In sheet molding compounds, it is reasonable to assume
that the short fibers all lie on the xz plane and the problem is
two-dimensional. The transformation matrix is

T =

sin 0 0 cos 6

cos 6 0 —sin 6

0 1 0
(4.19)

Equation (4.18) is then reduced to

C" = 2n \ C'(d)r)(6)sin0d6 (4.20)

It has been pointed out in the variational treatment of Section
4.3.1 that the first term in the series expression of composite
stiffness constant or compliance constant gives the well known
Voigt's upper bound or Reuss' lower bound. The averaging
principles of Voigt and Reuss were first used to predict the elastic
properties of a polycrystalline aggregate in terms of the basic
properties of a single crystal and its orientation in the aggregate.
The Voigt and Reuss averages are equivalent to assuming that the
single crystals are arrayed in parallel and in series, respectively.
These concepts of Voigt and Reuss averages are also useful in
dealing with misaligned composites. They can be expressed in the
general forms for the stiffness constant C and compliance constant S
as

<C>= f C(r, 0, <p)dv/\ dV
Jv I Jv

(S)= I S(r, 6, <p)dv/\ dV
Jv I Jv

(4.21)

where, in general, C and S are functions of position (r, 6, cp) as
shown in Fig. 4.12. Furthermore, it can be shown that in the Voigt
and Reuss averaging processes for small fiber misalignment there is
negligible difference between the model involving a distribution of
fiber orientations and the model in which all the fibers are aligned
along the direction of the root-mean-square average angle (see
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Elastic properties 187

Knibbs and Morris 1974). The treatment of effective elastic moduli
for partially aligned short-fiber composites can also be achieved
through the laminated plate analogue, which is discussed in Section
4.3.3.

4.3.3 Random short-fiber composites
The treatment of Cox (1952) discussed in Section 4.3.2

deals with the stiffness of continuous fibers distributed in a plane.
For completely random fiber distribution, Cox's results are reduced
to the simple forms

Ec = EfV{/3

Gc = EtVf/8 (4.22)

where Ec, Gc and vc are, respectively, the Young's modulus, shear
modulus and Poisson's ratio of the composite. The random distribu-
tion of fibers imparts isotropic properties of the composite at the
macroscopic scale. Hence, Ec, Gc and vc satisfy the relationship for
isotropic materials:

Gc = £c/2(l + vc) (4.23)

The contribution of matrix material is neglected in this treatment
but has been taken into account in the works of Arridge (1963), and
Pakdemirli and Williams (1969), who also derived approximate
expressions for Ec and Gc.

Nielsen and Chen (1968) proposed that the in-plane Young's
modulus of a random composite with continuous fibers can be
approximated by an averaging process. Basic to this process is the
knowledge of the elastic moduli of a unidirectional fiber composite
measured at an angle 6 from the fiber direction (see Eqs. 2.19). The
effective in-plane Young's modulus of a random composite, for
example, is then given by

Jl Jo
E(6)dd (4.24)

In applying Eq. (4.24), the fiber volume fraction of the composite
used for calculating E(6) should be the same as that in the random
composite. It should also be noted that E(6) is not a component of
a tensor. Hence, the averaging process defined in Eq. (4.24) bears
no relation to the Voigt and Reuss averages discussed in Section
4.3.2.
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188 Short-fiber composites

The elastic moduli of a composite where the short fibers exhibit
in-plane random orientation can also be examined by the method of
a laminate analogue (Halpin 1969; Halpin and Pagano 1969;
Halpin, Jerine and Whitney 1971). The following discussions are
based upon reviews by Kardos (1973) and Nicolais (1975). In
the laminate analogue the mechanical response of the composite is
simulated by that of a laminate composed of unidirectional short
fibers (Kardos 1973). The laminate is symmetric about the mid-

Fig. 4.13. (a) Laminate analogue of a composite with random in-plane
orientation of short fibers. The quasi-isotropic laminate has the [+45°/ —
45°/90°/0°]s configuration, (b) Dependence of tensile modulus on volume
fraction of 3.2 mm E-glass/polycarbonate composites for random in-plane
(dashed curve) and biassed (solid curves) fiber orientations. is
quasi-isotropic calculation; weighted distribution calculations; O, •
experimental data. Fiber aspect ratio is about 313. (After Halpin, Jerine
and Whitney 1971).

Quasi-isotropic laminate

Random in-plane orientation
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Elastic properties 189

plane and has the same number of +6 and —0 orientation plies
(Fig. 4.13a).

The concept of the laminate analogue is outlined in the following.
First, the four independent elastic moduli Eu, E22y v12 and G12 of a
unidirectional short-fiber lamina can be derived from the fiber and
matrix properties based upon the self-consistent model, the varia-
tional method, or the Halpin-Tsai equation. The stiffness matrix
components Qtj are given by Eqs. (2.14). The effective engineering
stiffness constants En E22, v21 and G12 for the aligned short-fiber
lamina can be expressed in terms of the g,7's as given in Table 2.1.

The stiffness matrix components Qtj for a unidirectional lamina
oriented at an angle 0 with respect to the x axis are given in Eqs.
(2.16). They can also be written in the following alternate forms:

Qn = UX + U2 cos 20 + U3 cos 40
Q22 =Ul-U2 cos 20 + f/3 cos 40
<212=£/4-£/3cos40
Q66=£/5-£/3cos40
Gi6=2C/isin20+ {/3sin40
Q26 = \u2 sin 26 - U3 sin 46

Fig. 4.13. (cont.).

(4.25)

a*
o

40

30

20

15

10

Random
Non-random

_L 1

0 0.1

(b)

0.2 0.3 0.4 0.5 0.6

Cambridge Books Online © Cambridge University Press, 2010
Downloaded from Cambridge Books Online by IP 218.1.68.132 on Mon Apr 14 03:07:26 BST 2014.

http://dx.doi.org/10.1017/CBO9780511600272.005
Cambridge Books Online © Cambridge University Press, 2014



190 Short-fiber composites

where the Ut are defined as

When the plies are stacked together to form a laminate, the
in-plane stretching stiffness Ai} is given by Eqs. (2.29). For the case
of a balanced angle-ply (±6) composite with mid-plane symmetry,
the bending stiffness Btj (Eqs. 2.29) and the coupling terms Al6 and
A26 vanish, and the Atj components can be represented by

An = [Ul + U2 cos 26 + U3 cos 40]h

A22 = [Ux - U2 cos 26 + U3 cos 46]h
(4.26)

A l2 = [U4-U3 cos 48]h

A66 = [U5-U3 cos 46]h

Here, h denotes the total laminate thickness. Following the same
reasoning for the derivation of Eq. (2.15), the effective engineering
constants of the laminate are given by

£ 2 2

V , 2

G12

AA—A2

A 2 2 -

AnA22

A,r

= —Al2

_A66

h

~ A2

h

A22

h
(4.27)

If a random short-fiber composite assumes the form of a thin
sheet while the sheet thickness is less than the average fiber length,
the composite can be modeled as a 'quasi-isotropic laminate'. In
principle, the laminate can be constructed by stacking up unidirec-
tional laminae in all orientations to achieve a balanced and
symmetric arrangement. Because the fiber orientation covers all the
values between 0° and 180°, the angular dependent terms in the Atj
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components of Eqs. (2.16) cancel one another. Consequently, the
effective engineering constants can be simplified as

f/i

f/i - 2f/5 (4.28)

It is obvious that the above elastic constants satisfy the necessary
relation for in-plane isotropy. Expressions for random fiber com-
posite elastic constants equivalent to Eqs. (4.28) also have been
obtained by Akasaka (1974). Halpin, Jerine and Whitney (1971)
have demonstrated the validity of the laminate analogue by
comparing the analytical predictions with the measurement of
effective tensile modulus of E-glass/polycarbonate with random
fiber orientation as shown in Fig. 4.13(b).

The laminate analogue can also be applied to quasi-isotropic
short-fiber composites using lay-ups such as 0°/±60° and 0°/
±45790° (Warren and Norris 1953). Other works dealing with the
elastic stiffness of random fiber composites can be found from Tsai
and Pagano (1968); Manera (1971); Christensen and Waals (1972);
Wilczynki (1978); and Hahn (1978). As pointed out by Bert (1979),
the accuracy of these approximations is affected by the fiber volume
fraction and the ratio Ef/Em. The laminate analogue can also
be used for examining the elastic properties of short-fiber com-
posites with layered microstructures. Figure 4.14 shows the scanning
electron micrograph of the cross-section of an injection molded poly-
ethylene terephthalate with short glass fibers. This type of layered
structure has been found in many types of short-fiber reinforced
thermoplastics.

Attempts also have been made to predict the stiffness of
composites with random fibers in three-dimensional distribution.
Rosen and Shu (1971) and Christensen and Waals (1972) examined
the case of continuous fibers. Halpin, Jerine and Whitney (1971)
treated the case of layers of plain woven fabric in which the unit
weave cell is pierced by a straight yarn perpendicular to the fabric
plane. The problem of random short fiber orientation in three
dimensions has been treated by Chou and Nomura (1981). By
taking rj — 1/2N in Eq. (4.18), elastic moduli for completely random
orientation can be obtained. Figure 4.15 illustrates the theoretical
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192 Short-fiber composites

variations of Ec/Em with V{ for a random glass/epoxy system and
the experimental data of Manera (1971).

The laminated plate analogue developed above can also be
applied to consider in-plane partially aligned short fibers (Halpin,
Jerine and Whitney 1971; Kardos 1973) discussed in Section 4.3.2.
In this case the angular fiber distribution function rj(6) needs to be
measured from the composite specimen. The laminate simulating
the composite is treated as composed of weighted groups of angle
plies (±0) with fixed fiber volume fraction. The percentage of
materials oriented at the angles ±6 is obtained from rj(6). The
contributions to the overall response of laminate stiffness from
different layers are proportioned to their fractional thickness in the
laminate.

Table 4.1 gives an example of the orientation distributions of
discontinuous glass fibers in a polymeric matrix. The composite is

Fig. 4.14. SEM micrograph of short glass fiber/polyethylene terephthalate
showing layered structure of fiber orientations. (After Friedrich and
Karger-Kocsis 1989.)
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Elastic properties 193

compression molded from extrudate. It can be seen that most of the
fibers are oriented quite close to the extrusion direction. Whereas
previously each ±6 ply was weighted equally in summing up the
stiffness contributions to the laminate, one must now account for
the fact that more of the laminate thickness may be made up of one
angle than the other. Define a(6)/h as the percentage of the
material oriented at the angles ±0, and it is obtained from the
experimental angular distribution rj(6) where jo r](0) d6 = 1. The
stiffness moduli Atj of the laminate is related to the stiffness of the
plies Aij(Ok), oriented at the angles ±0ky by

1«=i^W (4-29)

where n is the total number of plies.
In summary, the calculation of the effective engineering stiffness

of short-fiber composites with biassed fiber orientations should first
follow the procedure outlined in Section 2.3 to obtain the Atj

components for each fiber angle. These are then summed according
to their fiber angular distributions such as that given in Table 4.1
and Eq. (4.29) to obtain the Atj terms. The engineering constants
are then obtained from Eqs. (4.27). The solid lines in Fig. 4.13(b)

Fig. 4.15. The comparison of EJEm ( bound approach; self-
consistent model) with experimental data for Ef/Em = 32.4, vm = 0.4,
vf = 0.25 and //</->«>. (After Chow and Nomura 1981.)
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194 Short-fiber composites

are theoretical predictions of the tensile moduli based upon this
procedure. The bumps in the curves are attributed to the fact that
the angular distribution functions are not smooth functions of fiber
volume fraction.

4.4 Physical properties
The physical properties described below include thermal

conductivity and thermal expansion coefficients. These properties
are essential to the study of the thermomechanical behavior of
short-fiber composites.

4.4.1 Thermal conductivity
The important transport properties of composites include

dielectric constant, heat conduction, electrical conduction, magnetic

Table 4.1. Fiber orientation distributions in composites
compression molded from rod extrudate. Short glass fiber aspect
ratio « 313. After Halpin et al (1971)

Orientation 6 (degrees)

2.5
7.5

12.5
17.5
22.5
27.5
32.5
37.5
42.5
47.5
52.5
57.5

62.5
67.5
72.5
77.5
82.5
87.5
Fiber volume fraction

Percent

23.4
17.9
12.0
16.0
6.2
5.9

4.4
4.6
2.6
1.7
0.4
0.7

1.0
0.7
0.1
0.9
0.5
1.0

20

fibers

25.4
18.1
12.3
7.7
6.4
5.6

4.6
3.1
3.4
1.9
1.3
0.7

1.4
1.1
2.1
0.9
2.3
1.4

30

having 6

25.0
23.8
16.4
10.0
6.8
4.8

3.1
2.4
1.6
1.3
0.8
1.1

0.9
0.7
0.4
0.6
0.3
0.1

40

orientation

36.5
23.9
14.2
5.7
3.0
2.7

1.8
2.0
1.0
0.4
0.7
0.8

0.5
0.7
0.5
0.8
0.9
0.8

50
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permeability and diffusion coefficients. Since all these properties are
second rank tensors, only the bounds of thermal conductivity are
demonstrated.

The linear relation between the heat flux q and gradient of
temperature T is given by

q = k( -Vr) (4.30)

where k denotes thermal conductivity and is assumed to be a
function of position only. It is understood that k is a symmetric
tensor quantity. The governing equation for a steady-state heat
conduction is

V-q = 0 (4.31)

Several approaches to this subject have been employed by
researchers. These include the statistical method by Beran (1965),
Beran and Molyneux (1966), and Hori and Yonezawa (1975) as well
as the self-consistent and variational approaches of Hashin and
Shtrikman (1962), Hashin (1968) and Willis (1977).

Nomura and Chou (1980), following their development of bounds
of elastic moduli (1984), derived bounds of effective thermal
conductivity of unidirectional short-fiber composites. The short
fibers are again modeled as ellipsoidal inclusions of the same length
and are distributed in a statistically homogeneous manner in the
matrix material. The composite exhibits transverse isotropy. This
approach is also valid for composites containing more than one type
of fiber. Consider the case of a binary system and denote the
thermal conductivity and volume fraction of the fiber and matrix
phases by kt, V{ and km, Vm, respectively. The bounds of the
effective composite conductivity kn along the fiber directions are

kf km

kmj

Vm(kf-kmf(l-h
f f m m ( v m - v f ) ( k t - k m ) ( i - h ( t ) ) + v t k t + v m k m

 K'i}

The bounds of the conductivity k22 and k33 in the transverse
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196 Short-fiber composites

direction are

+
f k

=£* , ,=

VtVm(kt-km)2h(t)
(Vm - Vf)(kf - km)h{t) + 2{Vtkt + Vmkm)

22 - * 3 3

(4.33)

where

t2-i

(4.34)

and f denotes the aspect ratio l/d of the short fiber.
For the special case of spherical inclusions (h(t) = l), the com-

posite is isotropic and Eqs. (4.32) and (4.33) are simplified as

VfVm(kf-km)2

t ~ Vm)(kf - km) + 3(Vtk{ + Vmkm)
(4.35)

In the case of continuous fibers, h{t) = 1 and Eqs. (4.32) and (4.33)
become

kn = Vfkf+Vmkm

(km + kf)kmkf
(Vfkm + Vmkf)

2 + kmkf

s k22( = k33) <

(4.36)

(Vmkm + V(ktf + kmkf

(4.37)

Figure 4.16 illustrates the variations of ku/km with fiber volume
fraction of an E-glass/epoxy system for the limiting cases of //<i—»<»

and l/d = 1. The bounds of kn converge to a single line for
continuous fibers as indicated by Eq. (4.36).

For axially symmetrical fiber arrangement at an angle 0 with
respect to the XX axis, the fiber orientation effect can be investigated
as in Section 4.3.2. By transforming the effective thermal conduc-
tivity tensor ktj based upon the [T] matrix of Eq. (4.17) and

Cambridge Books Online © Cambridge University Press, 2010
Downloaded from Cambridge Books Online by IP 218.1.68.132 on Mon Apr 14 03:07:26 BST 2014.

http://dx.doi.org/10.1017/CBO9780511600272.005
Cambridge Books Online © Cambridge University Press, 2014



Physical properties 197

subsequently integrating the tensor components over the In range
of cp, the resulting components are transversely isotropic with
respect to the x2-x3 plane:

(4.38)
+ cos2 e

By substituting the bounds of ktj (Eqs. (4.32) and (4.33)) into the
above expressions, the bounds of thermal conductivity can be
expressed as functions of fiber orientation 6. Again, Eq. (4.18) can
be used to find the effective thermal conductivity of a composite
with a given rj(6).

For completely random fiber orientation, the result can be
simplified to

2*22

3
(4.39)

Fig. 4.16. The variation of the upper and lower bounds of kn/km with Vf
for an E-glass/epoxy system. (After Nomura and Chou 1980.)
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198 Short-fiber composites

4.4.2 Thermoelastic constants
Knowledge of the thermoelastic constants, including ther-

mal expansion coefficients and thermal stress coefficients, is basic to
the understanding of the hygrothermal effects in composites. So far
as it is assumed that these quantities obey the linear constitutive
equation, their solutions can be obtained in a manner similar to the
determination of effective elastic moduli or thermal conductivities.
The problem of effective thermoelastic constants for non-
homogeneous materials has been investigated by several research-
ers. The works of Kerner (1956), Levin (1967), Schapery (1968) and
Budiansky (1970) are mainly concerned with composites reinforced
with spherical inclusions. Rosen and Hashin (1970) extended
Levin's model of a binary composite to general anisotropic compos-
ites by adopting a variational approach. Laws (1973) studied the
thermoelastic behavior of anisotropic composites based upon Hill's
self-consistent approximation.

By focussing attention on thermostatics and considering
composites at uniform temperature, heat conduction can be ex-
cluded and the problem is uncoupled with that given in Section
4.4.1. Consider a composite subjected to a stress field, a, and a
uniform temperature rise, AT. The total strain of the elastic
medium is given as

e = So+aAT (4.40)

where S denotes the elastic compliance tensor, and a is the thermal
expansion coefficient. The constitutive relation of the thermal
elastic field can also be expressed in the following general form:

o = C(s-aAT) (4.41)

where C is the elastic stiffness tensor.
Nomura and Chou (1981) have shown that for composites

reinforced with ellipsoidal inclusions and exhibiting statistical homo-
geneity, the effective thermoelastic constants can be evaluated
following the technique for deriving elastic moduli. Figure 4.17
shows the variation of atj (normalized by the fiber thermal
expansion coefficient af) with V{ and fiber aspect ratio l/d for a
glass/epoxy system, assuming E{ = 72.3GPa, Em = 2.76GPa, vm =
0.35, vf = 0.2, am = 36 x KT6/°C and af = 5.04 x 10-6/°C At a
given fiber volume fraction, the thermal expansion coefficient along
the fiber direction (an) is smaller than that transverse to the fiber
direction (ar22)- Figure 4.18 shows a comparison of the theoretical
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Fig. 4.17. The variation of aJa{ with V{ and l/d for an E-glass/epoxy
system. l/d=l; l/d = 5; //d = °°. (After Nomura and
Chou 1981.)
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200 Short-fiber composites

prediction of Nomura and Chou with the experimental results of
Yates et al. (1978) on a carbon/epoxy system where Ef/Em = 53.4,
vm = Vf = 0.34, am = 5 x 10"5/°C and af = 0.5-1.9 x 10-5/°C.

4.5 Viscoelastic properties
The viscoelastic properties of composite materials were first

examined by Hashin (1965b, 1969, 1972), who dealt with matrices
reinforced with spherical inclusions and continuous fibers. Hashin
showed that viscoelastic problems in composite materials can be
solved by considering the corresponding problems in elasticity.
Although application of the elastic-viscoelastic correspondence
principle (see, for example, Christensen 1971) is well known, there
are practical difficulties. This is due to the fact that very often the
creep compliances or relaxation moduli of the constituents of a
multi-component system are not known, and, even if they are given,
the inverse transformation process would be formidable. Approxi-
mate methods for inverting the Laplace transform have been
proposed by Schapery (1967, 1974).

The work of Laws and McLaughlin (1978) on viscoelastic
composite materials adopted a self-consistent approximation. They
derived the creep compliance, and numerical calculations were
performed for the limiting cases of composites containing spherical
inclusions and continuous fibers. Eimer (1971) derived formal
effective relaxation moduli expressions of multi-phase media by
considering the many point correlation functions.

Chou and Nomura (1980) and Nomura and Chou (1985) obtained
the effective relaxation moduli of short-fiber composites based upon
their work on effective elastic properties. Explicit expressions of
composite relaxation moduli are given in terms of the elastic and
viscoelastic properties of the constituent phases, fiber volume
fraction, and fiber aspect ratio. Numerical calculations for a typical
glass/epoxy composite system based upon the collocation ap-
proximation method as well as the self-consistent model have
been performed by Nomura and Chou. It is assumed that the fiber
is elastic while the matrix phase is viscoelastic. Figure 4.19 shows
the time dependence of the effective axial Young's modulus of
relaxation (normalized by the initial value of the matrix Young's
modulus) for the fiber volume fraction of Vf = 0.2 and fiber aspect
ratios IId = 5 and oo. The matrix behavior is shown by the
lowermost curve in Fig. 4.19. The effective axial Young's modulus
of relaxation at each fiber aspect ratio is calculated from the
effective relaxation moduli (upper curve), the self-consistent model
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(middle curve), and the effective creep compliances (lower curve).
The self-consistent approximation always lies in between the
predictions of the two other approaches. The results also indicate
that the increase in fiber length or aspect ratio makes the effective
axial Young's modulus of relaxation less sensitive to the time effect.
The fiber length effect also has been examined by Nomura and
Chou for other effective moduli, i.e. the transverse Young's
modulus of relaxation and the shear relaxation modulus, and they
found no such sensitivity for these effective relaxation moduli, as in
the elastic case.

4.6 Strength
Unlike continuous-fiber composites the mechanical be-

havior of short-fiber composites is often dominated by complex
stress distributions due to fiber discontinuities. In particular, the
local stress concentration at fiber ends plays a critical role in
affecting the performance of short-fiber composites, and it often
reduces the strength of a short-fiber composite to a level far less
than that of a continuous-fiber composite with the same fiber
volume content. Several theories (see Vinson and Chou 1975) have
been proposed to predict the strength of discontinuous-fiber corn-

Fig. 4.19. Time dependence of effective axial Young's modulus £L /£m for
I/d = 5 and °° and Vt = 0.2. The viscoelastic material properties are
£m(0 = £m(0) = 3.2GPa, Em(oo) = 0.04 GPa, vm(0) = 0.365, vm(») =
0.485, Es = 71.5 GPa and v, = 0.2. t denotes time. For each l/d value, the
upper, middle and lower curves are obtained from the effective relaxation
moduli, self-consistent model and effective creep compliances, respec-
tively. (After Nomura and Chou 1985.)
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202 Short-fiber composites

posites. One type of theory is based on a modification of the
'rule-of-mixtures', which was originally developed for continuous-
fiber composites. Since the axial stress distribution in a short fiber is
not uniform, the rule-of-mixtures has been modified by researchers
to take into account the effect of fiber length.

Among short-fiber composites, aligned-fiber composites have
many attractive properties (see Edward and Evans 1980; Richter
1980; Manders and Chou 1982). When complicated shapes and
double curvatures are fabricated by matched-die molding tech-
niques, aligned short-fiber composites have an advantage over their
equivalent continuous mats (Kacir and Narkis 1975). The ability of
aligned-fiber composites to elongate both parallel and perpendicular
to the fiber direction without splitting complements the pre-
dominant shear deformation of woven materials. Because of their
useful properties, highly aligned short-fiber composites have been
commercially produced by the centrifuge (Edward and Evans 1980)
and hydrodynamic alignment (Richter 1980) processes.

In the following, the strength of short-fiber composites is dis-
cussed first for the case of aligned fibers. Then, the effect of fiber
orientation is considered for partially aligned and random fiber
arrangements.

4.6.1 Unidirectionally aligned short-fiber composites
To examine the strength of short-fiber composites it is

necessary to recall the original strength predictions developed by
Kelly and co-workers (see Kelly and Davies 1965; Kelly and Tyson
1965a&b; Kelly 1971; Hale and Kelly 1972) for continuous-fiber
composites. The ultimate axial tensile strength expression of Kelly
et al. is (see Section 3.2)

ocu=ofuVf+o'mu(l-Vf) (4.42)

where acu and crfu are the ultimate tensile strengths of the composite
and the fiber, respectively. afu is identical with the fracture strength
of brittle fibers. o'mxx denotes the stress in the matrix at the failure
strain of the composite.

Equation (4.42) was derived based upon the assumptions that the
tensile strain in the composite is uniform along the axial direction
and the applied load is distributed among the fibers and the matrix.
When fibers are discontinuous, the iso-strain condition of Eq. (4.42)
is no longer valid. The difference of the strains in the fiber and
matrix near a fiber end induces shear stresses along the fiber axis.
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The shear forces acting near both ends of a fiber stress the fiber in
tension or compression. It is through this transferring of stress that
applied load can be dispersed among the short fibers.

4.6.1.1 Fiber length considerations
Figure 4.20 shows schematically the variation of fiber axial

tensile stress with fiber length. The profile of linear stress variation
from fiber ends originates from the assumption of constant interfa-
cial shear stress. The fiber critical length /c is defined as the
minimum fiber length necessary to build up the axial stress to afu.
The ultimate strength of a short fiber can be realized if its length
reaches /c.

Kelly and Tyson (1965a) proposed a linear transfer of stress from
the tip of a fiber to a maximum value when the strain in the fiber is
equal to that in the matrix. By assuming constant interfacial stress
r, the fiber critical length can be easily derived by considering the
balance of tensile and shear stresses:

r is the shear strength of either the matrix or the interface,
whichever is smaller. Experimental measurement techniques for /c

have been discussed by Vinson and Chou (1975).
Using the concept of critical fiber length and replacing afu in Eq.

(4.42) by the average fiber stress af, Kelly (1973) derived the
following expression of composite strength for / > lc:

= M l " (1 " 6)Ul] + <J
mu(l - Vf) (4.44)

where 6 is defined as the ratio of the area under the stress
distribution curve over the length IJ2 in Fig. 4.20 to the area of

Fig. 4.20. Variations of fiber tensile stress with fiber length.
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ofJJ2. For constant interfacial shear strength, S = \ and

<TCU = M l - IJ21)V{ + aL
(l -Vf) I > /c

(4.45)

Equations (4.45) predict that for short fibers with ///c = 10, a{

reaches 95% of the value for continuous fibers. Equations (4.45)
have been shown to be a good approximation for metallic (Kelly
and Tyson 1965a&b; Kelly 1973) and polymer matrices (Kelly 1973;
Riley and Reddaway 1968; Hancock and Cuthbertson 1970). It
should be noted that Eqs. (4.45) do not consider fiber end stress
concentration which occurs in short-fiber composites. There exist
several variants of Kelly's formulation of short-fiber composite
strength. For example, Outwater (1956) has taken into considera-
tion the effect of interfacial friction load due to resin cure
shrinkage. However, there lies the difficulty of measuring the
friction coefficient and radial shrinkage pressure (Kardos 1973).

For pure elastic deformation of the fiber, afu = Efecu where £cu is
the composite ultimate strain. Equation (4.43) can be rewritten as

(4.46)
a 2T

For composites with variation in fiber length, Bowyer and Bader
(1972) pointed out that at any value of composite strain ec there is a
critical fiber length given by

Fibers shorter than 4 will carry the average stress

of = lj (4.48)

which is always less than |£f£c- Fibers longer than le carry the
average stress

which is always greater than \Efec.
Following Bowyer and Bader, for a composite containing a

spectrum of fibers of different lengths, its strength can be estimated
by dividing the length of fibers into sub-fractions at a given
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composite strain level (Lees 1968). Sub-critical fractions are de-
noted by /, and their respective volume fractions Vt while super-
critical fractions are denoted by /y and VJ. Thus the composite stress
can be expressed as

Oc = f Tl¥i + f Etec(l - ^f)V, + Emsc(l - Vt) (4.50)

Equation (4.47) indicates that at low composite strain le is small and
all fibers will contribute to the reinforcement as given by Eq. (4.49).
As the strain is increased, a progressively smaller proportion of the
fibers will reinforce according to Eq. (4.49) and an increasing
proportion will follow Eq. (4.48). Thus, the load-extension curve
for such a material as indicated by Eq. (4.50) is expected to show
smaller slope as the strain is increased. The work of Bowyer and
Bader on short-fiber-reinforced thermoplastics has further shown
that improvements in the fiber-matrix bond strength have led to
small improvements in strength. Also the fibers which are too short
to be strained coherently with the matrix tend to fail at very low
strains preventing the potential of the longer fibers from being
realized. Thus the very short fibers should be eliminated if full
strengthening potential is to be achieved.

4.6.1.2 Probabilistic strength theory
The following discussions of the probabilistic strength

theory of short-fiber composites begin with a consideration of fiber
length variations and their effect on fiber axial stress distribution.
Then, the influence of local stress concentrations due to fiber-fiber
interaction is introduced. A probabilistic strength theory is de-
veloped to consider the maximum stress concentration induced by
the clustering of ends of short fibers.

(A) Modification of the rule-of-mixtures
Consider a unidirectional short-fiber composite material

with fibers of uniform length and strength. The mechanisms of
failure can be categorized according to fiber length (Fig. 4.21).
When fibers are very short, a crack formed at a fiber end can
circumvent the neighboring fibers without breaking them (Fig.
4.21a). Final failure of the composite is then attributed to fiber
pull-out. On the other hand, if fibers are sufficiently long, fiber end
cracks will cause fracture of the neighboring fibers and, hence,
failure of the composite (Fig. 4.21b). The strength model of Fukada
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206 Short-fiber composites

Fig. 4.21. Two failure modes in short-fiber composites. (After Fukuda and
Chou 1981b.)

Failure surface

(b)

Fig. 4.22. Stress distribution in a short fiber. (After Fukuda and Chou
1981b).
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and Chou (1981a&b), and Hikami and Chou (1984a&b) aim at the
latter case.

The composite ultimate strength acu is defined as the stress level
which causes first fiber fracture. Consequently, the maximum stress
in a fiber is of primary importance in predicting composite strength.
Figure 4.22 shows schematically stress distributions in a short fiber.
Here crmax and oo are, respectively, the maximum and plateau stress
of the profile. The average fiber stress at failure is given by

o(x)dx (4.51)

In the case the composite has a distribution of fiber length, Eq.
(4.51) should be replaced by

ot=\ f(l)\)\'a(x)dx}dl (4.52)
Jo '-I JO >

where /(/) is a probability density function of fiber length and has
the following characteristics:

r
Jo

f
Jo

(4.53)

f (l)l dl = J (4.54)

/ in Eq. (4.54) denotes the average fiber length. Then af of Eq.
(4.52) should be used in the rule-of-mixtures expression of Eq.
(4.44). The values of af and oo are not the same. However, the
difference diminishes as the fiber length increases. For relatively
large fiber aspect ratios it is reasonable to assume of ~ oo.
Furthermore, by defining the stress concentration factor K in the
following expression:

tfmax = Ofu = K(JO (4 .55)

Eq. (4.44) can be written as

°Cu=Yvf+°™(1-vJ (4-56)
A.

(B) Critical zone model
A systematic experimental study of short-fiber composite

strength has been performed by Curtis, Bader and Bailey (1978)
using polyamide thermoplastic reinforced with short glass and
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208 Short-fiber composites

carbon fibers. Their experimental findings led Bader, Chou and
Quigley (1979) to propose a damage model. The basic concepts are
that microcracks are most likely to develop at fiber ends at
microscopic strains well below the fiber failure strain, and that
failure is finally initiated in a critical cross-section that has been
weakened by the accumulation of cracks.

Figure 4.23 depicts a typical volume element in a short-fiber
composite used by Bader, Chou and Quigley. The width of a
'critical zone' in the strength model is denoted by pi where
0 < P < 1 is a constant parameter and / is the average fiber length.
The critical zone width is assumed to be of the same order as the
fiber ineffective length (Sections 3.4.6.1 and 4.2.2).

A discontinuous fiber can end in the zone (ending fiber), in which
case it bears no load, or it can bridge the zone (bridging fiber) and
contribute to the strength of the critical zone. The probabilities of
finding an ending fiber and a bridging fiber are /3 and 1 - /3,
respectively. All fibers are assumed to have uniform strength afu.
Within each transverse section of the composite, ending fibers and
bridging fibers are distributed randomly. A typical fiber configura-
tion on a transverse section in a two-dimensional fiber array is
shown in Fig. 4.24. The ending fibers and bridging fibers are
depicted, respectively, by solid circles and open circles. Under the
applied stress, the stress in the bridging fibers is enhanced by the

Fig. 4.23. A typical critical zone in a short-fiber composite. (After Bader,
Chou and Quigley 1979).

Fiber end in zone
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stress transferred from the neighboring ending fibers. For example,
the stress in the bridging fiber no. 8 in this figure is enhanced by the
ending fibers nos. 1, 5, 6, 7, 9, 12 and 13. In other words, it is
enhanced by the neighboring fiber-end-gaps A, B, C and D.

The strength of the composite is determined by the relative
numbers of fibers that bridge the zone vs. those with ends within the
zone. These latter will develop matrix cracks when the strain
exceeds a critical value. The critical situation arises when the
bridging fibers are unable to sustain the load transfer due to matrix
cracking and failure occurs. The critical stress and strain values for a
wide range of fiber aspect ratio, fiber critical length, fiber-matrix
interfacial strength and critical zone width have been evaluated by
Bader, Chou and Quigley.

(C) Stress concentration
The stress concentration factor for the unidirectional fiber

arrangement of Fig. 4.25 is difficult to evaluate in a precise manner.
The following assumptions are adopted to facilitate the calculation
of K: (a) fibers are of the same length, /; (b) they are arranged in
rows along the axial direction; (c) the spacing between two
neighboring rows is uniform (Fig. 4.25a); and (d) fibers with ends in
the critical zone of width /?/ are assumed to have the ends aligned
along the cross-section zz' (Fig. 4.25b). This collection of fiber ends
is termed a 'fiber-end-gap' in a two-dimensional array. It is assumed
that the fiber length / is much larger than the critical length lc and,
hence, results for stress concentrations due to the fracture of long
fibers can be used. Also, in Fig. 4.25(a), the number 1 and number
4 fibers are labeled as 'bridging fibers' and the number 2 and
number 3 fibers as 'ending fibers'.

Since the stress concentration factor, K, cannot be readily
calculated by considering the enhancement effect from all the
fiber-end-gaps, assumptions need to be introduced for the load
sharing rule. Hikami and Chou (1984a) have examined the first and

Fig. 4.24. Schematic cross-sectional view of fiber configuration. Solid
circles depict ending fibers and open circles indicate bridging fibers. A
group of adjacent ending fibers is termed a fiber-end-gap (i.e. A, B, C and
D). (After Hikami and Chou 1984a.)
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210 Short-fiber composites

simplest approximation for K by only considering the stress
enhancement effects of the first nearest neighboring fiber-end-gap of
a bridging fiber. This is known as the weak local load sharing rule
and the assumption is allowable if the probability of finding the
ending fibers is relatively small. Using the shear-lag method, the
stress concentration factor due to the presence of n, and nr ending
fibers (Fig. 4.26) has been obtained by Hikami and Chou (1984a
and b, 1990).

It can be shown that the failure of the {nt + l)th fiber does not
cause the composite failure since the stress concentration factor for
the (n, + l)th fiber is larger than that for the zeroth bridging fiber
after the failure of the («/ + l)th bridging fiber. Clearly, the failure
of the zeroth bridging fiber causes the total failure of the composite.
Thus neglecting the load bearing capacity of the matrix, the strength
of the composite is given by

am = oJKb (4.57)

The explicit expression of elastic stress concentration factor Kh due
to b broken fibers is given in Section 3.3.1.2.

Fig. 4.25. (a) Critical zone in a two-dimensional fiber array, (b) A
fiber-end-gap. (After Fukuda and Chou 1981b.)
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The explicit expression of stress concentration factor for compos-
ites with plastically deformed matrices (Fig. 4.26) has also been
obtained by Hikami and Chou (1984a). For the small-scale plastic
deformation case, the plastic stress concentration factor, Kb, can be
expressed in series expansion form in terms of the dimensionless
plastic deformation zone length a.

In the large-scale plastic deformation case, Kh at the tip of a
fiber-end-gap can be approximated by

n \a.
(4.58)

where

To=rm\/(hEt/GmA() (4.59)

Fig. 4.26. Model of stress concentration calculations for a fiber-end-gap in
short-fiber composites with matrix plastic deformation zone at the tip of
the gap. (After Hikami and Chou 1984.)
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212 Short-fiber composites

Also, aa = applied stress, b — number of fibers in the gap, y' =
Euler's constant (—0.577), rm = matrix shear strength, Gm = matrix
shear modulus, E{ = fiber axial Young's modulus, h = fiber spacing,
and A{ = fiber cross-sectional area. The fibers are of unit thickness.

(D) Probability distribution of maximum fiber-end-gap
The fiber-end-gap size has been analyzed by Hikami and

Chou (1984a) for the case of the two-dimensional array shown in
Fig. 4.25(b). Focussing attention on a single fiber end, the
probability, Pn) that this fiber end is in the gap consisting of n fiber
ends is

Pn = nf}n-\l-l3)2 (4.60)

and

S Pn = 1 (4.61)
n = l

The probability that a given fiber end is not in any one of the gaps
with more than n fiber ends is

G» = l ~ S Pi (4.62)
l' = M + I

When the above probability is independent for each fiber, the
probability that there is no gap larger than size n is

P(n) = (Qn)
N (4.63)

where N is the total number of fibers in the composite. However,
actually Qn for a given fiber is not independent of the other fibers.
When N is sufficiently larger than the average gap size, h, it is more
suitable to express P(n) of Eq. (4.63) as

P(n) = (Qn)
N/* (4.64)

where

n=2nPn (4.65)

Using Eqs. (4.60) and (4.62), Eq. (4.64) can be rewritten as
P(n) = { l - ) 6 > ( l - / } ) + l]}A"'' (4.66)

and
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P(n) can be used to determine the strength of short-fiber compos-
ites through the relation between gap size, n, and the corresponding
stress concentration. Figure 4.27 demonstrates the variation of P(n)
with N and /}. It can be shown that P(n) behaves like a step
function and P(n) changes from 0 to 1 at n = M, where M is
determined from

(4.68)

M obtained from Eq. (4.68) is termed the 'most probable maximum
gap size'. Figure 4.28 shows M as a function of /3 and N. For actual
composites, the values of M do not vary tremendously with /3 and
N. When N is sufficiently large, using the formula 1 — x =exp(—x),
P(n) can be approximated as

P(n) SB exp[-N/3nn(l - /5)2] (4.69)

(E) Strength predictions
Based upon the considerations of fiber-end-gap size and

stress concentrations, Hikami and Chou (1984a) have proposed a
modification of the rule-of-mixtures for composite strength. The
composite ultimate strength acu is defined as the stress level at
which fracture of the composite occurs. Based upon the approxima-

Fig. 4.27. Cumulative probability distribution functions for the maximum
fiber-end-gap size. O: N = 106, /3 = 0.2; • : N = 106, P = 0.1; A: N = 108,
/S = 0.2. (After Hikami and Chou 1984a.)
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tions discussed above, ocu is given as

(4.70)

Here, o'mu is the matrix stress at the ultimate tensile strain of the
fiber. aa is the applied fiber stress at the instant when the fiber stress
at the site of stress concentration reaches ofu. Thus, aa satisfies the
following relation:

afu = K[aa-rjomy(l-Vf)/V{] (4.71)

for the weak local load sharing rule, where K = Kbor Kb. omy is the
matrix yield strength. The parameter 77 in Eq. (4.71) reflects the
loading condition of the matrix in the fiber-end-gap. If the matrix is
brittle, a crack can propagate in the matrix along the fiber-end-gap
prior to the failure of the intact bridging fiber. In this case, the
matrix in the fiber-end-gap will bear no load and rj is taken to be
zero. However, in a ductile matrix composite the matrix in the
fiber-end-gap can deform plastically to the yield strength, omy. Then
each fiber in the fiber-end-gap sustains the stress amy(l — Vf)/Vf,
thus reducing the applied stress aa, and 77 = 1. Since the fracture of
a composite initiates at the weakest point, the stress concentration
factor for the most probable maximum gap size M of Eq. (4.68)
should be used.

Fig. 4.28. Most probable maximum gap size, M, vs. critical zone para-
meter, p. N denotes the total number of fibers. (After Hikami and Chou
1984a.)
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In the case of three-dimensional fiber arrays, the problem is more
complicated and there is no rigorous probabilistic treatment avail-
able. The shape of the fiber-end-gap cannot be uniquely defined for
a given number of fiber ends and it is fairly involved to obtain the
highest stress concentration factor in the intact bridging fibers.
Furthermore, the fiber failure process here is more complex than
that in the two-dimensional case. To circumvent these difficulties,
Fukuda and Chou (1981b) took only compact fiber-end-gaps as the
first approximation. Following this approximation, Hikami and
Chou (1984a) have considered the special type of fiber-end-gap
which consists of square-arrayed ending fibers. A typical example of
such a fiber-end-gap is shown in Fig. 4.29, where ending fibers are
indicated by solid circles and bridging fibers by open circles in the
two-dimensional square lattice. Approximations for the most prob-
able maximum gap size and the resulting composite strength have
been obtained and the details can be found in the reference.

The relation between the fiber volume fraction, Vf, and composite
strength normalized by the matrix stress at failure, ocja'mu, is
shown in Fig. 4.30 for the case of an elastic matrix. The properties
of a glass fiber/thermoplastic matrix composite are used; fiber length
(/) = 1 mm; fiber diameter (d) = 0.01 mm; fiber critical length
(/c) = 0.1 mm; and critical zone parameter (j8) = 0.1. Also
oJo'mu = Ef/Em = 35.2.

In Fig. 4.30, line A shows the simple rule-of-mixtures for
continuous fibers, while line B depicts the rule-of-mixtures modified
for short fibers. Neither case takes the effect of local stress

Fig. 4.29. Schematic cross-sectional view of a three-dimensional fiber
array. Solid circles indicate ending fibers and open circles are for bridging
fibers. (After Hikami and Chou 1984a.)
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concentrations into consideration. Lines C and E indicate the
results of Hikami and Chou (1984a) for a three-dimensional fiber
array and a two-dimensional fiber array, respectively, based on the
local load sharing rule. The composite strength is expected to lie
between these two bounds, which are far less than the values
obtained from the rule-of-mixtures because of local stress
concentrations.

4.6.2 Partially oriented short-fiber composites
Cox (1952) first proposed the idea of orientation factor in

the strength equation for continuous fiber composites to account for
fiber misalignment. Bowyer and Bader (1972) adopted this concept
in their study of short-fiber systems, and Eq. (4.50) was modified by
multiplying the fiber dependent terms on the right-hand side of this
equation by the orientation factor Co, Co = 1 for perfectly aligned
fibers and Co assumes values less than unity for partially oriented
fibers. Bowyer and Bader concluded that the orientation factor is
independent of strain and is the same for all fiber length at least at
small strains. The orientation factor can then be calculated from
Eq. (4.50) based upon the knowledge of fiber length distribution,
interfacial bond strength and composite ultimate tensile strength.

Curtis, Bader and Bailey (1978) investigated the strength of a

Fig. 4.30. Strength of the composite as a function of V{. A: rule-of-
mixtures; B: Kelly and Tyson (1965b); C: three-dimensional fiber array,
weak local load snaring; E: two-dimensional fiber array, weak local load
sharing. (After Hikami and Chou 1984a.)
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poly amide thermoplastic reinforced with glass and carbon fibers,
and calculated the fiber orientation factor from the measured
composite modulus and the knowledge of the fiber and matrix
properties. Their results indicate that fiber alignment increases with
increasing fiber volume fraction, which agrees with the qualitative
assessment of optical micrographs.

In general, when there are variations in both fiber length and
orientation, the rule-of-mixtures (Eq. (4.42)) can be modified as

°cu = oiuVfF(lc/l)Co (4.72)

Here, the factor F{ljl) is a function of fiber average length / and
critical length /c. Equations (4.45), for instance, give the forms of
F(ljl) for aligned short fibers of uniform length. If the necessary
information with respect to fiber orientation is known, Co can be
estimated analytically.

Fukuda and Chou (1982) have used a probabilistic theory to
predict the strength of short-fiber composites with variable fiber
length and orientation. They introduced two kinds of probability
density functions to describe the fiber length and orientation
distributions and neglected the effect of stress concentration in this
particular treatment. The analytical result of composite strength is
given only in the form of an average value. The theory of Fukuda
and Chou is introduced below in three parts.

(A) Geometrical consideration of a single short fiber
First, the geometrical arrangement of a single short fiber is

described. Figure 4.31(a) shows an obliquely positioned short fiber

Fig. 4.31. Several notations on short-fiber arrangement, (a) Obliquely
oriented fiber, (b) Bridging fiber and ending fiber, (c) Critical angle.
(After Fukuda and Chou 1982.)

Bridging
A fiber

(a) (b) (c)
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218 Short-fiber composites

of length /. In accordance with the terminology of Section 4.6.1, a
bridging fiber and an ending fiber are defined in Fig. 4.31(b); that
is, if a fiber crosses a critical zone (Section 4.6.1.2) of width 01, it is
termed a bridging fiber; and if the end of a fiber is within the critical
zone, it is defined as an ending fiber. Here, / denotes average fiber
length. The probability density function of fiber length distribution
h(l) satisfies the following condition:

f A(/)d/ = l (4.73)

Then, the average fiber length is defined as

7 = f lh(l)dl (4.74)
Jo

From Fig. 4.31(a),

lz = lcos6 (4.75)

and from Fig. 4.31(c) the critical angle 6O within which a fiber of
length / is a bridging fiber becomes

(4.76)

for pi< /. If pi>l, 6O cannot be defined, and a fiber in such a case
is inevitably an ending fiber. If the fibers are distributed randomly
with respect to the z axis, the probability pe that a fiber of length / is
an ending fiber in the critical zone becomes

_ pi _ r pin cos e (o < e < #o and #7 < /)
P l

and the probability ph for finding a bridging fiber is, by definition,

p h = l - p e (4.78)

The probability density function with respect to fiber orientation
(g(6)) should satisfy the condition

Jl 6 = 1 (4.79)f
Jo

(B) Load transfer in a short fiber
First, consider a short fiber situated parallel to the applied

tensile stress, ao, along the z axis. The average fiber stress is

/ Jo
dz (4.80)
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The fiber axial stress of(z) has, in general, the profile shown in Fig.
4.1. Consider the simplest form of of(z) by assuming a constant
interfacial shear stress (Fig. 4.20). Then afo becomes

(4.81)
(KQ

The average force in a fiber of cross-sectional area A{ is oioAf.
Next, consider a single short fiber situated at an angle 6 to

the applied stress ao. The applied stress can be decomposed
into an axial and a shear component, with respect to the fiber axis,
as

o'o = ao cos2 d (4.82)

TO = ao sin 0 cos 6 (4.83)

If the effect of ro on the fiber stress distribution can be neglected,
the average force of the fiber becomes Afafocos2 6 and the z
direction force component is

Fz=AfGfocos36 (4.84)

(C) Strength of short-fiber composites
Based upon the above preparations, the strength of short-

fiber composites can be derived. In the following discussion, h(l)
and g(6) are assumed to be independent of each other. This means
that g(6) is the same for all the samples with different fiber length
distributions. A rectangular-shaped specimen with the lengths of the
three mutually perpendicular edges denoted by a, b and c is
considered. The c axis is so chosen as to be parallel to the z axis.
The volume of the specimen is

V = abc (4.85)

and from the definition of fiber volume fraction, Vf becomes

Vf = NAf1/V (4.86)

where N and Af denote, respectively, the total number of fibers and
fiber cross-sectional area.

Recall that Eq. (4.76) gives the length of the projection of a fiber
on the z axis. Then the average length of the projection of fibers
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can be written as

J
rJt/2 /•«>

I cosO h(l)g(O) dl dd
o Jo

JrJt/2

g(d)cosdd0 (4.87)
o

The value of Nlz gives the total length of projection of all fibers on
the z axis and if this value is divided by the specimen length c, the
average number of fibers which cross an arbitrary section in the
specimen normal to the z axis is obtained. That is,

JVc=— = ? r g(6)cos6dO (4.88)
c Af Jo

Equation (4.77) gives the probability of a specific fiber being an
ending fiber. Therefore, the average probability of finding an
arbitrary fiber being an ending fiber is

rn!2 p

qe= f\pM)g{O) dl dO (4.89)
Jo Jo

Similarly, the average probability of finding an arbitrary fiber being
a bridging fiber is

? b = f f Pbh{i)g(e)didd
Jo Jo

= l ~ qe (4.90)

Substituting Eqs. (4.77) and (4.78) into Eqs. (4.89) and (4.90),

qe= T de(f g(0)h(l)dl + I -^-
Jo \Jb Jpjl cos 0

+ f j g(6)h(l)dld6 (4.91)

Then, the total numbers of ending and bridging fibers in the
specimen are

Ne = Neqe (4.93)

Wh = Ncqb (4.94)
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Strictly speaking, the value of Ne is not precise because only one
cross-section, for example AA' in Fig. 4.31(b), has been examined.
The fibers denoted by 2 and 3 in Fig. 4.31(b) are not considered.
However, the objective is to calculate the number of bridging fibers,
which is not affected by Ne in the subsequent discussions.

Based upon Eq. (4.84) for the z direction component of the
axial load of one specific fiber, the average value among the
bridging fibers is

Jo Jfi
(4.95)

Then the total load that all of the bridging fibers can sustain in the
zone fi is

FT = Nb-Fz (4.96)

and the composite strength becomes

tfcu = ̂ + < C ( l - V f ) (4.97)
ab

where the matrix is assumed to sustain part of the applied load.
Substituting Eqs. (4.81), (4.84), (4.88) and (4.91)-(4.96) into Eq.
(4.97), the composite ultimate strength is determined as

J
rjr/2 r6a

g(6) cos 6 dB\ g(6) cos3 6 d6
o Jo

f a U l - v < ) < 4 9 8 )

Equation (4.98) is a general strength expression of short-fiber
composites. In order to conduct further analysis, it is necessary to
know the functions g(6) and h(l) together with afu, O'MU, V{ and /c.

Some limiting cases of Eq. (4.98) are discussed in the following.
First, consider a unidirectional short-fiber composite with uniform
fiber length /. Equation (4.98) can be reduced to

ae = oM l - j8)(l - 1 ) + aL(l - Vf) (7> lc)

(4.99)

oc = ofuVf(l - 13) — + a:u(l - Vt) {I < lc)
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Eq. (4.98) is reduced to

l

222 Short-fiber composites

Equations (4.99) coincide with the result of the original failure
model of Bader, Chou and Quigley (1979).

Secondly, consider the effect of fiber length distribution on the
strength of a unidirectional composite. By assuming the limiting
case of /?—»0, namely all fibers are bridging, and the following
probability density function of fiber length distribution

(4.100)

l

(4.101)

(4.102)

The result of F{ljl) from Eq. (4.101) is shown in Fig. 4.32 by the
solid line. In the case of constant fiber length, the strength can be
obtained from Eqs. (4.45) and the value is also shown in Fig. 4.32
by a broken line. It can be concluded from Fig. 4.32 that the
strength of a composite material is reduced if the fiber length is not

Fig. 4.32. F(ljl) vs. IJl fiber length distribution considered;
fiber length assumed to be constant. (After Fukuda and Chou

1982.)

1

where Si(jc) is the integral sine function defined by

I
1

IJl
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uniform. However, the difference in composite strength between
the non-uniform fiber length system (Eq. (4.100)) and the uniform
fiber length system is not very significant and, hence, the ordinary
theory based upon an average fiber length may be used as a first
approximation.

As a third example, the case of uniform fiber length and biassed
fiber orientation distribution is considered. The following two types
of fiber orientation are examined.

(a) g(6) = Hoc for 0 < 0 < a and g(6) = 0 for 0 > or;
(b) g(6) = (ji/2a) cos(jr0/2a) for 0 < 0 < a and g(6) = 0 for

6>a.

These functions are taken so as to satisfy Eq. (4.79). The shapes of
these functions are shown schematically in Fig. 4.33 and 6 is defined
in the three-dimensional view of Fig. 4.12. Note that g(6) does not
mean the probability per unit area. The probability per unit area is
proportional to g(6)/sin 6. The limit of )8 —> 0 is again considered.
At this limit, 60 tends to JZ/2 from Eq. (4.76). Considering this
condition, Co is calculated from Eq. (4.98) for the two types of g(6)

Fig. 4.33. Values of Co for two types of fiber orientation distribution.
(After Fukuda and Chou 1982.)

15 30 45 60

a (degrees)

75 90
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224 Short-fiber composites

given above:

/ x ,.„ sin a 1 / 1 . 3 . \
(a) umCo = — sin3ar + -sin a)

p^o a a \12 4 /

sin a 1 / 1 . .
sin3a + -sin or

4 /
(4.103)

(b) limCo = -^ [ - J - sin ̂  (1 + q) + —*— sin ̂  (1 -
/3^o 16 L1 + g 2 1~<7 2

where q = 2a/jt. These values are shown in Fig. 4.33. Bowyer and
Bader (1972) estimated the value of Co by their experimental data.
For laboratory glass/nylon injection molded materials, Co was 0.66.
If a retangular distribution for g(6) is used, the value of a
corresponding to Co = 0.66 is approximately 45° from Fig. 4.33.

The orientation factor Co discussed here is slightly different from
the factor Ce discussed in Section 4.3.2. The bridging effect of fibers
is considered in the derivation of Co, while the Poisson's effect of
the composite is taken into account in evaluating Ce. Co and Ce are
essentially the same for the limiting case of /3 —» 0. The effect of /3 is
discussed in Section 4.6.3.

4.6.3 Random short-fiber composites
Both Lees (1968a&b) and Chen (1971) attempted an

averaging technique to treat the strength of random fiber compos-
ites. They adopted the failure mechanisms of Stowell and Liu (1961)
and Jackson and Cratchley (1966), namely fiber failure, matrix
failure in shear and matrix failure in plane strain. The operative
failure mechanism in composites is dictated by the angle between
the fiber direction and the direction of applied stress

{ ax = o'Jcos2 6 (0<0<dx)

o2 = rjsin 6 cos 6 (0X < 0 < 02)

o3=ojsm28 (02<0<?r/2) ( ' ]

where o'c denotes the strength along the fiber direction of the
unidirectional composite given by a rule-of-mixtures type of re-
lationship. rm and am are, respectively, the shear and tensile failure
stresses of the matrix and the interface. Local stress perturbation
due to fiber-fiber interaction can also be included in o^ of Eq.
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(4.104). The strength for random fiber composites can be obtained
by considering the angular strength dependence as a piecewise
continuous function integrated over 90°:

2 r r01 f°2 ra i
<xc = - 0 1 d 0 + <72d0+ cr3d0 (4.105)

a U o Je, Je2 J
The predictions of this approach agree reasonably well with
experimental results on glass-reinforced polyethylene and PMMA
random mat (Lees 1968a) as well as random Al2O3-aluminum-
silicon and glass/epoxy composites (Chen 1971).

Treatments of the strength of random short-fiber composites can
also be found in the works of Lee (1969), Lavengood (1972),
Kardos (1973), McNally (1977) and Blumentritt, Vu and Cooper
(1975). The method of laminate analogue discussed for stiffness
(Section 4.3.3) can also be applied to prediction of the strength of
two-dimensional random fiber composites; the strength behavior of
an isotropic laminate can be simulated by unidirectionally oriented
plies laid up to approximate random orientation.

The strength prediction method of Fukuda and Chou (1982) can
also be applied to determine the orientation factor Co (Eq. (4.72))
for random fiber composites. By assuming that the fiber length is
uniform and is larger than the critical length /c, Eq. (4.98) becomes

cu = otavf(i -£)j g(d) cos e de J °%(0) cos3 e dd

By comparing Eqs. (4.72) and (4.106), the following expression for
Co is obtained:

rJt/2 rdo

Co = g(6) cos 6 d9 g(0)cos3 6 dd
Jo Jo

Jo \ cos 8
g(8)dd (4.107)

Now consider both two-dimensional and three-dimensional ran-
dom fiber arrays. In a two-dimensional random array model, g(e)
must be constant in the whole region of 0 < e < nil, and

g(8) = 2/n (4.108)
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226 Short-fiber composites

from Eq. (4.79). Substituting Eq. (4.108) into Eq. (4.107), the
following result is obtained:

(4.109)

The solid line of Fig. 4.34 depicts this result. As /3 increases, the
composite contains more ending fibers and fewer bridging fibers, and
hence the reinforcing effect of fibers is reduced. In the limit of
/?— >0, all fibers are bridging fibers, and Co tends to 0.27 for this
two-dimensional case. Bowyer and Bader (1972) used the value of 5
by quoting the result of Cox (1952) for the orientation factor of
Young's modulus of a random composite. Cox's value is also shown
in Fig. 4.34 by the solid circle.

In the case of a three-dimensional random fiber model, referring
to Fig. 4.12, g(6) can be expressed as

(4.110)

g(0)d6 =

where the hemispherical surface area is S. Therefore,

g(6) = sin 6

Fig. 4.34. Fiber orientation factor Co of random fiber array model.
two-dimensional random array; three-dimensional random array.
Solid and open circles indicate Cox's results. (After Fukuda and Chou
1982.)

0.4 1-

Q,

0.3

0.1

I I

0.01 0.1
p

1.0

Cambridge Books Online © Cambridge University Press, 2010
Downloaded from Cambridge Books Online by IP 218.1.68.132 on Mon Apr 14 03:07:26 BST 2014.

http://dx.doi.org/10.1017/CBO9780511600272.005
Cambridge Books Online © Cambridge University Press, 2014



Fracture behavior 227

In this case, Eq. (4.107) becomes

C0 = i ( l - /3 2)( l + /S2)(l-)8 + /31ogj8) (4.111)

This result is shown in Fig. 4.34 by a broken line. In the limit of
)3-»0, Co becomes | and this value is again less than Cox's
prediction of \ as indicated by the open circle.

4.7 Fracture behavior
Among the various types of short-fiber composites, the

fracture behavior of polymer based composites is relatively well
understood. The failure of short-fiber composites often initiates at
micro voids and microcracks. These defects exist in the reinforce-
ments, the matrix, and the interphase material and are introduced
in the fabrication process. The final failure of a short-fiber composite
is the result of several micromechanical mechanisms. The macro-
scopic appearance of the fracture depends on which of these
mechanisms dominate the overall fracture process.

According to Friedrich (1985, 1989) and Friedrich and Karger-
Kocsis (1989), the major failure mechanisms of short-fiber compos-
ites include (a) matrix deformation and fracture, (b) fiber/matrix
debonding, (c) fiber pull-out, and (d) fiber fracture. A schematic
fracture path through a short-fiber-reinforced polymer is given in
Fig. 4.35; the individual failure mechanisms are also demonstrated.

The extent to which a specific failure mechanism occurs depends
on the properties of the fiber, matrix, and interphase as well as the
geometric form and arrangement of the fibers. As discussed in
Sections 4.2.1 and 4.6.1, the efficiency in load transfer between a
fiber and its surrounding matrix depends on the length of the fiber
relative to its critical length, /c. If the length of the fiber is shorter
than /c, fiber pull-out and matrix fracture are the dominating
mechanisms of energy absorption. On the other hand, when the
fiber length is longer than /c, the fibers will, in some cases, break
and in other cases be pulled out; the fiber location and orientation
with respect to the crack is an important factor in determining
which failure mechanism takes place.

Friedrich (1989) has examined the fracture energy of aligned
short-fiber composites and given the following observations:

(1) The matrix material supplies a certain portion of the
fracture energy of the composite. For a brittle polymer
matrix, this portion is small in comparison to fiber fracture
or interfacial failure. Then the fracture energy of the
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228 Short-fiber composites

composite as a result of fiber reinforcement is higher than
that of the unfilled matrix. However, in the case of a ductile
polymer matrix, the energy absorption in the fracture
process is higher than those due to fiber related mechan-
isms. Thus, the fracture energy decreases as fiber volume
fraction increases.

(2) The fiber/matrix interface shear strength, which affects the
fiber critical length (Eq. (4.43)), is strongly influenced by
the temperature of the environment. Higher temperatures
result in higher /c. Furthermore, the temperature also
influences the matrix fracture behavior.

(3) The fracture toughness Kc of a short fiber composite is
related to the fracture energy Gc and elastic modulus E by
Kc = V(GCE). Some qualitative observations can be made
concerning this relationship. First, the addition of fibers to
a brittle polymer matrix enhances Kc due to a simultaneous
increase in Gc and E. Second, the addition of fibers to a

Fig. 4.35. Schematic fracture path through a short-fiber-reinforced poly-
mer, and individual mechanisms of failure: (A) fiber fracture, (B) fiber
pull-out, (C) fiber/matrix separation, and (D) plastic deformation and
fracture of the polymer matrix. (After Friedrich 1989.)
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very ductile thermoplastic matrix results in an increase in E
but a decrease in Gc. Thus, Kc may decrease or remain
unchanged.

It is also noted that the addition of fibers can result in
constraining effects on the matrix and a change of the stress state.
Consequently, this leads to limited plasticity in the matrix and stress
concentrations at fiber ends. The implications of the stress con-
centration on the fracture of short-fiber composites are discussed
below.

Experimental work for identifying fiber end stress concentration
was first performed by MacLaughlin (1966), who used a photoelas-
tic method to investigate the effect of fiber end shape and gap size
on the shear stress near a single short fiber. MacLaughlin (1968)
extended the photoelastic study to a square-ended short fiber
flanked by continuous fibers. Photoelastic methods were also used
by Chen and Lavengood (1969) to examine the distribution of fiber
stress and interfacial shearing stress around a short square-ended
fiber.

Theoretical analyses of fiber end stress concentrations have been
discussed in Section 4.2. Iremonger and Wood (1967, 1969), Muki
and Sternberg (1969, 1970, 1971), Chen and Lewis (1970), Stern-
berg (1970), Sternberg and Muki (1970), Baker and MacLaughlin
(1971) and Takao, Taya and Chou (1981) have also presented
analytical solutions with particular emphasis on fiber end separation
distance, fiber volume fraction, fiber and matrix modulus ratio, and
fiber end geometry. Several general conclusions can be drawn from
the analyses: (1) the primary parameters affecting the stress
concentrations are gap size, fiber volume fraction and fiber-matrix
modulus ratio; (2) square-ended and tapered-end fibers give higher
stress concentrations than round-ended fibers; (3) stress concentra-
tion increases with decreasing fiber end separation distance; (4)
higher stress concentrations exist at the fiber-matrix interface when
the end gap is a void as compared to a gap filled with matrix. It is
understood that in real composites the fiber ends are usually oblique
and uneven and that the concept of fiber end separation distance is
difficult to apply to a randomly distributed and misaligned fiber
system. A significant finding of the stress analyses surveyed above is
that the concentration of stress in the matrix near the discontinuity
of a fiber is very severe even under moderate load application.
Composite failure initiation, either by fracture of the matrix or by
debonding, is likely to occur at these locations.
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The experimental work of Curtis, Bader and Bailey (1978) on
glass and carbon fiber reinforced poly amide 6.6 has demonstrated
the embrittlement effect of short-fiber composites. Theoretical
modeling of the fracture of short-fiber composites can be found in
the work of Taya and Chou (1981, 1982), Ishikawa, Chou and Taya
(1982), Takao, Chou and Taya (1982) and Takao, Taya and Chou
(1982). The environmental effect on the fracture of short-fiber
composites has been examined by Friedrich, Schulte, Horstenkamp
and Chou (1985), Hsu, Yau and Chou (1986), and Yau and Chou
(1989).
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