This book addresses the issue of designing the microstructure of
fiber composite materials in order to obtain optimum perfor-
mance. Besides the systematic treatment of conventional con-
tinuous and discontinuous fiber composites, the book also presents
the state-of-the-art of the development of textile structural com-
posites as well as the nonlinear elastic finite deformation theory of
flexible composites.

The author’s experience during twenty years of research and
teaching on composite materials is reflected in the broad spectrum
of topics covered, including laminated composites, statistical
strength theories of continuous fiber composites, short fiber
composites, hybrid composites, two- and three-dimensional textile
structural composites and flexible composites. This book provides
the first comprehensive analysis and modeling of the thermo-
mechanical behavior of fiber composites with these distinct micro-
structures. Overall, the inter-relationships among the processing,
microstructures and properties of these materials are emphasized
throughout the book.

The book is intended as a text for graduate or advanced
undergraduate students, but will also be an excellent reference for
all materials scientists and engineers who are researching or
working with these materials.
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Preface

The science and technology of composite materials are based on a
design concept which is fundamentally different from that of
conventional structural materials. Metallic alloys, for instance,
generally exhibit a uniform field of material properties; hence, they
can be treated as homogeneous and isotropic. Fiber composites, on
the other hand, show a high degree of spacial variation in their
microstructures, resulting in non-uniform and anisotropic pro-
perties. Furthermore, metallic materials can be shaped into desired
geometries through secondary work (e.g. rolling, extrusion, etc.);
the macroscopic configuration and the microscopic structure of a
metallic component are related through the processing route it
undergoes. With fiber composites, the co-relationship between
microstructure and macroscopic configuration and their dependence
on processing technique are even stronger. As a result, composites
technology offers tremendous potential to design materials for
specific end uses at various levels of scale.

First, at the microscopic level, the internal structure of a
component can be controlled through processing. A classical
example is the molding of short-fiber composites, where fiber
orientation, fiber length and fiber distribution may be controlled to
yield the desired local properties. Other examples can be found in
the filament winding of continuous fibers, hybridization of fibers,
and textile structural forms based upon weaving, braiding, knitting,
etc. In all these cases, the desired local stiffness, strength, toughness
and other prespecified properties may be achieved by controlling
the fiber type, orientation, and volume fraction throughout the
structural component.

Second, the external geometrical shape of a structural component
can also be designed. Advances in the technology of filament
winding enable the automated production of components with
complex contours. It is now also feasible to fabricate three-
dimensional fiber preforms using advanced textile technology. As
the ability to fabricate larger and more integrated structural
components of net shape is further enhanced, the need to handle
and join a large number of small parts, as is currently done with
metallic materials, diminishes.
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The integrated and system approach, ranging from microstructure
to component net shape, offers almost unlimited opportunity in
composites processing and manufacturing. The figure below depicts
the interdependence of processing, microstructure, properties,
responses to external fields (physical, chemical and mechanical),
and performance of composites.

Processing Materials Analysis and
science science modeling Durability
Processing Microstructure Property Responses to
* ‘ external fields
— - _—
Mi Responses to
icrostructure Property external fields Performance

Design science

Optimization

The purpose of this book is to address the issue of designing the
microstructure of composites for optimum performance. This is
achieved through the selection of fiber and matrix materials as well
as the placement of both continuous and discontinuous fibers in
matrix materials. Continuous fibers can assume straight or wavy
shapes; they can also be hybridized or woven into textile preforms.
The wide range of microstructures available offers tremendous
versatility in the performance of composites; the ability to design
microstructures enables performance to be optimized.

The book is intended as an intermediate-level textbook for
students and a reference for research scientists and engineers.
Readers need some background and preparation in materials
science and applied mechanics. The first chapter examines the
driving forces for advances in fiber composites, as well as the trends
and opportunities of this rapidly developing field. Besides providing
a concise summary of the linear elastic laminate theory, Chapter 2
examines some of the recent developments in the mechanics of
laminated composites. Particular emphasis is given to thick lamin-
ates, hygrothermal effects and thermal transient effects. Chapter 3
treats the strength of continuous-fiber composites. Analyses of the
local load redistribution due to fiber breakages are presented first.
They are followed by a fairly comprehensive treatment of the
statistical tensile strength theories which encompasses the behavior
of individual fibers, fiber bundles, unidirectional fiber composites,
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cross-ply composites and laminates of multi-directional plies.
Various modes of failure of laminated composites are examined.
Section 3.4.6.2 is contributed by S. L. Phoenix, and Sections 3.4.7.4
and 3.4.8 are contributed by A. S. D. Wang. Chapter 4 deals with
the elastic, physical and viscoelastic properties as well as the
strength and fracture behavior of short-fiber composites. The effects
of variations in fiber length and orientation are examined using a
probabilistic approach. In Chapter 5, fiber hybridization serves as a
vivid example of how the performance of composites can be
controlled through the selection of material systems and their
geometric distributions. The synergistic effects between the com-
ponent phases with low elongation and high elongation fibers are of
particular interest. Chapter 6 is devoted to two-dimensional textile
structural composites based on woven, knitted and braided pre-
forms. A comprehensive treatment of the techniques for analyzing
and modeling the thermomechanical behavior of two-dimensional
textile composites is presented. Chaper 7 introduces recent de-
velopments in the processing of three-dimensional textile preforms
based on braiding, weaving, stitching and knitting. The processing—
microstructure relationship is demonstrated by the establishment of
‘processing windows’ for a specific forming technique. Then the
microstructure—property relationship is exemplified through the
construction of ‘performance maps’. Mechanical properties of
polymer- and metal-based composites using three-dimensional tex-
tile preforms are reviewed. Chapters 8 and 9, in contrast to the
earlier chapters, treat the topic of finite elastic deformation of
flexible composites. The fundamental characteristics of flexible
composites and the technique for analyzing them are presented in
Chapter 8. A rigorous treatment of the constitutive relations of
flexible composites is developed in Chapter 9 based upon both the
Lagrangian and Eulerian descriptions of finite elastic deformation.
Overall, the inter-relationship among processing, microstructure,
property, responses to external fields, and performance of compos-
ites is emphasized throughout this text.

The contents of this book have evolved from my experience
during two decades of teaching and research of composite materials
at the University of Delaware. Stimulation from students and
co-workers was indispensable to the preparation of this book. The
contributions of the individuals with whom I had the privilege and
pleasure to interact are too numerous to cite here. However, this
book serves as a tribute to the intellectual achievements of them all.
The generous support provided by the National Science Founda-
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tion, Department of Energy, Department of Transportation, Army
Research Office, Office of Naval Research, Naval Research Labo-
ratory, Air Force Office of Scientific Research, NASA, industrial
companies and the Center for Composite Materials of the Univers-
ity of Delaware for conducting the research reported in this book is
greatly appreciated. Ding-Guey Hwang, Shen-Yi Luo, Joon-Hyung
Byun and Wen-Shyong Kuo read the manuscript and gave critical
comments. Te-Pei Niu, Yih-Cherng Chiang, Mark Deshon and
Alison Gier provided valuable assistance in the preparation of the
manuscript.

Lastly, I should like to express my deep appreciation to the
following persons. The late Prof. Alan S. Tetelman of Stanford
University first pointed out to me the technological potential of
fiber composites. As a colleague of mine at Delaware, Prof. R.
Byron Pipes has greatly enriched my perspective on the subject
matter. The scholarship and guidance of Prof. Anthony Kelly have
always been a source of inspiration to me. Prof. Jerzy L. Nowinski
encouraged me throughout the course of this endeavor.



1 Introduction

1.1 Evolution of engineering materials

Compared to the evolution of metals, polymers and ceramics,
the advancement of fiber composite materials is relatively recent.
Ashby (1987) presented a perspective on advanced materials and
described the evolution of materials for mechanical and civil
engineering. The relative importance of four classes of materials
(metal, polymer, ceramic and composite) is shown in Fig. 1.1 as a
function of time. Before 2000 Bc, metals played almost no role as
engineering materials; engineering (housing, boats, weapons, uten-
sils) was dominated by polymers (wood, straw, skins), composites
(like straw bricks) and ceramics (stone, flint, pottery and, later,
glass). Around 1500 Bc, the consumption of bronze might reflect the
dominance in world power and, still later, iron. Steel gained its
prominence around 1850, and metals have dominated engineering
design ever since. However, in the past two decades, other classes
of materials, including high strength polymers, ceramics, and
structural composites, have been gaining increasing technological
importance. The growth rate of carbon-fiber composites is at about
30% per year — the sort of growth rate enjoyed by steel at the peak
of the Industrial Revolution. According to Ashby the new materials
offer new and exciting possibilities for the designer and the potential
for new products.

1.2 Fiber composite materials
Fiber composites are hybrid materials of which the com-
position and internal architecture are varied in a controlled manner
in order to match their performance to the most demanding
structural or non-structural roles. The fundamental characteristics
of fiber composites have been summarized by Vinson and Chou
(1975), Chou and Kelly (1976), Chou, Kelly and Okura (1985),
Kelly (1985), and more recently by Chou, McCullough and Pipes
(1986), from which the following is excerpted.*
On the face of it a composite might seem a case of needless
complexity. The makings of ideal structural materials would appear

*From ‘Composites’, Chou, McCullough and Pipes. Copyright © (1986) by
Scientific American, Inc. All rights reserved.



Fig. 1.1. The evolution of materials for mechanical and civil engineering. (After Ashby 1987.)
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to be at hand, in the midsection of the periodic table. Those
elements, among them carbon, aluminum, silicon, nitrogen and
oxygen, form compounds in which the atoms are joined by strong
and stable bonds. As a result, such compounds, typified by the
ceramics, for instance, aluminum oxide, silicon carbide and silicon
dioxide, are strong, stiff and resistant to heat and chemical attack.
Their density is low and furthermore their constituent elements are
abundant.

Yet because of a serious handicap these substances have rarely
served as structural materials. They are brittle and susceptible to
cracks. In bulk form the substance is unlikely to be free of small
flaws, or to remain free of them for long in actual use. When such a
material is produced in the form of fine fibers, its useful strength is
greatly increased. The remarkable increase in strength at small
scales is in part a statistical phenomenon. If one fiber in an
assemblage does fail, moreover, the crack cannot propagate further
and the other fibers remain intact. In a similar amount of the bulk
material, in contrast, the initial crack might have led to complete
fracture.

Tiny needlelike structures called whiskers, made of substances
such as silicon carbide and aluminum oxide, also contain fewer flaws
and show greater strength than the material in bulk form. Whiskers
are less likely to contain defects than the bulk material, not only for
statistical reasons but also because they are produced as single
crystals that have a theoretically perfect geometry. The notion that
many materials perform best as fibers also holds for certain organic
polymers. Composites are a strategy for producing advanced
materials that take advantage of the enhanced properties of fibers.
A bundle of fibers has little structural value. To harness their
strength in a practical material the designer of a composite embeds
them in a matrix of another material. The matrix acts as an
adhesive, binding the fibers and lending solidity to the material. It
also protects the fibers from environmental stress and physical
damage that could initiate cracks.

The strength and stiffness of the composite remain very much a
function of the reinforcing material, but the matrix makes its own
contribution to properties. The ability of the composite material to
conduct heat and current, for example, is heavily influenced by the
conductivity of the matrix. The mechanical behavior of the compos-
ite is also governed not by the fibers alone but by a synergy between
the fibers and the matrix.

The ultimate tensile strength of a composite is a product of the
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synergy. When a bundle of fibers without a surrounding matrix is
stressed, the failure of a single fiber eliminates it as a load carrier.
The stress it had borne shifts to the remaining intact fibers, moving
them closer to failure. If the fibers are embedded in a matrix, on the
other hand, fracture does not end the mechanical function of a
fiber. The reason is that as the broken ends of the fiber pull apart,
elastic deformation or plastic flow of the matrix exerts shear forces,
gradually building stress back into the fragments. Because of such
load transfer the fiber continues to contribute some reinforcement
to the composite. The stress on the surrounding intact fibers
increases less than it would in the absence of the matrix, and the
composite is able to bear more stress without fracturing. The
synergy of the fibers and the matrix can thus strengthen the
composite and also toughen it, by increasing the amount of work
needed to fracture it.

Although the general requirement that the matrix be ductile
provides some guidance for choosing a matrix material, the most
common determinant of the choice is the range of temperatures the
composite will face in its intended use. Composites exposed to
temperatures of no more than between 100 and 200°C usually have
a matrix of polymer. Most composites belong to this group.

Polymer matrices are often thermosets, that is polymers in which
bonds between the polymer chains lock the molecular structure
into a rigid three-dimensional network that cannot be melted.
Thermosets resist heat better than most thermoplastics, the other
class of polymeric materials, which melt when they are heated
because no bonds cross-link the polymer chains. Epoxies are the
most common thermosetting matrix for high-performance compos-
ites, but a class of resins called polyimides, which can survive
continuous exposure to temperatures of more than 300°C, have
attracted considerable interest. If the resin is a thermoset, the
structure must then be cured, subjected to conditions that enable the
polymer chains to cross-link. Often the composite must be held at
high temperature and pressure for many hours.

In part to shorten the processing time, thermoplastic matrix
materials are attracting growing interest; one promising example is a
polymer called PEEK (polyetheretherketone). Consolidating a
composite that has a thermoplastic matrix requires only relatively
short exposure to a temperature that is sufficient to soften the
plastic. The melting temperature of some thermoplastic matrices is
so high that they rival thermosets in heat resistance: PEEK, for
example, melts at 334°C. Thermoplastics have the additional
advantage of being tougher than most of the thermosets.
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Temperatures high enough to melt or degrade a polymer matrix
call for another kind of matrix material, often a metal. Along with
temperature resistance a metal matrix offers other benefits. Its
higher strength supplements that of the reinforcing fibers, and its
ductility lends toughness to the composite. A metal matrix exacts
two prices: density that is high in comparison with polymers, even
though the light metals such as aluminum, magnesium and titanium
are the most common matrices, and complexity of processing.
Indeed, whereas the production of many advanced polymer matrix
composites has become routine, the development of metal matrix
composites has progressed more slowly, in part because of the
extreme processing conditions needed to surround high strength
fibers with a matrix of metal.

Metal matrix composites might assume a place in the cooler parts
of the skin of a hypersonic aircraft, but at the nose, on leading
edges of the wings and in the engines temperatures could exceed the
melting point of a metal matrix. For those environments, there is
growing interest in a class of composites that have matrices as
resistant to heat as the fibers themselves, and also as lightweight
and potentially as strong and stiff, namely, ceramics. Because they
are brittle, ceramics behave differently from other matrices. In
metal and polymer matrix composites the fibers supply most of the
strength, and the ductile matrix acts to toughen the system. A
ceramic matrix, in contrast, is already abundantly stiff and strong,
but to realize its full potential it needs toughening. The fibers in a
ceramic matrix composite fill that need by blocking the growth of
cracks. A growing crack that encounters a fiber may be deflected or
may pull the fiber from the matrix. Both processes absorb energy.

The ceramic matrix gives such composites great temperature
resistance. Borosilicate glass reinforced with carbon fibers retains its
strength at 600°C. Such matrices as silicon carbide, silicon nitride,
aluminum oxide or mullite (a complex compound of aluminum,
silicon and oxygen) yield composites that remain serviceable at
temperatures well above 1000°C. The heat resistance of a ceramic
matrix composite, however, complicates its fabrication.

The characteristics of these three classes of composites can be
exemplified by the relation of stress and strain for the unreinforced
polymer, metal and ceramic as compared with curves for the
corresponding composites. Whereas unreinforced epoxy stretches
easily, an epoxy matrix composite containing 50% by volume of
silicon carbide fibers is far stiffer (Fig. 1.2a). In an aluminum matrix
the same volume of reinforcement, in this case aluminum oxide
fibers, also improves stiffness dramatically (Fig. 1.2b). Because the
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Fig. 1.2. Stress—strain curves for (a) SiC/epoxy, (b) Al,O,/aluminum, and
(¢) SiC/borosilicate glass composites. (From ‘Composites,” Chou,
McCullough and Pipes). Copyright © (1986) by Scientific American, Inc.
All rights reserved.
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fibers are brittle, the composite fails at a much lower strain than
unreinforced aluminum does. A similar fraction of silicon carbide
fibers stiffens a matrix of borosilicate glass only slightly but
toughens it considerably, increasing the percentage by which it can
be strained without breaking (Fig. 1.2c). The fibers do so by
restraining the growth of matrix cracks that might otherwise lead to
fracture.

Related to ceramic matrix composites in character but distinctive
in manufacture is a composite in which both the matrix and the
reinforcing fibers consist of elemental carbon. Carbon—carbon
composite is reinforced by the element in a semicrystalline form,
graphite; in the matrix the carbon is mostly amorphous. A carbon-
carbon composite retains much of its strength at 2500°C and is used
in the nose cones and heat shields of re-entry vehicles. Unlike most
ceramic matrix composites, it is vulnerable to oxidation at high
temperatures. A thin layer of ceramic is often applied to the surface
of a carbon—carbon composite to protect it.

The combination of fiber and matrix gives rise to an additional
constituent in composites: an interface (or interphase) region. Chemi-
cal compatibility between the fibers and the matrix is most crucial at
this region. In polymer and metal matrix composites a bond must
develop between the reinforcement and the matrix if they are to act

Fig. 1.2. (cont.)
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8 Introduction

in concert. A prerequisite for adhesion is that the matrix, in its fluid
form, be capable of wetting the fibers. Fibers that would otherwise
not be wetted by their matrix can be given a coating that fosters
contact by interacting with both the fibers and the matrix. In some
cases varying the matrix composition can also promote the process.
Once the matrix has wetted the fibers thoroughly, intermolecular
forces or chemical reactions can establish a bond.

The properties of an advanced composite are shaped not only by
the kind of matrix and reinforcing materials it contains but also by a
factor that is distinct from composition: the geometry of the
reinforcement. Reinforcing geometries of composites can be
grouped roughly by the shape of the reinforcing elements: particles,
continuous fibers or short fibers (Fig. 1.3). Sets of parallel con-
tinuous fibers are often embedded in thin composite layers, which
are assembled into a laminate. Alternatively, each ply in a laminate
can be reinforced with continuous fibers woven or knitted into a
textile ‘preform’. Recently developed geometries dispense with
lamination: the fibers are woven or braided in three dimensions
(Fig. 1.4), a strategy that in some cases enables the final shape of
the composite to be formed directly.

Progress toward managing the many variables of composite
design has encouraged investigators to contemplate new com-
plexities. An ordinary composite reinforced with stiff, straight fibers
usually displays a nearly constant value of stiffness. New composites
designed to display specific non-linear relations of strain and stress
are now attracting interest. One such example, a flexible composite
consisting of undulating fibers in an elastomeric matrix, can

Fig. 1.3. Particle- and fiber-reinforced composites. (From ‘Composites’
Chou, McCullough and Pipes.) Copyright © (1986) by Scientific
American, Inc. All rights reserved.
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Fig. 1.4. Preforms of textile structural composites. (From ‘Composites’ Chou, McCullough and Pipes.)
Copyright © (1986) by Scientific American, Inc. All rights reserved.
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10 Introduction

elongate readily at low stresses but stiffens when the fibers become
fully extended. A hybrid composite strengthened with two kinds of
fibers, some of them brittle and inextensible and the others ductile
and tough, can display the opposite behavior. The stiff fibers cause
stress to increase very sharply at low strains, but when the strain is
sufficient to break the stiff, brittle fibers, the curve of stress over
strain flattens. The ductile fibers come into play, and as a result the
composite becomes more extensible. The hybrid design can yield a
material that combines much of the stiffness of an ordinary
composite containing only stiff fibers with increased toughness.

Overall, the opportunity in the engineering of fiber composites is
the potential to control the composition as well as internal geometry
of the materials for optimized performance.

1.3 Why composites?

The question of ‘Why composites?’” was raised in the 1975
text by Vinson and Chou (1975). The rationale provided then
focussed on

(a) the limitations in strength and ductility for metallic alloys
from the viewpoints of theoretical cohesive strength of
solids and the arrangement of crystalline defects,

(b) the need of a balanced pursuit in strength and ductility and
the potential of achieving both in fiber composites, and

(c) the strength limitation of metallic alloys at elevated tem-
peratures and the potential of carbon—carbon composites
and refractory metal wire reinforced super-alloys.

The field of fiber composites has witnessed drastic changes and
advancement since the mid-1970s because of the availability of
several ceramic fibers, high-temperature thermoplastics, glass—
ceramic matrices, and intermetallic solids for composites. Although
the fundamental physical principles governing the synergism of the
component phases in composites should not change, the advance-
ment in materials technology coupled with that in processing,
surface science and instrumentation has greatly changed the per-
spective of composite technology. In the following, the answer to
the question of ‘why composites?” is re-examined from both
economic and technological points of view.

1.3.1  Economic aspect
For the discussion of the economic aspect of advanced
materials in general and fiber composites in particular, it is
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worthwhile referring to a recent survey entitled Problems and
Opportunities in Metals and Materials: An Integrated Perspective by
the U.S. Department of the Interior (Sousa 1988). The report
asserts that the future growth prospects seem best not in tonnage
commodities but rather in materials that are more technology-
intensive and more high-value-added. As the economy grows and
matures, the rate of growth in consumption of tonnage metals first
exceeds, eventually parallels, and finally trails that of the economy
as a whole.

Figure 1.5 shows the estimated current relative market maturity
of the major metals and other materials. The vertical dimension
indicates intensity-of-use (amount/GNP). The potential of polymer,
metal and ceramic based composites is obvious. This figure also
demonstrates a hard fact of life that eventually catches up with
virtually any product —that of market saturation and, as the
inexorable evolution of technology proceeds, eventual displacement
and decline.

By incorporating different materials into composites, the synthe-
tic class of materials can thus draw on the essential characteristics of
diverse materials: the high strength, ductility, thermal-electrical
conductivity and formability of metals, the low cost fabrication,
light weight and corrosion resistance of polymers, and the strength,
corrosion resistance and high-temperature performance of ceramics.

Fig. 1.5. Relative market maturity of materials. (After Sousa (1988).)

Commodity plastics
Stainless steel —
Super-alloy —>»

Specialty metals (

Traditional engineering plastics —>
High-performance engineering plastics —>
Engineering plastics, alloys and blends —»

«— Aluminum
o<— Copper
<€ Carbon steel

Fiber optics —»

Advanced polymer _,
matrix composites
Advanced metal —>
matrix composites

Structural ceramics —>»

Heavy R & D Growth

< GNP

Growth

Rapid growth /
maturing

Growth
= GNP



12 Introduction

The survey of the U.S. Department of the Interior forecasts the
total demand for advanced materials in the U.S. in the year 2000 to
be approximately $55 billion annually, roughly the same magnitude
as the current U.S. steel market. By comparison, a Japanese
Ministry of International Trade and Industry report showed that the
Japanese annual demand for advanced materials is expected to be
about $34 billion. The breakdown of the market in terms of
material categories is (1) advanced polymer composites: 22%
(U.S.), 7.6% (Japan); (2) advanced metal alloys and composites:
35% (U.S.), 28.3% (Japan); (3) advanced ceramics: 30% (U.S.),
35.9% (Japan); (4) engineering plastics: 13% (U.S.), 28.3%
(Japan). Although the rudimentary nature of such forecasts cannot
be overemphasized, the transition from a metals economy to a
materials economy, and the importance of composite materials to
the economy of advanced materials, is unmistakable.

1.3.2  Technological aspect
From the technological viewpoint, advanced composite
materials can offer a competitive edge in many products, including
aircraft, automobile, industrial machinery and sporting goods,
provided their overall production costs can be reduced and their
performance improved. According to the study New Structural
Materials Technologies made by the Congress of the United States,
Office of Technology Assessment (1988), the broader use of
advanced structural materials requires not only solutions to techni-
cal problems but also changes in attitudes among researchers and
end-users. The traditional approach based upon discrete design and
manufacturing steps for conventional structural materials needs to
be replaced by an integrated design and manufacturing process
which necessitates a closer relationship among researchers, design-
ers, and production personnel as well as a new approach to the
concept of material costs. A fully integrated design process capable
of balancing all of the relevant design and manufacturing variables
requires an extensive database on matrix and fiber properties,
the ability to model fabrication processes, and three-dimensional
analysis of the properties and behavior of the resulting structure.
Knowledge of the relationships among the constituent properties,
microstructure and macroscopic behavior of the composite is basic
to the development of an integrated design methodology.
To further understand the impacts of advanced structural mate-
rials on manufacturing, this report examines the following two
possibilities: substitution by direct replacement of metal com-
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ponents in existing products and the use in new products that are
made possible by the new materials. Direct substitution of a ceramic
or composite part for a metal part is not likely to take full
advantage of the superior properties and design flexibility of
advanced materials. Substitution of conventional structural metals
such as steel and aluminum alloy by composites is highly unlikely.
Because of their low cost and manufacturability, these metals are
ideally suited for applications in which they are now used. On the
other hand, the metal industry has responded to the potential of
direct substitution by developing new alloys with improved pro-
perties, such as high-strength, low-alloy steel and aluminum-
lithium. According to this assessment, significant displacement of
metals could occur in four potential markets: aircraft, automobiles,
containers and constructions.

In the choice of material substitution, a variety of factors need to
be taken into account. Compton and Gjostein (1986) analyzed the
weight saving and cost for material substitution for ground trans-
portation. Weight reduction that can be achieved in designing a part
by substituting a light-weight material for a conventional one
depends critically on the part’s function. A unit volume of cast
aluminum weighs 63% less than an equal volume of cast iron. Cast
iron, however, is stiffer than cast aluminum. Therefore if a
hypothetical cast-aluminum part is to be as stiff as a cast-iron one,
more aluminum would have to be used and the weight saving would
be reduced to 11%. If equal loading carrying capacity is required in
the hypothetical aluminum part, the weight saving would be 56%.
(In actual design situations the weight saving offered by the
substitution of aluminum for cast iron ranges from 35 to 60%.)
Similarly, aluminum and fiber-reinforced plastics are much lighter
than mild (ordinary) steel by volume. The weight savings, however,
are much smaller if equal stiffness or equal collapse load and
bending stiffness (a measure of structural strength) is needed.
High-strength steel is no lighter by volume than mild steel, nor is it
stiffer. Where structural strength is the main concern, however,
high-strength steel does offer a weight saving: 18% in the example
discussed by Compton and Gjostein.

In terms of innovative designs and new products based upon
advanced composites, the automotive industry undoubtedly pro-
vides an excellent paradigm. The use of polymer matrix composites
for primary body structures and chassis/suspension systems is under
evaluation by the major automobile manufacturers. The potential
advantages of using composites are: weight reduction and resulting
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fuel economy; improved overall quality and consistency in manu-
facturing; lower assembly costs due to parts consolidation; lower
investment costs for plant, facilities, and tooling; improved corro-
sion resistance; and lower operating costs. The major barriers to the
large-scale applications of composites are the lack of high-speed,
high-quality, low-cost manufacturing processes; uncertainties re-
garding crash integrity and long-term durability; and lack of
adequate technologies for repair and recycling of polymer compos-
ite structures. According to Compton and Gjostein, glass fiber
reinforced composites are capable of meeting the functional re-
quirements of the most highly loaded automotive structures. Candi-
date fabrication methods include resin transfer molding, compres-
sion molding, and filament winding. Among these methods, resin
transfer molding seems the most promising, although none of these
methods can satisfy all of the production requirements at this time.
There is no doubt that the large-scale adoption of polymer matrix
composites for automotive structures would have a major tech-
nological impact on the fabrication and assembly of automobiles.

Fig. 1.6. Temperature capabilities of polymer, metal and ceramic matrix
materials. (After Mody and Majidi 1987, with permission from the Society
of Manufacturing Engineers.)
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Another technological aspect that motivates the use of fiber
composites pertains to the demand of an elevated temperature en-
vironment (Steinberg 1986). Temperature capabilities of polymer,
metal and ceramic matrix materials are shown in Fig. 1.6 (Mody
and Majidi 1987). The demand for high-temperature applications of
composites is best exemplified by the need for aerospace materials.
The U.S. goals for subsonic, supersonic and hypersonic flight and
for space explorations require alloys and composites with superior
strength, light weight and resistance to heat. According to Stein-
berg, the evolution of aircraft has required continual improvements
in materials because increased speed raises the heating of the skin
from friction with the air and increased power raises the tempera-
ture of the engine. Figure 1.7 shows the changes in skin tempera-
tures from aircraft of the 1930s to the proposed Orient Express
which is a transatmospheric craft capable of cruising at great speed
in space. The skin materials have progressed from wood and fabric
to advanced alloys of aluminum, nickel and titanium and graphite
fiber reinforced polymer composites.

Figure 1.8 shows the changes in engine temperature from engines
cooled by water to those of scramjets. The need for composites in
engine components can be understood from the evolution in engine

Fig. 1.7. Evolution of aircraft skin temperatures. (From ‘Materials for
Aerospace’, Steinberg). Copyright © (1986) by Scientific American, Inc.
All rights reserved.
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performance. According to Steinberg, the thrust delivered by a big
jet engine for transport and cargo aircraft has increased about six
fold over the past 30 vyears, approaching 294000 newtons
(66 000 pounds) now. During the same period the weight of the
engine has increased by a factor of only two or three. The
thrust-to-weight ratio of the military aircraft may approach 15:1 by
the year 2000. The performance of jet engines has been made
possible partially with improvements in turbine blades. It is
predicted that with the further improvements in blades and other
aspects of aircraft propulsion, a typical propulsion system in the
year 2000 will be likely to contain about 20% each of composites,
steel, nickel and aluminum, 15% titanium, 2% ordered alloys
(aluminides, e.g. titanium-aluminum or nickel-aluminum) and 1%
ceramics (Steinberg 1986).

Clark and Flemings (1986) have also examined the present and
future material systems for meeting the engine operating tempera-
ture requirements. In Fig. 1.9 the lowest band on the graph
indicates the temperature increase that has been achieved so far
through improvements in nickel-based super-alloys, the standard
turbine material. It is believed that in the coming decades alloy
turbine blades made of metal strengthened by directional crystal
structures, and blades protected by a coating of ceramics or special

Fig. 1.8. Evolution of aircraft engine temperatures. (From ‘Materials for
Acrospace’ Steinberg). Copyright © (1986) by Scientific American, Inc.
All rights reserved.
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alloys, will allow an increase in turbine-inlet temperatures. How-
ever, ultimately, the demand for very-high-temperature material
can only be met by ceramic matrix composites and carbon—carbon
composites.

14 Trends and opportunities

Kelly (1987a&b), in a recent outline of the trends in
materials science and processing, examined the status of fiber
composites. It was concluded that the development of this field has
been mainly driven by the aerospace industry. This development
has contributed to the growth of a relatively small body of new
science which related the colligative properties of fiber composites
to the properties of the individual components. There have been
interesting combinations of properties not hitherto available in
single phase materials, for example, a negative thermal expansion
and a negative Poisson’s ratio. However, there have not been large
non-linear synergistic effects. There is perhaps not much new
science of the colligative properties of composites. However, in
Kelly’s view, the studies of design of fiber composites are critical for

Fig. 1.9. Rise in the operating temperature of jet engines with time.
(From ‘Advanced Materials and Economy’ Clark and Flemings). Copy-
right © (1986) by Scientific American, Inc. All rights reserved.
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their applications. Furthermore, there may be much new science on
how to produce composites.

The significant trends in structural composites point to the
direction of low-temperature metal matrix, resin matrix, metal—
resin matrix, rubber matrix, cement—ceramic matrix and elevated-
temperature composites. Non-structural composites are increasingly
being recognized for their unique opportunities in electric, mag-
netic, superconducting and biomedical applications. A brief sum-
mary of those trends follows (see Kelly 1987a).

A major motivation behind the development of low-temperature
metal matrix composites in the U.S. has been for the utilization of
high-stiffness continuous fibers in a matrix material without the
disadvantage of thermosetting resins of low thermal conductivity,
high thermal expansion, dimensional instability, hygrothermal de-
gradation, material loss in high vacuum, susceptibility to radiation
damage, and lower temperature brittleness. The lighter metals do
not possess these disadvantages; their low atomic number (Z) is
important in a neutron-rich environment. It is useful to bear in
mind that five out of the 13 lowest-Z solids are metals. Some of
these metals, together with their atomic number and density, are
listed below: lithium (Z=3, density=0.53Mgm™), sodium
(11,0.97), potassium (19,0.86), calcium (20, 1.55), magnesium
(12, 1.741), beryllium (4, 1.85), and aluminum (13, 2.7).

Reinforcement of a light metal, e.g. aluminum and magnesium, is
attractive in the automobile industry in reducing creep at moderate
temperatures and improving wear resistance. Coating for carbon fibers
is necessary for incorporation into aluminum and magnesium matrices.

Thermoplastic resins have certain advantages over thermosets in
their infinite shelf life, good resistance to water and solvents, and
ductility. Thermoplastics are attractive particularly from the view-
point of composites manufacture because they are rapidly proces-
sable, and are better adapted to automated manufacturing. Also,
they can be recycled and joined by welding.

Laminates formed by bonding metal sheets to fiber—resin com-
posites take advantage of the synergistic effects of hybrid compos-
ites. For instance, the combination of aluminum foil with
Kevlar/epoxy composite results in enhanced fatigue resistance and
compressive strength.

Rubber (elastomeric) matrix can be reinforced with short and
continuous fibers and can provide the capability of large non-linear
elastic deformation. Automobile tires and coated fabrics are ex-
amples in this category.
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Contrary to the large deformation of rubber type flexible com-
posites, ceramic based composites offer the other extreme on the
scale of deformation. The brittle nature of ceramic solids requires a
new way of thinking in ‘reinforcement’. Fibers are added for the
purpose of improving toughness against fracture and ductility in
terms of energy absorption and deformation range.

Ceramic matrix composites, directionally solidified eutectics,
intermetallic solids, certain types of metal based composites, and
carbon—carbon composites are the candidate materials for elevated-
temperature applications. Among these, carbon—carbon composites
present the ultimate in high-temperature materials under reducing
conditions. They have many tribological applications. Protection
against oxidation and densification of the matrix are major chal-
lenges to carbon—carbon composites.

Finally, the potential of non-structural composites has not been
fully explored. Kelly (1987a) cited the examples in making special
devices. For example, a magnetoresistive device obtained by
coupling a metal rod with a semiconductor matrix provides a
contactless potentiometer or a fluxmeter, or coupling a piezoelectric
and magnetostrictive material gives a magnetoelectric material. The
potential for biomedical applications of flexible composites also
exists (see Chou 1989).

1.5 Microstructure—performance relationships

Chapters 2-9 examine the stiffness, strength and failure
behavior of several types of composites: laminated composites
composed of continuous fibers; composites reinforced with short
fibers in biassed or random orientations; composites with two types
of fibers in intermingled, interlaminated or interwoven forms;
composites reinforced with textile preforms; and flexible composites
exhibiting large deformations. The mathematical tools for analyzing
their thermomechanical properties have been presented. Most
significantly, an effort has been made to delineate the relationship
between the behavior and these composites.

In the following, a comparison is first made among the stress—
strain behaviors of three composite systems. The purpose is to
demonstrate the versatility in composite performance through the
design of microstructure. This is followed by specific examples
of tailoring the material performance through microstructural
design. Lastly, the emerging field of ‘intelligent composites’ is
introduced.
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1.5.1  Versatility in performance

For the purpose of demonstrating the versatility of the
performance of composites, the stress—strain relationships of three
types of composites are examined. Figure 1.10 shows the stress—
strain curves of a unidirectional carbon fiber reinforced glass matrix
composite (Nardone and Prewo 1988). The behavior is typical for
brittle matrix composites based upon polymer and glass/ceramic
matrices. The knee phenomenon of the stress—strain curve re-
sembles the yield behavior of metallic alloys.

Figure 1.11 gives the stress—strain curves of interlaminated
carbon/glass hybrid composites. The ability of the low elongation
phase (carbon) in developing multiple fractures enables the hybrid
composites to sustain deformations at a level much higher than that
of the all-low elongation fiber composite. The energy absorption
capability as indicated by the area under the stress—strain curve is
also much higher than that of the all-carbon fiber composite. The
shape of this stress—strain curve resembles those of ductile metals
with strain-hardening behavior.

The stress—strain data of a flexible composite (Fig. 1.12) show
rapid increase in stress and stiffness at large deformation (Chou
1989). It resembles the behavior of certain biological materials such
as soft animal tissues (Humphrey and Yin 1987; Gordon 1988).

Fig. 1.10. Tensile stress—strain curves of a carbon/borosilicate glass
composite. (After Nardone and Prewo 1988).
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Fig. 1.11. Tensile stress—strain curves of a carbon/glass/epoxy interlamin-
ated composite. (After Bunsell and Harris 1974).
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It is interesting to note that through the selection of fiber and
matrix materials, as well as their geometric arrangements, a broad
spectrum of material performance can be accomplished. It is
feasible to design the physical and mechanical properties of
composites which not only duplicate the performance of some
existing materials but also fulfil the most demanding structural roles
not envisioned before.

1.5.2  Tailoring of performance

The structure—performance relationships of the various
types of fiber composites are further demonstrated in this section.
First, for continuous fiber composites, the problem of edge de-
lamination is used as an example. Next the variation of composite
electric properties with the configuration of reinforcements is
demonstrated.

Consider the [£45°/05/90%) laminate. The effect of fiber orienta-
tion on the deformation of each individual lamina is highly
anisotropic (Fig. 1.13). The compatibility of displacements among
the laminae induces interlaminar stresses through the thickness
direction of the laminate. Sun (1989) has demonstrated that the
opening mode of delamination can be minimized through fiber
hybridization, stitching, the use of adhesive layers, ply termination,
and modification of edge geometry.

Figure 1.14 shows the free-edge interlaminar normal stresses in
the all-carbon composite and the hybrid composite formed by
replacing 90° plies with a glass/epoxy composite. A significant

Fig. 1.13. Effect of fiber orientation on the deformation of composite
laminae. (After Sun 1989.)
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reduction in interlaminar normal stress is achieved with hybrid
laminates. The experimentally measured delamination initiation
stress and failure stress are 324.3 MPa and 800.4 MPa, respectively.
The corresponding stresses for the hybrid laminate are 800.4 MPa
and 883.2 MPa, respectively. Thus, the addition of the glass/epoxy
plies significantly improves the delamination stress. The gain in
failure stress is not as significant since the 0° plies in both laminates
dominate the ultimate strength.

Reinforcements in the thickness direction can suppress inter-
laminar failure. Figure 1.15 shows the X-ray radiographs of
[£45°/05/90°], laminates under uniaxial tension. The specimen with
through-the-thickness stitches along the free edges experiences
much less delamination than the specimen without stitches.

Besides relying on textile performing techniques such as stitching,
weaving and braiding, delamination in brittle resin matrix compos-
ites can be remedied by adding a ductile matrix in the form of thin
adhesive layers. The resulting composite has a hybridized matrix. It
has been demonstrated in [0°/90°/45°/—45°], carbon/epoxy lamin-
ates that by reducing the free-edge effect the laminate strength can
be greatly improved. Furthermore, the laminate strength becomes
an isotropic property which can be predicted by the classical failure
theory. The use of adhesive layers in laminates subject to low-
velocity impact also proves to be effective in suppressing the
development of matrix cracking and delamination.

Fig. 1.14. Free-edge interlaminar normal stresses on the mid-surface in
carbon/epoxy and carbon/glass/epoxy laminates. (After Sun 1989).
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The transport properties, e.g. electrical conductivity, thermal
conductivity, dielectric constants, magnetic permeability and
diffusion coefficients of composites, are also sensitive to the
microstructure of the reinforcements. McCullough (1985) has
demonstrated the importance of structural features that promote
transport along the preferred path, i.e. percolative mechanisms.
Consider, for instance, the electrical behavior of metal-filled poly-
mers. The effective resistivity changes sharply from non-conducting
to conducting behavior upon crossing a ‘percolation threshold’.
Figure 1.16 illustrates such a transition for a composite containing
conductive fillers (p;=10"°Q cm) in an insulating polymer matrix
(pm =10 Q cm). The decrease in resistivity with the increase in
filler volume fraction is attributed to the enhancement in probability
of particle-particle contact. McCullough has concluded that these
contacts promote the formation of continuous conduction paths that
mimic the behavior of conducting fibers.

1.5.3  Intelligent composites
Traditionally, fiber composites have been designed and
manufactured with the purpose of serving very specific functional

Fig. 1.15. X-ray radiographs showing delamination in unstitched (left) and
stitched (right) [+45°/05/90°], laminates under uniaxial tension. (After
Mignery, Tan and Sun 1985.)

551 MPa (80 ksi) 641 MPa (93 ksi) 689 MPa (100 ksi)
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goals. Such goals and considerations may include stiffness, fracture
toughness, fatigue life, impact resistance, electromagnetic shielding,
corrosion resistance, and biocompatibility, just naming a few. With
the expansion in available material systems for composites, advance-
ments in fabrication technologies, and improvements in analysis
and design techniques, it becomes increasingly feasible for develop-
ing multi-functional fiber composites for which a number of
functional goals are satisfied simultaneously, and the performance
can be optimized.

A new breed of multi-functional composites is dubbed ‘smart
composites’ or ‘intelligent composites’. Takagi (1989) has defined
intelligent materials as ‘those which can manifest their own func-
tions intelligently depending on environmental changes’. Thus,
intelligent composites can react to the thermal, electrical, magnetic,
chemical or mechanical environment and adjust their performance
accordingly. It should be borne in mind that intelligent composites
are made possible only through the design of their microstructures.

There are two basic requirements for intelligent composites to
‘think’ for themselves. First, the ability to detect the change in the
environment, such as pressure, strain, temperature, and electro-

Fig. 1.16. Illustration of chain formation in a particulate filled composite.
Open circles and closed circles indicate, respectively, isolated particles and
contacting particles participating in chain formation. p and V; denote
resistivity and filler volume fraction, respectively. (After McCullough
1985.)
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magnetic radiation is necessary. Next, the ability in feedback and
control is also needed so corrective actions can be taken.

An example of intelligent composites under consideration by
researchers is the skin of an aircraft wing (see Port, King and
Hawkins 1988). The resin-based composite skin in this case has
built-in optic-fiber sensors which through the pulses of laser light
can detect internal defects and damages, the weight of ice or
incoming electromagnetic radar waves. Signals from the sensors
would be analyzed by patches of chips mounted on a flexible printed
circuit board bonded over the skin.

It has been suggested that implanting monolithic microwave
integrated circuit chips around an airplane’s surface would produce
a huge, omnidirectional antenna that would be far more effective
than the small forward looking units now mounted on its nose.
Other applications of intelligent composites have been envisioned
for the purpose of in-flight damage assessment capability on
airplanes and orbiting spacecrafts, prelaunch checks for leaks and
structural integrity of the casing around rockets, altering the
stiffness of sporting equipment such as golf club and fishing rods in
response to the changing operating conditions, and monitoring the
sway of high-rise buildings induced by hurricane winds or
earthquakes so measures to compensate such deformations can be
activated (Port, King and Hawkins, 1988). Some of the issues of
intelligent structures have been discussed by Rogers (1988).

In summary, the challenges of intelligent composites are mani-
fested by the following factors: (a) development of sensing,
feedback and control systems as well as the technologies for
fabricating composites imbedded with such devices, (b) implemen-
tation of the required changes in the shapes of the structural
components, for example the change of the angle and shape of an
airplane’s wing, and (c) perhaps the most challenging task, the
ability of a material to change its performance, for example the
stiffness or transport properties.

The combination of the structural and non-structural roles of a
composite in an integrated manner will undoubtedly change the
performance of fiber composites in a way not envisioned in the past.

1.6 Concluding remarks

Having examined the evolution of engineering materials,
and the role of fiber composites in materials technology, it is
perhaps useful to put in perspective the research and economic
opportunities of advanced composites.
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First, from the viewpoint of materials research, it is important to
recognize that the distinction between the three classes of materials,
i.e. metals, ceramics and plastics, is disappearing. As observed by
Kelly (1987a), there are now plastics as strong as metals which show
some electrical conductivity. Metals are being made which are
super-plastic and can be subjected to deformations in processing
like conventional polymeric materials. Also the three classes of
materials are beginning to show the same limits of strength and
stiffness; fibers made from all three can attain stiffness and strength
close to the theoretically predicted values. Furthermore, the pro-
perties of all three classes of materials can be modified and
improved by the use of surface coatings.

As the distinction between the three classes of materials disap-
pears, new possibilities and opportunities arise. One of these,
according to Kelly, is the possibility of designing materials not so
much for final properties but equally in terms of processability.
These thoughts have profound implications for the future technol-
ogy of fiber composites:

(1) The commonality in processing shared by the three classes
of materials, e.g. super-plastic forming of metal and poly-
mers, injection molding of polymers and ceramic powders,
will enable more extensive and effective transfer of know-
how among the three basic disciplines and effect efficient
processing technology for fiber composites.

(2) The commonality in performance shared by the three
classes of materials, e.g. stiffness, strength, thermal expan-
sion, enables the material scientist to engineer composites
with a broad spectrum of component materials. Conse-
quently, hybridizations of materials, e.g. glass and low-
melting-point metal, ceramics and thermoplastics, and
polymer and metal in laminates or other interdispersed
composite forms can be achieved and the properties op-
timized (e.g. composites composed of metal and polymer
components of nearly the same stiffness but different
fatigue resistance, or thermal expansion coefficient).

(3) The similarity in material property and behavior implies
that analytical and design methodologies originally
developed for a specific class of composites may be
transferable to others. A notable example is the
fracture and failure behavior of ceramic and polymer
based composites.
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(4)

Introduction

The complex task inherent in conceiving components and
their materials and developing the proper design methodol-
ogy will grow increasingly dependent on computers and
multi-disciplinary teams. Such an approach will harness the
full potential of composites for the technologies of the
future.



2 Thermoelastic behavior of laminated
composites

2.1 Introduction

Laminated composites are made by bonding unidirectional
laminae together in predetermined orientations. The basis for
analysis of thin laminated composites is the classical plate theory.
When the thickness direction properties significantly contribute to
the response of the laminate to an externally applied elastic field,
the classical plate theory breaks down.

Fundamental to the treatment of thin laminates is the knowledge
of the thermoelastic properties of a unidirectional lamina. These
properties are predictable from the corresponding properties of
constituent fiber and matrix materials as well as the fiber volume
fraction. Having established the elastic response of a unidirectional
lamina, the behavior of laminated composites is then analyzed from
the strain and curvature of the mid-plane of the laminate as well as
the force and moment resultants acting on its boundary edges.
Because of the complexity of the constitutive equations for a
general anisotropic laminated plate, simplifications of the stress—
strain relations are accomplished through the manipulation of the
geometric arrangement of the laminae. The lamination theory is a
relatively mature subject; its treatment can be found in text books
of, for instance, Ashton, Halpin and Petit (1969), Jones (1975),
Vinson and Chou (1975), Christensen (1979), Tsai and Hahn
(1980), Carlsson and Pipes (1987), and Chawla (1987), and in the
review articles of Chou (1989a and b). A modification of the classical
plate theory is in the inclusion of higher order terms in the
displacement field expansion to account for the transverse shear
deformation. An outline of such modifications adopted by various
researchers is presented.

The classical thin laminated theory has been extended to take
into consideration the effects of thermal and moisture diffusions,
with particular emphasis on the transient behavior. Because of the
large differences in the magnitudes of the thermal conductivity and
moisture diffusion coefficients, the thermal and hygroscopic prob-
lems can be solved separately and their linear elastic fields can be
superposed. Stress concentrations due to transient thermal effects
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are of particular interest in the study of laminate thermal shock
resistance.

The mechanics of the thermoelastic behavior of laminated com-
posites is fundamental to the understanding of the strength, fracture
and fatigue behavior of all continuous-fiber composites including
those reinforced with textile preforms.

2.2 Elastic behavior of a composite lamina

2.2.1 Elastic constants

It is well known that for a homogeneous isotropic material
(i.e. the material properties are independent of the location and
direction), two independent material elastic constants are sufficient
to specify the constitutive relations. These could be any two of the
five constants commonly used: E (Young’s modulus), v (Poisson’s
ratio), G (shear modulus), K (bulk modulus), and & (plane strain
bulk modulus). The relations among these constants are

G=E/2(1+v)
K=E/3(1-2v) (2.1)
k=E/21 —v—2v?)

Twenty-one independent constants are necessary to describe the
elastic stress—strain relation of a generally anisotropic material (i.e.
the material properties are different in different directions). How-
ever, due to the material symmetries, the number of the independ-
ent constants can be greatly reduced. Consider a lamina (Fig. 2.1)
composed of unidirectional straight fibers in a matrix. Assume that

Fig. 2.1. A unidirectional fiber composite lamina.
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it is homogeneous on a scale much larger than that of the inter-fiber
spacing. Then, the unidirectional lamina can be treated as a
homogeneous orthotropic continuum (i.e. having three mutually
perpendicular planes of symmetry). The coordinates x,—x,—x;
shown in Fig. 2.1 are known as the material principal coordinates,
where x, is parallel to the fibers and x; lies in the plane of the lamina.
For circular cross-section fibers randomly distributed in a unidirec-
tional lamina, the lamina can be further assumed macroscopically as
transversely isotropic, namely the material properties in planes
transverse to the fiber direction are isotropic. Then, there are only
five independent constants. The commonly used engineering elastic
constants for the transversely isotropic lamina, referring to the fiber
(x,) and in-plane transverse (x,) directions, are denoted by E,
(longitudinal Young’s modulus), F,, (transverse Young’s modulus),
vy, (Poisson’s ratio due to loading in the x, direction and contrac-
tion in the x, direction), and G, (in-plane shear modulus). These
four independent elastic constants can be determined experimen-
tally by three simple tensile tests of composite specimens with fiber
orientations of 0°, 90° and [£45°,,; the relevant testing standards
are ASTM D3039-76 and ASTM D3518-76. The fifth independent
constant, representing the transverse isotropic properties, could be
either v,; (transverse Poisson’s ratio) or G,; (transverse shear
modulus); the two are related by

Gy = ﬁ (2.2)
The other engineering constants are:
Vo = Ex Vi
Ey
Ex=Ey,
G3=Gp, (2.3)
Vi = Va3
Vi3 = Vo
V31 = Vo

Various micromechanical models are available for predicting the
elastic properties of unidirectional laminae from their constituent
properties. Most of the matrices and some of the fibers used in
composites can be considered as isotropic. Let the elastic constants
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of Eq. (2.1) for the isotropic fiber and matrix materials be denoted
by the subscripts f and m, respectively. Also, the fiber volume
fraction of the composite is indicated by V;. Assuming no void in the
composite, the volume fraction of matrix is

V.=1-V, (2.49)

The following relations due to Hashin and Rosen (see Rosen 1973)
are quoted for their concise forms and, hence, ease in application.

where

Ell = Ef‘/f+ Eme +

4‘/fVm(Vf - Vm)z

Vo Vi 1
kf km Gm
4krG}
Ey,= - t4k*v2
k;*+G;*(1+ t 12)
n
1 1
‘/fvm(vf - Vm)<k_ - ;)
Ve = Vet v Vi + AR T - (2.5)
m f
— _.+_
ki k, G,

VG + (1 + V)G

Gp=G,,
12 (1+ V)G + Vi G;
vz E

26

ke=E¢2(1— vi— v})

kn=En/2(1 = v, —v%)

_knket+ (Vike+ Vi k)G,
Vake+ Viky + G

(o + B V(1 + pV}) - 3V,VZBE
G = .
¢ = Cn (o = V)1 + pVi) - 3VVEBE (2:6)

a=(y+Bm)/(y—1)
s 1 1

23—‘4'\’“,’ ﬁf=3_'Vf
p=0Bm—vB)/(1+ 7By
’)/ = Gf/Gm

ke
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Fibers such as carbon and Kevlar exhibit anisotropic behavior;
their thermoelastic properties along and transverse to the fiber axis
are significantly different. These fibers are considered to be trans-
versely isotropic, and thus five independent constants are needed to
describe their elastic properties, namely, E;, E., Gy, Vi and
G,3;. The following expressions, due to Chamis (1983), describe the
elastic properties of a unidirectional lamina composed of anisotropic
fibers in an isotropic matrix:

E;, = EVi+ EnVa

F
E,,=E..= m
ZTTE T Vi1~ En/Ey)
G
Go=G.= 2.7
2T — V(1 = G/ Gz @7)
G
G23

1= Vi1~ G/ Gax)
Via= V3= ViVe+ v Vi
v = E>

? 26y

Halpin and Tsai (1967) have developed some semi-empirical
relations for the laminar elastic properties. These expressions
contain certain parameters which are influenced by the geometry of
the reinforcing phases, their packing in the composite, and the
loading conditions. Estimates of the values of these parameters can
be obtained by comparing the Halpin—Tsai equation predictions
with the numerical solutions employing formal elasticity theory
(Halpin 1984). The effect of interfacial debonding on elastic
properties has been discussed by Takahashi and Chou (1988).

-1

2.2.2  Constitutive relations

Consider a unidirectional lamina exhibiting orthotropic
symmetry. The constitutive relations, referring to the material
principal coordinates x,—x,—x3, assume the general form (Vinson
and Chou 1975):

&1 S Sz S 0 0 0 o

E» S S S» 0 0 0 02

€33 ) _ Sz S S 0 0 0 033 (2.8)
2&53 0 0 0 S4 O 0 O3 )
2€15 0 0 0 0 Ss 0O 013

2812 0 0 0 0 0 S(](] (2P)
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Here o, the stress tensors, are defined in Fig. 2.2. ¢; are the strain
tensors defined in a manner analogous to the stress components; it
should be noted that the engineering shear strain y; = 2¢; (i #j). §;
denote the components of the compliance matrix. For the case of a
transversely isotropic lamina with the x,—x; plane being isotropic,
the compliance constants are related to the engineering elastic
constants as:

522—533=EL22

Si2= 83 = _‘2%= —2_22]2 (2.9)
V23

=g
1

S44=G—23

S§5—S66=61;

Fig. 2.2. Stress tensor components.
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Equation (2.8) can be inverted to obtain the following stress—
strain relations

on Ch Cpn Cis O 0 0 €1

022 Cp Cp Cy O 0 0 €
on|_Cs Cs G 0 0 0 €33
oml=10 0 0 cu 0 o0 ll2e.] @10
O13 0 0 0 0 Css O 213

O 0 0 0 0 0 Cof \2615

where C;; are the components of the stiffness matrix. Again, for the
case of transverse isotropy in the x,—x; plane, the following
relations hold:

Ch=En(l- V%3)/A

Cyp=Cs33=Ex(l—vpva)/A

Cas= Gy

Css=Ces= G2 (2.11)

Ci;=Ci3=(var + va1va) En/A = (Vi + viova3) Exn/ A

Cos=(vaa + viova) Exo/ A

A=1=2v,vy — V33— 2V5vy Vs

For a unidirectional composite lamina where the thickness is

much smaller than the in-plane (x,—x,) dimensions, it is sufficient to
consider the two-dimensional constitutive relations. Following the
convention used in the composites literature, the following con-
tracted notations, o; and ¢;, are introduced for the stress and strain

components, respectively. Their relations to the tensorial stress and
strain components are:

0, = Oy, 0, = Oy, 03 = 033, 04 = 023(=T23),
0s=013(=T3), and 0= 01(=7);)
€17 €n, &= Ep, €3 = €33, £4=2ex5(=72),
es=2¢&13(=v13), and g,=2&,(=yy)
Under plane stress condition (i.e. 033 = 013 = 053 =0), and using
the contracted notations, Eq. (2.8) can be reduced to
& Sip Sz 0 0,
82 = SlZ Szz 0 (o) (2 12)
£6 0 0 S/ \og
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where the compliance constants §; are given in Eq. (2.9). Also
£3=3830,+ 85,30, and &,=¢e5=0. By inverting Eq. (2.12), the
following two-dimensional stress—strain relations are obtained:

0, Qun Qn O &
o |={ Q1 On O & (2.13)
O¢ 0 0 QOes 13

Here, the lamina exhibits orthotropic symmetry. The Q; in Eq.

(2.13) are known as the reduced stiffness constants, and are related
to the engineering constants as follows:

E
On =%
— V2V
vioEy va By
= = 2.14
Qu 1=vpva 1—=vpvy ( )
E
Q22 :%
— Vi2Vn
Q=G

It should be noted that the Q; so obtained by assuming the plane
stress condition of the unidirectional lamina are not identical to the
C; given in Eq. (2.11). In fact, the difference between C; and Q;
increases as the lamina becomes more isotropic. The inter-relations

Table 2.1. Inter-relations among the different forms of elastic constants.
After Chou (1989b)

Engineering o Es, Yiz Vay G
constant
Compliance 1/, /S5, —=S2/S1 —S1/8 1S

Reduced (01100~ 0102 (0002-01)/01 0n/0n 0u/Cy O

stiffness

Compliance Si S Sz L Ses
Reduced sz/Qanz_ Q?z) Qu/(Qquz_ Q?:) le/(QnQ::* QIz) l/Qbﬁ
stiffness
Engineering  1/E; 1/Ey, —vlEy 1/Gy,
constant

Reduced (e 05 0 12 Qoo

stiffness
Engincering  E;, /(1 — vy5¥y) Eoy(1=v5vy,) VinExs/(1 = viava)  Gps
constant

5

Compliancc S/ (811852 — S?z) S11/(81, 85 = S?z) =S/(811S2 = S12) 1/S




Elastic behavior of a composite lamina 37

among the engineering constants, compliance constants and reduced
stiffness constants are summarized in Table 2.1.

For a unidirectional lamina oriented at an angle 6 with respect to
the reference axes x—y (Fig. 2.3), the stress—strain relations in the
x-y coordinates are

Oex Q 11 Q 12 Q16 Exx
Oy | = On On 0O Eyy (2.15)
txy Q 16 Q26 Q66 ny

where Q_,»j, the transformed reduced stiffness, are given by
011=0Q11¢08* 0 +2(Q1, +204) sin? 8 cos? 6 + Q., sin* 6
01=(011+ Qs —4Q) sin® 8 cos® 6
+ Q,,(sin* 6 + cos” 9)
0,,= 01y sin* 0+ 2(Q 15 + 2Q4) sin® 6 cos® 8 + O, cos* 0
016=(011— Q12— 204) sin 8 cos” 6
+(Q12— Q2+ 2Q¢) sin® 6 cos 6
Q2= (01— Q12— 2Q4) sin’ 6 cos 6
+(Q12— Q2 +2Q) sin 6 cos® 6
Qo= (011 + Q2 —20,, —2Q) sin” O cos* 6
+ Qeslsin® 6 + cos* 6)

(2.16)

Fig. 2.3. Fiber axis at an angle 6 from the lamina reference axis x.
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Note that in the x—y coordinate system the notations of t,, and y,,
are introduced for the shear stress and strain, respectively. The
unidirectional lamina referred to the x—y axes is termed generally
orthotropic.

Equation (2.15) can be inverted to obtain the strain—stress
relations in the following general form:

Exx 511 i *?16 Oxx
£yy = SlZ Szz S26 = O’yy (2. 17)
Yy Sie S Ses Tyy

in which the S,«,« are the transformed compliance constants and their
relations to S, and 6 are

Si1= 511 cos* 0+ (28, + Se6) sin” O cos® @ + Sy, sin* @
81> =S1>(sin* 6 + cos* B) + (S;; + Sy — Se) sin? G cos” O
S, =58, sin* B + (28, + Se) sin” 6 cos® B + S,, cos* 6
Si6= (281, — 28, — S¢s) sin 6 cos® @
— (2855 — 28,5 — Se6) sin® 6 cos O (2.18)
S6= (28, — 281, — S¢¢) sin® 6 cos @
— (285, — 28512 — Se6) sin 8 cos® 6
Se6 = 2(2811 + 285, — 48,5 — Se) sin® 6 cos® 0
+ Sge(sin* 8 + cos* B)

The engineering constants of the unidirectional lamina referring
to the x—y axes, which are not aligned with the material principal
directions, can be expressed as functions of the off-axis angle, 8, by
using Egs. (2.9) and (2.18)

1 1 . ( 1 2v12) . . r
—=—=c08 84+ |———"}sin“Bcos” 8 +-~——sin" O
Exx Ell G12 Ell 22

Vey = EM<m (sin* 8 + cos* 6)
Ell

1 1 1
—( +———) sin® 6 cos? 9)

E, E» G
1 1 11 22 1 12 2 (219)
— =—sin* 0 + (—— Vlz) sin® 6 cos® @ + — cos* 6
E, 11 G, En 2

1 2 2 4vy, 1
—=2(—+—+ L
ny E, Exn Ey Gp

) sin® 0 cos® 0

1
+——(sin* 6 + cos* 6
G12 )
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The variations of E,,, G,,, and v,,, with fiber orientation angle,
0, for a Kevlar-49/epoxy composite are shown in Fig. 2.4.

Jones (1975) discussed the extremum (largest or smallest) values
of composite elastic properties, which do not necessarily occur in
the principal material directions. It can be shown that E,, is greater
than both E,, and E,, for some values of 8 if

Ell
> 2.2
a3 v 220
and that E_, is less than both E,, and E,, for some values of 8 if
Ell

G > (2.21)

2E L /Exn+vy)
2.3 Elastic behavior of a composite laminate

2.3.1  Classical composite lamination theory

Based upon the constitutive relations for a lamina com-
posed of a generally orthotropic material, Eq. (2.15), the constitu-
tive relations for a laminate formed by bonding several laminae

Fig. 2.4. Variations of engineering elastic constants with fiber orientation
angle, 6, for a Kevlar-49/epoxy composite with V;=0.6, E,, =76 GPa,
E,,=55GPa, G, =2.3GPa and v}, =0.34.
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together is presented in this section. The orientation and material
system of each lamina are general. Figure 2.5 depicts the geometry
of an n-layered laminate of thickness %; the x—y plane coincides
with the laminate geometric middle plane. Following the approach
of the classical, linear, thin plate theory, the following assumptions
are made (see Vinson and Chou 1975).

(1) A lineal element of the plate extending through the plate
thickness, normal to the middle surface (x—y plane) in the un-
stressed state, upon the application of load: (a) undergoes at most a
translation and a rotation with respect to the original coordinate
system, and (b) remains normal to the deformed middle surface.

This assumption implies that the lineal element does not elongate
or contract, and remains straight upon load applications.

(2) The plate resists lateral and in-plane loads by bending,
transverse shear stress, and in-plane action, not through block-like
compression or tension in the plate in the thickness direction.

Based upon the foregoing assumptions, also known as the
Kirchhoff hypothesis for plates, the strain components can be
derived

(o]
EXX EXX KXX
— (o]
Ey )=V &y +z Ky, (2-22)
(o]
Vay Vi 2K,y

Fig. 2.5. An n-layered laminate.
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Here, &;,, €, and y;, are the laminate mid-plane strain, which are
expressed in terms of the mid-plane displacements u° and v° in the
x and y directions, respectively:

u® av° ou® ov°
£ =—-, £, = X oy =—+ 2.23
$ 34 ax yy ay y y ay ax ( )

The mid-plane curvatures are related to the z direction mid-plane
displacement w*
*we *we *we

= T4 20 =" > xy — — 2.24
K axZ K)’,V ayZ K 34 Ox ay ( )

Note that k,, represents the twist curvature of the mid-plane.
Figure 2.6 depicts the deformation associated with a typical
cross-sectional element in a thin plate.

Also, following the approach of the classical plate theory, the
resultant forces and moments, instead of the stresses, are utilized in
the constitutive relations. Referring to Figs. 2.7 (a) and (b), the
force and moment resultants of the laminate are obtained by
integrating the stresses of each lamina, through the laminate
thickness, h:

h/2

(Nx: Ny’ ny) Oxxs Oyy, )dZ (225)

h/2

hi2
(M, My, M,,) = Ore» Oyy, Try)z dz (2.26)

h/2

Fig. 2.6. Deformation of a typical cross-sectional element in a thin
laminated plate.
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Substitution of Eqs. (2.15) and (2.16) into Eqgs. (2.25) and (2.26)
results in the following:

N, Ay Ap A Eax
Ny =\ An Axn Ay Ei’y
Ny A Az Ae/ \Viy

By By By Kiyx

Bis By Bes 2ny

Fig. 2.7. (a) ln-plane force resultants. (b) In-plane moment resultants.
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M, By, By, Bj £
My B, By By Efv)y
Mxy Bis By Beg Y?y

Dy Dy, Dy Ky

+{ D12 Dxn Dy Kyy (2.28)
D¢ Dy Degs 2ny
where
Aij = 2 (Qij)k(hk - hk~1)
k=1
=% 2 (Qz])k(hk h%—l) (2-29)
k=1

;, % 2 Qij)k(hi _hi—l)

In Egs. (2.27)-(2.29), A;, B;, and D; are called extensional
stiffness, extension-bending coupling stiffness, and bending stiffness,
respectively. The summation in Eqs. (2.29) is carried out over all
the laminae; (Q,-,-),< refers to the reduced stiffness of the kth layer.
Eqs. (2.27) and (2.28) are often expressed in the condensed form as

(A—AD B (2 g)(%) (2.30)

where [k] is composed of k,,, k,, and 2k,,.

The constitutive relations of Egs. (2.27) and (2.28) can be
rearranged into other useful forms by partially or totally inverting
them. The totally inverted forms of Eqgs. (2.27) and (2.28) are given
in the following condensed matrix expressions:

[°]=[A"][N] + [B'][M]
[x]=[B'][N] +[D'][M]

(2.31)

where
[A']=[A*] = [B*][D*"][C"]
[B']=[B*][D*"']=—[D*7"][C*]
[D']=[D*""]
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and (2.32)
[A*]=[A""]
[B*]= ~[A~][B]
[C*]=[BIlA]
[D*]=[D]-[B]lA1[B]

An application of Egs. (2.31) is found, for instance, when the
stress and moment resultants acting on a laminated plate are
specified. Then, with the knowledge of the elastic constants, the
mid-plane strain and curvature of the laminate can be determined.
The strain components of a specific lamina in terms of the plate
reference axes can be derived from Eq. (2.22) and the correspond-
ing stresses from Eq. (2.15). The existing criteria for laminar
failure, due to combined in-plane stresses or strains, require the
knowledge of stresses and strains along the fiber as well as the
transverse directions. This information can be readily obtained by
transformation of the stress and strain components to the principal
material directions. Thus, the correlation between external loading
on the laminated plate and the failure of an individual lamina can
be established.

2.3.2  Geometrical arrangements of laminae

It has been established in Egs. (2.29) that the elastic
behavior of a composite laminate composed of unidirectional
laminae is determined by the constituent material properties as well
as the orientation and location of the individual laminae. These
geometric aspects of the laminae are indicated by following the
convention of the composites literature. For example, [0°/455/
—453/455/0°] indicates the stacking sequence of a laminate with one
layer at 0°, two layers at 45°, four layers at —45°, two layers at 45°,
and one layer at 0°. Because of the mid-plane symmetry, this
stacking sequence can also be expressed as [0°/455/—453],. Follow-
ing this convention, the basic arrangements of laminae can be
expressed as [0°] for unidirectional, [0°/90°] for cross-ply, and
[+8/—0] for angle-ply. The implications of the laminar geometrical
arrangements on the laminar elastic behavior, namely, the [A], [B],
and [D] matrices, are discussed below.

The [A] matrix relates the stress resultants with the mid-plane
strains. The couplings between normal stress resultants and mid-
plane shear strains, as well as shear stress resultants and mid-plane
normal strains, are due to the components A, and A,,. There is
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also the coupling between mid-plane stress resultants and the
bending and twisting of the laminate through the [B] matrix.
In particular, the components B, and B,s relate normal
stress resultants with the twisting of the laminate. The [B]
matrix also plays a role in the coupling between the moment
resultants and in-plane strains. Finally, the D;s and D, terms are
responsible for the interaction between the bending moment and
twisting.

The various coupling effects in laminated composites can be
minimized or eliminated through suitable choices of the laminae
stacking sequence. As can be seen from Egs. (2.29), the B, terms
involve the squares of the z coordinates of the top and bottom faces
of each lamina. Each term of B;; vanishes if for every lamina above
the mid-plane there is a lamina, identical in properties and
orientation, located at the same distance below the mid-plane. Such
mid-plane symmetry arrangements eliminate the bending—stretching
coupling. The terms A;, and A,s both vanish under either of the
following conditions: (a) all of the laminae assume 0°, 90° or
cross-ply [0°/90°] configuration; (b) for every lamina of +6
orientation there is another lamina of the same property and
thickness with a — 6 orientation. The terms D, and D, are zero for
the cases: (a) all of the lamina assume 0°, 90° or cross-ply
configuration; and (b) for every lamina oriented at +6 at a given
distance above the mid-plane there is an identical layer at the same
distance below the mid-plane oriented at —8. It is obvious that the
Ds and D,s terms are not zero for any mid-plane symmetric
laminate, except for the cases of all 0°, all 90° and cross-ply.
However, the magnitude of these terms can be made small by
increasing the number of layers in the angle-ply configuration.
Table 2.2 shows the effect of stacking sequence on the [A], [B] and

Table 2.2. Effect of stacking sequence on [A], [B] and [ D] matrices. After
Chou (1989b)

8=0°90° 0°/90° ...+86,/-6,/ s+ 6,/-6 Same
+6,/-6,. .. -0,/+6,... number of
(anti-symmetry)  (symmetry) +6and -0
laycrs
A Asg zero zero zero - zcro
B,,, By, B5, By zero - zero zcro -
B, By zero zero - zero -

Dy, Dy zero zero zero - -
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[D] matrices. The optimization of laminate design for strength has
been discussed by Fukunaga and Chou (1988a and b).

24 Thick laminates

The term ‘thick laminates’ here is used to describe compos-
ite plates of which the thickness direction properties significantly
contribute to the response of the material. Exact elasticity solutions
of thick plates have demonstrated that the classical lamination
theory of Section 2.3 is not applicable to the thick laminates.
Experimental results (for example, Whitney 1972, and Stein and
Jegley 1987) have shown significant departure from lamination
theory predictions, for such properties as maximum deflections and
natural frequencies, when (a) the plate thickness-to-width ratio and
(b) the in-plane Young’s modulus to interlaminar shear modulus
ratio become high.

One reason for the departure of thick plate behavior from
classical thin plate theory prediction is the presence of transverse
shear deformation. The effect of transverse shear deformation is
pronounced in anisotropic materials with high ratios of in-plane
Young’s moduli to interlaminar shear moduli; this is typical in
laminated composites. Other assumptions of the classical plate
theory (see Section 2.3) such as negligible transverse normal strains
(e,=0), and the linear in-plane strain variation with the =z
coordinate all contribute to the limitations of the theory. Further-
more, the strong interlaminar shear existing in thick laminates is
responsible for delamination, particularly near the free edges. Thus,
it is imperative to determine the magnitude and distribution of
interlaminar shear in thick laminates.

In the following, the three-dimensional constitutive relations
of a thick composite lamina are introduced first. Then, the classical
and higher order theory for thick laminated composites is
discussed.

2.4.1 Three-dimensional constitutive relations of a composite
lamina
The three-dimensional constitutive equations of a compos-
ite lamina referring to the principal material coordinate system
x1—x,—x3 (Fig. 2.1) have been introduced in Egs. (2.8) and (2.10),
for the case of orthotropic symmetry. The relations between the
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stiffness constants and engineering elastic constants are:
Cii=En(1—vyvap)/A
Cp=En(l—vizvy)/A
Cy3=Ex(1— vipvay)/A

Ca=Gp
Css=0Gi3
Cee= G2

(2.33)

Ci2= (Vo1 + Va3va) ) En /A = (vip + Vi) Exo/ A
Ci=(vy+ vava)En /A= (viz+ V12V23)E33/A
Cp=(via t+ viva)En/A = (vas + visva)Es/A

A=1—- Vv — VoV — VizVa — 2V3Va Va,

The general three-dimensional constitutive relation of a compos-
ite lamina referring to the reference coordinate x—y—z (Fig. 2.3) can
be obtained from Eq. (2.10) by tensor transformation:

Oxx Ql 1 le
Oyy Q12 €22
(P — C13 C23
o.] L0 0O
Oy 0 0
oxy C16 C26

Cis
(_323
Css
0
0
Cse

0 0 le6 Exx
0 0 C_’26 £,y
0 0 Ci |l €.

C:’44 C:‘45 0 2¢
C45 CSS _0 2 Exz
0 0 Ces] V2€xy

Here, the x—y plane coincides with the x,—x, plane and the angle
between the x; and x axes is 8. The stress and strain tensors in these
two coordinate systems are related by

Orex on
Oyy On
(O — —1] O33
o, (71 o
yz 23
(g 013
oxy 012

The transformation matrix is

cos? 6 sin®

sin” 6 cos? 6
0 0
[T] - 0 0
0 0

—cos 8 sin @ cos 6 sin 6

Sxx 811
vy €2
€2 ) _ —1f €33
:,. [T] £ (2.35)
Eys €13
Sxy 812
0 o0 0 2 cos 6 sin 6
0O O 0 —2cos Bsin 8
1 0 0 0
0 cosf® -—siné@ 0
0 sinf cosf 0
0 0 0 cos’6—sin?0

(2.36)
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[T]7! is obtained by changing 6 to —6 in [T]. The stiffness matrix is
derived from

[Cl1=[T]""[CNT]* (2.37)

with ¢ indicating the matrix transpose and the explicit expressions of
[C] are

Ci1=Cy1cos* 0+ 2(C1y + 2Ce6) sin® 6 cos® 6 + Co, sin* 0
Ci2=(Cy; + C5, — 4Cgg) sin” 6 cos’ @ + Cy,(sin* 6 + cos* 6)
Ci3=C3¢c08? 0 + Cpysin’ 0
Ci6=(Cy; — C1, —2Cq) sin 6 cos® 0
+ (C13 — Cap +2Cg) sin’® B cos 0
Cy=Cyysin* 0 + 2(Cpy + 2Cg4) sin” 0 cos? @ + Cy, cos* 0
Cy3= C3sin® @ + C,3cos? 6
Ca6=(Cy; = Cyp — 2Cs4) sin6 cos 6
+ (C12— Cay + 2C4) sin 6 cos® O
C33 =Cx
Cs6=(Ci3— Cy3) sin O cos 0
Cu=Cuqyc08’ 0 + Csssin’ 0
C4s=(Css— Cqy) sin 0 cos 0
Css= Cs5c08® 0 + Cyysin® 0
Ces=(C11 + Cy—2C 5, — 2C4) sin? 0 cos? 0
+ Ce(sin* 6 + cos* 6)

(2.38)

2.4.2  Constitutive relations of thick laminated composites

The classical laminated plate theory does not take into
account the effect of transverse shear stress and strain. The
inclusion of transverse shear deformation in the classical thin plate
theory is achieved by allowing the transverse shear strains, ¢,, and
g,,, to be non-zero. This gives rise to definitions of the shear force
resultants:

Q0 0)= [ (0 0,0 d2 (2.39)

These shear force resultants can be related to the transverse shear
strains through the appropriate constitutive relations, Eq. (2.34)
(see Vinson and Chou 1975).
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Several higher order plate theories have been proposed to
account for the transverse shear deformation. This is achieved by
retaining higher order terms in the displacement field expansions,
which are assumed in the form of power series of the z coordinate.
The accuracy of these theories is generally greater for a greater
number of terms retained in the series, but the complexity of the
governing equations places severe limits on the number of terms for
which solutions are realistically attainable.

Among the various proposed displacement field expansions, the
simplest one includes the linear term in z; it has been adopted by
many workers (for example, Reissner 1945, Whitney and Pagano
1970),

u(x, y, z) =u’(x, y) + z9.(x, y)
v(x,y, 2)=v(x,y) +zy,(x, y) (2.40)
w(x’ y’ z) = wo(x’ y)

where u, v and w are the displacement components in the x, y and z
coordinates (Fig. 2.2), respectively; u°, v° and w° denote the
mid-plane displacements of a point (x, y); and v, and v, are the
rotations of the normal to the mid-plane about the y and x axes,
respectively. It is noted that, unlike the classical plate theory, due

to the existence of transverse shear deformation,

ow°

wx # - ax
(2.41)

ow°

'/’y :,& - ay

The new curvatures expressions, which are different from Eq. (2.24)
are given by

Y, 3w
Ky = A2
ox dx*?
a 82 o
Ky =Dy y Y (2.42)

yy = ay ayZ

1/0y, & *we
ny=_< 2 +&>¢__W
2\ 9y ox dx dy



50

Thermoelastic behavior of laminated composites

Then, the strain—-displacement relations of linear elasticity are

ou du° oY,
= —= z—
Exx ox ox ox
_gv_odv 3y,
YTy oy
g,=0
1(81} 8w> 1(
g, =-|—+—)==>
¥ 2\8z ay/ 2 ¥y
(3, a1
B2 =\ "o/ T2\ ¥
1<8u 8U> 1[8u°
b= (—+—)=2
Y 2\8y aox/ 2Ll dy

(2.43)

8w°>

Sy
8w°>

ox

v°® a

(2 20
ox oy ox

By substituting Eqgs. (2.34) and (2.43) into Egs. (2.25), (2.26)
and (2.39), the constitutive relations of the laminated plate in
terms of stress resultants and displacement variables can be

obtained as

Nx A 11
N, Ap
ny — A16
Mx Bll
M, B,
Mxy BIG

A12 A16
A22 A26
A26 A66
BIZ BIG
BZZ BZG
BZG BGG

ou®
ox
aUO
By B B\l ¥
By, By By Ju +8U
B By Bgs oy ox
Dy Dy Dy %
Dy, Dy Dy ox
Dy Dy Des aqpy
Sy
ENE
oy ox

(2.44)
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and
aw° +y
O\ [(Au Asgs ay 7
—c A (2.45)
0O, Ags Ass/\ Iw
+ Y,
ox
where
A= fci,' dz (,7=1,2,4,5,6)

(Bij’ D’l) = j C,—,—(Z, 22) dZ (l, ] = 1, 2, 6)

and ¢, in Eq. (2.45) is a correction factor for the kth lamina which,
according to Lo, Christensen and Wu (1977a), is determined by
matching the approximated solution with the exact elasticity sol-
ution in order to satisfy appropriately the requirements of vanishing
transverse shear stress on the top and bottom surfaces of the thick
plate.

Having obtained the constitutive relations, the problem of thick
laminated plates can be solved by substituting Eqs. (2.44) and
(2.45) into the plate equation of motion. Then, a set of partial
differential equations in terms of the displacement variables u°, v°,
w®, 9, and ¥, can be derived. These unknowns can be solved with
the appropriate initial and boundary conditions, which are deter-
mined from the total energy of the system (Whitney and Pagano
1970).

The approach outlined above demonstrates an example of the
high order laminated plate theories, where only the in-plane
displacement terms linear in z are included in Eqs (2.40); and it
differs from the classical plate theory only by the terms v, and v, as
shown in Eqgs (2.41). As pointed out by Lo, Christensen and Wu
(1977a&b), despite the increased generality of the shear deforma-
tion theory, the related flexural stress distributions show little
improvement over the classical laminated plate theory. Thus, it is
apparent that higher order terms are needed in the power series
expansion of the assumed displacement field to properly model the
behavior of thick laminates.

Among the varnous higher order displacement fields proposed,
Lo, Christensen and Wu (1977a&b) suggested the following dis-
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placement forms:
u=u+zy, + 2’5 + 2°¢,
v=v+zy, + 22§y +2°¢, (2.46)
w=w+zy, + z°E,

where the cubic terms in z for the in-plane displacement field and
the square terms in z for the out-of-plane deformations are used; a
total of 11 displacement functions (u°, v°, w°, y,, ¥,, ¥,, &, &,
., ¢. and ¢,) are involved. Much improvement over the classical
theory predictions is observed; however, the complexity of the
analysis has increased tremendously.

The format of solution to higher order systems generally involves
the application of the principle of potential energy to derive the
pertinent governing equations of equilibrium. Using the strain—
displacement relations and the assumed displacement field, in
conjunction with the equations of equilibrium, a set of partial
differential equations in terms of the displacements used is derived.
The number of equations is determined by the number of terms
retained in the assumed displacement form. With the appropriate
initial and boundary conditions, the solution of these equations
describes the elastic behavior of the plate. The details of such
approaches can be found, for example, in the work of Whitney and
Pagano (1970), Whitney and Sun (1973), Lo, Christensen and Wu
(1977a&b), and Reddy (1984).

Although accounting for the higher order plate deformation in
thick laminates involves a great deal more complexity than the
classical thin plate approach, it is evident that the extra effort to
accurately describe their fundamentally different elastic behavior is
required. The numerical resuits of the flexural stress distribution in
an infinite [4+30, —30], laminate of carbon/epoxy composite, sub-
jected to a pressure ¢, on the top surface (z = h/2) of the form

q = (o Sin % (2.47)

are shown in Fig. 2.8 (a) and (b) (see Lo, Christensen and Wu
1977b). Here the length L characterizes the load distribution. The
in-plane stress o,, is normalized as &, = 0,,/qoS°, S=L/h. The
results indicate that the higher order theory is necessary for
determining the deformation of plates with small L/h ratio.

Sun and Li (1988) and Luo and Sun (1989) have adopted a
global-local method for the analysis of thermoelastic fields of thick
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Fig. 2.8. (a) Flexural stress distributions for a [+30, —30], angle-ply
laminate for L/h = 10. (b) Flexural stress distributions for a [+30, —30],
angle-ply laminate for L/h =4. —— exact elastic solution; . ... higher
order laminated plate theory; —— —— classical laminated plate theory.
(After Lo, Christensen and Wu 1977b.)
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laminated composites consisting of a repeating sublaminate (the
typical cell). The effective moduli and thermal expansion
coefficients are obtained from the sublaminate and used to obtain
the global (average) stress and strain solutions. A refining proce-
dure is then introduced in which the global solution is used directly
to recover the stresses in the lamina or used as boundary conditions
in a sublaminate to perform the exact thermoelastic analysis.

2.5 Thermal and hygroscopic behavior

Besides externally applied load, deformations in laminated
composites can also occur due to changes in temperature and
absorption of moisture. This is known as the hygrothermal effect.
As polymers undergo both dimensional and property changes in a
hygrothermal environment, so do composites utilizing polymers as
the matrix. Since fibers are fairly insensitive to environmental
changes, the environmental susceptibility of composites is mainly
through the matrix. Consequently, in a unidirectional composite the
temperature—moisture environment has a much greater effect on
the transverse and shear properties than the longitudinal properties.

The thermal diffusivity and moisture diffusion coefficient are used
as measures of the rates at which the temperature and moisture
concentrations change within the material. In general, these para-
meters depend on the temperature and moisture concentration.
However, over the range of temperature and moisture concentra-
tion that prevails in typical applications of composites, the thermal
diffusivity is usually several orders of magnitude greater than the
moisture diffusion coefficient. Consequently, thermal diffusion takes
place at a rate much faster than moisture diffusion, and the
temperature will reach equilibrium long before the moisture con-
centration does. This allows one to solve the heat-conduction and
moisture-diffusion problems and the resulting elastic fields
separately.

The knowledge of anisotropic heat conduction is basic to the
solution of thermal stresses in laminated composites. Investigations
of such problems have been performed by Poon and Chang (1978),
and Chu, Weng and Chen (1983) using transformation theory, by
Chang (1977), Huang and Chang (1980), and Nomura and Chou
(1986) using Green’s function method, by Tauchert and Akoz
(1974) using a complex variable method, and by Katayama, Saito
and Kobayashi (1974) using a finite difference technique. The
solution of the steady-state thermoelastic problem of anisotropic
material appears to be initiated by Mossakowska and Nowacki
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(1958), Sharma (1958), and Singh (1960). Then Takeuti and Noda
(1978), Sugano (1979), and Noda (1983) have examined the
transient temperature and thermal stress fields of transversely
isotropic elastic medium.

In the category of thermally and elastically orthotropic media, the
steady-state temperature and thermal stress field have been investi-
gated for problems of semi-infinite domain (Akdz and Tauchert
1972), a slab bounded by two parallel infinite planes (Tauchert and
Akoz 1974) and a rectangular slab (Akodz and Tauchert 1978). The
transient thermal stress analysis of thermally and elastically or-
thotropic laminae has been performed by H. Wang and Chou (1985,
1986), Wang, Pipes and Chou (1986), and Y. Wang and Chou
(1988, 1989); their approaches are recapitulated in the following.

In Section 2.5.1, the thermoelastic constitutive equations for a
three-dimensional orthotropic material are introduced. These equa-
tions are then simplified to the two-dimensional case of unidirec-
tional laminae, and the classical lamination theory is generalized to
take into account the thermal and hygroscopic effects. Then, three
transient thermal and hygroscopic problems are discussed to illus-
trate the formulation of the boundary value problems and the
solution techniques. The first problem is for the diffusion of
moisture through the thickness of a laminated composite (Section
2.5.2). It is assumed that the diffusion equation is one-dimensional
(z direction), while the elastic field is two-dimensional (x—y plane).
The second problem focuses on the effect of heat conduction on
interlaminar thermal stresses (Section 2.5.3). It is assumed, in this
case, that heat flows across the width of a laminated plate
(one-dimensional heat conduction) and the resulting thermal stress
field is three dimensional. Finally, a two-dimensional heat conduc-
tion problem is formulated for a rectangular-shaped unidirectional
lamina subjected to thermal boundary conditions at its four edges.
The two-dimensional thermal elastic field is obtained. In all three
problems, the thermal transient effects on stress distribution are
demonstrated.

2.5.1  Basic equations

2.5.1.1 Constitutive relations

Deformations of a unidirectional lamina resulting from
hygrothermal effects can be described by a modified set of linear
constitutive equations: i.e., the total strain minus the non-
mechanical strain is linearly related to the stress.
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The non-mechanical strain is measured from a stress-free re-
ference state, and the elastic moduli used in the calculation are
taken at the final environmental conditions. For example, in the
fabrication of polymer matrix composite laminates, the curing of an
individual ply results in different deformations along the fiber and
transverse directions. The constraint of deformation of a single ply
due to the presence of other plies in a multi-directional laminate
gives rise to residual stresses. Since most of the cross-linking in the
polymer occurs at the highest curing temperature, the polymer
matrix can be considered as still viscous enough to allow complete
relaxation of the residual stress. Thus, the highest curing tempera-
ture can be regarded as the stress-free temperature.

By taking into account the non-mechanical strain in Eq. (2.10) for
hygrothermally induced deformation, the laminated plate analysis
developed in Section 2.3 can be modified to determine the overall
elastic response. The stresses due to moisture absorption and
temperature change are identically analogous, in that they are
dilatational and self-equilibrating when the whole laminate is
considered. In general, the longitudinal properties of polymer
matrix composites are far less sensitive to temperature and moisture
than the transverse and shear properties of unidirectional compos-
ites, because of the excellent retention of mechanical properties by
the fibers. The greatest reduction in properties occurs when
temperature and moisture are combined, such as in hot and humid
environments. However, the combination of temperature and
moisture could render a laminate free of residual stresses. This can be
understood by considering, for example, a [0°/90°] cross-ply based
upon a resin matrix. The thermal stress induced from fabrication
is tensile in the transverse direction of a ply, while the residual
stresses induced by moisture absorption are compressive. Some
details of analysis of such phenomena are developed in the following.

Referring to the principal material coordinate axes of a unidirec-
tional lamina, the three-dimensional orthotropic stress—strain rela-
tions of Eq. (2.10) can be written as

on Ch C2 C3 O 0 0 en—anT —Bum
022 Cno € Cpun 0 0 0 €2~ @ T — Brm
O3z |_ Cs G35 Ci3 0 0 0 £33 — a3 T — Bum
O3 0 0 0 Cu O 0 263
013 0 0 0 0 Cs O 2€13
012 0 0 0 0 0  Cg 2€1

(2.48)
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where ¢«;; are the coefficients of thermal expansion and f; are the
coefficients of hygroscopic expansion; the subscripts of these
coefficients indicate the principal material axes x; (i = 1-3). Also, T
denotes a small uniform temperature change from the ‘stress-free’
temperature; m is the change in moisture concentration referring to
a ‘moisture-free’ environment. Both a;T and fB;m indicate non-
mechanical strains.

Referring to the reference axes x—y and following Eq. (2.34), Eq.
(2.48) can be rewritten as

Oxx Ci Cnp Cis 0 0 Cis
Oyy Cno Cn Cyun 0 0 Cy
O |_| Cz C Ci3 O 0 Cs
Oy, B 0 0 0 C:’ 44 C:’ 4s O
O 0 0 0 Ci Css 0
Oxy Ce Ci (G O 0 Ce

sxx - axxT - ﬁxxm
&y — a,, T — B,,m
€, — &y T - ﬁzzm
2¢,,
2¢,,
2e,, — a, T — B,,m

(2.49)

where
— 2 sa2 _ 2 -2
&y = ap; COS° O + ay, 8in° B Bex = B11cos” 0 + [, sin” 6
®,, = @y, cos” 0 + aq;sin® @ B,, = By cos” O + By, sin® O
yy 22 11 yy 22 11
a,, = 33 B:: = B3

&, = (a;; — &y,) sin 6 cos 0 By = (B11— B22)sin O cos O
(2.50)

and @ is defined in Fig. 2.3.

The relations given in Eq. (2.49) require that the thermoelastic
deformations of the medium are accurately described by linear
coefficients of thermal expansion over the range of temperatures of
interest, an often used assumption. Similarly, the deformations
induced by the hygroscopic nature of the medium are characterized
by linear coefficients of hygroscopic expansion, an assumption
which follows from existing experimental data.
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The elastic constitutive relations for a laminate subjected to both
thermal and hygroscopic environments have been formulated by
Pipes, Vinson and Chou (1976). For the purpose of laminar
analysis, Eq. (2.49) is reduced to

Oy Qll Q_12 Q16 Exx — a/xxT - ﬁxxm
o, |=| Qi Q2 0O gy — &, T — B,,m (2.51)
Tyy Ois O O 28, — a,, T — ﬁxym

Substituting Eq. (2.51) into Eq. (2.25) and following the notation
of Eq. (2.30), the constitutive equation is expressed in the following
condensed form:

[N]=[Al[e°] + [B]{x] — [N]" — [N]" (2.52)

In Eq. (2.52), the effective thermal force resultants, [N]T, and
effective hygroscopic force resultants [N]|™ are introduced with the
following definitions:

hi2
N;F:J' (Qllaxx + Q12a/yy + Ql(ya/xy)T(zy t) dZ

—h/2

hi2
N;r =f (Q2@e + Oy + 0260, ) T(z, 1) dz (2.53a)
—h12

h/2
N;ry = J’ (Qlﬁaxx + QZGa'/yy + Qﬁﬁalxy)T(Z, t) dZ

—h/2

h/2
N;n =J' (Q-llﬁxx + Q_IZﬁyy + Q_lﬁﬁxy)m(z’ t) dz

—h/2

hi2

Np= [ (@bt O+ OasbIm(z 0 dz (2530)

—h/2

)
NG =f s (Q-IGﬁxx + stﬁyy + Q-Gﬁﬁxy)m(z’ t)dz

where ¢ denotes time. Consider the kth layer of the laminate; and
define [*T(§ t)déE=R(z,t) and [*m(& t)dE=H(z, ). Then,
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Eqgs. (2.53) are written as summations

Z
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N}
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1M T

]

ll

= 1 M= TM:

(Q_llaxx + Q-IZayy + Q-]6axy)k[R(hk: t) — R(hy_1, 1)]

(le +Q-22ayy+Q-26axy)k[R(hk’ t) = R(hi_y, )]

kE (Q16@ur + Q-26ayy + Q66axy)k
=1

X

[R(hk: t) - R(hk—lx t)]
(2.54a)

Q118+ 0128, + Q168 )k [H (hy, t) = H(hi 1, 1)]

/-\

(Q12Bxx + Q22ﬁyy + Q26ﬁxy)k[H(hk: t) — H(hy_, t)]

k§—:1 (Q—16ﬁxx + Q-26ﬁyy + Q-66Bxy)k

X

[(H(hy, ) — H(hyy, 1)]
(2.54b)

Parallel to the treatment of in-plane response, the flexural
response of the laminate is obtained by substituting Eq. (2.51) into

Eq. (2.26)
[M]=

[B1[e°] + [Dl[x] - [M]" - [M]" (2.55)

Here, the effective thermal moment resultant, [M]", and effective
hygroscopic moment resultant, [M]™, are defined as

mr=|

MT

M7 =

Mm

Xy

2
(Qua, + Qe + Q160 )T (2, t)z dz

hi2

/2

A

f (Qunon + Ona,, + Ora,,)T(z, t)zdz  (2.56a)
—h2

= [
wr=|

hi2

(Q_lﬁaxx + Q-26ayy + Q-66axy)T(zy t)Z dZ
h/2

h/2

(Q-llﬁxx + leﬁyy + Q-lﬁﬁxy)m(zy t)z dz

hi2

h/2
f (Q1aBes + OB,y + s )z, 1)z dz  (2.56b)
—hi2

/2

(Q16ﬁxx + Q-26Byy + Q_eﬁﬁxy)m(Z, 1)z dz
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By introducing the integrals of R(z, t) (i.e., S(z, t) = [* R(§, 1) ),
and H(z, t) (i.e., J(z,8)=[*H(E t)dE), Egs. (2.56) are also
expressed as summations:

M} = 2 (Ona, + Q_12ayy + Q_léaxy)k[hkR(hk: t)

k=1

—he Ry, t) = S(he, £) + S(hy—y, 1)]

M;r = 2 (Q—12axx + Q—22ayy + st“xy)k[hkR(hk, t)
k=1

(2.57a)
—he R(Ay_1, t) = S(hy, ) + S(hy—y, 1)]
MIy = 2 (Q_I()axx + Q—26ayy + Q-()()axy)k[hkR(hk: t)
k=1
—he_R(hy—y, t) = S(hy, £) + S(hy 4, 1)]
M;n = 2 (Q-llﬁxx + Q-12ﬁyy + Q-lf)ﬁxy)k[th(hkr t)
k=1
—hy_H(hy—y, £) = J (g, £) + T Ry, 1))
M7= 2 (012 + Q_22ﬁyy + QZﬁﬁxy)k[th(hkr 1)
k=1
—h H(hyoy, ) —J (b, t) + T (hi_y, 0] (2.57b)
M3 =3 (O 6B + QaByy + QosBoy )il hiH (i, )
k=1
—he H(hy oy, 8) = J (g, £) + I (hi_y, )]
Finally, Eqs. (2.52) and (2.55) are combined as
N, NT NT
Xy Xy xy
M ) oMt T mem
M, M, My
M,, ij M7,
Ay, Ap A By By By £
A Ap Ay B Bn By 8§y
_| A Az Ass Bie Bx Bes || Yoy (2.58)

By, B By Dy D, D Ky
yy

Bis By Bg Die Dy Dgf \2k

Xy
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The response of a laminate subjected to known mechanical force
and moment resultants, and both thermal and hygroscopic effects,
can be determined by calculating the effective thermal and hygro-
scopic resultants and inverting Eq. (2.58). The inversion would
yield laminate mid-plane strains, £°, and curvatures, k. The strains
of the laminae could then be calculated by Eq. (2.22). Given the
strains, the stresses within each lamina could be determined
according to Eq. (2.51).

2.5.1.2 Thermal and moisture diffusion equations

The three-dimensional heat conduction equation for a
general anisotropic solid of constant conductivity coefficients is
given by (Ozisik 1980)

T T T T T
KL —+K! —+ K., —~+2K., ——+2K"
x| T gyt N g2 ¥ 9x dy * 9x 8z
T aT
+2KT ——=pC,— (2.59
2oy Plrg (239

Here, K; denote the coefficients of heat conduction, p is mass
density, and C,, is the specific heat. The temperature of the elastic
medium, 7, is a function of location (x, y, z) and the time, ¢. It is
understood that there is no internal heat generation of the elastic
body.
For a thermally orthotropic material, with respect to the re-
ference axes x—y—z, Eq. (2.59) is simplified as
T T T aT

Ki—+K,—5+K.—S5=pC,— 2.60
xxaz yyay 2282 ppat ( )

Here, the thermal conductivities K7,, K}, and K}, are related to the
conductivities along the material principal direction, i.e. K], K3,
and K3; using transformation equations identical in form to those
given in Eqs. (2.50).

An equation identical in form to Eq. (2.59) can be written for
moisture diffusion. Consider, for instance, the diffusion of moisture
along the laminate thickness (z) direction, the governing equation is
reduced to

m om
K';Za—zz="87 (2.61)



62 Thermoelastic behavior of laminated composites

where K7, is the moisture diffusion coefficient and m =m(z, )
denotes the moisture concentration distribution. Equation (2.61) is
further discussed in Section 2.5.2.

In Section 2.5.3, the transient interlaminar stress induced by heat
conduction through the laminate width (y) direction is discussed.
Then, T = T(y, t), and Eq. (2.59) for each lamina is reduced to

&T T
fygy—z =pCo—’ (2.62)

In Section 2.5.4, heat conduction in the plane of a unidirectional
composite is considered. The governing equation for heat conduc-
tion becomes

T T oT
Kl.—S+K),—-= — 2.63
xx ax2 yy ayZ p p ot ( )

2.5.2  Hygroscopic behavior

2.5.2.1 Moisture concentration functions

Pipes, Vinson and Chou (1976) assume that the classical
diffusion equation (see Jost 1960) governs the absorption and
desorption of moisture by a hygroscopic material as given in Eq.
(2.61). Consider first the case of moisture absorption. If the
laminate is assumed to be initially moisture free, while its surfaces
z==1h/2 are exposed to a moisture concentration M,, then
moisture concentration in the laminate at position z and time ¢ is

m(z, t) = Mo[l - > m, cos(a,,z)] (2.64)
n=0
where
Q2n+ 1)z
a,=——"
h
and
_Aey” 2 rm }
M= {2n +1 exp[—a, K]

From Eq. (2.64), the effective hygroscopic force resultant can be
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readily determined by combining Eqgs. (2.54b) and (2.64):

thn = k}i:l (Q_llﬁxx + Q_llﬁyy + Q_l6ﬁxy)kM0

x b= hy = 3 2 sina,he) ~ sin(a,hi ) |

n=0 Yp

(Q-IZﬁxx + Q_Zlﬁyy + Q_26ﬁxy)kMo

®

x| b — by — S 2 (sin(a,he) — sin(a,,hk_l))]

n=0 Yn

Z
Il
-

(2.65)

N:jv = k}i:l (Q—l()ﬁxx + Q_Zﬁﬁyy + Q_()()ﬁxy)kMo

x [ == 3 ™ (sin(a )~ sin(a, ) |

n=0 Yn

The effective hygroscopic moment resultant is then determined
from Egs. (2.57b)

M;n = 21 (Q_llﬁxx + Q_llﬁyy + Q_l6ﬁxy)kMo

x

m" .
x |40 = h2) = 3 2 (h sin(a )

n=0 Yn

— h,_, sin(ah, 1))

_ i % (cos(a,hy) — COS(anhk—l))]

M;n = i] (Q_IZﬁxx + Q_Zlﬁyy + Q_Z()ﬁxy)kMo

S

my .
x |40 =02 = 3 7 (h sin(ahe)
n=0 Yp

— hy_, sin(a,h,_))) (2.66)

_ i ﬂ; (cos(a,hy,) — COS(anhk—l))]

n=0 Ypn
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= E (Q_lﬁﬂxx + Q_26Byy + Q_ssﬂxy)kM
k=1

x[s0i - - 3 % e sinanh)

n=0 Q4

— he_y sin(aphe_1))
- Z %4 (cos(auh) — cos(anh 0]

Next, consider the desorption of moisture. The laminate contain-
ing a uniformly distributed moisture concentration, M,, is exposed
to a moisture-free environment on its surfaces z = +h/2. The
solution of the diffusion Eq. (2.61) corresponding to these boundary
conditions is

m(z, t)=M, i m,, cos(a,z) (2.67)

The corresponding effective hygroscopic force and moment resul-
tants are

= 1(2::1 (Q_llﬂxx + Q_l2ﬂyy + Q_IGﬂxy)kMo 2::0%

n

x (sin(a,h,) — sin(a,h;_,))

= 21 (Q12Bx + Q-22Byy + stﬂxy)kMo 2_:0 %ﬁ

X (sin(a,h;) — sin(a, ;1)) (2.68)

= 1(2—: QlGﬂxx + Q26ﬂyy + QGGﬂxy)k Z 1
X (sin(a,hy) — sin(a,he_1,))

= 2_: 1lﬂxx + Q_12ﬂyy + Q_IGﬂxy)kM

oc

[E ﬁ (h sin(a,hy) — he_q sin(a,he_1))

+ 3™ (cos(ahe) ~ cos(ahi)) |

n=0 ap
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Z IZﬁxx + QZZﬁyy + QZGﬁxy)k

k=1
= m,
X | 2 = (b sin(a,hy) = by_y sin(a,hye 1))

n=0 Vl

+ i ﬂz(cos(a hy) — cos(a,hy_ 1))]

n=0 Ay

= kgl (Q_lﬁﬁxx + Q-Zﬁﬁyy + Q-66ﬁxy)kM
|25

2|3

(hk sin(a,hy) — hy_q sin(a,h, )

+ i —r[lz—(cos(a hy) — COS(anhk—l))]

2.5.2.2 Hygroscopic stress field

65

(2.69)

Pipes, Vinson and Chou (1976) have illustrated the hygro-

scopic effects on a carbon—epoxy system (T300/5208) comprising a
six-ply laminate of [0°/+45°/—45],, where each lamina is of the
thickness A. It is assumed that the diffusion coefficient, K™, and the
coefficients of expansion, « and 8, are constant over the ranges of

Fig. 2.9. Moisture distribution profiles during absorption. (After Pipes,

Vinson and Chou 1976.)

3~

m/M,
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temperature and moisture concentration of interest. The material
properties are E,; =143 GPa, E,,=10.1GPa, v, =0.31, G, =
4.14GPa, B,,=0, B =6.67 X 107*/wt% and A =0.1397 mm.

Figure 2.9 illustrates the moisture profiles across the laminate
which is moisture free at time ¢=0, and then exposed to an
environment on both surfaces of moisture concentration M,. The
range of KT values is between 1x 107> and 5x 107*. It is seen
that by KTt=5x10"> the moisture concentration at the mid-
surface is 20% of that at the surface.

Figure 2.10 shows the profiles of o,,, which is compressive in the
outer, 0°, laminae, because of the expansion caused by the moisture
gradients of Fig. 2.9, and the inner four laminae at +45° are all in
tension. Stress values are maximum at the outer surfaces. The
profiles of g, follow the same trend as o,,, and o,, > 0,, at each
time. In both cases the steady state is achieved at K7t > 5 x 107*.

Figure 2.11 shows that 7,, =0 in the outer two layers because
they are at the orientation of 8 =0°; the same would occur for any

Fig. 2.10. Distribution of stress, o,, during moisture absorption. (After
Pipes, Vinson and Chou 1976.)

3
z/h
2
41
-6 —4 -2 2 4
I I N B I Y A
—1 ] I I I f I 1
5x 10+
0/ (Mo f322) (GPa) 1 x 10-5
1 x 107+
41 s 5% 1073

Kmt=5x 1073
1 x 10-4
5x 104
[ x 1073 -3




Thermal and hygroscopic behavior 67

layers at 6 =90° in balanced laminates. The in-plane shear stresses
increase with time, because of the increasing strains caused by
increased moisture content; by the time of steady state (K&nt>
5x 107*) the shear stresses are much larger than either the o,, or
o,, stress. These large shear stresses imply large interlaminar shear
stresses, 0,, and &,,, near laminate discontinuities.

2.5.3  Transient interlaminar thermal stresses

2.5.3.1 Transient temperature field

Consider an x direction infinite laminated plate subjected to
a temperature field T =T, on two edges (y = +b) at time t=0"
(Fig. 2.12). By assuming that the temperature field in each layer is
independent of the thickness direction, i.e. T =T(y, t), the heat
conduction equation for each lamina follows Eq. (2.62).

Fig. 2.11. Distribution of stress, t,,, during moisture absorption. (After
Pipes, Vinson and Chou 1976.)
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The boundary and initial conditions are
T(xb,t)=T, T(y,0)=0 (2.70)

The solution of the governing equation Eq. (2.62) by the method of
separation of variables is

T= To(l + > a,cos(b, Y)e‘Cn’> (2.71)
n=0
where
y
Y==
b
(=1)4
" @2n-n
b,=(n—3)n
11 E]
Cp [(n 2) b
K
g=—*
pCy

2.5.3.2 Thermal stress field
Y. Wang and Chou (1989) have considered the transient

thermal stresses in an orthotropic composite laminate. Since the

Fig. 2.12. Geometry of an angle-ply laminate for analytical modeling.
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thermal boundary conditions are uniform along the surfaces y =
15, the displacements are independent of the x axis and expressed
as:

u=u(y, z,1t)
v=u(y, z,1) (2.72)
w=w(y, z,1)

The stress—strain relations for such an orthotropic laminate
follow Eq. (2.49):

®Eyx = Cllgxx + CIZEyy + C13822 + 2C168xy - le
ayy = CIZEXX + szgyy + 623822 + 26268xy - dzT
0,, = CISEXX + CZ3£yy + C_33gzz + 26368,0' - d% T

! (2.73)
ayz = 2C448yz
Oy = 2C558xz
Oy = CIGEXX + C268yy + C36£zz + 26668,0' - d(vT
where
&= a/xan + ayyCIZ + azzCIS + axyCIG
&2 = axxCIZ + ayy CZZ + &, CZS + axy CZ()
(2.74)

&= a,C;+ ayyC23 +a,.Cys+ axyC36
&6 = axxCIG + ayy C26 + ®;, C36 + axy C66

The equilibrium equations can be written in terms of the
displacements:

. Ju *u v . &w _ aT
Cee "'Cssa 2+C268y2+c365y—82_ 6a_y
- az v Fv . . &w _oT
Cze 7+ sz 7t C44 3+ (Cun+Cu)———=a—
ay* 9z* dy 9z dy
azu Fv . w . Sw
C36 3y 3 +(C44+C22) Z+C4452‘+ Css‘a?—o
(2.75)

The equilibrium equations can be solved by a singular perturbation
technique (Van Dyke 1975). It is assumed by Y. Wang and Chou
(1988, 1989) that, for h/b sufficiently small, i.e. <10% (see Fig.
2.12), the linear and higher order terms of 4/b can be neglected and
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a zeroth order perturbation approach (Hsu and Herakovich 1976,
1977) is applied. The solution of Eqgs. (2.75) for the kth layer in the
interior region (Y = y/b < 1) of a laminate is

where

2

U® = 7”: B(Y, 1)
2

v = 7”= D(Y, 1)

2
W = Tw = E(Y,0)Z

7%
ok
(ﬁ)B(Y, t) - q2Q1(Y, t) —q, ZQZ(Y’ t)
b q143 — 42
<E>D(Y, 1= 301 (Y, 2‘) —4:0x(Y, 1)
b q2 - q1q3

E(Y, 1) =gi T(Y, 1)
33

0¥, 0= 3 (=) T, 0h®

k=1 33

0¥, 0= 3 (2 a) Ty, 0h®

k=1 33

4= E (sz)kh(k) q>= E (CZG)kh(k)
k=1 k=1

n

Y
q:= E (Ce)ch® T.(Y, 1) =f T.(Y,)dY
o

k=1

h®) = kth layer thickness

(2.76)

@.77)

The subscript k indicates the kth lamina of the n-layer laminate.
Following Hsu and Herakovich (1976, 1977), a stretching trans-

formation parameter is introduced to obtain the solution for the

boundary layer region (Y = 1):

n=01-Y)/(h/b)

(2.78)
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Then the equilibrium equations (2.75) become

cgni’ ; c%’ ; c%zl’ (Gt Cu) a‘f’—aWZ -
() E - Tttty
+ Cas ?92712 + (733%2212/— 0

where €= C;/Cpay, and Cpy is the largest among all the C;
values. The following expressions of the displacement field are
assumed for matching the solutions in both interior and boundary
layer regions, based upon Prandtl’s matching principle:

U® =B(Y, t) + Pe*" cos(8Z)
V® = D(Y, t) + Re*" cos(8Z) (2.80)
W® = E(Y, t)Z + Se*"sin(8Z)

Here, B(Y, t), D(Y, t) and E(Y, t) are the interior region solutions
(Egs. 2.77); P, R and § are coefficients to be determined for the
correction terms; & is an undetermined positive constant; A is the
negative characteristic of Egs. (2.79). It is seen from Eqs. (2.80) that
away from the boundary layer region (7 > 1), the correction terms
have no influence on the displacement field; their effects become
significant in and near the boundary layer region.

Substituting the U®, V& and W® expressions into the
equilibrium equations (2.79), the six roots of A for non-trivial
solutions of P, R and S are obtained:

)41’2 = :tak(s
)43’4 = :tbk(s (2.81)
)'5,6 = :i:Ck(S

where a,, b, and ¢, are three positive constants. The positive roots
of A are dropped to avoid divergence in the displacement field.
Thus, the displacements for both the interior and boundary layer
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regions can be written as follows:
U® =B(Y, t) + (Pe”“°" + Pye "1 + Pie™%*") cos(8Z)
V@ = D(Y, t) + (Rie™*°" + Roe 0" + R,e~%°") cos(6Z)
W® = E(Y, t)Z + (5,677 + S,e 722 + S e~} 5in(5.Z)
(2.82)

There are ten unknowns for the displacement solution of the kth
layer (P, P;, P5, Ry, R,, R3, 8, S5, S5 and d).

The available equations for the solution of these constants are: (i)
three stress boundary conditions, o,,(b, z) = 0,,(b, z) = 0,.(b, z) =
0; (ii) six equilibrium equations (2.79); and (iii) the integrated
equilibrium condition

1/2 h 1 1
f 0,0, 2)5 dZ = f ox2<Y, E)b dy (2.83)
0 0

A four-layer angle-ply composite i1s taken as a numerical ex-
ample. Each layer is 5mm in thickness 2%, 200 mm in width (b).
The SiC/borosilicate glass laminate is used as a baseline composite
system for demonstration of the results. The transient interlaminar
normal stress distribution of a [—45°/45°]; SiC/borosilicate glass
laminate, which is subjected to a sudden edge heating of the
magnitude T, =1°C at t = 0", is demonstrated in Fig. 2.13. No stress
singularity is found as a consequence of the assumed displacement

Fig. 2.13. Transient interlaminar thermal stress of a SiC/borosilicate glass
[—45°/45°]), laminate for V;=30% and T, = 1°C. (After Y. Wang and Chou
1989.)
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field, but it is apparent that the interlaminar normal stress con-
centration increases very significantly as approaching to the free
edge of the plate (Y =1). The stress at Y =1.0 is about three to
twenty times higher than that at Y =0.90 for t=10s to ». As the
heating proceeds, the overall interlaminar normal stress increases
smoothly, while the stress which is very close to the boundary
remains almost constant. Also, the interlaminar normal stress tends
to zero away from the free edge of the laminate due to the adoption
of the classical lamination theory in the interior region.

Figure 2.14 shows the results of a parametric study of the stress
solution sensitivity to the composite elastic and thermal properties.
Here the [—45°/45°], SiC/borosilicate glass laminate is taken as the
baseline system, and A indicates an increment. The Young’s
modulus (E3;) and thermal expansion coefficient (&;3) along the plate
thickness direction have a more significant effect on the stress o,, than
the thermal conductivity (K33) and specific heat (C,). The transient
thermal stress analysis can be applied for the characterization of
thermal shock resistance capability of composite materials. (See, for
example, Cheng 1951; Kingery 1955; Y.Wang and Chou 1991.)

2.5.4  Transient in-plane thermal stress
Having discussed the thermoelastic field due to one-
dimensional heat and moisture diffusion in Sections 2.5.2 and 2.5.3,

Fig. 2.14. Parametric studies of stress solution sensitivity to composite
elastic and thermal properties. The base material is a SiC/borosilicate glass
[—45°/45°], laminate. Calculations of |Ao,,|/0,. are based upon ¢ =2 min
and Y =0.99. (After Wang and Chou 1989.)
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a two-dimensional transient heat conduction problem is examined in
the following. The model material considered is a unidirectional
lamina. The interaction of thermal stresses among the layers of a
laminate is thus not included in order to clearly demonstrate the
effect of transient heat conduction.

2.5.4.1 Transient temperature field

Consider the two-dimensional problem of an orthotropic
slab with a rectangular region (0=x=/;, 0=y =/,) as shown in
Fig. 2.15. The slab is initially held at a uniform temperature and
then the edge y =/, is suddenly subjected to an arbitrary tempera-
ture distribution or heat flux f(x). The two-dimensional tempera-
ture distribution, T(x, y;¢) in the rectangular region is assumed to
satisfy the heat conduction equation (2.63).

The initial condition is

T(x,y;0)=0 fort=0 (2.84)

The boundary conditions of the rectangle assume the following

Fig. 2.15. Thermal stress variations with time for K =0.1 at the cross-
section x = 0. (After H. Wang and Chou 1985.)
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general forms:

aT
—ala—x+b1T=0 forx =0 (2.85a)
aT
a2§+b2T=O f0rx=11 (285b)
aT
—a;—+ b T=0 fory=20 (2.85¢)
9y
aT
a4a—y+b4T=f(x) fory=1, (2.854d)

Here, a; (i=1, 2, 3, 4) are conductivities for the respective direc-
tions, and b; are the coefficients of surface heat transfer. The
various types of boundary conditions can be obtained through the
proper selections of the constant ratio b;/a; (see, for example,
Carslaw and Jaeger 1959). Equations (2.85a)—(2.85c) correspond to
zero surface temperature or heat flow, whereas the non-
homogeneous boundary condition of Eq. (2.85d) is for an arbitrary
variation of surface thermal condition.

Equation (2.85d) suggests the use of the principle of superposi-
tion. The problem has a steady-state solution as — . It is assumed
that

T(x,y;0)=¢(x, y) +9(x, ;1) (2.86)
such that ¢(x, y) and y(x, y; ¢t) satisfy
3¢ 3¢
Kjxw-f- KyTy‘ay—2=0 (2.87)
3
—a1—¢+b1¢=0 forx =0 (2.88a)
ox
3
az“? + b2¢ = O for x = 11 (288b)
ox
3
—a; a—;p +bsp=0 fory =0 (2.88¢)

a
a4a—;p+ bip=f(x) fory=1 (2.88d)
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and
>y 3 3y
K;cer + K;l:y ayz =p pE (2.89)
Y(x, y;0)=—¢(x,y) fort=0 (2.90)
3
—al—w+ biy=0 forx=20 (2.91a)
ox
oy
a—+b,p=0 for x =1, (2.91b)
ox
3
—a3—l£+b31p =0 fory=0 (2.91¢)
9y
oy
a4a—y +b,y=0 fory=1, (2.91d)

H. Wang and Chou (1986) have obtained the general solution of ¢
and 3 with the unknown constants in the infinite series expressions
to be determined by the boundary conditions of Egs. (2.88) and
(2.91) and initial condition of Eq. (2.90).

An example of this solution technique is given by H. Wang and
Chou (1985) for a slab initially held at a constant temperature and
suddenly subjected to an arbitrary temperature variation along one
of its edges. The constants in Eqs (2.85) are a;, = —1, a,=a;=b, =
0, and b, = b;=1. The temperature field solution is

£

.0,
T(x,y;t)= D, {I,, cos d,x sinh e

n=1

+ > 1,,c0s8,x sin %y exp[—d(62+ yf,,)t]}
m=1

(2.92)
where
d = Kxx/pcp, K2 = Kyy/Kxx
m Bm
(=1 ?12 8

nm(an’ .um) 1 (6,—,) ( ) ( ) SinhEnlz

) 1 h (2.93)
L(5,) =
2(0n) 5 WA ' 5n 3 11 f(x) cos &,x dx

4 oS sin

5, =1, n=1,2,3,...,

21,
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Also, u,,/K are the positive roots of

b
('I% l2> COt( lz) a: 12 = O
Ifa,=0and b,=1,

EK3=%JI=6,,, m=1,2,3,..., (2.94)
H. Wang and Chou (1986) have tabulated the solution of tempera-
ture field from the various combinations of @,, a,, as, b;, b, and b,

values of Eqgs. (2.85).

2.5.4.2 Thermal stress field

Consider a unidirectional fiber composite; let the principal
material directions x; and x, coincide with the reference axes x and
y, respectively. The stress—strain relations follow Eq. (2.49) with
the C; replaced by C;. Depending upon the thickness of the elastic
medium in the z direction, the thermoelastic problem is in the state
of either plane strain or plane stress. In the case of plane strain, the
stress components in the x—y plane are related to the in-plane
displacements, u(x, y;¢) and v(x, y;t), and the temperature,
T'(x, y; t), by substituting the strain—displacement relations into the
stress—strain relations of Eqs. (2.73). The results are

Ju -
C11 C12 3y —a,T(x,y;1)

ov
C12 + C22 y — &> T(x, y; t)
(2.95)
Ju Jv
Cn + Cpn 3y —aT(x, ;)
Ju OJv
ny = C66<5; + a)
where
&, = Caq + Cipap + Craas;
0= Cpaqy + Crpanp + Cryas, (2.96)

a3 = C3ay; + Conany + Cias,

The relations corresponding to Eqs. (2.95) for plane stress condition
are obtained by replacing C; and &; by C,;— C;/Cy; and & —
@&, C5;/ Cs3, tespectively.
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The displacement equations of equilibrium governing the plane
strain conditions are

Su Fu 82v T

C11 5+ Cee 5+ (Cp+ Cee) =m i
(2.97)

v v u 3T

C66§+C22W+(C12+ Cﬁe)mz &za_y

The equilibrium equations are solved by introducing the displace-
ment potentials ¥,, ¥, and ¢ defined by

oy, Oy, 3¢
)= +—+—=
w0 =t o T
(2.98)
3 3
v(x, y;t)=v, Ldl +v 1[«'24_/1 9¢
oy ? dy oy

where v,, v, and A are unknown constants. Also, ¢ is the
homogeneous solution and 1, and v, are particular solutions of
Egs. (2.97).

An example of the transient thermal stress solution is given by H
Wang and Chou (1985) for a rectangular slab (—/,=x=!, and
0=y=/) with fibers oriented in the x direction. The initial
temperature of the slab is 7 =0. Then the following form of
temperature rise at the upper edge (y =1,) is adopted:

4
T=f(x)=75cosix fort>0 (2.99)

1
while the temperature over the remainder of the boundary is
maintained at the initial value. All edges of the rectangle are

assumed to be traction free:

O =0,,=0 for x = £/,
(2.100)

Oy, =0y, =0 fory=0, [,

The thermal and elastic properties as given by Akéz and Tauchert
(1978) simulating a boron/epoxy composite are adopted for the
numerical calculations. Owing to the symmetry of the assumed
temperature rise, only one half of the rectangle (0 = x </,) needs to
be considered. Thus, the boundary condition Eq. (2.85d) is reduced
to a,=0 and by;=1. For the convenience of presenting the
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numerical results, the following dimensionless quantities are intro-
duced for temperature stress, time, and lamina dimension, respec-
tively: T=T(x, y;1)/T,; 6;=o0,(x,y;)/&T,, t=dt/l, and 1=
L1,

Figure 2.15 shows the y direction variation of thermal stresses at
the cross-section x = 0 for the various dimensionless time intervals.
It is clear that large longitudinal stresses o,, occur in the vicinity of
the heated boundary, where the relatively large temperature
gradient, 3T /3y, exists. On the other hand, the transverse stresses,
o0,,, and the shear stresses o,, are fairly small. Also, for o,,, the
maximum transient tensile stress is 25% higher than that in the
steady state; the maximum transient compressive stress near the
upper edge (y =1,) is 78% higher than the corresponding steady-
state stress. An examination of the plots of o,, and o,, at a given
time interval indicates that each stress is in self-equilibrium when
the slab is free to deform, i.e. no boundary constraints. This is
consistent with the nature of thermal residual stresses.



3 Strength of continuous-fiber composites

31 Introduction

Fiber-reinforced composites are a valuable class of en-
gineering materials because they can exhibit both high stiffness and
strength simultaneously, in contrast to more homogeneous materials
which are generally brittle and defect sensitive. In fiber composites,
the inherent lack of toughness of the reinforcing fiber, or its
sensitivity to microstructural defects, is overcome by the local
redundancy of the composite structure, so that its strength may be
utilized effectively. Individual fibers are relatively weakly coupled
by the matrix so that failure of one fiber does not generally
precipitate immediate failure of the composite as a whole, allowing
high strength and stiffness to be achieved in the fiber direction.

The tensile failure of a fiber-reinforced material is a complex
process which involves an accumulation of microstructural damage.
Unlike homogeneous brittle materials, fiber composites do not
contain a population of observable pre-existing defects, one of
which ultimately precipitates failure. Instead, an accumulation of
fiber or matrix fractures develops as the material is loaded and this
constitutes a ‘critical defect’ in a macroscopic view of the fracture.
Fracture mechanics may successfully account for the strength of
single fibers, but it is inadequate to extend its application to
unidirectional fiber composites when the overall behavior is domin-
ated by the probability of defects in fibers propagating under the
stress concentrations surrounding previous fiber fractures as well as
the probability of defects in the matrix which are responsible for the
multiplication of transverse cracks. Consequently, the statistical
process of damage development in composites needs to be em-
phasized (Manders, Bader and Chou 1982).

The development of a rigorous analysis of fracture, considering
all the sequences of fiber and matrix fractures which result in
fracture of the composite, is a formidable task, and for this reason
the strength of composites with realistic dimensions is much less
well understood than their elastic properties.

This chapter treats the strength of continuous fiber composites
with a combination of statistical and fracture mechanics approaches.
The statistical analysis of unidirectional composites is better de-
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veloped than that for cross-ply laminates. No comprehensive
statistical methodology is available at this time for treating the
strength and failure of composites from the fiber and bundle level
up to composite laminates. Thus, the fracture mechanics approach
to laminate failure is necessary.

In this chapter, the classical approximation of the rule-of-
mixtures is adopted as a starting point for composite axial strength.
This approximation is substantially altered due to stress concentra-
tions induced at fiber breakages. The statistical variations of fiber
and bundle strengths are then discussed. The knowledge of the
stress redistribution at fiber breaks is then incorporated into the
statistical strength analysis of unidirectional fiber composites. Next,
the strength analysis is extended to the case of cross-ply laminates
which serve as model systems for laminate composites. Finally, an
attempt is made to shed some light on the failure of laminated
composites in general where both inter- and intralaminar failures
play key roles in the failure modes. A method of analysis based
upon the fracture mechanics approach is introduced. Section 3.4.6.2
is contributed by S. L. Phoenix, and Sections 3.4.7.4 and 3.4.8 are
contributed by A. S. D. Wang.

Another approach to the strength and damage of fiber composites
is based upon the overall properties degradation. The strength
behavior can be modeled by regarding the composite with damage
as a continuum with changing microstructure. A phenomenological
theory of constitutive behavior then provides relationships between
the severity of damage and the overall stiffness properties of a
composite (Reifsnider, Henneke, Stinchcomb and Duke 1983;
Talreja, 1985, 1986, 1987, 1989).

Strength theories dealing with short-fiber and hybrid composites
are discussed in Chapters 4 and 5, respectively.

3.2 Rule-of-mixtures

The classical approximation of unidirectional continuous-
fiber composite strength takes the form of the rule-of-mixtures. By
assuming equal strain in the fiber and matrix phases, the stress in
the composite under uniaxial loading can be expressed as (see Kelly
and Nicholson 1971 and Vinson and Chou 1975)

0. = Vi + 01— Vi) (3.1a)

where o and V; denote, respectively, stress and fiber volume
fraction. The subscripts ¢, f and m are for composite, fiber and
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matrix, respectively. Then, the ultimate composite strength is

Oy = Ufu‘/f + Umu(l - ‘/f) (31b)
Here, the subscript u denotes ultimate strength. Equation (3.1b) is
valid provided that both the fiber and matrix have the same ultimate
strain.

Equation (3.1b) is not sufficient in determining the strength of
continuous-fiber composites. Aveston, Cooper and Kelly (1971)
have discussed the strength of composites based upon the transfer
of load at the fiber/matrix interface and the mode of failure. For the
case of brittle fiber-reinforced ductile matrix, the matrix ultimate
strain is often higher than that of the fiber (Fig. 3.1a); then single
fractures of the composite occur when

O Vi + 0pu(1 = V) > 0u(1 - V) (3.1¢)

Fig. 3.1. (a) Stress—strain relation of a brittle fiber/ductile matrix compos-
ite. (b) Composite strength vs. fiber volume fraction for brittle
fiber/ductile matrix composites. (c) Stress—strain relation of a ductile
fiber/brittle matrix composite. (d) Composite strength vs. fiber volume
fraction for ductile fiber/brittle matrix composites.
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where o/, is the stress in the matrix when the fibers fail. The matrix
i1s unable to withstand the additional load transferred to it due to
the fiber fracture, and thus single fracture prevails at sufficiently
high fiber volume fractions. At low fiber fractions,

o1V + 01 = V) < omu(1 - V) (3.1d)

and the load is essentially born by the matrix material. The failure
of the composite is characterized by multiple fractures of the fibers
into shorter and shorter segments as the strain on the matrix
increases (Fig. 3.1b). Experimental data on the ultimate strength of
unidirectional fiber composites usually fall within the triangular
region of Fig. 3.1b specified by the solid line segments.

Provided the failure strain of the matrix is sufficiently large, the
fibers are fractured into lengths between x and 2x. Assuming a
constant fiber—matrix interfacial shear stress 7, the fiber fracture

Fig. 3.1. (cont.).
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spacing is determined from a simple force balance

O,
x =
2T

(3.2)

where r denotes fiber radius.

The above analysis does not fully account for the fact that the
strength of a fiber is a statistical quantity which results from flaws
being randomly distributed along the length, as is discussed later.
One result is that the strength depends on the fiber length, and thus
is not really a fixed quantity og. Using the accepted
Poisson/Weibull model, Henstenburg and Phoenix (1989) have
developed a modified version of Eq. (3.2) which includes a factor
connected to the variability in fiber strength. The revised formula
typically produces values which are 15 to 20% larger. Also, these
authors have delved further into the nature of the statistical
distribution for fragment length, and experimental examples can be
found in Netravali, Henstenburg, Phoenix and Schwartz (1989).

For the case of ductile fiber-reinforced brittle matrix composites,
multiple fracture of the matrix occurs when the fiber ultimate strain,
&g, 18 higher than that of the matrix, &, (Fig. 3.1c). The condition
of multiple fracture, according to Aveston, Cooper and Kelly (1971), is

oéu‘/f + omu(l - ‘/f) < ofuvf (33)

Here, o, is the stress in the fiber at the failure strain of the matrix.
A single fracture of the composite occurs if the fibers cannot
withstand the increase in loading due to the matrix failure (Fig.
3.1d).

The spacing between two adjacent matrix cracks can again be
determined from a simple force balance, and the separation
distance is between x’ and 2x’

_1=-Viogr
Vi 21

13

X

(3.4)

In deriving Eq. (3.4), it is understood that the number of fibers per
unit area transverse to the fiber direction is given by V;/xr’.

Composites containing ductile fibers in a ductile matrix have
shown work-hardening behavior. Mileiko (1969) has theorized that
the instability or necking of the matrix can be suppressed due to
the constraint of the matrix, and the ultimate strain of the composite,
in this case, is shown to lie in between the ultimate strains of the fiber
and matrix materials.
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3.3 Stress concentrations due to fiber breakages

Fiber breakages in a continuous-fiber composite can occur
at fabrication or during the early stage of loading. Stress redistribu-
tion takes place in the vicinity of a fiber breakage because load can
no longer be transferred along the fiber in a continuous manner.
The resulting stress concentrations in the neighboring fibers are
detrimental to the strength of continuous-fiber composites. In the
following, the shear-lag analysis is introduced to examine both the
static and dynamic stress concentrations in unidirectional
continuous-fiber composites.

3.3.1  Static case

The problem of static stress concentration in composites has
been treated by the shear-lag method (see Hedgepeth 1961;
Hedgepeth and Van Dyke 1967; Fichter 1969, 1970; Van Dyke and
Hedgepeth 1969; Zweben 1974; Fukuda and Kawata 1976a, 1980;
Goree and Gross 1979, 1980; Hikami and Chou 1990), elasticity
theory (see Burgel, Perry and Scheider 1970; Takao, Taya and
Chou 1981), and numerical methods (see Carrara and McGarry
1968; Chen 1971).

Among these approaches, the shear-lag method, which is based
upon simplified assumptions, often provides good physical insights
of rather complex problems. The shear-lag method was first
adopted by Hedgepeth (1961) to treat multi-filament failure prob-
lems of unidirectional composites. The technique also has been
extended to include the effects of plasticity of the matrix (Hedge-
peth and Van Dyke 1967; Goree and Gross 1979; Hikami and Chou
1984a), and the condition of interfacial debonding (Van Dyke and
Hedgepeth 1969). The major assumptions of this method are that:
(1) the fibers sustain only the axial loads, and (2) matrix between
fibers transmits only the shear force.

In the following the single filament failure model of Fukuda and
Kawata (1976a) is reproduced first to demonstrate the fundamentals
of this method, and the nature of stress redistribution in unidirec-
tional composites. Next, the work of Hikami and Chou (1990) is
introduced for the explicit solutions of multi-filament failure
problems.

3.3.1.1 Single filament failure

Figure 3.2 shows the model of analysis by Fukuda and
Kawata (1976a) which contains three parallel fibers with the middle
one being broken. This model can also be considered as the
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two-dimensional representation of a laminate with a broken middle
layer. Because of symmetry, only half of the model needs to be
considered and the fibers are denoted as n=1 and 2. The
equilibrium of forces in the fibers in the free-body diagram of Fig.

3.3 gives
1dP
ﬁ;u 7,=0 (3.5)
dP.
EZ“ 7,=0 (3.6)

i
- ;1 > dP

Fig. 3.2. A three-fiber composite model for shear-lag analysis.

y
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n=2 Unit cell ‘
P, --— \ A / d 7\ > P,
{V }t Fiber<
n=l 7 ]
PQ g 1 HX ‘ b Po
\ Matrix
P, --— - P,

Fig. 3.3. Free-body diagrams for the ‘unit cell’ of the composite shown in
Fig. 3.2.
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where P, and P, denote fiber axial force per unit thickness, and T, is
the matrix shear stress. Let the displacement of the nth fiber be
denoted as u,.. Then,

P.(x)= Eddu;,T(x) n=1,2 3.7
00 = 7 (@) ~ 1) ¢9)

where E is the Young’s modulus of the fibers; G is the effective shear
modulus of the matrix; 4 is the effective fiber spacing; d is the fiber
width; and the lamina is of unit thickness.

Using Egs. (3.7) and (3.8), and the following non-dimensional
parameters

E=x/d 3.9)
a=Eh/Gd (3.10)
Equations (3.5) and (3.6) become
d*u
%QEZI‘}'uZ_u]:O (311)
d*u
aE;+u1—u2=O (3.12)

From Eq. (3.11), u, can be expressed by u; and its derivatives as
follows:

d*u

u2=u1—%(1’¥21 (313)
Substitution of Eq. (3.13) into Eq. (3.12) yields

d*u, 3d%u,

M _ZT" ) 3.14

d§4 Y d§2 ( )
The general solution of Eq. (3.14) is

u;=A+ BE+ Ce**+ De™ ¢ (3.15)

where A=V(3/a) and A, B, C and D are integration constants.
Substituting Eq. (3.15) into Eq. (3.13), the general solution of u, is
obtained as

u,=A + BE —1Ce** —iDe % (3.16)
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A, B, C and D in Egs. (3.15) and (3.16) can be determined from
Eq. (3.7) and the following boundary conditions:
(u2)§=0 = Or (Pl)§=0 = Or (Pl)§=°° = Po (317)

Finally, the fiber displacements and axial loads are obtained

P /1 1
ul——< +E+o ‘15)

22

3.18
u_P°<1 E—i _AE) (3.18)
=g\nteTn
P1=Po(1“e_}‘§) (3 19)

P,=P,(1+%e™™)

Values of P, and P, in Eq. (3.19) are shown in Fig. 3.4. The stress
concentration factor of this model, (P,/P,)s_, is 1.5. According to
Eq. (3.19), the distributions of fiber displacements and axial loads
are functions of the material constant A. However, the stress
concentration factor is independent of A. The above treatment has
been extended to composites containing a finite number of fibers
with any number of adjacent fiber breakages on the same transverse
plane.

3.3.1.2 Multi-filament failure
Hikami and Chou (1984b, 1990) have examined the two-

dimensional multi-filament failure problem of unidirectional fiber

Fig. 3.4. Variations of fiber axial forces.

|~
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composites, focussing specifically on the stress concentration factors
of fibers adjacent to the cracks. The physical problems are analyzed
by the two-dimensional shear-lag method under two loading condi-
tions: (A) uniform tensile force applied to all fibers at infinity (Fig.
3.5), and (B) concentrated force dipole applied at a particular fiber,
n=b —a, on the crack plane (Fig. 3.7).

These analyses are unique in that the general solution of the
governing equations of the elastic field has been obtained in explicit
forms in terms of the Legendre polynomials for the loading
condition (A). Based upon this solution, closed form expressions of
stress concentration factors in all fibers have been derived. These
analyses also provide rigorous proofs of both Hedgepeth and Van
Dyke’s inspection (1967) on the general form of the tensile stress
concentration factor at the tip of a crack and Fichter’s inspection
(1969) on the general form of the shear stress concentration factor
for the loading condition (A). Since there exists a reciprocal
relation between the influence function matrices for the loading
conditions (A) and (B), the solution for the condition (B) can be
readily derived from the solution for the condition (A).

The analyis considers a two-dimensional unidirectional con-
tinuous-fiber composite containing a slit notch in the transverse
direction, as shown in Fig. 3.5. The fiber direction is taken along
the x axis. The broken fibers are denoted as n=1, 2, 3,...,b,
starting from the left tip of the notch with b being the total number
of fibers in the notch.

Under the assumption of shear-lag analysis, the matrix material
transfers only shear force, 7,(x), per unit fiber length between two
adjacent fibers. Thus %,(x) is related to the difference of displace-
ments u,,(x) in the fiber direction as

500 = 2 () ~ () (3.20)

where G is the effective shear modulus of the matrix, and A is the
effective fiber spacing. The tensile force P,(x) per unit thickness in
the nth fiber is related to the displacement by
du,(x)
P,(x)=FEd——— 3.21

(¥)= Ed =5 (3.21)
where d is the width of the fiber. The equilibrium of forces in the x
direction gives

dP, _
—a—x‘+ T,— T,_1=0 (3.22)
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The non-dimensionalized axial force, displacement and coordin-
ate are given, respectively, by:

F,(8) = P.(x)/P,
U,(§) = u.(x)V(EdG |hP3) (3.23)
E=V(G/Edh)x

Then, the equilibrium equation (3.22) can be written as

d*U, (&)
de?

=2Un(8) = Up1a(8) ~ Un—i(8) (3:24)

The boundary conditions are:
EO=0  (1=n<b)
U,(0)=0 (n=0,n=b+1) (3.25)
E(x=)=1 (all n)

Fig. 3.5. Model of a multi-filament crack in a unidirectional composite
under uniform force at infinity (After Hikami and Chou 1990.)
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for loading condition (A), and

E(0)=0 n=1,2,...,b—a—-1,b—a+1,...,b)
U,(0)=0 n=0,n=b+1

0) ( ) (3.26)
E,(x»)=0 (all n)
E,_.(0)=-1

for loading condition (B).

The general solutions of the multi-filament failure problem have
been obtained explicitly by Hikami and Chou (1990) using the
Legendre polynomials and Fourier transformation. The stress
concentration factors in all fibers on the crack plane are given in
closed forms. First, for the loading condition (A), the stress
concentration factor of the sth fiber ahead of the tip of a crack
containing b broken fibers is given by

p=(b+2s—-1)

y 25 - (25+2)-(2s+4)--- (25 +2b—2)
2s—1)-2s+1)-2s+3)---2s+2b—-3)-(25+2b—1)
3.27)

As a special case of Eq. (3.27), the stress concentration factor in
the first intact fiber (s = 1) adjacent to b broken fibers is
_4-6-8---(2b+2)

T3.5-7---(2b+1)

Hedgepeth (1961) deduced Eq. (3.28) by inspecting the numerical
results of the cases b=1, 2, ..., 6. This inspection on the general
form of the stress concentration factor has been rigorously proven
by Hikami and Chou. Figure 3.6 depicts the numerical results for
K;.

Furthermore, the maximum shear stress takes place in the matrix
at the tip of the crack. Thus, the dimensionless displacement at the
crack tip U,(0) is termed the maximum shear stress concentration
factor, S,.x- Hikami and Chou (1990) have obtained

_ #x(2b-1)!
T2 [(b - DI
Fichter (1969) deduced the above result by calculating the cases of
b=1,2,...,6. The axial stress in fibers away from the crack plane

has also been obtained.
In the case of loading condition (B), Fig. 3.7, Hikami and Chou

K,

(3.28)

(3.29)
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Fig. 3.6. Stresses concentration factor K3 in the (b + s)th fiber. b denotes
the number of broken fibers; s =1 corresponds to the special case of
Hedgepeth (1961). (After Hikami and Chou 1990.)

2.5

s=1

20

Fig. 3.7. Model of a multi-filament crack in a unidirectional composite
under concentrated force dipole in the (b — a)th fiber on the crack plane.
(After Hikami and Chou 1990.)
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(1990) assume that a unit force dipole is applied on the (b — a)th
fiber. Then the more general cases with multiple dipoles can be
obtained by the linear combination of the solutions of the simple
problem.

The closed form solution of the stress concentration factor at the
sth fiber in front of the tip of a crack containing b fibers and a unit
force dipole at the n (=b — a)th fiber is given as

goo 128+ Db 22— D25 =N (25 +2b 211 1
DT Qa)1(2b—2a - 2N (25— )N (25 +2b -~ I (s +a)
(3.30)

where !! denotes double factorial (i.e. n!! = (n!)!). The highest fiber

stress concentration takes place at the edge of the crack (s =1)
ra_ Qa+DI(2b—2a— 1)1 Qb)Y
T Qa+ 21 (2b —2a — 211 (2b + D!

(3.31)

Figure 3.8 depicts the numerical results for K}
For a semi-infinite crack the stress concentration factor at the sth
fiber from the crack tip due to the unit applied force dipole at the

Fig. 3.8. Stress concentration K, * in the (b + 1)th fiber when the unit load
is applied at the (b —a)th fiber. b denotes the number of broken fibers.
(After Hikami and Chou 1990.)
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ath fiber has the following value:

. sa_ 1 _(2s+1)!!_(2s—3)!!
om K = s +a) @) (25 =2 (3.32)
The axial fiber stress distributions away from the fracture plane for
both loading conditions (A) and (B) also have been obtained by
Hikami and Chou (1990). Also Fukuda and Kawata (1980) have
shown in their analysis of a finite number of fibers that the stress
concentration factor tends to that of Hedgepeth as the total fiber
number increases.

The static stress concentration factors in a layer of unidirectional
composites containing dacron fibers imbedded in a polyure-
thane elastomer have been measured by Zender and Deaton
(1963). The number of fiber breakages in this experiment
is controlled by partially slitting the specimens in the transverse
direction. The slit length determines the number of broken
fibers. The results of the experiments show reasonably close
agreement with the theoretical analysis. It should be noted that
although the broken fibers induce the adjacent fibers to fail in the
vicinity of the cut, the chances are that such a location is not
the weakest location of the fiber. This has to do with the statistical
nature of fiber strength distribution and will be discussed in
Section 3.4.

The problem of static stress concentration factors in a three-
dimensional fiber array has been examined by Van Dyke and
Hedgepeth (1969). They consider square and hexagonal arrays
where a specified number of fibers are broken. Other stress
concentration problems including the effects of finite length of fibers
(Fichter 1970), relative locations of fiber breaks (Chen 1973), holes
(Kulkarni, Rosen and Zweben 1973) and notches (Zweben 1974)
also have been treated.

3.3.2  Dynamic case

When fibers are suddenly broken in a composite under
stress, the load in the broken fibers must be transferred through the
matrix to the adjacent fibers in order to restore equilibrium. Of
interest is not only the resulting static stress, but also the dynamic
overshoot which occurs during the transient phase. Hedgepeth
(1961) examined the dynamic aspect of stress concentration for the
two-dimensional fiber array as shown in Fig. 3.5. The analytical
model is also based upon the assumptions of the shear-lag analysis;
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that is, it is composed of tension-carrying elements connected by
purely shear-carrying material.

The formulation of boundary value problem for the evaluation of
dynamic stress concentration is outlined below. The fibers are
separated by a constant distance and are numbered from 7 = —« to
n = (Fig. 3.5). The coordinate along the fiber is denoted by x and
the displacement of the nth fiber at the location x and time ¢ is given
by u,(x, t). Similarly, the force per unit thickness in the nth fiber is
denoted by P,(x, t) and is given in terms of u, by

du,,
ox

P,=Ed (3.33)
where E and d are, respectively, the fiber Young’s modulus and
width. The equilibrium of an element of the nth filament then
requires

u, G u,

Ed e +Z(un+,—2un+un_1)=m e

(3.34)

Here, G and s denote matrix shear modulus and width, respec-
tively; m is the mass per unit area of the nth filament.
In general, for b broken filaments, let 1=n <) denote the

broken filaments. The boundary conditions are:
P,(0,)=0 (1=n=b)

(3.35)

u,(0,6)=0 (n=0 orn=b+1)

For large x, of course, the force in each filament approaches the
uniform applied force per unit thickness, P,. Thus

P,(+, t)=P, (3.36)

For the time-dependent problem, the following initial conditions are
required:

P,(x,0)=P,
du, (3.37)
0)=0
a5t (x, 0)

Using a Laplace transform of the time-dependent differential
equation and boundary conditions, the resulting equations are
similar in form to those of the static problem discussed in Section
3.3.1. The variation of stress concentration factor with time is shown
in Fig. 3.9 for one, two and three broken fibers. As can be seen
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from Fig. 3.9, the stress concentration factor, K;, varies with the
dimensionless time ¢ (=t/V(md/G)), and approaches the steady-
state value. In all cases, the first peak is the largest one and the
value of the stress at this peak determines the dynamic
overshoot.

Hedgepeth (1961) defines the dynamic-response factor as the
ratio between the maximum stress and the static stress. Values for
one, two and three broken fibers are, respectively, 1.15, 1.19 and
1.20. It can be shown that the dynamic-response factor approaches
1.27 as the number of broken fibers tends to infinity. Further
discussions of dynamic stress concentration factors are given in
Section 3.4.9.

Following the approach of Hedgepeth (1961), Ji, Liu and Chou
(1985) have investigated the variation of dynamic stress concentra-
tion along the length of a fiber next to a broken fiber. Define the
dimensionless parameter in fiber axial location as

X

= (3.38)
V()

The asymptotic expressions of the stress concentration factor

Fig. 3.9. The variation of dynamic stress concentration factor K with
dimensionless time ¢ for b =1, 2 and 3 (After Hedgepeth 1961.)
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Ki(E, ©) for the fiber s =1 at x =0 due to the fracture of the fiber
n=b =1 (see Fig. 3.5) has been obtained. The results are depicted
in Fig. 3.10, and the following observations can be made: (a) the
fiber axial stress is always tensile at £ =0. For £+#0, the initial
stress induced by fiber fracture is compressive, and the magnitude
of this initial compressive stress increases with §; (b) the dynamic
stress concentration factor, which is defined by the maximum initial
tensile stress, decreases as & increases, i.e. away from the plane of
fiber fracture; (c) the dynamic stress concentration factor is appreci-
able (say, Ki (& 7)>1.1) within the range of 0<Z=1. When
£>10, the dynamic stress concentration factor results for &<1
approach the static stress concentration values. The change of stress
concentration factor with the location on a fiber needs to be taken
into account when there is a scattering in fiber strength and
variation of fiber strength with fiber length. The results of Ji, Liu
and Chou indicate that the variation of stress concentration is
significant for £ <1, namely x is of the order of fiber diameter times

Fig. 3.10. Dynamic stress concentration factor K| with dimensionless time
ffor 0=&=1. (After Ji, Liu and Chou 1985.)
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V(E/G). For &=1.0-2.0, the dynamic response diminishes with
increasing f value, and the static stress concentration factor ap-
proaches 1.0; there is virtually no static stress concentration. On the
other hand, dynamic response in fiber stress concentration exists at
small 7 even for & =2; this factor needs to be taken into account in
the statistical composite strength models.

The variation of stress concentration along the length of a fiber
has implications on the dynamic failure characteristics of fiber
composites. For instance, in the experimental observation of Ji
(1982), carbon composite specimens often fracture at locations near
specimen end-tabs. The reflection and hence magnification of the
stress waves at specimen ends could cause fiber fractures at
locations away from the plane of the existing fiber breakages.

34 Statistical tensile strength theories

3.4.1 Preliminary

Statistics is concerned with scientific methods for collecting
and analyzing data, as well as drawing valid conclusions and making
reasonable decisions on the basis of such analysis. Spiegel (1961)
and Kirkpatrick (1974) provide introductions to the basics of
statistics. Statistical treatment of composite strength has emerged as
an important analytical tool for the obvious reason that the
strengths of brittle fibers and yarns are statistical in nature, and not
deterministic such as in metals. A concise outline of the fundamen-
tals in statistics based upon Spiegel (1961) is given below.

In collecting data concerning characteristics of a group of objects,
it is often impractical to observe the entire group or population if it
is large. A small part of the group examined is known as a sample.
Valid conclusions can often be inferred from analysis of the sample.
Because such inference cannot be absolutely certain, the language
of probability is often used in stating conclusions.

When summarizing large masses of raw data, it is often useful to
distribute the data into classes or categories. The number of
individuals belonging to each class is called the class frequency.
Figure 3.11 gives a graphical representation of the frequency
distribution of the measured strength of carbon fibers (M. G. Bader
and B. Gul-Mohammed, private communication, 1990; see also
Dhingra 1980). The relative frequency of a class is the frequency of
the class divided by the total frequency of all classes and is generally
expressed as a percentage. A histogram can be approximated by a
continuous frequency distribution curve as shown schematically in
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Fig. 3.12. Also shown in Fig. 3.12 is the curmulative frequency,
which, for a particular class or strength level, is the total frequency
of all classes observed at equal to and less than this particular class.
Cumulative frequency can also be presented on a relative or
percentage basis.

Several types of averages can be defined for a given frequency
distribution. The most commonly used ones may include the
arithmetic mean, geometric mean, quadratic mean (root mean
square), median and mode. The degree to which numerical data
tend to spread about an average value is called the wvariation or
dispersion of the data. The standard deviation is often used to
measure dispersion, and is defined as the root mean square of the

Fig. 3.11. Distributions of carbon fiber tensile strength in air at gauge-
lengths of 5, 12, 30 and 75 mm. (After Bader and Gul-Mohammed 1990.)
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deviations from the mean. Furthermore, the variance is defined as
the square of the standard deviation, and the coefficient of variation
is the ratio of the standard deviation to the mean. The coefficient of
variation is independent of units used and it fails to be useful when
the mean is close to zero.

The probability of occurrence of an event e is denoted by

Pr=Ple} (3.39)
The probability of non-occurrence of the event is denoted by
1—Pr=P{note}=1-P{e} (3.40)

Some basic relations of probabilities of events are summarized
below. Consider two events e, and e,. The probability that e, occurs
given that e; has occurred is the conditional probability of e,
relative to e,; it is denoted by P{e,|e;}. If e, and e, are
independent events and hence the occurrence or non-occurrence of
e, is not affected by e, then

P{e, l e} = P{e,} (3.41)

Otherwise, they are dependent events. The probability that both e,
and e, occur is denoted by

Pleie;} = P{e,} Ple; | €} (3.42)
Fig. 3.12. Relative frequency and cumulative frequency vs. fiber tensile
strength.
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For independent events, the above equation is simplified to
Ple.e,} = P{e,} P{es} (3.43)

In the case of three events e, e, and e;, Eq. (3.42) is modified to
become

P{eieses} = P{e} P{e, | e} P{e; | eie} (3.44)

If e; and e, are mutually exclusive events, namely the occurrence of
one excludes the occurrence of the other, Eq. (3.42) becomes

P{ee,} =0 (3.45)
Finally, the event that either e, or e, or both occur is given by

P{e,+e;} =Ple} + Ple,} — Plejey} (3.46)
For the special case of n mutually exclusive events e, e,, .. ., ¢e,,

the probability of occurrence of either e, or e, or - - - ¢, is then
Ple,+es+ - -+e,} =Ple}+Ple}+- -+ Ple,t (3.47)

The applications of these relations to the probabilities of various
events in composite failure are given in this chapter as well as in
Chapters 4 and 5.

The function representing the frequency distribution in Fig. 3.12
is also known as the probability density function. The knowledge of
the probability density function is fundamental to any analysis based
upon a statistical approach. One of the well-known probability
density functions is the normal distribution given by

p(x) =S\/(#2n)exp<—% (fg—f>2> s>0 (3.48)

where ¥ and s are the mean and standard deviation, respectively. It
can be shown, for normal distribution, that 68.27% of the cases are
included between (¥ —s) and (x +s), and 99.73% of the cases are
between (¥ —3s) and (¥ +3s). Given a continuous probability
density function p(x) the cumulative distribution function is defined
by

P(x)=J p(x)dx (3.49)
Other commonly used distribution functions may include the

binomial distribution, Bernoulli distribution, and Poisson distribu-
tion. However, the Weibull distribution (Weibull 1939a&b, 1951) is
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probably best known in composite strength theories. Weibull
proposed a cumulative distribution function in the general form of

0 X=x,

1— exp(— G- x) x“)m>

Xo

P(x)= x>, (3.50)

where m is a shape parameter and x, is a scale parameter. The
function (x —x,)"/x, has the characteristics of being positive,
non-decreasing and vanishing at constant value of x,, which is not
necessarily equal to zero.

3.4.2  Strength of individual fibers

Coleman (1958) examined the strength of long fibers from a
common source (say, from the same spool) for the case that their
tensile strengths are independent of the rate of loading. To obtain a
form for the cumulative strength distribution function P(oy),
Coleman observed that (a) when a fiber is tested it breaks at its
weakest cross-section, (b) the strength of a fiber must be positive
regardless of the fiber length, and (c) P(o;) must be a monotonically
increasing function of ;. Coleman postulated that a fiber may be
regarded as composed of a set of N non-interacting unit lengths (or
links). It is further assumed that all the links in a fiber have the
same cumulative strength distribution function P(oy).

The probability that a link has a strength greater than o; is
1— P(o;), and the probability that all links do not fail at o; is
[1 - P(o9)]" (Eq. (3.43)). It follows then the probability that at least
one link breaks at o; is

P(o)=1—[1—P(o)]" (3.51)

P{(0;) can be regarded as the cumulative distribution function of the
strength of fibers.

Coleman has shown that P(o;) has the form of a Weibull
distribution. For long fibers (N— =), Eq. (3.51) gives the cumula-
tive probability of failure

or\P
P(oy)=1- exp[—L(0—> ] (3.52)
P oy) is the probability of failure of a fiber at a stress level equal
to or less than o;. Here, L is the length ratio with respect to a
reference length, o, is the scale parameter for unit fiber length ratio
(i.e. L=1), and B is the shape parameter. Equation (3.52) implies
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a probability density function of

B
pi(op) = Lo, PBof ™! exp[—L(-g—f) ] (3.53)
Following Coleman, the mean fiber strength, &;, and standard
deviation, s, are given by

1
O;= aoL‘”BI‘<1 +B) (3.54a)

s=a [+ 2) - re(1+ )] 3.54)

where I' denotes the gamma function. An important feature of Eq.
(3.54a) is that the fiber strength depends upon the fiber length. The
coefficient of variation, which is a function of § only, is

S_ fﬁiﬁéz_l (3.55)
ot I‘2<1 + %) '

Over the range of practical interest, B is approximately equal to
1.2/(coefficient of variation). Thus, B is an inverse measure of the
dispersion of material strength. For values of B between 20 and 2,
the coefficient of variation can be expressed approximately as
B~%%. Values of B between 2 and 4 correspond to brittle fibers,
whereas a value of 20 is appropriate for a ductile metal. § is about 4
for carbon fibers, between 2.7 and 5.8 for boron fibers and about
11 for glass fibers. The factor o,L™ " in Eqs. (3.54) is often
referred to as a characteristic strength level of the fibers (Kelly
1973, Rosen 1964).

Manders and Chou (1983a) have shown that the scale and shape
parameters of the Weibull distribution function for fiber strength
can be estimated from experimental measurements in a number of
ways. First, by taking logarithms of Eq. (3.54a), it is seen that a
graph of In(&;) against In(L) is linear and has gradient —1/8. The
shape parameter can be obtained in this way by testing single fibers
of a range of gauge-lengths. The second procedure is to plot the
cumulative distribution on appropriate logarithmic axes as follows.
The cumulative probability of survival is simply

P=1-P, (3.56)
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and Eq. (3.52) can be rewritten after taking logarithms as
o:\P
In(P) = ~L<o—> (3.57)

Taking logarithms a second time with a change of sign
In{(—In(P,)) =In(L) + B In(oy) — B In(o,) (3.58)

shows that a graph of In(—In(P)) against In(o;) is linear with
gradient § (at fixed gauge-length).

The procedures outlined above rely on testing many separate
fibers. If a single fiber could be uniformly stressed along its length it
would fracture into a series of unequal fragments of which the
average length would decrease with higher applied stress. The
distribution of lengths between fractures at any given stress should
be exponential following Eq. (3.57), and plotting In(P,) against L
should give a straight line passing through the origin with gradient
—(0oi/0,)P. Taking logarithms with a change of sign gives

In(—gradient) = B In(o;) — B In(o,) (3.59)

so that a graph of In(—gradient) against In(o;) is linear with gradient

B.

3.4.3  Strength of fiber bundles

Having examined the strength of single fibers, the strength
theory of fiber bundles can be developed (see Daniels 1945, Epstein
1948, Coleman 1958, Kelly 1973, Phoenix 1974). Following the
treatment of Coleman (1958), a bundle composed of a very large
number, M, of fibers of equal length is considered. The fibers are
further assumed to have the same cross-sectional area and the same
shape of stress—strain curves, but differ in their values of the
elongation at break. It can be shown that the probability density
function of bundle tensile strength o, (breaking load for the
bundle/total fiber cross-sectional area) tends for large M toward a
normal distribution (Eq. 3.48)

—(ow — ‘_7b)2:I (3.60)

1
CO spV(27) ' exp[ 25t

with a mean bundle strength

Oy = Om[1 — P(O¢m)] (3.61)
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and standard deviation
Sp = Ufm\/{Pf(Ufm)[l - Pf(afm)]}M_l/z (3-62)

Here, P(oy,) is the cumulative fiber strength distribution function
and oy, is the value of fiber stress o; which gives oy[1 — P(oy)] its
maximum value, namely

d
do, {od1 - P09} o=0,, =0 (3.63)

Equation (3.63) implies that the maximum fiber stress oy, is found
from the condition that at failure the load borne by the bundle is a
maximum.

Assuming P(o;) follows the Weibull distribution of Eq. (3.52) for
fiber length L, Eqs. (3.61) and (3.63) give, respectively,

Om = Oo(LB) P (3.64)
and
5, = 0,(LBe)" VP (3.65)

where e =2.71828 - - - . Equation (3.65) implies that the proportion
of surviving fibers is exp(—1/#). The strength of loose bundles is
lower than the mean strength of single fibers of the same length by
the ratio of Eq. (3.65) to Eq. (3.54a), which is termed the ‘Coleman
factor’

%Z—’: [ﬁ“ﬁ exp(B7Y) r<1 +%)]_1 (3.66)

It is noticed that when there is no dispersion in the strength of the
component fibers of a bundle &, = &;. As the coefficient of variation
of the fibers increases above zero, however, the bundle strength
efficiency decreases monotonically and approaches zero in the limit
of infinite dispersion. &,/6;= 70% for the coefficient of variation
about 17%.

The ratio given in Eq. (3.66) is independent of the length of the
fibers so that the strength of loose bundles decreases with length in
the same way as the mean strength of single fibers. The Weibull
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parameters can therefore be obtained by plotting In(strength of
loose bundle) against In(length) as described above for single fibers.

The above analysis is concerned with single bundles, whereas
some situations are better modeled as a chain-of-bundles, such as a
moderately twisted yarn where the link length is a frictional load
transfer length among fibers. A review of this problem is given by
Smith and Phoenix (1981).

3.4.4  Correlations between single fiber and fiber bundle strengths

Equation (3.54a) indicates that the Weibull shape para-
meter of single fiber strength can be determined from the measure-
ment of strength at several fiber gauge-lengths. There are short-
comings in such measurements. First, it is rather tedious to extract
individual fibers from a bundle and to perform numerous tests on
fibers with very small diameters. Second, the extraction of fibers
from a bundle inevitably has ‘selected’ the stronger ones, since the
weaker fibers are prone to damage and fracture in the process.
Third, experiments based upon laser diffraction fringes have shown
that the measured fiber diameters vary along the fiber length due to
fiber twist and the non-circular fiber cross-section.

In this section, following the approach of Chi, Chou and Shen
(1984), a theoretical expression of the load-strain relationship for a
bundle of fibers under tension is derived first. Then, two methods
for determining the two parameters of Weibull distribution for
single fiber strength are developed. This is done by analyzing the
characteristics of the load—strain curves. The open circles in Fig.
3.13 show the experimental results of a displacement-controlled
test for a loose bundle of carbon fibers.

3.4.4.1 Analysis

The correlation between single fiber and fiber bundle
strengths is established based upon the following assumptions: (1)
the single fiber strength under tension obeys the cumulative Weibull
distribution function, P{o;), of Eq. (3.52); (2) the relationship
between stress, oy, and strain & for a single fiber obeys Hooke’s law
up to fracture:

0= Efgf (367)

where E; is the fiber Young’s modulus; (3) the applied load is
distributed uniformly among the surviving fibers at any instant
during a bundle tensile test.
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To establish the tensile load—strain (F-¢) relation, Eq. (3.52) is
rewritten in terms of fiber strain:

P(e)=1- exp[—L@)ﬁ] (3.68)

o

Here, ¢, is the scale parameter for unit fiber length ratio (i.e. L =1)
and is given by

&, = 0,/ E; (3.69)

Assume iso-strain conditions for the fibers in a bundle. At an
applied strain, &, the number of surviving fibers in a bundle, which
consists of N, fibers, is

N = N,[1 - P(&)] = N, exp[—L(e/&,)"] (3.70)
N can be related to the applied tensile force, F, on the bundle by
F = 0,AN = AE&:N, exp[— L(¢¢/ €,)") (3.71)

Fig. 3.13. Comparison of a theoretical F-g; curve (solid line) with
experimental data (open circles) for carbon fiber, E;= 225 GPa, d;=7 um,
N, =1000, B =4.5 and ¢, = 0.026. (After Chi, Chou and Shen 1984.)
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Equation (3.71) is the relationship of F—-g; for a bundle of fibers
under tension, where A is the cross-sectional area of a single fiber.
If A, N,, L, E¢, & and B are known, the F—¢&; curve for a bundle of
fibers can be drawn. The solid line in Fig. 3.13 shows the result of
the theoretical prediction.

According to Eq. (3.71), the F—g; curve is continuous and
smooth. After reaching the point of maximum load, F,,,, the
tensile force on the bundle decreases gradually to zero. The slope of
the curve, S, at £,=0is

S,= AEN, (3.72)

and the tensile load defined by the tangent line of the F-g; curve at
g=01is

F* =AEfN0£f (373)

Based upon the F-g; relation, the survivability of single fibers in the
bundle can be determined from Eqs. (3.71) and (3.73)

F

= 1—-Ple) =P, (3.74)

Next, the strain corresponding to the maximum load on the F-g;
curve, &4, is obtained from dF/de; =0

1 \VB
Em= £o<—L—[§> (3.75)
Thus, the maximum load is
18
Fonae = ANoEfso(L—ﬁe) (3.76)

From Eqgs. (3.72), (3.75) and (3.76), the slope of the straight line
connecting the origin and the point (Fy.,, £4) in Fig. 3.13 is

1 1/8
S=F . /tn= S°<E) (3.77)
As a result,
So
B= 1/ln<‘;'“—) (3.78)

max

3.4.4.2 Single fiber strength distribution
Based upon the analysis of the fiber and bundle strength
relations, Chi, Chou and Shen (1984) proposed the following two
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methods for determining single fiber strength distribution (shape
parameter § and scale parameter ¢,) from measurements on fiber
bundles, and constructing the theoretical F—¢; curve.

Method (A)
The method is based upon Eqgs. (3.68) and (3.74) and the
experimental F—¢; curve. The procedure is outlined below:

(1) Calculate S, from Eq. (3.72) and the data of A, E; and N,
of the fiber bundle.

(2) Calculate F* from Eq. (3.73), F* = S,E;. Measure F from
the F-g; curve. Then determine from Eq. (3.74) the fiber
survivability as a function of strain, P(g;) = F/F*.

(3) The shape parameter, 8, can be obtained from the gradient
of the graph of In(—In(P,)) vs. In(g), based upon the
relation

In(=In(P)) = In(L) + BIn(g) = Bln(e,) (3.79a)

(4) The scale parameter, ¢,, is determined either from Eq.
(3.75) using the measured ¢, value, or from the value of
In(L) — B In(&,) measured from the graph of In(—In(P,)) vs.
In(ef).

Method (B)
In this method, F,.. and &, are known from experiments.
The calculation steps are:

(1) Determine S,, 8 and g, from Eqgs. (3.72), (3.78) and (3.75),

respectively.
(2) From Egs. (3.71) and (3.72), the F—g; relation can be
written as
g\?
F =S8, exp(—L(—) ) (3.79b)

o

3.4.5  Experimental measurements of Weibull shape parameter

It is understood that the shape parameter B gives a
measurement of the scattering of the strength data. On a p{ o) vs.
o; plot, the range of strength distribution is narrower for higher g
values. The discussions of Sections 3.4.2-3.4.4 for the estimation of
the Weibull shape parameter are summarized below (see Manders
and Chou 1983a; Chi, Chou and Shen 1984).
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Single fibers

(i) Variation of mean strength with length: The method
requires tests at different gauge-lengths. Fiber diameters
are measured to obtain true stress.

(ii)) Distribution of strength at fixed gauge-length: Diameters
are measured to obtain true stress. The method measures
both inherent variability, and also artificial scatter intro-
duced by experimental techniques.

(iii)) Distribution of lengths between multiple fractures of a
single fiber: Estimate is based on strain, not stress. The
method requires correction for non-uniformity of strain
near fractures.

Loose bundles

(iv) Variation of mean strength with length: The method
assumes identical fiber diameters and stiffness.

(v) Proportion of surviving fibers is obtained from the
load—strain curve. Estimate is based on strain not stress.
The method assumes fibers are identical.

(vi) Determination of the initial slope of the load/strain curve
and the strain corresponding to the maximum load on the
bundle.

Manders and Chou (1983a) have established the Weibull shape
parameter based upon the methods (i)—(v) by performing tests on
a single batch of PAN-based carbon fiber (Hercules AS-4, 12 000
filament unsized tow) while the loose bundle tests (iv) and (v) are
carried out with the E-glass fiber (St. Gobain, vetrotex type DCN56
filament, unsized tow). Chi and Chou (1983), and Chi, Chou, and
Shen (1984) have examined methods (i), (ii), (v) and (vi) using
Thornel-300 carbon fibers and bundles containing 1000 fibers.

3.4.5.1 Single fiber tests

In order to obtain the strengths of single filaments and their
distributions, it is necessary to measure the diameters and ultimate
tensile load of the filaments. For the measurement of filament
diameters, Chi and Chou (1983) used a helium—neon laser, and the
diameters were determined from the laser diffraction fringes (see
Lipson and Lipson 1981) The results indicate an average filament
diameter of 7.12 pm with the standard deviation of 0.2 ym.
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Fiber strength measurements are performed for fiber gauge-
lengths of 10, 30 and 60 mm, and the number of measurements are
80, 81 and 64, respectively. The results are presented on the
Weibull probability paper as shown in Fig. 3.14. Here o; denotes
fiber ultimate strength; P(o;) is the fiber cumulative probability of
failure at stresses equal to or less than o and In{—In[1 — P(o¢)]} is
a representation of failure probability. The variations of fiber failure
probability with strength can be approximated as linear with the
exceptions of the low strength range for 60 mm length fibers, and
the high strength range for 10 mm and 30 mm length fibers.

The Weibull shape parameter, 3, can be obtained by following
method (i), by plotting the mean fiber strength In(oy) vs. fiber
length In(L) (see Eq. (3.54a)) as shown in Fig. 3.15. A measure-
ment of the slope of the straight line gives the value of f=6.2. It is
worth noting that because of the high scatter in strengths a large
number of tests needs to be performed to determine with high
accuracy whether the Weibull distribution is an accurate description
of strength, and this is where the loose bundle approach is

Fig. 3.14. Strength distributions of single filaments on Weibull probability
paper. (After Chi and Chou 1983.)
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advantageous. If method (ii) is followed, then the slope is measured
from the linear portion of the data of Fig. 3.14 for In{In{1 — P(a))]}
vs. In(oy) (see Eq. (3.58)). The distributions of the three sets of data
are reasonably linear and parallel, and an average of the approxim-
ate gradients is taken to obtain the shape parameter of 5.3.
Method (iii) requires multiple fracture tests of a single fiber. In
the experiments of Manders and Chou (1983a), single carbon fibers
are bonded to the surface of a 2 mm thick filled PVC carrier sheet
using a film of polystyrene adhesive approximately 50 ym thick. The
fiber is strained to successively higher levels by bending the carrier
strip around mandrels of decreasing radii. The strain in the fiber is
virtually uniform because the ratio of the carrier thickness to fiber
diameter is ~200. The combination of adhesive and carrier is found
to be quite resistant to repeated straining, and facilitates visual
location of the fiber fractures. At each strain level the lengths
between fiber fractures are measured by travelling microscope and
are ranked and plotted as the cumulative distribution on the
logarithmic axes. According to Eq. (3.57), the distributions should
be linear and pass through the origin, but, while they are relatively
straight, they intersect the fracture spacing axis at some positive
intercept. The minimum crack spacing given by the intercept
represents the effective ‘unstressed’ length of fiber over which the

Fig. 3.15. Relationship between filament average strength and gauge-
length. (After Chi and Chou 1983.)
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load builds up. The logarithm of the gradient has been plotted
against the logarithm of strain and at low strains, the curve is
relatively linear with a gradient corresponding to 8 =6.4. At high
strain the curve becomes horizontal because the fiber debonds from
the adhesive film and no new fractures occur. Despite this short-
coming the technique is able to measure the shape parameter for
shorter fibers than the other techniques.

Henstenburg and Phoenix (1989) have considered the problem of
measuring the Weibull parameters for fiber strength using data from
a multiple fracture test of a single fiber. Using a Monte-Carlo
approach they arrived at a simple method which applies to fibers of
length equal to the mean fragmentation length.

3.4.5.2 Loose bundle tests

In the loose bundle tests of Manders and Chou (1983a),
based on method (iv), tows of different lengths are cemented into
grooved end-tabs while particular care is taken to ensure that none
of the fibers are slack. Manders and Chou obtained between five
and ten results for each gauge-length, and they are plotted in the
same way as for the single fiber tests in Fig. 3.16. The cross-sectional
area of the tow is calculated from the manufacturer’s value of its
density and weight per length. Because each failure of a loose
bundle involves the independent fracture of many fibers, there is
much less scatter than for the single fibers. According to Manders
and Chou, the mean strength ratios of loose bundles and single
carbon fibers of the same length range from 0.67 to 0.85 for fibers
with lengths between 10 and 200 mm, and this compares quite well
with the theoretical Coleman factor which ranges from 0.65 to 0.76
for fibers with B equal to 5 and 10, respectively (Coleman 1958). The
discrepancy may be due to the fact that the strengths are not
perfectly Weibull distributed, and that the optical technique for
measuring fiber diameter overestimates the cross-sectional area of
non-circular crenelated fibers. Also, fiber breaks may be pre-
existing in the bundle, becoming more noticeable at longer bundle
lengths.

It has been noticed that both single fibers and loose bundles show
an increase in strength variability at longer gauge-lengths. This
could be interpreted as the influence of a relatively small population
of severe and broadly distributed flaws. The majority of short
gauge-lengths would not contain one of these severe flaws and the
population would have little influence on the mean strength, but
longer fibers would be more likely to contain one or more such
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flaws and their mean strength would be significantly lowered. The
observation of similar behavior in glass fiber suggests that a ‘double’
Weibull distribution with two shape and scale parameters may be
more appropriate (Metcalfe and Schmitz 1964; Harlow and Phoenix
1981a & b). It is also noticed, in the case of loose bundles, that the
recoil and entanglement of failed fiber causes neighboring fibers to
fail, thereby weakening the bundle.

In the loose bundle tests of Chi, Chou and Shen (1984), the shape
parameter and scale parameter were determined based upon
methods (v) and (vi), which correspond to methods (A) and (B) of
Section 3.4.4.2. The relevant data are: N, = 1000, fiber diameter =
7 um, E;=255GPa and gauge-length =60 mm. The shape para-
meters obtained from methods (v) and (vi) are 4.6 and 4.5,
respectively. The scale parameter, ¢,, corresponding to a fiber of
unit length (1 mm in this case), is 0.026 for both methods. The
experimental data points indicating the load—strain (F—g;) relation-
ship are shown in Fig. 3.13. The consistency between the theory and
experiment is rather satisfactory in the range of bundle strain not
much greater than &,,.

Fig. 3.16. Variation of mean strength with length for loose bundles of
carbon and E-glass fibers. (After Manders and Chou 1983a.)
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3.4.6  Strength of unidirectional fiber composites

This section deals with statistical strength theories of
unidirectional fiber composites. Upon the fracture of a fiber, the
load onginally carried by the fiber needs to be transferred to its
neighboring fibers. A simple approximation of the load redistribu-
tion is to assume that the load is shared equally by all the unbroken
fibers. A more precise treatment takes into account the local
concentration of load on neighboring fibers. A Monte-Carlo simula-
tion is also presented to illustrate the statistical nature of composite
failure.

3.4.6.1 Equal load sharing

In general, the high-strength high-stiffness fibers used in
composites are brittle and their tensile strength should be charac-
terized statistically. Parratt (1960) notes that the tensile failure of
composites reinforced with brittle fibers occurs when the fibers have
been broken up into lengths so short that any increase in applied
load cannot be transmitted to the fibers because the limit of
interface or matrix shear has been reached. Rosen (1964), following
Gucer and Gurland (1962), considers fibers as having a statistical
distribution of flaws or imperfections that result in individual fiber
breaks at various stress levels. The fracture initiated in a fiber is
contained by the matrix material. Composite failure occurs when
the remaining unbroken fibers, at the weakest cross-section, are
unable to resist the applied load. Then composite failure results
from tensile fracture of the fibers. In Rosen’s failure model, the
composite is assumed to be strained uniformly and the load in a
broken fiber is distributed equally among the remaining unbroken
fibers in a cross-section. Harlow and Phoenix (1978a) have labelled
such a model as equal load sharing. Scop and Argon (1967) also
have dealt with the problem of equal load sharing in their treatment
of the strength of laminated composites.

Figure 3.17 depicts Rosen’s failure model. In the vicinity of an
internal fiber end in such a composite, the axial load carried by the
fiber is transmitted by shear through the matrix to adjacent fibers
(see Section 3.3.1). A portion of the fiber at each end is, therefore,
not fully effective in resisting the applied stress. At some distance
from an internal break, the fiber stress will reach a given fraction of
the undisturbed fiber stress. Rosen considers that the fiber length 9,
measured from the fiber end, over which the stress is less than a
given fraction (i.e. 90%) of the uniform stress that would exist in
infinite fibers, as ineffective. & is thus known as the ineffective
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length. The model composite in Fig. 3.17 is assumed to be
composed of a series of layers of height 6. The segment of a fiber
within a layer may be considered as a link in the chain that
constitutes the fiber. Each layer is then a bundle of such links and
the composite is a series of such bundles.

The treatment of a fiber as a chain of links is appropriate to the
hypothesis that fracture is a result of local imperfections in the
fibers. The links may be considered to have a statistical strength
distribution that is equivalent to the statistical flaw distribution
along the fibers. Rosen defines the link dimension by a shear-lag
analysis of the stress distribution in the vicinity of a fiber end (see
Section 3.3.1). The length of the composite specimen is designated
by L and the number of links is given by N = L/4é.

The relationship between fiber strength and the strength of links
has been briefly discussed in the formulation of Eq. (3.51).
Obviously, the probability density function p (o) for fiber links can
be characterized if the experimental data on fiber strength distribu-
tion p(o¢) are known. Suppose that the fibers are characterized by a
strength distribution of the Weibull type (Eq. (3.53)), the link
strength density function can be readily written as

pi(01) = 803 Bt exp[—é(%)ﬁ] (3.80)

o

Fig. 3.17. Chain-of-links model for a unidirectional fiber composite.
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For a bundle of links and a large number, M, of fibers, the
distribution of bundle strength p,(0,) and the mean bundle strength
0y, are given by Egs. (3.60) and (3.61), respectively.

The bundles may be treated as links in a chain, which now
represents the whole composite of Fig. 3.17. The weakest link
theorem can again be applied to define the failure of the composite.
For N bundles forming a chain (composite) the probability density
function p.(o.) for the average fiber stress at composite failure, o,
is given by

pc(oc) = Nph(ou)[l - Ph(oc)]N_l (381)
where

Roo= " pu(0) do (3.82)

The notations of p.(0.), ps(0s), p0;) and p,(a,) have been used to
denote the strength density functions of the fibers at the level of
composite, bundle, fiber and link, respectively. Thus, it is under-
stood that o., 0,, o; and o, all refer to stresses in the reinforce-
ments; the contribution of matrix to composite strength is not
considered.

The most probable composite failure stress o is obtained by setting

d
do.

[pc(oc)]aczac*: 0 (383)

Following Rosen (1964), the substitution of Eq. (3.81) into Eq.
(3.83) yields

loglog N +log 4n
2V(2 - log N)

It can be seen from Eq. (3.62) that, for composite dimensions large
relative to fiber cross-section (M >>1), s,—0 and Eq. (3.84) is
reduced to the mean bundle strength expression of Eq. (3.65)

ol = 0,(6fe)™"" (3.85)

When the fiber volume content is considered, the tensile strength of
the composite is given by V; a¥. In Eq. (3.85), the ineffective length
6 can be determined from the stress analyses discussed in Section
3.3.1. It is obvious that the composite strength is enhanced due to a
reduction in fiber ineffective length and fiber strength dispersion.
The statistical nature of fiber fracture and the resulting weakest link
mode of failure have been demonstrated experimentally in a

g

* =, — sy V(2 - log N) + sy, (3.84)
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glass/epoxy system by Rosen (1964). This experiment also points
out the very significant phenomenon in brittle fiber composites:
fiber breakages may exist in a composite of continuous fibers at
stress levels well below the maximum load.

If the composite strength (Eq. (3.85)) is compared with the mean
strength of the tested fibers of length L (Eq. (3.54)), some
interesting conclusions can be drawn (Rosen 1970). Figure 3.18
shows that for reference fibers of ineffective length 6, the strength
of the composite is less than the mean fiber strength. When the fiber
length is greater than 6, the composite strength is larger than the
mean fiber strength of a fiber bundle of length L. >78. Also for a
fiber strength coefficient of variation (s/o) less than 15% (or the
shape parameter 8 > 8), the composite strength is close to the mean
fiber strength, as shown in Fig. 3.18.

3.4.6.2 Idealized local load sharing

When a fiber breaks in a composite there is inevitably a
redistribution of load in the vicinity of the fiber breakage. Thus,
local load sharing takes place (see Zweben 1968; Scop and Argon
1969; Zweben and Rosen 1970; Fukuda and Kawata 1976b; Harlow
and Phoenix, 1978a&b; Harlow 1979; Phoenix 1979). The localized
nature of stress redistribution around a random fiber break has been
discussed in Section 3.3. Zweben (1968) first considered the

Fig. 3.18. Composite strength/mean fiber strength vs. 8 at various L/&

values.
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micromechanical stress transfer process and the probabilistic aspects
of the generation of clusters of breaks to form catastrophic breaks.
Fukuda and Kawata (1976b) generalized the original concept of
Zweben and derived the cumulative strength distribution for the
composite.

In the following, an analysis is presented under the Weibull
distribution for fiber strength, and somewhat simplified assumptions
on local fiber load sharing but with the advantage that various
quantities can be worked out either exactly or asymptotically. The
result is that insight can be gained on the approximate Weibull
behavior for composite strength where the Weibull parameters for
the composite will be connected to various fiber and matrix
properties, and in particular to the composite volume. The size
effect law for the composite will also be discussed. Most of the
features have been experimentally observed but have been difficult
to explain. The ideas for this section are taken from Harlow and
Phoenix (1978a&b, 1979, 1981a&b); Smith (1980, 1982); Phoenix
and Smith (1983); Smith ez al. (1983); and Phoenix, Schwartz and
Robinson (1988).

The model considered is the planar, chain-of-bundles model
of Fig. 3.17 where M is the number of fibers and N is the number of
bundles each with fiber elements of length &, which might better be
termed ‘the effective load transfer length’. Following the notation of
Phoenix, the cumulative distribution function for the failure of a
single fiber element of length O is taken as the Weibull distribution
and expressed as

F(o)=1—exp{—(0/05)’} o0=0 (3.86)

where o is the fiber stress, and 8 and o, are the Weibull shape and
scale parameters, respectively. (At this point it should be men-
tioned that & should take into account certain statistical aspects of
fiber strength which modify its magnitude somewhat as described by
Harlow and Phoenix (1979), and Phoenix, Schwartz and Robinson
(1988). Roughly, & varies inversely as the shape parameter f.)
According to principles discussed earlier, the strength of a fiber
element of length & can be expressed in terms of those for a longer
reference length L (used, say, for tension tests) according to

6)—1/ﬁ

05 = 0L<z (3.87)

where o, is the Weibull scale parameter for fiber strength at the
reference length. Often o, will be about double ¢, in magnitude.



120 Strength of continuous-fiber composites

The local load-sharing rule is ‘idealized’ as follows: In a bundle, if
the stress is nominally o (ignoring the matrix), a surviving fiber
element carries load K,o, where

K.=1+r/2, r=0,1,23,... (3.88)

and r is the number of consecutive failed elements immediately
adjacent to the surviving element (counting on both sides). At the
same time a failed fiber element carries no stress over length 6.
Essentially the load of a failed fiber is shifted equally onto its two
nearest surviving neighbors, one on each side. This rule is more
severe than the true situation where the stress redistribution is
somewhat more diffuse, as described say by Hedgepeth (1961), but
it captures the essential features and has the advantages of
simplicity and being fully described for all configurations.

Before proceeding with an approximate analysis of this model, it
is useful to review an extensive numerical analysis performed by
Harlow and Phoenix (1978a&b), where the basic insight into its
behavior was uncovered. To eliminate boundary effects, they
considered circular bundles (composite tubes), and studied the
behavior of the cumulative strength distribution as the bundle size
M increases. They defined G, (o) as the cumulative distribution
function for failure of a bundle with M fibers under the stress o, and
worked out exact formulas for Gy(o) for M up to 5 by considering
all configurations of failed and surviving fibers and all ways that
failure could proceed through these configurations and then sum-
ming all probabilities for these ways. For example, for M = 2,

G,(0) = F(0)* + 2F (0)[F(20) — F(0)]
=2F(0)F(20) — F(o)’ (3.89)
where in the intermediate step the first term represents direct
failure under the applied stress of both fiber elements, and the
second term represents the two ways one element can fail under the
direct stress and the other under the overstress, which is naturally

taken as 20 in this situation (rather than 30/2). For M =4, they
obtained by a tedious calculation

Gy(0) = 16F(40)F(20)F(30/2)F(0) — 4F (40)F(20)F(0)*
— 4F(40)F(30/2)’F(0) + 4F(40)F(0)*
— 8F(26)*F(36/2)F(0)
+2F(20)*F(0)* — 8F(40)F(30/2)F(0)*
+ 4F(30/2)F(a)’ — F(0)’ (3.90)



Statistical tensile strength theories 121

Generally no simple pattern emerged except that each term
involved a product of M quantities in F. The evaluation procedure
was automated on a computer, but results were only obtained at
that time for M up to 9 because of the tremendous increase in
computational complexity resulting from the increasing number of
ways the bundle can fail as the bundle size increases. (Even with
present supercomputer capability the limit is still about M = 14.) At
the same time we desire results for M orders of magnitude larger.

Suspecting an eventual weakest-link type relationship, Harlow
and Phoenix (1978b) considered plotting the ‘renormalization’

Wi (0)=1—-[1— Gu(a)]"™ (3.91)
since in reverse this yields the weakest-link relation
Gu(0) =1—[1-Wy(a)]" (3.92)

They discovered an extremely rapid numerical convergence
Wy (0)— W(0o) as M — (3.93)

where W(o) was called the characteristic distribution function for
failure. This convergence is shown in Fig. 3.19 for the Weibull
shape parameter f§=35, which is typical of brittle fibers. The
coordinates are Weibull coordinates (In{—In(1 — W)} vs. In(o/0;))
wherein a Weibull distribution always plots as a straight line. For
each value of o the convergence is abrupt at some value of M,
which increases slowly with decreasing values of o. Also the
convergence becomes complete far into the lower tail of W (o)
(probabilities below 107'%) for M =9. In an extremely complex
calculation, Harlow and Phoenix (1981a&b) uncovered the analyti-
cal character of W(o) in terms of the largest eigenvalue of a
Markov recursion matrix. It suffices to say here that W(o) has
no simple analytical form, though shortly we will develop an
approximation which will give us considerable insight.

The importance of W (o) is that, from Eq. (3.92), the distribution
function for bundle failure can be given extremely accurately by the
approximation

Gr(0)=~1—[1— W(o)” (3.94)

and this works for M many orders of magnitude larger than the
values used in the calculation of W(o) on the computer. Perhaps
one should note that any boundary effects, which may come into
play for small bundles, are being ignored.
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Because the composite is seen as a weakest-link arrangement of
its N bundles (Fig. 3.17), and the bundles are treated as statistically
independent, the cumulative distribution function for the failure of
the composite, denoted as Hy, A(0), is given as
Combining Eqs. (3.94) and (3.95) and writing V = MN yields the
accurate approximation

which surprisingly, perhaps, is a result which is symmetric in M and
Fig. 3.19. Convergence of the renormalized distribution functions W,,(o)

to the characteristic distribution function W(o) as M increases. (After
Harlow and Phoenix 1978b.)
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N. Note that by the binomial expansion Hy »(0) = VW(a). Thus if
V is large, say 10° elements, it is necessary to know W (o) where its
value is much less than 107°. As mentioned, this is provided for in
Fig. 3.19. Note that despite the fact that Eq. (3.96) is a ‘weakest-
link’ relation, in terms of V = MN elements, there is no identifiable
and independent material element to which one can attach W(o).
At best, W (o) characterizes the effects of local failure events which
are actually statistically dependent.

Figure 3.20 displays W (o) for values of 8 from 3 to 50. Now Fig.
3.20 can be used to construct a figure for Hy (o) upon noting that
In{—In(1 — H)} =In{—In(1— W)} +1In V, which on Weibull prob-

Fig. 3.20. Characteristic distribution function W(o) for various values of
the Weibull shape parameter § for fiber strength. (After Harlow and
Phoenix 1978b.)
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ability paper amounts to a simple translation of each curve upward
(or the left-hand scale downward) the amount In(V) on the
right-hand scale provided for this purpose. Figure 3.21 shows the
result of such a translation for V = 10° elements, which amounts to
a display of the original region on Fig. 3.20 below 10~°. This yields
plots of the cumulative distribution function of composite failure,
Hys n(0), for various B for a relatively small composite specimen.
Several features of Fig. 3.21 warrant discussion. First, all the lines
are approximately straight over a very wide probability range,
which suggests that the strength of a composite approximately (but
not exactly) follows a Weibull distribution. In fact, an empirical plot
to cover the probability range shown would require testing about

Fig. 3.21 Cumulative distribution function H,, (o) for composite strength
for volume MN = 10° and various values of the fiber shape parameter .
(After Harlow and Phoenix 1978b.)
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20000 specimens, and using standard statistical techniques it is
probable that a Monte-Carlo simulation would not lead to rejection
of the hypothesis that the Weibull distribution is actually the correct
distribution! Second, the lines show only a modest change in slope,
by a factor of less than three, as the original Weibull shape
parameter for the fiber 8 decreases from 50 to 3, which is a factor of
more than ten. Since the slope is directly proportional to the
Weibull shape parameter, this indicates that the effective Weibull
shape parameter for the composite decreases modestly, from about
50 to 20 as that for the fiber decreases drastically, from about 50 to
3. On the other hand, the horizontal location of the plots is quite
strongly influenced by the value of B, which suggests that an
increase in variability in fiber strength substantially decreases
composite strength. It is seen, for example, that the median
strength drops from about 0.7505, to about 0.205 as 8 drops from
50 to 3. Note also that the median strength of the composite is much
less than that for a fiber element of length &, being only about 3 for
the typical case f =7. On the other hand, standard tension tests on
fibers are performed at gauge-lengths L about two orders of
magnitude larger than 6, and by Eq. (3.87) their strengths are
about one-half of o;. Fortuitously then, the strength of the
composite will be little different from the strength of the fiber from
typical laboratory tension tests as is often observed. Finally, the
method of constructing Fig. 3.21 indicates that there is a mild size
effect in composite strength and a mild shift in the effective Weibull
shape parameter for the composite. Had a larger volume V = 10°
been chosen rather than 10°, the curved nature of the graphs on Fig.
3.20, from which Fig. 3.21 was derived, would produce a slightly
lower strength and a slightly higher effective shape parameter for
the composite depending on .

Attention is now turned toward a simple but approximate
theoretical explanation based on some key ideas motivated by the
above numerical analysis and results. First, the range for the
composite failure stress lies << g5, as we saw from Fig. 3.21. (Note
that both the median and the stress at 0.99 probability of failure lie
well below g, for typical values of 8 below 15.) Second, the ‘initial’
failures, that is fiber elements which fail directly under the applied
stress o, are viewed as ‘seeds’ for the growth of failure clusters,
which are lateral strings of adjacent fiber breaks contained within
bundles. Third, the number of such seeds is easily seen to follow the
binomial distribution with parameters MN and F(o) (the number
depends, of course, on ¢) with the mean number being MNF(o).
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Fourth, cluster growth from a seed is viewed for calculation
purposes in terms of the sequential failure of adjacent fibers in a
bundle, with growth in either direction to form a string. Fifth,
instability occurs when a string of k breaks occurs such that
F(K,_,0) <3}, say, but F(K,0) = 1; thus, subsequent fiber failures
become almost certain leading to catastrophic growth of a trans-
verse ‘crack’ and failure of the composite. This value of k, which
depends on the stress level o, is called the critical crack size, and in
view of Eq. (3.88) is better defined as the k value for which

Kk_10S05<Kk0 (397)

Sixth, the following analysis is based on the Weibull shape
parameter § for fiber strength being ‘large’, but fortunately the
results work quite well for 8 down to about 4.

Proceeding with the analysis, it is first important to realize that
the initial breaks or ‘seeds’ are actually quite far apart. For
example, from Fig. 3.21 we recall that the median composite
strength was about 0.2705 for =35, and F(0.270;5) = 0.0014. This
means that the average spacing of seeds along a fiber is the inverse
of this value times &, or about 7006, and laterally in a bundle is
about 700 fiber diameters. Moreover this spacing grows larger as the
composite volume increases due to the size effect. To see why, we
note that the size effect means that the median strength will
decrease as the volume increases. As an example, repeat the
process used to develop Fig. 3.21 from Fig. 3.20 but for a volume
MN = 10° instead of 10°. One can see that the median strength will
now be only 0.2205 instead of 0.2705 and since F(0.220;5)=
0.00052, the average spacing is almost 20008. Note that although
the seeds are now farther apart (fewer per unit volume), there are
more of them in the composite because the volume grew by a factor
of 10°. (It may come as a surprise to the reader that a small
composite will show lots of single breaks per unit volume just
before failure, but a large composite will show relatively few!)
Thus, as a first approximation we can ignore the possible interac-
tions of two clusters growing near each other since the critical k will
turn out to be quite small.

The probability of a given fiber element becoming a seed and its
immediate neighbors developing further into a failure string of size
k is approximately

P{seed and string} =~ F(0)2F (K ,0)2F (K,0) - - - 2F(K;_,0) (3.98)

where the factors 2’ appear because, at each step of the growth
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beyond the seed, there are two choices for the next failure (one on
each side) which approximately doubles the probability for that
step. Thus, such a string can stretch out variously to the left, or to
the right, or be centered relative to the original break. Clearly Eq.
(3.98) ignores considerable detail about the events of cluster
growth, as discussed more fully in Phoenix and Smith (1983), but it
works mainly because F(K;0)> F(K;_;0) when B is large. (The
nature of the simplification can be appreciated upon studying Eqs.
(3.89) and (3.90) for small bundles where in each case the first term
will dominate all the others when B is large.) Using a Taylor series
expansion in (o/05)” it can be seen that

F(0)=(0a/0,)* (3.99)

This is especially true when o << gs, but it turns out that for present
purposes we can take this as a good approximation for 0 < ¢ = gj,
particularly in Eq. (3.98). Substituting Eq. (3.99) in Eq. (3.98), we
have

P{seed and string} =~2*"'(0/0,)(K,0/05)F - - - (Ky_,0/05)"
= 2 WK\ Ky - - Ko y)(0/0s)®  (3.100)

This factorization and collapse of terms, to yield an exponent of kf8
instead of 3, is an important feature which follows from the use of
the Weibull distribution. It is the point at which the effect of
micromechanical ‘redundancy’ in the composite emerges as a
reduction in variability.

In the composite there are MN potential seed fibers, each of
which may produce a string, and the composite will fail if at least
one such event occurs. Treating the MN seed and string events as
statistically independent (which works because of the wide spacing
mentioned above), we actually have a weakest-link situation so that
the probability of composite failure is

Hy nv(0)=1—[1— P{seed and string}|""
~1-[1=-2"YK\K; - Ki_1)P(0]05)P1"  (3.101)
From the calculus, (1 —ac”)*— exp{—nao®} as n— = so that
Hy M0)=1—exp{—MN2*"Y (KK, - - - K,_)’(0/05)*"}
(3.102)

which is of the Weibull form, though k depends on the stress ¢
following Eq. (3.97).
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Before discussing several important features of Eq. (3.102), it is
useful to develop a connection to the characteristic distribution
function W(o). Fork =1, 2, 3,..., let

F¥l(0) =1 — exp{—di(0/05)*F} (3.103)
where
dk = 2k_1(K1K2' b Kk_l)ﬁ (3104)

Equation (3.103) gives us a family of Weibull distributions with
increasing shape parameter kf in k. Furthermore, following Eq.
(3.97) we can partition the important stress range 0 < 0 < g, into
the segments

05/Kk<05 oé/Kk—l k=1, 2, 3, (3105)

and for each k restrict the corresponding distribution to its
appropriate stress range. Then Eq. (3.102) becomes

Hy n(0) ~1—[1 — F¥(g)]"N (3.106)

where k and o are chosen to follow Eq. (3.105). An approximation
to W(o) then follows from a comparison of Eqgs. (3.96) and (3.106)
yielding

W(o) = F*l(0) (3.107)

where again k and o satisfy Eq. (3.105).

Figure 3.22 shows a plot of W(o) for B =35 together with the
family of Weibull distributions F*}(o) for k=1,2,3, ..., where
each is extended over the whole stress range 0 < 0 < g5. For each
stress level o one of these Weibull distributions comes very close to
W(o), and indeed it is normally the one whose k value satisfies Eq.
(3.105). Unfortunately, Eq. (3.107) has a jagged appearance when
plotted because of small ‘jumps’ occurring as k changes at the
transition stresses of the boundaries of Eq. (3.105). A graphically
pleasant ‘repair’ with a smooth appearance is to work with the inner
‘envelope’ of the family of Weibull distributions, that is

W (o) ~ min{F''(c), F¥(0), F(0), .. .} (3.108)

Figure 3.22 indicates that this approximation works extremely well.

In principle we could develop similar graphs to Fig. 3.22 for the
other cases $=3,7,10,...,50 in Fig. 3.20. In developing Fig.
3.21 from Fig. 3.20 for a given volume V, it is quickly seen that one
of the Weibull cases, that is one value of k, would ‘dominate’ for
each value of 8, which is why each line in Fig. 3.21 is approximately
straight. For each plot, the appropriate & and Weibull shape
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parameter kf§ would be determined through Eq. (3.105) from the
relevant stress range in Fig. 3.21, especially near the median. For
example, for § = 10, the case k = 3 is appropriate in developing Fig.
3.21, as the effective Weibull shape parameter for composite strength
is about 3 X 10 = 30 (as determined from the slope of the 8 =10 line
in Fig. 3.21).

It is now possible to determine the appropriate Weibull distribu-
tion for each plot in Fig. 3.21. Substituting the appropriate Weibull
distribution F*)(¢) into Eq. (3.106) (which actually returns us to
Eq. (3.102)) yields the following Weibull approximation for
composite strength:

Hyn(0) =1 —exp{ = (6/ 0% )"} (3.109)
where
O = 05 (MNdy) =9 (3.110)

For each value of 8, this Weibull approximation closely fits the plot
on Fig. 3.21, provided k is chosen by the above graphical scheme.

Fig. 3.22. Envelope construction from Weibull family F*l(¢) to ap-
proximate the characteristic distribution function W(o) for composite
strength. Reprinted with permission from International Journal of Solids
and Structures, 19, Phoenix and Smith, Copyright © (1983), Pergamon
Press, plc.
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Of course k will change if the volume V =MN is changed
significantly.

At this stage it is important to recall the interpretation of k as the
‘critical crack size’. It is now appreciated that given the composite
volume MN and the Weibull shape parameter S for the fiber
strength, a special value of k emerges which is the size of the
longest crack or string of fiber breaks when such a composite
fractures. This value of k also determines the effective Weibull
shape parameter for composite strength, k. Thus far, the calcula-
tion of the appropriate k value has been performed graphically, but
it is possible to estimate k explicitly. The method is given in
Phoenix and Smith (1983), and begins by the study of

05/ Ky < Op v < 05/ Ky, (3.111)

For large MN, this leads to the appropriate k being the value which
satisfies

y(k)>In(MN)/B > y(k — 1) (3.112)
where
y(r)=rIn(K,) — {In(K,) +In(K,) + - - - + In(K,_;)} (3.113)

for r=1,2,3,... and y(0)=0. For K;=1+/2, we obtain the
values given in Table 3.1. According to Eq. (3.112) the critical
value of k depends on the ratio In(MN)/B, and thus it increases
slowly as the composite volume is increased but decreases more
rapidly as the variability in fiber strength is decreased (B is
increased).

As an example, for the case §=5 on Fig. 3.21, the graphical
procedure puts the stress range near 0.2705 which by Fig. 3.22 or
Eq. (3.105) puts k = 5. On the other hand, In(10°)/5=2.76, and by
Eqgs. (3.112) and (3.113) and Table 3.1 one also obtains k = 5. Thus
the effective Weibull shape parameter for the composite being
represented is k8 = 25.

Table 3.1.

r v(r) ¥(r)

0 0 5 3.15
1 0405 6 3.95
2 0981 7 4.78
3 1.65 8 5.62
4 2.38 9 6.48
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Finally, it is interesting to consider the ultimate size effect for the
composite. In the case of a Weibull distribution, we recall that the
strength decreases as the volume V in proportion to V™" On the
other hand, the curvatures of the lines on Figs. 3.20 and 3.21,
together with our finding that k slowly increases as the volume
V = MN increases suggest that the strength of the composite will
not ultimately have a Weibull size effect, but one which is
increasingly milder as V increases. Smith (1980, 1982) considered
this question and concluded that

composite strength = 2! g, /In(V) (3.114)

which indicates that the strength decreases as the inverse of the log
of the volume. It turns out that Eq. (3.114) tends to be an
overestimate and a composite must be astronomically huge (V >
10?°) for this result to be accurate.

In conclusion, a few extensions and limitations of the above
analysis should be mentioned. As stated earlier, the results given
are based on S being ‘large’. This allowed us to write the
approximation Eq. (3.98), which led us to Eq. (3.100) and then to
the definition of d, in Eq. (3.104). As mentioned earlier, the
calculation of the event implied in Eq. (3.98) is more complex if
‘double counting’ of certain failure possibilities is to be avoided. For
example, for kK =2, a more accurate rendition is

P{seed and string} =~2F(0)[F(K,0) — F(0)] + F(o)*
=2F(0)F(K,0)— F(o)*
~[2(K,)’ — 1)(0/05)*" (3.115)

so d, should be [2(K,)? — 1] rather than just 2(K,)?. The same sort
of analysis shows that d; should actually be 4(K,K,)? — (K ,)*f -
(K»)?—2(K)?+1 and so on for higher k. But it turns out that
these refinements make very little difference, especially when
calculating the scale parameter values o, 5y in Eq. (3.110) where
the error is typically one or two per cent.

The above results were developed for the idealized case of local
load sharing defined by Eq. (3.88), but appear also to work for
more realistic cases provided one chooses K, to be the largest load
sharing constant at the edge of a failure configuration. Generally
such values of K, tend to be smaller than 1+ r/2 (see, for example,
Hedgepeth 1961). Following through the above analysis, the main
effects are not only to increase the scale parameters for strength,
thus increasing the composite strength itself, but also to increase the
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critical k values thus reducing the composite variability. Second, an
analysis has been carried out by Smith et al. (1983), for three-
dimensional composites, with the parallel fibers forming a two-
dimensional hexagonal array. Here the clusters of broken fibers can
take on many different geometric configurations other than a linear
string, but for large f one still comes up with a form for d, that is
similar in structure to Eq. (3.104) except that 2! is replaced by a
much more complex configurational constant. Many of the ideas
carry through except that one no longer finds quite the same simple
relationship between the critical cluster size k& and the effective
Weibull shape parameter for composite strength. The strength of
such a three-dimensional composite is typically larger than in the
two-dimensional planar case described above. The reason is that
while there are many more failure configurations, the load sharing
occurs over many more fibers at the boundary of a failure cluster so
that the reduction in the K, values more than compensates for the
increased number of failure possibilities, especially for larger B.

Finally, experimental data to illustrate the above features have
been presented by Phoenix, Schwartz and Robinson (1988), who
also extend the ideas, through viscoelasticity of the matrix, to
explain creep rupture phenomena under constant stress.

3.4.6.3 Monte-Carlo simulation

The Monte-Carlo method is a numerical technique suitable
for simulating complicated stochastic processes, and it has been
employed to analyze a wide range of physical processes of a
statistical nature (Oh 1979). The Monte-Carlo simulation of com-
posite strength can be regarded as testing the composite materials
‘analytically’ in an automated fashion. In each Monte-Carlo experi-
ment, random numbers are generated and assigned to the underly-
ing random variables and the outcome of the process of interest can
be observed. When the number of such independent experiments
is sufficiently high, the observations will yield a good assessment of
the statistical characteristics of the process. In dealing with the
strength of fibers as well as composites, the Monte-Carlo experi-
ment involves the partitioning of fiber or a composite into elements,
then random numbers are assigned to the strength of the elements.
For a given applied load, the stress in the elements of a fiber or a
composite can be determined as described in Section 3.3. From the
assigned strength value and the arrangement of breaks of elements
the failure load is then obtained. In the following, fractures of fibers
as well as composites based upon the Monte-Carlo simulation



Statistical tensile strength theories 133

(Fukuda and Kawata 1977; Oh 1979; Manders, Bader and Chou
1982) are considered. Several common procedures for generating
the normal random numbers are available.

Fukuda and Kawata studied the fracture of a two-dimensional
fiber composite based upon the Monte-Carlo method by choosing a
mean strength of 100 and a standard deviation of 10. A simulation
of the fracture process is shown in Fig. 3.23 for E{/E,, =20, and
M = N =20, where M and N are defined in Fig. 3.17. The elements
or links in the partitioned composite specimen are specified by the
position (i, j). Here, 0 indicates that the link is not broken and the
other numerals indicate the sequence of link breakage. As the
initial condition, each link (i, j) is assumed to have a stochastic
strength, STR(i, j), which is the normal random number with a
specific value of mean and standard deviation. Both the Weibull
distribution and normal distribution have been used for expressing
the link strength distributions. Stress concentration factors of all
links, SCF(i, j), are initially assigned as 1. A link with the least
value of STR(, j)/(SCF(, j) is sought, and let this link be (i, J,)
The link breaks first at the tensile stress of STR(i,, j,). When this
link breaks, stress concentration occurs in the two adjacent links
(io,jo £ 1). The values of STR(i, j)/SCF(, j) are again calculated
for the remaining M X N — 1 links. A link which has the least of this
value breaks second. This procedure is repeated until all the links in
a plane transverse to the loading direction (j=1,2,..., M) are
broken.

Fig. 3.23. Monte-Carlo simulation of fiber link fractures. (After Fukuda
and Kawata 1977.)
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The result given in Fig. 3.17 resembles the sequence of fiber
failure observed in the experimental work of Rosen (1964). The
predictions of composite strength are shown in Fig. 3.24. It should
be noted that the Monte-Carlo approaches are generally limited to
MN <50 000 under current supercomputer power which may not be
enough for a realistic composite. Also the Monte-Carlo approach is
inherently poor at handling the lower tails of the distributions.

3.4.7  Strength of cross-ply composites

Cross-ply construction is the simplest form of lamination of
unidirectional laminae. This simple geometric configuration facilit-
ates the understanding of the fundamental problems concerning
laminate strength. It provides a model system for investigating the
matrix cracking of laminates under tensile loading. This section
analyzes the problem from both deterministic and statistical view-
points. The treatment of Aveston, Cooper and Kelly (1971) of
multiple fracture, although it deals with unidirectional composites, is
basic to matrix cracking of laminated composites in general. Hence,
it is outlined first.

3.4.7.1 Energy absorption during multiple fracture
Section 3.2 discusses the mode of fracture of unidirectional
composites as affected by the ultimate failure strains of the fiber and

Fig. 3.24. Numerical results of Monte-Carlo simulation. (After Fukuda
and Kawata 1976b.)
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matrix materials as well as the fiber volume fraction. The energy
absorption of composites during the failure process was first
investigated by Aveston, Cooper and Kelly (1971). Contributions
to the fracture surface energy during single fracture may be
derived from deformation of the fiber or matrix, the work done
in fracturing the fiber—matrix interfacial bond, and work
done in pulling the fibers out of the matrix against frictional
forces. It is found that the work of fracture increases with
increasing fiber diameter and decreasing fiber—matrix interfacial
strength.

Multiple fracture of fibers occurs in ductile matrix composites at
low fiber volume fraction. Multiple fracture of matrix, on the other
hand, takes place in brittle matrix composites at high fiber volume
fraction, as a result of applied tensile loads or thermal stresses
induced by cooling from the stress-free temperature. The energy
consideration for the development of multiple matrix cracking in a
unidirectional lamina subject to axial tensile loading is introduced
below (see Aveston, Copper and Kelly 1971; Aveston and Kelly
1973, 1980; Kelly 1976).

Consider the formation of a single matrix crack normal to the
fiber direction, at the strain €, under conditions of fixed load. It is
assumed that the stress in the matrix is equal to the matrix fracture
stress and there is a decrease in the combined energy of the
specimen and the loading system. The energy changes due to the
formation of a crack at a fixed load include AW = the work done by
the applied load per unit area of the composite, vy, =energy
absorbed per unit area of debonded fiber, U, = the work done per
unit area of the composite against the frictional force between the
fiber and matrix, AU, = the elastic strain energy lost due to the
relaxation of the strain in the matrix, and AU;=the increase in
strain-energy of the fibers per unit area of the composite. If the
surface energy in forming a matrix crack is v, a crack will occur
provided

2ym(1~ V) + yao + U, + AUy = AW + AU, (3.116)

The terms in Eq. (3.116) have been evaluated by Aveston, Cooper
and Kelly under the assumption that the changes in stress (strain) in
the matrix and fiber due to the formation of the crack vary linearly
with distance from the crack surface. By further assuming purely
frictional bond between the fiber and matrix, Eq. (3.116) yields the
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following expression for the failure strain of the matrix:

{ 12ty EVE }“3
Emu= Vo s T o
™ AEEL(1-V))

where T = fiber-matrix interfacial shear strength (See Eq. (3.2)),
r = fiber radius, and E = Young’s modulus with the subscripts f, m
and c indicating fiber, matrix and composite, respectively. Equation
(3.117) indicates that the composite strain at the formation of the
transverse matrix crack can be enhanced by suitable control of the
elastic moduli of the fiber and matrix, fiber volume fraction and
diameter, matrix surface energy, and the fiber—matrix interfacial
strength.

Budiansky, Hutchinson and Evans (1986) have generalized the
results of Aveston, Cooper and Kelly for unbonded, frictionally
constrained slipping fibers initially held in the matrix by thermal or
other strain mismatches. The other case considered by Budiansky et
al. for the onset of matrix cracking involves fibers that initially are
weakly bonded to the matrix, but may be debonded by the stresses
near the tip of an advancing matrix crack. McCartney (1987) has
used an energy-balance calculation for a continuum model of brittle
matrix cracking in a uniaxially fiber-reinforced composite and
confirmed that the Griffith fracture criterion is valid for matrix
cracking.

(3.117)

3.4.7.2 Transverse cracking of cross-ply laminates

Multiple transverse cracks in the matrix of unidirectional
fiber composites have been observed in a number of systems, for
example, glass-reinforced cement, and gypsum reinforced with
polyvinyl chloride or glass, where the failure strains of the fibers are
greater than those of the matrices. Transverse cracking also occurs
in the 90° plies of cross-ply laminates. Experimental observations
and analytical modeling of this behavior have been made by Bailey,
Garrett, Parvizi, Bader and Curtis (see Garrett and Bailey
1977a&b; Parvizi and Bailey 1978; Parvizi, Garrett and Bailey 1978;
Bader, Bailey, Curtis and Parvizi 1979; Bailey, Curtis and Parvizi
1979; Parvizi 1979; Bailey and Parvizi 1981 who followed
Aveston and Kelly’s shear-lag approach and interpreted this pheno-
menon by the concept of constrained cracking). Manders, Chou,
Jones and Rock (1983) proposed a statistical treatment of multiple
cracks. Wang, Crossman, Warren and Law (see Wang and Crossman
1980; Crossman, Warren, Wang and Law 1980; Crossman and
Wang 1982; Wang 1984), on the other hand, theorized it based
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based upon the strain-energy release rate of crack extension. The
theory of Bailey et al. is introduced in this section. The work of
Manders et al. is discussed in Section 3.4.7.3 and that of Wang et al.
is introduced in Section 3.4.7.4.

(A) Cross-ply laminate

The cross-ply construction of [0°/90°/0°] is shown in Fig.
3.25. For the cases of glass/epoxy and carbon/epoxy systems, the
mechanical properties of unidirectional laminates are shown in
Table 3.2. The glass/epoxy 0° test curves are essentially linearly
elastic to fracture but the 90° specimens show a pronounced knee at
a strain of about 0.3%, after which a whitening effect can be
observed. The 0° carbon/epoxy test curves are elastic to failure but
they are not linear, there being an increase in the modulus with
increasing strain. The 90° carbon/epoxy is linear to failure with no
knee or acoustic emission prior to failure. The failure strains of the
90° specimens in both systems are characteristically low due to
strain concentrations in the matrix (see Kies 1962).

Fig. 3.25. Hlustration of a {0°/90°/0°] specimen.
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When extended in tension, initial failure of the cross-ply laminate
is usually in the central 90° ply, which cracks in a direction normal
to the applied tension and parallel to the fibers in that layer (Fig.
3.26). The failure sequence in both laminates follows a similar
pattern. Two knees appear on the stress—strain curve of
glass/epoxy, first at 0.3% strain, associated with the visual whiten-
ing effect and at 0.5% strain due to transverse cracking, but this is
not apparent in the carbon/epoxy laminate. On further extension,
more cracks are formed until the whole gauge portion of the
test-piece is filled with a regular array of cracks. The strain at which
the first crack occurs increases as the thickness (2k) of the 90° layer
is reduced and at the same time the crack spacing tends to become
smaller. In the case of the thinnest transverse layers, transverse
cracking is not observed at all before the final catastrophic failure of
the test-piece. Microscopy has shown that the earliest indications of
failure are debonds at or near the fiber/matrix interface. These
occur at strains even lower than those at which the whitening is
observed in the glass/epoxy systems. The next stage is a coalescence
of a number of debonds to form a microcrack, which grows rapidly
when it reaches a critical size, about three to four fiber diameters.

Longitudinal splitting is observed to occur in the 0° plies of the
cross-ply laminate at strains intermediate between the transverse

Table 3.2. Mechanical properties of unidirectional laminates (after
Bader et al. 1979), Reprinted with permission from Mechanical
Behaviour of Materials-Copyright © 1979, Pergamon Press, plc.).

0° 0° 90° 90°

Property CFRP* GRP** CFRP GRP Units
Low-strain

Young’s

modulus 127 42 8.3 14 GPA
Fracture

stress 1.7 0.92 0.039 0.056 GPa
Fracture

strain 1.2 2.2 0.48 0.50 %
Poisson’s

ratio 0.29 0.27 0.02 009 -

* CFRP: carbon fiber-reinforced plastic
**GRP: glass fiber-reinforced plastic
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cracking strain for the 90° plies and final failure (Fig. 3.27).
Longitudinal splitting is due to mismatches in the Poisson’s ratios
and the coefficients of thermal expansion of the 0° and 90° plies.
The strain to initiate splitting increases as the thickness of the
longitudinal plies is reduced. Splitting has not been observed in the
carbon/epoxy cross-ply laminates.

(B) Transverse crack spacing

The low strain failure behavior was first explained by Kies
(1962), who predicts the magnification of strain in the matrix
when a unidirectional composite is stressed in the transverse
direction. In the limit when the fibers are almost touching one
another, the strain magnification factor approaches the value
E{/E,. It should be noted that even at comparatively low fiber
volume fractions there are invariably regions in the lamina where
fibers almost touch one another. The glass fibers are nearly

Fig. 3.26. Transverse-ply crack in a [0°/90°/0°] carbon fiber-reinforced
cross-ply laminate with an inner-ply thickness of 2k =0.125 mm. (After
Bailey, Curtis and Parvizi 1979.)
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isotropic, but the transverse Young’s modulus of carbon is much
lower than its longitudinal modulus and it is this modulus which
should be used for calculating the strain magnification factor. The
first matrix crack usually forms between fibers which are touching or
nearly touching along a direction perpendicular to the loading axis.

The crack density, and hence the crack spacing, is related to the
geometry of the laminate. These can be explained by the cross-ply
laminate shown in Fig. 3.25. When the strain has reached the
fracture strain, &, of the 90° ply, the first crack occurs in the
transverse ply, and an additional stress Ao is placed on the
longitudinal plies. From a shear-lag analysis similar to that given in
Section 3.3.1,

Ao =Aag, exp(—\/(¢)y) (3.118)
where
o= E.G,, (b + h)

Fig. 3.27. Longitudinal-ply splitting in a [0°/90°/0°] glass fiber-reinforced
cross-ply specimen. (After Bailey, Curtis and Parvizi 1979.)
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E. is the laminate Young’s modulus in the y direction, E;; and E,
are the Young’s moduli of a unidirectional ply in the fiber and
transverse directions, respectively, and G, is the shear modulus of
a unidirectional ply. This additional stress has its maximum value
Ao, in the plane of the crack (y =0) and decays with distance y
from the crack plane as some load is transferred back into the
transverse ply through interlaminar shear stress
riz—bﬁq (3.119)
dy
The tensile load in the transverse ply is zero at the crack plane
but builds up by shear transfer from the longitudinal plies. At a
given distance y from the crack, the load F in the inner ply is given
by

Y
F=J' 2ct;dy (3.120a)
0

where c is defined in Fig. 3.25. The first crack in the transverse ply
occurs when the load carried by it is equal to 2cho, where o,
denotes the ultimate tensile strength of the 90° ply in the cross-ply
laminate, which may be different from the transverse tensile
strength of a unidirectional ply. This load is then transferred onto
the longitudinal plies. Another crack can only occur when the
transverse ply is again loaded to 2cho,,. The transverse ply will not
be loaded to this value except at infinity and Ao, = o,,h/b, if the
applied stress on the laminate is maintained at o, = E_¢g,, after the
first cracking. For another crack to occur, ¢, and hence Ao, must
be increased to such a value that F = 2choy,.

If the first crack is assumed to take place in the middle of the
specimen (y =0) of length a, the following cracking sequence will
occur:

(1) Initial crack at o,= E g, and
F =2bc Ao [1—exp(—V(¢p)y)] (3.120b)

(2) Second and third cracks occur simultaneously at the ends of
the specimen when the applied load increases to such a
value that

Ao, = om%[l —exp(—V(¢)a/2)]™! (3.121)

The crack spacing is a/2.
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(3) The next series of cracks will occur midway between the
present cracks. The total shear stress between two existing
cracks is

7.= b Ao, V(p){exp(— V(p)y)

—exp[V(9)(y —a/2)]} (3.122)
and from Eq. (3.120a)

F =2bc Ac[1+ exp(— V(¢)a/2)
—2exp(— V(¢)a/4)] (3.123)

The value of Ao, when the cracks occur now at intervals of
al4is

Ao, = o, % [1+ exp(— V(¢)a/2)

—2exp(— V(¢)a/9)]™ (3.124)
(4) For crack spacing of a/8

Ao, = O, % [1+exp(—V(¢)a/4)

—2exp(— V(¢)a/8)] ! (3.125)

This crack sequence will continue until the strength of the lon-
gitudinal plies is exceeded or the spacing between neighboring
cracks is so small that the normal stress in the 90° ply cannot be
built up to oy,.

(O Transverse cracking constraint
The strain required to initiate transverse cracks is greater

when the transverse lamina is thinner, and in some cases cracking is
constrained completely up to the strain at which the longitudinal
laminae fail catastrophically. This phenomenon of constrained
cracking is attributed to the fact that in order for a crack to form it
must be both mechanistically possible and energetically favorable.
The former requirement is satisfied for cross-ply laminates from the
viewpoint of strain magnification as discussed in (B). The effect of
lamina thickness on the transverse failure strain can be understood
from the viewpoint of energetics.

For a specimen under constant load, a crack initiates if the
following condition is satisfied:

AW > AU + Up +27A (3.126)
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where AW is the work done by the applied stress per unit area of the
specimen, AU is the increase in stored energy per unit area of the
specimen, Up, is the energy loss per unit area due to any dissipative
processes present (e.g. sliding friction between debonded fiber and
matrix), y is the fracture surface energy per unit fracture surface
area, and A denotes the fracture surface area. It has been found
that for practical ply thicknesses the interface between the lon-
gitudinal and transverse plies remains bonded during the cracking of
the transverse ply and the laminate behaves in a fully elastic
manner, thus Eq. (3.126) becomes

h
AW>AU+2—— 1
h+b Yt (3.127)
Here, v, is the fracture surface energy of the transverse ply in a
direction parallel to the fibers. Since half of the work done by the
applied stress is stored as elastic energy of the specimen, it follows
that

TAW > 2y, —— (3.128)

h
h+b

When the first crack occurs in the transverse ply at a strain of g,
an additional stress Ao, Eq. (3.118), is thrown onto the outer plies
and the laminate increases in length by da, given by

al2 Ao
6a—2f ——dy (3.129)
For a/h>>1, Eq. (3.129) becomes
2hE, ¢,
da=—"F—— 3.130
bE,V(#) (3.130)

The work done by the applied stress o, at the strain of first
transverse failure is

AW = dao, (3.131)
Hence
2hECE22sfu
AW =—F"F"— 3.132
bE V() (3-132)

The substitution of Eq. (3.132) into Eq. (3.128) yields the minimum
value of the transverse failure strain

_ _ L J[2bEnrV(¢)
(Ew)min = (E)min = \/[(h n b)E22EC] (3.133)
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The theoretical values of the minimum cracking strain have been
calculated from Eq. (3.133) as a function of 4 and are compared
with the experimental results in Fig. 3.28 for glass/epoxy laminates.
Close agreement is observed between theory and experiment in the
region where A <0.25 mm, indicating an energy controlled crack
propagation. For the thicker laminates, however, this theory does
not apply and cracking occurs at a constant strain of 0.5% which is
close to the cracking strain of the unidirectional 90° lamina.

According to Bader et al. (1979), microscopic cracks usually
develop in glass- and carbon-reinforced plastic laminates in regions
where fibers lie normal to the principal tension axis, at strains which
are, at the most, only 30% of the final failure strain. Thus designers
are faced with a dilemma: whether to base the design on strains
below the cracking threshold (typically 0.5% for glass-reinforced
plastics) or the ultimate failure strain, which might be 1.5% or
more. Microcracks which do not appear to be detrimental to the
short-term mechanical properties of laminates may act as nuclei for
further local damage leading to ultimate failure under cyclic loading
and a hostile environment. Experimental evidence suggests that the
formation of transverse cracks and longitudinal splitting can be con-
strained or inhibited by constructing the laminate from thinner
individual plies.

Fig. 3.28. Plot of the theoretical and experimental transverse cracking
strain, (€.)min» as a function of the inner-ply thickness, 2k, for glass-
reinforced sandwich laminates. The outer ply thickness is 0.5 mm. — Eq.
(3.133); --- cracking strain of the unidirectional 90° lamina; @ experiment.
Reprinted with permission from Bader et al. in Mechanical Behaviour of
Materials, Copyright © (1979), Pergamon Press plc.

(&) min (%)
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3.4.7.3 Statistical analysis
The deterministic multiple cracking theory of Garrett,
Bailey and Parvizi attempts to account for the measured distribution
of crack spacing in [0°/90°/0°] glass fiber/resin matrix laminates.
Manders et al. (1983) have proposed a statistical model which fits
the experimental data and predicts a dependence of strength on
size. The origins and implications of this variability of strength are
discussed below after descriptions of the experimental observations.
The three-ply [0°/90°/0°] laminates of Manders et al. are composed
of Silenka E-glass fibers in an Epikote epoxy resin. The central 90° ply
is 1.1 mm thick and is sandwiched between two 0.55 mm plies. A
close match between the refractive indices of the fiber and matrix
makes the laminate virtually transparent so that cracking and
microscopic damage in the 90° can be closely observed (Fig. 3.29).

Fig. 3.29. Photographs of specimens at the indicated strain levels (%)
under bright-field ((a) to (1)) and dark-field ((j) to (r)) illumination,
showing multiple transverse cracks in the 90° ply, stress ‘whitening’ and
longitudinal splitting in the 0° plies. (After Manders et al. 1983.)
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The pattern of cracks is photographed at regular intervals of applied
load using either bright- or dark-field illumination. The dark-field
illumination shows fiber—matrix debonding (‘stress whitening’ which
scatters light) with good contrast, whereas bright-field illumination
gives better definition of the cracks, although in this case the
fiber—matrix debonding appears dark with relatively poor contrast.
The thermal residual tensile strain of the 90° ply is estimated to be
about 0.22% due to cooling from the postcure temperature of 150°
to ambient.

As the specimens are loaded the initial whitening progressively
increases, most noticeably at about 0.34% strain (Fig. 3.29k). A
knee is visible in the stress—strain curve of Fig. 3.30 at about 0.1%
which is attributed to the onset of fiber—matrix debonding. Cracks
appear instantaneously at about 0.4% strain, often in the bands
of more pronounced whitening (Fig. 3.291 and m). It is concluded
from this observation that a crack forms by the joining up of the
fiber-matrix debonds. The beginning of multiple cracking is re-
flected on the stress—strain curve by a second knee. The rate of
crack formation with applied strain decreases throughout the
loading. At higher strains the crack spacing becomes more uniform.
At a strain of about 0.7% stress whitening appears in the lon-
gitudinal 0° ply (Fig. 3.29n-r1); this is seen as darkening in Figs.

Fig. 3.30. Low-strain portion of a stress-strain curve. Changes of gradient
are associated with a rapid increase in stress whitening and with the
beginning of multiple cracking. (After Manders et al. 1983.)
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3.29(b)-(i), and it develops into longitudinal cracks at about 1.8%
strain.

Manders et al. have measured the positions of every crack in a
photograph by traveling microscope and calculated the spacings
between cracks and their cumulative distribution functions for each
load. These distributions illustrate the overall trend towards closer
spacing at higher strains. In their study of the variation of crack
spacing with stress, Manders et al. assume that the 90° ply is an ideal
homogeneous brittle material with an inherent distribution of
strength which is described by a cumulative distribution function
termed S, for failure of a unit volume. It is also expected that the
strength of the 90° ply will be statistically the same throughout its
volume; i.e. the constituent volumes which are substantially larger
than the microstructure should have strengths which are independ-
ent of each other and which are identically distributed.

Thus, the cumulative distribution function of strength S, for a
volume V can be written as

1-8 =(1-5,)" (3.134)

Then the ‘risk of rupture’, Ry, proposed by Weibull (1939a and b) is
given by

In(1-S,)=VIn(1-S5,)=-Ry (3.135)
ket In(1-S,) = —¢(0) (3.136)
then the risk of rupture dR for a volume element dV is

dR=—-In(1-S5,)dV = ¢(0)dV (3.137)
For a non-uniform state of stress

Ry = f ¢(o)dv (3.138)
and Y

Sy=1—exp(—Ry)=1- exp[ - J;/ ¢(0) dV] (3.139)

Assuming that the stress is uniform in the cross-sectional area, A,
the volume integral may be replaced by an integration over the
length L. Then Eq. (3.135) becomes

In(1-Sy)=—-A¢(o)L (3.140)

The quantity A¢ is found from the gradient when In(l—S,) is
plotted against L.
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Manders et al. adopted a two-parameter Weibull distribution for
the strength of the 90° ply in which

8 e\B

A¢=A(oi) =A(—) (3.141)
The constants o, and €, are the scale parameters in terms of stress
and strain, respectively, and B is the shape parameter. Taking
logarithms of Eq. (3.141) gives

In(A¢)=FIne—PIlneg,+InA (3.142)

It is seen from Eq. (3.142) that a graph of the gradients obtained
from In(1 —- Sy) vs. L and applied strain is linear with gradient f if
the Weibull distribution is valid. This is demonstrated in Fig. 3.31,
which shows two linear regions intersecting at a strain of about
0.4% (corrected for thermal residual strain), or 0.6% of applied
strain. The values of 8 are about 8.5 and 1.0, respectively, for low

Fig. 3.31. Variation of gradients with 90° ply strain, corrected for residual
thermal strain. Solid and open circles correspond to two nominally
identical specimens. (After Manders er al. 1983.)
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strain and high strain. The two intercepts (InA — f1n ¢,) for the
two linear segments are 47 and 11.

Finally, Eq. (3.140) can be evaluated after substitution of Eq.
(3.142) using the fitted values of B =8.5 and intercept =47 to
obtain median crack spacings (S, = 0.5) as a function of strain. The
results of the theoretical correlations are shown by the solid curve in
Fig. 3.32.

It is suggested by Manders et al. that the deterministic model of
Garrett, Bailey and Parvizi and the probabilistic models are
complementary. At low strains, the crack spacing is large and the
length necessary to build up stress in the 90° ply on either side of a
crack is relatively small. Therefore, most of the region between
cracks is fairly uniformly stressed and the positions of new cracks
are determined by the distribution of flaws in the matrix; a new
crack rarely forms exactly midway between two existing cracks.
Consequently, the distribution of crack spacings covers a wider
range than the factor of two predicted by Garrett, Bailey and
Parvizi. At high strains the opposite is true. The region between
cracks is non-uniformly stressed. Since the highest stress is found
midway between two existing cracks, this is where the new crack
forms as described by the deterministic model. When the crack

Fig. 3.32. Crack spacing vs. strain. Solid curve is based upon the statistical
model predictions. (After Manders et al. 1983.)
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spacing is significantly higher than the ‘unstressed length’ (approxim-
ately equal to the 90° ply thickness) the probabilistic model is
appropriate, and when it is of similar magnitude the deterministic
model is more appropriate.

Further analytical treatments of the statistical strength of cross-
ply laminates can be found in the work of Fukunaga, Peters,
Schulte and Chou (1984) and Peters and Chou (1987).

3.4.7.4 Transverse cracking and Monte-Carlo simulation

The occurrence of transverse cracks in cross-plied laminates
under ascending tension can be regarded as a kind of stochastic
process due to the presence of randomly distributed microflaws. As
discussed in Section 3.4.6.3, a stochastic process can be simulated
by the Monte-Carlo procedure. In this case, it is postulated that
‘intralaminar flaws’ exist randomly in the unidirectional ply, which
lie in the ply thickness direction and align with the fibers, Fig.
3.33(a). When the transverse ply in the cross-plied laminate is
subjected to tension, these flaws effect the observed transverse
cracking. For purpose of simulation, the identity of the intralaminar
flaws is represented by randomly generated ‘effective flaws’. The
effective flaws are not, of course, the real flaws. However, if chosen
properly, they represent an inherent property of the ply system and
effect the essential characteristics of the transverse cracking process
in the simulation model.

Wang and Crossman (1980) first conducted an energy analysis to
predict the onset of a single transverse crack based on the classical
fracture mechanics concept, in conjunction with the effective flaw
postulation. Their analysis was validated by a series of experiments
(see Crossman, Warren, Wang and Law 1980; Crossman and Wang
1982). Later, Wang, Chou and Lei (1984) and Wang (1984, 1987)
incorporated the energy method into a Monte-Carlo procedure to
simulate the stochastic nature of multiple cracking. In this section,
the work of Wang et al. is discussed in some detail.

(A) Ply-elasticity and three-dimensional stress states

At the outset, it is useful to describe briefly the basis of the
energy method. The method is simply derived within the confines of
ply elasticity and the classical theory of fracture mechanics. The
theory of ply elasticity regards each unidirectional ply as a three-
dimensional, elastic, homogeneous and anisotropic solid; and the
laminate is modeled as a three-dimensional layered medium con-
taining flaws. An individual effective flaw is handled as a small
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crack; hence the elastic stress field surrounding the flaw is almost
always three-dimensional. Under certain simplifying assumptions,
however, some three-dimensional fields may be reduced to general-
ized plane-strain fields. Even then, numerical techniques are usually
required for solutions (see Pipes and Pagano 1970; Wang and
Crossman 1977).

(B) Effective flaw distribution

The exact mechanism of transverse cracking is rather
complicated when viewed at the fiber—matrix scale. It is usually
postulated that the crack is caused initially by the coalescence of
material microflaws which lie aligned with the fibers in the
transverse ply. When viewed at the ply scale, however, a transverse

Fig. 3.33. Schematic view of (a) effective intralaminar flaws, and (b)
effective interlaminar flaws. (After Wang 1987.)
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crack represents a separation of the transverse ply along the
fiber—matrix interface (see Fig. 3.29). To facilitate a mathematical
description of the event at the ply level, the concept of effective
flaws is now introduced. Assume that in each unidirectional ply
there exists a characteristic probability density distribution of
effective flaw sizes as shown in Fig. 3.34. The linear size of the flaws
is denoted by 2a and the location by x. Then, the discrete random
variables {a;,i=1,2,..., M} and {x,i=1,2, ..., M} char-
acterize the size and the location distributions of the flaws.
When two or more plies are grouped together, such as in the
[0°/90°,/0°] laminate (with n > 1), the flaw size distribution in the
grouped 90° plies is represented by the volumetric rule (see Lei
1986):

a; , = a;,(n)** (3.143)

where i=1,2,..., M and A is a constant related to the distribu-
tional characteristics of {a,}.

For simplicity, the flaw location distribution in the grouped 90°
plies is assumed to be independent of »

Xin=X; i=1,2,...,.M (3.144)

Fig. 3.34. (a) The size (24;) and location (x;) of an intralaminar flaw. (b)
The probability density distribution of effective intralaminar flaw size in
transverse plies. (After Wang 1987.)
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© Onset of the first transverse crack

The [0°/90°,/0°]} laminate shown in Fig. 3.34a is now used to
illustrate the energy method. Consider that the laminate is under
both the applied tensile strain ¢,, and the temperature change AT
(AT is positive for a temperature drop). Let the distribution of the
flaws be characterized by Eqgs. (3.143) and (3.144), Fig. 3.34b. With
the size and the location of a particular flaw known, an elastic stress
analysis can be performed; and by treating the flaw as a small crack,
one can also calculate the crack-tip strain-energy release rate
G(a; ., €, AT) (see Wang 1987). The condition governing the
propagation of the small crack into a full transverse crack is then
given by

G(ai,n, 8xx7 AT) = GIC (3145)

where G, is the material fracture toughness for mode I matrix crack
propagation.

Now, for the first crack to form, it is assumed that the crack is
caused by the largest of {a,,}, denoted by a,. The critical
laminate strain (&), for the onset of the first crack is then
determined from Eq. (3.145) by setting a; ,, = @, Now, this first
crack is physically detectable.

(D) Shear-lag effect
When the first transverse crack is formed, the local tensile
stress o, formerly existing in the unbroken 90° plies is now zero. If
the 0°/90° interface bonding is strong, a localized interlaminar shear
stress T,, is then developed in the vicinity of the transverse crack, as
shown in Fig. 3.35. This interlaminar shear stress decays exponen-
tially a small distance away from the transverse crack; while within
the same distance, the tensile stress o,, in the 90° plies regains its
original magnitude. This local stress-transfer zone, or the shear-lag
zone, is proportional to the thickness of the grouped 90° plies, 2nt.
When there is an effective flaw located near a transverse crack,
Fig. 3.36, the flaw may be under the shear-lag zone of the
transverse crack. The degree of the shielding effect depends on the
relative spacing, s/nt. Specifically, if the size of this flaw is 24 and
the associated strain-energy release rate at the flaw tip is
G(a, €., AT, s), then the shear-lag effect on the strain-energy
release rate can be expressed by the factor, R(s), defined by

R(s) = G(a, &, AT, 5)/G(a, &, AT) (3.146)
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where G(a, &,,, AT) is calculated without the influence of shear-
lag. It may be noted that the range of the retention factor R(s) is
between zero and unity over the range of the shear-lag zone, as
shown in Fig. 3.36, for a carbon/epoxy composite.

When a flaw is situated between two consecutive transverse
cracks, then it is under the shear-lag effect from both cracks. The
associated strain-energy release rate, G*, is given by

G*(a, €., AT)=R(s )G (a, &, AT)R(sR) (3.147)

where s; and sy are the distances from the flaw to the left crack and
to the right crack, respectively.

(E) Multiple cracks as a function of loading

After the formation of the first crack from the largest flaw
in {a;,}, subsequent cracks can form from the remaining flaws at
laminate strains appropriately higher than (e,,).. A search is then

Fig. 3.35. (a) A transverse crack in a cross-ply laminate. (b) Local stress
transfer caused by transverse cracking and the shear-lag zone. (After
Wang 1987.)
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commenced to determine the next flaw that yields the highest
strain-energy release rate G* (with due regard to the shear-lag
effect cast by the existing cracks). The applied laminate strain
corresponding to the next crack, which should be higher than
(&x)er, 18 determined by using G* in Eq. (3.145).

Successive searches for the next most energetic flaw follow, and
the entire load sequence of transverse cracks is simulated until it is
no longer energetically possible to produce any more transverse
cracks, or until some other failure modes (e.g. delamination, fiber
break, etc.) set in during the loading process.

(F) Determining the effective flaw distribution

One difficulty in the above simulation procedure lies in the
fact that the effective flaws are hypothetical quantities, and that
they must be chosen properly to yield the essential features of
transverse cracking. Appropriate experiments are required to de-
termine the effective flaw distribution.

In the work of Lei (1986), the effective intralaminar flaw
distribution in the AS4-3501-06 carbon—epoxy unidirectional ply
was determined by testing [0°,/90%); tensile coupons. In the test,
transverse cracks were detected by X-radiography and were re-
corded as a function of the laminate tensile stress. The shaded band

Fig. 3.36. The energy retention factor, R(s), vs. s/nt due to the shear-lag
effect (after Wang 1987.)
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in Fig. 3.37 is formed by plotting data obtained from four
specimens, in terms of crack density (cracks per unit length of
specimen) versus the applied laminate stress. This band, repre-
senting a cumulative formation of the transverse cracks during
loading, resembles a form of the output from a certain stochastic
process.

It is noted that the experimental band possesses a certain position
on the stress scale, a certain characteristic curvature in the
coordinate plane and an asymptotic value on the crack density scale.
These features will now be used to determine the effective flaw
distribution in the [90°] layer. To do so, a random number
generator is used to form a set of M random values in the interval of
(0,1). These M values are assigned to be {x;}, the locations of M
flaws along the unit length of the [90°] layer. The sizes of the M
flaws {a; ,} are assumed to fit a Weibull cumulative function,

F(a)=1—exp[ — (a/a)”] (3.148)

Fig. 3.37. Cumulative crack density (number of cracks per millimeter
specimen length) vs. applied laminate stress for [0°,/90°]; laminates. The
shaded data band indicates experimental range of four specimens. The
dots represent results of Monte-Carlo simulations. (After Wang 1987.)
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At this point, the parameters M, « and f are assumed known.
And a new set of M random values is again generated in the interval
(0,1). These values are assigned to {F}, corresponding to the
values of F(a) at a=a,, The flaw size {g; 4} is then determined
using Eq. (3.148).

With the assumed values of @, B and M, a simulation of the
transverse cracking process as described earlier can now be per-
formed. An appropriate choice of «,  and M is one that simulates
closely the experimental data band shown in Fig. 3.37.
Generally, « affects primarily the curvature of the band, f shifts the
band along the stress scale, and M determines the asymptotic value
of the band on the crack density scale (see Lei 1986). Figure 3.37
shows also the simulated crack density vs. laminate stress data from
five simulation specimens. Properly selected values of «, f and M
can fit the experimental data band very well.

Once the values «, § and M are chosen, the effective flaw size
distribution in any number of grouped 90° plies can be found using
Eq. (3.143); and then the transverse cracking in the grouped 90°
plies in laminates can be simulated. Figure 3.38 shows the simulated
results for four [0°,/90°], coupons along with the experimental data
band from four test specimens. Figure 3.39 shows a similar
comparison between experiment and simulation for four {0°/90°,],
coupons. In both Figs. 3.38 and 3.39, the simulated data were based
on the flaw distribution found from the [0°/90°%], coupons in
conjunction with Eq. (3.143).

As was mentioned in Section 3.4.6.3, the Monte-Carlo method
depends on the nature of the input random variables; and in this
case, the input is the distribution of the assumed effective flaws. In
the examples discussed above, the values of &,  and M determined
by fitting the experiment could not be proved unique. Nevertheless,
the simulation, which is performed in conjunction with fracture
mechanics analysis, provides not only a quantitative description of the
mechanisms but also an assessment of the statistical characteristics
of the transverse cracking process.

3.4.8 Delamination in laminates of multi-directional plies
Delamination is another mode of failure in multi-directional
laminated plates and shells. At the ply level, delamination may be
viewed as a plane crack propagating in the interface between two
adjacent plies, Fig. 3.40. Cracking of this kind is peculiar because
the crack plane is parallel rather than perpendicular to the applied
tension; the driving force stems from the interlaminar stresses. As most
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laminates are designed to carry in-plane loading, interlaminar
stresses are generally absent throughout the laminate except near
free edges, cut-outs, large defects and other such locations where
local interactions from mismatched ply properties cause stress
concentrations. Again, these local stress fields are almost always
three-dimensional in character.

The three-dimensional stress analysis model and the energy
method discussed in Section 3.4.7.4 can be applied to describe the
initiation and propagation of delamination. Crossman et al. (1980)
and Wang and Crossman (1980) followed this approach and
investigated free-edge delamination in laminates loaded in uniaxial
tension; Wang, Slomiana and Bucinell (1985) considered free-edge
delamination in compressively loaded laminates; and Wang,
Kishore and Li (1985) examined delamination near interacting
laminate defects. In all cases, experimental correlation was per-
formed to validate the analysis.

Fig. 3.38. Cumulative crack density (number of cracks per millimeter
specimen length) vs. applied laminate stress for [0°,/90°,], laminates. The
shaded data band indicates experimental range of four specimens. The
dots represent results of Monte-Carlo simulations. (After Wang 1987.)
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Fig. 3.39. Cumulative crack density (number of cracks per millimeter
specimen length) vs. applied laminate stress for [0°,/90°,], laminates. The
shaded data band indicates experimental range of four specimens. The
dots represent results of Monte-Carlo simulations. (After Wang 1987.)
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Fig. 3.40. Inter-ply cracking (edge delamination) in a multi-ply laminate.
(After Wang 1987.)
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For conciseness, the problem of free-edge delamination in
laminates loaded in uniaxial tension is discussed in this section, and
only the logic underlying the formulation of the analytical method is
presented.

3.4.8.1 Free-edge delamination

The free-edge delamination problem has attracted con-
siderable interest for both its scientific challenge and engineering
importance. Early laboratory tests have shown that laminate tensile
strength can be greatly reduced if free-edge delamination occurs
during the course of loading (Pagano and Pipes 1971; Bjeletich,
Crossman and Warren 1979). A similar effect on laminate compres-
sive strength has also been confirmed (Wang, Slomiana and
Bucinell 1985). Further analyses of the delamination mechanisms
have established that the physical behavior of delamination is
profoundly influenced by ply stacking sequence, ply fiber orienta-
tion, individual ply thickness and laminate width to thickness ratio
(Crossman and Wang 1982).

While there have been many predictive models describing de-
lamination growth, the energy method developed by Wang and
Crossman (1980) accounts for all these intrinsic and extrinsic factors
operating in a severely concentrated three-dimensional stress field
near the free edges.

To illustrate this method, the symmetric laminate having straight
edges shown in Fig. 3.40 is considered as an example. Assume that
the laminate under the applied laminate tensile strain &, is such
that free-edge delamination is induced in one of its ply interfaces.
The problem is then to determine which interface is most likely to
delaminate and at what load.

For long, symmetrically stacked and finite-width laminates, it may
be assumed that the laminate stress field is independent of the
loading axis, x. Hence, it can be described by ply elasticity
formulation under the generalized plane strain condition (Pipes and
Pagano 1970). The induced free-edge delamination would then
extend uniformly along the length of the laminate and advance from
the free edges toward the center of the laminate piece, as shown in
Fig. 3.40; and the delamination crack can be considered as a
self-similar line crack with a linear size, a, propagating in the
preferred ply interface.

(A) Effective interlaminar flaws and conditions for propagation
To render a prediction for delamination initiation, the
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assumption of effective flaws (Section 3.4.7.4) will again be invoked
here. In this case, random interfacial flaws are assumed to exist in
each ply interface of the laminate as illustrated in Fig. 3.33(b). In
particular, along the laminate free edges there is a dominant
interlaminar edge flaw. It is further assumed that this flaw is located
in a known interface and has a linear size, a,, in the sense depicted
in Fig. 3.40. This flaw is treated as a starter delamination crack,
with its size a, still a random variable. Thus, one can proceed to
calculate the crack-tip strain-energy release rate G(a,, &) if the
elastic constants of the unidirectional plies, the ply stacking
sequence, the ply fiber orientations and the ply interface in which a,
is residing are known.

The general character of G(a,, €,,) as a function of a, is shown in
Fig. 3.41 (for a unit of the applied laminate strain &,). G rises
sharply from zero at a, =0, and reaches an asymptotic value, G,
as a, becomes greater than a,,. It should be noted that in Fig. 3.41,
G, can be expressed in terms of €%,. The physical meaning of a,, is
that, at this size, the delamination no longer interacts with the
free-edge boundary. Generally, this boundary effect extends
roughly to a distance of about one-half the thickness of the laminate.
Beyond this distance, the delamination problem merely involves the
extension of cracks between two anisotropic elastic media and the
free-edge effect vanishes.

The calculated strain-energy release rate G may be expressed

Fig. 3.41. Variation of the strain-energy release rate G with delamination
crack size a, for a given ¢,, value. (After Wang 1984). Copyright ASTM,
reprinted with permission.)
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explicitly in terms of the applied laminate strain &,,:
G(ao, £x) = Cola,)2te%, (3.149)

with C.(a,) an exclusive function of delamination size a,. In the
above, 2t is this thickness of the ply.

Effects of thermal residual stresses due to cooling in fabrication
can be readily included in the calculation of G. If the laminate
stress-free temperature is 7, and the ambient temperature is 7, then
the laminate is exposed to a temperature drop of AT =T, — T. The
calculated strain-energy release rate G can be expressed in explicit
terms of ¢, and AT as

G(a, £y AT) = [V(Co)ewr + V(Cr) ATV 2t (3.150)

where Cr is also an exclusive function of a,.
From fracture mechanics, the condition governing the onset of
delamination is given by:

G(a,, £, AT) =G, (3.151)

where G, is the fracture toughness of the laminate under
delamination.

Equation (3.151) provides a prediction for the critical laminate
strain &, at the onset of delamination when the delaminating
interface, the values of a, and G, are given. These values, however,
are not readily available; a further analysis of the problem is still
needed.

(B) The effective edge flaw size

Given the functional character of G(a,, €,,) shown in Fig.
3.41, a one-to-one relationship between the critical ¢,, and a, can
be obtained from Eq. (3.151) assuming the delaminating interface
and the associated G, are known. If a, is represented by some
probability density function, f(a,), then there is a corresponding
range of ¢, for which Eq. (3.151) is satisfied (see Fig. 3.42). The
limiting value of ¢,, as a, becomes equal to or greater than a,, is
determined by setting G,,,/G.=1. This serves as the lower-bound
of the critical strain, &,,. Since a,, is about one-half the thickness of
the laminate, it is small compared to the observable delamination
_size in relatively thin laminates. In effect, the lower-bound value for
&, is usually regarded as the critical strain at the onset of
delamination.
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(C) The critical delaminating ply interface

Given a specific laminate, the most probable delaminating
interface cannot be presupposed from experience. It requires an
analysis in which the values of G,,/G. on all possible interfaces
can be compared. According to Eq. (3.151), delamination shall
occur on the interface which yields the largest value of G,,,/G, (for
the same ¢,,).

While G,,, at each interface can be calculated readily, the G,
associated with each interface may differ from one interface to
another. To elucidate this fact, consider a specific example: the
[£25°/90°], laminate made of the AS4-3501-06 carbon—epoxy
system. Based on the generalized plane strain model mentioned
earlier, the entire laminate stress field is calculated first. Of interest
are the interlaminar stresses near the free edges before delamina-
tion. Figure 3.43 shows near the free edge, the through thickness
distribution of the interlaminar normal stress o,,. Note that o, is
tensile and unbounded approaching the —25°/90° interface; and is
tensile but bounded on the laminate mid-plane (90°/90° interface).
Figure 3.44 shows the interlaminar shear stress t,, near the free
edge. Here, an unbounded rt,, exists on both the 25°/—25° and the
—25°/90° interfaces. These results suggest only qualitatively that
free edge delamination may occur either in the 90°/90° interface as
a mode I crack, or in the —25°/90° interface as a mixed-mode
(mode I and mode III) crack.

Further energy analysis provides (Gy),,, for mode I cracks in the

Fig. 3.42. Relation between applied strain ¢,, and flaw size a,. Flaw size
distribution f(a,,) is shown schematically. (After Wang 1987.)
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mid-plane, and (G, + Guy)asy for the mixed-mode crack in the
—25°/90° interface. In the latter, the mixed-mode ratio for Gy /G, is
also obtained.

Fracture toughness for mode 1 delamination may actually be
different from that for mixed-mode delamination. Indeed, interfa-
cial fracture of various mixed modes often manifest themselves

Fig. 3.43. The distribution of normal stress o,, through the laminate
thickness. (After Wang 1987.)
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Fig. 3.44. The distribution of shear stress t,, through the laminate
thickness. (After Wang 1987.)
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through differences in the fractured surface morphology, which in
turn implies differences in the G, value measured on the ply
scale (Bradley and Cohen 1985). Laboratory tests using carbon—
epoxy specimens have shown that G, for mode I delamination is
generally lower than G, for mixed-mode delamination. And, the
latter often increases with the amount of the shearing mode. The
cause for variable G, in mixed-mode delamination is complex;
several recent studies cited local crack-tip matrix yielding and fiber
bridging across the crack surfaces possibly due to shear deformation
(see Russell and Street 1985). To use Eq. (3.151) for mixed-mode
delamination, G, must be first obtained as a function of mixed-
mode ratio.

For the example problem, as it turned out, mid-plane delamina-
tion was predicted because it yielded a larger G,,/G, than the
—25°/90° interface. The prediction agreed with the experiment (see
Wang, Slomiana and Bucinell 1985). It should be noted that besides
Eq. (3.151) many other fracture criteria for mixed-mode cracks
have been suggested in the literature.

3.4.8.2 General delamination problems
The free-edge delamination problem discussed above serves
to illustrate the basic rationale in the formulation of the energy
method. The assumption of effective interfacial flaws allows a
fracture analysis from which the onset of delamination could be
determined. The assumption may seem awkward at first glance;
but it is no more inconvenient than to assume the existence of a
stress-based interlaminar strength that is used to determine de-
lamination onset in the highly concentrated free-edge stress fields.
It should also be remarked that delamination problems encoun-
tered in practice are very complicated. Frequently, the delamination
plane has a two-dimensional contour. To describe the growth of a
contoured delamination may require a criterion which is direction-
ally dependent, due to different material characteristics along the
contoured crack front. In addition, delamination growth in practical
laminates is almost always accompanied and/or preceded by other
types of damages such as transverse cracks. Interactions amongst
the various local cracks with delamination can be both deterministic
and probabilistic in nature. The energy method discussed in this
section appears to have sufficient generality for application to the
more complex delamination problems. Generic extension of the
method could conceivably be developed which can provide quan-
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titiative, if approximate, predictions for a wide class of delamination
problems.

3.49  Enhancement of composite strength through fiber

prestressing

The scattering in fiber strength has been attributed to the
existence of surface and bulk defects (See Section 3.4.2). Owing to
the statistical strength distribution of fibers, it is necessary to design
fiber composite structural components based upon a high level of
survivability. The enhancement of composite strength can be
achieved by eliminating some of the weak spots or defects in the
fibers. One way of attaining this goal is to stress the fibers and to
induce fracture at the defect sites before they are incorporated into
the matrix.

Mills and Dauksys (1973) were the first to adopt the concept of
fiber prestressing. In their work, carbon fiber prepregs are pre-
stressed at temperatures as low as —18°C. The prestress of prepregs
by bending induces non-uniform tensile stress which reaches maxi-
mum values at the outer surfaces with fibers near the center of the
prepreg stressed the least.

Manders and Chou (1983b) provide a theoretical analysis of
enhancement of strength in composites reinforced with previously
stressed fibers. The basis of their reasoning is as follows. The failure
of a fiber in an aligned composite causes a stress wave to propagate
outwards placing a dynamic overstress on the neighboring fibers
(see Section 3.3.2). The resulting dynamic stress concentration is
generally greater than the static stress concentration which prevails
after the system has settled, and increases the probability that
adjacent fibers also fail, weakening the composite. This analysis
shows how weak fibers may be prefractured to eliminate the
dynamic overstress, thereby increasing the strength of the compos-
ite. Manders and Chou discussed this strength enhancement with
reference to the level of prestress, fiber variability, stress concentra-
tions, and size of the composite.

Chi and Chou (1983) have measured in a systematic fashion the
effect of fiber prestressing on the mean strength of composites as
well as the dispersion of composite strength. Thornel-300 carbon
fibers are used as the reinforcement materials for composites. A
loose bundle contains 1000 fibers with a fiber diameter of 7 um. In
order to obtain consistent results in composite strength enhance-
ment, it is essential that all the defect sites of the fibers with
strength less than a certain value should be broken when they are
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subject to prestressing at a given level. It would be most ideal if a
uniform tensile stress could be applied uniformly to each small
segment of a fiber with length comparable to the ineffective length
of the fiber. However, this is impractical in real experiments, where
the gauge-length for fiber testing is much larger than the ineffective
length. Thus, a fiber already broken at its weakest site can no
longer be stressed under tensile loading.

The prestressing of carbon fibers is achieved by pulling the bundle
through a pair of circular bars of the same diameter at a tensile
force of 30g. The relationship among the maximum prestress in
fibers, o,, the bar diameter, D, and the fiber diameter, d, is

0,= Ed/D (3.152)

where E; denotes the fiber axial Young’s modulus. The stress in the
fiber caused by the applied tensile force is much smaller than o, and
hence it is neglected. Composite specimens are fabricated by
impregnating prestressed and non-prestressed fiber bundles in

Fig. 3.45. Negative strength enhancement in composites reinforced with
prestressed loose carbon fiber bundle. (After Chi and Chou 1983.)
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epoxy resin. The strength data obtained for prestressed fiber
composites with gauge-length of 76.2 mm are shown in Figs. 3.45
and 3.46, using Weibull probability paper. Here, o. denotes
composite strength, P(o.) is the cumulative strength distribution
and In{—In[l — P(o.)]} indicates the failure probability. The D
values for specimens presented in Figs. 3.45 and 3.46 are 0.711 mm
and 1.168 mm, respectively; the resulting o, values are 2.21 GPa
and 1.35 GPa. The mean strength of the composites with non-
prestressed fiber bundles is 3.01 GPa. The strength data of Fig. 3.45
show negative enhancement while significant strength enhancement
can be seen in Fig. 3.46. It is noted that the strength data of
prestressed composites can be fitted approximately by straight lines.
Chi and Chou (1983) have concluded that the composite strength
for high survivability (low failure probability) is low. These low
strength tails can be eliminated by stressing the loose fiber bundles.
Enhancement in strength as high as 25% for survivability of
99.9% has been achieved.

Fig. 3.46. Positive strength enhancement in composites reinforced with
prestressed loose carbon fiber bundle. (After Chi and Chou 1983.)
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4 Short-fiber composites

4.1 Introduction

Composites reinforced with discontinuous fibers are catego-
rized here as short-fiber composites. The fiber aspect ratio
(length/diameter = //d) is often used as a measurement of fiber
relative length. Depending upon the dispersion of fibers in the
matrix, the relevant d values may include those of the filaments,
strands, rovings, as well as other forms of fiber bundles. Although
discontinuous fibers such as whiskers have been used to reinforce
metals and ceramics, the majority of short-fiber composites are
based upon polymeric matrices. Discontinuous fiber-reinforced
plastics are attractive in their versatility in properties and relatively
low fabrication costs. The concern of the rapid depletion of world
resources in metals and the search for energy-efficient materials has
contributed to the increasing interest in composite materials.
Discontinuous fiber-reinforced plastics will constitute a major por-
tion of the demand of composites in automotive, marine and
acronautic applications.

A discontinuous fiber composite usually consists of relatively
short, variable length, and imperfectly aligned fibers distributed in a
continuous-phase matrix. In polymeric composites the fibers are
mostly glass, although carbon and aramid are also used; non-fibrous
fillers are often added. The orientation of the fibers depends upon
the processing conditions employed and may vary from random
in-plane and partially aligned to approximately uniaxial.

The understanding of the behavior of short-fiber composites is
complicated by the non-uniformity in fiber length and orientation as
well as the interaction between the fiber and matrix at fiber ends
(Chou and Kelly 1976, 1980). These factors are examined in the
following discussions on the physical and mechanical properties of
short-fiber composites.

4.2 Load transfer

Various attempts have been made to evaluate the stress
transfer from the matrix to the fiber in a short-fiber composite.
Analyses based upon the shear-lag theory, elasticity theory, and
finite element method have been performed. Considerations re-



170 Short-fiber composites

garding fiber aspect ratio (Fukuda and Kawata 1974), the effects of
bonded ends and loose ends as well as the geometric shapes of fiber
ends (Burgel, Perry and Schneider 1970), and the distribution of
radial and circumferential stresses near the interface at fiber ends
(Haener and Ashbaugh 1967; Carrara and McGarry 1968) have
been made. Experimental measurements of interfacial strength have
been made using a single fiber pull out test (Favre and Perrin 1972),
a fiber fragmentation test (Wadsworth and Spilling 1968), a
microtension test (Miller, Muri and Rebenfeld 1987) and a micro-
compression test (Mandell, Grande, Tsiang and McGarry 1986).
(Also see Piggott 1987 and Piggott and Dai 1988.)

Although the shear-lag approach is not as rigorous as the other
methods, it does provide a simplistic analysis for gaining some
insights into a complex problem and it will be employed in the
following. The fiber axial and interfacial stresses are discussed with
or without the consideration of interactions among neighboring
short fibers.

4.2.1 A single short fiber

Cox (1952) first dealt with the problem of a single short
fiber embedded in an infinite matrix material. In this essentially
one-dimensional approach the load on the fiber is considered to be
built up entirely due to the generation of shear stress in the matrix.
Under the assumptions of shear-lag analysis no tensile stress is
permitted to transmit across a fiber end.

Consider a long cylindrical composite of radius R which contains

a fiber of radius r, and length / along the cylinder axis. The
composite as a whole is subjected to a normal strain € in the
direction of the fiber. The assumption of the shear-lag analysis leads
to the following relation:

dr H 4.1

= Hu-v) (4.1)
where u(x) is the displacement of the fiber at the point x; v(x) is
the matrix displacement; H is a constant; and P is the fiber axial
force. The force—displacement relation of the fiber is

du
P= EfAfa (4‘2)

where E; and A; denote the fiber axial Young’s modulus and cross-
sectional area, respectively. Substituting Eq. (4.2) and dv/dx =
constant = € into Eq. (4.1), and applying the boundary conditions
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P =0 at x =0 and [, the fiber axial stress, g;, and interfacial shear
stress, T, are obtained:

Py cosh B2
G‘_Af_Efs[l cosh (Bl/2) ]
(4.3)
) G, sinh B(1/2 — x)
T=FE« \/[2Ef ln(R/ro)] cosh(p!/2)

where
ﬁ = \/[H / EfAf]

_ 2aGy,
" In(R/1,)

Here, G,, and E; are the matrix shear modulus and fiber Young’s
modulus, respectively. Figure 4.1 shows schematically the variation
of o; and 7 along the length of the fiber. The largest axial stress in
the fiber occurs at the center and it reaches E;¢ for a very long fiber.
The magnitude of 7 reaches its maximum at the fiber ends, i.e., at
x =0 and /, and it vanishes at the middle point of the fiber.

4.2.2  Fiber—fiber interactions

The interactions among fibers in a short-fiber composite are
more complex than those in a continuous fiber composite. This is
because the axial load carried by a short fiber has to be transferred
to the neighboring fibers at locations near its ends. To illustrate the
load transfer in a short-fiber composite, the work of Fukuda and
Chou (1981a) is recapitulated in the following. This approach,
based upon the shear-lag model, introduces axial load into the

Fig. 4.1. The variation of o; and 7 along a short fiber.
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matrix, and the fiber ends are assumed to be bonded to the matrix.
These assumptions of the modified shear-lag analysis are valid if the
bonding between the fiber and matrix at the fiber end is perfect such
as the cases often observed in metal matrix composites and in
polymeric matrix composites under compression.

The two-dimensional model for analysis is given in Fig. 4.2,
where the hatched parts of the matrix sustain axial load and behave
as if they are fibers with a Young’s modulus different from the actual
fibers. The fiber diameter and matrix layer width are denoted by d
and A, respectively. A representative region in Fig. 4.2 containing
fiber ends is divided into n parts along the fiber direction x. Fibers
in this region are numbered from i = 1 to i = m. Figure 4.3 shows a
free body diagram of a fiber and the adjacent matrix. The
equilibrium of forces in the x direction gives

dpP;;

'—_]+ tlj = 0

dP, :

g -, =0  (i=2,...,m—1) (4.4)
dP,,;

=g =0

Fig. 4.2. The general model of analyses, § =x/d. (After Fukuda and
Chou 1981a).
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where P; and 7;; are, respectively, the axial force of the ith fiber and
the interfacial shear stress in the jth region. The condition of linear
elastic deformation leads to the following stress—strain relations:

du
F;= Eijd E

(4.5)

T = n (Uir1j— Uy).

where E, G and u denote the Young’s modulus of the fiber, shear
modulus of the matrix, and displacement of the fiber, respectively.
The subscripts i and j indicate the ith fiber and jth region as shown
in Fig. 4.2. Thus, E; is either E; (Young’s modulus of the fiber) or
E.. (Young’s modulus of the matrix).

The above general formulation is now applied to a model
composite shown in Fig. 4.4. This model is composed of a row of
short fibers of equal length and two surrounding long fibers. This
simple model is adopted for demonstrating the load transfer of short

Fig. 4.3. Free body diagram of the ith fiber. (After Fukuda and Chou
1981a.)
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fibers. Given i (=1 and 2) and j (=1 and 2) as shown in Fig. 4.4, the
following general solutions of u; and P; are obtained from Egs.
(4.4) and (4.5):

Uy = Al + Blg + CleA]E + Dle_}“s
Us = A+ B & —3(Cie* + Die %)
Py = E¢(B, + 4,(C,e"® — Die™%)}

Py = E{B, — 3 A,(C,e"* — D,e"%)}
(4.6)
U= A2 + Bz& + (:zeA25 + D267A25

k .
Uy = Az + Bzg - ‘2' (CzeAzs + Dzei}tzg)
Py = E{By+ Ay(Cye™* — Dye™%%)}
k
Py = Ef{B2 -3 Ay(Cre™® — Dze—‘ﬁ)}

where
E=x/d, a;=E;h/Gd
k=E_,/E;

j = \/(cvl,- + 2&2,-)
/ a0y,

and A,, B,, C,, D, A,, B,, C, and D, are unknown constants.
The axial force and boundary conditions of the model of Fig. 4.4
are
(1) symmetry conditions

(M11)e=0=0, (U21)e=0=0, (U12)e-¢, = (U22)e=¢, (4.7)
Fig. 4.4. An example of a three-row fiber model. (After Fukuda and Chou
1981a.)
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(i) continuity conditions

(U11)g=g, = U12)g=z,» (U21)z=g, = (Un2)e=,

4.8)
(Pi)e=g, = (P2)g=g,, (Po)e=g, = (Pr)e=s,
(ii) equilibrium of force
P11+2P21=3P0, P12+2P22=3R, (49)

where 3P, denotes the total applied load, and &, and &, are given in
Fig. 4.4. The above conditions provide nine equations, of which
eight are independent, to determine the eight integral constants of
Eqgs. (4.6). Finally, the axial load distribution becomes:

2A(1—k
Py/P,=1- M sinh A,(§, — &,) cosh 4,§

Al —k
Py /P=1+ % sinh 4,(§;, — &,) cosh 4,§

(4.10)
3k 2A,(1—k) .
P,/P,= Tk {1 + 2(3F ) sinh 4,&, cosh A,(& — 51)}
B ki (1K) . }

Pty = 5= (1= i 4, cosh e - &)

where

F = kA, cosh A,(&, — &,) sinh A, &,
2+ k
+ = Ay sinh Ay(&, — &,) cosh A, &,

The displacement field can also be obtained with the given
boundary conditions.

Limiting cases such as a single short fiber, a semi-infinite fiber and
two semi-infinite fibers separated by a gap can be deduced from Fig.
4.4. Furthermore, the solution for the case where no load is
transferred at fiber ends can be obtained by setting K =0 in Eqgs.
(4.10). Figure 4.5 shows the axial load distributions, for several
E./E, values, in the continuous and discontinuous fibers. Fukuda
and Chou (1981a) also concluded that the axial load distributions
near the fiber ends are essentially the same for fibers of different
length for given k/d and E;/E,, values. This is demonstrated in Fig.
4.6 for the fiber configuration of Fig. 4.4. This finding is consistent
with Rosen’s (1964) definition of ineffective length (Section 3.4.6.1)
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which is independent of the actual fiber length (Chen 1971; Fukuda
and Kawata 1977). Fukuda and Chou (1981b) have also considered
the effects of load transfer at fiber ends and plastic deformation in
the matrix.

4.3 Elastic properties

The elastic behavior of short-fiber composites has been
extensively studied. It is convenient to subdivide short-fiber com-
posites into three categories, according to their fiber orientations,

Fig. 4.5. Effect of E,/E,, on fiber axial load distribution, for hA/d =1,
&, /d =100, E;/d = 120. &, and &, are defined in Fig. 4.4. (a) Continuous
fiber, and (b) discontinuous fiber. (After Fukuda and Chou 1981a.)
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for the purpose of stiffness discussions: (1) unidirectionally aligned
short fibers, (2) partially aligned short fibers, and (3) random short
fibers.

4.3.1  Unidirectionally aligned short-fiber composites

For unidirectionally aligned short-fiber composites, the
focus is on the effect of fiber length. Two major approaches are
presented for the prediction of elastic moduli of aligned short-fiber
composites. The first one is based upon a self-consistent model and
the second one gives the upper and lower bounds of elastic moduli.
The validity of some semi-empirical and numerical solutions is also
examined.

4.3.1.1 Shear-lag analysis
Using Cox’s fiber stress expression of Eqgs. (4.3), the
average fiber stress is

1 1
5f=7f0fdx
0

B tanh(ﬁl/2)>
BL/2

Based upon Eq. (4.11), the effective axial Young’s modulus of the
short-fiber composite is approximated by

= Efs<1 (4.11)

E,= Efof(l) + Em(1 - Vf) (4-12)
where
_, _tanh(Bl/2)
fh=1 THZ (4.13)

and it represents a reduction of the composite elastic modulus due
to the finite length of the fiber.

4.3.1.2 Self -consistent method

The self-consistent method is a rigorous approach based
upon the assumptions that the fiber and matrix materials are
isotropic, homogeneous and linearly elastic, the fiber—matrix inter-
facial bonding is perfect, and the composite with aligned fibers is
macroscopically homogeneous and transversely isotropic. As re-
viewed by Chamis and Sendeckyj (1968), there exist two basic
variants of the self-consistent approach, namely the method by Hill
(1965a&Db) and that used by Kilchinskii (1965, 1966) and Hermans
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(1967). Hill followed the method proposed by Kréner (1958) for
aggregates of crystals and modeled the composite as a single long
fiber embedded in an unbounded homogeneous medium which is
macroscopically indistinguishable from the composite. The model of
Kilchinskii and Hermans, on the other hand, consists of three
concentric cylinders: the innermost cylinder has the elastic pro-
perties of the fiber, the middle one simulates the pure matrix
material, and the outer one is unbounded and has the properties of
the composite. Hill has shown that the prediction of the self-
consistent method is more reliable at low and intermediate fiber
contents.

The approach of Hill has been adopted by Chou, Nomura and
Taya (1980) to treat the stiffness of short-fiber composites. In their
work, a single inclusion is assumed to be embedded in a continuous
and homogeneous medium (see Hill 1952; Eshelby 1957; Hashin
and Rosen 1964; Mura 1982). The inclusion has the elastic
properties of a short fiber while the surrounding material possesses
the properties of the composite. It is the unknown elastic property
of the composite that needs to be found. The work of Chou et al.
does not restrict the number of component phases in the composite
and is hence applicable to hybrid composites (Chapter 5). Numeri-
cal examples of this self-consistent approach are given for the
special case of a binary system of one kind of fiber in a matrix.
Figure 4.7 shows the variation of longitudinal modulus E;, of a
glass/epoxy system with inclusion volume fraction V; at three
different inclusion aspect ratios (//d). For [/d =100 the self-
consistent theory predicts that the inclusions behave like continuous
fibers and the rule-of-mixtures is valid. Also shown in Fig. 4.7 are
the predictions of the semi-empirical relation of Halpin and Tsai
(see Halpin 1984). The discrepancy between the self-consistent
theory and the Halpin—-Tsai equation is most pronounced at
intermediate values of the aspect ratio. Comparisons of the self-
consistent approach with experiments are given in Section 4.3.2,
where the effect of fiber misorientation is taken into account.

The predictions of elastic stiffness for particulate-filled composites
have been performed by a number of investigators, including
Kerner (1956), van der Poel (1958), Hashin and Shtrikman (1963)
and Budiansky (1965). The self-consistent theory reduces to
Budiansky’s solution for the special case of I/d = 1.

4.3.1.3 Bound approach
Nomura and Chou (1984) also adopted an alternate ap-
proach to short-fiber composite effective moduli by deriving their
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upper and lower bounds. This approach was motivated by the work
of Eshekby (1961), Hashin (1965a), Kroner (1967, 1972, 1977),
Dederichs and Zeller (1973), Zeller and Dederichs (1973), Wu and
McCullough (1977), and Christensen (1979). Nomura and Chou
adopted a perturbation expansion of the composite local strain
based upon the elastic Green’s function. The effective elastic
constants can be expressed in infinite series form. When the series
are written in terms of the stiffness constants, the first term is the
well known Voigt average (1889). The first term of the series
represents the Reuss average (1929) when the expression is written
in terms of the compliance constants. Based upon the assumptions
that the short fibers are modeled as aligned ellipsoidal inclusions
and distributed in the matrix material in a statistically homogeneous
manner, Nomura and Chou have evaluated the series expressions of
the elastic constants up to the third-order term. A variational
treatment has been utilized to derive the bounds of the effective
elastic moduli of the unidirectional short-fiber composite.

Fig. 4.7. The variation of E,,/E, with V; at various I/d values for
E/E, =20, v,=0.3 and v, =0.35. self-consistent approach; — - — —
Halpin-Tsai equation. (After Chou, Nomura and Taya 1980).
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Figure 4.8 illustrates the variation of the axial Young’s modulus E,
(normalized by the matrix modulus E ) with fiber volume fraction
V; at fiber aspect ratios //d =1, 5 and o, for glass/epoxy compos-
ites. The solid lines indicate the upper and lower bound predictions;
the predictions of the self-consistent model of Chou, Nomura and
Taya (1980) are indicated by broken lines. The self-consistent
model prediction is close to the lower bound at low fiber volume
fraction and approaches the upper bound at high fiber volume
fraction. The gap between the bounds at a fixed fiber volume
fraction narrows as the fiber aspect ratio increases. For long
continuous fibers, the bound approach and the self-consistent model
all predict the rule-of-mixtures relation. Although fiber volume
fraction in the full range of 0 to 1 is used in Fig. 4.8, it is understood
that the maximum attainable fiber volume fraction in a composite is
determined by the fiber geometric packing and fiber cross-sectional
shape.

Figure 4.9 shows the comparison of the bound approach with
Hashin’s (1965a) results for the effective axial shear modulus G, of
continuous fiber composites. The theory of Nomura and Chou
(1984) predicts tighter bounds than those of Hashin. This is due to

Fig. 4.8. The variation of E,/E,, with V; for E/E =20, v,, =0.4 and
vi=0.3 —— bound approach; - - - -self-consistent model. (After
Nomura and Chou 1984).
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the fact that Hashin’s result is equivalent to the evaluation of the
series expression of the elastic constants up to the second-order
term. The bounds of effective elastic moduli of multi-phase systems
such as hybrid composites can also be examined by this approach.

4.3.1.4 Halpin-Tsai equation

The Halpin-Tsai equation (see Halpin 1984) was obtained
by reducing Hermans’ solution (1967) to a simpler analytical form
while the filament geometries are taken into account through the
use of some empirical factors. The pertinent relations are

P _1+fnV;
P, 1-7V;

(4.14)
Vi = veVe+ v Vi

Fig. 4.9. The variation of G,,/G, with V; for E/E, =20, v,,=0.4,
v;=0.3 and //d — . bound approach; — — — - self-consistent model;
—+—+— bounds of Hashin and Shtrikman. (After Nomura and Chou
1984).
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where

n=(P/Pn—1)(B/Py+ )
(B =2(5) + 401

E(Ep)=2+40V{°

E(Gp)=1+40V{

8(Ga)=1/(4-3v,,)

P=E,, Ey, G, or Gy

P;= E; (for E,; and E,,) or G; (for G, and Gy;)
P.=E,, (for E{; and E,,) or G, (for Gy, and Gy3)

Other solutions of effective elastic constants can be found from,
for instance, the numerical work of Conway and Chang (1971), and
Chang, Conway and Weaver (1972). Experimental data on short-
fiber composite elastic properties have been reported by Lees
(1968), and Blumentritt, Vu and Cooper (1974).

4.3.2  Partially aligned short-fiber composites

It is usually desirable to orient the fibers for enhanced
stiffness and strength properties. However, perfect alignment of
short fibers in a composite is normally very difficult to achieve.
Partial fiber alignment is typical in, for example, injection molded
composites. Several different approaches have been adopted by
researchers to predict the stiffness of short-fiber composites with
biassed fiber orientation. The following discussions of these ap-
proaches begin with a brief summary of the original treatments on
misaligned continuous fibers.

The first attempt in examining the effect of fiber orientation is
attributed to the work of Cox (1952), who studied the elastic
properties of paper and other fibrous materials. Cox’s model is
concerned with continuous fibers of negligible thickness with
orientations either random or defined by some distribution rules.
The contribution of matrix to stiffness is ignored. It is also assumed
in this model that under load the fibers do not slide across each
other at the points of intersection (see Cook 1968).

Cook (1968) provides the elastic properties of continuous fiber
composites in three dimensions. The systems of misorientation
examined by Cook include the axially symmetric type, a fan shaped



Elastic properties 183

array and systems of crossed fibers. Fiber orientation distribution
functions are generated analytically to describe the characteristics of
these systems. A case of most practical significance is the axially
symmetric fiber distribution, which is also termed the witch’s broom
by Cook. The degree of fiber scatter from perfect alignment is
described by the root-mean-square deviation of orientation from the
symmetry axis
/2

s?= n(0)6*sin 8 d6 (4.15)
0

where n(0) is the fiber orientation distribution function. According
to Cook, for a composite such as glass fibers in a polymer resin
(ViE¢/ Vo E, ~20) the orientation effect can be minimized if the
fibers are sufficiently long and, hence, a high degree of orientation
can be achieved. On the other hand, for whisker reinforced
composites the reduction in stiffness may be significant if the fibers
are short and alignment becomes a difficult technical problem. Cook
reported that for a silicon nitride whisker reinforced epoxy resin
composite examined, stiffness reduction of 4-19% could occur for
the root-mean-square scatter between 4.5° and 10°.

Fukuda and Kawata (1974) considered the Young’s modulus of
short-fiber composites and took into consideration variations in
both fiber length and orientation. The analysis is based upon the
plane stress elasticity solution of load transfer between the fiber and
matrix in a single short-fiber model, and the assumption of
negligible interactions between neighboring fibers. The prediction
of the composite Young’s modulus is given in the general form

E.= CICBEf‘/f + E‘m(1 - ‘/f) (416)

The factors C;, and C, reflect the effects of fiber length and
orientation distributions, respectively. Both C; and C, are unity in
the case of aligned continuous fibers.

Figure 4.10 shows the variations of C; with the factor
(l/d)(E¢/ E,,) where I/d denotes the fiber aspect ratio. The open and
solid circles in Fig. 4.10 are experimental values of Anderson and
Lavengood (1968) for glass/epoxy and boron/epoxy, respectively.
The solid line is obtained from a two-dimensional analysis and the
broken line is the modified result when the fiber circular cross-
sectional shape is taken into account. Figure 4.11 shows the
variations of C, with n(8), which is the probability density of fibers
at the orientation angle 6. Fukuda and Kawata assume that
f5*n(0)d0 =1. Three forms of 7n(6) are assumed: rectangular,
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sinusoidal and triangular. 6, defines the range of fiber angular
distribution. Comparisons of the predictions of Eq. (4.16) with the
measured modulus of an a-SiC whisker/aluminum composite
(Schierding and Deex 1969) are favorable.

The above discussions have centered upon either continuous
fibers or short fibers in planar arrangement. A treatment of the
three-dimensional fiber orientation effect has been developed by
Chou and Nomura (1981). They considered an axially symmetrical
fiber orientation distribution. Referring to Fig. 4.12, the general
orientation of a short fiber can be considered as derived from the

Fig. 4.10. Relation between C, and (I/d)/(E/E,). (After Fukuda and
Kawata 1974).
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original position along the z axis by two rotations. The cor-
responding rotational angles are @ and 6, as indicated in Fig. 4.12.
The transformation matrix, from the original coordinate system to
the current system, is defined as

sinfcos@ sinfsing cosb
[T]=] cosBcos@ cos@singp -sinb (4.17)
—sin @ Cos @ 0

Let the bold-faced letter indicate a tensor. The transformation of an
elastic stiffness tensor C (or compliance tensor S) of a unidirection-
ally aligned short-fiber composite can be performed through the
application of the T matrix and the resulting tensor is denoted by C’
(or §'). The effective elastic tensor of a misaligned short-fiber
composite is then given by

C"=fC’(0, @)n(6, ¢)dA

27 T
=I d(pj C'(6, )n(6, ¢)sin 6d6 (4.18)
0 0

Here, 1n(6, ¢) in the above equation is the probability density
function of fiber orientation determined from experiments. The
integration is carried out over the surface area of a unit sphere to
include all the fibers in the composite.

Fig. 4.12. Reference coordinate axes.
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Two cases of fiber orientation distribution are of practical
importance. In the case of injection molded objects, fiber orienta-
tion distribution is independent of the angle ¢ if the direction of
flow is along the z axis, and n = 1(8). The composite in this case is
isotropic in the plane transverse to the z axis, and C" is independ-
ent of @. In sheet molding compounds, it is reasonable to assume
that the short fibers all lie on the xz plane and the problem is
two-dimensional. The transformation matrix is

sinf 0 cos@
T=|cosB® 0 —sinf 4.19)
0 1 0

Equation (4.18) is then reduced to
C'= 2nf C'(6)n(0)sin 6dO (4.20)
0

It has been pointed out in the variational treatment of Section
4.3.1 that the first term in the series expression of composite
stiffness constant or compliance constant gives the well known
Voigt’s upper bound or Reuss’ lower bound. The averaging
principles of Voigt and Reuss were first used to predict the elastic
properties of a polycrystalline aggregate in terms of the basic
properties of a single crystal and its orientation in the aggregate.
The Voigt and Reuss averages are equivalent to assuming that the
single crystals are arrayed in parallel and in series, respectively.
These concepts of Voigt and Reuss averages are also useful in
dealing with misaligned composites. They can be expressed in the
general forms for the stiffness constant C and compliance constant S
as

(C) =fVC(r, 6, (p)dV/LdV

(s) =fVS(r, 0, (p)dv/jvdv

where, in general, C and S are functions of position (r, 8, ¢) as
shown in Fig. 4.12. Furthermore, it can be shown that in the Voigt
and Reuss averaging processes for small fiber misalignment there is
negligible difference between the model involving a distribution of
fiber orientations and the model in which all the fibers are aligned
along the direction of the root-mean-square average angle (see

(4.21)



Elastic properties 187

Knibbs and Morris 1974). The treatment of effective elastic moduli
for partially aligned short-fiber composites can also be achieved
through the laminated plate analogue, which is discussed in Section
4.3.3.

4.3.3  Random short-fiber composites

The treatment of Cox (1952) discussed in Section 4.3.2
deals with the stiffness of continuous fibers distributed in a plane.
For completely random fiber distribution, Cox’s results are reduced
to the simple forms

Ec = Ef‘/f/3
G.= E,Vi/8 (4.22)
v.=1

[

where E., G, and v, are, respectively, the Young’s modulus, shear
modulus and Poisson’s ratio of the composite. The random distribu-
tion of fibers imparts isotropic properties of the composite at the
macroscopic scale. Hence, E., G, and v, satisfy the relationship for
isotropic materials:

G.=E.J2(1+v,) (4.23)

The contribution of matrix material is neglected in this treatment
but has been taken into account in the works of Arridge (1963), and
Pakdemirli and Williams (1969), who also derived approximate
expressions for E_ and G..

Nielsen and Chen (1968) proposed that the in-plane Young’s
modulus of a random composite with continuous fibers can be
approximated by an averaging process. Basic to this process is the
knowledge of the elastic moduli of a unidirectional fiber composite
measured at an angle 8 from the fiber direction (see Eqgs. 2.19). The
effective in-plane Young’s modulus of a random composite, for
example, is then given by

/2
E =— E(6)do (4.24)
7T Jo

In applying Eq. (4.24), the fiber volume fraction of the composite
used for calculating E(6) should be the same as that in the random
composite. It should also be noted that E(6) is not a component of
a tensor. Hence, the averaging process defined in Eq. (4.24) bears
no relation to the Voigt and Reuss averages discussed in Section
4.3.2.
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The elastic moduli of a composite where the short fibers exhibit
in-plane random orientation can also be examined by the method of
a laminate analogue (Halpin 1969; Halpin and Pagano 1969;
Halpin, Jerine and Whitney 1971). The following discussions are
based upon reviews by Kardos (1973) and Nicolais (1975). In
the laminate analogue the mechanical response of the composite is
simulated by that of a laminate composed of unidirectional short
fibers (Kardos 1973). The laminate is symmetric about the mid-

Fig. 4.13. (a) Laminate analogue of a composite with random in-plane
orientation of short fibers. The quasi-isotropic laminate has the [+45°/—
45°/90°/0°]s configuration. (b) Dependence of tensile modulus on volume
fraction of 3.2 mm E-glass/polycarbonate composites for random in-plane
(dashed curve) and biassed (solid curves) fiber orientations. — - — —is
quasi-isotropic calculation; weighted distribution calculations; O, @
experimental data. Fiber aspect ratio is about 313. (After Halpin, Jerine
and Whitney 1971).

Quasi-isotropic laminate
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plane and has the same number of +6 and —6 orientation plies
(Fig. 4.13a).

The concept of the laminate analogue is outlined in the following.
First, the four independent elastic moduli E,;, E,,, v|; and G, of a
unidirectional short-fiber lamina can be derived from the fiber and
matrix properties based upon the self-consistent model, the varia-
tional method, or the Halpin-Tsai equation. The stiffness matrix
components (J; are given by Egs. (2.14). The effective engineering
stiffness constants E,, Ey, v, and Gy, for the aligned short-fiber
lamina can be expressed in terms of the (;’s as given in Table 2.1.

The stiffness matrix components (; for a unidirectional lamina
oriented at an angle 6 with respect to the x axis are given in Eqgs.
(2.16). They can also be written in the following alternate forms:

Q1= U, + U, cos 28 + U, cos 46
Q5= U, — U,c08 28 + Uy cos 40
Q,,=U,— U;cos 46

Q= Us— U, cos 46
Q.6=13U,sin20 + U;sin 46

Q. =3U,sin 20 — Uy sin 46

(4.25)

Fig. 4.13. (cont.).
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where the U, are defined as
U =360 +30x+201,+404)
U, = %(Qu —0)
Us=35(Qn + Q22— 2012 — 4Q%s)
Us=35(Q11 + Q22+ 601> — 4Q05)
Us=8(Qn + Q2 — 2012+ 4Qss)

When the plies are stacked together to form a laminate, the
in-plane stretching stiffness A is given by Eqgs. (2.29). For the case
of a balanced angle-ply (+60) composite with mid-plane symmetry,
the bending stiffness B,; (Eqs. 2.29) and the coupling terms A,, and
A, vanish, and the A, components can be represented by

Ay =[U + U, cos20 + U, cos 48]k
Ay =[U, — U,cos28 + Uscos 46)h
A =[Us— Uscos 40]h
Age =[Us — Uy cos 40]h

(4.26)

Here, h denotes the total laminate thickness. Following the same
reasoning for the derivation of Eq. (2.15), the effective engineering
constants of the laminate are given by

A11A22 - A%Z

E =
11 A22'h

(4.27)

If a random short-fiber composite assumes the form of a thin
sheet while the sheet thickness is less than the average fiber length,
the composite can be modeled as a ‘quasi-isotropic laminate’. In
principle, the laminate can be constructed by stacking up unidirec-
tional laminae in all orientations to achieve a balanced and
symmetric arrangement. Because the fiber orientation covers all the
values between 0° and 180°, the angular dependent terms in the A4,
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components of Egs. (2.16) cancel one another. Consequently, the
effective engineering constants can be simplified as

£ =aU,
1
UI—ZU;
V= (4.28)

Gc= US

It is obvious that the above elastic constants satisfy the necessary
relation for in-plane isotropy. Expressions for random fiber com-
posite elastic constants equivalent to Eqs. (4.28) also have been
obtained by Akasaka (1974). Halpin, Jerine and Whitney (1971)
have demonstrated the validity of the laminate analogue by
comparing the analytical predictions with the measurement of
effective tensile modulus of E-glass/polycarbonate with random
fiber orientation as shown in Fig. 4.13(b).

The laminate analogue can also be applied to quasi-isotropic
short-fiber composites using lay-ups such as 0°/+60° and 0°/
+45°/90° (Warren and Norris 1953). Other works dealing with the
elastic stiffness of random fiber composites can be found from Tsai
and Pagano (1968); Manera (1971); Christensen and Waals (1972);
Wilczynki (1978); and Hahn (1978). As pointed out by Bert (1979),
the accuracy of these approximations is affected by the fiber volume
fraction and the ratio E{/FE,. The laminate analogue can also
be used for examining the elastic properties of short-fiber com-
posites with layered microstructures. Figure 4.14 shows the scanning
electron micrograph of the cross-section of an injection molded poly-
ethylene terephthalate with short glass fibers. This type of layered
structure has been found in many types of short-fiber reinforced
thermoplastics.

Attempts also have been made to predict the stiffness of
composites with random fibers in three-dimensional distribution.
Rosen and Shu (1971) and Christensen and Waals (1972) examined
the case of continuous fibers. Halpin, Jerine and Whitney (1971)
treated the case of layers of plain woven fabric in which the unit
weave cell is pierced by a straight yarn perpendicular to the fabric
plane. The problem of random short fiber orientation in three
dimensions has been treated by Chou and Nomura (1981). By
taking 7 = 1/27 in Eq. (4.18), elastic moduli for completely random
orientation can be obtained. Figure 4.15 illustrates the theoretical
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variations of E./E with V; for a random glass/epoxy system and
the experimental data of Manera (1971).

The laminated plate analogue developed above can also be
applied to consider in-plane partially aligned short fibers (Halpin,
Jerine and Whitney 1971; Kardos 1973) discussed in Section 4.3.2.
In this case the angular fiber distribution function 7(6) needs to be
measured from the composite specimen. The laminate simulating
the composite is treated as composed of weighted groups of angle
plies (+£6) with fixed fiber volume fraction. The percentage of
materials oriented at the angles +0 is obtained from 7(8). The
contributions to the overall response of laminate stiffness from
different layers are proportioned to their fractional thickness in the
laminate.

Table 4.1 gives an example of the orientation distributions of
discontinuous glass fibers in a polymeric matrix. The composite is

Fig. 4.14. SEM micrograph of short glass fiber/polyethylene terephthalate
showing layered structure of fiber orientations. (After Friedrich and
Karger-Kocsis 1989.)
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compression molded from extrudate. It can be seen that most of the
fibers are oriented quite close to the extrusion direction. Whereas
previously each £6 ply was weighted equally in summing up the
stiffness contributions to the laminate, one must now account for
the fact that more of the laminate thickness may be made up of one
angle than the other. Define a(6)/h as the percentage of the
material oriented at the angles 6, and it is obtained from the
experimental angular distribution 7(68) where [§ n(68)d6=1. The
stiffness moduli A; of the laminate is related to the stiffness of the
plies A;(6,), oriented at the angles +6,, by

2 a
Ay=2 (:k)A,-,-(Hk) (4.29)
k=1
where n is the total number of plies.

In summary, the calculation of the effective engineering stiffness
of short-fiber composites with biassed fiber orientations should first
follow the procedure outlined in Section 2.3 to obtain the A;
components for each fiber angle. These are then summed according
to their fiber angular distributions such as that given in Table 4.1
and Eq. (4.29) to obtain the A; terms. The engineering constants
are then obtained from Egs. (4.27). The solid lines in Fig. 4.13(b)

Fig. 4.15. The comparison of E_/E, (—— bound approach; — — — — self-
consistent model) with experimental data for E/E, =324, v,=04,
ve=0.25 and !/d— . (After Chow and Nomura 1981.)
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are theoretical predictions of the tensile moduli based upon this
procedure. The bumps in the curves are attributed to the fact that
the angular distribution functions are not smooth functions of fiber
volume fraction.

4.4 Physical properties

The physical properties described below include thermal
conductivity and thermal expansion coefficients. These properties
are essential to the study of the thermomechanical behavior of
short-fiber composites.

4.4.1  Thermal conductivity
The important transport properties of composites include
dielectric constant, heat conduction, electrical conduction, magnetic

Table 4.1. Fiber orientation distributions in composites
compression molded from rod extrudate. Short glass fiber aspect
ratio =~ 313. After Halpin et al. (1971)

Orientation 8 (degrees) Percent fibers having @ orientation
2.5 23.4 25.4 25.0 36.5
7.5 17.9 18.1 23.8 23.9

12.5 12.0 12.3 16.4 14.2

17.5 16.0 7.7 10.0 5.7

22.5 6.2 6.4 6.8 3.0

27.5 5.9 5.6 4.8 2.7

32.5 4.4 4.6 3.1 1.8

37.5 4.6 3.1 2.4 2.0

42.5 2.6 3.4 1.6 1.0

47.5 1.7 1.9 1.3 0.4

52.5 0.4 1.3 0.8 0.7

57.5 0.7 0.7 1.1 0.8

62.5 1.0 1.4 0.9 0.5

67.5 0.7 1.1 0.7 0.7

72.5 0.1 2.1 0.4 0.5

77.5 0.9 0.9 0.6 0.8

82.5 0.5 2.3 0.3 0.9

87.5 1.0 1.4 0.1 0.8

Fiber volume fraction 20 30 40 50
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permeability and diffusion coefficients. Since all these properties are
second rank tensors, only the bounds of thermal conductivity are
demonstrated.

The linear relation between the heat flux q and gradient of
temperature 7T is given by

q=k(-VT) (4.30)

where k denotes thermal conductivity and is assumed to be a
function of position only. It is understood that k is a symmetric
tensor quantity. The governing equation for a steady-state heat
conduction is

V.q=0 (4.31)

Several approaches to this subject have been employed by
researchers. These include the statistical method by Beran (1965),
Beran and Molyneux (1966), and Hori and Yonezawa (1975) as well
as the self-consistent and variational approaches of Hashin and
Shtrikman (1962), Hashin (1968) and Willis (1977).

Nomura and Chou (1980), following their development of bounds
of elastic moduli (1984), derived bounds of effective thermal
conductivity of unidirectional short-fiber composites. The short
fibers are again modeled as ellipsoidal inclusions of the same length
and are distributed in a statistically homogeneous manner in the
matrix material. The composite exhibits transverse isotropy. This
approach is also valid for composites containing more than one type
of fiber. Consider the case of a binary system and denote the
thermal conductivity and volume fraction of the fiber and matrix
phases by k;, V; and k,,, Vi, respectively. The bounds of the
effective composite conductivity k,, along the fiber directions are

-1

A% (1——1 >2h(t)
Vi V., ke ke
Kk 1 1 vV ke
f m f m
v, -V, (———)ht +tpm
W= N 0" O i

ViViul(ki — km)*(1 = h(2))
(Vm - ‘/f)(kf_ km)(1 - h(t)) + ‘/fkf + mGm

< Vike+ Vikm — (4.32)

The bounds of the conductivity k,, and ki; in the transverse
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direction are

1 132 -1
v.vm(————) 1—h(0)/2
‘/f Vm ! kf km ( h()/)
ke k. 1 1 vy [ She=ke
f m f m
V., -V, (———) 1-h(O)2)+—+-2
( t) P ( (®)/2) P
ViV (ke — k. ) h(z
< Viks + Vinkm Vnlki = kn) () (4.33)

" (Vi = V(ke = k)b (2) + 2(Vik o+ Vipkon)

P 1 \/ P )
h(t)_ﬂ—l{l_z[ (8—1
L—1\ t+V(2-1) ]}
B \/( £ ) ln(t - V(- 1)) (4.34)
and ¢ denotes the aspect ratio //d of the short fiber.

For the special case of spherical inclusions (h(¢) =3), the com-
posite is isotropic and Eqs. (4.32) and (4.33) are simplified as

where

1 1)\2 -1
zvvm(~—-)
‘/f Vm f kf km
4z =k =Vike+ V, ko,
ke km 2V, —V)(l—i) 3(Kf+5)
" TNk ke ke km

‘/fvm(kf - km)2
- (4.35)
(Vi = Vidks = k) + 3(Vike + Viak o)
In the case of continuous fibers, A(z) =1 and Egs. (4.32) and (4.33)
become

ki, = Vike+ Vioko, (4.36)
(km+kf)kmkf <k (_k )<(mGm+ ‘/fkf)2+kmkf
(Vikn + Vik ) + kb 0 YT k., + k;

(4.37)

Figure 4.16 illustrates the variations of k,,/k,, with fiber volume
fraction of an E-glass/epoxy system for the limiting cases of //d —
and //d=1. The bounds of k,, converge to a single line for
continuous fibers as indicated by Eq. (4.36).

For axially symmetrical fiber arrangement at an angle 6 with
respect to the x, axis, the fiber orientation effect can be investigated
as in Section 4.3.2. By transforming the effective thermal conduc-
tivity tensor k; based upon the [T] matrix of Eq. (4.17) and
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subsequently integrating the tensor components over the 2 range
of @, the resulting components are transversely isotropic with
respect to the x,—x; plane:

k¥ =k, cos’> 0 + k,, sin* 8
(4.38)
2
k3 = k3 =%k, sin® 6 + k22<1+CTOSG>
By substituting the bounds of k; (Eqs. (4.32) and (4.33)) into the
above expressions, the bounds of thermal conductivity can be
expressed as functions of fiber orientation 6. Again, Eq. (4.18) can
be used to find the effective thermal conductivity of a composite
with a given n(6).
For completely random fiber orientation, the result can be
simplified to

2k,
3

k
kh=kih=ki= 7“ + (4.39)

Fig. 4.16. The variation of the upper and lower bounds of k,,/k,,, with V;
for an E-glass/epoxy system. (After Nomura and Chou 1980.)
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4.4.2  Thermoelastic constants

Knowledge of the thermoelastic constants, including ther-
mal expansion coefficients and thermal stress coefficients, is basic to
the understanding of the hygrothermal effects in composites. So far
as it is assumed that these quantities obey the linear constitutive
equation, their solutions can be obtained in a manner similar to the
determination of effective elastic moduli or thermal conductivities.
The problem of effective thermoelastic constants for non-
homogeneous materials has been investigated by several research-
ers. The works of Kerner (1956), Levin (1967), Schapery (1968) and
Budiansky (1970) are mainly concerned with composites reinforced
with spherical inclusions. Rosen and Hashin (1970) extended
Levin’s model of a binary composite to general anisotropic compos-
ites by adopting a variational approach. Laws (1973) studied the
thermoelastic behavior of anisotropic composites based upon Hill’s
self-consistent approximation.

By focussing attention on thermostatics and considering
composites at uniform temperature, heat conduction can be ex-
cluded and the problem is uncoupled with that given in Section
4.4.1. Consider a composite subjected to a stress field, o, and a
uniform temperature rise, AT. The total strain of the elastic
medium is given as

e=8S0+ aAT (4.40)

where S denotes the elastic compliance tensor, and « is the thermal
expansion coefficient. The constitutive relation of the thermal
elastic field can also be expressed in the following general form:

o0=C(e — aAT) (4.41)

where C is the elastic stiffness tensor.

Nomura and Chou (1981) have shown that for composites
reinforced with ellipsoidal inclusions and exhibiting statistical homo-
geneity, the effective thermoelastic constants can be evaluated
following the technique for deriving elastic moduli. Figure 4.17
shows the variation of q; (normalized by the fiber thermal
expansion coefficient a;) with V; and fiber aspect ratio //d for a
glass/epoxy system, assuming E;=72.3 GPa, E_, =2.76 GPa, v, =
0.35, v{=0.2, a,=36x10"%/°C and a;=5.04x107%/°C. At a
given fiber volume fraction, the thermal expansion coefficient along
the fiber direction («,;) is smaller than that transverse to the fiber
direction (a»,;). Figure 4.18 shows a comparison of the theoretical
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Fig. 4.17. The variation of «;/a; with V; and //d for an E-glass/epoxy
system. — I/d=1; —-— l/d=5; - —— - l{d = . (After Nomura and
Chou 1981.)
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Fig. 4.18. Comparison of the predicted «,,/a; with experimental data of
Yates et al. (1978).
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prediction of Nomura and Chou with the experimental results of
Yates et al. (1978) on a carbon/epoxy system where E¢/E.,, =53.4,
vo=v=034, o, =5%107°/°C and a;=0.5-1.9 x 1073/°C.

4.5 Viscoelastic properties

The viscoelastic properties of composite materials were first
examined by Hashin (1965b, 1969, 1972), who dealt with matrices
reinforced with spherical inclusions and continuous fibers. Hashin
showed that viscoelastic problems in composite materials can be
solved by considering the corresponding problems in elasticity.
Although application of the elastic—viscoelastic correspondence
principle (see, for example, Christensen 1971) is well known, there
are practical difficulties. This is due to the fact that very often the
creep compliances or relaxation moduli of the constituents of a
multi-component system are not known, and, even if they are given,
the inverse transformation process would be formidable. Approxi-
mate methods for inverting the Laplace transform have been
proposed by Schapery (1967, 1974).

The work of Laws and McLaughlin (1978) on viscoelastic
composite materials adopted a self-consistent approximation. They
derived the creep compliance, and numerical calculations were
performed for the limiting cases of composites containing spherical
inclusions and continuous fibers. Eimer (1971) derived formal
effective relaxation moduli expressions of multi-phase media by
considering the many point correlation functions.

Chou and Nomura (1980) and Nomura and Chou (1985) obtained
the effective relaxation moduli of short-fiber composites based upon
their work on effective elastic properties. Explicit expressions of
composite relaxation moduli are given in terms of the elastic and
viscoelastic properties of the constituent phases, fiber volume
fraction, and fiber aspect ratio. Numerical calculations for a typical
glass/epoxy composite system based upon the collocation ap-
proximation method as well as the self-consistent model have
been performed by Nomura and Chou. It is assumed that the fiber
is elastic while the matrix phase is viscoelastic. Figure 4.19 shows
the time dependence of the effective axial Young’s modulus of
relaxation (normalized by the initial value of the matrix Young’s
modulus) for the fiber volume fraction of V;=0.2 and fiber aspect
ratios //d=5 and ®. The matrix behavior is shown by the
lowermost curve in Fig. 4.19. The effective axial Young’s modulus
of relaxation at each fiber aspect ratio is calculated from the
effective relaxation moduli (upper curve), the self-consistent model
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(middle curve), and the effective creep compliances (lower curve).
The self-consistent approximation always lies in between the
predictions of the two other approaches. The results also indicate
that the increase in fiber length or aspect ratio makes the effective
axial Young’s modulus of relaxation less sensitive to the time effect.
The fiber length effect also has been examined by Nomura and
Chou for other effective moduli, i.e. the transverse Young’s
modulus of relaxation and the shear relaxation modulus, and they
found no such sensitivity for these effective relaxation moduli, as in
the elastic case.

4.6 Strength

Unlike continuous-fiber composites the mechanical be-
havior of short-fiber composites is often dominated by complex
stress distributions due to fiber discontinuities. In particular, the
local stress concentration at fiber ends plays a critical role in
affecting the performance of short-fiber composites, and it often
reduces the strength of a short-fiber composite to a level far less
than that of a continuous-fiber composite with the same fiber
volume content. Several theories (see Vinson and Chou 1975) have
been proposed to predict the strength of discontinuous-fiber com-

Fig. 4.19. Time dependence of effective axial Young’s modulus E, /E, | for
l/d=5 and « and V;=0.2. The viscoelastic material properties are
E ()=E_(0)=3.2GPa, E_(»)=0.04GPa, v, (0)=0.365 v, (=)=
0.485, E,=71.5 GPa and v;=0.2. t denotes time. For each //d value, the
upper, middle and lower curves are obtained from the effective relaxation
moduli, self-consistent model and effective creep compliances, respec-
tively. (After Nomura and Chou 1985.)
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posites. One type of theory is based on a modification of the
‘rule-of-mixtures’, which was originally developed for continuous-
fiber composites. Since the axial stress distribution in a short fiber is
not uniform, the rule-of-mixtures has been modified by researchers
to take into account the effect of fiber length.

Among short-fiber composites, aligned-fiber composites have
many attractive properties (see Edward and Evans 1980; Richter
1980; Manders and Chou 1982). When complicated shapes and
double curvatures are fabricated by matched-die molding tech-
niques, aligned short-fiber composites have an advantage over their
equivalent continuous mats (Kacir and Narkis 1975). The ability of
aligned-fiber composites to elongate both parallel and perpendicular
to the fiber direction without splitting complements the pre-
dominant shear deformation of woven materials. Because of their
useful properties, highly aligned short-fiber composites have been
commercially produced by the centrifuge (Edward and Evans 1980)
and hydrodynamic alignment (Richter 1980) processes.

In the following, the strength of short-fiber composites is dis-
cussed first for the case of aligned fibers. Then, the effect of fiber
orientation is considered for partially aligned and random fiber
arrangements.

4.6.1  Unidirectionally aligned short-fiber composites

To examine the strength of short-fiber composites it is
necessary to recall the original strength predictions developed by
Kelly and co-workers (see Kelly and Davies 1965; Kelly and Tyson
1965a&b; Kelly 1971; Hale and Kelly 1972) for continuous-fiber
composites. The ultimate axial tensile strength expression of Kelly
et al. 1s (see Section 3.2)

Ocu= 0 Vi + 00u(1 = V) (4.42)

where 0., and oy, are the ultimate tensile strengths of the composite
and the fiber, respectively. oy, is identical with the fracture strength
of brittle fibers. oy, denotes the stress in the matrix at the failure
strain of the composite.

Equation (4.42) was derived based upon the assumptions that the
tensile strain in the composite is uniform along the axial direction
and the applied load is distributed among the fibers and the matrix.
When fibers are discontinuous, the iso-strain condition of Eq. (4.42)
is no longer valid. The difference of the strains in the fiber and
matrix near a fiber end induces shear stresses along the fiber axis.
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The shear forces acting near both ends of a fiber stress the fiber in
tension or compression. It is through this transferring of stress that
applied load can be dispersed among the short fibers.

4.6.1.1 Fiber length considerations

Figure 4.20 shows schematically the variation of fiber axial
tensile stress with fiber length. The profile of linear stress variation
from fiber ends originates from the assumption of constant interfa-
cial shear stress. The fiber critical length [, is defined as the
minimum fiber length necessary to build up the axial stress to og,.
The ultimate strength of a short fiber can be realized if its length
reaches /..

Kelly and Tyson (1965a) proposed a linear transfer of stress from
the tip of a fiber to a maximum value when the strain in the fiber is
equal to that in the matrix. By assuming constant interfacial stress
7, the fiber critical length can be easily derived by considering the
balance of tensile and shear stresses:

le _ on
d 2t
T is the shear strength of either the matrix or the interface,
whichever is smaller. Experimental measurement techniques for /.
have been discussed by Vinson and Chou (1975).
Using the concept of critical fiber length and replacing oy, in Eq.
(4.42) by the average fiber stress &, Kelly (1973) derived the
following expression of composite strength for [ =/:

Ocy = 6f‘/f + O.ltnu(1 - ‘/f)
= op[l = (1= )/ + 0r,(1 - V) (4.44)

where 6 is defined as the ratio of the area under the stress
distribution curve over the length /./2 in Fig. 4.20 to the area of

(4.43)

Fig. 4.20. Variations of fiber tensile stress with fiber length.

1<l =1 1>
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0gl./2. For constant interfacial shear strength, 6 =1 and

0= 0on(l =L 2D Vi + on(1-V)  [=Le
(4.45)
O = ofu‘/}l/ZIc + or’nu(l - va) I= lc

Equations (4.45) predict that for short fibers with I/l.=10, &;
reaches 95% of the value for continuous fibers. Equations (4.45)
have been shown to be a good approximation for metallic (Kelly
and Tyson 1965a&b; Kelly 1973) and polymer matrices (Kelly 1973;
Riley and Reddaway 1968; Hancock and Cuthbertson 1970). It
should be noted that Egs. (4.45) do not consider fiber end stress
concentration which occurs in short-fiber composites. There exist
several variants of Kelly’s formulation of short-fiber composite
strength. For example, Outwater (1956) has taken into considera-
tion the effect of interfacial friction load due to resin cure
shrinkage. However, there lies the difficulty of measuring the
friction coefficient and radial shrinkage pressure (Kardos 1973).
For pure elastic deformation of the fiber, oy, = E;g., where g, is
the composite ultimate strain. Equation (4.43) can be rewritten as
lc _ Efgcu

d 2T

(4.46)

For composites with variation in fiber length, Bowyer and Bader
(1972) pointed out that at any value of composite strain &, there is a
critical fiber length given by

Ece d
lp=—— 4.47
¢ 21 (4.47)
Fibers shorter than /. will carry the average stress
_ It
or=— (4.48)

which is always less than }E.. Fibers longer than I, carry the
average stress

E‘£°d) (4.49)

0i= Efgc(l At

which is always greater than 3 E¢e..

Following Bowyer and Bader, for a composite containing a
spectrum of fibers of different lengths, its strength can be estimated
by dividing the length of fibers into sub-fractions at a given
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composite strain level (Lees 1968). Sub-critical fractions are de-
noted by /; and their respective volume fractions V; while super-
critical fractions are denoted by /; and V,. Thus the composite stress
can be expressed as

A Y E.
.= i—’+ E Efgc<1 — ;f;d)v,Jr E.e(1—-V,) (4.50)

!

Equation (4.47) indicates that at low composite strain /, is small and
all fibers will contribute to the reinforcement as given by Eq. (4.49).
As the strain is increased, a progressively smaller proportion of the
fibers will reinforce according to Eq. (4.49) and an increasing
proportion will follow Eq. (4.48). Thus, the load-extension curve
for such a material as indicated by Eq. (4.50) is expected to show
smaller slope as the strain is increased. The work of Bowyer and
Bader on short-fiber-reinforced thermoplastics has further shown
that improvements in the fiber-matrix bond strength have led to
small improvements in strength. Also the fibers which are too short
to be strained coherently with the matrix tend to fail at very low
strains preventing the potential of the longer fibers from being
realized. Thus the very short fibers should be eliminated if full
strengthening potential is to be achieved.

4.6.1.2 Probabilistic strength theory

The following discussions of the probabilistic strength
theory of short-fiber composites begin with a consideration of fiber
length variations and their effect on fiber axial stress distribution.
Then, the influence of local stress concentrations due to fiber—fiber
interaction is introduced. A probabilistic strength theory is de-
veloped to consider the maximum stress concentration induced by
the clustering of ends of short fibers.

(A) Modification of the rule-of-mixtures

Consider a unidirectional short-fiber composite material
with fibers of uniform length and strength. The mechanisms of
failure can be categorized according to fiber length (Fig. 4.21).
When fibers are very short, a crack formed at a fiber end can
circumvent the neighboring fibers without breaking them (Fig.
4.21a). Final failure of the composite is then attributed to fiber
pull-out. On the other hand, if fibers are sufficiently long, fiber end
cracks will cause fracture of the neighboring fibers and, hence,
failure of the composite (Fig. 4.21b). The strength model of Fukada
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Fig. 4.21. Two failure modes in short-fiber composites. (After Fukuda and
Chou 1981b.)
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Fig. 4).22. Stress distribution in a short fiber. (After Fukuda and Chou
1981b).
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and Chou (1981a&b), and Hikami and Chou (1984a&b) aim at the
latter case.

The composite ultimate strength o, is defined as the stress level
which causes first fiber fracture. Consequently, the maximum stress
in a fiber is of primary importance in predicting composite strength.
Figure 4.22 shows schematically stress distributions in a short fiber.
Here 0,,,, and o, are, respectively, the maximum and plateau stress
of the profile. The average fiber stress at failure is given by

6f=%J: o(x)dx (4.51)

In the case the composite has a distribution of fiber length, Eq.
(4.51) should be replaced by

o 1 I

(’7;=J' f(l){;J' o(x) dx} dl (4.52)
0 0

where f(!) is a probability density function of fiber length and has

the following characteristics:

f Crydi=1 (4.53)

J'wf(l)l dl=1 (4.54)

I in Eq. (4.54) denotes the average fiber length. Then &; of Eq.
(4.52) should be used in the rule-of-mixtures expression of Eq.
(4.44). The values of o; and o, are not the same. However, the
difference diminishes as the fiber length increases. For relatively
large fiber aspect ratios it is reasonable to assume 0O¢= 0.
Furthermore, by defining the stress concentration factor K in the
following expression:

Omax = Ofu = Koo (455)
Eq. (4.44) can be written as

Oa= Vit (1= V) (4.56)
(B) Critical zone model

A systematic experimental study of short-fiber composite
strength has been performed by Curtis, Bader and Bailey (1978)
using polyamide thermoplastic reinforced with short glass and
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carbon fibers. Their experimental findings led Bader, Chou and
Quigley (1979) to propose a damage model. The basic concepts are
that microcracks are most likely to develop at fiber ends at
microscopic strains well below the fiber failure strain, and that
failure is finally initiated in a critical cross-section that has been
weakened by the accumulation of cracks.

Figure 4.23 depicts a typical volume element in a short-fiber
composite used by Bader, Chou and Quigley. The width of a
‘critical zone’ in the strength model is denoted by B/ where
0<pB=1is a constant parameter and [/ is the average fiber length.
The critical zone width is assumed to be of the same order as the
fiber ineffective length (Sections 3.4.6.1 and 4.2.2).

A discontinuous fiber can end in the zone (ending fiber), in which
case it bears no load, or it can bridge the zone (bridging fiber) and
contribute to the strength of the critical zone. The probabilities of
finding an ending fiber and a bridging fiber are B and 1-p,
respectively. All fibers are assumed to have uniform strength oy,.
Within each transverse section of the composite, ending fibers and
bridging fibers are distributed randomly. A typical fiber configura-
tion on a transverse section in a two-dimensional fiber array is
shown in Fig. 4.24. The ending fibers and bridging fibers are
depicted, respectively, by solid circles and open circles. Under the
applied stress, the stress in the bridging fibers is enhanced by the

Fig. 4.23. A typical critical zone in a short-fiber composite. (After Bader,
Chou and Quigley 1979).
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stress transferred from the neighboring ending fibers. For example,
the stress in the bridging fiber no. 8 in this figure is enhanced by the
ending fibers nos. 1, 5, 6, 7, 9, 12 and 13. In other words, it is
enhanced by the neighboring fiber-end-gaps A, B, C and D.

The strength of the composite is determined by the relative
numbers of fibers that bridge the zone vs. those with ends within the
zone. These latter will develop matrix cracks when the strain
exceeds a critical value. The critical situation arises when the
bridging fibers are unable to sustain the load transfer due to matrix
cracking and failure occurs. The critical stress and strain values for a
wide range of fiber aspect ratio, fiber critical length, fiber—matrix
interfacial strength and critical zone width have been evaluated by
Bader, Chou and Quigley.

© Stress concentration

The stress concentration factor for the unidirectional fiber
arrangement of Fig. 4.25 is difficult to evaluate in a precise manner.
The following assumptions are adopted to facilitate the calculation
of K: (a) fibers are of the same length, /; (b) they are arranged in
rows along the axial direction; (c) the spacing between two
neighboring rows is uniform (Fig. 4.25a); and (d) fibers with ends in
the critical zone of width ! are assumed to have the ends aligned
along the cross-section zz' (Fig. 4.25b). This collection of fiber ends
is termed a ‘fiber-end-gap’ in a two-dimensional array. It is assumed
that the fiber length / is much larger than the critical length /. and,
hence, results for stress concentrations due to the fracture of long
fibers can be used. Also, in Fig. 4.25(a), the number 1 and number
4 fibers are labeled as ‘bridging fibers’ and the number 2 and
number 3 fibers as ‘ending fibers’.

Since the stress concentration factor, K, cannot be readily
calculated by considering the enhancement effect from all the
fiber-end-gaps, assumptions need to be introduced for the load
sharing rule. Hikami and Chou (1984a) have examined the first and

Fig. 4.24. Schematic cross-sectional view of fiber configuration. Solid
circles depict ending fibers and open circles indicate bridging fibers. A
group of adjacent ending fibers is termed a fiber-end-gap (i.e. 4, B, C and
D). (After Hikami and Chou 1984a.)
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simplest approximation for K by only considering the stress
enhancement effects of the first nearest neighboring fiber-end-gap of
a bridging fiber. This is known as the weak local load sharing rule
and the assumption is allowable if the probability of finding the
ending fibers is relatively small. Using the shear-lag method, the
stress concentration factor due to the presence of n, and n, ending
fibers (Fig. 4.26) has been obtained by Hikami and Chou (1984a
and b, 1990).

It can be shown that the failure of the (n, + 1)th fiber does not
cause the composite failure since the stress concentration factor for
the (n, + 1)th fiber is larger than that for the zeroth bridging fiber
after the failure of the (n, + 1)th bridging fiber. Clearly, the failure
of the zeroth bridging fiber causes the total failure of the composite.
Thus neglecting the load bearing capacity of the matrix, the strength
of the composite is given by

Ocu ™ ofu/Kb (457)

The explicit expression of elastic stress concentration factor K, due
to b broken fibers is given in Section 3.3.1.2.

Fig. 4.25. (a) Critical zone in a two-dimensional fiber array. (b) A
fiber-end-gap. (After Fukuda and Chou 1981b.)
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The explicit expression of stress concentration factor for compos-
ites with plastically deformed matrices (Fig. 4.26) has also been
obtained by Hikami and Chou (1984a). For the small-scale plastic
deformation case, the plastic stress concentration factor, K., can be
expressed in series expansion form in terms of the dimensionless
plastic deformation zone length a.

In the large-scale plastic deformation case, K, at the tip of a
fiber-end-gap can be approximated by

- 2 /(T
Kpy=1+=— (—°>[nl(boa/To) + 7] (4.58)
T \0g,
where

T, = T V(hE(/ GuAy) (4.59)

Fig. 4.26. Model of stress concentration calculations for a fiber-end-gap in
short-fiber composites with matrix plastic deformation zone at the tip of
the gap. (After Hikami and Chou 1984.)
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Also, o,=applied stress, b = number of fibers in the gap, y' =
Euler’s constant (=0.577), 1, = matrix shear strength, G,, = matrix
shear modulus, E; = fiber axial Young’s modulus, 4 = fiber spacing,
and A; = fiber cross-sectional area. The fibers are of unit thickness.

(D) Probability distribution of maximum fiber-end-gap

The fiber-end-gap size has been analyzed by Hikami and
Chou (1984a) for the case of the two-dimensional array shown in
Fig. 4.25(b). Focussing attention on a single fiber end, the
probability, P,, that this fiber end is in the gap consisting of # fiber
ends is

P, =np""'(1-B)’ (4.60)

and

> P=1 (4.61)
n=1

The probability that a given fiber end is not in any one of the gaps
with more than n fiber ends is

Q.=1- X P (4.62)
i=n+1
When the above probability is independent for each fiber, the
probability that there is no gap larger than size # is

P(n)=(Q)" (4.63)

where N is the total number of fibers in the composite. However,
actually Q,, for a given fiber is not independent of the other fibers.
When N is sufficiently larger than the average gap size, 7, it is more
suitable to express P(n) of Eq. (4.63) as

P(n)=(Q)"" (4.64)
where

= i nP, (4.65)

Using Eqs. (4.60) and (4.62), Eq. (4.64) can be rewritten as

P(n)={1-p"[n(1 - )+ 1}" (4.66)

and
1 1-
W=E=T1g (4.67)
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P(n) can be used to determine the strength of short-fiber compos-
ites through the relation between gap size, n, and the corresponding
stress concentration. Figure 4.27 demonstrates the variation of P(n)
with N and B. It can be shown that P(n) behaves like a step
function and P(n) changes from 0 to 1 at n=M, where M is
determined from

Br[n(1-p)+1INB' =1 (4.68)

M obtained from Eq. (4.68) is termed the ‘most probable maximum
gap size’. Figure 4.28 shows M as a function of f and N. For actual
composites, the values of M do not vary tremendously with 8 and
N. When N is sufficiently large, using the formula 1 — x =exp(—x),
P(n) can be approximated as

P(n) = exp[-NB"n(1 - B)’] (4.69)

(E) Strength predictions

Based upon the considerations of fiber-end-gap size and
stress concentrations, Hikami and Chou (1984a) have proposed a
modification of the rule-of-mixtures for composite strength. The
composite ultimate strength o, is defined as the stress level at
which fracture of the composite occurs. Based upon the approxima-

Fig. 4.27. Cumulative probability distribution functions for the maximum
fiber-end-gap size. O: N=10°% 8=0.2; @ N=10% B=0.1; A: N=10%
B =0.2. (After Hikami and Chou 1984a.)
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tions discussed above, o, is given as
On=0,Vi+0,,(1—V) (4.70)

Here, oy, is the matrix stress at the ultimate tensile strain of the
fiber. o, is the applied fiber stress at the instant when the fiber stress
at the site of stress concentration reaches oy,. Thus, g, satisfies the
following relation:

Oy = K[oa - nomy(l - Vf)/Vf] (471)

for the weak local load sharing rule, where K = K, or K,,. Omy 18 the
matrix yield strength. The parameter 1 in Eq. (4.71) reflects the
loading condition of the matrix in the fiber-end-gap. If the matrix is
brittle, a crack can propagate in the matrix along the fiber-end-gap
prior to the failure of the intact bridging fiber. In this case, the
matrix in the fiber-end-gap will bear no load and % is taken to be
zero. However, in a ductile matrix composite the matrix in the
fiber-end-gap can deform plastically to the yield strength, o,,,. Then
each fiber in the fiber-end-gap sustains the stress o,,(1 — V;)/V;,
thus reducing the applied stress o,, and 1 = 1. Since the fracture of
a composite initiates at the weakest point, the stress concentration
factor for the most probable maximum gap size M of Eq. (4.68)
should be used.

Fig. 4.28. Most probable maximum gap size, M, vs. critical zone para-
meter, B. N denotes the total number of fibers. (After Hikami and Chou
1984a.)
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In the case of three-dimensional fiber arrays, the problem is more
complicated and there is no rigorous probabilistic treatment avail-
able. The shape of the fiber-end-gap cannot be uniquely defined for
a given number of fiber ends and it is fairly involved to obtain the
highest stress concentration factor in the intact bridging fibers.
Furthermore, the fiber failure process here is more complex than
that in the two-dimensional case. To circumvent these difficulties,
Fukuda and Chou (1981b) took only compact fiber-end-gaps as the
first approximation. Following this approximation, Hikami and
Chou (1984a) have considered the special type of fiber-end-gap
which consists of square-arrayed ending fibers. A typical example of
such a fiber-end-gap is shown in Fig. 4.29, where ending fibers are
indicated by solid circles and bridging fibers by open circles in the
two-dimensional square lattice. Approximations for the most prob-
able maximum gap size and the resulting composite strength have
been obtained and the details can be found in the reference.

The relation between the fiber volume fraction, V;, and composite
strength normalized by the matrix stress at failure, o../0m,, iS
shown in Fig. 4.30 for the case of an elastic matrix. The properties
of a glass fiber/thermoplastic matrix composite are used; fiber length
(/) =1mm; fiber diameter (d)=0.01mm; fiber critical length
({)=0.1mm; and critical zone parameter (f)=0.1. Also
Ot/ Opu = Ef/ En =35.2.

In Fig. 4.30, line A shows the simple rule-of-mixtures for
continuous fibers, while line B depicts the rule-of-mixtures modified
for short fibers. Neither case takes the effect of local stress

Fig. 4.29. Schematic cross-sectional view of a three-dimensional fiber
array. Solid circles indicate ending fibers and open circles are for bridging
fibers. (After Hikami and Chou 1984a.)
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concentrations into consideration. Lines C and E indicate the
results of Hikami and Chou (1984a) for a three-dimensional fiber
array and a two-dimensional fiber array, respectively, based on the
local load sharing rule. The composite strength is expected to lie
between these two bounds, which are far less than the values
obtained from the rule-of-mixtures because of local stress
concentrations.

4.6.2  Partially oriented short-fiber composites
Cox (1952) first proposed the idea of orientation factor in
the strength equation for continuous fiber composites to account for
fiber misalignment. Bowyer and Bader (1972) adopted this concept
in their study of short-fiber systems, and Eq. (4.50) was modified by
multiplying the fiber dependent terms on the right-hand side of this
equation by the orientation factor C,, C,=1 for perfectly aligned
fibers and C, assumes values less than unity for partially oriented
fibers. Bowyer and Bader concluded that the orientation factor is
independent of strain and is the same for all fiber length at least at
small strains. The orientation factor can then be calculated from
Eq. (4.50) based upon the knowledge of fiber length distribution,
interfacial bond strength and composite ultimate tensile strength.
Curtis, Bader and Bailey (1978) investigated the strength of a

Fig. 4.30. Strength of the composite as a function of V. A: rule-of-
mixtures; B: Kelly and Tyson (1965b); C: three-dimensional fiber array,
weak local load sharing; E: two-dimensional fiber array, weak local load
sharing. (After Hikami and Chou 1984a.)
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polyamide thermoplastic reinforced with glass and carbon fibers,
and calculated the fiber orientation factor from the measured
composite modulus and the knowledge of the fiber and matrix
properties. Their results indicate that fiber alignment increases with
increasing fiber volume fraction, which agrees with the qualitative
assessment of optical micrographs.

In general, when there are variations in both fiber length and
orientation, the rule-of-mixtures (Eq. (4.42)) can be modified as

O = O'fu‘/fF(lc/l_)Co + ax,nu(l - ‘/f) (472)

Here, the factor F(l./]) is a function of fiber average length [ and
critical length /.. Equations (4.45), for instance, give the forms of
F(l./]) for aligned short fibers of uniform length. If the necessary
information with respect to fiber orientation is known, C, can be
estimated analytically.

Fukuda and Chou (1982) have used a probabilistic theory to
predict the strength of short-fiber composites with variable fiber
length and orientation. They introduced two kinds of probability
density functions to describe the fiber length and orientation
distributions and neglected the effect of stress concentration in this
particular treatment. The analytical result of composite strength is
given only in the form of an average value. The theory of Fukuda
and Chou is introduced below in three parts.

(A) Geometrical consideration of a single short fiber
First, the geometrical arrangement of a single short fiber is
described. Figure 4.31(a) shows an obliquely positioned short fiber

Fig. 4.31. Several notations on short-fiber arrangement. (a) Obliquely
oriented fiber. (b) Bridging fiber and ending fiber. (¢) Critical angle.
(After Fukuda and Chou 1982.)
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of length /. In accordance with the terminology of Section 4.6.1, a
bridging fiber and an ending fiber are defined in Fig. 4.31(b); that
is, if a fiber crosses a critical zone (Section 4.6.1.2) of width g, it is
termed a bridging fiber; and if the end of a fiber is within the critical
zone, it is defined as an ending fiber. Here, [ denotes average fiber
length. The probability density function of fiber length distribution
h(l) satisfies the following condition:

h(l)dl =1 (4.73)
0
Then, the average fiber length is defined as
= [ ma (4.74)
0

From Fig. 4.31(a),
Il,=1cos @ (4.75)

and from Fig. 4.31(c) the critical angle 6, within which a fiber of
length [ is a bridging fiber becomes

0, =cos™' I/l (4.76)

for Bl <1 If BI>1, 6, cannot be defined, and a fiber in such a case
is inevitably an ending fiber. If the fibers are distributed randomly
with respect to the z axis, the probability p. that a fiber of length [ is
an ending fiber in the critical zone becomes

Bl (Bl/llcos® (0=6=80,and BI=<I)
po=—= - (4.77)
i, U (B,=0=m/20r Bl=])
and the probability p,, for finding a bridging fiber is, by definition,
po=1-p. (4.78)

The probability density function with respect to fiber orientation
(g(8)) should satisfy the condition

/2

g(6)do=1 (4.79)

(B) Load transfer in a short fiber
First, consider a short fiber situated parallel to the applied
tensile stress, o,, along the z axis. The average fiber stress is
1l
Ofo =~

] oi(z) dz (4.80)
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The fiber axial stress o(z) has, in general, the profile shown in Fig.

4.1. Consider the simplest form of oyz) by assuming a constant
interfacial shear stress (Fig. 4.20). Then oy, becomes

L
Gfu<1 - Z) (l > IC)

Gﬁ,(zilc) (<l

O = (481)

The average force in a fiber of cross-sectional area A; is 0, Ay

Next, consider a single short fiber situated at an angle 6 to
the applied stress o,. The applied stress can be decomposed
into an axial and a shear component, with respect to the fiber axis,
as

o, = 0,cos" 6 (4.82)
T, = 0, sin B cos 6 (4.83)

If the effect of 7/, on the fiber stress distribution can be neglected,
the average force of the fiber becomes A;opcos’8 and the z
direction force component is

F, = A;01,c0s°0 (4.84)

< Strength of short-fiber composites

Based upon the above preparations, the strength of short-
fiber composites can be derived. In the following discussion, h(l)
and g(0) are assumed to be independent of each other. This means
that g(8) is the same for all the samples with different fiber length
distributions. A rectangular-shaped specimen with the lengths of the
three mutually perpendicular edges denoted by a, b and c is
considered. The ¢ axis is so chosen as to be parallel to the z axis.
The volume of the specimen is

V =abc (4.85)
and from the definition of fiber volume fraction, V; becomes
Vi=NA{I/V (4.86)

where N and A denote, respectively, the total number of fibers and
fiber cross-sectional area.

Recall that Eq. (4.76) gives the length of the projection of a fiber
on the z axis. Then the average length of the projection of fibers
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can be written as

w2 o
lz=f f lcos@h(l)g(0)dl do
0 0

/2
= if g(8)cos 6 dO (4.87)
(4]

The value of NI, gives the total length of projection of all fibers on
the z axis and if this value is divided by the specimen length ¢, the
average number of fibers which cross an arbitrary section in the
specimen normal to the z axis is obtained. That is,

_ NI, _abV; (*?

N,
c A o

g(8)cos 6dO (4.88)

Equation (4.77) gives the probability of a specific fiber being an
ending fiber. Therefore, the average probability of finding an
arbitrary fiber being an ending fiber is

ac= [ [ pargo)ara (4.89)

Similarly, the average probability of finding an arbitrary fiber being
a bridging fiber is

/2 p*
a=[ [ pohrso)arae
0

(0]

=1—¢q. (4.90)
Substituting Eqs. (4.77) and (4.78) into Eqs. (4.89) and (4.90),

qe=fod9<£ﬁ1g(9)h(l) dl+f;%g(9)h(l