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Analysis of Composite Materials

 

2.1 Constitutive Relations

 

Laminated composites are typically constructed from orthotropic plies
(laminae) containing unidirectional fibers or woven fabric. Generally, in a
macroscopic sense, the lamina is assumed to behave as a homogeneous
orthotropic material. The constitutive relation for a linear elastic orthotropic
material in the material coordinate system (Figure 2.1) is [1–6]

(2.1)

where the stress components (

 

σ

 

i

 

, 

 

τ

 

i j

 

) are defined in Figure 2.1 and the S

 

ij

 

 are
elements of the compliance matrix. The engineering strain components (

 

ε

 

i

 

, 

 

γ

 

i j

 

)
are defined as implied in Figure 2.2.

In a thin lamina, a state of plane stress is commonly assumed by setting
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23
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 = 0 (2.2)

For Equation (2.1) this assumption leads to
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γ
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 = 
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 = 0 (2.3b)

Thus, for plane stress the through-the-thickness strain 

 

ε

 

3

 

 is not an independent
quantity and does not need to be included in the constitutive relationship.
Equation (2.1) becomes
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(2.4)

The compliance elements S

 

ij

 

 may be related to the engineering constants
(E

 

1

 

, E

 

2

 

, G

 

12
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12
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ν

 

21

 

),
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 = 1/E
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(2.5a)
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 = 1/E
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, S

 

66

 

 = 1/G

 

12

 

(2.5b)

The engineering constants are average properties of the composite ply. The
quantities E

 

1

 

 and 

 

ν

 

12

 

 are the Young’s modulus and Poisson’s ratio, respectively,
corresponding to stress 

 

σ

 

1

 

 (Figure 2.2a)
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For a unidirectional composite E
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FIGURE 2.1

 

Definitions of principal material directions for an orthotropic lamina and stress components.
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(2.8)

The in-plane shear modulus, G

 

12

 

, is defined as (Figure 2.2c)
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(2.9)

It is often convenient to express stresses as functions of strains. This is
accomplished by inversion of Equation (2.4)

(2.10)
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where the reduced stiffnesses, Q

 

ij

 

, can be expressed in terms of the engineering
constants
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) (2.11a)
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(2.11d)

 

2.1.1 Transformation of Stresses and Strains

 

For a lamina whose principal material axes (1,2) are oriented at an angle, 

 

θ

 

,
with respect to the x,y coordinate system (Figure 2.3), the stresses and strains
can be transformed. It may be shown [1–6] that both the stresses and strains
transform according to

(2.12)

and

(2.13)

 

FIGURE 2.3

 

Positive (counterclockwise) rotation of principal material axes (1,2) from arbitrary x,y axes.
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where the transformation matrix is [1–6]

(2.14)

and

m = cos 

 

θ

 

(2.15a)

n = sin 

 

θ

 

(2.15b)

From Equations (2.12) and (2.13) it is possible to establish the lamina
strain–stress relations in the (x,y) coordinate system [1–6]

(2.16)

The S

 

i j terms are the transformed compliances defined in Appendix A.
Similarly, the lamina stress–strain relations become

(2.17)

where the overbars denote transformed reduced stiffness elements, defined
in Appendix A.

2.1.2 Hygrothermal Strains

If fibrous composite materials are processed at elevated temperatures, ther-
mal strains are introduced during cooling to room temperature, leading to
residual stresses and dimensional changes. Figure 2.4 illustrates dimensional
changes of a composite subjected to a temperature increase of ∆T from the
reference temperature T. Furthermore, polymer matrices are commonly
hygroscopic, and absorbing moisture leads to swelling of the material. The
analysis of moisture expansion strains in composites is mathematically
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equivalent to that for thermal strains [7,8] (neglecting possible pressure
dependence of moisture absorption).

The constitutive relationship, when it includes mechanical-, thermal-, and
moisture-induced strains, takes the following form [1,4]

(2.18)

where superscripts T and M denote temperature- and moisture-induced
strains, respectively. Note that shear strains are not induced in the principal
material system by a temperature or moisture content change (Figure 2.4).
Equation (2.18) is based on the superposition of mechanical-, thermal-, and
moisture-induced strains. Inversion of Equation (2.18) gives

(2.19)

Consequently, the stress-generating strains are obtained by subtraction of the
thermal- and moisture-induced strains from the total strains. The thermal-
and moisture-induced strains are often approximated as linear functions of
the changes in temperature and moisture concentration,

(2.20)

(2.21)

FIGURE 2.4
Deformation of a lamina subject to temperature increase.
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where ∆T and ∆M are the temperature change and moisture concentration
change from the reference state.

The transformed thermal expansion coefficients (αx,αy,αxy) are obtained
from those in the principal system using Equation (2.13). Note, however,
that in the principal material coordinate system, there is no shear deforma-
tion induced [4], i.e., α16 = β16 = 0,

αx = m2α1 + n2α2 (2.22a)

αy = n2α1 + m2α2 (2.22b)

αxy = 2mn(α1 – α2) (2.22c)

The moisture expansion coefficients (βx,βy,βxy) are obtained by replacing α
with β in Equations (2.22).

The transformed constitutive relations for a lamina, when incorporating
thermal- and moisture-induced strains, are

(2.23)

(2.24)

2.2 Micromechanics

As schematically illustrated in Figure 2.5, micromechanics aims to describe
the moduli and expansion coefficients of the lamina from properties of the
fiber and matrix, the microstructure of the composite, and the volume fractions
of the constituents. Sometimes, also the small transition region between bulk
fiber and bulk matrix, i.e., interphase, is considered. Much fundamental work
has been devoted to the study of the states of strain and stress in the constit-
uents, and the formulation of appropriate averaging schemes to allow defini-
tion of macroscopic engineering constants. Most micromechanics analyses
have focused on unidirectional continuous fiber composites, e.g. [9,10],
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although properties of composites with woven fabric reinforcements can also
be predicted with reasonable accuracy, see Reference [11].

The objective of this section is not to review the various micromechanics
developments. The interested reader can find ample information in the
above-referenced review articles. In this section, we will limit the presenta-
tion to some commonly used estimates of the stiffness constants, E1, E2, ν12,
ν21, and G12, and thermal expansion coefficients α1 and α2 required for
describing the small strain response of a unidirectional lamina under
mechanical and thermal loads (see Section 2.1). Such estimates may be useful
for comparison to experimentally measured quantities.

2.2.1 Stiffness Properties of Unidirectional Composites

Although most matrices are isotropic, many fibers such as carbon and Kevlar
(E.I. du Pont de Nemours and Company, Wilmington, DE, ) have directional
properties because of molecular or crystal plane orientation effects [4]. As a
result, the axial stiffness of such fibers is much greater than the transverse
stiffness. The thermal expansion coefficients along and transverse to the fiber
axis also are quite different [4]. It is common to assume cylindrical orthotropy
for fibers with axisymmetric microstructure. The stiffness constants required
for plane stress analysis of a composite with such fibers are EL, ET, νLT, and
GLT, where L and T denote the longitudinal and transverse directions of a
fiber. The corresponding thermal expansion coefficients are αL and αT.

The mechanics of materials approach reviewed in Reference [10] yields

E1 = ELfVf + EmVm (2.25a)

(2.25b)

ν12 = νLTfVf + νmVm (2.25c)

FIGURE 2.5
Role of micromechanics.
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(2.25d)

where subscripts f and m represent fiber and matrix, respectively, and the
symbol V represents volume fraction. Note that once E1, E2, and ν12 are
calculated from Equations (2.25a), ν21 is obtained from Equation (2.8).
Equations (2.25a) and (2.25c) provide good estimates of E1 and ν12. Equations
(2.25b) and (2.25d), however, substantially underestimate E2 and G12 [10]. More
realistic estimates of E2 and G12 are provided in References [10,12].

Simple, yet reasonable estimates of E2 and G12 may also be obtained from
the Halpin-Tsai equations [13],

(2.26a)

(2.26b)

where P is the property of interest (E2 or G12) and Pf and Pm are the corre-
sponding fiber and matrix properties, respectively. The parameter ξ is called
the reinforcement efficiency; ξ(E2) = 2 and ξ(G12) = 1, for circular fibers.

2.2.2 Expansion Coefficients

Thermal expansion (and moisture swelling) coefficients can be defined by
considering a composite subjected to a uniform increase in temperature
(or moisture content) (Figure 2.4).

The thermal expansion coefficients, α1 and α2, of a unidirectional composite
consisting of cylindrically or transversely orthotropic fibers in an isotropic
matrix determined using the mechanics of materials approach [10] are

(2.27a)

α2 = αTfVf + αmVm (2.27b)

Predictions of α1 using Equation (2.27a) are accurate [10], whereas Equation
(2.27b) underestimates the actual value of α2. An expression derived by Hyer
and Waas [10] provides a more accurate prediction of α2:

(2.28)
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2.3 Laminated Plate Theory

Structures fabricated from composite materials rarely utilize a single com-
posite lamina because this unit is thin and anisotropic. To achieve a thicker
cross section and more balanced properties, plies of prepreg or fiber mats
are stacked in specified directions. Such a structure is called a laminate
(Figure 2.6). Most analyses of laminated structures are limited to flat panels
(see, e.g., References [1,2]). Extension to curved laminated shell structures
may be found in References [5,14,15].

In this section, attention will be limited to a flat laminated plate under
in-plane and bending loads. The classical theory of such plates is based on
the assumption that a line originally straight and perpendicular to the middle
surface remains straight and normal to the middle surface, and that the
length of the line remains unchanged during deformation of the plate [1–6].
These assumptions lead to the vanishing of the out-of-plane shear and exten-
sional strains:

γxz = γyz = εz = 0 (2.29)

where the laminate coordinate system (x,y,z) is indicated in Figure 2.6.
Consequently, the laminate strains are reduced to εx, εy, and γxy. The assump-
tion that the cross sections undergo only stretching and rotation leads to the
following strain distribution [1–6]:

(2.30)

where  are the midplane strains and curvatures,
respectively, and z is the distance from the midplane.

FIGURE 2.6
Laminate coordinate system.
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Force and moment resultants, [Nx, Ny, Nxy] and [Mx, My, Mxy], respectively,
are obtained by integration of the stresses in each layer over the laminate
thickness, h,

(2.31)

(2.32)

where the subscript k represents the kth lamina in the laminate. Combination
of Equations (2.24) with (2.30–2.32) leads to the following constitutive relation-
ships among forces and moments and midplane strains and curvatures:

(2.33)

(2.34)

where the Aij, Bij, and Dij are called extensional stiffnesses, coupling stiffnesses,
and bending stiffnesses, respectively [1–6], given by
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(2.35c)

The ply coordinates zk, (k = 1, 2…N), where N is the number of plies in the
laminate, are defined in Figure 2.7 and may be calculated from the following
recursion formula:

(2.36a)

(2.36b)

in which hk is the ply thickness of the kth ply.
For the steady-state condition considered, the temperature change is

uniform throughout the laminate, and the thermal force resultants are
determined from

(2.37)

The moisture-induced force resultants  are obtained in the
same manner as the thermal force resultants, but by replacing [αx, αy, αxy]
with [βx, βy, βxy], and ∆T with ∆M in Equation (2.37).

The thermal moment resultants  are determined from

(2.38)

FIGURE 2.7
Definition of ply coordinates, zk.
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The moisture-induced moment resultants [Mx
M,My

M,Mxy
M] are obtained by

replacing the α values with β values and ∆T with ∆M in Equations (2.38).
Most commonly, only the steady-state temperature and moisture concen-

tration in the composite is of interest (∆T and ∆C are constants). However,
in a transient situation, the transfer of heat by conduction [16], or moisture
diffusion [17,18] has to be considered. Pipes et al. [19] examined laminated
plates subject to transient conditions. For laminates with the plies consisting
of different materials, the moisture concentration may vary through the
thickness in a stepwise manner. At steady-state this is incorporated into the
analysis by letting ∆M = (∆M)k, [20].

Equations (2.33) and (2.34) may conveniently be written as

(2.39)

where [N] and [M] represent the left-hand side of Equations (2.33) and (2.34),
i.e., the sum of mechanical and hygrothermal forces and moments, respectively.

Equations (2.39) represent the stiffness form of the laminate constitutive
equations. Sometimes it is more convenient to express the midplane strains
and curvatures as a function of the forces and moments. This represents the
compliance form of the laminate constitutive equations, which is obtained
by inversion of Equations (2.39),

(2.40)

Expressions for the matrices [A′], [B′], [C′], and [D′] are given in Appendix A.

2.4 St. Venant’s Principle and End Effects in Composites

In the testing and evaluation of any material, it is generally assumed that load
introduction effects are confined to a region close to the grips or loading points,
and a uniform state of stress and strain exists within the test section. The
justification for such a simplification is usually based on the St. Venant princi-
ple, which states that the difference between the stresses caused by statically
equivalent load systems is insignificant at distances greater than the largest
dimension of the area over which the loads are acting [21]. This estimate,
however, is based on isotropic material properties. For anisotropic composite
materials, Horgan et al. [22–25] showed that the application of St. Venant’s
principle for plane elasticity problems involving anisotropic materials is not
justified in general. For the particular problem of a rectangular strip made of
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highly anisotropic material and loaded at the ends, it was demonstrated that
the stress approached the uniform St. Venant solution much more slowly than
the corresponding solution for an isotropic material [23].

The size of the region where end effects influence the stresses in a rectan-
gular strip loaded with tractions at the ends is given by [23]

(2.41)

where b is the maximum dimension of the cross section, and E1 and G12 are
the longitudinal elastic and shear moduli, respectively.

In this equation λ is defined as the distance over which the self-equilibrated
stress decays to 1/e of its value at the end. When the ratio E1/G12 is large,
the decay length is large and end effects are transferred a considerable
distance along the gage section. Testing of highly anisotropic materials thus
requires special consideration of load introduction effects. Arridge et al. [26],
for example, found that a very long specimen with an aspect ratio ranging
from 80 to 100 was needed to avoid the influence of clamping effects in tension
testing of highly anisotropic, drawn polyethylene film. Several other cases
are reviewed in Reference [25].

2.5 Lamina Strength Analysis

When any material is considered for a structure, an important task for the
structural engineer is to assess the load-carrying ability of the particular
material/structure combination. Prediction of the strength of composite
materials has been an active area of research since the early work of Tsai
[27]. Many failure theories have been suggested, although no universally
accepted failure criterion exists [28]. As pointed out by Hyer [4], however,
no single criterion could be expected to accurately predict failure of all
composite materials under all loading conditions. Popular strength criteria
are maximum stress, maximum strain, and Tsai-Wu criteria (see References
[1–6,28]). These criteria are phenomenological in the sense that they do not
rely on physical modeling of the failure process. The reason for their popu-
larity is that they are based on failure tests on simple specimens in tension,
compression, and shear (Chapters 5–7) and are able to predict load levels
required to fail more complicated structures under combined stress loading.

In the following presentation, failure of the lamina will first be examined
and then failure of the laminate will be briefly considered. It is assumed that
the lamina, being unidirectional or a woven fabric ply, can be treated as a
homogeneous orthotropic ply with known, measured strengths in the prin-
cipal material directions. Furthermore, the shear strength in the plane of the

λ
π

≈ ( )b
2

E G1 12

1 2
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fibers is independent of the sign of the shear stress. The presentation is
limited to plane stress in the plane of the fibers. Table 2.1 lists the five
independent failure stresses and strains corresponding to plane stress.

Notice here that superscripts T and C denote tension and compression,
respectively, and that strengths and ultimate strains are defined as positive,
i.e., the symbols indicate their magnitudes. For example, a composite ply
loaded in pure negative shear (τ12 < 0) would fail at a shear stress τ12 = –S6

and shear strain γ12 = – e6.

2.5.1 Maximum Stress Failure Criterion

The maximum stress failure criterion assumes that failure occurs when any
one of the in-plane stresses σ1, σ2, or τ12 attains its limiting value independent
of the other components of stress. If the magnitudes of the stress components
are less than their values at failure, failure does not occur, and the element
or structure is considered safe. For determining the failure load, any of the
following equalities must be satisfied at the point when failure occurs:

(2.42a)

(2.42b)

(2.42c)

(2.42d)

τ12 = S6 (2.42e)

τ12 = –S6 (2.42f)

For unidirectional and fabric composites, Equations (2.42a and b) indicate
failure of fibers at quite high magnitudes of stress, whereas Equations (2.4c–f)
indicate matrix or fiber–matrix interface dominated failures at much lower

TABLE 2.1

Basic Strengths of Orthotropic Plies for Plane Stress

Direction/Plane Active Stress Strength Ultimate Strain

1 σ1

2 σ2

1,2 τ12 S6 e6

Note: All strengths and ultimate strains are defined by
their magnitudes.

X XT C
1 1, e eT C

1 1,

X XT C
2 2, e eT C

2 2,

σ1 1= XT

σ1 1= −XC

σ2 2= XT

σ2 2= −XC
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magnitudes of stress for unidirectional composites. For fabric composites,
however, Equations (2.42c and d) indicate failure of the fibers oriented along
the 2-direction.

2.5.2 Maximum Strain Failure Criterion

The maximum strain criterion assumes that failure of any principal plane
of the lamina occurs when any in-plane strain reaches its ultimate value in
uniaxial tension, compression, or pure shear. Failure should occur when
any of the following equalities are satisfied (Table 2.1):

(2.43a)

(2.43b)

(2.43c)

(2.43d)

(2.43e)

(2.43f)

In these expressions, the symbol e represents the magnitude of the ultimate
strain. If any of the above conditions become satisfied, failure is assumed to
occur by the same mechanism leading to failure in uniaxial loading or pure
shear loading. Similar to the maximum stress criterion, the maximum strain
criterion has the ability of predicting the failure mode.

2.5.3 Tsai-Wu Failure Criterion

Tsai and Wu [29] proposed a second-order tensor polynomial failure criter-
ion for prediction of biaxial strength, which takes the following form for
plane stress:

(2.44)

Failure under combined stress is assumed to occur when the left-hand side
of Equation (2.44) is equal to or greater than one. All of the parameters of
the Tsai-Wu criterion, except F12, can be expressed in terms of the basic
strengths (Table 2.1).

ε1 1= eT

ε1 1=− eC

ε2 2= eT

ε2 2=− eC

γ 12 6= e

γ 12 6= −e

F F F F F F1 1 2 2 11 1
2

22 2
2

66 12
2

12 1 22 1σ σ σ σ τ σ σ+ + + + + =
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(2.45)

F12 is a strength interaction parameter that has to be determined from a
biaxial experiment. Such experiments are, unfortunately, very expensive and
difficult to properly conduct. As an alternative, Tsai and Hahn [30] suggested
that F12 be estimated from the following relationship:

(2.46)

The Tsai-Wu criterion has found widespread applicability in the composite
industry because of its versatility and that it provides quite accurate predic-
tions of strength. It does not, however, predict the mode of failure.

2.6 Laminate Strength Analysis

Analysis of failure and strength of laminated composites is quite different
from the analysis of strength of a single ply. Failure of laminates commonly
involves delamination, i.e., separation of the plies, which will be discussed
in Chapter 14. This failure mode is commonly influenced by the three-
dimensional state of stress that develops near free edges in laminated
specimens [31]. Furthermore, multidirectional composite laminates are
commonly processed at elevated temperatures and the mismatch in ther-
mal expansion between the plies leads to residual stresses in the plies upon
cooling [32–34]. Exposure of the laminate to moisture will also influence
the state of residual stress in the laminate [18,35].

A common failure mode in laminates containing unidirectional plies is
matrix cracking, which is failure of the matrix and fiber–matrix interface in a
plane perpendicular to the fiber direction (Figure 2.8). Such a failure is called
first-ply failure and occurs because of the presence of a weak plane transverse
to the fiber axis in such composites. In fabric composites, no such weak planes
exist, and failure initiates locally in fiber tows and matrix pockets before
ultimate failure occurs [36]. At any instant, local failures tend to arrest by
constraint of adjacent layers or tows in the laminate before the occurrence of
catastrophic failure of the laminate. Wang and Crossman et al. [37–39] and
Flaggs and Kural [40] found a very large constraint effect in composite lami-
nates with unidirectional plies. They examined matrix cracking in a set of
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laminates containing unidirectional 90° plies bonded together and found that
the in situ strength depends strongly on the number of plies of the same
orientation bonded together, and on the adjacent ply orientations. Conse-
quently, there are a host of mechanisms influencing failure of laminates, and
as a result, accurate failure prediction is associated with severe difficulties.

Various methods to predict ply failures and ultimate failure of composite
laminates are reviewed by Sun [28]. A common method in laminate failure
analysis is to determine the stresses and strains in the laminate using lami-
nated plate theory (Section 2.3), and then examine the loads and strains
corresponding to the occurrence of first-ply failure as predicted by the failure
criterion selected. The ply failure mode is then identified. Swanson and Trask
[41] and Swanson and Qian [42] performed biaxial tension–tension and
tension–compression testing on several carbon/epoxy laminate cylinders
made from unidirectional plies. Ply failures were identified using strength
criteria mentioned in Section 2.5. Final failure of the cylinders was predicted
by using a ply property reduction method (ply-by-ply discount method)
where failed plies are identified and the transverse and shear moduli (E2

and G12) of the failed plies are assigned numbers very close to zero. The
laminate with reduced stiffness is then again analyzed for stresses and strains
[28]. Comparison of the predictions with measured ultimate failure data of
the cylinders revealed good agreement for all criteria. It was concluded that
the maximum stress and maximum strain criteria are quite insensitive to
variations in the ply transverse failure strengths (X2

T and S6). This is an
advantage because, as discussed, these strengths are very difficult to deter-
mine in situ. Hence, the failure criteria that do not demand accurate trans-
verse ply failure strengths were concluded to be the most pertinent for failure
prediction. For further reading, see References [1–6] and [28].

FIGURE 2.8
Matrix crack of a unidirectional ply in a laminate (first-ply failure).
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2.7 Fracture Mechanics Concepts

The influence of defects and cracks on the strength of a material or structure
is the subject of fracture mechanics. The object of fracture mechanics analysis
is the prediction of the onset of crack growth for a body containing a flaw
of a given size. To calculate the critical load for a cracked composite, it has
generally been assumed that the size of the plastic zone at the crack tip is
small compared to the crack length. Linear elastic fracture mechanics has
been found useful for certain types of cracks in composites, i.e., interlaminar
cracks [43] or matrix cracks in a unidirectional composite [37,44].

The equilibrium of an existing crack may be judged from the intensity of
elastic stress around the crack tip. Solutions of the elastic stress field in isotropic
[45] and orthotropic [46] materials show that stress singularities associated
with in-plane cracks are of the r–1/2 type, where r is the distance from the crack
tip. Stress intensity factors may be determined for crack problems where the
crack plane is in any of the planes of orthotropic material symmetry. It is
possible to partition the crack tip loading into the three basic modes of crack
surface displacement shown in Figure 2.9. Mode I refers to opening of the
crack surfaces, Mode II refers to sliding, and Mode III refers to tearing.

It has, however, become common practice to investigate interlaminar
cracks using the strain energy release rate, G. This quantity is based on
energy considerations and is mathematically well defined and measurable
in experiments. The energy approach, which stems from the original Griffith
treatment [47], is based on a thermodynamic criterion for fracture by con-
sidering the energy available for crack growth of the system on one hand,
and the surface energy required to extend an existing crack on the other
hand. An elastic potential for a cracked body may be defined as

H = W – U (2.47)

FIGURE 2.9
Modes of crack surface displacements. (a) Mode I (opening), (b) Mode II (sliding), and (c) Mode III
(tearing).
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where W is the work supplied by the movement of the external forces,
and U is the elastic strain energy stored in the body. If Gc is the work
required to create a unit crack area, it is possible to formulate a criterion
for crack growth,

δH ≥ GcδA (2.48)

where δA is the increase in crack area.
A critical condition occurs when the net energy supplied just balances the

energy required to grow the crack; i.e.,

δH = GcδA (2.49)

Equilibrium becomes unstable when the net energy supplied exceeds the
required crack growth energy,

δH > GcδA (2.50)

The strain energy release rate, G, is defined as

(2.51)

In terms of G, the fracture criterion may thus be formulated as

G ≥ Gc (2.52)

This concept will be illustrated for a linear elastic body containing a crack
of original length, a. Figure 2.10 shows the load, P, vs. displacement, u, for
the cracked body where crack growth is assumed to occur either at constant
load (fixed load) or at constant displacement (fixed grip).

FIGURE 2.10
Load-displacement behavior for a cracked body at crack lengths a and a + δa.
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For the fixed-load case,

(2.53a)

δW = Pδu (2.53b)

Equation (2.47) gives

δH = Pδu – Pδu/2 = Pδu/2 (2.54)

and Equation (2.51) gives

(2.55)

For the fixed-grip case, the work term in Equation (2.47) vanishes and

(2.56)

Note that δP is negative because of the loss in stiffness followed by crack
extension, and G is

(2.57)

For a linear elastic body, the relationship between load and displacement
may be expressed as

u = CP (2.58)

where C is the compliance of the specimen. Substitution into Equation (2.55)
(fixed load) gives

(2.59)

For the fixed-grip case, substitution of P = u/C into Equation (2.57) gives

(2.60)
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Consequently, both fixed-load and fixed-grip conditions give the same
expression. This expression is convenient for the experimental determination
of G and will be employed in Chapter 14 for derivation of expressions for
G for various delamination fracture specimens.

For a crack in a principal material plane, it is possible to decompose G
into components associated with the three basic modes of crack extension
illustrated in Figure 2.9:

G = GI + GII + GIII (2.61)

Theoretically, the mode separation is based on Irwin’s contention that if the
crack extends by a small amount, ∆a, the energy absorbed in the process is
equal to the work required to close the crack to its original length [48]. For a
polar coordinate system with the origin at the extended crack tip (Figure 2.9),
the various contributions to the total energy release rate are

(2.62a)

(2.62b)

(2.62c)

where r is the radial distance from the crack tip, σy, τxy and τyz are the normal
and shear stresses near the crack tip; and  are the relative open-
ing and sliding displacements between points on the crack faces, respec-
tively. These expressions form the basis for the virtual crack closure (VCC)
method for separation of the fracture modes using finite element solutions
of crack problems [49].

2.8 Strength of Composite Laminates Containing Holes

Structures made from composite laminates containing cutouts or penetrations
such as fastener holes (notches) offer a special challenge to the designer
because of the stress concentration associated with the geometric discontinuity.
In laminates containing notches, a complex fiber-bridging zone develops near
the notch tip [50,51]. On the microscopic level, the damage appears in the
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form of fiber pullout, matrix microcracking, and fiber–matrix interfacial
failure. The type of damage and its growth depends strongly on the laminate
stacking sequence, type of resin, and the fiber. As a consequence of the
damaged material, the assumptions of a small process zone and self-similar
growth of a single crack, inherent in linear elastic fracture mechanics, break
down. In experimental studies on notched laminates under tension or com-
pression loads, the strength is substantially reduced compared to the strength
of the unnotched specimen [51,52].

Because of the complexity of the fracture process for notched composite
laminates, the methods developed for prediction of strength are semiempir-
ical. Awerbuch and Madhukar [52] review strength models for laminates
containing cracks or holes loaded in tension. In this text, only the technically
important case of a laminate containing a circular hole will be considered.

A conservative estimate of the strength reduction is based on the stress
concentration factor at the hole edge for a composite laminate containing a
circular hole,

(2.63)

where σN and σ0 are the notched and unnotched ultimate strengths of the
laminate, and K is the stress concentration factor. The stress distribution can
be obtained in closed form only for infinite, homogeneous, orthotropic plates
containing an open hole [53]. The stress concentration factor, K∞, for an
infinite plate containing a circular hole (Figure 2.11) is given in terms of the
effective orthotropic engineering constants of the plate [53],

(2.64)

FIGURE 2.11
Infinite plate containing a circular hole under remote uniform tension.
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where x and y are coordinates along and transverse to the loading direction
(Figure 2.11). The stress concentration factor for finite-width plates containing
holes is larger than K∞ [54,55]. Plates where the width and length exceed about
six hole diameters, however, may be considered as infinite, and Equation (2.64)
holds to a good approximation.

It can be easily verified from Equation (2.64) that the stress concentration
factor for an isotropic material is 3. For highly anisotropic composites, the
stress concentration factor is much greater (up to 9 for unidirectional
carbon/epoxy).

References

1. I.M. Daniel and O. Ishai, Engineering Mechanics of Composite Materials, Oxford
University Press, New York, 1994.

2. R.F. Gibson, Principles of Composite Materials Mechanics, McGraw-Hill, New
York, 1994.

3. J.N. Reddy, Mechanics of Laminated Composite Materials — Theory and Analysis,
CRC Press, Boca Raton, FL, 1997.

4. M.W. Hyer, Stress Analysis of Fiber-Reinforced Composite Materials, WCB/
McGraw-Hill, Boston, 1998.

5. C.T. Herakovich, Mechanics of Fibrous Composites, John Wiley & Sons, New York,
1998.

6. R.M. Jones, Mechanics of Composite Materials, 2nd ed., Taylor & Francis, Phila-
delphia, 1999.

7. Z. Hashin, Analysis of composite materials — a survey, J. Appl. Mech., 50,
481–505, 1983.

8. J.C. Halpin and N.J. Pagano, Consequences of environmentally induced dilatation
in solids, Recent Adv. Eng. Sci., 5, 33–46, 1970.

9. R.M. Christensen, Mechanics of Composite Materials, John Wiley & Sons, New
York, 1979.

10. M.Y. Hyer and A.M. Waas, Micromechanics of linear elastic continuous fiber
composite, in Comprehensive Composite Materials, A. Kelly and C. Zweben, eds.,
Vol. 1, Elsevier, Oxford, 2000, pp. 345–375.

11. J.-H. Byun and T. –W. Chou, Mechanics of textile composites, in Comprehensive
Composite Materials, A. Kelly and C. Zweben, eds., Vol. 1, Elsevier, Oxford, 2000,
pp. 719–761.

12. B.W. Rosen and Z. Hashin, Analysis of material properties, in Engineered Materials
Handbook, Vol. 1, Composites, T.J. Reinhart, tech. chairman, ASM International,
Metals Park, OH, 1987, pp. 185–205.

13. J.C. Halpin and J.L. Kardos, The Halpin-Tsai equations: a review, Polym. Eng.
Sci., 16, 344–352, 1976.

14. M.W. Hyer, Laminated plate and shell theory, in Comprehensive Composite Materials,
A. Kelly and C. Zweben, eds., Vol. 1, Elsevier, Oxford, 2000, pp. 479–510.

15. J.R. Vinson and R.L. Sierakowsky, The Behavior of Structures Composed of Composites
Materials, 2nd ed., Kluwer, Dordrecht, 2002.

16. M.N. Ozisik, Heat Conduction, John Wiley & Sons, New York, 1980.

TX001_ch02_Frame  Page 34  Saturday, September 21, 2002  4:48 AM

© 2003 by CRC Press LLC



17. W. Jost, Diffusion, 3rd ed., Academic Press, New York, 1960.
18. G.S. Springer, ed., Environmental Effects on Composite Materials, Technomic,

Lancaster, PA, 1981.
19. R.B. Pipes, J.R. Vinson, and T.W. Chou, On the hygrothermal response of

laminated composite systems, J. Compos. Mater., 10, 129–148, 1976.
20. L.A. Carlsson, Out-of-plane hygroinstability of multi-ply paperboard, Fibre Sci.

Technol., 14, 201–212, 1981.
21. S.P. Timoshenko and J.N. Goodier, Theory of Elasticity, 3rd ed., McGraw-Hill,

New York, 1970.
22. C.O. Horgan, Some remarks on Saint-Venant’s principle for transversely isotropic

composites, J. Elasticity, 2(4), 335–339, 1972.
23. I. Choi and C.O. Horgan, Saint-Venant’s principle and end effects in anisotropic

elasticity, J. Appl. Mech., 44, 424–430, 1977.
24. C.O. Horgan, Saint-Venant end effects in composites, J. Compos. Mater., 16,

411–422, 1982.
25. C.O. Horgan and L.A. Carlsson, Saint-Venant end effects for anisotropic materials,

in Comprehensive Composite Materials, A. Kelly and C. Zweben, eds., Vol. 5, Elsevier,
Oxford, 2000, pp. 5–21.

26. R.G.C. Arridge, P.I. Barham, C.J. Farell, and A. Keller, The importance of end
effects in the measurement of moduli of highly anisotropic materials, J. Mater.
Sci., 11, 788–790, 1976.

27. S.W. Tsai, Strength theories of filamentary structures, in Fundamental Aspects of
Fiber Reinforced Plastic Composites, R.T. Schwartz and H.S. Schwartz, eds., John
Wiley & Sons, New York, 1968, pp. 3–11.

28. C.T. Sun, Strength analysis of unidirectional composites and laminates, in
Comprehensive Composite Materials, A. Kelly and C. Zweben, eds., Vol. 1, Elsevier,
Oxford, 2000, pp. 641–666.

29. S.W. Tsai and E.M. Wu, A general theory of strength for anisotropic materials,
J. Compos. Mater., 5, 58–80, 1971.

30. S.W. Tsai and H.T. Hahn, Introduction to Composite Materials, Technomic, Lancaster,
PA, 1980.

31. R.B. Pipes, B.E. Kaminski, and N.J. Pagano, Influence of the free-edge upon the
strength of angle-ply laminates, ASTM Spec. Tech. Publ., 521, 218–228, 1973.

32. H.T. Hahn and N.J. Pagano, Curing stresses in composite laminates, J. Compos.
Mater., 9, 91–106, 1975.

33. Y. Weitsman, Residual thermal stresses due to cool-down of epoxy-resin
composites, J. Appl. Mech., 46, 563–567, 1979.

34. G. Jeronimidis and A.T. Parkyn, Residual stresses in carbon fibre-thermoplastic
matrix laminates, J. Compos. Mater., 22, 401–415, 1988.

35. L. Carlsson, C. Eidefeldt, and T. Mohlin, Influence of sublaminate cracks on
the tension fatigue behavior of a graphite/epoxy laminate, ASTM Spec. Tech.
Publ., 907, 361–382, 1986.

36. N. Alif and L.A. Carlsson, Failure mechanisms of woven carbon and glass
composites, ASTM Spec. Tech. Publ., 1285, 471–493, 1997.

37. A.S.D. Wang and F.W. Crossman, Initiation and growth of transverse cracks
and edge delamination in composite laminates. Part 1. An energy method,
J. Compos. Mater. Suppl. 14, 71–87, 1980.

38. F.W. Crossman, W.J. Warren, A.S.D. Wang, and G.E. Law, Jr., Initiation and
growth of transverse cracks and edge delamination in composite laminates.
Part 2. Experimental correlation, J. Compos. Mater. Suppl. 14, 88–108, 1980.

TX001_ch02_Frame  Page 35  Saturday, September 21, 2002  4:48 AM

© 2003 by CRC Press LLC



39. F.W. Crossman and A.S.D. Wang, The dependence of transverse cracking and
delamination on ply thickness in graphite/epoxy laminates, ASTM Spec. Tech.
Publ., 775, 118–139, 1982.

40. D.L. Flaggs and M.H. Kural, Experimental determination of the in-situ transverse
lamina strength in graphite/epoxy laminates, J. Compos. Mater., 16, 103–115, 1982.

41. S.R. Swanson and B.C. Trask, Strength of quasi-isotropic laminates under off
axis loading, Compos. Sci. Technol., 34, 19–34, 1989.

42. S.R. Swanson and Y. Qian, Multiaxial characterization of T300/3900-2 carbon/
epoxy composites, Compos. Sci. Technol., 43, 197–203, 1992.

43. D.J. Wilkins, J.R. Eisenmann, R.A. Camin, W.S. Margolis, and R.A. Benson,
Characterizing delamination growth in graphite-epoxy, ASTM Spec. Tech. Publ.,
775, 168–183, 1982.

44. E.M. Wu, Application of fracture mechanics to anisotropic plates, J. Appl. Mech.,
34, 967–974, 1967.

45. H.M. Westergaard, Bearing pressure and cracks, J. Appl. Mech., 6, A49–A53,
1939.

46. G.C. Sih, P.C. Paris, and G.R. Irwin, On cracks in rectilinearly anisotropic
bodies, Int. J. Fract. Mech., 1(3), 189–203, 1965.

47. A.A. Griffith, The phenomena of rupture and flow in solids, Phil. Trans. R. Soc.,
A221, 163–198, 1920.

48. G.R. Irwin, Fracture, in Handbuch der Physik, Vol. 6, S. Flügge, ed., Springer,
Berlin, 1958, pp. 551–590.

49. E.F. Rybicki and M.F. Kanninen, A finite element calculation of stress intensity
factors by a modified crack closure integral, Eng. Fract. Mech., 9, 931–938, 1977.

50. J.F. Mandell, S.S. Wang, and F.J. McGarry, The extension of crack tip damage
zones in fiber reinforced plastic laminates, J. Compos. Mater., 9, 266–287, 1975.

51. C.G. Aronsson, Tensile Fracture of Composite Laminates with Holes and
Cracks, Ph.D. dissertation, The Royal Institute of Technology, Stockholm,
Sweden, 1984.

52. J. Awerbuch and M.S. Madhukar, Notched strength of composite laminates,
J. Reinf. Plast. Compos., 4, 3–159, 1985.

53. S.G. Lekhnitskii, Anisotropic Plates, Gordon and Breach, New York, 1968.
54. H.J. Konish and J.M. Whitney, Approximate stresses in an orthotropic plate

containing a circular hole, J. Compos. Mater., 9, 157–166, 1975.
55. J.W. Gillespie, Jr., and L.A. Carlsson, Influence of finite width on notched

laminate strength predictions, Compos. Sci. Technol., 32, 15–30, 1988.

TX001_ch02_Frame  Page 36  Saturday, September 21, 2002  4:48 AM

© 2003 by CRC Press LLC


	Experimental Characterization of Advanced Composite Materials, Third Edition
	Chapter 2: Analysis of Composite Materials
	2.1 Constitutive Relations
	2.1.1 Transformation of Stresses and Strains
	2.1.2 Hygrothermal Strains

	2.2 Micromechanics
	2.2.1 Stiffness Properties of Unidirectional Composites
	2.2.2 Expansion Coefficients

	2.3 Laminated Plate Theory
	2.4 St. Venant’s Principle and End Effects in Composites
	2.5 Lamina Strength Analysis
	2.5.1 Maximum Stress Failure Criterion
	2.5.2 Maximum Strain Failure Criterion
	2.5.3 Tsai-Wu Failure Criterion

	2.6 Laminate Strength Analysis
	2.7 Fracture Mechanics Concepts
	2.8 Strength of Composite Laminates Containing Holes
	References



