
1

Introduction

This short introductory chapter is divided into two parts. In the first part
there is an overview of the mechanics of fiber-reinforced composite materials.
The second part includes a short tutorial on MATLAB.

1.1 Mechanics of Composite Materials

There are many excellent textbooks available on mechanics of fiber-reinforced
composite materials like those in [1–12]. Therefore this book will not present
any theoretical formulations or derivations of mechanics of composite mate-
rials. Only the main equations are summarized for each chapter followed by
examples. In addition only problems from linear elastic structural mechanics
are used throughout the book.

The main subject of this book is the mechanics of fiber-reinforced com-
posite materials. These materials are usually composed of brittle fibers and a
ductile matrix. The geometry is in the form of a laminate which consists of
several parallel layers where each layer is called a lamina. The advantage of
this construction is that it gives the material more strength and less weight.

The mechanics of composite materials deals mainly with the analysis of
stresses and strains in the laminate. This is usually performed by analyzing the
stresses and strains in each lamina first. The results for all the laminas are then
integrated over the length of the laminate to obtain the overall quantities. In
this book, Chaps. 2–6 deal mainly with the analysis of stress and strain in one
single lamina. This is performed in the local lamina coordinate system and also
in the global laminate coordinate system. Laminate analysis is then discussed
in Chaps. 7–9. The analysis of a lamina and a laminate in these first nine
chapters are supplemented by numerous MATLAB examples demonstrating
the theory in great detail. Each MATLAB example is conducted in the form
of an interactive MATLAB session using the supplied MATLAB functions.
Each chapter of the first nine chapters has a set of special MATLAB functions

2 1 Introduction

written specifically for each chapter. There are MATLAB functions for lamina
analysis and for laminate analysis.

In Chap. 10, we illustrate the basic concepts of the major four failure theo-
ries of a single lamina. We do not illustrate the failure of a complete laminate
because this mainly depends on which lamina fails first and so on. Finally,
Chaps. 11 and 12 provide an introduction to the advanced topics of homog-
enization and damage mechanics in composite materials, respectively. These
two topics are very important and are currently under extensive research ef-
forts worldwide.

The analyses discussed in this book are limited to linear elastic composite
materials. The reader who is interested in advanced topics like elasto-plastic
composites, temperature effects, creep effects, viscoplasticity, composite plates
and shells, dynamics and vibration of composites, etc. may refer to the widely
available literature on these topics.

1.2 MATLAB Functions for Mechanics
of Composite Materials

The CD-ROM accompanying this book includes 44 MATLAB functions (M-
files) specifically written by the authors to be used for the analysis of fiber-
reinforced composite materials with this book. They comprise what may be
called the MATLAB Composite Materials Mechanics Toolbox. The following
is a listing of all the functions available on the CD-ROM. The reader can refer
to each chapter for specific usage details.

OrthotropicCompliance(E1, E2, E3, NU12, NU23, NU13, G12, G23, G13)
OrthotropicStiffness(E1, E2, E3, NU12, NU23, NU13, G12, G23, G13)
TransverselyIsotropicCompliance(E1, E2, NU12, NU23, G12)
TransverselyIsotropicStiffness(E1, E2, NU12, NU23, G12)
IsotropicCompliance(E, NU)
IsotropicStiffness(E, NU)

E1 (Vf, E1f, Em)
NU12 (Vf, NU12f, NUm)
E2 (Vf, E2f, Em, Eta, NU12f, NU21f, NUm, E1f, p)
G12 (Vf, G12f, Gm, EtaPrime, p)
Alpha1 (Vf, E1f, Em, Alpha1f, Alpham)
Alpha2 (Vf, Alpha2f, Alpham, E1, E1f, Em, NU1f, NUm, Alpha1f, p)
E2Modified(Vf, E2f, Em, Eta, NU12f, NU21f, NUm, E1f, p)

ReducedCompliance(E1, E2, NU12, G12)
ReducedStiffness(E1, E2, NU12, G12)
ReducedIsotropicCompliance(E, NU)
ReducedIsotropicStiffness(E, NU)
ReducedStiffness2 (E1, E2, NU12, G12)
ReducedIsotropicStiffness2 (E, NU)

1.3 MATLAB Tutorial 3

T (theta)
Tinv(theta)
Sbar(S, theta)
Qbar(Q, theta)
Tinv2 (theta)
Sbar2 (S, T)
Qbar2 (Q, T)

Ex (E1, E2, NU12, G12, theta)
NUxy(E1, E2, NU12, G12, theta)
Ey(E1, E2, NU21, G12, theta)
NUyx (E1, E2, NU21, G12, theta)
Gxy(E1, E2, NU12, G12, theta)
Etaxyx (Sbar)
Etaxyy(Sbar)
Etaxxy(Sbar)
Etayxy(Sbar)

Strains(eps xo, eps yo, gam xyo, kap xo, kap yo, kap xyo, z)

Amatrix (A, Qbar, z1, z2)
Bmatrix (B, Qbar, z1, z2)
Dmatrix (D, Qbar, z1, z2)

Ebarx (A, H)
Ebary(A, H)
NUbarxy(A, H)
NUbaryx (A, H)
Gbarxy(A, H)

1.3 MATLAB Tutorial

In this section a very short MATLAB tutorial is provided. For more details
consult the excellent books listed in [13–21] or the numerous freely available
tutorials on the internet – see [22–29]. This tutorial is not comprehensive but
describes the basic MATLAB commands that are used in this book.

In this tutorial it is assumed that you have started MATLAB on your
system successfully and you are ready to type the commands at the MATLAB
prompt (which is denoted by double arrows “�”). Entering scalars and simple
operations is easy as is shown in the examples below:

>> 2 * 3 + 7

ans =

13

4 1 Introduction

>> sin(45*pi/180)

ans =

0.7071

>> x = 6

x =

6

>> 5/sqrt(2 - x)

ans =

0 - 2.5000i

Notice that the last result is a complex number. To suppress the output
in MATLAB use a semicolon to end the command line as in the following
examples. If the semicolon is not used then the output will be shown by
MATLAB:

>> y = 35;

>> z = 7;

>> x = 3 * y + 4 * z;

>> w = 2 * y - 5 * z

w =

35

MATLAB is case-sensitive, i.e. variables with lowercase letters are different
than variables with uppercase letters. Consider the following examples using
the variables x and X.

>> x = 1

x =

1

>> X = 2

X =

2

>> x

1.3 MATLAB Tutorial 5

x =

1

>> X

X =

2

Use the help command to obtain help on any particular MATLAB com-
mand. The following example demonstrates the use of help to obtain help on
the det command.

>> help det

DET Determinant.

DET(X) is the determinant of the square matrix X.

Use COND instead of DET to test for matrix singularity.

See also COND.

Overloaded methods

help sym/det.m

The following examples show how to enter matrices and perform some
simple matrix operations:

>> x = [1 4 7 ; 3 5 6 ; 1 3 8]

x =

1 4 7

3 5 6

1 3 8

>> y = [1 ; 3 ; 0]

y =

1

3

0

>> w = x * y

6 1 Introduction

w =

13

18

10

Let us now solve the following system of simultaneous algebraic equations:⎡
⎢⎢⎣

1 4 6 −5
3 1 0 −1
3 7 2 1
0 1 3 5

⎤
⎥⎥⎦
⎧⎪⎪⎨
⎪⎪⎩

x1

x2

x3

x4

⎫⎪⎪⎬
⎪⎪⎭ =

⎧⎪⎪⎨
⎪⎪⎩

1
−2

0
5

⎫⎪⎪⎬
⎪⎪⎭ (1.1)

We will use Gaussian elimination to solve the above system of equations.
This is performed in MATLAB by using the backslash operator “\” as follows:

>> A = [1 4 6 -5 ; 3 1 0 -1 ; 3 7 2 1 ; 0 1 3 5]

A =

1 4 6 -5

3 1 0 -1

3 7 2 1

0 1 3 5

>> b = [1 ; -2 ; 0 ; 5]

b =

1

-2

0

5

>> x = A\b

x =

-0.4444

-0.1111

0.7778

0.5556

It is clear that the solution is x1 = −0.4444, x2 = −0.1111, x3 = 0.7778,
and x4 = 0.5556. Alternatively, one can use the inverse matrix of A to obtain
the same solution directly as follows:

1.3 MATLAB Tutorial 7

>> x = inv(A) * b

x =

-0.4444

-0.1111

0.7778

0.5556

It should be noted that using the inverse method usually takes longer than
using Gaussian elimination especially for large systems.

Finally in order to plot a graph of the function y = f(x), we use the MAT-
LAB command plot(x, y) after we have adequately defined both vectors x
and y. The following is a simple example.

>> x = [1 2 3 4 5 6 7 8 9 10]

x =

1 2 3 4 5 6 7 8 9 10

>> y = x. ^ 3 - 2 * x. ^ 2 + 5

y =

4 5 14 37 80 149 250 389 572 805

Fig. 1.1. Using the MATLAB Plot command

8 1 Introduction

EDU >> plot(x, y)

EDU >> hold on;

EDU >> xlabel(‘x’);

EDU >> ylabel(‘y’);

Figure 1.1 shows the plot obtained by MATLAB. It is usually shown in
a separate graphics window. Notice how the xlabel and ylabel MATLAB
commands are used to label the two axes. Notice also how a “dot” is used in
the function definition just before the exponentiation operation to indicate to
MATLAB to carry out the operation on an element by element basis.

