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Introduction to Damage Mechanics
of Composite Materials

12.1 Basic Equations

The objective of this final chapter is to introduce the reader to the subject
of damage mechanics of composite materials. For further details, the reader
is referred to the comprehensive book on this subject written by the authors:
Advances in Damage Mechanics: Metals and Metal Matrix Composites. This
chapter does not contain any MATLAB functions or examples.

In this chapter, only elastic composites are considered. The fibers are as-
sumed to be continuous and perfectly aligned. In addition, a perfect bond is
assumed to exist at the matrix-fiber interface. A consistent mathematical for-
mulation is presented in the next sections to derive the equations of damage
mechanics for these composite materials using two different approaches: one
overall and one local. The elastic stiffness matrix is derived using both these
two approaches and is shown to be identical in both cases.

For simplicity, the composite system is assumed to consist of a matrix re-
inforced with continuous fibers. Both the matrix and fibers are linearly elastic
with different material constants. Let C̄ denote the configuration of the un-
damaged composite system and let C̄m and C̄f denote the configurations of
the undamaged matrix and fibers, respectively. Since the composite system as-
sumes a perfect bond at the matrix-fiber interface, it is clear that C̄m ∩ C̄f = φ
and C̄m ∪ C̄f = C̄. In the overall approach, the problem reduces to trans-
forming the undamaged configuration C̄ into the damaged configuration C.
In contrast, two intermediate configurations Cm and Cf are considered in the
local approach for the matrix and fibers, respectively. In the latter approach,
the problem is reduced to transforming each of the undamaged configurations
C̄m and C̄f into the damaged configurations Cm and Cf , respectively.

In case of elastic fiber-reinforced composites, the following linear relation
is used for each constituent in its respective undamaged configuration:

σ̄k = Ēk : ε̄k, k = m, f (12.1)
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where σ̄k is the effective constituent stress tensor, ε̄k is the effective strain
tensor, and Ēk is the effective constituent elasticity tensor. The operation:
denotes the tensor contraction operation over two indices. For the case of an
isotropic constituent, Ēk is given by the following formula:

Ēk = λ̄kI2 ⊗ I2 + 2ūkI4 (12.2)

where λ̄k and µ̄k are the effective constituent Lame’s constants, I2 is the
second-rank identity tensor, and I4 is the fourth-rank identity tensor. The
operation ⊗ is the tensor cross product between two second-rank tensors to
produce a fourth-rank tensor.

Within the framework of the micromechanical analysis of composite ma-
terials, the effective constituent stress tensor σ̄k is related to the effective
composite stress tensor σ̄ by the following relation:

σ̄k = B̄k : σ̄ (12.3)

The fourth-rank tensor B̄k is the constituent stress concentration tensor.
It can be determined using several available homogenization models such as
the Voigt and Mori-Tanaka models. The effective constituent strain tensor ε̄k

is determined in a similar way by the following relation:

ε̄k = Āk : ε̄ (12.4)

where ε̄ is the effective composite strain tensor and Āk is the fourth-rank
constituent strain concentration tensor.

Next, the overall and local approaches to damage in elastic composites are
examined in the following two sections.

12.2 Overall Approach

In this approach, damage is incorporated in the composite system as a whole
through one damage tensor called the overall damage tensor. The two steps
needed in this approach are shown schematically in Fig. 12.1 for a two-phase
composite system consisting of a matrix and fibers. In the first step, the
elastic equations are formulated in an undamaged composite system. This is
performed here using the law of mixtures as follows:

σ̄ = c̄mσ̄m + c̄f σ̄f (12.5)

where c̄m and c̄f are the effective matrix and fiber volume fractions, respec-
tively.

In the effective composite configuration C̄, the following linear elastic re-
lation holds:

σ̄ = Ē : ε̄ (12.6)
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Fig. 12.1. Schematic diagram illustrating the overall approach for composite ma-
terials

where Ē is the fourth-rank constant elasticity tensor. Substituting (12.1),
(12.4), and (12.6) into (12.5) and simplifying, one obtains the following ex-
pression for Ē:

Ē = c̄mĒm : Ām + c̄f Ēf : Āf (12.7)

In the second step of the formulation, damage is induced through the
fourth-rank damage effect tensor M as follows:

σ̄ = M : σ (12.8)

where σ is the composite stress tensor. Equation (12.8) represents the damage
transformation equation for the stress tensor. In order to derive a similar
relation for the strain tensor, one needs to use the hypothesis of elastic energy
equivalence. In this hypothesis, the elastic energy of the damage system is
equal to the elastic energy of the effective system. Applying this hypothesis
to the composite system by equating the two elastic energies, one obtains:

1
2
ε : σ =

1
2
ε̄ : σ̄ (12.9)

where ε is the composite strain tensor. Substituting (12.8) into (12.9) and
simplifying, one obtains the damage transformation equation for the strain
tensor as follows:

ε̄ = M−T : ε (12.10)

where the superscript −T denotes the inverse transpose of the tensor.
In order to derive the final relation in the damaged composite system, one

substitutes (12.8) and (12.10) into (12.6) to obtain:

σ = E : ε (12.11)

where the fourth-rank elasticity tensor E is given by:

E = M−1 : Ē : M−T (12.12a)

Substituting for Ē from (12.7) into (12.12a), one obtains:

E = M−1 :
(
c̄mĒm : Ām + c̄f Ēf : Āf

)
: M−T (12.12b)

The above equation represents the elasticity tensor in the damaged com-
posite system according to the overall approach.
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12.3 Local Approach

In this approach, damage is introduced in the first step of the formulation
using two independent damage tensors for the matrix and fibers. However,
more damage tensors may be introduced to account for other types of damage
such as debonding and delamination. The two steps involved in this approach
are shown schematically in Fig. 12.2. One first introduces the fourth-rank
matrix and fiber damage effect tensors Mm and Mf , respectively, as follows:

Fig. 12.2. Schematic diagram illustrating the local approach for composite materials

σ̄k = Mk : σk , k = m, f (12.13)

The above equation can be interpreted in a similar way to (12.8) except
that it applies at the constituent level. It also represents the damage trans-
formation equation for each constituent stress tensor. In order to derive a
similar transformation equation for the constituent strain tensor, one applies
the hypothesis of elastic energy equivalence to each constituent separately as
follows:

1
2
εk : σk =

1
2
ε̄k : σ̄k , k = m, f (12.14)

In using (12.14), one assumes that there are no micromechanical or con-
stituent elastic interactions between the matrix and fibers. This assumption
is not valid in general. From micromechanical considerations, there should
be interactions between the elastic energies in the matrix and fibers. How-
ever, such interactions are beyond the scope of this book as the resulting
equations will be complicated and the sought relations may consequently be
unattainable. It should be clear to the reader that (12.14) is the single most
important assumption that is needed to derive the relations of the local ap-
proach. It will also be needed later when we show the equivalence of the over-
all and local approaches. Therefore, the subsequent relations are very special
cases when (12.14) is valid.

Substituting (12.13) into (12.14) and simplifying, one obtains the required
transformations for the constituent strain tensor as follows:

ε̄k = Mk−T

: εk , k = m, f (12.15)
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The above equation implies a decoupling between the elastic energy in the
matrix and fibers. Other methods may be used that include some form of
coupling but they will lead to complicated transformation equations that are
beyond the scope of this book.

Substituting (12.13) and (12.15) into (12.1) and simplifying, one obtains:

σk = Ek : εk , k = m, f (12.16)

where the constituent elasticity tensor Ek is given by:

Ek = Mk−1
: Ēk : Mk−T

, k = m, f (12.17)

Equation (12.16) represents the elasticity relation for the damaged con-
stituents. The second step of the formulation involves transforming (12.17)
into the whole composite system using the law of mixtures as follows:

σ = cmσm + cfσf (12.18)

where cm and cf are the matrix and fiber volume fractions, respectively, in
the damaged composite system. Before proceeding with (12.18), one needs to
derive a strain constituent equation similar to (12.4). Substituting (12.10) and
(12.15) into (12.4) and simplifying, one obtains:

εk = Ak : ε , k = m, f (12.19)

where the constituent strain concentration tensor Ak in the damaged state is
given by:

Ak = MkT

: Āk : M−T , k = m, f (12.20)

The above equation represents the damage transformation equation for
the strain concentration tensor.

Finally, one substitutes (12.11), (12.16), and (12.19) into (12.18) and sim-
plifies to obtain:

E = cmEm : Am + cfEf : Af (12.21)

Equation (12.21) represents the elasticity tensor in the damaged composite
system according to the local approach.

12.4 Final Remarks

In this final section, it is shown that both the overall and local approaches
are equivalent elastic composites which are considered here. This proof is
performed by showing that both the elasticity tensors given in (12.12b) and
(12.21) are exactly the same. In fact, it is shown that (12.21) reduces to
(12.12b) after making the appropriate substitution.
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First, one needs to find a damage transformation equation for the volume
fractions. This is performed by substituting (12.8) and (12.13) into (12.5),
simplifying and comparing the result with (12.18). One therefore obtains:

ckI4 = c̄kM−1 : Mk , k = m, f (12.22)

where I4 is the fourth-rank identity tensor. Substituting (12.17) and (12.20)
into (12.21) and simplifying, one obtains:

E =
(
cmMm−1

: Ēm : Ām + cfMf−1
: Ēf : Āf

)
: M−T (12.23)

Finally, one substitutes (12.22) into (12.23) and simplifies to obtain:

E = M−1 :
(
c̄mĒm : Ām + c̄f Ēf : Āf

)
: M−T (12.24)

It is clear that the above equation is the same as (12.12b). Therefore,
both the overall and local approaches yield the same elasticity tensor in the
damaged composite system.

Equation (12.24) can be generalized to an elastic composite system with
n constituents as follows:

E = M−1 :

(
n∑

k=1

c̄kĒk : Āk

)
: M−T (12.25)

The two formulations of the overall and local approaches can be used to
obtain the above equation for a composite system with n constituents. The
derivation of (12.25) is similar to the derivation of (12.24) – therefore it is not
presented here and is left to the problems.

In the remaining part of this section, some additional relations are pre-
sented to relate the overall damage effect tensor with the constituent damage
effect tensors. Substituting (12.3) into (12.5) and simplifying, one obtains the
constraint equation for the stress concentration tensors. The constraint equa-
tion is generalized as follows:

n∑
k=1

c̄kB̄k = I4 (12.26)

where I4 is the fourth-rank identity tensor. To find a relation between the
stress concentration tensors in the effective and damaged states, one substi-
tutes (12.8) and (12.13) into (12.3) and simplifies to obtain:

σk = Bk : σ , k = 1, 2, 3, . . . , n (12.27)

where Bk is the fourth-rank stress concentration tensor in the damaged con-
figuration and is given by:

Bk = Mk−1
: B̄k : M , k = 1, 2, 3, . . . , n (12.28)
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Substituting (12.27) into (12.18) and simplifying, the resulting constraint is
generalized as follows:

n∑
k=1

ckBk = I4 (12.29)

Finally, substituting (12.28) into (12.29) and simplifying, one obtains:

M =

(
n∑

k=1

ckMk−1
: B̄k

)−1

(12.30)

Equation (12.30) represents the required relation between the overall and local
(constituent) damage effect tensors.

Problems

Problem 12.1

Consider a composite system that consists of n constituents. In this case, the
overall approach is schematically illustrated in Fig. 12.3. In this case, derive
(12.25) in detail.

Fig. 12.3. Schematic diagram illustrating the overall approach for composite ma-
terials for Problem 12.1

Problem 12.2

Consider a composite system that consists of n constituents. In this case, the
local approach is schematically illustrated in Fig. 12.4. In this case, derive
(12.25) in detail.
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Fig. 12.4. Schematic diagram illustrating the local approach for composite materials
for Problem 12.2

Problem 12.3

Derive (12.20) in detail.

Problem 12.4

Derive (12.28) in detail.

Problem 12.5

The stress and strain concentration tensors are usually determined using one
of the following four models:

1. The Voigt model.
2. The Reuss model.
3. The Mori-Tanaka model.
4. The Eshelby Tensor.

Make a literature search on the above four models and describe each model
briefly writing its basic equations.




