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Laminate Analysis – Part I

7.1 Basic Equations

Fiber-reinforced materials consist usually of multiple layers of material to form a
laminate. Each layer is thin and may have a different fiber orientation – see Fig. 7.1.
Two laminates may have the same number of layers and the same fiber angles but
the two laminates may be different because of the arrangement of the layers.

In this chapter, we will evaluate the influence of fiber directions, stacking arrange-
ments and material properties on laminate and structural response. We will study
a simplified theory called classical lamination theory for this purpose (see [1]).

Figure 7.2 shows a global Cartesian coordinate system and a general laminate
consisting of N layers. The laminate thickness is denoted by H and the thickness of
an individual layer by h. Not all layers necessarily have the same thickness, so the
thickness of the kth layer is denoted by hk.

The origin of the through-thickness coordinate, designated z, is located at the
laminate geometric midplane. The geometric midplane may be within a particular
layer or at an interface between layers. We consider the +z axis to be downward
and the laminate extends in the z direction from −H/2 to +H/2. We refer to the
layer at the most negative location as layer 1, the next layer in as layer 2, the layer
at an arbitrary location as layer k, and the layer at the most positive z position as
layer N . The locations of the layer interfaces are denoted by a subscripted z; the

Fig. 7.1. Schematic illustration of a laminate with four layers
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Fig. 7.2. Schematic illustration showing a cross-section and a plan view

first layer is bounded by locations z0 and z1, the second layer by z1 and z2, the kth
layer by zk−1 and zk, and the Nth layer by zN−1 and zN [1].

Let us examine the deformation of an x-z cross-section [1]. Figure 7.3 shows
in detail the deformation of a cross-section, and in particular the displacements of
point P , a point located at an arbitrary distance z below point P 0, a point on
the reference surface, with points P and P 0 being on line AA′. The superscript 0
will be reserved to denote the kinematics of point P 0 on the reference surface. In
particular, the horizontal translation of point P 0 in the x direction will be denoted
by u0. The vertical translation will be denoted by w0. The rotation of the reference
surface about the y axis at point P 0 is ∂w0/∂x. An important part of the Kirchhoff
hypothesis is the assumption that line AA′ remains perpendicular to the reference
surface. Because of this, the rotation of line AA′ is the same as the rotation of the
reference surface, and thus the rotation of line AA′, as viewed in the x-z plane, is
∂w0/∂x. It is assumed that [1]:

∂w0

∂x
< 1 (7.1)

By less than unity is meant that sines and tangents of angles of rotation are
replaced by the rotations themselves, and cosines of the angles of rotation are replace
by 1. With this approximation, then, the rotation of point P 0 causes point P to
translate horizontally in the minus x direction by an amount equal to:

z =
∂w0

∂x
(7.2)
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Fig. 7.3. Schematic illustration showing the kinematics of deformation of a laminate

Therefore, the horizontal translation of a point P with coordinates (x, y, z) in
the direction of the x-axis is then given by:

u(x, y, z) = u0(x, y) − z
∂w0(x, y)

∂x
(7.3)

Also, the vertical translation of point P in the direction of the z-axis is given
by:

w(x, y, z) = w0(x, y) (7.4)

The horizontal translation of point P in the direction of the y-axis is similar to
that in the direction of the x-axis and is given by:

v(x, y, z) = v0(x, y) − z
∂w0(x, y)

∂y
(7.5)

Therefore, we now have the following relations:

u(x, y, z) = u0(x, y) − z
∂w0(x, y)

∂x
(7.6a)
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v(x, y, z) = v0(x, y) − z
∂w0(x, y)

∂y
(7.6b)

w(x, y, z) = w0(x, y) (7.6c)

Next, we investigate the strains that result from the displacements according to
the Kirchhoff hypothesis. This can be done by using the strain-displacement relations
from the theory of elasticity. Using these relations and (7.6a,b,c), we can compute
the strains at any point within the laminate, and by using these laminate strains
in the stress-strain relations, we can compute the stresses at any point within the
laminate.

From the strain-displacement relations and (7.6a), the extensional strain in the
x direction, εx, is given by:

εx(x, y, z) ≡ ∂u(x, y, z)

∂x
=

∂u0(x, y)

∂x
− z

∂2w0(x, y)

∂x2
(7.7)

Equation (7.7) may be re-written as follows:

εx(x, y, z) = ε0
x(x, y) + zκ0

x(x, y) (7.8)

where the following notation is used:

ε0
x(x, y) =

∂u0(x, y)

∂x
(7.9a)

κ0
x(x, y) = −∂2w0(x, y)

∂x2
(7.9b)

The quantity ε0
x is referred to as the extensional strain of the reference surface

in the x direction, and κ0
x is referred to as the curvature of the reference surface in

the x direction. The other five strain components are given by:

εy(x, y, z) ≡ ∂v(x, y, z)

∂y
= ε0

y(x, y) + zκ0
y(x, y) (7.10a)

εz(x, y, z) ≡ ∂w(x, y, z)

∂z
=

∂w0(x, y)

∂z
= 0 (7.10b)

γyz(x, y, z) ≡ ∂w(x, y, z)

∂y
+

∂v(x, y, z)

∂z

=
∂w0(x, y)

∂y
− ∂w0(x, y)

∂y
= 0 (7.10c)

γxz(x, y, z) ≡ ∂w(x, y, z)

∂x
+

∂u(x, y, z)

∂z

=
∂w0(x, y)

∂x
− ∂w0(x, y)

∂x
= 0 (7.10d)

γxy(x, y, z) ≡ ∂v(x, y, z)

∂x
+

∂u(x, y, z)

∂y
= γ0

xy + zκ0
xy (7.10e)

where the following notation is used:

ε0
y(x, y) =

∂v0(x, y)

∂y
(7.11a)



7.2 MATLAB Functions Used 119

κ0
y(x, y) = −∂2w0(x, y)

∂y2
(7.11b)

γ0
xy(x, y) =

∂v0(x, y)

∂x
+

∂u0(x, y)

∂y
(7.11c)

κ0
xy(x, y) = −2

∂2w0(x, y)

∂x∂y
(7.11d)

The quantities ε0
y, κ0

y, γ0
xy, and κ0

xy are referred to as the reference surface extensional
strain in the y direction, the reference surface curvature in the y direction, the
reference surface inplane shear strain, and the reference surface twisting curvature,
respectively.

The second important assumption of classical lamination theory is that each
point within the volume of a laminate is in a state of plane stress. Therefore, we can
compute the stresses if we know the strains and curvatures of the reference surface.
Accordingly, using the strains that result from the Kirchhoff hypothesis, (7.8) and
(7.10a, e), we find that the stress-strain relations for a laminate become:⎧⎨

⎩
σx

σy

τxy

⎫⎬
⎭ =

⎡
⎢⎣

Q̄11 Q̄12 Q̄16

Q̄12 Q̄22 Q̄26

Q̄16 Q̄26 Q̄66

⎤
⎥⎦
⎧⎪⎨
⎪⎩

ε0
x + zκ0

x

ε0
y + zκ0

y

γ0
xy + zκ0

xy

⎫⎪⎬
⎪⎭ (7.12)

Finally the force and moment resultants in the laminate can be computed using
the stresses as follows:

Nx =

H/2∫
−H/2

σxdz (7.13a)

Ny =

H/2∫
−H/2

σydz (7.13b)

Nxy =

H/2∫
−H/2

τxydz (7.13c)

Mx =

H/2∫
−H/2

σxzdz (7.13d)

My =

H/2∫
−H/2

σyzdz (7.13e)

Mxy =

H/2∫
−H/2

τxyzdz (7.13f)

7.2 MATLAB Functions Used

The only MATLAB function used in this chapter to calculate the strains is:
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Strains(eps xo, eps yo, gam xyo, kap xo, kap yo, kap xyo, z) – This function calcu-
lates the three strains εx, εy, and γxy at any point P on the normal line given the
three strains ε0

x, ε0
y, γ0

xy and the three curvatures κ0
x, κ0

y, κ0
xy at point P 0, and the

distance z between P and P 0. There are seven input arguments to this function.
The function returns the 3 × 1 strain vector.

The following is a listing of the MATLAB source code for this function:

function y = Strains(eps_xo,eps_yo,gam_xyo,kap_xo,kap_yo,kap_xyo,z)

%Strains This function returns the strain vector at any point P

% along the normal line at distance z from point Po which

% lies on the reference surface. There are seven input

% arguments for this function - namely the three strains

% and three curvatures at point Po and the distance z.

% The size of the strain vector is 3 x 1.

epsilonx = eps_xo + z * kap_xo;

epsilony = eps_yo + z * kap_yo;

gammaxy = gam_xyo + z * kap_xyo;

y = [epsilonx ; epsilony ; gammaxy];

MATLAB Example 7.1

Consider a graphite-reinforced polymer composite laminate with the elastic con-
stants as given in Example 2.2. The laminate has total thickness of 0.500 mm and is
stacked as a [0/90]S laminate. The four layers are of equal thickness. It is deformed
so that at a point (x, y) on the reference surface, we have the following strains and
curvatures:

ε0
x = 400 × 10−6

ε0
y = γ0

xy = κ0
x = κ0

y = κ0
xy = 0

Use MATLAB to determine the following:

(a) the three components of strain at the interface locations.
(b) the three components of stress in each layer. Plot the stress distribution along

the depth of the laminate for each component.
(c) the force and moment resultants in the laminate.
(d) the three components of strain at the interface locations with respect to the

principal material system.
(e) the three components of stress in each layer with respect to the principal material

system.

Solution

This example is solved using MATLAB. First the strains are calculated at the five
interface locations using the MATLAB function Strains as follows:
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>> epsilon1 = Strains(400e-6,0,0,0,0,0,-0.250e-3)

epsilon1 =

1.0e-003 *

0.4000

0

0

>> epsilon2 = Strains(400e-6,0,0,0,0,0,-0.125e-3)

epsilon2 =

1.0e-003 *

0.4000

0

0

>> epsilon3 = Strains(400e-6,0,0,0,0,0,0)

epsilon3 =

1.0e-003 *

0.4000

0

0

>> epsilon4 = Strains(400e-6,0,0,0,0,0,0.125e-3)

epsilon4 =

1.0e-003 *

0.4000

0

0

>> epsilon5 = Strains(400e-6,0,0,0,0,0,0.250e-3)

epsilon5 =

1.0e-003 *

0.4000

0

0
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Next, the reduced stiffness [Q} in GPa is calculated for this material using the
MATLAB function ReducedStiffness as follows:

>> Q = ReducedStiffness(155.0, 12.10, 0.248, 4.40)

Q =

155.7478 3.0153 0

3.0153 12.1584 0

0 0 4.4000

The transformed reduced stiffnesses [Q̄] in GPa for the four layers are now cal-
culated using the MATLAB function Qbar as follows:

>> Qbar1 = Qbar(Q,0)

Qbar1 =

155.7478 3.0153 0

3.0153 12.1584 0

0 0 4.4000

>> Qbar2 = Qbar(Q,90)

Qbar2 =

12.1584 3.0153 -0.0000

3.0153 155.7478 0.0000

-0.0000 0.0000 4.4000

>> Qbar3 = Qbar(Q,90)

Qbar3 =

12.1584 3.0153 -0.0000

3.0153 155.7478 0.0000

-0.0000 0.0000 4.4000

>> Qbar4 = Qbar(Q,0)

Qbar4 =

155.7478 3.0153 0

3.0153 12.1584 0

0 0 4.4000

Next, the stresses in each layer are calculated in MPa. Note that the stress
vector is calculated twice for each layer – once at the top of the layer and once at
the bottom of the layer.
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>> sigma1a = Qbar1*epsilon1*1e3

sigma1a =

62.2991

1.2061

0

>> sigma1b = Qbar1*epsilon2*1e3

sigma1b =

62.2991

1.2061

0

>> sigma2a = Qbar2*epsilon2*1e3

sigma2a =

4.8634

1.2061

-0.0000

>> sigma2b = Qbar2*epsilon3*1e3

sigma2b =

4.8634

1.2061

-0.0000

>> sigma3a = Qbar3*epsilon3*1e3

sigma3a =

4.8634

1.2061

-0.0000

>> sigma3b = Qbar3*epsilon4*1e3

sigma3b =

4.8634

1.2061

-0.0000
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>> sigma4a = Qbar4*epsilon4*1e3

sigma4a =

62.2991

1.2061

0

>> sigma4b = Qbar4*epsilon5*1e3

sigma4b =

62.2991

1.2061

0

Next, we setup the y-axis for the three plots:

>> y = [0.250 0.125 0.125 0 0 -0.125 -0.125 -0.250]

y =

0.2500 0.1250 0.1250 0 0 -0.1250 -0.1250

-0.2500

The distribution of the stress σx along the depth of the laminate is now plotted
as follows (see Fig. 7.4):

>> x = [sigma4b(1) sigma4a(1) sigma3b(1) sigma3a(1) sigma2b(1)
sigma2a(1) sigma1b(1) sigma1a(1)]

x =

62.2991 62.2991 4.8634 4.8634 4.8634 4.8634 62.2991
62.2991

>> plot(x,y)
>> xlabel(‘\sigma_x (MPa)’)
>> ylabel(‘z (mm)’)

The distribution of the stress σy along the depth of the laminate is now plotted
as follows (see Fig. 7.5):

>> x = [sigma4b(2) sigma4a(2) sigma3b(2) sigma3a(2) sigma2b(2)
sigma2a(2) sigma1b(2) sigma1a(2)]

x =

1.2061 1.2061 1.2061 1.2061 1.2061 1.2061 1.2061
1.2061

>> plot(x,y)
>> ylabel(‘z (mm)’)
>> xlabel(‘\sigma_y (MPa)’)
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Fig. 7.4. Variation of σx versus z for Example 7.1

Fig. 7.5. Variation of σy versus z for Example 7.1

The distribution of the stress τxy along the depth of the laminate is now plotted
as follows (see Fig. 7.6):

>> x = [sigma4b(3) sigma4a(3) sigma3b(3) sigma3a(3) sigma2b(3) sigma2a(3)

sigma1b(3) sigma1a(3)]

x =

1.0e-015 *

0 0 -0.1162 -0.1162 -0.1162 -0.1162 0 0
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Fig. 7.6. Variation of τxy versus z for Example 7.1

>> plot(x,y)

>> ylabel(‘z (mm)’)

>> xlabel(‘\tau_{xy} (MPa)’)

Next, the three force resultants are calculated in MN/m using (7.13a,b,c) as
follows:

>> Nx = 0.125e-3 * (sigma1a(1) + sigma2a(1) + sigma3a(1) + sigma4a(1))

Nx =

0.0168

>> Ny = 0.125e-3 * (sigma1a(2) + sigma2a(2) + sigma3a(2) + sigma4a(2))

Ny =

6.0306e-004

>> Nxy = 0.125e-3 * (sigma1a(3) + sigma2a(3) + sigma3a(3) + sigma4a(3))

Nxy =

-2.9043e-020

Next, the three moment resultants are calculated in MN.m/m using (7.13d,e,f)
as follows:
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>> Mx = sigma1a(1)* ((-0.125e-3)^2 - (-0.250e-3)^2)/2 + sigma2a(1)* (0 -

(-0.125e-3)^2)/2 + sigma3a(1)* ((0.125e-3)^2 - 0)/2 + sigma4a(1)*

((0.250e-3)^2 - (0.125e-3)^2)/2

Mx =

0

>> My = sigma1a(2)* ((-0.125e-3)^2 - (-0.250e-3)^2)/2 + sigma2a(2)* (0 -

(-0.125e-3)^2)/2 + sigma3a(2)* ((0.125e-3)^2 - 0)/2 + sigma4a(2)*

((0.250e-3)^2 - (0.125e-3)^2)/2

My =

3.3087e-024

>> Mxy = sigma1a(3)* ((-0.125e-3)^2 - (-0.250e-3)^2)/2 + sigma2a(3)* (0 -

(-0.125e-3)^2)/2 + sigma3a(3)* ((0.125e-3)^2 - 0)/2 + sigma4a(3)*

((0.250e-3)^2 - (0.125e-3)^2)/2

Mxy =

0

Next, the transformation matrix is calculated for each one of the four layers
using the MATLAB function T as follows:

>> T1 = T(0)

T1 =

1 0 0

0 1 0

0 0 1

>> T2 = T(90)

T2 =

0.0000 1.0000 0.0000

1.0000 0.0000 -0.0000

-0.0000 0.0000 -1.0000

>> T3 = T(90)

T3 =

0.0000 1.0000 0.0000

1.0000 0.0000 -0.0000

-0.0000 0.0000 -1.0000
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>> T4 = T(0)

T4 =

1 0 0

0 1 0

0 0 1

The strain vector is now calculated in each layer with respect to the principal
material system as follows. Note that the strain vector is calculated twice for each
layer – once at the top of the layer and once at the bottom of the layer. Notice also
that in this case there is no need to correct the strain vector for the factor of 1/2
since the shear strain is zero in this example.

>> eps1a = T1*epsilon1

eps1a =

1.0e-003 *

0.4000

0

0

>> eps1b = T1*epsilon2

eps1b =

1.0e-003 *

0.4000

0

0

>> eps2a = T2*epsilon2

eps2a =

1.0e-003 *

0.0000

0.4000

-0.0000

>> eps2b = T2*epsilon3
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eps2b =

1.0e-003 *

0.0000

0.4000

-0.0000

>> eps3a = T3*epsilon3

eps3a =

1.0e-003 *

0.0000

0.4000

-0.0000

>> eps3b = T3*epsilon4

eps3b =

1.0e-003 *

0.0000

0.4000

-0.0000

>> eps4a = T4*epsilon4

eps4a =

1.0e-003 *

0.4000

0

0

>> eps4b = T4*epsilon5

eps4b =

1.0e-003 *

0.4000

0

0



130 7 Laminate Analysis – Part I

Finally, the stress vector is calculated in MPa for each layer with respect to the
principal material systems as follows:

>> sig1 = T1*sigma1a

sig1 =

62.2991

1.2061

0

>> sig2 = T2*sigma2a

sig2 =

1.2061

4.8634

-0.0000

>> sig3 = T3*sigma3a

sig3 =

1.2061

4.8634

-0.0000

>> sig4 = T4*sigma4a

sig4 =

62.2991

1.2061

0

MATLAB Example 7.2

Consider a graphite-reinforced polymer composite laminate with the elastic con-
stants as given in Example 2.2. The laminate has total thickness of 0.900 mm and is
stacked as a [±30/0]S laminate. The six layers are of equal thickness. It is deformed
so that at a point (x, y) on the reference surface, we have the following strains and
curvatures:

κ0
x = 2.5 m−1

ε0
x = ε0

y = γ0
xy = κ0

y = κ0
xy = 0

Use MATLAB to determine the following:
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(a) the three components of strain at the interface locations.
(b) the three components of stress in each layer. Plot the stress distribution along

the depth of the laminate for each component.
(c) the force and moment resultants in the laminate.
(d) the three components of strain at the interface locations with respect to the

principal material system.
(e) the three components of stress in each layer with respect to the principal material

system.

Solution

This example is solved using MATLAB. First, the strains are calculated at the seven
interface locations using the MATLAB function Strains as follows:

>> epsilon1 = Strains(0,0,0,2.5,0,0,-0.450e-3)

epsilon1 =

-0.0011

0

0

>> epsilon2 = Strains(0,0,0,2.5,0,0,-0.300e-3)

epsilon2 =

1.0e-003 *

-0.7500

0

0

>> epsilon3 = Strains(0,0,0,2.5,0,0,-0.150e-3)

epsilon3 =

1.0e-003 *

-0.3750

0

0

>> epsilon4 = Strains(0,0,0,2.5,0,0,0)

epsilon4 =

0

0

0
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>> epsilon5 = Strains(0,0,0,2.5,0,0,0.150e-3)

epsilon5 =

1.0e-003 *

0.3750

0

0

>> epsilon6 = Strains(0,0,0,2.5,0,0,0.300e-3)

epsilon6 =

1.0e-003 *

0.7500

0

0

>> epsilon7 = Strains(0,0,0,2.5,0,0,0.450e-3)

epsilon7 =

0.0011

0

0

Next, the reduced stiffness [Q] in GPa is calculated for this material using the
MATLAB function ReducedStiffness as follows:

>> Q = ReducedStiffness(155.0, 12.10, 0.248, 4.40)

Q =

155.7478 3.0153 0

3.0153 12.1584 0

0 0 4.4000

The transformed reduced stiffnesses [Q̄] in GPa for the six layers are now calcu-
lated using the MATLAB function Qbar as follows:

>> Qbar1 = Qbar(Q,30)

Qbar1 =

91.1488 31.7170 95.3179

31.7170 19.3541 29.0342

47.6589 14.5171 61.8034
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>> Qbar2 = Qbar(Q,-30)

Qbar2 =

91.1488 31.7170 -95.3179

31.7170 19.3541 -29.0342

-47.6589 -14.5171 61.8034

>> Qbar3 = Qbar(Q,0)

Qbar3 =

155.7478 3.0153 0

3.0153 12.1584 0

0 0 4.4000

>> Qbar4 = Qbar(Q,0)

Qbar4 =

155.7478 3.0153 0

3.0153 12.1584 0

0 0 4.4000

>> Qbar5 = Qbar(Q,-30)

Qbar5 =

91.1488 31.7170 -95.3179

31.7170 19.3541 -29.0342

-47.6589 -14.5171 61.8034

>> Qbar6 = Qbar(Q,30)

Qbar6 =

91.1488 31.7170 95.3179

31.7170 19.3541 29.0342

47.6589 14.5171 61.8034

Next, the stresses in each layer are calculated in MPa. Note that the stress
vector is calculated twice for each layer – once at the top of the layer and once at
the bottom of the layer.

>> sigma1a = Qbar1*epsilon1*1e3

sigma1a =

-102.5424

-35.6816

-53.6163
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>> sigma1b = Qbar1*epsilon2*1e3

sigma1b =

-68.3616

-23.7877

-35.7442

>> sigma2a = Qbar2*epsilon2*1e3

sigma2a =

-68.3616

-23.7877

35.7442

>> sigma2b = Qbar2*epsilon3*1e3

sigma2b =

-34.1808

-11.8939

17.8721

>> sigma3a = Qbar3*epsilon3*1e3

sigma3a =

-58.4054

-1.1307

0

>> sigma3b = Qbar3*epsilon4*1e3

sigma3b =

0

0

0

>> sigma4a = Qbar4*epsilon4*1e3

sigma4a =

0

0

0
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>> sigma4b = Qbar4*epsilon5*1e3

sigma4b =

58.4054

1.1307

0

>> sigma5a = Qbar5*epsilon5*1e3

sigma5a =

34.1808

11.8939

-17.8721

>> sigma5b = Qbar5*epsilon6*1e3

sigma5b =

68.3616

23.7877

-35.7442

>> sigma6a = Qbar6*epsilon6*1e3

sigma6a =

68.3616

23.7877

35.7442

>> sigma6b = Qbar6*epsilon7*1e3

sigma6b =

102.5424

35.6816

53.6163

Next, we setup the y-axis for the three plots:

>> y = [0.450 0.300 0.300 0.150 0.150 0 0 -0.150 -0.150 -0.300 -0.300

-0.450]

y =

0.4500 0.3000 0.3000 0.1500 0.1500 0 0

-0.1500 -0.1500 -0.3000 -0.3000 -0.4500
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Fig. 7.7. Variation of σx versus z for Example 7.2

The distribution of the stress σx along the depth of the laminate is now plotted
as follows (see Fig. 7.7):

>> x = [sigma6b(1) sigma6a(1) sigma5b(1) sigma5a(1) sigma4b(1)

sigma4a(1) sigma3b(1) sigma3a(1) sigma2b(1) sigma2a(1)

sigma1b(1) sigma1a(1)]

x =

102.5424 68.3616 68.3616 34.1808 58.4054 0 0

-58.4054 -34.1808 -68.3616 -68.3616 -102.5424

>> plot(x,y)

>> xlabel(‘\sigma_x (MPa)’)

>> ylabel(‘z (mm)’)

The distribution of the stress σy along the depth of the laminate is now plotted
as follows (see Fig. 7.8):

>> x = [sigma6b(2) sigma6a(2) sigma5b(2) sigma5a(2) sigma4b(2)

sigma4a(2) sigma3b(2) sigma3a(2) sigma2b(2) sigma2a(2)

sigma1b(2) sigma1a(2)]

x =

35.6816 23.7877 23.7877 11.8939 1.1307 0 0

-1.1307 -11.8939 -23.7877 -23.7877 -35.6816

>> plot(x,y)

>> ylabel(‘z (mm)’)

>> xlabel(‘\sigma_y (MPa)’)
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Fig. 7.8. Variation of σy versus z for Example 7.2

The distribution of the stress τxy along the depth of the laminate is now plotted
as follows (see Fig. 7.9):

>> x = [sigma6b(3) sigma6a(3) sigma5b(3) sigma5a(3) sigma4b(3)

sigma4a(3) sigma3b(3) sigma3a(3) sigma2b(3) sigma2a(3)

sigma1b(3) sigma1a(3)]

x =

53.6163 35.7442 -35.7442 -17.8721 0 0 0

0 17.8721 35.7442 -35.7442 -53.6163

>> plot(x,y)

>> ylabel(‘z (mm)’)

>> xlabel(‘\tau_{xy} (MPa)’)

Next, the three force resultants are calculated in MN/m using (7.13a,b,c) as
follows:

>> Nx = 0.150 * (sigma1a(1) + sigma2a(1) + sigma3a(1) + sigma4a(1) +

sigma5a(1) + sigma6a(1))

Nx =

-19.0150

>> Ny = 0.150 * (sigma1a(2) + sigma2a(2) + sigma3a(2) + sigma4a(2) +

sigma5a(2) + sigma6a(2))
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Fig. 7.9. Variation of τxy versus z for Example 7.2

Ny =

-3.7378

>> Nxy = 0.150 * (sigma1a(3) + sigma2a(3) + sigma3a(3) + sigma4a(3) +

sigma5a(3) + sigma6a(3))

Nxy =

0

Next, the three moment resultants are calculated in MN.m/m using (7.13d, e, f)
as follows:

>> Mx = sigma1a(1) * ((-0.300)^2 - (-0.450)^2)/2 + sigma2a(1) *

(-0.150)^2 - (-0.300)^2)/2 + sigma3a(1) * (0 - (-0.150)^2)/2 +

sigma4a(1) * ((0.150)^2 - 0)/2 + sigma5a(1) * ((0.300)^2 -

(0.150)^2)/2 + sigma6a(1) * ((0.450)^2 - (0.300)^2)/2

Mx =

13.7312

>> My = sigma1a(2) * ((-0.300)^2 - (-0.450)^2)/2 + sigma2a(2) *

((-0.150)^2 - (-0.300)^2)/2 + sigma3a(2) * (0 - (-0.150)^2)/2 +

sigma4a(2) * ((0.150)^2 - 0)/2 + sigma5a(2) * ((0.300)^2 -

(0.150)^2)/2 + sigma6a(2) * ((0.450)^2 - (0.300)^2)/2
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My =

4.5621

>> Mxy = sigma1a(3) * ((-0.300)^2 - (-0.450)^2)/2 + sigma2a(3) *

((-0.150)^2 - (-0.300)^2)/2 + sigma3a(3) * (0 - (-0.150)^2)/2

+ sigma4a(3) * ((0.150)^2 - 0)/2 + sigma5a(3) * ((0.300)^2 -

(0.150)^2)/2 + sigma6a(3) * ((0.450)^2 - (0.300)^2)/2

Mxy =

3.2170

Next, the transformation matrix is calculated for each one of the six layers using
the MATLAB function T as follows:

>> T1 = T(30)

T1 =

0.7500 0.2500 0.8660

0.2500 0.7500 -0.8660

-0.4330 0.4330 0.5000

>> T2 = T(-30)

T2 =

0.7500 0.2500 -0.8660

0.2500 0.7500 0.8660

0.4330 -0.4330 0.5000

>> T3 = T(0)

T3 =

1 0 0

0 1 0

0 0 1

>> T4 = T(0)

T4 =

1 0 0

0 1 0

0 0 1
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>> T5 = T(-30)

T5 =

0.7500 0.2500 -0.8660

0.2500 0.7500 0.8660

0.4330 -0.4330 0.5000

>> T6 = T(30)

T6 =

0.7500 0.2500 0.8660

0.2500 0.7500 -0.8660

-0.4330 0.4330 0.5000

The strain vector is now calculated in each layer with respect to the principal
material system. Note that the strain vector is calculated twice for each layer – once
at the top of the layer and once at the bottom of the layer.

>> eps1a = T1*epsilon1

eps1a =

1.0e-003 *

-0.8438

-0.2812

0.4871

>> eps1b = T1*epsilon2

eps1b =

1.0e-003 *

-0.5625

-0.1875

0.3248

>> eps2a = T2*epsilon2

eps2a =

1.0e-003 *

-0.5625

-0.1875

-0.3248
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>> eps2b = T2*epsilon3

eps2b =

1.0e-003 *

-0.2813

-0.0937

-0.1624

>> eps3a = T3*epsilon3

eps3a =

1.0e-003 *

-0.3750

0

0

>> eps3b = T3*epsilon4

eps3b =

0

0

0

>> eps4a = T4*epsilon4

eps4a =

0

0

0

>> eps4b = T4*epsilon5

eps4b =

1.0e-003 *

0.3750

0

0

>> eps5a = T5*epsilon5
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eps5a =

1.0e-003 *

0.2813

0.0937

0.1624

>> eps5b = T5*epsilon6

eps5b =

1.0e-003 *

0.5625

0.1875

0.3248

>> eps6a = T6*epsilon6

eps6a =

1.0e-003 *

0.5625

0.1875

-0.3248

>> eps6b = T6*epsilon7

eps6b =

1.0e-003 *

0.8438

0.2812

-0.4871

Next, we correct the shear strain component for the factor of 1/2 that appears in
the equations.

>> eps1a(3) = eps1a(3)*2

eps1a =

1.0e-003 *

-0.8438

-0.2812

0.9743
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>> eps2a(3) = eps2a(3)*2

eps2a =

1.0e-003 *

-0.5625

-0.1875

-0.6495

>> eps3a(3) = eps3a(3)*2

eps3a =

1.0e-003 *

-0.3750

0

0

>> eps4a(3) = eps4a(3)*2

eps4a =

0

0

0

>> eps5a(3) = eps5a(3)*2

eps5a =

1.0e-003 *

0.2813

0.0937

0.3248

>> eps6a(3) = eps6a(3)*2

eps6a =

1.0e-003 *

0.5625

0.1875

-0.6495
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Finally, the stress vector is calculated in MPa for each layer with respect to the
principal material system as follows:

>> sig1 = T1*sigma1a

sig1 =

-132.2602

-5.9637

2.1434

>> sig2 = T2*sigma2a

sig2 =

-88.1735

-3.9758

-1.4289

>> sig3 = T3*sigma3a

sig3 =

-58.4054

-1.1307

0

>> sig4 = T4*sigma4a

sig4 =

0

0

0

>> sig5 = T5*sigma5a

sig5 =

44.0867

1.9879

0.7145

>> sig6 = T6*sigma6a

sig6 =

88.1735

3.9758

-1.4289
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Problems

MATLAB Problem 7.1

Consider a glass-reinforced polymer composite laminate with the elastic constants as
given in Problem 2.7. The laminate has total thickness of 0.600 mm and is stacked as
a [0/90]S laminate. The four layers are of equal thickness. It is deformed so that at
a point (x, y) on the reference surface, we have the following strains and curvatures:

ε0
x = 500 × 10−6

ε0
y = γ0

xy = κ0
x = κ0

y = κ0
xy = 0

Use MATLAB to determine the following:

(a) the three components of strain at the interface locations.
(b) the three components of stress in each layer. Plot the stress distribution along

the depth of the laminate for each component.
(c) the force and moment resultants in the laminate.
(d) the three components of strain at the interface locations with respect to the

principal material system.
(e) the three components of stress in each layer with respect to the principal material

system.

MATLAB Problem 7.2

Consider a graphite-reinforced polymer composite laminate with the elastic con-
stants as given in Example 2.2. The laminate has total thickness of 0.600 mm and is
stacked as a [0/90]S laminate. The four layers are of equal thickness. It is deformed
so that at a point (x, y) on the reference surface, we have the following strains and
curvatures:

κ0
x = 2.5 m−1

ε0
x = ε0

y = γ0
xy = κ0

y = κ0
xy = 0

Use MATLAB to determine the following:

(a) the three components of strain at the interface locations.
(b) the three components of stress in each layer. Plot the stress distribution along

the depth of the laminate for each component.
(c) the force and moment resultants in the laminate.
(d) the three components of strain at the interface locations with respect to the

principal material system.
(e) the three components of stress in each layer with respect to the principal material

system.
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MATLAB Problem 7.3

Consider a glass-reinforced polymer composite laminate with the elastic constants as
given in Problem 2.7. The laminate has total thickness of 0.600 mm and is stacked as
a [0/90]S laminate. The four layers are of equal thickness. It is deformed so that at
a point (x, y) on the reference surface, we have the following strains and curvatures:

κ0
x = 2.5 m−1

ε0
x = ε0

y = γ0
xy = κ0

y = κ0
xy = 0

Use MATLAB to determine the following:

(a) the three components of strain at the interface locations.
(b) the three components of stress in each layer. Plot the stress distribution along

the depth of the laminate for each component.
(c) the force and moment resultants in the laminate.
(d) the three components of strain at the interface locations with respect to the

principal material system.
(e) the three components of stress in each layer with respect to the principal material

system.

MATLAB Problem 7.4

Consider a glass-reinforced polymer composite laminate with the elastic constants as
given in Problem 2.7. The laminate has total thickness of 0.900 mm and is stacked as
a [±30/0]S laminate. The six layers are of equal thickness. It is deformed so that at
a point (x, y) on the reference surface, we have the following strains and curvatures:

κ0
x = 2.5 m−1

ε0
x = ε0

y = γ0
xy = κ0

y = κ0
xy = 0

Use MATLAB to determine the following:

(a) the three components of strain at the interface locations.
(b) the three components of stress in each layer. Plot the stress distribution along

the depth of the laminate for each component.
(c) the force and moment resultants in the laminate.
(d) the three components of strain at the interface locations with respect to the

principal material system.
(e) the three components of stress in each layer with respect to the principal material

system.

MATLAB Problem 7.5

Consider a graphite-reinforced polymer composite laminate with the elastic con-
stants as given in Example 2.2. The laminate has total thickness of 0.900 mm and is
stacked as a [±30/0]S laminate. The six layers are of equal thickness. It is deformed
so that at a point (x, y) on the reference surface, we have the following strains and
curvatures:
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ε0
x = 1000 × 10−6

ε0
y = γ0

xy = κ0
x = κ0

y = κ0
xy = 0

Use MATLAB to determine the following:

(a) the three components of strain at the interface locations.
(b) the three components of stress in each layer. Plot the stress distribution along

the depth of the laminate for each component.
(c) the force and moment resultants in the laminate.
(d) the three components of strain at the interface locations with respect to the

principal material system.
(e) the three components of stress in each layer with respect to the principal material

system.

MATLAB Problem 7.6

Consider a glass-reinforced polymer composite laminate with the elastic constants as
given in Problem 2.7. The laminate has total thickness of 0.900 mm and is stacked as
a [±30/0]S laminate. The six layers are of equal thickness. It is deformed so that at
a point (x, y) on the reference surface, we have the following strains and curvatures:

ε0
x = 1000 × 10−6

ε0
y = γ0

xy = κ0
x = κ0

y = κ0
xy = 0

Use MATLAB to determine the following:

(a) the three components of strain at the interface locations.
(b) the three components of stress in each layer. Plot the stress distribution along

the depth of the laminate for each component.
(c) the force and moment resultants in the laminate.
(d) the three components of strain at the interface locations with respect to the

principal material system.
(e) the three components of stress in each layer with respect to the principal material

system.




