
5

Global Coordinate System

5.1 Basic Equations

In this chapter, we will refer the response of each layer (lamina) of material to
the same global system. We accomplish this by transforming the stress-strain
relations for the lamina 1-2-3 coordinate system into the global coordinate sys-
tem. This transformation will be done for the state of plane stress using the
standard transformation relations for stresses and strains given in introduc-
tory courses in mechanics of materials [1].

Consider an isolated infinitesimal element in the principal material coor-
dinate system (1-2-3 system) that will be transformed into the x-y-z global
coordinate system as shown in Fig. 5.1. The fibers are oriented at angle θ
with respect to the +x axis of the global system. The fibers are parallel to
the x-y plane and the 3 and z axes coincide. The orientation angle θ will be
considered positive when the fibers rotate counterclockwise from the +x axis
toward the +y axis.

The stresses on the small volume of element are now identified with respect
to the x-y-z system. The six components of stress are now σx, σy, σz, τyz,
τxz, and τxy, while the six components of strain are εx, εy, εz, γyz, γxz, and
γxy (see Fig. 5.2).

Note that in a plane stress state, it follows that the out-of-plane stress
components in the x-y-z global coordinate system are zero, i.e. σz = τyz =
τxz = 0 (see Problem 5.1).

The stress transformation relation is given as follows for the case of plane
stress: ⎧⎨

⎩
σ1

σ2

τ12

⎫⎬
⎭ =

⎡
⎣ m2 n2 2mn

n2 m2 −2mn
−mn mn m2 − n2

⎤
⎦
⎧⎨
⎩

σx

σy

τxy

⎫⎬
⎭ (5.1)

where m = cos θ and n = sin θ. The above relation is written in compact form
as follows:
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Fig. 5.1. A infinitesimal fiber-reinforced composite element showing the local and
global coordinate systems

Fig. 5.2. An infinitesimal fiber-reinforced composite element showing the stress
components in the global coordinate system
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⎩

σ1

σ2

τ12

⎫⎬
⎭ = [T ]

⎧⎨
⎩

σx

σy

τxy

⎫⎬
⎭ (5.2)

where [T ] is the transformation matrix given as follows:

[T ] =

⎡
⎣ m2 n2 2mn

n2 m2 −2mn
−mn mn m2 − n2

⎤
⎦ (5.3)

The inverse of the matrix [T ] is [T ]−1 given as follows (see Problem 5.3):

[T ]−1 =

⎡
⎣m2 n2 −2mn

n2 m2 2mn

mn −mn m2 − n2

⎤
⎦ (5.4)

where [T ]−1 is used in the following equation:⎧⎪⎨
⎪⎩

σx

σy

τxy

⎫⎪⎬
⎪⎭ = [T ]−1

⎧⎪⎨
⎪⎩

σ1

σ2

τ12

⎫⎪⎬
⎪⎭ (5.5)

Similar transformation relations hold for the strains as follows:⎧⎪⎨
⎪⎩

ε1

ε2

1
2γ12

⎫⎪⎬
⎪⎭ = [T ]

⎧⎪⎨
⎪⎩

εx

εy

1
2γxy

⎫⎪⎬
⎪⎭ (5.6)

⎧⎪⎨
⎪⎩

εx

εy

1
2γxy

⎫⎪⎬
⎪⎭ = [T ]−1

⎧⎪⎨
⎪⎩

ε1

ε2

1
2γ12

⎫⎪⎬
⎪⎭ (5.7)

Note that the strain transformation (5.6) and (5.7) include a factor of 1/2
with the engineering shear strain. Therefore (4.5) and (4.6) of Chap. 4 are
modified now to include this factor as follows:⎧⎪⎨

⎪⎩
ε1

ε2

1
2γ12

⎫⎪⎬
⎪⎭ =

⎡
⎢⎣

S11 S12 0
S12 S22 0
0 0 1

2S66

⎤
⎥⎦
⎧⎪⎨
⎪⎩

σ1

σ2

τ12

⎫⎪⎬
⎪⎭ (5.8)

⎧⎪⎨
⎪⎩

σ1

σ2

τ12

⎫⎪⎬
⎪⎭ =

⎡
⎢⎣

Q11 Q12 0
Q12 Q22 0
0 0 2Q66

⎤
⎥⎦
⎧⎪⎨
⎪⎩

ε1

ε2

1
2γ12

⎫⎪⎬
⎪⎭ (5.9)
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Substitute (5.6) and (5.2) into (5.8) and rearrange the terms to obtain (also
multiply the third row through by a factor of 2):⎧⎪⎨

⎪⎩
εx

εy

γxy

⎫⎪⎬
⎪⎭ =

⎡
⎢⎣

S̄11 S̄12 S̄16

S̄12 S̄22 S̄26

S̄16 S̄26 S̄66

⎤
⎥⎦
⎧⎪⎨
⎪⎩

σx

σy

τxy

⎫⎪⎬
⎪⎭ (5.10)

where the transformed reduced compliance matrix [S̄] is given by:

[S̄] =

⎡
⎢⎣

S̄11 S̄12 S̄16

S̄12 S̄22 S̄26

S̄16 S̄26 S̄66

⎤
⎥⎦ = [T ]−1

⎡
⎢⎣

S11 S12 0
S12 S22 0
0 0 S66

⎤
⎥⎦ [T ] (5.11)

Equation (5.11) represents the complex relations that describe the response
of an element of fiber-reinforced composite material in a state of plane stress
that is subjected to stresses not aligned with the fibers, nor perpendicular to
the fibers. In this case, normal stresses cause shear strains and shear stresses
cause extensional strains. This coupling found in fiber-reinforced composite
materials is called shear-extension coupling.

Similarly, we can derive the transformed reduced stiffness matrix [Q̄] by
substituting (5.2) and (5.6) into (5.9) and rearranging the terms. We therefore
obtain: ⎧⎪⎨

⎪⎩
σx

σy

τxy

⎫⎪⎬
⎪⎭ =

⎡
⎢⎣

Q̄11 Q̄12 Q̄16

Q̄12 Q̄22 Q̄26

Q̄16 Q̄26 Q̄66

⎤
⎥⎦
⎧⎪⎨
⎪⎩

εx

εy

γxy

⎫⎪⎬
⎪⎭ (5.12)

where [Q̄] is given by:

[Q̄] =

⎡
⎢⎣

Q̄11 Q̄12 Q̄16

Q̄12 Q̄22 Q̄26

Q̄16 Q̄26 Q̄66

⎤
⎥⎦ = [T ]−1

⎡
⎢⎣

Q11 Q12 0
Q12 Q22 0
0 0 Q66

⎤
⎥⎦ [T ] (5.13)

Equation (5.13) further supports the shear-extension coupling of fiber-
reinforced composite materials. Note that the following relations hold between
[S̄] and [Q̄]:

[Q̄] = [S̄]−1 (5.14a)

[S̄] = [Q̄]−1 (5.14b)

5.2 MATLAB Functions Used

The four MATLAB functions used in this chapter to calculate the four major
matrices are:
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T (theta) – This function calculates the transformation matrix [T ] given the
angle “theta”. The orientation angle “theta” must be given in degrees. The
returned matrix has size 3 × 3.

Tinv(theta) – This function calculates the inverse of the transformation ma-
trix [T ] given the angle “theta”. The orientation angle “theta” must be given
in degrees. The returned matrix has size 3 × 3.

Sbar(S,theta) – This function calculates the transformed reduced compliance
matrix [S̄] for the lamina. Its input consists of two arguments representing
the reduced compliance matrix [S] and the orientation angle “theta”. The
returned matrix has size 3 × 3.

Qbar(Q,theta) – This function calculates the transformed reduced stiffness
matrix [Q̄] for the lamina. Its input consists of two arguments representing the
reduced stiffness matrix [Q] and the orientation angle “theta”. The returned
matrix has size 3 × 3.

The following is a listing of the MATLAB source code for each function:

function y = T(theta)

%T This function returns the transformation matrix T

% given the orientation angle "theta".

% There is only one argument representing "theta"

% The size of the matrix is 3 x 3.

% The angle "theta" must be given in degrees.

m = cos(theta*pi/180);

n = sin(theta*pi/180);

y = [m*m n*n 2*m*n ; n*n m*m -2*m*n ; -m*n m*n m*m-n*n];

function y = Tinv(theta)

%Tinv This function returns the inverse of the

% transformation matrix T

% given the orientation angle "theta".

% There is only one argument representing "theta"

% The size of the matrix is 3 x 3.

% The angle "theta" must be given in degrees.

m = cos(theta*pi/180);

n = sin(theta*pi/180);

y = [m*m n*n -2*m*n ; n*n m*m 2*m*n ; m*n -m*n m*m-n*n];

function y = Sbar(S,theta)

%Sbar This function returns the transformed reduced

% compliance matrix "Sbar" given the reduced

% compliance matrix S and the orientation

% angle "theta".

% There are two arguments representing S and "theta"

% The size of the matrix is 3 x 3.

% The angle "theta" must be given in degrees.

m = cos(theta*pi/180);
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n = sin(theta*pi/180);

T = [m*m n*n 2*m*n ; n*n m*m -2*m*n ; -m*n m*n m*m-n*n];

Tinv = [m*m n*n -2*m*n ; n*n m*m 2*m*n ; m*n -m*n m*m-n*n];

y = Tinv*S*T;

function y = Qbar(Q,theta)

%Qbar This function returns the transformed reduced

% stiffness matrix "Qbar" given the reduced

% stiffness matrix Q and the orientation

% angle "theta".

% There are two arguments representing Q and "theta"

% The size of the matrix is 3 x 3.

% The angle "theta" must be given in degrees.

m = cos(theta*pi/180);

n = sin(theta*pi/180);

T = [m*m n*n 2*m*n ; n*n m*m -2*m*n ; -m*n m*n m*m-n*n];

Tinv = [m*m n*n -2*m*n ; n*n m*m 2*m*n ; m*n -m*n m*m-n*n];

y = Tinv*Q*T;

Example 5.1

Using (5.11), derive explicit expressions for the elements S̄ij in terms of Sij

and θ (use m and n for θ).

Solution

Multiply the three matrices in (5.11) as follows:⎡
⎢⎣

S̄11 S̄12 S̄16

S̄12 S̄22 S̄26

S̄16 S̄26 S̄66

⎤
⎥⎦ =

⎡
⎢⎣

m2 n2 −2mn

n2 m2 2mn

mn −mn m2 − n2

⎤
⎥⎦
⎡
⎢⎣

S11 S12 0
S12 S22 0
0 0 S66

⎤
⎥⎦

⎡
⎢⎣

m2 n2 2mn

n2 m2 −2mn

−mn mn m2 − n2

⎤
⎥⎦

(5.15)

The above multiplication can be performed either manually or using a com-
puter algebra system like MAPLE or MATHEMATICA or the MATLAB Sym-
bolic Math Toolbox. Therefore, we obtain the following expression:

S̄11 = S11m
4 + (2S12 + S66)n2m2 + S22n

4 (5.16a)

S̄12 = (S11 + S22 − S66)n2m2 + S12(n4 + m4) (5.16b)

S̄16 = (2S11 − 2S12 − S66)nm3 − (2S22 − 2S12 − S66)n3m (5.16c)

S̄22 = S11n
4 + (2S12 + S66)n2m2 + S22m

4 (5.16d)

S̄26 = (2S11 − 2S12 − S66)n3m − (2S22 − 2S12 − S66)nm3 (5.16e)

S̄66 = 2(2S11 + 2S22 − 4S12 − S66)n2m2 + S66(n4 + m4) (5.16f)
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MATLAB Example 5.2

Consider a graphite-reinforced polymer composite lamina with the elastic con-
stants as given in Example 2.2. Use MATLAB to plot the values of the six
elements S̄ij of the transformed reduced compliance matrix [S̄] as a function
of the orientation angle θ in the range −π/2 ≤ θ ≤ π/2.

Solution

This example is solved using MATLAB. First, the reduced 3 × 3 compliance
matrix is obtained as follows using the MATLAB function ReducedCompliance
of Chap. 4.

>> S = ReducedCompliance(155.0, 12.10, 0.248, 4.40)

S =

0.0065 -0.0016 0

-0.0016 0.0826 0

0 0 0.2273

Next, the transformed reduced compliance matrix [S̄] is calculated at each
value of θ between −90◦ and 90◦ in increments of 10◦ using the MATLAB
function Sbar .

>> S1 = Sbar(S, -90)

S1 =

0.0826 -0.0016 -0.0000

-0.0016 0.0065 0.0000

-0.0000 0.0000 0.2273

>> S2 = Sbar(S, -80)

S2 =

0.0909 -0.0122 -0.0452

-0.0122 0.0193 0.0712

-0.0226 0.0356 0.2061

>> S3 = Sbar(S, -70)

S3 =

0.1111 -0.0390 -0.0647

-0.0390 0.0528 0.1137

-0.0323 0.0568 0.1524
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>> S4 = Sbar(S, -60)

S4 =

0.1315 -0.0695 -0.0454

-0.0695 0.0934 0.1114

-0.0227 0.0557 0.0914

>> S5 = Sbar(S, -50)

S5 =

0.1390 -0.0894 0.0065

-0.0894 0.1258 0.0685

0.0033 0.0342 0.0516

>> S6 = Sbar(S, -40)

S6 =

0.1258 -0.0894 0.0685

-0.0894 0.1390 0.0065

0.0342 0.0033 0.0516

>> S7 = Sbar(S, -30)

S7 =

0.0934 -0.0695 0.1114

-0.0695 0.1315 -0.0454

0.0557 -0.0227 0.0914

>> S8 = Sbar(S, -20)

S8 =

0.0528 -0.0390 0.1137

-0.0390 0.1111 -0.0647

0.0568 -0.0323 0.1524

>> S9 = Sbar(S, -10)

S9 =

0.0193 -0.0122 0.0712

-0.0122 0.0909 -0.0452

0.0356 -0.0226 0.2061



5.2 MATLAB Functions Used 65

>> S10 = Sbar(S, 0)

S10 =

0.0065 -0.0016 0

-0.0016 0.0826 0

0 0 0.2273

>> S11 = Sbar(S, 10)

S11 =

0.0193 -0.0122 -0.0712

-0.0122 0.0909 0.0452

-0.0356 0.0226 0.2061

>> S12 = Sbar(S, 20)

S12 =

0.0528 -0.0390 -0.1137

-0.0390 0.1111 0.0647

-0.0568 0.0323 0.1524

>> S13 = Sbar(S, 30)

S13 =

0.0934 -0.0695 -0.1114

-0.0695 0.1315 0.0454

-0.0557 0.0227 0.0914

>> S14 = Sbar(S, 40)

S14 =

0.1258 -0.0894 -0.0685

-0.0894 0.1390 -0.0065

-0.0342 -0.0033 0.0516

>> S15 = Sbar(S, 50)

S15 =

0.1390 -0.0894 -0.0065

-0.0894 0.1258 -0.0685

-0.0033 -0.0342 0.0516

>> S16 = Sbar(S, 60)
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S16 =

0.1315 -0.0695 0.0454

-0.0695 0.0934 -0.1114

0.0227 -0.0557 0.0914

>> S17 = Sbar(S, 70)

S17 =

0.1111 -0.0390 0.0647

-0.0390 0.0528 -0.1137

0.0323 -0.0568 0.1524

>> S18 = Sbar(S, 80)

S18 =

0.0909 -0.0122 0.0452

-0.0122 0.0193 -0.0712

0.0226 -0.0356 0.2061

>> S19 = Sbar(S, 90)

S19 =

0.0826 -0.0016 0.0000

-0.0016 0.0065 -0.0000

0.0000 -0.0000 0.2273

The x-axis is now setup for the plots as follows:

>> x = [-90 -80 -70 -60 -50 -40 -30 -20 -10 0 10 20 30 40

50 60 70 80 90]

x =

-90 -80 -70 -60 -50 -40 -30 -20 -10 0 10 20 30 40 50

60 70 80 90

The values of S̄11 are now calculated for each value of θ between −90◦ and
90◦ in increments of 10◦.

>> y1 = [S1(1,1) S2(1,1) S3(1,1) S4(1,1) S5(1,1) S6(1,1) S7(1,1)

S8(1,1) S9(1,1) S10(1,1) S11(1,1) S12(1,1) S13(1,1) S14(1,1)

S15(1,1) 16(1,1) S17(1,1) S18(1,1) S19(1,1)]

y1 =

Columns 1 through 14
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0.0826 0.0909 0.1111 0.1315 0.1390 0.1258 0.0934

0.0528 0.0193 0.0065 0.0193 0.0528 0.0934 0.1258

Columns 15 through 19

0.1390 0.1315 0.1111 0.0909 0.0826

The plot of the values of S̄11 versus θ is now generated using the following
commands and is shown in Fig. 5.3. Notice that this compliance is an even
function of θ. Notice also the rapid variation of the compliance as θ increases
or decreases from 0◦.

Fig. 5.3. Variation of S̄11 versus θ for Example 5.2

>> plot(x,y1)

>> xlabel(‘\theta (degrees)’);

>> ylabel(‘S^{-}_{11} GPa’);

The values of S̄12 are now calculated for each value of θ between −90◦ and
90◦ in increments of 10◦.

>> y2 = [S1(1,2) S2(1,2) S3(1,2) S4(1,2) S5(1,2) S6(1,2) S7(1,2)

S8(1,2) S9(1,2) S10(1,2) S11(1,2) S12(1,2) S13(1,2)

S14(1,2) S15(1,2) S16(1,2) S17(1,2) S18(1,2) S19(1,2)]

y2 =

Columns 1 through 14

-0.0016 -0.0122 -0.0390 -0.0695 -0.0894 -0.0894 -0.0695

-0.0390 -0.0122 -0.0016 -0.0122 -0.0390 -0.0695 -0.0894
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Columns 15 through 19

-0.0894 -0.0695 -0.0390 -0.0122 -0.0016

The plot of the values of S̄12 versus θ is now generated using the following
commands and is shown in Fig. 5.4. Notice that this compliance is an even
function of θ. Notice also the rapid variation of the compliance as θ increases
or decreases from 0◦.

Fig. 5.4. Variation of S̄12 versus θ for Example 5.2

>> plot(x,y2)

>> xlabel(‘\theta (degrees)’);

>> ylabel(‘S^{-}_{12} GPa’);

The values of S̄16 are now calculated for each value of θ between −90◦ and
90◦ in increments of 10◦.

>> y3 = [S1(1,3) S2(1,3) S3(1,3) S4(1,3) S5(1,3) S6(1,3) S7(1,3)

S8(1,3) S9(1,3) S10(1,3) S11(1,3) S12(1,3) S13(1,3) S14(1,3)

S15(1,3) S16(1,3) S17(1,3) S18(1,3) S19(1,3)]

y3 =

Columns 1 through 14

-0.0000 -0.0452 -0.0647 -0.0454 0.0065 0.0685 0.1114

0.1137 0.0712 0 -0.0712 -0.1137 -0.1114 -0.0685

Columns 15 through 19

-0.0065 0.0454 0.0647 0.0452 0.0000



5.2 MATLAB Functions Used 69

Fig. 5.5. Variation of S̄16 versus θ for Example 5.2

The plot of the values of S̄16 versus θ is now generated using the following
commands and is shown in Fig. 5.5. Notice that this compliance is an odd
function of θ. Notice also the rapid variation of the compliance as θ increases
or decreases from 0◦.

>> plot(x,y3)

>> xlabel(‘\theta (degrees)’);

>> ylabel(‘S^{-}_{16} GPa’);

The values of S̄22 are now calculated for each value of θ between −90◦ and
90◦ in increments of 10◦.

>> y4 = [S1(2,2) S2(2,2) S3(2,2) S4(2,2) S5(2,2) S6(2,2) S7(2,2)

S8(2,2) S9(2,2) S10(2,2) S11(2,2) S12(2,2) S13(2,2) S14(2,2)

S15(2,2) S16(2,2) S17(2,2) S18(2,2) S19(2,2)]

y4 =

Columns 1 through 14

0.0065 0.0193 0.0528 0.0934 0.1258 0.1390 0.1315

0.1111 0.0909 0.0826 0.0909 0.1111 0.1315 0.1390

Columns 15 through 19

0.1258 0.0934 0.0528 0.0193 0.0065

The plot of the values of S̄22 versus θ is now generated using the following
commands and is shown in Fig. 5.6. Notice that this compliance is an even
function of θ. Notice also the rapid variation of the compliance as θ increases
or decreases from 0◦.
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>> plot(x,y4)}

>> xlabel(‘\theta (degrees)’);

>> ylabel(‘S^{-}_{22} GPa’);

Fig. 5.6. Variation of S̄22 versus θ for Example 5.2

The values of S̄26 are now calculated for each value of θ between −90◦ and
90◦ in increments of 10◦

>> y5 = [S1(2,3) S2(2,3) S3(2,3) S4(2,3) S5(2,3) S6(2,3) S7(2,3)

S8(2,3) S9(2,3) S10(2,3) S11(2,3) S12(2,3) S13(2,3) S14(2,3)

S15(2,3) S16(2,3) S17(2,3) S18(2,3) S19(2,3)]

y5 =

Columns 1 through 14

0.0000 0.0712 0.1137 0.1114 0.0685 0.0065 -0.0454

-0.0647 -0.0452 0 0.0452 0.0647 0.0454 -0.0065

Columns 15 through 19

-0.0685 -0.1114 -0.1137 -0.0712 -0.0000

The plot of the values of S̄26 versus θ is now generated using the following
commands and is shown in Fig. 5.7. Notice that this compliance is an odd
function of θ. Notice also the rapid variation of the compliance as θ increases
or decreases from 0◦.
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Fig. 5.7. Variation of S̄26 versus θ for Example 5.2

>> plot(x,y5)

>> xlabel(‘\theta (degrees)’);

>> ylabel(‘S^{-}_{26} GPa’);}

The values of S̄66 are now calculated for each value of θ between −90◦ and
90◦ in increments of 10◦.

>> y6 = [S1(3,3) S2(3,3) S3(3,3) S4(3,3) S5(3,3) S6(3,3) S7(3,3)

S8(3,3) S9(3,3) S10(3,3) S11(3,3) S12(3,3) S13(3,3) S14(3,3)

S15(3,3) S16(3,3) S17(3,3) S18(3,3) S19(3,3)]

y6 =

Columns 1 through 14

0.2273 0.2061 0.1524 0.0914 0.0516 0.0516 0.0914

0.1524 0.2061 0.2273 0.2061 0.1524 0.0914 0.0516

Columns 15 through 19

0.0516 0.0914 0.1524 0.2061 0.2273

The plot of the values of S̄66 versus θ is now generated using the following
commands and is shown in Fig. 5.8. Notice that this compliance is an even
function of θ. Notice also the rapid variation of the compliance as θ increases
or decreases from 0◦.

>> plot(x,y6)

>> xlabel(‘\theta (degrees)’);

>> ylabel(‘S^{-}_{66} GPa’);
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Fig. 5.8. Variation of S̄66 versus θ for Example 5.2

MATLAB Example 5.3

Consider a plane element of size 40 mm × 40 mm made of graphite-reinforced poly-
mer composite material whose elastic constants are given in Example 2.2. The ele-
ment is subjected to a tensile stress σx = 200MPa in the x-direction. Use MATLAB
to calculate the strains and the deformed dimensions of the element in the following
two cases:

(a) the fibers are aligned along the x-axis.
(b) the fibers are inclined to the x-axis with an orientation angle θ = 30◦.

Solution

This example is solved using MATLAB. First, the reduced compliance matrix is
obtained as follows using the MATLAB function ReducedCompliance of Chap. 4.

>> S = ReducedCompliance(155.0, 12.10, 0.248, 4.40)

S =

0.0065 -0.0016 0

-0.0016 0.0826 0

0 0 0.2273

Next, the transformed reduced compliance matrix is calculated for part (a) with
θ = 0◦ using the MATLAB function Sbar.

>> S1 = Sbar(S,0)
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S1 =

0.0065 -0.0016 0

-0.0016 0.0826 0

0 0 0.2273

Next, the stress vector in the global coordinate system is setup in GPa as follows:

>> sigma = [200e-3 ; 0 ; 0]

sigma =

0.2000

0

0

The strain vector is now calculated in the global coordinate system using (5.10):

>> epsilon = S1*sigma

epsilon =

0.0013

-0.0003

0

The change in the length in both the x- and y-direction is calculated next in mm as
follows:

>> deltax = 40*epsilon(1)

deltax =

0.0516

>> deltay = 40*epsilon(2)

deltay =

-0.0128

The change in the right angle (in radians) of the element is then calculated using
the shear strain obtained from the strain vector above. It is noticed that in this
case, this change is zero indicating that the right angle remains a right angle after
deformation. This is mainly due to the fibers being aligned along the x-direction.

>> gammaxy = epsilon(3)

gammaxy =

0

The deformed dimensions are next calculated as follows:
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>> dx = 40 + deltax

dx =

40.0516

>> dy = 40 + deltay

dy =

39.9872

Next, the transformed reduced compliance matrix is calculated for part (b) with
θ = 30◦ using the MATLAB function Sbar.

>> S2 = Sbar(S, 30)

S2 =

0.0934 -0.0695 -0.1114

-0.0695 0.1315 0.0454

-0.0557 0.0227 0.0914

The strain vector is now calculated in the global coordinate system using (5.10):

>> epsilon = S2*sigma

epsilon =

0.0187

-0.0139

-0.0111

The change in the length in both the x- and y-direction is calculated next in mm as
follows:

>> deltax = 40*epsilon(1)

deltax =

0.7474

>> deltay = 40*epsilon(2)

deltay =

-0.5562

The deformed dimensions are next calculated as follows:

>> dx = 40 + deltax
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dx =

40.7474

>> dy = 40 + deltay

dy =

39.4438

The change in the right angle (in radians) of the element is then calculated using
the shear strain obtained from the strain vector above. It is noticed that in this case,
there is a negative shear strain indicating that the right angle increases to become
more than 90◦ after deformation. This is mainly due to the fibers being inclined at
an angle to the x-direction.

>> gammaxy = epsilon(3)

gammaxy =

-0.0111

Problems

Problem 5.1

Show mathematically why the three stresses σz, τyz, and τxz (with respect to the
global coordinate system) vanish in the case of plane stress.

Problem 5.2

Derive (5.1) in detail.

Problem 5.3

Derive the expression for [T ]−1 given in (5.4). Use (5.3) in your derivation.

Problem 5.4

Show the validity of (5.14a,b).

Problem 5.5

Using (5.13), derive explicit expressions for the elements Q̄ij in terms of Qij and θ
(use m and n for θ).
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MATLAB Problem 5.6

Write a new MATLAB function called Tinv2 which calculates the inverse of the
transformation matrix [T ] by calculating first [T ] then inverting it using the MAT-
LAB function inv. Use the same argument “theta” that was used in the MATLAB
function Tinv .

MATLAB Problem 5.7

(a) Write a new MATLAB function called Sbar2 to calculate the transformed re-
duced compliance matrix [S̄]. Use the two arguments S and T instead of S and
“theta” as was used in the MATLAB function Sbar .

(b) Write a new MATLAB function called Qbar2 to calculate the transformed re-
duced stiffness matrix [Q̄]. Use the two arguments Q and T instead of Q and
“theta” as was used in the MATLAB function Qbar.

MATLAB Problem 5.8

Consider a glass-reinforced polymer composite lamina with the elastic constants as
given in Problem 2.7. Use MATLAB to plot the values of the six elements S̄ij of the
transformed reduced compliance matrix [S̄] as a function of the orientation angle θ
in the range −π/2 ≤ θ ≤ π/2.

MATLAB Problem 5.9

Consider a graphite-reinforced polymer composite lamina with the elastic constants
as given in Example 2.2. Use MATLAB to plot the values of the six elements Q̄ij of
the transformed reduced stiffness matrix [Q̄] as a function of the orientation angle
θ in the range −π/2 ≤ θ ≤ π/2.

MATLAB Problem 5.10

Consider a glass-reinforced polymer composite lamina with the elastic constants as
given in Problem 2.7. Use MATLAB to plot the values of the six elements Q̄ij of
the transformed reduced stiffness matrix [Q̄] as a function of the orientation angle
θ in the range −π/2 ≤ θ ≤ π/2.

Problem 5.11

(a) Show that the transformed reduced compliance matrix [S̄] becomes equal to the
reduced compliance matrix [S] when θ = 0◦.

(b) Show that the transformed reduced stiffness matrix [Q̄] becomes equal to the
reduced stiffness matrix [Q] when θ = 0◦.
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Problem 5.12

Show that [S̄] = [S] for isotropic materials. In particular, show the following rela-
tion:

[S̄] = [S] =

⎡
⎢⎢⎢⎢⎢⎣

1

E
− ν

E
0

− ν

E

1

E
0

0 0
2(1 + ν)

E

⎤
⎥⎥⎥⎥⎥⎦ (5.17)

Problem 5.13

Show that [Q̄] = [Q] for isotropic materials. In particular, show the following rela-
tion:

[Q̄] = [Q] =

⎡
⎢⎢⎢⎢⎢⎣

E

1 − ν2

νE

1 − ν2
0

νE

1 − ν2

E

1 − ν2
0

0 0
E

2(1 + ν)

⎤
⎥⎥⎥⎥⎥⎦ (5.18)

MATLAB Problem 5.14

Consider a plane element of size 50 mm × 50 mm made of glass-reinforced polymer
composite material whose elastic constants are given in Problem 2.7. The element
is subjected to a tensile stress σx = 100MPa in the x-direction. Use MATLAB to
calculate the strains and the deformed dimensions of the element in the following
three cases:

(a) the fibers are aligned along the x-axis.
(b) the fibers are inclined to the x-axis with an orientation angle θ = 45◦.
(c) the fibers are inclined to the x-axis with an orientation angle θ = −45◦.

Problem 5.15

Consider the case of free thermal and moisture strains. Show that in this case (5.10)
and (5.12) take the following modified forms:⎧⎪⎪⎪⎨

⎪⎪⎪⎩

εx − αx∆T − βx∆M

εy − αy∆T − βy∆M

γxy − αxy∆T − βxy∆M

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

=

⎡
⎢⎢⎣

S̄11 S̄12 S̄16

S̄12 S̄22 S̄26

S̄16 S̄26 S̄66

⎤
⎥⎥⎦
⎧⎪⎪⎨
⎪⎪⎩

σx

σy

τxy

⎫⎪⎪⎬
⎪⎪⎭ (5.19)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

σx

σy

τxy

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎣

Q̄11 Q̄12 Q̄16

Q̄12 Q̄22 Q̄26

Q̄16 Q̄26 Q̄66

⎤
⎥⎥⎥⎦
⎧⎪⎪⎨
⎪⎪⎩

εx − αx∆T − βx∆M

εy − αy∆T − βy∆M

γxy − αxy∆T − βxy∆M

⎫⎪⎪⎬
⎪⎪⎭ (5.20)
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where ∆T and ∆M are the changes in temperature and moisture, respectively, αx,
αy and αxy are the coefficients of thermal expansion with respect to the global
coordinate system, and βx, βy, and βxy are the coefficients of moisture deformation
with respect to the global coordinate system.




