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Introduction to Homogenization
of Composite Materials

11.1 Eshelby Method

In this chapter, we present a brief overview of the homogenization of composite
materials. Homogenization refers to the process of considering a statistically
homogeneous representation of the composite material called a representative
volume element (RVE). This homogenized element is considered for purposes
of calculating the stresses and strains in the matrix and fibers. We will em-
phasize mainly the Eshelby method in the homogenization process. For more
details, the reader is referred to the book An Introduction to Metal Matrix
Composites by Clyne and Withers.

Since the composite system is composed of two different materials (matrix
and fibers) with two different stiffnesses, internal stresses will arise in both
the two constituents. Eshelby in the 1950s demonstrated that an analytical
solution may be obtained for the special case when the fibers have the shape
of an ellipsoid. Furthermore, the stress is assumed to be uniform within the el-
lipsoid. Eshelby’s method is summarized by representing the actual inclusion
(i.e fibers) by one made of the matrix material (called the equivalent homoge-
neous inclusion). This equivalent inclusion is assumed to have an appropriate
strain (called the equivalent transformation strain) such that the stress field is
the same as for the actual inclusion. This is the essence of the homogenization
process.

The following is a summary of the steps followed in the homogenization
procedure according to the Eshelby method (see Fig. 11.1):

1. Consider an initially unstressed elastic homogeneous material (see
Fig. 11.1a). Imagine cutting an ellipsoidal region (i.e. inclusion) from this
material. Imagine also that the inclusion undergoes a shape change free
from the constraining matrix by subjecting it to a transformation strain
εT
ij (see Fig. 11.1b) where the indices i and j take the values 1, 2, and 3.

2. Since the inclusion has now changed in shape, it cannot be replaced directly
into the hole in the matrix material. Imagine applying surface tractions to
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Fig. 11.1. Schematic illustration of homogenization according to the Eshelby
method

the inclusion to return it to its original shape, then imagine returning it
back to the matrix material (see Fig. 11.1c).

3. Imagine welding the inclusion and matrix material together then removing
the surface tractions. The matrix and inclusion will then reach an equilib-
rium state when the inclusion has a constraining strain εC

ij relative to the
initial shape before it was removed (see Fig. 11.1d).

4. The stress in the inclusion σI
ij can now be calculated as follows assuming

the strain is uniform within the inclusion:

σI
ij = CM

ijkl

(
εC
kl − εT

kl

)
(11.1)

where CM
ijkl are the components of the elasticity tensor of the matrix\mat-

erial.
5. Eshelby has shown that the constraining strain εC

ij can be calculated in
terms of the transformation strain εT

ij using the following equations:

εC
ij = Sijklε

T
kl (11.2)

where Sijkl are the components of the Eshelby tensor S. The Eshelby tensor
S is a fourth-rank tensor determined using Poisson’s ratio of the inclusion
material and the inclusion’s aspect ration.

6. Finally, the stress in the inclusion is determined by substituting (11.2) into
(11.1) and simplifying to obtain:

σI
ij = CM

ijkl (Sklmn − Iklmn) εT
mn (11.3)

where Iklmn are the components of the fourth-rank identity tensor given
by:
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Iklmn =
1
2

(δkmδln + δknδlm) (11.4)

and δij are the components of the Kronecker delta tensor.

Using matrices, (11.3) is re-written as follows:{
σI
}

=
[
CM

]
([S] − [I])

{
εT
}

(11.5)

where the braces are used to indicate a vector while the brackets are used to
indicate a matrix.

Next, expressions of the Eshelby tensor S are presented for the case of
long infinite cylindrical fibers. In this case, the values of the Eshelby tensor
depend on Poisson’s ratio ν of the fibers and are determined as follows:

S1111 = S2222 =
5 − ν

8(1 − ν)
(11.6a)

S3333 = 0 (11.6b)

S1122 = S2211 =
−1 + 4ν

8(1 − ν)
(11.6c)

S1133 = S2233 =
ν

2(1 − ν)
(11.6d)

S3311 = S3322 = 0 (11.6e)

S1212 = S1221 = S2112 = S2121 =
3 − 4ν

8(1 − ν)
(11.6f)

S1313 = S1331 = S3113 = S3131 =
1
4

(11.6g)

S3232 = S3223 = S2332 = S2323 =
1
4

(11.6h)

Sijkl = 0 , otherwise (11.6i)

In addition to Eshelby’s method of determining the stresses and strains
in the fibers and matrix, there are other methods based on Hill’s stress and
strain concentration factors.

Problems

Problem 11.1

Derive the equations of the Eshelby method for the case of a misfit strain due
to a differential thermal contraction assuming that the matrix and inclusion
have different thermal expansion coefficients.

Problem 11.2

Derive the equations of the method for the case of internal stresses in ex-
ternally loaded composites. Assume the existence of an external load that is
responsible for the transfer of load to the inclusion.



196 Introduction to Homogenization of Composite Materials

Problem 11.3

The formulation in this chapter has been based on what are called dilute com-
posite systems, i.e. a single inclusion is embedded within an infinite matrix.
In this case, the inclusion volume fraction is less than a few percent. Consider
non-dilute systems where the inclusion volume fraction is much higher with
many inclusions. What modifications to the equations of the Eshelby method
are needed to formulate the theory for non-dilute systems.




