
6 
Structural Analysis 

6.1 Overview 

In this chapter, the basic theory needed for the determination of the stresses, 
strains, and deformations in fiber composite structures is outlined. Attention is 
concentrated on structures made in the form of laminates because that is the way 
composite materials are generally used. 

From the viewpoint of structural mechanics, the novel features of composites 
(compared with conventional structural materials such as metals) are their 
marked anisotropy and, when used as laminates, their macroscopically hetero- 
geneous nature. 

There is a close analogy between the steps in developing laminate theory and 
the steps in fabricating a laminate. The building block both for theory and 
fabrication is the single ply, also referred to as the lamina. This is a thin layer of 
the material (typical thickness around 0.125 mm for unidirectional carbon/epoxy 
"tape" and 0.25 mm for a cross-ply fabric or "cloth") in which all of the fibers are 
aligned parallel to one another or in an orthogonal mesh. The starting point for the 
theory is the stress-strain law for the single ply referred to its axes of material 
symmetry, defined here as the 0-1 ,  2, 3 material axes. In constructing a laminate, 
each ply is laid-up so that its fibers make some prescribed angle with a reference 
axis fixed in the laminate. Here the laminate axes will be defined as the x-, y-, and 
z-axes .  

All later calculations are made using axes fixed in the structure (the structural 
axes). In a finite element model, the material properties are usually entered in 
the material axes. The lay-up of the laminate is defined in the laminate axes. The 
laminate theory described in this chapter will indicate how the properties of the 
laminate are derived. The transformation from the laminate axes to the global 
structural axes is then completed during the solution process. Because the 
designer can select his own lay-up pattern (because the laminate stress-strain law 
will depend on that pattern), it follows that the designer can design the material 
(as well as the structure). 

For more detailed discussions of the topics covered in this chapter, see 
Refs. 1-7. For background material on the theory of anisotropic elasticity, 
see Refs. 8-10.  
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6.2 Laminate Theory 

Classical laminate theory defines the response of a laminate with the following 
assumptions: 

• For two-dimensional plane stress analysis, the strain is constant through the 
thickness. 

• For bending, the strain varies linearly through the thickness. 
• The laminate is thin compared with its in-plane dimensions. 
• Each layer is quasi-homogeneous and orthotropic. 
• Displacements are small compared with the thickness. 
• The behavior remains linear. 

With these assumptions satisfied, the laminate theory allows the response of a 
laminate to be calculated, engineering constants to be determined to substitute 
into standard formulas for stresses and deflections, and material properties of the 
laminate to be defined for substitution into finite element analysis as described in 
Chapter 16. 

6.2.1 Stress-Strain Law for a Single Ply in the Material Axes: 
Unidirectional Laminates 

Consider a rectangular element of a single ply with the sides of the element 
parallel and perpendicular to the fiber direction (Fig. 6.1). Clearly, the direction 
of the fibers defines a preferred direction in the material; it is thus natural to 
introduce a cartesian set of material axes 0 -1 ,  2, 3 with the /-axis in the fiber 
direction, the 2-axis perpendicular to the fibers of the ply plane, and the 3-axis 
perpendicular to the plane of the ply. Here, interest is in the behavior of the ply 
when subjected to stresses acting in its plane, in other words, under plane stress 
conditions. These stresses (also referred to the material axes) will be denoted by 
trl, tr2, r12 and the associated strains by el,/32, and 712. (Note that in composite 
mechanics, it is standard practice to work with "engineering" rather than "tensor" 
shear strains.) Although a single ply is highly anisotropic, it is intuitively evident 
that the coordinate planes 012, 023, and 031 are those of material symmetry, there 
being a mirror image symmetry about these planes. 

I 02. ~2 

L 
0 I 

r12, 712 

] ~-~ °I, ~I 
Fibres 

3 

Fig. 6.1 Material axes for a single ply. 
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A material having three mutually orthogonal planes of symmetry is known as 
orthotropic. The stress-strain law for an orthotropic material under plane stress 
conditions, referred to the material axes, necessarily has the following form: 

t3 2 
'Y12 

1 -1)21 

El E2 
--1)12 1 
E1 E2 

0 0 

0 

0 o'2 
T12 

1 

(6.1) 

where: El, E2 = Young's moduli in the 1 and 2 directions, respectively; v12 = 
Poisson's ratio governing the contraction in the 2 direction for a tension in the 
1 direction; rE1 = Poisson's ratio governing the contraction in the 1 direction for 
a tension in the 2 direction; G12 = (in-plane) shear modulus. 

There are five material constants in equation (6.1), but only four of these are 
independent because of the following symmetry relation1: 

1)12 1)21 
- -  = - -  ( 6 . 2 )  
E1 E2 

For unidirectional tape of the type being considered here, E 1 is much larger than 
either E2 or G12 because the former is a "fiber-dominated" property, while the latter 
are "matrix dominated". For a bi-directional cloth, E 1 = E 2 and both are much 
larger than G12. For tape, 1)12 is matrix dominated and is of the order of 0.3, whereas 
the contraction implied in 1)21 is resisted by the fibers and so is much smaller. 

The above equations are all related to a single ply but, because the ply 
thickness does not enter into the calculations, they also apply to a "unidirectional 
laminate" that is simply a laminate in which the fiber direction is the same in all 
of the plies. In fact, most of the material constants for a single ply are obtained 
from specimen tests on unidirectional laminates, a single ply being itself too thin 
to test conveniently. 

For much of the following analysis, it is more convenient to deal with the 
inverse form of equation (6.1), namely 

I0-1 I IQll(0) Q12(0) 0 
02 = Q12(0) Q22(0) 0 
~'12 0 0 Q66(0) 

~32 
"Y12 

(6.3) 

where the Qij(O), commonly termed the reduced stiffness coefficients, are given by 

E1 E2 
Qn(0) - Q22(0) - -  

1 - 1 ) 1 2 1 ) 2 1  1 - -  1)121)21 

1)21E1 
Q12(0) Q66(0) = G12 

1 - 1)121)21 

(6.4) 
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It is conventional in composite mechanics to use the above subscript notation for 
Q, the point of which becomes evident only when three-dimensional anisotropic 
problems are encountered. The subscript 6 is for the sixth component of stress or 
strain that includes three direct terms and three shear terms. 

6.2.2 Stress-Strain Law for Single Ply in Laminate Axes: 
Off-Axis Laminates 

As already noted, when a ply is incorporated in a laminate, its fibers will make 
some prescribed angle 0 with a reference axis fixed in the laminate. Let this be the 
x-axis, and note that the angle 0 is measured from the x-axis to the/ -axis  and is 
positive in the counterclockwise direction; the y-axis is perpendicular to the x- 
axis and in the plane of the ply (See Fig. 6.2.). All subsequent calculations are 
made using the x - y ,  or "laminate" axes, therefore it is necessary to transform the 
stress-strain law from the material axes to the laminate axes. If the stresses in the 
laminate axes are denoted by trx, try, and "l~y, then these are related to the stresses 
referred to the material axes by the usual transformation equations, 

I if  csl[ l 1 Dry = S 2 C 2 2 C S  0"2 (6.5) 
"lxy CS - - C S  C 2 - -  S 2 "/'12 

where c denotes cos 0 and s denotes sin 0. Also, the strains in the material axes 
are related to those in the laminate axes, namely, 8x, ey, and Yxy, by what is 
essentially the strain transformation: 

1 s csl[ x 1 e2 = s 2 c 2 - c s  ey (6.6) 
3/12 - -2CS  2CS C2 - -  S 2 % y  

I Oy, ey ......_..=, 

/ . / / / 
/ / / Y l  / / /  / , / / ~ /  . . .  / 

. /  / A /~'~ / e 
/ /  / / /  / / / "  ~ / / /  

/ / / / / /~ 
/ / / / / 

/ / / / / / 
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~ aXo ~X 
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Fig.  6 .2  L a m i n a t e  axes  for a s ingle  ply.  
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Now, in equation (6.5), substitute for oq, ~r 2, and T12 their values as given by 
equation (6.3). Then, in the resultant equations, substitute for 81, 82, and Y12 their 
values as given by equation (6.6). After some routine manipulations, it is found 
that the stress-strain law in the laminate axes has the form 

Eoxx o o  o oxs o lE x 1 
O'y = axy( O) Qyy( O) Qys( O) 8y 
"rxy Qx~( O) Qy~( O) Qss( O) yxy 

(6.7) 

where the Qij(O) are related to the Qij(O) by the following equations: 

iQxx o llc4 2c2s2 s4 4c2s2j 
Qxy( O) | C2S 2 C 4 -'~ S 4 C2S 2 --4C2S 2 
Qyy(O) ] = s 4 2c2s 2 c 4 4c2s 2 
Qxs(O) ] c3s --¢S(C 2 -- S 2) --CS 3 --2CS(C 2 -- S 2) 
Qys(O) I cs3 cs(c2 - $2) - c3s  2cs(c2 - s2) 
Qss(O) J c2s 2 _2c2s  2 c2s 2 (c 2 - $2) 2 

F Q ll (0) 7 

/ Q~(o) / 
[_Q66(O) J 

(6.8) 

Observe that, in equation (6. 7), the direct stresses depend on the shear strains 
(as well as the direct strains), and the shear stress depends on the direct strains 
(as well as the shear strain). This complication arises because, for non-zero 0, the 
laminate axes are not axes of material symmetry and, with respect to these axes, 
the material is not orthotropic; it is evident that the absence of orthotropy leads to 
the presence of the Qx~ and Qy~ terms in equation (6. 7). Also, for future reference, 
note that the expressions for Qxx(O), Q,,y(O), Qyy(O) and Q~s(O) contain only even 
powers of sin 0 and therefore these quantities are unchanged when 0 is replaced 
by - 0. On the other hand, the expressions for Qx~ and Qy~ contain odd powers of 
sin 0 and therefore they change sign when 0 is replaced by - 0. 

Analogous to the previous section, the above discussion has been related to a 
single ply, but it is equally valid for a laminate in which the fiber direction is the 
same in all plies. A unidirectional laminate in which the fiber direction makes a 
non-zero angle with the x-laminate-axis is known as an "off-axis" laminate and is 
sometimes used for test purposes. Formulas for the elastic moduli of an off-axis 
laminate can be obtained by a procedure analogous to that used in deriving 
equation (6. 7). Using equation (6.1) with the inverse forms of equations (6.5) and 
(6.6) leads to the inverse form of equation (6.7), in other words, with the strains 
expressed in terms of the stresses; from this result, the moduli can be written. 
Details can be found in most of the standard texts, for example page 54 of Ref. 3. 
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Only the result for the Young's  modulus in the x direction, Ex, will be cited here: 

1(~_.~) (1 2vle~c2s e ( l~s 4 
- -  = c a + + ( 6 . 9 )  
Ex 4 :  el / \E2/ 

The variation of  Ex with 0 for the case of a carbon/epoxy off-axis laminate is 
shown in Figure 6.3. The material constants of  the single ply were taken to be 

E1 = 137.44GPa E2 = 11.71GPa Gl2 = 5.51GPa 

1)12 : 0.25 1)21 = 0.0213 

It can be seen that the modulus initially decreases quite rapidly as the off-axis 
angle increases from 0°; this indicates the importance of  the precise alignment of 
fibers in a laminate. 

6.2.3 Plane Stress Problems for Symmetric Laminates 

One of  the most common laminate forms for composites is a laminated sheet 
loaded in its own plane, in other words, under plane stress conditions. In order for 
out-of-plane bending to not occur, such a laminate is always made with a lay-up 
that is symmetric about the mid-thickness plane. Just to illustrate the type of 
symmetry meant, consider an eight-ply laminate comprising four plies that are to 
be oriented at 0 ° to the reference (x) axis, two plies at + 4 5  °, and two plies at 
- 45 °. An example of  a symmetric laminate would be one with the following ply 
sequence: 

0 ° / 0 ° / + 4 5 ° / - 4 5 ° / - 4 5 o / + 4 5 o / 0 0 / 0  ° 

E X 
(GPa) 

i 

50 

0 J 
0 90 

1 J 
]0 6O 

O f f ~ i s  a~J!e (.rfi~-grlze~) 

Fig .  6 .3  E x t e n s i o n a l  m o d u l u s  o f f - a x i s  l a m i n a t e .  
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On the other hand, an example of an unsymmetric arrangement of the same plies 
would be: 

O°lO°lO°lO° 1+45°1-45°1+45ol-45 ° 

These two cases are shown in Figure 6.4 where z denotes the coordinate in the 
thickness direction. 

6.2.3. I Laminate Sti f fness Matrix. Consider now a laminate comprising n 
plies and denote the angle between the fiber direction in the kth ply and the x 
laminate axis by Ok (with the convention defined in Fig. 6.2). Subject only to the 
symmetry requirement, the ply orientation is arbitrary. It is assumed that, when 
the plies are molded into the laminate, a rigid bond (of infinitesimal thickness) is 
formed between adjacent plies. As a consequence of this assumption, it follows 
that under plane stress conditions the strains are the same at all points on a line 
through the thickness (i.e., they are independent of z). Denoting these strains by 
ex, ey, and "Yxy, it then follows from equation (6. 7) that the stresses in the kth ply 
will be given by: 

O'x(k) = Q~( Ok)ex + axy( Ok)l?,y + Qxs( Ok)3'xy 

~ry(k) = Qxy( ODex + ayy( Ok)f,y + Qys( Ok)'Yxy (6.10) 

"rxy(k) = Qxs( Ok)ex + ays( Ok)Sy + Qss( Ok)Yxy 

The laminate thickness is denoted by t and the thickness of the kth ply is 
hk -- hk-1 with hi defined in Figure 6.5. Assuming all plies are of the same 
thickness (which is the usual situation), then the thickness of an individual ply is 
simply t/n. Now consider an element of the laminate with sides of unit length 
parallel to the x- and y-axes. The forces on this element will be denoted by Nx, Ny, 

0 
0 

*,kS 
Mid-plane - 45 

-4.5 
",~.S 

0 
0 

~Z mw 

- 4 5  
*t.5 
- 4 5  
* `k5 Mid-plane 

Fig. 6.4 Symmetric (left) and non-symmetric (right) eight-ply laminates. 
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h n=t/2 

h k  

h k-I 

h i  

h 0=-if2 

Ply k 

,.- y midplane 

Ply 2 

Ply 1 

T 
t 

1 
Fig. 6.5 Ply coordinates in the thickness direction, plies numbered from the bottom 
surface. 

and Ns, (Figure 6.6); the N are generally termed stress resultants and have the 
dimension "force per unit length." Elementary equilibrium considerations give 

n 

Nx = ~ O'x(k)(hk - hk-1), 
k = l  

Ns = ~ Zxy(k)(hk - hk- 1) (6.11) 
k=l 

Ny = ~ O'y(k)(hk - hk-1), 
k=l 

't_ 
X 

Ny 

l ~ Nxy 

- 1  
Fig. 6.6 Stress resultants. 

Nx 
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Substituting from equations (6.10) into (6.11), and remembering that the strains 
are the same in all plies, the following result is readily obtained: 

Nx = Axxex + Axyey + AxsYxy 

Ny = Axyex + Ayyey "t- Ays Yxy (6.12) 

Ns = Axsex -t'-Ayse, y + Ass'Yxy 

where: 

Aij = XZ, Qij( Ok)(hk -- hk-1) (6.13) 
k = l  

The quantities A o are the terms of the laminate "in-plane stiffness matrix." 
Given the single-ply moduli and the laminate lay-up details, they can be 
calculated routinely by using equations (6.4), (6.8), and (6.13). Equation 
(6.12) are generally taken as the starting point for any laminate structural 
analysis. 

6.2.3.2 Laminate  S t r e s s - -S t ra in  Law. As was just implied, it seems to be 
the current fashion in laminate mechanics to work in terms of the stress resultants, 
rather than the stresses. However, for some purposes, the latter are more 
convenient. From the stress resultants, the average stresses (averaged through the 
thickness of the laminate) are easily obtained; writing these stresses simply as o'x, 
try, and 7xy then: 

Nx Nx N, 
O ' x = - -  , O'y = - - ,  "/'xy = - -  ( 6 . 1 4 )  

t t t 

Hence, in terms of these average stresses, the stress-strain law for the laminate 
becomes: 

O-x = Axxex + Axyey "l- Axs ]txy 

Or y = Axy 8 x -t- Ayy ~ y --I- Ays 'Yxy (6.15) 

where: 

"rxy = A*xsex + Aysey + Ass'Yxy 

AU 1 
A~j = - - =  - ~ Qij(Ok)(hk -- hk-1) (6.16) 

t tk=  1 

In some cases, equation (6.15) is more convenient than is equation (6.12). 

6.2.3.30rthotropic Laminates. An orthotropic laminate, having the 
laminate axes as the axes of orthotropy, is one for which Axs = Ays = O; 



180 COMPOSITE MATERIALS FOR AIRCRAFT STRUCTURES 

clearly, this implies that: 

n 

Qxs(Ok)(hk -- hk-l) = O, 
k=l 

~-~ Qys( Ok)(hk -- hk-1) = 0 (6.17) 
k=l 

Thus, the stress-strain law for an orthotropic laminate reduces to: 

O'x = Axxex + Axysy 

O'y = Axy ex + Ayy ~y (6.18) 

Txy = A,* Yxy 

The coupling between the direct stresses and the shear strains and between 
the shear stresses and the direct strains, which is present for a general laminate, 
disappears for an orthotropic laminate. Most laminates currently in use are 
orthotropic. 

It can be readily seen that the following laminates will be orthotropic: 

(1) Those consisting only of plies for which 0 = 0 ° or 90°; here it follows from 
equation (6.8) that in either case Qxs(O) = Qys(0) = 0. 

(2) Those constructed such that for each ply oriented at an angle 0, there is 
another ply oriented at an angle - 0; because, as already noted from the odd 
powers in equation (6.8), 

Qxs(-O)=-Qxs(O),  Qys(-O)=-Qys(O) 

There is then a cancellation of all paired terms in the summation of equation 
(6.17). 

(3) Those consisting only of 0 °, 90 °, and matched pairs of + 0 plies are also, of 
course, orthotropic. 

An example of an orthotropic laminate would be one with the following ply 
pattern: 

0 ° / + 3 0 ° / - 3 0 ° / - 3 0 ° / + 3 0 ° / 0  ° 

On the other hand, the following laminate (while still symmetric) would not be 
orthotropic: 

0°1+30°190°190°1+30°/0° 

6.2.3.4 Modufi of  Orthotropic Laminates. Expressions for the moduli of 
orthotropic laminates can easily be obtained by solving equation (6.18) for 
simple loadings. For example, on setting try = "rxy = 0, Young's modulus in the x 
direction, Ex, and Poisson's ratio Vxy governing the contraction in the y direction 



STRUCTURAL ANALYSIS 181 

for a stress in the x direction are then given by: 

O" x E y  
E x  "= - -  , P x y  ~ - -  - -  

~ x  ~'x 

Proceeding in this way, it is found that: 

* 
Ex = A* x , Ey = Ayy -- - -  

Ayy 

Axy A~y 
Pxy "= Ayy-'T Yyx ~ ~xx 

*2 A ~  

A~ 

G~y = As* ~ 

(6.19) 

As illustrative examples of  the above theory, consider a family of  24-ply 
laminates, symmetrical  and orthotropic, and all  made of the same material  but 
with varying numbers of  0 ° and _ 45 ° plies. (For the present purposes, the 
precise ordering of  the plies is immaterial  as long as the symmetry requirement is 
maintained; however, to ensure orthotropy, there must be the same number of  
+ 45 ° as - 4 5  ° plies.) The single-ply modulus data (representative of  a carbon/  
epoxy) are: 

El = 137.44GPa E2 = 11.71GPa Gt2 = 5 .51GPa  

]212 = 0.2500 V 2 1  = 0.0213 (6.20) 

The lay-ups considered are shown in Table 6.1. The steps in the calculation are 
as follows: 

(1) Calculate the Qij(O) from equation (6.4). 
(2) For each of  the ply orientations involved here 0 = 0 °, + 4 5  °, and - 4 5  °, 

calculate the Qij(O) from equation (6.8). [Of course, here the Qo(O) have 
already been obtained in step 1.] 

Table 6.1 Moduli for Family of 24-ply 0°/+_ 45 ° Laminates 
Constructed Using Unidirectional Tape 

Lay-up 

No. 0 ° No. + 45 ° No. - 4 5  ° Ex, Ey, G~, l~xy ])yx 
Plies Plies Plies GPa GPa GPa 

24 0 0 137.4 11.7 5.51 0.250 0.021 
16 4 4 99.4 21.1 15.7 0.578 0.123 
12 6 6 79.5 24.5 20.8 0.647 0.199 
8 8 8 59.6 26.4 25.8 0.693 0.307 
0 12 12 19.3 19.3 36 0.752 0.752 
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(3) Calculate the A,~ from equation (6.16); in the present case, equation (6.16) 
becomes: 

Aij = [nlQo(0) + neQij( +45) + n3Q(i(-45)]124 

where nl is the number of  0 ° plies, n2 of + 4 5  ° plies and n3 of  - 4 5  ° plies. 
(4) Calculate the moduli from equation (6.19). 

The results of  the calculations are shown in Table 6.1. 
The results in Table 6.1 have been presented primarily to exemplify the 

preceding theory; however, they also demonstrate some features that are impor- 
tant in design. The stiffness of a composite is overwhelmingly resident in the 
extensional stiffness of  its fibers; hence, at least for simple loadings, if maximum 
stiffness is required, a laminate is constructed so that the fibers are aligned in the 
principal stress directions. Thus, for a member under uniaxial tension, a laminate 
comprising basically all 0 ° pries would be chosen; in other words, all fibers would 
be aligned parallel to the tension direction. As can be seen from Table 6.1, Ex 
decreases as the number of  0 ° plies decreases. On the other hand, consider a 
rectangular panel under shear, the sides of  the panel being parallel to the laminate 
axes (Fig. 6.7a). The principal stresses here are an equal tension and compression, 
oriented at + 4 5  ° and - 4 5  ° to the x-axis. Thus, maximum shear stiffness can be 
expected to be obtained using a laminate comprising equal numbers of  + 4 5  ° and 
- 4 5  ° plies; this is reflected in the high shear modulus G,:y for the all _+ 45 ° 
laminate of  Table 6.1. 

'L_ 
X 

a) (i) Shear panel 

÷~5" Fibre Fibre 

\ \  / 5 "~  \\//.. 
/ ' \  -~,s'/-'-7 

i i i  \\4 
(ii) Principal stresses (iii) Fibre directions 

b) 

L_ 
x 

" )~",. / \  ./",. IX./ ' ,,. /"y' l"""'*" ..__D ,,,_l 
- ' ~  - - ' -~ ' - ' -2~C'~  " ~ ' - - ~ 7  = :x = 68.9 MPa 

.,> I(-×.~X ,X.~ X ~,~.,~5< .NX-)I __,. 

...~... v '~./ \ /  , J  ~ /  \ /  V X J ~  

Fig. 6.7 Ply orientations for example problems: a) fiber orientations for a shear 
panel: b) 0 ° _ 45 ° laminate under uniaxial tension. 



STRUCTURAL ANALYSIS 183 

It should also be observed that, although for an isotropic material, Poisson's 
ratio cannot exceed 0.5, this is not the case for an anisotropic material. 

6.2.3.5 Quasi-lsotropic Laminates. It is possible to construct laminates 
that are isotropic with regard to their in-plane elastic properties---in other 
words, they have the same Young's modulus E and same Poisson's ratio v in 
all in-plane directions and for which the shear modulus is given by G = 
E / 2 ( l + v ) .  One way of achieving this is to adopt a lay-up having an equal 
number of plies oriented parallel to the sides of an equilateral triangle. For 
example, a quasi-isotropic 24-ply laminate could be made with 8 plies oriented 
at each of 0 °, + 60 °, and - 60 °. Using the same materials data (and theory) as 
were used in deriving Table 6.1, it will be found that such a laminate has the 
following moduli: 

E = 5 4 . 2 G p a ,  G = 2 0 . 8 G p a ,  v = 0 . 3 0 5  

Another way of achieving a quasi-isotropic laminate is to use equal numbers 
of plies oriented at 0 °, -t-45 °, - 4 5  °, and 90 °. A quasi-isotropic 24-ply 
laminate (with, incidentally, the same values for the elastic constants as were 
just cited) could be made with 6 plies at each of 0 °, +45 °, - 4 5  °, and 90 °. 
(For comparison, recall that Young's modulus and the shear modulus for a 
typical aluminum alloy are of the order of 72 and 27 GPa, respectively, and 
that the specific gravity of carbon/epoxy is about 60% that of aluminum.) 

The term quasi-isotropic is used because, of course, such laminates have 
different properties in the out-of-plane direction. However, it is not usual practice 
to work with quasi-isotropic laminates; efficient design with composites 
generally requires that advantage be taken of their inherent anisotropy. 

6.2.3.6 Stress Analysis of Orthotropic Laminates. The determination of 
the stresses, strains, and deformations experienced by symmetric laminates under 
plane stress loadings is carried out by procedures that are analogous to those used 
for isotropic materials. The laminate is treated as a homogeneous membrane 
having stiffness properties determined as described above. It should be noted, 
though, that while the strains and deformations so determined are the actual 
strains and deformations (within the limit of the assumptions), the stresses are 
only the average values over the laminate thickness. 

If an analytical procedure is used, then generally a stress function F is 
introduced, this being related to the (average) stresses by 

02 F OZ F - 02 F 
(Eq. 6.21) O" x -~- OX2, O'y = 0)22 , T r Y -  OxOy 
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It can be shown that F satisfies the following partial differential equation: 

( 1 )  04F ( 1  2Vxy'~ 04F ( 1 )  O4F 
~y ffx~-+ ~-y ~ - ) 3 x - - 5 - ~ +  ~ - ~ - - = 0  (6.22) 

Solutions of equation (6.22) for several problems of interest can be found in 
Ref. 10. 

Most structural analyses are now performed using finite element methods 
described in Chapter 16, and many general-purpose finite-element programs 
contain orthotropic membrane elements in their library. Once the laminate 
moduli are determined, they are used as input data for calculating the element 
stiffness matrix; the rest of the analysis proceeds as in the isotropic case. 

As has already been emphasized, the stresses obtained from the above 
procedures are only the average stresses. To determine the actual stresses in 
the individual plies, it is necessary only to substitute the calculated values of the 
strains in equation (6.10). An elementary example may clarify this. Consider a 
rectangular strip under uniaxial tension (Fig. 6.7b) made of the 24-ply laminate 
considered earlier that had 12 plies at 0 °, 6 plies at +45 °, and 6 plies at - 4 5  °. 
Suppose the applied stress is ~rx = 68.9 MPa. The average stress here is uniform 
in the xy plane and given by: 

o-x = 68.9 MPa, O'y = T s = 0 

Using the values of Ex and Vxy given in Table 6.1, it follows that the associated 
strains are: 

ex = 0.8667 x 10 -3, 8y = -0.5607 x 10 -3, % = 0 

The stresses in the individual plies can now be obtained by substituting these 
values into equation (6.10), with the appropriate values of the Qij(O). The results 
of doing this are shown in Table 6.2. 

Thus, the actual stress distribution is very different from the average one. In 
particular, note that transverse direct stresses and shear stresses are developed, even 
though no such stresses are applied; naturally, these stresses are self-equilibrating 
over the thickness. It follows that there is some "boundary layer" around the edges 
of the strip where there is a rapid transition from the actual stress boundary values 
(namely, zero on the longitudinal edges) to the calculated values shown in the table. 
This boundary layer would be expected to extend in from the edges a distance of the 
order of the laminate thickness (from the Saint-Venant principle). In the boundary 

Table 6.2 Stresses in Individual Plies of a 24-Ply Laminate (12 at 0% 6 at 
+ 45 a nd  6 a t  - 45 °) under Uniaxial Stress of 68.9 M P a  

0 ° Ox(O) MPa o~v (0) Mpa "rxy(O) MPa 

0 118.1 - 4 . 1  0 
+ 4 5  19.8 4.1 9.7 
- 45 19.8 4.1 - 9.7 
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layer, the simple laminate theory presented above is not applicable and a three- 
dimensional analysis is required. The matter is of more than acad6mic interest since 
faults, such as delaminations, are prone to originate at the free edges of laminates 
because of the above effect. Edge effects will be considered further in Section 6.3.2. 

Finally, when discussing allowable design values for composite structures, it 
is common to cite values of strain, rather than stress. Clearly, strain is the more 
meaningful quantity for a laminate. 

6.2.3.7 Laminate Codes. Although the precise ordering of the plies of a 
laminate has not been of concern in the considerations of this section, generally 
there will be other factors that will determine such an ordering. In any case, when 
a laminate is being called up for manufacture, the associated engineering drawing 
should list the orientation of each ply. When referring to laminates in a text, some 
sort of abbreviated notation is necessary to specify the pattern. It is easiest to 
describe the code normally used with some examples. 

Example 6.1 

Consider an eight-ply uni-directional tape laminate with the following 
(symmetric) lay-up starting from the bottom (z = t/2) surface: 

0 ° / 0 ° / + 4 5 ° / - 4 5 ° / - 4 5 ° / + 4 5 ° / 0 ° / 0 °  

This is written in code form as: 

[02/ _+ 45]s 

Note that: 

(1) Only half the plies in a symmetric laminate are listed, the symmetry being 
implied by the s outside the brackets. 

(2) The degree signs are omitted from the angles. 
(3) In a -4- and - combination, the upper sign is read first. 

Example 6.2 

Consider a four-ply fabric laminate with the following (symmetric) lay-up: 

(0°,90°)/( ___ 45°)/( _ 45 °)/(0°, 90°). 

This is written in code form as 

[(0,90)/(+45)/(0,90)]  or [(0,90)/(_+15)]. 

Example 6.3 

Consider a fifty-ply tape laminate containing repetitions of the ply sequence: 

0 ° / 0 ° / +  4 5 ° / -  45o/90 o 
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The order in the sequence being reversed at the midplane to preserve the 
symmetry. This would be written in code form as: 

[(02/ _ 45/90)5]s 

Sometimes, in general discussions, a laminate is described by the percentages 
of its plies at various angles. Thus, the laminate of example (6.1) would be 
described as having "50% 0, 50% +_ 45." Similarly, the laminate of example (6.2) 
would be described as having "40% 0, 40% _ 45, 20% 90." 

6.2.4 General Laminates Subjected to Plane Stress and 
Bending Loads 

In this section the previous restriction to laminates that are symmetric about 
the mid-thickness plane will be dropped. It now becomes necessary to consider 
the plane stress and bending problems in conjunction, as in-plane loads can 
induce bending deformations and vice versa. Only the outline of the theory will 
be given below; for further details, including numerical examples, see Refs. 1-5. 

6.2.4.1 General Theory. In contrast to the situation for symmetric 
laminates, the position of each ply in the laminate is now important. Thus, 
consider an n-ply laminate with z the coordinate in the thickness direction, 
measured from the mid-thickness plane. The kth ply lies between hk_ 1 and hk 
(Fig. 6.5). As before, the total thickness of the laminate will be denoted by t. 

It is assumed that when a laminate is subjected to in-plane and/or bending 
loads, the strain varies linearly through the thickness and can therefore be written 
in the form: 

= o = o jr KyZ ]/xy = ~y + KsZ (6.23) ~x ~x "~- KxZ ~Y ~y 
where the superscript o quantities are the mid-plane strains and the Kt are the 
midplane curvatures (as in the bending of isotropic plates). Both these sets of 
quantities are independent of z. 

Substituting from equation (6.23) into equation (6.7), it follows that the 
stresses in the kth ply will now be given by: 

Orx(k ) ~ axx( Ok)(~ ° Jr ZKx) "~- axy( Ok)(~; Jr ZKy) Jr axs( Ok)( ~xy Jr ZKs) 

try(k)=axy(Ok)(8 ° -}-ZKx)q-Qyy(Ok)(~y Jr-ZKy)+Qys(Ok)(~xy -~-ZKs) (6.24) 

~'xy(k) = axs( Ok)(8 ° Jr ZKx) -~- ays( Ok)(~y Jr ZKy) -~ ass( Ok)( ~xy + ZKs) 
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Now introduce the stress resultants (in the form of forces per unit length and 
moments per unit length) defined by: 

(6.25) 

where all of the integrals are over the thickness of the laminate (i.e., from 
z = - t/2 to z = t/2); see Figure 6.8. Because each of the integrals in equation 
(6.25) can be written in forms such as: 

n r h k  n c h k  

(6.26) 

it follows that substituting from equation (6.24) into equation (6.26), and 
performing some elementary integrations, leads to the result: 

Axx Axy Axs Bxx Bxy Bxs ] 
Axy Ayy Ay s Bxy Byy Bys 
A~ Ay s Ass Bx~ Bys Bss 

L Bxx Bxy Bxs Dxx Dxy Dxs 
Bxy nyy Bys Dxy Dry Oy s 
Bxs Bys Bss Dxs Dys Dss 

o 
13 x 

o 

Ky 

K s  I ] Uy 
= N~ 

m~ 

m~ 

(6.27) 

zt , 
X 

.I_ 
t 

T 
Fig. 6.8 

Nx 

Ny 

/ ~  Nxy 

My 

Stress and m o m e n t  resultants for a laminate. 
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The elements in the above combined "extensional-bending stiffness matrix" are 
given by: 

n 

Aij = E Qij(Ok)(hk -- hk-1) (6.28) 
k = l  

Bij = ~ aij(Ok)(h 2 - h2_1)/2 (6.29) 
k = l  

n 

Dij = ~ Qij(Ok)(h 3 - h3_t)/3 i, j = x, y, s (6.30) 
k = l  

[The above definition for Aij, is, of course, equivalent to that of equation (6.13).] 
Equation (6.27) can be used to develop a theory for the stress analysis of general 
laminates, but this is quite formidable mathematically. It involves the solution of 
two simultaneous fourth order partial differential equations. 

6.2.4.2 Uncoupling of the Stiffness Matrix. I t  can be seen from equation 
(6.27) that the plane stress and bending problems are coupled unless all the Bij, 

are zero. It follows from equation (6.29) that the Bij are indeed zero for a 
symmetric lay-up. [For a symmetric pair of plies, if that ply below the mid-plane 
has coordinates hk- 1 ---~ - -  a and hk = - b, then its mate above the mid-plane will 
have hk_ 1 = b and hk = a. Because each ply has the same Qi.i, there is a 
cancellation in the summation of equation (6.29).] 

It is possible to achieve an approximate uncoupling of equation (6.27) for a 
multi-ply unsymmetric laminate by making it in the form of a large number of 
repetitions of a given ply grouping. It can be seen intuitively that such a laminate 
will be symmetric in the group of plies if not in the individual plies; as long as the 
number of plies in the group is small compared with the total number of plies in 
the laminate, the Bij, will turn out to be small quantities. For example, a 48-ply 
laminate containing 24 groups of 45 ° plies laid up in the sequence + / - / +  / 
- etc. (without there being symmetry about the mid-plane) would be expected to 
behave much as a symmetrical laminate of the same plies. 

6.2.4.3 Bending of Symmetric Laminates. The moment-curvature 
relation governing the bending of symmetric laminates out of their plane, as 
extracted from equation (6.27), is: 

[ox o slE j Oxy Oyy Oy s Ky = M y .  ( 6 . 3 1 )  

Dxs Dys Dss_l Ks Ms 

Analogously to the definition of orthotropy in plane stress, a laminate is said to be 
orthotropic in bending if Dxs = Dys = 0. However, it is important to note that a 
laminate that is orthotropic in plane stress is not necessarily orthotropic in 
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bending. For example, consider the four-ply laminate [___45]~. Here the 
coordinates for the +45 ° plies may be written as ( -  t/2, - t/4) and (t/4, t/2), 
whereas those of the - 45 ° plies are ( -  t/4, 0) and (0, t/4); t, of course, is the 
laminate thickness. It is easy to establish that, while Ax~ and Ay s are zero, Dx~ and 
Dys are not. On the other hand, a laminate, containing only 0 ° and 90 ° plies will be 
orthotropic in both plane stress and bending. These laminates are called specially 
orthotropic. (It is also worth noting that for multi-ply laminates made of groups of 
plies, if the group is orthotropic in plane stress, then the laminate will at least be 
approximately orthotropic in both plane stress and bending.) 

As an example, consider the bending of the simply-supported beam shown in 
Figure 6.9a under a uniform distributed load. The laminate consists of a lay-up 
[04 904]s. Using the single-ply modulus data given in equation (6.20) and a ply 
thickness of 0.125 mm, equation (6.31) becomes: 

E81584,962 o olE x I 
1.962 18.382 0.0 Ky = My 
0.0 0.0 3.673 K~ Ms 

Nm/m (6.32) 

If the moment per unit width at the center of the beam is Mx = 100 N/m, 
My = Ms = 0, solving for the curvature gives Kx = 1.229, Ky = --0.131, and 
Ks ---- 0.0, indicating the anti-elastic curvature effect typical of plates. Solving for 
strains in the laminate involves substituting in equations (6.23) and (6.24) with 
zero for the mid-plane strains. The stress and strain through the thickness are 
given in Figure 6.9b. 

q 

I I 

z 

l m m ~  

1229 ~E 

- l m m  

a) 
z 

1 mm ~ 169 MPa 
I / 

7 MPa - ~  

I~x / ~  (Yx 

-1 mm 

Fig. 6.9 Configuration and results for simply-supported beam. 
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To estimate the deflection at the center of the beam, the matrix of coefficients 
in equation (6.32) is inverted to give: 

ICy : dxy dyy dys My 

Ks dxs dys dss Ms 

[o.o1  9 _o.oo131 o.o l[ x l 
= -0.00131 0.05454 0.0 My rad/m 

0.0 0.0 0.27223 Ms 

In simple beam theory, a total moment M applied to a beam gives the curvature 
that satisfies the equation: 

d2w M 
Kx-- dx 2 E1 

Imposing a moment per unit width on the laminate Mx = M/b,  My = Ms = 0 
on the laminate of width b, then dx~/b = 1/(E/)effectiv e. This effective bending 
stiffness can be substituted in the simple beam relation 6 = 5qL 4/384EI, where 
q is the load per unit length applied to the beam, to obtain a first order 
approximation of the deflection of the laminate. 4 For short beams, the simple 
bending theory is inaccurate, and shear deformation needs to be included. 

Composite beams are often stiffened using a lightweight core of Nomex 
honeycomb or expanded foam. 11 The laminate can be analyzed by including a 
layer in the center of the laminate with negligible in-plane properties. Use of the 
laminate theory implies that the core material has sufficient transverse shear and 
through-thickness compression stiffness to ensure that the top and bottom skins 
and the core material are constrained to behave as an integral laminate. Repeating 
the calculation with a 10-mm core added at the center of the previous laminate 
gives the DO indicated in the following equation: 

4896.046 00 l[ xl ?1 
178.552 4200.829 0.0 % = My Nm/m 

0.0 0.0 334.273 Ks Ms 

which represents an increase of bending stiffness approaching two orders of 
magnitude. 

For an orthotropic plate in bending, the deflection w satisfies the following 
equation: 

D Ow 2(Dxy+2Dss) °4w D 0 w-- 
xx'~'q '-  ~X~-~-{'- yy"-~ -- q 

where q is the applied pressure. Solutions of this equation can be found in Ref. 3. In this 
reference, the related problem of the buckling of laminated plates is also discussed. 
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6.3 Stress Concentration and Edge Effects 

The strain variation through the thickness of the laminate defined by equation 
(6.23) is linear. Stresses vary discontinuously from ply to ply through the 
thickness as indicated in Figure 6.9. The determination of the stress in the kth ply 
requires the definition of the z-position of the ply in the laminate. Substitution 
into equation (6.23) defines the strains in the ply. These strains can then be 
substituted into equation (6.24) for the appropriate ply to define the stresses. 
These strains and stresses are defined in the laminate (x, y, z) coordinate system. 
When assessing failure in the ply, the stresses and strains are required in the 
material (1, 2, 3) axis system. Equation (6.5) for stress and equation (6.6) for 
strain can be implemented to achieve these transformations. Inverting the 
transformation in equation (6.5) gives the required relation: 

0"2 = S 2 C 2 - -  2 C  S O'y 

'/'12 - - C S  CS C 2 - -  S 2 'Txy 

6.3.1 Stress Concentration Around Holes in Orthotropic Laminates 

A common feature with isotropic materials is the stress-raising effect of holes 
and changes in geometry that modify the load paths. Several analytical solutions 
for the stresses around holes in (symmetric) orthotropic laminates are cited in 
Ref. 7. Details of the derivations of these are given in Ref. 10. It turns out that the 
value of the stress concentration factor (SCF) depends markedly on the relative 
values of the various moduli. This can be illustrated by considering the case of a 
circular hole in an infinite sheet under a uniaxial tension in the x-direction 
(Fig 6.10). Here, the stress concentration factor at point A in Figure 6.10 
(a  = 90°), defined as the ratio of the average stress through the thickness of the 
laminate to the average applied stress grx, is given by the following formula: 

SCF = Kr -- O'xmax _ 1 + 2 + (6.33) 
~rx 

The stress concentration factors for the laminates of Table 6.1 have been 
calculated from this formula, and the results are shown in Table 6.3. 

For comparison, the SCF for an isotropic material is 3. As can be seen, when 
there is a high degree of anisotropy (e.g., an all 0 ° laminate), SCFs well in excess 
of that can be obtained. It should also be pointed out that, as the laminate pattern 
changes, not only does the value of the SCF change, but the point at which the 
SCF attains its maximum value can also change. Whereas for the first four 
laminates of Table 6.3, the maximum SCF does occur at point A, for the 
remaining laminate the maximum occurs at a point such as B in Figure 6.10. 

Care should be taken when relating these results to the strength of the 
laminate. A laminate with all ___ 45 ° plies has the lowest SCF at 2, but may also 
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(~x 

Fig. 6.10 Stress concentration on circular hole in infinite tension panel. 

have the lowest strength due to the absence of  0 ° plies to carry the load. The best 
laminate has sufficient 0 ° plies to carry the load, but also _ 45 ° plies to reduce the 
stress concentration factor. 

6.3.2 Edge Effects 

Edge effects are caused by the requirement for strain compatibi l i ty between 
the plies in the laminate. They lead to interlaminar shear and through-thickness 
peel stresses near the free edges of  the laminate. For  example,  if  a laminate 
consisting of  alternating 0 ° and 90 ° unidirectional plies is subject to a tensile load 
parallel  to the 0 ° fibers, then the difference in Poisson 's  ratio leads to different 
transverse contraction, as indicated in Figure 6.11. However,  the plies in the 
assembled laminate are forced to have the same transverse strain by the bonding 
provided by the resin. Therefore, an interlaminar shear develops between the 
plies, forcing the 0 ° ply to expand in the transverse direction and the 90 ° ply to 
contract. The shear stress is confined to the edge of  the laminate because once the 
required tension O-y is established in the 0 ° ply, for example,  the compatibi l i ty will 

Table 6.3 SCF at Circular Hole in Tension Panel (Laminate Data from Table 6.1) 

Lay-up SCF 

No. 0 ° Plies No. _ 45 ° Plies Point A 

24 0 6.6 
16 8 4.1 
12 12 3.5 
8 16 3.0 
0 24 2.0 
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Fig. 6.11 Ply strain compatibility forced in a 00/90 ° laminate and interlaminar 
shear and peel stresses at the edge of the laminate. 

be ensured across the middle of the laminate. At the free edge, however, this 
tension stress must drop to zero if there is no applied edge stress. 

The shear stress shown in Figure 6.11 is offset from the axis of the resultant of 
the stress O-y, and therefore a turning moment is produced. To balance this 
moment, peel stresses o" z develop in the laminate having the distribution indicated 
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in Figure 6.11. These peel stresses can cause delamination at the edge. Similar 
stress distributions will be identified in Chapter 9 for bonded joints and bonded 
doubler plates. 

Interlaminar shear stresses also occur in angle ply laminates as the individual 
plies distort differently under the applied loads. A more thorough treatment of 
edge effects is contained in Ref. 1. 

6.4 Failure Theories 

6.4.1 Overview-Matrix Cracking, First Ply Failure and Ultimate Load 

The prediction of failure in laminates is complex. Failure is not only influenced 
by the type of loading, but also the properties of the fiber and properties of the 
resin, the stacking sequence of the plies, residual stresses, and environmental 
degradation. Failure will initiate at a local level in an individual ply or on the 
interface between plies but ultimate failure in multi-directional laminates may not 
occur until the failure has propagated to several plies. 

Strains in the laminate are constant through the thickness for in-plane loading of 
symmetric laminates, or vary linearly if the laminates are subject to out-of-plane 
curvature. However, the stresses in each ply given by equations (6.7) and (6.24) 
depend on the modulus of the ply and vary discontinuously through the thickness 
of the laminate. Failure of the laminate described by a mean stress averaged 
through the thickness of the laminate will therefore apply only to a particular 
lay-up. The prediction of failure in multi-directional laminates usually requires the 
determination of strains and stresses for each ply in the material (1, 2, 3) axes for 
the ply. The prediction of ultimate failure then requires following the progression 
of failure through the laminate. A number of different types of failure therefore 
need to be assessed when evaluating the strength of a laminate: 

(1) matrix cracking, which may have important implications for the durability of 
the laminate; 

(2) first ply failure, where one of the plies in the laminate exceeds its ultimate 
stress or strain values; 

(3) ultimate failure when the laminate fails; and 
(4) transverse failure or splitting between the layers of the laminate. 

Matrix cracking depends on the total state of stress or strain in the matrix. It 
depends on the residual stress in the matrix due to the curing processes as well as 
stress and strain due to mechanical loads. For example, in a thermoset laminate 
cured at elevated temperature, the resin can be considered to cure at or near 
the glass transition temperature. Because the thermal expansion coefficient of the 
matrix is much higher than that of the fibers, cooling to room temperature 
introduces tension into the matrix as it tries to shrink relative to the fibers. Matrix 
cracking under load then usually occurs at the interface between the most highly 
loaded ply aligned with the load direction and an off-axis ply. 
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To determine the load for first ply failure, the stress and strain in the principal 
material (1, 2, 3) axes in each ply are determined using the theory given in 
Section 6.2. Hence, the problem can be reduced to establishing a criterion for the 
ultimate strength of a single ply with the stresses or strains referred to the material 
axes. As before, these stresses will be denoted by o"1, o-2, and r12. A number of 
well-tried theories, including maximum stress and maximum strain, are discussed 
in the subsequent sections. 

It is important to note that failure of the first ply does not necessarily constitute 
failure of the laminate. The stiffness of the failed ply can be reduced, say, to a 
defined percentage of its undamaged value, and the laminate re-analyzed to check 
whether the remaining plies can carry the load. If  the load can be carried, the 
applied is increased until the next ply fails. When the load cannot be carded, 
ultimate failure has occurred. 

The prediction of through-thickness failure has proved more difficult. This 
transverse failure occurs in the matrix. It is failure of the resin in either shear or 
tension. It depends on the total state of stress or strain in the matrix, including 
the stresses introduced by manufacturing of the component. Several approaches 
will be discussed in the following sections. When a flaw is present, a fracture 
mechanics approach is used to predict the growth of the flaw leading to de- 
lamination and structural failure. In the fracture mechanics approach, the strain 
energy release rate is determined and compared with the critical value for the 
matrix material. The approach has proved useful for predicting stiffener 
separation and delamination growth. 12 

6.4.2 Stress-Based Failure Theory 

Stress-based failure theory can be classified into two categories: maximum 
stress theories 13-16 and quadratic stress failure theories.17'18 The stresses are first 
determined for each ply and transformed to the material (1, 2, 3) axes. 

Maximum stress theory directly compares the maximum stress experienced by 
the material with its strength. The maximum stress across a number of failure modes 
is compared with the strength in each failure mode. First ply failure will not occur if: 

//0"1 Io-ll 0-2 [o-2l Is121~ maxL ,l l, ,l l,l l) 1 (6.34) 

The quadratic failure criteria include the affect of biaxial (multiaxial) load. The most 
used quadratic failure theories are: 

Tsai-Hill Theory 

O~1 O-10-2 ~_ ._~ ..[_ (~'12~ 2 
X 2 X 2 ~,S-~2] < 1 (6.35) 

If o'1 > 0, X = Xr; otherwise, X = Xc. If  o-2 > 0, Y = Yr', otherwise, Y = Yc. 
This failure criterion is a generalization of the von Mises yield criterion for 
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isotropic ductile metals. When plotted with or 1 and tr2 as the axes and with 
constant values of T12/S12 , this equation defines elliptical arcs joined at the axes.1 

A more general theory can be developed based on an interactive tensor 
polynomial relationship. The Tsai-Wu criterion is invariant for transformation 
between coordinate systems and is capable of accounting for the difference 
between tensile and compressive strengths. 1 

Tsai-Wu Theory 17 

FlO'l ÷ F2tr2 ÷ FllO'~l ÷ F220~2 ÷ F66q2 ÷ 2F120"10"2 -< 1 (6.36) 

The Tsai-Wu coefficients are defined as follows: 

1 1 
F1 = ~T-F Xc 

1 1 
F2 =~r  + ~C 

1 
Fll -- 

XrXc 

1 
Fz2-- 

YrYc 

1 
F66 -'-- ~12 

The coefficient F12 requires biaxial testing. Let Orbiax be the equal biaxial tensile 
stress (trl = tr2) at failure. If it is known, then: 

1 1 1 1 + ~  7 ~X--r--~c + y-~yT) biax) El2 ---- ~ 1 - +~---c + ~,-~r O'biax ÷ 

otherwise, 

F12 _ ~ _ f l ~  

where - 1.0 < f l  < 1.0. The default value o f f  1 is zero. 
The maximum stress theories define simple regions in stress space. Stresses 

lying inside the limits defined by the solid lines in Figure 6.12 will not cause 
failure. Failure occurs for combinations of stresses that lie outside the failure 
envelope. The polynomial theories define elliptical regions. The plot appearing as 
a dashed line in Figure 6.12 is for the Tsai-Wu criterion for combinations of 
direct stress with zero shear stress. In this case, the ellipse crosses the axes at the 
four points corresponding to Xr, Xc, Yr, and Yc. 

6.4.2.1 Stress-Based Theories: Considering Actual Failure Modes. 
The Tsai-Hill and Tsai-Wu criteria do not identify which mode of failure has 
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Fig. 6.12 Stress failure envelopes for a typical unidirectional carbon fiber. 
(Xr = 1280 MPa, Xc = 1440 MPa, YT ----  57 MPa, Yc = 228 MPa) 

become critical. Failure theories in the second category treat the separate failure 
modes inde-pendently. The maximum stress criteria and the Hashin-Rotem 
failure criterion treat the separate failure modes independently. 15'19 

The two-dimensional Hashin-Rotem failure criterion has the following 
components for unidirectional material. For tensile fiber failure (O'll > 0): 

2 2 //O'11 x\ //7"12 ~ 
~X-r-~) +~S-~lz) = 1  (6.37a) 

For compressive fiber failure (O'11 < 0): 

X-c-c] = 1 (6.37b) 

For tensile matrix failure (o'22 > 0): 

2 2 
//O'22x~ /'r12"~ 
~-Y-r-~) + ~ 1 2 )  = 1  (6.37c) 

For compressive matrix failure (O'22 < 0): 

2-~) +Lt2~;~l - J ~ +  t ~ }  = 1 (6.37d) 
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For through-thickness failure, the combination of through-thickness stresses 
predicts delaminations will initiate when: 

2 2 2 
//0"33" ~ //Or23~ //O"31" ~ 

t s )  +tg) =' 
Here ~rll, tr22 and r12, are the longitudinal stress, transverse stress, and shear 
stress, respectively, and X, Y, Z, and S are the longitudinal strength, transverse 
strengths (Z is through thickness), and shear strength, respectively, that are 
obtained from testing. The subscripts T and C refer to tension and compression 
mode, respectively. 

If the matrix failure parameter is satisfied first, then an initial crack forms in 
the matrix. 

Zhang 2° separated the through thickness mode into stear and tension. 
For interlaminar shear failure occurs when: 

~ 1 3 +  ~3 > interlaminar shear strength 

For interlaminar tension: 

O'p~el _ 1 (6.38) 
Zr 

6.4.2.2 Stress-Based Methods: Application to Laminates. To predict 
ultimate failure, the lamina failure criterion is applied to examine which ply 
undergoes initial failure. The stiffness of this ply is then reduced and the load is 
increased until the second ply fails. The process is repeated until the load cannot 
be increased indicating the ultimate failure load has been reached. Residual 
stresses can be taken into account at the laminate level. 

Hashin and Rotem 15 used a different stiffness reduction method for 
predicting ultimate failure. A stiffness matrix represents the laminate where the 
stiffness of the cracked lamina decreases proportionally to the logarithmic load 
increase in the laminate. Residual stresses are considered, and a non-linear 
analysis is used. 

Liu and Tsai is use the Tsai-Wu 17 linear quadratic failure criterion. The failure 
envelope is defined by test data. The data are obtained from uniaxial and pure 
shear tests. After initial matrix failure, cracking in the matrix occurs. The stiffness 
is reduced for the failed lamina by using a matrix degradation factor that is 
computed from micromechanics. This process is repeated until the maximum 
load is reached. Thermal residual stresses, along with moisture stresses, are 
estimated using a linear theory of thermoelasticity. This assumes that the strains 
are proportional to the curing temperature. 

Through-thickness failure is failure in the matrix caused by tensile stresses 
perpendicular to the plies. A typical example is shown in Figure 6.13. The 
delamination can be predicted by the interlaminar tension criterion of Zhang. 2° 
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d¢lamination 

Fig. 6.13 Interlaminar failure---splitting in a curved beam. 

Wisnom et al. 21'22 use a stress-based failure criterion to predict through- 
thickness failure in composite structures. This matrix failure criterion uses an 
equivalent stress o-e, calculated from the three principal stresses: 

1 
4 -~- 2 . 6  [ (O"1 --  0"2)2 "~- (0"2 - -  0"3) 2 "q- (0"3 - -  0"1) 2 "q- 0.6~(0"1 + 0"2 "q- 0"3)] 

(6.39) 

Interlaminar strength is considered to be related to the volume of stressed 
material. Therefore, the stressed volume is taken into account using a Weibull 
statistical strength theory. The criterion can be applied to three-dimensional 
geometric structures with any lay-up. Residual stresses and the effect of 
hydrostatic stress are accounted for. 

6.4.3 Strain-Based Failure Theories 

The simplest strain-based failure theories compare strains in the laminate with 
strain limits for the material. 23'24 Failure occurs if 

, e2 , /312 ~ = 1 (6.40) 
m a x ( e - ~ r ' e ~ c ' ~  e2c Y12/ 

where the subscripts T and C, as before, refer to critical strains for tension and 
compression and T12 to critical shear strain. 

The failure envelope for this failure criterion is sketched in Figure 6.14a. If  the 
Poisson's ratio for the laminate is non-zero, tensile strain of the laminate in the 1- 
direction will be accompanied by contraction in the 2-direction. Transforming the 
failure envelope from strain axes to stress axes therefore leads to the distorted 
failure envelope shown in Figure 6.14b. 

Puck and Schurmann 25 have developed a strain-based theory for fiber failure 
in tension, including deformation of fiber in the transverse direction. 

1 { 1)f12 - -  "~ 
+ = 1 
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Fig. 6.14 Maximum strain failure envelope: a) maximum strain failure envelope 
with strain axes; b) maximum strain failure envelope on stress axes. 

where 81r is tensile failure strain of a unidirectional layer, and mof is mean stress 
magnification factor for the fiber in y-direction, due to the difference between the 
transverse modulus of the fiber and the modulus of the matrix. For carbon fiber, 
mof is equal to about 1.1. 

6.4.3. 1 Strain Invariant Failure Theory. Although the strain invariant 
failure theory (SIFT) is not new for isotropic metallic materials, 26 
its application to the failure of the matrix in composite materials is a 
development initiated by Gosse and Christensen. 27 Theoretically, for an 
isotropic material like steel, yield under complex stress must directly result 
from the magnitude of stress or strain and must be independent of the direction 
of the coordinate system defining the stress field. Similarly, a strain-base 
criterion not linked to a location and direction in the laminate must be a 
function of invariant strains so that it is unaffected by a transformation of the 
coordinates. 

Under complex stress, the strain invariants can be determined from the 
following cubic characteristic equation determined from the strain tensor. 26 

( 1 2 1 2 1 2 )  
83 - -  (8  x "~-8y "~- 8Z) 82 "q- 8xE, y -~'- 8y8 z "~- 828 x -- '~Exy - - -~8y  z --'~SZX 8 

( 1 1 2 1 2 1 2 )  
- 8xSyS= + ~ e,.wSy=8= - ~ exSy= - -~ 8yS~x - -~ 8zSxy = 0 

The coefficients of the cubic equation are invariant to transformation of 
coordinates, designated as invariant strains. We can write: 

8 3 - J 1 8 2 + J z S - J 3 = O  
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where: 

J l  = ex  -1- ~:y -1- 8z = ~1 -F 82 -t- I~ 3 (6.41) 

J2 = ~x'~y q-Syez Jf-ezl?,x --~e2y --~e2z - -~  e2 

= e182  + e2e3  + e 3 e l  (6.42) 

1 1 2 1 2 1 2 
J3 = exSyez + 3 SxySyzezx -- 4 exeyz - 4 eYezx - -  4 ezexY = e l e z e 3  (6.43) 

6.4.3.2 First Invariant Strain Criterion for Matrix Failure. Obviously, the 
simplest criterion of such a kind is a function of the first invariant strain Ja, 
which indicates the part of the state of strain corresponding to change 
of volume. However, it is well known that a material would not yield under 
compressive hydrostatic stress; consequently, this first invariant strain 
criterion is applicable only to tension-tension load cases experiencing volume 
increases. 

6.4.3.3 Second Deviatoric Strain Criterion. To consider material yielding 
by the part of the state of strain causing change of shape (distortion) and to 
exclude the part of state of strain causing change Of volume, a function of the 
second deviatoric invariant strain J~ has been suggested where: 

1 
4 = 6 ( (~x - -  ~:y)2 "J7 (/3y - -  EZZ) 2 qL ( e  z _ EZx) 2) 

1 2  1 2  1 2  
4 exy - -4 8yz -- "4 ezx (6.44) 

A more convenient form for use as a failure criterion is: 

~crit ~ V/~2 
(6.45) 

~ 3 2  3 2 3 2 
~-- ( (Sx - -  gy)2 ..1_ (By - -  gZ) 2 + ( e  z - -  8x) z)  - -  ~ 8xy -- -~ 8y z -- ~ t3ZX 

This criterion can be simplified using principal strains to: 

~eqv = ~/((~31 - -  ~32) 2 "~ (~2 - -  e3 )  2 + (e3  - -  e l ) 2 ) / 2  
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This equivalent strain, often referred to the Von Mises shear strain, is a com- 
bination of invariants: 

•eqv ~-" ~ 1 2  -- 3J2 

Consequently, it is also invariant to any transformation of axis. 

6.4.3.4 SIFT Applied to Laminates. Use of the strain invariant failure 
criteria for composite laminates 3° is a break from traditional methods because 
it considers three planes of strain as opposed to the conventional maximum 
principal strain. Two mechanisms for matrix failure are considered. These are 
dilatational failure, characterized by the first strain invariant, J1, and 
distortional failure, characterized by a function of an equivalent shear strain, 
•eqv. Initial failure occurs when either of these parameters exceeds a critical 
value. The calculation of strain includes micromechanical models that take 
into account residual stresses and a strain amplification factor that includes 
strain concentration around the fiber. The criterion is a physics-based strain 
approach, based on properties at the lamina level. It can be applied to three- 
dimensional laminates with any lay-up, boundary, and loading conditions. 

Gosse and Christensen 27 undertook several test cases on laminates, each with 
different lay-ups, for verification of the strain invariant failure criterion. These 
tests gave a good correlation between interlaminar cracking and the first strain 
invariant. Hart-Smith and Gosse 28 extended the S1FT approach to map matrix 
damage to predict final failure. This is done using a strain-energy approach. 

6. 4.4 Matrix Failure Envelopes 

The matrix failure envelope 27 for the SIFT criterion can be seen in Figure 
6.15. When the cylindrical section is cut by the plane formed by the first two 
principal axes, an ellipsoid is formed. The ellipsoidal region of the envelope is 
governed by shear components of strain characterized by the equivalent strain, 
eeqv. The 45 ° cut-off plane, dominated by transverse tensile strain, is 
characterized by the first strain invariant, J1. 

The insert in Figure 6.15, developed by Sternstein and Ongchin, z9 is a 
failure envelope for polymers constrained within glass fibers, where the strain 
in the 3-direction is equal to zero. When the SIFT failure envelope is transferred 
to stress axes both sections become segments of an ellipse as indicated in 
Figure 6.16. 

6.4.5 Comparison of Failure Prediction Models 

Soden et al. 31 have compared the failure predictions achieved by several 
theories and compared them to experimental results. 31'32'34"35 Almost all of the 
failure envelopes presented give an ellipsoidal shape in the negative stress region 
corresponding to shear loading. Transverse tensile loading causes failure in the 



STRUCTURAL ANALYSIS 203 

I 

e 2 Cut-off governed by 
J1 invariant 

El 

~1 Space 
\ I I ~ ~ ~  p lane ln te rsec t2 i th i~ l~ (  . ~ "  e , = ~ = ~  

I i No failure , t - ' I ~  
predicted for ~ . . - ~  
triaxial ~ -  I 

f I % compression 
Second deviatoric 
strain envelope with 
axis on space 
diagonal 

Fig. 6.15 The SIFT matrix failure envelope. 

positive stress-strain region. 3° SIFT represents failure in this region with a cut-off 
plane characterized by the first strain invariant J1, whereas most of the other 
failure theories continue with either an eUipsoidal shape or a curved, irregular 
shape. 

6.5 Fracture Mechanics 

In the fracture mechanics approach, failure is predicted to occur when a crack 
grows spontaneously from an initial flaw. 33 This approach has found application 
in predicting stiffener debonding 36 and for predicting interply failures. 

Fracture toughness and crack growth was discussed in Chapter 2. It is apparent 
from that discussion that cracks are likely to grow parallel to the fibers (splitting) 
and parallel to the plies (delamination). Failure can also occur in assembled 
structures in adhesive bonds between the components. The prediction of when a 
delamination or disbond will grow is important for the assessment of damage 
tolerance where the initial defect can be assumed to arise due to manufacturing 
processes or due to impact or other damage mechanisms for the structure. 
The size of the defect is usually linked to the limits of visual inspection or the 
inspections that follow manufacture because known defects will be repaired. 
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Fig. 6.16 SIFT failure envelope for polymeric materials. 

The requirement is that damage that cannot be detected should not grow under 
operational loads. 

The prediction of the growth of interlaminar splitting and disbonds in bonded 
joints is based on three modes of crack opening. Mode I is crack opening due to 
interlaminar tension, mode II due to interlaminar sliding shear, and mode In  due 
to interlaminar scissoring shear. The components GI, GI1, and Gill of the strain 
energy release rate, G, can be determined using a virtual crack closure technique 
in which the work done by forces to close the tip of the crack are calculated. If 
mode I and mode II crack opening is contributing to the growth, the delamination 
is predicted to grow when: 

( G I ~  m [ G I I ~  n 
G~tc) +~G~/c) = 1 (Eq. 6.46) 

where m and n are empirically defined constants. The finite element analysis 
depicted in Figure 16.11 identifies the role that buckling of a panel and flanges 
of a stiffener can play in driving a disbond in a bonded joint. 

6.6 Failure Prediction Near Stress Raisers and 
Damage Tolerance 

The behavior of carbon fiber laminates with epoxy resins is predominantly 
linearly elastic. However, some stress relief occurs near stress concentrations that 
is similar to the development of a plastic zone in ductile metals. Microcracking 
in the laminate softens the laminate in the vicinity of the notch. In the case of 
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holes in composite laminates, two different approaches have been successfully 
developed to predict failure based on the stress distribution. These are the average 
stress failure criterion and the point stress failure criterion. 

Consider a hole of radius R in an infinite orthotropic sheet (Fig. 6.17). If 
a uniform stress o- is applied parallel to the y-axis at infinity, then, as shown in 
Ref. 21, the normal stress try along the x-axis in front of the hole can be 
approximated by: 

(6.47) 

where KT is the orthotropic stress concentration factor given by equation (6.33). 
The average stress failure criterion 4°'41 then assumes that failure occurs when 

the average value of try over some fixed length ao ahead of the hole first reaches 
the un-notched tensile strength of the material. That is, when: 

1 [R+ao 
- -  try(X, O)dx  = (To 
ao JR 
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Using this criterion with equation (6.47) gives the ratio of the notched to un- 
notched strength as: 

crN 2(1 -- ~b) 

tro 2 - -  ~ 2  _ ~ 4  -Jr- ( K T  - -  3)(~b 6 - -  t~ 8) 

where: 

R 

R + a o  

In practice, the quantity ao is determined experimentally from strength 
reduction data. 

The point stress criterion assumes that failure occurs when the stress o-y at 
some fixed distance do ahead of the hole first reaches the un-notched tensile 
stress, 

O'y(X, O)]x=R+do = O" o 

It was shown in Ref. 40 that the point stress and average stress failure criteria are 
related, and that: 

ao = 4do 

The accuracy of these methods, in particular the average stress method, can be 
seen in Figure 6.18, where ao was taken as 3.8 mm. The solid lines represent 
predicted strength using the average stress criterion, and the dotted lines are the 
predicted strengths from the point stress method. Tests in Ref. 41 were carried out 
on various 16-ply carbon/epoxy laminates (AS/3501-5) with holes. The 
laminates were: ( 0 / ±  4 5 2 / 0 / +  45)s, (02/_+ 45/02/90/0)s, and (0/_+ 45/90)2s. 
The results are shown in Table 6.4 and are compared with predicted values 
using the average stress method with ao ---- 2.3 mm. 
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Fig. 6.18 Comparison of predicted and experimental failure stresses for circular 
holes in ( 0 / _  45/90)2s, T300/5208. 
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Table 6.4 Static Strength Predictions 45 

207 

% of Unnotched Strength 
Number of Holes, Hole Laminate 
Size and Placement No. Test Avg Stress 

2 "[~ 1 58.9 53.6 
4.8-mm diameter 1----.--"--""~ 2 48.1 51.4 
countersunk. ~ 3 51.8 53.2 

2 1~ 3 48.7 45.9 
4.8-mm diameter 

countersunk. 

2 "I~ 3 53.1 50.3 

4-mm diameter I C } ~  
countersunk. 

1 

4-mm diameter 
noncountersunk 

2 54.0 52.6 

As can be seen from the examples given, the average stress criterion provides 
accurate estimates of the strength reduction due to the presence of holes. This 
method is widely used in the aerospace industry 4z and has been applied to biaxial 
stress problems, 43 to the estimation of strength reduction due to battle damage, 44 
and to problems in which the stress is compressive. 45 

Damage tolerance in laminates is considered in Chapters 8 and 12. The 
analysis requirements include prediction of the growth of defects caused by 
impact and the determination of the compressive strength after impact. The 
analysis of the growth of disbonds can be based on fracture mechanics 
approaches. The compression after impact strength has often been analyzed 
by approximating the damaged zone as an open hole and assessing the strength 
of the laminate under compressive loads using the procedures described above. 

6.7 Buckling 

In laminated composites, buckling can occur at the laminate or fiber level. 
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6.7'. 1 Buckling of the Laminate 

Buckling loads for the laminate can be estimated using classical analysis for 
orthotropic plates. In general, buckling loads are increased by arranging the lay-up 
with plies aligned with the compressive load in the outer layers. The effect is to 
increase the bending stiffness of the laminate. Data sheets for the buckling coefficient 
for specially orthotropic laminates are presented in the ESDU data sheets. 46 Data for 
plates loaded either uniaxially or bi-axially is presented in terms of the coefficients 
Ko and C for a variety of edge conditions. The buckling load is given by 

Ko(DI1D22) 1/2 CoT2Do 
Nxb = bE ] b2 where Do = DIE q- 2D33 

and the coefficients Dij are the coefficients derived in Section 6.2 and equations 
(6.30) and (6.31). 

6. 7.2 Buckling of the Fibers 

Buckling failures can also be associated with lamina. These failures are 
identified by kink zones that form normal to the layers. Typical kink bands are 
shown in Figure 6.19. In the most common mode of buckling, the fibers buckle in 
an in-phase or shear mode. Fiber buckling has been discussed in Chapter 2. 

U 

Micro-buckl ing Kink-band 
of filaments formation 

Fig. 6.19 Microbuckling of fibers. Taken from Ref. 1. 
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6.8 Summary 

Classical laminate analysis has been introduced in this chapter. The analysis 
gives a relationship between in-plane load resultants and strain, and between out- 
of-plane bending moments and curvatures for panels consisting of layers or plies 
of unidirectional and fabric material. Once these relationships have been derived, 
the analysis of composites becomes equivalent to the classical analysis of 
anisotropic materials. A laminate analysis, for example, precedes a finite element 
analysis in which the algorithm calculates the equivalent plate properties from the 
A, B, and D matrices. Once this step is completed, the full power and versatility 
of finite element analysis (See Chapter 16) can be applied to the analysis and 
design of composite structures. Data sheets for design using composite panels can 
also be based on stiffness and strains produced by a laminate analysis as indicated 
for the case of buckling in Section 6.7. Finally the laminate analysis can be used 
to define the equivalent stiffness of the panel enabling the application of standard 
formulas to check the stiffness of plate and beam structures. 

The prediction of failure in composites is a difficult problem. The materials 
consist of both fibers and a matrix--both of which exhibit distinct failure 
modes. In addition the interface between the fibers and the resin, the ply stacking 
sequence and the environmental conditions all contribute to failure. To com- 
pound the problem, the manufacturing processes introduce significant residual 
stresses into the resins. These residual stresses become apparent when the 
structure distorts due to the phenomenon called spring-in and when the matrix 
cracks after cure even before the structures are loaded. The failure theories 
discussed in this chapter are still being developed. Tension fiber failures are 
generally well predicted, and design margins of safety can be small. However, 
much still remains to be done to improve the reliability of the techniques for 
predicting matrix failures and the growth of delaminations. 
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