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Summary. The influence of the development of computer programmes and auto-
matic generation of cable nets and membrane structures will be shown in some ex-
amples. The main interest is laying on new evaluation methods of cable nets and
membrane structure and the design process of membrane structures, integrating the
material behaviour of coated fabric.
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1 Introduction

The design process of pretensioned structures such as cable nets and membrane
structures is influenced by the development of computational methods. While the
first methods of form finding had been physical modelling with fabric, wire nets or
soap films, today several numerical methods of form finding are developed based on
the force density method [1,2], the principle of minimal surfaces [3,4] using dynamic
relaxation [5,6] or other approaches in fulfilling the three-dimensional equilibrium.
Further process has been carried out in the form finding with an anisotropic stress
distribution [7]. All methods have in common that no material laws are necessary
finding an equilibrium of the three dimensional shape for given stress distributions,
boundary conditions and supports. These shapes of equilibrium should ensure in
the built structure a homogeneous distribution of the tension stresses. In reality the
material behaviour, process of cutting patterns, manufacturing and pretensioning
on site influencing the stress distribution, wrinkles and regions of over stress are
obvious, can be seen and measured.

The design process of pretensioned structures needed to be extended taking
into account evaluation methods for shapes of equilibrium in relation the mate-
rial behaviour and process of prestensioning. More realistic modelling of membrane
structures is necessary including the strips in width, orientation of the fabric and
seams for analysing the load charring behaviour. The process of reassembling flat-
ten strips had already been proposed for a rotational symmetric hat type tent [8].
The process of form finding can be embedded in a design process including cutting
pattern und structural behaviour under external loads. The load bearing behaviour
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can be evaluated by redundancy, flexibility or a stiffness value in relation to the
curvature and the elastic strain of the materials.

2 State of the Art

The design process of tension structures such as double curved cable nets or mem-
brane structures such as tents, air support halls or airships can be divided into form
finding, static analysis and cutting pattern. The result of the form finding is a shape
of equilibrium for a certain stress distribution and boundary conditions. The shape
of equilibrium ensures the geometry of the double curved surface which has only
tension and avoids compression in the surface. From this geometry the structural
behaviour is exanimated and the cutting pattern is made of. The flattening of the
double curved surface is a geometrical process without considering the stress dis-
tribution and the material behaviour. In the recent development of cutting pattern
methods the stress distribution is taking into account [9,10]. The analysis of the
structural behaviour is carried out without the influence of the width of the strips,
the seams, the orientation of the fabric and the process of pretensioning. The separa-
tion of the structural behaviour and the cutting pattern leads in built structures to
highly inhomogeneous stress distributions which can be seen in wrinkles and mea-
sured in stresses which are two times higher than required. The difference in the
stress distribution and geometry between the numerical found shape of equilibrium
and the real structure causes in the non consistent design procedure see Fig. 1.

Fig. 1. Common design process of membrane structures

3 Enhanced Design Process of Tension Structures

An enhanced design concept will be based on 5 design steps defining the shape of
equilibrium, generating the cutting pattern, reassembling and pretensioning the cut-
ting pattern, the structural analysis of the reassembled structure and the evaluation
of the structural behaviour. The material behaviour is considered in the last three
steps: flattening the shape of equilibrium, reassembling and load bearing behaviour.
The length and the width of the strips has an influence to the shear deformation of
the coated fabric. The orthotropic behaviour of coated fabric influences the process
of pretension and the stress distribution in the reassembled structure. The numerical
process allows after evaluation modifications to reach better results in the reassemble
structures considering stress distribution and deformations.
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Fig. 2. Enhanced design process of membrane structures [11]

3.1 Shape of Equilibrium

The development of Computer Aided Geometric Design (CAGD) marked the start
of changes in geometry endorsing new and free forms. This generation of double
curved 3-dimensional surfaces is restricted by few limitations. Theoretically there
are an unlimited number of forms to be numerical generated and represented. How-
ever, the manufacture and realization of such double curved surfaces are subject to
numerous boundary conditions and restrictions. Using cables and membranes for
the load transfer only tension forces can be carried, the cables and membranes can
not withstand bending moments and compression forces in a global point of view.
The structures have to be pretensioned activating the geometric stiffness or to be
able carrying compression forces by reducing the pretension. The shape of equilib-
rium defines a pretensioned geometry of a doubled curved surface for a cable net
or a membrane structure. The relation between the tension stress, geometry and
equilibrium allows three possibilities to introduce the tension into the membranes
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Fig. 3. Relation between tension forces and curvature

The pretension against rigid boundaries enables plain tension structures, ten-
sion structures with single curvatures and double curved tension structures if the
direction of the cables or yarns is along the evolution line of a hyper parabola. The
tension forces are independent from each other in this case.
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The tension forces in surfaces with negative Gaussian curvature result of the
deviation forces at the nodes and this leads to a relation between tension forces
and curvature. Fulfilling the equilibrium at each node the tension forces are related
to the radius of curvature in the both directions. Equal forces in both directions
require the same curvature of the cables. The ratio of tension forces and radius of
curvature is constant by meaning the higher the forces the lower the curvature to
ensure equilibrium.

Stabilising the membranes with internal pressure leads to surfaces with positive
Gaussian curvature and a dependency between the internal pressure, the tension
forces and the curvature. The tension forces are directly related to the internal
pressure and the lower the curvature the higher the forces.

Cable nets with square meshes are cinematic systems, the thin membrane with-
out bending stiffness is statically determined. In both cases the double curved surface
is a result of the three dimensional equilibrium at each node for given tension forces
in a cable net or at each point for a given stress distribution in a membrane. The
equilibrium is fulfilled without taking into account the material behaviour and is
influenced by the boundary conditions such as high points, boundary cables or rigid
boundaries.

For cable nets the numerical solution is based on the constant ratio of cable
force and length in the first step. The ratio of cable force and length is described as
force density [12] and the shape of equilibrium is calculated from a plane net with
a square gird by moving the nodes in the third direction, forced by the fixed points
and boundaries which don’t lie in the same plane as the cable net. Depending on the
change in length from the cable links in the plane into the three dimensional surface
the cable forces changes, the longer the cables the higher the forces. The result is a
doubled curved surface with a steady change in the forces along each cable related
to the change of curvature of the surface. This method can also be exceed to cable
nets which are statically indeterminate such as nets with triangle meshes because
of the constant ratio of force/length. Both forces and length of the links are free
parameter searching for the three dimensional equilibrium.
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change in forces

Fig. 4. Shape of equilibrium fulfilling vertical equilibrium

Fulfilling the equilibrium in the tangential plane at each knot allows adjusting
the link length and leads to constant forces in each cable. The cables are oriented
along geodesic lines onto the surface and the angles are not constant at the nodes
between crossing cables.

In membranes the equilibrium has to be fulfilled at each point of the surface.
Plane state of stress assumed shapes of equilibrium are also the result of a given stress
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Fig. 5. Shape of equilibrium fulfilling vertical and tangential equilibrium

distribution. In general and in covariant description [13] the equilibrium normal to
the surface is written as:

σαβbαβ = 0 , with bαβ as tensor of curvature

Related to main axis

σ11b11 + σ12b12 + σ21b21 + σ22b22 = 0

The orientation of the coordinate system in direction of the principle stresses
(σ12 = σ21 = 0) or principle curvature (b12 = b21 = 0)

σ11b11 + σ22b22 = 0

Tension stresses in both principle directions σ11 ≥ 0 und σ22 ≥ 0 requires a
negative Gaussian curvature, with b11 = 1

R1
and b22 = − 1
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The equilibrium in the tangential plane of the point can be written in covariant
description as

σαβ
|β = 0

Assuming the stress is constant at a certain point leads to

σαβ = σgαβ with gαβ as metric tensor

Substituted
(σgαβ)|β = 0 ⇒ σ|βgαβ + σgαβ

|β︸ ︷︷︷ ︸︸
⇒0

= 0

and results in
σ|βgαβ = 0

The metric tensor has a certain value at each point in a double curved surface;
this means the deviation of the stress has to be zero. This requires a constant stress
distribution also to neighboured points and describes the hydrostatic state of stress.
Therefore has to be σ11 = σ22 = constant and with

σ11

R1
− σ22

R2
= 0 ⇒

(
R2 − R1

R1 · R2

)
= 0 and R1 = R2

Plane net with square meshes 

and constant forces in each link 

Shape of equilibrium

constant forces at each link 



6 Rosemarie Wagner

The tension stress in the surface is isotropic and homogeneous by meaning the
stresses are at each point and in each direction constant and this is named as hy-
drostatic state of stress. The stress can be set as a constant value and reduces the
description of shapes of equilibrium to the geometrical problem searching for the
minimal surface by given boundary conditions. Physical models of minimal surfaces
are soap films, in earlier times one of the few methods describing double curved
surfaces which are at each point under tension.

Soap film [14] Numerical solution of the minimal surface [15]

Fig. 6. Minimal surfaces as soap film and the numerical solution

3.2 Cutting Pattern

The shapes of equilibrium are characterized by no material behaviour or by the
material behaviour of soap films without shear resistance. The real shape of the ten-
sioned structures is influenced by the material behaviour and the difference between
the shape of equilibrium and the materialized, pretensioned shape resulting in the
non existing shear stiffness of a cable net, the orthotropic behaviour of coated fabric
or the relatively high shear stiffness of foils. Known from the globe is the fact that
double curved surfaces cannot be flattened without distortion. Furthermore the fab-
ric is manufactured in width up to max. 5 m and this requires the assembling of the
whole cover with patches or strips of a certain length and width. The common way
of generating the cutting pattern from the shape of equilibrium is described in four
steps. The shape of equilibrium is cut into strips mostly using geodesic lines for the
cutting lines. The whole structure is then divided into double curved strips. These
strips are flattened with different methods such a paper strip method or minimiz-
ing the strain energy while flattening the strips. The compensation as final step is
necessary to introduce the tension forces by elongation of the fabric. All strips have
to be decreased in width and length in relation to the stress and strain behaviour
of the fabric in the built structure.

Differences in geometry and stresses between the shape of equilibrium and the
built structure are caused by the orientation of the fabric, the shear deformation of
the fabric, the stiffness of the seams und the process of pretension. Reducing the
mistakes in the cutting pattern which can be seen in wrinkles and can be measured
in local stress peaks is possible by taking into account the jamming condition of
the coated fabric. The load carrying compounds in a fabric are the yarns which are
protected by the coating. In a woven fabric warp and fill will kept in place if the
tension stress acts in direction of the yarns. Shear forces lead to a rotation of warp
and fill against each other up to an angle when the yarns touch each other. The
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Fig. 7. Generation of cutting pattern [16]

Fig. 8. Shear deformation of woven fabric [17]

maximum shear deformation is depended by the thickness of the yarns, the distance
of the yarns and the flexibility of the coating. If the rotation of the yarns is larger
than the required distortion to flatten the doubled curved strips the flattening is
only a process of strainless deformation.

If the process is invert and still definite needs further examination because the
manufacturing of membrane structures is from the flat and assembled strips into the
double curved and pretensioned structure. Already known is the shear deformation
which is used to build double curved surfaces with cable nets. The cable net can be
put onto the doubled curved surface just by changing the angles between the cables;
the distance between the nodes is kept as constant. The rotation of the two layers
of cables against each other is related to the curvatures of the surface.

Fig. 9. Shear deformation from the plane into the double curved net

Dividing the surface by 

geodesic lines 

Separating the strips

along the geodesic lines 

Flattening of the strips compensation 

Plane net with square meshes Plane and double curved net Double curved net 
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Fig. 10. Model describing the behaviour of a woven fabric

3.3 Reassembling and Pretensioning

The tension forces can only be introduced into cable nets or membranes by elastic
strain of the cables and coated fabric. The numerical process of reassembly requires
the description of the material behaviour in which both the change of the geometry
and the elastic strain is considered. The change in geometry is for cable nets mostly
the in plane shear deformation reaching the double curved surface. The change of
geometry in woven fabric is related to the elongation of the yarns. The simple model
is useful enough describing the behaviour of a woven fabric, developed in 1978 [18],
refined and tested in 1987 [19] and finally numerical transferred in 2003 [20].

Neglecting the influence of the coating the behaviour of a woven fabric can be
described by the

- Geometry of the fabric such as thickness and distance of the yarns (warp A1, L1

and inclination m1 = A1/L1, fill A2, L2 and inclination m2 = A2/L2)
- Stress-strain-behaviour of each yarn (warp F1FF , ε1, fill F2FF , ε2 )
- The change in the thickness of the fabric (γ) and
- The equilibrium of the deviation forces at each knot

The ratio of unstrained to strained length is described by:

µ1 = 1 + U11U and µ2 = 1 + U22UU

With the ratio of undeformed and deformed inclination of

k1 = A1/µ1 and k2 = A2/µ2

is the elastic strain of the yarns
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Fig. 11. Young’s Moduli and Poisson ratio as function of the fabric strain, PVC
coated fabric [19]

This set of 4 equations serves a non linear system of equations for the four
unknown values ε1, ε2, k1, k2. After solving the equations the stresses of the fabric
can be defined directly by

σ11 =
1

L2

(
F1FF√

1 + k2
1m2

1

)
and σ22 =

1

L1

(
F2FF√

1 + k2
2m2

2

)

The calculated strains and stresses enable to define the stiffness E1111, E2222

and E1122. The elastic stiffness are non linear and closely related to the strain ratio
in warp and fill direction. Even the Poisson ratio E1122 is non linear and depending
to the strain ratio of the yarns.

The numerical process of reassembling enables taking into account the behaviour
of the fabric, the influence of the seams and the distribution of the tension stress
through the whole surface. The plane strips have to be remeshed, sewed together
and pretensioned by moving the sewed structure into defined boundaries, moving
support points into their position after reassembling or putting internal pressure
onto the system. The stress distribution and geometry of the sewed and pretensioned
structure is different from the assumed stress distribution of the shape of equilibrium.
The differences are depending on the curvature of the surface, the orientation of the
strips in relation to the main curvature, the torsion of the strips, the distortion of the
load transfer along the seams, the stiffness of the seams, the assumed compensation
of the flatten strips, the width of the strips, the of the surface, the shear deformation
of yarns and in the shown example of the load transfer between the boundary cables
and fabric, see Fig. 12.

In the shown example the stress distributions varies in a single strip and changes
from strip to strip. Relatively low tension stress in the middle strip can been see as
result of less compensation. The influence of the stiffness of the seams can be shown
in the difference between deformation in vertical direction comparing the geometry
of the shape of equilibrium and reassembled and pretensioned structure. For the
shown example the difference is app. 20% of the span. The antimetric deformation
is caused by the inhomogeneous stress distribution in the cross section along the
high points. The tension stress perpendicular are unsteady, low stress leads to high
vertical deformations and high stress kept the fabric down which can clearly seen in
the up and down of the differences.

U22UU

E2222E

22UU

UUUUUUUE1122

U22UU

U11UU
E1111
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Fig. 12. Influence of the cutting pattern to the stress distribution of a membrane
[21]

Fig. 13. Difference in z–direction between the reassemble shape and the shape of
equilibrium [21]

3.4 Load Bearing Behaviour

The load bearing behaviour is in general depended on:

- The flexibility of the structures including masts, bending elements such as arches,
stay cables, anchorages and foundations

- The height of the pretension related to external loads
- The orientation of the cables or yarns related to the main curvature of the surface
- The curvature of the surface and
- The stress – strain – behaviour of the material

The stability of the cable net or membrane structures is depending on the pre-
tension. In structures with negative Gaussian curvature the pretension is only to
reduce the deformation. The slag of the spanning direction causes a change in the
system but no instability.

Shape of equilibrium Cutting pattern Pretension of the plane strips 

Stress distribution Stress distribution

Cross section low points

Isometric view, scaling factor 1 : 100 Cross section high points 

High

point

Low

point

Low point High point 

seams
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Fig. 14. Orientation of the strips in relation to the curvature of the surface

The isotropic and homogeneous stress in minimal surfaces allows at first any kind
of orientation of the cables or yarns on the surface but the curvature of the cable
layers or yarns, the elastic strain under external loads, the strainless deformations
and the shear deformation is depending on the orientation. In the shown example,
see Fig. 14, the yarns are straight if the strips are parallel to the boundaries and
the torsion of each strip is high. Compared to the orientation parallel to the main
curvature of the surface the torsion of the strips is zero if the centre line of the strip
is equal to a line of main curvature.

Although both membranes have the same shape of equilibrium the load carrying
behaviour is totally different. The membrane with straight yarns has large deforma-
tions under a constant and uniform distributed load, the stresses in warp and fill
will increase. The membrane with the yarns oriented to the main curvature carries
load be increasing the stresses in the sag directions and decreasing the forces in the
span direction. The deformation is compared to the membrane with straight yarns
very low.

Curvature and elastic stiffness have different influences to the load bearing be-
haviour of the membranes. Membranes with large curvature react under external
loads highly linear, increasing and decreasing of the stresses are nearly independent
of the elastic stiffness if the spans and the materials have been chooses for usual
membranes and loads in Europe. Only if the elastic stiffness is relatively low the be-
haviour is starting to get non linear because of the large elastic strain. The vertical
deformations are large because of the total length of the yarns spanning between the
supports or boundary cables. The opposite behaviour occurs for membranes with
low curvature by meaning the change of the stresses under external load is non linear
and the deformation are decreasing nearly linear by increasing the elastic stiffness.
Membranes with less curvature are more sensitive to changes in the elastic stiffness
considering the change in stress and deformation than membranes with a higher
curvature.

3.5 Evaluation

In relation to the influence of the curvature and the elastic stiffness to the load
bearing behaviour a stiffness value can be defined for any doubled curved surface,
developed by R. Blum [17].

For a constant and uniformly distributed load the equilibrium normal to the
surface is written in covariant description as following:

σαβbαβ = p3 (1)

Minimal surface 

(without orientation)

Strips parallel to the boundary Strips parallel to the main 

Curvature of the surface 
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Fig. 15. Influence of curvature and elastic stiffness to the stresses and deformation

The change of the stresses caused by external loads is:

[σαβ + ∆σαβ ] · [bαβ + ∆bαβ ] = p3 (2)

Multiplication of the terms and neglecting terms of high order result in:

∆σαβbαβ + ∆bαβσαβ = p3 (3)

Linear elastic behaviour of the material lead to

∆σαβ = nαβδγ · ∆εδγ (4)

The deviation of the curvature can be approximately seen as the displacement
in vertical direction

∆bαβ = u3
|α,β (5)

The change in the elastic strain is approximately multiplication of the curvature
with the vertical displacement:

∆εδγ = bδγ · u3 (6)

(6) substituted (4) and with (5) is the change of the stresses

∆σαβ =
nαβδγ · bδγ

nαβδγ · bαβ · bδγ
· p3
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with (4), (5) and (6) in (2) follows

nαβδγbδγu3bαβ + u3
|α,β · σαβ = p3

Assuming only vertical loads, allows setting the 2. term to zero and the vertical
displacement is

u3 =
1

nαβδγ · bαβ · bδγ
· p3

In both equations, the change of the stresses and the vertical displacement, the
denominator is the same and a product of the elastic stiffness and the curvature of
the surface. The lower this product is the higher the vertical deformations will be.
Therefore this term describes the stiffness of the surface and is named as

D = nαβδγ · bαβ · bδγ

Expanded and the orientation of the coordinate system in direction of the prin-
ciple stresses (σ12 = σ21 = 0) or principle curvature (b12 = b21 = 0) leads to:

D =
n1111

R2
1

+
n2222

R2
2

=
R2

2 · n1111 + R2
1 · n2222

R2
1 · R2

2

Flexibility ellipsoids

Two aspects have to be mentioned considering the load bearing behaviour of ca-
ble nets or membrane structures, the stiffness of a three-dimensional shape and the
possibility of pretensioning the structure in relation to the material behaviour and
the stiffness. There exists an analogy between net calculation in geodesy and the
analysis of membranes [22,23] and leads to new aspects describing the load carry-
ing capacity of structures. Flexibility can be seen as the deformation of each node
loaded by a rotating unit load and leads to flexibility ellipsoids showing the three
dimensional deformation of the node.

The in plane stiffness of the cable net or membranes has a large influence to the
possibility of pretension because this allows to change plane two dimensional flat
strips into a three dimensional surface without wrinkles. The advantage of cinematic
cable nets and membranes is the ability to distribute the forces during the process
of pretensioning nearly homogeneous by tensioning only boundary cables or lifting
high points. The ability of a double curved cable net distributing forces which are
acting at the edges or boundaries homogeneous through the net can be described
by redundancy.

The comparison between three different types of cable nets will give an example
for the application of flexibility ellipsoids in evaluation of the structural behaviour.
In geometry three homogeneous nets are exiting which can be transformed in double
curved cable nets. Each net has the same tension forces and the stiffness per meter.
The net with hexagonal meshes has only nodes with three links and leads to an
equilibrium of each node under pretension only if the forces in all links are the same.
The shape is then comparable with a minimal surface. The high degree of kinematics
makes these nets very flexible and the stiffness can be mostly influenced by the
height of the pretension forces. The net with square meshes has still no in plane
shear stiffness but if the cables are arranged in the direction of the main curvature
this net has even less deformation for a uniformly distributed load compared to the
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net with triangle meshes. The net with hexagonal meshes is the one with the highest
flexibility; the flexibility of the net with triangle meshes is in direction normal to the
net surface nearly the same compared to the net with square meshes. The in plane
stiffness reduces theses deformation of the net with triangle meshes.

Fig. 16. Flexibility ellipsoids of pretensioned nets with different meshes

Redundancy

A common definition of redundancy is the availability of more functional system
components than necessary for meeting the requirements. For example the statically
indeterminacy is a measure for redundancy of structures by the meaning of safety
against failure. In cinematic structures such as cable nets this definition has to be
extended by taking into account the geometrical stiffness. Well known is the fact that
each node has 3 independent possibilities of movement in space structure, the normal
force of each element and the boundary forces are giving the necessary equations
for equilibrium. If the number of independent movements of the nodes is equal to
the number of equations resulting from the element forces and boundary forces the
structure is statically determined.

Redundancy is more than the statically indeterminacy, which can be shown by
the considerations of Dieter Stroebel [23] The number of indeterminacy is distributed
among all elements in relation the geometry of the structure, the stiffness of the
elements and the relatively elongation of each element within the structure. The
elastic elongation of each element is influenced by stiffness of the connected elements.
Focusing on one element means an extremely stiff surrounding structure compared
to the element the change of length causes directly an increase of the force. The
opposite is a very flexible structure which allows the elongation of the element
without influencing the forces.

This behaviour can be described by the elastic redundancy in terms between
0 and 1. An elastic redundancy of 0 means no forces arise if the length an single
element is changed. An elastic redundancy of 1 says changing the length leads to a
force depending on the elastic stiffness.

Cinematic structures can be stabilised by tension forces. The tension forces built
up a resistance if the structure is deformed under load known as geometrical stiff-
ness. The three components of the stabilising tension forces lead to three additional

Net with hexagonal meshes Net with spare meshes Net with triangle meshes 
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Fig. 17. Change of forces by shortening one link of 0,5% of its length

equations for each element in a pretensioned structure and an additional geometric
redundancy. The geometric redundancy of 3 says no influence of the geometric stiff-
ness is required; the geometric redundancy lower than 3 describes the part of the
geometric stiffness necessary for stabilisation and higher than 3 means the element
is unstable and needed to be stabilized

For the three cable nets the elastic and geometric redundancy can be analysed
for the links and gives information to the influence of manufacturing errors, the
possibility of pretensioning and the height of the tension forces related to the defor-
mation. The change of the 0,5% of the length of one link causes in the net with the
hexagonal meshes no changes in the forces, shown by the elastic redundancy close
to zero. The opposite can be seen in the net with the triangle meshes, the change in
the length causes in that element an increasing force.
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