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Summary. This paper shows applications of a recently developed shell element to
the analysis of thin shell and membrane structures. The element is a three node
triangle with only translational DOFs (rotation free) that uses the configuration of
the three adjacent elements to evaluate the strains. This allows to compute (constant)
bending strains and (linear) membrane strains. A total Lagrangian formulation is
used. Strains are defined in terms of the principal stretches. This allows to consider
rubber materials and other type of materials using the Hencky stress-strain pair.
An explicit central difference scheme is used to integrate the momentum equations.
Several examples, including inflation and deflation of membranes show the excellent
convergence properties and robustness of the element for large strain analysis of thin
shells and membranes.

Key words: airbag inflation, deflation, shell triangular elements, rotation free,
membranes

1 Introduction

The simulation of the inflation of membrane structures is normally performed with
membrane finite elements, i.e. no bending stiffness included. The formulation of such
elements is simple as they only require C0 continuity [1], in contrast with elements
based on thin shell theory where C1 continuity implies important obstacles [2] in
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the development of conforming elements. Triangular elements are naturally preferred
as they can easily adapt to arbitrary geometries and due to the robustness of the
associated mesh generators.

When only the final configuration of the membrane is of interest implicit pro-
grams are normally used, including special algorithms due to the lack of stiffness of
the membrane when no tensile stresses are yet present. When the inflation/deflation
process is of interest, the use of programs with explicit integration of the momentum
equations are largely preferred. In the latter case linear strain triangles are normally
not effective, specially when contact between surfaces is present. This implies a fine
discretization of constant strain triangles to capture the details, what makes simula-
tion quite expensive due to the time increment limitations. In this paper a triangular
finite element with similar convergence properties to the linear strain triangle, but
without its drawbacks, is used.

Membrane structures components have some, although small, bending stiffness
that in most of the cases is sensibly disregarded. However in many cases it may be
convenient to include bending energy in the models due to the important regulariza-
tion effect it supposes. Shell elements are of course more expensive due the increase
in degrees of freedom (rotations) and integration points (through the thickness).
In the last few years shell elements without rotation degrees of freedom have been
developed (see [3]–[10] among others), which make shell elements more efficient for
both implicit and explicit integrators.

The outline of this papers is as follows. Next section summarizes the rotation-free
shell triangle used [10]. Sec. 3 shows convergence properties of the element in 2-d
plane stress problems and 3-d linear bending/membrane problems. Sec. 4 presents
examples of inflation/deflation of membranes with and without bending stiffness.
Finally Sec. 5 summarizes some conclusions.

2 Formulation of the Rotation Free Shell Triangle

The rotation-free EBST (for Enhanced Basic Shell Triangle) element has three nodes
with three displacement degrees of freedom at each node. An element patch is defined
by the central triangle and the three adjacent elements (Fig. 1). This patch helps
to define the membrane strains and curvature field within the central triangle (the
EBST element) in terms of the displacement of the six patch nodes.

The node-ordering in the patch is the following (see Fig. 1.a)

• The nodes in the main element (M) are numbered locally as 1, 2 and 3. They
are defined counter-clockwise around the positive normal

• The sides in the main element are numbered locally as 1, 2, and 3. They are
defined by the local node opposite to the side

• The adjacent elements (which are part of the cell) are numbered with the number
associated to the common side

• The extra nodes of the cell are numbered locally as 4, 5 and 6, corresponding to
nodes on adjacent elements opposite to sides 1, 2 and 3 respectively

• The connectivities in the adjacent elements are defined beginning with the extra
node.

Any convenient in plane (t1, t2) local cartesian coordinate system can be defined
for the patch, with t3 the unit normal to the plane.The main features of the element
formulation are the following:
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Fig. 1. Patch of elements for strain computation. (a)in spatial coordinates (b)in
natural coordinates

1. The geometry of the patch formed by the central element and the three adjacent
elements is quadratically interpolated from the position of the six nodes in the
patch

2. The membrane strains are assumed to vary linearly within the central triangle
and are expressed in terms of the (continuous) values of the deformation gradient
at the mid side points of the triangle

3. An assumed constant curvature field within the central triangle is obtained using
the values of the (continuous) deformation gradient at the mid side points.

Details of the derivation of the EBST element are given below.

2.1 Definition of the Element Geometry and Computation of
Membrane Strains

As mentioned above a quadratic approximation of the geometry of the patch of four
elements is chosen using the position of the six nodes. It is useful to define the patch
in the isoparametric space using the nodal positions given in the Table 1 (see also
Fig. 1.b).

Table 1. Isoparametric coordinates of the six nodes in the patch of Fig. 1.b

1 2 3 4 5 6

ξ 0 1 0 1 -1 1

η 0 0 1 1 1 -1

The quadratic interpolation for the geometry is defined by
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with ϕi being the position vector of node i, ζ = 1 − ξ − η and

N1 = ζ + ξη N4NN = ζ
2

(ζ − 1)

N2NN = ξ + ηζ N5NN = ξ
2

(ξ − 1)
N3NN = η + ζξ N6NN = η

2
(η − 1)

(2)

this interpolation allows to compute the displacement gradients at selected points
in order to use an assumed strain approach. The computation of the gradients is
performed at the mid side points of the central element (M) denoted by G1, G2

and G3 in Fig. 1.b. This choice has the advantage that gradients at the three mid
side points depend only on the nodes belonging to the two elements adjacent to
each side. When gradients are computed at the common mid-side point of two ad-
jacent elements, the same values are obtained, as the coordinates of the same four
points are used. This in practice means that the gradients at the mid-side points are
independent of the element where they are computed.

The deformation gradient at the mid-side points of the element are obtained
from the quadratic interpolations (1) as

(ϕ′α)Gi
= ϕi′α =

[
3∑

j=1

N i
j,αN ϕj

]
+ N i

iNN +3,αϕi+3 , α = 1, 2 , i = 1, 2, 3 (3)

In Eq.(3) (·)i denotes values computed at the ith mid-side point.
The cartesian derivatives of the shape functions are computed at the original

configuration by the standard expression[
Ni,NN 1

Ni,NN 2

]
= J−1

[
Ni,ξNN
Ni,ηNN

]
(4)

where the Jacobian matrix at the original configuration is

J =

[
ϕ0

′ξ · t1 ϕ0
′η · t1

ϕ0
ξ

′ξ · t2 ϕ0
η

′η · t2

]
(5)

Once the deformation gradient is obtained, any convenient strain measure can be
coupled. The membrane strains within the central triangle are now obtained using
a linear assumed membrane strain field ε̂m, i.e.

εm = ε̂m (6)

with

ε̂m = (1 − 2ζ)ε1
m + (1 − 2ξ)ε2

m + (1 − 2η)ε3
m =

3∑
i=1

N̄iNN εi
m (7)

where εi
m are the membrane strains computed at the three mid side points Gi

(i = 1, 2, 3 see Fig. 2). In (7)

N̄1 = (1 − 2ζ) , N̄2NN = (1 − 2ξ) and N̄3NN = (1 − 2η) (8)

If, for example, Green-Lagrange strains are used,

εmij =
1

2
(ϕ′i · ϕ′j − δij) (9)
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substituting (3) into (9) and using the usual membrane strain vector [11]

εm = [εm11 , εm12 , εm12 ]T (10)

equation (7) gives

εm =

3∑
i=1

1

2
N̄iNN

{
ϕi′1 · ϕi′1 − 1
ϕi′2 · ϕi′2 − 1
2ϕi

′1 · ϕi
′2

}
(11)

The virtual membrane strains are expressed by

δεm =

3∑
i=1

N̄iNN

{
ϕi′1 · δϕi′1
ϕi

2 · δϕi′2
δϕi′1 · ϕi′2 + ϕi′1 · δϕi

2

}
. (12)

2.2 Computation of Curvatures

The curvatures (second fundamental form) of the middle surface are defined by []

καβ =
1

2
(ϕ′α · t3′β + ϕ′β · t3′α) = −t3 · ϕ′αβ , α, β = 1, 2 (13)

We will assume the following constant curvature field within each element

καβ = κ̂αβ (14)

where κ̂αβ is the assumed constant curvature field obtained as

κ̂αβ = − 1

A0
M

∫
A

∫∫
0
M

t3 · ϕ′βα dA0 (15)

and A0
M is the area (in the original configuration) of the central element in the patch.

Substituting (15) into (14) and integrating by parts the area integral gives the
curvature vector [11] within the element in terms of the following closed line integral

κ =

{
κ11

κ22

2κ12

}
=

1

A0
M

∫
Γ

∫∫
0
M

[−n1 0
0 −n2

−n2 −n1

][
t3 · ϕ′1
t3 · ϕ′2

]
dΓ 0 (16)

where ni are the components (in the local system) of the normals to the element
sides in the initial configuration Γ 0

MΓ .
For the definition of the normal vector t3, the linear interpolation of the position

vector over the central element is used.

ϕM =

3∑
i=1

LM
i ϕi (17)

where LM
i are the standard linear shape functions of the central triangle (area co-

ordinates) [11]. In this case the tangent plane components are

ϕM′α =

3∑
i=1

LM
i,αϕi , α = 1, 2 (18)
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t3 =
ϕM

′1 × ϕM
′2

|ϕM
′1 × ϕM

′2 |
= λ ϕM

1 × ϕM
2 . (19)

From these expressions it is also possible to compute in the original configuration
the element area A0

M , the outer normals (n1, n2)
i at each side and the side lengths

lMi . Equation (19) also allows to evaluate the thickness ratio λ in the deformed
configuration and the actual normal t3.

Direction t3 can be seen as a reference direction. If a different direction than
that given by (19) is chosen, at an angle θ with the former, this has an influence of
order θ2 in the computation of the curvatures (see (23) below). This justifies (19)
for the definition of t3 as a function exclusively of the three nodes of the central
triangle, instead of using the 6-node isoparametric interpolation.

The numerical evaluation of the line integral in (16) results in a sum over the
integration points at the element boundary which are, in fact, the same points
used for evaluating the gradients when computing the membrane strains. As one
integration point is used over each side, it is not necessary to distinguish between
sides (i) and integration points (Gi).

The explicit form of the gradient evaluated at each side Gi (3) from the quadratic
interpolation is

[
ϕi

′1
ϕi

′2

]
=

[
N i

1,1 N i
2NN ,1 N i

3NN ,1 N i
iNN +3,1

N i
1,2 N i

2NN ,2 N i
3NN ,2 N i

iNN +3,2

]⎡⎢⎡⎡⎣ ϕ1

ϕ2

ϕ3

ϕi+3

⎤⎥⎤⎤⎦⎥ . (20)

We note again that the gradient at each mid side point Gi depends only on the
coordinates of the three nodes of the central triangle and on those of an additional
node in the patch, associated to the side i where the gradient is computed.

In this way the curvatures can be computed by

κ = 2

3∑
i=1

⎡⎣LM
i,1 0
0 LM

i,2

LM
i,2 LM

i,1

⎤⎦[ t3 · ϕi
′1

t3 · ϕi′2

]
(21)

An alternative form to express the curvatures, which is useful when their varia-
tions are needed, is to define the vectors

hij =

3∑
k=1

(
LM

k,iϕ
k
′j + LM

k,jϕ
k′i
)

(22)

This gives
κij = hij · t3 (23)

The variation of the curvatures can be obtained as

δκ = 2

3∑
i=1

⎡⎣⎡⎡LM
i,1 0
0 LM

i,2

LM
i,2 LM

i,1

⎤⎦⎤⎤{ 3∑
i=1

[
N i

j,N 1(t3 · δuj)
N i

j,N 2(t3 · δuj)

]
+

[
N i

iNN +3,1(t3 · δui+3)
N i

iNN +3,2(t3 · δui+3)

]}

−
3∑

i=1

⎡⎣⎡⎡ (LM
i,1�

1
11 + LM

i,2�
2
11)

(LM
i,1�

1
22 + LM

i,2�
2
22)

(LM
i,1�

1
12 + LM

i,2�
2
12)

⎤⎦⎤⎤ (t3 · δui) (24)
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where the projections of the vectors hij over the contravariant base vectors ϕ̃M′α have
been included

�α
ij = hij · ϕ̃M

′α , α, i, j = 1, 2 (25)

with

ϕ̃M
′1 = λ ϕM′2 × t3 (26)

ϕ̃M
′2 = −λ ϕM′1 × t3 (27)

In above expressions superindexes in LM
j and δuk

j refer to element numbers
whereas subscripts denote node numbers. As before the superindex M denotes values
in the central triangle (Fig. 1.a). Note that as expected the curvatures (and their
variations) in the central element are a function of the nodal displacements of the
six nodes in the four elements patch.

Details of the derivation of (12) and (24) can be found in [10]. The explicit
expressions of the membrane and curvature matrices can be found in [12]. The
derivation of the element stiffnes matrix is described in [10, 12]. Also in [10, 12]
details of the quasi-static formulation and the fully explicit dynamic formulation
are given.

It must be noted that while the membrane strains are linear the curvature strains
are constant. A full numerical integration of the stiffness matrix terms requires
three points for the membrane part and one point for the bending part. Numerical
experiments show that:

• when using one or three integration points the element is free of spurious energy
modes and passes the patch test

• for initial curved surfaces the element with full (three point) integration leads to
some membrane locking. This defect dissapears if one integration point is used
for the membrane stiffness term.

It can also be observed that:

• for large strain elastic or elastic-plastic problems membrane and bending parts
can not be integrated separately, and a numerical integration trought the thick-
ness must be performed

• for explicit integrators (hydro codes) is much more effective to use only one
integration point for both the membrane and bending parts.

Above arguments lead to reccomended the use of one integration point for both
membrane and bending parts. This element is termed EBST1 to distinguish from
the fully integrated one.

2.3 Boundary Conditions

Elements at the domain boundary, where an adjacent element does not exist, de-
serve a special attention. The treatment of essential boundary conditions associated
to translational constraints is straightforward, as they are the degrees of freedom of
the element. The conditions associated to the normal vector are crucial in this for-
mulation for bending. For clamped sides or symmetry planes, the normal vector t3

must be kept fixed (clamped case), or constrained to move in the plane of symmetry
(symmetry case). The former case can be seen as a special case of the latter, so we
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Fig. 2. Local cartesian system for the treatment of symmetry boundary conditions

will consider symmetry planes only. This restriction can be imposed through the
definition of the tangent plane at the boundary, including the normal to the plane
of symmetry ϕ0′n that does not change during the process.

The tangent plane at the boundary (mid-side point) is expressed in terms of two
orthogonal unit vectors referred to a local-to-the-boundary Cartesian system (see
Fig. 2) defined as [

ϕ0
′n, ϕ̄′s

]
(28)

where vector ϕ0
′n is fixed during the process while direction ϕ̄′s emerges from the

intersection of the symmetry plane with the plane defined by the central element
(M). The plane (gradient) defined by the central element in the selected original
convective Cartesian system (t1, t2) is[

ϕM′1 , ϕM′2
]

(29)

the intersection line (side i) of this plane with the plane of symmetry can be written
in terms of the position of the nodes that define the side (j and k) and the original
length of the side lMi , i.e.

ϕi
′s =

1

lMi
(ϕk − ϕj) (30)

That together with the outer normal to the side ni = [n1, n2]
T = [n · t1,n · t2]

T

(resolved in the selected original convective Cartesian system) leads to[
ϕiT′1
ϕiT′2

]
=

[
n1 −n2

n2 n1

][
ϕiT′n
ϕiT′s

]
(31)

where, noting that λ is the determinant of the gradient, the normal component of
the gradient ϕi′n can be approximated by

ϕi′n =
ϕ0

′n
λ|ϕi′s|

(32)
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In this way the contribution of the gradient at side i to vectors hαβ (22) results
in ⎡⎣⎡⎡ hT

11

hT
22

2hT
12

⎤⎦⎤⎤i

= 2

⎡⎣⎡⎡LM
i,1 0
0 LM

i,2

LM
i,2 LM

i,1

⎤⎦⎤⎤[ϕiT′1
ϕiT′2

]
= 2

⎡⎣⎡⎡LM
i,1 0
0 LM

i,2

LM
i,2 LM

i,1

⎤⎦⎤⎤[n1 −n2

n2 n1

][
ϕiT′n
ϕiT′s

]
(33)

For a simple supported (hinged) side, the problem is not completely defined. The
simplest choice is to neglect the contribution to the side rotations from the adjacent
element missing in the patch in the evaluation of the curvatures via (16) [6, 8]. This
is equivalent to assume that the gradient at the side is equal to the gradient in the
central element. More precise changes can be however introduced to account for the
different natural boundary conditions. One may assume that the curvature normal
to the side is zero, and consider a contribution of the missing side to introduce this
constraint. As the change of curvature parallel to the side is zero along the hinged
side, both things lead to zero curvatures in both directions. For the case of a triangle
with two sides associated to hinged sides, the normal curvatures to both sides must
be set to zero.

For a free edge the same approximation can be used but due to Poisson’s effect
this will lead to some error.

For the membrane formulation of the EBST element, the gradient at the mid-side
point of the boundary is assumed to be equal to the gradient of the main triangle.

2.4 Constitutive Models

In the numerical experiments presented below two constitutive models have been
used. A standard linear elastic orthotropic material and a hyper-elastic material for
rubbers.

For the case of rubbers, the Ogden [13] model extended to the compressible
range is considered. The material behaviour is characterized by the strain energy
density per unit undeformed volume defined as

ψ =
K

2
(ln J)2 +

N∑
p=1

µp

αp

[
J−αp

3

(
3∑

i=1

λ
αp−1
i

)
− 3

]
(34)

where K is the bulk modulus of the material, λi are the principal strain ratios, J
is the determinant of the deformation gradient F (J = λ1λ2λ3), N , µi and αi are
material parameters, µi , αi are real numbers such that µiαi > 0 (∀i = 1, N) and
N is a positive integer.

3 Convergence Studies

In this section three examples are presented to show the convergence properties and
the performance of present element. Examples are solved with a implicit program
capable of dealing static/dynamic problems with moderate non-linearities.
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3.1 Cook’s Membrane Problem

One of the main targets of the rotation-free triangular element is to obtain a mem-
brane element with a behaviour similar to the linear strain triangle (LST). Such
capacity is studied in this example [14] corresponding to a problem with an impor-
tant amount of shear energy involved. This problem is also intended also to assess
the ability of the element to distort. Figure 3.a shows the geometry of a tapered
panel clamped on one side and with a uniformly distributed shear load in the oppo-
site side. Figure 3.b presents the vertical displacement of point C (mid point of the
loaded side) for the uniformly refined meshes considered as a function of the total
number of nodes in the mesh.

Fig. 3. Cook’s membrane problem. (a) Geometry and load (b) Vertical displacement
of point C for different meshes

For the EBST element with three integration points, it can be seen that for the
coarsest mesh (two linear elements), the measured displacement is slightly superior
than the constant strain triangle (CST); but when the mesh is refined, values rapidly
catch up with those obtained with the linear strain triangle. The element with only
one integration point (EBST1) shows excellent predictions for coarse meshes and
fast convergence properties for the reported displacement.

3.2 Cylindrical Roof

In this example an effective membrane interpolation is of primary importance. Hence
this is good test to assess the rotation-free element. The geometry is a cylindrical
roof supported by a rigid diaphragm at both ends and it is loaded by a uniform dead
weight (see Fig. 4.a). Only one quarter of the structure is meshed due to symmetry
conditions. Unstructured and structured meshes are considered. In the latter case
two orientations are possible (Fig. 4.a shows orientation B).

Figure 4.b shows the normalized vertical displacement of the midpoint of the
free side (point-C) over both (A and B) structured and (U) unstructured meshes as
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Fig. 4. Cylindrical roof under dead weight. E = 3 × 106, ν = 0.0, Thickness =3.0,
shell weight =0.625 per unit area. (a)Geometry. (b)Normalized displacement of point
“C” for different meshes

a function of the number of free degrees of freedom. Value used for normalization is
uC = −3.610 as quoted in [15].

An excellent convergence of the EBST element can be seen. The version with
only one integration point (EBST1) presents a behaviour a little more flexible and
converges from above. For non-structured meshes the result converges to the refer-
ence value but a bit more slowly.

3.3 Inflation of a Sphere

As the EBST element uses a quadratic interpolation of geometry, the existance of
membrane locking must be assessed. For this example an originally curved surface
is considered, where a standard linear strain triangle would lead to membrane lock-
ing. The example is the inflation of a spherical shell under internal pressure. An
incompressible Mooney-Rivlin constitutive material have been considered. The Og-
den parameters are N = 2, α1 = 2, µ1 = 40, α2 = −2, µ2 = −20. Due to the simple
geometry an analytical solution exists [16] (with γ = R/R(0)):

p =
h(0)

R(0)γ2

dW

dγ
=

8h(0)

R(0)γ2

(
γ6 − 1

) (
µ1 − µ2γ

2
)

In this numerical simulation the same geometric and material parameters used in
[9] have been adopted: R(0) = 1 and h(0) = 0.02. The three meshes considered to
evaluate convergence are shown in Fig. 5.a-c. The EBST1 element has been used.
The value of the actual radius as a function of the internal pressure is plotted in
Fig. 5.d for the different meshes and is also compared with the analytical solution.
It can be seen that with a few degrees of freedom it is possible to obtain an excellent
agreement for the range of strains considered. The final value corresponds to a
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thickness radius ratio of h/R = 0.00024. No membrane locking has therefore been
detected in this problem.

Fig. 5. Inflation of sphere of Mooney-Rivlin material. (a)-(c) EBST1 meshes used
in the analysis (d)Radius as a function of the internal pressure

4 Thin Shells and Membranes

Results for examples with geometric and material non-linearities are presented next
using the EBST1 element [10]. Due to the features of the modelled problems, with
strong non linearities associated to instabilities and contact, a code with explicit
integration of the dynamic equilibrium equations has been used [17]. This code
allows to obtain pseudo-static solutions through dynamic relaxation. In most of
the examples contact situations appear, including contact with walls, objects or self
contact due to folds and wrinkles. A standard penalty formulation is used for contact
assumed frictionless in the cases.
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4.1 Inflation/Deflation of a Circular Airbag

This example has been taken from [9] where it is shown that the final configuration
is mesh dependent due to the strong instabilities leading to a non-uniqueness of
the solution. In [9] it is also discussed the important regularizing properties of the
bending energy, that when disregarded leads to massive wrinkling in the compressed
zones.

Fig. 6. Inflation of a circular airbag. Deformed configurations for final pressure. (a)
bending effects included (b) membrane solution only

The airbag geometry is initially circular with an undeformed radius of 0.35.
The constitutive material is a linear isotropic elastic one with modulus of elasticity
E = 6×107 and Poisson’s ratio ν = 0.3. Arbitrarily only one quarter of the geometry
has been modelled. Only the normal displacement to the original plane is constrained
along the boundaries. The thickness considered is h = 0.0004 and the inflation
pressure is 5000. Using a density δ = 1000, pressure is linearly increased from 0 to
the final value in t = 0.1.

With comparative purposes and also to backup the comments in Ref. [9] two
analyses have been performed, a purely membrane one and one including bending
effects. Figure 6 shows the final deformed configurations for a mesh with 10201
nodes and 20000 elements. The figure on the left (a) corresponds to a full analysis
including bending and the right figure (b) is a pure membrane analysis.

We note that when the bending energy is included a more regular final pattern is
obtained. Also the final pattern is rather independent of the discretization (note that
the solution is non unique due to the strong instabilities). On the other hand, the
pure membrane solution shows a a noteworthy increment of “numerical” wrinkles.

Figure 7 shows the results obtained for the de-inflation process for three dif-
ferent times. Column on the left corresponds to the analysis with bending energy
included. Note that the spherical membrane falls down due to the self weight. The
final configuration is of course non-unique.

4.2 Inflation of a Square Air-bag

This example has also been taken from [9]. Again the final configuration is mesh
dependent due to the strong instabilities leading to a non-uniqueness of the solution.
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Fig. 7. Deflation of a circular air-bag. Left figure: results obtained with the full
bending formulation. Right figure: results obtained with a pure membrane solution

The air bag geometry is initially square with an undeformed diagonal of 1.20. The
constitutive material is a linear isotropic elastic one with modulus of elasticity E =
5.88 × 108 and Poisson’s ratio ν = 0.4. Only one quarter of the geometry has been
modelled due to symmetry. Only the normal to the original plane is constrained along
the boundaries. The thickness considered is h = 0.001 and the inflation pressure is
5000. Using a density δ = 1000, pressure is linearly increased from 0 to the final
value in t = 0.1.

Two analyses have been performed, a purely membrane one and another one
including bending effects. Figure 8 shows the final deformed configurations for three
meshes with 289, 1089 and 4225 nodes. The top row corresponds to a full analysis
including bending and the central row is a pure membrane analysis. The bottom row
is also an analysis including bending where the mesh orientation has been changed.

The top and bottom lines show the final shapes change according to the degree
of discretization and mesh orientation due to instabilities and non uniqueness of
the solution. The central row shows the pure membrane solution with a wrinkling
pattern where the width of the wrinkle is the length of the element.
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Fig. 8. Inflation of a square air-bag. Deformed configurations for three different
meshes with 800, 3136 and 12416 degrees of freedom

4.3 Inflation of a Square Airbag Against a Spherical Object

The last example of this kind is the inflation of a square airbag supporting a spherical
object. This example resembles a problem studied (numerically and experimentally)
in [18], where fluid-structure interaction is the main subject. Here fluid is not mod-
elled, and a uniform pressure is applied over all the internal surfaces. The lower
surface part of the airbag is limited by a rigid plane and on the upper part a spheri-
cal dummy object is set to study the interaction between the airbag and the object.

The airbag geometry is initially square with an undeformed side length of 0.643.
The constitutive material used is a linear isotropic elastic one with modulus of
elasticity E = 5.88 × 108 and Poisson’s ratio ν = 0.4. Only one quarter of the
geometry has been modelled due to symmetry. The thickness considered is h =
0.00075 and the inflation pressure is 250000. Using a density δ = 1000, pressure is
linearly increased from 0 to the final value in t = 0.15. The spherical object has a
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radius r = 0.08 and a mass of 4.8 (one quarter), and is subjected to gravity load
during all the process.

Fig. 9. Inflation of a square airbag against an spherical object. Deformed con-
figurations for different times. Left figure: results obtained with the full bending
formulation. Right figure: results obtained with a pure membrane solution

The mesh includes 8192 EBST1 elements and 4225 nodes on each surface of the
airbag. Figure 9 shows the deformed configurations for three different times. The
sequence on the left of the figure corresponds to an analysis including full bending
effects and the sequence on the right is the result of a pure membrane analysis.
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Fig. 10. Inflation and deflation of a closed tube. L = 6, D = 2, h = 5 × 10−4.
Left figure: results obtained with the full bending formulation. Right figure: results
obtained with a pure membrane solution

4.4 Inflation/Deflation of a Closed Tube

The last problem is the study of the inflating and de-inflating of a tube with a
semi-spherical end cap. The tube diameter is D = 2, its total length is L = 6 and
the thickness h = 5 × 10−4. The material has the following properties E = 4 × 108,
ν = 0.35, � = 2 × 103. The tube is inflated fast until a pressure of 104 and when
pressure is released the tube de-inflates and falls under self weight. The analysis
is performed with a mesh of 16704 EBST1 elements and 8501 nodes modelling a
quarter of the geometry. A rigid frictionless base is supposed below. Self contact
is also included to avoid penetrations. The evolution of the tube walls during the
de-inflating process can be seen in Fig. 10. Note that the central part collapses as
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expected, while a great part of the semi-spherical cap remains unaltered. For this
very thin shell, the differences between a full bending solution and a pure membrane
solution are less marked. It must be noted that present element does not presents
problems in the very thin limit as the formulation is based on classical thin shell
theory and the rotational variables have been elliminates. So the time increment is
independent of the thickness.

4.5 Inflation of a Tubular Arch

The last example is the analysis of a tubular arch. This kind of archs are joined
together to form large inflatable structures to be used for different purposes. The
analized tubular arch has a internal diameter of 0.9; is total length is 11.0 and the
heigth is 4.5. The tube thickness is 3 × 10−4, the constitutive material is polyamid
with Young modulus E = 2.45 × 108 and Poisson ratio ν = 0.35. Due to geometric
symmetrys one quarter of the tube was discretized with 33600 triangular elements
(17061 nodes). The simulation includes two stages. First the tube is left fall down
under gravity action. Second an internal pressure of p = 883 is applied in a short
time and kept constant afterwards until the full inflation of the tube is reached.

Figure 11 shows deformed configurations for different instants of the process.

Fig. 11. Inflation of a tubular arch. (a) Deflated tube. (b),(c) Deformed configura-
tion during the inflation process. (d) Final inflated configuration

5 Concluding Remarks

We have presented in the paper the formulation of a rotation-free enhanced basic
shell triangle (EBST) using an assumed strain approach. The element is based on
an assumed constant curvature field expressed in terms of the nodal deflections
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of a patch of four elements and an assumed linear membrane strain field for the
in-plane behaviour. A simple and economic version of the element using a single
integration point has been presented. The EBST1 element has proven to be an
excellent candidate for solving practical engineering shell and membrane problems
involving complex geometry, dynamics, material non linearity and frictional contact
conditions. In the simulation of membranes, bending have been included to avoid
massive wrinkling in the compressed zones. The inclusion of bending energy (two
integration points through the thickness instead of one) represents an increase of
40% of CPU time.
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