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Abstract. This paper deals with the control of mesh distortions which may
appear during the form finding procedure of membrane design. The reason is
the unbalance of surface stresses either due to the interaction of edge and sur-
face or incompatibilities along the sewing lines of adjacent membrane patches.
An approach is presented which is based on a rational modification of the
surface tension field. The criterion is based on the control of the element dis-
tortion and derived from differential geometry. Several examples demonstrate
the success of the method.

1 Introduction

Two different lines of research have developed which deal with the generation
of structural shapes: the fields of ”form finding” and ”structural optimiza-
tion” , respectively. The methods of form finding are usually restricted to
tensile structures (cables and membranes) whereas the methods of structural
optimization are far more general and can usually be applied to any kind of
structure. So far, The differences of the two approaches are not only the level
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of specialization but also their aims. Form finding methods are designed to
determine structural shapes from an inverse formulation of equilibrium and
are derived from the simulation of physical phenomena of soap films and hang-
ing models. In the case of soap films the structural shape is defined by the
equilibrium geometry of a prescribed field of tensile surface stresses. It is well
known that the shapes related to isotropic surface stresses are minimal sur-
faces which have minimal surface area content within given edges. Minimal
surfaces have the additional property of zero mean curvature, or, with respect
to pneumatically loaded surfaces of constant mean curvature.

Using a variational approach for the solution we realize that only those
shape variations are meaningful which result in a variation of the area content.
In other words, the variation of the position of any point on the surface must
have a component normal to the surface. A variation of the position along the
surface will not alter the area content. That means, that if a finite element
method is used to solve the problem and the surface is discretized by a mesh
of elements and nodes the stiffness with respect to a movement of the nodes
tangential to the surface vanishes. This problem is well known since long from
shape optimal design also where the design parameters must be chosen such
that their modification must have an effect on the structural shape. Shape
optimal design is controlled by the modification of the boundary.

There exist several remedies. Two techniques have been accepted as state
of the art in shape optimal design: (i) linking the movement of internal nodes
to key nodes using mapping techniques from CAGD, the so called design ele-
ment technique, and, (ii) defining move directions for nodes on the boundary
to guarantee relevant shape modifications. The positive side effect is that the
number of optimization variables can drastically be reduced by this approach
which is very attractive for optimal design. On the other hand, however, the
space of possible shapes is also reduced. That is unacceptable if a high vari-
ability of shape modification is needed, as e.g. for the shape design of tensile
structures or for the problem to find shapes of equilibrium of tension fields
at the surface of liquids or related fields. Then methods are needed which are
able to stabilize the nodal movement such that all three spatial coordinates of
any finite element node may be variables in the shape modification process.
For the special case of form finding of tensile structures the updated reference
strategy (URS) is designed to find the shape of equilibrium of pre-stressed
membranes. It is a general approach which can be applied to any kind of spe-
cial element formulation (membranes or cables). A stabilization term is used
which fades out as the procedure converges to the solution. The method is
based on the specific relations of Cauchy and 2nd Piola-Kirchhoff stress ten-
sors which appear to be identical at the converged solution [5], [8], [6]. Other
alternative stabilization approaches have the same intention but used other
methodologies, one may find many references in [4], [7], [3], [1].

All methods, however, will have problems or even fail if they are applied
to physically meaningless situations without solution. E.g. it is not sure if
a minimal surface exists for a given edge, or, a practical question from tent
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design, it is practically impossible to a priori satisfy equilibrium along the
common edge of membrane strips which are anisotropically pre-stressed in
different directions. The unbalance of stresses can be detected by a cumula-
tive distortion of the FE-mesh during iteration. Methods are needed to control
the mesh distortion by adapting the stress distribution. The present approach
defines a local criterion to modify the pre-stress such that the element distor-
tion is controlled. Put into the context of the updated reference strategy it
appears to converge to homogeneous meshes during the regular time of itera-
tion needed by the form finding procedure. The additional numerical effort is
negligible. The results are surfaces of balanced shape representing equilibrium
as close as possible at the desired distribution of stresses. The approach will
be extended to other situations where mesh control might be necessary, e.g.
in general shape optimal design or other surface tension problems [2].

2 The Updated Reference Strategy

The basic idea of URS will be briefly shown to understand the following
chapters. A detailed description is given in [5]. Suppose one wants to find the
equilibrium shape of a given surface tension field σ. The solution is defined
by the stationary condition

δw =
∫

a

∫∫
σ : δu,x da =

∫
A

∫∫
detF(σ · F−T ) : δF dA = 0 (1)

which represents the vanishing virtual work of the Cauchy stresses σ and
δu,x is the spatial derivative of the virtual displacements, F is the deformation
gradient, a and A are the surface area of the actual and the reference configu-
ration, respectively. As mentioned in the introduction the direct discretization
of (1) w.r.t. all spatial coordinates will give a singular system of equations.
The problem is stabilized by blending with the alternative formulation of (1)
in terms of 2nd Piola-Kirchhoff stresses S:

δw = λ

∫
A

∫∫
detF(σ · F−T ) : δF dA + (1 − λ)

∫
A

∫∫
(F · S) : δF dA = 0 (2)

where the coefficients of S are assumed to be constant and identical to
those of σ. The continuation parameter λ must be chosen small enough, even
zero is possible. As the solution of (2) is used as the reference configuration
for a following analysis the procedure converges to the solution of (1). Then F
becomes the identity and both stress tensors are identical. The stabilization
fades out.

3 Equilibrium of Surface Stresses

As also mentioned in the introduction it is not always possible to find a shape
of equilibrium for each combination of edge geometry and surface stress dis-
tribution, isotropic or anisotropic. In these cases the size of some elements
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will steadily increase during iteration although URS is designed to control the
mesh quality. That is because it is not possible to satisfy equilibrium of the
given surface stresses at the location of those elements. For example consider
a catenoid, Fig. 1. If the height exceeds the critical value the surface will col-
lapse as shown. During iteration that is indicated by the increasing length of
the related elements. To avoid the collapse the meridian stresses should be
increased.

Now, consider the catenoid with an constant anisotropic stress field with
larger meridian stresses, Fig. 2. The surface does not collapse anymore, but
still the elements at the top get out of control as indicated by the tremendous
increase of size. Again, the physical explanation is that equilibrium cannot be
found with a constant distribution of meridian stresses over the height.

Fig. 1. Collapsed catenoid with different end rings.

Fig. 2. Catenoid with anisotropic pre-stress (meridian/ring=3/1).

A similar situation arises in membrane design. Typically those structures
are sewed together by several strips, each of them made of anisotropic ma-
terial and anisotropically pre-stressed. Along the common line there exists
also an intrinsic unbalance of equilibrium of stresses which must be handled
with during the form finding procedure. All cases demand for automatically
adjusted stresses.

4 Element Size Control

The element size is used as indicator to adjust the surface stress field. At each
Gauss point of the element discretization an additional constraint is intro-
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Fig. 3. Configurations during form finding.

duced to check for the length of base vectors against the allowable maximal
deformation. The standard optimization approach by the Lagrangian multi-
plier technique is prohibitive because of the size of the problem. Therefore,
a local criterion is defined which can be solved at each Gauss point indepen-
dently. The approach is analogous to what is done in elastic-plastic analysis.
In contrast to that, now, the surface stresses are constant until the critical
deformation is reached and will then be adjusted to the further change of
deformation.

Consider the following configurations and the related definition of base
vectors: the initial configuration, G0, where the form finding was started, the
reference configuration, G, defined by the update procedure of URS, and the
actual configuration, g, as the state of equilibrium of the current time step. An
additional configuration, gmax is defined which states the maximum allowable
element size. There are several deformation gradients F defined which map
differential entities between the configurations, Fig. 3.

The deformation gradient F(k)
t in time step k which describes the total

deformation is multiplicatively created by F(k)
t = F · F(k−1)

t where
F = gi ⊗Gi(k) and F(k)

t = g(k)
i ⊗Gi

0.
If the actual deformation exceeds the allowable limit, i.e.

‖ F(k)
t ‖>‖ Fmax ‖, a modified surface stress tensor σmod is generated by the

following rule of nested pull back and push forward operations:

1. apply the surface Cauchy stress σ to the ”max. allowable” config-
uration

2. determine the related 2nd Piola-Kirchhoff stress S0 w.r.t. to the
initial configuration by pull back using Fmax

3. push S0 forward to the actual configuration applying Ft

The resulting operation is:

σmod =
detFmax

detFt
Ft · F−1

max · σ · F−T
max · FT

t (3)
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and, considering the 2nd Piola-Kirchhoff stress tensor S (used in the stabilizing
term of URS):

σmod =
detFmax

detF detFt
Ft · F−1

max · F · S · FT · F−T
max · FT

t (4)

The ”max. allowable” configuration is defined by multiples of the base
vectors of the actual configuration:

gmax i = β(i)gi (5)

Then, we can determine the related modified deformation gradient Fmod

Fmod = Ft · F−1
max · F =

1
β(i)

gi ⊗Gi (6)

The change of element size is determined by tracing the length change of
base vectors during the deformation process. Introducing the ratio
αi =‖ g(i) ‖ / ‖ G(i) ‖ (no summation) the total change of geometry in time
step k is defined as: α

(k)
ti = α(i)α

(k−1)
t(i) . If the total change of geometry is

larger than the allowable maximum αmax i then the constraint is active. The
factor βi which is used to define the ”max. allowable” configuration can now
be determined as:

if α
(k)
ti > αmax (i) then : αmax (i) = α

(k)
t(i) βi

∴ βi =
αmax(i)

α
(k)
t(i)

(7)

Considering both surface base vectors g1 and g2 the determinant of Fmod

is now

detFmod = (β1β2)(−1) detF (8)

If constraints are active the state of stresses must change with time and
the modified Cauchy stress tensor σ

(k+1)
mod for the next time step k + 1 which

is acting in the ”max. allowed” configuration follows as:

σ
(k+1)
mod =

β1β2

detF
Fmod · S(k) · FT

mod (9)

In the context of URS the components of σ
(k+1)
mod will also be used as the

components of S(k+1) in the next time step. They are:

σ
11(k+1)
mod =

β2

β1 detF
S11(k)

σ
22(k+1)
mod =

β1

β2 detF
S22(k)

σ
12(k+1)
mod =

1
detF

S12(k) (10)

The modification rule (10) simply says that the surface stress of an element
which became too long must be increased to shorten it and vice versa.
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5

5.1 Catenoid

This example shows the effect of different values of αmax on the final shape of
a catenoid which was initially isotropically pre-stressed. The choice of αmax

controls the maximal deformation of the elements. A value of 1.0 means almost
no element deformation. Compare with Fig. 1 how collapse could be omitted.

Fig. 4. Stabilized catenoid of initially isotropic surface stress.

Fig. 5. Initially anisotropically pre-stressed catenoid (meridian/ring=1.2/1).

5.2 Tent Hufingen¨

This tent is composed by 5 membrane patches which are anisotropically pre-
stressed towards the center of the tent. A top view shows the consequences
of unbalanced stresses at the common edges of adjacent patches where the
mesh is distorted, Fig. 6, left. The mesh quality is maintained using a value
of αmax = 1.0, Fig. 6, right. Fig. 7 shows the generated shapes using different
values for the mesh control factor.

Examples

(a) αmax = 1.0 (b) αmax = 1.2 (c) αmax = 1.5 (d) αmax = 2.0

(a) no constraint (b) αmax = 1.2 (c) αmax = 2.0
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Fig. 6. Top view after form finding, without or with mesh control (left, right).

Fig. 7. Effects of varied mesh control

6 Conclusion

Motivated by the specific problems of form finding an approach was developed
to control the mesh quality of the finite element discretization. The idea of
the method is to adjust the value of the applied surface stresses by a simple
scaling of the stress components which is derived from geometric considera-
tions. The method is very effective without additional effort. Several examples
demonstrate the success. Further developments are directed towards the gen-
eralization of the approach for general problems of shape optimal design where
similar situations occur.

(a) no mesh control (b) αmax = 1.0 (c) αmax = 1.5
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