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This paper investigates the wrinkling of square membranes of isotropic mate-
rial, subject to coplanar pairs of equal and opposite corner forces. These mem-
branes are initially stress free and perfectly flat. Two wrinkling regimes are
observed experimentally and are also reproduced by means of finite-element
simulations. A general methodology for making preliminary analytical esti-
mates of wrinkle patterns and average wrinkle amplitudes and wavelengths,
while also gaining physical insight into the wrinkling of membranes, is pre-
sented.

1 Introduction

Thin, prestressed membranes will be required for the next generation of space-
craft, to provide deployable mirror surfaces, solar collectors, sunshields, solar
sails, etc. Some applications require membranes that are perfectly smooth
in their operational configuration, but many other applications can tolerate
membranes that are wrinkled; in such cases the deviation from the nominal
shape has to be known. The design of membrane structures with biaxial pre-
tension, which would have a smooth surface, significantly increases the overall
complexity of the structure and hence, for those applications in which small
wrinkles are acceptable, engineers need to be able to estimate the extent,
wavelength and amplitude of the wrinkles.

The wrinkling of membranes has attracted much interest in the past, start-
ing from the development of the tension field theory [1]. Simpler formulations
and extensions of this theory were later proposed [2-7]. All of these formula-
tions, with accompanying numerical solutions [8,9], model the membrane as a
no-compression, two-dimensional continuum with negligible bending stiffness.
Many studies of membrane wrinkling have been carried out during the past
three years, and have been presented at the 42nd, 43rd, and 44th AIAA SDM
Conferences [10-12].
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This paper considers a uniform elastic square membrane (which is a simple
model of a square solar sail) of side length L + 2r1 and thickness t that is
prestressed by two pairs of equal and opposite concentrated forces, T1TT and T2TT ,
uniformly distributed over a small length d at the corners, as shown in Fig. 1.
This membrane is isotropic with Young’s Modulus E and Poisson’s ratio ν;
it is also initially stress free and perfectly flat (before the application of the
corner forces).

Fig. 1. Membrane subjected to corner forces.

We use this problem to present a general and yet simple analytical method
for making preliminary estimates of wrinkle patterns and average wrinkle am-
plitudes and wavelengths in membrane structures. We also present a finite
element simulation method for making more accurate estimates. The results
from both our analytical approach and finite element simulations are com-
pared with experimental measurements.

The layout of the paper is as follows. Section 2 describes two regimes of
wrinkling that were observed experimentally. Section 3 presents our method-
ology for tackling wrinkling problems analytically, and hence derives solutions
for the square membrane problem. Section 4 presents a finite-element simula-
tion technique, whose results are compared with measurements and analytical
results in Section 5. Section 6 concludes the paper.

2 Experimental Observations

Fig. 2 shows photographs of the wrinkle patterns in a Kapton membrane with
L = 500 mm, t = 0.025 mm, and d = 25 mm. For symmetric loading (T1TT = T2TT )
the wrinkle pattern is fairly symmetric, as shown in Fig. 2(a), with wrinkles
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radiating from each corner; the central region is free of wrinkles. For a load
ratio of T1TT /T2TT = 2 the wrinkles grow in amplitude but remain concentrated
at the corners. Then, for T1TT /T2TT = 3 a large diagonal wrinkle becomes visible,
whose amplitude grows further for T1TT /T2TT = 4.

(a) (b)

(c) (d)

Fig. 2. Wrinkled shapes for T1TT equal to (a) 5 N, (b) 10 N, (c) 15 N, and (d) 20 N;
T2TT = 5 N in all cases.

3 Analytical Approach

Our analytical approach is in four parts, as follows.
First, we identify a two-dimensional stress field that involves no compres-

sion anywhere in the membrane; the regions where the minor principal stress
is zero are then assumed to be wrinkled and the wrinkles are assumed to
be along the major principal stress directions. Ideally, both equilibrium and
compatibility should be satisfied everywhere by the selected stress field, but
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analytical solutions in closed-form —obtained by tension field theory— ex-
ist only for simple boundary conditions. We have recently shown [13] that a
carefully chosen, simple stress field that satisfies only equilibrium can provide
quick solutions that are useful for preliminary design. More accurate stress
fields can be obtained from a two-dimensional stress analysis with membrane
finite elements, as briefly discussed in Section 4.

Second, we note that the bending stiffness of the membrane is finite, al-
though small, and hence a compressive stress will exist in the direction per-
pendicular to the wrinkles. Because of its small magnitude, this stress was
neglected in our previous analysis of the stress field. We assume that this
compressive stress varies only with the wavelength of the wrinkles and set
it equal to the critical buckling stress of a thin plate in uniaxial compres-
sion. Thus, the stress across the wrinkles is a known function of the wrinkle
wavelength.

Third, we enforce equilibrium in the out-of-plane direction. Since the stress
distribution is known, except for the wrinkle wavelength, a single equation of
equilibrium will determine the wrinkle wavelength.

Fourth, the wrinkle amplitudes are estimated by considering the total
strain in the membrane as the sum of two components, a material strain
and a wrinkling strain.

3.1 Stress Field

Fig. 3 shows three equilibrium stress fields that can be used to analyse
membranes under (a) a symmetric loading, (b) an asymmetric loading with
T1TT /T2TT ≤ 1/(

√
2−1), and (c) an asymmetric loading with T1TT /T2TT ≥ 1/(

√
2−1).

In each case the membrane is divided into regions which are subject to simple
stress states.

The stress field in Fig. 3(a) is purely radial in the corner regions, with

σr =
T√
2rt

(1)

where r < r1 + L/2 is the radial distance measured from the apex. Hence, σr

is uniform on any circular arc and all other stress components are zero. The
central region, defined by circular arcs of radius R = r1 + L/2, is subject to
uniform biaxial stress of magnitude T/

√
2Rt.

Note that near the point of application of each corner load a small, biaxially
stressed region bounded by the radius r1 = d/

√
2 has been defined. In these

regions both normal stress components are T/dt.
For moderately asymmetric loading, see Fig. 3(b), we consider corner stress

fields similar to those given by Eq. (1), hence

σr =
TiTT√
2rt

(2)
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Fig. 3. Stress fields.

but vary the outer radii of these stress fields, in such a way that the radial
stress is still uniform on the four arcs bounding the central region. Hence,
we need to choose R1 and R2 such that R1/R2 = T1TT /T2TT and R1 + R2 =
L + 2r1. This approach is valid until the two larger arcs reach the centre of
the membrane, which happens for

R1

R2
=

T1TT

T2TT
=

1√
2 − 1

(3)

For larger values of T1TT /T2TT we consider the stress field shown in Fig. 3(c);
note that the diagonal region between the two most heavily loaded corners
of the membrane is subject to zero transverse stress, and hence a single di-
agonal wrinkle can form. Also note that the edges of the membrane are now
unstressed. The stress in each corner region is now given by

σr =
TiTT

2rt sin θi
(4)
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and hence for the central region to be biaxially stressed the condition

σr =
T1TT

2R1t sin θ1
=

T2TT

2R2t sin θ2
(5)

has to be satisfied. Given T1TT and T2TT , one can find –by geometry together with
Eq. (5)– a unique set of values for the half-angles defining the corner regions,
θ1, θ2, and for the radii, R1, R2, thus fully defining the stress field.

The values of θ1 and θ2 remain constant for any particular value of T1TT /T2TT ,
and so the only variable in Eq. (4) is r. Hence, the slack regions will grow as
the load ratio is increased. Finally, it should be noted that both of our earlier
stress fields can be obtained as special cases of the last one.

3.2 Wrinkle Details

A critical compressive stress, σcr, must exist in the direction transverse to the
wrinkles. We will assume that this stress is given by the buckling stress of an
infinitely long plate of width λ

σcr = −π2

λ2

Et2

12(1 − ν2)
(6)

In the case of fan-shaped wrinkles we will set λ equal to the half-wavelength
mid way between the corner and the edge of the fan.

To estimate the wrinkle details, we begin by considering a simple analytical
expression for the shape of the wrinkled surface. For example, in the case of a
symmetrically loaded membrane we assume that at each corner there is a set
of uniform, radial wrinkles whose out-of-plane shape can be described in the
polar coordinate system of Fig. 4 by

w = A sin
π(r − r1)
Rwrin − r1

sin 2nθ (7)

where A is the wrinkle amplitude, n the total number of wrinkles at the
corner —each subtending an angle of π/2n— and θ is an angular coordinate
measured from the edge of the membrane.

Since the stress in the corner regions is uniaxial there is the possibility of
wrinkles forming there. The radial strain is

εr = σr/E (8)

where σr is given by Eq. (1). The corresponding radial displacement, u(r)
(positive outwards), can be obtained from

u =
∫

εrdr + c (9)

where the constant of integration c can be obtained by noting that u ≈ 0 at
r = R, i.e. at
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Fig. 4. Corner wrinkles: (a) overall shape; (b) central cross section and definition
of half-wavelength.

the edge of the biaxially stressed region. Therefore,

u =
T√
2Et

ln
r

R
(10)

The hoop strain required for geometric compatibility is

εθg =
u

r
(11)

and the hoop material strain is

εθm = −ν
σr

E
(12)

Wrinkles will form when εθg is larger in magnitude than εθm (note that
both strains are negative), hence combining Eqs. (1), (10)–(12), we obtain

ln
R

r
≥ ν (13)

The radius of the wrinkled region, Rwrin, is the largest r for which Eq. (13)
is satisfied. Within the wrinkled region, i.e. for r < Rwrin, an additional “wrin-
kling” strain is required

εθg = εθm + εθwrin (14)

The wrinkling strain is related to the wrinkle amplitude, and for the wrinkle
shape defined by Eq. (7) it can be shown that at r = (Rwrin − r1)/2

εθwrin = −π2A2

4λ2
(15)
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Substituting Eq. (10) into Eq. (11) and Eq. (1) into Eq. (12), and then both
into Eq. (14) we find that A has to satisfy

√
2T

Et(Rwrin − r1)
ln

Rwrin − r1

2R
= −

√
2νT

Et(Rwrin − r1)
− π2A2

4λ2
(16)

Next, we work out the number of wrinkles by considering out-of-plane
equilibrium of the wrinkled membrane at a point of maximum out-of-plane
displacement, e.g. at r = (Rwrin − r1)/2, θ = π/4n. The equilibrium equation
is

σrκr + σθκθ = 0 (17)

where κr and κθ are the curvatures in the radial and hoop directions, respec-
tively, which can be obtained by differentiating Eq. (7). Hence,

κr = − Aπ2

(Rwrin − r1)2
and κθ = − 16An2

(Rwrin − r1)2
(18)

The transverse stress component σθ is set equal to σcr. Substituting Eqs. (1), (6)
and (18) into Eq. (17) gives

√
2T

(Rwrin − r1)t
− 4Et2n2

3(1 − ν2)λ2
= 0 (19)

Since λ is related to the number of wrinkles by

λ =
Rwrin − r1

2
π

2n
(20)

we can substitute for λ into Eq. (19) and solve for n to obtain

n =

√
4 3

√
2π2T (Rwrin − r1)(1 − ν2)

64Et3
(21)

Given Eqs. (20) and (21) we can predict the wrinkle amplitude A by solving
Eq. (16), which gives

A =
2λ
π

√ √
2T

Et(Rwrin − r1)

(
ln

2R
Rwrin − r1

− ν

)
(22)

In the case T1TT 
=

 T2TT it is straightforward to generalize Eqs. (19) and (22)
to find the wavelength and amplitude of the wrinkles in each corner region.
However, for T1TT /T2TT ≥ 1/(

√
2− 1) the two larger corner stress fields come into

contact, see Fig. 3(c), and hence a single diagonal wrinkle can form between
the two most heavily loaded corners. This much larger wrinkle can be analysed
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following a similar approach [13], to obtain the following expressions for half-
wavelength and amplitude

λ =

√
4 2π2R1(R1 − r1)2Et3 sin θ1

3(1 − ν2)T1TT
(23)

and

A =
2
√

λ(δ1 + δ2)
π

(24)

Here δ1 and δ2 are the radial displacements of the corners loaded by T1TT and
T2TT , respectively; these corner displacements can be estimated from

δi ≈ TiTT

2Et sin2 θi

[
θi ln

Ri

r1
+ (1 − ν)

(
Ai

R2
i

+ θi − 1
2

tan θi

)]
i = 1, 2 (25)

Here, Ai is the area of a part of the central, biaxially stressed region that is
associated with the loads TiTT . More refined estimates can be obtained from a
two-dimensional finite-element analysis, see Section 5.

4 Finite-Element Simulations

We have recently shown [14] that wrinkling of a thin membrane can be ac-
curately modelled using the thin shell elements available in the commercial
finite-element package ABAQUS [15]. The analysis is carried out by intro-
ducing initial geometrical imperfections, obtained from an initial eigenvalue
analysis, followed by a geometrically non-linear post-buckling analysis using
the pseudo-dynamic *STABILIZE solution scheme. This approach, although
expensive in computational terms, is so far the only method that can reveal
full wrinkle details and can be relied upon as an almost exact replication of
physical experimentation. An alternative approach is the Iterative Modified
Properties (IMP) method [9] which uses a combined stress-strain wrinkling
criterion in a two-dimensional membrane model. The IMP method has been
recently implemented as an ABAQUS user subroutine and has been shown to
accurately predict the extent of the wrinkled regions and the two-dimensional
stress distribution —but of course not the details of the wrinkles.

Both of these modelling techniques were used to simulate a 0.025 mm thick,
500×500 mm2 square Kapton membrane (E=3530 N/mm2 and ν = 0.3). The
membrane was loaded at each corner through a spreader beam by a 0.1 mm
thick, 25 mm × 20 mm Kapton tabs—as in the experiment of Section 2.

A uniform mesh of 200 by 200 square elements was used to model the
whole structure, in order to capture the fine wrinkle details in the corners.

In the shell model, the Kapton membrane and the corner tabs were mod-
elled using S4R5 thin shell elements of different thickness. At the corners, the
shell elements were connected to “Circ” beam elements through the *MPC,
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TIE function. The central node was constrained against translation in the x-
and y-direction; all side edges were left free. Both the out-of-plane rotations
of the membrane and all in-plane bending degrees of freedom of the corner
beams were restrained. The corner loads were applied as distributed loads
along the truncated corners of the membrane.

In the IMP model, the membrane was modelled using M3D4 membrane
elements, whose constitutive behaviour was modelled through a UMAT sub-
routine. The corner tabs were modelled with S4 shell elements and the same
beam elements as for the shell model were used.

4.1 Simulation Details

Two load steps were applied, first a symmetric loading of T1TT = T2TT = 5 N.
Second, T2TT = 5 N was maintained while T1TT was increased up to 20 N.

The analysis procedure was essentially identical for all of the simulations.
First, a uniform prestress of 0.5 N/mm2 was applied, to provide initial out-
of-plane stiffness to the membrane. This was achieved by means of *INITIAL
CONDITION, TYPE=STRESS. Next, a non-linear-geometry analysis was
carried out, with *NLGEOM, to check the equilibrium of the prestressed sys-
tem. Then, a linear eigenvalue analysis step was carried out (for the thin shell
model only) in order to extract possible wrinkling mode-shapes of the mem-
brane under a symmetrical loading. Four such mode-shapes were selected,
based on their resemblance to the expected final wrinkled shape, and were
introduced as initial geometrical imperfections. Finally, an automatically sta-
bilised post-wrinkling analysis was performed, with *STATIC, STABILIZE.
This analysis is very sensitive because the magnitude of the wrinkles is very
small, hence an increment of 0.001 of the total load had to be selected. The de-
fault stabilize factor was reduced to 10−12 to minimise the amount of fictitious
damping; this was the smallest amount required to stabilise the solution.

Fig. 5(a) shows the symmetrically wrinkled shape obtained for T1TT = T2TT =
5 N. The wrinkle amplitudes are very small and have been enlarged 100 times
for clarity. Fig. 5(b) shows the corresponding shape for T1TT /T2TT = 4. Here the
distinguishing feature is a large diagonal wrinkle between the two more heavily
loaded corners, a number of smaller wrinkles can also be seen near the corners
with smaller loads.

Fig. 6 shows the wrinkle profiles measured at three different cross sections,
for T1TT /T2TT = 4, plotted against those obtained from the simulations. Note that
experiments and simulations match closely in the central region; the wrinkle
wavelengths, in particular, are predicted quite accurately. But ABAQUS pre-
dicts smaller displacements of the edges of the membrane, due to the fact that
the initial shape of the physical model has not been captured with sufficient
accuracy (the edges of a Kapton sheet are naturally curled).
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Fig. 5. Wrinkled shapes for (a) T1TT /T2TT = 1 and (b) T1TT /T2TT = 4.

Table 1. Wrinkles under symmetric loading (all values in mm)

n λ at r = 70 mm A
T (N) Eq. 21 Experiment Eq. 20 Experiment Eq. 22 Experiment

5 9.6 8 11.6 11.0 0.16 0.12

20 13.6 11 8.3 9.7 0.22 0.14

5 Validation of Analytical and Finite-Element Models

Table 1 compares the predicted wrinkle half-wavelengths and amplitudes from
Eqs. (20)–(22) with experimental measurements for a symmetrically loaded
membrane, i.e. for T1TT /T2TT = 1.

For the load case T1TT /T2TT = 4, Table 2 compares the analytical predictions
for the large diagonal wrinkle at the centre of the membrane, for two differ-
ent membrane thicknesses, with predictions from ABAQUS and experimental
measurements. The wavelength predictions are very close. The wrinkle ampli-
tudes have been estimated first using only analytical solutions, Eq. (24) with
δ1 and δ2 from Eq. (25), and second using Eq. (24) but with corner deflections
from a 2-D IMP analysis. We can see that the fully analytical estimates are up
to 88% higher than those measured experimentally, but if we use the corner
displacements from the 2D finite-element analysis we obtain estimates that
are only 48% and 16% higher than the measurements.

(a)

A

A

B

B

C

C

(b)
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Fig. 6. Comparison of experimental measurements with ABAQUS results for
T1TT /T2TT = 4 and for cross sections at distance of (a) 105 mm, (b) 177 mm, (c) 346 mm
from corner.

Table 2. Wrinkle half-wavelengths and amplitudes for T1TT /T2TT = 4 at r = 346 (all
values in mm)

λ A
t Eq. 23 Experiment FE Eqs 24, 25 Eq. 24+FE1 Experiment FE2

0.025 24.6 23.8 22.3 3.5 2.8 1.9 2.0
0.050 41.3 33.9 35.6 3.2 2.1 1.8 1.6

6 Discussion and Conclusions

The wrinkling of square membranes subject to coplanar pairs of equal and
opposite corner forces has been investigated. It has been shown that two
wrinkling regimes exist. The first regime occurs for symmetric loading and
asymmetric loading up to approximately T1TT /T2TT = 2.41, and it is characterised

1 Membrane model with IMP.
2 Shell model.
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by relatively small, radial corner wrinkles. The second regime occurs for asym-
metric loading with approximately T1TT /T2TT > 2.41, and is characterised by a
single, large diagonal wrinkle, plus small radial wrinkles at all four corners.
Each regime has been observed experimentally and also reproduced to great
accuracy in a finite-element simulation.

A general methodology for gaining insight into the wrinkling of mem-
branes, which was first proposed for uniformly wrinkled membranes in shear
[16], has been presented. For the first wrinkling regime (T1TT /T2TT < 2.41) it is
reasonable to assume uniform, fan-shaped wrinkles expressed in terms of sine
functions. With these assumptions, analytical expressions have been derived
for the number of corner wrinkles and their average maximum amplitude. For
the second wrinkling regime (T1TT /T2TT > 2.41) an analogous derivation leads to
an expression for the amplitude of the central wrinkle. These expressions have
been found to overestimate wrinkle amplitudes by up to 50%, and hence they
appear to be sufficiently accurate for preliminary design.

Finite element analysis using thin shell elements has been shown to be able
to replicate real physical experimentation with an accuracy typically better
than 10% on amplitude. However, a very fine mesh had to be used to resolve
the small corner wrinkles; hence a complete simulation takes up to several
days on a 2GHz Pentium 4 PC.

Acknowledgments

We thank Professors C.R. Calladine and K.C. Park for helpful suggestions.
Partial support from NASA Langley Research Center, research grant NAG-
1-02009, Integrated membranous-microelement space structures technology
(technical monitor Dr K. Belvin) is gratefully acknowledged.

References

1. Wagner H (1929) Flat sheet metal girder with very thin metal web, Zeitschrift
fur Flugtechnik Motorlurftschiffahrt 20: 200–207, 227–233, 256–262, 279-284f¨f

2. Reissner E (1938) On tension field theory. Proc. 5th Int. Cong. Appl. Mech.,
88–92

3. Stein M, Hedgepeth JM (1961) Analysis of Partly Wrinkled Membranes. NASA
Langley Research Center, NASA TN D-813

4. Mansfield EH (1969) Tension field theory a new approach which shows its
duality with inextensional theory. Proc 12th Int Cong Appl Mech, 305–320

5. Mansfield EH (1989) The Bending and Stretching of Plates, second edition.
Cambridge University Press, Cambridge

6. Pipkin AC (1986) The relaxed energy density for isotropic elastic membranes.
IMA J Appl Math, 36: 85–99

7. Epstein M, Forcinito MA (2001) Anisotropic membrane wrinkling: theory and
analysis. Int J Solids Structures 38: 5253–5272



122 Y.W. Wong and S. Pellegrino

8. Jenkins C, Leonard JW (1991) Nonlinear dynamic response of membranes:
State of the art. ASME Appl Mech Reviews 44: 319–328

9. Adler A (2000) Finite Element Approaches for Static and Dynamic Analysis
of Partially Wrinkled Membrane Structures. PhD Dissertation, University of
Colorado at Boulder

10. Proc. 42nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics
and Materials Conference, 16-19 April 2001, Seattle, WA, AIAA, Reston

11. Proc 43rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics,
and Materials Conference and Exhibit, Denver, CO, 22-25 April 2002, AIAA,
Reston

12. Proc. 44th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics,
and Materials Conference and Exhibit, Norfolk, VA, 7-10 April 2003, AIAA,
Reston

13. Wong YW, Pellegrino S, Park KC (2003) Prediction of wrinkle amplitudes
in square solar sails. Proc 44th AIAA/ASME/ASCE/AHS/ASC Structures,
Structural Dynamics, and Materials Conference and Exhibit, Norfolk, VA, 7-10
April 2003, AIAA-2003-1982

14. Wong YW, Pellegrino S (2002) Computation of wrinkle amplitudes in thin
membranes. Proc 43rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural
Dynamics, and Materials Conference and Exhibit, Denver, CO, 22-25 April
2002, AIAA-2002-1369

15. Hibbit, Karlsson and Sorensen, Inc. (2001) ABAQUS Theory and Standard
User’s Manual, Version 6.2, Pawtucket, RI, USA

16. Wong YW, Pellegrino S (2002) Amplitude of wrinkles in thin membranes. In:
Drew HR, Pellegrino S (eds) New Approaches to Structural Mechanics, Shells
and Biological Structures. Kluwer Academic Publishers, Dordrecht, 257-270




