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Summary. In statics, the large deformation analysis of membrane or shell struc-
tures loaded and/or supported by gas or fluid can be based on a finite element
description for the structure only. Then in statics the effects in the gas or the fluid
have to be considered by using the equations of state for the gas or the fluid, the
information about the current volume and the current shape of the structure. The
interaction of the gas/fluid with the structure, which can be also otherwise loaded, is
then modelled by a pressure resulting from the gas/fluid always acting normal to the
current wetted structural part. This description can be also directly used to model
slow filling processes without all the difficulties involved with standard discretization
procedures. In addition the consistent derivation of the nonlinear formulation and
the linearization for a Newton type scheme results in a particular formulation which
can be cast into a very efficient solution procedure based on a sequential applica-
tion of the Sherman-Morrison formula. The numerical examples show the efficiency
and the effects of the developed algorithms which are particularly important for
structures, where the volume of the gas of fluid has to be considered.

Key words: Pressure loading, hydrostatics, large deformations, finite ele-
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1 Introduction

The simulation of the inflation resp. filling and the support of thin membrane
or shell type structures by gas or fluids can be usually performed in an effi-
cient way by assuming an internal pressure in the structure which acts normal
to the inner surface [2], [3], [12] besides any other loading. The restriction of
this model is that it does not take into account the change of the volume of
the gas or fluid due to the deformation of the structure even if there is no
further inflation or filling. Also the pressure may change due to temperature
modifications of the gas/fluid. In both cases the volume of the gas resp. the
mass conservation of the fluid has to be considered in the model [1], [7]; this
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is also important for stability considerations of the gas/fluid filled structure
under any other external loading. Then in the case of gas filling the inter-
nal gas pressure formally provides an additional rank-one update of the FE
stiffness matrix which stabilizes from an engineering point of view an almost
completely flexible structure. Hydrostatics with a free fluid surface, also leads
to an additional rank-one update of the FE stiffness matrix, whereas com-
pressible, heavy fluids lead to a rank-two update [5].

Thus in the case of fluid filling [6], [8], [10] or a mixture of gas and fluid [9]
the filling of membrane-like structures can be performed without a separate
discretization of the fluid with e.g. FE or Finite Volumes or similar. Also fully
fluid filled structures can be analyzed without separate discretization of the
fluid [9]. Several cases have to be distinguished, fluid with a free surface [8],
[10], structure under overpressure of fluid [9] and fluid with free surface but gas
overpressure. The contribution shows the derivation of the variational formu-
lation and the corresponding Finite Element discretization for compressible
fluids under gravity loading. A particular focus is on the consistent lineariza-
tion of the nonlinear equations and the accompanying constraint equations.
Also the specific solution of the linearized equation system based on a sequen-
tial application of the Sherman-Morrison formula is presented. The numerical
examples show large deformation analyses of gas and fluid filled shell struc-
tures with rather thin flexible walls under various conditions, such as filling
and loading.

2 Governing Equations

The mathematical description of static fluid structure interaction can be based
on the principle of stationarity for the total potential energy δW of a fluid in
an elastic structure and additional equations describing the physical behavior
of different fluids or gases.

2.1 Virtual Work Expression

The variation of the elastic potential of the structure is specified by δelV , δiΠ
denotes the virtual work of the pressure loading which acts between the fluid
i and the structure, δexΠ is the virtual work of other external forces acting
on the structure

δW = δelV + δiΠ − δexΠ = 0 (1)

The interaction term between fluid and structure is described by a body fixed
pressure force ip ∗n, with a non-normalized normal vector ∗n = eξ × eη and
the pressure level ip, see equation (2). eξ = ∂x

∂ξ , eη = ∂x
∂η denote covariant

non-normalized vectors on the wetted surface of the structure
η

δiΠ =
∫

η

∫∫ ∫
ξ

∫∫
ip ∗n · δu dξdη (2)
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The pressure acts normal to the surface element dξdη along the virtual dis-
placement δu. Therefore a virtual work expression of a follower force is given.
Possible physical properties of the fluid i are summarized in the following
paragraphs:

2.2 Compressible Fluids

If the dead weight of a fluid is neglected, we can distinguish between a pneu-
matic model, see [1], [7] and a hydraulic description. The corresponding con-
stitutive equations are the Poisson’s law for a pneumatic (i = p) and the
Hooke’s law (i = h) for a hydraulic model.

Pneumatic Model

In realistic physical situations the investigations can be restricted to conser-
vative models, which entails the application of the adiabatic state equation

pp vκ = pP V κ = const. (3)

pp, v are the state variables (pressure and volume) of the gas in the deformed
state, capital letters denote the initial state and κ the isentropy constant.

Hydraulic Model

For an analysis of hydraulic systems the fluid pressure is given by Hooke’s
law. hp is the mean pressure in the fluid determined by the bulk modulus K
and the relative volume change of the fluid with V as initial volume

hp(v) = −K
v − V

V
(4)

2.3 Hydrostatic Loading – Incompressible Fluids under Gravity
Loading

For partially filled structures the liquid can be treated as incompressible, see
[6], [8], [10]. The pressure distribution is given by the hydrostatic pressure
law, with ρ as the constant density, g as the gravity and with the difference of
the upper liquid level ox and an arbitrary point x on the wetted structure. A
conservative description is achieved, if the volume conservation of the liquid
is taken into account during the deformation of liquid and structure, too

gp = ρg · (ox− x) (5)
and v = const. (6)
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2.4 Compressible Hydrostatic Loading – Compressible Fluids
Under Gravity Loading

A further important case is the composition of dead weight and compressibility
of fluid (i = hg), see [5],[9]. The corresponding pressure law for technical
applications can be found by combining Hooke’s law and mass conservation
with the assumption of an uniform density distribution throughout the fluid.
The hydrostatic pressure law for compressible fluids can be derived from a
variational analysis of the gravity potential and the virtual work expression
of the pressure resulting from Hooke’s law

hgp = cp − xp − hp (7)
= ρ(v)g · (c− x) − hp (8)

with ρ(v)v = const. (9)
cp = ρ(v)g · c is the pressure at the center c of volume, xp = ρ(v)g ·x denotes
the pressure at an arbitrary point x on the wetted structure. In the view of a
mesh-free representation of the fluid, the constitutive equations are dependent
on the shape and on the volume of the gas or fluid enclosed by the structure
or by parts of the structure. It must be noted that the term cp is responsible
for the compression of the fluid due to its own dead weight.

2.5 Boundary Integral Representation of Volume and Center of
Volume

The goal of this approach is that all necessary quantities can be expressed by a
boundary integral representation. This allows to formulate all state variables
via an integration of the surrounding wetted surface. The fluid volume v and
the center c of the volume can be computed via:

v =
1
3

∫
η

∫∫ ∫
ξ

∫∫
x ·∗ n dξdη (10)

and c =
1
4v

∫
η

∫∫ ∫
ξ

∫∫
x x ·∗ n dξdη (11)

A large deformation analysis of the structure including the fluid can be per-
formed using a Newton type scheme for the solution by applying a Taylor
series expansion on the governing equations. The following linearization is
shown in short for all four cases discussed above. For details we refer to [1],
[6], [7].

3 Linearization of the Volume Contribution for Gas and
Fluid Models

Within the Newton scheme the deformed state is computed iteratively. Both,
the virtual expression and the different additional constraint equations have
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to be consistently linearized. The linearization of the virtual work expression
leads always to three parts, the residual part δphgΠtΠΠ , the follower force part
δphgΠ∆n and the pressure level part δphgΠ∆p

δphgΠlin = δphgΠtΠΠ + δphgΠ∆n + δphgΠ∆p (12)

=
∫

η

∫∫ ∫
ξ

∫∫
(phgpt

∗nt +phg pt∆
∗n + ∆phgp∗nt) · δu dξdη. (13)

3.1 Pneumatic and Hydraulic Model

The follower force part is dependent on the structural displacements ∆u re-
spectively the change of the non-normalized normal ∗n, and thus indirectly
on the size of the wetted surface with

∆∗n = ∆u,ξ ×xt,η +xt,ξ ×∆u,η . (14)

The pressure change differs only slightly for both models and is only depen-
dent on the volume change

pneumatic model: ∆pp = −κ
pt

vt

∫
η

∫∫ ∫
ξ

∫∫
∗nt · ∆u dξdη (15)

hydraulic model: ∆hp = −K

V

∫
η

∫∫ ∫
ξ

∫∫
∗nt · ∆u dξdη with V ≡ v0 (16)

Introducing both into (13) and integrating by parts, we obtain a field and
boundary valued problem. The boundary value part vanishes completely for
closed structures respectively the parts enclosing the gas/fluid volume. Thus
the linearized virtual expression reads:

δp,hΠlin = δp,hΠtΠΠ

− κ
pt

vt

∫
η

∫∫ ∫
ξ

∫∫
δu ·∗ nt dξdη

∫
η

∫∫ ∫
ξ

∫∫
∗nt · ∆u dξdη pneumatic

− K

V

∫
η

∫∫ ∫
ξ

∫∫
δu ·∗ nt dξdη

∫
η

∫∫ ∫
ξ

∫∫
∗nt · ∆u dξdη hydraulic

+
p,hpt

2

∫
η

∫∫ ∫
ξ

∫∫ ⎛⎝⎛⎛ δu
δu,ξ
δu,η

⎞⎠⎞⎞ ·
⎛⎝⎛⎛ 0 Wξ Wη

WξT 0 0
WηT 0 0

⎞⎠⎞⎞⎛⎝⎛⎛ ∆u
∆u,ξ
∆u,η

⎞⎠⎞⎞ dξdη (17)

with the skew symmetric tensors

Wξ =∗ nt ⊗ eξ − eξ ⊗∗ ntWη =∗ nt ⊗ eη − eη ⊗∗ nt. (18)

Obviously the final linearized expression is a symmetric displacement formu-
lation indicating that the proposed model is conservative as expected.
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3.2 Hydrostatic Loading – Incompressible Fluids Under Gravity
Loading

The follower force part depends as in 3.1 from the change in the normal and
of the gradient of the fluid under gravity loading. The latter comes into the
formulation after partial integration resulting in

δgΠ∆n
lin =

ρ

2

∫
η

∫∫ ∫
ξ

∫∫
δu · [g · eξWξ + geηWη ] ∆u dξdη

+
∫

η

∫∫ ∫
ξ

∫∫ gpt

2

⎛⎝⎛⎛ δu
δu,ξ
δu,η

⎞⎠⎞⎞ ·
⎛⎝⎛⎛ 0 Wξ Wη

WξT 0 0
WηT 0 0

⎞⎠⎞⎞⎛⎝⎛⎛ ∆u
∆u,ξ
∆u,η

⎞⎠⎞⎞ dξdη. (19)

It is obvious that the first part is non-symmetric and disappears if g is set to
zero. The interesting part is the volume conservation and its influence on the
pressure in the linearized form. The linearized pressure is a function of the
variation of the fluid level ∆0u and the local structural deformation ∆u

∆gp = ρg · (∆ou− ∆u). (20)

The volume change is zero thus the linearization is zero as well:

∆gv =
∫

η

∫∫ ∫
ξ

∫∫
∗nt · ∆u dξdη +

∫∫∫
η

∫∫∫
ξ

ont · ∆ou doξdoη = 0. (21)

Focusing on the fluid load part – the second part in (21) – we obtain based on
the direction of the normal on the fluid level, which is identical to the direction
of gravity, the components of the free fluid surface and the corresponding
displacement

ont = ont · g
|g| , (22)

∆ou = ∆ou · g
|g| . (23)

Thus the volume change due to the change in the fluid level can be written as

∆ov =
∫∫∫

η

∫∫∫
ξ

ont · g
|g|∆

ou · g
|g| doξdoη. (24)

Obviously both quantities in the integral are scalars; in addition the fluid
level displacement is uniform, thus we obtain

∆ov = ∆ou

∫∫∫
η

∫∫∫
ξ

ont · g
|g| doξdoη = ∆ouStSS . (25)
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StSS is the size of the water surface, which can also be computed via a boundary
integral over the enclosure of the fluid volume projected onto the direction of
gravity

StSS =
∫

η

∫∫ ∫
ξ

∫∫
∗nt · g

|g| dξdη. (26)

Thus the change in the water level height can be written as

∆ou =
∆ov

StSS
=

1
StSS

∫
η

∫∫ ∫
ξ

∫∫
∗nt · ∆u dξdη (27)

and the corresponding pressure change becomes

∆p = ρg · ∆ou− ρg · ∆u

= ρ
|g|
StSS

∫
η

∫∫ ∫
ξ

∫∫
∗nt · ∆u dξdη − ρg · ∆u. (28)

The linearized variational form of the gravity potential depending on the fluid
level is then obtained as

δgΠ∆p
lin =

∫
η

∫∫ ∫
ξ

∫∫
∆p∗nt · δu dξdη

= ρ
|g|
StSS

∫
η

∫∫ ∫
ξ

∫∫
δu ·∗ nt dξdη

∫
η

∫∫ ∫
ξ

∫∫
∗nt · ∆u dξdη

−ρ

∫
η

∫∫ ∫
ξ

∫∫
δu ·∗ nt g · ∆u dξdη. (29)

Obviously the second part of this equation is a non-symmetric term. However,
combining both non-symmetric parts of δgΠ∆n

lin and δgΠ∆p
lin , a symmetric ex-

pression results for the complete sum

δgΠlin = δgΠ∆n
lin + δgΠ∆p

lin + δgΠtΠΠ

= δgΠtΠΠ +

+ ρ
|g|
StSS

∫
η

∫∫ ∫
ξ

∫∫
δu · ∗nt dξdη

∫
η

∫∫ ∫
ξ

∫∫
∗nt · ∆u dξdη Term I

− ρ

2

∫
η

∫∫ ∫
ξ

∫∫
δu · (∗nt ⊗ g + g ⊗ ∗nt)∆u dξdη Term II

+
∫

η

∫∫ ∫
ξ

∫∫ gpt

2

⎛⎝⎛⎛ δu
δu,ξ
δu,η

⎞⎠⎞⎞ ·
⎛⎝⎛⎛ 0 Wξ Wη

WξT 0 0
WηT 0 0

⎞⎠⎞⎞⎛⎝⎛⎛ ∆u
∆u,ξ
∆u,η

⎞⎠⎞⎞ dξdη.

Term III (30)
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3.3 Compressible Fluids Under Gravity

Considering only the gravity potential of a compressible fluid, we have to
integrate over the total volume of the fluid

hgΠ = −
∫

v

∫∫
ρ(x)g · xdv + const. (31)

In general the density ρ(x) is dependent on the height of the fluid, however,
for technical applications with standard heights the density can be assumed
to be given by the law of mass conservation. Then for compressible and in-
compressible fluids the potential is only a function of the form and the volume
of the enclosed fluid

hgΠ = −ρ(v)
∫

v

∫∫
g · xdv + const. (32)

This can be written as a surface integral

hgΠ = −ρ(v)
∫

η

∫∫ ∫
ξ

∫∫
g · x x ·∗ n dξdη + const.

= −ρ(v)g · s , s: 1.order volume moment (33)

The corresponding linearized functional contains two major parts:

δhgΠlin = −δρ(v)g · s − ρ(v)g · δs. (34)

From mass conservation ρ(v)v = ρoV with ρo, V as reference values, we obtain

δρ(v) = −ρo
V

v2
δv = −ρ(v)

v
δv (35)

with
δv =

∫
η

∫∫ ∫
ξ

∫∫
∗n · δu dξdη. (36)

The variation of the second part is identical to the variation shown in the
previous paragraph. After defining the location of the center of gravity of the
fluid

c =
s
v
, (37)

the variation follows as

δhgΠ = ρ(v)
∫

η

∫∫ ∫
ξ

∫∫
g · (c− x) ∗n · δu dξdη. (38)

Introducing the compressibility of the fluid in an identical fashion as in 3.1
with Hooke’s law

hp(v) = −K
v − V

V
, (39)
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the final term of a compressible fluid is given as

δhgW = hgp(v)
∫

η

∫∫ ∫
ξ

∫∫
∗n · δu dξdη. (40)

It is of some help to subdivide the pressure into three parts, hp(v) as above
and

xp = ρ(v)g · x, (41)
cp = ρ(v)g · c. (42)

Then the form shown in (7) is given and linearization is a straightforward
process with

∆hgp = ∆cp − ∆xp − ∆hp (43)

∆cp = −2
cpt

vt

∫
η

∫∫ ∫
ξ

∫∫
∗nt · ∆u dξdη +

∫
η

∫∫ ∫
ξ

∫∫ xpt

vt

∗nt · ∆u dξdη (44)

∆xp = −
xpt

vt

∫
η

∫∫ ∫
ξ

∫∫
∗nt · ∆u dξdη + ρtg · ∆u (45)

∆hp = −K

V

∫
η

∫∫ ∫
ξ

∫∫
∗nt · ∆u dξdη (46)

The summary of the pressure changes introduced into the linearized virtual
work expression results in a symmetric displacement formulation. This implies
that the proposed model is conservative

δhgΠlin = δhgΠtΠΠ

+ (
K

V
− 2

cpt

vt
)
∫

η

∫∫ ∫
ξ

∫∫
∆u · ∗nt dξdη

∫
η

∫∫ ∫
ξ

∫∫
∗nt · δu dξdη part I

+
∫

η

∫∫ ∫
ξ

∫∫ xpt

vt

∗nt · ∆u dξdη

∫
η

∫∫ ∫
ξ

∫∫
∗nt · δu dξdη

+
∫

η

∫∫ ∫
ξ

∫∫
∗nt · ∆u dξdη

∫
η

∫∫ ∫
ξ

∫∫ xpt

vt

∗nt · δu dξdη part II

− ρt

2

∫
η

∫∫ ∫
ξ

∫∫
δu · (∗nt ⊗ g + g ⊗ ∗nt)∆u dξdη part III

+
1
2

∫
η

∫∫ ∫
ξ

∫∫
hgpt

⎛⎝⎛⎛ δu
δu,ξ
δu,η

⎞⎠⎞⎞ ·
⎛⎝⎛⎛ 0 Wξ Wη

WξT 0
WηT 0 0

⎞⎠⎞⎞⎛⎝⎛⎛ ∆u
∆u,ξ
∆u,η

⎞⎠⎞⎞ dξdη. (47)

part IV

The different linearized parts can be interpreted as follows:

I The multiplication of the two surface integrals indicates the volume de-
pendence of the compression level and of the pressure at the center of the
fluid volume.
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II The change of the local pressure is influenced by changes of the total
volume and changes of the location of the center of the volume.

III A hydrostatic pressure generates a nonuniform pressure field, which is rep-
resented by a symmetric field equation under realistic boundary conditions,
see [11], [12], [2].

IV Follower forces create a symmetric field equation too, considering realistic
boundary conditions, see [11], [12], [2], [4], [13].

4 FE-Discretization and Solution Algorithm

The virtual work expression

δW = δelV + δphgΠ − δexΠ = 0 (48)

followed by the linearization process as shown in chapter 3 leads to a residual
and a linear term, depending only on the surfaces of the wetted resp. closed
volumes. These terms have to be discretized with standard FE shell, mem-
brane or continuum elements. Thus the boundary description is based on the
surfaces of the FE elements wetted by the fluid or gas. Further, the discretized
and linearized constraint equations as Hooke’s law, the mass conservation of
the fluid and the computation of the pressure at the center of the structure
are included, resulting in general in a hybrid symmetric system of equations
for the coupled problem:⎡⎢⎢⎢⎢⎣⎢

el,phgK −a −b a
−aT −K

V
0 0

−bT 0 −2 cpv v
aT 0 v 0

⎤⎥⎥⎥⎥⎦⎥
⎛⎜⎛⎛⎜⎜⎜⎝⎜⎜

d
∆kp
∆ρ
ρ

∆cp

⎞⎟⎞⎞⎟⎟⎟⎠⎟⎟ =

⎛⎜⎛⎛⎜⎜⎜⎝⎜⎜
phgF

0
0
0

⎞⎟⎞⎞⎟⎟⎟⎠⎟⎟ . (49)

This symmetric system can be reduced to a conventional symmetric displace-
ment representation with the elastic and load stiffness matrix el,phgK =el

K+phg K, the residual phgF of internal elf , external exf and interaction forces
phgf , the nodal displacement vector d, a volume pressure gradient phgαt and
two rank-one vectors a and b

[el,phgK + b ⊗ a + a ⊗ b]d = phgF

= exf −phg f −el f (50)

This can be interpreted as a symmetric rank-two update of the matrix el,phgK
coupling all wetted degrees of freedom together. Applying the Sherman-
Morrison formula an efficient solution can be computed by two additional
forward-backward substitutions:

d1 =el,phg K−1 phgF, d2 = el,phgK−1 a, d3 =el,phg K−1 b. (51)

The load stiffness matrix and the other pressure related terms are:
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phgK = −ρt

2

∑
e

∫
η

∫∫ ∫
ξ

∫∫
NT (∗ngT + g ∗nT )N dξdη

+
1
2

∑
e

∫
η

∫∫ ∫
ξ

∫∫
phgpt

⎛⎝⎛⎛ N
N,ξ
N,η

⎞⎠⎞⎞T ⎛⎝⎛⎛ 0 Wξ Wη

WξT 0 0
WηT 0 0

⎞⎠⎞⎞⎛⎝⎛⎛ N
N,ξ
N,η

⎞⎠⎞⎞ dξdη,

(52)

a =
∑

e

∫
η

∫∫ ∫
ξ

∫∫
NT ∗nt dξdη, (53)

b =
∑

e

∫
η

∫∫ ∫
ξ

∫∫
phgαtNT ∗nt dξdη, (54)

phgf =
∑

e

∫
η

∫∫ ∫
ξ

∫∫
phgptNT ∗nt dξdη, (55)

phgαt =
K

2V
−

cpt −x pt

vt
, (56)

phgpt = cp − xp − hp. (57)

The nodal displacement vector for one iteration step is then given by a linear
combination of the three auxiliary solution vectors: d = d(d1,d2,d3). For
further details and the combination with arc-length schemes, we refer to [9]
and [5]. For the cases pneumatics, hydraulics and incompressible fluids with
open surfaces only a rank-one update is found. For pneumatics and hydraulics
the pressure terms due to gravity disappear with cp =x p = 0, as well as
the first term in phgK, as g is not existent then. Depending on the pressure
equation for gas or fluid

hαt = κ
kpt

vt
or hαt =

K

V
= const. (58)

and only a constant pressure term remains phgpt = −hpt.
For incompressible fluids phgK has the same structure as for compressible
fluids, but the pressure is dependent on the current coordinate of the fluid
only hgpt =x p = ρg(−xt). However, we have to note that incompressibility
can only be considered for fluids with open surfaces. For compressible fluids
with open surface the pressure term hp due to overpressure is not present.
Then the volume change due to the fluid weight is included in the cp-term.
However, in this case we have to keep also track of the current height of the
fluid level, which is discussed in a forthcoming paper.

5 Numerical Examples

5.1 Pneumatic Multi-Chamber Structure Under Torsional Loading

A pneumatic multi-chamber structure see Fig. 1, two chambers with different
initial internal pressure (left pl0 = 0.01 bar,right pr0 = 1 bar, with material
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Fig. 1. Pneumatic multi-chamber system with flexible walls; loading by different
initial internal pressure and torsion; geometrical data: a = 10 cm, b = 2 cm, ϕext =
45o, pl0 = 0.01 bar, pr0 = 1 bar

Fig. 2. Pneumatic multi-chamber system under torsional loading; internal pressure
vs. relative volume change

law St.-Venant Kirchhoff, Young’s modulus E = 2.4 · 104 N
cm2 , Poisson ratio

ν = 0.3 and wall thickness t = 0.1 cm is first loaded with the different internal
pressure. Then a torsional loading is applied by a rotation around the longitu-
dinal axis by ϕext = 45o. In the FE model the nodes at one end are moved by
prescribed displacements on circles in 20 equal sized steps. The chambers are
discretized by 2300 solid-shell elements. The results of the analysis show the
stiffening due to the internal pressure. The right chamber with high pressure
is behaving like a rigid body, whereas the left chamber with low pressure is
strongly deformed. The latter leads to a substantial increase of the internal
pressure as a result of the volume reduction, see Figs. 2 and 3.

As the wall between both chambers is deformable, the pressure increase
in the left chamber is also communicated to the right chamber resulting in
a minor pressure increase there, too. In addition, we have to note that no
stability problem arises during the deformation process; the dyadic extension
due to the internal pressure somehow stabilizes the structure considerably and
leads to a regularization of the equation system. The consistent linearization
of the developed algorithm is visible in the quadratic convergence in the last
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Fig. 3. Pneumatic multi-chamber system under torsional loading; (a) deformed
high and low pressure chambers, (b) undeformed structure, (c) deformed structure
without internal pressure

Table 1. Pneumatic multi-chamber system under torsional loading; convergence in
the last load step at ϕext = 45o

iteration step 1 2 3 4

energy 7.09 · 10+ 1 4.09 · 10−1 2.49 · 10−3 1.16 · 10−4

iteration step 5 6 7 8

energy 3.52 · 10−6 9.07 · 10−8 2.09 · 10−9 4.64 · 10−11

iterations of the load steps. See e.g. the convergence behavior in the last load
step at ϕext = 45o in Table 1.

5.2 Hydrostatics of Partially Filled Multi-Chamber System with
Interaction

This multi-chamber structure is chosen to show the effect of the interaction
between fluid loaded chambers during a filling process. An open tank structure
consisting of two deformable thin-walled chambers, separated by a thin wall
is filled, see Fig. 4. Material law: St.-Venant Kirchhoff, Young’s modulus E =
2.0 ·104 N

cm2 , Poisson ratio ν = 0.3, wall thickness t = 0.1cm, specific gravity of
the fluid ρg = 0.1 N

cm3 ). The complete structure is modelled with 1100 solid-
shell elements. In the first load step the left chamber is partially filled up
to w10 (V1VV = 375cm3). Then the right chamber is filled with 30 equal sized
volume steps of ∆V ∗

2VV = 25 cm3 starting with w20 = 0. In each load step the

a)

b)

c)

pl0, pr0 �= 0��

initial state, FE mesh

pl = pr = 0
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Fig. 4. Hydrostatics of multi-chamber system with interaction during filling; geo-
metrical data: a = 5cm, b = 10cm, c = 5cm, h = 30cm

new filling height in the right chamber is determined via ox2 =o xt2+∆u2 with
∆u2 = V ∗

2VV
St2

using the free surface StSS 2 computation. The chamber structure is
deforming during the filling process and also the fluid level w1 of the left
chamber is rising as a result of the filling of the right chamber, see Figs. 5
and 6.

5.3 Elastic Cylindrical Vessel Fully Filled with Fluid

An elastic cylindrical vessel (weightless, elastic modulus E = 21 · 1010 N
m2 ,

Poisson’s ratio ν = 0.3) with a very thin wall - close to a membrane - is
completely filled with water (density ρ = 1000 kg

m3 , bulk modulus K = 0.5 ·
109 N

m2 ). In a first load step the vessel is pressurized by 1 bar at the top of
the vessel indicating the weight of the plate. In a second step the structure is
loaded by a given displacement uext of the loading plate, see Fig. 7b.

w2

c

b

a

w1h
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a) b) c)

Fig. 5. Hydrostatics of multi-chamber system with interaction during filling; loading
states: (a) left chamber filled up to w10, right chamber empty, (b) right chamber
partially filled and (c) after last load step (completely filled)

Fig. 6. Hydrostatics of multi-chamber system with interaction during filling; w10

fluid level in left chamber before filling of right chamber; fluid level w1 in left chamber
versus fluid level w2 in right chamber

Due to the deformation density and volume change according to the conser-
vation of mass, see Fig. 8a. The decrease of the volume implicates an increase
in the pressure level hp in the fluid. For comparison only a gas filling is con-
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Fig. 7. Elastic cylindrical vessel fully filled (a) geometry and loading: height h =
10m, diameter d = 10m, piston displacement uext = 4m; (b) radial displacement
vectors - first load step, (c) radial displacement vectors - final load step

Fig. 8. Elastic cylindrical vessel fully filled (a) mass conservation vs. piston displace-
ment uext, (b) fluid pressure hp / gas pressure pp vs. fluid volume v, (c) location of
center c of volume vs. piston displacement uext

sidered too, see Fig. 8b. A provisional result is the position of the center of
the volume, which changes with the displacement of the piston, see Fig. 8c.
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5.4 Fluid Filling of Strongly Deformable Thin-Walled Shell

In order to show the ability of the model to capture more numerically difficult
situations the filling of a very thin-walled 2D-shell structure showing fairly
large deformations almost similar to the deployment of membrane structures
is chosen. The shell modelled with 8-node solid-shell elements is assumed to
be weightless; material is of Neo-Hooke rubber type with elastic modulus
E = 9.6 · 103 N

m2 , Poisson’s ratio ν = 0.3, t = 1mm; the water is assumed
to be incompressible, specific gravity of the fluid ρg = 0.01 N

cm3 . The filling is
performed via an external piston see Fig. 9.

Fig. 9. Fluid filling of a strongly deformable shell, initial geometry and loading

A deformed situation is depicted in Fig. 10 with an almost filled structure.
The shell is discretized with three different meshes of equal sized elements.

During the filling the water level is rising and touches the elements often
only partially. As then the water pressure is checked at the Gauss-points of the
surface (2*2 integration) convergence becomes difficult. In particular, when
the load level comes into contact with the almost horizontal element faces,
the number of iterations is rising, as minor changes in the water level lead to
a major change in the wetted surface. As depicted in Fig. 11 the water level
shows a rather linear dependence of the piston motion resp. the added water
volume.

From the diagram in Fig. 12 we see that the algorithm allows a separation
of the water surface without any problem which is more visible for the coarser
mesh. The stiffer behavior of coarser mesh leads to a rather early separation
whereas the finer meshes show a separation at an almost filled state, see e.g.
Fig. 10. For a complete filling it would be necessary to take the compressibility
of the water into account which is the subject of a forthcoming paper [9].

5 cm

n
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Fig. 10. Fluid filling of a strongly deformable shell; deformed state with almost
fully filled structure

Fig. 11. Fluid filling of a strongly deformable shell; water level vs. added water
volume

6 Conclusions

The proposed approach to describe the gas and fluid effects and their inter-
action with deforming structures by state equations has several advantages.
First, the mesh-free modelling of the fluid resp. the gas allows to perform
large deformation analysis without remeshing. Second, contact models be-
tween fluid and structure are not necessary. Third, stability investigations
can be carried out taking the specific decomposition of the stiffness matrix
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Fig. 12. Fluid filling of a strongly deformable shell; free water surface vs. water
height

of the coupled problem into account, see [7]. Fourth, the solution of the cou-
pled equation can be efficiently performed based on the subsequent use of
the Sherman-Morrison formula involving only the triangular decomposition
of the structural matrix. Summarizing all, the computational effort is signifi-
cantly lower and better adjusted than in conventional methods based on full
discretization. The numerical examples show the efficiency of the applications
to thin-walled structures though due to the highly nonlinear behavior con-
vergence is often rather difficult to achieve. Some of our forthcoming work is
devoted to the static unfolding and filling of very flexible folded membrane
like structures.
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