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Summary. The task of determining appropriate forms for stressed membrane sur-
face structures is considered. Following a brief introduction to the field, the primitive
form-finding techniques which were traditionally used for practical surface design are
described. The general concepts common to all equilibrium modelling systems are pre-
sented next, and then a more detailed exposition of the Force Density Method follows.
The extension of the Force Density Method to geometrically non-linear elastic anal-
ysis is described. A brief overview of the Easy lightweight structure design system
is given with particular emphasis paid to the formfinding and statical analysis suite.
Finally, some examples are used to illustrate the flexibility and power of Easy’s
formfinding tools.
The task of generating planar cutting patterns for stressed membrane surface struc-
tures is considered next. Following a brief introduction to the general field of cutting
pattern generation, the practical constraints which influence textile surface structures
are presented. Several approaches which have been used in the design of practical
structures are outlined. These include the physical paper strip modelling technique,
together with geodesic string relaxation and flattening approaches. The combined
flattening and planar sub-surface regeneration strategy used in the Easy design sys-
tem is described in detail. Finally, examples are given to illustrate the capabilities of
Easys cutting pattern generation tools.

1 Introduction

Contrary to the design of conventional structures a form finding procedure is needed
with respect to textile membrane surfaces because of the direct relationship between
the geometrical form and the force distribution. A membrane surface is always in the
state of equilibrium of acting forces, and is not defined under unstressed conditions.
In general there are two possibilities to perform the formfinding procedures: the
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physical formfinding procedure and the analytical one. The physical modelling of
lightweight structures is characterized by stretchening a soft rubber type material
between the chosen boundary positions in order to generate a physically feasible
geometry. It has limitations with respect to an accurate description due the small
scale of the model. The computational model allows for a proper description by
discretizing the surface by a large number of points: a scale problem does not exist
any more. Therefore the computational modelling of lightweight structures becomes
more and more important; without this technology advanced lightweight structures
cannot be built.

2 Analytical Formfinding

The analytical formfinding theories are based on Finite Element Methods in general:
the surfaces are divided into a number of small finite elements like link elements
or triangular elements for example. In such a way all possible geometries can be
calculated. There are two theories established in practice: The linear Force Density
Approach which uses links as finite elements and the nonlinear Dynamic Relaxation
Method based on finite triangles.

The Force Density Method

The Force Density Method was first published in [1] and extended in [2-3, 9]. It is a
mathematical approach for solving the equations of equilibrium for any type of cable
network, without requiring any initial coordinates of the structure. This is achieved
through the exploitation of a mathematical trick. The essential ideas are as follows.
Pin-jointed network structures assume the state of equilibrium when internal forces
s and external forces p are balanced.

In the case of node i in Fig. 1

sa cos(a, x) + sb cos(b, x) + sc cos(c, x) + sd cos(d, x) = px

sa cos(a, y) + sb cos(b, y) + sc cos(c, y) + sd cos(d, y) = py

sa cos(a, z) + sb cos(b, z) + sc cos(c, z) + sd cos(d, z) = pz

where sa, sb, sc and sd are the bar forces and f.i. cos(a, x) is the normalised projection
length of the cable a on the x-axis. These normalised projection lengths can also
be expressed in the form (xm − xi)/a. Substituting the above cos values with these
coordinate difference expressions results in

sa

a
(xm − xi) +

sb

b
(xj − xi) +

sc

c
(xk − xi) +

sd

d
(xl − xi) = px

sa

a
(ym − yi) +

sb

b
(yj − yi) +

sc

c
(yk − yi) +

sd

d
(yl − yi) = py

sa

a
(zm − zi) +

sb

b
(zj − zi) +

sc

c
(zk − zi) +

sd

d
(zl − zi) = pz

In these equations, the lengths a, b, c and d are nonlinear functions of the coor-
dinates. In addition, the forces may be dependent on the mesh widths or on areas of
partial surfaces if the network is a representation of a membrane. If we now apply
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Fig. 1. Part of a cable network

the trick of fixing the force density ratio sa/a = qa for every link, linear equations
result.

These read

qa(xm − xi) + qb(xj − xi) + qc(xk − xi) + qd(xl − xi) = px

qa(ym − yi) + qb(yj − yi) + qc(yk − yi) + qd(yl − yi) = py

qa(zm − zi) + qb(zj − zi) + qc(zk − zi) + qd(zl − zi) = pz

The force density values q have to be choosen in advance depending on the
desired prestress. The procedure results in practical networks which are reflecting
the architectural shapes and beeing harmonically stressed. The system of equations
assembled is extremely sparse and can be efficiently solved using the Method of
Conjugate Gradients as described in [3].

3 Analytical Formfinding with Technet’s Easy Software

The 3 main steps of the Analytical Formfinding of Textile Membrane with the tech-
net’s EASY Software are described as follows:

1. Definition of all design parameters, of all boundary conditions as: the coordi-
nates of the fixed points, the warp -and weft direction, the mesh-size and mesh-
mode (rectangular or radial meshes), the prestress in warp- and weft direction,
the boundary cable specifications (sag or force can be chosen).

2. The linear Analytical Formfinding with Force Densities is performed: the results
are: the surface in equilibrium of forces, described by all coordinates of points
on the surface, the stress in warp- and weft direction, the boundary cable-forces,
the reaction forces of the fixed points. The stresses in warp and weft-direction
and the boundary forces may differ in a small range with respect to the desired
one from Step 1.
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3. Evaluation and visualization tools in order to judge the result of the formfinding.
The stresses and forces can be visualized, layer reactions can be shown, contour-
lines can be calculated and visualized, cut-lines through the structure can be
made.

4 Force Density Statical Analysis

The Force Density Method can be extended efficiently to perform the elastic anal-
ysis of geometrically non-linear structures. The theoretical background is described
in detail in [3] where it was also compared to the Method of Finite Elements. It
was shown that the Finite Element Method’s formulae can be derived directly from
the Force Density Method’s approach. In addition, the Force Density Method may
be seen in a more general way. According to [3] it has been proven to be numeri-
cally more stable for the calculation of structures subject to large deflections, where
sub-areas often become slack. The nonlinear force density method shows powerful
damping characteristics.

Prior to any statical analysis, the form-found structure has to be materialized.
Applying Hooke’s law the bar force sa is given by:

sa = EA
a − a0

a0

where A is the area of influence fore bar a, E is the modulus of elasticity, and a0 is
the unstressed length of bar a. Substituting sa by qa according to qa = sa/a results
in

a0 =
EAa

qaa + EA

Because of a being a function of the coordinates of the bar end points, the
materialized unstressed length is a function of the force density qa, the stressed
length a and the element stiffness EA.

In order to perform a statical structural analysis subject to external load, the
unstressed lengths have to be kept fixed. This can be achieved mathematically by
enforcing the equations of materialization together with the equations of equilibrium.
This system of equations is no longer linear. The unknown variables of the enlarged
system of equations are now the coordinates x, y, z and the force density values q.
Eliminating q from the equations of equilibrium, by applying the formula above to
each bar element, leads to a formulation of equations which are identically to those
resulting from the Finite Element Method. Directly solving the enlarged system
has been shown to be highly numerically stable, as initial coordinates for all nodes
are available, and positive values or zero values for q can be enforced through the
application of powerful damping techniques.

The usual relationship between stress and strain for the orthotropic membrane
material is given by: [

σuu

σvv

]
=

[
e1111 0

0 e2222

][
εuu

εvv

]
The warp-direction u and the weft-direction v are independent from each other;

this means: the stress in warp-direction σuu f.i. is only caused by the modulus of
elasticity e1111 and the strain εuu in this direction. Because of this independency
cable net theories can be used also for Textile membranes.
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In [4] the Force Density Method has been applied very favorably to triangular
surface elements. This triangle elements allow the statical analysis taking into con-
sideration a more precise material behavior in case of Textile membranes. Actually
the both material directions u and v are depending from each other; a strain εuu

leads not only to a stress in u-direction but also to a stress σvv in v-direction caused
by the modulus of elasticity e1122. The fact that shear-stress depends on a shear-
stiffness e1212 seems not to be important for membranes because of its smallness[

σuu

σvv

σuv

]
=

[
e1111 e1122 0
e2211 e2222 0

0 0 e1212

][
εuu

εvv

εuv

]
Using these constitutive equations Finite Element Methods should be applied.

We are using in this case the finite triangle elements.

5 Further Extensions of the Force Density Approach

The force density approach can be favorably exploited for further applications.
According to [3] the following system of equations of equilibrium is valid:

CtQCx = p

C is the matrix describing the topology of the system, Q is the diagonal matrix
storing the force density values, x contains the coordinates of the nodes of the
figure of equilibrium and p the external forces acting on the structure. For linear
formfinding C, Q and p are given, x is the result of the above equation.

In some applications it might be of interest to know, how close a given geomet-
rical surface will represent a figure of equilibrium. In this case C, x and p are given
and q is searched for. As there might be no exact solution to the task described
above the best approximating solution is achieved allowing for minimal corrections
to the external forces. The system now reads:

CtUq = p + v

U now represents a diagonal matrix of coordinate differences (C x), q the force
density values, and v the residuals of the systems to be minimal.

Solving the system of equations, applying the method of least squares, results in
best approximating force density values for any given surface under external loads
or subject to internal prestress, if some force density values are chosen as fixed in
the structure.

As shown in [3] the system can be extended even further, by choosing q and x
as observables and enforcing the equations of equilibrium, according to the method
of least squares condition equations. In this case an architectural design can be best
approximated computationally, enforcing the necessary conditions. This extension
proves to be a powerful optimization strategy.

6 Statical Analysis with Technet’s Easy Software

The statical Analysis of lightweight structures under external loads can be performed
after three introducing steps:
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1. To define stiffness values to all finite membrane and cable elements.
2. To calculate the unstressed link lengths by using the assigned stiffness valueses

and the prestress of the membrane and the forces in the cables of the formfinding
result.

3. To check if the result of the statical analysis with the loads of the formfinding
procedure is identical with the formfinding result.

After these three steps, the statical analysis without beam elements under ex-
ternal loads can be achieved very easily.

1. To calculate the external load vectors as for example snow, wind or normal
loads.

2. To perform the nonlinear statical analysis: the approximate values, which are
needed in this nonlinear process, are given by the formfinding result.

3. Evaluation- and visualization tools in order to judge the result of the stati-
cal analysis. The stresses and forces can be visualized and compared with the
maximum possible values. Stresses, forces and layer reactions can be shown,
contour-lines can be calculated and visualized, cut-lines through the structure
can be made, deflection of the nodes can be calculated.

If beam elements are included, the statical analysis under external loads has to
be done as follows: all data for the beam-elements as cross-section areas, moments
of inertia, local coordinate systems, joints, etc. have to be defined firstly. In order
to set all these values in a convenient way the user is supported by a Beam-Editor
in EasyBeam.

Fig. 2. The Easy beam editor
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Then -see above- the steps 1-3 follow. The Beam Editor is also used for checking
the results as internal forces and moments, layer-reactions, flexibility-ellipsoids, etc.

7 The Complete Easy Lightweight Structure Design
System

The Easy system is composed of a number of program suites. These are represented
schematically in Fig. 3.

EasyForm Formfinding of lightweight structures
EasySan Nonlinear Statical Load Analysis (without Beam elements)
EasyCut Cutting pattern generation
EasyBeam Nonlinear hybride Membrane structures including Beam elements
EasyVol Formfinding and Load Analysis of pneumatic constructions

Fig. 3. The Easy program suites

EasyForm comprises the programs used for data generation together with force
density form-finding. When the EasySan programs are additionally installed stat-
ical structural analysis of non-linear structures becomes possible. The EasyCut

EasyForm EasySan EasyCut

EasyBeam EasyVol
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programs enable the generation of high quality planar cutting patterns from Easy-
Form output.

In most situations the incorporation of geometrically non-linear bending ele-
ments to lightweight structure models is not economically appropriate. Rather, it
is more convenient to treat the beam supports as fully fixed points. The result-
ing reaction forces on these points are then exported to conventional rigid frame
design packages as applied loads. Such a decoupled analysis is appropriate if the
resulting deflections are low. However for a sensitive structure decoupling may not
be adequate, due the strong interaction of forces causing geometry changes of the
membrane surface and the beam elements. In this case the EasyBeam add-on
module permits the incorporation of geometrically non-linear frame elements [5].

EasyForm and EasySan together can deal with all standard pneumatic struc-
tural configurations which have defined internal pressure prestress. In situations
with closed volumes, such as high pressure air beams, this assumption is not valid.
It becomes necessary to use more sophisticated algorithms which constrain the cell
volumes to prescribed values, and vary the internal pressure accordingly.

Fig. 4. Formfinding and statical analysis under inner pressure and buoyancy

8 Cutting Pattern Generation of Textile Structures

The theory, being used to project a 2D surface in 3 dimensional space to a 2D surface
in a plane is very old; it is part of the mathematical field named map projection
theory. For example the Mercator Projection dates back to the 17th century.

The surfaces, which are used in practical membrane structure design are in gen-
eral not developable without distortions. In addition there does not exist a geomet-
rical shape without prestress. The map projection theories -used for the flattening
of textile membranes- minimize the distortions with respect to lengths, angles and
areas respectively.
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Fig. 5. Mercator projection

Fig. 6. Triangles non deformed (3D) and deformed (2D)

The theory to be applied optimizes the total distortion energy by means of the
adjustment theory.

The surface, which has to be flattened is described using finite triangles. The
distortion between the non deformed and deformed situation can be calculated and
has to be minimized for all triangles.

The paper strip method is exactly described in [10]. Practical examples are
described in [6-8].

Fig. 7 illustrates the paper strip method. A paper is pressed on the surface of
the physical model in such a way, that the seam line and the border of the paper
are touching each other as good as (in general the paper strip will touch the surface
only in one common line, with an increasing distance from this line the difference
between paper strip and surface becomes larger.) In the next step a needle is used
to perforate the paper strip in a certain number of equidistant points so that the
neighboring seam or the boundary line is reached on the shortest way. In doing so
the direction of the needle has to be perpendicular to the surface. The connection
of the needle holes by straight lines on the flat paper strip leads to the patterns.
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Fig. 7. Paper strip method

9 Cutting Pattern Generation with Technet’s Easy
Software

The Cutting pattern generation can be performed in the following steps:

1. Geodesic lines are created as seam lines.
2. Cutting procedures are used to cut the surface into different sub-surfaces ac-

cording to these geodesic lines.
3. Ways of flattening are achieved: map projection, paper strip method.
4. Spline algorithms are applied to create equidistant points on the planar circum-

ference.
5. Boundary adjustment is performed in order to produce identical seam lengths.
6. Compensation values are defined to compensate the strips.
7. Job-drawings are produced.

10 Flexibility Ellipsoids for the Evaluation of Mechanical
Structures

The geodetic network adjustment determines the geometrical position of points con-
nected by link observables. In general the adjustment theory was invented by C.F.
GAUSS by mimizing the residuals of the observations. The process is well known as
Least-Squares-Method.
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Fig. 8. Cutting patterns

Fig. 9. Error-ellipses in a geodetic network

Analogical relationships between this adjustment theory and the calculation of
mechanical structures exist due to the fact that in mechanical structures minimal-
principles are valid too; the total energy is minimal.[5] The error-ellipsoids of the
geodetic network adjustment have been an important tool for the evaluation of the
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point quality for more than 100 years, they show very descriptively the accuracy of
the points [14].

The error-ellipsoids of the geodetic network adjustment are an essential tool used
for the evaluation of mechanical structures too. The relation between the deflection
v and the external loads p in the global coordinate system is given using the stiffness
matrix S

Sv = p

The inverse relation is

S−1p = Fp = v

The inverse stiffness matrix F is usually called flexibility matrix; the matrix de-
fines the relation between the external loads at a node and the according deflections.
In detail, we receive for a node with the coordinates (x, y, z):⎡⎢⎢⎢⎢⎢⎢⎣⎢

. . .
...

...[
fxxff fxyff fxzff

fyyff fyzff
sym. fzzff

]
...

sym.
. . .

⎤⎥⎥⎥⎥⎥⎥⎦⎥
⎡⎢⎢⎢⎢⎢⎢⎣⎢

...[
px

py

pz

]
...

⎤⎥⎥⎥⎥⎥⎥⎦⎥ =

⎡⎢⎢⎢⎢⎢⎢⎣⎢
...[

vx

vy

vz

]
...

⎤⎥⎥⎥⎥⎥⎥⎦⎥
For the following deductions the submatrix F as 3×3 matrix has been introduced

for any point P and the 3 × 1 vectors p and v referring also to this point. F is now
not any more the total flexibility matrix, but only a sub matrix with 9 elements, p
are the 3 components of the external load and v the deflections of the point. Let us
assume, that all point loads are zero with the exception of the considered point, then
the sub matrix F describes the relation between the point load and the deflections
of the point. All other elements in F are not important in this context, because they
are multiplied with zero. Hence, we receive for a free point:

Fp = v

In detail [
fxxff fxyff fxzff

fyyff fyzff
sym. fzzff

][
px

py

pz

]
=

[
vx

vy

vz

]
How the deflections v and the external loads p are transformed by an orthogo-

nal transformation R (orthogonal means: the transposed matrix equals the inverse
matrix Rt = R−1), the deflections are in the transformed system u and the loads q

u = Rtv → v = Ru
q = Rtp → p = Rq

The relation between the deflections u and the loads q is after some conversions:

u = RtFRq = Dq

Now the question arises, if there is a matrix R generating a matrix D having
only diagonal elements. The answer is yes, if F is symmetric with real values. F
is always real symmetric in the described applications and also positive definite if
there is a stable equilibrium; therefore all eigenvalues are real and all eigenvectors are
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orthogonal to each other. The diagonal elements of the matrix D are the eigenvalues
of F, the matrix of rotations R is generated by the eigenvectors.

This can easily be proofed. We suppose the eigenvalues of 3 × 3. Matrix F to
be d1, d2 and d3 and the corresponding eigenvectors to be r1, r2 and r3. The unit
matrix is E. We have at the beginning for the calculations of the eigenvalues:

Fr1 = d1r1 → (F − d1E)r1 = 0
Fr2 = d2r2 → (F − d2E)r2 = 0
Fr3 = d3r3 → (F − d3E)r3 = 0

We define the diagonal matrix D with the diagonal elements d1, d2 and d3 and
the rotation matrix R = (r1, r2, r3). Doing so, we receive from the upper equations:

FR = RD

The eigenvectors R are pair wise orthogonal to each other, therefore the orthog-
onality of R is obvious, hence RRt = E. Multiplication from the left hand side with
Rt leads to

RtFR = RtRD = ED = D

We have seen, that the eigenvalues of the matrix F are the diagonal elements of
the diagonal matrix D. This matrix give the relation in a rotated coordinate system
between the deflection u and the external loads q

u = Dq

whereby we receive the new coordinate system by creating the rotation matrix R
using the eigenvectors. The upper equation reads in detail.

Now we are investigating which surface is created by the deflections u = (u, v, w),
if the external load [

u
v
w

]
=

[
d1 0 0
0 d2 0
0 0 d3

][
qu

qv

qw

]
vector q = (qu, qv , qw) is showing in any direction having the size 1. We receive:

ququ + qvqv + qwqw = 1

In general the matrix F is positive definite; all eigenvalues are therefore positive.
We get immediately with qu = u/d1, qv = v/d2 and qw = w/d3 the equation of an
ellipsoid

ququ + qvqv + qwqw =
u2

d2
1

+
v2

d2
2

+
w2

d2
3

= 1

as a surface being created by the deflections, if the unit load vector is rotating around
a point

uF = fq

We see, that the direction of the external load q and the direction of the de-
flections are only identical in case of a sphere, if d1 = d2 = d3. In general we do
not have a sphere, therefore we investigate the question, which geometrical figure
is created, if the size of the deflection is accorded to the direction of the external
load q; the point on the load vector having the size of the total deflection is called root
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point F ; its coordinates are: [
uF

vF

wF

]
= f

[
qu

qv

qw

]
The load q leads to the deflections u = [ u v w ]. Because of the fact that the

load has the size 1, is f the total length of the deflection, hence:

f2 = u2
F + v2

F + w2
F = u2 + v2 + w2

Also [
u
v
w

]
=

[
d1qu

d2qv

d3qw

]
=

[
d1uF f−1

d2vF f−1

d3wF f−1

]
We receive by substituting

f2 = u2
F d2

1f
−2 + v2

F d2
2f

−2 + w2
F d2

3f
−2 = u2 + v2 + w2

By a simple conversion we end up with the equation of a so-called Booth-
Lemniscate

f4 − u2
F d2

1 − v2
F d2

2 − w2
F d2

3 = 0

In general written as follows

(u2
F + v2

F + w2
F ) − u2

F d2
1 − v2

F d2
2 − w2

F d2
3 = 0

Fig. 10. Flexibility ellipsoide and lemniscate
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The lemniscate has 6 common points with the ellipsoid of the deflections, this are
the points on the local coordinate axis of the ellipsoid. In this 6 point the direction
of the external loads and the deflections of the point are identical.

The example in Fig. 12 clarifies that the points being far from the fixed points
are generally more flexible than the closed ones.

In Fig. 13 we see immediately that the points in the upper layer are very flex-
ible in tangential directions. In order to change this behavior diagonals should be
introduced [11].

Fig. 11. Side views

Fig. 12. 2-dimensional structure
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Some remarks to the practical realization of the flexibility ellipsoids in computer
software.

Due to the fact, that the inverse stiffness matrix is generally not calculated;
conventional methods to solve this matrix are very time consuming and also intensive
with respect to storage. In those cases the ellipsoids cannot be calculated. However,
we are using in so-called hyper sparse algorithms, which are storing only the non-
zero elements [12],[13] and generates the inverse for only those elements needed.
Without such a strategy the calculation of those ellipsoids is not possible for large
structures.

Fig. 13. 3-dimensional space-structure

11 Conclusions

It has been shown that, by using a modular approach for the design of membrane
structure surfaces, the resulting system is extremely powerful and flexible. The very
large number of structures which have been built using the Easy tools (many thou-
sands) prove the validity of this strategy.
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