
Fabric Membranes Cutting Pattern

Bernard Maurin1 and René Motro´ 2
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1 Introduction

Tensile fabric membrane design implies successive stages, each of one related
to particular problems requiring well adapted approaches and appropriated
results.
The first step of the analysis deals with the form-finding process that corre-
sponds with the coupling in lightweight structures between the form (geome-
try) and the forces (initial tension). The objective is to determine the shape
of the membrane associated to its prestress distribution. A good control on
the tension in the fabric must be obtained in order to have suitable stresses,
for instance that ensure the absence of compressive zones.
The following stage focuses on the realization of the tensile membrane calcu-
lated during the form-finding. More precisely, the objective is to determine the
starting configuration (set of plane strips) which, once assembled on the site
according to specified anchoring conditions, will lead closely to the required
surface, that is to say to the theoretical one (target strip) calculated during
the shape-finding procedure with its associated characteristics of form and
prestress. The erection process indeed generated deformations on each strip
that will define in the end a mechanically equilibrated geometry coupled with
a prestress distribution. The purpose is to minimize the differences between
the target state and the therefore obtained state. It corresponds with the cut-
ting pattern stage.
In case of low deviances, the prejudice will be essentially aesthetic such as
disgraceful folds (Fig. 1 left) but, in case of higher differences, the integrity
of the whole structure could be affected since large membrane zones may be
less or not tensioned, this leading to major risk of failure (wind fluttering,
horizontal areas with stagnant rain water..., Fig. 1 right). The cutting pat-
tern necessitates the specification of the surface cutting lines also called strip
edges. This procedure has to take into consideration several parameters like-
wise technology, geometry, mechanics and aesthetics.
Each strip being so identified, the designer must next calculate the associated
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plane fabric cutting patterns. Most of the used methods split the process into
two different stages. In the first one, the 3D strip is flattened onto a projection
plane; in the second, the pretension of the membrane is considered so as to
reduce its dimensions.

Fig. 1. Folds at strip edges; compressive zones

2 Strip Edges Determination

This process results in determining the balance between various, and some-
times opposite, requirements.

2.1 Technological Issues

The design must firstly take into account the maximum strip widths in connec-
tion with the products available from fabric manufacturers. Generally, mem-
branes are supplied in the form of 2m width rolls [5]. After cutting, the strips
are assembled by thermo-welding (fusing of the material between high fre-
quency electrodes and pasted by applying a pressure); the resulting membrane
is next transported to the erection site.
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2.2 Geometrical Issues

Some designers consider as necessary to have strip edges along geodesic curves
([2] and [14]). It allows indeed, in the particular case of surfaces that are devel-
opable onto a plane (on the mathematical meaning), to generate straight lines
in accordance with an economical objective of minimal material wastes. This
approach may however be relativized since, in the case of double curvature ge-
ometries, the surfaces are not developable: we know that such operation leads
to unavoidable distortions. It is then judicious to use low dimension strips on
a surface zone with high total curvatures. A numerical method devoted to the
calculation of membrane curvatures is presented in appendix. Nevertheless,
this consideration has to be balanced with a resulting increase of the cutting
operations and welding lengths and therefore of the total cost.

2.3 Mechanical Issues

The production of the fabric does not end in a perfect isotropy between the
warp and weft directions (higher strength and stiffness for the warp) even if
improvements in production processes aim to reduce this difference. The low
shear strength of the fabric has also to be taken into account. Thus, an ideal
configuration will be related to the positioning of the strip edges, that corre-
spond after cutting approximately with the warp direction, along the direction
of the main forces, that is to say the maximum principal stresses. In that case,
the fabric weft is thus turned on to the minimum stresses directions with re-
sulting shear forces close to zero. All of these theoretical considerations have
however to be balanced with practical aspects: inexistence of exact solution,
knowledge of stresses due to the initial stresses in the fabric and to climatic
effects. If the action of wind is paramount (pressure normal to the surface),
then the directions of maximum stresses correspond with the directions of
the membrane maximum curvatures. For snow (vertical action) the answer
is much more complex but some basic cases such as the radial positioning of
the strip edges at the top of anchoring masts (Fig. 2). In addition to these
requirements dealing with the surface, others considerations are related to
the membrane edges. Since the initial pretension is applied by progressively
tensioning edge cables, it is necessary that strip edges be orthogonal to these
cables.
However, so as to point out the problems associated to particular situations,
we quote the case of the design of Mina Valley tents in Mecca build for pilgrims
[10]. The project, realised in two stages in 1997/98, is composed of 40000 tents
with a rectangular frame (from 4x4m to 8x12m) with a vertical mast at middle.
The membranes build during the first stage are based upon the basic radial
positioning of strip edges, but the difficulties in tensioning the fabric with the
mast have lead to prohibited folds on the surface. The designers of the second
team have then decided to set the strip edges parallel to the anchoring sides.
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Fig. 2. Radial strip edges

Fig. 3. Strips used for the Mina project stage 2

It was allowed by the absence of snow and has resulted in the vanishing of the
folds (Fig. 3).
We emphasize herewith on the fact that small structures design may gen-
erate more difficulties than wider membranes design since the dimension of
the fabric rolls appears as important with reference to the dimensions of the
structure.

2.4 Aesthetical Issues

The approach could however be modified when architects play a role. Their
creativity may for instance leads to the making of geometric drawings by using
fabric samples of different colours. Moreover, since the visual perception of
the surface is dependant on the strip edges positioning, mainly at night, this
architectural feature could lead to specific patterning strategies.
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3 Cutting Shapes Determination

3.1 Background

Before presenting several used methods, we aim to point out some significant
principles.
Since the objective is to have a good adequacy between the target state and
the real state, it is thus necessary for each strip to evaluate the result in the
light of the morphological parameters of forms and forces:
- If the geometry of the strip put into place is close to those theoretically de-
termined during the form-finding stage, we will say that it exists a geometrical
equivalence between the two strips. However, one point has to be respected:
an edge belonging to two strips must have the same length on the plane cut-
ting shapes so as to allow their future assembly.
- Similarly, if the prestress field generated in the strip is close to the required
one, the sthenical equivalence is ensured. We may observe that it implies the
perfect knowledge of the selfstress state determined during the form-finding
process.
Nevertheless, these two principles only represent a virtual reality since it is
illusory to expect a complete equivalence but very particular cases. A pattern-
ing method without taking into account all the geometric and sthenic data
will however not offer the possibility to have an optimal solution to the prob-
lem. The same comment is also relevant if these considerations are not seen
as indissociable and so envisaged as two separate steps (flattening and then
reduction). We remark that, as far as we can know, most of the used methods
are based upon such splitting.
Let’s now have a look on the existing flattening processes.
The first technique is the simple triangulation method (Fig. 4). The 3D strip
(a) determined by form-finding is mapped with a series of triangles between
the longest edges, leading to the geometry (b). The obtained triangles are
next successively flattened onto a plane by keeping identical the lengths of
their sides (c). Since this method is quick and easy to apply, it is at the core
of numerous CAD tools.

Fig. 4. Simple triangulation method
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We may however note that it does not take into consideration a lot of points:
those located inside the strip and some on top and bottom edges. Its use
therefore requires caution so as to avoid important errors.
Several authors have thus proposed improved processes. L. Gründig has put¨
forward a method which takes into account all the points belonging to the
strip edges [7]; this objective being also one of H. Tsubota’s aims [13]. In
both cases, the geometry of edges is calculated by using minimization error
processes. We may regret that data of internal points are still avoided. The
method proposed by T. Shimada ([12] and [1]) offers some improvements on
that purpose. It consists in determining a plane domain composed of trian-
gular surface elements which, once transformed into the 3D strip, leads to a
minimal strain energy. The material characteristics are used in the mechanical
formulation. However, parameters related to the prestress of the membrane
are not considered.
In each situation, the development of the strip must be followed by an opera-
tion so as to take into account the initial stresses. Three main strategies may
be pointed up:
- The strip is not modified. Stresses in the fabric are generated by the displace-
ments of anchoring zones (mast erection, shortening of edge cable lengths...).
- If the strip is triangulated, every element is reduced along two directions in
relation with the selfstresses determined by shape-finding. In the case of uni-
form stresses within the strip (minimal area surface for instance) the solution
in not difficult. On the contrary, specific methods are to be used to determine
an accurate result.
- The most commonly used technique results in considering a reduction scale
factor for the developed shape. The designer applies it generally along the
longer direction of the strip (the warp direction, with a factor from 2 to 3%)
and the transverse reduction along the weft is obtained during the strips as-
sembling (bilayer of the welded zone close to 2cm width).
The experience and a good knowledge of the material, mainly obtained by
mechanical testing (stiffness, creep... [6]), play nevertheless a major role in
these methods and the designer must proceed carefully.
If every cutting pattern process unavoidably leads to errors, we may remark
that the greatest part of them are directly related to the splitting of the
technique into two separate operations of flattening (for the geometry) and
reduction (for the prestress). Hence, it appears that a better solution obvi-
ously relies in an integrated approach which takes into account at the same
time the considerations of form, forces and material. The target state has
to be determined in a comprehensive process without splitting of these pa-
rameters. Several research teams have thus proposed innovative patterning
methods based upon such integrated approach. We may quote the works of
J. Kim [8] and the method developed at the Mechanics and Civil Engineering
Laboratory at Montpellier University and called stress composition method
[9].
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3.2 Stress Composition Method

We consider a 3D target strip ΩL calculated by form-finding process and
with every elementary prestress tensor known {σff

loc}L = {σx σy σxy}L. The
method relies in the determination of the plane cutting shape Ω0 such as its
exact transformation into ΩL (that is to say by considering the geometrical
equivalence as respected) generates these stresses (i.e. the sthenical equiva-
lence as an objective). We will in the end go back on the relevance of this
starting assumption.
On that purpose, a starting domain Ω∗ is defined (determined by the orthog-
onal projection of the target strip on the development plane) and is deformed
into ΩL hence generating the prestress {σloc}L. If these values are different
from {σff

loc}L then Ω∗ is modified into Ω0, so as the resulting stresses {σmod
loc }∗

balance the observed deviation (Fig. 5). The calculation of the tensor {σloc}L

is achieved in accordance with the hypothesis of large displacements. The
mechanical characteristics of the fabric are taken into account during every
transformation.

Fig. 5. Used configurations

The modification of Ω∗ into Ω0 is achieved according to the small displace-
ments and small strains hypothesis (SDH), by acting on the boundary condi-
tions of the frontier nodes of Ω∗ in order to have {σmod

loc }∗ close to the deviation
{σloc}L − {σff

loc}L.
The associated displacement {dmod

f }0
∗ (Fig. 6) may be determined with refer-

ence to the matrix relationship:

[Aσ]∗ {dmod
f }0

∗ = {σmod
loc }∗ (1)
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Fig. 6. Transformation of Ω∗ into Ω0

The equation is solved by using a least square method that provides a first
approximate solution of Ω0 called Ω0(1). We consider next a second ”starting”
domain Ω∗(2) = Ω0(1); it allows therefore to calculate a second approximation
Ω0(2) of Ω0. This iterative process constitutes the background of the stress
composition method (Fig. 7).

Fig. 7. Stress composition method

It converges in p iterations into the domain Ω0(p) characterized by a stress
deviation ∆σ

L(p)
0 according to:

∆σ
L(p)
0 ‖{σff

loc}L‖ = ‖{σff
loc}L − {σloc}L + {σmod(p)

loc }∗‖ (2)

The sthenic convergence criterion is set by the designer accordingly to the
required maximum value of ∆σ

L(p)
0 . The vectorial norm ‖ ‖ corresponds to

the euclidian norm.

3.3 Application

The searched 3D strip belongs to a minimal area surface characterised by an
isotropic and uniform prestress {σff

loc}L = {σ0 σ0 0}L with σ0 = 250 daN/m.
The dimensions of the strip in plane projection are 10m x 2m with an elevation
of 1m in the top vertex (Fig. 8). The mechanical features of the material are
those of a manufactured fabric: warp direction Young modulus equal to 24900
daN/m and 23000 daN/m for the weft direction with Poisson coefficients 0,097
and 0,090.
The stress composition method converges in seven iterations with a stress
distortion ∆σ

L(7)
0 = 3, 70% with reference to the target state.
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Fig. 8. Strip determined with the stress composition method

The following graph represents the values of the principal stresses σ1 and σ2 for
every 40 triangular elements used for the modelling; the ideal solution is drawn
by the horizontal line σ1 = σ1 = σ0 = 250 daN/m (target state). We observe
a regular stress distribution within the surface and the solution appears as
quite satisfactory.

Fig. 9. Principal stresses obtained with the integrated method

If the same strip is now calculated with the simple triangulation method
followed by a reduction, the determined shape may be characterised by a stress
deviance ∆σ

L(7)
0 = 26, 62% (evaluated after remeshing the plane domain with

40 triangular elements by adding internal nodes without altering the geometry
of edges).
The values of the resulting principal stresses are presented in the following
graph.
We point out that, when all the geometry of the domain is not taken into
consideration likewise during the mapping with simple triangulation, increas-
ing deviances occur. Such result is however not so surprising. A more detailed
analysis of the graph allows noticing a higher distortion between the principal
stresses for the elements located in the top zone of the surface (right part of
the graph). A possible explanation relies in the fact that these elements are
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Fig. 10. Strip determined with simple triangulation method

Fig. 11. Principal stresses obtained with simple triangulation method

subjected to the highest strains, which may generate shear forces and thus
differences between the principal stresses.

4 Modelling of the Strip Prestressing

All the cutting pattern methods previously presented are based upon an im-
plicit hypothesis: the plane strip will be exactly transformed into the target
3D strip, that is to say the surface determined by form-finding will be, in
the end, exactly obtained. Some comments may be pointed up. Firstly, we
notice that such postulate is a strong one with reference to possible conse-
quences. However it must also be kept in mind the difficulty to avoid such
assumption in order to be able to determine the cutting shapes. Nevertheless,
a rigorous process has to check both the geometrical and sthenical deviances
between the target membrane and those obtained after prestressing the as-
sembled membrane in the site. Cutting pattern and prestressing stages may
be thus regarded as a “back and return” operation.
The modelling of the prestressing operation could be envisaged according to
two levels of complexity:
- A global approach in which the designer studies the deployment of the whole
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membrane. Beside the difficulty in writing the mechanical formulations (large
displacements context), main difficulties are associated with the modelling
of the assembled membrane (mainly the folds [4]) and various interaction
phenomena (friction between fabric and tensioning edge cables, sequence of
erection...).
- A local strategy aiming to analyze separately each tensioned strip. Even if
its adequacy with the reality is somehow hypothetic, this approach is more
easily achievable and may leads to relevant and pertinent informations. One
possible method is presented in the following paragraphs.
It consists in considering the transformation of Ω0 into a tensile configuration
by prescribing nodal displacements on the boundary (nodes on strip edges)
until a perfect coincidence with the target strip is obtained. This prestressing
leads in p steps to a domain ΩP with an estimated matching with ΩL by con-
sidering both the form (geometrical equivalence of inner points) and the stress
distribution (sthenical equivalence). If a good correspondence is verified, we
may thus conclude in the good adequacy of the cut shape.
The formalism relies on a total lagrangian formulation considering the refer-
ence configuration Ω0 and successive steps. The transformation between two
steps (for instance from Ω1 to Ω2, assumed as very close) is achieved with an
increment of the nodal displacements {d}2

1 (Fig. 12).

Fig. 12. Prestressing of the strip Ω0

By considering Ω1 as already determined (equilibrium obtained), Ω2 must
necessarily verify the virtual works theorem [3]:

δW 2−1
0WW = 〈δd〉0 [kT ]20 {d}2

1 = 0 (3)

The tangent stiffness matrix appears in this writing; it could be splitted ac-
cording to its linear, non linear (initial displacements) and geometric compo-
nents:

[kT ]20 = [kL]20 + [kNL]20 + [kσ]20 (4)



206 Bernard Maurin and René Motro´

The non linear problem may be iteratively solved with the Newton-Raphson
method. When the convergence is obtained (low residual on ΩP), it is then
possible to determine a level of geometric distortion ∆gPL related to the de-
viance in internal nodes positions and a level of sthenic distortion ∆σP

L .
We consider as an illustrative example the prestressing of the strip previously
calculated with the integrated method. The figure 13 represents the target
strip ΩL and the associated plane domain Ω0. In ten incrementation steps,
it leads to a configuration ΩP = Ω10 close to ΩL; we verify moreover that
∆g10

L = 0, 21%. This result is in accordance with the geometrical equivalence
used during the patterning process. We note in addition that the distortion
between the target and the obtained stresses is ∆σ10

L = 3, 81% (with a distri-
bution of principal stresses on ΩP close to those represented in Fig. 9).

Fig. 13. “Back and return”

A second illustration deals with the analysis of a strip extracted from a min-
imal area shape (“chinese hat” type) with dimensions 20m and 4m for circle
diameters and 4m for the height. The plane cutting shape determined with
the integrated method is characterized by an error of of 10,48% for the preten-
sion and 0,92% for the geometry (Fig. 14 left). A calculation with the simple
triangulation method leads to higher deviances with approximately 45% for
stresses (Fig. 14 right). Such result is however only the consequence of the
imperfections of this process that avoids a lot of points inside the strip and
an important boundary point located on the bottom circle.
The presented two tests allow to point out the importance of the errors due
to the flattening of a doubly curved surface. They have to be considered in
parallel with the possible errors generated during the form-finding stage. It
emphasizes on the fact that distortions generated during the patterning stage
play the main role.
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Fig. 14. Strip determined with integrated method (left) and simple triangulation
(right)

5 Conclusion

The cutting pattern of strips for tensile membranes is more often achieved by
considering the stage of flattening and the stage of reduction as separated.
Instead of this splitting, it can be used an integrated approach such as the
stress composition method that takes into account the characteristics of the
fabric. It allows to take more appropriately into consideration the coupling
between the parameters of form, forces and material and, thus, to respect the
different requirements of technology, geometry, mechanics and architecture.

6 Appendix: Membrane Local Curvatures Computation

Tensile fabric membrane design implies several stages which require the use
of geometrical characteristics.
Firstly, the designer has to verify that the shape calculated by form-finding
analysis satisfies numerous requirements.

- The maximum curvature radius must be less than prescribed values. It
traduces the relationship between the membrane stiffness at one point
and the curvatures; therefore the behaviour of the structure when climatic
loads are active. This requirement could affect the membrane itself and
reinforcing edge cables as well. Most generally, the limits are defined by
national codes. For instance, in France, the membrane maximum curvature
radius is 35m and the edge cable maximum curvature radius is 25m.

- The minimal slope must be superior to specified values. The objective is to
avoid too “horizontal” areas where rainwater could possibly stay and thus
damage the fabric because of local lower stiffness. A suitable criteria may
be put forward by determining at the studied zone the vector perpendicular
to the surface.
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Secondly, a geometrical analysis is necessary so as to provide the designer
with important parameters during the cutting pattern procedure:

- The value of the gaussian curvature is associated to the difficulty to develop
a curved surface onto a plane (flattening). The designer should take it into
account so as to control the width of the strips over the membrane. Hence,
a “map” representing the gaussian curvature value at every point of the
surface could be a useful tool.

- The specification of the strip edges which divide the membrane is ap-
proached under several criteria. The use of geodesic curves could be of
importance and therefore their calculation which imply numerous geomet-
rical informations such as surface normal vectors.

The objective of this appendix is thus to submit a numerical approach
devoted to the determination of membrane local curvatures. It deals with the
case of mapped surfaces that define the height of the points as a function of
the two other plane coordinates, that is to say z = f(x, y) with f representing
a bijection between z and the pair (x, y). In that case, theoretical relationships
allow to calculate at every point the values of the mean and gaussian curva-
tures, and next, to determine the maximum and minimum curvature radii.
We propose to solve all partial differential equations by using the polynomial
shape functions of finite elements.

6.1 The Calculation Strategy

In the case of mapped surface, a vertical line with fixed x and y coordinates
intersects the domain at only one point for which we can write the relationship
z = f(x, y).
For every surface it exists two orthogonal planes that define the principal
curvature directions θ1 and θ2 associated to the main curvatures ρ1 and ρ2

(minimum and maximum values).
With function z it is then possible to calculate at every point the partial
derivative terms [11]:

p = z,x ; q = z,y ; r = z,xx ; s = z,xy and t = z,yy (5)

Thus the surface gaussian curvature G and the mean curvature H are defined
by:

G = (rt − s2) (1 + p2 + q2)−2 and
H = (t(1 + p2) − 2pqs + r(1 + q2)) (1 + p2 + q2)−3/2 (6)

The curvatures radii R1 and R2 are next determined with:

G = ρ1ρ2 ; H = 0, 5(ρ1 + ρ2) and

R1 =
1
ρ1

= (H + (H2 − G)1/2)−1 ; R2 =
1
ρ2

= (H − (H2 − G)1/2)−1 (7)
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The two principal directions θ1 and θ2 may be calculated according to the
system (with D = tgθ = dy

dx
):{D1 + D2 = (−t(1 + p2) + r(1 + q2))(pqt − s(1 + q2))−1

D1D2 = (s(1 + p2) − pqr)(pqt − s(1 + q2))−1 (8)

And the components of vector −→n→→s normal to the surface are:

−→n→→s(−hp ; −hq ; h) with h = (1 + p2 + q2)−1/2 (9)

In fact the main difficulty is related to the determination at every point of the
function z = f(x, y) and its partial derivatives. Thus, we propose to use finite
element polynomial shape functions N in order to interpolate the geometry
of the surface within the area “close to” a chosen point. The elevation z is
written z = NiNN zi; the index i indicates a summation over the n nodes element
(i = 1 to n). We note that a not too large surface surrounding a selected point
can always be described as a mapped domain by using a local referential co-
ordinate transfer.
Since partial derivative equations involve an order two for derivatives, the fi-
nite element must have at least a quadratic polynomial interpolation. We pro-
pose to use 6 nodes triangle (T6) and 9 nodes rectangle (R9) for a quadratic
interpolation and 10 nodes triangle (T10) for a cubic interpolation. Theoret-
ically, a higher interpolation degree should lead to more accurate results.
The associated standard elements are represented in Fig. 15 in their cartesian
natural axis ξ and η that are used to define shape functions NiNN (ξ, η).

Fig. 15. Elements (T6, R9 and T10)

These elements are not dependent on those used for the mesh during the form-
finding analysis. The only matching up parameter is the nodal coordinates of
the discrete surface. The objective is to calculate the interpolated values:

p = Ni,xNN zi ; q = Ni,yNN zi ; r = Ni,xxNN zi ; s = Ni,xyNN zi and t = Ni,yyNN zi (10)

We must write the jacobian matrix corresponding to the transformation be-
tween the standard element and the element over the surface and calculate
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its determinant D = Ni,ξNN Ni,ηNN (xiyj − xjyi) and its first derivatives:{
D,ξ = (Ni,ξξNN Nj,ηN + Ni,ξNN Nj,ξηN ) (xiyj − xjyi)
D,η = (Ni,ηξNN Nj,ηN + Ni,ξNN Nj,ηηN ) (xiyj − xjyi){

(D−1),ξ = D−1
,ξ = −D−2 D,ξ

(D−1),η = D−1
,η = −D−2 D,η

(11)

If we calculate then the components of the inverse jacobian matrix:

a = ξ,x = D−1 Ni,ηNN yi ; b = η,x = −D−1 Ni,ξNN yi and
c = ξ,y = −D−1 Ni,ηNN xi ; d = η,y = D−1 Ni,ξNN xi (12)

The partial first derivatives are defined according to:

Ni,xNN = a Ni,ξNN + b Ni,ηNN and Ni,yNN = c Ni,ξNN + d Ni,ηNN (13)

And the partial second derivatives are:⎧⎪⎧⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎨⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪

Ni,xxNN = a2Ni,ξξNN + b2Ni,ηηNN + 2abNi,ξηNN + (aa,ξ + ba,η)Ni,ξNN
+(ab,ξ + bb,η)Ni,ηNN

Ni,xyNN = acNi,ξξNN + bdNi,ηηNN + (cb + ad)Ni,ξηNN + (ca,ξ + da,η)Ni,ξNN
+(cb,ξ + db,η)Ni,ηNN

Ni,yyNN = c2Ni,ξξNN + d2Ni,ηηNN + 2cdNi,ξηNN + (cc,ξ + dc,η)Ni,ξNN
+(cd,ξ + dd,η)Ni,ηNN

(14)

With the following coefficients:⎧⎪⎧⎧⎪⎪⎪⎨⎪⎪⎪⎨⎨⎪⎪⎪⎩⎪⎪
a,ξ = −D−1

,ξ Ni,ηNN yi + D−1Ni,ξηNN yi

a,η = −D−1
,η Ni,ηNN yi + D−1Ni,ηηNN yi

b,ξ = −D−1
η

,ξ Ni,ξNN yi − D−1Ni,ξξNN yi

b,η = −D−1
,η Ni,ξNN yi − D−1Ni,ξηNN yi⎧⎪⎧⎧⎪⎪⎪⎨⎪⎪⎪⎨⎨⎪⎪⎪⎩⎪⎪

c,ξ = −D−1
,ξ Ni,ηNN xi − D−1Ni,ξηNN xi

c,η = −D−1
,η Ni,ηNN xi − D−1Ni,ηηNN xi

d,ξ = −D−1
,ξ Ni,ξNN xi + D−1Ni,ξξNN xi

d,η = −D−1
,η Ni,ξNN xi + D−1Ni,ξηNN xi

(15)

Since derivatives N,ξN ...N,ξηN are dependent on ξ and η values, the calculation
could be achieved at any chosen point within the element, for instance a point
located in the middle of two nodes.

6.2 Applications

Test

The first application allows the verification of formulations. It deals with an
hyperbolic paraboloid (HP) defined by z = k xy. The gaussian and mean
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curvatures are hence:

G(x, y) = −(k−2 + x2 + y2)−1 ; H(x, y) = −k3 xy (1 + k2(x2 + y2))−3/2 (16)

We observe that H 
= 0 for non zero

 x and y: contrary to a common idea, the
HP is not a minimal area surface!

Fig. 16. HP curvatures computation: with R9 (unique possibility) and T6 (several
possibilities)

The calculation at one selected point could be envisaged according to different
approaches: a quadratic formulation with a R9 rectangle surrounding the point
or with a T6 triangle. In that second case, several positioning of the triangle
may be used as represented in Fig. 16 (b and c). A cubic interpolation could
be as well employed with T10 triangles (not represented).
For R9 element it comes ξ = η = 0 and ξ = η = 0, 5 for T6. Computations
have led to accurate values which are moreover independently on the used
element (R9, T6 or T10) and also independently on its positioning in the case
of triangles. However, such a result is just a consequence of the HP being a
ruled surface. It will not be the same if “non analytic” surfaces (that is to
say surfaces which can not be analytically defined) are considered as in the
following example.

Membrane example

This application deals with a fabric membrane generated with a shape finding
process (force density method, dynamic relaxation...). The aim could be for
instance to evaluate some characteristics at one selected point: the maximum
curvature radius, the gaussian curvature and the normal vector.
Figure 17 illustrates the several options related to the choice of the element
and to its positioning (diverse possibilities excepted for rectangle R9 - a). It
is obvious that the associated results will be different and the issue deals with
the choice to make.
The problem of positioning may be considered as quite analogous to the stress
determination issue at one node after a finite element analysis. Several strate-
gies are indeed achievable: the average value of gauss point values (integration
points surrounding the node); the average value of the nodal values obtained
on each element comprising the node etc...
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Fig. 17. Different calculation strategies (R9, T6, T6 and T10)

However, we emphasize on the necessity to define approaches based upon the
objective of minimal errors. The evaluated geometrical parameter certainly
plays a part in the determination of the suitable method.
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torat, Institut National Polytechnique de Grenoble

2. Barnes MR, Wakefield DS (1988) Form-finding, analysis and patterning of
surface-stressed structures. 1st O. Kerensky Memorial Conf., London

3. Bathe KJ (1982) Finite element procedures in engineering analysis. Prentice
Hall

4. Dinkler D, Wiedemann B (2001) A finite element concept for wrinkling mem-
branes. Proc. of the IASS symposium, Nagoya,TP04 1–8

5. Ferrari Tissage et Enduction (1989) Rapport documentaire sur les produits
6. Fujiwara J, Ohsaki M, Uetani K (2001) Cutting pattern design of membranes

structures considering viscoelasticity of the material. Proc. of the IASS sympo-
sium, Nagoya, TP047 1–8

7. Gründig L, B¨ auerle J (1990) Automated cutting pattern determination and¨
control for prestressed membranes. Textile Composites in Buil. Cons., part. 2,
Ed. Pluralis, 109–120

8. Kim JY, Lee JB (2002) A new technique for optimum cutting pattern genera-
tion of membranes structures. Engineering Structures, vol. 24, 745–756

9. Maurin B, Motro R (1999) Cutting pattern with the stress composition method.
Int. Journal of Space Structures, vol. 14 N2, 121–129

10. Moncrieff E, Grundig L, Str¨ obel D (1999) The cutting pattern of the pilgrim’s¨
tents for phase 2 of the Mina valley project. Proc. of the IASS 40th anniversary
congress, Madrid, C1 129–136

11. Osserman R (1997) Geometry V. Springer Verlag
12. Shimada T, Tada Y (1989) Development of a curved surface using a finite

element method. Int. Conf. on Comp. aided optimum Design of Structures,
Southampton, 23–30

13. Tsubota H, Yoshida A (1989) Theoretical analysis for determining optimum
cutting patterns for membrane structures. IASS Int. Symp. on tensile struc-
tures, Madrid, 512–536

14. Xia X, Meek J (2000) Computer cutting pattern generation of membranes struc-
tures. Int.Journal of Space Structures, vol 15 N2, 95–110




