
3.1 Introduction

Solid woven fabric composites represent a class of advanced composites
which are reinforced by 2-D or 3-D woven preforms [1]. These materials
offer new and exciting opportunities for tailoring the microstructure to spe-
cific thermomechanical applications in the fields of aerospace, marine,
medicine and sports technology. The variables under control include fibre
and matrix materials, yarn placement, yarn size and type. Together with this
emerging ability to engineer composite materials comes the need to
develop computationally efficient micromechanics models that can predict,
with sufficient accuracy, the effect of the microstructural details on the inter-
nal and macroscopic behaviour of these new materials. Computational effi-
ciency is indispensable because there are many parameters that must be
varied in the course of engineering a composite material. This chapter
addresses the issue of developing micromechanical models for solid woven
fabric composites. In the future, it is probably inevitable that the optimiza-
tion of the microstructure of a woven fabric composite will require the 
marriage of such micromechanical models and optimization algorithms.

3.2 Review on solid woven fabric composites

3.2.1 Introduction

This section provides a survey of the literature. First, an overview of woven
fabric composites is presented. Solid woven preforms vary considerably in
terms of fibre orientation, entanglement and geometry. Second, in order to
exploit the advantages of these composites fully, it is important to create a
link between the microstructural geometry and the thermomechanical per-
formance [2]. In the past decade, a variety of micromechanical models have
been employed to study the overall thermo-elastic behaviour of orthogo-
nal 2-D woven fabric composites based on the properties of the constituents
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and the fabric architecture. Some of these models also provide the oppor-
tunity to address strength properties. A review will assist in defining possi-
ble modelling strategies for 3-D woven fabric composites.

3.2.2 Classification 

Fibre reinforcement constitutes the structural backbone of a composite.The
classification by Cox and Flanagan [3] of various textile preforms is repro-
duced in Fig. 3.1.The left column classifies textile preforms according to the
machines and processes used to produce them. The major textile-forming
techniques for composite reinforcements are weaving, knitting and braid-
ing. Further, it is possible to make a distinction between the dimensional-
ity of the textile preform. Following the definition of Cox [3], the division
into 2-D and 3-D textile structures is determined by whether the fibre
preform can transport an important load (higher than the load carried by
the matrix alone) in two or three linearly independent directions.

In general, an orthogonal 2-D woven fabric is made by weaving yarns
together. A yarn is a continuous strand of textile fibres. The fabric is pro-
duced on a loom that interlaces yarns at right angles to one another [2–8].
The lengthwise yarns are called warps, while the yarns that are shuttled
across the loom are called fillings or wefts. The individual yarns in the warp
and filling directions are also called an end and a pick, respectively. The
interlacing of the yarns causes yarn undulation or yarn crimp. The weave
type is determined by the method of interlacing both sets of yarns. Figure
3.2 shows three basic constructions: plain, twill and satin weave. Even in
rather simple woven fabrics, there are important geometric differences
between the warp and the weft direction. Those differences are the result

68 3-D textile reinforcements in composite materials
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of numerous constructional and process parameters such as weaving
density, warp tension, weft tension and beating motion.

The term ‘hybrid’ is used to describe fabrics containing more than one
type of fibre material. Hybrid fabrics are attractive preforms for structural
materials for two major reasons. First, these fabrics supply an even wider
variety of material selection for designers. They offer the potential of
improved composites’ mechanical properties, weight saving or excellent
impact resistance. Second, a more cost-effective use of expensive fibres can
be obtained by replacing them partially with less expensive fibres. Hybrid
fabrics are woven from fibrous materials such as glass, aramid, carbon,
boron, ceramics and natural fibres.

Advances in textile manufacturing technology are rapidly expanding the
number and complexity of 3-D woven preforms. By changing the traditional
weaving technique to produce 2-D fabrics, it is now possible to achieve a
much higher degree of integration in the thickness direction of the textile.
The two major classes of solid 3-D weaving are through-thickness angle
interlock weaving [10] and orthogonal interlock weaving [1–3].Angle inter-
lock 3-D woven fabrics can be produced on a dobby loom or a jacquard
loom. The warp yarns can now enter more than one layer of weft yarns.
Other textile structures with laid-in straight yarns are also possible. By
changing the number of layers, the pattern of repeat and the position of the
laid-in yarns, an almost infinite number of geometric variations becomes
possible. In an orthogonal interlock 3-D weave, the yarns are placed in three
mutually orthogonal directions. These fabrics are produced principally by
the multiple warp weaving method. Matrix-rich regions are created in com-
posites reinforced with a 3-D woven orthogonal preform.

In general, solid woven fabrics offer the advantages of handleability,
dimensional stability, improved impact and damage resistance. However,
these advantages are obtained at the cost of reduced stiffness and strength
properties owing to the undulation of the yarns. There is thus a significant
need to model the mechanical behaviour of these composites.

Mechanical modelling of solid woven fabric composites 69

3.2 Basic weave constructions: (a) plain, (b) twill and (c) 5HS satin
weave. The black box represents the fabric unit cell.
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3.2.3 Micromechanical models

Considering the actual importance of 2-D woven fabric composites in the
family of structural composites, the mechanical analyses of these compo-
sites are now extensively reviewed and presented. Most of the published
data are related to stiffness properties of plain weave laminae. There are
few publications on the internal stress distribution and on the damage and
strength analysis problem of general woven fabric composites. The possible
extension of the different micromechanical models to analyse 3-D woven
fabric composites will be discussed. It should also be stressed here that in
this rapidly evolving field of study any review will soon be incomplete. New
results are always being presented or printed.

Models of Ishikawa and Chou

In the 1980s, an extensive amount of work on the thermo-mechanical mod-
elling of 2-D woven fabric composites was done by Ishikawa and Chou.
They developed and presented three analytical 1-D elastic models [11–13].
These models are known as the mosaic model, the fibre crimp model and
the bridging model. The classical lamination theory forms the basic analyt-
ical tool for these developments [14].

The models of Ishikawa and Chou are labelled 1-D models because they
only consider the undulation of the yarns in the loading direction. Notice
the total absence of any geometric analysis. That is, the actual yarn cross-
sectional shape or the presence of a gap between adjacent yarns is not con-
sidered. Therefore, no predictions are made for the out-of-plane yarn
orientation and the fibre volume fraction. Moreover, these models consider
balanced closed weaves only, whereas in practice the fabric can be unbal-
anced and open. Since the classical laminated plate theory is the basis of
each model only the in-plane elastic properties are predicted. The elastic
models were extended to analyse the thermal properties, hybrid fabrics and
the knee behaviour under uniaxial tensile loading along the filling direction
only. However, an extension to treat 3-D woven preforms is not useful
because of the geometric simplifications and the limitation to predicting
only in-plane properties.

Models of N. Naik, Shembekar and Ganesh

N. Naik and Shembekar have developed 2-D elastic models for a 2-D non-
hybrid plain weave fabric composite [15]. These models are essentially an
extension of the 1-D models of Ishikawa and Chou. However, these 2-D
models take into account the undulation of both warp and weft yarns, the
presence of a possible gap between adjacent yarns, the real cross-section of

70 3-D textile reinforcements in composite materials
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the yarn and the possible unbalanced nature of the plain fabric lamina. The
representative unit cell is discretized into slices along or across the loading
direction. These slices are further divided into different elements such as
straight cross-ply or unidirectional regions, undulated cross-ply or uni-
directional regions and pure matrix elements. In the analysis of Naik and
Shembekar, two schemes for combining the in-plane stiffness matrices of
the different elements are used: parallel–series and series–parallel. In the
parallel–series (PS) model, the elements are first assembled in parallel
across the loading direction with the isostrain assumption (adding the stiff-
ness matrices, weighted by their volume fractions). Then, those multi-
elements are assembled in series along the loading direction with the
isostress assumption. In the second scheme, all the infinitesimal elements 
of a section along the loading direction are assembled with an iso-
stress assumption (adding the compliance matrices, weighted by their 
volume fractions). Then, all the sections along the loading direction are
assembled with an isostrain condition. Such a scheme is called a series–
parallel (SP) model. Both schemes yield a full 2-D stiffness matrix for the
plain woven fabric composite. A full mathematical treatment of the
problem has been presented in reference [16]. Based on experimental work,
the PS model is recommended for the prediction of all in-plane elastic con-
stants. Out-of-plane properties cannot be predicted. Hence, the extension
of the model to treat 3-D woven preforms is not useful.

Recently, Naik and Ganesh have presented an extension of their thermo-
elastic models to include the prediction of failure in plain weave compos-
ites under on-axis static tensile loading [17,18]. The load is assumed along
the filling direction. Different stages of failure such as warp yarn transverse
failure, filling yarn shear failure, filling yarn transverse failure, pure matrix
element failure and filling yarn longitudinal failure are considered. The
newness of the model lies in the calculation procedure for the stresses in
the matrix and yarn elements. However, this is exactly where the model is
most confusing. A lot of effort has been spent on describing material non-
linearities, geometric non-linearities and geometric effects of matrix
element failures, while the available information on the stress prediction
procedure is inadequate. The failure analysis is then carried out by com-
paring the local element stresses or strains with the admissible values of
stress or strain. The Tsai–Wu failure criterion [19] is used to predict the
failure in the filling yarn elements. The maximum stress and strain criteria
are used to predict the failure in the warp yarn and matrix elements. If an
element fails, the stiffness of that element is reduced (degraded stiffness).
The final failure of the unit cell laminate is assumed to have occurred if the
fibres in the filling yarn are broken.

In conclusion, some more practical drawbacks and disadvantages of the
strength model of Naik are provided. First, the stress model lacks logic and

Mechanical modelling of solid woven fabric composites 71
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simplicity (when and why is the PS model to be preferred over the SP
model?). Second, only on-axis uniaxial tensile loads can be considered along
the warp or weft direction. Third, the model does not account for thermal
stresses which are known to be important in the stress and strength analy-
sis of fibre composites. Finally, only a non-hybrid 2-D plain weave compos-
ite can be considered in the present analysis.

Model of Hahn and Pandy

The 3-D thermo-elastic model of Hahn and Pandy [20] for non-hybrid plain
fabric composites is simple in concept and mathematical implementation.
This model is essentially an extension of the 2-D models of Naik. The geo-
metric model accounts for the undulation of warp and weft yarns, the actual
yarn cross-section and the presence of a gap between adjacent yarns. The
yarn undulations are sinusoidal and described with shape functions.The gap
between two neighbouring yarns, however, is introduced by terminating the
yarn at the start of the gap. Hence, for large gaps the yarn cross-section
becomes quasi-rectangular, which is not realistic.

In the thermo-elastic model, the strain is assumed to be uniform through-
out the composite unit cell. Therefore the effective stiffness of the woven
fabric composite is obtained as a volume average of the local stiffness 
properties of yarn and matrix elements. This is a so-called isostrain 
model. Closed-form expressions are provided for the 3-D effective elastic
moduli and effective thermal expansion constants for a 2-D plain weave
composite.

The model has the advantage of being simple and easy to use. The iso-
strain model can very easily be applied to analyse complex 3-D woven
fabric composites. However, some disadvantages are here provided. First,
the accuracy of the isostrain model still remains to be verified through more
experimental verification of all 3-D elastic constants. It will be further
shown in this chapter that the isostrain technique is not capable of accu-
rately predicting all 3-D elastic constants [21]. Second, the model can cer-
tainly not be extended to solve the stress analysis problem accurately, and
hence cannot be used for strength predictions.

Model of R. Naik

Recently, a micromechanics analysis tool labelled TexCad was developed
by R. Naik to calculate the thermo-elastic properties along with damage
and strength estimates for woven fabric composites [22]. This tool can be
used to analyse non-hybrid plain weave and satin weave composites. It dis-
cretely models the yarn centreline paths within the repeating unit cell by
assuming a sinusoidal undulation of the yarns. The 3-D effective stiffness
matrix is computed by a yarn discretization scheme (which subdivides each

72 3-D textile reinforcements in composite materials
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yarn into smaller, piecewise straight yarn slices) that assumed an isostrain
state within the unit cell. Hence, as in the Hahn and Pandy model, the iso-
strain model is applied. In the calculation for the strength, TexCad uses a
curved beam-on-elastic-foundation model for yarn crimp regions together
with an incremental approach in which stiffness properties for the failed
yarn slices are reduced, based on the predicted yarn slice failure mode. Only
on-axis tensile loadings and in-plane shear loadings were modelled and
reported. Certainly, the most questionable assumption in this strength
model is the calculation of the local stress fields in yarn and matrix slices
based on the isostrain assumption. Basically, TexCad is well documented
and easy to use. It is a thorough implementation of the isostrain approach
which could be extended easily to analyse complex 3-D woven fabric com-
posites. It will perform stiffness and failure analyses as correctly as can be
expected for an isostrain model.

Model of Paumelle, Hassim and Léné

Paumelle et al. [23,24] developed a finite element method for analysing
plain weave fabric composite structures. The periodic medium homoge-
nization method is implemented. Basically, by applying periodic boundary
conditions on the surface of the unit cell and by solving six elementary
loading conditions on the unit cell, the complete set of elastic moduli of the
homogenized structure can be computed.At the same time, the method pro-
vides a good approximation of the local distribution of force and stress
fields acting in the composite components and at their interface. These
microscopic stress fields give a strong indication of the types of damage that
will occur. To the best of our knowledge, Paumelle et al. have not yet
reported an extension of this finite element model to predict damage propa-
gation or to analyse 3-D woven preforms. Moreover, outlined below are
some problems encountered in a practical finite element analysis of solid
woven fabric composites.

First, this approach requires large computer calculation power and
memory because of the 3-D nature and the complexity (size) of the yarn
architecture. Second, a correct finite element model includes the generation
of the fabric geometry and the finite element mesh of nodes and elements.
Most of the time spent is related to the creation and the verification of a
correct geometric model [25]. Finally, there are major problems in analysing
and interpreting the results in a 3-D domain of a rather complex geometry
[26].

Model of Blackketter

Here, we will discuss in some detail the research work of Blackketter [27].
In our opinion, this work is certainly one of the first and most important
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efforts to model damage propagation in 2-D woven composites. The
approach could also be applied to 3-D woven fabric composites.

Blackketter constructed a simplified 3-D unit cell of a single ply non-
hybrid plain weave graphite/epoxy composite. From this description 3-D
finite element models were generated. Twenty node isoparametric hexahe-
dron elements were used in generating the finite element meshes. Limits on
element refinement were imposed by the computational time required for
solution. An incremental iterating finite element algorithm was developed
to analyse loading response. Each iteration or load step required about 30
real-time minutes using a VAX8800 computer. Tension and shear loadings
were modelled. The finite element model included capacities to model non-
linear constitutive material behaviour and a scheme to estimate the effects
of damage propagation by stiffness reduction. Results from this analysis
compared extremely well with experimental stress–strain data. It was con-
cluded that the non-linear stress–strain behaviour of the woven fabric com-
posite is principally caused by damage propagation rather than by plastic
deformation of the matrix.

Let us describe now the damage propagation model as developed by
Blackketter et al. At each Gaussian integration point (27 Gaussian quad-
rature integration points over each volume element), damage or failure was
detected by comparing the actual stress state with a failure criterion. To
simulate damage at an integration point, the local stiffness properties were
reduced. Therefore, each element in the model can contain both intact and
failed Gaussian integration points. After the occurrence of damage, the
volume considered was capable of sustaining only reduced loads and
stresses had to be redistributed to surrounding volumes.

It is important to select an appropriate failure criterion for the matrix
and yarn materials. For the isotropic matrix material a maximum normal
stress criterion was used to detect damage. If the principal stress exceeded
the strength, the tensile modulus was reduced to 1% of its initial value. The
shear modulus was reduced to 20% of its initial value. After failure, the
matrix was no longer isotropic. For the transversely isotropic yarns, it is 
necessary to account both for the type of damage and the orientation 
of that damage. Blackketter compared the actual stresses in the local coor-
dinate system (123) with the respective ultimate strengths. This is a
maximum stress criterion. The 1-axis corresponds to the longitudinal yarn
direction. Table 3.1 presents the different failure modes and the stiffness
reduction factors used by Blackketter. Each Gaussian integration point was
allowed to fail in one or all modes. Finally, catastrophic failure of the unit
cell was characterized by large displacements compared with the previous
values.

The analysis by Blackketter of graphite/epoxy plain weave fabric com-
posites has shown that by carefully modelling the fabric geometry, using

74 3-D textile reinforcements in composite materials
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correct constituent stiffness/strength data and by applying an appropriate
stiffness reduction scheme, it is possible to predict the stress–strain behav-
iour of woven fabric composites. The same ideas could certainly be applied
to analyse 3-D woven fabric composites. However, Blackketter does not
discuss in detail the limitations of the finite element modelling technique
(meshing or calculation time).

Models of Whitcomb

Whitcomb and coworkers [28–30] have studied the effect of the yarn archi-
tecture on the predicted elastic moduli and stresses in plain weave com-
posites. The work is restricted to linear elastic analysis. Three-dimensional
finite element models were used. Only simple plain weaves were studied
because these offer sufficient complexity for the task. A refined model of
the complete unit cell would require immense amounts of computer
memory and calculation time. However, by exploiting the geometric and
material symmetries in the simple unit cell, it was sufficient to analyse 1/32
of the size of the complete plain weave unit cell. Twenty node isoparamet-
ric hexahedral elements were used. Two different yarn architectures were
investigated. The first was the ‘translated architecture’ where the complete
yarn is created by keeping the cross-section vertical along the yarn path.
The second was the ‘extruded architecture’ wherein the yarn cross-section
is always placed perpendicular to the yarn path. The extruded yarn archi-
tecture requires a more complex mesh generation.

Whitcomb and coworkers also analysed progressive failure of plain
weave fabric composites under in-plane tensile loading using a 3-D finite
element model. The mechanical loading was parallel to one of the yarn
directions. Thermal loading or thermal residual stresses were not consid-
ered. The effects of various characteristics of the finite element model on
predicted behaviour were examined. There is no ‘right’ way to model

Mechanical modelling of solid woven fabric composites 75

Table 3.1. Stiffness reduction scheme for the UD yarn elements, according to
Blackketter [27]

Failure mode Mechanical property and degradation factors

E11 E22 E33 G23 G31 G12

1 Longitudinal tension s11 0.01 0.01 0.01 0.01 0.01 0.01
2 Transverse tension s22 1.0 0.01 1.0 1.0 0.2 0.2
3 Transverse tension s33 1.0 1.0 0.01 1.0 0.2 0.2
4 Transverse shear t23 1.0 0.01 0.01 0.01 0.01 0.01
5 Longitudinal shear t13 1.0 1.0 0.01 1.0 0.01 1.0
6 Longitudinal shear t12 1.0 0.01 1.0 1.0 1.0 0.01
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damage evolution that is also practical [30]. The most simple method to
account for damage is to modify the constitutive matrix of the damaged
finite element. Therefore, the failure analysis becomes a series of linear
analyses. A maximum stress criterion was used to evaluate the damage of
the matrix and yarn elements. Withcomb and coworkers have applied and
compared three different techniques to modify the constitutive matrix after
damage. First, the total constitutive matrix was reduced to essentially zero
when any of the allowable strengths was exceeded. In the second technique,
only specific rows and columns of the constitutive matrix were reduced
according to the damage mode. Third, specific engineering moduli were
reduced. This is the reduction scheme developed previously by Blackket-
ter. Essentially, it was concluded that the predicted strength decreased con-
siderably with increased waviness of the yarns. The modification technique
of the constitutive matrix has a major effect on the predicted stress–strain
curve. However, more numerical experiments are necessary to establish
guidelines for an accurate failure analysis. No final conclusions have been
given yet concerning the different reduction schemes. No extension is made
to treat 3-D woven preforms.

3.2.4 Conclusions

In the past 15 years, a variety of different micromechanical approaches has
been developed to study the effective behaviour of 2-D woven fabric 
composites. Tables 3.2 and 3.3 summarize those micromechanical models.
Basically, the literature review reveals that considerable work addressing
the effects of fabric architecture on the effective elastic and thermal expan-
sion properties was done. However, this work has not been systematic or
exhaustive in general. Research has been too focused on material systems
based on plain weave fabrics, limited ranges of fibre volume fractions and
specific material thermo-elastic properties. Second, the stress and strength
analyses are still in their infancy. Here, research has focused on specific
loading directions, knee behaviour and damage mechanisms. There is 
certainly a need for reliable strength models. Finally, the extension of 
the models to consider 3-D preforms can only be achieved in a few cases
(Tables 3.2 and 3.3).

In the analytical methods we observe a predominant use of the isostrain
assumption to predict the effective thermo-elastic and strength properties.
No data are available to verify the accuracy of this approximation. More-
over, most researchers have concentrated only on the primary determinant
of mechanical and physical properties, namely the geometric orientation of
the yarns. The idea that other geometric effects or boundary conditions
could have an influence on the prediction of effective properties of woven
fabric composites was ignored. The well-established finite element method

76 3-D textile reinforcements in composite materials
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Mechanical modelling of solid woven fabric composites 77

Table 3.2. Modelling review of woven fabric composites: analytical mechanical
models. First four columns indicate whether the full stiffness matrix C, the
thermal expansion coefficient a and the strength are predicted, and whether
FEM is used. The last column indicates whether this model can be extended to
3-D-woven fabric composites

Model C a Strength FEM Limitations To 3-D

Chou & Ishikawa: Y Y N N No yarn undulation N
mosaic model, In-plane properties
1985 Isostrain/isostress

Chou & Ishikawa: Y Y Knee N Plain weave N
crimp model, Undulation in one yarn
1985 system

In-plane properties
Isostress

Chou & Ishikawa: Y Y Knee N Satin weave N
bridging model, Undulation in one yarn
1985 system

In-plane properties
Isostress

N.K. Naik et al., Y Y Y N Non-hybrid plain weave N
1992–1995 In-plane properties

Mixed isostress/isostrain
On-axis tensile load

Hahn & Pandey, Y Y N N Non-hybrid plain weave Y
1993 Isostrain

R. Naik, 1995 Y Y Y N Non-hybrid plain and Y
satin

Isostrain
On-axis tensile and 

shear loads

Table 3.3. Modelling review of woven fabric composites: numerical mechanical
models

Model C a Strength FEM Limitations To 3-D

Paumelle et al., Y N Stress Y Computational time N
1992 Non-hybrid plain weave

No damage or strength
model

Blackketter et al., Y N Y Y Computational time Y/N
1993 Non-hybrid plain weave

On-axis in-plane load

Whitcomb and Y N Y Y Computational time N
coworker, Non-hybrid plain weave
1993 On-axis in-plane load
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was employed by most researchers to compute the local stress fields accu-
rately and to predict the strength of woven fabric composites. A compre-
hensive stiffness reduction scheme for damage modelling has been offered
by Blackketter [27]. While it is possible to use mesh generation programs
to alter the geometry and while changing constituent properties is very
simple, the cost in computing time for a parametric study is significant. It is
becoming increasingly clear that approaches other than the finite element
method are needed to develop computationally efficient analysis tools for
solid woven fabric composites. As mentioned previously, this is because of
the large number of parameters that must be varied in identifying an
optimal yarn architecture.

In conclusion, the current models for 2-D woven fabric composites all
have limited applicability, in that either they are not sufficiently accurate to
predict the local stress fields in yarn and matrix phases, or they are not com-
putationally efficient.The struggle between accuracy and computational effi-
ciency is a continuous one. Nowadays, the ability to engineer not only the
material composition but also the internal yarn geometry of 2-D and 3-D
solid woven fabric composites gives the designer of a composite material
unmatched control over the material. Exerting that control intelligently,
however, requires a body of theory.The objective of micromechanical mod-
elling should always be to develop both accurate and computationally effi-
cient approaches that can predict the behaviour directly, given the material
composition and the internal yarn geometry.

3.3 Elastic model: the complementary energy model

3.3.1 Introduction

In this section, we focus on the recent development at the Katholieke Uni-
versiteit Leuven of the complementary energy model for 2-D woven fabric
composites [32–34]. This model is included here because it is a pertinent
example of the vigour that exists in textile composites research. The model
captures both the ‘orientation effect’ and the ‘position effect’, important
features of the actual heterogeneous composite material. Currently, the
model is being extended to the mechanical analysis of 3-D woven fabric
composites, and of braided fabric composites.

It should be stressed that the yarn architecture of a solid woven fabric
composite is rather precisely determined by the textile processing route.
Woven fabric composites provide new opportunities for tailoring the yarn
architecture to specific applications. This is in contrast to random or uni-
directional composites, where the precise control of the fibre orientation
and spatial distribution is difficult and only statistically macroscopic
arrangements are possible. Hence, for the mechanical modelling of random

78 3-D textile reinforcements in composite materials
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or unidirectional composites the geometric characteristics are taken into
consideration in a certain average sense (fibre level), whereas for solid
woven fabric composites the yarn interlacings, curvatures and locations,
should be taken into account, reflecting the actual geometry (yarn level).

3.3.2 Geometric model

Since the mechanical properties of woven fabric composites have a very
strong dependence upon the reinforcing yarn geometry, it is essential to
create a geometric concept or scheme for describing the fibre architecture.
The model deals with a perfect, regular, one-layer fabric composite. Hence,
the presence of voids, the misorientation of yarns and the nesting of fabric
layers are neglected, just as they are neglected in most other fabric com-
posite models [35].

The woven fabric is treated as an assembly of unit cells (Fig. 3.2). By defi-
nition, the unit cell is the smallest repeating pattern in the structure. Figure
3.3 shows an example of a checkerboard pattern for a complex fabric,
namely a hybrid carbon/Dyneema® twill weave. The rows of the board 
represent the warp yarns, while the columns are the filling or weft yarns. At
an interlacing point, the square is coloured black if the warp yarn runs over
the weft yarn. The main complexity arises from the fact that the fabrics 
considered here can contain two different warp and weft yarn types. First,
the extension is necessary to describe hybrid weave styles. Of course, the
extension is also needed when using special fibres in woven constructions
such as optical glass fibres or shape-memory alloy fibres with particular
sizes.

Mechanical modelling of solid woven fabric composites 79

3.3 Extended checkerboard pattern of a hybrid 2 ¥ 2 twill weave unit
cell. The w and f type yarns are Dyneema® fibres, and the w* and f*
type yarns are carbon fibres.
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The most detailed geometric analysis would consider the path of each
single fibre in the unit cell. The greatest practical problem, however, is
caused by the fact that the complete set of input data necessary for such a
detailed geometric description is very large and difficult to quantify. There-
fore, the geometric analysis is carried out on the yarn level. We assume that
all individual fibres in the yarn run in the same direction as the yarn. The
intra-yarn fibre volume fraction or fibre packing density K, defined as the
fibre to yarn area ratio, is assumed to be a constant for the woven fabric
composite. Interlacing of the yarns and processing of the composite leads
to thread or yarn flattening. On the basis of microscopic observations, a
lenticular shape was selected to describe the cross-sectional shape of the
yarn (Fig. 3.4).

The geometric characteristics of a hybrid weave can be subdivided in
three groups (Table 3.4). The first group, the know group, contains those
parameters that are supplied by the weaving company. All the parameters
that one has to measure on a real woven fabric composite are put together
in the second group, the measure group. This fabric information can be
obtained by microscopic observation of warp and weft sections of the fabric
composite. The aspect ratio f of the yarn, defined as the width w over the
thickness t of the lenticular yarn cross-section, is the most important 
one. The crimp parameter hf describes the undulation of the filling yarns.
Of course, the undulation of the yarns in the warp direction is related to
this parameter because the increase of undulation in one direction of the
fabric reduces the undulation in the other direction [36]. Finally, the third
group, the calculate group, contains all values that are calculated from 
the previous parameters, using formulas based on simple geometric 
considerations.

80 3-D textile reinforcements in composite materials

3.4 Lenticular yarn cross-section. W is width of yarn, t is yarn
thickness, R is radius of curvature.
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Certainly, the most important output of the calculation procedure is the
fibre volume fraction, the orientation of the yarns and the fractional volume
of each cell. These data are the basis for a modelling of mechanical prop-
erties. Moreover, the geometric model as such is most useful in determin-
ing some textile properties as fabric thickness, but also in determining the
allowable microstructural states of fabrics. A custom Microsoft Excel®

application, called TexComp, has been developed to perform all geometric
calculations [34].

3.3.3 Multilevel decomposition scheme

The geometric model treats a woven fabric composite unit cell, shown in
Fig. 3.5, as a hierarchical system that can be decomposed. Two major moti-
vations are here formulated. First, the calculation and bookkeeping of 
geometric data should become a simple task. It is easy to calculate the 
geometric parameters that fully describe the yarn architecture only based
on the presented ‘know’ and ‘measure’ group. Second, a logic and simple
geometric meshing of the unit cell is essential for the computation of the
mechanical properties. Basically, the composite unit cell level (1) is split up
into block cells or macro-cells (2), micro-cells (3), matrix and yarn layers
(4) and matrix and fibres (5). This five-level decomposition scheme could
be considered as an ‘intelligent mesh generator’ for 2-D woven fabric 
composites. A logic extension towards 3-D woven preforms and to braids
is currently being carried out.

The block partition of the unit cell consists of discretizing the unit cell in
a number of rectangular block cells. At each crossover zone of a warp yarn
and a weft yarn, one ‘building block’ is defined. The size of each block can
easily be computed as a function of yarn spacings p, yarn widths w and com-

Mechanical modelling of solid woven fabric composites 81

Table 3.4. Classification of the geometric parameters

Know group Nf Number of fibres in the yarn
d Diameter of the fibre
p Yarn spacing

Measure group f Aspect ratio of the yarns
hf Crimp parameter for the filling yarn
D Thickness of the composite
K Fibre packing density

Calculate group hw,hw* Crimp parameter for the warp yarns
t Thickness of the yarn cross-section
w Width of the yarn cross-section
b Orientation of the yarn
Vf Fibre volume fraction
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posite thickness D. As can be seen in Fig. 3.6, we need 16 block cells to
create the unit cell of a 2 ¥ 2 hybrid twill fabric composite.

Basically, each block cell is uniquely identified by four macro-cells (Fig.
3.7). That is, at each crossover point of a warp and a weft yarn, one needs
two macro-cells in one layer to define the path for the warp yarn and two
in the other layer for the weft yarn. However, it should be stressed that the
two layers of macro-cells, which are always present in the unit cell, yield a
correct description of the geometry (for example, the fibre volume fraction
is correct). In order to describe a general 2-D weave geometry, a library of
108 macro-cells has been put together. Even the most complex 2-D woven

82 3-D textile reinforcements in composite materials

3.5 Multilevel decomposition of woven fabric composites: top-down.

3.6 Schematic of a hybrid twill weave unit cell (level 1) and a block
cell (level 2).
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structures can be composed with this library of rectangular macro-cells or
building blocks.

It should be pointed out that only the weave construction pattern pro-
vided by the weaving company is sufficient to determine automatically the
number of each type of macro-cell present in the unit cell. No extra fabric
information, nor any geometric assumptions, nor operator interventions are
needed. Therefore, the macro-partition is simple in concept and easy to
apply. It provides a theoretical basis for the design of woven fabric 
composites.

The decomposition of the block in micro-cells is called the micro-
partition. It is assumed that within each small micro-cell the yarn follows a
straight yarn path. The 2-D micro-partition results in a fully 3-D division of
the unit cell, so that the variation of properties within the unit cell can be
properly analysed. This is essential for understanding the mechanical per-
formance of woven fabric composites. For the local stress analysis, it will
further be necessary to define the micro-cell also in the 123 local axis
system, where 1 corresponds to the longitudinal yarn direction.This is called
a combi-cell. Therefore the label micro-cell (xyz) or combi-cell (123) is
selected depending on the reference axis system.

Then, the multilevel decomposition approach is based on simplifying the
geometry within each combi-cell by assuming one matrix layer and one

Mechanical modelling of solid woven fabric composites 83

3.7 Schematic of a block cell or macro-cell (level 2) and a micro-cell
(level 3).
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impregnated yarn layer (Fig. 3.8). This is level 4. Finally, each impregnated
yarn is treated as a unidirectional lamina with matrix and fibre phases. This
is level 5.

3.3.4 The complementary energy elastic model

Previously, by constructing a multilevel decomposition scheme, the com-
posite unit cell was split automatically into matrix and yarn cells. Presently,
by a multistep homogenization procedure, a link is established between the
external loading and the internal stresses.The principal idea lies in the inter-
pretation that the stress ‘concentration factors’ can be computed at each
step by applying the complementary variational principle. This principle
states that from all the admissible stress fields, the true field is that which
minimizes the total complementary energy (hence the name: complemen-
tary energy model, CEM). We achieve a straightforward analytical stress
model for woven fabric composites.

The four-step homogenization model CEM is now developed. The Venn
diagrams in Fig. 3.9 show the link between the fractional cell volumes k, the
stress concentration factors A and the compliance matrices S. With this

84 3-D textile reinforcements in composite materials

3.8 Schematic of a micro-cell or combi-cell (level 3), matrix and yarn
layers (level 4) and a unidirectional lamina with fibre and matrix
phases (level 5).
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bottom-up homogenization scheme, from geometric level 5 to level 1, it is
easy to compute the effective stiffness matrix of the woven fabric compo-
site.

In the first homogenization step, the effective lamina or impregnated yarn
layer properties are predicted in terms of their constituent material prop-
erties, and the fibre packing density K in the yarn. The empirical Chamis
expressions [37], describing the elastic properties of a unidirectional lamina
composed of transversely anisotropic fibres in an isotropic matrix, are used
in this first step.

Consider now the micro-cell homogenization problem. This is step two.
The complementary variational principle is used to compute the stress 
concentration factors for both layers. One average stress tensor is specified
for each layer. These computed stress concentration factors are extremely
useful because they link the stress tensor applied on the micro-cell with the
average stress tensors on both layers and because they allow a straightfor-
ward computation of the micro-cell compliance matrix [SMC]. More infor-
mation on this topic can be found in [33].

As a next step, homogenization step three, the effective properties for the
block cell are also determined by applying the complementary variational
principle, taking into account the position and the properties of the 200
micro-cell constituents. The calculation procedure is shown in the Venn
diagram of Fig. 3.9. Obviously, the 3-D compliance matrix of the block-cell
is related to the fractional volume k, the compliance matrix [S] and the 
concentration factors [A] for the micro-cell’s components as follows:

Mechanical modelling of solid woven fabric composites 85

3.9 Multistep homogenization of woven fabric composites: CEM [S].
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[3.1]

where the subscripts r, s and t refer to the position of the micro-cell in the
block-cell as shown in Fig. 3.7. Already in the geometric model, the frac-
tional volume kMC for each of the micro-cells has been expressed and 
calculated as a function of the yarn spacings, the yarn width and the yarn
thickness. The compliance matrix [SMC] for each of the micro-cells was cal-
culated in the previous homogenization step. Applying the complementary
variational principle [39] will yield the concentration factors [AMC] which
link the average block stress and the micro-cell stresses. Now, the varia-
tional problem is solved in the global xyz coordinate system. Because one
constant stress tensor is assigned to each of the 200 micro-cells, there are a
total of 1200 unknown stress constants to be determined. The assumed and
admissible stress fields are imposed by conditions 3.2 and 3.3:

Mathematically, these stress constraints are considered by the method of
the Lagrangian multipliers [38]. Therefore, the optimization problem is
replaced by a set of equations that can be solved directly for the unknown
stress constants. Proceeding from the geometric block cell level to the
assembled composite unit cell level, the complementary variational princi-
ple is used for the last time. This is homogenization step four. The unknown
block cell stresses and block cell concentration factors [ABC] are computed
directly by the method of Lagrange [38]. Here, only the final expression for
the compliance matrix of the unit cell is presented in Equation 3.4.The sub-
scripts m and n refer to the position of the block in the unit cell (Fig. 3.6),
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[3.2]

[3.3]
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the constants F and W refer to the number of weft and warp yarns in the
unit cell:

[3.4]

Basically, the four-step procedure defined in the foregoing will result
directly in the computation of the overall symmetric 3-D compliance matrix
of the woven fabric composite unit cell. Moreover, a direct link is estab-
lished between the average unit cell stress and the cell stresses at each geo-
metric level.This most important result will serve as a solid basis for further
strength modelling in the next section.

In conclusion, Fig. 3.10 and 3.11 present a benchmark parametric study
for a glass/epoxy plain weave fabric composite. The analytical model yields
elastic moduli predictions comparable to those obtained by 3-D finite
element modelling. This fact is put forward as an indication of the appro-
priateness of the present multilevel, multistep technique.

3.3.5 Conclusion

The ability to specify the woven fabric geometry gives the designer control
over the composite material. Many of the properties that influence how a
composite can be used are determined by the ‘averaged’ behaviours of the
fibres and the matrix. The ‘averaged’ stiffness properties are shaped by the
internal yarn distribution, i.e. yarn orientation and position. With CEM, we
now have a fast and efficient tool to predict the effect of each geometric

S k A S A
m

F

n

W

mn mn mn mnUC BC BC
T

BC BC[ ] = [ ] [ ][ ]
= =
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1 1

Mechanical modelling of solid woven fabric composites 87

3.10 Predicted Young’s moduli for the benchmark composite:
comparing results from an FEM study [24] and our CEM calculations
(material: glass-epoxy plain weave). � Ex = Ey (CEM); � Ez (CEM); � Ex

= Ey (FEM); � Ez (FEM).
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variable on the 3-D elastic performance of the 2-D woven fabric compo-
site. The proposed model can easily be extended to calculate the so-called
thermal concentration tensors for the computation of the effective thermal
expansion constants [33]. Moreover, the model can be generalized to 3-D
preforms by simply extending the set of macro-cells.

3.4 Strength model

3.4.1 Introduction

Woven fabric composite components are subjected to a variety of loading
conditions during their service life. Therefore, an understanding of the
mechanical response of these materials to various loading conditions is 
necessary for the safe design of a component. The prediction of strength 
is certainly one of the outstanding problems in the analysis of fibre 
composites. This section presents a method to predict the micro-stress 
fields, the first cell failure and the ultimate strength of woven fabric 
composites.

3.4.2 The complementary energy stress model

In order to predict strength accurately, a sufficiently detailed stress distri-
bution must be available for composites subjected to arbitrary combina-
tions of applied stresses. The need for computationally efficient predictive
tools is clear when one considers the large range of fibres, matrices and

88 3-D textile reinforcements in composite materials

3.11 Predicted shear moduli for the benchmark composite: comparing
results from an FEM study [24] and our CEM calculations (material:
glass-epoxy plain weave). � Gyz = Gzx (CEM); � Gxy (CEM); � Gyz = Gzx

(FEM); � Gxy (FEM).
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woven fabric types available. The Venn diagrams in Fig. 3.12 show the link
between the external mechanical loading, the stress concentration factors
and the internal stress tensors.With this top-down stress calculation scheme
it is easy to compute the stress fields at each geometric level. The entities
corresponding to one of the stress calculation steps are grouped together
in one Venn diagram.

As an example, the calculation of the yarn and matrix layer stresses 
for an arbitrary mechanical loading of the composite unit cell is 
explained below. The overall average stress tensor on the unit cell is
denoted as:

[3.5]

By considering the computed concentration factors [A] at each step and the
yarn orientation through the calculation of the stress transformation matrix
[Ts], the matrix and yarn layer mechanical stresses are given by

[3.6]

Two important observations are made. First, the yarn orientation and yarn
position effects are included in the stress model due to the calculation of
the concentration factors using the multilevel, multistep CEM. For example,
the matrix material is not characterized by one stress state but by multiple
stress states depending on the position of the matrix cell. Second, it should
be stressed that any type of simple or combined 3-D mechanical loading

s ssY YA T A A{ } = [ ][ ][ ][ ]{ }MC BC UC

s ssM M MC BC UC{ } = [ ][ ][ ][ ]{ }A T A A

s s s s t t tUC
T

UC UC UC UC UC UC{ } = { }x y z yz zx xy, , , , ,
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3.12 Multistep stress analysis of woven fabric composites: CEM.
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can be applied, irrespective of symmetry, without resorting to different
boundary-condition application strategies, as in the case of the finite
element procedure. This is particularly important in the analysis of realis-
tic woven fabric composite components where different loading conditions
exist throughout the structure.

3.4.3 Development of the failure model

The computed micro-stress fields are very useful to predict the appearance
of damage. That is, the model is capable of predicting the point of initial
failure using only strength values of the constituent matrix and yarn cells.
This point of initial failure is called the first cell failure.

For the isotropic matrix material, the paraboloid failure locus applied on
the principal stresses is used for its simplicity. It is a flexible failure cri-
terion that yields a unique solution for each loading path. Moreover, it 
conforms with the basic physical laws and experimental evidence [40]. For
the transversely isotropic yarn material, a maximum stress criterion is used.
The current yarn stresses {sY} are computed in the local 123 coordinate
system and compared with respective ultimate strengths. It is assumed here
that five strength parameters of the impregnated yarn can be estimated
from available unidirectional composite strengths. These are: the longitudi-
nal tensile strength XT, the longitudinal compressive strength XC, the trans-
verse tensile strength YT, the transverse compressive strength YC and the
shear strength S.

In the progressive failure analysis, the effects of matrix and yarn failure
are taken into account in an average sense. It is based on the assumption
that the damaged material could be replaced with an equivalent material
of degraded properties. The properties of the damaged material are
adjusted as the loading and progression of damage continue. However, it is
not an easy task to determine the degraded properties of the degraded
material with certainty [27]. In the present study, the stiffness reduction
method as proposed by Blackketter [27] will be used. First, the method
accounts for the damage mode when modelling degradation of yarn ma-
terials (Table 3.1). If failure is detected, appropriate moduli are reduced.
Second, the matrix failure is introduced by reducing the Young’s modulus
to 1% and the shear modulus to 20% of their original values. After failure,
the matrix is no longer isotropic.

After the implementation of the damaged elastic properties in the CEM,
another global load increment is applied on the composite. The detailed
stress state in the woven fabric composite is updated and compared with
the strength properties. The load is increased until (1) a new material cell
has failed, or (2) another failure mode is detected for a damaged cell, or (3)
catastrophic failure of the total unit cell has occurred. Catastrophic failure

90 3-D textile reinforcements in composite materials
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is determined by a large displacement or stress fall compared with the pre-
vious values. Finally, to clarify the present approach, some important
remarks are provided:

• The woven fabric composite is assumed to be initially free of damage
(cracks, voids, etc.).

• The non-linearity of the matrix is not taken into account for two reasons.
First, the non-linear behaviour of the different matrix zones in the com-
posite is different from that of the bulk material. This is mainly caused
by the presence of local multiaxial stress states and thermal stresses.This
information is usually not available. Second, the non-linear stress–strain
behaviour of woven fabric composites was shown to be mainly influ-
enced by damage propagation [27] and not by the non-linearity of the
matrix.

• The model does not calculate the fabric geometric deformation at each
load step. This is acceptable for on-axis loading because the strain-to-
failure is low. However, it is expected that the model will predict less
accurate results for off-axis tensile tests, where the strain-to-failure is
much higher.

• The proposed deterministic modelling approach will yield a typical
‘peaked’ stress–strain curve as shown in Fig. 3.13 because several cells
fail at the same moment. There is no drop in stress in the experimen-

Mechanical modelling of solid woven fabric composites 91

3.13 Predicted warp stress–strain curves as a function of the yarn
aspect ratio f.
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tally obtained stress–strain curve because the failure of matrix and yarn
cells is spread out over a large strain range.

3.4.4 Parametric study: strength analysis

A Fortran code, called WCUnix, has been developed for computing the
micro-stress fields, the first cell failure and the ultimate strength of woven
fabric composites. The most novel feature offered is the simulation of pro-
gressive failure by a stiffness degradation scheme. That is, the analysis of
loading becomes a series of elastic analyses. The source code has been com-
piled on a SUN SparcStation 10. A single load step for a plain fabric com-
posite required about 30 seconds’ calculation time. Blackketter reports a
calculation time of 30 minutes for each iteration or load step using 3-D finite
element modelling on a VAX 8800 computer [27]. Therefore, the WCUnix
code is certainly not computationally intensive. Recently, by introducing
more time efficient mathematical subroutines, the calculation time has been
further reduced drastically.

In this parametric study, a glass/epoxy plain weave fabric composite is
considered. The elastic constants of the matrix and fibre constituents are
presented in Table 3.5.The strength parameters for the matrix and the trans-
versely isotropic impregnated yarn cells are listed in Table 3.6. Geometric
characteristics of the warp and weft yarns are given in Table 3.7.

The format of this study is to change the yarn aspect ratio f for both yarn
systems. The ratio is set equal to 3, 6, 9 and 12, ranging from rather round
to very flat yarn cross-sections. Then, the yarn spacings in warp and weft
direction are computed as the width of the yarn plus 20%. The thickness of
the composite is computed as the thickness of the plain weave fabric plus

92 3-D textile reinforcements in composite materials

Table 3.5. Thermo-elastic properties of the matrix
and the fibre material

Material E (GPa) n a (/K)

Epoxy matrix 3.13 0.34 6.60 ¥ 10-5

Glass fibre 73 0.2 4.80 ¥ 10-6

Table 3.6. Strength parameters for the matrix and
the impregnated yarn cells (MPa)

SC ST XC XT YC YT S

83 56 610 1462 118 50 72

RIC3  7/10/99 7:37 PM  Page 92

C
op

yr
ig

ht
ed

 M
at

er
ia

l d
ow

nl
oa

de
d 

fr
om

 W
oo

dh
ea

d 
Pu

bl
is

hi
ng

 O
nl

in
e



D

el
iv

er
ed

 b
y 

ht
tp

://
w

oo
dh

ea
d.

m
et

ap
re

ss
.c

om



H
on

g 
K

on
g 

Po
ly

te
ch

ni
c 

U
ni

ve
rs

ity
 (

71
4-

57
-9

75
)



Sa

tu
rd

ay
, J

an
ua

ry
 2

2,
 2

01
1 

12
:3

0:
11

 A
M



IP

 A
dd

re
ss

: 1
58

.1
32

.1
22

.9





an extra 10%. The predicted fibre volume fraction of all the resulting 
woven fabric composites equals 35%. Hence, a comparison of the results is
possible.

The tensile stress–strain curves are predicted with the WCUnix code.
Figures 3.13 and 3.14 plot the computed stress–strain curves in warp and
bias direction, respectively. The stiffness reduction scheme does not affect
the stress level at which damage initiates; only the final shape of the
stress–strain plot after the first cell failure occurs is influenced.

In the warp direction load case, we observe a very strong influence of the
yarn aspect ratio f on the failure behaviour. If the yarn aspect ratio f equals
3, the ultimate strength is only 60MPa and the first cell failure is due to
matrix cell failure. However, if the ratio equals 12 (a very flat yarn cross-

Mechanical modelling of solid woven fabric composites 93

Table 3.7. Yarn characteristics of the plain weave
composite

Number of Fibre diameter, Fibre packing
fibres, Nf d (mm) density, K

1000 0.01 0.70

3.14 Predicted bias stress–strain curves as a function of the yarn
aspect ratio f.
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section), the strength reaches 240MPa and the first cell failure is due to
transverse weft yarn failures at points of maximum yarn curvature. These
differences should be attributed to the different geometric architectures.
The maximum yarn orientation b (which is directly linked to the yarn cross-
section) plays a key role. Basically, the predicted strength decreases con-
siderably with increased yarn undulation. For all four woven fabric
composites considered, the ultimate failure is due to warp fibre breakage.
The non-linearity of the curves is a result of progressive damage develop-
ment.

In the bias direction load case, we observe only a minor influence of the
yarn aspect ratio f on the failure behaviour. The first cell failure is always
due to transverse yarn failure. The strength of the woven fabric composite
is related to the failure of a undirectional lamina or yarn cell. The failure
of a single yarn cell in the bias direction is only weakly dependent on the
out-of-plane lamina orientation. Therefore, the predicted strength of the
composite is constant.

Figure 3.15 compares the experimental and theoretical stress–strain
curves for the RE280 glass/epoxy composite. The RE280 basket weave
fabric has been supplied by the Syncoglas company, Belgium. The elastic
and strength properties of the constituent materials are readily available
and listed in Tables 3.5 and 3.6.Three important observations are presented
here. First, a very good agreement is observed between experiment and
theory on glass/epoxy composites. Second, the theoretical and experimen-
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3.15 Theoretical and experimental stress–strain curves in warp and
bias directions.
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tal stress–strain curves in the warp direction are apparently straight lines.
However, the curves are nonlinear due to the characteristic knee behaviour
for woven fabric composites. The knee is the result of transverse weft yarn
failures.The position of the knee is predicted very accurately with the CEM.
Finally, the yarn reorientation in the loading direction plays an important
role in the bias specimen. At large strains, the experimental stresses are
higher than the predicted ones. This is because the model does not account
for the fabric yarn reorientation, which becomes significant at strains higher
than 10%. The yarns rotate towards a smaller angle with respect to the
loading direction, resulting in a stiffness increase. Therefore, the ultimate
bias strength is not predicted very accurately.

3.5 Conclusions

This chapter has addressed the important issue of developing micro-
mechanical models for woven fabric composites. Besides an extensive 
literature review on the modelling of 2-D woven fabric composites, a 
fully 3-D geometric, elastic and strength analysis has been presented as an
example of the vigour in textile composites research. A brief summary of
the principal conclusions follows.

• Many researchers have used the isostrain technique to model the 3-D
elastic properties of 2-D woven fabric composites. The model is indeed
a ‘quick’ method to calculate an upper and lower bound for the effec-
tive stiffness matrix because it only requires yarn orientation data. Most
researchers agree that the upper bound yields much better results than
the lower bound. The technique can easily be applied to other textile
composites. We have experienced that for most woven fabric compo-
sites, the isostrain models predict correct in-plane elastic properties but
incorrect out-of-plane properties. The relative position of the predicted
shear moduli is always false [21].

• Development of a geometric decomposition scheme for woven fabric
composites with an arbitrary 2-D architecture. It is new because of its
clear geometric concept (a library of building blocks for woven fabric
composites), its easy bookkeeping of geometric data and its ability to
describe non-traditional fabrics. Moreover, by extending the library of
building blocks, solid 3-D woven fabric composites and braided fabric
composites are actually analysed, using the same approach.

• For modelling woven fabric composites one can find inspiration in the
extensive modelling efforts on unidirectional and short fibre random
composites. However, analogies can be misleading. The ‘yarn distribu-
tion’ of a textile composite is determined by the textile processing route
(yarn level analysis). For woven fabric composites the characteristic

Mechanical modelling of solid woven fabric composites 95
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yarn interlacings, curvatures and locations should be taken into account,
reflecting the actual geometry. One of the critical determinants of effec-
tive woven fabric composites properties is definitely the yarn orienta-
tion. However, the yarn position is also critical for the accurate
prediction of both stiffness and strength properties. Because it is not
always easy to account for the position effect, it is neglected, minimized
or concealed by most researchers.

• The development of mechanical models or the application of optimiza-
tion models to the design of large woven fabric composite structures is
difficult because the number of geometric design variables and con-
straints is large. A remedy is to break the problem into several smaller
subproblems. Although this is not in itself a new discovery, it is impor-
tant to be fully aware of that fact and draw the appropriate conclusions.
We are able to report that a ‘multilevel decomposition, multistep
homogenization’ approach has been developed to solve the stiffness,
stress and strength analysis problem for 2-D woven fabric composites.
Although we have adopted fully the complementary energy approach,
it should be stressed that different modelling strategies can be used to
solve the different subproblems.The method is only limited by the capa-
bility to come up with an appropriate decomposition in subproblems.

• The new and successful complementary energy model is based on solving
the stress analysis problem first. Second, the computed stress concen-
tration factors yield a solution for the 3-D stiffness properties. To the
best of our knowledge, this kind of model has not yet been presented
in the literature for woven fabric composites. Finally, the accurate stress
fields serve as a useful tool for the strength analysis. One major advan-
tage is that any type of simple or combined multiaxial loading can be
applied. Another advantage is that the model can be extended to take
into account the presence of residual thermal stresses.

Although a considerable body of knowledge has been generated in the
past years, more research is required to develop design guidelines for opti-
mizing material performance by manipulating the woven fabric architec-
ture. Future research could address the following topics:

• Design of structural components such as aircraft parts, automobile
chassis elements or bicycle frames tends to be very complex and time-
consuming. The development of efficient analytical pre-processors for
woven fabric composites can decrease cost and make finite element
modelling an economic and easy-to-use solution. Using pre-processors,
the production of a correct finite element model will only require the
generation of the component geometry, but not any more the detailed
and elaborate description of unit cells, textile style, yarn size and yarn
undulation.
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• The design of woven fabric composite materials will grow dependent 
on computer models. The optimization of a microstructure will require
the marriage of micromechanical and optimization models. Therefore,
optimization models should be developed which can optimize at 
once certain geometric, mechanical, thermal, process and economic
properties.
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