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Abstract. Density functional theory for the ground state energy in its modern un-
derstanding which is free of representability problems or other logical uncertainties
is reported. Emphasis is on the logical structure, while the problem of modeling the
unknown universal density functional is only very briefly mentioned. Then, a very
accurate and numerical effective solver for the self-consistent Kohn-Sham equations
is presented and its power is illustrated. Comparison is made to results obtained
with the WIEN code.

2.1 Density Functional Theory in a Nutshell

Density functional theory deals with inhomogeneous systems of identical par-
ticles. Its general aim is to eliminate the monstrous many-particle wave func-
tion from the formulation of the theory and instead to express chosen quan-
tities of the system directly in terms of the particle density or the particle
current density. There are basically three tasks: (i) to prove that chosen quan-
tities are unique functionals of the density and to indicate how in principle
they can be obtained, (ii) to find constructive expressions of model density
functionals which are practically tractable and approximate the unique func-
tionals in a way to provide predictive power, and (iii) to develop tools for an
effective solution of the resulting problems.

As regards task (i), final answers have been given for the ground state
energy [2.2, and citations therein]. In the following these results are summa-
rized. Task (iii) is dealt with in the next section as well as in Chap. 3.

Central quantities of the density functional theory for the ground state
energy are:

– the external potential v(r) or its spin-dependent version

v̌ = vss′(r) = v(r)δss′ − µBB(r) · σss′ , (2.1)

– the ground state density n(r) or spin-matrix density

ň = nss′(r)=̂
{
n(r) =

∑
s nss(r),

m(r) = µB
∑

ss′ nss′(r)σs′s

}
, (2.2)

– the ground state energy

E[v̌, N ] = min
Γ

{Hv̌[Γ ] | N [Γ ] = N } . (2.3)
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Here, Γ means a general (possibly mixed) quantum state,

Γ =
∑
Mα

|ΨMα〉pMα〈ΨMα| , pMα ≥ 0 ,
∑
Mα

pMα = 1 (2.4)

where ΨMα is the many-body wave function of M particles in the quantum
state α. In (2.3), Hv̌[Γ ] and N [Γ ] are the expectation values of the Hamil-
tonian with external potential v̌ and of the particle number operator, resp.,
in the state Γ . In the (admitted) case of non-integer N , non-pure (mixed)
quantum states are unavoidable.

The variational principle by Hohenberg and Kohn states that there exists
a density functional H[ň] so that

E[v̌, N ] = min
ň

{
H[ň] + (v̌ | ň)

∣∣ (1̌ | ň) = N
}
, (2.5)

(v̌ | ň) =
∑
ss′

∫
d3rvss′ns′s =

∫
d3r(vn− B · m), (1̌ | ň) =

∑
s

∫
d3rnss .

(2.6)

Given an external potential v̌ and a (possibly non-integer) particle number
N , the variational solution yields E[v̌, N ] and the minimizing spin-matrix
density ň(r), the ground state density.

There is a unique solution for energy since H[ň] is convex by construction.
The solution for ň is in general non-unique since H[ň] need not be strictly
convex. The ground state (minimum of H[ň] + (v̌ | ň)) may be degenerate
with respect to ň for some v̌ and N (cf. Fig. 2.1).

In what follows, only the much more relevant spin dependent case is con-
sidered and the checks above v and n are dropped.

ň

����������������������
(v̌ | ň)

������

H[ň]

H[ň] + (v̌ | ň)

Fig. 2.1. The functionals H[ň], (v̌ | ň) and H[ň] + (v̌ | ň) for a certain direction in
the functional ň-space and a certain potential v̌.
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The mathematical basis of the variational principle is (for a finite total
volume, for instance provided by periodic boundary conditions, to avoid for-
mal difficulties with a continuous energy spectrum) that E[v,N ] is convex in
N for fixed v and concave in v for fixed N , and

E[v + const., N ] = E[v,N ] + const. ·N. (2.7)

Because of these simple properties of the ground state energy (which are not
even mentioned by Hohenberg and Kohn in their seminal paper [2.5]) it can
be represented as a double Legendre transform,

E[v,N ] = inf
n

sup
µ

{
H[n] + (v|n) +

[
N − (1|n)

]
µ
}
, (2.8)

which is equivalent to (2.5) because the µ-supremum is +∞ unless (1|n) =
N . The inverse double Legendre transformation yields the universal density
functional:

H[n] = inf
N

sup
v

{
E[v,N ] − (n|v)

}
. (2.9)

Universality means that given a particle-particle interaction (Coulomb inter-
action between electrons say) a single functional H[n] yields the ground state
energies and densities for all (admissible) external potentials.

The expression (2.9) need not be the only density functional which pro-
vides (2.5). Generally two functions which have the same convex hull have the
same Legendre transform. (Here the situation is more involved because of the
intertwined double transformation.) Nevertheless, the outlined analysis can
be put to full mathematical rigor, and the domain of admissible potentials
is very broad and contains for instance the Coulomb potentials of arbitrary
arrangements of nuclei. There are no representability problems. For details
see [2.2].

This solves task (i) for the ground state energy as chosen quantity, which,
for given v and N , is uniquely obtained via (2.5) from the functional H[n] +
(v|n). There are attempts to consider other quantities as excitation spectra or
time-dependent quantities which are so far on a much lower level of rigor. Of
course, H[n] is unknown and of the same complexity as E[v,N ]. It can only
be modeled by guesses. This turns out to be uncomparably more effective
than a direct modeling of E[v,N ].

Modeling of H[n] starts with the Kohn-Sham (KS) parameterization [2.7]
of the density by KS orbitals φk(rs) and orbital occupation numbers nk:

n(r) = nss′(r) =
∑

k

φk(rs) nk φ∗k(rs′), (2.10)

0 ≤ nk ≤ 1, 〈φk|φk′〉 = δkk′ , (1 |n) =
∑

k

nk = N . (2.11)
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Model functionals consist of an orbital variation part K and a local density
expression L:

H[n] = K[n] + L[n] ,

K[n] = min
{φk,nk}

{
k[φk, nk]

∣∣∣∑kφknkφ
∗
k = n

}
,

L[n] =
∫

d3rn(r)l
(
nss′(r),∇n, . . .

)
,

(2.12)

which cast the variational principle (2.5) into the KS form

E[v,N ] = min
{φk,nk}

{
k[φk, nk] + L[Σφnφ∗] + (Σφnφ∗ | v)

∣∣∣
∣∣∣〈φk|φk′〉 = δkk′ , 0 ≤ nk ≤ 1,

∑
knk = N

}
.

(2.13)

φ∗i , φi and ni must be varied independently. The uniqueness of solution now
depends on the convexity of k[φk, nk] and L[n].

Variation of φ∗k yields the (generalized) KS equations:

1
nk

δk

δφ∗k
+
(δL
δn

+ v
)
φk = φkεk . (2.14)

Since nk and φ∗k enter in the combination nkφ
∗
k only, the relation

nk
∂

∂nk
=
〈
φk

∣∣∣ δ

δφ∗k
(2.15)

is valid which yields Janak’s theorem:

∂

∂nk

(
k + L+ (v |n)

)
= εk . (2.16)

Variation of nk, in view of the side conditions, yields the Aufbau principle:
Let nk′ < nk, then (cf. Fig. 2.2)

δn
( ∂

∂nk′
− ∂

∂nk

)(
k + L+ (v |n)

){≥ 0 for nk′ = 0 or nk = 1 ,
= 0 for 0 < nk′ , nk < 1 .

(2.17)

Hence,

nk = 1 for εk < εN ,
0 ≤ nk ≤ 1 for εk = εN ,
nk = 0 for εk > εN .

(2.18)

Finding suitable expressions for k and L mainly by physical intuition is
the way task (ii) is treated. The standard L(S)DA or GGA is obtained by
putting
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δn���

Fig. 2.2. A free minimum of a function of δn and a minimum under the constraint
δn > 0.

k[φk, nk] =
∑

k

nk〈φk| − ∇2

2
|φk〉 +

+
∑
kk′

nknk′

2

∑
ss′

∫
d3rd3r′

|φk(rs)|2|φk′(r′s′)|2
|r − r′| .

(2.19)

This completes the brief introduction to the state of the art of density func-
tional theory of the ground state energy.

Just to mention one other realm of possible density functionals, quasipar-
ticle excitations are obtained from the coherent part (pole term) of the single
particle Green’s function ([2.3–2.5])

Gss′(r, r′;ω) =
∑

k

χs(r)η∗s′(r′)
ω − εk

+Gincoh
ss′ (r, r′;ω) , (2.20)

∑
s′

∫
d3r′

[
δ(r − r′)

(
−∇2

2
+ u(r) + uH(r)

)

+Σss′(r, r′; εk)
]
χs′(r′) = χs(r)εk . (2.21)

Here, in the inhomogeneous situation of a solid, the self-energy Σ is among
other dependencies a functional of the density. This forms the shaky ground
(with rather solid boulders placed here and there on it, see for instance
also [2.4]) for interpreting a KS band structure as a quasi-particle spectrum.
In principle from the full Σss′(r, r′;ω) the total energy might also be ob-
tained.

2.2 Full-Potential Local-Orbital Band Structure Scheme
(FPLO)

This chapter deals with task (iii) mentioned in the introduction to Chap. 1.
A highly accurate and very effective tool to solve the KS equations self-
consistently is sketched. The basic ideas are described in [2.6, see
http://www.ifw-dresden.de/agtheo/FPLO/ for actual details of the imple-
mentation].
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The KS (2.14) represents a highly non-linear set of functional-differential
equations of the form

Ĥφi =
[
−∇2

2
+ veff

]
φi = φiεi (2.22)

since the effective potential parts contained in δk/δφ∗i and in δL/δn depend
on the solutions φi. The general iterative solving procedure is as follows:

Guess a density n
(in)
ss′ (r) .

– Determine the potentials vH(r) (part of δk/δφ∗i from the second line
of (2.19)) and vxc,ss′(r) = δL/δns′s .

– Solve the KS equation for φi(rs), εi .
– Determine the density n

(out)
ss′ (r) =

∑
i φi(rs)θ(µ− εi)φ∗i (rs

′)
with µ = µ(N) from

∑
i θ(µ− εi) = N .

– Determine a new input density n
(in)
ss′ (r) = f

(
n

(out)
ss′ (r), n(in,j)

ss′ (r)
)

from
n(out) of the previous step and n(in,j) of a number of previous cycles; f
has to be chosen by demands of convergence.

Iterate until n(out) = n(in) = n(SCF) .
SCF density: nss′(r)=̂(n(r), m(r)) ,

Total energy: E[v,N ] = H[n] + (v |n) .

In the following the most demanding second step is sketched.

2.2.1 The Local Orbital Representation

The KS orbitals φkn of a crystalline solid, indexed by a wave number k and
a band index n, are expanded into a nonorthogonal local orbital minimum
basis (one basis orbital per band or per core state):

φkn(r) =
∑
RsL

ϕsL(r − R − s)CLs,kne
ik(R+s). (2.23)

This leads to a secular equation of the form

HC = SCε , (2.24)

Hs′L′,sL =
∑
R

〈0s′L′|Ĥ|RsL〉eik(R+s−s′) , (2.25)

Ss′L′,sL =
∑
R

〈0s′L′|RsL〉eik(R+s−s′) . (2.26)

By definition, core states are local eigenstates of the effective crystal po-
tential which have no overlap to neighboring core states and are mutually
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orthogonal. This gives the overlap matrix (2.26) a block structure (indices
c and v denote core and valence blocks) allowing for a simplified Cholesky
decomposition into left and right triangular factors:

S =
(

1 Scv

Svc Svv

)
=
(

1 0
Svc S

L
vv

)(
1 Scv

0 SR
vv

)
= SLSR , (2.27)

SL
vvS

R
vv = Svv − SvcScv . (2.28)

The corresponding block structure of the Hamiltonian matrix (2.25) is

H =
(

εc1 εcScv

Svcεc Hvv

)
, εc = diag(· · · , εsLc , · · · ) . (2.29)

With these peculiarities the secular problem for H may be converted into
a much smaller secular problem of a projected Hamiltonian matrix H̃vv as
follows:

HC = SCε

(SL−1HSR−1)(SRC) = (SRC)ε

⇓

H̃vvC̃vv = C̃vvεv (2.30)

H̃vv = SL−1
vv (Hvv − SvcHccScv)SR−1

vv

C =


1 −ScvS

R−1
vv C̃vv

0 SR−1
vv C̃vv


 .

This exact reduction of the secular problem saves a lot of computer time in
solving (2.25), by a factor of about 3 in the case of fcc Cu (with 3s, 3p-states
treated as valence states for accuracy reasons) up to a factor of about 40 in
the case of fcc Au (again with 5s, 5p-states treated as valence states). With
slightly relaxed accuracy demands and treating the 3s, 3p- and 5s, 5p-states,
resp., as core states, the gain is even by factors of 8 and 110.
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2.2.2 Partitioning of Unity

The use of a local basis makes it desirable to have the density and the effec-
tive potential as lattice sums of local contributions. This is not automatically
provided: the density comes out form summation over the occupied KS or-
bitals (2.22) as a double lattice sum, and the effective potential has anyhow
a complicated connection with the KS orbitals. The decisive tool here is a
partitioning of unity in r-space.

There may be chosen:

– a locally finite cover of the real space R
3 by compact cells Ωi, that is,

R
3 = ∪iΩi and each point of R

3 lies only in finitely many Ωi,
– a set of n-fold continuously differentiable functions fi(r) with suppfi ⊂ Ωi,

that is fi(r) = 0 for r 	∈ Ωi,
– 0 ≤ fi(r) ≤ 1 and

∑
i fi(r) = 1 for all r.

In the actual context, Ωi = ΩRs indexed by atom positions.
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ΩRs

Fig. 2.3. A locally finite cover of the R
2 by squares.

Figure 2.3 shows a locally finite cover of the plane by a lattice of overlap-
ping squares.

2.2.3 Density and Potential Representation

The decomposition of the density

n(r) =
∑
Rs

ns(r − R − s) (2.31)

is obtained by an even simpler one-dimensional partitioning along the line
joining the two centers of a two-center contribution.
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The potential is decomposed according to

v(r) =
∑
Rs

vs(r − R − s), vs(r − R − s) = v(r)fRs(r) (2.32)

with use of the functions f of the previous subsection.
Now, in the local items, radial dependencies are obtained numerically on

an inhomogeneous grid (logarithmic equidistant), and angular dependencies
are expanded into spherical harmonics (typically up to l = 12). To compute
the overlap and Hamiltonian matrices, one has

– one-center terms: 1D numerical integrals,
– two-center terms: 2D numerical integrals,
– three-center terms: 3D numerical integrals.

2.2.4 Basis Optimization

The essential feature which allows for the use of a minimum basis is that the
basis is not fixed in the course of iterations, instead it is adjusted to the actual
effective crystal potential in each iteration step and it is even optimized in
the course of iterations.

Take v̄s to be the total crystal potential, spherically averaged around the
site center s. Core orbitals are obtained from

(t̂+ v̄s)ϕsLc = ϕsLcεsLc . (2.33)

Valence basis orbitals, however, are obtained from a modified equation
(
t̂+ v̄s +

(
r

rsLv

)4
)
ϕsLv = ϕsLvεsLv . (2.34)

The parameters rsLv are determined by minimizing the total energy.
There are two main effects of the rsLv -potential:

– The counterproductive long tails of basis orbitals are suppressed.
– The orbital resonance energies εsLv are pushed up to close to the centers of

gravity of the orbital projected density of states of the Kohn-Sham band
structure, providing the optimal curvature of the orbitals and avoiding
insufficient completeness of the local basis.

In the package FPLO the optimization is done automatically by applying a
kind of force theorem during the iterations for self-consistency.

2.2.5 Examples

In order to illustrate the accuracy of the approach, the simple case of fcc Al
is considered. Figure 2.4 shows the dependence of the calculated total energy
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Fig. 2.4. Total energy of aluminum as a function of the parameters x0 = r0/r
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Fig. 2.5. Total energy vs. lattice constant of aluminum for two basis sets.

as a function of the basis optimization parameters x0(Lv) = rLv/r
3/2
NN while

Fig. 2.5 shows the effect of treating the 2s, 2p-states either as core states or as
valence states (called semi-core states in the latter case). Note that neglecting
the neighboring overlap of 2s, 2p-states is an admitted numerical error and
not a question of basis completeness; the more accurate total energy in this
case is the higher one with the semi-core treatment.
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Fig. 2.6. DOS and l-projected DOS of aluminum; the vertical lines indicate the
orbital resonance energies.

Next, in Fig. 2.6 the density of states (DOS) and the orbital projected
DOS of Al are shown. (The energy zero here and in the following is put at
the Fermi level.) Vertical lines mark the basis orbital resonance energies εLv

of (2.34). As a result of optimizing the parameters rLv of this equation, clearly
the energies are close to the centers of gravity of the corresponding projected
DOS. This proves optimization of basis completeness within the fixed number
of basis orbitals. Even the down shift of εd from the corresponding center of
gravity of the d density of states is correct since completeness is needed only
in the lower, occupied part.

For illustration, the KS band structure of Al is shown on Fig. 2.7. Re-
markably, the third band is above the Fermi level at point W: The LDA
Fermi surface of Al has the right topology and is quantitatively very correct
(Fig. 2.8). The frequently asserted failure of the LDA not to produce the
right FS topology of Al is a muffin-tin problem.

On Fig. 2.9 it is illustrated on the example of Sr2CuO3 how the automate
basis optimization works; x0 steps are those self-consistency steps which ad-
just the x0 parameters. The corresponding convergence of the total energy is
also shown.
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Fig. 2.7. KS band structure of aluminum.

Fig. 2.8. LDA Fermi surface of aluminum.
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Fig. 2.9. Automatic basis optimization for Sr2CuO3 in the course of iterations.

For this example, the position of the basis orbital resonance energies rela-
tive to the corresponding orbital projected DOS are shown on Fig. 2.10. The
same correlation as for Al is observed.

2.2.6 Comparison of Results from FPLO and WIEN97

To get some feeling on the absolute accuracy of calculated total energies, a
number of comparisons is made between results obtained with exactly the
same density functional (occasionally very slightly different from the previ-
ous examples) but with solvers working with totally different basis sets: aug-
mented plane waves vs. local orbitals. The results were carefully converged
within both approaches: in WIEN97 [2.1] with the number of plane waves
(far beyond the default) and in FPLO with basis optimization and generally
including 3d polarization orbitals for oxygen.

On Fig. 2.11 the obtained densities of states for CaCuO2 are presented.
The FPLO basis was

Ca: {1s, 2s, 2p}c, {3s, 3p, 3d, 4s, 4p}v

Cu: {1s, 2s, 2p}c, {3s, 3p, 3d, 4s, 4p}v

O: {1s}c, {2s, 2p, 3d}v.
The differences are mainly due to a different k-integration routine used in
the codes to calculate the density of states from the band energies.

Table 1 contains the absolute values of total energies obtained with both
approaches for a number of elemental metals and compounds. The agreement
is to our knowledge unprecedented so far which speaks of the quality of both
codes.
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resonance energies. dashed line: O 2s, 2p; dot-dashed line: Cu 3d, 4s, 4p; dotted line:
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Fig. 2.11. Comparison of the DOS of CaCuO2 from FPLO and from WIEN97.

It should be mentioned that due to the extremely small basis of FPLO
the computing time for matrix algebra and diagonalization does not dominate
the total computing time even for rather large unit cells: up to at least 100
atoms per cell the time scales roughly as N1.5 which allows for instance for
large numbers of k points where this is needed.

A fully relativistic four-component version and a flexible CPA implemen-
tation for substitutional alloys are available.
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Table 2.1. Total energies: (Al, Fe, Ni non-relativistic, all others scalar-relativistic)

solid N EFPLO EWIEN ∆E/N
[Hartree] [Hartree] [mHartree]

fcc-Al 1 -241.464 0 -241.465 5 1.5

FM-bcc-Fe 1 -1 261.456 5 -1 261.457 2 0.7

FM-fcc-Ni 1 -1 505.875 5 -1 505.877 - 1.5

fcc-Cu 1 -1 652.483 2 -1 652.484 1 0.9

CaCuO2 4 -2 480.992 6 -2 480.995 5 0.7

Sr2CuO3 6 -8 229.534 4 -8 229.544 1 1.6

Sr2CuO2Cl2 7 -9 075.266 6 -9 075.286 3 1.4

Cu2GeO4 14 -11 400.481 1 -11 400.503 6 1.6
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