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Abstract. In this chapter, we outline an efficient approach to the calculation of
the optical properties of Photonic Crystals. It is based on solid state theoreti-
cal concepts and exploits the conceptual similarity between electron waves prop-
agation in electronic crystals and electromagnetic waves propagation in Photonic
Crystals. Based on photonic bandstructure calculations for infinitely extended and
perfectly periodic systems, we show how defect structures can be described through
an expansion of the electromagnetic field into optimally localized photonic Wannier
functions which have encoded in themselves all the information of the underlying
Photonic Crystals. This Wannier function approach is supplemented by a multipole
expansion method which is well-suited for finite-sized and disordered structures. To
illustrate the workings and efficiency of both approaches, we consider several defect
structures for TM-polarized radiation in two-dimensional Photonic Crystals.

4.1 Introduction

The invention of the laser turned Optics into Photonics: This novel light
source allows one to generate electromagnetic fields with previously unattain-
able energy densities and temporal as well as spatial coherences. As a result,
researchers have embarked on a quest to exploit these properties through
perfecting existing and creating novel optical materials with tailor made
properties. A particular prominent example is the development of low-loss
optical fibers which form the backbone of today’s long-haul telecommunica-
tion systems [4.1]. With the recent advances in micro-fabrication technolo-
gies, another degree of freedom has been added to the flexibility in designing
photonic systems: Microstructuring dielectric materials allows one to obtain
control over the flow of light on lengths scales of the wavelength of light it-
self. For instance, the design of high-quality ridge waveguiding structures has
facilitated the realization of functional elements for integrated optics such as
beamsplitters and Mach-Zehnder interferometers [4.2].

The past two decades have witnessed a strongly increased interest in a
novel class of micro-structured optical materials. Photonic Crystals (PCs)
consist of a micro-fabricated array of dielectric materials in two or three
spatial dimensions. A carefully engineered combination of microscopic scat-
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tering resonances from individual elements of the periodic array and Bragg
scattering from the corresponding lattice leads to the formation of a photonic
bandstructure. In particular, the flexibility in material composition, lattice
periodicity, symmetry, and topology of PCs allows one to tailor the photonic
dispersion relations to almost any need. The most dramatic modification of
the photonic dispersion in these systems occurs when suitably engineered
PCs exhibit frequency ranges over which the light propagation is forbidden
irrespective of direction [4.3, 4.4]. The existence of these so-called complete
Photonic Band Gaps (PBGs) allows one to eliminate the problem of light
leakage from sharply bent optical fibers and ridge waveguides. Indeed, using
a PC with a complete PBG as a background material and embedding into
such a PC a circuit of properly engineered waveguiding channels permits to
create an optical micro-circuit inside a perfect optical insulator, i.e. an optical
analogue of the customary electronic micro-circuit. In addition, the absence
of photon states for frequencies in a complete PBG allows one to suppress
the emission of optically active materials embedded in PCs. Furthermore,
the multi-branch nature of the photonic bandstructure and low group veloc-
ities associated with flat bands near a photonic band edge may be utilized
to realize phase-matching for nonlinear optical processes and to enhance the
interaction between electromagnetic waves and nonlinear and/or optically
active material.

These prospects have triggered enormous experimental activities aimed
at the fabrication of two-dimensional (2D) as well as three-dimensional (3D)
PC structures for telecommunication applications with PBGs in the near in-
frared frequency range. Considering that the first Bragg resonance occurs
when the lattice constant equals half the wavelength of light, fabrication
of PCs with bandgaps in the near IR requires substantial technological re-
sources. For 2D PCs, advanced planar microstructuring techniques borrowed
from semiconductor technology can greatly simplify the fabrication process
and high-quality PCs with embedded defects and waveguides have been fab-
ricated in various material systems such as semiconductors [4.5–4.10], poly-
mers [4.11,4.12], and glasses [4.13,4.14]. In these structures, light experiences
PBG effects in the plane of propagation, while the confinement in the third
direction is achieved through index guiding. This suggests that fabricational
imperfections in bulk 2D PCs as well deliberately embedding defect struc-
tures such as cavities and waveguide bends into 2D PCs will inevitably lead
to radiation losses into the third dimension. Therefore, it is still an open ques-
tion as to whether devices with acceptable radiation losses can be designed
and realized in 2D PCs. However, radiation losses can be avoided altogether
if light is guided within the comlete PBG of 3D PCs and, therefore, the past
years have seen substantial efforts towards the manufacturing of suitable 3D
PCs. These structures include layer-by-layer structures [4.15, 4.16], inverse
opals [4.17–4.19] as well as the fabrication of templates via laser hologra-
phy [4.20, 4.21] and two-photon polymerization (sometimes also referred to
as stereo-lithography) [4.22–4.24].
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Given this tremendous flexibility in the fabrication of PCs (and the cost
associated with most of the fabrication techniques), it is clear that modeling
of the linear, nonlinear and quantum optical properties of PCs is a crucial
element of PC research. In this manuscript, we would like to outline how the
far-reaching analogies of electron wave propagation in crystalline solids and
electromagnetic wave propagation in PCs can be utilized to obtain a theoret-
ical framework for the quantitative description of light propagation in PCs.
In Sect. 4.2, we describe an efficient method for obtaining the photonic band-
structure which is based on a Multi-Grid technique. The results of photonic
bandstructure computations are the basis for the description of defect struc-
tures such as cavities and waveguides using a Wannier function approach
(Sect. 4.3). As an example, we illustrate the design of a near optimal PC
waveguide bend. Finally, in Sect. 4.4, we utilize this bend design and a multi-
pole expansion technique to construct a PC beamsplitter within a finite-sized
PC and discuss the role of fabricational tolerances on the performance of the
device.

4.2 Photonic Bandstructure Computation

Photonic bandstructure computations determine the dispersion relation of in-
finitely extended defect-free PCs. In addition, they allow one to design PCs
that exhibit PBGs and to accurately interpret measurements on PC samples.
As a consequence, photonic bandstructure calculations represent an impor-
tant predictive as well as interpretative basis for PC research and, therefore,
lie at the heart of theoretical investigations of PCs. More specifically, the goal
of photonic bandstructure computations is to find the eigenfrequencies and
associated eigenmodes of the wave equation for the perfect PC, i.e., for an
infinitely extended periodic array of dielectric material. For the simplicity of
presentation we restrict ourselves in the remainder of this manuscript to the
case of TM-polarized radiation propagating in the plane of periodicity (x, y)-
plane of 2D PCs. In this case, the wave equation in the frequency domain
(harmonic time dependence) for the z-component of the electric field reads

1
εp(r)

(
∂2

x + ∂2
y

)
E(r) +

ω2

c2
E(r) = 0. (4.1)

Here c denotes the vacuum speed of light and r = (x, y) denotes a two-
dimensional position vector. The dielectric constant εp(r) ≡ εp(r + R) is
periodic with respect to the set R = {n1a1 + n2a2; (n1, n2) ∈ Z2} of lattice
vectors R generated by the primitive translations ai, i = 1, 2 that describe
the structure of the PC. Equation (4.1) represents a differential equation
with periodic coefficients and, therefore, its solutions obey the Bloch-Floquet
theorem

Ek(r + ai) = eikai Ek(r), (4.2)
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where i = 1, 2. The wave vector k ∈ 1.BZ that labels the solution is a
vector of the first Brillouin zone (BZ) known as the crystal momentum. As
a result of this reduced zone scheme, the photonic bandstructure acquires a
multi-branch nature that is associated with the backfolding of the dispersion
relation into the 1. BZ. This introduces a discrete index n, the so-called band
index, that enumarates the distinct eigenfrequencies and eigenfunctions at
the same wave vector k.

The photonic dispersion relation ωn(k) gives rise to a photonic Density of
States (DOS), which plays a fundamental role for the understanding of the
quantum optical properties of active material embedded in PCs [4.25]. The
photonic DOS, N(ω), is defined by “counting” all allowed states with a given
frequency ω

N(ω) =
∑

n

∫
1.BZ

d2k δ(ω − ωn(k)). (4.3)

Other physical quantities such as group velocities vn(k) = ∇kωn(k) can
be calculated through adaption of various techniques known from electron
bandstructure theory. For details, we refer to [4.26] and [4.27].

A straightforward way of solving (4.1) is to expand all the periodic func-
tions into a Fourier series over the reciprocal lattice G, thereby transforming
the differential equation into an infinite matrix eigenvalue problem, which
may be suitably truncated and solved numerically. Details of this plane wave
method (PWM) for isotropic systems can be found, for instance, in [4.26,4.28]
and for anisotropic systems in [4.29]. While the PWM provides a straight-
forward approach to computing the bandstructure of PCs, it also exhibits a
number of shortcomings such as slow convergence associated with the trunca-
tion of Fourier series in the presence of discontinuous changes in the dielectric
constants. In particular, this slow convergence makes the accurate calculation
of Bloch functions a formidable and resource-consuming task. Therefore, we
have recently developed an efficient real space approach to computing pho-
tonic bandstructures [4.27]. Within this approach, the wave equation, (4.1),
is discretized in a single unit cell in real space (defined through the set of
space points r = r1a1 + r2a2 with r1, r2 ∈ [−1/2, 1/2]), leading to a sparse
matrix problem. The Bloch-Floquet theorem, (4.2), provides the boundary
condition for the elliptic partial differential equation (4.1). In addition, the
eigenvalue is treated as an additional unknown for which the normalization
of the Bloch functions provides the additional equation needed for obtaining
a well-defined problem. The solution of this algebraic problem is obtained
by employing Multi-Grid (MG) methods which guarantee an efficient solu-
tion by taking full advantage of the smoothness of the photonic Bloch func-
tions [4.27,4.30] (see also the chapter of G. Wittum in this volume). Even for
the case of a naive finite difference discretization, the MG-approach easily
outperforms the PWM and leads to a substantial reduction in CPU time.
For instance, in the present case of 2D systems for which the Bloch func-
tions are required we save one order of magnitude in CPU time as compared
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Fig. 4.1. Density of States (a) and photonic band structure (b) for TM-polarized
radiation in a square lattice (lattice constant a) of cylindrical air pores of radius
Rpore = 0.475a in dielectric with ε = 12 (silicon). This PC exhibits a large fun-
damental gap extending from ω = 0.238 × 2πc/a to ω = 0.291 × 2πc/a. A higher
order band gap extends from ω = 0.425 × 2πc/a to ω = 0.464 × 2πc/a.

to PWM. Additional refinements such as a finite element discretization will
further increase the efficiency of the MG-approach.

In Fig. 4.1(b), we show the bandstructure for TM-polarized radiation in
a 2D PC consisting of a square lattice (lattice constant a) of cylindrical air
pores (radius rpore = 0.475a) in a silicon matrix (εp = 12). This structure
exhibits two 2D PBGs. The larger, fundamental bandgap (20% of the midgap
frequency) extends between ω = 0.238× 2πc/a to ω = 0.291× 2πc/a and the
smaller, higher order bandgap (8% of the midgap frequency) extends from
ω = 0.425 × 2πc/a to ω = 0.464 × 2πc/a. Furthermore, in Fig. 4.1(a) we
depict the DOS for our model system, where the photonic band gaps are
manifest as regions of vanishing DOS. Characteristic for 2D systems is the
linear behavior for small frequencies as well as the logarithmic singularities,
the so-called van Hove singularities, associated with vanishing group velocities
for certain frequencies inside the bands (compare with Fig. 4.1(a)).

4.3 Defect Structures in Photonic Crystals

To date, the overwhelming majority of theoretical investigations of cavities
and waveguiding in PCs has been carried out using Finite-Difference Time-
Domain (FDTD) and/or Finite-Element (FE) techniques. However, applying
general purpose methodologies such as FDTD or FE methods to defect struc-
tures in PCs largely disregards information about the underlying PC struc-
ture which is readily available from photonic bandstructure computation. As
a result, only relatively small systems can be investigated and the physical
insight remains limited.
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4.3.1 Maximally Localized Photonic Wannier Functions

A more natural description of localized defect modes in PCs consists in an
expansion of the electromagnetic field into a set of localized basis functions
which have encoded into them all the information of the underlying PC.
Therefore, the most natural basis functions for the description of defect struc-
tures in PCs are the so-called photonic Wannier functions, WnR(r), which
are formally defined through a lattice Fourier transform

WnR(r) =
VWSC

(2π)2

∫
BZ

d2k e−ikR Enk(r) (4.4)

of the extended Bloch functions, Enk(r). The above definition associates
the photonic Wannier function WnR(r) with the frequency range covered by
band n, and centers it around the corresponding lattice site R. In addition,
the completeness and orthogonality of the Bloch functions translate directly
into corresponding properties of the photonic Wannier functions. Computing
the Wannier functions directly from the output of photonic bandstructure
programs via (4.4) leads to functions with poor localization properties and
erratic behavior (see, for instance, Fig. 2 in [4.31]). These problems origi-
nate from an indeterminacy of the global phases of the Bloch functions. It is
straightforward to show that for a group of NW bands there exists, for every
wave vector k, a free unitary transformation between the bands which leaves
the orthogonality relation of Wannier functions unchanged. A solution to this
unfortunate situation is provided by recent advances in electronic bandstruc-
ture theory. Marzari and Vanderbilt [4.32] have outlined an efficient scheme
for the computation of maximally localized Wannier functions by determin-
ing numerically a unitary transformation between the bands that minimizes
an appropriate spread functional F

F =
NW∑
n=1

[
〈n0| r2 |n0〉 − (〈n0| r |n0〉)2

]
= Min . (4.5)

Here we have introduced a shorthand notation for matrix elements according
to

〈nR| f(r) |n′R′〉 =
∫

R2
d2rW ∗nR(r) f(r) εp(r)Wn′R′(r) , (4.6)

for any function f(r). For instance, the orthonormality of the Wannier func-
tions in this notation read as

〈nR| |n′R′〉 =
∫

R2
d2rW ∗nR(r) εp(r)Wn′R′(r) = δnmδRR′ , (4.7)

The field distributions of the optimized Wannier functions belonging to the
six most relevant bands of our model system are depicted in Fig. 4.2 (see
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Fig. 4.2. Photonic Wannier functions, Wn0(r), for the six bands that are most
relevant for the description of the localized defect mode shown in Fig. 4.3(a). These
optimally localized Wannier functions have been obtained by minimizing the cor-
responding spread functional, (4.5). Note, that in contrast to the other bands, the
Wannier center of the eleventh band is located at the center of the air pore. The
parameters of the underlying PC are the same as those in Fig. 4.1.

also the discussion in Sect. 4.3.3). Their localization properties as well as the
symmetries of the underlying PC structure are clearly visible. It should be
noted that the Wannier centers of all calculated bands (except of the eleventh
band) are located halfway between the air pores, i.e. inside the dielectric
(see [4.32] for more details on the Wannier centers). In addition, we would
like to point out that instead of working with the electric field [4.33, 4.31],
(4.1), one may equally well construct photonic Wannier functions for the
magnetic field, as recently demonstrated by Whittaker and Croucher [4.34].

4.3.2 Defect Structures via Wannier Functions

The description of defect structures embedded in PCs starts with the corre-
sponding wave equation in the frequency domain

∇2E(r) +
(ω
c

)2
(εp(r) + δε(r))E(r) = 0 . (4.8)

Here, we have decomposed the dielectric function into the periodic part,
εp(r), and the contribution, δε(r), that describes the defect structures.
Within the Wannier function approach, we expand the electromagnetic field
according to

E(r) =
∑
n,R

EnR WnR(r) , (4.9)
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with unknown amplitudes EnR. Inserting this expansion into the wave equa-
tion (4.8) and employing the orthonomality relations, (4.7), leads to the basic
equation for lattice models of defect structures embedded in PCs

∑
n′,R′

{
δnn′δRR′ +Dnn′

RR′

}
En′R′ =

( c
ω

)2 ∑
n′,R′

Ann′
RR′En′R′ . (4.10)

The matrix Ann′
RR′ depends only on the Wannier functions of the underlying

PC and is defined through

Ann′
RR′ = −

∫
R2

d2r W ∗nR(r) ∇2 Wn′R′(r) . (4.11)

The localization of the Wannier functions in space leads to a very rapid decay
of the magnitude of matrix elements with increasing separation |R − R′| be-
tween lattice sites, effectively making the matrix Ann′

RR′ sparse. Furthermore,
it may be shown that the matrix Ann′

RR′ is Hermitian and positive definite.
Similarly, once the Wannier functions of the underlying PC are determined,
the matrix Dnn′

RR′ depends solely on the overlap of these functions, mediated
by the defect structure:

Dnn′
RR′ =

∫
R2

d2r W ∗nR(r) δε(r)Wn′R′(r) . (4.12)

As a consequence of the localization properties of both the Wannier functions
and the defect dielectric function, the Hermitian matrix Dnn′

RR′ , too, is sparse.
In the case of PCs with inversion symmetry, εp(r) ≡ εp(−r), the Wannier
functions can be chosen to be real. Accordingly, both matrices, Ann′

RR′ and
Dnn′

RR′ become real symmetric ones.
Depending on the nature of the defect structure, we are interested in

(i) frequencies of localized cavity modes, (ii) dispersion relations for straight
waveguides, or (iii) transmission and reflection through waveguide bends and
other, more complex defect structures. In the following, we consider each of
these cases separately.

4.3.3 Localized Cavity Modes

As a first illustration of the Wannier function approach, we consider the
case of a simple cavity created by infiltrating a single pore at the defect
site Rdef with a material with dielectric constant εdef , as shown in the inset
of Fig. 4.3(a). In this case, we directly solve (4.10) as a generalized eigen-
value problem for the cavity frequencies that lie within the PBG, and recon-
struct the cavity modes from the corresponding eigenvectors. In Fig. 4.3(a)
we compare the frequencies of these cavity modes calculated from (4.10)
with corresponding calculations using PWM-based super-cell calculations.
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Fig. 4.3. (a) Frequencies of localized cavity modes created by infiltrating a single
defect pore with a material with dielectric constant εdef (see inset). The results of
the Wannier function approach (diamonds) using NW = 10 Wannier functions per
unit cell are in complete agreement with numerically exact results of the super-
cell calculations (full line). The parameters of the underlying PC are the same as
those in Fig 4.1. (b) Electric field distribution for the cavity mode with frequency
ω = 0.290 × 2πc/a, created by infiltrating the pore with a polymer with εdef = 2.4.

Upon increasing εdef , a non-degenerate cavity mode with monopole symme-
try emerges from the upper edge of the bandgap. The results of the Wannier
function approach using the NW = 10 most relevant Wannier functions per
unit cell in (4.10) are in complete agreement with numerically exact results of
the super-cell calculations. In Fig. 4.3(b), we depict the corresponding mode
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Fig. 4.4. The strength Vn of the individual contributions from the Wannier func-
tions of the lowest 20 bands (index n) to the formation of the cavity modes depicted
in Fig. 4.3. The Wannier functions with Vn ≤ 10−3 may be safely leaved out of ac-
count. Arrows indicate the six must relevant Wannier functions depicted in Fig. 4.2.
The parameters of the underlying PC are the same as those in Fig. 4.1.
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structure for a monopole cavity mode created by infiltration of a polymer
with εdef = 2.4 into the pore. The convergence properties of the Wannier
function approach should depend on the nature and symmetry properties of
the cavity modes under consideration. To discuss this issue in greater detail,
it is helpful to define a measure Vn of the strength of the contributions to
a cavity mode from the individual Wannier function associated with band n
via Vn =

∑
R |EnR|2. In Fig. 4.4 we display the dependence of the parame-

ter Vn on the band index n for the cavity modes shown in Fig. 4.3, for two
values of the defect dielectric constant, εdef = 2.4 (solid line) and εdef = 8
(dashed line), respectively. In both cases, the most relevant contributions to
the cavity modes originate from the Wannier functions belonging to bands
n = 1, 2, 3, 5, 11, and 19, and all contributions from bands n > 20 are negligi-
ble. These most relevant Wannier functions for our model system are shown
in Fig. 4.2. In fact, fully converged results are obtained when we work with
the 10 most relevant Wannier functions per unit cell (for a comparison with
numerically exact super-cell calculations see Fig. 4.3(a)).

4.3.4 Dispersion Relations of Waveguides

The efficiency of the Wannier function approach is particularly evident when
considering defect clusters consisting of several defect pores. In this case the
defect dielectric function, δε(r), can be written as a sum over positions, Rm,
of the individual defect pores, so that (4.12) reduces to a sum

Dnn′
RR′ =

∑
m

D(m)nn′
R−Rm,R′−Rm

, (4.13)

over the matrix elements D(m)nn′
R,R′ of the individual defects (see discussion

in [4.31] for more details). Therefore, for a given underlying PC structure,
it becomes possible to build up a database of matrix elements, D(m)nn′

R,R′ ,
for different geometries (radii, shapes) of defect pores, which allow us highly
efficient defect computations through simple matrix assembly procedures.
This is in strong contrast to any other computational technique known to us.

Arguably the most important types of defect clusters in PCs are one or
several adjacent straight rows of defects. Properly designed, such defect rows
form a PC waveguide which allows the efficient guiding of light for frequencies
within a PBG [4.35, 4.36]. Due to the one-dimensional periodicity of such a
waveguide, its guided modes, E(p)(r |ω) =

∑
n,R E

(p)
nR(ω)WnR(r), obey the

1D Bloch-Floquet theorem

E
(p)
nR+sw

(ω) = eikp(ω)sw E
(p)
nR(ω) , (4.14)

and thus they can be labeled by a wave vector, kp(ω), parallel to the waveg-
uide director, sw=w1a1 +w2a2, where a1=(a, 0) and a2=(0, a) are the prim-
itive lattice vectors of the PC, and integers w1 and w2 define the direction
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Fig. 4.5. Dispersion relations of the propagating guided mode for PC waveguides
consisting of (a) one row and (b) two rows of defect pores infiltrated with a
polymer with εdef = 2.4. The calculations within the Wannier function approach
(diamonds), based on (4.10) and (4.14) in which we accounted for the interaction
of 5 nearest pores along the waveguide and used 10 most relevant Wannier
functions per unit cell, are in complete agreement with the results of supercell
calculations (solid lines). The gray areas represent the projected band structure of
the underlying model PC (see Fig. 4.1). The red circles in the insets indicate the
positions of the infiltrated pores.

of the waveguide (for instance, an x-axis directed W1-waveguide is described
through w1=1 and w2=0). Commonly, investigations of PC waveguides con-
sist of calculations of the dispersion relations, kp(ω), of all the guided modes,
which can be obtained by substituting (4.14) into (4.10) as is described in
details in [4.31].

To date, investigations of straight PC waveguides have concentrated on
the calculation of dispersion relations for propagating guided modes with real
wave vectors, kp(ω), only. Such calculations can be accurately carried out also
by employing the supercell technique. In Fig. 4.5 we display the dispersion
relations for the propagating guided modes of the W1 and W2 waveguides
created by infiltrating a polymer into one row and two rows of pores, calcu-
lated within the Wannier function approach. The results of these calculations
are fully converged and in complete agreement with the results of plane-wave
based supercell computations. Similar to the calculations of complex cav-
ity structures, the calculations of waveguide dispersion relations within the
Wannier function approach require fairly minimal computational resources
in comparison with the supercell technique.

We would like to emphasize that, in contrast to the supercell technique,
the Wannier function approach enables us to also obtain the dispersion re-
lations for evanescent guided modes with complex wave vectors kp(ω). Since
such modes grow or decay along the waveguide direction, they are largely ir-
relevant in perfectly periodic straight waveguides. However, they start to play
an important role as soon as the perfect periodicity of the waveguide is bro-
ken either through imperfections due to fabricational tolerances, or through
the deliberate creation of deviations from periodicity such as bends or cou-
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pled cavity-waveguide systems for Wavelength Division Multiplexing (WDM)
applications. In such cases, these evanescent guided modes give rise to light
localization effects and determine the non-trivial transmission and reflection
properties of PC circuits [4.31,4.37] as we will discuss below.

4.3.5 Photonic Crystal Circuits

In this section we demonstrate that the Wannier function approach provides
an efficient simulation tool for the description of light through PC circuits
which allows one to overcome most of the limitations related to FDTD or FE
methods. As an illustration, we consider light propagation through two-port
PC circuits such as waveguide bends or coupled cavity-waveguide systems.
The common feature of these devices is that two semi-infinite straight PC
waveguides act as leads that are connected through a finite-sized region of
defects. In this case, light propagation through the device at frequency ω is
governed by (4.10), which should be truncated (to obtain equal number of
equations and unknowns) by prescribing certain values to the expansion co-
efficients, EnR, at some sites inside the waveguiding leads. Since these values
determine the amplitudes of the incoming light, it is physically more trans-
parent to express the expansion coefficients EnR within the leads through a
superposition of the guided modes Φ(p)(ω) with wave vectors kp(ω) of the
corresponding infinite straight waveguide. In a numerical implementation this
is facilitated by replacing the expansion coefficients EnR for all lattice sites
R inside each waveguiding lead, Wi, i = 1, 2, according to

Ewi

nR =
N∑

p=1

u (p)
wi

(ω)E(p)
nR(ω) +

2N∑
p=N+1

d (p)
wi

(ω)E(p)
nR(ω) , (4.15)

where u(p)
wi and d

(p)
wi are amplitudes of the guided modes, and we assume that

all 2N guided modes are ordered in the following way: p = 1 to N are oc-
cupied by the propagating guided modes with Re[kp] > 0 and evanescent
guided modes with Im[kp] > 0, whereas p = N +1 to 2N are occupied by the
propagating guided modes with Re[kp] < 0 and evanescent guided modes

with Im[kp] < 0. Assuming that the amplitudes, u(p)
w1 and d

(p)
w2 , of all the prop-

agating (evanescent) guided modes which propagate (decay) in the direction
of the device are known (they depend on the purpose of our calculation or on
the experimental setup), we can now substitute (4.15) into (4.10) and, solving
the resulting system of coupled equations, find the unknown expansion coeffi-
cients EnR for the sites R inside the domain of the device (which can be used,
e.g., for visualization of the field propagation through the device), and the
amplitudes, u(p)

w2 and d
(p)
w1 of all outgoing propagating and growing evanescent

guided modes. In [4.31] some of us have demonstrated, by comparison with
the FDTD calculations [4.35], that the results of such transmission calcula-
tions based on the Wannier function approach are indeed very accurate and
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Fig. 4.6. Transmission spectra, |T (ω)|2, for four different bend geometries em-
bedded in our 2D model PC. The results of the Wannier function approach are
obtained with NR = 5, L = 5, and the NW = 10 most relevant Wannier functions.
The parameters of the underlying PC are the same as those in Fig. 4.1.

agree extremely well with FDTD calculations. Now, in Fig. 4.6, we present
the results of Wannier function calculations of the transmission spectra for
four different bend geometries with attached single-mode waveguide leads
(see Fig. 4.5) that are embedded in our model PC. The improvement of the
optimal design (lower right in Fig. 4.6) over the naive bend (upper left in
Fig. 4.6) is apparent: For the optimal design we find a wide frequency range
of nearly perfect transmission as opposed to maximal 10% transmission in
the naive design. In Sect. 4.4, we will utilize this optimized bend design for
the construction of a beamsplitter and a discussion of the influence of fabri-
cational tolerances on the performance of the device.

The efficiency of the Wannier function approach for transmission calcula-
tions becomes apparent when considering that – once the Wannier functions
for the underlying PC have been obtained – the calculation of a single data
point in the reflection spectra of Fig. 4.6 reduces to the solution of a single
sparse system of some 800 equations, which even on a laptop computer takes
only a few seconds. Therefore, the Wannier function approach outlined above
will (i) enable a reverse engineering of defect structures with prescribed func-
tionality and (ii) allow detailed studies regarding the robustness of successful
designs with respect to fabricational tolerances. Moreover, the Wannier func-
tion approach can be straightforwardly applied, with comparable efficiency,
to investigations of the transmission spectra through PC circuits made from
highly dispersive and/or nonlinear materials. Of paramount importance is
the fact that, in contrast to the FDTD or FE methods, the Wannier func-
tion approach permits one to accurately and efficiently calculate the complete
scattering matrices of PC devices [4.31], allowing us to construct a PC circuit
theory in which individual devices are replaced by simple equivalent scatter-
ing matrices which are assembled by simple scattering matrix multiplication
rules to form the scattering matrix of large-scale circuits [4.38]. We would like
to emphasize that in some sense these scattering matrices can be regarded
as the optical analogue of the impedance matrices associated with multi-port
devices in microwave technology [4.39].
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4.4 Finite Photonic Crystals

The Wannier function approach described above is particularly useful for
large systems, and has no restriction in the shape of the elements conform-
ing the system. Extensions of this approach have to include the description
of coupling in and out of PCs, in order words to treat finite systems and
sources [4.40]. If we restrict ourselves to cylindrical symmetry, a comple-
mentary and also quite efficient tool can be found in the recently developed
multipole expansion technique [4.41,4.42]. Apart from the field pattern gen-
erated by a source, this approach allows one to calculate the local density of
states (LDOS): For applications to quantum optical experiments in PCs it
is necessary to investigate not only the (overall) availability of modes with
frequency ω but also the local coupling strength of an emitter at a certain
position r in the PC to the electromagnetic environment provided by the
PC. Consequently, it is the overlap matrix element of the emitters dipole
moment to the eigenmodes (Bloch functions) that is determining quantum
optical properties such as decay rates etc. [4.25]. This may be combined into
the local DOS (LDOS), N(r, ω), which, for an infinite system, is defined as

N(r, ω) =
∑

n

∫
BZ

d2k |Enk(r)|2 δ(ω − ωn(k)). (4.16)

Similar to the DOS, the LDOS of an infinite system vanishes for frequencies
lying in the band gap, revealing the suppression of light emission at those
frequencies. However, actual devices are not of infinite extent, and, therefore,
in these finite-sized structures the LDOS will be very small but non vanishing.
For finite systems, the LDOS can be obtained by extracting the imaginary
part of Green’s tensor G(r, r;ω)

N(r;ω) = −2ωn2
Si

πc2
ImTr[G(r, r;ω)] , (4.17)

where nSi represents the index of refraction of the background where the
air pores are embedded. The Green’s tensor G(r, rs;ω) represents the field
distribution at an observation point r generated by δ-source at rs. For infinite
systems, it is straightforward to show that (4.17) agrees with (4.16). In the
present case of a TM-polarized radiation in a 2D PC only the Gzz component
of the Green’s tensor is needed and satisfies the wave equation

(
∂2

x + ∂2
y

)
Gzz +

ω2

c2
ε(r)Gzz = δ(r − rs). (4.18)

The multipole method consists in expanding Green’s function Gzz in cylindri-
cal harmonics both outside and inside the pores that comprise the PC. Sub-
sequently the corresponding expansion coefficients are obtained by imposing
appropriate continuity conditions across the pore surfaces and the Sommer-
feld radiation condition as a boundary condition at infinity [4.41, 4.42]. In
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particular, we consider a total of Nc pores embedded in a silicon background.
Inside the lth cylinder and in a coordinate system centered around the pore
center rl, the Gzz is given by

Gint
zz,l(r, rs) =

1
4i
χint

l (rs)H
(1)
0 (knl|r − rs|)

+
∞∑

m=−∞
Cl

mJm(knl|r − rl|) eim arg(r−rl) . (4.19)

Here, k = nSiω/c is the wavenumber in the background material (silicon), rl

is the cylinder position, and the value of χint
l indicates whether rs lies inside

or outside of the lth cylinder (χint
l = 1 or χint

l = 0, respectively). Finally,
arg(r − rl) denotes the polar angle of the vector r − rl, and H

(1)
0 and Jm

denote Hankel and Bessel functions, respectively. A similar expression for
Gzz at an observation point r in proximity to but outside of pore q centered
at rq can be written as

Gext
zz (r, rs) =

1
4i
χext(rs)H

(1)
0 (k|r − rs|)

+
Nc∑
q=1

∞∑
m=−∞

Bq
mH

(1)
m (k|r − rs|)eim arg(r−rs) . (4.20)

Again χext accounts for the position of the source.
The coefficients Cl

m of (4.19) and Bl
m in (4.20) for the same pore l are

linked through continuity conditions across the pore surface. These continu-
ity conditions together with the requirement of consistency of the various
expansions centered around different pores give rise to the full multiple scat-
tering problem and determine a system of linear equations. Once this system
is solved, the Green’s function Gext

zz (r, rs) can be reconstructed and field dis-
tributions and LDOS may be obtained (for details of the calculations as well
as the implementation, we refer to [4.42]).

To demonstrate the feasibility of this approach as a modeling tool, we dis-
cuss a beamsplitter based on the optimized bend designed within the Wannier
function approach (see Sect. 4.3.5). In Fig. 4.7 we display the field distribu-
tion of a plane wave (frequency ω = 0.282 × 2πc/a) impinging on a trial
beamsplitter based on the naive beamsplitter (upper left in Fig. 4.6). Al-
though the wave couples into the device through the input waveguide, this
beamsplitter is unable to guide any radiation to any of the output ports and
all the incoming radiation is reflected back. The failure of this naive example
of a beamsplitter manifests the need of a more thorough investigation of the
parameters to construct working devices. A more complicated beamsplitter
based on the optimized bend design (lower right in Fig. 4.6) is depicted in
Fig. 4.8. The good operation characteristics of the device for the same fre-
qquncy (ω = 0.282 × 2πc/a) are apparent. More precisely, a analysis of the
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Fig. 4.7. Field distribution of a beamsplitter design based on the naive beamsplitter
(upper left in Fig. 4.6). A point source far away from the PC structure emits at ω =
0.282×2πc/a, so that effectively a plane wave impinges on the PC structure. Clearly
visible is the coupling into the central waveguide structure (Defect pores infilled
with polymer are indicated through a white circle). Little intensity is transfered
to the arms of the beamsplitter and practically nothing is transmitted around the
bend. The parameters of the underlying PC are the same as those in Fig. 4.1.

Poynting vector in the input waveguide and the two output waveguides re-
veals that about 92% of the intensity are transmitted, 46% in each arm of
the beamsplitter [4.43].

So far, we have been considering devices built within perfect lattices.
This, unfortunately, is far from the experimental situation. Defects or im-
perfections are always present and they greatly influence the response of any
actual device. It is thus important to characterize the effects of disorder on
the device performance. As an illustration, we consider the optimized beam-
splitter of Fig. 4.8 as the “perfect” device and suppose that during the fabri-
cation process fabricational tolerances lead to a random variation of the pore
diameter ranging from r/a = 0.46 to r/a = 0.48 (corresponding roughly to
3% radial disorder). The resulting performance for the operating frequency
ω = 0.282 × 2πc/a of the “perfect” device is depicted in Fig. 4.9. Clearly,
the performance is compromised for even this moderate degree of disorder of
about 3%. Although this speaks for itself, we would like to emphasize the im-
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Fig. 4.8. Field distribution of a beamsplitter design based on the optimized beam-
splitter (lower right in Fig. 4.6). A point source far away from the PC structure emits
at ω = 0.282×2πc/a, so that effectively a plane wave impinges on the PC structure.
Clearly visible is the coupling into the central waveguide structure (Defect pores
infilled with polymer are indicated through a white circle). Substantial intensity
is transfered to the arms of the beamsplitter and is fully transmitted around the
bend, resulting in an effective beamsplitter. The parameters of the underlying PC
are the same as those in Fig. 4.1.

portance of systematic investigations of the effects of fabricational tolerances
on the performance of PC-based devices. This area of research has received
very little attention until now.

4.5 Conclusions and Outlook

In summary, we have outlined a framework based on solid-state theoretical
methods that allows one to qualitatively and quantitatively treat electro-
magnetic wave propagation in PCs. Photonic bandstructure computations
for infinitely extended PCs provides photonic bandstructures and other phys-
ical quantities such as DOS and group velocities [4.26,4.27]. Furthermore, the
input of bandstructure calculations facilitate the construction of maximally
localized photonic Wannier functions which allow one to efficiently obtain the
properties of defect structures embedded in PCs. In particular, the efficiency
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Fig. 4.9. Field distribution of a beamsplitter including fabricational tolerances. The
beamsplitter is based on the optimized design of Fig. 4.8 and a random variation
of the pore diameter ranging from r/a = 0.46 to r/a = 0.48 (roughly 3% radial
disorder) has been added in order to model fabricational imperfections. A point
source far away from the PC structure emits at ω = 0.282×2πc/a, so that effectively
a plane wave impinges on the PC structure (Defect pores infilled with polymer are
indicated through a white circle). The rather poor performance of the device is
evident when comparing with the simulation for the perfect structure in Fig. 4.8.
The parameters of the underlying PC are the same as those in Fig. 4.1.

of the Wannier function approach allows one to investigate large-scale PC
circuits which, to date, are beyond the reach of standard simulation tech-
niques such as FDTD or FE methods. Perhaps even more important is the
fact that using the Wannier function approach facilitates the efficient explo-
ration of huge parameter spaces for the design of defect structures embedded
in a given PC basis structure.

The Wannier function approach is complemented by a multipole expan-
sion technique which are well-suited for the investigation of finite-sized PCs.
The usefulness of this multipole expansion manifests itself when we are con-
sidering efficient designs for actual finite-sized devices. A judicious approach
that combines the results of optimizations via Wannier function studies with
the multipole expansion technique has allowed us to desgin a realistic beam-
splitter. Unfortunately, the experimental situation is far from ideal and the
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lattice where the design is realized is not defect-free. We introduced realis-
tic fabricational tolerances in into the optimized beamsplitter and analyzed
its response. Under these conditions the device clearly lost its functionality,
showing the importance of finding designs that are as robust as possible under
the influence of fabricational imperfections.
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(2001)
[4.28] K.-M. Ho, C.T. Chan, and C.M. Soukoulis Phys. Rev. Lett. 65, 3152 (1990)
[4.29] K. Busch and S. John, Phys. Rev. Lett. 83, 967 (1999)
[4.30] A. Brandt, S. McCormick, and J. Ruge, SIAM J. Sci. Stat. Comput. 4, 244

(1983)
[4.31] K. Busch, S.F. Mingaleev, A. Garcia-Martin, M. Schillinger, D. Hermann,

J. Phys.: Condens. Matter 15, R1233 (2003)
[4.32] N. Marzari and D. Vanderbilt, Phys. Rev. B 56, 12847 (1997)
[4.33] A. Garcia-Martin, D. Hermann, K. Busch, and P. Wölfle, Mater. Res. Soc.
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