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Abstract. Materials modelling tools have become increasingly integrated in the
R&D portfolio. The unique insights available through simulation of materials at a
range of scales, from the quantum and molecular, via the mesoscale to the finite
element level, can provide discontinuous scientific advances. These tools are well
validated and produce reliable, quantitative information. A key demand of academic
and industrial research is that these tools become ever more integrated: integrated
at each length and time scale with experimental methods and knowledge as well as
integrated across the spectrum of scales in order to capture the multiscale nature
of organisation in many materials.

This paper will address recent efforts in this direction. The principal focus will
be on the derivation of accurate input parameters for mesoscale simulation, and
the subsequent use of finite element modeling to provide quantitative information
regarding the properties of the simulated mesoscale morphologies.

In mesoscale modeling the familiar atomistic description of the molecules is
coarse-grained, leading to beads of fluid (representing the collective degrees of free-
dom of many atoms). These beads interact through pair-potentials which, crucially
if meaningful data are to be obtained, capture the underlying interactions of the
constituent atoms. The use of atomistic modeling to derive such parameters will be
discussed. The primary output of mesoscale modeling is phase morphologies with
sizes up to the micron level. These morphologies are of interest, but little predic-
tion of the material properties is available with the mesoscale tools. Finite element
modeling can be used to predict physical and mechanical properties of arbitrary
structures. Details of the link that has been established between Accelrys’ Meso-
Dyn [11.1] and MatSim’s Palmyra-GridMorph [11.2] are given and highlighted with
some recent validation work on polymer blends. These results suggest that the com-
bination of simulations at multiple scales can unleash the power of modeling and
yield important insights.

11.1 Introduction

There are many levels at which modeling can be useful, ranging from the
highly detailed ab initio quantum mechanics, through classical molecular
modeling to process engineering modeling. These computations significantly
reduce wasted experiment, allow products and processes to be optimized and
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permit large numbers of candidate materials to be screened prior to produc-
tion.

Accelrys offers quantum mechanics, molecular mechanics and mesoscale
technologies. These methods cover many decades of both length and time
scale (see Table 11.1), and can be applied to arbitrary materials: solids, liq-
uids, interfaces, self-assembling fluids, gas phase molecules and liquid crystals,
to name but a few. There are a number of factors, which need to be taken
care of to ensure that these methods can be applied routinely and successfully.
First and foremost of course are the validity and useability of each method
on its own, followed by their interoperability in a common and efficient user
environment. These points are taken care of in state-of-the-art packages like
the Materials Studio�1 software [11.3] distributed by Accelrys.

Table 11.1. Comparison of scales of modeling: quantum, classical atomistic simu-
lation and mesoscale modeling

Quantum Atomistic Mesoscale
Length Angstroms nm 100s of nm
Fundamental Unit Electrons/nuclei atoms Beads representing many atoms
Time scale fs ns ms
Dynamics Too expensive F=ma Hydrodynamics

Of equal importance of course is the integration of the simulation methods
with experiment. In modern materials research and development, one needs to
be able to move almost seamlessly from experimental knowledge to simulation
and back again, requiring multiple input-output relationships at a range of
materials length and time scales. These can take the form of

– Materials QSAR: quantitative structure -activity (property) relationships
for materials aim to correlate molecular simulation results with experimen-
tal measurements of (macroscale) properties.

– Parameterisation of simulations: accurate materials simulations based on
input parameters gained from detailed simulation as well as experimental
data.

– Multiscale simulations, based on establishing the appropriate communica-
tion between the methods.

In the following, we shall give further detail and examples for each of these
cases.

1 Materials Studio is a registered trademark of Accelrys Inc.
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11.2 Structure-Activity
and Structure-Property Approaches

Quantitative structure activity and property relationships (QSAR/QSPR)
have long been used with great success in the life sciences. Based on exper-
imental ‘training set’ data, correlations can be established between a range
of molecular descriptors and biological activity. These correlations may take
the form of equations derived by methods such as the Genetic Function Ap-
proximation [11.4], or neural networks. QSAR methods have proved to be
powerful tools for the design of molecular libraries, investigating similarity
and diversity as well as predicting properties.

Not surprisingly, such tools have also been applied successfully in a va-
riety of materials cases as well [11.5, 11.6]. These statistical methods allow
experimental information to be mined for important correlations, which can
lead to deeper understanding of a material and optimised products. The cor-
relations can be used to help design better materials. These new materials
can be screened using the simulation methods and so an effective feedback
loop is created which efficiently leads to new materials.

However, the complexity and multiscale nature of many materials and
their properties pose particular challenges in the application of QSAR meth-
ods, which need to be address in future Materials QSAR tools. Firstly, there
are many different materials classes with potentially very different sets of
descriptors relevant to them. There is little knowledge so far about which
are the most important ones relating for example to the prediction of per-
meability properties of polymer materials. Secondly, the calculation of the
descriptors may involve simulations using methods at various scales, some of
which may be computationally expensive.

11.3 Atomistic and Mesoscale Simulations
and Their Parameterisation

Quantum, atomistic and mesoscale simulations provide valuable insights into
the detailed physico-chemical behaviour of molecules and materials, and there
are many properties, which can be determined directly from each, includ-
ing structure, energies, stability, activity, diversity, solubility, adhesion, ad-
sorption, diffusion, mechanical constants, spectra, and morphology. Ab initio
quantum methods have the advantage that they can in principle be used for
any element in the periodic table without specific parameterisation. They
have been extensively developed so that one is now able to handle systems
of a few hundred atoms routinely. For larger systems, however, methods re-
quiring parameterisation are inevitable. In the following, we focus on force
field developments for atomistic simulations and parameter determination for
mesoscale simulations.
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11.3.1 Atomistic Simulation

Fully atomistic simulation (where each atom is uniquely identified) is the core
technology of polymer modelling. The methods use molecular mechanics, dy-
namics and Monte Carlo algorithms to probe the conformational and config-
urational behaviour of arbitrary materials. Most material properties can be
inferred from these techniques, although properties that are fundamentally
electronic (polarizability, dielectric constant, rates of chemical reaction, etc)
are not the domain of classical simulation. The accuracy of property pre-
diction relies on the force field, that is the mathematical expression used to
create the potential function of the interacting components. These force fields
comprise terms for: bond stretching, bond bending, torsional twisting, out of
plane bending and pair-combinations of these. A typical force-field expression
is given in 11.1.
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Most force-fields are comparable in their accuracy for the minimum en-
ergy structure of simple molecules since they are parameterised to reproduce
known behaviour. The true test of a force field is prediction of density and
cohesive properties (heat of vaporization, solubility parameter, etc). For these
properties the determining factor is the accuracy of non-bonded dispersion
and electrostatic interactions (the last two terms in 11.1).

Accelrys has developed its own force field called COMPASS [11.7, 11.8],
which stands for ‘Condensed-phase Optimized Molecular Potentials for Atom-
istic Simulation Studies’. It is an ab initio force field because most parameters
are initially derived based on data determined by ab initio quantum mechan-
ics calculations. Following this step, parameters are optimized on the basis of
experimental data for condensed phase properties. In particular, thermophys-
ical data for molecular liquids and crystals are used to refine the nonbond
parameters via molecular dynamics simulations. The result is a highly accu-
rate force field, which gives unsurpassed prediction for density and cohesive
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properties of a wide range of organic and some inorganic materials. The COM-
PASS force field is therefore a prime example of how accurate simulation at
one scale (in this case electronic) and experimental data can be combined to
great advantage in parameterisation of models at the next coarser scale (in
this case atomistic).

As an example of the typical < 1% accuracy in density prediction which
can be achieved with this method, Fig. 11.1 shows the comparison between
experimental and predicted densities for perfluorobutane over a range of tem-
peratures [11.9].

Fig. 11.1. Density versus temperature of perfluorobutane, comparing a fit to ex-
perimental data with values calculated from Molecular Dynamics simulations [11.9].

In Fig. 11.2 we show how COMPASS performs for the solubility parame-
ter, which is the square root of the cohesive energy density [11.10]. It is crucial
to be accurate in this parameter, in particular if mixture or diffusivity data
is to be well reproduced. The toluene example shown in Fig. 11.2 [11.9] is
just one of many validations, which show that Molecular Dynamics simula-
tions with the COMPASS force field meet this demand. We can conclude that
COMPASS gives highly accurate data for key properties of bulk materials.

11.3.2 Mesoscale Methods

In classical atomistic modelling, traditional Molecular Dynamics is used to
obtain thermodynamic information about a pure or mixed system. Properties
obtained using these microscopic simulations assume that the system is ho-
mogeneous in composition, structure and density, which is a limitation. When
a system is complex, comprising several components, only sparingly miscible,
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Fig. 11.2. The solubility parameter δ of toluene as a function of temperature.
Calculations from molecular dynamics simulations with the COMPASS forcefield
[11.9] agree well with a fit through experimental data and the official IUPAC value.

or the chain architecture is such that bulk phase separation is hampered by
chemical bonds, exotic phases with remarkable properties can be observed.
These so-called ‘mesophases’ comprise too many atoms for atomistic model-
ing to realistically describe. Hence coarse-grained methods (see Table 11.1)
are better suited to such structures.

The primary techniques for mesoscale modeling are MesoDyn [11.11] and
DPD [11.12]. These tools achieve longer length scales by uniting many atoms
into a single bead, and longer time scales by integrating out the fast motions
of the underlying particles leaving only soft, effective interactions. Complex
self-assembling fluids, which have long-range order can be studied with these
methods.

– MesoDyn
MesoDyn is a dynamic mean-field density functional theory for complex
fluids [11.13]. The free energy comprises an ideal term based on a Gaus-
sian Chain Hamiltonian representation of the polymeric materials, a Gibbs
entropy contribution favoring mixing and a non-ideal term accounted for
using a mean-field approximation. The key approximation is that in the
time regime under consideration the distribution functions are optimized
(i.e. the free energy is minimal). Applying appropriate constraints the op-
timal distribution can be obtained and related back to the free energy.
We are left with a simple expression for the non-ideal term (obtained by
invoking the random phase approximation-RPA):
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F nid
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Which assumes a local mean-field. However, the mean-field must account
for the interchain interactions a non-local mean-field is preferred. A suitable
choice leads to:
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where εIJ (|r − r′|) is a cohesive interaction defined by the same Gaussian
kernel as in the ideal chain Hamiltonian. This parameter is then directly
related to a calculable property, namely the Flory-Huggins interaction pa-
rameter χ.

– DPD
DPD is a particle based method that uses soft-spheres to represent groups
of atoms, and incorporates hydrodynamic behavior via a random noise,
which is coupled to a pair-wise dissipation. These terms are coupled so
as to obey the fluctuation-dissipation theorem. Groot and Warren [11.12]
established the connection between a DPD fluid and a real fluid again re-
lating the bead-bead interaction potential to the Flory-Huggins parameter
χ. For a full description of DPD and some of its applications see [11.14]
and [11.15].

The two methods overlap, but DPD is preferred where concentrations are
low, and MesoDyn is ideal for systems, which comprise polymer melts and
blends.

11.3.3 Applications of Mesoscale Modeling

The mesoscale techniques have been used to rationalize complex behaviour
of latex emulsions for the paints, coatings and lubricants industries [11.16].
A series of simulations was undertaken to establish the link between latex-
particle size distribution and the hydrophilic chain length of the non-ionic
surfactants used to stabilize the emulsion. The more uniform the size dis-
tribution the more reliable the paint appearance and application rheology.
Several MesoDyn calculations were performed with various chain lengths and
a system, which led to optimal distribution of the latex particles was found.
This was then taken to the laboratory where an improved formulation was
established.

In the area of drug delivery DPD and MesoDyn have found many appli-
cations including formulation stability, active release profiles, compatibiliza-
tion, effect of hydrophobic drugs on micelle sizes in a pluronic solution and
the role of excipients. These complex problems are difficult to conceptualize,
are poorly served by static theories and are critical to the efficacy of a novel
drug formulation.
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The effect of temperature on self-assembled structures of amphiphilic
block copolymers in aqueous solution has been recently studied with Meso-
Dyn [11.17]. While, according to Flory-Huggins theory, the interaction pa-
rameter has a simple inverse dependence on temperature (χ ∼ 1/T ), it is well
known that corrections need to be applied for most polymer blends and solu-
tions. A more appropriate relationship for polymer solutions is the following

χ = α +
β

T
(11.4)

In simple term, α represents a non-combinatorial entropic contribution, and
β represents the enthalpic contribution. This expression was fitted to exper-
imental data of interaction parameters between poly (ethylene oxide) and
water, as well as poly (propylene oxide) and water, respectively. Typically,
these data are determined experimentally by vapour pressure measurements.
The resulting χ(T ) could then be used in MesoDyn simulations of Pluronic
P85 (triblock copolymer of ethylene oxide, propylene oxide, ethylene oxide,
with certain chain lengths) in water for a range of temperatures.

The experimental phase diagram [11.18] shows the striking range of phases
exhibited by such a relatively simple system. In particular, it shows that at
polymer concentrations above about 20%, a micellar phase is observed at low
temperatures, and rods or cylinders are formed above about 60◦C.

MesoDyn simulations were performed at these temperatures, and the re-
sulting morphologies are show in Fig. 11.3(a) and 11.3(b). They are extremely
encouraging, with definite evidence of the correct phase evolving at the cor-
rect temperature and composition.

11.4 Multiscale Modeling

11.4.1 From the Molecular to the Mesoscale

In order to integrate the molecular level and the mesoscale, the atomistic
simulation results can be used to parameterise mesoscale simulation by pro-
viding sensible coarse-graining methods and effective interactions between
species [11.17,11.19].

One such example is the work by Vergelati and Spyriouni [11.19]. Their
aim was to investigate the compatibility of a polyamide with a poly (vinyl
acetate), where the acetate was systematically hydrolyzed towards the poly
vinyl alcohol. The authors started on the atomistic level, using Discover
Molecular Dynamics with the COMPASS force-field to determine cohesive
energy densities of the various mixtures. The Flory-Huggins interaction pa-
rameters of the blends could then be calculated and used as input to Meso-
Dyn simulations. The bead size parameters for MesoDyn were determined
from the molecular weight and characteristic ratios of the polymers. Encour-
agingly, the length scale and morphology of the phase separation observed
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(a) (b)

Fig. 11.3. (a) MesoDyn simulation of Pluronic PL85 in water at 27% concentration
and temperature 15◦C. The isodensity surfaces of the hydrophobic component are
shown, clearly revealing the micellar structure. (b) Morphology after increase of
temperature to 70◦C, with the appropriate interaction parameter. The spherical
micelles coalesce into rods, in line with experimental evidence.

in the simulation was found to match well with TEM results for the real
materials.

A clear pathway has therefore been defined and is being more and more
established for coarse-graining from the atomistic to the mesoscale. The ma-
jor hole in the technology remains the reverse mapping from the mesoscale
to the atomistic, where no adequate method has been developed.

11.4.2 From Mesoscale to Finite Element Simulation

The structures formed on the nanometer scale give rise to diverse and in-
teresting material properties. As we have seen in the last section, mesoscale
methods can be used with confidence to predict such structures. While some
properties can be predicted directly from the mesoscale, property predic-
tion given the knowledge of material structure and the property of the pure
components that comprise the mixture has been developed widely in Finite
Element Methods. An example of such a method, designed to deal with finely
textured materials is Palmyra-GridMorph from MatSim [11.2]. Using stan-
dard solvers the finite element code can then predict the property for the
realistic structured material.

As a test case for this combination of mesoscale and finite element meth-
ods we studied the oxygen diffusion through a material designed to act as a
gas separation membrane. A binary blend of polystyrene and polybutadiene
was simulated with MesoDyn using parameters obtained from atomistic level
modeling. These polymers tend to phase segregate and large domains form
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with little interface. Upon addition of a diblock copolymer of the species
(styrene and butadiene), the blend is compatibilized and the interfacial ten-
sion is lowered. The resulting morphology is far more complex with much
smaller domains, more interfacial zones and frustrated regions. Both of these
structures were analyzed for oxygen diffusion using GridMorph [11.20]. The
pure component oxygen permaebilities for polystyrene and polybutadiene
were obtained using the QSPR method Synthia [11.6,11.21]. The results are
given in Table 11.2.

Table 11.2. Oxygen permeability of two types of blends. Structures were simulated
with MesoDyn, and permeabilities calculated for those structures using GridMorph.

System Oxygen permeability (Dow Units)
Without Compatibilizer 970
With Compatibilizer 1040

The compatibilized blend shows increased permeability of oxygen, which
can be attributed to an increase in the number of channels that the oxygen can
choose to diffuse through. This study therefore uses atomistically obtained
interaction energies and diffusivities to parameterize mesoscale methods and
inform finite element tools, in order that mesoscopically calculated struc-
tures be analyzed for diffusion rates of the true material. This is an exciting
development that we intend to pursue further.

11.5 Conclusion

The power of integrating modeling across different scales and with exper-
imental data has been demonstrated. Combining experimental and simula-
tion data in QSAR/QSPR methods generates valuable correlations and hence
knowledge. Combining high quality measurements of some basic quantities
(such as densities) with high-level simulations provides a successful parame-
terisation route for atomistic force field. Classical atomistic simulations with
such a force field can then accurately predict material properties over a wide
range of temperature, pressure and composition space. Furthermore, these
simulations can in turn be used to derive input parameters for mesoscale sim-
ulations, while as above, additional experimental data can be used to hone
the parameters further. A novel approach is to take the simulated mesoscale
morphology as input to finite element methods in order to predict a wide
range of material properties based on the morphology obtained. This now
gives the modeler a route from the atomistic description of the system to
a trust-worthy estimate of the properties of a material, obtained from the
underlying molecules in a quantifiable manner.
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