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Analysis of Viscoelastic and Dynamic
Behavior

8.1 Introduction

In the analyses of chapter 1 to chapter 7, it has been assumed that the
applied loads are static in nature and that the composite and its constitu-
ents exhibit time-independent linear elastic behavior. However, composite
structures are often subjected to dynamic loading caused by vibration or
Wwave propagation. In addition, many composites exhibit time-dependent
viscoelastic behavior under load; this is particularly true for composites
having polymeric constituents. This chapter contains the basic information
needed for the analysis of both viscoelastic and dynamic behavior of com-
posites and their constituents.

The word “viscoelastic” has evolved as a way of describing materials
that exhibit characteristics of both viscous fluids and elastic solids. Poly-
meric materials, which are known to be viscoelastic, may behave like
fluids or solids, depending on the time scale or the temperature. For
example, polycarbonate, a thermoplastic polymer, is a liquid during mold-
ing at processing temperatures, but is a glassy solid at service (ambient)
temperatures. It will deform like a rubber at temperatures just above the
glass transition temperature, T,. At temperatures below T,, however, it
will deform just as much, and in the same way if the test time is long
enough. ~ - .

We know that ideal Hookean elastic solids are capable of energy storage
under load, butnot energy dissipation, whereas ideal Newtonian fluids
under nonhydrostatic stresses are capable of energy dissipation, but not
energy storage. Viscoelastic materials, however, are capable of both storage
and dissipation of energy under load. Another characteristic of viscoelastic
materials is memory. Perfectly elastic solids are said to have only “simple
memory” because they remember only the unstrained state and the current
strains depend only on the current stresses. Viscoelastic materials have what
is often referred to as “fading memory” because they remember the past in

mcorms\m%ﬂrm:&mncﬁmamqmwsm depend more strongly on the recent
stress—ftime hicknrr than am Han s T2t o o . .
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FIGURE 8.1 . .
Physical manifestations of viscoelastic behavior in structural materials, as demonstrated EN
various types of loading applied to a viscoelastic rod.

There are four important physical manifestations of viscoelastic behav-
ior in structural materials, as illustrated by the various conditions of the
uniaxially loaded viscoelastic rod in figure 8.1. First, if the rod is subjected
to a constant stress, the resulting strain will exhibit time-dependent
“creep,” as shown in figure 8.1(a). The time-dependent creep mﬁnw:.ﬂm are
superimposed on the initial elastic strains. Second, if the H..oa is m.&.u_m.nﬁmm
to a constant strain or displacement, the resulting stress will .mxr:o: time-
dependent “relaxation,” as shown in figure 8.1(b). That is, Em stress
relaxes from the initial elastic stress. Third, if the bar is subjected to
oscillatory loading, the resulting stress—strain curve will describe a “hys-
teresis loop,” as shown in figure 8.1(c). The area ms.QOmma by the E\mﬁm#
esis loop is a measure of the damping, or dissipation, of energy in the
material. Fourth, if the bar is loaded at various. strain rates, Em
stress—strain curves will exhibit a strain-rate dependence, as shown in
figure 8.1(d). That is, the stress corresponding to a given .m:..&s depends
on the rate of straining. An ideal elastic material exhibits none of the
above characteristics. - : :

Analysis of Viscoelastic and Dynamic Behavior 379

Amorphous

Crystalline

FIGURE 8.2
Amorphous and crystalline microstructures in polymers,

All structural materials exhibit some degree of viscoelasticity, and the
extent of such behavior often depends on environmental conditions such
as temperature. For example, while a structural steel or aluminum mate-
rial may be essentially elastic at room temperature, viscoelastic effects
become apparent at elevated temperatures approaching half the melting
temperature. Polymeric materials are viscoelastic at room temperature,
and the viscoelastic effects become stronger as the temperature
approaches the glass transition temperature. Recall from chapter 5 that
the glass transition region (fig. 5.1) is a region of transition between glassy
behavior and rubbery behavior and a region characterized by the onset
of pronounced viscoelastic behavior.

Polymers with amorphous microstructures tend to be more viscoelastic
than those with crystalline microstructures. As shown in figure 8.2, amor-
phous microstructures consist of 3-D arrangements of randomly entan-
gled long-chain polymer molecules that are often characterized by
analogy to a “bowl of spaghetti.” On the other hand, crystalline micro-
structures consist of regular, ordered crystalline arrays of atoms (fig. 8.2).
Some polymers have both.amorphous and crystalline components in their
microstructures; and some polymers are purely amorphous.

On the basis of the previous discussion, we conclude that viscoelastic
behavior of composite materials is more significant for composites having
one or more polymeric constituents. Viscoelastic effects in polymer matrix
composites are most pronounced in matrix-dominated response to off-
axis or shear loading. Viscoelastic deformations and plastic deformations
are similar in that both are driven by shear stresses. Indeed, elements of
the theory of plasticity are often borrowed for use in the theory of vis-
coelasticity. For example, it is sometimes assumed in viscoelasticity anal-
ysis that the dilatational response to hydrostatic stresses is elastic, but that
the distortional response to shear stresses is viscoelastic.
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In this chapter we will be concerned with the development of
stress—strain relationships for linear ﬁmoo&mmﬁo materials and their com-
posites. These stress—strain relationships take on special forms for creep,
relaxation, and sinusoidal oscillation. .ﬁo:,woswﬁm the use of certain inte-
gral transforms, the viscoelastic stress—strain relationships turn out to be
analogous to Hookean elastic stress-strain relationships, leading to the
so-called Elastic—Viscoelastic Correspondence Principle.

Dynamic loading is usually categorized as being either impulsive or
oscillatory. Dynamic nmwm@o:mm consists of either a propagating wave or a
vibration, depending on the elapsed time and the:relative magnitudes of
the wavelength of the response and the characteristic structural dimen-
sion. Both types of excitation usually cause wave propagation initially.
Wave propagation will continue if the response wavelength is much
shorter than the characteristic structural dimension, otherwise standing
waves (i.e., vibrations) will be set up as the waves begin to reflect back
from the boundaries. Wave propagation in nogvmmxmm may involve com-
plex reflection and/or refraction effects at fiber/matrix interfaces or ply
interfaces, complicating matters further. : ]

The dynamic response of composites may also be complicated by their
anisotropic behavior. For example, the speed of a propagating wave in an
isotropic material is independent of orientation, whereas the wave speed
in an anisotropic composite depends on the direction of propagation.
Anisotropic coupling effects often lead to complex waves or modes of
vibration. For example, an isotropic beam subjected to an oscillatory bend-
ing moment will respond in pure flexural modes of vibration, but a non-
symmetric laminate may respond in a coupled bending-twisting mode
or some other complex mode. In this chapter, howevet, only the analyses
for vibrations and wave propagation in specially orthotropic composites
or laminates without coupling will be considered. ;

Damping, which is one of the manifestations of Viscoelastic behavior,
is obviously important for noise and vibration control. Composites gen-
erally have better damping than conventional metallic structural materi-
als, especially if the composite has one or more polymeric constituents.
It will be shown that the complex modulus notation and the Elastic—Vis-
coelastic Correspondence Principle from viscoelasticity theory are partic-
ularly useful in the development of analytical models for predicting the
damping behavior of composites. ' a

Finally, it will be shown that the effective modulus theory, which was
introduced in chapter 2 and chapter 3, is indispensable in both vis-
coelastic and dynamic analyses of composites. Under certain restric-
tions, the concept of an effective modulus or effective compliance will
be used to extend various viscoelastic analyses and dynamic analyses
of homogeneous materials'to the corresponding analyses of heteroge-
neous composites. .

4
i

e e
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8.2 Linear Viscoelastic Behavior of Composites

>.=5.mmw &mmao. solid exhibits a linearity between stress and strain, and
Jﬂm MEme..H.&mﬁ.osmr.% is independent of time. A linear viscoelastic solid
mrm.o exhibits a linearity between stress and strain, but the linear relation-
M %.Qmﬁm:mm on ﬁrw time history of the input. The mathematical criteria
or linear Smwo%mmcn behavior are similar to those for linear behavior of
any system. Following the notation of Schapery [11, the criter:
stated as follows: pery [l the riteria can be
%ﬁﬁ the response R to an input I be written as R = R{I}, where R{I} denotes
at the current value of R is a function of the time history of the input I,

moy.mbmmaimoomwmmmnermig\&mammogm% i
’ I
following conditions: ponse R{I} must satisfy both the

1. Proportionality: i.e., Eo& = cR{I}, where ¢ is a constant

2. Superposition: i.e., R{I, + I} = R{L} + R{I,}, whe
., R{l, , , re I, and I
the same or different time histories ' » 803 hmay be

Any response not satisfying these criteria would be a nonlinear response
Wrmm% Mu,imi.m form the basis of the stress—strain relationship known as
mmwmow.ﬁﬁmzb superposition integral, which is developed in the next
. Before getting into the analytical modeling of linear viscoelastic behav-
lor, however, it is instructive to briefly discuss a phenomenological
approach, to verification of linear viscoelastic behavior, F.ommzv\ the Hmboﬁ
widely used method of characterizing viscoelastic behavior is the tensile
creep test described in figure 8.1(a), which involves the application of a
o.o:m.ﬁma tensile stress to a specimen and measurement of the resultin

time-dependent strain. The strain versus time curves are known as Q.mmm
curves. If a number of creep curves are generated at different stress yma\.mm
as shown schematically in figure 8.3(a), these creep curves can be used to
E& stress-strain curves at different times. For example, by taking the
ratio of stress to strain at each stress level noﬁmmwos&b\m to mgmw in
wmﬁm 8.3(a), we can plot the so-called isochronous stress—strain osgw at
time t = Nw\ as shown in figure 8.3(b). The slope of the isochronous
stress—strain curve is the time-dependent Young’s modulus, E(t), and

typically E(t) decreases with time. The cre i
. - cree
stress o is P compliance for a constant

.. lmSzH x
msllqluwa 8.1)
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FIGURE 8.3 . : _
Mustration of creep curves at constant stress and corresponding isochronous stress-strain

curves.

and obviously S(f) increases with time. Phenomenologically speaking, a
material is linear viscoelastic within the range of stresses and times for
which its isochronous stress—strain curves are linear. There are always
limits on the ranges of stress and time within which a material will
continue to behave in a linear viscoelastic manner. For example, if the
stress level becomes high enough, the isochronous stress—strain curve will
become nonlinear, and this means that the material becomes nonlinear
viscoelastic. In this book, it is always assumed that the viscoelastic mate-
rials being discussed are linear viscoelastic.

Typically, the creep compliance for linear viscoelastic creep curves such
as those shown in figure 8.3(a) can be described mathematically using a
power law expression of the form .

S(t) = So +Sit" s (82)

where Sp is the initial elastic compliance and S; and n are empirically
determined parameters. It has been shown experimentally by Beckwith
[2] that, for polymer matrix composites, the creep exponent n depends
only on the polymer matrix, and indeed that n is the same for the com-
posite and the polymer matrix material. Since creep experiments are gen-
erally conducted over several decades, it is often convenient to use log-log
scales to plot creep compliance data. A power law plotted on a log-log
scale becomes a straight line, and this provides another way to check for
linear viscoelastic behavior. For example, moving So to the left-hand side
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log[S(#)-S,]

slope = n

log §; ——»| log[S(#)-S,] = logS; + nlogt

log ¢

FIGURE 8.4
Hlustration of log creep compliance vs log time plot.

o.m mmcmaoz Am.mvm:gﬁwgm%mpom%woﬂrmammo:rmumm:Esmm@:wzos
yields : .

log[S(t)—So]=1log 5, +nlogt (8.3)

which is the equation for a straight line on a log-log plot of log[S(t) - So |

versus logt with slope 7 and vertical axis intercept log$;, as shown in
figure 8.4.

8.2.1 Boltzmann Superposition Integrals for Creep and Relaxation

The stress-strain relationships for a linear viscoelastic maternal can be
developed by using the Boltzmann Superposition Principle [3]. If the
material is at a constant temperature and is “nonaging,” then the response
at any time ¢ due to an input at time ¢ = 7 is a function of the input and
the elapsed time (t — 1) only. Aging is a time-dependent change in the
material, which is different from viscoelastic creep or relaxation. Both
temperature and aging effects will be considered in section 8.2.6.
Consider the 1-D isothermal loading of a nonaging, isotropic, homoge-
neous linear viscoelastic material by the stresses Ac;, AG,, and Aoy at times
Ty Ty and T, respectively, as shown in figure 8.5. According to the Boltz-
mann Superposition Principle, the strain response is linearly proportional
to the input stress, but the proportionality factor is a function of the elapsed
time since the application of the input stress. Thus, for the stress—time
history in figure 8.5, the total strain response at any time f > 1, is given by

&(t) = Ac1S(t— 1) + AG,S(E—12) + AG3S(E— T5) (8.4)
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FIGURE 8.5 . - . .
Input stress and strain response in 1-D loading of a linear viscoelastic material for illustration
of the Boltzmann Superposition Principle.

where S(f) is the creep compliance, which is zero for t < 0. For W.%E
stresses having arbitrary time histories, equation (8.4) can be generalized
as the Boltzmann superposition integral, or hereditary law:

e(t) = h. S(t—7) mmMs d ,, (85)

- Alternatively, the stress resulting from arbitrary strain inputs may be
given by

o) = ﬁx%é awms dr - (86)

where C(t) is the relaxation modulus, which is zero for ¢ < 0.

Equation (8.5) can be extended to the more mm.SmamH case .o», a homoge-
neous, anisotropic, linear viscoelastic material with .E:me_m_ inputs and
responses by using the contracted notation and writing

QQN.

ei(t)= .ﬁﬁ?s%& | ®7)

d

e
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where
i,j=1,2,...,6

S;(t) = creep compliances

For the specific case of the homogeneous, linear viscoelastic, specially
orthotropic lamina in plane stress, equations (8.7) become

m;mv = .bnrmx m:Q, = \nv% dt + .‘vlmz M,HN Q _ av anmdAaV Qd
ealt)= A_.JN Salt= smﬁ% dr+ ﬁ Sna(t=1) [%wa@ dv (8.8)

Similarly, equation (8.6) can be generalized to the form,

BSH ._H.QQ[@ QMM@ dv , (8.9)

where the Cy(t) are the relaxation moduli. Note that equation (8.7) and
.quation’(8.9) are.analogous to the generalized Hooke’s law for linear
elastic materials given by equation (2.5) and equation (2.3), respectively,
and that equations (8.8) are analogotis to the Hooke’s law for the specially
orthotropic lamina given by equations (2.24). Thus, the creep compliances,
Si(t), for the viscoelastic material are analogous to the elastic compliances,
Sy and the viscoelastic relaxation moduli, Cy(t), are analogous to the elastic
stiffnesses, C.

In order to apply the stress-strain relationships in equation (8.7) to
equation (8.9) to heterogeneous, anisotropic, linear viscoelastic composites,
We again make use of the “effective modulus theory” that was introduced
in chapter 2-and chapter 3. Recall that in order to apply the stress—strain
telationships at a point in a homogeneous material (i.e., equation [2.3]
and equation [2.5]) to the case of a heterogeneous composite, we replaced
the stresses and strains at a point with the volume-averaged stresses and
strains (eq. [2.7] and eq. [2.8]) and also replaced the elastic moduli of the
heterogeneous composite by effective moduli of an equivalent homoge-
neous material (eq. [2.9] and eq. [2.10]). Recall also that the criterion for
the use of the effective modulus theoty was that the scale of the inho-
mogeneity, d, had to be much smaller than the characteristic structural
dimension, I, over which the averaging is done. Howevet, since this
chapter also deals with dynamic behavior, it is appropriate to add
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FIGURE 8.6 .
Critical dimensions which are used in the criteria for the application of the effective modulus

theory.

another criterion related to dynamic effects. That is, the scale om.Em
inhomogeneity, d, must also be much smaller than the characteristic
wavelength, A, of the dynamic stress distribution (fig. 8.6). Thus, .Em
criteria for the use of the effective modulus theory in dynamic loading
‘of viscoelastic composites are d << L and d << A. Practically speaking,
the second criterion becomes important only when dealing with the
propagation of high-frequency waves having very short Smw\&mzﬁrm.
On the other hand, the wavelengths associated with typical mechanical
vibrations will almost always be sufficiently large so as to satisfy d <<
A. The book by Christensen [4] gives a more detailed discussion of the
effective modulus theory. .

Thus, equation (8.7) to equation (8.9) are valid for heterogeneous, aniso-
tropic, linear viscoelastic composites if at an arbitrary time, ¢, we simply
replace the stresses and strains at a point with the <o~5bm-m.<mammmm
stresses and strains, replace the creep compliances with the effective creep
compliances, and replace the relaxation moduli with the effective relax-
ation moduli. Thus; the effective creep compliance matrix for the specially
orthotropic lamina in plane stress is given by

’ .WS Q‘.v mHN Qv -0
Sit)=|Su(t) Sn() O (8.10)
0 0 Seslt)
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Note the close resemblance of this creep compliance matrix to the
corresponding elastic compliance matrix in Equations (2.24). For the
generally orthotropic lamina, we have

B

ERECRCIETC
Sj(t)=| Su(t) Sn(t) Sa(t) (8.11)
Sis(t) Sus(t) Ses(t)

where the 5;(f) are the transformed effective creep compliances. Note the
close resemblance of this matrix to the cotresponding transformed elastic
compliance matrix in Equations (2.37). Halpin and Pagano [5] have shown
that the w@.S are related to the Sy(t) by the transformations,

Sin(t) = S (H)c* +12S15(£) + Ses ()]s + S (s’
Sia(t) = Sia(£)(s* +c*) +[Su (£) ~ S (t) — Ses()]s*c*

Saa(t) = Sua(0)s* +[2S2(8) + Ses (£)]5°C” + S (t)c* (8.12)
Ses(t) = 20251 (£) + 252 () ~ 4815 (£) — Ssa (s + Ss (£)(s* + %) |

Si6 (£) =[2S11(t) — 2815 (t) — S (1)]sc® —[25,, (£)— 2815 (t) — Ses(1)]s°c
Sa6() = [2511(£) — 2812 () — Se6 ()5 ~ [25 () — 2S12(E) - Ses (£)]5C°

where s = sin®, ¢ = cosH, and the angle 0 has been defined in figure 2.8.
Note that these equations are entirely analogous to the corresponding elastic
compliance transformation equations. Further justification for such direct
correspondence between elastic and viscoelastic equations is provided by
the Elastic-Viscoelastic Correspondence Principle, which is discussed later.

Recall that for the elastic case, strain energy considerations led to the
symmetry conditions S; = S; and Cyj = C; For the viscoelastic case,
Schapery [1] has used thermodynamic arguments to show that if Syt) =
5;(t) for the constituent materials, then the same is true for the composite.
Halpin and Pagano [5] and others have presented experimental evidence
that for transversely isotropic composites under plane stress, S;,(f) = S,,(t).
In both elastic and viscoelastic cases, further reductions in the number of

independent moduli or compliances depend on material property sym-

metry and the coordinate system used.

EXAMPLE 8.1

A specially orthotropic, linear viscoelastic composite lamina is subjected to the
shear stress~time history shown in figure 8.7. If the effective shear creep compli-
ance is given by

Ss()=A+Bt, t20; S ()=0, t<0
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Shear stress time history mOn example 8.1,

where A and B are matetial constants and t is time, Find the expressions for the
creep strain at t < Tyand t > T,

2

Solution. The creep strain is given by equation (8.7):

» .
= [ sy~ L

which, for the case of t < T}, reduces to

aimx = \waawx Bloax 2
e6(h) = Yo (h) = ._. [A+ B =) et e = e g ey
wou., t > Ty we have
t ! .
g5(t) = %SA H\»+ B(t- avu_ Fmax dt+ oﬁ (0)d7 = ATpay + Blmaxt — gxmmvmjb
Ty

8.2.2 Differential Equations and Spring-Dashpot Models

Although the Boltzmann superposition integral is a valid mathematical
expression of the stress—strain relationship for a linear viscoelastic mate-
rial, it does not lend itself easily to the use of physical models that help
us to understand viscoelastic behavior better. In this section, Laplace
transforms will be used to convert the Boltzmann superposition integral
to an ordinary differential equation involving time derivatives of stress
and strain. Physical models for viscoelastic behavior can be easily inter-
preted by using differential equations.

The Laplace transform, Z[f(t)] or f(s), of a function f(f) is defined by

LIfB]=fs)= b.os fedt (8.13)
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where s is the Laplace parameter. For purposes of illustration, we now
take the Laplace transform of the 1-D Boltzmann superposition integral

given by equation (8.6). The rﬁuﬂmom transform of both sides of the equa-
tion is given by -

Qm@

VCORLOR &_. C(t—v) (8.14)

Noting that the right-hand side of equation (8.14) is in the form of a
convolution integral [6], we can also write

mm@ mm@

Cs)

~ .F.% 7)) (8.15)

Taking the inverse Laplace transform of equation (8.15), we find that

21| ) %@ .—é (-7 L %3 (8.16)
Thus, equation (8.14) can be written as
56)=2| 21| &) %@ ~(s) M 9) (8.17)
But from the properties of Laplace transforms of derivatives [6],
@ ammv - gwwv — 58(s)— £(0) (8.18)

where £(0) is the initial strain. If we neglect the initial conditions, equation
(8.17) becomes

6(s) = sC(s)E(s) (8.19)

If we perform similar operations on equation (8.5), we find that

£(s) = 85(s)5(s) (8.20)
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Note that equation (8.19) and equation A.vm.wov are now of the same form
as Hooke’s law for linear elastic materials, except that the Laplace trans-
forms of the stresses and strains are linearly related, and the proportion-
ality constants are the Laplace transform of the creep compliance and the
Laplace transform of the relaxation modulus. This is wbo?ma m%mgﬁ_m n.vm
the correspondence between the equations for elastic and Sm.no&wm:n
materials and is another building block in the Elastic—Viscoelastic Corre-
spondence Principle, which will be discussed later. Note also that accord-
ing to equation (8.19) and equation (8.20), the Laplace \Rmb.mmoﬁs of the
creep compliance and the Laplace transform of the relaxation modulus

must be related by

7 1

= : 8.21
5(s) 2C6) (821)

However, the corresponding time domain properties are not mathemat-
ically related by a simple inverse relationship. That is, in general,

2L 8.22
)% s 62

However, a usually good approximation is

msz& (8

and it can be shown by using the Initial Value Theorem and the H.&bm_
Value Theorem of Laplace transforms (see Problem 8.2) 5& for short times
when t — 0 and for long times when ¢ — o, the mathematically exact rela-
tionship is

S@t) u,& (8.24)

The coefficient term in equation (8.20) can also be written as a ratio of
two polynomials in the Laplace parameter s as follows:

&(s) = 55(5)5(s) u%m@ (825)
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where

P(s)=ag+ms+as® + -+ a,s"

Q) =by +bis+bys* +---+b,s"

Thus, we.can write

P(s)e(s) = Q(s)5(s) (8.26)
2

But if we neglect the initial conditions, the Laplace transform of the nth
derivative of a function f{t) is

& % =5"f(s) (8.27)

N

Making use of equation (8.27) and taking the inverse Laplace transform
of equation (8.26), we find that

n 2 )
d m+...+“~Mm+ﬁw%+QOMH®OQ+WH%+TN]+...+W —_

(8.28)

Thus, linear viscoelastic behavior may also be described by an ordinary
differential equation as well as by the Boltzmann superposition integral.
Note that the linear elastic material described by Hooke’s law is a special
case of equation (8.28) when all time derivatives of stress and strain vanish
(Le., aoe = byo). Recall that one of the physical manifestations of viscoelastic
behavior is the dependence of stress on strain rate; such strain rate effects
can be modeled with equation (8.28). We now consider several simple
physical models of linear viscoelastic behavior that include various time
derivatives of stress and strain.

As shown in figure 8.8 to figure 8.10, useful physical models can be
constructed from simple elements such as the elastic spring and the vis-
cous dashpot, where the spring of modulus k is assumed to follow Hooke’s
law and the dashpot is assumed to be filled with a Newtonian fluid of
viscosity u. Thus, the stress—strain relationship for the elastic spring ele-
ment is of the form e =6/k, whereas the corresponding equation for the
viscous dashpot is de/dt = o /L.
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FIGURE 8.8

Maxwell model, with corresponding creep and relaxation curves.
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FIGURE 8.9
Kelvin-Voigt model, with corresponding creep and relaxation curves.
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FIGURE 8.10

Standard linear solid or Zener model, with corresponding creep and relaxation curves.
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The Maxwell model consists of a spring and a dashpot in series, as
shown in figure 8.8(a). The total strain across a model of unit length must
equal the sum of the strains in the spring and the dashpot, so that

E=¢ +8& AW.N@V

and the strain rate across the model is then

de _de, de, 1do o
TR TR TRl A Tl : (8.30)

Note that equation (8.30) is just a special case of equation (8.28), with only
first derivatives of stress and strain. For creep at constant stress ¢ = o,
equation (8.30) reduces to ,

de Op
=2 31
at \ (8.31)
Integrating equation (8.31) once, we find that
e
et)=—1+C . .(8.32)

mn

where the constant of integration, C,, is found from the initial condition
&(0) = C; 6=0,/k. Thus, the creep strain for the Maxwell model is given by

~%0,, %
LORE (8.33)

and the corresponding creep compliance is given by

S(t) = %u W+w (8.34)

A plot of the creep compliance versus time according to equation (8.34)
is shown in figure 8.8(b). The type of creep behavior that is actually
observed in experiments is more like that shown in figure 8.5, however.
Thus, the Maxwell model does not adequately describe creep.

For relaxation at constant strain & = g, the Maxwell model of
stress-strain relationship in equation (8.30) becomes

O=7=-+- (8.35)
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Integrating equation (8.35) once, we find

i
ﬁ
t
|

Ino=——t+C, , (8.36)

k
u
where the constant of E#mmammop C,, is found from the initial condition
0(0) = o,. The resulting stress relaxation function is

_ ,
o) =0 =gt (8.37)

where A = 11/k is the relaxation time, or the time required for the stress to
relax to 1/e, or 37% of its initial value. The relaxation time is therefore a
measure of the internal time scale of the material. The corresponding
relaxation modulus is .

c(ty =20 - S gim _ jrin (339
€ & :

Figure 8.8(c) shows the relaxation modulus versus time from equation
(8.38), which is in general agreement with the type of relaxation observed
experimentally. Thus, the Maxwell model appears to describe adequately
the relaxation phenomenon, but not the creep response.

Figure 8.9(a) shows the Kelvin—Voigt model, which consists of a spring
and a dashpot in parallel. Using the appropriate equations for a parallel
arrangement and following a procedure similar to the one just outlined,
it can be shown that the differential equation describing the behavior of
the Kelvin-Voigt model is given by

o =ke+ t% , (8.39)

Equation (8.39) is seen to be another special case of equation (8.28), with
only first derivatives of strain. It can also be shown that the creep com-
pliance for the Kelvin—Voigt model is given by

S(t) = W: et | (8.40)

where p = U/k is now referred to as the retardation time. Similarly, the
relaxation modulus is given by

Cty=k (8.41)
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Equation (8.40) and equation (8.41) are plotted in figure 8.9(b) and
figure 8.9(c), respectively. The creep compliance curve agrees with exper-
imental observation, except that the initial elastic response is missing. On
the other hand, the relaxation modulus has not been observed to be
constant, as shown in figure 8.9(c). Thus, like the Maxwell model, the
Kelvin-Voigt model does not adequately describe all features of experi-
mentally observed creep and relaxation.

One obvious way to improve the spring—dashpot model is to add more
elements. One such improved model, shown in figure 8.10(a), is referred
to as the standard linear solid or Zener model. It can be shown that the
differential equation for the Zener model is given by

Wmdo M de
o+ \nom+ NAH Qﬂo + \npv d Am.%wv

where the parameters k,, k;, and 1, are defined in figure 8.10(a). Equation
(8.42) is obviously another special case of the general differential equation
(8.28). It is also interesting to note that the Zener model shown in
figure 8.10(a) is just a Maxwell model in parallel with a spring. The creep
compliance for the Zener model is given by

l F I F VL\E ,
S(t)= A T Ttk e (8.43)
where p; = (y /kok1 )(kq + k1) is the retardation time.

As shown in figure 8.10(b), the shape of the creep compliance curve
from equation (8.43) matches the expected shape based on experimental
observations. The relaxation modulus for the Zener model is given by

Clt)=ko+Ige™™ (8.44)

where A, = 1, /k; is the relaxation time. Note that A, is just the relaxation
time for the Maxwell model consisting of p, and k;. Figure 8.10(c) shows
the predicted relaxation modulus curve from equation (8.44), and, again,
the general shape of the curve appears to be similar to what is experi-
mentally observed.

Although the Zener model is the simplest spring—dashpot model that
correctly describes all expected features of experimentally observed creep
and relaxation behavior in linear viscoelastic materials, it still is not com-
pletely adequate. This remaining inadequacy is best described by plotting
the relaxation modulus versus the logarithm of time, as shown in figure 8.11.
Practically speaking, complete relaxation for the Zener model occurs in less
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FIGURE 8.11 _ _
Effect of increasing number of relaxation times on relaxation curve of Zener model.

than a decade in time, but relaxation for real polymers happens over a
much longer time scale. For example, the glass-to-rubber transition, Sﬁ%
is only one region of polymer viscoelastic behavior, takes about six to eight
decades in time to complete [7]. This extended relaxation period for poly-
mers is due to the existence of a distribution of relaxation times. By using
an improved Zener model such as the parallel arrangement shown in
figure 8.12, we can introduce such a distribution of relaxation times, A;, that
makes it possible to extend the range of relaxation to more realistic values.

This form of the improved Zener model consists of n Maxwell elements in

parallel with the elastic spring, k. It can be easily shown that the relaxation
modulus for this improved Zener model is given by

Cly=ko+ D kie’™ | (8.45)
=1

where A; = W,/k; is the relaxation time for the ith Maxwell element.

[

=
WA

My Ko M3 My

FIGURE 8.12 : . '
Improved Zener model, parallel arrangement.
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FIGURE 8.13

Continuous distribution of relaxation times, or relaxation spectrum k(A), for improved Zener
model of figure 8.12, with an infinite number of elements.

As shown in figure 8.11, the effect of increasing 1 and the corresponding
number of relaxation times is to broaden the range of relaxation. The
number of relaxation times needed to describe adequately the viscoelastic
behavior of a particular material must be determined experimentally. For
an infinite number of elements in the improved Zener model of figure 8.12

and a continuous distribution of relaxation times, the relaxation modulus
can be expressed as [8]

5

C() =Ko + ﬁ k(e dn, (8.46)

where k(A) is the distribution of relaxation times, or the relaxation spec-
trum, which is shown schematically in figure 8.13.

By considering an alternative form of an improved Zener model consisting
of a spring in series with n Kelvin-Voigt elements, as shown in figure 8.14,
it can be shown that the corresponding creep compliance expression is

S(t) = P+M L i gtim) (8.47)

Nmo = Mm

where p; = ,/k; is the retardation time for the ith Kelvin—Voigt element.

ko 1 Wy

AMAAA.

ky

A

k,

FIGURE 8.14
Improved Zener model, series arrangement.
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Although the above equations have been derived on the basis of simple
spring-dashpot models, the generalized H.,.,mwmxwﬁoﬁ modulus and creep
compliance expressions for anisotropic linear viscoelastic composites have
the same forms as equation (8.45) and jequation (8.47), respectively.
According to Schapery [1], if the elastic moduli are positive definite (i.e.,
always either positive or equal to zero), it can be shown using thermody-
namic theory that the generalized expressions corresponding to equation

(8.45) and equation (8.47) are, respectively,

i)=Y Cime vy ~ (848)
o m=1
and
5= D S 1-e ™+, (8.49)
m=1 .
where
N.\.N.HH\N\ i, 6
C;, S; = elastic moduli and compliances, respectively

- Ay, P = relaxation times and retardation times, respectively
C;m, 8, = coefficients corresponding to A,, and p,,, respectively

As with the simple spring-dashpot models, the numerical values of the
parameters on the right-hand side of equation (8.48) and equation (8.49)
must be determined experimentally.

The relaxation times and retardation times are strongly dependent on
temperature, and such temperature dependence is the basis of the
time—temperature superposition (TTS) method, which will be discussed
later. It is assumed here that the materials are “thermorheologically sim-
ple.” That is, all the relaxation times, A;, and the retardation times, p;, are
assumed to have the same temperature dependence. A similar argument
holds for the effect of aging, which will also be discussed later.

EXAMPLE 8.2
For the problem in example 8.1, the effective shear compliance is to be approxi-
mated by a Kelvin—Voigt model of the form :

Ses(t) = WG e, whent>0

.Wmm va =0, whent<0

Determine the creep strain at t < T, and t > T,
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Solution. For the case of ¢ <.T,, equation (8.7) reduces to

1 i} T 1
t “'_- Hl {£-T)/A 7 _Ymax — max g, A
Y12(£) JEe :m de KT, [t-A1-e"™)]

and for ¢ > T,, we have

. rT H T
H=] =11—et-m/A7 tmax _ Tmax o
Yi2(t) ._.o »E e ] T, dt+(0)= KT, Tlolymﬁ Ama\»ch_

E
8.2.3 Quasi-Elastic Analysis

From the ﬁnmin.ém section, it should be clear that the generalized Boltz-
mann superposition integrals in equation (8.7) and equation (8.9) can be
Laplace transformed to yield equations of the form

o &(s)=854(5)5)(s) | (8.50)

and

5(s) = sCy(s)(5) (8.51)

These equations are of the same form as the corresponding elastic
stress—strain relationships and are presumably easier to work with than W,
the integral equations. In a practical analysis or design problem involving |
the use of these equations, however, the problem solution in the Laplace
a.oBm_.b would then have to be inverse transformed to get the desired
time-domain result, and this can present difficulties. Schapery [1] has
presented several approximate methods for performing such inversions.
ﬁ the input stresses or strains are constant, however, there is no need for
mverse transforms and the time-domain equations turn out to be very
simple. Schapery refers to this as a “quasi-elastic analysis,” and the equa-
:o_w.m used in such an analysis will be developed in the remainder of this
section. v

.Oobmamw a generalized creep problem with time-varying stresses o(t)
given by '

o;(t)= ofH(t) (8.52)

Srmn.m i=1,2,...,6, the Oj are constant stresses, and H(t) is the unit step
function, or Heaviside function, shown in ficure 8 15(a) and definad ae
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FIGURE 8.15
Unit step function and Dirac delta function.

follows [3]:

0 fort<0
:ﬁﬁ@u t/e for0<t<e (8.53)
- 1 fort>e

The unit step function can be easily shifted along the time axis by an
amount & by writing the function as H(t - £). Substituting the m.s,,mm.mmm from
equation (8.52) in the Boltzmann superposition integral, equation (8.7), we
find that the resulting strains are given by

eit)= ﬁ @e#i@%% s

but according to equations (8.53), the derivative of the step function must
be

0 fort<0
%u%vu 1/e for0<t<e (8.55)

0 fort=>0

where the parameter € can be made arbitrarily small, the Qmi<m¢<m. in
equation (8.55) is taken before € — 0, and 8(f) is the Dirac delta mcbn..no:
shown in figure 8.15(b). Thus, the integral in equation (8.54) can be written
as

It

&(t) .—w $;(t-1)d(x)ds b (8.56)
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where the constants 6} have been moved outside the integral. Ac¢cording
to the properties of convolution integrals [6], we can also write

. . ()= .ﬁxm%ETs% 5 (8.57)

This integral: can be broken down and rewtitten as follows:

() = ._.IAS%+ ﬁ Si(t)8(t - t)dt r o} | (8.58)

t~¢

where the S;(t) evaluated over the interval t—£<t<tf can be approxi-
mated as S;(t) since € is very small. The Si(t) can now be moved outside
the integral, leaving the integral of the Dirac delta function, which is
defined as [6] .

t
% 8(t—t)dr=1 | (8.59)
t-g
Thus, the final result is

The form of this equation suggests that we can solve for creep strains

under constant stresses, 6}, by simply replacing the elastic compliances,

Sy in Hooke’s law (eq. [2.5]) with the corresponding viscoelastic creep
compliances, S(f). Similarly, it can be shown that if the constant strain
inputs

&(t) = ejH(t) (8.61)

are substituted in equations (8.9), the resulting stresses must be

6i(t) = Cy(ef (8.62)

Thus, the stress relaxation under constant strains can be found by replac-
ing the elastic moduli, Cj, in Hooke’s law (eq. [2.3]) with the correspond-
ing viscoelastic relaxation moduli, Ci(t). Equation (8.60) and equation
(8.62) form the basis of the so-called “quasi-elastic analvsis” and ohvionslv
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eliminate the need for Laplace transform analysis in the stress-strain
relationships. It should be emphasized mwmﬁr however, that equation
(8.60) and equation (8:62) are only valid for constant or near-constant
inputs. Such equations give additional hints of a direct correspondence
between the equations for linear elastic systems and those for linear vis-
coelastic systems, and this correspondence will be discussed in more detail
later. -

The quasi-elastic approach has been successfully used in a number of
practical applications such as micromechanical modeling of creep in poly-
mer composites [9], prediction of creep in rotating viscoelastic disks [10],
analysis of creep in prestressed composite connectors [11], and modeling
of creep in prestressed polymer composite lubricators [12]. Many of these
applications involve finite element implementations of the quasi-elastic
approach, where finite element models are employed to solve a series of
elastic problems, and the time dependence is accounted for by using
different elastic moduli at each time step.

EXAMPLE 8.3

The filament wound pressure vessel described in example 2.3 is constructed of a
viscoelastic composite having creep compliances that can be tnodeled by using
one-term series representations of the form shown in equations (8.49). Assuming
that the internal pressure, p, is constant, determine the creep strains'along the
principal material directions in the wall of the vessel.

Solution. Since the internal pressure, p, is constant, the stresses in the wall
of the vessel are all constant, and we can use a quasi-elastic analysis to
predict the creep strains. From equations (8.60), we find that the creep strains
along the principal material directions are given by

e1(t) = Su(t)o1 + Sn(t)o,
1) Qv =5 QvQH + MNN QvQN

and
€s (1) = Y12(1)O1 + Ses () T2

From example 2.3, stresses along the principal material directions were
found to be

61 =20.5pMPa
0, =17.0p MPa
O =01 =T12 = @me MPa
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‘mzcmmgmsm these stresses and the creep compliances from equations (8.49)
in the above expressions for the strains, we find that

eu(t) = Am:em[m&s_+m:vﬁo.msimsﬁﬁlm-sufm;vaﬂos
ea(f) = Amsezlm-su_Tmzv@o.msimse:é-s;T@Nvaés

Yit)= (S-S5 ) 6.0p)

o
8.2.4 Sinusoidal Oscillations and Complex Modulus Notation

In the previous section, it was showri that when the inputs are constant,
the Boltzmann superposition integrals are reduced to simple algebraic
equations that resemble the linear elastic Hooke’s law. In this section, an
analogous simplification will be demonstrated for the case of stresses or
strains that vary sinusoidally with time. The results will make it much
easier to analyze sinusoidal vibrations of viscoelastic composites. The
general procedure here follows that presented by Fung [3].

Consider the case where the stresses vary sinusoidally with frequency

®. Using the contracted notation and complex exponentials, such stresses
can be written as

G, () = Ae™ (8.63)

where
n=1,2,...,6
i = imaginary operator, is (~1)!/2
A, = complex stress amplitudes
~ = superscript denoting a sinusoidally varying quantity

.m:cm.ﬁgmsm equation (8.63) in equation (8.7), we find that the resulting
sinusoidally varying strains are given by

N

,m
£.() L. S~ )ic0A ™l (8.64)

wherem, n=1,2, ..., 6.
It is now convenient to define a new variable & = ¢ — 1, so that

En(h) = ._.o Sum(E)e A, e dE, (8.65)
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The terms not involving functions of m, may be moved outside the
integral, and since S,,,(f) = 0 for £ <0, the lower limit on the integral can
be changed to —eo, so that W

i

msmSuN.s\rmi; méﬁmx@% - | (8.66)

The integral in m@ﬂmﬁms (8.66) is just the Fourier transform of the creep
compliances, Z[S,,,(€)], or S,,,(®), which is written as

o Fw@I=Sm@= [ Su@cd @)

Thus, the stress—strain relationship reduces to

&y (£) = 108, (0) AL = 108, (®)3(£) (8.68)

In order to get this equation to resemble Hooke’s law more closely, we
simply define the frequency-domain complex compliances as follows:

.m“zz ASV = i0S Asv Ammmv

so that equation (8.68) becomes

m&:@v = .mH::Aouv@: va Amﬂov

Thus, in linear viscoelastic materials, the sinusoidally varying stresses
are related to the sinusoidally varying strains by complex compliances in
the same way that static stresses and strains are related by elastic com-
pliances in the linear elastic material. In addition, the time-domain creep
compliances are related to frequency-domain complex compliances by
Fourier transforms. It is important to note, however, that the complex
compliance is not simply equal to the Fourier transform of the correspond-
ing creep compliance. According to equation (8.69), the complex compli-
ance, S°,,(®), is equal to a factor of i® times S,,(®), and S, (®) is the
Fourier transform of the creep compliance S,,,,(£).

Alternatively, if we substitute sinusoidally varying strains in equation
(8.9), we find that the sinusoidally varying stresses are

Gu(t) = Com(@)En(t) - 8.71)
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where the complex moduli are defined by

ﬁw:: ASV = N.SnuszAsv Amﬂwv

and the C,,(0) are the Fourier transforms of the corresponding relaxation
moduli, C,,(f). Alternatively, equation (8.70) and equation (8.71) may be
written in matrix form as”

1 =[S (@)1 (8.73)

and

(61 =[C (@EMD) (8.74)

respectively, where the complex compliance matrix and the complex mod-
ulus matrix must be related by [S(w)] = [C'(w)].

The complex modulus notation not only has a mathematical basis in
viscoelasticity theory, but it also has a straightforward physical interpre-
tation. Since the complex modulus is a complex variable, we can write it
in terms of its real and imaginary parts as follows:

ﬂwx: ASV = ﬁ.u\:: Aev + NOME Asv = QN\:: AQVV: + N..J:EASVU_ = _QHE Aav* ml.m:__. () Am.ﬂmv

(no summation on m and 7 in eq. [8.75]), where
Chn(®) = storage modulus
Chn(w) =1oss modulus
3§=A8v = loss factor = wmﬁ_HMS:ASVH = Aﬂmﬂerv\ﬁhEAevv
8,m(®) = phase lag between &,,(t) and &,(t)

Thus, the real part of the complex modulus is associated with elastic
energy storage, whereas the imaginary part is associated with energy
dissipation, or damping. A physical interpretation of the 1-D forms of
these equations may be given with the aid of the rotating vector diagram
in figure 8.16. The stress and strain vectors are both assumed to be rotating
with angular velocity o, and the physical oscillation is generated by either
the horizontal or the vertical projection of the vectors. The complex expo-
nential representations of the rotating stress and strain vectors in the
diagram are ;

&(t) =0 and §(t)=ee™ - (8.76)
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FIGURE 8.16 .
Rotating vector diagram for physical interpretation of the complex modulus.

so that the 1-D complex modulus is defined as

4 14

o 6()_oe® o sy _ O 0"
OASVIMWIHImAnOmmimB@ m+Nm @77

=C(@)+iC"(w) = C'(@)[1+in(w)] _

It is seen that the strain lags the stress by the phase angle §; Em.mﬁoﬂmmm
modulus, C'(w), is the in-phase component of the stress, 6/, divided by
the strain, €; the loss modulus, C"(®), is the out-of-phase component of
stress, 6", divided by the strain, €; and the loss factor, n(w), is .&m tangent
of the phase angle 8. Experimental determination of the complex modulus
involves the measurement of the storage modulus, C'(w), and the H.Omm
factor, n(w), as a function of frequency, ; several techniques for doing
this will be described in chapter 10. _

The inverse Fourier transform of the parameter S, (o) is the creep
compliance S,,,(t), as given by ,

%l;rwa& ASVH = _.m.=§ Q.v = Mquﬂ -_-xouo mAeva&Qs . Amﬂmv

where & is the inverse Fourier transform operator. Equation (8.67) msm
equation (8.78) form the so-called Fourier transform pair, SEO.T makes it
possible to transform back and forth between the time domain and the
frequency domain [13]. Since experimental frequency data are usually

expressed in units of cycles per second, or Hz, it is convenient to define -
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the frequency as f = w/2r (Hz), so that the Fourier transform pair now
becomes symmetric in form:

%ﬁms: QVH = MS:CHV = :_-1_“ .m::ﬁvalN.N»ﬁQw , ; Amﬂwv

and

.0

TS 1= Sm®)= [ Sun(f)e™af (6.50)

It can be shown that the time-domain relaxation modulus and the
corresponding frequency-domain complex modulus are related by a
similar Fourier transform pair. As a further indication of the usefulness
of such equations, inverse Fourier transforms have been used to esti-
mate time-domain creep behavior of composites from frequency-
domain complex modulus data obtained from vibration tests of the
same materials [14].

EXAMPLE 8.4

The composite pressure vessel described in example 2.3 and example 8.3 has an
internal pressure p that varies sinusoidally with time, as shown in figure 8.17.
If the complex compliances of the composite material are given by

Son(®) = S (00) +15]5, ()

determine all the time-dependent strains associated with the principal material
axes.

P(z) p(t) = Psin o

oL NN “

Pl -

FIGURE 8.17 i
Sinusoidally varying pressure for example 8.4.
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Solution. From example 2.3 and figure 8.17, wrm stresses along the 12 direc-
tions are

&1(t) = 20.5p = 20.5P sin ©H(MPa)
&(t)=17.0p = 17.0P sin wt(MPa)
&6(t)=T1a(t) = 6.0p = 6.0P sin@t(MPa)

The corresponding strains from equations (8.70) are

&1(£) = S11(@)G1(£) + Siz(0)5 () + (0)5s (£)

= [Si1(®) +i5f3 (@)]20.5Psin ot +[S{a(0) +iSf(@)]17.0Psin ot
E2(t) = Sia(@)51(£) + S22 ()3 (£) + (0)5 (1) .

= [Sfa(®) +15% ()]20.5Psin of + [Sha () + 154 ()]17.0Psin oo
Eo(t) = T (1) = Ses(@)56(#) = Sis(@)Era(t)

= [Sés () +iSts(0)16.0Psin wt

8.2.5. Elastic-Viscoelastic Correspondence Principle

In the previous sections, we have seen a number of examples STm.Hm Em
form of the stress—strain relationships for linear viscoelastic materials is
the same as that for linear elastic materials. Such analogies between the
equations for elastic and viscoelastic analysis have led to ﬁ.wm formal rec-
ognition of an “Elastic-Viscoelastic Correspondence 3.59%3..: The cor-
respondence principle for isotropic materials was m@@m.ﬂmsmv\ introduced
by Lee [15], whereas the application to anisotropic materials was wao.wo%m
by Biot [16]. The specific application of the correspondence ﬁ.ESQEm to
the viscoelastic analysis of anisotropic composites has been discussed in
detail by Schapery [1,17] and Christensen [6]. . . .
A summary of the correspondences between elastic and A.:moom_mmcn
stress-strain relationships is given in table 8.1. The implication of ﬁ.Em
table is that if we have the necessary equations for a linear elastic solution
to a problem, we simply make the corresponding mzwmﬁSﬂOBm in the
equations to get the corresponding linear viscoelastic solution. Although

table 8.1 is only concerned with the correspondences in the stress—strain

relationships, there are obviously other equations involved in a nﬁsmﬂma
solution to an elasticity problem. The correspondences in the equilibritn

equations, the strain—displacement relations, the boundary conditions,

and the variational methods of elastic analysis are beyond the scope of
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TABLE 8.1

Elastic-Viscoelastic Correspondence in Stress-Strain Relationships

Material and Input Stresses Strains

Properties Equation
Linear Elastic
Input stresses G € S; (2.5)
Input strains O; g G (2.3)
Linear Viscoelastic ’
Generalized creep 5;(s) E(s) $5;(s) (8.50)
Constant stress creep G} g(t) Si(t) (8.60)
Generalized relaxation G;(s) ~gls) sCy(s) (8.51)
Constant strain relaxation o) g Cy(t) (8.62)
Sinusoidal stress input ;00 g(t) Si(w) (8.70)
Sinusoidal strain input ()] &) Cji(w) (8.71)
Note: i,j=1,2,...,6. N

this book, but detailed discussions of these are given by Schapery [1,17]
and Christensen [4,6].

One of the most important implications of the correspondence principle
is that analytical models for predicting elastic properties of composites at
both the micromechanical and the macromechanical levels can be easily
converted for prediction of the corresponding viscoelastic properties. For
example, the rule of mixtures for predicting the longitudinal modulus of
a unidirectional composite can now be converted for viscoelastic relax-
ation problems by rewriting equation (3.23) as

Ey(t) = Ea (805 + En (£)0r, (8.81)

where S
E\(t) = longitudinal relaxation modulus of composite
Eg(f) = longitudinal relaxation modulus of fiber
E,(t) = relaxation modulus of isotropic matrix
V; = fiber volume fraction
¥y, = matrix volume fraction
The relative viscoelasticity of fiber and matrix materials may make fur-
ther simplification possible. In most polymer matrix composites, the time
dependency of the matrix material would be much more significant than
that of the fiber, so the fiber modulus could be assumed to be elastic, and
the time dependency of E,(¢) would be governed by E_ (f) alone. The results
of a similar analysis of the creep compliances Sy, (f) and S(f) for a glass/
epoxy composite are shown in figure 8.18 from ref. [18]. From these reciiltc
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Measured and predicted creep compliances for glass/epoxy composite. QEB wmn.wsi ,
S.W. 1974. Viscoelastic characterization of a nonlinear glass/epoxy noBﬁOm;m.EnFm_bm ».rm
effects of damage. Ph.D. Dissertation, Texas A&M University, College Station, TX. With
permission.) : . .

it appears that the compliances can be accurately @wm&o_ﬁma.w% c.mmbm the
viscoelastic properties of the epoxy matrix in the corresponding viscoelas-
tic forms of the Halpin-Tsai equations (eq. [3.59] and eq. [3.60]).

And as mentioned earlier, Beckwith [2] showed experimentally that the
creep exponent 7, which governs the time dependency 5 the power law
expression (eq. [8.2]), depends only on the polymer matrix.

At the macromechanical level, equations such as laminate force-defor-
mation relationships can be converted to viscoelastic moﬁﬁ using the cor-
respondence principle. For example, the creep strains in a symmetric
laminate under constant in-plane loading can be analyzed by mEEo%Ew
the correspondence principle and a quasi-elastic analysis to rewrite equa-
tions (7.58) as

&0 | AL AL Al ] [N,
eN(t) t=| AL() Ah(f) A(t) [{N, (8.82)
0] LAt As(t) Ais®) | [N,

where

5(t) = laminate creep compliances

N, N, Z.é =constant loads .
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Sims and Halpin [19] have used these equations, along with uniaxial
creep tests, to determine the creep compliances of glass/epoxy laminates
for comparison with predictions. For example, the compliance Af,(t) was

determined by applying a constant load N, and by measuring the creep
strain, €2(#), and then using the equation

A= mmw (8.83)

These measured values were compared with predicted values from a
combined micromechanics-macromechanics analysis that was based on
the use of the correspondence principle, the Halpin-Tsai equations, and
classical lamination theory. The agreement between measurements and
predictions was excellent, as shown in figure 8.19. ,

When the correspondence principle is used for problems involving
sinusoidally varying stresses and strains in viscoelastic composites, we
must be particularly careful to make sure that the criteria for using the
effective modulus theory are met. These restrictions are discussed in more
detail, and applications of the correspondence principle to the prediction
of complex moduli of particle and fiber composites are given in papers
by Hashin [20,21]. For example, assuming that these criteria have been
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FIGURE 8.19

Predicted and measured creep compliance for a quasi-isotropic glass/ epoxy laminate. (From
Sims, D.E. and Halpin, J.C. 1974. Composite Materials: Testing and Design [Third Conference],
ASTM STP 546, pp. 46-66. American Society for Testing and Materials, Philadelphia, PA.
Copyright ASTM. Reprinted with permission.)
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met, micromechanics equations such as equation (3.23) can be modified
for the case of sinusoidal oscillations as '
' E{(@) = Eq(@)vf + En(0)0n, (889

where
Ei(w) = longitudinal complex modulus of composite
Eq(0) = longitudinal complex modulus of fiber
En(®) = complex modulus of isotropic matrix

wvm setting the real parts of both sides of equation (8.84) m@ﬁmr we find
the composite longitudinal storage modulus to be :

mxsvumM~Aevcm_+mM=Aevca A (8.85)

where :

E{(w) =longitudinal storage modulus of composite

" Efi(w) = longitudinal storage modulus of fiber
E/(w) = storage modulus of isotropic matrix

Similarly, by setting the imaginary parts of both sides of equation (8.84)
equal, we find that the composite longitudinal loss modulus is'

Ei(®) = Ef ()0 + E (0)Vn (8.86)

where v
Ef{w) = longitudinal loss modulus of composite
Ef (o) = longitudinal loss modulus of fiber
E (o) = loss modulus of isotropic matrix

The composite longitudinal loss factor is found by &SQ?@ equation
(8.86) by equation (8.85):

M(w)= E{(®) - mm.?cvdm + EnL (@),

The complex forms of the other lamina properties can be determined

in a similar fashion. In studies of the complex moduli of aligned discon-

tinuous fiber composites, Suarez et al. [22] used the complex forms oﬂ
equation (6.24), equation (3.41), and .equation (3.59) to determine E; (&),
Vip(®), E;(®), and Gy,(®). These properties were then substituted into the

complex form of equation (2.39) to obtain the off-axis complex modulus,

Ef(®) _ Ef(0)v; + En(0)vn (8.87)
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Predicted mb&.gmmmﬁom off-axis storage modulus ratio, E; /E;, and loss factor, 1, of graphite/
epoxy for various fiber orientations. (Suarez, S.A., Gibson, R.F, Sun, C.T,, and Chaturvedi,
SK. 1986. Experimental Mechanics, 26(2), 175-184. With permission.)

ﬂﬁsv. The predicted off-axis storage moduli and loss factors for various
m_uﬂ. orientations are compared with experimental data for a continuous
fiber graphite/epoxy composite in figure 8.20, and the agreement is seen
6 be quite reasonable. Similar results were obtained for discontinuous
mv.m_.. composites, but the fiber length effect is dominated by the fiber
oE.mEmﬁos effect, except for fiber orientations of 6 = 0°. It is also inter-
esting to note that there is an optimum fiber orientation for Bmxwaﬁsm
the loss factor. Thus damping is another design variable in composite
structures. )
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For oscillatory loading of symmetric viscoelastic laminates, equations
(7.58) can be rewritten, so that the sinusoidally varying strains are related

to the sinusoidally varying loads by f
B0 | [Ah*() Ab*(@) Als*@)][N.0)
ENE) =] A" (@) Ak*(®) Ak*(0) | {N,0)
@] [Als* (@) As* (@) A * (@) || N,

(8.88)

where the Aj* (w) are the laminate complex extensional compliances. The
laminate stiffnesses can also be written in complex form (i.e., the }U.ASV\
Bj(w), and UM.ASVV\ and the resulting equations have been used by Sun
et al. [23] and others in studies of damping in laminates. Damping in
composites will be discussed in more detail later in this chapter.

8.2.6 Temperature and Aging Effects

In the previous sections of this chapter the effects of temperature and
aging on viscoelastic behavior have not been taken into account. We now
consider these effects, as well as the corresponding methods of ‘analysis.
It is convenient to discuss first the effects of temperature. In section 8.2.2,
a thermorheologically simple material was defined as having relaxation
times, A;, and retardation times, p; which all have the same temperature
dependence. Considering only the temperature dependence, the relax-
ation times at different temperatures can then be related by the equation

M(T) = arh(T;) (8.89)

where
M(T) = ith relaxation time at temperature T
A(T,) = ith relaxation time at reference temperature, T,
ar = temperature-dependent shift factor

A similar equation can be used to express the temperature dependence
of the retardation times. The effect of increasing temperature is to reduce

the relaxation and retardation times and to speed up the relaxation and.

creep processes. This “speeding up” of the viscoelastic response can also
be thought of as a process operating in “reduced time” [24]. For the
purpose of illustration, we now consider the effect of the temperature-
dependent relaxation times on the relaxation modulus by using the Zener
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single-relaxation model in figure 8.10. The relaxation modulus at mBm t
and temperature T is determined by modifying equation (8.44) as

C(t,T) = ko + ke /MM (8.90)

whereas the relaxation EOQ:_SW at time ¢ and reference temperature T, is

Ct, T,) = ko + kye ™t/ M) (8.91)

If we let the time at the reference temperature T, be the “reduced time,”

E=t/ar (8.92)

O
then equation (8.91) becomes

CE,To) = ko + ye/ME) < o 1 fye ™MD = (¢, T) (8.93)

Thus, the effect of changing temperature on the relaxation modulus is
E.m same as the effect of a corresponding change in the time scale, and
this is the basis of the well-known Time-Temperature Superposition (TTS)
principle, or the method of reduced variables [25].

One of the most useful applications of TTS is to extend the time range
of short-term creep or relaxation test data by taking such data at various

ﬁmB%mmeH.mm and then shifting the data along the time axis to form a “master
curve” at a reference temperature, as shown in figure 8.21. However, the

Te>Tg> Ty> T3>Ty>T > T,

Master curve at T'= T,

=S

Log S(z)
S P s B |
Log S(2)

Logt¢ Log ¢

FIGURE 8.21

Shifting of creep data at various temperatures to generate a master curve at a reference
temperature.
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usefulness of the method depends on the M&UEQ to determine the .&.::
mmnmopo ap When the temperature, T, is mwm_mﬁmﬂ.ﬁrmﬂ .&m.m#mmm ﬂ.mdmﬁos
temperature, T,, the shift factor can be determined empirically with the
well-known Williams-Landel-Ferry A<<Euvw equation [25]:

w _—a(T-T.) 8.94)
! ~Om ap = i . A

where ¢; and ¢, are Em_wmam_ constants that must wm. QmﬁmE:.H.ﬂom from @m
experimental data. It has been found that Srmﬁ T, is m@w.aovcgmﬁmw 50°C
above T, the values ¢, =8.86 and ¢, = 101.6 are valid for a variety of polymers.
TTS has been successfully applied to many polymers at temperatures
above T,, but it is a different matter below the glass transition. ?:?osmr
TTS has been shown to be suitable for short-term creep or H&mxmsg data
at those temperatures, it does not produce valid results uﬁﬁﬁ.mﬁwrmm .ﬁm
long-term test data. The reason is that a process called mvg\muomﬁ mmuwm
occurs in a polymer below T, and this aging process changes the viscoelas-
tic response of the material during a long-term creep test. H.b a mwOaﬂmﬁB
test, because the test duration is much less than w.rm aging \Eﬁm\ no E.msm.
icant aging occurs during the test. Physical aging in wodqu.nm is associated
with a slow loss of free volume that has been QmﬁmeQ.E .5@ polymer
microstructure after quenching below T, [26]. As shown in figure 8.22, as

Total volume 7

Volume

Vi = free volume

Vo = volume occupied
by molecules

H Temperature

FIGURE 8.22

Polymer volume expansion with increasing temperature, showing how free volume increas-

es sharply above the glass transition temperature.
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the temperature of a polymer increases, its total volume consists of Vo, the
volume occupied by the polymer molecules, and Vy, the so-called free
volume between the molecules.

Below the glass transition temperature Ty, most of the total volume is
occupied by the molecules, but as the temperature increases above Ty Vi
increases much faster than V. The polymer is usually processed in its
molten form at temperatures above Ty then when it is cooled or quenched
to room temperature after molding, a significant amount of free volume
is “locked in.” This is a thermodynamically unstable condition, and as a
result, the polymer will slowly give up free volume with time, to approach
a more stable thermodynamic condition. As the polymer gives up free
volume, the polymer chain mobility decreases and the relaxation times
increase, thus reducing the speed of the relaxation or creep [7]. Pioneering
work on aging of polymers has been done by Struik [26,27], and more
recent work has been reported by Janas and McCullough [28] and Ogale
and McCullough [29].-Still more recently, Sullivan [30] has shown that
physical aging significantly affects the creep behavior of polymer matrix
composites.

Since aging time, t,, and temperature, T, both affect the relaxation times,
Sullivan [30] has suggested that a new shift factor, a(Tt,), be defined by
modifying equation (8.89) as

a=a, ;vu%ﬁ (8.95)

where
L(T t,) = ith relaxation time at temperature T and aging time ¢,

M(T,t,,) = ith relaxation time at reference temperature T, and reference
aging time £,

Struik [26] proposes that the TTS relationship for creep compliance be

modified to include aging time effects by writing

MQ.\ _H.._\ fa v = WG..V.WAQW\ T ta v Am.wmv

where
B(t) = temperature-dependent vertical shift factor
5(t,T;t,) = creep compliance at time f, temperature T, and aging time £,
S(at,T,t,,) = creep compliance at shifted time af, reference temperature
T, and reference aging time f,,

Note that equation (8.96) is analogous to the TTS relationship for relax-

ation in eat1afinn R QY nsd a ceen 200 1 — . s .
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Effect of aging time, f,, on shear creep compliance of 45° off-axis glass/vinyl ester composite FIGURE 8.24 ‘
at a test temperature of 115°C. (From Sullivan, J.L. 1990, Composites Science and Technology, Momentary shear creep compliance data for glass/vinyl ester composite at various temper-
39, 207-232. Reprinted by permission of Elsevier Science Publishers, Ltd.) atures and constant aging time, £, = 166 h. (From Sullivan, J.L. 1990, Composites Science and

can be written for relaxation. This new shift factor may be related to 4,
the temperature shift factor below T,, and a,, the shift factor for aging
time, by the equation [30]

loga=1loga, +loga, . (8.97)

Figure 8.23 shows Sullivan’s data on the effect of aging time on the shear
creep compliance Sg(t) of a glass/vinyl ester composite [30]. Clearly, the
creep rate decreases with increased aging time, indicating an increase in
the relaxation times and a slowing of the creep process. Support for the
conclusion that TTS works well for short-term creep at constant age is
provided by additional data from Sullivan [30] in figure 8.24 and
figure 8.25. Figure 8.24 shows the short-term (or momentary) creep at
various temperatures and “constant age,” where the creep testing time is
limited to no more than 10% of the aging time used in preconditioning
the specimens. Figure 8.25 shows the corresponding momentary master
curve at a reference temperature of 60°C. Both horizontal and vertical
shifting of the momentary creep data were necessary to obtain the master
curve [30]. The difference between long-term creep curves and the master
curve from momentary creep data is shown in figure 8.26. Again, the
conclusion is that aging slows down the creep process and that TTS does
not work for long-term creep. Also shown in figure 8.26 are predicted
long-term creep curves based on effective time theory [30], which is not
discussed here.

Technology, 39, 207-232. Reprinted by permission of Elsevier Science Publishers, Ltd.)

In conclusion, the reader is encouraged to refer to journal review articles
for more information on various aspects of viscoelastic behavior of com-
posites. For example, Schapery [1] has summarized the theoretical
approaches to modeling of viscoelastic behavior of composites, and Scott

et al. [31] have published a useful review of the technical literature on
creep of fiber-reinforced composites.
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Momentary master curve for glass/vinyl ester composite at £, = 166 h, T, = 60°C, based on
the test data from figure 8.24. (From Sullivan, J.L. 1990. Composites Science and Technology, 39,
207-232. Reprinted by permission of Elsevier Science Publishers, Ltd.)
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Long-term shear creep compliance and a momentary master curve for glass/vinyl mw.nﬁ
composite, t, = 1 h. Also shown are predicted curves from the effective time theory, which
is not discussed here. (From Sullivan, J.L. 1990. Composites Science and Technology, 39, 207-232.
Reprinted by permission of Elsevier Science Publishers, Ltd.)

EXAMPLE 8.5 N
The momentary master curve for the shear creep compliance, Sg(t), of a unidi-
rectional glass/vinyl ester composite at a reference temperature .&q 60°C and a
reference “aging time of 166 h is shown on a log—log scale in &%S.,m 8.25.
(a) Neglecting aging effects, determine the time required to reach n.omﬁwﬁé.m of
0.63 (GPa) at a temperature of 60°C, and (b) neglecting vertical shifting,
estimate the time required to reach the same compliance of 0.63 a.m&L at a
temperature of 100°C. From experimental data, it is known that for this material,
the WLF parameters are ¢, = —1.01 and c, = -89.2.

Solution. (a) E&b figure 8.25, at a value of log S¢(t) = log(0.63) = 0.2, the
corresponding value from the curve is log t =6, and so £ = 10¢ s at T = 60°C.

" (b) From equation (8.96), we have

Mmm A_ms .HJ\ wmv = mﬁﬂvmmm AQW\ ...D ’ wmnv

Since we are neglecting vertical shifting, B(t) = 1. Since the data are for a
constant aging time, we have a2 = a; and equation (8.96) becomes

Ses(t,T) = Ses(at, T, ) = Ses (art, T;)
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where the shift factor, a;, is found from the WLF equation

—a(T-T) _ ~(=1.01)(100—60) _

logar = oty = —89.2+(100-60)

-0.8211

oray = 0.151, which means that a,# = 0.151(106) = 1.51 x 105 5. Thus, the creep
compliance curve at 100°C is shifted to the left of the curve at the reference
temperature of 60°C, and it takes only 15% as much time to reach the
compliance of 0.63 (GPa)! at 100°C as it does at 60°C.

8.3 Dynamic Behavior of Composites

In this section, the basic concepts of dynamic behavior of composites will
be introduced by discussing wave propagation, vibration, and damping
of specially orthotropic composites without coupling. Only 1-D wave
propagation without dispersion, reflection, or refraction will be consid-
ered, as 3-D wave propagation, wave dispersion, and reflection/refraction
effects are beyond the scope of this book. For detailed discussions of these
topics, the reader is referred to publications by Christensen [4], Hearmon
[32], Achenbach [33], Ross and Sierakowski [34], and Moon [35]. Longi-
tudinal vibrations of composite bars and flexural vibrations of composite
beams and plates without coupling will also be considered. Vibrations of
laminates with coupling and laminated plate boundary conditions other
than the simply supported ones will not be considered. These topics are
discussed in detail in books by Whitney [36], Vinson and Sierakowski
[37], and Sierakowski and Chaturvedi [38]. The use of the Elastic—Vis-
coelastic Correspondence Principle and a strain energy method to analyze
damping in composites will also be discussed.

The basic premise of all analyses presented in this section is that the
criteria for valid use of the effective modulus theory have been met. That
is, the scale of the inhomogeneity, 4, is assumed to be much smaller than
the characteristic structural dimension, L, and the characteristic wavelength
of the dynamic stress distribution, A (d << L and d << A in figure 8.6). Thus,
all heterogeneous composite material properties are assumed to be effec-
tive propetties of equivalent homogeneous materials. If the wavelength
is not long in comparison with the scale of the inhomogeneity in the
material, the wave shape is distorted as it travels through the material,
and this is referred to as dispersion. Dispersion in composites has been
discussed in several previous publications [4,33,35,38].
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Bar of density p, cross-sectional area A, and length L, fixed on both ends.
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8.3.1 Longitudinal <<m<m Propagation and Vibrations in Specially
Orthotropic Composite Bars

As will be shown in any book on vibrations [39], longitudinal wave
propagation and vibration in a homogeneous, isotropic; linear elastic bar
(fig. 8.27) are governed by the 1-D wave equation

0 ou o%u

AE= |=pAZ= 8.98
=pASS (8.98)

ox ox

where
x = distance from end of bar
= time _
u=u(x,t) is the longitudinal displacement of a cross-section in the bar at
. a distance x and time ¢
A= A(x) is the cross-sectional area of bar
p=mass density of bar
E = E(x) is the modulus of elasticity of bar

It is assumed that the displacement u(x,£) is uniform across a given cross-
section, Using effective modulus theory for a heterogeneous, specially
orthotropic, linear elastic composite bar, we simply replace the properties
p and E with the corresponding effective properties of an equivalent homo-
geneous material. The effective modulus E then depends on the orientation
of fibers relative to the axis of the bar. For fibers oriented along the x
direction, E = E;; for fibers oriented along the transverse direction, E = E,;
and for a specially orthotropic laminate, we use the effective laminate
engineering constant E = E,. For laminates with coupling, the analysis is
much more difficult, as shown in Section 8.3.3. If the area and the modulus
are not functions of position, equation (8.98) reduces to

u  u
Pu_du 8.9
KPR YD (©.99)

VH\M

where ¢ = (E/p)’* is the wave speed.
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The most common solutions to the 1-D wave equation are of the d’Ale-
mbert type or the separation of variables type. The d’Alembert solution
is of the form

2

u(x, t) = p(x+ct)+q(x —ct) (8.100)

The function p(x + cf) represents a wave traveling to the left with velocity
c. That is, a point located at §= x + ¢t moves to the left with velocity c if
§ is a constant, since x =& =~ ct. Similarly, q(x — cf) represents a wave
traveling to the right with velocity c. For a sine wave, we have

) u..mmswh@iaim_.smms ) (8.101)

where A is the wavelength. Note that this is the wavelength that must be
greater than the scale of the inhomogeneity, d, in order for the effective
modulus theory to be valid. Alternatively, we can write equation (8.101) as

u(x,t) = Asin(2mkx + wt) + Asin(2mkx — ot) (8.102)

where
k=1/A is the number of waves per unit distance
o =2mnc/) is the frequency of wave

Using trigonometric identities, we find that
u(x,t) =2 Asin 21kx cos ot (8.103)

which represents a standing wave of profile 2A sin 2rkx, which oscillates

with frequency ®. Generally, the combined wave motion in opposite direc-

tions is caused by reflections from the boundaries. Thus, wave propaga-

tion without reflection will not lead to a standing wave (or vibration).
A separation of variables solution is found by letting

u(x, £) =U()F() (8.104)

where U(x) is a function of x alone and F(t) is a function of f alone.
Substituting this solution in equation (8.99) and separating variables, we
obtain

aLldU _1dF
U dx? F d¢?

(8.105)
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The left-hand side of equation (8.105) is a function of x alone and the
right-hand side is a function of  alone; therefore, each side must be equal
to a constant. If we let this constant be, mvv« ~@?, then equation (8.105)
gives the two ordinary differential equations,

d2F

! T 0*F=0 (8.106a)
|
~ 2 2
o4 Awu U=0 (8.106b)
dx c v
and the solutions to these equations are of the form,
F(f) = A; sin of + B; cos ot | (8.107)
U(x)= A, mﬁA%wx +B, nOmh.Ww x ~(8.108)

where A, and B, depend on the initial conditions, and A, and B, depend
on the boundary conditions. For a bar that is fixed at both ends (fig. 8.27),
the substitution of the boundary conditions u(0,t) ='u(L,t) = 0 leads to the
conclusion that B, = 0 and

%@.qw =0 , T (8.109)

Equation (8.109) is the eigenvalue equation, which has an infinite number
of solutions, ®,, such that ' . ‘ .

s i

emw - . (8.110)

where
7n=mode number=1,2,3, ..., o0
o, = eigenvalues, or natural frequencies (rad/s) = 2xf,
f,» =natural frequencies (Hz)

Thus,

‘:q:mS
>HMHM@ S em)

Analysis of Viscoelastic aid Dynamic Behavior 425

For the nth mode of vibration, the displacements are then

Uy (x,t) = (A’sin @,t + B’ cos ,,t)sin ﬁﬁuﬁmw , (8.112)

where A’ = A;A, and B = B,A,. The mode shape for the nth mode is given
by the eigenfunction

S@v uas,ﬁ%u a.:@

and the general solution is the superposition of all modal responses

:@\ wvu M. f»\ mE S::mNSms_b mﬁgﬁ%u Am.Sb
~ Mode shapes, natural frequencies, and wavelengths for the first three
modes of the fixed-fixed bar are shown in figure 8.28. The most important

Ui (x) n=1

® fi= NHM \%h A=2L

Uy(%) x =2

Uzx) | n=3

FIGURE 8.28
Mode shapes, natural frequencies, and wavelengths for the first three modes of longitudinal
vibration of a bar with both ends fixed (fig. 8.27).
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point here is that as the mode number mbo?,wmmmm\ the wavelength decreases
and the use of effective modulus theory becomes more questionable. In
general, the wavelengths associated with typical mechanical vibration
frequencies of structures in the audio frequency range will satisfy the
criteria d < A. The wavelengths associated with ultrasonic wave propa-
gation may be short enough to cause concern about the use of effective
modulus theory, however.

The equations developed in this section are instructive not only from the
point of view of the limitations of effective modulus theory, but for material
characterization as well. The two basic approaches to measurement of
dynamic mechanical properties of materials involve the use of either wave
propagation experiments or vibration experiments. Assuming that the cri-
teria for the use of effective modulus theory have been met, the effective
modulus of a specially orthotropic composite can be determined by mea-
suring the longitudinal wave speed, ¢, in a specimen of density, p, and then
solving for E = ¢p. Alternatively, the nth mode natural frequency, f,, can
be measured in a vibration experiment, and the effective modulus can be
found from an equation such as equation (8.111). Dynamic mechanical
testing of composites will be discussed in more detail in chapter 10.

Finally, the equations presented here can be modified for linear viscoelas-
tic composites in sinusoidal vibration by using the Elastic Viscoelastic
Correspondence Principle. This means that the effective modulus E will
be replaced by the complex modulus E*(w). Alternatively, the stress—strain
relationship used in deriving the equation of motion could be an equation
of the form shown in equation (8.28) or a special case of that equation.

8.3.2 Flexural Vibration of Composite Beams

Transverse, or flexural, motion of a homogeneous, isotropic, linear elastic
beam (fig. 8.29) without shear or rotary inertia effects is described by the
well-known Bernoulli-Euler equation ,

———| FI 2= |=pA— (8.115)

FIGURE 8.29
Cantilever beam for the Bernoulli-Euler beam theory.
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where
I=area moment of inertia of cross-section about the centroidal axis of beam

w=w (x,t) is the transverse displacement of the centroidal axis of beam
x,t,p, A, and E are as defined in equation (8.98)

If the beam is such that EI is constant along the length, equation (8.115)
reduces to

‘ - (o'w Fw
..\ ., EI % +D\wlﬂ AWHHQV

Assuming that the criteria for the use of effective modulus theory have
been met, these equations can be used for specially orthotropic composites
or laminates without coupling if the modulus E is replaced by the effective
flexural modulus E;. Recall that, depending on the laminate configuration
E; may be found from equations such as equation (7.8), equation Q.ov\
equation (7.68), or equation (7.69). For laminates with coupling, the o@:mu
tions of motion based on the Classical Lamination Theory will be devel-
oped in the next section. ‘

As an example of a solution of the Bernoulli-Euler equation, consider
a separation of variables solution for harmonic free vibration:

w(x, t) = W(x)e™ (8.117)

Sﬁmﬂ.m ® m.w the frequency and W(x) the mode shape function. Substituting
this solution in equation (8.116) yields

d*W(x)
QR»
where k = (0*pA/EIY*. The solution for equation (8.118) is of the form

-k'W(x)=0 (8.118)

W(x) = Cysinkx +C, cos kx + C; sinh kx + C, cosh kx (8.119)

where the constants C;, C,, C,, and C, depend on the boundary conditions.
m.ou. mxm.EHuH@ for a cantilever beam (fig. 8.29), the four boundary condi-
tions yield the following relationships:

W(x)=0 whenx=0; therefore, C, =—C,

dW(x

“dr ) 0 whenw=0; therefore, C;=—C,
d*w

&Mxv =0 whenx=L
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Therefore, C,(sin kL -+ sinh kL) + C,(cos w_,h + cosh kL) = 0.

P |
: % =0 Swoﬁ x=L
Therefore, C,(cos kL + cosh kL) + cy(sin kL — sinh kL) = o”
For nontrivial solutions C; and C, in the last two equations, the detet-
minant of the coefficients must be equal to zero and
|

coskLcoshkL+1=0 (8.120)

- This is the eigenvalue equation for the cantilever beam, which has an
infinite number of solutions, k,L. The subscript  refers to the mode
number: The eigenvalues for the first three modes are
L=1875,  kL=4.694, kL =7.855 - (8.121)

Substituting the eigenvalues in the definition of k (see eq. [8.118] rear-
ranging), and using the relationship w=2mnf, we have the @m@cmbn% equation

H\N ,
\u?cw@ _a.smv
" opl? | pA

' The mode shape function for the nth mode is then
W, (x) = Cy[cos k,x — cosh k,x+ G,,(sin k,x — sinh k,x)] (8.123)

where

_ sink,L—sinhk,L
On= o8 k,L + cosh k,L

The mode shapes and frequencies for the first three modes of the can-
tilever beam are shown in figure 8.30. The effect of increasing the mode
number and the corresponding reduction in wavelength is again m@@mﬁ.ma.

If transverse shear and rotary inertia effects are included in the deriva-
tion of the equation of motion for transverse vibration of a beam, the
result is the well-known Timoshenko beam equation [40]:

Bl 28 | 4pal Y RO

20, q 2w, o dw T +mixwwslno (8.124)
ox
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_ (L8752 [FT
fi= 2rL2 VpA

NANNNNNN

_ (4694)% [EI
o= anl?2 VpA

A

FIGURE 8.30

Mode shapes and natural frequencies for the first three modes of flexural vibration of the
cantilever beam in figure 8.29.

where
] = rotary inertia per unit length
F = shape factor for cross-section
G = shear modulus

This equation can also be used for specially orthotropic composites and
laminates without coupling by replacing E and G with the effective
flexural modulus, E;, and the effective through-the-thickness shear mod-
ulus, respectively, for the composite. For example, for a unidirectional,
transversely isotropic composite with the fibers along the beam axis, the
appropriate shear modulus to use is G = G, = G,,. If the fibers are oriented
in the transverse direction, G = G,,. Both shear and rotary inertia effects
become more important as the mode number increases, and both effects
reduce the natural frequencies below the Bernoulli-Euler values. The
beam length-to-thickness ratio, L/, is an important factor in the deter-
mination of the shear effect, with decreasing L/ generating increased
shear effects. It appears that for highly anisotropic composite beams,
shear effects may be significant unless L./# is greater than about 100 [41].




430 , Principles of Composite Material Mechanics

The transverse shear effect is also mﬁoﬁmqwmmmmﬁama on the ratio E/G,
which is much greater for composite beams than for isotropic beams. For
a typical isotropic metal E/G = 2.6, but for.composites such as unidirec-
tional carbon/epoxy, E{/Gy, = 20 or higher. Sandwich beams with foam
or honeycomb cores have even higher E/G ratios due to the low shear
stiffness of the core and are very susceptible to transverse shear effects.
As in the previous section, the equations developed here can be used
in dynamic mechanical testing to determine the effective moduli of a
composite specimen. The equations can also be converted to linear vis-
coelastic form by replacing the elastic moduli with the corresponding
complex moduli, or by deriving the equation of motion from a viscoelastic
‘stress—strain relationship. More sophisticated analytical models for vibrat-
ing composite beams, including various effects such as viscoelastic behav-
ior, transverse shear, and bending-twisting coupling, have been developed
[36-38,42—44], but these are beyond the scope of this book.

EXAMPLE 8.6
For a symmetric laminated beam having a rectangular cross-section of width b
and thickness h, determine (a) the equation of motion for free vibration and (b)
the natural frequencies. Assume that the criteria for use of the effective modulus
theory have been met.

Solution. (a) Substituting the flexural modulus, E;, from equation (7.68) in
the expression for EI, we find that

12 B® b

El=Fyl= =
* "D, 12 Dj

(Note that & is used to denote thickness here since ¢ is used for time.) Thus,
the Bernoulli-Euler beam equation (eq. [8.111]) becomes

b dw P
—+pA
Di; ox* P

w
=0
ox?

(b) The natural frequencies are then found from equation (8.122):

£GP b "
" opl? | DjjpA

where the eigenvalues, k,, depend on the boundary conditions.
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8.3.3 Transverse Vibration of Laminated Plates

>E._o:mr the equations for vibration of composite beams in the previous
section are useful, they are limited to laminates without coupling. The
more general equations of motion for transverse vibration of a laminated
plate can be derived by modifying the static equilibrium equations that
were developed for the analysis of static deflections of laminated plates

in section 7.9. For example, according to Newton’s second law, equation
(7.119) must now be modified, so that the summation of forces

x direction in figure 7.40 is given by along the
oN. oN . -
ZRQ - Xy @
y+ ox ;%% + Ny dx + IL% dxdy ~ N,dy — N, dx = pedaxdy, %
(8.125)

where

Po =mass per unit area of laminate (equal to ph)

p=mass density of laminate is the mass per unit volume

h = thickness of laminate (since f is used for time here)

1% = ud(x,y,t) is the middle surface displacement in the x direction

Equation (8.125) may be simplified as

N, Ny _
e Rk (8.126)

Similarly, the summation of forces along the y direction yields

oN. oN,, 0
N.dx : 2 - I
+ 3 dxdy +N,,dy + ma\ dxdy - N,dx - N, dy = pedx dy mm
(8.127)

or

oN, N oN,,  o*°
3y =P (8.128)

where 00 = c.oes /t) is the middle surface displacement in the y direction.
The summation of forces along the z direction gives

DH . ®©~ . 2
Qudy+ > &%Lﬁ@&+ﬂ\%%;@.&x@&$@%unowﬂ%

/0 10N
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: | ,
or ﬁ
0 0 ep=ptY T (8130
dx - Y oot

where w = w(x,y,t) is \%m_w displacement in thie z direction. .

For moment equilibrium we consider the moments about the x-axis and
the y-axis while neglecting rotary inertia. Thus, the summation of
moments about the x-axis gives .

oM wgé ;
lgqgl%%%liégl W dxdy +Qydxdy
B%W%&%;? y)dxdydy/2+Q.dydy/2 - (8131)

+

m%.« dxdydy/2+ M,dx+ My,dy - Q,dydy/2 =0
X

Simplifying and neglecting products of differentials, we get

oM, , My _ (813
dy T & (

A similar summation of moments about the y-axis gives

oM, N oM,
ox oy

-Q, | (8.133)

Substitution of equation (8.132) and equation (8.133) in equation (8.130)
yields

PM, . PM, M, P,
x z Y 4 g(x, 1) = po (8.134)
at Paay T o gy =P,

Equation (8.126), equation (8.128), and equation (8.134) are differential
equations of motion of the plate in terms of stress and moment resultants.
The corresponding equations of motion in terms of &mﬁmnﬁswgm can be
derived by substituting the laminate force—deformation equations (7.41),
the strain—displacement relations (7.29), and the curvature-displacement
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equations (7.30) in equation (8.126), equation (8.130), and equation (8.134).
The resulting equations are :

9%’ *u’ ?u’  *° 0%’ 9*v?
An P 2446 oxay + Ags o e + (A1 + Ags) 3oy + Age oy
’w P’w ’w ’w 9*u’
~By 2% _3p —(Bi2 +2B — By =
133 16 ax’ay ( 5. 66) ox 3y 26 P Po Ye
) (8.135)
wmxo wm:o wm:o wmdo wmdo mmdoA
A +(Agp + + A + +2A + A,
1672 (A1z + Aes) axdy 3y Ags P 2 5> ay "2 "
Pw Pw Fw . Fw PP
~Big ——(Biz + 2B — 3By - -B =
16753 (Bia 56) mxnw“_\ 26 ax oy 22 o Po Yo
(8.136)
o*w o*w o'w o*w o*w
D +4D +2(Dyp +2Dg) ———=+ 4D + Doy —
S 1657 3y (D1 %N ox? 3 % P 22 P
wmto wmﬁo . wu:o wwﬁo wwdo
-B - 3B ~ (B, +2B -B —-B
nos 1657 3 (Brz 56) ox 0y 26 P 16 PO
- *° 0%v° 0%v° *w
+(Biz +2Bg) o 3y — 3By FRE — By o +Po o n q(x,y)
(8.137)

As with the static case in section 7.9, the in-plane displacements # and ©°
are coupled with the transverse displacements w when the B; are present.
For symmetric laminates with B; =0, equation (8.137) alone becomes the
governing equation for transverse displacements. These governing partial
differential equations must be solved subject to the appropriate boundary
conditions. As in the static case, when the in-plane displacements are
coupled with the transverse displacements, the boundary conditions must
be a combination of boundary conditions for a planar theory of elasticity
problem and boundary conditions for a plate-bending problem. In this
section we will only discuss transverse vibrations according to equation
(8.137) with all B; = 0 and the transverse distributed load q(x,y) = 0. An
example of coupling effects will be given in example 8.8,

Let us now consider the case of free transverse vibration of the rectan-
gular, specially orthotropic plate that is simply supported on all edees. as

|
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8
]

|
R
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i
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FIGURE 8.31 . . . .
Simply supported, specially orthotropic plate for free transverse vibration mﬁ&%wﬁ.

shown in figure 8.31. The discussion here follows the analysis of Whitney
[36]. For a specially orthotropic plate, all B; =0, Ay = Ay = Dig = Dog = 0
and equation (8.137) becomes

4 0* dw  Pw
U:gl_:NAUS +NUmmv w +wa|+.hd ”O

: —5 1 —— (8.138)
ox ox“dy oy ot

For free harmonic vibration at frequency ®, we can assume that

w(x, y,t)=W(x, e . (8.139)

where W(x,y) is a mode shape function. Substituting equation (8.139) in
equation (8.138), we have : .

4 4 mwj.)\
W«M\ +NADHM + Mcmmv mw S\ + UNN P PSMS\ = O
X

(8.140)
x> Ty

U:

For the simply supported boundary condition, the transverse &mﬁmnw\
ments and bending moments must vanish at the edges as in the static
case. Thus, from equation (7.135) and equation (7.136), we have, again,
along x=0and x =4,

W(x,y)=0
and
o°W W
NS..R = |.U:. WRN - GHM. @QN =0 Am.H%HV
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and along y=0and y = b,

W(x,11)=0
and
W W
>\H.~\I|UHN wumw I.UMM WQM =0 Am.H%Nv

It can be shown that the equation of motion and the boundary condi-
tions are satisfied by solutions of the form

W, )= A mahﬂbwma ﬁm@u (8.143)

n b

where m and n are mode indices that refer to the number of half wave-
lengths along the x and y directions, respectively, for mode m#, and 2 and
b are the plate dimensions along the x and y directions, respectively.
Substitution of equation (8.143) in equation (8.140) yields the frequency
equation:

ﬁ.»

v (8.144)

Op = _HU::% +2(Dy, + NU%VQE\:GM + Dy, Q&mv»v“_

where the plate aspect ratio R =4/b, and @, is the natural frequency for
mode mn [36]. For the fundamental mode, where m = # = 1, the natural
frequency is given by

4
2> _7"| Dy, 2Dy, +2Dg) Dy
On=—|—F+——F = 8.145
11 o ﬁ pr 22h? b g ( )
and the mode shape function is given by
W(x,y) nmahﬁwmsﬁm& (8.146)

We now consider numerical results given by Whitney [36] for frequen-
cies and mode shapes of two square plates. One plate is orthotropic with
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TABLE 8.2 ‘

. # .
Predicted Natural Frequencies for the First Four Modes of Simply .
Supported Plates Made of Specially Oﬁros.am%mn and Isotropic Materials

Orthotropic,'® = kn’ /6%[Dy /o '~ Isotropic, ® = kn? /b? JD/po

Mode m .on k m n k
1st 1 1 3.62 1 1 2.0
2nd 1 _ 2 5.68 1 2 5.0
3rd 1 I3 10.45 2 1 5.0
4th 2 1 13.0 2 2 8.0

Source: From Whitney, JIM. 1987. Structural Analysis of Laminated Anisotropic Plates.
Technomic Publishing Co., Lancaster, PA. With permission. .

D,/ Dy, =10 and (D, + 2Dgs)/ Dy, = 1; the other is isotropic 2:._9 D;/Dy,
=1 and (Dy, + 2Dg)/D,, = 1. The four lowest natural frequencies for the
two plates are compared in table 8.2 and the corresponding mode shapes
are compared in figure 8.32. The dotted lines in figure m.m.N Qmﬁoﬁ.m the
nodal lines of zero displacement for a particular mode. It is interesting to

Orthotropic _Isotropic
]
15 mode
2Mdmode } ==~ -
i
. 1
3" mode }
bt o e }
'
1
1 t
' 1
4t mode ' e de o]
i i
i I
1 i

FIGURE 8.32 .
Mode shapes for the first four modes of simply supported plates mode of &.umﬁm:% o.ﬁro.
tropic and isotropic materials. (From Whitney, .M. 1987. Structural \rﬁﬁma of Laminated
Anisotropic Plates. Technomic Publishing Co., Lancaster, PA, With permission.)
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note that, in order of increasing frequency, the sequence of mode numbers
is different for the isotropic and orthotropic plates. Due to the high stiff-
ness of the orthotropic plate-along the x direction, its frequencies are
higher than the corresponding isotropic plate frequencies. It is also inter-
esting to note that for the isotropic plate 0, = w,,, but for the orthotropic
plate ®,; > ;5.

As with the static case, it is generally not possible to find exact mode
shape functions similar to those given by equation (8.143) for boundary
conditions such as clamped edges or free edges. For such cases, approx-
imate solutions must be derived using approaches such as the Ray-
leigh-Ritz method or the Galerkin method. For more detailed discussions
of these methods, the reader is referred to books by Whitney [36] and
Vinson and Sierakowski [37].

The equation of motion for a specially orthotropic, laminated beam is
found by reducing equation (8.138) to the 1-D form

Dy 2 4 po 0¥ - 8147

If we substitute po = ph, and if we multiply equation (8.147) by the beam
width, b, we r.m:\m

o*w o*w
bDjy——+pbh——=0 8.148

For the 1-D. case, Dy; =1/Dj,, and since bl = A, we have

—~a TPA—5 =0 (8.149)

which is the same as the equation that was derived from the beam theory
earlier in example 8.6.

EXAMPLE 8.7 .

A unidirectional AS/3501 carbon/epoxy plate is simply supported on all four
edges. The plate is 300 mm x 300 mm square, 2 mm thick, and has a mass density
of 1.6 mg/mm?. Determine the frequency of the fundamental mode of the plate.

Solution. Using the lamina stiffnesses, Q;, from example 7.3 and the thick-
ness of 2 mm in equations (7.40) for a laminate consisting of a single ortho-
tropic lamina, we find the laminate bending stiffnesses to be

Dy; = 92.53 GPa-mm?,
D,, = 6.03 GPa~-mm§,

D,; = 1.813 GPa-mm?
Dy = 4.6 GPa-mm?




438 Principles of Composite Material Mechanics

The mass per unit area is :
Po = ph = (1.6 mg/mm?)(2 mm) = 3.2 BW\EBN = 0.0032 g/mm?
The fundamental frequency is then found ?owg equation (8.145) as
1

2 I

W} =———[92.53+2(1.813 +2(4.6))+6.03](10°) = 4.53(10°)rad? /s*
11 e.oowwv@oelu ( ( vv. 1(107) .A ,va.

|
or m

: : Wy =673 rad/s

(Note: GPa-mm?® = 10° grmm?/s? in the above equatjon.)

EXAMPLE 8.8

Investigate the effects of coupling on the flexural vibration frequencies of a

nonsymmetrically laminated [0/90] crossply composite beam that is simply sup-
~ ported on each end. The beam has length L and the x-axis is parallel to the

longitudinal axis of the beam.

- Solution. Since the plies are all oriented at either 0° or 90°, there is no shear
coupling, and A = Ay = By = By = Dy = Dyg = 0. In addition, for a 1-D
beam oriented along the x direction, all terms in ﬁ%m equations of motion
(eq. [8.135], eq. [8.136], and eq. [8.137]) involving U" and y, and derivatives
in ¥ may be neglected. Finally, we will neglect the longitudinal inertia term
on the right-hand side of equation (8.135), and the transverse loading term
4(x,y) on the right-hand side of equation (8.137). With these simplifications,
equation (8.136) becomes identically zero on both. sides, while equation
(8.135) and equation (8.137) reduce to the coupled partial differential equa-
tions, respectively,

o4u° ?*w
A ~By 2% =0
11 meN 11 @Rw
and
d*w *u° 3w
Dy—~Bnu =—Po Y

ox* ox®

For free harmonic vibration at frequency, ®, we can assume separation of
variables solutions of the form

u®(x, £) = U(x)e™
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and -

wlx, £) = W(x)e™

where U(x), W(x) are mode shape functions. Substitution of these assumed
shape functions in the two equations of motion above yields the ordinary
differential equations

dxu W
Ay 1 -By ) =0
and
diw du .
Dy ot lmSM.RIQHUOSNS\.

For the simple supports at x = 0and x = L, the boundary conditions are
given by specifying that the transverse displacement W(x) and the bending
moment per unit length M, (x) must both vanish at x =0 and x = L. Therefore

W(0)=0
W(L)=0
2
M.0)=Ba 10~ Sl 0)=0
2
M@=5 T 0-0u T =0

where the equations for the bending moment per unit length, M, (x), are
found by substituting the simplifications listed above in equation (7.29),
equation (7.30), and equation (7.41), and evaluating the resulting expressions
at x = 0 and x = L. It can be shown by substitution that the boundary
conditions are all satisfied by mode shape functions of the form

U(x)=U, cos ﬁﬁmw

W(x)=W, maﬁﬁmw
L

wheren =1, 2, 3, ..., is the mode number. It can also be shown that these
functions satisfy the in-plane boundary conditions N(0) = N(L) = N,,(0) =
N, (L) =0. -

xy -
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Substitution of these mode shape functions in the two differential equations

yields the algebraic equations, A

w(z] (]
P

where o = o, for vibration in mode 7. For nontrivial solutions of the dis-
placements, the determinant of the coefficient matrix must be equal to zero,
and this yields the frequency equation for mode n: ,

It is easily shown from the definitions of the laminate stiffnesses that for
this [0/90] laminate, A1, Bi,% and Dy are all positive, and that as a result,
the bending-extension coupling term By;* /Ay, causes the frequencies to be
reduced below those of a symmetrically laminated beam that has the nth
mode frequency,

N ﬁ E.ﬁu w» D: _
anllt
L) po

Similarly, Jones [45] has shown that, for antisymmetric crossply laminated
plates of various aspect ratios and various numbers of plies, bending—ex-
tension coupling always reduces-the frequencies. However, it was found
that the frequency reduction is greatest for the case of only two plies (i.e.,
[0/90]),-and that the coupling effect was reduced as the number of plies
was increased. Similar results have been found for antisymmetric angle-ply
laminates. : , A :

i

8.3.4 Analysis of U»BE:W in Composites

Damping is simply the dissipation of energy during dynamic deforma-
tion. As structures and machines are pushed to higher and higher levels
of precision and performance, and as the control of noise and vibration
becomes more of a societal concern, it is becoming essential to take damp-
ing into account in the design process. In conventional metallic structures,
it is commonly accepted that much of the damping comes from friction
in structural joints or from add-on surface damping treatments because
the damping in the metal itself is typically very low. On the other hand,
polymer composites have generated increased interest in the development
of highly damped, lightweight, structural composites because of their
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good damping characteristics and the inherent design flexibility, which
allows trade-offs between such properties as damping and stiffness. The
purpose of this section is to give a brief overview of the analysis of linear
viscoelastic damping in composites. Dynamic mechanical testing of com-
posites, which includes experimental determination of damping, will be
discussed in chapter 10. More detailed treatments of damping in compos-
ites are given in publications by Gibson [46-48], Bert [49], Adams [50],
Chaturvedi [51], Kinra and Wolfenden [52], and Sun and Lu [53].

As described in section 8.1, damping is one of the important physical
manifestations of viscoelastic behayior in dynamically loaded structural
materials, and the stress-strain hysteresis loop in figure 8.1(c) is typical
of damped response under cyclic loading. Viscoelastic behavior of fiber
and/or matrix materials is not the only mechanism for structural damping
in composite materials although it does appear to be the dominant mech-
anism in undamaged polymer composites vibrating at small amplitudes.
Other damping mechanisms include thermoelastic damping due to cyclic
heat flow, coulomb friction due to slip in unbonded regions of the fiber/
matrix interface, and energy dissipation at sites of cracks and/or delam-
inations [46]. Thermoelastic damping is generally more important for
metal composites than for polymer composites. Damping due to poor
interface bonding, cracks, and/or delaminations cannot be relied upon in
the design of structures, but the measurement of such damping may be
the basis of a valuable nondestructive evaluation methodology [47].

In order to understand linear viscoelastic damping better, it is important
to recognize the relationship between the time scale of the applied defor-
mation and the internal time scale of the material. The time scale for cyclic
deformation is determined by the oscillation frequency, ®. Recall that the
relaxation times, A, or retardation times, p,, are measures of the internal
time scale of the material. We will now use the Zener single relaxation
model to illustrate how damping depends on the relationship between
these two time scales.

For sinusoidal oscillation of the Zener single relaxation model
(fig. 8.10[a]), we can write

6 =00e™ = (E' +iE")e (8.150)

where
O =stress
0, = stress amplitude .
€ = strain
o = frequency
E’ = storage modulus is E'(m)
E” =loss modulus is E"(w)
i=imaginary operator, which is (-1)1/2

|
i
|
|
|
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Substituting mm:m.moz (8.150) in the mqmmmlmgﬁs relationship for the
Zener model (eq. [8.42]) and separating into real and imaginary parts, we

- find that |

s ok K0P 8151)
m =Fo)= 1+ @22 (
w . WA
| Er=El(0)=—ils 8.152)
 E ©) 1+w*\2 (

and

— — m\\ASV . eyu.\n“_. Am HWWV
== 0) = ok o+ k) h
where

EHF\?wmm:mHm_mxmﬁobmBm?oBm@:mmobAm.ﬁv
1 = (o) is the loss factor : .

The variations of E’ and E” with frequency w are shown schematically
in figure 8.33. Note that when the frequency is the reciprocal of the relax-
ation time, w=-1/A,, the loss modulus peaks and the storage modulus
passes through a transition region. Such damping peaks in the frequency
domain are often referred to as “relaxation peaks.” The loss factor has a
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FIGURE 8.33 .
Variation of storage modulus, E’(®), and loss modulus, E”*(), with frequency for the Zener

single relaxation model.
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peak at a different frequency, not shown in figure 8.33 because the relative
position of that peak depends on the numerical values of the parameters.
But the important point is that the dissipation of energy, whether charac-
terized by the loss modulus or the loss factor, is maximized when the time
scale of the deformation is the same as the internal time scale of the
material. If the two time scales are substantially different, the energy
dissipation is reduced. For example, notice in figure 8.33 that E” — 0 as
® — 0 and as @ — «. This behavior is typical for viscoelastic materials,
but, as mentioned earlier, the actual transitions occur over a wider range
(in this case a wider frequency range) than the single relaxation model
produces. Thus, as before, an improved Zener model (fig. 8.12 or fig. 8.14)
with a distribution of relaxation times makes it possible to extend the
range of the relaxation to approximate the actual behavior better.

Analytical models have been developed for predicting damping in com-
posites at both the micromechanical and macromechanical levels. Only in
certain special cases, such as thermoelastic damping [54] or dislocation
damping [55] in metals, can the damping be predicted from first principles
without knowledge of constituent material damping properties. (These
damping mechanisms will not be discussed here.) If the damping mech-
anism is of the linear viscoelastic type, there are two basic approaches to
the development of analytical models, both of which are based on the
existence of experimental damping data for constituent materials. The two
approaches are as follows:

The use of the Elastic—Viscoelastic Ooﬁmmﬁ.osaoznm Principle in com-
bination with elastic solutions from the mechanics of materials or
the elasticity theory

The use of a strain energy formulation that relates the total damping
in the structure to the damping of each element and the fraction
of the total strain energy stored in that element

The basis of the first approach is that linear elastostatic analyses can be
converted to vibratory linear viscoelastic analyses by replacing static
stresses and strains with the corresponding vibratory stresses and strains,
and by replacing the elastic moduli or compliances with the correspond-
ing complex moduli or compliances, respectively. According to this pro-
cedure, the elastostatic stress—strain relationships in equations (2.5) would
be converted to the viscoelastic vibratory equations (8.70), and equations
(2.3) would be converted to equations (8.71), as described in section 8.2.5.
The use of this approach to derive the micromechanics equation for the
longitudinal loss factor of a unidirectional composite (eq. [8.87]) has
already been demonstrated. The same approach has been used to derive
micromechanics equations for the prediction of damping in aligned dis-
continuous fiber composites having various fiber aspect ratios and fiber

i
i
'
'
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orientations [22,56] in randomly oriented short fiber composites [57], in
metal matrix and ceramic matrix nOBﬁOm:mm at elevated temperatures
[58], in hybrid noﬁ%om:ﬂom with coated Eumam [59], and in woven fiber-
reinforced composites [60].

The correspondence ﬁEﬁQEm has also been used in 89@5&55 with
the Classical Lamination Theory to develop equations for the laminate
loss factors [23]. For example, the extensional loss factors for a laminate
can be expressed in terms of the real and imaginary parts of the corre-
sponding laminate extensional stiffnesses:

ap=2r C (8.154)
i , .

Similar equations can be used to describe laminate coupling and flexural
loss factors [23]. The major limitation of such analyses is that the Classical
Lamination Theory neglects interlaminar stresses, so that interlaminar
damping is not included. As shown later in this section, a more general
3-D analysis including interlaminar damping may be developed by using
a strain energy method.

Although sinusoidally varying stresses and strains were assumed in the
development of the complex modulus notation in section 8.2.4, it has been
shown that as long as the stiffness and damping show some frequency
dependence, the complex modulus notation is also valid for the more
general nonsinusoidal case [61]. Anomalous analytical results such as non-
causal response can occur if the components of the complex modulus are
independent of frequency. Composite materials (particularly polymer com-
posites) generally have frequency-dependent complex moduli, however.

The second approach involves the use of a strain-energy relationship
that was first presented in 1962 by Ungar and Kerwin [62]. Ungar and
Kerwin found that for an arbitrary system of linear viscoelastic elements,
the system loss factor can be expressed as a summation of the products
of the individual element loss factors and the ?mn.:oz of the total strain
energy m\nonn_ in each mwmgma

(8.155)

3w
.S\

i=1

where
1; = loss factor for the ith element in system
W, = strain energy stored in the ith element at maximum vibratory dis-
~ placement .
n = total number of elements in system
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When applying this equation to composite damping analysis, the com-
posite becomes the “ m%mﬁmﬁr and the nature of the elements depends on
whether the analysis is micromechanical or macromechanical. For exam-
ple, this equation has been used in combination with mechanics of mate-
rials solutions for the strain energy of aligned discontinuous fiber
composites [63]. In this analysis, the damping in the fiber was neglected
(i.e., the fiber loss factor 1 = 0), so that the longitudinal loss factor of the
aligned discontinuous fiber composite was approximated by the follow-
ing form of equation (8.155):

~ MWV
= et (8.156)
where
N = Matrix loss factor
W), = strain energy in matrix at maximum vibratory displacement
Wi = strain energy in fiber at maximum vibratory displacement

The strain energy terms W; and W,, were determined from mechanics of
materials by using the stress distributions from the Cox model (eq. [6.21]
and eq. [6.26]). The longitudinal storage modulus, E{, was also determined
from the Cox model (eq. [6.24]), and the loss modulus was found
from E7/Eim. Figure 8.34 shows 9@ variation of the predicted ratio E{/E,

'

100 ¢
: Energy model, 1)y= 0 and vy = 0.5
m 3 1. Glass-epoxy, Ef/E,, = 19
F 2. Graphite-epoxy, Ef/E,, = 104
10 3. Whisker-epoxy, Ef/E,, = 182
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FIGURE 8.34

Variation of loss modulus ratio, E{’/ E;,, with fiber aspect H.m:o\ L/d, for several aligned
discontinuous fiber composite systems. (From Gibson, R.E, Chaturvedi, $.K., and Sun, C.T.

1982. Journal of Materials Science, 17, 3499-3509. Reprinted by permission of Chapman &
Hall.)
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with fiber length-to-diameter ratio, L/d, moﬁﬂ several fiber/matrix combi-
nations [63]. It is seen that each composite has an optimum L/d where
the ratio E{/E], is maximized, and that wo& the peak value of E{/Ej; and
the optimum L/d shift to higher values as the modulus ratio E/E,,
increases. This means that the damping, which is primarily due to inter-
facial shear deformation, is increased when the mismatch between the
fiber and the matrix mﬁ?mmmmm (as determined by E/E,) is increased.
The Ungar—Kerwin equation is ideally suited for finite element imple-
mentation in the analysis of complex structures. In the finite element
implementation, the element index “i” in equation (8.155) refers to the
element number, 7 refers to the total number of finite elements, and the
strain energy terms, W,, are determined from the finite element analysis.
It appears that the equation was first implemented in finite element form
in the so-called “modal strain energy” approach for the analysis of modal
damping in complex structures [64]. The strain energy/finite element
approach has also been used in numerous composite analysis applications
at both the micromechanical level [59,60,65,66] and the laminate level
[67-69]. For example, in studies of the fiber/matrix interphase, the finite
element models shown in figure 8.35 were used in conjunction with the

equation

Wi + M Wi + MW
.J”\Jm f+ NmVVm +NiVV; , AWHWQV
We+ Wi + W
z z Z N1,
b~
. -
D; Dy @ y OJ =D )
@101 ¢ Y A N W 1 y
RVE Quarter domain Half domain
y y y nu””uv.du\&
a
A
% o n“Vo.x
e
[@I0X¢ * y A S .Y ®
RVE Quarter domain Half domain

FIGURE 8.35

Models used for strain energy/finite element analysis of effect of interphase on damping
or unidirectional graphite/epoxy under different loading conditions. (From Gibson, R.E,
Hwang, S.J., and Kwak, H. 1991. How Concept Becomes Reality — Proceedings of 36th Interna-
tional SAMPE Symposium, vol. 1, pp. 592-606. Reprinted by permission of the Society for
the Advancement of Material and Process Engineering, Covina, CA.)
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Predicted effect of interphase size on loss factor for material and loading conditions
described in figure 8.35 (From Gibson, R.E, Hwang, S.J., and Kwak, H. 1991, How Concept
Becomes Renlity — Proceedings of 36th International SAMPE Symposium, vol. 1, pp. 592-606.
Reprinted by permission of the Society for thé Advancement of Material and Process Engi-
neering, Covina, CA.)

where
N = fiber loss factor
1M; = interphase loss factor

W, =strain energy in interphase region at maximum vibratory displace-
ment

. Typical results for four different loading conditions are shown in
figure 8.36. It appears that the in-plane shear loss factor, Ny, is the most
sensitive of the four loss factors to the size of the interphase region.

Three-dimensional finite element analysis has been used in conjunction
with the Ungar-Kerwin equation to study interlaminar damping and the
effects of coupling on damping in laminates [67-69]. In these studies, the
laminate loss factor was modeled using the equation

z .
_ (K)yA7(k) k k k k
1= " [WOWEO +nWD W 4 WO 1@ W]/,

k=1
(8.158)
where

k =lamina number
N = total number of laminae
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W, = total strain energy stored in ngwsﬁw at maximum vibratory dis-
placement: |
|
N o | :
W= [+ W0 + W+ W+ W + W |
k=l |
|
x, Y, z = global laminate coordinates .
B k) 0 = in-plane loss factors for the kth lamina
b 3@ = out-of-plane loss factors for the kth lamina

Nz Nyz s

SOS\S\_\S\Sxégnmbpﬁ_mbmmﬂﬂmgmbmwm%%ﬁamaowmpmN&r lamina
W8, W,,®, W,,® = out-of-plane strain energy terms for the kth EBBw

Thus, the decomposition of the total damping into nosﬁwcsmoppm asso-
ciated with each stress component is a relatively simple task 2.:? w%m
strain energy approach. For example, figure 8.37 shows the oo.bgvsro:
of the different components of interlaminar damping as a ?E&os. of fiber
orientation for angle-ply graphite laminates under uniaxial extension [67].
The finite element model for this work was shown in figure 7.26. It is seen
that the interlaminar damping is maximized at a particular fiber orienta-
tion, and that the interlaminar shear stress, Ty 18 the most significant
contributor to interlaminar damping in this case. A similar mw@wo_mn_: was
used to study damping in composite beams with constrained Smno&.mm:n
layer damping treatments, and figure 8.38 shows the effect of constrained
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FIGURE 8.37 .
Contribution of different components of interlaminar damping for various fiber o&wd.ﬁﬁosw
for [+8], graphite/epoxy laminates (with laminate width/thickness =4 and ums.mms / ﬁ:nwsmmm
= 6) under uniaxial loading. (From Hwang, S.J. and Gibson, R.E. 1991. ﬂoi.ﬁam;mm Science and
Technology, 41, 379-393. Reprinted by permission of Elsevier Science Publishers, Ltd.)
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FIGURE 8.38
Measured and predicted damping for unidirectional glass/epoxy beam with constrained
viscoelastic layer damping tapes of different lengths and tape end fixity conditions. (From

Mantena, P.R., Gibson, R.E, and Hwang, S.J. 1991. AIAA Journal, 29(10), 1678-1685. Copyright -

AIAA, 1990. With permission.)

viscoelastic layer (damping tape) length on damping for a glass/epoxy
beam [70]. In this case, damping is seen to be strongly dependent on the
ratio of damping tape length to beam length and the tape end fixity
condition.

A review of the applications of the strain energy method for studying
various aspects of damping in composite materials and structures has
been published by Hwang and Gibson [71]. At the structural level, this
method has been used to predict damping in composite grid structures
[72], curvilinear laminates and composite shell structures [73], and com-
posite sandwich structures [74]. For example, Chen and Gibson [72] used
a finite element implementation of the strain energy approach to study
integral passive damping in composite isogrid structures. Figure 8.39
shows a typical 3-D finite element model for the composite isogrid struc-
ture, which has an integral layer of polymeric damping material at the
rib/skin interface. Figure 8.40 shows that the predicted and measured
damping can be increased significantly by using the integral damping
layer. Further discussion of the experimental aspects of this work can be
found in chapter 10.

Although the loss factor is a convenient measure of damping because
of its connection with the complex modulus notation, it is not the only
parameter used to describe damping. For materials with small damnine
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FIGURE 8.39 o o .
Finite element model for analysis of vibration and damping in composite Hmo.mﬁa mwsngam
with integral passive damping. From Chen, Y., and Gibson, R.E. 2003. Mechanics of Advance

Materials and Structures, 10(2), 127-143.
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Comparison of predicted and measured damping loss factors in no.u%ﬁvm:m isogrid mﬁswwﬁm
with and without integral passive damping. From Chen, Y., and Gibson, R.F. 2003. Mechan

of Advanced Materials and Structures, 10(2), 127-143.

451

(M << 1), other measures of damping that appear in the literature are
related to the loss factor as follows [49]:
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VY _A o
M=o =7 =% (8.159)

1
Q
where

V= specific damping capacity

A= logarithmic decrement

= damping ratio, or damping factor

Q = quality factor

Most of these parameters are associated with the damping of a single
degree of freedom vibration model and are used to obtain damping from
vibration test data. Such tests will be discussed in more detail in chapter
10. :

Finally, as part of the nanotechnology revolution, the study of vibration
and damping in nanocomposites has been the subject of numerous inves-
tigations in recent years, with many investigators reporting on improve-
ment of damping in composites when nanotubes or nanoparticles are
added to the polymer matrix materials. A review of the literature on
vibrations of carbon nanotubes and their composites has been published
by Gibson et al. [75]. Most of the studies of damping in nanocomposites
so far have been of an experimental nature, and there is a need for more
analytical work. Experimental work on vibration and damping of nano-
composites will be discussed in more detail in chapter 10.

In summary, damping has become an important consideration in the
design of dynamically loaded composite materials and structures. As a
result, there is increased interest in the prediction of damping in compos-
ites. Several analytical methods for making such predictions have been
reviewed, and sample results have been presented. Because of the design
flexibility that is inherent in composite materials, the potential for
improvement and optimization of damping appears to be much greater
than that for conventional structural materials,

EXAMPLE 8.9

The constituent materials in a unidirectional graphite/epoxy material have the
Jollowing dynamic mechanical properties at a certain frequency, :

mmxu =220 Ou_.um A@N X HOm Mvmﬂv\ MNe = OOON\. Ve = 0.6
Ef =3.45 GPa (0.5x10° Psi); MNm=0.02; v, =04
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Determine the composite longitudinal loss. factor and the percentage of the total
longitudinal damping due to each constituent ,

Solution. Substituting the above data in m&:maos (8.87) from the Elastic
Viscoelastic Correspondence Principle, or using the strain energy approach
and equation (8.155), we find that the composite longitudinal loss factor is

/.. Pressure'vessel

_ Efvs +Ef0m  MaEAVe +MuEaOm _ 0.002(220)(0.6)+0.02(3.45)(0.4)
Efvs +EfOm | Ef0¢ +EqOm 220(0.6) +3.45(0.4)

=0,001979 + 0.000207 = 0.002186

™

Pressure p(z)

Thus, the fiber contributes (0.001979/0.002186) X 100 = 90.5% of the damp-

ing and the matrix contributes the remaining 9.5%. Even though the matrix ] . , Time, ¢
| has a greater loss factor than the fiber, most of the strain energy is stored . ,
in the fiber, and this is why the fiber contributes more to the total composite |
damping. This is not true for the off-axis case, however, as the strain ener FIGURE 8.41 ”
amping. 1his 15 not true for the oll-axis case, NoOwevet, sura gy State of stress in composite pressure vessel and variation of internal pressure with time for |

_in the matrix becomes more significant. For example, the composite trans- problem 8.4,
- verse loss factor is dominated by the matrix contribution. :

shear stress is due to a constant loading rate, so that T,,(f) = K¢
where K is a constant. \

4. Hﬁm ﬁBm,mmmmbmma axial stress, o,(t), and the time-dependent
anzgmmum:\nmﬂ stress, 6,(f), in the wall of the filament-wound, i m
thin-walled composite pressure vessel shown in figure 8.41 are |
nwswm& by the internal pressure p(t), where ¢ is time. The required , :
dimensions .of the vessel are the wall thickness  and the mean w T
radius 7. Note that x and y are not the principal material axes, but Ry
rather, are the longitudinal and transverse axes for the <mmmm~\. Hrm\ :
variation of p(f) with time is also shown in figure 8.41. If the creep :
compliances associated with the x and Y axes are given in con- |
tracted notation by |

8.4 Problems

1. For a linear viscoelastic material, the creep response under a
constant stress is followed by a “recovery response” after the
stress is removed at some time, £, Using the Boltzmann Super-
position Principle, find an expression for the uniaxial recovery

- compliance, R(#), for times ¢ > ¢, in terms of the creep compliance,
~ S(t), the time of stress removal, ,, and the time, ¢.

2. In general, the creep compliances, S;(t), and the relaxation moduli,
Cy(t), are not related by a simple inverse relationship. Show that
only when £ —0 and when t — oo, can we say that

Si(t)=Ey+FEgt, i,j=1,2,...,6

?Tmum the E; and the F; are material constants, determine all the

time-dependent strains along the x and y axes for t > 2T, Answers

wroswa be given in terms of Por 1, B, T, t, and the individual E,

and F;. ! o

5. Alinear viscoelastic, orthotropic lamina has principal creep com- o
pliances given in contracted notation by |

[CyO1 =[Syt

3. The shear creep compliance, Sy(t), for a unidirectional viscoelastic
composite is given by Sg(t) = Yia(£)/ 712, Where ¥;,(f) is the time-
dependent shear creep strain and 1;, is the constant shear stress.
If S¢4(f) can be approximated by a power law as Sy4(t) = at?, where
a4 and b are material constants and ¢ is time, determine the “con-
stant loading rate compliance” Ug () = vi,(£)/T15(t), where the

Sit)=E;+Ft, i,j=1,2,..,6 i
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where the E; and the F;; are Em\mmimnnosm*mam and ¢ is time. The

lamina is subjected to plane stress jw& constant stresses
oit)=cH(b), ij=1,2,...,6

where o} are constants and H(f) is the unit step function. If the
failure strains for'pure longitudinal, transverse, and shear loading
of the lamina are ¢, ey, and ey, respectively, find the expressions
for the time to mm”m:ﬂm for each of the three strains.

Derive the mm:mmosm, for the stress-strain relationship, the creep
compliance, and the relaxation modulus for the Kelvin-Voigt
model.

. Derive the equations for the stress—strain relationship, the creep

compliance, and the relaxation modulus for the Zener model.
Derive equation (8.45).
Derive equation (8.47).

The shear relaxation modulus, Gy,(t), and orthotropic lamina is
idealized, as shown in figure 8.42. Find the corresponding equa-
tions for the shear storage modulus, Gj;(®), and the shear loss
modulus, Gi5(®), and draw sketches of both parts of the complex
modulus in the frequency domain. :

For the Maxwell model in figure 8.8, express the storage modulus,
E’'(®), the loss modulus, E”(®), and the loss factor, n(w), in terms
of the parameters y and k and the frequency . Sketch the varia-
tion of E'(w), E”(®), and n(w) in the frequency domain. It is not
necessary to use Fourier transforms here.

Derive equation (8.151) and equation (8.152).

The composite pressure vessel in problem 8.4 is subjected to an
internal pressure that varies sinusoidally with time according to

Gual®)

S ts—

,Alll..l:iiﬂiv_

Time, ¢

FIGURE 8.42 : .
Variation of shear relaxation modulus, Gy,(t), with time for problem 8.10.
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FIGURE 8.43
Composite longitudinal strain—time history for problem 8.14.

14.

15.

16.

the relationship p(f) = P, sin ¢, and the principal oogﬁmx compli-
ances are given by | .

Sunl®@) = Sun(@) +iSp(®), m,n=1,2,...,6

where ® is the frequency. Determine all the time-dependent
strains associated with the x and Y axes in terms of Py, 7, h, w, and
the individual S;,,(w) and S, (o).

The polymer matrix material in a linear viscoelastic, unidirec-
tional composite material has a relaxation modulus that can be
characterized by the Maxwell model in figure 8.8. The fibers are
assumed to be linear elastic. If the composite longitudinal
strain-time history is as shown in figure 8.43, express the com-
posite longitudinal stress as a function of time.

The matrix material in a linear viscoelastic, unidirectional com-
posite material is to be modeled by using a Maxwell model having
parameters k,, and y,, while the fiber is to be modeled by using
a Kelvin-Voigt model having parameters k; and ;.

(a) Determine the complex extensional moduli of fiber and matrix
materials in terms of the Maxwell and Kelvin-Voigt parame-
ters and the frequency, .

(b) Determine the complex longitudinal modulus of the unidirec-
tional composite. Assume that the fiber and matrix materials
are isotropic. It is not necessary to use the Fourier transforms.

The dynamic mechanical behavior of an isotropic polymer matrix
material may be characterized by two independent complex mod-
uli such as the complex extensional modulus, E *(w), and the com-
plex shear modulus, G*®). Based on experimental evidence
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FIGURE 8.44

! 17.

18.

Composite drive under applied torque for problem 8.17.

however, the imaginary parts of E*(w) and G*(®) are not indepen-
dent, because the material can be assumed to be viscoelastic in
shear but elastic in dilatation (i.e., the shear modulus, G*(w), is
complex and frequency dependent, but the bulk modulus, k, is
real and frequency independent). Use this simplifying assumption
to develop an expression for the shear loss factor, ng(®), in terms
of the extensional loss factor, Ng(w), the extensional storage mod-
ulus, E'(w), and the bulk modulus, k. Assume all loss factors << 1.

A drive shaft in the shape of a hollow tube and made of a linear
viscoelastic angle-ply laminate is subjected to a torque, T, as
shown in figure 8.44. Develop an analytical model for predicting
the vibratory. shear deformation in the shaft from the vibratory
shear force, @@3\ when the torque T varies sinusoidally with
time. The input to the model should include the properties and
volume fractions of fiber and matrix materials, lamina orienta-
tions, and lamina-stacking sequences. That is, the model should
include both micromechanical and macromechanical compo-
nents. No calculations are necessary, but the key equations should
be described, all parameters should be defined, and key assump-
tions should be delineated.

Longitudinal vibration of an isotropic, particle-reinforced com-
posite bar may be modeled by using the 1-D wave equation (eq.
[8.99]) if the material is linear elastic. Derive the equation of
motion for longitudinal vibration of the bar if it can be assumed
to be a Kelvin-Voigt linear viscoelastic material having the
stress-strain relationship given by equation (8.39).

Find the separation of variables solution for the longitudinal dis-
placement, u(x,f), of the equation derived in problem 8.18. Leave
the answer in terms of constants, which must be determined from
the boundary conditions. v -
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FIGURE 8.45
Simply supported, specially orthotropic plate under in-plane loads for problem 8.20.

20. Derive the equation of motion for free transverse vibration of a

21.

22.

23.

24,

simply supported, specially orthotropic plate that is subjected to
in-plane loads per unit length N, and N,, as shown in figure 8.45,
For the plate described in problem 8.20, find the equations for the
plate natural frequencies and determine the effects of positive }

(tensile) and negative (compressive) in-plane loads N, and N, on
the natural frequencies.

If the plate described in problem 8.20 is clamped on all edges, i
investigate solutions of the form

W(x,y)= A Hloomﬁwadmu. HISAWM@W w
Does this solution satisfy the boundary conditions? Can it be used
to find the natural frequencies? Explain your answers.

The isochronous stress-strain curves for an epoxy material at
different times are shown in figure 8.46. This material is used as
the matrix in a unidirectional E-glass/epoxy composite having a
fiber volume fraction of 0.6. Using micromechanics and the Elas-
tic-Viscoelastic Correspondence Principle, determine the longitu-
dinal relaxation modulus E,(t) for the composite at ¢ =1 hour and
t = 10,000 hours. Note that the strain in figure 8.46 is given in
percent strain (e.g., a percent strain value of 1.5 corresponds to a h
strain of 0.015). Elastic properties of fibers are given in table 1.1.

Part of the required input to the viscoelastic option in some finite
element codes is a table showing the time-dependent, isotropic i
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Isochronous stress-strain curves for epoxy matrix material in problem 8.23.

shear modulus G(¢) at different times ¢. Explain how you would
generate such a table from tensile isochronous stress-strain curves
such as the ones in figure 8.46. Include the key equations and a list
of assumptions in your explanation.

25. For the Maxwell model shown in figure 8.8, it can be shown that
the complex modulus is given by

E'(0) = E'(@)[1+m(w)]

where the frequency-dependent storage modulus is given by

ko2

Elw)= 1+ w2

and the frequency-dependent loss factor is given by

@)=
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where o is the frequency and A = pu/k is the relaxation time. Let
us assume that the Maxwell model adequately describes the vis-
coelastic behavior of a particular material. Explain how you
would use the Maxwell model and frequency-domain vibration
test data to indirectly determine the numerical value of the relax-
ation modulus C(t) for this material.

26. A thin-walled cylindrical pressure vessel has mean diameter d =
18 in. and wall thickness 7 =0.25 in. The vessel is made of filament-
wound unidirectional composite material with all fibers oriented
in the circumferential, or hoop, direction. The internal pressure
in the vessel can be assumed to be constant. From creep tests of
specimens of the unidirectional composite material, it is found

that the principal creep compliances can be described by the
following power law expressions:

Su(t) = 0.121 + 0.0003%%?
Sia(t) = —0.0315 + 0.004¢°%
San(t) = 0.3115 +0.0025¢%%
Ses(t) = 0.839 + 0.003£%

where £ is the time in minutes and all compliances are given in

“units of (X 10-¢ psi'). The ultimate failure strains for the material
are found to be as follows:

e, = 0.0194, e = 0.00125, e 7 = 0.010

(a) According to the Maximum Strain Criterion, what is the allow-
able internal pressure in the vessel, if it is to be designed to last for
at least 20 years under constant pressure? (b) How would you
change the design of the vessel so as to increase the allowable inter-
nal pressure, while maintaining the 20-year design life? Assume
here that the composite material properties and vessel dimensions
given above cannot be changed, but the material could be modified.

——
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Analysis of Fracture

9.1 Introduction

Except for a brief discussion in section 7.8:2, the previous chapters of this
book have not considered the analysis of the effects of notches, cracks,
delaminations, or other discontinuities in composites. For example, the
conventional strength analyses outlined in chapter 4 involved the use of
gross “effective lamina strengths” in various semiempirical failure criteria
without regard for specific micromechanical failure modes that are related
to such discontinuities. While such procedures, along with the use of
empirical “safety factors,” may produce a satisfactory design for static
loading, failures may still occur due to the growth of cracks or delamina-
tions under dynamic loading. The purpose of this chapter is to give an
introduction to the analysis of fracture of composites due to cracks, notches,
and delaminations. |

First, the prediction of the strength of composites with through-thickness
cracks and notches is considered by using both fracture mechanics and
stress fracture approaches. Next, the use of fracture mechanics in the
analysis of interlaminar fracture will be discussed. Each of these topics is
the subject of many publications. Thus, only brief introductions to the
subjects are given here, along with key references where more detailed
analyses may be found. Each of these topics is also the subject of consid-
erable current research, and the reader is encouraged to consult technical
journals for the results of the most recent research, Composites handbooks
are a good place to find information on the basics of composite fracture
[1]. The Special Technical Publication (STP) series by the American Society
for Testing and Materials is a good source of recent research findings [2-7].
The application of fracture mechanics to composites is the subject of a
book [8], as is delamination in composites [9].
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9.2 Fracture Mechanics Analyses o_mm Through-Thickness
Cracks i

Much of the eatly work on fracture in composites'involved investigations
of the applicability of linear elastic fracture mechanics, which had been
originally developed moyﬂ the analysis of through-thickness cracks in homo-
geneous, isotropic metals. The origin of fracture mechanics can be traced
back to the seminal work of Griffith [10], who explained the discrepancy
between the measured and predicted strength of glass by considering the
stability of a small crack. The stability criterion was developed by using
an energy balance on the crack. -

Consider the through-thickness crack in the uniaxially loaded homoge-
neous, isotropic, linear elastic plate of infinite width shown in figure 9.1.
Griffith reasoned that the strain energy of the cracked plate would be less
than the corresponding strain energy of the uncracked plate, and from a
stress analysis, he estimated that the strain energy released by the creation
of the crack under plane stress conditions would be

_ wela’t

U == ; -

9.1)

where U, = strain energy released
6 = applied stress
a = half-crack length
t = plate thickness
E =modulus of elasticity of the plate

FIGURE 9.1 .
The Griffith crack: A through-thickness crack in a uniaxially stressed plate of infinite width.
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The corresponding expression in Griffith’s original paper was later
found to be in error, and Eq. (9.1) is consistent with the corrected expres-
sion in more recent publications [9.11, 9.12]. In addition, Griffith’s energy
terms were given on a per unit thickness basis. Equation (9.1) is also
consistent with the strain energy released by relaxation of an elliptical
zone having major and minor axes of lengths 4a and 2a, respectively,
where the minor axis is coincident with the crack and the major axis is
perpendicular to the crack. The volume of such an ellipse is
or

V =n(2a)(a)(t) = 2na’t . (9.2)

Since the plate was assumed to be uniformly stressed before the intro-
duction of the crack, the strain energy released due to relaxation of the
elliptical volume around the crack is

Q‘. H Mlm< H IMI AOWV
Griffith also assumed that the creation of new crack surfaces required
the absorption of an amount of energy given by

U, = 4aty, (9.4)

where U, = energy absorbed by creation of new crack surfaces
Y. = surface energy per unit area

As the crack grows, if the rate at which energy is absorbed by creating

new surfaces is greater than the rate at which strain energy is released,
then ,

au, _au,

da = oa
and crack growth is stable. If the strain energy is released at a greater rate
than it can be absorbed, then

(9.5)

au, au,
o o4

(9.6)

and crack growth is unstable. The threshold of stability, or the condition
of neutral equilibrium, is therefore given by

oa oa

ou, _ au;, ©9.7)
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or SRS
_ ne'a 9  98)
: E =25 ,, .

Thus, the critical stress, o, for self-sustaining extension of the crack in plane
stress is ,

o, = |2EYs 9.9)
a
Alternatively, the critical flaw size for plane stress at stress level o is
g, = 2E1s (9.10)
o

It is interesting to note that when we ammﬁmﬁmw mn_ (9.8) as

ovma = 2E7, (9.11)

the terms on the left-hand side depend only on loading and geometry, whereas
the terms on the right-hand side depend only on material properties. Thus, when
the stress reaches the critical fracture stress, o,, the left-hand side' becomes
Qn)\mﬂM The term Qn)\y is now referred to as the fracture toughness, K. This
is a very important concept, which we will return to later.

The application of the Griffith-type analysis to. composites presents some dif-
ficulties, but, fortunately, many of these problems have been solved over the years
since Griffith’s work. For example, for metals and many polymers the energy
absorbed in crack extension is actually greater than the surface energy. Recog-
nizing this, both Irwin [9.13] and Orowan [9.14] modified the Griffith analysis
to include energy absorption due to plastic deformation at the crack tip. In this
analysis the factor 2%, on the right-hand side of Eq. (9.8) and in all subsequent
equations is replaced by the factor 2(y, + ¥,), where 7, is the energy of plastic
deformation. The solutions of several other problems encountered in the devel-
opment of composite fracture mechanics have been made possible by the use of
several different analytical techniques. Two of these techniques, now referred to
as the “stress intensity factor” approach and the “strain energy release rate”
approach, will be discussed in the following sections. ,

9.2.1, Stress Intensity Factor Approach

The Griffith analysis was originally developed for homogeneous, isotropic
materials. Using effective modulus theory, we can replace the heteroge-
neous, anisotropic composite with an equivalent homogeneous, anisotro-
pic material. It turns out that by considering the stress distribution around
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— dx.e

p t..h p 7&9

Crack tip

%»A
FIGURE 9.2

Stresses at the tip of a crack under plane stress.

> X

the crack tip, we can develop another interpretation of the Griffith analysis
which can be applied equally well to homogeneous isotropic or anisotro-
pic materials and to states of stress other than the simple uniaxial stress
that Griffith used. Referring to the plane stress condition in the vicinity
of the uniaxially loaded crack in figure 9.2, Westergaard [15] used a com-
plex stress function approach to show that the stresses for the isotropic
case at a point P defined by polar coordinates 7, @ can be expressed as

K
 Ox= N f1(8) (9.12)
Ky
) Oy uﬂh@ (9.13)
__Ki
dé = )\ﬁ\‘mAGV AO.H\C

SrmnmNLmﬁrmmﬁwmmmW#msm:%mmﬁoﬂmoy.?manwo@mswsmgoaw\mm
defined by :

Ki=ovma (9.15)

and the f(0) are trigonometric functions of the angle. Irwin [16] recog-
nized that the term o+/ma controls the magnitudes of the stresses at a
point 7, 8 near the crack tip. Returning to the discussion following equa-
tion (9.11), we see that the critical value of the stress intensity factor, K,
corresponding to the critical stress, o,, is the fracture toughness. That is,

‘N.Aun = Qn)\m v AQ‘HQV
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The fracture toughness, K, is a material property that can be determined
experimentally, as shown later. Thus, if the fracture toughness of the mate-
rial is known, the fracture mechanics analysis can be used in two ways,
depending on whether the applied stress or the crack size is known. If the
applied stress, o, is known, equations such as equation (9.15) can be used
to find the critical Qmo_ownNm\ 4., which will lead to unstable and catastrophic
crack growth. Knowing the critical crack size, we can specify inspection
of the component in question to make sure that there are no cracks of that
size. On the other hand, if the crack size, 4, is known, then equations such
as equation (9.15) can be used to find the critical stress, 6., which will lead
to unstable and catastrophic crack growth. Loading on the component in
question would then be specified so as not to exceed this stress.

The reader is cautioned that the stress intensity factor is defined
as ki = o+/a in some publications. This definition corresponds to the can-
cellation of v/ in both the numerator and denominator of equation (9.12)
to equation (9.14), so that the denominator corresponding to k; would
be )\mwﬂ instead of )\mﬂ , and thus K; = wﬁ\m .

Expressions for stress distributions for other types of loading and crack
geometries in isotropic materials lead to expressions that are similar to
equation (9.12) to equation (9.14), and the corresponding stress intensity
factors can be found in the same way [17]. Other important results such as
finite width correction factors (recall that the Griffith analysis is for a crack
in an infinite width plate) have been tabulated in ref. [17]. The three basic
modes of crack deformation are shown in figure 9.3. Thus, for the crack
opening mode in the above example (mode I), we have the stress intensity
factor K;. For the in-plane shear mode (mode IT) we have the stress intensity
factor Ky, and for the antiplane shear mode (mode IIT) we have K. For
example, for the cases of pure shear loading in modes II and IIl we have

Ku=wna and Ky =1Jna (9.17)

ModeI Mode II Mode III
Opening of crack In-plane shear of crack Anti-plane shear of crack

FIGURE9.3
The three basic modes of crack deformation.
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where the shear stress, 7, is different for modes II and III, as shown in
figure 9.3. :

Although the stress analyses for the corresponding anisotropic material
cases are more difficult and the expressions are more complicated, the
stress intensity factors for certain loading conditions and crack geome-
tries are the same as those for the isotropic case. For example, Lekhnitskii
[18] has used a stress function approach to show that if the crack shown
in figure 9.1 and figure 9.2 lies in an anisotropic material for which the

xy plane is a plane of material property symmetry, then the stresses are
given by

K;
Oy = F(©,s,s 9.18
x - )\NM 1(6, 5 mv, ( v

K; .
G, = F,(0,s,s 9.1
y )\Nﬂ 2(9,51,5,) (9.19)

and

K;
Ty = F5(0,s,s 9.20
Y 27y 3(0:81,52) ( )

where the functions F(, s,, s,) include not only trigonometric functions
of the angle, 6, but also s; and s,, which are complex roots of the charac-
teristic equation corresponding to a differential equation in the stress
function [18]. As pointed out by Wu [19], the magnitudes of the stresses
at point 7, 6 in an isotropic material (eq. [9.12] to eq. (9.14]) are completely
determined by the stress intensity factors, but in the anisotropic case (eq.
[9.18] to eq. [9.20]), these magnitudes also depend on s, and s,. Wu [19]
has also shown, however, that if the crack lies along a principal material
direction in the anisotropic material, then the stress intensity factors given
by equation (9:15) and equation (9.17) are still valid for their respective
loading conditions shown in figure 9.3.

Several experimental investigations have shown that the concept of a
critical stress intensity factor can be used to describe the fracture behavior
of through-thickness cracked unidirectional composites and laminates. Wu
[19] reasoned that if the fracture toughness, K, is a material constant, then
by considering the logarithm of equation (9.16), the slope of the log o, versus
log 4. plot must be —0.5. Wu's experimental results for unidirectional
E-glass /epoxy showed good agreement with this prediction. Konish et al.
[20] showed that the critical stress intensity factors for 0°, 90°, 45° [+45°],,
and [0°/445°/90°]. eraphite/enoxv laminatee cni1ld he dotormicad T




472 Principles of Composite Material Mechanics

using the same fracture toughness test method that had been developed
for metals. Parhizgar et al. [21] showed both analytically and experimen-
tally that the fracture toughness of unidirectional E-glass/epoxy compos-
ites is a constant material property that does not depend on crack length
but that does depend on fiber orientation. |

The fracture toughness, K, has been found to be an essentially constant
material property for a:variety of randomly oriented short-fiber compos-
ites, as shown in papers by Alexander et al. [22] and Sun and Sierakowski
[23]. Although the random fiber orientation in such materials allows one
to use the numerous tabulated solutions for stress intensity factors of
isotropic materials [17], it appears that the simple crack growth assumed
in the Griffith-type analysis does not always occur in these materials. As
an alternative to crack growth, the concept of a damage zone ahead of
the crack tip in short-fiber composites has been proposed by Gaggar and
Broutman [24].

9.2.2 Strain Energy Release Rate Approach

One of the major drawbacks of the stress intensity factor approach is that
a stress analysis of the crack tip region is required. While such analyses
have been done for a variety of loading conditions and crack geometries
for isotropic materials [17], the corresponding analyses for anisotropic
materials have only been done for relatively few cases because of math-
ematical difficulties. A very useful alternative to the stress intensity factor
approach is referred to as the “strain energy release rate” approach. The
strain energy release rate has an easily understood physical interpretation
that is equally valid for either isotropic or anisotropic materials, and it
turns out that this rate is also related to the stress intensity factor. The
strain energy release rate approach has proved to be a powerful tool in
both experimental and- computational studies of crack growth.

The derivation of the strain energy release rate presented here follows
that of Irwin [25], as explained by Corten [26]. We first consider a through-
thickness cracked linear elastic plate under a uniaxial load, as shown in
figure 9.4(a). An increase in the load, P, from the unloaded condition causes
a linearly proportional change in the displacement, u, at the point of appli-
cation of the load, as shown in the load-displacement plot in figure 9.4(b).
We now assume that once the load reaches the value P, and the corre-
sponding displacement reaches u,, the crack extends a small increment,
Aa. The crack extension causes the load to drop by an amount AP and the
displacement to increase by an amount Au. Just before the crack extension
occurs, the potential energy, U, stored in the plate is given by the triangular
area OAC in figure 9.4(b). The potential energy, All, released by the crack
extension is given by the triangular area OAB. During. the incremental
displacement Au, the increment of work done on the plate'is AW or the
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(a) Plate under uniaxial load

(b) Load-displacement, curve

FIGURE 9.4

Loaded plate and corresponding load-displacement curve used for strain energy release
rate analysis.

area ABDC. For this mode I crack deformation, the strain energy release
rate, Gy (do not confuse with the shear modulus, G), or the rate of change

of the strain energy with respect to the crack extension area, A, is defined
by [26]

H _ e AW-AU dW du
i TdA @ ©2)
The system compliance, s, is given by
u
s=—= 9.22
’ (9.22)

(Note that this is the system compliance, s, not the material compliance,
5, defined earlier as being a ratio of strain to stress.) Thus, the potential
energy of the plate in figure 9.4(a) is

1 1
U= Mﬁ: = M%N (9.23)
so that
du_ _oP 1,0
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The incremental work done during the o&ow extension is approximately

AW = P(Au) (9.25)
so that M
dw .. AW . Au du d
dA a0 AA Aas0T AA dA dA 9.26)
P g
=Ps m>+~u A

Substitution of m&cmmos (9.24) and equation (9.26) in equation (9.21) gives

P?% 9s
= 9.27
. Gi="5aa ©.27)
For a plate of constant thickness, ¢, )JA=tda and -
Gy = WW (9.28)
2t da

Thus, we can determine G,, by plotting the compliance as a function of
crack length and finding the slope of the curve, ds/da, corresponding to
the value of the load, P. The critical strain energy release rate, Gy, for this
mode I crack deformation corresponds to the values P, and (ds/da). at
fracture. That is,

wwwm
na , ; @.@
Gre 2t Tnun ©.2)

From the point of view of the experimentalist, the obvious advantage
of equation (9.29) is that knowledge of material properties or crack stress
distributions is not needed since all the parameters can be determined
from measurements on a test specimen. Note also that the method applies
to either isotropic or anisotropic materials. As shown later in section 9.4,
equation (9.21) has been used extensively for both measurement and
calculation of the strain energy release rate for mode I delamination in

Analysis of Fracture 475

laminates. Measurements of the strain energy release rate based on these
equations will be discussed in chapter 10.

Another major advantage of the strain energy release rate is that it is
related to the stress intensity factor. As shown by Irwin [13], for mode I
crack deformation in isotropic materials under plane stress,

K?=GE (9.30)

so that the critical stress Eﬁ,.msmwa\ factor or fracture toughness, Ky, is related
to the critical strain energy release rate, G, by

K2 =G E (9.31)

This relationship has used to determine the K, of composites from
measurements of the Gy, [23] and to find G, from measurements of K;, [20].

Cruse [27] has shown that for @ through-thickness mode I crack in an
orthotropic laminate having N angle-ply components and having strain
compatibility among the plies ahead of the crack the critical strain energy
release rate, Gy, for the laminate is related to the corresponding lamina
properties by a simple rule of mixtures of the form

N
. Greit;

Gre = 4= (9.32)

where G, = critical strain energy release rate for the laminate
Gy = critical strain energy release rate for the ith angle-ply component
t = total laminate thickness
t; = thickness of the ith angle-ply component

The predictions from this equation were found to show good agreement
with experimental results for graphite/epoxy laminates [27].

The strain energy release rate has also proved to be useful in the char-
acterization of the crack growth rate under cyclic loading. Interest in the
possible relationship between fatigue crack growth rate and the strain
energy release rate was prompted by the previous work of Paris and
Erdogan [28], which showed that the mode I crack growth rate, da/dN,

in many metals and polymers can be characterized by the equation
s -

% i3
Sy = BAK) (9.33)
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where N = number of c¢ycles of repetitive H“om&:m

AK = stress intensity factor range = Kimax — Kimin = (Omax — Q:anv/\m for

mode I crack growth |

Omax = Maximum stress !

O pin, = Minimum stress , :

B, m=experimentally determined empirical factors for a given material,

loading conditions, and environment

|

Equation (9.33) has also found limited use in composites. For example,
Kunz and Beaumont [29] observed that transverse crack growth in uni-
directional graphite/epoxy composites under cyclic compressive loading
could be described by such an equation. Fatigue damage in composites
cannot always be described in terms of self-similar crack growth, however.
More often than not, fatigue damage is a very complex condition involv-
ing mixed modes of failure, and the analytical determination of the stress
intensity factor for such a condition may be nearly impossible. Thus, the
strain energy release rate range, AG, may be a more convenient parameter
to use than the stress intensity factor range, AK. For example, Spearing
et al. [30] have modeled fatigue damage growth in notched graphite/
epoxy laminates by using an equation formed by combining equation
(9.30) and equation (9.33):

da . m/2
< =C(4G) (9.34)

where C = w,m:%

EXAMPLE 9.1

A quasi-isotropic graphite/epoxy laminate has a fracture toughness Ky, = 30 MPa
m2 and a tensile strength of 500 MPa. As shown in figure 9.5, a 25-mm-wide
structural element made from this material has an edge crack of length a = 3 mm.
If the element is subjected to a uniaxial stress, o, determine the critical value of
the stress that would cause unstable propagation of the crack. Compare this stress
with the tensile strength of the material, which does not take cracks into account.

G+ 1 b=25mm } ——*C
h >&nw55

1

FIGURE 9.5 :
Single-edge crack in a plate under uniaxial stress for example 9.1.
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Solution. From tabulated solutions [17], the stress intensity factor mﬂ, the
“single-edge crack in figure 9.5 is

Ky =o\/maf(a/b)

where the function f(a/b) is given by the empirical formula [17] fla/b) =1.12
- 0.231(a/b) + 10.55(a/b)* ~ 21.72(a/b)® + 30.39(a/b)* which is said to be
accurate within 0.5% when a/b < 0.6. For this case, a/b = 3/25 = 0,12 and
fla/b) = 1.213. The critical stress is then

[5)

oo Ko _ 30
n«aﬂ%\s,\ma_o@%@

= 255MPa

Comparing this stress with the tensile strength of 500 MPa, we see that
in this case the cracked element can sustain only about 50 percent of the
stress that an uncracked element could withstand.

9.2.3 Virtual Crack Closure Technique

The so-called Virtual Crack Closure Technique (VCCT) has its origins in
the seminal work of Irwin [25], was first implemented in finite element

form by Rybicki and Kanninen [31], and has since evolved as a popular

finite element computational tool for calculating the strain energy release
rate and stress intensity factors. A recent review article by Krueger [32]
summarizes the history, approach, and applications of the VCCT to com-
posites, particularly to the case of delamination cracks.

Irwin [25] originally proposed that, when the crack tip shown schemat-
ically in figure 9.2 has been extended by the amount Ag, the energy released
during crack extension is equal to the energy required to close the crack
to its original length. For the 2-D state of stress in figure 9.2, where the
origin of the polar coordinates (#,) is located at the extended crack tip,
Irwin suggested that the energy release rate G for a crack extension Aa is
given by the crack closure integral [31]

1 An 1 An
=lim — - im —— -
G 7 ._.o 6y(Aa—r,0)v(r, m)dr + im 7 ._.o Ty (Aa—r1,0)u(r, w)dr

A0 Aa—0

(9.35)

where u and v are the relative sliding (x direction) and opening (y direc-
tion) displacements between points on the crack faces. The first and
second integrals in equation (9.35) are recognized to be G; and Gy and
the Mode I and Mode II energy release rates, respectivelv. Rvbicki and
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FIGURE 9.6

Finite element nodes near the crack tip for the VCCT. (From Rybicki, B.F. and Kanninen,
M.F. 1997. Engineering Fracture Mechanics, 9, 931-938. With permission.)

Kanninen [31] later proposed that for the arrangement of four-noded 2-D
finite elements in figure 9.6, Irwin’s crack closure integrals could be
approximated by : _

1

= lim —— - | 9.36
m.: a0 2Ag éAdn dmv B A v
and
Gy = lim Fw (e —Ug) (9.37)
i 2050 2 A cx\“e ,

where Az is the element length along the x direction, F, and F, are the
forces along x and y directions, respectively, that are required to hold nodes
cand d together during crack closure, (1., v.) are the x and y displacements,
respectively, of point ¢, and (u4,v4) are the x and y displacements, respec-
tively, of point d during crack closure. Since the publication of the paper
by Rybicki and Kanninen [31], there have been numerous publications by
others reporting on various improvements and applications of the VCCT
to cracks in composites, particularly delamination cracks. Among the
reported improvements are the use of eight-noded 2-D finite elements, 20-
noded 3-D brick elements, plate or shell elements, and nonlinear finite
elements, as well as the use of the VCCT to analyze fractures at bimaterial
interfaces such as those in composites [32]. As noted in section 9.4, many
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of the publications regarding the VCCT involve applications to composite
delamination. One potential problem with the VCCT is the existence of
the 1/+/r singularities in the stresses as ¥ — 0 at the crack tip, as seen in
equation (9.12) to equation (9.14) and equation (9.18) to equation (9.20).
Special crack tip singularity elements have been shown to be effective in
accurately approximating these singularities, but apparently these special
elements are not readily available in many commonly used finite element
codes [32].

9.3 Stress Fracture Criteria for Through-Thickness
Notches

Although fracture mechanics concepts have been successfully used in
some cases to analyze the effects of through-thickness cracks and notches
in composite laminates, Whitney and Nuismer [33,34] questioned the need
for such an approach and then proceeded to develop a simpler approach
that is perhaps more useful to designers. As pointed out previously, the
use of fracture mechanics in such applications has always been in question
because the self-similar crack growth that occurs in metals does not always
occur in composite laminates. Additional motivation for the work of
Whitney and Nuismer was provided by the need to understand better
experimental results that showed larger holes in laminates under tension
cause greater strength reductions than do smaller holes. In a previous
attempt to explain this effect, Waddoups et al. [35] had employed a fracture
mechanics analysis of a hole in an isotropic plate with two symmetrically
placed cracks extending from either side of the hole, as shown in figure 9.7.

FIGURE 9.7
Uniaxially stressed plate with an edge-cracked hole.
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The stress intensity factor for a mode I crack having this geometry was
derived using the previous solution of Bowie [36] as

Ky = o f(a/R) - @39)

While the function f(4/R) has been tabulated for the isotropic case [17],
it has not been determined for the anisotropic case. Thus, although the
analysis of Waddoups et al. [35] predicted the experimentally observed
trends regarding the effect of hole size, the effects of anisotropy were
obviously not considered. In addition, no physical interpretation was
given for the cracks at the edge of the hole (i.e., such cracks were used in
the analysis but were not necessarily present in the experiments that
showed the hole size effect). ‘. :

Whitney and Nuismer [33,34] reasoned that the hole size effect could
also be explained by observing the differences in the stress distributions
near the hole for large and small holes. For example, the theory of elasticity
solutions [37] for the normal stress distribution, c,, along the x axis near
a hole in an infinite isotropic plate under uniform tensile stress are shown
in figure 9.8 for small (R = 0.1 in.) and large (R = 1.0 in.) holes. The stress
distribution for the smaller hole obviously has a sharper concentration
near the hole than does the stress distribution for the larger hole. Whitney

FIGURE 9.8 :

Normal stress distribution for a circular hole in an infinite isotropic plate. (From Nuismer,
R.J. and Whitney, .M. 1975. Fracture Mechanics of Composites, ASTM STP 593, pp. 117-142.
American Society for Testing and Materials, Philadelphia, PA. Copyright ASTM. Reprinted
with permission.)
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FIGURE 9.9
Normal stress distribution for a center crack in an infinite anisotropic plate, (From Nuismer,
RJ. and Whitney, J.M. 1975. Fracture Mechanics of Composites, ASTM STP 593, pp. 117-142,

American Society for Testing and Materials, Philadelphia, PA. Copyright ASTM. Reprinted
with permission.)

and Nuismer observed that since the plate with the smaller hole would
be more capable of redistributing high stresses near the hole than would
the plate with the larger hole, the plate with the smaller hole would be
stronger. This observation led to the development of two failure criteria
that were based on solutions for the normal stress, o, along the x axis
near circular holes (fig. 9.8) and center cracks (fig. 9.9) in infinite ortho-
tropic plates. The Whitney-Nuismer criteria [33,34] are now summarized.

The hole of radius R in figure 9.8 is assumed to be in an infinite ortho-
tropic plate that is under uniform stress, o, at infinity. The normal stress,
6,(x, 0), along the x axis near the hole is approximately

4
~ (k7 -3)|5 ,w QL. w m (9.39)

2
S?enm 2+ W +3 Iw

where x > R and the orthotropic stress concentration factor, Ky, for an
infinite width plate is given by Lekhnitskii [38] as

_ A2
Ky =1+ 2 NI 1}N+E (9.40)
Ay 2 Ags
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where the A; are the laminate mxﬁmsmwo_:m: stiffnesses from the Classical
Lamination Theory and the subscript 1 denotes the direction parallel to
the applied stress, ©. ; : !

The first failure criterion proposed by Whitney and Nuismer, referred
to as the “point stress criterion,” is based on the assumption that failure
occurs when the stress .da at some fixed distance, d,, away from the edge
of the hole reaches the unnotched tensile strength of the material, o,. This

criterion is given by |

o, (R+dy,0) =0, (9.41)

mv\oogvmasmm@smﬁos@.movmsgm@ﬁmﬁobG.ﬁv\immbmh%m:rmgao
of notched to unnotched strength is o

oN 2
ON _ (9.42)
oo 248 +35! - (Kr -3)(5E¢ -7l
where
R _
&= R+d,

and the notched tensile strength, 6%, of the infinite width laminate is equal
to the applied stress, o, at failure. Whitney and Nuismer noted that for very
large holes §; —1, and the classical stress concentration result,
oy /0y =1/Kr, is recovered. As &; — 0, however, 6% /6o — 1, as expected.

The second failure, criterion proposed by Whitney and Nuismer,
referred to as the “average stress criterion,” is based on the assumption
that failure occurs when the average value of 6, over some fixed distance,
ay, from the edge of the hole reaches the unnotched tensile strength of the

material, 6, This criterion is given by

H R+ap
— 6,(x,0)dx =0y (9.43)

do JR

By combining equation (9.39) and equation (9.43), we find that the ratio
of notched to unnotched strength is :

OoN _ 2(1-8,)
% 2-£-£4+ (K7 -3) (65 - &) (0.44)
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where

R
.~N+Qo

mmn

and oy is again the notched tensile strength of the infinite width laminate.
As in the point stress criterion, the expected limits are recovered for the
cases when &, —1and &, — 0.

Whitney and Nuismer also applied the point stress criterion and the
average stress criterion to the case of the center crack of length 27 in an
:.)&5_.8 anisotropic plate under uniform tensile stress, ¢, as shown in
figure 9.9. They used Lekhnitskii’s [38] exact elasticity solution for the

:.oﬁbm_ stress, o,, along the x axis near the edge of the crack, which is
given by

ox _ ‘NAHR
)\xwlaw)\qs@”l%v

Oy(x,0)= (9.45)

eﬁﬂmﬁ x>gand Ky =0V is the mode I stress intensity factor. Substitu-
tion o.m this stress distribution in the point stress failure criterion given by
equation (9.41) leads to the expression

—==41-&3 (9.46)

where

mmu 4

Q.TQC

Substitution of the stress distribution from equation (9.45) in the average
stress criterion given by equation (9.43) yields

oy - [1-&
Qo - H ..T m\» A@.%.\V
where
m» =1

i
i
|
I
|
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Whitney and Nuismer then reasoned that the effect of crack size on the
measured fracture toughness of the notched laminate could be better

understood by &m@bEm a parameter _

w Ko = qz)\l (9.48)

which is the fracture toughness corresponding to the notched tensile
strength of the infinite width laminate. Substitution of equation (9.46) in
equation (9.48) yields

Kq =0y QAT@ C(949)

for the point stress criterion. Similarly, substitution of equation (9.47) in
equation (9.48) yields

ma(1-84)
=005 9.50
Kq=09 1+&, (9.50)
for the average stress criterion. For vanishly small crack lengths, 4, the
numerical values of both equation (9.49) and equation (9.50) approach the
limit K, = 0. For large crack lengths Ky asymptotically approaches

NAO = QO)\N\H&Q A©m‘$

for the point stress criterion and

Kq = Gox/ 0 /2 (9.52)

for the average stress criterion.

In order to use these stress fracture criteria, it is necessary to do enough
experiments to establish values of d; or 4, that give acceptable predicted
values of of. Whitney and Nuismer observed that the applicability of
these criteria in design depends to a great extent on whether the distance
d, or a4, is constant for all hole or crack sizes in at least a particular laminate
of a particular material system. If d; or 4, was constant for all laminates
of all material systems, the criteria would be even more useful.

Whitney and Nuismer showed that fixed values of d; and 4, in the
criteria gave reasonably good agreement with experimental results for
graphite/epoxy and glass/epoxy laminates in two different laminate con-
figurations [34]. For example, figure 9.10 shows a comparison of the pre-
dictions from the point stress criterion for circular holes (eq. [9.42]) and
the average stress criterion for circular holes (eq. [9.44]) with experimental
data for [0/+45/90],. graphite/epoxy laminates. Similarly, figure 9.11
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FIGURE 9.10

Comparison of predicted and measured failure stresses for circular holes in [0/+45/90],
T300/5208 graphite/epoxy. (From Nuismer, R.J. and Whitney, ].M. 1975, Fracture Mechanics
of Composites, ASTM STP 593, pp. 117-142. American Society for Testing and zmﬁmém_m\
Philadelphia, PA. Copyright ASTM. Reprinted with permission.)
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FIGURE 9.11

Comparison of predicted and measured failure stresses for center cracks in [0/90] 45 Scotchply
1002 E-glass/epoxy. (From Nuismet, R.J. and Whitney, M. 1975, Fracture Mechanics of
Composites, ASTM STP 593, pp. 117-142. American Society for Testing and Materials,
Philadelphia, PA. Copyright ASTM. Reprinted with permission.)
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shows a comparison of the predictions QOMHB the point stress criterion for
center cracks [eq. (9.46)] and the average stress criterion for center .Q.wnwm
[eq. (9.47)] with experimental data for B\ 90],, glass/epoxy laminates.
Note that the same values of 4, and 4, were used for both material systems
and laminate configurations, and that both criteria correctly predict the
effect of the hole size or crack size on the notched strength. The results
for graphite/epoxy are not quite so good as those for glass/epoxy, how-
ever. Even though it could not be concluded from this work that d, and
4, are universal constants, the equations can be used with confidence for
a particular material system under uniaxial loading. It should also be
remembered that these criteria can be used for any through-thickness
discontinuity for which the theoretical stress distribution can be moﬁ.&\
not just for circular holes or straight cracks. Thus, given the relative
simplicity of the equations, the Whitney-Nuismer criteria appear to be of

considerable value to designers.

EXAMPLE 9.2 .

A large plate made from the quasi-isotropic graphite/epoxy SSN.:Q.Q in mxn.:%.w
9.1 has a center crack of length 2a = 6 mm and is subjected to a uniform uniaxial
stress. Compare the predicted fracture strengths of the plate according to the
fracture mechanics criterion, the point stress criterion, and the average stress
criterion. Use the Whitney—Nuismer values of dy and a, from figure 9.10 and
figure 9.11. ‘

Solution. For the fracture mechanics approach we rearrange equation (9.16)
as

Ke o 30 _ 309MPa

= ma  Jx(0.003)

For the point stress criterion we use d, = 0.04 in. = 1.016 mm and 2 =3 mm
in equation (9.46) as

o = oy 1-&3 = (5001/1-[3.0/(3.0+1.016)* = 332 MPa

For the average stress criterion we use 4, = 0.15 in = 3.81 mm and 2 =3 mm
in equation (9.47) as )

=312MPa

- 1-&, 1-(3.0/(3.0+3.81))
ON= 9;\ T+E, aoe,\ 1+(3.0/(3.0+3.81))
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The results from all three analyses are reasonably close, and the fracture
mechanics criterion is slightly more conservative than the point stress
criterion and the average stress criterion in this case. Clearly, the predicted
fracture strengths in all three cases are considerably lower than the un-
notched tensile strength of 500 MPa, and we see that the effects of such
cracks should not be ignored in design.

L e
9.4 Interlaminar Fracture

Delamination or interlaminar fracture is a very important failure mode
in composite laminates, and research activity regarding the onset and
growth of delaminations has continued at a high level for the past several
decades or so. The mechanics of interlaminar stresses and several mechanics
of materials approaches to the prediction of the onset of delamination
were discussed previously in chapter 7. In this section, we will discuss
the use of fracture mechanics approaches, particularly those involving the
use of the strain energy release rate, for the prediction of delamination
growth and failure.

Delamination provides one of the few examples of self-similar crack
growth in composite laminates. A delamination is in effect a crack sepa-
rating adjacent laminae, and the plane of the crack lies in the plane of the
interface between laminae. Like a crack in a metallic material, a delamina-
tion grows in a stable manner until it reaches a critical size, whereupon
further growth occurs in an unstable manner. These characteristics make
interlaminar fracture a prime candidate for the application of fracture
mechanics analysis. On the other hand, as pointed out in chapter 7, inter-
laminar stresses are part of a complex 3-D state of stress that leads to
delamination. While such a complex state of stress at the crack tip inhibits
the effective use of the stress intensity factor approach, it makes the prob-
lem ideally suited for the strain energy release rate approach.

One of the first reports on the use of the strain energy release rate
approach in the analysis of delamination was apparently that of Roderick
et al. [39], who correlated strain energy release rates with the rates of
cyclic debonding between metal panels and composite reinforcement
using an equation similar to equation (9.34). Shortly thereafter, in a critical
review of the applications of fracture mechanics in composites, Kanninen
et al. [40] noted that the strain energy release rate had seen little applica-
tion to composites. This observation led to the use of the strain energy
release rate by Rybicki et al. [41] in an analytical and experimental study
of free-edge delamination in boron/ epoxy laminates. Rather than using

equation (9.21) to calculate the strain energy release rate, Rybicki et al. [41]
emploved a finite element imnlementatinn Af tho cranl ~leossmn fonloast e
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| (a) Before loading

2L

b

_‘ILH\I._

(b) During loading

FIGURE 9.12

;mwmnwsmz for delamination crack growth study (2L = 152.4 mm, W = 25.4 mm). (From Wang,

S5.8. 1979. In Tsai, S.W. ed., Composite Materials: Testing and Design, ASTM STP pp. 674,
| 642-663. American Society for Testing and Materials, Philadelphia, PA. Copyright ASTM.

Reprinted with permission.)

described as the VCCT in section 9.2.3. This appears to be the first appli-
cation of the VCCT to the analysis of delamination cracks, but since that
time there have been numerous reports in the literature regarding the
application of the VCCT to delamination cracks [32].

Wang [42] conducted experimental and analytical studies of delamina-

tion growth in unidirectional glass/epoxy composite specimens. As
shown in fiorire 9.12. delamination crack initHatare weore intradi110od in the
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FIGURE 9.13
Delamination crack growth during fatigue in unidirectional glass/epoxy. (From Wang, S.S.
1979. In Tsai, S.W. ed., Composite Materials: Testing and Design, ASTM STP pp. 674, 642-663.
American Society for Testing and Materials, Philadelphia, PA. Copyright ASTM. Reprinted
with permission.)

specimens by cutting across several surface plies with a razor blade. The
specimens were then subjected to cyclic tension—tension fatigue loading
while the length of the delamination, l4, was measured. Figure 9.13 shows
typical data on delamination crack length versus the number of load
cycles, N, at different stress levels. The delamination growth rate, dl;/dN,
at any number N is the tangent of the curve at that value of N. It is
particularly important to note in figure 9.13 that at a critical number of
loading cycles, N, corresponding to a critical delamination size for a given
stress level, the delamination growth becomes unstable and rapid crack
propagation occurs. Such experiments provided further proof of the
similarity between crack growth in metals and delamination growth in
composite laminates and justified the use of the principles of fracture
mechanics in the analysis of delamination.

Wang [42] used a hybrid stress finite element method to determine the
stress intensitv factors K. and K. for the mived made rrarl ormurth arhinh
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were then correlated with the delamination growth rate by m@sma.o:m
similar to equation (9.33). In this case, due to the mixed mode delamina-
tion, the relationships for the two crack deformation modes are

=L _(AKy) (9.53)

for mode I crack Sumsmbm and

dly b
— ~(AK (9.54)
T~ (A |

for mode II crack shearing, where a and b are empirically determined expo-
nents. Equation (9.53) and equation (9.54), when plotted on a Homl.yom plot,
should form a straight line. The validity of these equations is mos.bﬁbma by
plotting the experimental data on a 3-D log—log plot, as shown in figure 9.14.

1078

S
A

dl,/dN, in/cycle

=
9
w

1076
£

AKG psivin

FIGURE 9.14 . .
Fatigue delamination crack growth rate, dl,/dN, as a function of mixed mode stress Eﬁmsm&\
factor ranges AK;, and AKj; for unidirectional glass/epoxy. (From Wang, 5.5. 1979. In Hmmr
S.W. ed., Composite Materials: Testing and Design, ASTM STP pp. 674, @nwlmmw.. ?BQEn.m:
Society for Testing and Materials, Philadelphia, PA. Copyright ASTM. Reprinted with
permission.)
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The data in figure 9.14 were found to follow a general relationship of the
form

log(dl,/dN) log(AKy)+C, _log(AKy)+C,
(051 B (053 B Ol

(9.55)

where the a;(=1,2,3) are the directional cosines of the line dly/dN =
AAKLAKy) with respect to the three axes, respectively, and C, and C, are
constants associated with the opening and shearing modes, respectively.

Both mechanics of materials and fracture mechanics analyses were used
by O’Brien [43] to study the onset and growth of edge delaminations (see
previous fig.7.36) in graphite/epoxy laminates. O’Brien’s mechanics of
materials approach was discusse previously in chapter 7. A laminate-
stacking sequence of [£30/430/90790], was selected so that edge delamina-
tion growth in tensile specimeng would readily occur under cyclic loading,
and delamination growth was monitored nondestructively. The strain
energy release rate, G, associated with delamination growth was determined
from two different analyses, only one of which will be discussed here. One
method involved the use of the general equation for the strain energy release

rate, equation (9.21). The work done during crack extension, W, was i gnored,
so that

du
G=-T7r (9.56)

The subscript I on G has been dropped here because the edge delami-
nation growth is of the mixed mode type and the strain energy release
rate may have components due to G, Gy, and Gyr- Superposition of the
strain energy release rates for different modes will be discussed later.
Expressing the strain energy in terms of the strain energy density, Ee2/2,
and the volume, V, equation (9.56) becomes

2

where € = nominal longitudinal strain

E = longitudinal Young’s modulus of a laminate partially delaminated
along one or more interfaces

In this case dA = 2Lda and V = 2bLt, where a, b, and t were defined
previously in figure 7.36 and L is the length of the laminate. Substitiitine
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these definitions in equation (9.57), &oﬁm_, with the definition of E from
equation (7.115), O’Brien found that

i
|
|
|
i
|
|
i

2
mum%aﬁm& R  (958)

where E, and Ey Smu.mm defined previously along with equation Q.ﬁ.mv.
Thus, the strain energy release rate is independent of Qm_mggmﬂoﬁ size
and depends only on E, and E4 (which are determined by 9@.53:58
lay-up and the HOnm&oﬁ of the delaminated interfaces), the mqmﬂ\ g, and
the thickness, t. The critical strain, €, at the onset of delamination was
measured for the [+30/430/90/90], laminates and used in equation (9.58)
to determine the corresponding critical strain energy release rate, G.. This
value of G, was then used to predict the critical value, €, at the onset of
delamination in [+45,/-45,/0,/90,], laminates. A comparison of mea-
sured and predicted values of ¢ for different numbers of plies, 1, is shown
in figure 9.15, and the agreement is seen to be very good. -
As previously mentioned, the edge delamination test cmmm vw O’Brien
[43] involved mixed mode crack deformations. He used a ?::m. &ﬂbmi
implementation of a crack closure technique developed by Rybicki et al.
[41] to find the components G, Gy, and Gy The total G was then found
from the superposition relationship

G=G;+Gy+Gn (9.59)
0.008 -
AY
0.006 - \m
‘Data RREN 3. :
€ 0.004 |- Tl g

L Theory
0.002 -

i n=1 n=2 n=3

I 1 )
0 8 : 16 24
Numbér of plies

FIGURE 9.15

Edge delamination onset prediction compared with experimental data for [+45,/45,/0,/90,]
graphite/epoxy, where n =1, 2, 3. (From O’Brien, TK. 1982. In Wmmmammb KL m&:.Un:S.wN
in Composite Materials, ASTM STP 775, pp. 140-167. American mon.wQ for Testing and
Materials, Philadelphia, PA. Copyright ASTM. Reprinted with permission.)
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N

In this case Gy turned out to be negligible. Equation (9.59) is valid when
the plane of the crack and the plane of crack extension coincide with a
principal axis of material property symmetry [26].

O’Brien also found excellent correlation between delamination growth
rate, da/dN, and the maximum strain energy release rate, G,,,, by using
an equation of the form

% = CGhax _Y (9.60)

where ¢ and B are’empirically determined constants. Figure 9.16 shows a
comparison of predictions from this equation with experimental data, and
the agreement is excellent.

As described above, the experiments of Wang [42] and O’Brien [43]
involved mixed mode delamination, and the different components of the
stress intensity factor or the strain energy release rate corresponding to
modes L, IT, and Il had to be determined separately by using finite element
techniques. In order to understand delamination better and, consequently,
the best ways to improve interlaminar fracture toughness, there is an
obvious need for delamination experiments which make it possible to
isolate a single mode of crack growth. In the following paragraphs the
most widely used experiments for single-mode measurement of interlam-
inar strain energy release rates will be briefly discussed, but details of the
techniques will be left for chapter 10 on mechanical testing of composites.

1x107*
3 5
3 _
£ 5x10 o )
m %Hn@.:»x
=
N

IX109 o . .

L )
50 100 500

QENN‘ M\BN

FIGURE 9.16 _ .

Power law curve fit for da/dN as a function of Gy for [£30/30/90/90],, graphite/ epoxy.
(From O'Brien, TK. 1982. In Reifsnider, K.L. ed., Damage in Composite Materials, ASTM STP
775, pp. 140~167. American Society for Testing and Materials, Philadelphia, PA. Copyright
ASTM. Reprinted with permission.)
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(b) m:m-bogr&, flexure
(ENF) specimen

(a) Double cantilever beam
(DCB) specimen

FIGURE 9.17
DCB and ENF specimens.

Mode I delamination has always been of interest because of the obvious
weakness of the interlaminar region in through-thickness tension. Perhaps
the most widely used mode I interlaminar fracture test method is the
double cantilever beam (DCB) test, which was originally developed for
studying fracture of adhesively bonded joints and then later adapted for
interlaminar fracture of composite laminates [44-51]. A DCB specimen is
shown in figure 9.17(a). In the DCB test the specimen is loaded transversely
as shown in figure 9.17(a), so that mode I crack opening delamination
occurs along the middle plane. The required test data are taken and the
delamination Gy, is calculated by using one of several different forms of
equation (9.21) or equation (9.27), as described later in chapter 10. Typical
values of delamination Gy, for several advanced composites, as determined
by DCB tests, are tabulated in table 9.1. The results of some of the attempts
to improve the interlaminar fracture toughness are seen in table 9.1, and
these methods will be discussed in more detail later in this section.

Although mode I delamination has received considerable attention in
the literature, there is increased interest in mode II delamination because
of its apparent relationship to impact damage tolerance of laminates [52].
As mentioned in section 7.8.2, transverse impact can cause internal cracks
and delaminations that may be difficult to detect. If the laminate is subse-
quently subjected to in-plane compressive loading, such cracks and delam-
inations can lead to buckling and reductions of in-plane compressive
strength (fig. 7.39). There is evidence that the so-called compression after
impact strength is improved by increasing the mode II critical interlaminar
strain energy release rate, Gy, [52]. One of the most popular tests for
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TABLE 9.1

Critical Interlaminar Strain Energy Release Rates, G, for Several Advanced
Composites, as Determined by DCB Tests

. y m <

Fiber/Matrix Combination Lay-up Jim? sz?\mzc Source

‘T-300/5208 ) . [0]4 87.6(0.50) (1)
Graphite/epoxy :

AS-1/3502 . - [0, - 140.1(0.80) @
Graphite/epoxy

AS-4/3502 [0, 161.1(0.92) (2)
Graphite/epoxy

T-300/ /.\wmﬁw . (0154 . 71.8(041) )
Graphite/bismaleimide

AS-1/polysulfone [0y, 585.0(3.34) . @)
Graphite/polysulfone .

T-300/976 O.Emv::m /epoxy Woven, fabric, 282.0(1.61) (2)
bidirectional cloth 10 plies . .

AS-4/3501-6 [0} 198-254 H.mHI,H 45)2
Graphite/epoxy “ : A o : @

T-300/F-185 [0] 1880-1500(10.7-8.6)> -
Graphite/epoxy “ A 9 @

AS-4/PEEK Graphite/ [0]46 2890-2410(16.5-13.8)c ®)
polyetheretherketone

Dzm:mm of Gy, is given for crack velocities of 0.05-49.0 mm/ s, respectively. Thus, G
Increases with increasing strain rate for this material. The matrix is Hercules wmowlm_n
a standard prepreg-type epoxy resin [47]. '
bRange of Gy is given for crack velocities of 0.01-21.0 mm/ sec, respectively. Thus, G
mmnnmmmmm with increasing strain rate for this material. The matrix is Hexcel m.wmm_n
which'is an elastomer-modified and toughened epoxy [48]. \
‘Range of Gy is given for stable and unstable crack growth, respectively [49].

Source: (1) Wilkins, D.J., Eisenmann, J.R., Camin, R.A., Margolis, W.S., and Benson, R.A.
1982. In Reifsnider, K.L. ed., Damage in Composite Materials. ASTM STP 775, pp. Hmmlumw.
American Society for Testing and Materials, Philadelphia, PA. (2) Whitney, .M., mﬂ.oibm:m\
CE., HQEQ Hoogsteden, W. 1982. Journal of Reinforced Plastics and Composites, 1, Noulmuww
3 2&5\ A.A. and Daniel, .M. 1985. In Johnson, W.S,, ed., Delamination and Debonding
of Materials. ASTM STP 876, pp. 336-348, American Society for Testing and Materials
Philadelphia, PA. (4) Daniel, LM., Shareef, 1., and Aliyu, A.A. 1987. In Johnston, N J. mm.\
Toughened Composites. ASTM. STP 937, pp. 260-274, American Society for Testing mzm\
Materials, Philadelphia, PA. (5) Leach, D.C., Curtis, D.C., and Tamblin, D.R. 1987. In
Johnson, N.J., ed., Toughened Composites. ASTM STP 937, pp. 358-380, American Society
for Testing and Materials, Philadelphia, PA. Copyright ASTM. Reprinted with permission.

Also .mno.E Whitney et al. Copyright Technomic Publishing Company. Reprinted with
permission.
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measurement of the critical strain energy release rate for mode I delami-
nation is the end-notched flexure (ENF) test. An ENF specimen is shown
in figure 9.17(b). The strain energy release rate analysis of the ENF speci-
men, which has been improved and used by several investigators [52-57],
will be discussed in more detail in the review of test methods in chapter 10.
Once the capability to measure G;. and Gy, separately had been developed,
it became possible to evaluate various interactive criteria for mixed Bo.am
delamination growth. Although there is no universal agreement on which
mixed mode delamination growth criterion is the most accurate, one of the
simplest and most widely used of these criteria is given by the equation

@sm::n . @..S
h@?u +h0zn H A V

where Gy, Gy, = strain energy release rates for delamination growth in
modes I and II, respectively.
Gy Gy = critical strain energy release rates for delamination growth in
. modes I and II, respectively
m, n = empirically determined exponents.

Good agreement between the predictions from this equation and exper-
imental data has been reported by O’Brien et al. [58] and Johnson and
Mangalgiri [59] when m = n = 1. O’Brien et al. [58] investigated the use
of equation (9.61) for graphite/epoxy laminates having various lay-ups,
and predictions are compared with experimental data from the edge
delamination test [43] in figure 9.18. Some previous data from Murri and

. ,
3 (+30/-304/+30/90,),
O (+30/—30,/+30/90),
o~ N - N
R} A (#35/0/90),.
nm Gy +m= ~ @ (35/-0/—35/90),
w1k Gy, G 0),,ENF test
& 1 »% ........ Ie c / v ,A n
0= . 1 t { LT ©Q 1 !
0 1 2 3 4 5 6 7

Gy in-Ib/in?

FIGURE 9.18

Comparison of predictions from-equation (9.61) with mixed mode fracture data for .H.mcm.v\
5208 graphite/epoxy laminates. (From O’Brien, TK., Johnston, N.J., Raju, 1.5., Morris,
D.H., and Simonds, R.A. 1987. In Johnston, N.J. ed., Toughened Composites, ASTM STP 937,
pp. 199-221. American Society for Testing and Materials, Philadelphia, PA. Copyright
ASTM., Reprinted with permission.)
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Comparison of predictions from equation (9.61) with mixed mode fracture data for
several-matrix resins. (From Johnson, W.S. and Mangalgiri, P.D, 1987. In Johnston, N.J.
ed., Toughened Composites, ASTM STP 937, pp. 295-315. American Society for Testing and
Materials, Philadelphia, PA. Copyright ASTM. Reprinted with permission.)

O’Brien [60] are included in figure 9.18. Johnson and Mangalgiri tested
various matrix resins using the DCB, ENF, and several other methods,
and comparisons of the predictions of equation (9.61) with experimental
data are shown in figure 9.19. On the other hand, Ramkumar and Whit-
comb [61] have concluded that equation (9.61) is not a reliable delamina-
tion growth criterion for graphite/epoxy.

The measurement of mixed mode interlaminar fracture toughness (in
particular, mixed Mode I and Mode II) has been the subject of numerous
publications, and many methods have been proposed. One method,
known as the mixed mode-bending test, was originally developed by
Reeder and Crews [62] and later evolved as an ASTM standard [63]. This
method will be discussed in more detail in chapter 10. :

In recent years much research has gone into the improvement of inter-
laminar fracture toughness of composites, and the results of some of this
research can be seen in the G,, data of table 9.1. For example, since the
interlaminar region consists primarily of matrix material, there has been
considerable interest in the use of tough matrix materials. Significant
improvements in the composite G,. have been obtained by using tough
matrix materials such as polysulfone [46], elastomer-modified epoxy [48],
and polyetheretherketone [49]. It is not clear, however, that additional
increases in resin matrix toughness will necessarily be translated into
correspondingly higher composite toughness [50,51]. Figure 9.20 from
Hunston et al. [51] shows that for resin G,. values less than about 0.4 kT /m?2
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FIGURE 9.20
Mode I interlaminar strain energy release rates for steady crack growth in graphite fiber
composites as a function of the neat resin strain energy release rates for several matrix resins.
(From Hunston, D.L., Moulton, R.J., Johnston, N.J., and Bascom, W. 1987. In Johnston, N.J.
ed., Toughened Composites, ASTM STP 937, pp. 74-94. American Society for Testing and
Materials, Philadelphia, PA. Copyright ASTM. Reprinted with permission.)

substantial gains in the corresponding graphite fiber composite, G, are
obtained by increasing the resin Gy. For resin G, values greater than about
0.4 kJ/m?, however, the gains in the composite G, from additional increases
in resin Gy, are not nearly as great. Scanning electron microscope studies
of delamination fracture surfaces have shown that increased toughness of
the matrix causes an increase in the delamination fracture toughness by
increasing the size of the plastic zone ahead of the crack tip [50,51]. Further
increases in the size of this plastic zone are apparently prevented by the
constraint of the fibers in the adjacent plies, however [50,51]

A variety of other methods for increasing interlaminar fracture tough-
ness of laminates have been investigated. For example, thin films or “inter-
leaves” made of a tough polymer resin can be embedded between the
fiber-reinforced resin laminae [64-68]. Coating the fibers with a thin, tough
polymer film [69-70], hybridization of different fiber types [71-72], and
stitching of adjacent laminae [73] have also been investigated. A critical
review of methods for improving fracture toughness of composites
through interface control has also been published [74]. The so-called
Z-pinning approach for improving delamination resistance involves the
insertion of metal or composite pins through the thickness (i.e, in the z
direction) of the laminate in the same way that a nail would be driven
into wooden boards to hold them together [75-77]. Three-dimensional
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Mlustration of some mechanical means of improving interlaminar fracture toughness.

braiding essentially eliminates delamination as a failure mode, since there
are no distinct plies to separate [78,79]. However, the in-plane strength
and mmm:mmm of the braided composite will not be as great as the corre-
sponding properties of a laminate constructed of unidirectional plies.
Hrm.mm and other mechanical means of improving delamination resistance
are illustrated schematically in figure 9.21. Of particular relevance here is
a special issue of a well-known composites journal that has been devoted
to papers on advances in statics and dynamics of delamination [80]. Unfor-
tunately, improvements in interlaminar toughness often come at the
expense of degradation in other properties such as hot/wet strength and
stiffness or viscoelastic creep response. Although significant progress has
been made in understanding delamination, much is still to be learned.
The study of delamination continues to be a very active research topic
and the reader is encouraged to consult recent journal publications m:nm
conference proceedings for the latest findings.

l

9.5 Problems

1. The thin-walled tubular shaft shown in figure 9.22 is made of
wmsmogg oriented, short-fiber-reinforced metal matrix compos-
ite. The shaft has a longitudinal through-thickness crack of length
2a and is subjected to a torque T =1 KN-m. If the mode IT fracture

ﬁo.:mgmmm of .&m composite is Ky = 40 MPa-m!/2, determine the
critical crack size for calfociietaining mranl mametl

499
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FIGURE 9.22 !
-.. Thin-walled tubular composite shaft with longitudinal crack.

R

2. (a) Determine the allowable torque, T, if the crack Hm_pm.? for the
shaft in figure9.22 is 22 = 10 mm. Use the same dimensions
and fracture toughness values that were given in problem 1.

(b) If the uniaxial yield stress for the shaft material is Y = 1200

MPa, and the crack is ignored, compare the answer from part

: (a) with the allowable torque based on the Maximum Shear
Stress criterion for yielding.

3. The tube shown in figure 9.22 is subjected to an internal pressure,
p = 5 MPa, instead of a torque. Neglecting the stress along the
longitudinal axis of the tube, and assuming that the mode I frac-
ture toughness is K. = 10 MPa-m'/?, determine the critical crack
size. ,

4. As in problem 3, assume that the tube in figure 9.22 is subjected
only to an internal pressure and neglect the longitudinal stress.

(a) Determine the allowable internal pressure, p, if the crack
length in figure 9.22 is 22 = 10 mm. Use the same dimensions
and fracture toughness values that were given in problem 3.

(b) Using the yield stress from problem 2 and ignoring the crack,
compare the answer from part (a) of this problem with the
allowable internal pressure based on the Maximum Shear
Stress criterion for yielding.

5. Use the Whitney—-Nuismer average stress criterion to estimate -

the allowable internal pressure for problem 4 if the unnotched
tensile strength of the material is 6, = 1500 MPa and the parameter
A, =3 mm. _
6. Repeat problem 5 using the Whitney-Nuismer point stress crite-
rion and the parameter d, = 1 mm.
7. The 920-mm diameter, 1.6-mm-thick spherical pressure vessel in
figure 9.23 is a filament wound quasi-isotropic composite lami-
nate with a single 50-mm diameter entrance hole. The vessel
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Mean diameter = 920 mm

FIGURE 9.23
Spherical composite pressure vessel with single crack at the edge of entrance hole.

material has a mode I fracture toughness of K;, = 25 MPa-m!/2, If
the vessel is to contain gas at a pressure of 0.69 MPa, what is the
critical length, a,, of a single crack emanating from the edge of
the hole? The Bowie equation (eq. [9.38]) may be used for this
problem; and the function f(a/R) for a biaxial stress field and a
single crack of length, 4, at the edge of a hole of radius, R, is
tabulated below for several values of a/R.

a/R f(a/R) a/R f(a/R)

0.1 198 08 1.32
0.2 1.82 1.0 122
0.3 1.67 1.5 1.06
0.4 1.58 2.0 1.01
0.5 1.49 3.0 0.93
0.6 1.42 5.0 0.81

8. If the quasi-isotropic graphite/epoxy laminate in example 7.5 has
a centrally located 25-mm-diameter hole, determine the ratio of
notched to unnotched uniaxial strength for the laminate using the
Whitney-Nuismer average stress criterion. The parameter ,=4 mm.

9. A 3-mm thick composite specimen is tested as shown in
figure 9.4(a), and the compliance, s =u/P, as a function of the half-
crack length, 4, is shown in figure 9.24. In a separate test the
critical load for self-sustaining crack propagation, P, is measured
for different crack lengths, and the critical load corresponding to
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FIGURE 9.26 -
Cracked laminate subjected to bending for problem 11.
FIGURE 9.24 . . e 9
Variation of specimen compliance with crack length for problem 9. 11. A unidirectional [0] composite beam of Hobm:smg& modulus E,,
thickness b, and depth % has a crack of length a and is loaded by
the equal and opposite forces P as shown in figure 9.26. Determine
Gy the Mode I strain energy release rate for this crack. Your
answer should be expressed in terms of the given parameters.

a crack length 2a = 50 mm is found to be 100 N. Um\.ﬁmﬁasm the
critical mode 1 strain energy release rate, G

10. A laminated plate consisting of the [90/0/90]; AS/3501 _md_m:m.ﬁ
described in example 7.10 has a central hole as m?.us\b. in
figure 9.25. The plate is loaded uniaxially along the 0° &:umnﬁob
as shown. Using the Whitney—Nuismer average stress criterion

| for stress fracture with an unnotched laminate tensile strength of

, 0, = 500 MPa, and an averaging distance 4, = 10 mm, plot the
notched tensile strength o5 as a function of hole radius R. What
are the maximum and minimum theoretical values of the notched
tensile strength, and under what conditions do they occur?

L =
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Mechanical Testing of Composites
and Their Constituents

3

T

10.1 Introduction

MM:WMM@MW of M&m.nﬂmﬁmu is to review briefly the most widely used
mechanical testing of composite material i i
uents. In previous chapters, the e s has been on the denle et
: 3 mphasis has been on the d
of analytical models for mechani i ot
ical behavior of composit i
usefulness of such models de i Fvailability of
ness pends heavily on the availabili
sured intrinsic mechanical dditon, s
property data to use as input. In addiii
aspects of mechanical behavior of ¢ i o Compler fome
cts : omposites are so complex that t
MMMMW%:% of proper analytical modeling is questionable, msm the mxvmww |
o mm %%Mwwmnr may Wm the only acceptable solution. Much of our knowl-
€ special nature of composite behavi i
from experimental observati nt of mecheerived
: ations. The measurement of hani
erties is-also an important elemen i nirol andt qniy
t of the quality control and i
assurance processes associated with t osi Tt
rinls sl poocesses he manufacture of composite mate-
Due to the special characteristi
. eristics of composites, such as anis
. , otro
MMMM%HMMMMQP msm the M\wﬁma\ of possible failure modes, it has _omww
€ mechanical test methods that are used f, : i
metallic materials are usuall i compositos, T doy
y not applicable to composi
development and evaluatio  compositen hone
, n of new test methods for composi
| : : osites have
WMmMM MM MMMWE%Mm Mo wwﬂ mmb&oﬂ challenge for the mxﬁmigﬁﬂﬁ mechan-
- 1he technology associated with composit
and test equipment has become i sticated g that sommcines
. Just as sophisticated as that i
with the correspondin i oot mothods
v g analytical methods. Many of th
have evolved into standa . bted by ASTM e
. rds that have been adopted b
tional, formerly the American Soci be and Matorin
, ociety for Testing and Materi
ASTM standards for testin et o e
: g of polymer matrix and metal i
Ites and their constituents are compi i T™ Volume To0s
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[1], while the standards for i i d o e 150
], testing ceramic matrix composi
e the . posites are com-
piled mainly in ASTM Volume 15.01 [2]. The emphasis in this chapter will




