Effective Moduli of a Continuous
Fiber-Reinforced Lamina

3.1 Introduction

In the previous chapter, the concept of an effective modulus was found
to be essential to the development of practical engineering stress—strain
relationships for composite materials. Recall that for some representative
volume element (RVE) in a heterogeneous composite, the volume-aver-
aged stresses can be related to the volume-averaged strains by the effective
moduli of an equivalent homogeneous material. Chapter 2 was primarily
concerned with the development and manipulation of macromechanical
stress—strain relationships involving the lamina effective moduli, how-
ever, and the roles of lamina constituent materials were not examined in
detail. In this chapter, we will discuss various micromechanical models
for predicting the effective moduli of continuous fiber-reinforced laminae
in terms of the corresponding material properties, relative volume con-
tents, and geometric arrangements of the fiber and matrix materials. Cor-
responding models for predicting strength and hygrothermal properties
will be presented in chapter 4 and chapter 5, respectively. Micromechanics
of discontinuous fiber composites, including nanocomposites, is covered
in chapter 6.

Before proceeding further, it is appropriate to discuss briefly the term
“micromechanics.” To a materials scientist, the term may imply the study
of mechanical behavior at the level of molecular or crystal structures. Since
the behavior of composite material structures such as laminates is referred
to as “macromechanics,” it has been suggested that, perhaps, mechanics
of composites at the constituent material level should be referred to as
“minimechanics” [1]. In the present context, and in much of the compos-
ites literature, however, the analysis of effective composite properties in
terms of constituent material properties is called “micromechanics.” The
terms “structure-property relationships” and “effective modulus theories”
are also used in the literature. Many analytical approaches have been
developed over the years, and comprehensive literature surveys have
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_ummsm:v:wrmmvv\mrmgwmmsmmmbamnwﬁ. TB\ ﬂrimﬁmsmmsmw&mmmzsE\
and Halpin [4]. ‘ V

Micromechanical analyses are based on either the mechanics of mate-
rials or the elasticity theory. In the mechanics of materials approach,
simplifying assumptions make it unnecessary to specify the details of the
stress and strain distributions at the micromechanical level, and fiber-
packing geometry is generally arbitrary. The theory of elasticity models
involves the solution mo%. actual stresses and strains at the micromechanical
level, and fiber-packing geometry is taken into account. The elasticity
approach often involves numerical solutions of the governing equations
because of the complex geometries and boundary conditions. Although
the simplifying assumptions used in the mechanics of materials approach
violate some of the laws of elasticity theory, some of the results are suffi-
ciently accurate that they are often used in design. A third category
involves empirical solutions that are based on curve-fitting to elasticity
solutions or experimental data, and some of these equations are often
used along with the mechanics of materials equations to formulate a
complete set of simple lamina design equations. . .

Ideally, micromechanical models should enable us to answer quickly
“What if?” questions regarding the effects of various fiber/matrix com-
binations without actually fabricating and testing the composites in
question. On the other hand, experience has shown that there are pitfalls
in such an approach and that there is no substitute for experimental
‘characterization. Experimental data on the constituent material prop-
erties are required as input to the models, and similar data on the
corresponding composite properties are required in order to assess the
validity of the models. Indeed, as we will see later, some properties
such as fiber transverse moduli are usually inferred from the mictome-
chanical model and other measured properties because of the difficulty
of direct measurement. Once a micromechanical model has been shown
to be sufficiently accurate by comparison with experiment, however, it
can become part of a powerful design methodology that enables us to
design the material as well as the structure. Aside from design impli-
cations, micromechanical analysis and experimental characterization
are both essential if we are to understand better “how composites
work.” , v ; ‘

One of the key elements in micromechanical analysis is the character-
ization of the relative volume or weight contents of the various constit-
uent materials. We will find that the micromechanics equations involve
constituent volume fractions, but actual measurements are often based
on weight fractions. Measurements are discussed later, but the relation-
ships between volume fractions and weight fractions will be presented
here.
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For any number of constituent materials, 7, the sum of the constituent
volume fractions must be unity: .

1

Y ovi=1 (3.1)

i=1

érm.u.m v; = V;/V, = volume fraction of the ith constituent, V, = volume of
the ith constituent, V, = total volume of the composite. _
In many cases this equation reduces to

Vg + U + 0y =1 3.2)

Swmwm Vg, Yy, and v, are the voluie fractions of the fiber, matrix, and
voids, respectively. The corresponding equations for weight fractions are

D= | B X

and

Wit Wy =1 o (34)

where w, = W,/ W,, w; = Wy/W,, w,, = W,/W,, and W,, W,, W, and W, are
the weights of the ith constituent, fibers, matrix, and composite, respec-
tively. Note that the weight of the voids has been neglected here. Substi-
tuting the product of density and volume for weight in each term of

equation (3.3) and equation (3.4) and solving for the composite density,
we get the “rule of mixtures”:

Pe = M PiV; (3.5)
i=1
or

Pc= Pros + PmVm A@.mv
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where p;, p;, P, and p are the densities of ﬁwrm ith constituent, fiber, matrix,
and composite, respectively. Similarly, equation (3.1) and equation (3.2)
can be rearranged as ;

3.7)

and

L
- Agm\bmv.TASB\DB

38)

Pe

mQSm*wosﬂm.Nvoms mywovm HmmﬁmsmmgmoEmﬁ\&mlxoﬁm.m&obomsg
calculated from measured weights and densities: :

We/pe)+ (W, = We)/ P
W./pc

Vy=1- ( (3.9)

Typical autoclave-cured composites may have void fractions in the
range 0.1 to 1%. Without vacuum bagging, however, volatiles trapped in
the composite during the cure cycle can cause void contents of the order
of 5%.

In order to get some idea as to the range of constituent volume frac-
tions that may be expected in fiber composites, it is useful to consider
representative area elements for idealized fiber-packing geometries such
as the square and triangular arrays shown in figure 3.1. If we assume
that the fiber mwmombwy s, and the fiber diameter, d, do not ormdm.,m along
the fiber length, then the area fractions must be equal to the volume
fractions. Indeed, optical determination of area fractions is possible from

FIGURE 3.1
Representative area elements for idealized square and triangular fiber-packing geometries.
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micrographs. The fiber volume fraction for the square array is found by
dividing the area of fiber enclosed in the shaded square by the total area
of the shaded square [5]:

Vg =—| — Amw.wOv

Clearly, the maximum theoretical fiber volume fraction occurs when s = d.
In this case, o

T
V¢ max H M =(.785

A similar calculation for the triangular array shows that

2

T (d
Vv =—r| — 3.12
f N)\W s : A v

and when s = d, the maximum fiber volume fraction is

; n
O = = 0.907 (3.13)
e J3

The close packing of fibers required to produce these theoretical limits
is generally not achievable in practice, however. In most continuous fiber
composites, the fibers are packed in a random fashion as shown in
figure 3.2, and the fiber volume fractions range from 0.5 to 0.8. In short
fiber composites, fiber volume fractions are usually much lower due to
processing limitations (e.g., the viscosity of the fiber/resin mixture must
be controlled for proper flow during molding) and the random orientation
of fibers. Since fiber-packing geometry is never entirely repeatable from
one piece of material to another, we should not expect our micromechanics
predictions to be exact.

The random nature of the fiber-packing geometry in real composites such
as the one shown in figure 3.2 can be quantified by the use of the Voronoi
cell (fig. 3.3) and a statistical distribution describing the Voronoi cell size
[6]. Each point within the space of a Voronoi cell for a particular fiber is
closer to the center of that fiber than it is to the center of any other fiber. If
we can approximate the Voronoi cell in figure 3.3(a) as an equivalent square

area as shown in figure 3.3(b) and figure 3.3(c), then equation (3.10) can be
used to describe the relationshin hetueen the fiher diamotar 4 the £l
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FIGURE 3.2
Photomicrograph of carbon/ m@ox% composite showing actual fiber-packing geometry at
400 x magnification.

(b)

FIGURE 3.3
Voronoi cell and its approximation, (From Kmb@ H. and Colton, ].S: 1994. Polymer Composites,
51, 34-41. With permission.)
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FIGURE 3.4

Typical histogram of Voronoi distances and corresponding Wiebull distribution for a ther-
moplastic matrix composite. (From Yang, H. and Oo:o? J.S. 1994. Polymer Composites, 51,
34-41. With permission.)

v

volume fraction v;, and the Voronoi cell size s. Yang and Colton [6] have
used digital image processing to show that the Wiebull distribution

p-1 B

\Amvn@ S| exp| | 22X

>
sl 75 when s >y

5 (3.14)

f(s)=0 otherwise

adequately characterizes the probability density function for the Voronoi
cell size for several composites, where B, 8, and y are the Wiebull param-
eters associated with the shape, scale, and location of the distribution,
respectively. A typical histogram of measured Voronoi distances for a
thermoplastic Bm.ﬁx,nogﬂoﬂﬁ and the ooﬁmm@osn:sm Wiebull distribu-
tion from regression analysis are shown in figure'3.4.

EXAMPLE 3.1 .

A carbon/epoxy composite %WS.EW: has dimensions of 2.54 cm x 2.54 cm % 0.3 cm
and a weight of 2.98 g. After “resin digestion” in an acid solution, the remaining
carbon fibers weigh 1.863 g. From independent tests, the densities of the carbon
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fibers and epoxy matrix materials are found to be 1.9 and 1.2 g/cm?, respectively.
Determine the volume fractions of fibers, epoxy matrix, and voids in the specimen.

3.2 mEEmb::.% Mechanics of Materials Models

Solution. The composite density is The objective of this section is to present elementary mechanics of mate-

rials models for ?,mo:nﬁzm four independent effective moduli of an ortho-
tropic continuous fiber-reinforced lamina. In the elementary mechanics of
materials approach to micromechanical modeling, fiber-packing geometry
is not specified, so that the RVE may be a generic composite block con-
sisting of fiber material bonded to matrix material, as shown in figure 3.5.
More sophisticated mechanics of materials models, which do consider

| | 2988 =154g/cm®

| 2 Per= - (254)2.54)0. 35

From equation (3.9), ﬂ_rm void fraction is

(1.863 /1.9)+(2.98 ;@\S

vy =1 =0.0122 or 1.22% fiber-packing geometry, will be discussed later.
2.98/1.54 EEREE S ,
E ti 3.2), \ "
rom equation (3.2) Matrix \ 2 Ay = total area
W D+ =10, =1.0—0.0122 = 0.988 \ Biber L1
! : i mxn fiber area
Then, from equation (3.6), rs E»Ex
o 77
1.54 =190 + H.NAo.mmmleL
) . A, = i
: Therefore, the fiber volume fraction is. : " B&.:x area
(a) Representative volume element
;¢ = 0.506 or 50.6% /
and the matrix volume fraction is e \ —

Oc1

(b) Longitudinal normal stress

V= 0.988—0.506 = 0.482 or 48.2%

2

™~
al

EXAMPLE 3.2

Assume that the carbon fibers in the specimen from example 3.1 have been
uniformly coated with an epoxy “sizing” of thickness t before bonding of the
fibers and matrix together to form a unidirectional composite. If the bare fibers
have a diameter d = 0.0005 in (0.0127 mm) and the coated &.wma are assumed to
be packed together in the tightest namm:&m m&:ﬁm array, what is the thickness of
the mNNSwv

(c) Transverse normal stress

e 12

Solution. The fiber spacing, s, which must be equal to the coated fiber
diameter, d,, can be found from equation (3.10):

(d) In-plane shear stress

nd>  |m(0.0005)* -
—d, = [T (MO0009) b 500623 in (0.0158 mm
4o, "\ 4(0508) in( )

FIGURE 3.5
RVE and simple stress states used in elementary mechanics of materials models,

The thickness is then t = (d. - d)/2 =0.0000615 in (0.00156 mm).
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The constituent volume fractions in the RVE are assumed to be the same
as those in the actual composite. Since it is assumed that the fibers remain
parallel and that the dimensions do not change along the length of the
element, the area fractions must equal the ToEBm fractions. Perfect bond-
ing at the interface is assumed, so that no slip occurs between fiber and
matrix materials. The fiber and matrix materials are assumed to be linearly
elastic and _rogommbmwcm. The matrix is mwmm:BmQ to be isotropic, but the
fiber can be either isotropic or orthotropic. Following the concept of the
RVE, the lamina is asstmed to be macroscopically homogeneous, linearly
elastic, and orthotropic. .

Micromechanics eqliations will be developed from either equilibrium
or compatibility relationships and assumptions about either stresses or
strains in the RVE that has been subjected to a simple state of stress. Since
the mechanics of materials approach does not require the specification of
the stresses, strains, and displacements at each point, we only deal with
the corresponding volume-averaged quantities. Finally, since it is
assumed that the stresses, strains, displacements, and RVE dimensions

do not change along the lerigth, we can just use area averages:

_ 1 1

nlﬂT&?MTg (3.15)
MIM._.m&TFTi (3.16)
TV TA .
W|w7g<1w._.m§ (3.17)
Y A .

where the overbar denotes an averaged quantity, and o = stress, £ = strain,
8= displacement, V = volume, and A = area associated with the face on
which loading is applied.

The volume averaging (or area averaging) may occur over the com-
posite lamina, the fiber, or the matrix, and the corresponding parame-
ters will be identified by using subscripts as defined in the following
derivations. :

3.2.1 Longitudinal Modulus

If the RVE in figure 3.5(a) is subjected to a longitudinal normal stress, G ,
as shown in figure 3.5(b), the response is governed by the effective longi-
tudinal modulus, E,. Static equilibrium requires that the total resultant
force on the element must equal the sum of the forces acting on the fiber
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and matrix. Combining the static' equilibrium condition s&.r. equation
(3.15), we get

Cauh = G+ mw:;\w:: Amw‘_mv

where subscripts ¢, f, and m refer to composite, fiber, and matrix, respec-
tively, and the second subscript refers to the direction. Since area fractions
are equal to the corresponding volume fractions, equation (3.18) can be
rearranged to give a “rule of mixtures” for longitudinal stress:

a1 =OuVe + BV (3.19)

Under the assumptions that the matrix is isotropic, that the fiber is
orthotropic, and that all materials follow a 1-D Hooke’s law (i.e., Poisson
strains are neglected),

Ca=E&1; On=En€;  GOm =EnEm (3.20)

and equation (3.19) becomes

" E1€q = Eyy€0s + En €10 . (3.21)

Double subscripts are used for the fiber modulus since the fiber is
assumed to be orthotropic. That is, the longitudinal fiber modulus, E,, is
not necessarily equal to the transverse fiber modulus, E;,. For example,
carbon and aramid fibers exhibit orthotropic behavior, whereas glass and
boron are practically isotropic. For the isotropic case, it is a simple matter
to let Ey = Ej,. Since the matrix is assumed to be isotropic, the matrix
modulus, E,, does not need a second subscript.

Finally, the key assumption is that, due to perfect bonding the average
strains in the composite, fiber, and matrix along the 1 direction are equal:

€1 =81 = Epy : (3.22)

Substitution of equation (3.22) in equation (3.21) then yields the rule of
mixtures for the longitudinal modulus: .

E; = Eqv¢ + Epvp, (8.23)

This equation predicts a linear variation of the longitudinal modulus with
fiber volume fraction, as shown in figure 3.6. Although simple in form,
equation (3.23) agrees well with experimental data from ref. [7] (fig. 3.6[b])
and is a useful design equation. The validity of the key assumptions
leading to this equation will now be examined by using a strain energy
approach.
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FIGURE 3.6

Variation of composite moduli with fiber volume fraction (a) Predicted E, and E, from
elementary mechanics of materials models, (b) Comparison of predicted and ‘Bmmmsamm E,
for E-glass/polyester. (From Adams, R.D., 1987. Engineered Materials Handbook, Vol. 1,
Composites, 206-217.)

Further insight into the micromechanics of the longitudinal .yommgm case
is possible by using a strain energy approach. Under the given state of
stress, the total strain energy stored in the composite, U,, can be repre-
sented as the sum of the strain energy in the fibers, Uy, and the strain
energy in the matrix, U,,: ,

Ue = Ui+ Um , A@N#v

Again making the mechanics of materials assumption that the stresses
and strains are uniform over the RVE and using equations (3.20), the strain
energy terms can be simplified as

:n = F Qnumﬁﬁma\ = PMHMn:\n . AWNWNV
2 Jy, 2

Ur=1 | onendV = LEseAV: © (325D)
2 Jy 2

:3 = 1 : Qn&m:ﬁgd\.” FNBHMM—;\B AwNmnv
2 Jy, 2
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In this approximation, the strain energy due to the mismatch in Poisson
strains at the fiber/matrix interface has been neglected (recall the assump-
tions leading to equations [3.20]). This neglected term has been shown
to be of the order of the square of the difference between the Poisson’s
ratios of the fiber and the matrix, so the approximation is justified [8]. It
is easily shown that substitution of equation (3.25) in equation (3.24), along
with the assumption of equal strains from equation (3.22), again leads to
the rule of mixtures given by equation (3.23). But the strain energy
approach also allows us to ask, “What happens if the assumption of equal
strains is not made?” In order to proceed, let the stresses in the fibers and
the matrix be defined in terms of the composite stress as follows:

Gn=m0u; Om =b0qy (3.26)

where 4, and b, are constants. Substitution of equation (3.26) in the rule
of mixtures for stress, equation (3.19), leads to

V¢ + @HCS =1 ' ) AmwNﬂv

Substitution of equation (3.26), equation (3.20), and equation (3.25) in
equation (3.24) leads to

1 2 Cm,, 2 Om
—=a; ——+b
mH “ ma ! m_z

(3.28)

Note that we did not assume equal strains in fibers and matrix in order
to derive these equations. To check the strain distribution, however, equa-
tion (3.27) and equation (3.28) can be solved simultaneously for 4, and b,
when composite, fiber, and matrix properties are known. The ratio of the
fiber strain to the matrix strain can then be found. For example, using the
measured properties of an E-glass/epoxy composite [9],

E =5.05%10% psi (34.82 GPa); vy, =0.55

E,=153x10° psi (10.55GPa); v =0.45
(3.29)
Eq =E;; =10.5x10° psi  (72.4 GPa)

E,=055%10° psi (3.79 GPa)

we find thata, =2.0884, b, =0.1093, a4, /by = 65, /Gy = 19.1, and /5, =1.00.
Thus, the assumption of equal strains, which led to equation (3.23). is valid
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FIGURE 3.7 _

Self-consistent RVE for three-phase composite, including fiber, matrix, and fiber/matrix
interphase, _

i

for this material, as it apparently is for other composites. The strain energy
approach will be used again in the next section to check the validity of an
assumption leading to the equation for the transverse modulus.

EXAMPLE 3.3
As shown in figure 3.7, an RVE for a three-phase unidirectional composite is
approximated by three concentric cylinders representing the fiber, the matrix, and
the fiber/matrix interphase. The fiber/matrix interphase is a region surrounding
the fiber, which has different properties from either the fiber or the matrix. Inter-
phase regions may be created during processing as a result of interactions between
the matrix materials and either the fiber material or a fiber-sizing material. Since
the geometrical features of this model are not associated with any specific fiber-
packing array geometry, it has been referred to as a “self-consistent model” [8].
Assuming that the three materials are linear elastic, isotropic, and securely bonded
together, derive the micromechanics equation for the longitudinal modulus, E,, of
the composite. . ‘ .
Solution. The three constituent materials are arranged in parallel; so static
equilibrium requires that the total resultant force on the composite must
equal the sum of the forces acting on the three materials. Accordingly, the
rule of mixtures for longitudinal composite stress in equation (3.19) applies
here, with the addition of a third term representing the interphase, as de-
noted by the subscript i

nlm&, = mmdm +WECB +A|ww\cm

Now supplementing equation (3.20) with a similar stress-strain relationship
for the interphase material and extending the assumption of equal strains
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in the constituents (eq. [3.22]) to the interphase material as well, we get
another rule of mixtures:

2 (2
mu = mm.cm + m_.:.CB + m_\cm = mm mml + m:., UB — UW + mm UW — Uw
, D2 D}, Diy

where Em diameters Dy, D,, and D, are defined in figure 3.7. Indeed, for a
composite having any number of constituents, 7, that are securely bonded
ﬁommﬂrﬁ, and arranged in parallel as in figure 3.7, the generalized rule of
mixtures for the longitudinal composite modulus is

Ei= Y Epy,

where ,@. and v; are the modulus and volume fraction of the jth constituent,
respectively and j =1, 2,..., n. \

3.2.2 Transverse Modulus

If the W.<m in figure 3.5(a) is subjected to a transverse normal stress, Gy, as
shown in figure 3.5(c), the response is governed by the effective ﬁamsm,\mw.mw
modulus, E,. Geometric compatibility requires that the total transverse
composite displacement, 8., must equal the sum of the corresponding
transverse &mwymnmgmim in the fiber, &, and the matrix, 8,

8cp = Mlmm + WBM | Amw,\wOv

It follows ?os:v the definition of normal .m.a.mmb that |

w& =Eoly, ME =Enlt, Oy =Emaln (3.31)

and equation (3.30) now dmoogmm
€aly = meh..m + Emalm Amw.mwwv
Since the dimensions of the RVE do not change along ﬁrm, 1 direction,

the length fractions must be equal to the volume fractions, and equation
(3.32) can be rearranged to get the rule of mixtures for transverse strains:

€2 = EVf + EpVpy (3.33)
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The 1-D Hooke's laws for this case are

Go=Ety, Cn= msmsg Om2 H.msmsw Am.m@

where the Poisson strains have again wmmT neglected. As with the longi-
E&b&nwmm\%m Enz_pmwos ommcnrmﬁamgms\ocﬁ_mmm_ﬁomspsnrgoﬁm

noBmemSgOmm:qmwwmQﬁmﬁoﬁrmEmmaﬂmﬁnrgwcwmmosmﬁﬁmgmmﬁ ﬁrm
interface [10,11]. This is another example of the difference between a

mechanics of materials solution and a more rigorous theory of elasticity

solution. Combining equation (3.34) and equation (3.33), we get
mw.nw I.nlv.mm mam Awwmv

=——V¢+—"Vn
mm mmn mg

If we assume that the stresses in the composite, matrix, and fiber are all
equal, equation (3.35) reduces to the “inverse rule of mixtures” for the
transverse modulus:

1 Vs = VOm '
. ST . § C 3.36
mM mmn ma A v

From the RVE in figure 3.5, it would seem that the assumption of equal
stresses is valid because equilibrium requires that the forces must be
equal for the series arrangement, and both fiber and matrix blocks have
equal areas normal to the 2 direction. In the actual composite, however,
the fiber-packing arrangement is such that the forces and areas for the
fiber and matrix are not necessarily equal, and we will use a strain energy
approach to show that the resulting stresses are not equal. Thus, equation
(3.36) is generally not acceptable for design use. As shown in figure 3.5(a),
equation (3.36) gives the same result as equation (3.23) at the extreme
values of fiber volume fraction, (i.e., v = 0 and v; = 1.0), but it predicts
significant improvement in the transverse modulus only at high fiber
volume fractions. This turns out to be the correct trend, but, as shown in
section 3.5, the experimental data falls well above the curve.

As with the longitudinal case, the strain energy approach provides
additional insight into the micromechanics of the transverse loading case.
We now express the fiber and matrix strains in terms of the composite
mﬁ.mwﬁ .:

€ =MmEy, Em =bEe (3.37)
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where 4, and b, are constants. Substitution of equation (3.37) in .ﬁrm com-
patibility expression, equation (3.33) yields :

V¢ + @N\CB =1 A@.@mv

By substituting equation (3.37) and equation (3.34) in equations analo-
gous to equation (3.25) for the transverse loading case and the strain
energy expression, equation (3.24), we find that

E= A3E¢0¢ + D3 Eom (3.39)

where the strain energy due to the Poisson strain mismatch at the interface
has again been neglected. It is important to note that we did not assume
equal stresses in the fibers and the matrix in order to get equation (3.39).
Using the properties for the E-glass/epoxy given in equation (3.29) and
solving equation (3.38) and equation (3.39) simultaneously, we find that
a,=0.432, b, = 1.465, the strain ratio a, /b, = €, /€, = 0.295, and the corre-
sponding stress ratio is G¢,/Gm =5.63. Thus, the assumption of equal
stresses in fibers and matrix, which led to equation (3.36), is not justified
for this material and is apparently not valid for most other composites as
well. More accurate alternative design equations for the transverse mod-
ulus will be discussed later. ,

3.2.3 Shear Modulus and Poisson’s Ratio

The major Poisson’s ratio, v;,, and the in-plane shear modulus, G,,, are
most often used as the two remaining independent elastic constants for
the orthotropic lamina. The major Poisson’s ratio, which is defined as

Vi =— ‘. (3.40)

when the only nonzero stress is a normal stress along the 1 direction, can
be found by solving the geometric compatibility relationships associated
with both the 1 and the 2 directions. The result is another rule of mixtures
formulation:

Vi2 = V1oV ¥V O (3.41)

where vy, is the major Poisson’s ratio of fiber and v,, the Poisson’s ratio
of matrix.




100 _ wz.:&.Emm of Composite Material Mechanics

Equation (3.41) is Mmzﬁ.mcv\ accepted mm being sufficiently accurate for
design purposes. As in the case for the pOSW&EQE& ‘modulus, the geo-
metric compatibility relationships Hm&ﬁm to the solution are valid.

. The effective E%_mbm shear an:rpm Hm defined as @m 3.5[d])

Gp= % . (3.42)

- <n§

where G, is the mﬁrﬁ@m nod%o%m shear stress:in the 12 plane and
Yaz = 2€,,, the average engineering shear strain in the 12 plane.

An equation for the in-plane shear modulus can be derived using an
mﬁm&omnr similar to that which was used for the transverse modulus. That
is, geometric compatibility of the shear deformations, along with the
mmmzﬁ%soﬁ of equal shear stresses in fibers and matrix, leads to mﬁoﬁrma
inverse rule of mixtures:

1 .Cm d £
S T 3.43)
G Gpp Gn . A :

where Gy, is the shear modulus of fiber in ﬁpm 12 plane and G, = shear
modulus of matrix.

As we might expect, this equation is not very accurate because ﬁrm shear
stresses are not equal as assumed. A strain energy approach similar to
that used in section 3.2.2 can be used here to show that the shear stresses
are in fact not equal. As with the transverse modulus, we need to find
better equations for estimating the in-plane shear modulus. Such equa-
tions will be discussed in the following sections.

EXAMPLE 3.4 ;

The constituent materials in the QEEQ%N.% described in example 3.1 and example
3.2 have the properties Ey, = 32.0 x 10° psi (220 GPa), Ep = 2.0 x 10° psi (13.79
GPa), and E,,= 0.5 x 106 psi (3.45 GPa). Estimate the longitudinal and transverse
moduli of the composite. Given these fiber and matrix materials, what are the
maximum possible values of E;, and E,?

Solution. The longitudinal modulus is given by equation (3.23)

E; =(32x10°)0.506 + (0.5 x 10°)0.482 = 16.43 x 10° psi(113 GPa)

The transverse modulus is roughly estimated by equation (3.36):

1 . .
m~ = 3 =0.82 % ”_.Omﬂumy Am.am OHumv

~ anb ~ranh
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As expected,-the composite is highly anisotropic, with E;, >> E,. If the
composite has the theoretical maximum fiber volume fraction of 0.907 for
a close-packed triangular array (eq. [3.13]), the corresponding composite
properties are still highly anisotropic, with E; =29 x 10 psi (200 GPa) and
E, = 1.56 x 10 psi (10.75 GPa). Note that even with this maximum fiber
content, the transverse modulus is still very low. Thus, some transverse
reinforcement is usually necessary in practical applications. Note also that
the longitudinal modulus of the graphite/epoxy composite is now about
the same as the modulus of steel, but the density of the composite is only
about 20% of the density of steel. Composites typically have much greater
stiffness-to-weight ratios than conventional metallic structural materials.

EXAMPLE 3.5

For longitudinal loading of the composites in example 3.4, compare the stresses
in the fiber and matrix materials. Compare the strain energy stored in the fibers
with that stored in the matrix.

Solution. From equation (3.20) and equation (3.22), the ratio of fiber stress
to matrix stress is .

B _ Enfu _En _ 320 _
Bmi Emm  En 05 00

Thus, the fiber carries most of the stress since the fiber modulus is always
higher than the matrix modulus. From equation 3.25(b), equation 3.25(c),
and equation (3.22), the ratio of fiber strain energy to matrix strain energy is

Us _ En%r _ 32.0(0.506) _ 7.0
Upn Enbn  05(0482)

that is almost the same as the stress ratio. If the composite had the maximum
possible fiber volume fraction of 0.907, the stress ratio would remain the
same since it is independent of the fiber volume fraction. The strain energy
ratio would increase dramatically to 624, however, since it is proportional
to the ratio of fiber volume fraction to the matrix volume fraction.

3.3 Improved Mechanics of Materials Models

As shown in the previous section, the elementary mechanics of materials
models for E; and vy, are good enough for design use. The corresponding
models for E, and G, are of questionable value, however, because they are

‘based on invalid assumbtions. and asreement with exnerimental resiilts is
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generally poor. We will now discuss several refinements of the elementary
mechanics of materials models. ! o

Due to the simplified RVE that was cmoﬁ for the elementary mechanics
of materials approach (fig. 3.5), the H.mmcﬁdm equations were not tied to
any particular fiber-packing geometry. Since the results for E, and vy, were
so favorable, we can [conclude that those properties must be essentially
independent of fiber-packing geometry. By the same reasoning, it appears
that E, and G,, may be more sensitive to fiber-packing geometry. Thus,
the assumption of a mmvmﬁmn fiber-packing array is one possible refinement
of the models. Althouigh real composites have random-packing arrays,
the assumption of a regular array is a logical simplification if we are to
have any hope of developing simple design equations. Such an assump-
tion allows us to use simple relations among fiber size, spacing, and
volume fraction. Hopkins and Chamis [12] have developed a refined
model for transverse and shear properties based on a square fiber-packing
array and a method of dividing the RVE into subregions. The following
derivation is adapted from ref. [12].

A square array of fibers is shown in figure 3.1, and the RVE for such an
array is shown in figure 3.8. The RVE is easily divided into subregions
for more detailed analysis if we convert to a square fiber having the same
area as the round fiber. The equivalent square fiber shown in figure 3.8
must then have the dimension . |

5 = ma o - (3.44)

and from equation (3.10), the size of the RVE is

\ T
— d - 3.45
s 4, ( )

A 5

_
»
o~

FIGURE 3.8
Division of RVE into subregions based on square fiber having equivalent fiber volume
fraction.

|
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The RVE is divided into subregions A and B, as shown in figure 3.8. In
order to find the effective transverse modulus for the RVE, we first subject
the series arrangement of fiber and matrix in subregion B to a transverse
normal stress. Following the procedure of section 3.2.2, the effective trans-
verse modulus for this subregion, Eg,, is found to be

L Vs, 1 sm | (3.46)

s.wrmum the matrix dimension is s,, = s —s;. From equation (3.44) and equa-
tion (3.45), it is seen that

% Jor and Smoi-for (347)

S 5

so that equation (3.46) now becomes

En
1= (1~ En/Esp)

The parallel combination of subregions A and B is now loaded by a
transverse normal stress and the procedure of section 3.2.1 is followed in
order to find the effective transverse modulus of the RVE. The result, of
course, is the rule of mixtures analogous to equation (3.21)

m% =

(3.48)

s S
E, =Ejp, w +Ep = (3.49)

Substitution of equation (3.47) and equation (3.48) in equation (3.49) then
gives the final result,

F=E, ?,J,\cw v Yo (3.50)

+
1= /o (1- B/ Ero)

A similar result may be found for G,,. The detailed derivation in ref. [12]
also includes the effect of a third phase, a fiber/matrix interphase material,
which is assumed to be an annular volume surrounding the fiber. Such
interphase regions exist in many metal matrix [12] and polymer matrix [13]
composites. When the fiber diameter is equal to the interphase diameter, the

equation for E, in ref. [12] reduces to equation (3.50). The complete set of
eguations for effective moadiili of the three-nhace madal ic oivan fm wnf 101
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In separate publications, Chamis [14,15] presented the so-called simplified g 9

micromechanics equations (SMEs), which are based on this same method s & DR o oy by . &
. | . . . O SOoOwvwwwmmnaAd - Ly [To) 0 =) R
of subregions, except that only the ﬁmja for subregion B (fig. 3.8) are fgSSgg¥dosen N oo o g || s
retained. Thus, the SME for E, would be the samé as that for Ej, in mmswmos “ ¥ m
(3.48), and similar m@ﬂmaosm for the other effective moduli are given in refs. .
[14,15]. Also included in these H.mmmw.msnm,w are tables of fiber and matrix 8 W
E.ovma_amm to be used as input to the SME, and these tables are reproduced Q. m m RN W W m m W @ o
n i =t o~ [a] Q ~
here in table 3.1 and _a_mw_m 3.2. It is important to note that in such tables the & - o o gl | T
transverse fiber Bom&ﬁm\ E,, and the longitudinal fiber shear modulus, Gg,, ]
are not actually measured but are inferred by substitution of measured 9 $ m
composite properties WSQ matrix properties in the SME. The inferred prop- > S8 o998 @aAN N« v g g
erties show that fibers such as carbon and aramid are highly anisotropic, Ylgeenecesses 4 q g 2w || E
whereas glass and boron are mmmmsam:% isotropic. Similar back-calculations - 29
of anisotropic fiber properties using other analytical models have been - g m
reported by Kriz and Stinchcomb [16] and by Kowalski [17]. More recently, ol 82 ccowns 9 g T g S
direct measurement of fiber transverse moduli has been reported by glgecgd-cscsg w 9 18 2o | 5
Kawabata [18]. Kawabata’s measurements, based on transverse diametral ® © ©© ,m m
compression of single carbon and aramid fibers, show even greater anisot- - e _LmO i
ropy than the inferred properties in table 3.1 and table 3.2, However, Caruso S8 o coosy9s o g
and Chamis [19] have shown that the SME and the corresponding tables of d|gSSgdddsssg ® ¢ 8 gg |9 3
properties give results that agree well with 3-D finite element models, as S 0 © g M
shown in figure 3.9. Since the SME for E; and v;, are the same as equation = 9
(3.23) and equation (3.41), respectively, this comparison ?.oSmmm further " m B.9 oo o m £
evidence of the validity of those equations. m gS S 353483 2 ® %_ i 2s | 8 &

Another set of equations for E, and G;, has been QmE<mQ by mﬁmbnma 3 o N« 8 S i
[20] who used a square array model that included the effects of the strain m A ,
concentration at points of minimum clearance between fibers in the RVE. o 18 10 oo o g g
Spencer’s equation is Bm ~ mm B8 m. m 333 8 9 & g8 8 M M

g2
Mo _T-1 1z, or . ek =
M.-T + Ak + T tan | (3.51) W W M M 28
| 3 £ 8 & & g 2
where M, = E;, M, = E,,, and k = 1 - E,_,/E;, for the transverse modulus ) 2338 @ e & &5 8 2 e
equation and M, = Gy, M,,, = G, and k = 1 - G,,/ Gy, for the longitudinal lgsggse | | EEfE8E & 37 7 W ok
shear modulus equation. The parameter I = s/d in both the equations. : ‘ . , g K m
Spencer also suggests that T" can be accurately approximated for a variety g8 98 m, S g ,m U g m
of packing geometries over the full range of fiber volume m.mnﬁosm\ v, by i E EE: 8 § 58 5 O F W
the equation : o | 5 g8 H8el £ gEd %@ 3 4%
METETEE- PR CO -0 E S A
| | _ $1%15, Eifgcd ¥ o2 EgE EE _|g6S
r= | ) @ _ 8| F|88 fimeufesel 282 o 9|0 gy
(1108210 22)o, s E5(eE 3g8iBiifny fshpdi. i
s o [BSpEiilBiEizd Fafopiey 4
o0 ﬂ 1] Ko 0 5 0 0 g S
Spencer does not EnE&m a table of suggested properties for use S:? these | < 8 Nm e m .m Pm m _m m M Hm m § m m & m 8 Lm Lm 52 g3 m

ant1atinne i



TABLE 3.2
Matrix Properties
Parameters Units M IMLS IMHS HM Polyimide . PMR
Density 1b/in3 0.042 0.046 0.044 0.045 0.044 0.044
Modulus 106 psi 0.32 0.50 0.50 0.75 0.50 047
Shear modulus 106 psi — — — — — —
Poisson’s ratio —_ ) 0.43 0.41 0.35 0.35 0.35 0.36
Heat capacity btu/1b/°F 0.25 0.25 0.25 0.25 0.25 0.25
Heat conductivity btu/h/ft2/°F/in. 1.25 1.25 1.25° 1257 125 1.25,
Thermal expansion coefficient 10 in./in./°F 57 57 36 40 20 28
Diffusivity 1070 in2/s 0.6 0.6 0.6 0.6 0.6 0.6
Moisture expansion coefficient in./in./M 0.33 0.33 0.33 0.33 0.33 0.33
Tensile strength ksi 8 7 15 20 15 8
Compression strength ksi 15 21 35 50 30 16
Shear strength ksi 8 7 13 15 13 8
Tensile fracture strain in./in. (%) 8.1 14 2.0 2.0 20 20
Compressive fracture strain n./in. (%) 15 42 5.0 5.0 40 35
Shear fracture strain in./in. (%) 10 32 35 4.0 35 5.0
Air heat conductivity btu/h/{?/°F/in. 0.225 0.225 0.225 0.225 0.225 0.225
Glass transition temperature (dry) ~ °F 350 420 420 420 700 700

Note: LM = low modulus; IMLS = intermediate modulus low strength; IMHS = intermediate modulus high strength; HM = high modulus.

Thermal, hygral, compression, and shear properties are estimates only; G, = E./2(1 +vy).
Source: From Chamis, C.C., 1987, In: Weeton, J.W., Peters, D.M., and Thomas, K.L. eds.

International, Materials Park, OH. With permission.
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Equation (3.50): ,
E,=0.9 x 106 psi (6.2 GPa)

Equation (3.51):

, _
First estimate I" = H.Hm from equation (3.52). Note that the actual value of T’
from example 3.2 is " = s/d = 0.000623/0.0005 = 1.25. Using I" = 1.18 in
equation (3.51), we J_m<m E, =0.98 x 106 psi (6.76 GPa).

]
As previously mentioned, the inverse rule of mixtures prediction for the
transverse modulus is considerably lower than measured values. The higher
values given by the method of subregions and Spencer’s equation are more
accurate. Further discussion on this will follow in the next section.

I - .
3.4 Elasticity Models

The theory of elasticity approach to micromechanical modeling begins in
the same way as the mechanics of materials approach, by selecting the
RVE and then subjecting the RVE to uniform stress or displacement at the
boundary. The two approaches differ substantially in the solution of the
resulting boundary value problem, however. The equations of elasticity
must be satisfied at every point in the model, and no simplifying assump-
tions are made regarding the stress or strain distributions as in the mechan-
ics of materials approach. Fiber-packing geometry is generally specified in
the elasticity approach. A variety of closed-form and numerical solutions
of the governing equations of elasticity have been reported in the literature
[1-4], and a complete review of the work in this area is beyond the scope
of this book. However, the stress equilibrium equations and the strain-
displacement relations from elasticity theory are derived in Appendices A
and B, respectively. The objective here is to discuss several representative
numerical and closed-form solutions in order to show what additional
knowledge of micromechanical behavior can be obtained from the more
rigorous elasticity approach.

Numerical solutions of the governing elasticity equations are often nec-
essary for complex structural geometries such as those found in the RVEs
used in micromechanics models. For example, Adams and Doner [21]
used a finite difference solution to determine the shear modulus G, for
a rectangular array of fibers. A displacement boundary value problem
was solved for one quadrant of the RVE, as shown in figure 3.10. Note
that Adams and Doner use the z-axis to define the fiber direction, whereas
the x and y axes correspond to the transverse directions. The displacement
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FIGURE 3.10

One quadrant of an RVE from Adams and Doner elasticity solution for shear modulus Gy,
(From Adams and Doner [21]. Reproduced by permission of Technomic Publishing Co.)

components u#, v, and w correspond to the x, y, and z axes, respectively.

The imposed displacement w* along x = a causes a displacement field of
the form

[

u=v=0, w=wk,y) (3.53)

From the strain-displacement equations (Appendix B) and Hooke’s law,
the only nonvanishing stress components are

_ L ow ow
Tox = Q,mluM and 1, =G-—— (3.54)

where the shear modulus, G, may be either the fiber or matrix property,
depending on the coordinates x and y. Isotropic behavior was assumed
for both fiber and matrix materials. Substitution of equations (3.54) in the
only nontrivial stress equilibrium equation (Appendix A) yielded the
governing partial differential equation

YA 2
G mw'NN + w w
ax*  ay?

=0 a..mmv
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|
which was solved subject to the displacement boundary conditions

i
i

@QAO\ Qv =0, SAQ\ Qv = Nﬁx.

| (3.56)
G——=0 along wnro and y=b

and continuity oos&_mosm at the fiber/matrix interface by using a finite
difference scheme. The solution yielded the values of the displacements
w(x,y) at each node of the finite difference grid. Stresses were found by
substituting these displacements in the finite difference forms of equation
(3.54), and the effective shear modulus was then determined from

7.
=— 3.57

where T,, is the average shear stress along x = a. A similar boundary value
problem for shear along y = b yields the associated shear modulus G,,.
Typical results are shown in figure 3.11, where the ratio of the composite
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FIGURE 3.11 4
Normalized composite shear stiffness, G,/ Gy, vs. shear modulus ratio, G¢/G,y, for circular

fibers in a square array. (From Adams, D.F. and Doner, D.R. 1967. Journal of Composile 7§

Materials, 1, 4-17. With Permission from Technomic Publishing Co.)
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Zozsw:wmm composite transverse stiffness, E,/E,, versus modulus ratio, E/E,, for circular
fibers in a square array. (Adams, D.F. and Doner, D.R. 1967. Journal of Composite Materials,
1, 152-164. With permission from Technomic Publishing Co.)

shear modulus to the matrix shear modulus is plotted versus the shear
modulus ratio G¢/G,, for various fiber volume fractions.

In a separate paper Adams and Doner [22] used a similar approach to
wRE.BEm the transverse modulus E, and typical results are shown in
figure 3.12. It is seen in figure 3.11 and figure 3.12 that the reinforcement
m.mmoﬁ for both G;, and E, only becomes significant for fiber volume frac-
tions above about 50%, but that combinations of high fiber stiffness and
high fiber volume fractions can significantly increase G,, and E,. Unfor-
tunately, these same combinations also generate very high stress concen-
tration factors at the fiber/matrix interfaces, as shown in the same papers
[21,22]. One of the advantages of the elasticity approach is that the com-
plete stress and strain distributions in the RVE are generated, and the
calculation of stress concentration factors is possible. One advantage of
numerical solutions such as finite differences is the capability for analysis
of complex geometries. For example, stiffness and stress concentration
factors were also obtained for a variety of fiber cross-sectional shapes such
as squares and ellipses in a rectangular array [21,22].

The previously mentioned finite element analysis of Caruso and Chamis
[19] and Caruso [23] is another example of a numerical elasticitv solittion.
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FIGURE 3.13 '
3-D finite element models of RVEs. (From Caruso, J.J. and Chamis, C.C. 1986. Journal of
Composites Technology and Research, 8(3), 77-83. Copyright, ASTM. With permission.)

In this case, a single-cell (SC) finite elément model was developed from
192 3-D isoparametric brick elements (fig. 3.13). This SC model was then
used as a building block for a multicell (MC) model consisting of nine 5C
models in a 3 x 3 array (fig. 3.9). A third model (CCMC) used only the
center cell in the nine-cell MC model for the calculations. Boundary and
load conditions were consistent with those used for the previously dis-

cussed SME mechanics of materials solutions, so that the finite element
results could be compared with the SME results. For example, equation |
(3.57) and similar equations were used to determine stiffnesses from finite
element results. Material properties for AS graphite fibers in an interme- |

diate-modulus-high-strength (IMHS) epoxy matrix were used (table3.1

and table 3.2). Fibers were assumed to be orthotropic, whereas the matrix
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FIGURE 3.14

m.meEmm of 2-D and 3-D finite element quarter domain micromechanics models. (From
Finegan, HO and Gibson, R.F. 1997. In Farabee, T.M. ed. Proceedings of ASME Noise Control
and Acoustics Division. NCA-Vol.24, pp. 127-138. With permission.)

Wwas assumed to be isotropic. As shown in figure 3.9, the finite element
results show good agreement with SME results.

As with the previously discussed finite difference approach used in
references [21,22], the quarter domain model of a representative volume
can also be analyzed by using finite elements. Typical 2-D and 3-D quarter
domain finite element models are shown in figure 3,14 from ref. [24]. For
example, in one study, 3-D finite element quarter domain models similar
to mﬂm one in figure 3.14 were subjected to transverse normal loading as
in figure 3.15, and the effect of model aspect ratio L/(D/2) on the trans-
verse modulus was determined, as shown in figure 3.16. This particular
model included a fiber coating or interphase region between the fiber and
the matrix (see example 3.3 for further discussion of the interphase). The
transverse modulus was calculated by imposing a uniform displacement
U, along the edge x = D/2 and then using the calculated stresses from
the finite element model to evaluate equation (3.58):

= o.dV
E =S llb -

3.58
Ex ._.m%:\ (3.58)
v

where G, = average stress acting along x = D/ 2in figure 3.15,

g = s
*(D/2)

= average strainalong x=D /2
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FIGURE 3.15 . ,
Quarter domain of RVE under transverse normal loading. (From Finegan, I.C. and Gibson,

R.F. 1998. Journal of Vibration and Acoustics, 120(2), 623-627. With, permission.)
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FIGURE 3.16 . . "
Variation of transverse modulus with model aspect ratio for graphite/epoxy composite from
3-D finite element models. (From Finegan, 1.C. and Gibson, R.F. 1998: Journal of Vibration and
Arnustics. 12002). 623-627. With permission.)
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where
D/2 = dimension defined in figure 3.15
U, =imposed displacement along x = D/2
L =length of model along x, the fiber direction
V =volume

It is seen from figure 3.16 that the transverse modulus varies from a
minimum value for low-model aspect ratios to a maximum for high-
model aspect ratios. It was also shown that the low-model aspect ratio
results from 3-D models coincided with the results obtained by using
2-D plane stress elements (i.e., with longitudinal stress ¢, =0), while
the high-model aspect ratio results from 3-D models coincided with
the results obtained by using 2D plane strain elements (i.e., with
longitudinal strain e, =0). For a unidirectional composite having con-
tinuous fibers oriented along the z direction, the plane strain condition
is more realistic than the plane stress condition. The importance of this
observation is that 2-D plane strain elements can be used for these
types of models instead of 3-D elements, and this leads to significant
reductions in the number of elements and the corresponding compu-
tation time. v

As an example of a closed-form elasticity solution, Whitney and Riley
[8] used axisymmetric airy stress functions-to solve for the stresses and
strains in a so-called “self-consistent” model having a single isotropic fiber
embedded in a concentric cylinder of isotropic matrix material. The cylin-
drical geometry of the self-consistent model is such that the model is not
associated with any specific fiber-packing geometry. The resulting micro-
mechanical stresses and strains were then used in energy balance equa-
tions similar to equation (3.24) and equation (3.25) to solve for E, and E,.
The equation for E, reduces to the rule of mixtures when the Poisson’s
ratio of the fiber is equal to that of the matrix. The additional term is due
to the mismatch in Poisson strains at the fiber/matrix interface (recall that
this term was neglected in equation [3.24] and equation [3.25]). Predictions
showed good agreement with experimental data for boron/ epoxy. In a
later paper, Whitney extended the analysis to include anisotropic, trans-
versely isotropic fibers [26].

Another closed-form micromechanical elasticity approach, the method
of cells, was developed by Aboudi [27]. A representative cell consisting
of a square fiber embedded in a square of matrix material was divided
into four subcells. Equilibrium equations were then solved subject to
continuity of displacements and tractions at the interfaces between the
subcells and between neighboring cells on an average basis, along with
the assumption of linear variations of displacements in each subcell. The
equations are too lengthy to present here, but excellent agreement was
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observed with the experimental data oi graphite/epoxy from ref. [16].
One advantage of this approach is that it yields not only the in-plane

lamina properties, but also the ﬁrﬁosmr-mrm-?wnwgmm properties such as
Gyz and vy, Lo v

Paul [28] obtained closed-form solutions for the bounds on the trans-
verse modulus of a fiber composite (or the Young’s modulus of an
isotropic-particle-reinforced composite) by using a variational approach.
By applying the theorem of minimum complementary energy to the situa-
tion where the oog_uvmxm is subjected to a uniaxial normal stress, Paul
found the lower bound on E, to be the inverse rule of mixtures (eq. [3.36]).
The application of the theorem of minimum potential energy to the
situation where the composite is subjected to a simple extensional strain
gave the upper bound on E,, which reduces to the rule of mixtures (eq.
[3.23]) when the Poisson’s ratios of fiber and matrix materials are taken
to be the same. cen

The bounds derived by Paul [28] are independent of packing geometry
and are referred to as the elementary bounds. Thus, it should be no
surprise that the bounds are very far apart, as shown in figure 3.6. Tighter
bounds require the specification of packing geometry. For example,
Hashin and Rosen [29] applied the principles of minimum potential and
complementary energy to fiber composites with hexagonal and random
arrays. Detailed summaries of these and other related results have been
reported by Hashin [1] and Christensen [3]. More recently, Torquato [30]
has reviewed advances in the calculation of improved bounds on the
effective properties of random heterogeneous media. Such improved
bounds are determined by using statistical correlation functions to model
the random variations in the microstructure. Since the fiber-packing
geometry in composites is of a random nature, such bounds should be
more realistic than the bounds that are based on some idealized fiber-

packing array.

3.5 Semiempirical Models

In section 3.3, improved mechanics of materials models for prediction of
E, and G,, were discussed. Another general approach to estimating these
propetties involves the use of semiempirical equations that are adjusted

to match experimental results or elasticity results by the use of curve- .
fitting parameters. The equations are referred to as being “semiempirical”
because, although they have terms containing curve-fitting parameters,

i

:
4
!
i
!
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Em.% also have some basis in mechanics. The most widely used semiem-
pirical equations were developed by Halpin and Tsai [31]. The Halpin-Tsai
equation for the transverse modulus is

mN - 1+ ﬁjdm
B iom (359
where
(B /Eu) -
n={Et/En) -1 (3.60)

(E¢/Em+8)

and § is the curve-fitting parameter, which is also a measure of the degree

of reinforcement of the matrix by the fibers. The corresponding equation

for Gy, is obtained by replacing the Young’s moduli E,, E;, and E,, in the
above equations by the shear moduli Gy, G, and G, respectively. Note
that the values for the curve-fitting parameter may be different for E,and
Gy,. Halpin and Tsai found that the value & = 2 gave an excellent fit to the
finite difference elasticity solution of Adams and Doner [22] for the trans-
verse modulus of a square array of circular fibers having a fiber volume
fraction of 0.55. For the same material and fiber volume fraction, a value
onm mmm gave excellent agreement with the Adams and Doner solution for

12 1<1].

Jones [11] shows that when &= 0, the Halpin-Tsai equation reduces to
the inverse rule of mixtures (eq. [3.36]), whereas a value of &= oo yields
the rule of mixtures (eq. [3.23]). Recall that Paul [28] proved that these
equations also represent the bounds on E,. Thus, the interpretation of the
curve-fitting parameter, §, as a measure of the degree of fiber reinforce-
ment has a theoretical basis. The use of the Halpin-Tsai equations in a
variety of other applications and related empirical equations for estimat-
ing the curve-fitting parameter are discussed in more detail by Jones [11]
and Halpin [4].

Tsai and Hahn [10] have proposed another semiempirical approach to
calculating E, and G,,, that is based on the fact that the stresses in the
fibers and the matrix are not equal under the corresponding loading
now&mobm. Recall that the proof of such differences was demonstrated
using a strain energy approach in section 3.2.2, The method involves the
use of empirical “stress-partitioning parameters” in derivations parallel-
ing those used for the elementary mechanics of materials models. For




118 ?N.:Q.Emw of Composite Material Mechanics

example, the Tsai-Hahn equation for E, is found by Eﬁomsogm a stress-
partitioning parameter, n,, and using ﬁrmiﬁmﬂobmgw

_ _ |
Om = jNQmMM (3.61)

in a derivation similar to that used for the elementary mechanics of mate-
rials model for E, in section 3.2.2. The derivation was also based on the
assumption that a rule of mixtures for stress similar to equation (3.19) also
held for the transverse|direction (2 direction). Although such an assumption
is obviously not consistent with the RVE configuration and the loading
condition shown in figure 3.5(c), it would be valid for a real composite with
fiber packing such as that shown in figure 3.2. The result of this derivation is

_H H széa
|H | 62
E, sé%sTl m; | (3.62)

Note that equation (3.62) reduces to the inverse rule of mixtures (eq. [3.36])
when the stress-partitioning parameter 1, = 1.0. This is to be expected since
equation (3.36) was based on the assumption that the stresses in the fiber
and the matrix are the same. A similar equation can be derived for the
‘shear modulus, G,,, as shown in ref. [10]. Figure 3.17 from ref. [10] shows

\

Transverse modulus, GPa

‘ » Experimental data
— Eq (3.62)

I 1 I §
0 02 04 06 08 10
Fiber volume fraction

FIGURE 3.17
Transverse modulus for glass/epoxy according to Tsai-Hahn equiation (equation [3.62]).

(From Tsai, S.W. and Hahn, H.T. 1980. Introduction to Composite Materials. Technomic Pub- 3

lishing Co., Lancaster, PA. With permission from Technomic Publishing Co.)
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experimental data for the transverse modulus of a glass/epoxy composite
compared with the predicted values from equation (3.62) for two different
assumed values of the stress-partitioning parameter. The stress-partition-
Ing parameter 1, = 0.5 was found to yield accurate predictions of G,, based
on comparisons with experimental data for the same glass/ epoxy [10].
Formulas for estimating the stress-partitioning parameters from constitu-
ent material properties are also given in [10].

 E——

3.6 Problems

L. A rectangular array of elliptical fibers is shown in figure 3.18.
U.mu?m the relationship between the fiber volume fraction and the
glven geometrical parameters. What is the maximum possible
fiber volume fraction for this packing geometry?

2. me fibers in a E-glass /epoxy composite are 0.0005 in (0.0127 mm)
in diameter before coating with an epoxy sizing 0.0001 in (0.00254
mm) thick. After the sizing has been applied, the fibers are bonded
together with more epoxy of the same type. What is the maximum
fiber volume fraction that can be achieved? Using the fiber and
matrix moduli given in equation (3.29), determine the composite
longitudinal modulus E; and the composite transverse modulus
E, corresponding to the maximum fiber volume fraction.

3. >.3&EQ carbon-aramid/epoxy composite is made by randomly
mixing continuous aligned fibers of the same diameter, so that
there are two carbon fibers for each aramid fiber, The fibers are
assumed to be arranged in a square array with the closest possible

€

‘O—€3

FIGURE 3.18
Rectangular arrav of elliptical fibers.
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FIGURE 3.19 _
Stress—strain curves for Dvwn and matrix materials in a hybrid composite.

packing. The stress—strain curves for longitudinal tensile loading
of fiber and matrix materials are shown in figure 3.19. Determine
the composite longitudinal modulus E;.

Derive equation (3.41). , |
Derive equation (3.43).

Using an elementary mechanics of materials approach, find the
micromechanics equation for predicting the minor Poisson’s ratio,
Vyy, for a unidirectional fiber composite in terms of the correspond-
ing fiber and matrix properties and volume fractions. Assume
that the fibers are orthotropic, the matrix is isotropic, .and all
materials are linear elastic. This derivation should be independent
of the one in problem 4.

A composite shaft is fabricated by bonding an Hmoﬁ,o?n solid shaft
having shear modulus G,, and outside radius 7, inside a hollow
isotropic shaft having shear modulus G, and outside radius 7,
The composite shaft is to be loaded by a twisting moment, T, that
is distributed over the end of the shaft, as shown in figure 3.20.
Using an elementary mechanics of materials approach, derive the
equations for the stresses and deformations at any radius and the
equation for the effective torsional shear modulus of the composite
shaft in terms of the material and geometrical properties of shafts
1and 2.

Using the method of subregions, derive an equation for the trans-

verse modulus, E,, for the RVE, which includes a fiber/matrix .
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11.
12.

FIGURE 3.20
Composite shaft under torsional load.

interphase region, as shown in figure 3.21. Hint: The m@:msow
should reduce to equation (3.50) when the fiber diameter is the
same as the interphase diameter.

Derive equation (3.55).

. For a unidirectional ooHEoomﬁm with a Hmn*msmima fiber array

(fig. [3.10]), use the equations of elasticity to set up the displace-
ment boundary value problem for determination of the transverse
modulus, E,. That is, find the governing partial differential equa-
tions for displacements # and v in the RVE, and specify the bound-
ary and continuity conditions. Assume plane strain (g, = 0). Do
not attempt to solve the equations, but explain briefly how E,

would be found. Assume that both fiber and matrix are isotropic.

Derive equation (3.62).
Show that a value of = 0 reduces the Halpin-Tsai equation (eq.

[3.59]) to the inverse rule of mixtures (eq. [3.36]), whereas a value
&= oo reduces it to the rule of mixtures (eq. [3.23]).

Matrix Fiber

Interphase

FIGURE 3.21
,,WSW with fiber/matrix interphase region.
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PR R D Aty

Matrix Ap) ,

'FIGURE 3.22 . . .
RVE for a particle-reinforced composite with a particle that has a varying cross-sectional

area Ay(x).

13. An RVE from a particle-reinforced composite' is shown in
figure 3.22. The particle has a cross-sectional area A (x) that varies
with the distance x, and the stresses and strains in particle and
matrix materials also vary with x. Find the expression for the
effective Young’s modulus of the composite, E,, along the x direc-
tion. The answer should be left in terms of an integral involving
the length, L; the particle modulus, E,; the matrix modulus, E,;
and the particle area fraction a,(x) = A,(x)/ A, where A, is the total
composite cross-sectional area. Assume that both the particle and
the matrix are isotropic.

14. Using the result from problem 13, determine the effective Young's
modulus, E,, for the RVE shown in figure 3.23. In figure 3.23 the

,._tiuhxlv-allhtli

Matrix Matrix
N L
[ % —0,
L
Matrix Matrix

FIGURE 3.23 .
RVE for a composite reinforced with a square particle and loaded along the diagonal of the

particle.
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T12
2 Fiber el 3 V)
Matrix E
. [ ati |
Ty YT
(a) Representative (b) Ends of RVE fixed (c) Ends of RVE
volume element against rotation free to rotate
FIGURE 3.24

RVE with two different loading and boundary conditions for problem 15.

16.

reinforcing particle has a square cross section and is oriented as
shown. For a particle having a Young’s modulus E,=10x10° psi
(68.95 GPa) and a matrix having a Young’s modulus E,=05x
10 psi (3.45 GPa), determine the value of E, and compare with
the values from the rule of mixtures (eq. [3.23]) and the inverse
rule of mixtures (eq. [3.36]). Discuss your results in the context of
the comments on theoretical bounds on the transverse modulus
in section 3.4.

- A unidirectional composite is to be modeled by the RVE shown

in figure 3.24(a), where the fiber and matrix materials are assumed
to be isotropic and perfectly bonded together. Using a mechanics
of materials approach, derive the micromechanics equations for
the effective in-plane shear modulus, G,,, for the following cases:

a. The ends of the RVE are perfectly bonded to supports that are
rigid against rotation, then subjected to the uniform in-plane

shear stress, 1;,, by the nonrotating supports, as shown in
figure 3.24(b).

b. The top and bottom surfaces of the RVE are subjected to the
uniform in-plane shear stress, 1,,, and the ends of the RVE are
free to rotate, as shown in figure 3.24(c).

Figure 3.25 shows an RVE for an elementary mechanics of mate-
rials model of the same type as shown in figure 3.5, but with
transverse deformation along the 2 direction prevented by rigid
supports along the top and bottom edges. For an applied longitu-
dinal normal stress as shown in figure 3.25, find a micromechanics
equation for the longitudinal modulus E;. Do not neglect the Pois-
son strains in the general derivation, and show what happens to
the general equation for E; when the Poisson’s ratios for composite,
fiber, and matrix are all equal.

123
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N

Matrix
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FIGURE 3.25 ’ . o . .
RVE for elementary mechanics of materials model with rigid supports that @Hm/\wsﬁ trans-

verse deformation.
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41 Introduction

Because of the variety of failure modes that can occur in composites, the
analysis of composite strength is more difficult than the analysis of elastic
behavior, which was discussed in chapter 2 and chapter 3. As shown in
chapter 1, the strength of a composite is derived from the strength of the
fibers, but this strength is highly directional in nature. For example, the
longitudinal strength of the continuous fiber-reinforced lamina, s, is much
greater than the transverse strength, s In addition, the compressive
strengths 5,0 and 5,0 associated with these directions may be different from
the corresponding tensile strengths s, and, s,%, and the transverse tensile
strength s,®is typically the smallest of all the lamina strengths for reasons
that will be explained later, The in-plane shear strength s, associated with
the principal material axes is still another independent property. These five
lamina strengths form the basis of a simplified lamina strength analysis,

which will, in turn, be used later in a simplified laminate strength analysis.

Therelationships among these five lamina strengths and the allowable lamina

strengths under off-axis or multiaxial loading are discussed in this chapter,

as are several micromechanical models for predicting the lamina strengths.
Interlaminar strengths will be discussed in chapter 7 and chapter 9.

As shown in chapters 2 and chapter 3, the linear elastic stress—strain
relationships for the orthotropic lamina are simplified by the use of “effec-
tive moduli.” The effective moduli, which relate the volume-averaged lam-
ina stresses to the volume-averaged lamina strains [recall equation (2.7) to
equation (2.9)], are defined by simple uniaxial or shear stress conditions
associated with the lamina principal material axes. Using a similar
approach, the “effective strengths” of the lamina may be defined as ultimate
values of the volume-averaged stresses that cause failure of the lamina
under these same simple states of stress. The stress—strain curves in
figure 4.1 show the graphical interpretation of these simple states of stress,
$ 519, 5.0, 5.8, 5,0, and Sty and the corresponding




