Analysis of Laminates

L mu

71 Introduction

While an understanding of lamina mechanical behavior is essential to the
development of theories for the analysis of composite structures, the
unidirectional lamina alone is generally not very useful as a structural
element because of its poor transverse properties. Composite structures
are more likely to be in the form of laminates consisting of multiple
laminae or plies oriented in the desired directions and bonded together
in a structural unit. The virtually limitless combinations of ply materials,
ply orientations, and ply-stacking sequences offered by laminated con-
struction considerably enhance the design flexibility inherent in composite
structures.

In this chapter, the analysis of laminates will be introduced by consid-
ering a simplified theory of laminated beams in pure flexure. This will be
followed by a discussion of the more general Classical Lamination Theory
(CLT), which makes it possible to analyze the complex coupling effects
that may occur in laminates. Other aspects of laminate analysis, such as
prediction of thermal and residual stresses, interlaminar stresses, and
laminate strength are also discussed.

Because of the need for adequate description of many possible combi-
nations of ply orientations and stacking sequences in laminates, a laminate
orientation code has evolved in the composites literature. The basis of the
code is that ply angles, separated by slashes, are listed in order from the
top surface to the bottom surface and enclosed in square brackets, as
shown by the examples in figure 7.1. Note that symmetric laminates can
be described by listing only the ply angles for the top half of the laminate
and by using the subscript “s” outside the brackets, and that adjacent
plies having the same orientations can be described by using ‘a numerical
subscript on the appropriate ply angle. In the case of symmetric laminates
having an odd number of plies, the center ply angle is denoted by an
overbar. Sets of ply angles that are repeated in the laminate are identified
by enclosing the set of angles in parentheses. The examples shown in
figure 7.1 are for laminates consisting of plies of the same material. For
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i laminated structures and provides a natural introduction to the more
, TA5° _ 45° B general CLT, which is described in the next section. The theory described
i v +45° . 30° __gwmmmwmwmaosﬁrmm:&%mmmOmwmmmbo:H. ,

o _ o . A section of a rectangular laminated beam of depth h and width b is
90 o e , I :
MHH% 45° shown in figure 7.2 before and after the application of a bending moment
+45° . M. The assumptions used in developing the analysis are as follows:
—45° :
oo

L. Plane sections that are initially normal to the longitudinal axis of

”
the beam remain plane and normal during flexure, ,ﬁ
FIGURE 7.1 . ; !

Examples of laminate stacking mm@ﬁmgmm and the corresponding laminate orientation codes. 2. The beam has both geometric and material property symmetry
, about the neutral surface (i.e., the plies are symmetrically

arranged about the xy plane).

hybrid laminates having plies of different materials, additional subscripts

| 3. Each ply is linearly elastic with no shear coupling Q.m.\ ply orien-
on the ply angles may be used to identify the ply material.

tations are either 0° or 90°).

4. The plies are perfectly _uo_pamawmommm:mc so that no slip occurs at
ply interfaces.

, EEE— 5. The only stress components present are o, and T,,.

7.2 Theory of Laminated Beams in Pure Flexure. As a result of assumption 1, the longitudinal normal strain at a distance

For the purpose of analysis, the simplest laminated structure is a lami- zfrom the neutral surface is given by the familiar equation ﬂ

B nated beam that is subjected to pure bending. A theory of laminated beams
i in pure flexure can be developed from the Bernoulli-Euler _ﬁrmmﬁ.v\ & i (P+20—pb
elementary mechanics of materials. Although the application of this .ma-‘ g = - N
ory is quite restricted, it yields considerable insight into the analysis of i

(7.1)
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where p is the radius of curvature of the neutral surface during flexure,
¢ the angle defined in figure 7.2, and z ﬁm distance from neutral surface
defined by the xy plane. L . o

From mmMEBﬂsos 3, the longitudinal stress in the jth ply is given by

- (e)=E)E) (72)

| . L ) .
where (E,); is the Young’s modulus of jth ply along the x.mﬁm.ncob and
(e,); is the longitudinal strain in the jth ply along the x .&:.mn.noz. From
m&mmaoz (7.1) and equation (7.2), the _oﬁm:c&s& stress is seen to be

(0.); u@w A | | (73)

Static equilibrium requires that the applied bending moment M must
be related to the longitudinal stresses by

h/2 .
M=2[" o.zbdz - (7.4

0

" where the symmetry mm.mcawmos 2 has been used. Substitution of equation

(7.3) in equation (7.4) gives

N/2.

M=2Y € (5 -2) 09

"~ 3p

j=1

where N is the total number of plies and z; is the distance from the neutral

\ . .
surface to the outside of the jth ply. For an even number of plies of uniform

thickness z; = j#/N and equation (7.5) becomes

N/2 ’ ’

M=

i ies if we simply
Equation (7.6) can also be used for an odd number of Hurm.m i !
&iﬂm each ply into two identical plies having half the thickness of the 1

original ply, so that the total number of plies is now even.

Recall that for a homogeneous, isotropic beam, the moment-curvature

relation is given by

Ao By _ EdI _ 7}

p  12p

D (B3 -3j+1) 76) |
= -
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where I, = [2°dA=bK® /12 is the moment of inertia of the cross section
about the neutral axis (v axis), A the cross-sectional area, and E; the
effective flexural modulus of the beam (which is same as Young’s modulus
of the beam material for a homogeneous, isotropic beam).

Combining equation (7.5) and equation (7.7), we find that the effective
flexural modulus of the laminated beam can be expressed as

N/2

 Ee = \WMQ&V\. Aww - NWL | | (7.8)

1

01035965::3@9,& Hu:mm we can combine equation (7.6) and equation
(7.7) to get M S

g N2 -
B D E)EF -3+ 79)
J=1 .

Thus, the flexural modulus of the laminated beam, unlike the Young’s
modulus of the homogeneous isotropic beam, depends on the ply-stack-
ing sequence and the ply moduli. That is, if the properties do not change
through the thickness of a beam, the flexural modulus is the same as the
Young’s modulus. _ .

The deflections of laminated beams can now be calculated by using the
flexural modulus in place of the Young’s modulus in the beam deflection
equations from elementary mechanics of materials. For example, the dif-
ferential equation for the transverse deflection, w, of a laminated beam

would be of the form

d*w
mm% Q..R.m

M (7.10)

wza the maximum deflection at the tip of the laminated cantilever beam
in figure 7.3 would be given by the familiar equation ,

. .A ’ 3 ) B
Wax = PL at x=L ANHHV

3E,,

where P is the applied tip load and L is the beam length. The Euler
buckling load, P,, for a laminated beam can be estimated by the formula -
[ | ) B

P = L (7.12)
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FIGURE 7.3 :
Cantilevered laminated beam under a concentrated tip load.

‘where L, is the effective Hmrm.% that includes the effect of end conditions.

Similarly, other beam equations involving the Young’s modulus can now
be modified for use with laminated beams.

An alternative expression for the stress in the jth ply can be obtained
by combining equation (7.3) and equation (7.7) and by eliminating the
radius of curvature:

_M A|§Nﬁ.v.
.ASV\..[ El, ﬁs&;ﬂ% m; | (7.13)

Thus, the term in square brackets can be thought of as a correction term, |

which when multiplied by the familiar homogeneous isotropic beam
stress, Mz/I,, gives the stress in the jth ply of the laminated beam. Another

important observation is that the maximum stress in the ngwswﬁm& beam 4§
does not always occur on the outer surface as it does in the homogeneous, §

isotropic beam. At each section in a laminated beam, the ratio M/E{,, is

constant, and the remaining term (E,);z determines the maximum stress.

The maximum stress in the laminated beam therefore occurs in the ply

having the greatest product of modulus (E,); and distance from the neutral |
axis, z. For the homogeneous isotropic beam, the stress at a given point
in the cross section depends only on the distance z, and the maximum

stress occurs at the outer surface where z is the greatest. The stress dis-

tributions in homogeneous isotropic beams and laminated beams are §

compared schematically in figure 7.4. ~
Failure of laminated beams can be estimated by using the stress from
equation (7.13) in one of the failure criteria that was discussed in chapter 4

For example, if the jth ply is a longitudinal (0°) ply in compression,
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Oy

(Eds> (B> (B

(B = (Epa< (E,),

FIGURE 7.4
Stress distributions in homogeneous, isotropic beams and in laminated beams.

From equati g - .
con &mmz WSS (7.13), the applied bending moment that would cause this

_ Eidysi”
Amgv\.w\.

where (E,); is the Ho.:m:c&:m_ modulus of the jth ply. Similarly, for a
transverse (90°) ply in tension the maximum bending moment is: \

Minax (7.14)

E¢l,, 57"
ggmx = 2w

)z (7.15)

Laminate failure would therefore occur ; i
) when the bending moment
Mmmnwmm. the value .ﬁrwﬁ would cause first ply failure. This <wm~m can Wm
>M$E.55ma by mvmaﬁgm the failure criterion to each ply until the lowest
sww. is found. .H\_Tm internal bending moment can be related to the external
- applied loads by the equations of static equilibrium, so that the applied

loads corresponding to first ply failure can also be determined. Since the

maximum stress does not necessarily occur on the outer surface, first pl
Wﬁmm.sam may occur in an interior ply. One of the difficulties mso\ocammmw
Ininspection for ply failure in laminates is that only failures on the outer

 Surfaces can be observed with the naked eye. Interior ply failures can onl
be detected by methods such as ultrasonic or x-ray inspection g
In most practical cases, the applied loads on a beam would ?.w such that
not only bending moments but also transverse shear forces would be
developed. These transverse shear forces cause corresponding transverse
shear stresses. In laminated beams, the transverse shear stresses are often

failure in this ply according to the Maximum Stress Criterion will occur when
(Crmax); = 515, Where (O, mq); is the maximum stress in the jth ply at z=z

teferred to as interlaminar shear stresses. Pagano [1] has also developed
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FIGURE 7.5
Differential element of a laminated beam showing interlaminar shear stress that is necessary
for static equilibrium when the bending moment varies along the length.

a mechanics of materials approach for estimating these interlaminar shear
stresses, as summarized here.

Recall from the mechanics of materials [2] that the bending moment,
M, is related to the transverse shear force, V, by the equation

dM _ vV o (7.16)

Thus, the presence of the shear force implies that the bending moment
must change along the length of the beam (the x direction). From equation
(7.13), we see that if the bending moment changes with respect to x, so,
too, must the normal stress, 6,. This means that the normal stresses acting
on the two faces of the jth ply in a differential element must be different,
as shown in figure 7.5. Since the element cannot be in static equilibrium
under these normal stresses alone, the interlaminar shear stress, (T,,),
must act at the inner edge of the kth ply, as shown in figure 7.5. From
static equilibrium of the element with respect to the forces along the x
direction, _ \

N/2 N/2

@i+ Y [ @)=Y [ 0+ 3% g laz-0 o

=k T A =k " dx
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or |
N/2
I “ QAQ\« v j
@TW [ ot (718)

. mcwmm.gﬁsm m@.cm&ob (7.13) and equation (7.16) in equation (7.18) and
ntegrating, we find that the interlaminar stress at the inner edge of the
kth ply is ,

N/2 )

Aﬁaav»H 4 M K AM».V\.NQN AQHQV

mm\b\,_\ j=k Zj-1

for a rectangular beam having an even number of pli i i
: ies of uniform thick-
ness, z; = jh/N, and equation (7.19) reduces to b "

V(S

(T = 2bh| (7.20)
where |
; 4 N/2 o
S= ﬁM@\.@r 1) (7.21)
T ek

Equation (7.20) is seen to be similar to the “mechanics of materials”

equation for transverse shear stress i i i
. ess in a homogeneous isotropic bea
which is A 5 P v

_3v zY ,
Ty =y Tw - (7.22)

Thus, the transverse shear stress is given by

3V
xy — NE\N Aﬂva

2

z
1-4 % for a homogeneous isotropic beam
where B= ~

— for a laminated beam
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Variation of shear stress, as governed by the factor f, across half the beam thickness for
homogeneous, isotropic beams and for laminated beams. Results are given for laminated
beams with a small number of plies and a large number of plies.

The shear stress distribution, as governed by the variation of the factor
B, is shown for both types of beams in figure 7.6. As the number of plies
increases, the shear stress distribution for the laminated beam can be
expected to approach the parabolic distribution described by equation
(7.22). For a small number of plies, however, the laminated beam shear
stress distribution departs significantly from the parabolic distribution.

Interlaminar stresses are responsible for an important failure mode in
composites known as delamination. Recall that the failure criteria dis-
cussed in chapter 4 were based only on in-plane stresses in the lamina.
Both normal and shear components of the interlaminar stresses in lami-
nated plates along with failure criteria, which include the interlaminar

stresses, will be discussed: later.

c EXAMPLE 7.1

Determine the flexural and Young's moduli of E-glass/epoxy laminated beams
having stacking sequences of [0/90/0]; and [90/0/901;. The ply moduli are E, =
5 x 10 psi (34.48 GPa). and E, = 1.5 x 10° psi (10.34 GPa), and the plies all
have the same thickness. :

Solution. The total number of plies is N = 6 in each case, and only the
stacking sequences are different. Since the ply thicknesses are all the same,
we can use equation (7.9) for the flexural modulus in both cases. For the

[0/90/0], beam

8 N/2
mm = %\Mﬁmxyﬁw 2 IW‘NIHWN.THV
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or
=8 sy

=4.09x10°psi(28.2 GPa)

The Young’s modulus, or e

Xtension :
the rule of mixtures al modulus, can be estimated by using

E, =E, +Eyv, |

where v, = volume fraction of longitudis
‘ of longit °) pli
fraction of transverse (90°) plies. H&M.MM“M& (0% plics and % = volume

v

(4 2 .
E =[5 2 z i
mm . i.mm L X 10°psi=3.83 x 10°psi (26.4GPa)

For the [90/0/ 90],, beam

m .
E=—" ; i
= {L.5(1)+5(7) + 1.5(19)) x 10° psi = 2.4 x 10°psi(16.55 GPa)

and

E,=[15(4)+ 5(2) [x10°psi = 2.66x 10%psi (18.34 GPa)

Z - ,
ote that the flexural modulus depends on the stacking sequence and is

-e., the rule of mixtures gives the same

1t reg g sequence, as ]
longitudinal and transverse plies aﬁsmwﬂw ::nrmswmmw_m 8 the number of

EXAMPLE 7.2

F

mmmhwmM%M\WQMWSNM%MWM\NNQQ beam described in example 7.1, sketch the
shear stresses f .

Assume a ply thickness 0of 0.01 in (i Q.N&mws:w\.o:%w e thickneos of the beam.

Soluti L
olution. The normal stress is given by equation (7.13), but the ratio M/EJ]
w

m.
18 OOH—MWNH..—” HOH a given Cross mmﬂﬁHOHﬂ\ WHHQ ﬂr
e m.g.mmm
il QHM#HZUE&MOS across ﬁrm
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be determined to- within a constant K; = g\mwg by mb&dm the corresponding
variation of (E,)z. w

For the outer surface of ply number 3 Qr,,m outer transverse ply), the ply
modulus is (E.); = E, = 1.5 x 10 psi, z = 0.03 in and the stress is 6, =
K,(1.5 x 109)(0.03) = 4.5 x 104K,.

For the inner surface of ply number 3, z = 0.02 in and the stress is ¢, =
Ky(15 % 109(0.02) = 3.0 x 10°K,. ,

Similarly, for the outer surface of ply number 2, the stress is o, =
Ky(5 x109)(0.02) = 10 x 104K;.

For the inner surface of ply number 2, 0, = K;(5 x 106)(0.01) = 5 x 10*K;.

For the outer surface of ply number 1, 6, = Ky(1.5 x 106)(0.01) = 1.5 x 10*K;.

For the inner surface of ply number 1 (on the neutral surface), ¢, = 0.

The predicted distribution of o, across the thickness is plotted in
figure 7.7(a). It is seen that the maximum normal stress occurs not on the
outer surface as in a homogeneous isotropic beam but, rather, at the outer
edge of ply number 2. A .

The interlaminar shear stress at the inner surface of the kth ply for a beam
with an even number of uniform thickness plies is given by equation (7.20)
and equation (7.21). For a given cross section, however, the ratio 3V/
2bhE; can be set equal to a constant, K,, and the shear stress can be written
as (1) = K,S, where S is defined by equation (7.21). The shear stress
distribution can then be determined to within a constant K, by finding the
variation of S across the thickness.

0.5 0.5

IR
®
RES

L

10 x 10* K; _
Q.R HRN
(b) Shear stresses

1
3x 100K,

(a) Normal stresses

FIGURE 7.7
Stress distributions for the beam described in example 7.2.
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From equation (7.20) and equation (7.21),

_3v[s].
Aﬁxnvwlww\g m INNN.m
N/2

4 s
where §= %:Ma&@ 1)
*

fork=1 :

o "

5= o (1120~ L+512()~ 11+ 15[2(3)- 1)) x10°

=2.66x10°psi (18.34 GPa)

For k = N
5= Mﬂaw@ ~1]+1.5[2(3)~ 1)) x 10°
=2.5%10%psi (17.24 GPa)

Fork=3

-4 _
S= o {1.5[2(3)— 1]} x 10°

= 0.833x10%psi (5.74 GPa)

Ebw:w«. moH.H.A =4, m@cmﬁo: (7.20) gives the shear stress at 'the inner surface
of an imaginary ply” whose inner surface is the same as the outer surface
of ply number 3 or the outer surface of the laminate. Since there is no

material in this “imaginary ply,” S = 0 and the shear stress must be zero on

273

the outer surface. This also satisfies the boundary condition that the outer -

surface must be stress-free: The predicted distribution of T, across the thick-
ness is plotted in figure 7.7(b). As with the shear stress in a homogeneous
isotropic beam, the maximum shear stress occurs on the neutral surface and
the shear stress at the outer surface is zero. The deviation from the parabolic
distribution is mswmﬁw.:amr however, because of the small number of plies.
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,

7.3 Theory of Laminated Plates with Coupling

While the simplified theory of laminated beams in pure flexure is useful
and instructive, it is restricted to symmetric laminates without coupling
that are subjected to a single bending moment. In this section, we will
discuss the more general CLT, which does not have these restrictions.
Using this theory, we can analyze nonsymmetric laminates whose arbi-
trarily oriented plies may have various coupling effects that may lead to
complex combinations of extensional, flexural, and torsional deforma-
tions. In addition, in-plane loading due to shear and axial forces and both
bending and twisting moments are included. The most important limita-
tion of the CLT is that each ply is assumed to be in a state of plane stress
and that interlaminar stresses are neglected.

‘What is now referred to as the CLT has apparently evolved from work
in the 1950s and 1960s by investigators such as Smith [3], Pister and Dong
[4], Reissner and Stavsky [5], Stavsky [6], Lekhnitskii [7], and Stavsky and
Hoff [8]. The major difference between this theory and the classical theory
of homogeneous, isotropic plates [9] is in the form of the lamina stress-
strain relationships. Other elements of the theory such as the deformation
hypothesis, the equilibrium equations (Appendix A), and the strain—dis-
placement relationships (Appendix B) are the same as those used in the
classical plate theory [9].

Although the laminate is made up of multiple laminae, it is assumed
that the individual laminae are perfectly bonded together so as to behave
as a unitary, nonhomogeneous anisotropic plate. Interfacial slip is not
allowed, and the interfacial bonds are not allowed to deform in shear,
which means that displacements across lamina interfaces are assumed to
be continuous. These assumptions mean that the deformation hypothesis
from the classical homogeneous plate theory can be used for the laminated
plate. The laminate force-deformation equations resulting from this defor-
mation hypothesis are now derived following the procedure outlined by
Whitney [10]. Although Whitney has presented a general analysis includ-
ing the equations of motion, only the static analysis will be considered here.

Figure 7.8 defines the coordinate system to be used in developing the
laminated plate analysis. The xyz coordinate system is assumed to have
its origin on the middle surface of the plate, so that the middle surface
lies in the xy plane. The displacements at a point in the x, y, and z directions
are u, v, and w, respectively. The basic assumptions relevant to the present
static analysis are [10]: ,

1. The plate consists of orthotropic laminae bonded together, with
the principal material axes of the orthotropic laminae oriented
alone arhitrarv directions with respect to the xy. axes.
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FIGURE 7.8
Coordinate system and stress resultants for laminated plate.

2. The thickness of the plate, t, is much smaller than the lengths
along the plate edges, a and b. .

3. The displacements u, v, and w are small compared with the plate
thickness. .

4. The in-plane strains g,, &, and ¥,, are small compared with unity.
5. Transverse shear strains vy,, and Y,. are negligible.

6. Tangential displacements u and v are linear functions of the z
coordinate. ,,

7. The transverse normal strain ¢, is negligible.
8. Each ply obeys Hooke’s law. /
9. The plate thickness ¢ is constant.

10. Hnm.smdxmamm shear stresses T,, and T,, vanish on the plate surfaces
defined by z = +#/2,

Assumption 5 is a result of the assumed state of plane stress in each
mq\ whereas m.mmcgwﬂosm 5 and 6 together define the Kirchhoff deforma-
tion hypothesis that normals to the middle surface remain straight and

normal during deformation. According to assumptions 6 and 7, the dis-
placements can be expressed as

u=u’(x,y)+zF(x,y)
V=0, )+ zF(x, y) (7.24)
w=w(x,y) = w(xy)

where 110 and v are the tangential displacements of the middle surface along

the ¥ and 17 dirertinne rocthontitraler Then fn mceos e e 7 1 o
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displacement at the middle surface, w%(x, %\ is the same .mm the mem%ﬁmm
displacement of any point having the same x mH.a_ Y noowunrbmﬁmm\ so wl(x, .A\W
=w(x, y). At this point it is appropriate to mention 9&.5 order to monmg
for possible warping of the cross mmoﬂoj of Em laminate mzﬂ resu QEm
transverse shear deformations, it is necessary to use a mmu-nmzmm higher-order
lamination theory. For example, Christensen GS. describes one such h%m.og
which is based on the assumption that the displacements are nonlinear
functions of the z noo_x%ﬁbmﬂm as follows:

1=, y)+ 20 (x, )+ N.ﬁ? )+ 2°0.(x,y)
V= do@@ S + N€<AR\ S + Nmﬁe (x, S + NmeeAx\ S ) (7.25)
w =w’(x, y)+ 2y, (x, y) + 220, (%, )

i i d we will
Such a theory is beyond the scope of this book, ros_\m..%\m« an .
only develop Wﬂm CLT based on equation (7.24). mcw.mﬁscsm equations
Q. 24) in the strain-displacement equations ?Zummsm_x B) for the trans-
verse shear strains and using assumption 5, we find that

ou ow ow :
= —F = |7 , +—= O

V=g + g ~ RGN )

v | ow _ dw _
Yz nw+ymﬂl E(x,y)+ o 0

and that
0 Jw . .

REy=-5 BEy=-3- (7.27)

Substituting equations (7.24) and equations (7.27) in the mwa.&sl&mﬁmnm-
ment relations for the in-plane strains (Appendix B), we m:ﬂ that

&= M mm + zk,
ox
v
g = T &) +7k, (7.28)
du 0V _ o
V= @ i w\% 2Ky
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where the strains on the middle surface are : _

ST R Y. )
FTw YTy Tyt

and the curvatures of the middle surface are

, €. = *w " II@N|8 B wmg
T v Y T woy

) (7.30)

K, is a bending curvature associated with bending of the middle surface
in the xz plane and K, is a bending curvature associated with bending of
the middle surface in the yz plane. Ky, 18 a twisting curvature associated
| with out-of-plane twisting of the middle surface, which lies in the xy plane
b1 before deformation. :

Since equations (7.28) give the strains at any distance z from the middle
surface, the stresses along arbitrary xy axes in the kth lamina of a laminate
.. may be found by substituting equations (7.28) into the lamina stress—strain
IB relationships from equations (2.35) as follows:

O — — —
* Qu Qn on mw+N5

oyt =|Qu Qn O &) + 2K, (7.31)
Qs Qo D&» g\m_g+N5£

Ty .

where the subscript k refers to the kth lamina. Comparing the laminated
plate stresses in equations (7.31) with the laminated beam stress given by
equation (7.3), we notice several differences. The laminated beam analysis
only gives the uniaxial stress, 6,, due to the bending curvature, whereas
the laminated plate analysis gives the 2-D lamina stresses Oy O, and T,,
due to bending and twisting curvatures and to the midplane biaxial exten-
sion and shear. In addition, the laminated plate analysis includes the
| stresses due to shear coupling, as discussed in chapter 2.

. In the laminated beam analysis, equation (7.3) for lamina stress is seen
to be of limited practical use because the curvature is not generally
known and is difficult to measure. Thus, the lamina stress was related
to the applied bending moment by using the static equilibrium relation-
ship in equation (7.4). The result was that a more useful equation for
stress, equation (7.13), was developed. The bending moment.can be
related to the loads on the structure by additional static equilibrium
equations. Similarly, in the laminated plate analvaic the midnlane cieeine
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and curvatures in equations (7.31) must _omm related to applied forces and

moments by static equilibrium equations in order to make these equa-
tions more useful. In the laminated plate analysis, however, it is conve-
nient to use forces and moments per unit length rather than forces and
moments. The forces and moments per unit length shown in’ figure 7.8
are also referred to as stress resultants.

For example, the monm per unit length, N,, is given by

_ t/2 N Zy
z&u.— o dz= .q (0.),dz (7.32)

—t/2

and the moment per unit length, M,, is given by

: t/2 N 2z
N&an._. QRNQN"M. ._. (0y),2dz
k=1

—t/2 Zpq

(7.33)

where ¢ is the laminate thickness, (6,), the stress in the kth lamina, z, _;,
the distance from middle surface to inner surface of the kth lamina, and
z, the corresponding distance from middle surface to outer surface of the
kth lamina, as shown in figure 7.9.

Substituting the lamina stress-strain relationships from equations (7.31)
in equation (7.32) and equation (7.33), respectively, we find that

N, = W ._;» T@:vw Amm + NET (Qu), Amw + NST (Qu6), G& + NE&TN
k=1 * P

(7.34)

wWiN—

Mz
Z
7y |22

Middle surface

.

k

[ SR T T

Zg.
o ZN_y
_ -1 2y

[SSTR0N

N

. FIGURE 7.9
Laminated plate geometry and ply numbering system. Caution: The ply numbering system
here is different from that used in figure 7.2 for the laminated beam analysis.
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o
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and

M, = M._é ?O:.V» Amm +N5v+@sv» Amm +N5v+@av» C\w +N5.LT dz

(7.35)

Combining terms and rearranging equation (7.34) and equation (7.35),
we find that

N, = \wimw + \#HNMW + >Hm th + WSKN + WHNKQ + WSK.@Q AV.QOV

and

M, = m:mw + mHNMm +.mum QM_\ + Dy, + USR.< + NUERQ Aﬂ.wﬂv

where the laminate extensional stiffnesses are given by

t/2 . N oo
Ay = n A@.\.v» dz= NﬂMuH A@\.vimw — Zg.1) (7.38)
The laminate-coupling stiffnesses are given by
t/2 N
_ 1 _
WN: — . _ » 2 _ 2
j éazaNNW@§? 2, (7.39)
and the laminate-bending stiffnesses are given by
e N
_ 1 ~
D; = Y 2 — 1 . 3 _ .3
, ._..<N @)z =7 W @i (2 -2,) (7.40)

s%.ﬁm H.Tm .m:vmnaﬁ_ﬁm i, j = 1,2, or 6. The other stress resultants can be
written in similar form, and the complete set-of equations can be expressed
in matrix form as

Ne | [An Ay A By By By || &

Ny | | A Ay Ass By By By || €8

Nay | _| Aus s A Big Bug Bes |7

M, | | By By By Dy Dy, Dy |k, 7-40)
g< | NHN Nwmw mmm UHN NUMN Umm R‘w

M) L Bis Bas Bss Dig Das Des ] |1, |
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or in partitioned form as
el S e S Lo i (7.42)

From equations Q.»Nw\ we can see that the extensional stiffness matrix [A]
relates the in-plane forces {N} to the midplane strains {¢%}, and the bending
stiffness matrix [D] relates the moments {M]} to the curvatures {k}. The
coupling stiffness matrix [B] couples the in-plane forces {N} with the
curvatures {k} and theé moments [M] with the midplane strains {e°}. A
laminate having nonzero B; will bend or twist under in-plane loads. Such
a laminate will also exhibit midplane stretching under bending and twist-
ing moment loading. It can be easily shown that laminate geometric and
material property symmetry with respect to the middle surface leads to
the condition that all By = 0.and that asymmetry about the middle surface
leads to nonzero By

The decomposition of typical force and moment terms in equations
(7.41) is illustrated in figure 7.10 and figure 7.11, respectively. Note in
figure 7.10 that the corresponding force-deformation relationship for a
homogeneous isotropic plate would only include the first two terms and
no coupling terms of any kind, whereas in figure 7.11, the corresponding
moment-curvature relationship for a homogeneous isotropic plate
would only include the fourth and fifth terms and no coupling terms of
any kind. .

It is now clear that there may be coupling effects at both the lamina
level and the laminate level, but the two types of coupling are not neces-
sarily related. Lamina shear coupling is a result of anisotropic material
behavior and the presence of 16 and 26 terms in the lamina stiffness or

N, =A118,° + A198,° + A1gYsy° + Bi1Ky + ByoK, + BigKay

Stretching of ﬂ Bending along

middle surface aandy
Shearing of directions
middle surface Twisting
. of xy plane
Note: if By; = Bjy = Bjg = 0, no bending or
twisting and if A4 = 0, pure stretching of
middle surface

FIGURE 7.10
IMustration of decomposition of coupling effects in a general laminate loaded by a single
force per unit length N,.
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M, = By18,°+ B1o€,° + BigY,,® + Dy K, + D1y + Dygheny

Stretching of W‘ ~ Bendingalong

middle surface # and y axes
Shearing of

middle surface Twisting
. . -of ¥y plane
Note: if By; = By, = Byg'= 0, no stretching or
shearing and if D4 = 0, pure bending
Conclusion: Major simplifications possible if By=0

[

FIGURE 7.11

Ecmwnm&os omwamno.BHuOmEoz of coupling effects in a general ngﬁmnm loaded by a single
bending moment per unit length M,. .

compliance matrices (recall section 2.6). This type of coupling at the lam-
ina level also leads to coupling at the laminate level due to terms such as
Ay Ass Diyg, and Dys. On the other hand, the Bjtype coupling at the
Hmmabmﬁm level is due to geometric and/or material property asymmetry
with respect to the middle surface and is unrelated to material anisotropy.
.mS example, it is possible for a laminate to have nonzero B; even with
isotropic laminae if they are stacked in nonsymmetrical mmma\o? but the
Hm.oc.o?o lamina properties lead to the condition A = Ay = Dy = 0.
Figure 7.12 illustrates the two different types of coupling that appear in
one specific laminate force-deformation equation. In the next section, the

E:Emo:rmmmmﬁmmwBmﬁinmmmoamm,\mwﬂ m@mﬁm_vaﬁmmoZmBEmﬁmmSE
be summarized. : : ,

i

Example: Expanding expression for N,

Ny=Ay18,°+ Ap8,° + A16Yxy® + BriKe + ByyK, + Bygicx

\.'|\\. 4|\\

u»vm%xu.o term due to coupling  By1¥, + Byox, terms

at lamina level since cause coupling at the
s laminate level even though

A= M AOEV» AN» - N»Lv lamina coupling terms mmar
et as Qjgand Q6 may not be

and Q¢ is dueto shear present. By, terms present

coupling in off-axis lamina due to nonsymmetrical

AQR =0 for 0° or 90° lamina) arrangement of plies about
: middle surface,

FIGURE 7.12

lllustration of the difference between lamina level coupling and laminate level coupling in
a general laminate loaded by a single force per unit length N,.
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w
7.4 Stiffness Characteristics of mmwmﬁmm Laminate
Configurations W .

As shown in the previous section, the number of nonzero terms in the
laminate stiffness matrices is reduced for certain laminate configurations.
Symmetry or antisymmetry of geometric and material properties about
the middle surface, ply orientations, and ply-stacking sequences are all
factors that govern the form of the laminate stiffness matrices. It is par-
ticularly important to be able to understand the effects of these factors on
the type of coupling that may exist in the stiffness matrices of commonly
used laminates. . I

Before beginning the discussion of special laminate configurations, it is
useful to define several terms that are associated with special ply orien-
tations. Although these ply orientations, by themselves, do not necessarily
produce simplifications in the stiffness matrices, they are often used in
combination with other terms to describe special laminates which do have
simplified stiffness matrices. “Angle-ply” laminates have lamina orienta-
tions of either + 6 or -6, where 0° < 8 < 90°. Depending on ply-stacking
sequences, angle-ply laminates may be symmetric, antisymmetric, or
asymmetric with respect to the middle surface. “Cross-ply” laminates
consist of plies oriented at either 6 = 0° or 6 = 90°. A balanced'cross-ply
laminate has equal numbers of 0° and 90° plies. Depending on the ply
arrangement, cross-ply laminates may be either symmetric or asymmetric
with respect to the middle surface, but not antisymmetric. Since all plies
in a cross-ply laminate behave as specially orthotropic laminae, such a
laminate will always have Aj, = Ay = Dis = D), = 0. However, since all
plies in an angle-ply laminate behave as generally orthotropic laminae,
the 16 and 26 terms may not vanish.

7.4.1 Symmetric Laminates

A symmetric laminate has both geometric and material property symme-
try about the middle surface. That is, the ply material, ply orientation,
and ply thickness at a positive distance z from the-middle surface are
identical to the corresponding values at an equal negative distance z from
the middle surface. Examples of symmetric angle-ply and cross-ply lam-
inates are shown figure 7.13(a) and figure 7.13(b), respectively. Such a
symmetry condition when substituted in equation (7.39) leads to the major
simplification that all B;= 0. This means that bending-stretching coupling
will not be present in such laminates. Consequently, in-plane loads will
not ‘generate bending and twisting curvatures that cause out-of-plane
warping, and bending or twisting moments will not produce an extension

of the middle surface. This can be particularlv important in structures that 4
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+45°
~45°
+45°
—45°

+45°

FIGURE 7.13

- g ” it
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laminates.

EXAMPLE 7.3

FIGURE 7.14

(a) Symmetric angle-ply

mxmBEmwOmm%EgmﬁoHmn:bm;. . .
mmAEoEmBS: . ‘operti : ;
about middle surface y ons and material properties are symmetric

N:w subjected to changes in environmental conditions, where the resulting
ygrothermal forces would lead to undesirable warping in nonsymmetric

Determine the stiffness matrix for a [+45/-45/. !

: ¢ 5 ~45/-45 +45] symmetric angle-ply
N,a:mx&m consisting c\ 0.25-mm thick unidirectional AS/3501 na@o:\m.uckw EWK
inae. An exploded view of the laminate is shown in figure 7.14.

+45°
~45°

z

(b) Symmetric cross-ply

Exploded view of [+45/-45/-45/+45] symmetric laminate. -. i
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Solution. From table 2.2, the lamina mﬁmgmmwu.bm constants are

: : . |
E = 138GPa E,=9GPa Gp=69GPa v, = 03

. E 9.0
and Uy = 22 =0.3——=0.0196
2T E 138.0

Substitution of the above engineering constants in equations (2.27) yields
the components of the lamina stiffness matrix associated with the prin-

cipal material axes:

138.8 272 0 |

[Q]=|272 9.05 0 |GPa
0 0 69

The transformed lamina stiffness matrices for the +45° and —45° w:mw are
then found by substituting ‘the above stiffnesses in equations (2.36) or
equations (2.43) and equations (2.44). For the +45° plies,

4522 31.42 3244
[Qluse =| 3142 4522 3244|GPa _
3244 3244 356 |

For the —45° plies,

4522 3142 -32.44
[Qlus =| 3142 4522 -32.44|GPa
3244 -3244 356

Note that the only difference between the stiffness matrices for the plies is
that the shear coupling terms (i.e., the terms with subscripts 16 and 26) for
the —45° ply have the opposite sign from the corresponding terms for +45°
ply. Before calculating the laminate stiffnesses, we must determine distances
from the middle surface on the various ply interfaces according to figure 7.9.
The distances are z, = —0.50 mm, z; = ~0.25 mm, z, =0, z; = 0.25 mm, and z,
=0.5 mm. The laminate extensional stiffnesses are then found by substituting
these distances along with the lamina stiffness in equations (7.38):

4522 3142 0
[Al=|3142 4522 0 |GPa-mm
0 0 356
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Similarly, the laminate-coupling stiffnesses are found from equation (7.39):

[B]= GPa-mm?

S o o
o o o
S O o

and the laminate-bending stiffnesses are found from equations (7.40):

3.77 262 2.03
[Dl=]2.62 3.77 2.03|GPa-mm?
2.03 203 297

7.4.2  Antisymmetric Laminates

An antisymmetric laminate has plies of identical material and thickness at
equal positive and negative distances from the middle surface, but the w
ozmamﬁoﬁ are antisymmetric with respect to the middle m:ammom Hrmmv\
the ply oEm.BS.mob at a positive distance z is +9, if the ply o&m:.ﬁmmos mmm
WBWMM Smmmﬂ\m &Hm.wmﬁnm z is —8. Examples of antisymmetric angle-ply
o s are shown in figure 7.15. 205 that the antisymmetric definition
no meaning for a cross-ply laminate, which must be either symmetric

MM %%ﬂ.m%ﬁgmgn. It can be shown that by substituting the antisymmetric
P lH MOBIES equations (7.38) and equations (7.40), the coupling terms
16 = Az = Dyg = Dyg = 0. From equations (7.39), it can also be shown that

By=B, =By, = By = 0 for the antisymmetric angle-ply laminate.
—45° +30°
+45° x < —
| +45° | —30°
—— ST
z zZ
FIGURE 7.15

Examples of antisymmetric an. i A
. f ! gle-ply laminates. Although ply orientations i
tic about middle surface, the material distribution is mwa%mwwﬁ. e anfisymimet:
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i

FIGURE 7.16 . A
Exploded view of [-45/+45/-45/+45] antisymmetric laminate.

EXAMPLE 7.4 ’ : . .

Determine the stiffness matrix for a Tmm\&m\l&m\iﬂ antisymmetric angle-ply
laminate consisting of the same 0.25-mm thick :§.&§&S§.~ AS/3501 S@o:\
epoxy laminae that were used in example 7.3. An exploded view of the laminate

is shown in figure 7.16.

Solution. Since the lamina orientations are still +45° and —45°, ﬁ.rm lamina
stiffnesses are the same as those calculated in mmeB.Em 7.3. The mﬂmﬁﬂw@mm Z
are also the same as those shown in example 7.3, since .ﬂrm E%. thicknesses
and the number of plies are the same. rmsabmﬁ mxwm:muow& mﬁmbm.mmm_w mW
then found by substituting these values, along with the m&ﬁm%ﬁﬂgﬁﬁo stac
ing sequence, in equations (7.38):

4522 3142 O
[Al=]|3142 4522 0 [GPa-mm
0 0 356

Note that these results are identical to those in example 7.3 Gmmmcmm we still
have two plies at +45° and two plies at —45°. Thus, the mﬁm.n_csm sequence
has no effect on [A] as long as the number of plies at a given odmamso:
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HmEmEmEmmmEo.HﬁmHmEEmﬁonEu:smmmmbmmmmmwnmmo:bmw.og equa-
tions (7.39): : :

0 0  4.055
[Bl=| 0 0  4.055|GPa-mm?
4.055 4.055 0

Note that due to the antisymmetry, By; = By, = B, = By = 0 but By and By
have nonzero values; this is true in general for antisymmetric angle-ply
laminates. Thus, the. ‘antisymmetric laminate has extension—twisting and
bending-shearing coupling, but the symmetric laminate does not. The lam-
inate-bending stiffnesses are found from equation (7.40):

377 262 0

[D]=(2.62 377 0 |GPa-mm?®

00 297

Note that Dy,, D,,, Dy,, and D, are the same as the corresponding ‘values in
example 7.3, but we now have D, = D, = 0. Thus, bending-twisting cou-

pling is present in symmetric angle-ply laminates, but not in antisymmetric
angle-ply laminates.

7.4.3 Quasi-Isotropic Laminates

Although it may seem unlikely, it is possible to use orthotropic laminae
to construct a laminate that exhibits some elements of isotropic behavior.
For example, if a laminate consists of three or more identical orthotropic
laminae (i.e., all have the same material and geometric properties) that
are oriented at the same angle relative to adjacent laminae, the extensional
stiffness matrix [A] will be isotropic, but the other stiffness matrices [B]
and [D] will not necessarily have isotropic form. Such a laminate is called
4 quasi-isotropic or planar isotropic laminate, and the angle between
adjacent laminae must be 1/N, where N is.the total number of laminae,
For example, [60/0/-60] and [90/45/0 /~45] laminates are quasi-isotropic.

Recall that in section-6.4 it was mentioned that randomly oriented
fiber composites could be modeled as planar isotropic or quasi-isotropic
laminates. Now it is clear that although a randomly oriented fiber com-
posite must theoretically have an infinite number of fiber orientations
to be isotropic, the in-plane behavior of such materials can be modeled
by using a quasi-isotropic laminate having only three laminae, as in the
[60/0/-60] laminate.

Recall also that the stress—strain relationships for an isotropic lamina are
given by equation (2.26), with the additional requirements that Q;; = Q,,,
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Qg6 =(Q11 — Q12)/2, and Qi = Qs =0. mgjﬁva the extensional force-defor-
mation relationships for the quasi-isotropic laminate are given by

|
|

0

Nel Tan Aw 0 &

2& = \»5 \w: 0 Nm Aﬂ%mv
0 0 Ay — Agp)/2

Z»,,\ A 11 Hmv\ @\mw

I .

In general, such simplifications are not possible for the [B] and [D]
matrices, as can be shown by calculating the stiffness matrices for quasi-
isotropic laminates such as [60/0/-60] or [90/45/0/-45].

In section 6.4, it was shown that the invariants could be useful in the
development of the stress—strain relationships and equations for the engi-
neering constants of a planar isotropic, randomly oriented fiber compos-
ite. Similarly, the invariants can be used in the study of quasi-isotropic
laminates. For example, by substituting the lamina stiffnesses in terms of
invariants from equations (2:43) in equations (7.38) for the laminate exten-
sional stiffnesses, we find that’

Ap = \»B = Uyt

>Hm = :Em v . p _,.; Aﬂ#%v
U, —Uy)t

\wmm — A 1 5 »v

‘Using developments similar to those in section 6.4, we can show that
the effective extensional engineering constants for quasi-isotropic lami-
nates are given by equations (6.43).

EXAMPLE 7.5

Determine the stiffness matrices and engineering constants for a quasi-isotropic
[60/0/-60] laminate consisting of the same laminae that were described in example
7.3. Figure 7.17 shows an exploded view of the laminate.

Solution. The required lamina stiffnesses are the Q; in example 7.3 and the
appropriate transformed stiffnesses for 60° and —60° from equations (2.36)
or equations (2.43) and equations (2.44). Substituting these stiffnesses in
equations (7.38), we find that the laminate extensional stiffnesses are

4468 12.80 0
[A]=]12.80 4468 0 |GPa-mm
0 0 15.94

' equations (7.43). It can also be show
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FIGURE 7.17 ;
Exploded view of [+60/0/-60] quasi-isotropic laminate,

Itis easily shown that this matrix is of the isotro

: , pic form shown in equati
(7.43). The laminate-coupling stiffnesses from equations (7.39) are duations

0 0 -1.96
[Bl=] 0 0  -5.06 |GPa-mm?
-1.96 -5.06 0

and the bending stiffnesses from equations (7.40) are

0.856 0.824 ¢
[DI=0824 288 - 0 |GPa-mm®
0 0 0972

It is seen that the matrices [B] and [D] Qo,‘b,oﬁ have the isotropic form of

. . ) It ca n that by changing the lamina orienta-
M%ngw,\r:m maintaining equal angles between m&mnﬁﬂ laminae Amm.M..JWMm\
~45], [30/-30/-90], or [0/ ~-60/~120]), the Aj; remain unchanged _2\: the

B;and D. do n i P
if i ot. .H.TCM\ the lamin i ; .
behavior m nly, ate is isotropic with respect to in-plane

The engineering constants for the laminate

ants. By substituting the Q; may be found by using the invari-

from example 7.3 in equation (2.44), we find that

Ui =5957 CGPa and IT. — 1707 1

289
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Substituting these results in equations a.pwv we find that the engineering
constants are ﬂ
M
1

F=5468GPa G=2125GPa and ¥=0.287

Note that the A; can also be found by using the invariants U, and U,, along
with the laminate ﬁrw&_ﬁmmm\ t, in equations (7.44).

7.5 Derivation and Use of Laminate Compliances

Since the applied loads are generally known rather than the deformations,
it is often necessary to use the inverted form of the laminate force-defor-
mation relationships shown in equation (7.41) and equation (7.42). The
use of the inverted equations means that we must deal with the laminate
compliance matrix instead of the laminate stiffness matrix. In this section,
the inverted equations are derived and used to calculate the lamina
stresses and strains due to known laminate loads. The inverted equations
are also used in the derivation of the laminate engineering constants and
in the comparison of predicted and measured laminate compliances.

7.5.1 Inversion of Laminate Force-Deformation Equations

The general laminate force-deformation equations shown in equations
(7.42) can be expressed as

DA LR lha nE. el (7.45)

where the Ay, By, and Dy make up the laminate stiffness matrix, [E]. The
fully inverted form of this equation can be obtained directly by premul-
tiplying both sides of the equation by the compliance matrix, which is the
inverse of the stiffness matrix

B G e I el 1 2 P (7.46)

Alternatively, equations (7.46) are derived below by the inversion of sub-
202 A minnllam vt ana Ao ohatrn ke Efalynin 11721

Analysis of Laminates 291

From equations (7.45), the in-plane forces per unit length are

(N} =[Al{e"} +[Bl{x} (7.47)

whereas the moments per unit length are |

(M} =[BJ(°) + D]} (7.48)

The midplane strains may be obtained from equations (7.47) as

| ("} = [AT{N) - [A]"[Bl{x) (7.49)

Substitution of these strains in m@cmaorm Au.mwv gives

(M} = [BILAT{N} - [BILA]™[B]{x} + [Dl{x) (7.50)

~ Equations (7.49) and equations (7.50) can be combined to give a partially
inverted form of equations (7.45) as follows:

. g 1A BlN
Vi 751)
where .
[A9]=[A]"
[B] =~ AI"[B]
[C*] = [BI[ A"
- [D]=ID]- [BIAF[B]

Inverting the last set of partitioned equati
. . ons (7.51) to sol
curvatures, we find that ‘ 1 750 solve for the

{ch =D (M} - [D*][C{NY - (752)
Now substituting equations (7.52) in m@ﬁwaolm (7.49), we have

1% = TA¥T =[BT O DM AT - TRETT#T-Lr an /7 =N




292 Principles of Composite Material Mechanics

|
Equations (7.52) and equation (7.53) can now be combined in partitioned
matrix form to give

B[N ;
el _ _" T\N | (7.54)

where

[A]=[4]-[BID[CY]
[B]=[BIDT"
[C]=-IDT[C1=[BT =[B]
D=0

and the compliance matrix is

AP
e demm | = NIH ,Nmm
ﬁ_,_ D' H u > A v

Since the stiffness matrix [E] is symmetric, the compliance matrix must
also be symmetric.

7.5.2 Determination of Lamina Stresses and Strains

Now that we have the inverted laminate force-deformation relationships
in equations (7.54), the calculation of lamina stresses and strains from
known laminate forces and moments is a straightforward procedure. For
a laminate at constant temperature and moisture content, the stresses in
the kth lamina are given by equations (7.31), which can be written in
abbreviated matrix notation as

{oh =10k} +2lc) (7.56)

where the midplane strains {€} and curvatures {x} are given in terms of
laminate forces and moments by equations (7.54). The lamina stresses
from equations (7.56) can then be used in conjunction with a lamina
strength criterion to check each lamina against failure. The analysis of
hygrothermal stresses-will be discussed later in section 7.6, and laminate
atrenoth analveis will he nresented in section 7.8.

Analysis of Lamiriates
EXAMPLE 7.6

The symmetric angle-ply laminate described in example 7.3 is subjected to a

single xﬁ.aﬁ_.& Jorce per unit length N, = 50 MPa-mm. Determine the resulting
stresses associated with the x and y axes in each laming.

293

Mo?&ob. Usm.Sm%EBms.%\Eunombag \_HEJHST.mFthS_Ho
ere, ‘

(") =[A'N) = [A]"(N)
Using the inverse of the [A] matrix from example 7.3, we find that

0

&

| 1004276 -0.0297 0 50 0.002138
g t=]-0.0297 0.04276 0 0 +x(107°)=14-0.001485
0 0 0 0.02809]|0 0
Yy

where (GPa-mm)! = 10 (MPa
the lamina stiffnesses from exa
stresses in the +45° plies are

-mm), m.:,gmgmzm the above strains and
mple 7.3 in equations (7.56), we find that the

% | [4522 3142 3244]( 0002138 ) 50

oy t=[3142 4522 32.44 (10001485 b x 10° = 0 +MPa
Ty 3244 3244 356 0 21.2

where 10° MPa = GPa; Similarly, the stresses in the —45° plies are

Oy

4522 3142 -32.447(0.002138 50
Oy r=| 3142 4522 -382.44({-0.001485}x10° = 0 (MPa
Ty -32/44 -3244 356 0 —21.2

Note that since the curvatures <m,amr for this

roblem, the str
not depend on the distance z. P e do

EXAMPLE 7.7

The antisymmetric m:ﬁwﬁ@ laminate described in example 7.4 is subjected to a

mSwNm §N.§S.~ Jorce per unit length N, = 50 MPa-mm. Determine the resulting
stresses associated with the x and v nvec i omele Tossstoa
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Solution. Since this laminate is not m%EQ,ﬁEG we must invert the full
stiffness matrix as in equation (7.46) or equation (7.54). Forming the full
stiffness matrix from the [A], [B], and [D] matrices in example 7.4 and
inverting, we find the resulting midplane strains and curvatures to be

t
i
i

(0 _
o [ 0.04386 ~0.02861 0 0 0 ~0.02083 |
Y ~0.02861  0.04386 0 0 0 ~0.02083
Yl | 0 L0 0.03284 —0.02083 —0.02083 0
., 1o 0 ~0.02083 052625 0.34331 0

0 ) -0.02083 —0.34331 0.52625 0
Ky | |-0.02083 -0.02083 0 0 0 1039356 |
Ky

50 0.002193mm/mm

0 ~0.001430mm/mm

«] 0 %107 = osasmg

0 Omm

0 Omm™

0 -0.001042mm™

where again the factor of 103 has been introduced for dimensional consis-
tency. Due to the curvatures, the total strains and stresses now depend on
the distance z (unlike example 7.6). For example, at the top surface of the
#1 ply (—45°), z = -0.5 mm and the resulting total strains are

&, = €° + 2, = 0.002193+(-0.5)(0) = 0.002193 mm/mm
&, = &) + 2k, =—0.00143 +(-0.5)(0) = -0.00143 mm /mm
: 5&@ +2y = 0+(~0.5)(-0.001042) = 0.000521 mm /mm

Similarly, at the bottom surface of the #1 ply ( —45°), or at the top surface
of the #2 ply (+45°), z = 0.25 mm and the strains are

£, = 0.002193 + (~0.25)(0) = 0.002193 mm /mm
£, =—0.00143 +(~0.25)(0) = ~0.00143mm /mm
¥ay = 0+(~0.25)(=0.001042) = 0.000261 mm /mm

At the top surface of the #3 ply (—45°), or at the bottom surface of the #2
ply, z = 0 and the strains are

£, =0.002193 mm /mm
g, ==0.00143mm/mm

Q\x._\HO

\ 4

B8 5 A i i i i e oo
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At ﬂm_,m HO—U mﬂﬂﬁmhm of E e #ﬁ muww\ +%m or at ww—m TOﬁ_”OHH_, MCHAWOO OA _HH_.O #Hw
A v\
ﬂﬁw M %m v\ Z O.Nm HH, m m—H—hm

&, =0.002193mm/mm
gy = lo.oonwES\ mm

¥x =-0.000261 mm/mm

Finally, at the bottom of the #4 ply (+45°), z=+0.5mm and

€ =0.002193mm/mm
£, =-0.00143mm/mm

¥y =-0.000521mm /mm-

The stresses at the top surface of the #1 ply (-45°) are then

Ox 4522 3142 -32.44]( 0.002193
Oy p=| 3142 4522 -32.44({-0.001430x10?
T ~32.44 -32.44 ° 35.6 0.000521
37.3 _
=4-12.7 } MPa
~6.2

where again 10° Mpa = GPa. Similar calculations f ies yi
. or the oth
the values shown in the following table: ¢ ofher plies yield

Location 0, (MPa) o,(MPa) ,,(MPa)
#1 Top 373 i -12.7 ~6.2
#1 Bottom 4538 42 155
#2 Top © 62,7 12.7 34.0
#2 Bottom, 54.2 42 24.7
#3 Top 542 42 247
#3 Bottom 62.7 12.7 -34.0
#4 Top 45.8 —4.2 15.5
#4 Bottom 37.3 -12.7 6.2 -

Thus, the stress distribution across the thickness of the antisymmetric lam-

inate is quite complex, even for simpl iaxi i ‘o :
. ; 4 ple uniaxial loading. This is t :
laminates which exhibit connline & ypical for
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7.5.3 Determination of Laminate m:mmsmnl:m Constants
|

It is sometimes more convenient to use effective laminate engineering
constants rather than the laminate stiffnesses defined in equation (7.38),
equation (7.39), and equation (7.40). These effective laminate engineering
constants may be derived by using laminate compliances. For example,
the force-deformation ‘relationships for a symmetric laminate under in-
plane loads only are given by

|

|

N, An  Ap Ag mm

Ny t=14An Axn Ag mw (7.57)

Ny, A Age .\rm <w_\

and the noﬁmmwos%bm inverted force~deformation relationships are

e | |Aun AL A || N:
e t=|Al, A AW {N, (7.58)
<m< \Km mm bmm Zé

The effective Hosm::&:m_ Young’s modulus of the laminate, E,, governs
the response of the laminate under the single axial load per unit length
N, with N, = N,, = 0 (fig. 7.18[a]) and is defined as

p,=Ox Ne/t 1 (7.59)
gl 1N, tAn
. , . 2». . —
S———
1. L Y
Z.X
T = 74
R e ke
@) by (© "

FIGURE 7.18
In-plane loading of symmetric laminate for defining the in-plane laminate engineering

constants.

14

|

!
4
bl
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The effective transverse Young’ . i
/ g's modulus of the laminate, E,, :
9%. response of the wmggmﬁm under the single axial load per saw_mwwxmﬂwm
with N, = N, = 0 (fig. 7.18[b]) and is defined as - .

m.—\ = !Qk = ’Zﬁ\w = H
, mw ApN, tAy

(7.60)

The effective laminate in-plane shear modulus, G,,, governs the laminate

Hmmﬁo:wm:bo_mwEmwcamm&mm:ommmw.sa:52. l.l,
(fg. 7.8(c]) and is defined as e W= N, =0

Gy = Ty Jzue\w = L 7
<m< ' \szbé tAgs ) ( 61)

Similarly, the effective laminate longitudinal Poisson’s ratio is

’
12

” <R<HI.\KH C AQONV

and the effective laminate shear coupling ratios analogous to those

Zmb. . .
mﬂm 5 m@.rmrob Aw.govmbam@:mﬁos@.ﬁ:ﬁmﬁ orthotropic lamina

333&” Al and ié& =— Aﬂmwv

Using mw.bzmw derivations, the effective laminate flexural moduli may be
mxw.ummmmm in »mﬁ:m. of the flexural compliances. For the symmetric laminate
subjected to bending only, the laminate moment—curvature relationships

are given by

>\F. Dy US; Dyg || x4
g@ = UHN UNN Umm _A._\. Aﬂ.mﬁv

NSQ Dig - Doy Dgq Ky
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FIGURE 7.19 ! . o _—
Bending moment leading of symmetric laminate for defining the laminate flexural moduli.

and the inverted forms are given by

Ky UT Umn D Mm >\Ha
K< = Umm Umn Umm §< . Aﬂ.mmv
ﬂ.é D Mm D mm D mo gé

Thus, when the laminate is subjected to a pure _om:&.sm moment per
unit length M, with M, = M,, = 0 (fig. 7.19[a]), the resulting curvature is

i

H
_Aa“ Dmugx H DMH >|NQ\H1 H D| v Aﬂ@mv

where M is the total bending moment, which is M,b, b the laminate width,

and p, the radius of curvature = 1/x,. .
For an equivalent homogeneous beam, the moment—curvature relation-

ship is

M _1 B (7.67)
Egly,  px

where I, is the second moment of inertia of the beam about the neutral
axis, which is b3/12, and E, the flexural modulus of the beam along the
x direction. .

Recall that the flexural modulus was also defined by equation (7.8) m.:m
equation (7.9) according to laminated beam theory. OoE@.BEm equation
(7.66) and equation (7.67), we find that the flexural modulus is related to

the laminate compliance Dj; , by the equation

En= ooy 769
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Similarly, the flexural modulus along the y direction (fig. 7.19[b]) is
found to be

12
D5,

Ey = (7.69)

Although the laminate stiffnesses \P_\\ By, and Dj; are meaningful param-
eters for all laminate configurations, the engineering constants may not
be. Clearly, the use of effective engineering constants must be restricted
to those cases where the deformations are similar to the deformations
associated with the engineering constant being used. That is, in the above
examples for symmetric laminates the B; =0 and warping under in-plane
loads or midplane extension under bending or twisting moments will not
occut, so the deformations of the laminate under load would be similar
to those for the equivalent homogeneous material. However, the use of
engineering constants for the antisymmetric laminate may not be appro-
priate because of the complex deformations due to coupling effects.

EXAMPLE 7.8

For the symmetric laminate described in example 7.3 and example 7.6, determine
the effective Young's moduli, in-plane shear modulus, longitudinal Poisson’s
ratio, and shear-coupling ratios associated with the x and y axes.

Solution. The effective longitudinal Young’s modulus is given by equation
(7.59):

: = 'H!H 23.4 GPa

m =
TUtAL (1)(0.04276)

Note that due to the +45° ply orientations for this laminate, E, = E, The
effective in-plane shear modulus is given by equation (7.61):

1 1

Cow=az = (1)(0.02809)

=35.6 GPa

The effective longitudinal Poisson’s ratio is given by equation (7.62):

_ AL -0.0297
Al 0.04276

<.a,._\ = O@@%

Since Ays = Ay = 0 for this laminate, it is seen from equations (7.63) that -
the effective shear—coupling ratios 1,,, = 1, = 0. Due to the complex
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coupling effects acting in the antisymmetric laminate of example 7.4 and
example 7.7, the use of engineering oobmh&?m for such a laminate would

be questionable. . |

7.5.4 Comparison om_ Measured and Predicted no_s_o:m:nmw

Experimental verification of the laminate theory can be done by applying
known loads to laminate and by measuring resulting deformations and
then comparing meastired deformations with those predicted from the
laminate theory. Alternatively, the compliances that are formed from ratios
of strains to loads or ratios of curvature to moments for certain simple
loading conditions can be experimentally determined and compared with
predicted values. The latter approach has been used by Tsai [13] who
reported results for cross-ply and angle-ply glass/epoxy laminates. Only
the results for the angle-ply laminates will be discussed here.

In order to determine the compliances of the laminates under, various
loads, electrical resistance strain gage rosettes with gages oriented at 0°
(x direction), 45°, and 90° (y direction) were attached on both sides of the
test specimens (fig. 7.20). From equations (7.28), the measured normal
strains on the upper surface (Where z =—t/2) are related to the correspond-
ing midplane strains and curvatures by

v

& =el-tx, )
194 0 N.
el =gl - MN@ (7.71)
Strain gages bonded

\» to laminate

FIGURE 7.20
Strain gage rosette bonded to upper surface of laminate:.
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u s , , ,
where € is the measured normal strain along the x direction o
surface and €} the measured normal strain along y directi o upper
surtace . ong y direction on upper

Similarly, th i
inen by y, the normal strains on the lower surface (where z = t/2) are

mk - MH + .Nlﬁx AQVNV
eh=glply
Y Y 2 Y AVVMWV

L
W\Mﬂmﬂm €; HM .%m srpmmmsﬂma normal strain along the x direction on the lower
ace and g, the measured normal strain al irecti
se and ¢, ‘ : ong the y direction on the
Emmsto: (7.70) m.sa w@:mmos (7.72) can be solved simultaneously for
: e mic plane strain, €7, and curvature, K. Whereas ¢) and «, can be
X !
M*Q,B_me ?oms mmcmwob (7.71) and equation (7.73). Although ﬁr\m surface
wrmmn strains vy, mzn.m Yxy are not measured directly like the normal strains
M% can wm.gmﬂmﬁsgma from the measured strains along 0°, 45°, and QOM
and the strain Qwsmmﬂgwﬁo: relationships similar to equations (2.33). For
example, from equation (2.33), the measured normal strain along the 45°

3 . u
irection on the uppet mE_Hmmhm\ €45, 18 HmHNﬁGQ to the i i
. 5, OOHHmmHUOB.QH:W strains

ei5 =€ cos*0+€l sin” 0+ sin B cos 0 (7.74)
and substituting 6 = 45° and solving for Ysy, we find that
Vi =2l — (&4 +el) (7.75)

‘

Thus mﬂm shear strain is H&mwmm ,8 th i :
) T S e measured strains on the right-
hand side of equation (7.75). Similarly, for the lower surface i

Tiy =2efs (e +eb) C (776)

ﬂZ.o<< the last H.umﬁ of equations (7.28) is used to relate the surface shear
strains to the midplane shear strains and twisting curvatures:

t

u _ .0

<§ - J\ﬁx - M_Aé Aﬂﬂﬂv
L0 f

Yoy = Yoy + Mﬁé Aﬂﬂmv
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m 0
These equations can be solved mwgc:mﬂ_ﬂmosmq m.oH Yy and Y, 80 that
all midplane strains and curvatures can vm determined from .ﬁr.m six mea-
sured surface strains. For known loading gonditions, the compliances can

then be found. i

_

| i i i ith N, # 0
iaxial loading-test of such a strain-gaged specimen with N,

wﬁﬂofm MﬁMx =M, = %? = M,, = 0 (fig. 7.18[a]), mn‘_:m_aoﬁm Q..mb can be

used ﬁw Qm.ﬁ%\ggm six icompliances from known loads, midplahe strains,

and curvatures as mozms\m“

0

Ex

\5 =
N,
0
&y

\KN =
N N.
0
Yy

Alg=
16 N,

;o Ky
mHH - Zk
K,
B, = 4\& : : (7.79)
, Ky
‘wwm = ZR

.mwgmma data from a pure flexure test, with M, ﬂ..o and ZR. =N, u N,, =
M, = M,, = 0 (fig. 7.19[a]) can be used to find the six compliances:
y = A

B - &
11 M,

0

wmwn Sy
M,

0

Wx — \<R<
16 M,

VI Ky . '
Dy = M,
LS )
Dj, =X (7.80)
12 gk
K
/o XY
Dis M,

>.= compliances can be determined from such tests. In addition, some

i B in the |
compliances can be determined from more than one test (e.g., the B;;

above tests). A comparison of measured and predicted compliances of

i i hree plies of various lam- .
le-ply glass/epoxy laminates having two or t : : |
WM%&M% mv%w_mm is mWoiz in figure 7.21 from Tsai [13]. Predicted compliances

were determined by using measured lamina properties as follows [13]:

E,=7.8x10°psi (53.8 MPa)

E,=2.6x10°psi (17.9 MPa)

G, =1.25x10°psi (8.6 MPa)

Vip = 0.25
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n=2

05 f 5
1. 04 4
= —
o 0.3 3 8
o 0
202 2q
B o
0.1 . A 1 ,d
0 1 "’ SO, i T T W e, Y W<

0 1530 45 60 75 90 0 15 30 45 60 75 90 0 15 30 45 60 75 90

: Lamination angle i

H/ O.m . - ., m .
m 0.4 ~: 5 ‘ n=3 4 \_mw
£ 03 _ 5
o By=0 3 A
a O~N ’ 0 N (=
5N I\:m 4 Y n 2
0.1 16 \‘ 8011 &

0 i | i O

015 30 45 60 75 90 : : .mu.mwogm 60 75 90
: Lamination angle

FIGURE 7.21

Measured and predicted compliances for glass/epoxy angle-ply laminates for various lam-
ination angles. (From Tsai, S.W. 1964. Structural Behavior of Composite Materials. NASA CR-71.)

The agreement between measured and predicted values in figure 7.21
is quite good, which mears that the laminate theory must be reasonably
accurate. It is interesting to note that the predicted By-type coupling occurs
for the two ply antisymmetric laminate but not for the three ply symmetric
laminate. Note also that the predicted A;q, Ay, Dy, and D,¢-type coupling
occurs for the three ply laminate but not for the two ply laminate.

S

7.6 Hygrothermal Effects in Laminates

The analysis of hygrothermal behavior of the lamina in chapter 5 can now
be extended to laminates. If we again restrict the discussion to polymer
matrix composites, the two main effects of changes in the hygrothermal
environment on laminate behavior are degradation of properties and
changes in the stress and strain distributions, In this section, the analysis
of both these effects along with the prediction of laminate hygrothermal
expansion coefficients will be discussed. The basic assumption in all these
discussions is that of linearity. That is, we assume that mechanical and
hygrothermal effects can be treated separately and then combined using
superposition. Coupling between the effects ic ionared ae fhio vrmedd 1o 3
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to nonlinear equations. Another key assumption used here is that tem-
perature and moisture distributions in the laminate are uniform. That is,
the temperature and moisture concentration are assumed to be the same

for each ply in the laminate. !

7.6.1 Hygrothermal Umm.ﬁgm:o: of _.mim:mﬁmm

The analysis of hygrothermal degradation in laminates involves the com-
bination of the lamina degradation analysis in section 5.2, with the lam-
inate analysis described earlier in this chapter. For example, given a
combination of temperature and moisture, equation (5.7) can be used to
estimate the degraded matrix property, which is then substituted in the
appropriate micromechanics equations to estimate the degraded lamina
properties such as E;, Ey, Gy,, and v;,. The degraded lamina properties are
then used in equations (7.38) to equations (7.40) to find the corresponding
degraded laminate stiffnesses. Hygrothermal properties such as the coef-
ficients of thermal expansion and hygroscopic expansion can also be
degraded using empirical equations such as equation (5.34). These prop-
erties would then be used to estimate hygrothermal stresses, as shown in
the next section.

7.6.2 Hygrothermal Stresses in Laminates

In section 5.3, the analysis of hygrothermal stresses in an isolated lamina
due to temperature and moisture was developed. We now consider the
corresponding lamina stresses due to interaction with other laminae in
the laminate. Hygrothermal stresses are not only generated during the
use of composite materials in various environmental conditions, but also
are generated during fabrication. The hygrothermal stresses induced by
fabrication are usually referred to as residual stresses. Composites are
processed or cured at elevated temperatures and then cooled to room
temperature. Due to differences between fiber and matrix coefficient of
thermal expansions (CTEs) in the lamina and differences between lamina
CTEs in the laminate, residual stresses of fabrication may occur at both
the micromechanical and the macromechanical levels. One particularly
important result of residual stresses is that in nonsymmetric laminates
the B;-type coupling can cause residuial warping of the cured laminate.
In section 7.5.2 the lamina stresses without hygrothermal effects were

" found by using equations (7.56). As shown in section 5.3, however, when |

changes in temperature and moisture concentration occut, the total strains
in the kth lamina are given by - ‘

{eh - [S]e{o}e + (o} AT +{B)ic (7.81) |

Analysis of Laminates 305

and the resulting stresses are given by

{oh = @E?: — {0, AT - {Bic) _ (7.82)

where the subscript k refers to the kth lamina..

> . . ) 0
e the su s s shown in section 5.3, if

letely restrained by adjacent laminae, th i
Il ‘ , the total st
{ely = 0 and the resulting hygrothermal stresses are given by o

(0) =[N (~{ah AT - (B)yc) o)

In a laminate, however,

the total lamina strains i
but e Instend gioen generally do not vanish,

{eh = (%) + 2(x) (7.84)

and the resulting stresses, including rv\mwoﬁ.rﬁg& mmmnwm\, are given by

(% =[Q, ({6} + 20) — (o) AT ~ (B} ) (7.85)

?wo:osmbm the w.HOanE.,o\ outlined in equation (7.32) to equation (7.42)
e %”ms:ma laminate forces per unit length are found by integratin \
equations (7.85) through the thickness of the laminate: &

(V1= [ o}z = [0, (1% + 2x) - (0 AT - Byt

(7.86)
=[ANe’} +[Bl{x} ~ (N7} - (N™)

-

where the thermal forces due to temperature change are given by

_ N
()= [IQL 10 ATde= a1)Y (@ (0, (e -2)  (787)

k=1

and the hygroscopic forces due to moisture are given by

(V)= (181, B}, edz= (0 [G1, (B (2 72.1) (7.88)

k=1
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Similarly, the resultant moments per unit length are

ﬁzr?:,&%u?@_%mi%;gi?ar%%

(7.89)
=[B](e"}+[Dl[x]—{M"} - {M™)

where the thermal moments due to temperature changes are

< 2
(") = [1Q1 10, ATz dz =50 [l el (-2)  790)
. k=1

and the hygroscopic moments due to moisture are given by
CNC A )
(M) = (101, B, cadz=5 Y 1L B, (72 -a) 0790
k=1

Rearranging equation (7.86) and equation (7.89), we find that

)

{N}+{NT)+ (NM) = [Al{e") + [Blix} (7.92)
and |

{M}+{M"}+ (MM} =[B{e"} + [Dlxc} (7.93)
or

! 0
N[ _|A1B]]e : (7.94)
M |BID|]x

where the total effective forces (mechanical plus hygrothermal) are

(NP} = {N}+{N"}+{NY) , (7.95)

and the total effective moments (mechanical plus hygrothermal) are

(P = M+ M)+ (™) (7.9)
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Alternatively, the inverted forms of equations (7.94) are given by

—t=| i s (7.97)

Thus, the lamina stresses for combined mechanical and hygrothermal ;
loading are determined by using a procedure similar to that outlined in |
section 7.5.2. That is, the midplane strains and curvatures are determined
from the total effective forces and moments according to equations (7.97);
then the lamina stresses are determined from equations (7.85).

EXAMPLE 7.9

The antisymmetric angle-ply laminate described in example 7.4 is heated Sfrom
20°C (68°F) to 100°C (212°F). Assuming that the lamina properties do not
change over this temperature range, determine the hygrothermal stresses.

Solution. From table 5.3, the lamina CTEs associated with the principal
material axes are

01 =0.88x107/°C oy =31.0%x107/°C

The CTEs associated with the +45° and —45° lamina orientations are found
by using the transformations in equations (5.22):

Ot [05 05 -1.0][0.88 15.94
oy =105 05 1.0 {3L0;x10°=1{ 1594 {x10°/°C
Oy /2] .o [05 05 0 |[ 0 ~15.06
o, ﬁo,m 05 1.0 |{0.88 15.94
o =05 05 -1.0[K31.0px10°=115.94}x10"°/°C
Oy /2] . [-05 05 0 || 0" 15.06

Next, the thermal forces due to temperature change are found by substitut-
ing the above values and the lamina stiffnesses from example 7.3 in equation
(7.87). Note also that the third element in column vector {oy in equation

(7.87) is o, not 0,/2 as in the above transformations. Since z, ~ Z_,=t/4
for all laminae,

IN"} = ([QLuase (0] sase +[Qase (0t} ssr)2(AT) (2 / 4)
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or !

f

NT| [4522 3142 3244 j,.ﬁ
Ny p=|3142 4522 32445 1594 £(107°)(2)(80)(0.25) -

., ,. 2
N3, 5244 3244 356 mE

4522 3142 -32447(15.94
+ 8142 4522 3244 ({1594 ((10°)2)80)(025)

¢

<3244 3244 356 |(3042

1.956. A
=11.956 10 2GPa-mm
0

.‘..m,msa_mav« m:.w thermal moments are found from equations (7.90) as

(MT)= AH@T%*QT@ ANW - va+ ﬁmwim.ﬁgimo ANWI NWV

AT

) A 2

10 s 0)a (28 = 22 ) [ Qs (0 (22 = 22)) 5 -
My 0

or My t={ 0. x10™*GPa-mm*

My -3.81

From equation (7.95) and equation (7.96), we have {NF} = {NT} and :Sﬂ.n
{MT}. Using these results along with the compliances from example 7.7 in
equation (7.97), we find that the midplane strains and curvatures are

|
W, , (g0 3.06mm/mm

! £) 3.06mm/mm

) Yoyl _ oBBK\_BB x 107
Ky og
Ky Omm™
Ky -9.65mm™

Note that the thermal twisting moment, M, causes a noﬁmmwmsmwwm
twisting curvature, k,,, which means that the laminate will warp Mb: MM w
temperature change. Stresses along Em ¥ and y axes are Jos\ 0 e EM
substituting the above midplane strains and curvatures, along wi
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lamina stiffnesses from example 7.3, in equation (7.85). Stresses at the top
and bottom of each ply are given in the following table:

Location o, (MPa) o, (MPa) T,, (MPa)
#l Top -11.8 -11.8 5.7
#1 Bottom -39 -3.9 -14.3
#2 Top 11.8 11.8 31.6
#2 Bottom 3.9 3.9 23.0
#3 Top 3.9 3.9 -23.0
#3 Bottom - 11.8 11.8 -31.6
#4 Top =39 -39 143
#4 Bottom -11.8 -11.8 57

>m€::mxm§m&mu.u\?mmﬁmmm&mﬁ_ucﬁmobwm @:#m.ooEmegomzmmo:rm
coupling effect. _ .

'

7.6.3 Laminate Iv\mqoﬂrn_.iw_\mxvm:wmo: ,nc‘m_“momm:ﬂm

The effective hygrothermal expansion coefficients for the laminate can be
calculated directly by combining the' definitions of the coefficients with
the appropriate laminate equations. For example, the effective CTE of a
laminate along the x direction is ,

el

AT

Oy = - (7.98)

mowmm%BBmEoymBEmHS:r B;; = 0, the midplane strain along the x
direction due to a temperature hange T only is given by the first of

equations (7.97): v

€0 = ALNT + ALNY + AN, (7.99)

The desired thermal expansion coefficient, a., is then found by substi-
tuting the thermal forces from equation (7.87) in equation (7.99) and then
by substituting the result in equation (7.98). It is important to note that
this procedure effectively relates the laminate CTE to lamina CTEs, lamina
stifinesses, laminate compliances, and laminate geometry. The temperature
change, AT, will cancel out since it appears in both the numerator and the
denominator. Similar. results can be obtained for other thermal and hygro-

- scopic expansion coefficients. As with the effective laminate engineering

constants, it is appropriate to restrict the use of the effective hygrothermal
expansion coefficients to those cases where the deformations are similar
to the deformations associated with the particular coefficient heine 11ced
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For example, it is probably not a good ﬁam”aﬁnm to use such coefficients to

describe the hygrothermal behavior of a laminate that exhibits significant
warping due to coupling effects. |

7.7 Interlaminar Stresses

One of the key limitations of the CLT is that each ply is assumed to be in
plane stress in the xy plane (fig. 7.8), and that interlaminar stresses asso-
ciated with the z axis are neglected. Such interlaminar stresses can cause
delamination or separation of the laminae, which is a failure mode that
we have not previously considered. In this section, 3-D stress analyses
that yield the interlaminar stresses will be discussed, and the resulting
interlaminar stresses will be used later in a laminate strength analysis.

A state of plane stress actually does exist in the laminae of a laminate
in regions sufficiently far away from geometric discontinuities such as
free edges. A 3-D elasticity solution by Pipes and Pagano [14] has shown,
however, that even in a laminate under simple uniaxial loading (fig. 7.22),
there is a “boundary layer” region along the free edges where a 3-D state
of stress exists, and that the boundary layer thickness is roughly equal to
the laminate thickness.

The behavior of interlaminar stresses near a free edge in a laminate will
be demonstrated here by using the three stress equilibrium equations from
the theory of elasticity (Appendix A):

90, | 0Ty wwﬁ B _

T T = =0 (7.100)
0Ty , 06, 0Ty .

x Ay o =0 7101
0Ty |, 0Ty 00,

ox Ty a0 (7.102)

For the uniaxially loaded laminate in figure 7.22, we now consider a
region near the free edges, where y = b, and assume that the stresses do
not vary along the loading direction (the x axis). It follows that do,/dx =0
and from equation (7.100), the interlaminar shear stress, T,,(z), is given by

T0(2) = |_.N Ty (7.109) |

—t/2 wﬁ
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Pipes and Paga i i
p gano model for analysis of interlaminar stresses in a laminate under uniaxial

extension. (From Pipes, R.B; and'P J )
e Dermissn) p 3 agano, N.J. 1970. Journal of Composite Materials, 4, 538-548,

MWMM Modﬂwmmmcgw that ?m E.Em:m shear stress, T,,, has a constant value
mr . &Mmoﬁ.m Oﬁﬁ.ﬂ in ﬁMm Hﬁmdoa regions of the laminae. As we move along
10n toward a free edge, however, 1. must d
, ecrease to zer:
.Em stress-free surfaces where y = +p, Hrcm\ Mm Yy — +b,|or, \%N_Mwuswm
%n%mmmwa MM Hmo:os,a .?05 equation (7.103) that 1,, must Enﬁmmm.w from zero
Or region to a very large value * i
figare 795 o . as y — b, as shown in
.23, gion where these rapid changes take place i
to as the interlaminar stress boundary la : P s shom

figure 7.23. From equati . ayer region, as shown in
. m equation (7.101 d .
other interlaminar stresses Mm Jan equation (7.102), respectively, the

? 9o,

e s (7.104)
= oot :

0,(z)=— Yz

10(2) n By dz (7.105)
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Interlaminar stress
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FIGURE 7.23
Schematic representation of in-plane shear stress and interlaminar shear stress distributions

at ply interface.

Pipes and Pagano [14] used a finite difference numerical scheme to solve
the three governing field equations that are generated by combining the
three-dimensional versions of the stress equilibrium equations (Appendix A),
the lamina stress-strain relationships (Equation 7.22), and the strain-
displacement relations (Appendix B). The equations were solved subject to
stress-free boundary conditions along the free edges of a four layer +45°
graphite/epoxy laminate under uniform axial strain, &,. Figure 7.24 shows
the complete stress results obtained by Pipes and Pagano [14]. It is impor-
tant to note that the in-plane stresses 6, and 1, from the 3-D analysis agree
with those predicted by the CLT in the central portion of the laminate, but
both stresses drop in the boundary layer region near the free edge. On the
other hand, the interlaminar stresses 6, 1,,, and 1,, are all equal to zero in
the central portion of the laminate but change rapidly near the free edge.
The shear stress T,, is the largest of the interlaminar stresses, as it appeared
to grow without bound at /b = 1.0. Pipes and Pagano suspected that a
singularity for this stress component exists at the free edge, but it was not
possible to prove the existence of such a singularity with the approximate
finite difference solution. Analytical proof of the existence of these singu-
larities was published later by Wang and Choi [15,16].

The numerical results of Pipes and Pagano [14] for a variety of laminate
cross-sectional aspect ratios led to the conclusion that the boundary layer
region of 3-D stresses extends inward approximately one laminate thick-
ness from the free edge. This conclusion was later verified experimentally
by Pipes and Daniel [17] who used. a- Moiré technique to measure dis-
placements along the x direction on the surface of the laminate. The
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Distribution of all stresses from Pipes and Pagano analysis. (Fromi Em.vmm\ R.B. and Pagano

N.J. 1970. Journal of Composite Materials, 4, 538-548. With permission.)

measured surface displacement profiles, which also clearly indicated the
presence of the boundary layer, agreed closely with those predicted by,
the Pipes and Pagano analysis. ~ .

It has been shown both analytically and experimentally that the lamina:
stacking sequence influences interlaminar stresses and, consequently,
delamination in laminates. Pipes and Pagano [18] used an-approximate
&mmmﬁa\q solution to study the effect of the stacking ‘sequence on the
interlaminar shear stress in, +45° laminates, as shown in figure 7.25. It is
clear from figure 7.25 that when layers having the same orientation are
ﬁma.ﬁm& together (which increases the apparent layer thickness), the inter-
EBEWH shear stress, 1,,, is higher than for the case where layers of oppo-
site orientation are stacked together. In a separate paper, Pagano and Pipes

, ' . 313
5.00 : . \

[19] showed that a change in the stacking sequence can actually cause the
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FIGURE 7.25
Effect of stacking sequence on interlaminar shear stress. (From Pipes, R.B. and Pagano, N.J.

1974, Journal of Applied Mechanics, 41, Series E (3), 668-672. Reprinted by permission of The

interlaminar normal stress, G,, to change from tensile to compressive. Since
tensile interlaminar normal stresses would tend to cause separation of the
plies, while compressive interlaminar normal stresses would tend to keep
the plies together, stacking sequences that produce the former stress state
should have lower strengths than those producing the latter stress state.
Experimental results such as those by Whitney and Browning [20] and
Whitney and Kim [21] seem to support this conclusion. Ply orientation
also has a strong effect on interlaminar stresses, as shown by Pipes and
Pagano [14]. : .

Since the publication of the Pipes and Pagano solution, a number of
investigators have used other methods to study the “free-edge” interlam-
inar stress phenomenon. Rybicki [22], Wang and Crossman [23], Herak-
ovich [24], and Hwang and Gibson [25] all used 3-D finite element
analyses to investigate interlaminar stresses. The quarter-domain finite
element model used by Hwang and Gibson [25] for the analysis of the
original Pipes and Pagano [14] laminate is shown in figure 7.26. Finite
element stress distributions near the free edge from Wang and Crossman
[23] and Hwang and Gibson [25] are compared with those from an empir-

ical solution derived from the theory of elasticity by Hwang [26] in

figure 7.27. The empirical elasticity solution by Hwang [26] is based ona

similar solution by Whitney [27], which, in turn, is an attempt to fit the .
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finite difference results of Pipes and Pagano [14] with relatively simple
empirical equations that satisfy the stress equilibrium equations (equation
[7.100] to equation [7.102]) and the free-edge boundary conditions. Thus,
the empirical results shown by the solid curve in figure 7.27 should be
very close to the original Pipes and Pagano results. Although the stress
distributions from the two finite element models show good agreement
with each other, both sets of stresses are seen to be greater than those from
the empirical solution near the free edge. Improved approximate polyno-
mial solutions -have _uwmws proposed by Conti and De Paulis [28].

: | ,

“_v
q,.m ‘Laminate Strength Analysis

Recall that in section 4.2, we discussed several multiaxial strength criteria
for estimating the strength of individual laminae under in-plane stresses.
Such strength criteria can also be used on a ply-by-ply basis for a laminate
to determine which ply fails first under in-plane loads. In section 7.7,
however, we have seen that interlaminar stresses in laminates also have
to be taken into account because they may lead to a different mode of
failure known as delamination. This section deals with the analysis of
both first ply failure due to in-plane stresses and delamination due to
interlaminar stresses. The mechanical behavior of the laminate after first
ply failure and subsequent ply failures is also discussed.

7.8.1 First Ply Failure and Subsequent Ply Failures Due to In-Plane
.. Stresses:

The prediction of first ply failure due to in-plane stresses is a straightfor-
ward application of the appropriate multiaxial lamina strength criterion
in’ combination with the lamina stress analysis from the CLT. The loads
corresponding to first ply failure are not necessarily the laminate failure
loads, however, since a laminate generally has plies at several orientations.
That is, there will usually be a sequence of ply failures at different loads
culminating in ultimate laminate failure when all plies have failed. Thus,
the ultimate load-carrying capacity of the laminate may be significantly
higher than the first ply failure load, and prediction of laminate failure
based on first ply failure may be too conservative.

In the analysis of first ply failure and subsequent ply failures, the stiff-
ness matrices for the failed plies and the corresponding laminate stiffness
matrix must be modified after each ply failure to reflect the effects of those
failures. Figure 7.28 shows an idealized piecewise linear laminate

load-deformation curve with several “knees” due to ply failures. The total

Analysis of Laminates : 317
. .
o
Q
- L llllllll
e | T N /
% ! Third ply failure, k=3 | C_:.Emﬁm
T .......... _/ ! ¢ laminate
! y failur
ZxE m Second ply failure, k = 2 “. failure
Zkﬁoﬂmﬁ. A [ / m m "
¥ + ‘
m. “First ply failure, k= 1 m
t 1 v i
¥ ' +
er p . i m
J i i ‘
P ! !
n=1 n=2, n=3 1 m
0] e | e® |
o A. »l
mxﬂonm_. . ) o
FIGURE 7.28

Idealized load-strain curve for uniaxially I i
. . oaded 1 i i i
leading up to ultimate laminate failure. ¢ Pminate showing multiple ply falures

>

forces and moments at the kth knee in the curve are related to the corre-

sponding forces and moments for the i
nth section of such
(where n<k) by the summation o e

Nl M N
M M®

Total n=1

(7.106)

Mﬂrﬁm the mﬁﬁmamoiﬁ.w (n) on a parameter denotes the particular value of
at parameter associated with the nth section. The corresponding mid-
plane strains mso_,nszmgamm are given by

mo k mES
K - M Kee

Total n=1

(7.107)

Using the piecewise linear assumpti i
. 1 ption, the load-deformation relationshi
for the nth mmn.:ob. can be approximated by modifying equations (7.42) mm%

Z?V \w?v " m?v m.\oAé

=l T

MO [T BT g (] 0 (7.108)
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the [A®], [B®], and [D®)] are the modified stiffness matrices .mmma
HWM%M - CMT wamﬁ_ﬁmw But the n&nEmﬁﬂoﬁ of ::mmm. modified J%B&M
stiffnesses requires that we know the modified ply stiffnesses, [Q"], an
before we can modify the ply stiffness matrices, we must know the type
of failure. That is, if the ply failure is caused by the in-plane shear stress
exceeding the shear strength, the shear Bo,.mﬁcm mwm Em transverse Eom-
ulus of that ply may be severely degraded v%. Hodm:sn_EmH cracks, but MA e
longitudinal modulus may not be affected ﬂmz&@ﬁq by these cracks.
Alternatively, all the ply stiffnesses for the mm:_m@ ply could be equated to
zero or some very small number in the calculation of the degraded lam-
i iffnesses.
BMMHWMJHB has used a procedure similar to the one outlined above to
analyze the uniaxial stress-strain response of a [0/+45/ oou.m glass/ epoxy
laminate. The Maximum Strain Criterion was used. to predict ply failure,
and the ply stiffnesses of the failed plies were set mmc& to zero. The pre-
dicted stress—strain curve shows good agreement with the corresponding
experimental data, as shown in figure 7.29. Zomnm.w that mﬁ. curve has gm
“knees” — the first one at the strain corresponding to mm.;ﬁm of the oo°
Huﬁmm and the second one at the strain corresponding to failure of the +45
plies. The knee for the #45° ply failure is more distinct mﬁﬂ ﬁr.m one %ou. the
90° ply failure, because the laminate has twice as many +45 Hurm.m as it Qoww
90° plies. Ultimate laminate failure occurs at the _OS%EQE& failure mQMB
for the 0° plies. It is also interesting to note that the experimental data do

50 b+ » B2 .
g .

40 - o B Quasi-isotropic
2 45 glass-epoxy |

.mv.; 30 - ) )

20+ 90° -
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0 FYRE SHUNIE SUUNS THNNE SN SN T SN S SURN SN SUNE S SUM S

0 0.01 0.02 0.03 -
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FIGURE 7.29 : g ,
Comparison of predicted and measured stress—strain response of [0/ HNG.\ 90], m_mmm\ m@ovm\
laminate. (From Halpin, J.C. 1984. Primer on Commposite Materials: Analysis. Technomic Pub-
lishing Co., Lancaster, PA. With permission.)
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not show as much of a change in slope at the knees as the theoretical curve
does. This may be due to the fact that actual ply failure occurs gradually
over a finite strain range, whereas instantaneous ply failure at a single strain
level is assumed in the analysis. The same reasoning may explain the
absence of jumps in the stress-strain curve after ply failure [29]. A horizontal
jump would be predicted if the test data were taken under load-control,
Wwhereas a vertical jump would be predicted for a displacement-control test.
Hahn and Tsai [29] have observed that the knee in the stress—strain curve
for cross-ply laminates is quite obvious if the 90° plies are all stacked adja-
cent to each other, but the knee is not so obvious if the 0° and 90° plies are
arranged in an alternating 0°/90° sequence. Restraint of the failed 90° plies
by the remaining 0° plies was thought to be more effective in the alternating
0°/90° sequence, making the failure of the 90° plies more gradual.

The in-plane strength of +0 angle-ply laminates may also be analyzed
using a multiaxial lamina strength criterion and the CLT, but the piecewise
linear approximation of the stress-strain curve may not be needed. This
is because if the lamina tensile and compressive strengths are equal, all
plies fail simultaneously in the angle-ply laminate, and the stress-strain
curve does not have the characteristic knees shown in figure 7.28 and
figure 7.29. Tsai [30] has used the Tsai-Hill Criterion to predict the strength
of glass/ epoxy angle-ply laminates as a function of the lamination angle 6,
and the predictions are seen to agree well with experimental data in
figure 7.30. The predicted laminate stiffness Ay, also shows good agree-
ment with the prediction from the CLT in figure 7.30.

EXAMPLE 7.10

A [90/0/901, laminate consisting of the AS/3501 laminge described in example
7.3 is subjected to tensile uniaxial loading along the x direction. Using the
Maximum Strain Criterion, find the loads corresponding to first ply failure and
subsequent ply failures; then plot the load—strain- curve up to failure,

mo—:&o:.,E‘_mmmmcwmmﬁmwzmmammozba wwwcwmagﬁamm_mQmﬁ?ogﬁm_&mN.N
and table 4.1 in equation (4.1): -

)
) _ SL _ 1448 _
M=t 2% 50105
" TR 138x10° ”
+)
+ _ St _ 48.3 _
e = %0 10054
" 7B 9xi0®

Using these results in the Maximum Strain Criterion, we see that first ply
failure occurs at a strain ¢, = e, = 0.0054. To find the corresponding load
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i i it i ind the initial laminate stiffness
t first ply failure, it is necessary to bbm..w a1 iffne
mewx EE% WROB example 7.3, the lamina stiffness matrix for the 0° plies
is given by .

1388 272 0

[Ole =[Q1=| 272 9.05 0 | GPa
0 0 69

The stiffness matrix for the 90° plies is formed by m».ﬂ%q interchanging the
11 and 22 terms in the stiffness matrix for the 0° plies:

905 272 0
[Oloe =|272 1388 0 | GPa
: 0 0 69
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moagmmﬂmﬁmmnmozo:rmﬂomgl,mﬂ.mg curve, the laminate stiffness matrix
is therefore

T»c: = HO_% ANxO.mmv+ﬁ@ro°$xo.mmv = o.ﬂ@?u + ﬁ@vco
7845 408 0

ot  [AV]=| 408 1433 0 GPa-mm
0 0 1035

At first ply failure, the laminate load-deformation equations can be written
as o

N [7845 408 0 7[0.0054
0 r=/408 1433 0 |{ gW
0 1 0 0 1035 4,0

These equations can be solved simultaneousl

y to get the following values
of loads and strains at first ply failurer

N¥ <0423 GPa-mm; 6,0 =-0000154; 1y, =0

Swmsm::oé&mgosmﬁﬁmﬁm?,\o&mmwma approaches for modifying the
laminate stiffness matrix after first ply failure,

(a) In the first approach, we simply set all ply stiffnesses equal to zero for
the failed 90° plies. The adjusted laminate stiffness matrix is then

694 136 0

[A®1=05[Qly =|1.36 452 ‘0 |GPa-mm
0 0 345

Now the 0° ply failure and the ultimate laminate failure occurs at a strain

level &, = ¢, = 0.0105, which means that the strain increment for the
second section of the loadstrain curve is

&P =, —,0 = 0.0105- 0.0054= 0.0051
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The load-deformation ‘equations describing the second section of the
load-strain curve are

N®) [694 136 0 ][0.0051
0 p=[136 452 0 [ &
0 345|| v4®

0 0

and the simultaneous solution of these equations yields the results

N,?=0352 GPa-mm;  &,® =-0.00153;  v,®=0

The total laminate failure load is then

Nerowt = N;¥ +N,® = 0.423+0.352 = 0.775 GPa-mm

and the load-strain curve is shown as curve (a) in figure 7.31.

: = Gyp = Vi = 0 for the failed 90°
b) In the second approach, we set only E, = G, = vy :
wmmm\ but we WmmsBM that E,, for the 90° plies is not affected by the transverse
failure. According to these assumptions,

_DNLSa = E; =138 GPa; @:r% = ﬁ@&o% = HmmLSg =0

Not to scale
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FIGURE 7.31
Predicted load-strain curves for example 7.10.

Principles of Composite Material Mechanics

Analysis of Laminates

and the adjusted laminate stiffness matrix is

694 136 0
[AP]=|136 1433 0 | GPa-mm
0 0 345

The laminate load-deformation equations for the second section are

N?| 694 136 0 7|0.0051
0 +=[1.36 1433 0
0 0 0 345

c m@
2,
v

and the resulting loads and strains for the second section are

N =0354GPamm; & =-0.000048; 1 =0
n : /
The total load at laminate failure is

Nt = 0.423+0.354 = 0,777 GPa-mm.

and the load-strain curve is shown as curve (b) in figure 7.31. It is interesting
to note that although the assumptions regarding degradation of the failed
plies are quite different for curves (a) and (b), the predicted load-strain
curves for the two approaches are virtually the same. In general, differences
in predictions from the two approaches would depend on ply properties
and stacking sequences. It is also interesting to note that we might intuitively

mxvmﬁmw@u.omnrAmvﬁo_omgoﬁmnobmmzmmé?ms approach (b) and this
turns out to be the case. o

EXAMPLE 7.11 .
Repeat example 7.10 using the Maximum Stress Criterion.

Solution. From example 7.10, the load-strain relationship for the first incre-
ment is

N{ |eP] [7845 408 0 ][e®
0 1=[AD]0e’ 1= 408 1433 0 |{ef GPa-mm
0 e 0 0 1035/(y®
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Note that, unlike example 7.10 where, according to the Maximum Strain
Criterion, the first ply failure strain &o:m_ﬁrm x direction was known to
be the transverse tensile failure strain in the 90° plies, we do not know

the corresponding sttains here, and we Bwsmﬁ find them using the Maxi-

mum Stress Criterion! Expanding the above equation,

| NO =78.45¢0 + 4.08¢
|
| 0=4.08¢{" +143.3¢

0=10.35v%)
Solving these equations simultaneously,

e} =-0.0285¢
Yy =0

X

N =78.33e(

So for the first ply failure of the 90° plies, the stresses along the x and y
axes are

o0 e 9.05 272 0 e’
ot =[Qler{-0.0285¢P =272 1388 0 |{-0.0285¢%
% 0 0 L
8.972¢{
=4-1.2358¢{ t GPa
0

The corresponding stresses in the 90° plies along the principal material
axes are :

oV | 8972eP | 10 1 0 m.ﬁ&“z L.Nmmmw
va H—.H_”_aoa I,H.Nmmm.mmv =[1 0 0 [{-1.2358;" = .m.oﬂwm.« GPa
o 0 00 -1 0 .0

90°
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Applying the Maximum Stress Criterion for the 90° plies, we find that
ofV =-1.2358e{) = 5{ = 1448 MPa=1.448 GPa or el =-1.17
05" =8.9726{) = S = 48.3 MPa = 0.0483 GPa or el =0.00538

Choosing the smallest of these failure strains, we find that for first ply
failure, we have

e =0.00538
gf) =~0.0285¢{) = ~0.0285(0.00538) = —0.000153
N{ =78.33e{" = 78,33(0.00538) = 0.4216 GPa-mm

The corresponding stresses in the 0° plies at first ply failure are

o e | [1388 272 0 [ 0.00538 0.746
of ¢ =[QleeP =] 272 9.05 0 [{-0.0001533!=10.0132 ! GPa
W), e 0 0 69 0 0
ol
={o®
L

For the second increment after first ply failure, setting all of the ply
stiffnesses equal to zero for the failed 90° plies and using the correspond-
ing degraded laminate stiffness matrix from example 7.10, we find that

N® e?] 694 136 0 [e@

0 t=[AP] e t=[136 452 0 |{e? !GPa-mm
0 ¥ 0 0 345||y®

Solving these equations simultaneously,

&P =-0.3e®
N® =68:992¢2

7% =0
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The incremental stresses for the 0° plies are then

I
i
|

o? e®)] [1388 272 01 @ | [137.98%
ot =[QlpiePt=| 272 905 0 1-03e® =1 0.005¢% |GPa
U ) 2@ 0 0 69| 0 0
o _
={c@t |
@),

Substituting the total stresses in the 0° plies at the end of the second incre-
ment in the Maximum Stress Criterion,

2

(61 = 0 + 0 = 0.746+137.98el = §{” = 1.448 GPa  or e? = 0.00508
(62) = 6% + 62 = 0.0132+ 00056 = 5§ = 0.0483 GPa or &P =7.02

Choosing the smallest of the incremental strains to cause failure of the 0°
plies,

)

e? =0.00508
N® = 68.992(0.00508) = 0.3505 GPa-mm

The total loads and strains at final failure are then

(N)oat = N& + NP = 0.4216+0.3505 = 0.7721 GPa-mm
(€ )om = + @ = 0.00538+ 0.00508 = 0.01046

The resulting load strain plot in figure 7.32 is seen to be quite similar to the
corresponding plots for the Maximum Strain Criterion in figure 7.31, but
this is not necessarily the case in general. :

EXAMPLE 7.12

The composite power transmission shaft shown in figure 7.33 has mean radius
R = 50 mm and wall thickness t = 1 mm. The material is filament wound AS/
3501 carbon/epoxy, and the wall of the shaft has a symmetric angle-ply [ +45/-
45/-45/ +45] lay-up sequence (same as material in example 7.3) for maximum
torsional stiffness. Determine the largest torque T that can be transmitted by the
chaft sithout failuve accovdine to the Maximum Stress Criterion.
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0772l P~ — T e e e e e

04216 | e e

N, (Gpa-mm)

|
L
0.00538 0.01046
€y

FIGURE 7.32
Predicted load-strain curve for example 7.11. , -

Solution. From mechanics of materials, the torsional shear stress in a thin-
walled tube is approximately \

T

Mzrmmm T = torque in N-m, R = mean wall radius in m, and f = wall thickness
in m. For the laminate analysis, the loads per unit length acting on an
element of the tube wall are therefore

T T N _
~ =

Ny =Tyt = =63.66 T—=63.66(10°) T GPa-mm

2nR*  2m(0.05)
Ny=Ny=M,=M,=M,y=0

FIGURE 7.33
Composite shaft for example 7.12.
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As in example 7.6, we can take advantage of the symmetry of the laminate

|

|

, : Similarly, for the —45° plies,
, and invert the [A] matrix to solve for the mﬂmgm in term of the ,Homam as

, |

| o)’ o.] [05 05 -1.07[-0058T) [-0.12165T

_ | i
. } i
& 0] [004276 -0.02970 0 0 02 =[Tl{0,;=|05 05 1.0 |{-0.058T =1 0.00565T ‘MPa |
| gy r=[A’l{ 01t=(-0.0297 0.04276, 0 o T2 ) oo Ty) [05 05 0 |{0.06365T T L
y v, Ny 0 0 0.02809 | |63.66(10°¢)T
Y _ Applying the Maximum Stress Criterion for the +45° plies and using the ;
, 0! strength data for AS/3501 from table 4.1, \
= 0: Y

1.788(10)T | 01=0.12165T =S¥ =1448MPa and T=11,903 N—m |

67 =-0.00565T = ~S5{” =248 MPa and T =43,894 N—m

i i i i le 7.3, the correspondin
Using the.lamina stiffness matrices from example P g = 1) v 621MPa. and T oo

stresses in the +45° plies along the x and y axes are

Similarly, for the —45° plies,

Oy €2 4522 3142 3244 0 ( |
Oy = ﬁmutﬁe mu =(31.42 4522 32.44 0 . oy = IOHMH&@H = IMML —1172MPa  and T=9,634N—m | |
| Ty ) e vo, | |3244 3244 356 ||1.788(10°) 52 = 00565T = 5 — 45.3MFa el Tt S5 3
I 58.0T 0.058T ; =00 = S =621MPa and T—o
| =1 58.0T }(10°) GPa={ 0.058T ‘MPa _ | | ; |
63.65T 0.06365T Note that, since the shear stress is zero along the 1,2 axes and the resulting ;

torque needed 0 cause shear failure is infinite; failure due to shear is not

possible. Of the remaining values, it is seen that the value of T = 8549 N-m

for transverse tensile failure in the —45° plies is the smallest, so this would _

be the largest torque that could be transmitted without failure. It is also

. important to note that, if the strengths were the same in tension and com-

Oy £ 4522 3142 -32.44 0 pression, all plies would fail simultaneously, but since the strengths are
Gy =[Ql 1€ =| 3142 4522 -3244 0 different in tension and compression, this is not the case here.

Similarly, for the —45° plies,

o -6
| v Tay | _yoo Yy ~32.44 lmm.%.f 35.6 (|1.788(107°)T | |
m -58.0T ~0.058T g 7.8.2  Delamination Due to _im,_._mv_,:m:m_, Stresses |
=1{-58.0T }(10°) GPa={ —-0.058T ;MPa Delamination due to interlaminar stresses can reduce the failure stress of
63.65T 0.06365T

the laminate below that predicted by the in-plane failure criteria discussed
in the previous section. Failure by delamination is not necessarily the same
as the initiation of delamination, however. The initiation of delamination
is generally followed by stable delamination growth, which eventually
leads to unstable growth and ultimate failure. The onset of delamination
can be predicted by using either mechanics of materials approaches or

In order to use the Maximum Stress Criterion, the stresses must be trans-
formed to the principal material axes. Accordingly, for the +45° plies,

!
f o1 o

. 05 05 1.0 || 0.058T 0.12165T fracture mechanics approaches. Fracture mechanics is also the preferred

: o =[T] 6, t=| 05 05 =1.0|5 0.058T }=<-0.00565T ; MPa i analytical treatment for delamination growth and failure. In this section,

L . 2 o a@ 05 05 0 |lo.06365T o) B we will discuss mechanics of materials approaches to the prediction of
12 } 450 xy : - ’ . |

delamination initiation, and fracture mechanics will be covered in chanter 9.
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FIGURE 7.34 , . .
Graphical interpretation of average interlaminar normal stress near free edge according to

the Kim~Soni Criterion.

The average stress criterion of Kim and Soni [31] was one of the first
mechanics of materials approaches to the prediction of the onset of QEB&-
ination. This criterion is based on the premise that delamination will begin
once the average value of the interlaminar tensile normal stress, G, / 5.0&
the free edge reaches the interlaminar tensile strength, s,®. A m.:EHE..
criterion for failure of notched laminates had been proposed previously
by Whitney and Nuismer [32]. In the Kim-5oni Ouﬁmioﬁ\ the averaging
is done over a critical length, by, as shown in equation (7.109) and
figure 7.34:

; b
6.= [ ouy,0dy=5" (7.109)
bo Jo-b
The distance b was the half-width of the laminate, as shown in
figure 7.22, and the critical length b, is assumed to be equal to one ply
thickness. Due to the difficulty of measuring s,®, Kim and Soni assumed
that s, = 5,. Although this criterion provided reasonably accurate pre-
dictions of the onset of delamination in composites where the tensile
normal stress, ,, was the dominant interlaminar stress, a more general
criterion was needed for cases where delamination may be affected by
interlaminar shear stresses as well. :
The need for a more general criterion for predicting the onset of delam-
ination was recognized by Brewer and Lagace [33], who proposed the
Quadratic Delamination Criterion:

N2 5.V m L\ - 2
QRN yz z 7 _
ﬂ,nﬂ.q # +ﬁ .n,\.\q # +ﬁ nJT.v q + ﬁ .AJAIV # - H AQ.H_.HOV
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where 6., and G, are the average interlaminar shear stresses, 6, and G5
the average interlaminar tensile and compressive normal stresses, respec-
tively, s,, and s,, the interlaminar shear strengths, and s, and 5,0 the
interlaminar tensile and compressive strengths, respectively.

Each of the average stress components in this case is defined as

— 1 [hevs
Gy=y—| oy (7.111)
avg v 0

where X is the distance from some reference point (in this case the free
edge), A,,, the averaging dimension, o; the stress component c,,, 6, ch
or 0; and the overbar denotes its average value.

Brewer and Lagace found that for the [+15,],, [£15,/0,],, and [0,/+15,],,
AS1/3501-6 carbon/epoxy laminates tested the second and fourth terms
in equation (7.110) were negligible, so that the Quadratic Delamination
Criterion took on the simplified form

+ =1 (7.112)

Transverse isotropy was assumed, so that s, = 50 = 53.9 MPa. The
parameters A,,, and s,, were used as curve-fitting parameters to obtain
the best agreement with experimental data. In the corresponding experi-
ments, laminate specimens were tested under displacement-control, and
an instantaneous drop in the tensile load at delamination onset was
observed. The “best-fit” parameters for all laminate configurations tested
were A, = 0.178 mm and s,, = 105 MPa. Further support for the validity
of the Quadratic Delamination Criterion and the assumption of transverse
isotropy was discovered with the observation that the best-fit value of s,
was the same as s,,, the in-plane shear strength of this material. Although
the value of A,,, was not assumed to be equal to the ply thickness as in
the Kim-Soni analysis, the best-fit value of 0.178 mm was of the same
order as the ply thickness. A comparison of the measured and predicted
delamination onset stresses for various normalized ply thicknesses, 1, are
shown for the [£15,]; laminate in figure 7.35. Specimens were made by
stacking single plies of the same orientation together to form a ply with
greater effective thickness, and the value of  is this effective ply thickness
divided by the single ply thickness. Also shown in figure 7.35 are the
predictions from a fracture mechanics approach, which will be discussed
later.
~ Catastrophic failure of laminated structures is not the only undesirable
result of delamination. The reduction in stiffness of a laminate dirine
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FIGURE 7.35
Predicted and measured delamination initiation stresses for [+15,]; laminates. (From Brewer,
J.C. and Lagace, P.A. 1988. Journal of Composite Materials, 22, 1141-1155. With permission.)

\

delamination growth may make the structure unsafe even if fracture does
not occur. Conversely, stiffness loss can be used to characterize the growth
of delamination. Thus, analytical models are needed for estimating this
stiffness loss during delamination.

O’Brien [34] has developed an analysis of stiffness reduction in mv\B-‘

metric laminates during delamination based on a simple “rule of mix-
tures” and the CLT. Recall from equation (7.59) that the effective
longitudinal Yoting’s modulus of a symmetric laminate is given by

1
AL

E, (7.113)

This equation was used by O’Brien to model the stiffness of the laminate
without delaminations, as shown in figure 7.36(4). The: corresponding
stiffness of a laminate, which has been totally delaminated along one or
more interfaces (fig. 7.36[b]), but whose sublaminates must still have the
same longitudinal strain, is'given by the rule of mixtures formula

s v
Mmﬁ.ﬁ. L

ma — =1 ; ’ - Aﬂ.”:.%v

.
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FIGURE 7.36 ;

W:._m o.m mixtures analysis of m.mm:mmm loss due to delamination, (From O’Brien, T, 1982, In:
mm%md_n_mv HA.h.. ed., Damage in Composite Materials. ASTM STP 775, pp. 140-167. American
ociety for Testing and Materials, Philadelphia, PA. Copyright ASTM. With permission.)

where E,q is the longitudinal Young’s modulus of a laminate totally delam-

- inated along one or more interfaces, E,; the longitudinal Young’s modulus

of ith mrzmﬁabmﬁm formed by the delamination, f, the thickness of the ith
m:v_mbﬁzmwm\ m:.a m.the number of sublaminates formed by the delamination.
The longitudinal Young’s modulus of a laminate that has been partially

amﬁmBEmﬁmg&osm_&mmmgm,gwmu@ommm.wwm.. y
nated alon (fig. 7.36[c]) is given by the rule of

a
E=(Bu~E)j+E, (7.115)

Srmam. E is the longitudinal Young’s modulus of a laminate partially
delaminated along one or more interfaces, 4 the distance that delamination
extends in from the free edge, and b the half-width of the laminate,

A more general form of equation (7.115) is given by equation (7.116):

E=(Eq-E)24 E (7.116)

where A, is the delaminated area and A, total interfacial area.

The predicted values of E normalized to the initial modulus, E,, are

n . .
ompared with measured values of E/E, for various delamination sizes

in [+30/+30/90/90]; graphite/epoxy laminates in figure 7.37, and the

aAoroanrmns~t S oAl
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FIGURE 7.37 . . o .
Predicted and measured laminate stiffness as a function of delamination size. (From OBrien,

ifsni i i jals, ASTM STP 775, pp. 140-167.
TX. 1982. In: Reifsnider, K.L. ed., Damage in Composite Nsﬁﬁ.sw . :
American Society for Testing and Materials, Philadelphia, PA. Copyright ASTM. Reprinted
with permission.)

delamination of this laminate would result in a 25.8% reduction in the
laminate stiffness. Such a loss of stiffness would lead to an undesirable
increase in the deflection of the structure under load. o

In this section we have only been concerned with Q&mgu.bmﬁos near
free edges in laminates, but interlaminar stresses and QmeBE.mﬂoz may
occur at other discontinuities such as holes, ply drops, mﬁ& joints (see
figure 7.38 from ref. [35]). Low-velocity impact (e.g., %.o@m_sm a wrench)
on a composite structure ‘may cause internal delaminations that may

Bolted joint

Notch (hole) Ply drop Bond joint

v

)

—f& v.‘. e -
}

)
mv/ qv i HEAN

N

Free edge

FIGURE 7.38 S o
Interlaminar stresses occur at a variety of discontinuities in composite structures. (From

Newaz, GM. ed. 1991.. Delamination in Advanced Composites. Technomic Publishing, Co,
Lancaster, PA. With permission.)
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Internal delamination
caused by impact

In-plane compressive loading after
impact causes local buckling and
reduction of compressive strength

FIGURE 7.39
Reduction of in-plane compressive strength of laminate after transverse impact.

reduce the in-plane compressive strength (fig. 7.39). The so-called
“compression after impact” (CAI) problem is of considerable interest, and
CAI testing will be discussed later in Chapter 10. The analysis of delami-
nation under such complex states of stress generally requires the use of
fracture mechanics and finite element numerical approaches, some of which
are discussed in chapter 9. The reader is also encouraged to refer to numer-
ous analytical and experimental studies in several recent books [35-37].
There is obviously a lot of interest in the improvement of delamination

fesistance in laminates, and a number of such approaches will be dis-
cussed later in chapter 9.

EEEE——

7.9 Deflection and Buckling of Laminates

This section is concerned with the analysis of transverse deflections of
laminates under transverse loading and the prediction of laminate buck-
ling forces. Transverse deflections of laminates due to bending are gener-
ally much larger than in-plane deflections, because flexural stiffnesses are
lower than extensional stiffnesses. Thus, transverse deflections are an
important design consideration, and developments of analytical models
for predicting such deflections are of interest. Buckling of laminates is an
instability that is characterized by excessive transverse deflections under
in-plane compressive or shear forces. The general equilibrium equations
governing transverse deflections involve both in-plane and out-of-plane
forces, but the coupling between in-plane forces and transverse deflections
is usually taken into account only for the buckling analysis or for large

mmmmnmob msﬁv\mww.gﬁrm mbmd\mwmOHmB&:ﬂmsmﬁwnmoQmmmnmo:m alone,
_..Tw out-of-nlane farcoc ara tha maaod S aobomoo b 1o — . “ 4 N L.
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normally designed in such a way that the in-plane forces are less than the
corresponding buckling loads. Only a brief introduction to deflection and
buckling is given here. For more detailed coverage of these subjects, the
reader is referred to the works of <<§5.w% [10], Lekhnitskii [7], Vinson
and Sierakowski [38],.and Liessa [39]. .

7.9.1 Analysis of Small Transverse Deflections

The analysis of transverse deflections of laminated plates has its basis in
the CLT, which was outlined in section 7.3 and in the differential equations
of equilibrium. In order to develop the differential equations governing
plate deflections, it is convenient to use an infinitesimal element, as shown
in figure 7.40(a), (b), and (c) from Halpin [12]. The in-plane stress resultants
and moment resultants are shown in figure 7.40(a), the moment resultants
are shown in figure 7.40(b), and the transverse shear stress resultants are
shown in figure 7.40(c). Transverse shear stress resultants were not considered
in section 7.3, but they must be considered here in the transverse deflection
analysis; In these diagrams, it is assumed that the transverse deflections
are small, so that the out-of-plane components of the in-plane resultants

p

FIGURE 7.40
Stress resultants and external loads acting on laminate. (From Halpin, J.C. 1984. Primer ot
Composite Materials: Analysis. Technomic Publishing Co., Lancaster, PA. With permission.)
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Zu.a N, and N,, are negligible. However, these out-of-plane components
will be considered in the next section on buckling analysis. Along with
Em stress. and moment resultants such as those defined previously in
figure 7.8 and in equation 7.32 to equation 7.33, the transverse shear sfress
resultants Q, and Q, are similarly defined as

Spet2
Q= ._. Ty, dz (7.117)

~t/2

and

t/2

Q= ._. Ty dz (7.118)

—t/2

Also included in figure 7.40 is a distributed transverse load g(x, ).

Following the derivation by Halpin [12] for static equilibrium according

8 Jm_wiouﬂm mmoobaHm‘s\\%mmcggmmoﬁommogmm along the x direction
must be v o

i

AN, N,
N dy+ % &&+§&+!%§&,.3&|§&no (7.119)

Equation (7.119) may be simplified as

oN, oN,,

e Y. (7.120)

The summation of forces along the y direction yields

ON,
dy

N,

dxdy+ N,dy +
ox

N, dx +

dedy~N,dx-N,dy=0  (7.121)

or

N, . N,
e 5 2h=0 (7.122)

- The summation of forces along the z direction gives

0

Q. 0,
=z Qudy + s dx dy +Q,dx+ = dy dx - Q,dy — Qudx+q(x,y)=0  (7.123)

oy
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or ;
ﬁ

900 0Qy ol |
% T 3 +&Q,\,S|o \ _ Q.S@

The summation of ?oamsﬁm about the x-axis yields

M,dx— %& Qo My dy— mwws d dy+Q, dx dy
+wlwg%% dy +q(x, y)dx dy dy / 2+ Qudy dy/2 (7.125)
d

+

%M dx dy dy / 2+ Mydx + My,dy — Qudy dy /2 =0
Simplifying and neglecting products of differentials, we get

oM, e oM.,
dy ox

=Q, . (7.120)
A similar summation of moments about the y-axis gives

M, . IM,,
x = 127
PR e (7.127)

Substitution of equation (7.126) and equation (7.127) in equation (7.124)
yields ,

*M,  ,3*M, M
+2 +
ox* oxady

Y+ g(x,y)=0 (7.128)

Equation (7.120), equation (7.122), and equation (7.128) are the differ-
ential equations of equilibrium of the plate in terms of stress and moment 4

resultants. The corresponding equilibrium equations in. terms of dis-
placements can be derived by substituting the laminate force-deforma-
tion equation (7.41), the strain—displacement relations (7.29), and the
curvature-displacement equations (7.30) in equation (7.120), equation
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ANH.NNV\ m:&.mm:mmob (7.128). The resulting set of coupled partial differ-
ential equations in the displacements 1, v, and w are

@mio @M:o wm 0 mm 0 20
A +2A " v %V
11 2 165, 3y +\rm o + Age P + (A + Ags) ooy
9%’ Pw Pw
+ A -B -
e P ag (7.129)
*w FPw
—(Bip +2Bg) ——— — By —— =
12 mav wk mw%m 26 m 3 0
4, 2 (A + Agg) S Pu . 9RO
16752 12 mvwk 3y +.\ra o + Ags W
wmdo wmdo ) wws 3
2 - _ o°w
+2A%% xdy + Az o By 3 (Biz +2Bg) 273y (7.130)
*w Pw
—3By Ew mm\m — By [wﬁm =
mw%g - w»g @» i 4
Dy —-+4Dy———+2(D _ow d*w
b ox* 1 ox® dy (Dra +2Dss) Ey Ay’ +4Dx fwk o
d'w a%u° 9%° 3,0
+Dy——-B — 3B, — (B o°u
e gy Pt Bl o
3 9% 5 PR (5 +28 350 S (7.131)
— D26 — Dig - =+ ——3B,, ———
y° ox® . i) ox* oy % 3% 3y
mw 0
—_ mwm w_m = &AR\ Qv

Note that the in-plane displacements % and v° are coupled with the
transverse displacements, w, when the coupling stiffnesses, B., are
present. For symmetric laminates with B; =0, equation (7.131) NM\bosm
wwnoc:mw the governing equation for transverse displacements. These gover-
ning partial differential equations must be solved subject to the appro-
priate boundary conditions. In the general case, when the in-plane dis-
Emnm.n.aam are coupled with the transverse displacements, the boundary
conditions must be a combination of boundarv conditions for a mlamee
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Simple supports on all edges

FIGURE 7.41 ) .
Simply supported, specially orthotropic plate with distributed loading,

theory of elasticity problem and boundary conditions for a plate-bending
problem [10]. In this section, however, we will restrict the discussion to
bending of symmetric laminated plates. That is, we will only consider
transverse displacements according to equation (7.131) with all B; = 0.

Let us now consider the case of transverse deflection of the rectangular,
specially orthotropic plate, which is simply supported on all édges and
loaded with a distributed load, g(x, y), as shown in figure 7.41. For a
specially orthotropic plate m: By=0, Ajg= Ay = D1g=Dys =0 and equation
(7.131) becomes g

u:ﬁi%:iuav o'w +Dyy A = g(x, ) (7.132)
ox* 7 ox* oy’ ay*

For the simply supported boundary condition, the transverse displace-
ments and bending moments must vanish at the mmmmm In order to use
the bending moment boundary conditions to solve the differential equa-
tion for displacements, however, the bending moments must be expressed
in terms of displacements. Such expressions can be obtained from equa-
tion (7.30) and equation (7.41) for the specially orthotropic plate as follows:

M, ,H Dyik, + Dipky ==Dyy. % —Dr Ww e (7.133)

and
Pw_ Fw _.
My =Dk, +Day=-Dugg-Dagy (7130

Analysis of Laminates - 341
Thus, along x = 0 andx =4,
S w=0
and .. . o (7.135)
. dw o*w
M, =-Dy—~-Djy—=0
X 11 @RN 12 wQN
and alongy=0and y =b u
w=0
and o o o (7.136)
*w *w
M, =-D llIU =0
12 w.& 2N 9 w@

Several approaches to the solution of such problems have been ?o@o%&
[10,38]. This simplest method involves the use of double Fourier sine series
to represent both the load ¢(x, y) and the me_.&momgmaw w(x, y). If the load
can be Hmwﬁmmmsﬂmm as'

0, 3)= M.M& sin " sin L (7.137)

m=1 n=1

then it can be shown ﬁrmﬂ the differential equation and the boundary
conditions are satisfied by solutions of the form

w(x, y) = M.Ms sin ™" sin " (7.138)

m=1 n=1

Substitution of equation (7.138) and equation (7.137) in equation (7.132)
yields the displacement coefficients

a‘q
w . — it Q.H—.Mwo
"t [ Dt + 2(Dyy +2Dgg)(mnR)? + Dia(nR)* | 7139)

where the plate aspect ratio R = a/b [10]. The Fourier coefficients ¢, can be
found for the particular assumed load distribution [9,10]. For the uniform
load g(x, y) = g, a constant, it can be shown that the Fourier coefficients are

Hgo for m,n=1,3,5,.
nimn (7.140)

and ¢,,=0 for m,n=2,4,6,.

Gumn =
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Displacements w(x, y) for the uniformly yomgmm simply supported plate
may now be found by substituting m@ﬁmﬁo: (7.139) and equation (7.140)
in equation (7.138). Moment resultants may; be found by substituting these
equations in equation (7.30) and then substituting the result in equation
(7.41). Finally, lamina stresses may be found by combining equation (7.30),
equation (7.31), equation (7.138), equation (7.139), and equation (7.140).

For boundary conditions such as clamped edges or free edges, exact
series solutions similar to equation (7.138) are generally not possible. For
such cases, approximate solutions must be derived using approaches such
as the Rayleigh—Ritz method or the Galerkin method. For a detailed dis-
cussion of these methods and other boundary conditions, the reader is
referred to the book by Whitney [10].

7.9.2 Buckling Analysis

In the derivations of equation (7.120), equation (7.122), and equation
(7.124), the coupling between the in-plane forces N,, N,, and N,, and the
out-of-plane deflections, w, was ignored because of the assumption of small
displacements. In order to develop the equations to predict buckling under
in-plane loads, however, this coupling must be considered. Such equations
can be derived by assuming the differential element of figure 7.40(a) to be
oriented in a general out-of-plane position, as shown in figure 7.42. Using

J Jdw
dx ox

FIGURE 7.42 .
Differential element of laminate in out-of-plane position for buckling analysis.
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figure 7.42, and taking into account the vertical components of the in-
plane forces, the summation of forces in the z direction now becomes

mp dw o*w o*w
+ﬁx Y)+ N, P +N2&wam<+2\®|[o (7.141)

9Qx
mx

Note that equation (7.141) consists of the terms from equation (7.124)
plus the terms involving the in-plarne forces. Combining equation (7.141),
equation (7.126), and equation (7.127), we find that

FMy My M, . Pw P w Pw
=42 ﬁ\ & N, 2N, .y 'Y=
o 5%y + o + meJ.r Z\wx%ié e +q(x,y)=0

: (7.142)

Equation (7.142) consists of all the terms in equation (7.128) plus the
terms involving the in-plane forces. Substitution of equation (7.141), equa-
tion (7.29), and equation (7.30) in equation (7.142) yields the equation

o'w od'w o*w d*w
Dy ——+4D +2(Dyp +2D, 4D
11 wk 165 30y Y (Dry 56) =7~ 5 352 3 + 4l 3%y
Fw . Pl %0 PR
+Dy——B -3B — (B +2B
22 m@ 11 P 1657 3y (Bia +2Bgs) = o wu(
3.0 3,00 PN (7.143)
d°u P 0%0°
-B —-B — (B2 +2B -3B
26 o 163 (Bia %v ax%dy 25 3y
+ 23,.0 2 2 N
BT g )+ N, T N, 2 N, 2@

ox” Yoxoy Y oy

Note that equation (7.143) consists of the terms in equation (7.131) and
the additional terms due to the in-plane forces.

We now consider the case of buckling of a rectangular, simply sup-
ported, specially orthotropic plate under a single noﬁﬁammmi\m axial load,
N, =-N, as shown in figure 7.43. In this case, the loads N, =N, =g y)
=0, all B; =0, the stiffnesses A;s = Ay; = Dyg = Dy = 0 and m@:m:os (7.143)
becomes

d*w d'w dtw *w |
D I+NU +2D +D =-N 7.144
no A (D12 s6) o oy 2 o e (7.144)
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uz%

FIGURE 7.43 i :
Simply supported, specially orthotropic plate under compressive uniaxial in-plane loading.

For the simply supported boundary condition described previously by
equations (7.135) and equations (7.136), we may assume a solution of the form

WX, Y) = W %%%% o (7.145)

The mode shape for a particular buckling mode is described by the

subscripts m and #, since m is the number of half-sine waves along the x

direction and 7 is the number of half-sine waves along the y direction.

Substitution of this solution in the governing differential equation (7.144)
leads to the equation , v

Wy e :b:s% +2(Dyy +2Dgs)(mnR)* + Dy Eci = WuNa*m®  (7.146)

where again R = a/b. This equation has the trivial solution w,, = 0, which
is of no interest. For nontrivial solutions, the critical buckling load must be

ﬁun

zsuN ,»T@:% +N€;+N§x§5m+ anci Q.xs
am e , -

where the smallest buckling load occurs for 7 = 1, and the lowest value of
the load corresponding to a particular value of # can only be determined
if the D; 'and the plate dimensions 4 and b are known: As shown in
figure 7.44, Hatcher and Tuttle [40] have compared experimentally deter-
mined buckling loads for simply supported, specially orthotropic graph-
ite/ epoxy panels with predicted buckling loads from equation (7.147). The
value n = 1.is used for all predicted curves, and the curves for m = 1 and
m = 2 are shown. Measurement of critical buckling loads is shown sche-
matically in figure 7.45 and figure 7.46, where the compressive axial load
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FIGURE 7.44 .

Oo.z%mamoz of predicted and measured normalized buckling load, N,b%, vs. plate aspect
ratio, a/b, .mOn [0;,] graphite/epoxy laminates. (From Hatcher, D. and Tuttle, M. 1991. Recent
Advances in Structural Mechanics, PVP-Vol. 225/NE-Vol. 7, pp. 21-26. American Society of
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Mechanical Engineers.) : C .

FIGURE 7.45 i .
Measurement of critical axial buckling load for laminate, .

“~+__ Onset of buckling

at critical load

2&. 2

FIGURE 7.46 : ,
Variation of lateral deflection with in-plane axial load during buckling test.
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FIGURE 7.47
Buckling due to in-plane shear loads.

on the laminate is increased until the lateral deflection starts to increase
dramatically and the instability known as buckling soon follows. Although
the predictions are reasonably accurate for this case, it was mos.bm that the
agreement for some other laminate configurations was not quite as good.
Difficulties in simulating the simply supported boundary conditions and
in measuring the critical buckling loads, along with other problems mmnr
as the existence of imperfections in the test panels, were cited as possible
reasons for the disagreement. B _ .

Other types of buckling can occur in laminates in mﬂm_ﬁos to buckling
under in-plane axial loads. For example, if the critical in-plane shear load
is exceeded, shear buckling can occur as shown in figure 7.47. -

For laminates other than specially orthotropic and boundary 85&:65
other than simply supported, closed-form solutions similar to equation
(7.147) are generally not possible, and approximate methods m%.r as Ray-
leigh-Ritz or Galerkin must be used. Exceptions include ﬁrw antisymmet-
ric cross-ply and antisymmetric angle-ply 555%8@ which do admit
closed-form solutions [41].

7.10 Selection of Laminate Designs

When designing with conventional isotropic materials, the @How_mﬂ of
material selection is usually solved by simply looking up E.m appropriate
properties of candidate materials in a handbook. The m&moﬂos of a com-
posite laminate design can be a formidable task, however, due to ﬁww large
number of available fiber and matrix materials and the endless variety of
laminate configurations. The major differences between the analysis of lam-
inates and the design of laminates are best explained by giving examples.
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Lamina Properties

Ply Orientations
_W:a:mﬁm ?O@Qﬁmm‘*;t and
Stacking Sequence
FIGURE 7.48

Flow chart for laminate analysis.

Atypical analysis problem would be given a composite laminate and allow-
able ply stresses, determine the loads that it will support, or given the
laminate, loads, and properties, determine the resulting stresses and strains.
Either way, the analysis problem has a unique solution. A typical design
problem would be, given a set of loads and other design constraints, select
the materials and laminate configuration to withstand the loads. As
opposed to the analysis problem, the design problem may have an infinite
number of solutions. Depending on the number of constraints, it may be
possible to reduce the number of feasible designs or to even optimize the
design. A general flow chart showing the laminate design sequence is
shown in figure 7.48. Depending on the degree of design flexibility desired
and the availability of measured lamina level properties, the laminate
design may begin either with micromechanics modeling at the fiber/matrix
level or directly from measured lamina properties.

Obviously, the nature of the applied loads must be known in order to
start the design process. Uniaxial loading on a unidirectional laminate is
clearly the simplest case to deal with, but, unfortunately, most practical
loading situations are multiaxial, and this requires the design of a mul-
tidirectional laminate. For example, if the loading is biaxial as shown in
figure 7.49(a), only a crossply [0/90] laminate may be needed. However,
if shear loads are present as in figure 7.49(b), some angle plies will be
required as well. In the beginning stages of a design, it may be helpful
to establish some practical bounds on the laminate properties based on
knowledge of the mechanical behavior of certain special types of lami-
nates. For example, figure 7.50 shows the variation of the in-plane lam-
inate stiffness, A, with ¢, the orientation of the laminate with respect to
the loading direction, for both unidirectional and quasi-isotropic. lami-
nates. The unidirectional laminate stiffness for ¢ =0 may be considered
to represent the practical upper bound on laminate stiffness, and the
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FIGURE 7.49

Lamina orientations to resist different loading conditions.

quasi-isotropic laminate may be considered to represent the practical
lower bound on laminate extensional stiffness. .

An essential component of any design problem is the Ewsﬂwmom:wb all
of the possible failure modes. Whether intentional or not, if a vau:.o&ma
failure mode is overlooked in the design process, that failure B@Qm is the
one that will most likely come back to haunt the designer. > list OW. the
major design criteria for composite laminates and the mm.monﬁmQ failure
modes are provided in table 7.1. It is beyond the mnowm.& @:m book to cover
the m.:m_v&o& tools needed for all of these design criteria, and hmrm focus
here is on strength, stiffness, stability, hygrothermal effects, and creep.

In order to use the laminate analysis equations that were derived and
discussed earlier in this chapter, extensive matrix &m@cwm. is o,wios.m_v\
H.mn?w.mm. In addition, proper evaluation of laminate meym,:,m requires
numerous repetitive calculations resulting from changes in yom&bm.no?
ditions, material properties, and laminate geometry. These computational
requirements are ideally suited for solutions by digital computers, and a

“ o Unidirectional

Ay b e N A ;

0° S ) 90°

FIGURE 7.50 . . . o o
Variation of laminate extensional stiffness with laminate orientation for unidirectional an

quasi-isotropic laminates.
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TABLE 7.1

Design Criteria for Composite Laminates and the Associated Failure Modes

Design Criteria

Associated Failure Modes

m:mz.mﬁr. ., Fracture (either partial or complete)
Stiffness Excessive deformation
Stability . Buckling

Hygrothermal effects Property degradation, expansion and contraction, residual -

stresses

Life or durability Fatigue, creep

Weight Heavier than conventional design

Cost ' Not affordable

Manufacturability Impractical to build, warping due to residual stresses

variety of software packages for laminate analysis now exist. A list of
some of the available software packages is given in table 7.2. Most of these
programs have been developed for use on microcomputers, and many of
them will do both micromechanical analysis of laminae and laminate
analysis according to the CLT. The two basic approaches used in many of
these programs are (1) stress and strain analysis for prescribed loads and
(2) first ply failure analysis and ultimate laminate failure analysis according

TABLE 7.2
Composite Analysis Software

Software Company , Address

CompositePro Peak Oon_muo,m#mm\ Inc. 13299 West 84™ Place, Arvada, CO 80005,
web address: http://

Www.compositepro.com

b

MICMAC, Think Composites 101 Alma Street, #7083, Palo Alto, CA
GENLAM, C 94301, web address: http://
LAMRANK www.thinkcomposites.com/

FiberSim Vistagy, Inc. 200 Fifth Avenue, 5™ Floor, Waltham, MA

: 02451, web address: http://
www.vistagy.com

HyperSizer Collier Research 45 Diamond Hill Road, Hampton, VA

23666, web address: http://
www.hypersizer.com

Lamona . AdTech Systems 1342 N. Fairfield Road, Beavercreek, OH

Research, Inc. 45432-2698, web address: http://
www.adtechsystems.com/

LAP Anaglyph Ltd. Suite 33, 10 Barley Mow Passage, London

W4 4PH, United Kingdom, web
address: hitp:/ /www.anaglyph.co.uk/

The Laminator http:// www.thelaminator.net/
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to one of the multiaxial lamina strength criteria that were discussed in
chapter 4. In addition, some of the ﬁuomlmgm will do specialized tasks
such as deflection and buckling analyses, interlaminar stress calculations,
effective property calculations, and hygrothermal and transport property
calculations. Such programs are indispensable in design and analysis
because hand calculations are not only too time consuming, but the pos-

. eqens . | .
sibilities for errors in such hand calculations are endless.

For composite structures having complex geometries the preferred ana-
lytical tool is the finite element method. The use of the finite element
method in micromechanical analysis has already been discussed in chap-
ter 3. Macromechanical finite element analysis of laminated structures is
also widely used, and most of the popular finite element codes have
special elements such as orthotropic 3-D solid elements, orthotropic 2-
and 3-D shell elements, and orthotropic axisymmetric solid elements [42].

Although computer software gives the designer great flexibility in the
selection of materials and laminate geometries, graphical representations
that show the range of properties that can be attained with different
laminate configurations are also helpful. One type of graphical represen-
tation, known as a carpet plot, is particularly useful. For example, if the
ply orientations in a laminate are restricted to certain angles such as 0°,
+45°, and 90°, then a carpet plot can be generated, which shows how a
given laminate property depends on the percentages of the plies at the
varjous orientations. The carpet plots in figure 7.51 from ref. [43] show
how E,, G,, v,, and a, for [0,/445,/90,] Kevlar®/epoxy laminates vary
with the percentages of the plies at the three angles. In this case, i is the
number of 0° plies, j is the number of +45° plies, and k is the number of
90° plies. Therefore, the percentage of 0° plies is i/(i +j + k), the percentage
of £45° plies is j/i + j + k), and the percentage of 90° plies is k/(i + j + k).

For example, the various ply combinations that will give a certain value
of longitudinal modulus, E,, can be determined by drawing a horizontal
line in figure 7.51(a) at the value of E, and then reading off the percentage
of the plies at the three angles corresponding to a particular point on the
line. Obviously, there are many possible combinations that will give the
same value of E,, and the design flexibility inherent in composite con-
struction is again demonstrated. Carpet plots for laminate strength are
also widely used. Since there would normally be more than one design
constraint, an iterative approach involving the repeated use of carpet plots
for several different properties may be needed for the selection of the
required ply combinations. Carpet plots can be quickly generated using
the output of laminate analysis software. ;

While composite analysis software packages and carpet plots are very
convenient and efficient design tools for dealing with micromechanics anal-
ysis and laminate analysis using CLT, they generally do not include con-
sideration of interlaminar stresses or other “secondary stresses.” Indeed,
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Carpet plots for [0,/ +45,/90,] Kevlar®/epoxy laminates. (From Peters, S.T., Humphrey, W.D
and Foral, R.E. 1991. Filament Winding Composite Structure Fabrication, pp. 5-45. mo&wa\.mo.m
Advancement of Materials and Process Engineering, Covina, CA. Reprinted by permission
of The Society for the Advancement of Material and Process Engineering,)

the secondary stresses are often neglected in the design process, which tends
to focus on the “primary” in-plane stresses that are directly associated with
the loading. As seen in section 7.7, the interlaminar stresses often develop

:m.ﬁ .m,mm. mammmmcnrmmwo:roymmanﬁrmw&mno:ﬁgﬁzmm.? example of
this is shown in fictire 7 R9 wrhoro fhe frecmmere s St s .
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) —( Load
it <

_ Interlaminar stresses

“ around edges of holes
FIGURE 7.52 N
Interlaminar stresses in axially loaded composite link.

around the bolt holes in the composite link may Mmm@ to M&.Eam before the
primary axial stresses do. Thus, the maximum applied axial load on the
link may be limited by the secondary stresses more *rm.b v% .ﬁrm primary
axial stresses. There are other secondary stresses _omm_n.wmm interlaminar
stresses that may limit the applied loading on the composite more .k%mb *.wm
primary stresses do. For example, in the filament <.<0c59 composite 8&?
drical pressure vessel shown in figure 7.53, axial Vm.BQ:bm stresses in
the composite cylinder may be generated @:.m to rotational m.m.moH.Bm.ﬁg
of the lip of the metal end cap as the cylinder is internally Emm.m:EN.mm.. Since
the fibers in such a filament wound vessel are oriented HU.HE:mEv\ in the
circumferential or “hoop” direction, the axial direction in the cylinder

Transverse cracking of filament wound
pressure vessel at edge of metal end cap

Metal end cap / Deformed

shape

Internal
pressure

Transverse
cracks in wall
of vessel
due to bending

R
Ly Y

Filament wound
cylindrical pressure vessel

FIGURE 7.53 ) .
Axial bending stresses in filament wound composite cylinder caused by metal end cap.
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corresponds to the transverse direction in the composite. As shown in
chapter 4, the transverse tensile strength is generally the lowest of all the
composite strengths, so the secondary bending stresses rather than the hoop
stresses may limit the internal pressure that the cylinder can withstand.

A number of available handbooks and design guides are useful in the
design of composite laminates and structures, These books contain not
only the necessary analytical tools, but also the material property data
that is required for the use of the tools. Among the recent composites
handbooks are those edited by Kelly and Zweben [44], Mallick [45],
Harper [46], and Donaldson and Miracle [47]. Of particular note is the
five volume series Handbook of Composites, MIL-HDBK-17 [48], which is
sponsored by the U.S. Department of Defense, and is available on-line.

EXAMPLE 7.13

The reader should be able to use figure 7.51(a) to verify that a Kevlar®/epoxy
laminate with a longitudinal modulus of E, = 30 GPa can be obtained with the
following ply combinations; (1) 35% at 0°, 0% at 145°, and 65% at 90°; (2) 30%
at 0°, 30% at +45°, and 40% at 90°; and (3) 30% at 0°, 60% at +45°, and 10%
at 90°. These are only three of many possible combinations that will give the same
result. Additional design constraints may also be taken into account with other
carpet plots. For example, if a shear modulus, G,y of at least 5.0 GPa is needed,
figure 7.51(b) indicates that.the laminate should have at least 20% of its plies at

+45°. Thus, laminates (2) and (3) above both satisfy the constraints on E. and
Gy but laminate (1) does not.

EXAMPLE 7.14

An existing power transmission shaft consists of a hollow composite tube as
shown in figure 7.33, and the tube wall is 4 filament wound quasi-isotropic [60/
0/~601, laminate of thickness t. A new shaft of the same wall thickness t is to be
designed from the same lamina material, but the new laminate is to have a shear
stiffness greater than that of the existing shaft. Over what range of angles © will
0 [+6/~68/-8], angle-ply laminate achieve this design objective?

Solution. The shear stiffness of the new angle-ply laminate is

t/2

(ay = || Q= Q£+ D)o 2

—t/2

Recalling that the lamina stiffnesses can be expressed in terms of invariants
as -

u, -u,

U&H ———U;3 cos40
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and that cos 40 = cos(-46), the new laminate stiffness can be written as

i

U -u t G ~U,
(Ae6)ap = ﬁ_|_w|¢|l~\~m nOm»LM+ﬁ|HN|

. nﬁwlﬁmwnag
S

o
-U, nOmAlmoLM

The shear stiffness of a quasi-isotropic laminate is

QHL\FN

C»% vo_ = )

.

Therefore the shear stiffness of the new laminate can be expressed as

(Ags)ap = (Ags o1 —Ust cos 40

The variations of (As), and (Ae)og With 0 are shown in figure 7.54, where
it can be seen that

\

, Axw%v% >(Ag)a forangles 0 intherange  22.5° <6<67.5°

|~ (Agelap

(Agsdor

|
|
I
|
0° 22.5° 45° 67.5° 90° -

FIGURE 7.54 . B .
Variation of laminate shear stiffness with ply orientation for angle ply and quasi-isotropic

laminates.
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7.11 Application of Laminate Analysis to Composite
Structures

Composite structures often consist of components in the form of beams,
plates, shells, sandwich panels, and grids, and for detailed coverage of
the mechanics of composite structures, the reader is referred to books by
Vinson and Sierakowski [49], Kollar and Springer [50], and Sun [51]. The
purpose of this section is to show how the previously described CLT can
be applied to composite structures that are not usually thought of as being
laminates. More specifically, the application of CLT to composite sandwich
structures and composite grid structures will be discussed briefly. Detailed
discussion of these structures is beyond the scope of this book, as both
types of structures have been the subject of numerous books and journal
articles, some of which are referred to here.

7.11.1 - Composite Sandwich Structures

Composite sandwich structures such as the one shown in figure 1.5 are
widely used in aerospace and marine applications due to the extremely
high flexural stiffness-to-weight ratios and flexural_ strength-to-weight
ratios that can be achieved with such structures. The mechanical behavior
of composite sandwich structures has been described:in detail by Vinson
[52]. As shown in figure 1.5, composite sandwich structures consist of two
composite facings adhesively bonded on both sides of a lightweight foam
or honeycomb core. The equivalent laminate stiffnesses of composite
sandwich panels can be found directly from CLT. As shown in figure 1.5
and figure 7.55, such structures are typically symmetric with respect to

&
Facings

ﬂ ﬁ Middle surface /
b,
@ h Core

FIGURE 7.55
Geometry of composite sandwich structure for laminate analysis.
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the middle surface, so the corresponding coupling mmmgmmmm B;=0. Hrm
equivalent laminate extensional stiffnesses for the m%.BEQE.o mmso?\._nr
structure geometry in figure 7.55 are m?&: by substitution in equation
(7.38), as shown by Vinson [52]:

Ay = Mﬂwiwﬁw — Zga)
k=1

. ~ (ke (B s (e h
=[Qyly I,Wl Wiﬁ +[Qyle 22 +[Qjls | W+r Y
= :Mc u\ AN& v + _”mq H_nwn

(7.148)

where facing properties are denoted by the subscript f and core properties
are denoted by the subscript c. Similarly, equation. Q.mov lead to By =0,
and equation (7.40) give the following equivalent laminate flexural stiff-
nesses, as shown by Vinson [52]:

Dy = WM‘H@@. I AN% -z g v

R heY he _, w Ll - IW% (7.149)
. uwﬁtm 5 11M £ 5 Kile N

3 3
1 .= h, h,
+WH©im 1N1+ﬁ Ihww

Once the equivalent laminate stiffnesses are known, ﬁr.m stresses mz.m
deformations can be predicted using the approaches outlined mmi._mu in
this chapter. However, there are some corrections to laminate analysis that
may be required for use on sandwich structures. For mx.mBEm\ one of the
assumptions of CLT was that the transverse mvmma strains v,, and Y. are
negligible. This may not be the case in sandwich structures, because the
core is often made of foam or honeycomb material that has a low shear
modulus. If the transverse shear strains are to be considered, the trans-

verse shear stress resultants Q, and Q, in figure 7.40 would be related to -

the transverse shear strains 7y, and y,, by a transverse shear stiffness
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Failure modes of a sandwich bearm in three-point bending, (From Steeves, C.A. and Fleck,
N.A. 2004. International Journal of Mechanical Sciences, 46, 585-608. With permission,)

matrix, there will be additional strain-displacement equations to supple-
‘ment equation (7.29), and the governing partial differential equations
(equation [7.129] to equation [7.131]) will include additional transverse
shear terms [50,52]. :

The application of laminate analysis in the prediction of strength in
composite sandwich structures is significantly limited by the existence of
important failure modes in sandwich structures that ate not present in
composite laminates. Laminate failure modes would only be relevant for
the facings in the sandwich, but other possible failure modes are due to
the core or core/ facing interactions. For example, Steeves and Fleck [53]
have investigated the failure modes in foam-cored composite sandwich
beams under three-point bending, and the observed failure modes are
summarized in figure 7.56. The failute load, P, can be estimated from
simple mechanics of materials formulas for each of the failure modes once
the beam parameters and dimensions are known. The lowest of the pre-
dicted failure loads would govern the design of the sandwich structure.
In figure 7.57, the midpoint of the beam deflects by a transverse displace-
ment # due to the applied load P of the mid-rollet. L is the beam length
between the supports, H is the overhang at each end, b is the width of
the beam, ¢ is the core thickness, and t; is the face thickness. The relevant
mechanical properties of the isotropic core are the Young’s modulus E,,
shear modulus G,, comptessive strength G, and shear strength T.. For
the face sheets, the relevant properties are the axial comptessive strength

-O¢and Young’s modulus E;, and the dimension d = ¢ + te
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FIGURE 7.57 .
Geometry of a sandwich beam in three-point bending. (From Steeves, 0.>.. and Fleck, N.A.
2004. International Journal of Mechanical Sciences, 46, 585-608. With permission.)

According to Zenkert [54], the predicted collapse load for face yielding
or microbuckling is given as:

p= @Nﬁ | (7.150)

)

whereas the corresponding critical load for core shear failure can be esti-
mated as ‘

P=21.bd : (7.151)
and the load required to produce face wrinkling is

_ Nwﬁ& 3

T VEEG: (7.152)

p

Steeves and Fleck [55] have suggested that the load required for inden-
tation failure is :

1/3
n*62Ed

Rl (7.153)
3L

»Nuuw?

' There are many other aspects of composite sandwich structures that are
not necessarily relevant to laminate analysis. For more detailed studies of
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FIGURE 7.58
Orthogrid structure.

composite sandwich structures, the reader is encouraged to explore the
publications referred to earlier in this section,

7.11.2  Composite Grid Structures

Grid stiffened geodesic structural configurations date back to the 1920s
[56] when they were first used in aircraft construction with a metal grid
and fabric skin. The structures of these aircraft were known for their
excellent tolerance to battle damage. Along with the maturation of com-
posite technology, there has been increasing interest in composite grid
structures for the last several decades. The most common grid structures
are the orthogrid, with the ribs oriented at 0 or 90° (fig. 7.58) and the
isogrid, with the ribs oriented at 0 and +60° (fig. 7.59). Composite grid
structures are a promising concept for applications in plate or shell-like
components of systems such as spacecraft, aircraft, automobile, containers,
bridges, ships, and propellers. These structures have several advantages
over traditional construction methods that use panels, sandwich cores, or
expensive framework. As the ribs of the grids are made of unidirectional
continuous fiber-reinforced composites, they are strong, tough, damage
tolerant, and do not delaminate. As grids are open structures, they are easy
to inspect and repair. With such processes as automated fiber placement
and pultrusion, the potential also exists for completely automating the grid
fabrication process and reducing the processing cost.

The use of laminate analysis in modeling mechanical behavior of grid
structures is based on the concept of replacing the grid with a laminated
plate having equivalent stiffnesses, as described by Chen and Tsai [57] and
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Huyb d Teai [58]. The grid structure can be considered as a com-
- MMWWMM“MMNMW of _umﬁw:% ribs. m,rm equivalent axial, flexural N.EQ wow.mposﬂ
r stiffnesses of each family of parallel ribs can be nm_nE.mﬂmm separately, m:H

R then the overall stiffnesses of the grid structure ate obtained @v\ the ﬁHEnw% w
,, of superposition. Following the analysis by Chen mbm Teai ﬁmdwoozmH ﬁmﬂ
B the family of N parallel ribs in figure 7.60, each of 2?& Twm. oo,swmﬂ.wo.wom: M

spacing d (figure 7.58), cross-sectional area A, and longitudinal modulus E,.

modeling of grid structure,
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The direction of the local (%Y,2) coordinate axes are along and perpendicular
to the ribs. Let 6 be the angle between the local and global axes (1,2,3). It

should be noted that the normal strain along the y direction, ¢

w the shear

strains Y, and Y,,, and 5@ curvature x, in the ribs were not considered. If
all N ribs are identical, static equilibrium and geometric compatibility
requirements lead to the following equation relating the force per unit

length along the x direction to the corresponding strain

AE,g,

N, = a

e, [57],

(7.154)

In this case, the force per unit length is based on the effective width N
= 1)d + 2e for the parallel family of ribs, where the distance ¢ in figure 7.58
approaches d/2. Thus, the corresponding effective width becomes approx-
imately Nd. Transforming both the force per unit length and the strain to
the global coordinates and factoring out the resulting extensional stiff-

nesses A; for an equivalent flat laminated plate,

> §A §m§w Smx i \w: \»HN N»Hm )
R . I /O U Ry
mn  mn®  mPn?

\rm \wma x»mm

where m = cosf and 7 = sinb. Applying a similar approach for bending

of the parallel family of ribs, the flexural
flat laminated plate is found to be

r

EJdm* +Gm*n®  E Im*n® + GIm*n® E Imn —
E.Im?n? ~GJmn? E,n* +GlmPn®  E,Imn
E,Im®n I.Q\Su: EIm®n+Gjm®n  EIm’n’ +

E.Im’ n+Gjmn® E,ITm®n-— GJmn®  E,Im*n* -

stiffness matrix for an equivalent

Glmn(m?® —n?) |
2

GJmn(m® —n?)
2

GJm?(m?* - n?)

2

GJn? (m* — n?)

2

(7.1R56)
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where

A
i 31 - M
W.HE Mmlmwmg ”_.l

Rk . (7.157)

and E, and G are longitudinal and shear modulus of the rib, respectively;
h is rib height, and I and ] are the moment of inertia with respect to the
midplane and the torsional constant of the rib cross section, respectively.

For the orthogrid case, the [D] matrix becomes a 3 X 3 symmetric matrix
with Dy, and D, equal to zero. The Ag, term for the orthogrid must be
taken into account because the bending and shear effects of ribs tangential
to the midplane cannot be neglected and it becomes as [57].

s

Aw=1/a5 - (7.158)
where

F&w%mo +Pn~8mw " dy - dwo

b 7.159
12 Bl 12 EIy  «GAy  kGAg (7.159)

g6 =

G is the shear modulus of the ribs, d, and dy, are horizontal and vertical
spacing of ribs, and « is the shear correction factor, which is taken as 5/6.

The total stiffnesses for the grid can be obtained from superposition by
summing up the stiffnesses of each parallel family of ribs taking into
account the orientation of each family of ribs. For example, the [A] and
[D] matrices for the orthogrid with two families of identical ribs at 6 = 0°
and 90° are

.. EA ..
= 0 0
d
—\Eoﬁ:omi& =(0 muM» 0 AQHQOV
0 0 Ags
L 1
E.l 0 0
.HUHDESWHE = W 0 E.l | 0 , AQHGHV
GJ
-o 0 2|
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Similarly, for the isogrid with three parallel families of identical ribs at
8 =0°, 60°, and —60°,

/\l 3 1 0
3E.A
+ [Alsogria = a7 11 3 0 (7.162)
0 0 1
. )\l 3+1 1+ 0
3E,I _
[Dlisogria = 4 1+7 341 0 (7.163)
0 0 1+
where .
_G
TRl
I=Lwh’
and
| 16 w 4
= 16 Wlw.mmﬂ 1- o (7.164)

and 1 is rib height, d is the length of each side of the equilateral triangles
E.ﬁrm isogrid, and I and ] are the moment of inertia with respect to the
midplane and torsional constant of the rib cross section, respectively. All
of the above equations apply to the case of the grid alone, but the method
can also be applied to the case where the ribs are attached to a composite
laminate skin on one or both sides [57].

712 Problems

1. A _mB_.bm.SQ [0/90/0/90], carbon/epoxy beam is 1 mm thick, is
20 mm wide, and has 0.125-mm thick plies. The lamina properties
are

E, =180 Gpa s = 1700 Mpa
E,=10Gpa s© = 1400 MPa
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Steel Alum
uminum
M7
48 mm

FIGURE 7.62
Composite tube for problem 3.
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Gp=7Gpa sih= mo Mpa::
1 . vy, =028 50 =230 MPa

|
,
N !
3 |
7 I

, (@) Determine the flexural modulus-for the beam.

(b) How could the flexural modulus be improved without ovmsﬂm-
ing the ply materials, the number of plies, or the ply orienta-
tions? _ : .

(c) Using the Maximum Stress Criterion for each H&M\ determine
the magnitude of the maximum allowable bending moment
that the beam. can withstand. Which ply fails first?

| (d) What type of analysis would be required if the ply orientations
are [+45/90/-45/0],?
2. The laminated beam shown in figure 7.61 is made up of two outer

plies of material “A” having Young’s modulus E,, two inner plies
of material “B” having Young’s modulus Eg, and a honeycomb

withstand without exceeding the yield stress of either the steel
or the aluminum. The tube properties are: : p

Steel =~ Aluminum
core of negligible stiffness. Materials A and B are isotropic, but T — e, — = |
they have different thicknesses. The laminate is symmetric about Yield stueoe MPe. o 78 |
the middle surface. Find the expression for the flexural modulus

Wall thickness, mm 3 6

in terms of the given properties and the dimensions shown in
figure 7.61. |

3. A thin-walled composite tube having an outside &mgmwmn .Om 48
mm is made by securely bonding an aluminum tube Smam a
steel tube, as shown in figure 7.62. Determine the maximum
allowable bending moment, M, that the composite tube can

4. Determine the stiffness matrix for a [+45/ L.E antisymmetric lam- |
inate consisting of 0.25-mm thick unidirectional AS /3501 carbon/

epoxy plies. , 1

. Show that for symmetric laminates the coupling stiffnesses, By, W
must all be equal to zero.

6. By expanding the [A] matrix in terms of ply stiffnesses show that w ,
a “balanced” cross-ply laminate having equal numbers of 0 and

31

B Z § —— Material “A”

g ) 90° plies is not necessarily quasi-isotropic.
T 7. A[-60/0/60] laminate and a [0/45/90] laminate both consist of
-~ M 1“B
p ﬁ AN atertel 1.0-mm thick plies having the following properties: E, = 181 GPa,
4 ~ — Core E, =103 GPa, Gy, = 7.17 GPa, v;, = 0.28. Plot the Ay, for both
F Zc ddle surfs laminates as a function of the orientation in order to determine
__ 4 Middle surface which, if any, of the laminates is quasi-isotropic.
“ 8. The [+45/-45] laminate described in problem 4 is subjected to a
Zy N‘_n . uniaxial force per unit length N, = 30 MPa-mm. Find the resulting
Zy P stresses and strains in each ply along the x and y directions.
v/// /////\/\/\/HHMMHH ._w,‘, 9. A [0/90], laminate is mc_u_.mnWmQ to a single vmsmwsm moment per |
i

unit length, M,. If the laminate is unconstrained, so that bending
along both the x and the y directions occurs freely, determine the ,
ply stresses, (o), in terms of the moment, M,, the bending stiff-
nesses, D;; the ply stiffnesses, Du.\.\ and the distance from the middle

FIGURE 7.61
Laminated beam for problem 2.
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10.

11.

12.

13.

14.
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surface, z. Determine the ply QOmmmmm (0,); in terms of M,, z, and
a numerical coefficient if the properties are E; = 129 GPa, E, =12.8
GPa, Gy, = 4.6 GPa, v;, = 0.313, and ?l 1 mm.

The laminate described in problem 9 i is subjected to a single _ombm-
ing moment per unit length, M,, and 'the two edges on which M,
acts are fixed so that bending along the x direction occurs freely
but bending along the y direction is prevented. That is, the lon-
gitudinal curvature is unconstrained (i.e., k, # 0), but the trans-
verse curvature is constrained (i.e., ¥, = 0). Determine the ply
stresses (0,); as in problem 9 (give equations and numerical
results) and compare with the results of problem 9.

A [90/0/90], laminate is fabricated from laminate consisting of
isotropic fibers (E; = 220 GPa, v; = 0.25) embedded in an isotropic
matrix (E,, = 3.6 GPa, v,, = 0.4). Each lamina is 0.25-mm thick, and
the 0.01-mm diameter fibers have been precoated with a 0.00125-
mm thick sizing, which is the same as the matrix material. The
@Hmoomﬁma fibers are arranged in the closest possible packing array
in the matrix. Using both micromechanics and laminate analysis,
find the laminate engineering constants E,, E, G, and Vs The
laminate x-axis is parallel to the 0° lamina orientation.

An antisymmetric angle-ply [+6/~8] laminate is to be made of
carbon/epoxy and designed to have a laminate CTE, o, as close
to zero as possible. Determine the ply orientation 6 needed to
meet this requirement. The lamina properties are as follows:

E, =138 Gpa, laminate thickness = 0.125 mm
E,=8.96 Gpa o, =-03x10°m/m/K
Gp=71Gpa 0,=281x10°m/m/K

T 1,=03

This ?.,oEmB requires ‘extensive calculations, and Em use of a
computer is recommended.

Repeat problem 12 for a Kevlar®/ epoxy composite having lamina
properties as follows:

E; =76 Gpa lamina thickness = 0.125 mm
E,=55Gpa o;=-40x10%m/m/K
Gy = Nm Gpa o,=79.0%10%m/m/K
v, =034 -

The distribution of the in-plane shear stress, 1,,, along the y direction
at a particular distance z from the middle surface of a uniaxially

A TN S

,ﬂm
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xy

T
=

FIGURE 7.63
In-plane shear stress distribution for problem 14.

loaded laminate is idealized, as shown in figure 7.63. The interlam-
inar stress boundary layer region is assumed to extend inward
from the free edge at y = b by a distance “4,” the in-plane shear
stress T,, = T, in the region 0 <y < (b - 4) is assumed to be the shear
stress from z._m CLT, and the in-plane shear stress in the boundary
layer region (b - a) < ys < b is assumed to be of the form

=5 (y-D)b-20-y)

For the same location, determine the distribution of the interlam-
inar shear stress, 1,,, along the y direction.

15. A filament-wound composite drive shaft for a helicopter trans-
mits a torque T that generates shear loading of the shaft material,
as shown in figure 7.64. The shaft is to be designed as a hollow
tube with a two-ply [ +0/-6] laminated wall. If the outside diam-
eter, the length, and the material density are fixed, use invariants

I

FIGURE 7.64
Filament wound shaft for problem 15.
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d- \. Middle mﬁ.mmom

,[ Laminate (A By, Dy)

FIGURE 7.65
Laminate with parallel axes for problem 16.

16.

17.

to determine the angle 8, which should be used to BmeBNw the
shear stiffness-to-weight ratio, Ag/W, where Ay is the laminate
shear stiffness and W is the shaft weight. It may be assumed that
the shaft diameter, D, is much greater than the wall ﬁEngmmm\ t

Develop a “parallel axis theorem” for the effective Hmsabmﬁ.m stiff-
nesses Aff, B, and Dj associated with the (x”,z") axes, which are
parallel to the original (x,z) axes, as shown E mmsmm 7.65. Express
the new \»@.\o By”, and DN.\ in terms of the original Ay, By, and Dy,
for the (x,z) axes and the distance d between the parallel axes,
where z”7 =z + d. -

A0/ mo,\or laminate consisting of AS/3501 carbon/epoxy lam-
inae is subjected to uniaxial loading along the x direction. Use the
Maximum Strain Criterion to find the loads corresponding to first

ply failure and ultimate laminate failure; then plot the load-strain

- curve up to failure. Compare these results with those of example

18.

19.

20.

7.10 and discuss any differences. _

Prove that for the specially orthotropic plate shown in figure N.ﬁ
under the loading described by equation (7.137), the solution
given by equation (7.138) satisfies the differential equation Q.H.mwv
and the boundary conditions in equation (7.135) and equation
(7.136). v : o

Find expressions for the moments M,, M, m:@ M,, and the
stresses (0,)y, (0,), and (1) in the kth ply of the uniformly loaded,
specially orthotropic laminate with simply supported edges
shown in figure 7.41.

Derive the differential equation and the boundary conditions gov-
erning the small transverse deflections of a simply supported,

FIGURE 7.66 .
Simply suppotted, specially orthotropic plate under in-plane loads for problem 22,

21.

22,

rectangular, symmetric angle-ply laminate that is subjected to
distributed loading. If the loading is described by equation
(7.137), does a solution of the form given in equation (7.138)
satisfy this differential equation and boundaty conditions? Why?
Detive the coupled differential equations and the boundary con-
ditions governing thé small transverse deflections of a simply
supported, rectangular, antisymmetric angle-ply laminate that is
subjected to distributed loading. Propose solutions for the dis-
placements u, v, and w that satisfy the differential equations and
boundary conditions. | m _

A simply suppotted, specially orthotropic plate is subjected to an
in-plane compressive load per unit length N, and an in-plane

~ tensile load per unit length N, = —0.5 N,, as shown in figure 7.66.

23.

24,

Detive the expression for the critical buckling load.

Derive the differential equation and the boundary conditions
governing the buckling of a simply suppotted, rectangulat, sym-
metric angle-ply laminate that is subjected to a tuniaxial in-plane
load, N,. Does a solution of the form given in equation (7.145)
satisfy this differential equation and boundary conditions?
Why? :
Using the carpet plots of figure 7.51, select the percentages of 0°,
+45°, and 90° plies that are needed in a [0,/445,/90,] laminate if
the longitudinal modulus, E,, is to be at least 20 GPa, the in-plane
shear modulus, G,y is to be at least 10 GPa, and the longitudinal
CTE, o, is equal to zero.
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A symmetric [0/90/0] laminate is 0.75-mm thick and its full com-
pliance matrix is given below. !

‘ |
|

A B [a B |
B D| |B D ,
[ 0014 -7.235x10% 0 0 0 0
—7.235x107 0.026 0 0 0 0
_ 0 0 0188 0 0 ~ 0
- 0" 0 0 0213 -0042 0
0 0 0 -0042 2066 O
0 0 0 0 0 4016

26.

where the units of the matrix are

A B _ [GPa-mm]? [GPa-mm?]™
B D [GPa-mm?*]?! [GPa-mm®[!

Determine the following effective engineering constants, for the

 laminate, giving both magnitude and units; (a) the effective lon-
- gitudinal Young’s modulus, E,, (b) the effective transverse

Young’s modulus, E, (c) the effective in-plane shear modulus, G,,,
(d) the effective longitudinal Poisson’s ratio, v, and (e) the effec-
tive flexural modulus, Ej,.

The laminate described. in problem 25 has laminae that are 0.25-
mm thick and the stiffness matrix associated with the 0° lamina
is given by

1388 27 0
[Ql=| 27 8965 0 |GPa

0 0 71

If a single bending moment per unit length M, = 0.1 GPa-mm?is
applied to the laminate, (a) determine the stresses associated with
the x and y axes on the top surface of the laminate and (b) deter-
mine the stresses associated with the x and y axes on the middle
surface of the laminate. ,

27. The sensing element in many thermostats is a bimetallic strip

(fig. 7.67), which is a nonsymmetric laminate consisting of two

Analysis of Laminates

X
Ply #1, aluminum,
/ t = 0.005 inch
Yy Z
Ply #2, steel,
Px t = 0.005 inch

FIGURE 7.67
Bimetallic strip for problem 27.

plies made from different metals. If the strip is subjected to a
temperature change AT, the differential thermal expansion of the
two plies causes a corresponding change in the radius of curva-
ture of the strip, p,, and this motjon activates the temperature
control system. In the strip shown in figure 7.67, ply #1 is alumi-
num, ply #2 is steel, both plies are isotropic, and each ply is
0.005-in. thick. It has been determined that the effects of By-type
coupling-on the thermal response of the strip can be neglected.
Find the relationship between the temperature change AT and the
radius of curvature p,. Recall that the curvature i, = 1/ Py The
required properties are given below.

Ply thermal expansion coefficients:
 Aluminum: o = 12.5 x 10-6/°F
Steel: o, = 6.6 x 10-6/°F

Laminate-bending compliances:

0739 0227 0
[D]=]-0227 0739 0 [|(psi-in?)~L
0 0 1928

Ply stiffness matrices:

[32.817 9615 0
[Qlse=| 9.615 32.817 0 [10°psi
0 0 116

[11.11 351 o0
[Qla=| 351 11.11 0 [10%psi
0 0 38

371
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FIGURE 7.68 ; _ o e
Simply suppotted laminated plate under in-plane shear loads for problem 28,

o L
o

28. The plate in figure 7.68 has edge dimensions 4 and b and is Bm%
from a [90/0/90], symmetric cross-ply laminate. Hﬁn plate is sim-
ply supported on all edges and is subjected to a mE%m %?Emﬁm
shear load N,, along its edges as shown. ,P:m%.mu.” the hpbo&,ﬁsm
questions below in terms of variables, not numerical d,&ﬁ..mm. Do
not try to solve the equations, just set them up: (a) write the
differential equation governing the buckling behavior of ;.&Pm Emﬁ«
(b) write the boundary conditions for the plate, and (c)isa ,mmug-
-tion of the form shown in equation (7.145) in the textbook possible
for this problem? If so, why? If not, why not?
‘The nonsymmetrically laminated beam shown in figtite 7.69 con-
sists of a substrate material having Young’s modulus Eg and a
coating material having Young’s modulus E¢, and both Bwﬁ.ﬁ.&m
are linear elastic, isotropic, and homogeneous. Using a modified

29

Substrate, Eg

GONQ—Jm‘ mO

FIGURE 7.69 . .
Nonsymmetrically laminated beam for problem 29.

Principles of Composite Material Mechanics
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laminated beam theory, derive the equation for the flexural mod-
ulus E;for the beam. Your answer should be in terms of the given
parameters. Hint: Assumption #2 for laminated beam theory in
section 7.2 is violated here, so how must the derivation of the
flexural modulus in section 7.2 be modified?

e —— I
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Analysis of Viscoelastic and Dynamic
Behavior

8.1 _sgo&:n:os‘ ;

In the analyses of chapter 1 to chapter 7, it has been assumed that the
applied loads are static in nature and that the composite and its constitu-
ents exhibit time-independent linear elastic behavior. However, composite
structures are often subjected to dynamic loading caused by vibration or
wave propagation. In addition, many composites exhibit time-dependent
viscoelastic behavior under load; this is particularly true for composites
having polymeric constituents. This chapter contains the basic information
needed for the analysis of both viscoelastic and dynamic behavior of com-
posites and their constituents.

The word “viscoelastic” has evolved as a way of describing materials
that exhibit characteristics of both viscous fluids and elastic solids. Poly-
meric materials, which are known to be viscoelastic, may behave like
fluids or solids, depending on the time scale or the temperature. For
example, polycarbonate, a thermoplastic polymer, is a liquid during mold-
ing at processing temperatures, but is a glassy solid at service (ambient)
temperatures. It'will deform like a rubber at temperatures just above the
glass transition temperatiire, T,. At temperatures below T,, however, it
will deform just as much, and in the same way if the test time is long
enough. . L

We know that ideal Hookean elastic solids are capable of energy storage
under load, but:not energy dissipation, whereas ideal Newtonian fluids
under nonhydrostatic stresses are capable of energy dissipation, but not
energy storage. Viscoelastic materials, however, are capable of both storage
and dissipation of energy under load. Another characteristic of viscoelastic
Materials is memory. Perfectly elastic solids are said to have only “simple
memory” because they remember only the unstrained state and the current
strains depend only on the current stresses. Viscoelastic materials have what
is often referred to as “fading memory"” because they remember the past in

m:nrms\m%\%m:rmoﬁﬁmimﬂ.m_.bm depend more strongly on the recent
stress—time hictars Hhan A Has s 2ot oot 1. . o0




