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| Strength of a Continuous Fiber-Reinforced
- Lamina

4.1 Introduction

Because of the variety of failure modes that can occur in composites, the
analysis of composite strength is more difficult than the analysis of elastic
behavior, which was discussed in chapter 2 and chapter 3. As shown in
chapter 1, the strength of a composite is derived from the strength of the

- fibers, but this strength is highly directional in nature. For example, the

. longitudinal strength of the continuous fiber-reinforced lamina, s;, is much

greater than the transverse strength, s, In addition, the compressive

- strengths 5,0 and 5,0 associated with these directions may be different from

‘the corresponding tensile mmnmzm.%m 5. and, s;, and the transverse tensile

strength s, is typically the smallest of all the lamina strengths for reasons

that will be explained later. The in-plane shear strength s, associated with
the principal material axes is still another independent property. These five
lamina strengths form the basis of a simplified lamina strength analysis,
which will, in turn, be used later in a simplified laminate strength analysis.

The relationships among these five lamina strengths and the allowable lamina

strengths under off-axis or multiaxial loading are discussed in this chapter,

as are several micromechanical models for predicting the lamina strengths.

Interlaminar strengths will be discussed in chapter 7 and chapter 9.

As shown in chapters 2 and chapter 3, the linear elastic stress—strain
relationships for the orthotropic lamina are simplified by the use of “effec-
five moduli.” The effective moduli, which relate the volume-averaged lam-
Ina stresses to the volume-averaged lamina strains [recall equation (2.7) to
¢quation (2.9)], are defined by simple uniaxial or shear stress conditions
ssociated with the lamina principal material axes. Using a similar
pproach, the “effective strengths” of the lamina may be defined as ultimate
alues of the volume-averaged stresses that cause failure of the lamina
under these same simple states of stress. The stress-strain curves in
lgure 4.1 show the graphical interpretation of these simple states of stress,
he effective strengths 5, 5,0, 6,4, 5.6 and Sip and the corresponding
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Stress—strain curves for uniaxial and shear loading showing lamina in-plane strengths Eﬂ

ultimate strains.

ultimate strains e;®, e, 0, e, mi& arid ;1. If we assume linear elastic behav-

v i i trains b
ior up to failure, the ultimate stresses are related to the ultimate s y

s =Eief?; o) =Eiel?;  sur=Guerr (41)

s =Eefl?; s =Eyefy?
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Typical experimental values of the effective lamina strengths for selected
composites are given in table 4.1 [1,2]. Note that the transverse tensile
strength, s:¢), is the lowest of all the strengths. As shown later, this con-
dition is often responsible for the so-called “first ply failure” in a laminate.
Itis also interesting to note in table 4.1 that the compressive strengths are
not necessarily equal to the corresponding tensile strengths; the transverse
compressive strengths are generally greater than the transverse tensile
strengths, and the longitudinal compressive strengths are usually less than
or equal to the longitudinal tensile strengths. The intrinsic compressive
strength of composites has always been difficult to determine experimen-
tally, however, and the validity of such compression test results is a subject
of continuing debate. Recent test results indicate that if the proper tech-
nique is used, the compression strength may be about the same as the
tensile strength. Measurement of composite properties will be discussed
in more detail later in chapter 10,

In this section, the lamina effective strengths under simple states of
stress have been defined. In the next section, we, will discuss the use of
these properties in several theories for predicting lamina strength under
off-axis or multiaxial loading conditions, Elementary mechanics of mate-
tials models for micromechanical prediction of several of the lamina
strengths will also be described in this chapter for illustrative purposes,

——
42 Multiaxial Strength Criteria

In the cases of off-axis or multiaxial loading, we assume that lamina
failure can be characterized by using a multiaxial strength criterion (or
failure criterion) that incorporates the gross mechanical strengths
described in the previous section. The objective of such a theory is to
provide the designer with the capability to estimate quickly when lamina
failure will occur under complex loading conditions other than simple
uniaxial or shear stresses. In this semiempirical “mechanics of materials”
approach, we do not concern ourselves with the details of specific micro-

- mechanical failure modes such as fiber pullout, fiber breakage, fiber
microbuckling, matrix cracking, and delamination. The actual failure
_process is complicated by the fact that these microfailure modes may

oceur in various combinations and sequences. Indeed, as pointed out by
Hashin [3], our knowledge of the details of failure at the micromechanical
level is so incomplete that “the failure process cannot be followed ana-

Iytically.” The existence and growth of cracks and other defects in the
composite are also ignored with this approach. Studies of micromechan-
ical failure modes generally require the use of more advanced approaches
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| the subjects of numerous journal

such topics will be given in section

such as fracture mechanics and are
publications. Additional discussion of
43 and in chapter 9.

Available multiaxial composite failure criteria have been reviewed and
discussed by Hashin [4], Wu [5], Sendeckyj [6], Chamis [7], Kaminski and
Lantz [8], Franklin [9], Tsai [10], Christensen [11], and Zhu et al. [12].
During the period from 1998 to 2004, Soden, Hinton, and Kaddour
L teported on the various aspects of the so-called World Wide Failure Exer-
b cise (WWEFE) in a series of journal articles [13-22] and a book [23]. The

WWEE was an international exercise in which the developers of 19 leading
composite material failure theories were asked to apply their theories to
predict failure in unidirectional laminae and in multiply laminates under
14 different test cases involving complex states of stress. The results from
the different theories were compared with each other and with experi-
mental data. Since this chapter only covers prediction of failure in unidi-
rectional laminae, only the key results of the WWEE that are relevant to
lamina failure prediction will be discussed here, and the results that are
relevant to laminate failure prediction will be deferred until later in
chapter 7. Complete coverage of the WWEFE is beyond the scope of this
book, and the reader is referred. to the previously mentioned journal
articles [13-22] and the book [23] for details. All the criteria are phenom-
enological, having evolved from attempts to develop analytical models
to describe experimental observations of failure under combined stresses.
| | Aspointed out by Wu [5], a large experimental database alone could form
| | the basis for an empirical failure criterion, but the semiempirical mathe-
thatical model is preferable because it can reduce the number of required
eXperiments and provide a more systematic approach to design. None of
the available theories has been shown to accurately predict failure for all

materials and loading conditions, however, and there is no universal
agreement as to which theory is best.

Many of the failure criteria for anisotropic composites are based on
generalizations of previously developed criteria for predicting the transi-
tion from elastic to plastic behavior in isotropic metallic materials. As such,
they make use of the concept of a “failure surface” or
generated by plotting stress components in stress spa
axes for the stress space generally correspond to the
principal material axes. The theory predicts that thos
stresses whose loci fall inside the failure surface will
whereas those combinations of stresses whose loci fall
surface will cause failure. Thus, in the application of all the
first step is the transformation of calculated stresses to the prin
Since we are only dealing with two-dimensional stress states in a lamina
at this point, the failure surface would be 2-D. Failure surfaces for each of
the criteria will be presented as thev are dicericcnd hara
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8.7(60.0)
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9.3(64.0)
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298.6(2060)
199(1373)
200(1379)
160(1103)
85(584)

0.45%

0.5

0.6

0.58¢
0.50¢

“failure envelope”
ce. The coordinate
stresses along the
e combinations of
not cause failure,
on or outside the
failure criteria, the
cipal material axes.

Material

Source: *From Chamis, C.C. 1987. Engineers Gulde to CDT’ZPOSlte Mater ials, 3'8“‘3'24 ASM IILteIIlathIlal N[al:enals Park, OH. With PeIIIllSSlOI L.
1 81 4 7 ‘4 4
-Or o .

i ‘ . - . - - n‘
o gex'cell ‘I/\{\(j[bsned Ishai hgxclié(fn’b};ngineermg Mechanics of Composite Materials, Oxford University Press, New York. With permissio
cFrom Daniel, I.M. an , O. ,

i i £ 3M Company.
Note: Kevlar® is a registered trademark of DuPont Company, and Scotchply® is a registered trademark of 3 pany.
dCourtesy of Ford Motor Company, Research Staff.

Kevlar® 49/epoxy aramid/epoxy v = 0.6*
E-glass/470-36 E-glass/vinyl ester v, = 0.30¢

Scotchply® 1002 E-glass/epoxy v

IM?7/8551-7 carbon/epoxy v; = 0.6°

AS/3501 carbon/epoxy v; = 0.6
AS4/APC2 carbon/PEEK v;
B4/6061 Boron/aluminum v;

Boron/5505 boron/epoxy v
T300/5208 carbon/epoxy vy

TABLE 4.1
Typical Values of Lamina Strengths for Several Composites at Room Temperature
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4,2,1 Maximum Stress Criterion

The Maximum Stress Criterion for orthotropic laminae was apparently
first suggested in 1920 by Jenkins [24] as an extension of the Maximum
Normal Stress Theory (or Rankine’s Theory) for isotropic materials, which
is covered in elementary mechanics of materials courses [25]. This crite-
rion predicts failure when any principal material axis stress component
exceeds the corresponding strength. Thus, in order to avoid failure accord-

ing to this criterion, the following set of inequalities must be satisfied:
|

—sf” <oy <sf?

-s{) < 6, <sf) (4.2)

[T12| <11

where the numerical values of 5,0 and s, are assumed to be positive. It
is assumed that shear failure along the principal material axes is indepen-
dent of the sign of the shear stress 1;,. Thus, only the magnitude of 1, is
important, as shown in the last of equations (4.2). As shown later, howevet,
the shear strength for off-axis loading may depend on the sign of the shear stress.

The failure surface for the Maximum Stress Criterion in o, — o, space
is a rectangle, as shown in figure 4.2. Note that this failure surface is
independent of the shear and stress 1y, and that the criterion does not

account for possible interaction between the stress components. That is,

the predicted limiting value of a particular stress component is the same

whether or not other stress components are present. Figure 4.3 shows a |

G2

o Maximum strain
\ Maximum stress f/

-

Q)

FIGURE 4.2
Maximum Stress, Maximum ‘Strain, and Tsai-Hill failure surfaces in ©,, o, space.

:
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M%onWmM.m._moﬁ Awm vanMMmQ failure surfaces with experimental failure data mﬁ.% graphite/
i - \From Burk,.R.C. 1983, Astronautics.and Aer Hi — i
Reprinted with penmiscion s A o,:.a: ics, Bav_\ 58 m.N. Copyright ATAA,

comparison of theoretical failure surfaces with experimental biaxial failure
data for a unidirectional graphite/epoxy composite [26]. Since the
mﬂmbmma along the principal material directions provide the input to the
criterion, we would expect the agreement to be good when the applied
stress is uniaxial along those directions. Due to lack of stress interaction
in m.a Kmx:ﬂﬁg Stress Criterion, however, the agreement is not so good
in biaxial stress situations. The scatter in the experimental data is unfor-
tunately typical for composite strength tests.

Experimental biaxial failure data for comparison with predicted failure
mcmmnmm can be obtained by applying biaxial loading directly to the test
specimens. Biaxial stress fields can also be generated indirectly by usin
off-axis F.Ewmxmm: loading tests [27] or off-axis shear-loading tests. >nooa_.bm
to equations (2.31), the applied normal stress, o, in the off-axis :wawmm
loading test shown in figure 4.4 produces the following biaxial stress state
along the principal material axes - ,

0y =0,c0820
G, =0,s5in%0 (4.3)

T12 = —0, 8in 0 cos 0

E@..m the applied normal stress, 6,, may be positive or negative. The
Importance of the sign of the annlied cHroce in fha tobammtott o e 1
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FIGURE 4.4 A . .
Off-axis uniaxial test of a unidirectional lamina specimen.

test results here is obvious. These stress components may then be mcw-
stituted into equations similar to equations (4.2) in order to mmﬂmamw
failure surfaces. By plotting the predicted mB.& Emmm.:nma <w5m.m of o, M
failure versus lamina orientation, 0, the various failure criteria can be

luated [28]. . .
m<%o~ the off-axis shear test described in figure 4.5, the applied shear

stress, 1,,, generates the following biaxial stress state along the principal
7 Vxy’s X ) , .
material axes according to equations (2.31):

61 =2T,,c0s0sin O

\

G, =—2T,, cosO sin 0 (4.4)

T2 = aéAnOmm 06— mu..ﬁw ®v

. 0 }.,»!Rwei
%

e,
Joaca——
A

Z

FIGURE 4.5 . .. . .
Off-axis shear test of a unidirectional lamina specimen. (a) Positive 1,,; (b) negative 1.
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The importance of the sign of the applied shear stress in the interpre-
tation of test results may not be so obvious here, and further discussion
is warranted. For example, if the angle 6= 45° equations (4.4) reduce to
01 = Ty, O3 = —Y,, and T, = 0. Thus, a positive applied shear stress, Tuys
would produce longitudinal tension and transverse compression along
the principal material axes, as shown in figure 4.5(a). On the other hand,
a negative applied shear stress would produce longitudinal compression
and transverse tension, as shown in figure 4.5(b). Given the fact that the
fransverse tensile strength is so much lower than the other strengths
(table 4.1), the importance of the sign of the applied off-axis shear stress
should now be obvious. It is easy to visualize a situation where a negative
shear stress of a certain magnitude could cause a transverse tensile failure,
whereas a positive shear stress of the same magnitude would not cause
failure. A similar development for pure shear along the principal material
axes shows that the sign of the shear stress makes no difference in that

| case. The importance of the sign of the shear stress extends beyond the

interpretation of tests results as described here; it has implications for all
phases of stress analysis in composite materials.

EXAMPLE 4.1

An element of an orthotropic laminamade of T300/5208 carbon/epoxy material
is subjected to a positive off-axis shear stress, Ty at an angle © = 45° as shown
in figure 4.5(a). Determine the value of the off-axis shear stress Ty that would
cause failure according to the Maximum Stress Criterion. ;

Solution. From figure 4.5(a), it is seen that a positive off-axis shear stress
produces longitudinal tension and transverse compression along the prin-
cipal material axes. Employing equations (2.31) and the Maximum Stress

Criterion, along with the strength data for T300/5208 from table 4.1, the
calculations are as follows:

For failure by the longitudinal tensile stress,
01 =27y cosB5in 6 = 21, cos 45° sin 45° = 1,,, = S = 1448 MPa

So the corresponding off-axis shear stress required to produce this mode of
failure is

T,y = 1448 MPa

For failure by the transverse compressive stress:

Oy =—2T,,C080SINO = ~27T .. cOSARO in ARO — _m — =) maca o
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So the corresponding off-axis shear stress required to produce this mode of

failure is: .
Ty =248 MPa
_ |
». There is no shear stress along the principal material axes, since

Tip = T4y(c0s? 0—sin’ 0) = T, (cos” 45" —sin® 45°) = 0

So transverse compression is the governing mode of failure, and the value
of the off-axis shear stress required to produce failure is:

Ty = 248MPa.

EXAMPLE 4.2 ..
Repeat example 4.1 if the off-axis shear stress in example 4.1 is negative, as shown
in figure 4.5(b).

Solution. From figure 4.5(b), it is seen that a negative off-axis shear stress
produces longitudinal compression and transverse tension along the prin-
cipal material axes. Employing equation (2:31) and the Maximuin Stress
Criterion, along with the strength data for T300/5208 from table 4.1, the
calculations are now as follows: . .

For failure by the longitudinal compressive stress,

01 =—27T,, c0s0sin B = ~21,, c0845° sin 45" = 1, = ~8{) = -1448 MPa

So the noimmwoag&sm off-axis shear stress required to produce this mode of
failure is:

T, =1448MPa
For failure by the transverse tensile stress,
Oy =21, c0s0sin 6 = 21, cos45°sin 45° = 1,, = 5" = 44.8MPa

So the corresponding off-axis shear stress required to produce this mode of
failure is:

T,y = 44.8MPa
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Again there is no shear stress along the principal material axes, since

T12 = Ty (cos® 0 —sin® 0) = Ty (cos® 45° — sin? 45°) = 0

So transverse tension is now the governing mode of failure, and the corre-

mwos&bmﬁ;c@Omﬂrmom.mxmmmrmmnmwnmmm required to produce failure is
now only -

Ty = 44.8MPa

So simply changing the sign of the off-axis shear stress from positive to

:m.mm»?m produces a completely different mode of failure and a much lower
failure stress.

4.2.2  Maximum Strain Criterion

In 1967, Waddoups [29] proposed the Maximum Strain Criterion for
orthotropic laminae as an extension of the Maximum Normal Strain
gmo&\ (or Saint Venant’s Theory) for isotropic materials, which is also
&wn:mmma in elementary mechanics of materials courses [25]. This crite-
rion predicts failure when any principal material axis strain component
exceeds the corresponding ultimate strain. In order to avoid failure
according to this criterion, the following set of inequalities must be

satisfied: ;

—ef) <&, <ef”
) <gy <ef) (4.5)

_f,m_ < m,S

where the numerical values of e and e,0) are assumed to be positive
and the ultimate strains are all engineering strains as defined by equation
,ﬁnc. As with the Maximum Stress Criterion, it is assumed that shear
ailure along the principal material axes is independent of the sign of the
shear strain vy,,. v : ,

Due to the similarity of equation (4.5) and equation (4.2), the failure

- surface for the Maximum Strain Criterion in ¢, — ¢, space is a rectangle

similar to that of the Maximum Stress Criterion in 6, - o, space.In o, ~ o
space, however, the Maximum Strain Criterion failure surface is M
skewed parallelogram, as shown in figure 4.2 and figure 4.3. The shape
of the parallelogram can be deduced by combining the lamina stress—

- strain relationships in equation (9 94\ writh Heo oolestn . as . .
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equation (4.1). For example, the limiting strain associated with the positive
1 direction is ,

() W
Sy, G V205
2L _ 21 | : 4.6
& E E | E . (4.6)
~ _® |
Viz

which is the m@Sm&osm of a straight line rm&SM intercept (5., 0) and slope
1/vy, (fig. 4.2). A similar development using the limiting strain along the
positive 2 direction yields the equation: v

Oy =V01 + m.m,i A#mv

which is the equation for a straight line having intercept (0, s;V) and slope
Vo These lines form the right and top sides, respectively, of the parallel-
ogram shown in figure 4.2, and similar consideration of the limiting
strains in the negative 1 and 2 directions yields equations for the remain-
ing two sides. It should be noted, however, that depending on the mag-
nitudes of the lamina strengths and stiffnesses, the intercepts of the
w Maximum Strain Criterion parallelogram may not be the same as those
of the Maximum Stress Criterion rectangle in stress space. For some mate-
rials, the lines defining the top and bottom of the Maximum Strain

- Criterion parallelogram intercept the horizontal axis at stresses less than |
the measured tensile and compressive longitudinal strengths, which con-

tradicts experimental evidence [5,8]. According to Wu [5], such contradic-
tions develop as a result of an ambiguous conversion from strain space
to stress space unless certain mathematical constraints on the properties

simple.

i 4.2.3 Quadratic Interaction Criteria

i theories for isotropic materials, but they differ from the maximum stres
and maximum strain criteria in that they include terms to account for

, are satisfied. Only for isotropic materials are the intercepts always the §
P same for the maximum stress and maximum strain criteria. As with the
Maximum Stress Criterion, the Maximum Strain Criterion does not
account for possible interaction between stress components, and the pre- §
dicted failure surface does not show good agreement with experimental §
biaxial failure data for graphite/epoxy in figure 4.3. Off-axis uniaxial test i
Wﬁ data have led to similar conclusions [28], but both criteria are still used §
: for orthotropic materials because the resulting equations are relatively §

! The so-called quadratic interaction criteria also evolved from early failure §
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Mﬁmwmnmo.z between the stress components, and the quadratic forms of
Emmw_m\:maoﬂm mﬁ.z. Ewbm stress lead to elliptical failure surfaces. As shown
mmechanics of materials book, the maximum dj o
any . teri ook, istortional ener:
Q:M.Sﬁ orvon ?H.Hmmm OEmEob (circa early 1900s) is the most widely :mmw
MMW : Mmﬁnﬁ :wﬂmwﬂwﬁmd criteria for predicting the onset of yielding in iso
metals | 25]. In 1948, Hill [30] suggested that th i iterion
could be modified to include the i bsimntiion
co effects of induced anisotropic behavi
g . . . X avior
%H :ﬁ%.:% 1sotropic metals during large plastic deformations, Wop. a general
EMM.N %dm:mwn:& mwﬁm of stress along the principal axes of anisotropy
axes) in such a material, the failure surface (or yi
: es) in st , yield surface) for
the Hill Criterion in 0y, Oy, and o; space is described by the m@:mmon“

A(02=64)" +B(03— 61)" +C(01 ~ 0,)° + 2Dt + 222, + 2Fth =1  (4.9)

where A, B, C, D, E, and F are determin i
+B,C, D, E, : ed from yield strengths in uniaxi
MM @mrmmn loading. In o&.mu to avoid failure, the left-hand Emmm of mmwwwwﬂ
9) must be <1, and failure is predicted if the left-hand side is >1. For a

uniaxial test along the 1 direction wi
ith 6,=7Y, and all
to zero equation (4.9) reduces to: s orher siresses equal

1

o BrC= (4.10)

where Y is the yield stren I I :
gth along 1 direction. Similarl iaxi
along the 2 and 3 directions give the equations FAry tniaxial tests

1 1
A+C=—; A+B=-
KNN\ +B v\ww A%HHV

where Y, and Y, are the uniaxial yield strengths along the 2 and 3 direc-

tions, respectively. The yield strengths in tension and compression are

assumed to be the same. Solving e uation (4.1 i
. .10 i
taneously for A, B, and C, we M:m_ that (10 and eduation (&.11) siml-

1 1 1
N>”l‘+l|l
M\NN me KN
1 1 1
2B=—y L
m+§ v (4.12)
j 2C= 1 L 1 1
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Similarly, for pure shear tests along the 23, 31, and 12 planes, equation
(4.9) gives: , -

=1, p=L. op= L @1
. Yo Kﬁﬂ Yi
A . | :
where Yy, Y, and Ya; are the yield strengths in shear associated with the |
12, 23, and 31 planes, respectively. | : M
The extension of the Hill Criterion to prediction of failure in an ortho-
tropic, transversely isotropic lamina was suggested by Azzi and Tsai [31]
and Tsai [32]; the resulting equation is often referred to as the Tsai-Hill
Criterion. If the 123 directions are assumed to be the principal material
axes of the transversely isotropic lamina, with the 1 direction being along
the reinforcement direction, if plane stress is assumed (05 = g=Ty; = 0),
and if Hill’s anisotropic yield strengths are replaced by the corresponding
effective lamina strehgths, then Y, = s, ¥, = Y3 = 55, and Y}, = 513, and
equation (4.9), equation (4.12), and equation (4.13) reduce to the equation
for the Tsai-Hill failure surface: w .

9 2 .2 .
o 010 c T
IM] Hnm+|wn+lwwHH A%Hb
mr mr mami

As with the Hill equation, failure is avoided if the left-hand side of 1
equation (4.14) is <1, and failure is predicted if the left-hand side is 21
The failure surface generated by this equation is an ellipse, as shownin §
figure 4.2. The ellipse shown in figure 4.2 is symmetric about the origin
because of the assumption of equal strengths in tension and compression. §
The Tsai-Hill equation can be used when tensile and compressive
strengths are different by simply using the appropriate value of s, and s;
for each quadrant of stress space. For example, if 6, is positive and 0, is §
negative, the values of 5, and s;0) would be used in equation (4.14). The §
resulting failure surface is no longer symmetric about the origin, as shown
for the case of graphite/epoxy in figure 4.3. Although such a procedure
is inconsistent with the assumptions used in formulating the original von §
Mises and Hill Criteria, it has been successfully used for some composites §
[25,32]. As shown in figure 4.3, the procedure seems to work reasonably
well for the graphite/epoxy material except for the fourth quadrant of
stress space. One way to account for different strengths in tension and
compression is to include terms that are linear in the normal stresses 0;,.
o, and G, as suggested by Hoffman [33]. :

In addition to the previously mentioned limitations of the quadratic:
interaction criteria based on the von Mises model, there is another problem.:
Since the von Mises and Hill Criteria are phenomenological theories for
the prediction of yielding in ductile metals, the equations are based o ;

B

I tests with uniaxial stresses 0; = 5" and o,
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WM.HM%MW mManm &mmmnm:nmm and the corresponding shear stresses and
at drive slip and dislocation mo i i
Brperimontal P vement in metallic crystals,
suggests that a hydrostatic state of
cause the slip and dislocation ociated withs ot
( movements that are associated with vi
@ . islo . with yield-
EM.MH.MM“ mwm Wm: OmEMmEoﬁ predicts that failure will never occur :bvmmma a
state of stress 6, = 6, = 05, and T,, = 1T,. =
. . , 12 = To3 = T3y = 0. Due to she
MMMWMMM\ rosﬂému a hydrostatic state of stress in an anisotropic Emﬁmawm
y uce shear strains'and failure. Hoffman’ i i
of its linear terms, could i ilure f S chostatie ooy, 2 virtie
predict failure for the hydrostatic stat
: : e of stress.
Eoﬂmﬁwc w: of ﬂrm..,mm theories turn out to be special cases of a more mﬁMMM
mﬁm HHMWE 5&3305 criterion, which will be discussed next °
o M o 1, Hmmwm:g <<.: E& proposed an improved and simplified version
e € sor po vSoQ.:m_ ?;ﬁm theory for anisotropic materials that had
en suggested earlier by Gol’denblat and Kopnov [35]. In the Tsai-Wu

general quadratic interaction criteria, the faj
: , the failure i X i
described by the tensor polynomial: puiace In stress space i

o Fo;+Foo;=1 | (4.15)
where the contracted notation 7, L6
ere : . ,]=1,2,..,6is used, and F, and F,
experimentally determined strength tensors of the second Nmd& moﬁwmm

rank, respectively. In order to avoid failure, the left-hand side of equation

(4.15) must be < 1, and failure is predicted when the left-hand side is >1

For the case of plane stress wi
with 6, = 6., = e -
equation (4.15) becomes s e 0, 04 =1y =0, and o, =15, = 0,

B0 + Fpo? + Fy0% + Foy + 50, +2F,010, =1 (4.16)

_M,MMMMW Mﬁmﬂﬂmmu terms in the shear m@mmm O¢ = Ty, have been dropped
by e e Ommﬂwﬂ mﬁmsmﬁr along the principal material axes is not affected
o fhe s Hmm 1 of e HM ear stress. Hrsm\ only a quadratic term in the shear
shrese. mn i ains. However, the linear terms in the normal stresses Gy =0y
mqgmwrm ENM are retained wmnm:m.m they take into account the different
bt s i wsﬁmHob mbm compression. In addition, the term 2F,,0,0, takes
ot oour interaction _omg.mms the normal stresses. With the exception

1 all the strength tensors in equation (4.16) can be expressed in terms

of the uniaxial and shear strengths using the same approach that was

tised with the Hill Criterion. For example, for the tension and compression

. . = 5.0, respectively, simulta-
heous solution of the two equations resulting from equation APM@ yields:

‘ﬁ: = Hal) and »Nn“._ S T o A%.Hﬂv
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where the numerical value of s;) is assumed to be positive as in table 4.1.
From similar uniaxial and shear tests, it can be shown that

\

1 1 01 1
meu_m%\ .MN.Hmﬁailmﬂv\\ w%lﬂ . (4.18)

T SLr
where the numerical value of s, is assumed to be positive.

In order to find the interaction parameter, F;,, it is necessary to use a
biaxial test involving both o, and o,. For example, an expression for F,
can be obtained by substituting the biaxial stress conditions ¢; = 6, = P
and o, = 0 into equation (4.16), where P is the biaxial failure stress [34].
Thus, in order to find F;, for this condition, we need to know P in addition
to the previously defined uniaxial and shear failure stresses. There is no
a priori reason that 6, must equal 6,, however. Indeed, as pointed out by
Hashin [3], F;, can have four different values, because there are four
different failure pairs o;, 0,. Wu [5,36] has suggested that in order to
determine F,, accurately, the biaxial ration B = 6,/06, must be optimized
to account for the sensitivity of F,, to experimental scatter in the applied
stresses. The optimization procedure is complicated, however, and the
reader is referred to the articles by Wu [5,36] for details. The Tsai-Wu
failure surface for graphite/epoxy shown in figure 4.3 was based on such
an optimization procedure for Fy,. In figure 4.3 the agreement with exper-
imental data seems to be much better for the Tsai-Wu failure surface than
for the others, particularly in the fourth quadrant.

More recently, Tsai and Hahn [37] have proposed the equation

(FuFp)?

mN = D)

(4.19)

which causes equation (4.16) to take on the form of a generalized von
Mises Criteron for the yielding of isotropic materials. It is also interesting
to note that equation (4.16) reduces to equation (4.14), the Tsai-Hill
Criterion, when the tensile and compressive strengths are assumed to be
equal and \

1
Eo=—— - (4.20
Y ; (.20

On the basis of the quantitative evaluation procedure used in the pre-
viously mentioned WWEE [13-23], the organizers of the exercise selected
what they considered to be the best five of the original 19 failure theories
with regard to recommended use by-designers. The predicted failure
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FIGURE 4.6

Comparison of predicted and measured biaxial failure surface for unidirectional E-glass/
epoxy laminae under combined normal stresses in directions parallel (c,) and perpendicular
A@v to the fibers. (From Soden, P.D., Kaddour, A.S., and Hinton, MLJ. Noop. Composites Science
and Technology, 64(3-4), 589-604. With permission.) :

surfaces for the five selected criteria are compared with mxwmig,m:ﬁ& test
results for unidirectional E-glass/epoxy materials under the biaxial normal
stresses o, and o, in figure 4.6 and under combined transverse normal
stresses 0, and in-plane shear stresses 1, in figure 4.7. In figure 4.6 and

figure 4.7, the notations Zinoviev, Bogetti, Tsai, Puck, and Cuntze refer to
the following five failure criteria:

o Nwﬂoﬁﬁ\ et al. [38,39] used the Maximum Stress Criterion (ie.,
equations [4.2]) to predict failure of a single lamina. Linear elas-
tic behavior was assumed up to initial failure. For laminate

failure prediction, additional features were included after first
ply failure. v ;

* Bogetti et al. [40,41] employed a three-dimensional version of the
Maximum Strain Criterion (i.e., equations 4.5 are for the two-
dimensional version only). Linear elastic behavior was assumed
up to initial failure in the normal stress-normal strain relation-
ships, but nonlinear shear stress-shear strain behavior was

assumed. Additional features including progressive lamina failure
were included for laminate analysis. ,

* Teai et al., [42,43] used the Tsai-Wu Criterion Q.m,\ equation 4.16)
and assumed linear elastic behavior up to initial ply failure. For
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ibe - , PD., K A .
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laminate failure prediction, a @Homwmmmw\m failure analysis feature
was added. .

. Puck and Schurmann [44,45] and Cuntze et al. T.S\.»d mgm.&o%mm
similar three-dimensional progressive failure theories, which are
beyond the scope of this book.

From figure 4.6 and figure PN the organizers of WTmWéMMﬂMWmMMMM
icti i d Cuntze gave the best o
that the predictions of Tsai, Puck, an ‘ ot overall agree
i i i ta [19]. Howevery, the Tsai pre
ment with available experimental da veve fons
i stenti ative in the compression
were believed to be potentially unconserv. ‘e in the compression
i . figure 4.6 where there is a lack of exp
compression quadrant of fig of experiment
predicti d to be unconservative
data. The Puck predictions appeare mservetiy fhe 1o
i ion of fi 6, but fared better overall in figure 4.7. :
sion-compression of figure 4.6, . verall In figure &7, 1e
icti iNovi d Bogetti were observed to be
el ow o ot beth £ 4.6 and figure 4.7. Finally, it was recom-
in several regions of both figure 4.6 an g . ras recon
: ine ies of Tsai, Puck, and Cuntze be u
mended that the combined theories o , . N
i failure surface, the theory
that, for a given quadrant of Em t

M_me wwoMMMmm the innermost portion of the failure .msﬁmmno in that quadrant
should be selected for the purpose of lamina design.
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The development of improved multiaxial strength criteria for compos-
ites continues to be the subject of numerous publications. For example,
Hashin [3,4] has suggested that for a given composite, each failure mode
and its contributing stresses should be identified, and that each of these
failure modes should be modeled separately by a quadratic criterion,
Tennyson et al. [48] have extended the tensor polynomial criterion to
include cubic terms. Obviously, the evaluation of the strength parameters
in such an equation is a formidable task. It was shown, however, that in
the particular case of failure in laminated tubes under internal pressure
loading, the cubic criterion is more accurate than the quadratic criterion.
Although considerable progress has been made, there is still a need for
systematic experimental verification of the various theories for a variety
of stress conditions. Finally, the theories discussed in this section are based
on the macromechanical behavior of the composite without regard for the
micromechanical behavior of fiber and matrix materials. In the next section,

%éa&gwoaogmormao&BoamymmoH predicting composite strength will
be presented. .

i

EXAMPLE 4.3

The filament wound pressure vessel described in example 2.3 is fabricated from
E-glass/epoxy having the lamina strengths listed in table 4.1, Determine the
internal pressure p, which would cause failure of the vessel according to (a) the
Maximum Stress Criterion and (b) the Tsai-Hill Criterion,

Solution. The first step in the application of both theories is to determine
the stresses along the principal material axes. From the results of example
2.3,6,=20.5p, 0, = 17.0p, and 6,, = 6.0p (all in MPa). Note that both normal

stresses are positive, so that the tensile strengths should be used in the failure
theories.

(a) For the Maximum Stress Criterion, the three possible values of p at failure are
Jound as follows:

01=20.5p = 5= 1103 MPa; therefore, p =53.8 MPa
0, =17.0p = 5;® = 27.6 MPa; therefore, p = 1.62 MPa
Op = 6.0p = 51 = 82.7 MPa; therefore, p = 13.78 MPa

Thus, the transverse tensile failure

governs, and failure occurs first at
p=1.62 MPa,

(b) For the Tsai~Hill Criterion, equation (4.14) yields

1103 11022 7 =1

on rr

ﬁggw _ (10.5p)(17.0p) + ﬁHNOE % . ﬁmbw %
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Solving for p, we find that p = 1.61 MPa. Thus, for this case, the two criteria
yield approximately the same result. This is not always true, however.

EXAMPLE 4.4 . ﬁ
Using the Maximum Strain Criterion, deterinine the uniaxial failure stress, Oy
for off-axis loading of the unidirectional lamina in figure 4.4 if the material is
AS/3501 carbon/epoxy and the angle 0 =30°.

Solution. First, the mwnmgm along the principal material axes must be found
in terms of the applied stress, 6 Upon substituting the stress transformation
(egs: [4.3]) in the lamina stress—strain equations (2.24) and (2.25), we find that

§
L= mPHAno%mISN sin” qux
€y = Fﬂmsm 0-— Va1 nOmN ®v (%
E,
and
Yo = l%sﬂmu.b 6 cos mvax

Assuming linear elastic behavior up to failure and using the stress—strain
relations in equation (4.1), the Maximum Strain Criterion (eq. [4.5]) becomes

(+)
Sy,
Oy <—s B
¥ cos?0— vy, sin? 0
s

Oy <—;
sin? 0 —vy; cos? 0

v SLT

Ox < sin® cos 0

where only the tensile strengths have been used because ¢, is positive. Using
the AS/3501 data in table 2.2 and table 4.1, we find that in order to avoid
longitudinal tensile failure

- 1448

~MPa or o,<2145MPa
(0.886)* — 0.3(0.5)

Oy <

In order to avoid transverse tensile failure,

48.3
Oy

< sMPa or oy< 205MPa
© 7 (0.5)* - 0.0195(0.866) .
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and in order to avoid shear failure,

62.1

O+ = 0.886(0.5)

MPa or o,<143MPa

Thus, according to the Maximum Strain Criterion, the mode of failure is shear, and
the applied stress at failure is 6, = 143 MPa, The reader is encouraged to check
that for compressive loading or other loading angles both the mode of failure and
the failure stress may be different. The off-axis tensile test has been used to check
the validity of the various failure criteria [27,28].

4.3 Micromechanics Models for Lamina Strength

In this section, the use of elementary mechanics of materials approaches
to micromechanical modeling of lamina strength will be described. We
should not expect such simple models for strength to be as accurate as
those for stiffness, because the strength is affected more than the stiffness
by material and geometric nonhomogeneity and the resulting local per-
turbations in the stress and strain distributions. As shown in chapter 3,
the effects of such local stress and strain perturbations on stiffness are
reduced due to the smoothing effect of integration in the effective mod-
ulus theories. On the other hand, material failure is often initiated at the
sites of such stress and strain concentrations, so the effect on strength is
much greater. For example, as shown in figure 4.8 from ref. [49], the
variability of strength in reinforcing fibers alone may be quite significant,
and statistical methods must be used for accurate analysis. In addition,
differences between tensile and compressive modes of failure make it
necessary to develop different micromechanics models for tensile
strengths and compressive strengths.

4.3.1 Longitudinal Strength

Simple micromechanics models for composite longitudinal tensile strength

can be developed from the rule of mixtures for longitudinal stress (eq. [3.19]),
and the representative stress—strain curves for fiber, matrix, and composite
materials are shown in figure 4.9(a) and figure 4.9(b). In figure 4.9(a), the
matrix failure strain, e,;,®, is assumed to be greater than the fiber failure
strain, e, which is typical for many polymer matrix composites. A model
for this case by Kelly and Davies [50] will be summarized here. Figure 4.9(b)

shows the case where the fiber failure strain is greater than the matrix-

failure strain, which is typical for ceramic matrix composites. A model based
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FIGURE 4.8
Statistical distribution of tensile strength for boron filaments. (From Weeton, J.W.,, Peters,

‘D.M., and Thomas, K.L., eds. 1987. Engineers’ Guide to Composite Materials. ASM International,

Materials Park, OH. Reprinted by permission of ASM International.)

on the one proposed by Hull [51] will be described for this case. For both
cases shown in figure 4.9, the analyses will be developed on the assump-
tions of (1) equal strengths in all fibers, (2) linear elastic behavior up to
failure, and (3) equal longitudinal strains in composite, fiber, and matrix
(recall egs: [3.22]). T ,

For the case described in figure 4.9(a), the composite must fail at a
strain level corresponding to the fiber tensile failure strain, e, = s,/ Ey.
Theoretically, if the matrix could support the full applied load after fiber
failure, the strain could be increased to the matrix failure strain. For all
practical purposes, however, fiber failure means composite failure Thus,
when the fiber longitudinal stress reaches the fiber tensile strength, sy,
the matrix longitudinal stress reaches a value s,,, ) = E,,e,®, the composite
longitudinal stress reaches the composite tensile strength, s;®, and equa-
tion (3.19) becomes

5. = 80 + 800 0 = 55 0¢ + 8 P (1= 0¢) (4.21)

However, m@ﬁmmob (4.21) only has a Emmabm if the fiber volume fraction

is sufficiently large. As shown in figure 4.9(a) and figure 4.10(a), if the

fiber volume fraction v < V., the composite strength from equation (4.21)
is less than the matrix strength, where

St = 8™

L (4.22)

Vferit =
mm?v — S
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Wm?..mmm:w.mzé stress-strain curves for typical fiber, matrix, and composite materials, (a)
Matrix failure strain greater than fiber failure strain; (b) fiber failure strain greater than

‘matrix failure strain.

.- Once the mvmwm fail in composites having v < Vs, however, the remaining
cross-sectional area of matrix that can support the load is such that

mr?v = mBH?V\CB = mEH?vAH - Cmv A%.M@V

‘As shown in figure 4.10(a), equation (4.21) and equation (4.23) intersect at

HE +)

Vemin = Sm — Smf1
in =
5™ — 5,0 45,

(4.24)
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FIGURE 4.10 o - )
Variation of composite longitudinal tensile strength with fiber volume fraction for com

posite having: (a) Matrix failure strain greater than fiber failure strain; (b) fiber failure strain
greater than matrix failure strain.

For practical composites, however, vy, is generally less than 5%. Since
Vemin < Vg POth Of these values must be much smaller .gms gw mﬂﬁm_
fiber volume fraction of the composite, and the composite Hosmncg.sm_
strength for the case of figure 4.9(a) would therefore be given by equation
(4.21). , o o .

For the case described in figure 4.9(b), composite failure may be .Qmm:mm
in two ways, depending on whether we choose to use m.:uma failure or
matrix failure as the criterion. If matrix failure is the criterion, noHEuom:.a
failure will occur at the strain level corresponding to the matrix ,ﬁm:mw_m
failure strain, e,,(. Thus, when the matrix stress reaches the matrix tensile
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strength, s,,®), the fiber stress reaches, the value s, = Ege,,®, the
composite stress reaches the composite strength, s, ), and equation (3.19)
becomes .

.mH.A+V = mmBH?VCm + m:&,ai AH - \Cmv : A&?va

As with equation (4.21), this equation only has a physical meaning for
a certain range of fiber volume fractions. As shown in figure 4.9(b), if the
fibers could still withstand additional loading after matrix failure, the
fiber strain may reach the fiber failure strain, eq™. Due to the matrix failure,
however, the 33&3?@ load-bearing area of fibers is such that the com-
posite strength is now given by ‘

5. = 54y, ‘ (4.26)
As shown in figure 4.10(b), and m@ﬁmmobm (4.25) and (4.26) intersect at

mnﬁﬁi

— 81 + ™

Vfmin = 4.27
fm mmu?v A v

Thus, for vy < Vg, the composite strength would be given by equation

(4.25), and for V5> Vs the composite strength would be given by equation
(4.26). For practical composites, however, Vgmin 18 much smaller than the
actual fiber volume fraction, so. the composite longitudinal strength for
the case of figure 4.9(b) would be given by equation (4.26). :
. Of the three assumptions made at the vm%gmzm of this section, the
weakest one is that all fibers in the composite have the same strength,
sg™. As shown in figure 4.8, fiber strength is not uniform, and some fibers
fail at stresses well below the ultimate composite strength. In addition,
fiber strength decreases with increasing fiber length due to the increased
probability of imperfections in the fiber. Various statistical models have
been proposed for the sequence of events beginning with the first fiber
failure and culminating with overall composite failure [52,53]. Such anal-
yses are beyond the scope of this book, however, and the reader is referred
to the article by Rosen [54] for a review of the various models.

While the assumption regarding linear elastic behavior up to failure is
not valid for many ductile matrix materials, the errors generated by this
assumption are believed to be small. For example, the contribution of the

- matrix strength to the composite strength in equation (4.21) is small, and

the matrix strength does not appear at all in equation (4.26). If the matrix
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has yielded before or during fiber failure, the term s, in equation (4.21),
equation (4.22), and equation (4.24) can be replaced by the matrix yield
strength, s,. Excellent agreement has been reported between equation
(4.21) modified in this way, and mx@mégm,ﬁ& results for a tungsten fiber/
copper matrix system over a wide range of fiber volume fractions [55].

It has long been assumed that the models for longitudinal tensile

.strength cannot be used for longitudinal compressive strength, because

the modes of failure are different. This assumption has been supported
by observed &mm_..mbnmm in measured tensile and compressive mqmsm,%m\
as shown in table 4.1; Accurate measurement of the intrinsic compressive
strength has proved to be very difficult, however, and test results to date
typically depend on specimen geometry and/or test method. Whitney
[56] has pointed out that the failure mode is the key issue because different
compression test methods may produce different failure modes. Whether
the failure mode in the test is the same as the failure mode in the composite
structure being designed is another question. There appears to be three
basic longitudinal compression failure modes, which are shown schemat-
ically in figure 4.11:

1. Microbuckling of fibers in either shear or extensional mode
2. Transverse tensile rupture due to Poisson strains
3. Shear failure of fibers without buckling

Variations on these basic mechanisms have also been observed. For
mxmBH&m\ the shear mode of fiber microbuckling (fig. 4.11) often leads to

“shear crippling” due to"kink band formation [51,57]. Although these
problems make it difficult to assess the accuracy of various micromechanics
models for compressive strength, several representative models will be
summarized. ,

Mechanics of materials models for local buckling or microbuckling
of fibers in the matrix have been developed by Rosen [58] and Schuerch
[59]. It is assumed- that fiber buckling occurs in either the extensional
mode, where fibers buckle in an out-of-phase pattern and the matrix is
extended or compressed, or the shear mode, where fibers buckle in an
in-phase pattern and the matrix is sheared (fig. 4.11). Two-dimensional
models were used, with the fibers represented as plates separated by
matrix blocks. By the energy method, the work done by external forces
during deformation, W, is equal to the noﬁ.mm@os&sm change in the
strain energy of the fibers, D:r plus the change in the strain energy of
the matrix, AU,

AU+ AU =W (4.28)
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whereas the buckling stress for the shear, or in-phase mode, was found
to be

510 =G /(1=¢) _ (4.30)

The extensional mode turns out to be important only for very Hos\. fiber
volume fractions, where it predicts the lowest ?.Hw:ﬁm stress and Hm.boﬁ
important for practical composites (fig. 4.12). S:,Em. the mﬁoma mode gives
the lowest buckling stress over the range of mwmoﬁnﬂ fiber volume frac-
tions, it overpredicts considerably by comparison s:? test Hmmﬂ.p:m. Oﬂm
way to reduce the buckling stress predicted by equation ﬁ..wov is to mem
into account the possible inelastic deformation of the matrix material by
using a reduced value of the matrix shear modulus, G, but Wﬁm&oﬁo:m
still tend to be too high. The nonlinear model of Hahn and Williams [57]
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includes the effects of initial fiber curvature and material nonlinearity,
and reasonable predictions of compressive strength for graphite/ epoxy
were reported. Greszczuk [60] has shown that if the matrix shear modulus
is high enough, the mode of failure shifts from microbuckling to compres-
sive failure of the reinforcement. Since advanced composites tend to have
high modulus matrix materials, this may explain why attempts to apply
microbuckling failure theories to these materials have not succeeded. For
such cases Greszczuk recommended that equation (4.21) be used with s,
in place of 8, ™. It should be added, however, that this conclusion was
based on tests of laminates consisting of aluminum strips bonded together
with urethane or epoxy resins. The difficulty in measurement of fiber
compressive strength, s;©), may preclude the use of this model for fiber
composites. . v

A model for transverse tensile rupture due to Poisson strains (fig. 4.11)
has been presented by Agarwal and Broutman [61]. The model is based
on the application of the Maximum Strain Criterion to the tensile trans-
verse Poisson strain under longitudinal compressive loading. Under the
applied longitudinal stress, o,, the resulting transverse Poisson strain is

s o.H

€y = |<HNNH, ==V rﬁl ) Qmw‘.—v
1 .

Thus, when the Poisson strain ¢, = e, the corresponding longitudinal
stress is 0, = 50, and the compressive strength is

o _ Eier®™
V12

Sy,

(4.32)

As shown in figure 4.12, equation (4.32) shows better agreement with
measured compressive strengths of glass/ epoxy than the microbuckling
theories do [61]. :

Failure of the fibers in direct shear due to the maximum shear stress
Tnax = 5.7/ 2 at an angle of 45° to the loading axis is a third possible failure
mode under longitudinal compression (fig. 4.11). Hull [51] reports good
agreement with experimental data for graphite/epoxy when the maxi-

mum shear stress is given by a rule of mixtures,

so that the compressive
strength is

mrTv = Nﬁmﬂmdm + mESCSV A%wmv

s}ﬁmmﬁmsama_s.mamwrmmrmmw mﬁ,mbmﬁrmo:#vmum:agmax\ respectively.
The direct shear mode of failire for oramhite /ommoe oo oo e
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several other publications as well [62,63]. For example, Crasto and Kim
[63] have used a novel minisandwich beam to attain shear failure of the
fibers in the composite facing without buckling — the resulting compres-
sive strengths are Bﬂnr higher than those obtained with conventional

compression testing. |

A number of other factors have been shown to affect longitudinal com-
pressive strength, and this continues to be a very active research area. For
example, although the fiber/matrix interfacial strength does not appear
in any of the equations presented here, it would appear ‘to'be very impor-
tant in the case of transverse tensile rupture due to Poisson strains. The
experiments of Madhukar and Drzal [64] have shown that the compres-
sive strength of graphite/epoxy is strongly related to the interfacial shear
strength, and that fiber surface treatments that improve the interfacial

shear strength also improve the compressive strength. -

4.3.2 Transverse Strength

Since failure of the lamina under transverse ﬁmbwwoﬁvoggm at such low
stresses (table 4.1), this mode of failure is generally the first to occur. In
laminates, the so-called “first ply failure” is generally due to transverse
tension. The low value of the transverse tensile strength, s, and the
corresponding transverse failure strain, e;®, are due to strain' concentra-
tion in the matrix around the fibers, as-shown in equation (4,34):

ent®™ _ ent”

F F

er™ = (4.34)

where e, = e, ), the matrix tensile failure strain (matrix is assumed to
be isotropic) and F is the strain concentration factor (F > 1).

Thus, the strain concentration causes the composite transverse tensile
failure strain to be less than the matrix failure strain. The strain concen-
tration factor is more appropriate than the stress concentration factor here
because the stress—strain relationships for transverse loading are often
nonlinear, reflecting the nonlinear behavior of many matrix materials.
However, if linear behavior to failure.can be assumed, the corresponding

transverse strength is

o () :
o) = mwam _ (4.35)

Tt is assumed here that the fiber is perfectly bonded to the matrix, so in
composites having poor interfacial strength, the composite transverse
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strength would be less than that predicted by equation (4.35). For example
de .Wow and Peijs [65] conducted experiments and incorporated an 58%
facial model in a finite element micromechanics model to show that
m_ﬁrocmr the fiber/matrix interface does not affect the transverse BOQ:Em\
it has a significant effect on the transverse strength. More specifically, wm
was found that the transverse strength increases in proportion to mrm
interfacial bond strength when the interfacial bond failure is the dominant
mode of failure, but this proportionality does not hold when matrix failure
dominates. , v

A mechanics’ of materials approximation for the strain concentration
factor has been developed by Kies [66}, who considered an element in a
transversely loaded lamina, as shown in figure 4.13(a). For the shaded

. Fiber _~— Matrix
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p— |
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FIGURE 4.13

(@) _Smorma.nnm of materials model for strain concentration under transverse loading
(b) Mechanics of materials model for strain concentration under in-plane shear loading




158 Principles of OoSﬁom&,m Material Mechanics

strip shown in figure 4.13(a), the total &owmmmos is found by summing
the deformations in the fiber and matrix

Bep = Bra + Bup = 58 = A€y + (5~ )Emo . (4.36)

where the symbols are defined in section 3.2.2 and figure 4.13(a). For the
series arrangement of fiber and matrix materials in the shaded strip, it is
assumed that the stresses in composite, matrix, and fiber are equal and
that each material satisfies Hooke’s law (egs. [3.34]), as in section 3.2.2.
Equation (4.36) can then be written as

g o gle 4.37)

mM& = E
f2

which can be rearranged to give the expression for the strain concentration
factor o

,Tm|aia - 1 (4.38)
c2

— |B] ”—n 1
S

where the subscript “2” for matrix properties has been dropped due to
the assumption of isotropy. Recall from equation (3.10) and equation
(3.12) that the ratio of fiber diameter to fiber spacing, d/s, is related to the
fiber volume fraction, v, For example, from substitution of the properties
listed in equations (3.29) in equation (3.12) and equation (4.38), the strain
concentration factor for a triangular array of E-glass fibers in an epoxy
matrix (Vg = 0.45) is F = 3.00. This value is in good agreement with exper-
imentally determined values based on the ratio of matrix failure strain to
transverse composite failure strain or the ratio of matrix yield strain to
transverse composite yield strain [67]. A slightly higher value is predicted
by a finite difference solution of the theory of elasticity model [68].

It is important to note that according to equation (4.38), the strain

concentration factor increases with increasing v; and increasing Eg,. For -

example, the variation of F with fiber volume fraction is shown in
figure 4.14 for E, /E;, << 1 [69]. The sharp rise in F for v, > 0.6 is particularly
noteworthy. Thus, as we strive to improve the composite longitudinal
properties by using higher fiber volume fractions and higher modulus
fibers, we pay the penalty of lower composite transverse strength!

The same method outlined above can be used to estimate the transverse
compressive strength, s;O), by replacing the tensile strains or strengths
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Variation of strain concentration factor F or E. with fi . ,
s with fiber volume fraction. Valid for F when
E./Ep « 1 and for F, when Guw/Griy « 1. (From Chamis, C.C 1974, In Broutman, L.J. ed.

Composite Materials, vol. 1 i
o nﬂ o als, vol. 5, Fracture and Fatigue, Chapter 3. Academic Press, New York. With

with the corresponding compressive strains or strengths. Alternativel
the corresponding matrix strength can be used as an upper bound on mﬂv\m\
composite strength, but the actual composite strength would be lower
because of fiber/ matrix_interfacial bond failure, strain concentrations
mBEﬁ fibers and/or voids, or longitudinal fiber splitting [70].

While mc_u.mﬁﬂaob of equation (4.38) in equation (4.35) shows that s
Qw%..mmmmm with .EQmmmﬁ.bm vy, there is some evidence in the literature @Mﬁ
Sr” Increases slightly with increasing v;. For example, de Kok and Meijer
[71] studied the effect of fiber volume fraction on the transverse ms.msmuwr
of glass/ epoxy using experiments and finite element micromechanical
models. Experiments and a finite element micromechanical model based
on the von Mises failure criterion for the epoxy matrix showed that the
qmsme,mamm strength of the composite increased slightly with increasing
Euﬂ. volume fraction (fig. 4.15), but since the transverse modulus, E,, also
Increases with increasing v;, the transverse failure strain Qm@mmmm% \S:W
increasing v (fig. 4.16). According to the von Mises yield criterion, yield-

:mm occurs in the matrix when the equivalent axial stress or von Mises
stress ;
NI

H _
0 = V(0101 +(0 =0, + (0.~ 0, (4.39)
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reaches the uniaxial yield strength of the matrix material, where Oy O,
125 and o, are the three principal stresses in the matrix. The corresponding
| : predicted transverse strength decreased with increasing ve when only the
100 - , M ultimate principal stress in the matrix was considered in the microme-
g chanics model. In addition, the predicted transver
’5 - ~=~""yon Mises stress

se strength based on
the von Mises criterion was significantly higher than that predicted by
the ultimate principal stress model (fig. 4.15). So it appears that the pre-
dicted transverse strength based on the 1-D stress model described in
equation (4.34) to equation (4.38) is conservative by comparison with the
corresponding prediction based on the actual triaxial state of stress and
the von Mises failure criterion. ,
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4.3.3 In-Plane Shear Strength

The in-plane shear strength, s, can also be estimated using the procedure
outlined in the previous sect

Mob.moHEmmrmmmm&mgmimroésg
figure 4.13(b), the expression analogous to equation (4.36) for the in-plane
%mwmﬂ.&ﬁﬁ . . , .

URE 4.15 . . . .
.M.“Mu.b%mamm strength of E-glass/epoxy composite. mAm vm ?Mnﬁoaw OM mwmﬁmﬂuﬁmﬂm M“W_nﬁwﬁm“w%w
i i cte
red in tension (0) and three point vmzmwzm *), and predicts . quart
wﬁwmmvsmwm hexagonal (dotted lines) fiber vmnw_bm,ao&&m\ using a von memm Q:Q.MM WMM
an ultimate stress criterion. (From de Kok, ] M.M. and Meijer, H.E.F. 1999. Compos

i C .
A: Applied Science and Manufacturing, 30, 905-916. With permission.) _ §Yc12 = &%E + Am - &X\BHN __— AA.ADV
_. 5 and the in-plane shear strain concentration factor is
< , y : 1.
2 F="Tm2 441) |
5 Yer 4 Gra g1 4 _; |
m 1.0 A ) S| QDN |
m M von Mises stress N ; i
F N { w ‘
A G where o ‘
w. 0.5 - RN ¥mi2= average matrix in-plane shear strain
§ ~a Yaz= average composite in-plane shear strain
B Yr2 = average fiber in-plane shear strain
Principal stress .-+ G, = fiber in-plane shear modulus
T T . <
0.0 A 0 50 60 70 80

. ; , . Note that this equation has the same form as m@cm;nob (4.38). Thus,
Fiber volume fraction (%) . ¢

figure 4.14 also gives the variation of F, with v, when G,/Gyy, << 1, and the
previous comments regarding the effect of v; on F are also valid for F,. The
other necessary equations are obtained by replacing the tensile strains or
strengths in equation (4.34) and equation (4.35) with the corresponding in-
plane shear strains or strengths. Again, the matrix shear strength can be
used as an upper bound on the composite shear strength, as the actual

URE 4.16 v . . . -
Mmmzm/\mamm failure strain of E-glass/epoxy composite vmm a M:bo.ﬁ%ﬂ o% WWM M%MMM.“MWM%M
i i icted wi
sured in tension (0) and three point bending (e), an pre . uar
MWMWMSQ hexagonal (dotted lines) fiber packing models, using a von Zrmmm QﬁmMMM WMM
an ultimate stress criterion. (From de Kok, JM.M. mwﬁ zﬂ_ma\ mmm 1999. Compo.
A+ Annlied Science and Manufacturing. 30, 905-916. With permission.)
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¥

composite strength would be lower for the same reasons mentioned in the
previous section.. : | .

'

4.3.4 Multiaxial Strength

Section 4.3.1 to section 4.3.3 have summarized micromechanical models
for prediction of the five basic unidirectional lamina strengths, and most
of the micromechanical strength modeling efforts have been focused in
these areas. However, micromechanical models have also been used to
evaluate multiaxial failure criteria such as those described in section 4.2.
For example, Zhu, Sankar, and Marrey [72] developed finite element
unit cell micromechanics models and used them to evaluate the maxi-
mum stress and Tsai~Wu criteria as well as the combination of Tsai-Wu
and maximum stress criteria for several biaxial loading conditions on a
unidirectional composite. The approach was referred to as a direct micro-
mechanics method (DMM). Two types of failure criteria for the fiber and
matrix materials were employed in the DMM for predicting failure in
each element of the model: (a) maximum principal stress criterion and
(b) von Mises criterion, while fiber/matrix interfacial failure at the ele-
ment level was modeled using the maximum tensile interfacial stress
and the maximum interfacial shear stress. Failure envelopes were gen-
erated using the DMM and compared with the corresponding failure
envelopes that were generated using the applied macromechanical
stresses in the Tsai-Wu criterion, the Maximum Stress Criterion, the
Maximum Strain Criterion, and the combined Tsai-Wu and maximum
stress criteria. Figure 4.17 shows a comparison of failure envelopes from
DMM with those from the Tsai-Wu and maximum stress and maximum
strain criteria. For the case shown in figure 4.17, the DMM prediction
agrees best with the Tsai-Wu prediction. From all the different cases
examined, it was found that the combination of the Tsai-Wu and max-
imum stress criteria led to the most conservative failure envelope in the
biaxial stress space, and that the failure criteria for the matrix and the
fiber /matrix interface played dominant roles in the failure criteria for
the composite. For off-axis tensile test models, the Tsai-Wu criterion
showed the best agreement with the DMM approach for fiber orienta-
tions in the range 0 < 6 < 30°, the Maximum Stress Criterion gave the
best agreement in the range 60° < 6 < 90°, and the criterion that gave
the lowest strength prediction of the two criteria worked best in the
range 30° < 6 < 60°. . ,
In conclusion, only the basics of micromechanical strength prediction
have been discussed here. More detailed micromechanics analyses of
strength under other types of loading such as interlaminar shear and
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under biaxial loading. (From Zhu, H., Sankar. B V.
Matrite 5. mooding (Fron vmaammmo:.v 1, B.V., and Marrey, R.V. 1998. Journal of Composite

flexure as well as micromechanical effects of voids and residual stresses
on strength have been summarized by Chamis [69].

EXAMPLE 4.5

Determine the longitudinal and transverse ]

. longi tensile strengths of the carbon/epox
material ammn.xwmm in example 3.1, example 3.2, and example 3.4 if the wmﬂmmw
strengths of fiber and matrix materials are 2413 and 103 MPa, respectively,

Solution. The fiber tensile failure strain is

sy 24
1o _ 2418000

eq(H) =
i Ex 220

The matrix tensile failure strain is

(+)
m:._?rv - Sm - 0.103 -
s =00
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i in figu in level of ey™
i ils as described in figure 4.9(a) at a strain |
Mﬁﬂw&rm@ﬂ“ﬂm mw.ummmm and v,= 0482, m&ﬁg example 3.1, the composite
Hlozw:zmgm_ tensile strength is given by equation (4.21):

|

mm.T'v = mmﬁ.v,cm + SmfiVm

m = MDA._.V.CM + m:—mﬁﬁ+vda '

| =2413(0.506) + 3450(0.011)(0:482)

_ [

- =1239 MPa (180,000 psi)
Note that the matrix contribution here is only Hm.m MPa out of 1239 MPa or
about 1.5%.

The strain concentration factor for the calculation of the transverse tensile strength
is given by the equation (4.38):

/ F= 1 = 1 =252
“d[Ew_],, 00127]345 pr
5| B 0.0158| 13.79

il
If linear elastic behavior to failure can be assumed, the transverse tensile
strength is given by equation (4.35).

- ExSn® _ 565(108) _ (c on s (9703 psi)
SUUSTEF  3.45(2.52)

4.4 w_..o_u_ngm

1. An orthotropic lamina has the following properties:

E,=160 GPa s, = 1800 MPa
E,=10GPa 0 = 1400 MPa
v, =03 57 = 40MPa
G, =7 GPa s;0) = 230 MPa
sx = 100 MPa

Construct the failure surfaces in the 6, — G, stress space MWVW\WM

material according to the (a) me:ﬁsuﬁ mﬁm.mm ﬂH,:mEoP (

imum Strain Criterion, and (c) Tsai-Hill Criterion. .
2. Using the material properties b.ou.b problem 1 and mmmswmmw QM Mm

the stiffnesses are the same in tension and compression,
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hmo MPa

i I,

2y 50 MPa
e
100 MPa

30°

FIGURE 4.18 ,
Stresses acting on element of balanced orthotropic lamina.

the allowable off-axis shear stress, Ty, at 0= 45° (refer to fig. 4.5)
according to the (1) Maximum Stress Criterion, (b) Maximum
Strain Criterion, and (c) Tsai-Hill Criterion. Compare and discuss
the results and check both positive and negative values of Ty

An element of a balanced orthotropic lamina is under the state of
stress shown in figure 4.18. The properties of the lamina are:
i ¢

E=E=70GPa  §®=g0) 1% = 5, = 560 MPa
Vi =Vy =025 Spr =25 MPa
Gi,=5GPa -

Using the Maximum Strain Criterion, determine whether or not
failure will occur.

If some of the compliances and strengths of an orthotropic lamina
satisfy certain conditions, the Maximum Strain Criterion failure
surface will intercept the horizontal axis at a point like (o, 0)

instead of at (5,0, 0) as shown in figure 4.19. Express these con-
ditions in terms of an.inequality.

An element of an orthotropic lamina having the properties given
in problem 1 is subjected to an off-axis tensile test, as shown in
figure 4.4. Using the Maximum Strain Criterion, determine the
values of o, at failure and the mode of failure for each of the
following values of the angle 6: (z) 2°, (b) 30°, (c) 75°.

Repeat problem 5 for an off-axis compression test,

A material having the properties given in problem 1 is subjected
to a biaxial tension test, and the biaxial failure stress is found to
be 6; = 6, = 35 MPa. Determine the Tsai-Wu interaction param-
eter F;, and then use the Tsai— Wit Critariom o Aos ... Lord
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Example showing that intercepts for Maximum Strain Crit

always the same as those for Maximum Stress Criterion.

10.

11.

12.

or not failure will occur for the stress condition ¢; = 100 MPa,
6, = -50 MPa, 1,, = 90 MPa. v | .
The Tsai-Wu interaction parameter F,, is Qm%ﬁ.ﬁﬂm& from gmx:.&
failure stress data. One way to generate a biaxial state of stress is
by using a uniaxial 45° off-axis tension test. Derive the expression
for F,, based on such a test, assuming that all the uniaxial and
shear strengths are known.

Determine the longitudinal tensile strength of the hybrid carbon/
aramid/epoxy composite described in problem 3 of chapter 3 and
figure 3.19.

Compare and discuss the estimated longitudinal nog_oamm.mr\m
strengths of Scotchply 1002 E-glass/epoxy _um.mm& on (a) .b_umH
microbuckling and (b) transverse tensile rupture. Assume ESWM
elastic behavior to failure. For the epoxy matrix, assume E = 3.
GPa, v,, = 0.35. ) A

i ina i j to an off-axis she
An element of an orthotropic lamina is m&_u_mnﬁm m of s she
stress, T,,, as shown in figure 4.5(a). Using the HmmT.EE Oﬁﬂmﬁos
and wmmﬂ.mabm that the lamina strengths are the same in tension and
compression, develop an equation relating the mroimEm <&.zm of
T,, to the lamina strengths, s;, s, and sy, and the fiber orientation 6.

xy

A uniaxial off-axis tensile test is conducted as .mToSB in bmwﬁm NE
(a) Using the Tsai-Hill criterion and assuming wﬁrwﬁ Mwm WB_MM
strengths are the same in tension and compression, deve m%

equation relating the applied stress, ,, to the lamina strengths s,

erion failure surface are not
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13. Using the Maximum Strain criterion a

14,

S

1.

. Daniel, LM. and Ishai, O. 1994, Engineer
- Oxford University Press, New York.

. Hashin, Z. 1983. Analysis of composite materials —
- Applied Méchanics, 50, 481-505.

- Hashin, Z. 1980. Failure criteria foru

. Wu, EM. 1974, Phenomenolo

- Sendeckyj, G.P. 1972. A brief surve

sy and s;, and the lamina orientation, 6, and (b) using the result
from part (a), for a unidirectional composite having strengths
$1.= 1500 MPa, s; = 100 MPa, spr = 70 MPa, and fiber orientation
0 = 60°, determine whether or not an applied stress o, = 200 MPa
would cause failure according to the Tsai-Hill criterion.

nd micromechanics, set up
the equations for predicting the averaged isotropic strength of a

randomly oriented continuous fiber composite. Your answer
should be expressed in terms of the appropriate fiber and matrix
properties and volume fractions, the variable fiber orientation
angle 6, and the appropriate strengths of the corresponding uni-
directional lamina that consists of the same fiber and matrix mate-
rials and volume fractions. In the micromechanics analysis,
assume that the matrix failure strain is greater than the fiber
failure strain (i.e., that the materials behave as shown in

fig. 4.9[a]). Define all parameters used, but do not try to solve the
equation.

Assuming that the failure mode for longitudinal compression of
unidirectional E-glass/ epoxy with v; = 0.6 is transverse tensile
rupture due to Poisson strains, (a) estimate the longitudinal com-
pressive strength of this material, and (b) if the volume fraction

of the material in part (a) is varied, what effect would this have
on the longitudinal compressive strength?
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Analysis of Lamina Hygrothermal Behavior

S

5.1 Introduction

The analytical models for composite mechanical behavior presented up
to now have been based on the assumption of constant environmental
conditions. Composites are usually subjected to changing environmental
conditions during both initial fabrication and final use, however, and it
is important to be able to include the effects of such changes in the
analysis. Among the many environmental conditions that may influence
composite mechanical behavior, changes in temperature and moisture
content are singled out for discussion here because of the particularly
important effects they have on polymer matrix materials and those prop-
erties of polymer composites that are matrix dominated. Effects of tem-
perature are usually referred to as “thermal” effects, whereas those of
moisture are often referred to as “hygroscopic” effects. The word “hygro-
thermal” has evolved as a way of describing the combined effects of
temperature and moisture.

There are two principal effects of changes in the hygrothermal environ-
ment on mechanical behavior of polymer composites:

L. Matrix-dominated properties such as stiffness and strength
under transverse, off-axis, or shear loading are altered. Increased
temperature causes a gradual softening of the polymer matrix

. material up to a point. If the temperature is increased beyond
the so-called “glass transition” region (indicating a transition
from glassy behavior to rubbery behavior), however, the poly-
mer becomes too soft for use as a structural material (fig. 5.1).
Plasticization of the polymer by absorbed moisture causes a

- reduction in the glass transition temperature, T,, and a corre-
sponding degradation of composite properties. As shown in
figure 5.1, the glass transition temperature of the dry material is
characterized by Ty, (ie., the “dry” T,), and when the material
is fully saturated with moisture content M,,, it is characterized
by T, (the “wet” T,). Saturation moisture contents of 3% to 4%
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Glassy region Transition region

Increasing
moisture content

Stiffness

Rubbery region

Temperature

FIGURE 5.1 )

Variation of stiffness with temperature for a typical @%an showing the glass transition

temperature, T, and the effect of absorbed moisture on T,. Note: Ty = “dry” Ty and Ty, =
“wet” T,
8

by weight, and moisture-induced reductions in T, on the order
of 20% are typical for polymer matrix materials, as shown by the
numerical data in table 5.1. Note also in table 5.1 that the maxi-
mum service temperature is typically well below the T, as prop-
erties such as stiffness become undesirably sensitive to
temperature if the service temperature gets too close to the glass
transition region.

2. Hygrothermal expansions or contractions change the stress and
strain distributions in the composite. Increased temperature and/
or moisture content causes swelling of the polymer matrix,
whereas reduced temperature and/or moisture content causes
contraction. Since the fibers are typically not affected as much by
hygrothermal conditions, the swelling or contraction of the matrix
is resisted by the fibers and residual stresses develop in the com-
posite. A similar effect at the laminate level is due to differential
expansions or contractions of constituent laminae. .

This chapter is therefore concerned with analytical modeling of hygro-

thermal degradation of matrix-dominated properties and modification of ¢
the lamina stress—strain relationships to include hygrothermal effects. §
Micromechanical prediction of mechanical and thermophysical properties
will also be discussed because of its importance in the analytical modeling §

of both effects.
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TABLE 5.1 |
Hygrothermal Properties for Various Polymer Matrix Materials

Saturation i
Moisture ) 7%»“““5

. Content, M,, T, (Dry) T, (Wef) T
Material Supplier (Weight %) me.. (O] me (01 Q%%JMWMWMM

wam__wm_qu%m Hexcel | 41 550(288) 400(204) 400(204)
mwwmw 85517  Hexcel 3.1 315(157) 240(116) 200(93)
mwdmw 8552 Hexcel -  — 392(200) 309(154) 250(121)
Mwwﬂwwm?mk» Hexcel ~ 400(204) — —
N@H M% Cytec 44 . 640(338) 509(265) 550(208)
mmew 934 Cytec — 381(194) 320(160) 350(177)
\%ﬁ% %m | Cytec 2.8 581(305) «  487(253) m,%ﬁ%v
wm%_wwwm@ Ashland | 15 250(120) — 220(105)
o0 G

oyetnemide poe e =
,wmmwmwmmrﬁ, ,/wmax 05 | 289(143) - 356(180)
ketone

—— . B

5.2 Hygrothermal Degradation of .E.Oﬁmnzmm

As .mﬁamdnm of hygrothermal degradation of properties, consider the data
& wBSBEm et al. [1], who tested graphite/ epoxy composites and their
€poxy matrix materials under various hygrothermal condition

m.ﬂmE.m 5.2 shows the stress—strain curves for a typical epoxy matrix Bmﬁm.
rial under the various combinations of temperature and absorbed ESMH

- ture. The corresponding stress—strain curves for the graphite/epoxy

Mméuoﬂwm under transverse loading are shown in figure 5.3. Note that
! mr:,:@o%m T%WSEQB& conditions cause substantial reductions of
oth strength and stiffness in both cases, with the so-called “hot-wet”

- conditions (combined high temperature and high moisture content) gen-

erating the most severe degradation. Similar degradation was observed

- inthe case of in-plane shear loading of the composite since the behavior

18 matrix dominated in both cases. On the other hand fhe rareocm 25
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10 |

+250° dry I
L 800° dr
8 grr dry ; Y
) RT wet
W O6F 3501-5 neat resin
L.mw 250° dry
2 200° wet
& 4+
_ 250° wet Wet = 5.6% wt, gain
2| 300° wet
€ =24%
1 ! I 1 1 i 1 . J

0 1 2 3 4 5 6 7
‘ Strain, %’ .

FIGURE 5.2 , :
Stress—strain curves for 3501~5 epoxy resin at different temperatures and moisture contents.

" (From Browning, C.E., Husman, G.E., and Whitney, J.M. 1977. Composite Materials: Testing

and Design: Fourth Conference, ASTM STP 617, pp. 481-496. American Society for Testing and
Materials, Philadelphia, PA. Copyright, ASTM. Reprinted with permission.)-

stress—-strain curves for the composite under longitudinal loading
showed little effect because longitudinal strength and stiffness are fiber
dominated.

Another example of the hygrothermal sensitivity of matrix-dominated
composite properties are the data of Gibson et al. [2], who used a vibrating
beam method to measure the flexural moduli of several E-glass/polyester
sheet-molding compounds after soaking at various times in a water bath.
Table 5.2 gives a description of the materials, figure 5.4 shows the percent
weight gain due to moisture pickup, and figure 5.5 shows the variation
in modulus with soaking time. Composites having some continuous fibers
and high fiber contents absorbed little moisture and showed negligible
change in modulus with soaking time. On the other hand, composites
having matrix-dominated behavior (those with chopped fibers only and
low fiber contents) exhibited the most moisture pickup and the greatest
reduction in modulus. ,

Considerable insight into the physics of temperature and moisture dis-
tribution in a material is gained from the analysis of Shen and Springer
[3], who considered the 1-D distribution of temperature, T, and moisture
concentration, ¢, in a plate of thickness, k, which is suddenly exposed on
both sides to an environment of temperature, T,, and moisture concentra-
tion, c, (fig. 5.6). The temperature and moisture concentration are assumed
to-vary only through the thickness along the z direction and the initial

- 3
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Wet 75% R.H. = 1.05% wt, gain

9 ﬁ Wet 75% R.H. = 1.60% wt, gain
R.T, dry
m -
AS/3501-5 o
250° dr
7k (90)g y
.C\.n.. 63%
m -
300° dry
w 5F RL75
e
g
g
250° 75%
31
0,
N RT. 95%
250°95%
1 300° 75%
300° 95%
o ] 1 ]

1 1
0 02 04 06 08 1.0
' Strain, %

FIGURE 5.3

mﬂn. , . , ;,

&WmMWm MWH“ MMHMMMH.MW >w\ mmo.ﬂ.m graphite/epoxy composite under transverse loading at
. and moisture contents. (From mnos\a:@ C.E., Husman, G.E

Whitney, .M. 1977. Composite Materials: Testing and Design: Fourth Conference, >mq.m<~ m.Ew Mww_

pp. 481-496. American Society for Testin d i i i
RETM. Repie oo vaBmmeos.v g and Materials, Philadelphia, PA. Copyright,

TABLE 5.2

Description of Composite Materials for Figure 5.4 and Figure 5.5

Weight of Percentages of Constituents

Chopped Continuous P i
. ¢ olyester Resin
Material E-Glass Fibers E-Glass Fibers mm:mam\ etc. ’
PPG SMC-R25° 25 0
PPG SMC-R65 , 65 0 Mm
PPG XMC-3 ¥
OCF SMC-R25> Ww 078 \ﬁwa patters) Wm
O
CF C20/R30 30 20 (aligned) ) 50

Mwmmzcmmngnmm by PPG Industries, Fiber Glass Division, Pittsburgh, PA.
anufactured by Owens-Corning Fiberglas Corporation, Toledo, OH,

Source: From Gibson, RE, Yau, A., M
. ( , R.E, , A., Mende, EW.,, and Osb A
Reinforced Plastics and Composites, 1(3), 225-241, With wmuBmmmMM\ Y 1982 Journal of
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v PPG SMC-R25
0 PPG SMC-R65 f
A PPG XMC-3 (L) W
3 o OCFSMC-R25 m
e OCF C20/R30 (L) O o, v v
m _ v ,
o
=
o 2F v o o
z v ©
m o o o .
v
1Y o© ' . 'y LN
0© .3
u] go L.\
o .4
222
1. 1 1 1 1 1 - 1 1 1
100 200 300 400 500 600 700 800 900 1000
Time, h .
FIGURE 5.4

Percent weight gain due to moisture pickup vs. soaking time for several E-glass /polyester
sheet-molding compounds. Materials described in table 5.2. (From Gibson, R.E, Yau, A,
Mende, EW., and Osborn, W.E. 1982. Journal of Reinforced Plastics and Composites, 1(3),
225-241. Reprinted by permission of Technomic Publishing Co.) '

temperature, T;, and initial moisture concentration, ¢;, are assumed to be
uniform. The temperature distribution is governed by the Fourier heat
conduction equation:

oT 9 , oT )
nﬁlwﬂl%wl s | (5.1

whereas the moisture distribution is governed by Fick’s second law,

dc_d . dc (5.2)

of oz ‘oz

where
p = density of material
C = specific heat of material
K, = thermal conductivity of material along the z direction
D, = mass diffusivity along the z direction ‘
f=time
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<mawmoz of flexural modulus of several E
soaking time in distilled water at 21 to 24°
(From Gibson, R.F,, Yau, A., Mende,

v

-glass/ mo_v\mmﬁmn sheet-molding Q.vbduo:zam with
C. Materials described in table 5.2 and in figure 5.4.

EW.,, and Osborn, W.E. 1982. Journal of Rein d i
: . , WE. . P
and Composites, 1(3), 225-241. ,Wmﬁdﬁm& by permission of Technomic w:%mmgmwmﬂo VS&N%

ﬁ(\/.\;
—— g
T, Plate Ambient temperature,
— -— T, and ambient moisture
concentration, ¢,
h& — ——
=z
Thickness

FIGURE 5.6
Schematic representation of temp

¢,, on both sides.

o]

erature and moisture distributi h i

o ! . ons through the thickness

plate that is exposed to an environment of temperature, T,, and moisture concentration,
<4
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These equations are solved subject to the initial and boundary conditions,

i

|

' T=T g,
O<z<h, t<0

WGHOP i

M.H..H.N.w

; z=0;, z=h; t>0

Lc=c,

Shen and Springer [3] point out that, due to the numerical values of the
thermophysical properties C, K,, D,, and p for typical composites, the tem-
perature approaches equilibrium about 1 million times faster than the mois- |
ture concentration. Thus, the material temperature can usually be assumed

4

to be the same as the ambient temperature, but the moisture distribution  § ,
3

requires further analysis. If the diffusivity is assumed to be constant, Fick’s
second law becomes

2
dc d°c (53)

Mn * 9%z

The solution to this equation subject to the previously stated initial and
boundary conditions is [3,4] ]

.

(2j+1y'm°D,t (5.4)

c—¢ 4 1 . (2j+Dnz
=1-= "

C — G ﬁMANN%@mE h X exp

f

where the moisture concentration at the surface of the material, ¢, is
related to the moisture content of the environment, c,. Browning et al. [1] §
used equation (5.4) to predict moisture profiles for a graphite /epoxy plate
after drying out for various periods of time, as shown in figure 5.7. While §
equation (5.4) gives the local moisture concentration, c(z, t), we normally
measure the tofal amount of moisture averaged over the sample. The §

average concentration is given by [4]

=, exp| (2] + 17w (Dit/12)

s + i
hldo T A (2j+1) -
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1.0 AS/3501-5 |
6 min
12 min
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D, =2.476 x 10~*in%/h
0.6 - 7 =0.044in

M; =1.05%
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FIGURE 5.7

Predi . .

owmammwm%mmﬂ%ﬂﬂw% %Momﬁm%r.ﬂoﬁmr the thickness of a graphite/epoxy plate after drying
s of time. From Browning, C.E., H; , Whi

ol : ds of tr . g, C.E., Husman, G.E., and Wh

977. Composite Materials: Testing and Design: Fourth Conference, ASTM mawwwuﬁmﬁwmﬁwwm.

American Society for Testing and i i i
ith peaety g and Materials, Philadelphia, PA. Copyright, ASTM. Reprinted

M.Wm %ﬁmwﬁ .@manmn.ﬂ b.pommEHm\ M, is the quantity that is normally mea-
ired, and since € is Eﬁmﬁv\ related to M, we can write [3]

o,u.iximul,lmfg mx&*m\.+§aAUm\E
. .EB.INS_., L aNTMc 2j+17 g

(5.6)

.NMJWB M; Wm the initial weight percent of moisture in the material and M
b %mmﬁwmz ﬂmwombw of moisture in the material when the Bmﬁi% v
y saturated equilibrium with the ambi iti
fre paratmote g arated u ambient conditions. Thus
es the moisture weight gai i ime.
Such data can be obtained i by eighing the somcpeime
! experimentally by weighing the specime

; ob n at
MmmmEmL__m Mgmm during exposure to a moist environment. Em:wum 5.8 from
?mnmo M oﬂ% m&mogwm.zmwb of measured and predicted values of G as a

e dimensionless ratio D,t/h? for graphite/

ment is seen to be excellent. Thus, th moisture dif o ress e
: . . , the moisture diffusion process in th
composites seems to follow Fick’s law. Non-Ficki frusion has alse
ber ey s to follow P w. Non-Fickian diffusion has also
: 3 ases where microcracking is devel
of the hygrothermal de i e dependon viaaelont.
) gradation [5]. The time-dependent vis i
, coelasti
tesponse of polymers has also been found to lead to non-Fickian moistu 2n..
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H.O T T T ______ T T ,_ ______
: : |
0.8 I Graphite T-300 ,_
Fiberite 1034 ;
- (vp= 0.65-0.68)
1S 06 .
N
=1
o 04
0.2 Analytical absorption and desorption
0.0 L [ BRI 1 b1l 1 1 [ AN
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t* = Dt/h?
FIGURE 5.8

‘Comparison of predicted (eq. [5.6]) and measured moisture absorption and. desorption of
T300/1034 graphite/epoxy composites. Open symbols represent measured .absorption and
dark symbols represent measured desorption. (From Shen, C.H. and Springer, G.S. 1976.
* Journal of Composite Materials, 10,2-20. Reprinted by permission of Technomic Publishing Co.)

diffusion in polymer composites [6]. For more information on these and
various other moisture effects in polymer composites, the reader is
referred to several review articles by Weitsman [7] and Weitsman and
Elahi [8].

The hygrothermal degradation of composite strength and/or stiffness
can be estimated by using an empirical equation to degrade the corre-
sponding matrix property, then by using the degraded matrix property
in the appropriate micromechanics equation. Chamis and Sinclair [9]
and Chamis [10] have demonstrated such a procedure based on the

equation

- (57)

where
F,, = matrix mechanical property retention ratio
P = matrix strength or stiffness after hygrothermal degradation
P, = reference matrix strength or stiffness before degradation
T = temperature at which P is to be predicted (°F) -
T = glass transition temperature for reference dry condition (°F)

g Variation of glass transition temp

Analysis of Lamina Hygrothermal Behavior 183

Ty, = glass transition temperature for wet matrix material at moist
content corresponding to property P (°F) (fig. 5.1) e

T, = test temperature at which P, was measured (°F) .

(All temperatures are in °F.) ,

%MM MMmWSOMmm@:mMOJ (5.7) Mm based on the experimental observation that
gradual until the temperature T a h
upon the degradation accelerates. The val P b obtiired foe:
. - The value of T, can be obtained £
experimental data on the glass transitio At trix resin
. n temperature of the matri i
as a function of absorbed moistur  Delasi and
' fur e. For example, the data of i
Whiteside [11] show the reduction in T.., wi o ointars ot
. uction in T, with increasi i
for sb epoxy Testng (8 , Law sing moisture content
& g.5.9). Chamis [10] suggests that T i
mated by using the following empirical m&cmmm:" o can be esti

Ty = 2 _
e = (0.00502 0.10M, +1.0)T;, (5.8)

«Mrwam M, is the weight percent of moisture in the matrix resin and values
W Hmo. for mm<mu.& H.smax materials are found in table 3.2 and table mmH
elasi and Whiteside [11] and Browning et al. [1] also found that Qm.&
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'FIGURE 5.9

. erature ‘with equilibrium moisture cont
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_MWMW% NMWM%..N%SB Um.Hmmr R. and Whiteside, J.B. 1987. In Vinson, J.R. ed. Mweaﬂwmwmmwm_
e M:a s — m:e:smswi& Effects, ASTM STP 658, pp. 2-20. >Bm~,mnms Soci msu
i g and Materials, Philadelphia, PA. Copyright, ASTM. Reprinted with 3n..3_.€_.m>am \ of
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such as that in figure 5.9 are in good agreement with predictions from the
theory of polymer plasticization by diluents.

Once the mechahical property Hmﬁmawﬁos ratio is found from equation
Am.qv\»:msmmmﬁommmnmmmFmBmaxﬁaoﬁmi%mbﬁrmmwﬁaowimwmgmono-

mechanics equation. For example, the tule of mixtures for the longitudinal
modulus (eq. [3.23]) now becomes .= ; ;

_ E; = Eq0¢ + FnEmoVm (5.9)
E

where E, is the reference value of the matrix modulus in the dry condition.
It is assumed that Poisson’s ratio is not hygrothermally degraded [10].
Reasonably accurate predictions are also obtained when equation (57)
is applied directly to matrix-dominated composite properties (i.e, P and
P, are taken to be matrix-dominated composite properties instead of
matrix properties). For example, Chamis and Sinclair [9] found good
agreement between the predictions of equation (5.7) and experimental
data on hygrothermal degradation of transverse compression, transverse
tension, and intralaminar shear strengths of boron/epoxy and graphite/
epoxy composites (fig. 5.10). Thus, the hygrothermally degraded composite

40 -
Y
. 30F A v
4 0,/ v
H
8 20r >o o/ Vv v
o
o ¢
2
[
W . o B/E 90° T&C, IS; 70, 250, 350°F (dry)
10+ A o MOD-I/E  90° T&C, 1S; 70, 250, 350°F (dry)
A HMS/E 90° T&C, IS; 70, 250, 350°F (dry)
A v AS/E 90°, +45°% 73, 218°F, dry & 1.1% moisture
Filled symbols denote reference strength.
1 1 1 —
0 10 20 30 40
Predicted strength, ksi
FIGURE 5.10

Comparison of predicted (eq. [5.7])
degraded composites. (From Chamis, C.C. and Sinclair, J.H. 1982, In Daniel, IM. ed., Coitt

posite Materials: Testing and Design (Sixth Conference), ASTM STP 787, pp. 498-512. American
Society for Testing and Materials, Philadelphia, PA. Copyright, ASTM. Reprinted with

permission.)

and measured strengths of several hygrothermallj- 2
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micromechanics equation.

_mawanm_ equations such as equations (5.7)
Mxﬁwwm be mcmmm.sgg caution. Curve-fitting parameters such as the
e mv mmsw of 1/2in equation (5.7) and the coefficients of M, in equation
*,.:.m re based on experimental data for epoxy matrix materials. While
w Mm_smwO:M Emm be suitable for other composites as well, the user

check predictio i i i \

ool p bm mmSmw ww...m:mzm experimental data where
mwrw procedure just outlined is based on the combined effects of tem-
m._ me ure m.So_ moisture, and the two effects were seen to be coupled by
ufmwmmmmﬂ%r% ?m glass transition temperature by absorbed moisture
er important connection between the two isture

. rtant effects. Moistu
absorption occurs by diffusion, which is known to be a thermally wﬁ?mﬂm

?.onmmm.Hrm&mcmmia\cﬁrmﬁm.mmammbm.w\ .
ature by the >§Tm35mam_mmobmﬂmn s lawis wﬁmﬁmm 1o femper:

D =D, exp(~E,/RT) (5.10)

where
D, = material constant
: E, = activation energy for diffusion
R =universal gas constant
T'=absolute temperature

_MMVOM that m:._.m relationship holds for composites is m?mb by the fact that
w:mmmmﬁ %.xvmﬁgmwﬁmzv\ determined values of log D versus 1/T fall on a
ine, as shown in figure 5.11 from Loos and Spri
result of this relationship i i e o o s
p is that increased temperature caus i

B,_mwm rate ﬁ.vm moisture absorption, as shown % figure 5.12 i inerease

s ..m mﬂ@:m& stress also has an effect on moisture absorption in poly-

Ew_vwwwm MMQBmMTnNB%oMﬁmm [13-15]. For example, Fahmy and EGMW

own that the diffusivity of a pol is i

. ymer is increased under

wmzm.wm stress m.b& decreased under compressive stress. Thus, in a noHMw

MMM. NMMm H.mwﬁ:& mﬂ.mmwmm due to differential thermal mxmum:mmos of

matrix materials may cause increased moi i

| . sture absorption

WMM& a .@mﬂ.r running Euocmr a tensile stress field. Starting @o% the

:mEmowH%\Qmﬁmm of mw%:s:cg mechanics and irreversible thermody-
I , Weitsman showed that, for both elasti i

: . , ¢ and i
materials, both the diffusion process and the sa nd viscoclastic

ftiration maoicttira lavrala

185

H . 3 .
Mﬂ M%m.ﬂwomﬂwmwm mmcgmhﬁm.& by applying equation (5.7) directly to the
rixedo ~m ' composite property measured under reference condi-
fo , y applying m@:mrob.ﬁm.uv to matrix data measured under refer-
ce conditions, then substituting the result into the appropriate

and equation (5.8) should
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FIGURE 5.11
Variation of transverse diffusivity with temperature for AS/3501-5 graphite/epoxy composite.
(From Loos, A.C. and Springer, G.S. 1981. In Springer, G.S. ed., Environmental Effects on Com-
posite Materials, pp. 34-50. Technomic Publishing Co., Lancaster, PA. Reprinted by permission
of Technomic Publishing Co.)

\

are stress dependent, and that the diffusion process is nonlinear with
respect to stress.

EXAMPLE 5.1 :

An epoxy resin sample has a thickness h =5 mm and a diffusivity D = 3 x10°
mm?/s. Determine the moisture absorption of an initially dry sample after a time
t =100 days. :

Solution. The moisture absorption is predicted by equation (5.6), which
involves an infinite series. In order to examine thé convergence character-
istics of the series, we will look at the first four terms. Each term in the
series contains the dimensionless ratio m2D#/h2, which has the numerical
value

WDt _ (3% 10°*)(100)(60)(60)(24)

- e =0.012

Since the sample was initially dry, the initial weight of moisture in the
material is M, = 0. Thus, equation (5.6) reduces to the ratio M /M,,, which
is the ratio of the weight percent of moisture at time ¢ to the weight percent
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FIGURE 5.12

Effect of temperature on H,mwm. of moisture absorption i
. ate ption in AS/3501-5 graphite/epoxy composite,
MMO.B Delasi, R. and Whiteside, J.B. 1987. In Vinson, J.R. ed., Advanced OS:EW&%M@RM&MM
; %&Mﬂxmﬁ& Effects, >wH§,m,Eu 658, pp. 2-20. American Society for Testing and Materials
adelphia, PA. Copyright, ASTM. Reprinted with permission.) \

Omaommgammzﬁrmm::%mmgnmﬁmmm@&:@iﬂgnob&mo:.Hbmmﬂm:oc:mﬁsm
are .

M 8 _
=1 exp-0.102)+ 22 20102)

+ mx@AINMAO.HONVV + mxﬁAI@Ao.HoNVV,+ .

5 49

Mrm values of M/M,, corresponding to the different number of terms are:
.267 (one termy), o..mmo. (two terms), 0.228 (three terms), and 0.228 (four
terms). Thus, the series has converged after three terms, Rapid convergence

is a characteristic of this solution, and i
c , in many cases, on i
sufficient [4]. Y ¢ only one ferm is

EXAMPLE 5.2

The n.e§mwmmm described in example 3.1, example 3.2, and example 3.4 is to be
:%m in a “hot—wet” environment with temperature T = 200°F (93°C) and resin
moisture content M, = 3%. If the ¢lass transition temmerative of the dvis wiadvi
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esin i © ] jes given i le 3.1, example 3.2,
resin is 350°F (177°C) and if the properties given in Example 3.1,
and example 3.4 are for a temperature of 7 @ow (21°C), m&&ﬁﬁ:w the hygrother-
mally degraded values of the longitudinal and transverse moduli.

Solution. From equation (5.8), the muw.m.m#msmaoﬁ temperature in the wet
condition is:

T, = [0.005(3)% —0.1(3)+1.0]850 = 261°F (127°C)

From equation (5.7), the r%mﬁoﬁrmngmzw Qmmnmﬂma Young’s modulus of the
epoxy resin is

En =[(261—200)/(350 - 70)](0.5)(10°) = 0.233(10%)psi (1.61 GPa)

From equation (5.9), the hygrothermally degraded longitudinal modulus is

E, = 32(10°)(0.506)+ 0.233(10°)(0.482) = 16.3(10°)psi (112 GPa)

Thus, the hygrothermally degraded value of E; is 99.2% of Em reference
value calculated in example 3.4. As stated earlier, the fiber-dominated prop-
erties are not affected much by temperature and moisture. )

Similarly, using the degraded value of E,; in m&ﬂmﬁ.oﬁ @..mmv\ we mwm M&Iﬁ
the hygrothermally degraded transverse modulus is mmﬂBHma 8_ m_ m m
0.434(10°) psi (3.0.GPa), which is only 53% of the amﬁmwmsnm value calculate
in example 3.4. Thus, the matrix-dominated properties mzmﬁ as the trans-
verse modulus are strongly affected by hygrothermal conditions.

5.3 Lamina Stress—Strain Relationships Including
Hygrothermal Effects

In chapter 2, the lamina stress-strain relationships were .Qm<m~o@marﬁ2
linear elastic behavior and constant mbﬁaoabma.& conditions. The ther-
mal expansion or contraction of structural materials due to temperature
change is a well-known phenomenon, To.<<m<mb and the *.Tmnﬁwmwﬂm.ﬂmﬁa
for an isotropic material are usually described by an equation of the form

i

1 | 0AT, ifi=1,2,3 : 511
1o ifi=456
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where
i=1,2,..., 6 (recall contracted notation)
AT = temperature change (T — T,)
T = final temperature
T, = initial temperature where =0 for all i
o= coefficient of thermal expansion (CTE)

This relationship is based on the experimental observation that a tem-
perature change in an unrestrained isotropic material induces an equal
expansion or contraction in all directions, with no distortion due to shear
deformation. In this case o> 0, because an increase in temperature causes
an increase in strain. As we will see later, however, some anisotropic mwﬁ
materials have negative CTEs along the fiber axis and positive CTEs along
the transverse direction. In general, the strain—-temperature relationship
is nonlinear, but the assumption of linearity is valid over a sufficiently
narrow temperature range. Typical thermal expansion data for an epoxy;
resin are shown in figure 5.13. If operation over a wide temperature range
is expected, the reader is referred to data such as that of Cairns and
Adams [16], who have developed cubic polynomial expressions to fit
experimental thermal expansion data for epoxy, glass/ epoxy, and graphite/
epoxy from ~73 to 175°C. A procedute for estimating the hygrothermal
degradation of matrix-dominated thermal properties will be discussed
in section 5.4.

In polymeric materials, moisture has been shown to cause hygroscopic
expansions or contractions analogous to thermal strains. For example, the

10 w

—4 L L
-100 0 100 200

Temperature, °C

FIGURE 5.13 ,
Thermal expansion vs. temperature for 3501-6 epoxy resin. (From Cairns, D.S. and Adams,
D.E. 1984. In Springer, G.S. ed., Environmental Effects on Composite Materials, vol, 2,

pp- 300-316. Technomic Publishing Co., Lancaster, PA. Reprinted by permission of
Technomic Publishing Co.)
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FIGURE 5.14 o o
Hygroscopic expansion vs, moisture’ content for two epoxy resins. Ammos.p U&mmrNM. wa
<<vmwmm5m J.B. 1987. In Vinson, ].R. ed., Advanced Composite Materials - m:SS.Exw:S ] \\MMP\
ASTM m%w 658, pp. 2-20. American Society for Testing and Materials, Philadelphia, PA.
Copyright, ASTM. Reprinted with permission.) .

experimentally determined moisture-induced swelling of .mm.<m.u.,m~ Q.uowv\
resins is shown in figure 5.14. The experimental observation is that the
moisture-induced strains in isotropic materials can be expressed as

mz” A@vﬁ\ m.m N. = H\ N\mw AWHNV

0, ifi=4,56

where . . .
¢ = moisture concentration = (mass of moisture in unit volume /mass of

dry material in unit volume) .
B = coefficient of hygroscopic expansion (CHE)

The reference condition is assumed to be the Bowmﬂ&m-?mm state ¢ = 0m
where €= 0. Hygtoscopic strains are m.ﬁﬁﬁ:& zos_E.mE,, mcHSNnﬂosm %m
moisture content [16], but the linear Hmﬂmﬁobmgw. in equation 6. v Hmﬁ<m wn
if the range of moisture contents is not too s:Qw. Thus, in an isotrop
material, the total hygrothermal strain can be written as

=+t | (5.13)
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FIGURE 5.15

Variation of measured longitudinal and transverse thermal strains for unidirectional Koim_n
49/epoxy and S-glass/ epoxy with temperature. (From Adams, D.E, Carlsson, L.A., ar

Pipes, R.B., 2003. Experimental Characterization of Advanced Composite Materials, CRC Pregs,
Boca Raton, FL. With permission.).

v

Because fibers usually have CTEs and CHEs that are quite differen
from those of matrix materials, the hygrothermal strains in a noBvamx_m
lamina are different in longitudinal and transverse directions. For
example, the experimental thermal strain versus temperature data in
figure 5.15 (from ref. [18]) shows the large differences between 55@.4
tudinal (g,) and transverse (€,) thermal strains for unidirectional Kevla :
49/epoxy and S-glass/ epoxy composites. Notice that the Hosm::&bm_g
thermal strains g, for Kevlar 49/ €poxy are negative, while the corre-
sponding transverse thermal strains &, are positive, which implies ﬁrm_w
the longitudinal CTE, a, is negative and the transverse CTE, a,, is
positive for this material. Carbon fiber—reinforced composites often
have similar characteristics. Notice also in table 3.1 that the longitudina]
CTEs of some other fibers are negative, whereas the transverse CTES
are positive. As shown later, this leads to the interesting possibility of
designing a composite with a CTE of near zero. Thus, subscripts are
needed for o and B, and the hygrothermal strains associated with the

12 principal material axes in the specially orthotropic lamina should
be expressed as

u_ JOAT +B,c, ifi=1,2,3

= 5.14
e 0, fimd56 (5.14)
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TABLE 5.3

Typical Thermal and Hygroscopic Expansion Properties

Hygroscopic Expansion
Coefficients (m/m)

Thermal wawar:r
. Coefficients ([10-6 m/ml/°C) .

Material i oy ' By B,
AS carbon/epoxy _ 0.88 310 0.09 0.30
E-glass/epoxy i 6.3 20.0 0.014 0.29
AP-126-2 adhesive | 29.0 29.0 0.20 0.20
1020 steel _ 12,0 12,0 — —

Source: From Graves, S.R. and Adams, D.E 1981. Journal of Composite Materials, 15,
211-224. With permission.

If the material is transversely isotropic, o, = 0,3 and B, = 3. Typical values
of o, and B; for several composites are given in table 5.3 from ref. [17].
Notice that the negative longitudinal CTE of graphite fibers leads to a
very small longitudinal CTE for the lamina. Notice also the large differ-
ences between longitudinal and transverse hygrothermal coefficients.

The total strains along the principal material axes in the specially ortho-
tropic lamina are found by summing the mechanical strains due to applied
stresses (eq. [2.24]) and the hygrothermal strains (eq. [5.14]):

S| fsaose 0| |%f PP
€y = MMH .www 0 Gy ¢ +40k AT + @N c AmHmv
Y12 0 0 ,mmm; T1 0 0 .
or, 5 Bon concise matrix H,S\Emop
(e)=ISlic)+ (AT +Ble - (5.16)

Simamﬁuos the stresses are mzm.wb by
(ol= ISP~ AT~ (Bl) 517)

Note that if the material is unrestrained during the hygrothermal expo-
sure, there are no stresses generated and the strains are given by

i

(e} = {WAT + {Blc | (5.18)

If the material is completely restrained during hygrothermal exposure,
however, the total strain must be zero. Thus,

(e} =0=[Sl{c}+{a}AT +{B}c (5.19) §

of such a material, so that the CTE along a particular direction is zero.
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and the resulting hygrothermal stresses are given by

{o} =[ST(~{o}AT - {B}c) (5.20)

sz ote E.mﬁ there areno ENMH.OEQE& shear strains or shear stresses along

e WE.SQHQ& material axes. This is not true for the generally orthotropic
(off-axis) case, however. For an arbitrary set of axes xy oriented at an msﬂm
6 to the 12 axes, the stress—strain relationships can be transformed mmmgw

chapter 2. The complete stress—strai i ,
. —strain rel
pic lamina are ations for the generally orthotro-

c - N _ ;
x Su S» Sy Ox Olx B |
€ r= MHN rMNN .wnm Gy + Qt AT + _w,.\ c A.W..NH
Sis S S
Yy 2% O6s Ty Oy By

In the transformations, it must be r
. , e rémembered that the CTE
CHEs transform like fensor strains (recall egs. [2.33]), so that > and thy

Oy ' Oy
oy r=[TT"{0, (5.22

and a similar equation is used for the CHEs. Notice that the hygrothermal
effects do :.#.M:nm shear strains in the off-axis case due to o, mmsm B ﬁ%
.mrmmﬂ. nOmbmemam of thermal and hygroscopic expansion H.mmmgmnma\my é\HEm
1s quite different from the case of isotropic materials, Smmnm h H,omwm_. M
effects do not cause shear strains along any axes. The <mammﬁw\%m of o, Qoﬁom
mza. 0., with lamina orientation according to equations (5.22) are mrﬂswﬁ
Mﬂmmmnwm 5.16. The same curves could also be used for B,, B, and B,,. The
mwwmu gmmagmw shear nommﬁmam a,, and B, have their .BmwmQEB Mw&cmm
2 Mnmﬁmmsa Mﬁm proportional to the differences (o - o) and (B, ~ B,),
E»M o y- Thus, the greater the degree of anisotropy (i.e., the larger the
o 1/ 001 B,/B,), the mnmm.ﬁmw the hygrothermally induced shear strains.

18 important to note that if oy < 0 and a, > 0, it is possible to find an
angle 6 where o, = 0. Thus, we can design a laminate consisting of plies

EXAMPLE 5.3

An orthotropic lamina forms one layer of a laminate which is initially at tem-

perature T, Assuming that the laming is initi
: A a is initially stress free, that adj
laming are ricid, that the vroverties dn not chavos me §3:\wa s ?:::mmm.m :m
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After substituting numerical values for the initial temperature, T,, the lamina i
stiffness, Q. the coefficients of thermal expansion, o, the strengths s, ), etc.,

W
% in the above equations, the equation that yields the lowest temperature T ‘
I

would be the condition governing failure. It is worthwhile to note that _
adjacent laminae are not really rigid, but we will need to use laminate theory
later to consider deformations of adjacent laminae. It is also worthwhile to ,
note that if hygrothermal degradation of properties is to be taken into
account, equation (5.7) could be used.to express the hygrothermally degrad-:
ed lamina strengths and stiffnesses in terms of the temperature T. In ﬂEm‘

case T would appear on both sides of the above equations and the problem
would be more difficult to solve.

. [od
0y 1

0° 45° 90°
Lamina orientation, 6

EXAMPLE 5.4 |

>%§E§\a§§§n§:& m..%smm\mwoé.SSN.:ﬁw 833&&&:3%%&3& a_I it ,
is heated from 20° to 70°C. Determine all components of stress and strain associated

with the 1,2 axes and the x,y axes if the x,y axes are oviented at © = 45°, See table 5.3
for the required properties of E-glass/epoxy.

5.16 . . . . . .
M\_mmwmuwb of lamina thermal expansion coefficients with lamina orientation for a lam

having o, > 04 > 0.

change, and that the lamina picks up no moisture, determine §.w §m§mﬁwm
5%2\“;:@ that the lamina can withstand according to the Maximum

Solution. Since the lamina is unrestrained during heating, there are no _ .,
Criterion.

stresses along either the 1,2 or the x,y axes, but the thermal strains are found i
as follows: «

Solution. Due to the mm,mc:zmmob that adjacent laminae are rigid, Qmmoﬂ..bw-

tion is prevented and the total strains must all be zerp. The resulting

hygrothermal stresses are therefore given by equation (5.20) with ¢ =0,

From mmcwmos (5.15) ,S&W no stresses or hygroscopic strains, the thermal
strains along the'1,2 axes for AT = 50°C are

{0} =—[STHa)(T - T,) = -[QNalT - Ty) & o

6.3(107) 0.000315
= = ‘m = » . i
" Thus, for the Maximum Stress Criterion, it is necessary to check each of the & =170, (AT = NQ.OMO ) (50) O.NS i
m following conditions: Y12 0 . ,.

For tensile stresses From the inverted form of equation (2.33), with 0 = 45°, the thermal strains
along the x,y axes can be found directly as

] —(Quats + Qi T -T,) = s,

, , —(Qum + Qum)T-T,)= m,HE ;

Ex & 05 05 -0.5](0.000315 0.00066
j " For compressive stresses g (=ITI"Se,  ¢=|05 05 05(1 0001 ‘= 000066
- _ 05 -05 0 0 —0.00034
| m T—T L.m -) %é J\HN\N
; ~(Qua + Qua T -To) =5 2

B T-T,)=s =) .
(Quats + Q) )=or _ Alternatively, the same result for the thermal strains along the x,y axes can
» 'be obtained by first transforming the CTE values from the 1,2 axes to the

(Note: There are 50.7%@59@5& shear stresses along the 12 axes.)
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x,y axes using equation (5.22), then substituting the transformed CTEs in
equation (5.21) to calculate the thermal strains along the x,y axes. Note that,
although there was no thermal mwm”mz. strain along the 1,2 axes, there is an
off-axis thermal shear strain along the x,y axes. Thus, there will be' thermal
distortion associated with the off-axis directions, and this is another example
of the shear coupling phenomenon. : C :

L}
5.4 Micromechanics Models for Hygrothermal Hu_.qowmuﬁmm

We have seen in chapter 3 and chapter 4 that the mechanical properties of
a composite lamina can be estimated from the corresponding properties
of the constituent materials using micromechanics models. Similarly,
micromechanics equations for the thermophysical properties that appear
in hygrothermal analysis can be developed. Various theoretical approaches
ranging from elementary mechanics of materials to energy methods have
been proposed. x : .

An equation for the longitudinal coefficient of thermal expansion, oy, can
be developed using the elementary mechanics of materials approach from
chapter 3. Recall that in the derivation of the rule of mixtures for the
longitudinal modulus (eq. [3.23]), the 1-D forms of the stress-strain rela-
tionships along the 1 direction for the lamina, fiber, and matrix materials
(eq. [3.20]) were substituted in the rule of mixtures for longitudinal stress,
equation (3.19). The corresponding 1-D form of the stress—strain relation-
ship including the thermal effect is

e =L+ 0, AT | (5.23)
E,
or
0 = Ey (€1 ~04AT) (5.24) |

If we now substitute equations similar to equation (5.24) for composite, §
fiber, and matrix, respectively, into equation (3.19), the result is

| _M

Ey(& — 04AT) = Eny (&1 — Ot ATYO + Bt (€t — Ot AT)Om  (5:25) M
where o, and o, are the longitudinal CTEs of fiber and matrix materials, ,
respectively (see table 3.1 and table 3.2), and the remaining terms are M
defined in chapter 3. By combining equation (5.25), equation (3.22), and §
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Mmm%mos (3.23), we get a modified rule of mixtures for 9@ longitudinal

— m:nxmudm +W_EHQSHCE — mﬁooﬁdm + W.EHQ:—HCE

1
E m..ﬁdm + MEHCE A@.N@V
For the case of isotropic constituents, the above equation becomes |
o = E¢0l¢0¢ + E 00V |
1= (5.27)

mmdm + MBCB
This equation, derived by a mechanics of materi |

, aterials approach, turns gut
to be the same as the result obtained by Schapery [19], w,}o used a mdre
tigorous energy method. Hashin [20] derived a more complicated mx@% S-
sion for the case of orthotropic constituents. Schapery [19] derived the

02 = (14 Vi )0 Oy + (14 Ve )00 — 041 vy (5.28)

Sr.mwm oy is the longitudinal CTE given by equation (5.27) and v, is 1
major Huo.ummoqm ratio given by equation (3.41). The variations ommoa and
o, with .Bum.uéo_sgm fraction for a typical graphite/epoxy oogmo&mm are
mroé: in figure 5.17. Rosen [21] has observed that for such composites
having high fiber-volume fractions, the predicted o, is practically zefo
Emmmch.mgmam of the CTEs for such materials by Ishikawa et al. [22] rm<m.
confirmed that o, is so small as to fluctuate between positive and bmmmﬁ?m
values due to small changes in temperature or fiber-volume fraction. Over
m& H.m_:mm... of practical fiber-volume fractions, a, is much greate m:.ms 001
,mawmm wm M.ﬁm hwﬂmwmm.ﬁ:gm to note that at low fiber-volume fractions, o, can be
By substituting the 1-D forms of the stress—strain relati i i
hygroscopic effects into equation (3.19) and following the MM”M@MMW«M%M

lined in the derivation of equation (5.26 imi i ip i
for the lontteel ot q (5.26), a similar relationship is found

B Siem
)

_ EaBavs + EiBrivm
UH m__D\cm 3 MBHCB A@..Nﬂv

i

F vo_v.qsmu Emgxnogﬁoﬁﬂmm}rmmBocsﬁOmgommEHmmvmogmm by ﬁ_ﬂm
fibers is usuallv neclicihle in rommaricnn writh o oot 1 2 14
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Fiber volume fraction, vy

M\_mmwmﬁ_wwbm%uvmm&ﬁmm longitudinal and transverse nom.mma.m.sa of EQ.B&” mxm“MWOM RM%
fiber-volume fraction for typical ﬁm%ﬂmnnobmﬂ. graphite/epoxy composi mw ( om ¢ >w_<m
B.W. 1987. In Reinhart, TJ. ed., Engineered Materials mammw.ce? vol. 1, Composi Mm\ . v .
International, Materials Park, OH. Reprinted by permission of ASM International.

)

e matrix, so that the term involving B, can be ignored. For isotropic
wwhwwﬁ:mim\ the equation for B; would wm. mﬁ&omwcm to equation G.ws.
According to Ashton et al. [23], the equations derived v% mnrmwm.%.?mﬁw
eq. [5.27] and eq. [5.28]) can be used for any expansional coe icien
such as the CTE or the CHE. Thus, the transverse CHE would be given

by

[

B = (1 Vo BorOm + (1 V5 Br0s — Brvio (5.30) H

is gi i i f equation (5.29). i
where B, is given by the isotropic %OEH.# o .
Wmnwmﬁ%mm in the equations governing the temperature and moisture ;

5

distributions (eq. [5.1] and eq. [5.2]), thermophysical properties such as |

specific heat, thermal conductivity, and &m.smr.&% appeared. According w
to Chamis [10], the composite specific heat is given by 4

C.= W?DQ + PinCin V) (5:31)

where C; and C,, are the specific heats of fiber and matrix, Hmm@mnﬁ,\m.?.
the composite density, p,, is given by equation (3.6), and the remaining _

| erties is opposite to the corresponding effect on strength and stiff
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terms are defined in chapter 3. Ashton et al. [23] and Shen and Springer
[3] have observed that the rule of mixtures formulations,

K = Kpog + Ko, (5.32)

and

ﬂ
NUH = Um.cm + UBCE A@m@v

can be used to find the longitudinal thermal conductivity and _BmL. dif-
fusivity, respectively, as well as other transport properties. m@zmmoww_ for
the transverse thermal conductivity and diffusivity based on the method
of subregions (see section 3.3) have been presented by Hopkins [and
Chamis [24] and Chamis [10]. These equations can be formed by substituting
the appropriate properties (thermal conductivities or diffusivities instead
of transverse moduli) in an equation of the form shown in equation @.mov.
Ashton et al. [23] have suggested that the Halpin-Tsai equations |(see
section 3.5) can also be used for transverse transport properties such as
thermal conductivity and mass diffusivity. Off-axis properties can be
found by recognizing that thermal conductivity and diffusivity are|poth
second-order tensor quantities that transform according to the form
shown in equations (2.30). v ,
Finally, a procedure for estimating hygrothermal degradation of m
properties such as o, B, K, and C has been proposed by Chamis [10]. B

on the observation that the effect of increased temperature on these |;

atrix
ased
rop-
ness,
Chamis suggests that the matrix hygrothermal property retention

ratio
can be approximated by
1/2 :
R | T,-T.
e N -] 5.
ho=qo ﬁle 334

where

R = matrix hygrothermal property after hygrothermal degradation|
R, = reference matrix hygrothermal property before degradation

Following a procedure similar to that outlined in section 5.2, the matrix
hygrothermal property is degraded according to equation (5.34). Then the
degraded matrix property is used in a micromechanics equation such as

equation (5.26) through equation (5.33) to estimate the hygrothermally
degraded composite property.

1
!
i
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EXAMPLE 5.5 , U, 3 o .
A composite lamina is to be designed to have a specified coefficient of §.m3§~
expansion along a given direction. Outline a procedure to be used in the
design. m L

‘ m . .

Solution. First, it is necessary to use micromechanics m@ﬁ.mﬂoﬁm such as
equation (5.27) and m@ﬁmmob (5.28) to find a combination of bwﬁ.. and matrix
materials having constituent CTEs and moduli and volume fractions, so that
the specified CTE lies between the values of 0, and o). As shown WM equa-
tions (5.22) and figute 5.16, the value of the specified o, along the Q:.mn.ﬁos
defined by the angle must lie between the values of 0, and 0ty The Hm@cm.mn
angle 0 is then found by setting 0, equal to the specified value and mo?._sm
the first of equations (5.22). In a practical design problem, other constraints
would have to be considered as well. o

EXAMPLE 5.6 o . o .
Develop an analytical model for %ﬂmﬁsﬂxﬁss o\. ﬁmm.na%mﬁ.mi. of Smémﬁwa
expansion, B, for a randomly oriented continuous fiber composite in terms &M fiber
and matrix properties and volume fractions. Assume that the composite is planar

isotropic, and find the B for in-plane hygroscopic expansion.

Solution. For the planar isotropic case, B is msﬂ.wﬂumsam.a of o.im.ﬁmno5 in
the plane, and it is appropriate to use an averaging mmv.aomnﬁ .m:b:mﬁ to that .
used in example 2.5, Thus, the isotropic B is moma by first using a :,.msmmow..
mation equation similar to equation (5.22) to find the [, for the orthotropic
lamina of the same material along the x direction as

By =Py cos’6+P,sin*0

This value is now averaged over all possible angles between 0=0to 6 =7
to get the isotropic property as

._'oauamo ) ._.o: A? cos® 6+, sin” mv de
B

_Bi[sin20 0T B u.@i _BitB
T 4 2 b4 4 2 2

] 0

S&ﬁm the orthotropic properties B; and B, may be m.ummgmﬁom b,.og fiber .mzm
matrix properties and volume fractions by using micromechanics equations
such as equation (5.29) and equation (5.30).
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5

.5 Problems

1. Using equation (5.6) for moisture diffusion, derive an equation for
the time required for an initially dry material to reach 99.9% of its
fully saturated equilibrium moisture content. The series in equa-
tion (5.6) converges rapidly, so for the purposes of this problem, i
it is necessary only to consider the first term. The answer should
be expressed in terms of the thickness, %, and the diffusivity, D,.

2. The dependence of the transverse (through-the-thickness) diffusiv-
ity of unidirectional AS/3501-5 graphite/ epoxy composite on tem-
perature.is given in figure 5.11. For a temperature of 77°C and a
thickness of 2.54 mm, use the results from figure 5.11 and problem
5.1 to estimate the time required for this material to reach 99.9% of
its fully saturated equilibrium moisture content from an initially
dry condition. Compare your estimate with the experimental data
in figure 5.12. Does the estimate seem to be reasonable?

3. For the material described in problems 1 and 2 above at a tempera-
ture of 77°C, determine the time required for drying the material
from 99.9% to 50% of its fully saturated equilibrium moisture content.

4. Using only the linear part of the moisture absorption curve for a
temperature of 77°C in figure 5.12, and assuming a thickness of
2.54 mm, estimate the diffusivity D,. Compare this value with the
estimate from figure 5.11.

5. For the composite properties and environmental conditions W
described in examples 3.3, 4.5, and 5.2, determine the hygrother- i
mally degraded values of the longitudinal and transverse tensile
strengths. Compare with the reference values of these strengths
from example 4.5.

6. For the composite properties and environmental conditions
described in examples 3.4, 4.5, and 5.2, compare the reference and
hygrothermally degraded values of the longitudinal compressive
strength. Assume v}, = 0.3. Compare and discuss the different
effects that hygrothermal conditions have on longitudinal tensile
and compressive strengths.

7. The filament wound E-glass/ epoxy pressure vessel described in
example 4.3 is to be used in a hot-wet environment with temper-
ature T = 100°F (38°C) and moisture content M,, = 4%. The glass
transition temperature of the dry epoxy resin is 250°F (121°C),
and the lamina strengths listed in table 4.1 are for a temperature-
of 70°F (21°C) and a moisture content of zero. Determine the
internal pressure p that would cause failure of the vessel according
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!
Rigid n_mﬁm

; Rigid plate

FIGURE 5.18 . . 5
Lamina clamped between rigid plates in a mold.

to the Maximum Stress Criterion. Compare with the result from

example 4.3. : o -
A carbon/epoxy lamina is clamped between Smﬂm Emﬁwm ina no
(fig. 5.18) while curing at a temperature of 125 0..> wmm o%?ow
the lamina/mold assembly (still Qmﬁ%wa *om.mmpm.uv is ooW M om
125 to 25°C. The cooling process occurs in moist air and the MBHOH-
absorbs 0.5% of its weight in moisture. The ng.Bm has the

lowing properties:

E,=140GPa oy, =-03x10°/K

E, =10GPa o, =28%x107° /K ,
v =03 B, =0

G, =7GPa B, =0.44

Assuming %5_.“ the lamina properties do not change over this
temperature range and that the lamina is initially Qr.% and stress
free, determine the residual hygrothermal stresses in the lamina
at 25°C for angles 6 = 0° and 45°. ‘ ) e
irecti i i ite is to be made
A unidirectional continuous fiber composi .
T300 graphite fibers in a high-modulus (HHM) epoxy matrix, wbﬁw
the composite is to have a longitudinal nomm@ﬂma of E.mﬂg.m
expansion of zero. Using the fiber and matrix properties in
.&%mm 3.1 and 3.2, determine the required mwmuéofgm ?mwnﬁow..
Is this a practical composite? Sketch a mmm%.r showing the ongi
tudinal CTE of the oo:%oﬁﬂm versus the b.vmwéoggm @mnﬁome
and show the range of fiber-volume fractions over ?rﬁr the
longitudinal CTE would be negative.

10. A unidirectional graphite/epoxy lamina having the properties

described in problem 8 is to be designed to rm&m a nommmn.wmsw MM
thermal expansion of zero along a HumH.snE.E., axis. Determine
required lamina orientation for such a design.
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Fiber: \A\. E, o op

Matrix: A4,,, E,, Oy G,y

FIGURE 5.19 .
Representative volume element for problem 5.11.

11. Arepresentative volume element (RVE) consisting of a cylindrical
isotropic fiber embedded and perfectly bonded in a cylinder of
isotropic matrix material is shown in figure 5.19. If the ends of
the RVE at x =0 and x = I and the outer surface of the RVE are
stress free and the RVE is subjected to a uniform temperature
change AT, determine the fiber stress, O, and the matrix stress,
O, along the fiber direction at the midpoint of the RVE (at x =
L/2). Use a mechanics of materials approach and express answers
in terms of the coefficients of thermal expansion o and o, the
cross-sectional areas A, and Ay, the Young’s moduli E¢and E,,
and the temperature change, AT, where the subscripts f and m
refer to fiber and matrix, respectively.

12. Samples of unidirectional Kevlar 49/epoxy and S-glass/epoxy

- composites are subjected to elevated temperatures in an oven and
the resulting thermal strains are measured by using strain gages
oriented along the 1 and 2 directions, as shown in figure 5.15.
From the data in figure 5.15, estimate the longitudinal thermal
expansion coefficient o, and the transverse thermal expansion
coefficient a, for both materials,

- A unidirectional 45° off-axis E-glass/epoxy composite lamina is
supported on frictionless rollers between rigid walls as shown in
figure 5.20. The lamina is fixed against displacements in the Y
direction, but is free to move in the x direction. Determine all of
the lamina strains associated with the x,y axes if the lamina is
heated from 20 to 120°C. The required properties for E-glass/
€poXy are given in tables 2.2 and 5.3,

- A hybrid unidirectional E-glass/T-300.carbon/IMHS €poxy com-
posite is to be designed to have an overall longitudinal thermal
expansion coefficient of zero in order to insure the best possible

- thermal stability under varying service temperatures. It is also
required that in order to ensure that the material will be sufficiently

mmm}rm,\oﬁcgm @.momo:opﬁﬁ.moonmavos fibers is to be twice the
volume fraction of the E-class fihera (a) TTeimm e e r .
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FIGURE 5.20 m . )
Off-axis composite lamina fixed between rigid walls for EoEmB 5.13.

W tables 3.1 and 3.2 and neglecting voids in the Bm.ﬁmamr determine
| the required volume fractions of T-300 Q&uob Euﬂ..m msa,m-mﬂmmm
| fibers. (b) Assuming that the T-300 carbon fibers and m-mym.wm fibers
m : have approximately the same diameters, mﬂ& Emﬁ. the fibers are
packed in a triangular array, is the composite Qmmpmb of part (a)
feasible? : I
opic lamina has thermal expansion coe icients o, =
" WM@OMHWWWB@E /K and o, = 79(107%) 3\ m/K. Uﬂmi.ﬁﬁm (a) _%M
, angle 6 for which the thermal expansion owmmﬁﬁﬂ 0y = 0, m%
| (b) the angle 8 for which the thermal expansion coefficient o, has
its maximum value. N
16. A carbon/ epoxy lamina having the properties mmﬁm.m in EoEMH%
8 is clamped between two rigid plates as mrosﬁ in figure 5. _
If the lamina is heated from 20 to 120°C, determine the ﬁrmﬁ.:m
stresses associated with the principal material axes of the lamina. |

10
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l
Analysis of a Discontinuous
Fiber-Reinforced Lamina

6.1 Introduction

In chapter 2 to chapter 5, we have discussed the analysis of continuous
fiber-reinforced composites. The effects of fiber discontinuity or fiber
length on composite mechanical behavior were not taken into account in
these analyses since it was assumed that the fibers extended from one end
of the lamina to the other end. This chapter is concerned with the mechan-
ical behavior of laminae having discontinuous fiber or short-fiber rein-
forcement. -

Short fiber—reinforced composites are typically not as strong or as stiff as
continuous fiber-reinforced composites and are not likely to be used in
critical structural applications such as aircraft primary structures (but this
may change as the full potential of new discontinuous reinforcements such
as carbon nanotubes is realized). On the other hand, short fiber composites
do have several attractive characteristics that make them worthy of con-
sideration for other applications. For example, in components having com-
plex geometrical contours, continuous fibers may not be practical because
they may not conform to the desired shape without being damaged or
distorted from the desired pattern. However, short fibers can be easily
mixed with the liquid matrix resin, and the resin/fiber mixture can be
injection or compression molded to produce parts having complex shapes.
Such processing methods are also fast and inexpensive, which makes them
very attractive for high-volume applications. Composites having randomly
oriented, short fiber reinforcement are nearly isotropic, whereas unidirec-
tional continuous fiber composites are highly anisotropic. In many appli-
cations the advantages of low cost, ease of fabricating complex parts, and
isotropic behavior are enough to make short fiber composites the material
of choice. This has been especially true since the 1991 discovery of carbon
nanotubes (the “ultimate short fibers,” which are currently believed to be
the strongest materials that mankind is capable of producing), and much
attention has been directed to their use as reinforcement in composites.




208 Principles v\ Composite Material Mechanics

FIGURE 6.1 _
Types of discontinuous fiber reinforcement.
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@ Mwwown”g%%:zocm m_vwnw ® &mnwwmﬂ“,ﬂmcmm mvmnm , discontinuous fibers

Short fiber composites with three types of mwm.a Hmwﬁm.oHntmE will be
considered here, as shown in figure 6.1: aligned &mo.oamﬁoﬁm Eum.H.@ off-
axis aligned discontinuous fibers, and randomly o.EmEma discontinuous
fibers. Nanofibers and nanotubes can be cmm.m in any o.m these three
arrangements, but because of their extremely tiny dimensions, they are
most often randomly oriented in all three dimensions. Zﬁwosmv the Hmm.
domly oriented, short fiber composites are .ﬁ.rm most SHQQ%. used of the
three types, the development of the .ms.&ﬁ_n& models logically begins
with the simplest case — aligned short fibers. :

6.2 Aligned Discontinuous Fibers

FIGURE 6.2 - .
RVEs for aligned discontinuous fiber composite.

The analysis of the specially orthotropic aligned &mnoﬂmb:o:m. fiber com-
posite in figure 6.1(a) begins with the selection of a wmwﬁmmmﬂmﬁ:\m <o_c:.6
element (RVE) consisting of a short fiber embedded in a cylinder nm Bmgw
material, as shown in figure 6.2. Several models are based on the m.E%ES

(a) Matrix material included

at ends of fiber
]
Matrix
S A Eiber d | D (b) Matrix material not included
R at ends of fiber
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Before deformation

LT

After deformation

T

LTI

FIGURE 6.3

— Fiber S

Schematic representation of matrix shear deformation in a short fiber composite.
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RVE in figure 6.2(b), which does not include matrix material at the ends of
the fiber as the model in figure 6.2(a) does. Before beginning the analysis,

however, it is instructive to consider the geometry of deformation in the
RVE of figure 6.2(a). As shown by the grid lines before and after deforma-
tion in figure 6.3, the stiffness mismatch between fiber and matrix (Ef > Ey)
leads to large shear deformations near the fiber ends but no shear defor-
mation at the middle of the fiber. That is, if E; = E_, there is no mismatch
in stiffness between fiber and matrix, and no interfacial shear takes place.
As we will see later, the stress transfer between matrix and fiber occurs
primarily through interfacial shear, which is the greatest near the fiber ends.
On the other hand, the normal stress in the fiber builds from a minimum

at the fiber ends to a maximum at the middle of the fiber.

6.2.1 Stress and Strength Analysis

The above observations based on the geometry of deformation will now
be confirmed by considering the free-body diagram of a differential ele-
ment of the fiber from the RVE, as shown in figure 6.4. For static equilib-

rium of the forces along the x direction,

, . 2 2
Y E=(o 3@%:9%#?&%”0

“Where

L (61)

o¢ = fiber normal stress along the x direction at a distance x from end of

fiber
F, =force along the x direction
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Stresses acting on a differential element of fiber.

‘1 = interfacial shear stress at a distance x from end of fiber

. d = fiber diameter, a constant
dx = length of differential element
do; = differential change in stress o

Simplifying and rearranging the above equation, we get the differential
equation relating the rate of change of the fiber 59,,3& stress along the x
direction to the interfacial shear stress: . v

, do¢ _ 4t 6.2)
. dx d

Separating variables and integrating, we find that
.qs do; =2 ﬁax _ 63)
op & 0 g

It is commonly assumed that essentially all of the stress u.n,mzmmma from
matrix to fiber occurs by interfacial shear around the periphery of the
fiber, and that the fiber normal stress, 5o, which is Qm.smmmﬁma across the
ends of the fiber, is negligible. With this assumption, equation (6.3)

becomes
o umﬁa& 64)
dJo

Thus, if we want to determine the fiber stress, ¢, we must know Em
interfacial shear stress. T. as a function of the distance x. Two basic
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< o
g g
P 7, 4 G
@ L
@ %
Shear strain, y Shear strain, y
(a) Kelly-Tyson model (b) Cox model

FIGURE 6.5
Assumed stress—strain curves for matrix material in the Kelly~Tyson and Cox models.

approaches have been proposed, both of which are based on mmmgwmo:m_

regarding the behavior of the matrix material. Kelly and Tyson [1] assumed
that the matrix is rigid plastic, as shown in the stress—strain curve in
figure 6.5(a). Cox [2] assumed that the matrix is linear elastic, as shown in
figure 6.5(b). Both models are based on the assumption of linear elastic fibers.
We will consider both models, but it is convenient to use the Kelly-Tyson
model for illustrative purposes at this point. The Kelly-Tyson model is much
simpler than the Cox model because the interfacial shear stress, T, is every-
where equal to the matrix yield stress in shear, 7, Thus, for the Kelly-Tyson
model, the resulting fiber stress from equation (6.4) is now

-4
O¢ HM\@R

(6.5)

This equation tells us that the fiber stress varies linearly with the distance
from the fiber end, but we also know that the fiber stress distribution must
be symmetric about x = L/2. Since it has been assumed that 6, =6, =0
atx=0and, by symmetry, at x = L, the fiber stress distribution and the
corresponding shear stress distribution must be as shown in figure 6.6. The
stress distributions in figure 6.6 are actually valid only for fibers having
lengths less than a certain value, as we will see later. The maximum fiber
stress for such a fiber occurs at x = L./2 and is given by

2l 6

N[

4
Of max= N ‘d<

The maximum fiber stress cannot keep increasing indefinitely as the fiber
length L is increased, however. If the fiber is assumed to be elastic, Oy pax
cannot exceed the value Eq6,, /E;, which is the fiber stress in a continuous
fiber composite under longitudinal composite stress, 6 (recall sec. 3.2.1).
Thus, as O max approaches the limiting value Enc.. /E:, the fiber lenoth. I.
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ﬂ%ﬁmg of interfacial shear stress, T, and fiber normal stress, o;, with &mﬁmbnm along the

fiber according to the Kelly-Tyson model. :

”

i the “ineffective lengt
roaches a value L, which has been referred 6 as .
ﬂmmwoﬂ the “load qgwm@n length” [4]. The equation for L; is therefore

L, = 3aCa - 67)
! Na.ﬁxmw
The effect of increasing fiber length on the fiber stress and shear mw,,mmm
distributions is shown graphically in figure .m.u . Note that no Emﬁ.mm o%
long the fiber is, the load transfer between fiber and matrix @%TSM ue o
the interfacial shear stress, T) only occurs over the Hmdm.%\ L;. The leng

(O (

Lx
;
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ﬂ m

GURE 6.7 o L )
m_mmoﬁ of fiber length on stiess distributions along the fiber according to the Kelly-Tyson

model.

Analysis of a Discontinuous Fiber-Reinforced Lamina 213

L, has been referred to as the “ineffective length” because the fiber stress
is less than its maximum value for this portion of the fiber. The term “load
transfer length” comes from the fact that the load transfer between fiber
and matrix only occurs over this portion of the fiber. Although these
results are for the Kelly-Tyson model, similar results are obtained from
the Cox model.

Another limiting value of the fiber stress occurs when Gy iS equal to

the fiber tensile strength, s4". In this case, the applied composite stress
is such that

E |
10q = Ofmax = mD?V A&.mv
E,

The corresponding fiber length now becomes I, = L, where L, is referfed
to as the “critical length.” For this condition, substitution of equation (6{8)
in equation (6.6) yields the equation for the critical length as

S dsg™®

L= ;
2, (6.9)

The critical length has important E%:ommobm for the calculation|of
longitudinal composite strength. Recall from equation (3.19) that the avir-

age longitudinal composite stress for loading along the fiber direction| is
given by :

{

q& = WD.S + WE&QB ANLGV

Then equation (4.21) for longitudinal composite strength of a continuolus
fiber—reinforced lamina was developed from equation (3.19) by assuming
that the continuous fibers were uniformly stressed along their entjre
lengths, and that the fibers failed before the matrix when the average fiber
stress Gy reached the fiber ‘tensile strength sy, However, in the case of
discontinuous fibers, it should be clear from the previous developments
in this section that the fibers are not uniformly stressed along their entife
lengths, and that the fiber length must be taken into account. For the
discontinuous fibers, the average longitudinal fiber stress in mm_cmﬁﬁ_s
(3.19) may be found from

L/
‘ ._. oudx , X
o — Y0 : R )
Oy = L/2 | Am.H@

T
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Alternatively, equation (6.9) can be rearranged to give the interfacial
shear strength, 1,, corresponding to the critical length

." A |
Evaluation of this integral depends on Em fiber length. F.og figure 6.7,

it can be seen that for L <L, the fiber stress varies linearly with x as

.W ds DE

Yor,

_OrmeX, (6.11) T (6.16)
O L/2

]

i

This equation has been used by Drzal et al. [5,6] and others to determine
the interfacial shear strength from measurements of critical length. In such
an experiment, a specimen consisting of a single fiber embedded in a strip
of translucent matrix material is mounted under a microscope and then
subjected to an increasing tensile load. Once the fiber stress reaches sa™,
the fiber breaks up into segments having a statistical distribution about
the critical length, L, and the corresponding statistical parameters describ-
ing the interfacial shear strength are calculated using equation (6.9).

and equation (6.10) meoamm

L/2
X/ (Li/2 dx
R

Oy =

whereas for the case L 2 L;, the corresponding average stress is

L2 6.2.2  Modulus Analysis

:\N o
[0t maxx/(Li/ Mv_%;‘_. O max L: Expressions for the longitudinal modulus of the aligned discontinuous
0 Lipy = 1—=- |t max AOva

fiber composite can be found using either the Kelly-Tyson model or the
Cox model, but only the derivation of the Cox model, extended further by
Kelly [7], will be discussed here. A similar model, which is often referred
to as a “shear lag” model, was developed by Rosen [8]. For the RVE of
figure 6.2(b), recall from mmsmaos (6.2) that the rate of change of the axial
load in the fiber with respect to distance along the fiber is a linear function
of the interfacial shear stress. Cox further assumed that the interfacial
shear stress is proportional to the difference between # and v, where  is
the axial displacement at a point in the fiber and v is the axial displacement
the matrix would have at the same point in the RVE with no fiber present.
Thus, the rate of change of the fiber axial load P is given by

Gn = L/2 2L

It should be kept in mind here that L is the variable fiber length and I
is the specific value of fiber length over which load ﬁmsmmmwa takes Hv_mmm.
Therefore for the specific case of fiber failure and corresponding MOBﬁOm%m
failure, substitution of the conditions G¢max = $1'" , G =51 , O = )
and L; = L. along with equation (6.12) in equation (3.19) gives the longi-

tudinal composite strength as

S E?VH.
2L,

5 = V¢ + 5 P(1—vg) for L<L, (6.14)
| % =H(u—-v) (6.17)
while similar substitution of the conditions G pax = sn”, Ga =511, 6=

Smir™, and L; = L. along with equation (6.13) in equation (3.19) gives the

where H is a @.Howoﬁmobm:q constant to be determined from geometrical
longitudinal composite strength as

- and material property data. Differentiating equation (6.17) once, we find that

d’P _ (du dv B p
Rt el e v

s M =|1— W[M $aPv¢ +5mn ™ (1—v¢) for L>L, (6.15)

e (6.18)

It has been assumed in equation (6.14) and equation (6.15) that the average where the expression

stress in the matrix at fiber failure is Gm =S8ma'™ in monoam.som with
figure 4.9(a) and equation (4.21). Note that, when L > L, equation (6.15)
approaches equation (4.21) for continuous fibers.

du_ P
dx Ay
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is taken from elementary mechanics of 5&3&5 and

— =g

|
7
dv :
dx ,

is the matrix strain with no fiber present. .
Equation (6.18) can be rearranged in the standard form of a second-
order differential equation with constant coefficients as :

%luwmu[mm S (6.19)
where

H
2 _
P AEg

The solution to equation (6.19) is of the form
P=P,+B, o (620)

where
P, = particular solution = AEqe
P, =homogeneous solution = R sinh x + S cosh Px

The coefficients R and S must be determined mnoB._&m. _u.ocbm.mQ con-
ditions P = 0 at x = 0 and x = L. After using trigonometric identities and

further manipulation, the resulting fiber stress is

P

1‘;%% 62

A cosh(0.5BL)

The average fiber stress is then

H\N
]. % A:gx ﬁz;g@h\va mwg
olh\m:lxnmnm_HHImh# A.
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From the equilibrium of the composite for longitudinal loading, recall
the rule of mixtures for stress (eq. [3.19]), which is also valid for the RVE
of figure 6.2(b):

W& = mwﬂ‘cm + WSCS Am.va

Substituting equation (6.22) in equation (6.23), dividing equation (6.23)
by e, assuming that the applied composite stress produces a strain, e, in
composite, fiber, and matrix, and using Hooke’s law for composite and
matrix, we find the equation for the longitudinal modulus of the Cox
model:

tanh(Pr,/2) T + EpUp, (6.24)

BL/2

Eq=Ey T -

Note that the assumption of equal strains in fiber and matrix here does
not violate the original assumptions about # and v being different,
because v is the displacement in a piece of unreinforced matrix material,
The term inside the brackets represents the effect of fiber length on the
composite modulus.

The parameter B in the above equations and the interfacial shear
stress, T, can be determined by considering the shear strain in the matrix,
as shown by Kelly [7]. The results are

221Gy,
p*= AEq In(D/d) (625)
and
_ dEqeB [ sinh[(0.5L. - x)]
=y ﬁ cosh(0.5pL) g (629

where G,, is the matrix shear modulus and D is the outside diameter of
the RVE, as shown in figure 6.2. The predicted variations of the fiber
stress and the interfacial shear stress from the Cox model when the fiber
length L < L; are shown schematically in figure 6.8. Notice the difference
between these stress distributions and the ones from the Kelly-Tyson
model in figure 6.6. For the Cox stresses evaluated at the midpoint of the
fiber (x = L/2), as L— L;, the term in brackets in equation (6.21) appro-
aches the value 1.0, whereas the term in brackets in equation (6.26) appro-
aches zero. ,
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FIGURE 6.8 . . - .
Variation of interfacial shear stress, T, and fiber normal stress, o;, with distance along the

fiber according to the Cox model.

Another variation on the Cox model was developed by Gibson et al.
[9], who used the Cox stresses, 6; and 7, in a strain Bm?.om m.ﬁbzma to that
outlined in equation (3.24) and equation (3.25). The Mosm:s&b,m_ _Bo&:._cm
calculated by the energy method was found to agree closely 2:7. equation
(6.24), and the predicted variation of Ec; with fiber aspect Hmco\ L/, is
shown for several composites in figure 6.9. Notice that as the fiber Hm.bmﬁr
L —> o0, Ecy — EqV¢ + EyOm, and that as L — 0, Ec; — EnOp. Itis also Eﬂﬁ.
esting to see that the fiber length does not have to be very large relative
to the fiber diameter in order to bring the modulus E, very close to the
limiting value given by the rule of mixtures.

100 : 3
- 2
10 w 1
S
rmw i Energy model, vy= 0.5
1 1. Glass-epoxy. Ef/E,, = 19
E 2. Graphite-epoxy. E//E,, = 104
- 2. Whisker-epoxy. E/E,, = 182
0.1 Pl v_ 1ol _ 1l ol L

10 102 103 104 105
Fiber aspect ratio, L/d

FIGURE 6.9 . .. .
Variation of modulus ratio, Eci/En, with fiber aspect ratio, L/d, for mm<9..& 8&%8:%.
(From Gibson, R.E, Chaturvedi, S.K., and Sun, C.T. 1982. Journal of Materials Science, 17,
3499-3509. Reprinted by permission of Chapman & Hall.)
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8 Analytical data from finite element method .
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FIGURE 6.10

Predicted shear stress distributions along the fiber from finite element analysis and the Cox
model. (From Hwang, S.J. 1985, Finite element modeling of damping in discontinuous fiber
composites. M.S. Thesis, University of Idaho, Moscow, ID. With permission.)

Although the Kelly-Tyson model and the Cox model both provide
valuable insight into the concepts of load transfer, fiber length effects,
and strength and modulus analysis, neither model accurately predicts
the stress distributions. For example, more recent results from finite
element analyses [10,11] and experimental photoelasticity [7,12,13] indi-
cate that both the magnitude and the rate of change of the interfacial
shear stresses near the end of the fiber are much higher than those
predicted by the Kelly-Tyson or Cox models. A typical comparison of
predicted shear stress distributions along the fiber from finite element
analysis and from the Cox model is shown in figure 6.10. The finite
element predictions of Sun and Wu [11] also showed good agreement
with experimental photoelasticity results. Finite element analyses have
also been used to study the effects of different fiber end shapes on the
stress distributions [10,11]. , .

It is important to remember that both the Kelly-Tyson and the Cox
models were derived for the RVE in figure 6.2(b), which does not include
matrix material at the ends of the fiber. One result is that the actual
modulus values are lower than predicted by equation (6.24). For example,
the experimental results of Suarez et al. [14] on aligned discontinuous
graphite/epoxy composites having various fiber aspect ratios, L/d, are
shown in figure 6.11. The experimental modulus data at different fiber
aspect ratios in figure 6.11 were obtained from the test specimens shown
schematically in figure 6.12, which were manufactured using conventional
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FIGURE 6.11

Comparison of measured and predicted (Cox model) longitudinal moduli of aligned dis-

i i i i ios. (L/d)eg = L/d. (From Suarez,
i fiber graphite/epoxy for various fiber aspect ratios. ( d)e :
MOMHSMMMML .MM.W: mE& Om.\ M:ne Chaturvedi, S.K. 1986. Experimental Mechanics, 26(2),

175-184. With permission.)

unidirectional prepreg tape that had been cut at intervals of Hm_bmwww W
before being processed with a standard wﬁo&mﬁ-m.ﬁﬁm cure eycle. i
measured moduli are seen to be well below the predicted curve WOB m
Cox model. In order to shift the predicted curve to match «%m mxﬁm.ﬁgmﬂm
results better, Suarez et al. introduced the concept of an ;mmmnﬁ:\m iber

Unidirectional laminate made

from prepreg tape cut with a
knife at intervals of length L

FIGURE 6.12 . o
Aligned discontinuous fiber composite test specimen fabricated from unidirectional Em?mm

tape cut at intervals of length . before curing. !
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aspect ratio,” (L/d).s, which would account for the fact that the reinforce-

ment was not a single fiber but, rather, a bundle of fibers having an aspect
ratio lower than that of a single fiber.

The effective fiber aspect ratio is defined as

(L/d)os = Z(1./d) 627)

where Z is a curve-fitting parameter that accomplishes a horizontal shift
of the curve of E, versus L/d. Before the horizontal shift, the predicted
curve was shifted vertically by using a reduced fiber modulus to account
for possible degradation of fiber properties or fiber misalignment during
fabrication. The results of vertical and horizontal shifting of the graphite/
epoxy curve of figure 6.11 are shown in figure 6.13, and the agreement is
very good. Similar results were reported for aramid/ epoxy and boron/
epoxy. This approach did not take into account the matrix material
between the fiber ends, however.

Hwang and Gibson [15] studied the effect of the fiber end gap on the
composite modulus by using both finite element analysis and a modified
Cox model. The modified Cox model consists of the Cox model (fig. 6.2[b])
with one piece of matrix material attached on each end, as shown sche-
matically in figure 6.14. Following the development of equation (3.36) for
the series arrangement of elements under longitudinal stress, with the

40 [T LA B A
I Graphite epoxy specimens 4
[ Fiber volume fraction 0.654 ]

30f - %
S ;
Yook ]
&) s 4
N - Legend 4
” = Corrected force-balance approach]
10k (parameter for L/d = 0.03) -
[ 0 Mean experimental values ]
- I Experimental scatter 1
0 £ 2 2 vaesf t TR WY | A r.a v v wea) - £ k. X K 400

1E + 001 1E+ 002 1E + 003 1E + 004 1E + 005

Fiber aspect ratio, L/d

FIGURE 6.13 .
Comparison of measured and predicted (Cox model corrected for fiber aspect ratio) longi-

- tudinal moduli of aligned discontinuous fiber graphite/epoxy for various fiber aspect ratios,

(L/d)eg = 0.03L/d. (From Suarez, S.A., Gibson, R.E, Sun, C.T,, and Chaturvedi, S.K. 1986.
Experimental Mechanics, 26(2), 175-184. With permission.)
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FIGURE 6.14

. Modified Cox model including matrix material at ends of fiber. (From Hwang, S.J. and

Gibson, R.E. 1987. Journal of Engineering Materials and Technology, 109, 47-52. Reprinted by
permission of ASME.) '

assumption of equal stresses in each element, the modified Cox modulus
is

1 Vo1 Om h\@.+mv+m\9+$

==

Evar Eai En Ex E.

(6.28)

where
Eyier = longitudinal modulus of the modified Cox model
Ve = volume fraction of the Cox model in the modified Cox model
L=length of the Cox model : ,
e = distance between fiber ends in the modified Cox model
L+ e = length of the modified Cox model

Figure 6.15 shows a comparison of predictions from a finite element
model and the modified Cox model, with experimental data for boron/
epoxy. Micromechanical predictions using the finite element. method
(FEM) in figure 6.15 were obtained using quarter domain models from
RVEs of discontinuous aligned composites, as shown schematically in
figure 6.16. The moduli of the finite element models having different fiber

aspect ratios, L/d, and abutting fiber end separations, e, were calculated
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Mﬂowwmmimos of Em&oz.ozm from the modified Cox model and finite element analysis with
perimental data for boron/epoxy aligned discontinuous fiber composite at different fiber

aspect ratios. (From Hwang, S.J. and Gibson, R.F, 1987 j
, S.J. , R.E . Journal g ‘i
Technology, 109, 47-52, Reprinted by permission of >m§m.v o of Enineering Materils ond

m%zm an m@:mm.os similar to equation (3.58) and a procedure similar to
at described in thé discussion of equation (3.58). The modified Cox

Representative volume element

T
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=1 —f £

Quarter domain finite element mesh

FIGURE 6.16

ﬂzmzﬁ domain finite element model from RVE of discontinuous aligned fiber composite,




224 Principles of Composite Material Mechanics

Enm:&b [16] has proposed a modification of the Halpin-Tsai equations

(recall sec. 3.5) as another approach to mmﬁgmﬂbm the longitudinal mod-
ulus of the aligned discontinuous fiber composite. The proposed equa-
tions are |

! E _ 1+8nv¢

. B _ (6.29)
En 1-mu:
where
(Ea/Em)-1 (6.30)

n= AME\NBV.TMM

and the suggested value of the curve-fitting parameter is m = 2L/d.
Figure 6.17 shows that the predictions from these equations give good
agreement with experimental data. Halpin also .noﬁoEamm that E,, Gy
and v, are not significantly affected by ‘.%m fiber Hm.bmmp SE. Thus,
equation (3.59) and equation (3.60) for E, in the owbﬁ.ESOcm mm.cma case
can also be used for the discontinuous fiber case. mEE.mH equations can
be used for G, as described in section 3.5, and equation (3.41) can be
used for v,,. . . o

Other micromechanics equations for predicting mﬁmsmm.m of _E&aqmn-
tional short fiber composites are summarized in the review article by
Tucker and Liang [17].

HOm: T TTVTY Y T T TTTVITT T
- Halpin-Tsai equation m
R Y ]
Z 10tp g =035 E
& : ‘ E 3
- Lr_gy .
N — E, 97.3 :
| Nylon/rubber
HOw Aot .3 13veed NI AR RES | Ll A LB A4L R
0 10 10? 10

Lid

17 . .
MMMHMmMoM of longitudinal modulus on fiber aspect ratio mm.x, aligned &mnoaub&ocm fiber
nylon/rubber composite. Predictions from Halpin-Tsai mn_.:m.nosm. are compared with mv.%mm
imental results. (From Halpin, J.C. 1969. Journal of Composite Materials, 3, 732-734. Reprinted
by permission of Technomic Publishing Co.)
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EXAMPLE 6.1

An aligned short fiber carbon/epoxy composite is to be fabricated so that it behaves
as a continuous fiber composite with a composite modulus of E; = 80 GPa. The
0.01-mm-diameter fibers have a modulus of elasticity Ey = 240 GPa and a tensile
strength mﬁi.u 2.5 GPa. The epoxy matrix can be assumed to be a rigid—plastic
material with a yield strength of 20 MPa in shear. Determine (a) the fiber length
necessary to just reach the “continuous fiber stress” at the midpoint for a com-

posite stress of 50 MPa and (b) the fiber length and the composite stress necessary
to develop the ultimate tensile strength in the fiber.

Solution. (a) The “continuous fiber stress” is

Ot max = EOGa \MHH N#OAmOv\mO =150 MPa

and the corresponding fiber length from equation (6.6) is

L = dG¢maex/27,= 0.01(150)/2(20) = 0.0375 mm

(b) The fiber length corresponding to a fiber stress sq™ is \a::&w\%: equation (6.9):

Lo =do™ /21, = 0.01(2500)/2(20) = 0.625 mm

and the corresponding n,ob%om,.:m stress is
Ca =E04™" /En =80(2.5)/240 = 0.833 GPa = 833 MPa

EXAMPLE 6.2

The RVE for an aligned discontinuous fiber composite is shown in figure 6,14,
Assume that the composite part of the RVE has length L and longitudinal
coefficient of thermal expansion o, while the matrix material has total length e
and longitudinal coefficient of thermal expansion o, Develop a micromechanical

equation for predicting the effective longitudinal thermal expansion coefficient,
Oy for the RVE, which has a total length L +e.

Solution. The overall thermal deformation of the RVE along the fiber direc-
tion due to a temperature change AT is given by

Bttt = Otege (L+ €)AT

~ But for the series arrangement of the composite and matrix, geometric
compatibility requires the total thermal expansion to be

Opoa1 =8¢ +8p, = 0l LAT + OlmeAT
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where ]
8. = thermal deformation of composite part

; ,
J,, = thermal deformation of matrix part |
m

Equating the above :Wzo expressions for the total ﬁTmHBm_.Qmmop.ﬁwﬁ.oﬁ WMM
mnm_ibm. for o it is séen that the effective thermal expansion coefficien
el N v

the RVE is |

:
6.3 Off-Axis Aligned Discontinuous Fibers

6.3.1 Stress and Strength Analysis

ic ali i in fiber composite can be
Ily orthotropic aligned &mnoscch:m. :
MM%MMMMMM%%%&%@Q by using the RVE mroés in wmcam 6.18, M\MMW %M
short fiber is oriented at an angle with the loading axis. Ow.ﬁoﬁ Mﬂr ' Sun 119
used this RVE to develop a generalized shear-lag analysis o _
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FIGURE 6.18

. . Journal 9
RVE for an off-axis short fiber composite. (From Chon, C.T. and Sun, C.T. 1980. Journal of

issi 11
Materials Science, 15, 931-938. Reprinted by permission of Chapman & Hall.)
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Variation of interfacial shear stress and fiber normal stress along the fiber for the Chon-Sun
model at various off-axis angles. (From Chon, C.T. and Sun, C.T. 1980. Journal of Materials
Science, 15, 931~938. Reprinted by permission of Chapman & Hall,)

short fiber composite. Only the key results will be summarized here as
the equations are quite lengthy. The predicted variations of the interfacial
shear stress and the fiber stress with the distance along the fiber for various
angles are shown in figure 6.19. Note that the results from the Cox model
(recall fig. 6.8) are recovered for the case of ¢ = 0° and that the stress
distribution curves are just shifted up or down as the angle o, changes.
Maximum values of shear stresses and fiber stresses normalized to the

applied composite stress are shown for various angles o in figure 6.20. It

is seen that the maximum interfacial shear Stress, Tmay, Occurs at some off-
axis angle, that T, decreases with increasing F;/G,,, and that the angle

| corresponding to Tmax INCreases with increasing E;/G,,. Thus, the maxi-

mum interfacial shear stresses according to the Kelly-Tyson and Cox
models are only maximum values for the case of a=0° On the basis of
these results, Chon and Sun sucgest that if filor £ailoen S o1 . ..
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FIGURE 6.20 .

i i i i fiber stress with off-axis angle
jation of maximum interfacial shear stress and maximum : .
MM_H%M Chon-Sun model. (From Chon, C.T. and Sun, C.T. 1980. Journal of Materials Science,
15, 931-938. Reprinted by permission of Chapman & Hall.)

i mode, the matrix should be modified to reduce the S.ﬂo of E¢ /G,
Wﬂﬁ:wm failure is due to interfacial shear, E¢/Gy, shotld be Enummmma. In
more recent work, finite element analyses of om..mxwm short fiber compos-
ites, including the effects of fiber angle and fiber end geometry, were

ed by Sun and Wu [11]. . .
OOMMMMHFQOW of the off-axis strength of an aligned &mn.oE:.Eo.:m DWMH.
composite can be accomplished by oosmamé:m the o.m.mxﬂm uniaxial HomH -
ing situation in figure 4.4, where the fibers are me.nosn.bﬁo:m. m.oH mxmﬁw ¢
if the corresponding off-axis stress state described in m@cmﬁonm,ﬁ. :m
substituted in the Tsai-Hill criterion (eq. [4.14]), the result for the off-axis

strength is

-1/2 :

cos*® 1 1 sin* 0

o, = 7| =~ |sin*Ocos?0+=—; ‘ (6.31)

Sy, S St St
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In the evaluation of such equations for discontinuous fiber composites, it
is often assumed that only the longitudinal strength, s;, depends on fiber
length, and that the other strengths are essentially independent of fiber
length. In this case, depending on whether the fiber length is less than or
greater than the critical length, either equation (6.14) or equation (6.15) can
be used to estimate g, ("), while the other strengths can be estimated using
the micromechanical models for continuous fiber composites described in
section 4.3, .

6.3.2 Modulus Analysis

Elastic constants for the off-axis aligned discontinuous fiber composite
may be estimated by using equations developed earlier in this chapter
and in chapter 2 and chapter 3. Following the procedure outlined by Sun
etal. [19] and Suarez et al. [14], the Cox model (eq. [6.24]) is used to find
the longitudinal modulus along the 1 direction. The transverse modulus,
E, the in-plane shear modulus, G;,, and the major Poisson’s ratio, vy,, are
assumed to be independent of fiber length [16,17] and are calculated using
the micromechanics equations developed in Chap. 3. The off-axis modu-
lus of elasticity, E,, is then found by substituting the Cox modulus, E,,
for E; in the transformation equation (the first of eq. [2.39]), along with
the calculated values of E,, Eip, 1y, and 6. The other off-axis properties m%
Gy, and v,, are found by using a similar approach. The resulting set of
equations is of the form’

E. = fi(Ec1,E5,Gyz,v12,0)
E, = fo(Ec1,E;,Gia,v15,0) v
(6.32)
Gy = fa(Ec1, B, Gz, v12,0)
o Uxy = fa(Ec1, Bz, Gra, v1, 6)

A comparison of the predicted off-axis modulus, E,, for graphite/epoxy
with experimental values for various angles, 0, is shown in figure 6.21. It
should be mentioned that the good agreement between theory and exper-
iment seen in figure 6.21 was not possible as long as the fibers were
assumed to be isotropic. Once the orthotropic nature of the graphite fibers
was taken into account (i.e., Ey >> Ep), the agreement between theory and
experiment improved significantly. The same analysis was used to generate

atridimensional plot of the off-axis modulus, E,, versus the fiber aspect ratio

and the fiber orientation, as shown in figure 6.22. Due to the assumption
that E,, G}, and vy, are independent of. the fiber aspect ratio, L/d has little
effect on the calculated E, for fiber orientations other than fhoge near 6 - 1o
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FIGURE 6.21 . .
i -axi E.., for graphite/epoxy.
i f predicted and measured off-axis Bomc:mm ratio, E,/En, . .
muoﬂwb%mmﬂwww%ww.\ Gibson, R.E, Sun, C.T., and Chaturvedi, SK. 1986. Experimental Mechanics,
26(2), 175-184. With permission.)

\ i i i i h required to attain the
As shown in the previous section, the fiber .Hmsmﬁ .
maximum composite stiffness at 6 = 0° is quite small. ﬂ.Em\ the H&mﬁ:\&w
low stiffness of practical short fiber composites is more likely to be cause
by the off-axis orientation of the fibers than by the short length opn_ the fibers.
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URE 6.22 . . . .
M“mmgmsmwoﬁm_ plot of E./En as a function of fiber aspect ratio and fiber oE.mEmSOMWMM ]
graphite/epoxy. (From Suarez, S.A., Gibson, R.E, m.:b\ C.T.,, and Ormﬁsz.mar SK. .
Experimental Mechanics, 26(2), 175-184. With permission.)
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Another important factor that should not be overlooked is the fiber volume
fraction. In most short fiber composites, the maximum fiber volume frac-
tion is quite low due to processing limitations. That is, the viscosity of the
fiber/resin mixture must be kept below a certain limit for proper flow
during the molding process. All these conclusions have important impli-

cations for the behavior of randomly oriented short fiber composites, which
are discussed in the next section.

N

6.4 Randomly Oriented Discontinuous Fibers

If the fiber orientation in a composite is truly random in a 3-D sense, the
composite exhibits 3-D isotropy. Such a situation is likely to exist when
the fiber length, L, is much less than the thickness of the part, £, as shown
in figure 6.23(a). Composites with low aspect ratio reinforcement such as
whiskers, microfibers, and nanotubes generally fall into this category.
However, in many short fiber composite parts (e.g., panels made from
sheet-molding compounds or resin transfer moldings), the fiber length is
much greater than the thickness of the part, as shown in figure 6.23(b). In
this case, fiber orientation in the thickness direction is not possible, and
the material exhibits 2-D isotropy or planar isotropy. The analysis of both

Jﬁmmo?:mﬂmim_msﬁ:um&mocmmmmbmmm\vc:rm emphasis will be on the
2-D case. ’ ,

' 6.4.1 Stress and Strength Analysis

The use of geometric averaging techniques for analyzing randomly ori-
ented fiber composites has been introduced in example 2.5, and models
for predicting strength and modulus of such composites are typically based

(a) Fiber length is less than
thickness of part, so fibers
are randomly oriented in
three dimensions,

(b) Fiber length is greater than
thickness of part, so fibers are
randomly oriented in only
two dimensions.

FIGURE 6.23 ,
3-D and 2-D random orientations of fibers,
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os,m<mamm5m. For example, Baxter [20] QmW&o@mQ a model for predicting

the strength of randomly oriented m_omTHm.EmoHnm.a metal matrix compos-
ites by mdwwmammwsm the Tsai-Hill equation for off-axis strength (eq. [6.31]) as

._:nqx%
0o L (6.33)

G,= o

Numerical mammnmm“os was employed, since the d‘;mmnmw could not _um
evaluated in closed form. The model was :mmm. to mmS._o:mﬁ upper msw
lower limits of composite strength. The composite longitudinal mﬁmswﬁ
was estimated from equation (6.14) or equation .Am.HmV\ and the oHM Mm..
strengths in equation (6.31) were estimated according:to the most likely

i odes. o
mmﬂMMM WS assumed that the angular Qm@msams.nm of the failure mﬁmmm\ o,
for such a material under uniaxial off-axis loading could be described by
using the Maximum Stress Criterion. Lees also -assumed m:.& ﬁ.rmam mHM
three failure mechanisms according to the Maximum Stress Q.:mﬁo?. eac H
operating over a range of angles as follows [recall egs. (4.3) for uniaxia
off-axis loading]:

)

for0<0<6, O, = mwn (longitudinal tensile failure)
I cos” 0
Sir . . .
== (interfacial shear failure)
mOH..®HM®M®N~ Oy SnBcoso A
: for0,<0<m/2, 0,= st (transverse tensile failure)
| ST EERES S T nTe
m |
| where
() e
cotf =L and tan@, =T
Srr SLT

For the case of the randomly oriented fiber composite, Lees assumed
that the average strength over all angles is given by

i 2 o)
~ N 01 62 mH..H. Q.@ 4+ '_I m.H
O:=7 4_.., oOm~¢&®+._.9 sin®cos 6 o, sin’0

s

e,  (6.34)
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After integrating and using equation (4.21) for s; ™ for continuous fibers,
and then making some simplifying approximations, Lees found that

(+) (+)
S P ) (6.35)

Sir

o 28
QR ~ LT

1+
T Smfl

where s, is the B_maix stress corresponding to the fiber failure strain.
The same approach was later taken by Chen [22], who included a strength

efficiency factor, Y, to account for discontinuous fibers and obtained the
equation,

- 2811
&, = 25
i

(+)g (+)
b Ly (6.36)

2+In
' Str

Lees and Chen both reported reasonable agreement of their predictions
with experimental data.

Another approach suggested by Halpin and Kardos [23] is based on
the assumption that the strength of a randomly oriented fiber composite
is the same as the strength of a quasi-isotropic laminate of the same
material. Quasi-isotropic laminates, which are laminates of certain stack-
ing sequences that behave in a planar isotropic manner, will be discussed
in chapter 7 on laminates, Halpin and Kardos reported that the quasi-
isotropic laminate model with the Maximum Strain Criterion for lamina

failure gave good agreement with experimental data for a glass/epoxy
composite [23].

6.4.2 Modulus Analysis

One major conclusion from section 6.3.2 was that fiber orientation is more
important than fiber length in the determination of off-axis elastic constants
of unidirectional nosﬂ:uoﬁﬁmm. Further support for this conclusion is pro-
vided by the observation that continuous fiber models give reasonably
accurate predictions of elastic properties of randomly oriented fiber—rein-
forced composites. The concept of averaging the elastic constants over all
possible orientations by integration was apparently introduced by Cox [2],
who modeled paper as a planar mat of contintous fibers without matrix
material. The Cox formulas for the averaged isotropic elastic constants of
random arrays of fibers are given here for later reference, but they are not
considered to be accurate enough for design use. For the 2-D case,

Efv I
”W 7’

Ervg

E= Eror,
8

G= V=

(6.37)

1
3
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i
|
\
|

and for the 3-D case,
mm\CL

— 6.38
£, (6.38)

\ z _ mmd £ = . W
- E =76 G= V= 1
where "

E = averaged Young’s modulus for randomly oriented fiber composite
G = averaged sheatr modulus for randomly oriented fiber composite
V = averaged Poisson’s ratio for randomly oriented fiber composite

i

Nielsen and Chen [24] used the averaging concept, along with micro-

mechanics equations and transformation equations for a unidirectional .

continuous fiber—reinforced lamina, to analyze a planar isotropic composite.
The geometrically averaged Young’s modulus, which is assumed to be
the same as the in-plane Young's modulus of the isotropic composite, is
given by . ,
n
E.d® .
E=-0 S (6.39)

b9

0

where the off-axis Young’s modulus, E,, is defined by the first of egs.
(2.39), and the angle is defined in figure 2.6. Nielsen and Chen used a set
of micromechanics equations for a unidirectional continuous fiber com-
posite to calculate E,, E,, Gy, and v;,. Figure 6.24 shows that the averaged

EJE, =1
H.o_ i

0.8 AN\ EjlE, =5

Modulus ratio, £/E;

0.6

0.4

0.2

EjIE,, = 100

i 1 ! |
0 01 02 03 04 05 06 07 08 09

Volume fraction of fibers, Ur

FIGURE 6.24

Dependence of modulus ratio, E/Ey, on fiber volume fraction for several values of E/E,
from Nielsen—-Chen model. (From Nielsen, L.E. and Chen, P.E. 1968. Journal of Materials, 3(2),
352-358. Copyright, ASTM. Reprinted with permission.)
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modulus for the randomly oriented fiber composite is much lower than
wrm corresponding longitudinal modulus, E;, for most practical compos-
ites. mﬂnm the analysis is based on a continuous fiber model, the predicted
reduction in modulus is due to fiber orientation, and not to fiber length
The equation that Nielsen and Chen used for E, was known to give <m~:mmw
lower than measured values, so the predictions of equation (6.39) were
also lower than the corresponding experimental values.

. The evaluation of equation (6.39) requires the integration of the expres-
sion for E, given by equation (2.39), which is quite cumbersome. The
integration is much simpler if the invariant forms of the transformed

lamina stiffnesses are used. For example, the averaged value of the trans-
formed lamina stiffness Qu is given by

J ._. Qnde ._.o [U; +U, cos 0+ U cos 46]d6

Gu =1 _
11 ._.amm a =U; (6.40)
0

Similarly,
Qu=U;, Qn= 05 =Uy, 0& =(U1-Uy)/2, @a = @R =0
and the stress-strain relations for any set of axes x,y in the plane are
Oy :H :» -0 Ex
oy e=lUy Uy 0 €y (6.41)

Tay 0 0 Ui-Uy/2 ||y

Since this is an mmoﬂowmo material, we can write

E —

.D:HEHHH,IQNHDNN

% VE

Qu=Us= _2 . (6.42)
- E u,-u

=G=—= Y1ty

Koo 2(1+79) 2

Tsai and Pagano [25] and Halpin and Pagano [26] have obtained the

same results by using invariant concepts along with aiasi-icoftranie
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laminate theory, which will be discussed Tﬁmh Solving these equations for

the isotropic engineering constants, we get : ‘
: TS ”

) |

(U~ UL (U +1,)

(6.43)

1

Using the equations relating the invariants in eqs. (6.43) to the engineer-
ing constants E;, E,, Gy,, and v, for the orthotropic lamina (recall eqs. [2.44]
and [2.27]), Tsai and Pagano [25] also developed the following approximate
expressions: : .

1
8 4

These equations, along with the Halpin-Tsai equations for E; and E,
were used to estimate the elastic moduli of randomly oriented boron
fiber-reinforced epoxy, and the results compare favorably with experi-
mental results (fig. 6.25). Manera [27] also got good agreement with exper-
imental results by using equations (6.43) with a different set of
micromechanics equations for E;, E,, Gy, and vy,.

Christensen and Waals [28] also used the averaging approach to find
the isotropic elastic constants for continuous fiber composites with 2-D
and 3-D random fiber orientation. This appears to be the first published
report of the analysis of a composite with 3-D oriented fibers, although
Cox [2] derived equations (6.38) for the case of fibers without matrix
material. Only the 3-D analysis of Christensen and Waals is summarized
here, since the 2-D analysis is quite similar to those that have already been
discussed.

For the 3-D Christensen-Waals analysis, the spherical coordinate system
shown in figure 6.26 is used. An orthotropic, transversely isotropic com-
posite with fibers oriented along the 1 direction is subjected to an arbitrary :
normal strain such as €43 along the 3’ direction. For the purpose of the
analysis, the 3 axis is taken to be in the 1’2’ plane. The basic premise of
the solution is that the resulting ratio of stress to strain 67 /€5 (4, j=1, 2, 3) .
for a random orientation of fibers can be found by calculating the average
value of 67 / €53 over all possible orientations of the fiber direction (1 axis)
relative to the fixed x] axes. Using the 3-D stress—strain relationships for
a generally orthotropic, transversely isotropic material [i.e., the stiffness £

- FIGURE 6.26
 Spherical coordinates for 3-D Christensen—Waals analysis. (From Christensen, RM., and

- Technomic Publishing Co.)

Analysis of @ Discontinuous Fiber-Reinforced Lamina 237
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FIGURE 6.25

Umw.mnambnm of Young’s modulus of randomly oriented short fiber boron/ epoxy composite
on _mvﬁ., aspect ratio. Comparison of predictions from Halpin-Tsai equations and §<WE\=:
mxvnmmmmozm <<5.~ experimental data. (From Halpin, J.C. and Pagano, N.J. 1969. ?Sﬁnm of
Composite K&%SW\ 3, 720-724. Reprinted by permission of Technomic Publishing Co.)
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i | i 2’3’ off-axis coor-
matrix of equation (2.17) transformed to an arbitrary 1
dinate system], it can be shown that
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|
|

O =ICiAdy +(2C1 +4CsM5A5 +Cohs (6.45)
€33 "
and that _
2 _ 292
Mw 2 = CyAsiMa + Cr A WNPWH +AZAS + y.m;?mmv (6.46)
33 . .
+ CooA3A% + 4Cshaihashahs + CoshipA3s
where the direction cosines A; are given by
sinBcosd —cosBcosd sind
Aj=|sinOsin¢ —cos@sing —cosd| (6.47)

cos9 sin 6 0

Averaging over all possible orientations of the fiber direction, we have

ﬁﬂa@. Jek)5in 040 dp
0 J0

S} = (6.48)
5 lpandom .— _. 5in 6 do
0 V0
After substituting equation (6.45) in equation (6.48), we get
| S~ L3, +4Cp +8Csp +8Cy) (6.49)

~15

7
€33 Random

. . . in
For an equivalent homogeneous isotropic material, the corresponding
ratio of stress to strain is

; Qmm _ MQIOV Ammov )

g (1+V)(1-29)

Similarly, after substituting equation (6.46) in equation (6.48), we get

Om| Wﬁ: +8Ci; +Ca — 4C5 +5Cas) (651)

4
€33 Random
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and the corresponding ratio of stress to strain for an equivalent homoge-
neous isotropic material is

O _ - VE

g (L+V)(1-27)

(6.52)

Equating the ratio in equation (6.49) to that in equation (6.50), then
equating the ratio in equation (6.51) to that in equation (6.52), and solving
the two resulting equations simultaneously for the effective isotropic engi-
heering constants, Christensen and Waals found that

- [Er (@ 48w+ 4)Ke ][ B+ (498 4v1a 1)Ky +6(Gig + G )]

E= :
3 Tm_ +(8v3 +12v, + 7) K +2(Gap + @&
(6.53)
and
N mu + A%<WN 4 H®<HM + @v NAMm - #AQHN + Qmwv
V= P ® A Thw) (6.54)
4F, + A 16v2, +24vy, + E Kos + 4Gy +Gys)

where K, is the plane strain bulk modulus for dilatation in the 2-3 plane
with &, = 0, and the other properties are defined in chapter 2. Christensen
and Waals used the previously developed micromechanics equations by
Hashin [29,30] and Hill [31] to calculate the five independent engineering
constants E;, vyy, Gy, G, and Kys, which appear in equation (6.53) and
equation (6.54). Predictions from equation (6.53) for a glass/ €poxy com-
posite are shown in figure 6.27, along with the rule of mixtures prediction
from equation (3.23) and the Cox prediction from equation (6.38). The
prediction from the Cox model is well below that of the Christensen—Waals
model, and the rule of mixtures mam&.naoz is much too high. .

Using the same averaging technique, Christensen and Waals also devel-
oped a set of equations analogous to equation (6.53) and equation (6.54)
for the 2-D case. The results are [23]:

E=

RN,

(1t -15) (6.55)

and

(6.56)

<?
Il
B
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FIGURE 6.27 ) .
Comparison of Christensen~Waals 3-D analysis for Young’s modulus of randomly oriented

i ite wi i imation for a glass/epoxy composite.
fib mposite with rule of mixtures and Cox approximal . : °
AWHMﬂonwmwmﬁmzmmP R.M. and Waals, EM. 1972. Journal of Composite Materials, 6, 518-532.
Reprinted by permission of Technomic Publishing Co.) .

where

3 G Ahw +2vi + W<Wmvﬂmm~ﬂmm

8 2 2(Gps + Ky3) | 657)
1 QS AH +6vp + <WM v meMAmm
g T Gy 4 Kay)

>

The results from equation (6.55) to equation Am.mwv for a glass/ moqmwﬁ
rene composite are shown in figure 6.28. The Christensen-Waals B.owm
is seen to give much better agreement with the measurements than m:wﬁ.
the Cox model or the rule of mixtures, although none of the Bo.&mHm ta mM
into account the fiber length. Chang and Weng [32] also obtained 800
agreement with experimental results for mﬁmm.m /polyester mvmmﬁ-gouwgﬂm
compounds by using equation (6.55) to equation (6.57). Christensen mMH
presented simplified versions of these equations based on an asymptotic

expansion [33,34].
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X = Experimental data

Glass fibers in polystyrene

Ep =105 % 106 psi Vp=0.20
Eyy =047 x 108 psi v, = 0.32

Rule of mixtures Eq. 6,55

Eq.3.23

Cox %onmgwmcs Eq. 6,37

1. 1
0 - 01 0.2
Fiber volume fraction, Vs

FIGURE 6.28

Comparison of Christensen~Waals 2-D analysis for Young’s modulus of randomly oriented
fiber composite with rule of mixtures and Cox approximation for a glass/polystyrene com-
posite. (From Christenseti, RM. and Waals, EM., 1972, Journal of Composite Materidls, 6,
518-532. Reprinted by permission of Technomic Publishing Co.)

Weng and Sun [35] used the Christensen—Waals equations along with
micromechanics equations, which were modified to account for the effect
of fiber length. The effect of fiber length was modeled by using a so-called
“fictitious fiber,” which included the effect of matrix material at the ends
of the fiber in the RVE shown in figure 6.2(a). The effects of varying
stresses along the fiber were not accounted for, however, as it was assumed
that the stresses were equal in the fiber and matrix portions of the ficti-
tious fiber. The equation for the effective modulus of the fictitious fiber is
analogous to equation (6.28) for the modified Cox model, except that the
stress distribution along the fiber is assumed to be uniform, Figure 6.29
shows a comparison of the predictions of the modified Christensen-Waals
theory with the original Christensen-Waals theory, the rule of mixtures,
the Halpin-Tsai equations, and experimental data. For the glass/polyester
sheet-molding compound material used, the effect of fiber length is
apparently not very great, as the predictions of modified and original
Christensen-Waals theories are almost the same. Both theories give pre-
dictions that are in good agreement with the experimental data.

The effects of fiber length and nonuniform stress distribution along the
discontinuous fiber were accounted for by Sun etal. [36], who developed

‘equations for the elastic moduli of 2-D randomly oriented, short fiber

composites as part of a study of vibration damping properties. A modified
Cox model was used to determine E,, while the other lamina properties
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FIGURE 6.29
Comparison of various theories for prediction of Young’s modulus of randomly oriented

chopped glass/polyester sheet molding compound. (From Weng, G.J. and Sun, C.T. 1979,
In Tsai, S.W. ed., Composite Materials: Testing and Design (Fifth Conference), ASTM STP 674,
pp. 149-162. American Society for Testing and Materials, Philadelphia, PA. Copyright

ASTM. Reprinted with permission.)

were assumed to be independent of fiber length. The modified Cox model
in this case is of the form

1-tanh(BL/2) | ot Evony (6.58)

Eyc1 =En BL/2
where o, and v are strain magnification factors, which are determined from
a finite element analysis. The modified Cox model for E;, along with the
rule of mixtures (eq. [3.41]) for vy, and the Halpin-Tsai equations (eq. [3.59])
and eq. [3.60]) for E, and G,,, are used in transformation equations of the
form described in equations (6.32), which are then used in equations (6.43)
to determine the averaged isotropic engineering constants for the ran-
domly oriented fiber composite. A tridimensional plot of the Young’s mod-
ulus versus the fiber aspect ratio, L/d, and the ratio E/E,, is shown in
figure 6.30. It is seen that high E/E,, and high L/d are required in order
to have a high composite modulus. As with the aligned discontinuous case,
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FIGURE 6.30
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> JK.,, and Gibson, R.F, 1 ]
and C / , R.E 1985. Journal of R i
omposites, 4, 262~272, Reprinted by permission of Technomic Hu:w:MEMMﬁNme Flosies

the fiber aspect ratio requi i
equired to attain maxi i i i
and matrix materials is quite low. v stiiness for given fber

EXAMPLE 6.3

A ——
4 %Wwwmm\mmoé composite §.§ randomly oriented short fibers is made of the
stituent materials with the same fiber volume fraction as the material

described in examples 3.1, example 3.4, and example 4.5, Assuming that the in-

I
plane shear strength s, = 60 MPa, and that the fiber length is much Sreater than

v\.
7 L 4

Soluti .
olution. From equations (6.44), the Young’s modulus is approximately

ﬁmm
E=2 E+2E, umEe +ma.@u 45.9 GPa

and the shear modulus is approximately

Aolp L 1p 1
C=gE+ b lwA:mVJr%m.mmvnHm.E GPa
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which means that the Poisson’s ratio is ﬁ
|
|

et 1= B o047

26T 2(15.54)

From equation (6.35), the tensile strength is approximately
_

o 2o s s | 2(60)|, 669 669(37.95) )\ o), \ppy
S S K R I T (60)?

Notice that the isotropic Young’s modulus for the randomly oriented com-
posite is much greater than the transverse modulus but less than .rm: .?m
longitudinal modulus of the corresponding orthotropic lamina. Likewise,
the isotropic strength is greater than the orthotropic transverse strength but
well below the orthotropic longitudinal strength. It is also important to
remember that these predictions are based on randomly oriented continuous
fibers, so that the differences between the isotropic properties and the ortho-
tropic properties are due to fiber orientation, and not to fiber length.

EXAMPLE 6.4 . o
Determine the Young’s modulus of a randomly oriented fiber composite if the

unidirectional form of the composite has an off-axis Young's modulus that can
be described by an equation of the form ,

E(8)=E, + (B - E)[1—(26/m)**]

where © is the fiber angle in radians and E; and E, are the E:wa:.&:& and
transverse Young's moduli, respectively, of the unidirectional composite.

Solution. The Young’s modulus of the randomly oriented fiber composite,

averaged over all angles, is
b

z \N %
mu W ._.= maAmvn:.v MW._. Tmm +Amulmnvﬁl Awm\ HVH\m;Qo uo.NmmH+o.qmmN
TJo 0

If, say, E; = o.HmL for carbon/epoxy composite, then

E=0.25E +0.75(0.1F)=0.325E; or 3.25E,

These results again reflect the magnitude of the reduction in stiffness that
can be expected because of fiber orientation effects alone, since the fiber
lanath hae not heen considered in this analvsis.
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6.5 Nanofibers and Nanotubes

The development of nanofibers and nanotubes has played a major role in
E.m recent nanotechnology revolution, and the use of these materials as
Hwnﬂmo.anmﬁm:ﬁm in composites has received particular attention. With dimen-
sions in the nanometer range, nanofibers have solid cylindrical shapes and
nanotubes have hollow tubular geometries. Although aspect ratios L/d may
range up into the thousands, they are both generally considered to be dis-
continuous in nature, so it is particularly appropriate to discuss them in this
chapter. There has been intense interest in carbon nanotubes (CNTs) since
they were discovered in 1991 by lijima [37], and the number of publications
on CNTs and CNT-reinforced composite materials has grown very quickly
since that time. Several review articles on the mechanical behavior of CNTs
have appeared [38,39], and a special issue of a leading composites joutnal
was dedicated to modeling and characterization of nanostructured materials
ES..OZHW are available in single wall (SWNT) or multiwalled (MWNT)
configurations, and the geometrical arrangement of carbon atoms in the
bmbwawmm can be described as being either zig-zag or armchair [38,39].
Microscopic images of carbon nanofibers and nanotubes in various
polymer matrices are shown in figure 6.31 from ref. [41] and figure 6.32

10 um

" FIGURE 6.31

Scanning electron microscope image of vapor-grown carbon nanofibers in a polypropylene

. matrix. (From Tibbetts, G.G. and McHugh, J.J. 1999. Journal of Materials Research, 14(7),

. 2871-2880. With permission.)
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FIGURE 6.32 . . o . o
Transmission electron microscope image of MWNTs in a woq.mﬁﬁmzm matrix. (From ,
D., Dickey, E.C., Andrews, R., and Rantell, T. 2000. Applied Physics Letters, 76 (20), 2868-2870.

With permission.)

from ref. [42], respectively, while typical mmogmﬁom_ and anrm._Eoﬂ
properties of nanofibers and nanotubes are listed in table 6.1, which is
partially taken from ref. [43]. o )
From figure 6.31 and figure 6.32 and table 6.1, it is clear that two key
geometrical features must be accounted for in the Qm<&o@§m§.¢ of micro-
mechanical models for nanocomposites reinforced with bmﬁowvmum mbm\
or nanotubes. Due to their microscopic dimensions by comparison sﬁr
typical thicknesses of composite structures, nanofibers or Sms.og_umm. SE
almost certainly have random orientations in m.: three &Bmﬁmﬂﬁm <<._§5
the composite as in figure 6.23(a), so the resulting nanocomposite <.S.= be
macroscopically isotropic. Nanofibers and ﬁwﬁng_umwm mx?@: significant
waviness, but all of the previously discussed micromechanics models as
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TABLE 6.1

Geometrical and Mechanical Properties of Typical Carbon Nanofibers and
Nanotubes

Diameter Young's Tensile
Material (nm) Length (am)  Modulus (GPa) Strength (GPa)
Vapor-grown 100-200°  30,000-100,0002 400-6007 2.7-7.00
carbon nanofibers
SWNT - ~1.3b 500-40,000° 320-1470< 13-52¢

Source: *Nanofiber geometrical and mechanical properties from Applied Sciences, Inc.,
Cedarville, OH.

*Nanotube geometrical properties from Helix Material Solutions, Inc., Richardson, TX.
‘Nanotube mechanical properties from Yu, M.-F, Files, B., Arepalli, S., and Ruoff, R.S.
2000. Physical Review Letters, 84(24), 5552-5555. With permission.

in figure 6.2, figure 6.14, and figure 6.16 have been based on the assump-
tion of straight fiber reinforcement.

6.5.1 Strength Analysis

Models for predicting the strength of nanocomposites with randomly
oriented nanofibers or nanotubes are not as well developed as those for
predicting elastic modulus. Tibbetts and McHugh [41] presented experi-
mental and analytical results for randomly oriented carbon nanofiber—
reinforced polypropylerie and nylon composites. Strength predictions
were based on the averaging method of Baxter [20], which was described
in section 6.4.1. Nanofibers were assumed to have lengths less than the
critical length, so equation (6.14) was used to estimate the longitudinal
composite strength as input to the Tsai-Hill equation (eq. [6.31]) before
performing the averaging in equation (6.33), but the effect of nanofiber
waviness was not considered. The authors concluded that the experimen-
tal results for as-grown nanofibers were generally disappointing due to
inadequate infiltration of the fiber clumps by the matrix resin during the
injection molding of the specimens, but ball milling of the nanofibers
reduced the size of the clumps, resulting in significant improvement in
the properties, as did etching of the surfaces of the nanofibers. Experi-
mental strength data generally fell between the predictions of 1-D and
3-D models based on Baxter’s approach, but since nanofiber waviness
was not included in the models, it is difficult to draw conclusions from
comparisons of predictions with measurements,

6.5.2  Modulus Analysis

Micromechanics models for the elastic moduli of nanocomposites, which
include the effects of both 3-D random orientation and waviness of the
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FIGURE 6.33 - o .
RVEs for Anumandla-Gibson model. (From Anumandla, V. and Gibson, R.F. 2006. Composites

Part A: Applied Science and Manufacturing 37(12), 2178-2185. With permission.)

reinforcement, have been developed by Fisher et al. [44-46] and _u.w
Anumandla and Gibson [47,48]. The approach of Fisher et al. [44-46] is
based on 3-D finite element models, whereas the model o.m Anumandla
and Gibson [47,48] is an approximate closed form solution. Only the
latter approach is summarized in the mozoslsm.. —
The Anumandla-Gibson approach [47,48] consists of a noBUEm.So: o
the waviness models of Chan and Wang [49] and Hsiao mﬁm Daniel .GS
for locally orthotropic materials, the Chamis .banmogmnrmgom equations
(ref. [14] of chap. 3) for predicting the elastic constants of the _Onm.:w
orthotropic material, and the Christensen-Waals Bo&m_ .ﬁm_\. whic
accounts for the 3-D random orientation of the mw.mwm AoH.. in this case,
nanotubes). The wavy fiber-reinforced composite is &:.:Qmm into segments
along its length, each of which is locally orthotropic but with off-axis
orientation. The strains are averaged over one wavelength along the Homo.*-
ing direction for uniaxial loading, and the effective Kossm\m BOQcE.m is
determined from the ratio of applied stress to resulting average strains.
The RVEs are shown in figure 6.33, where the waviness and orientation
of the nanotube are accounted for in RVE1, and the overall length of RVE2
includes the matrix material between fibers.
The nanotube waviness is characterized by the waviness factor,

weL o (6.59)

Lnr

Analysis of a Discontinuous Fiber-Reinforced Lamina 249

where A is the amplitude of the waviness, Lyy is the nanottibe length, and
coordinates x and z, describing the waviness, are defined in figure 6.33
and equation (6.60):

2= Asin hgu | (6.60)

Lgr

The effective Young’s modulus, E,, of RVEI1, with uniform waviness of
the embedded nanotube, is assumed to be the same as that of an element
in a locally orthotropic lamina containing wavy fibers as described by
Hsiao and Daniel [50]. Following this approach, the transformed compli-
ances of an off-axis orthotropic lamina are averaged over one wavelength

of fiber waviness, and the definition of an effective Young’s modulus is
used to find [50] ‘

1 .
=F
Suli +(281 +Sg6)s +Spls  XVE

E=3x- (6.61)
&

where o, is the applied uniaxial stress, €, is the resulting average strain, S,
Sir Spp, and S are the locally orthotropic compliances referred to the prin-
cipal material coordinates, and I, I, and I; are functions that depend only
on the waviness factor. The locally oiroﬁ.o?n compliances are estimated
from micromechanics using the Chamis equations (ref. [14] of chap. 3).
The effective elastic modulus E (= Esp_rvg1) for the 3-D random orientation
of the nanotubes is assumed to be the same as the modulus for a fiber-
reinforced composite containing fibers that are randomly oriented in all
three dimensions as given by Christensen and Waals [28]. For the purpose
of the present discussion, the Christensen—Waals analysis described in
section 6.4. is modified by replacing the (1,2,3), and (1,2",3') coordinate
systems in figure 6.26 by the (x,y,z) and (¥";y2’) coordinate systems, respec-
tively. Then according to the modified Christensen-Waals analysis, an
orthotropic, transversely isotropic composite with nanotube waviness
along the x direction is subjected to an arbitrary normal strain such as €,
along the 2’ direction (the z axis is taken to be in the X'y’ plane for the
purpose of the analysis). The resulting ratio of stress to strain, cj/e, (i, =
%, Y, z), for random orientation of fibers is found by calculating the average
value of 0} /€, over all possible orientations of the nanotube waviness
direction (x axis) relative to the fixed x; axes. Equation (6.62) indicates the
averaging over all possible orientations of the wavy nanotube: «

/
Gjj

o u.—o b o msa%%uFﬁﬁ
K 0 Jo

%msagmme (6.62)
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where the msm_mm, 8 and ¢ are defined in mmrﬂﬁm 6.26. The equations resulting
from equation (6.62) upon substituting the 3-D stress—strain relationships for
a generally orthotropic transversely wmoﬂoln material and solving simulta-

neously with the stress—strain relations for an equivalent homogenous iso-

tropic material, yield the effective composite elastic modulus E (= Esp.rve)
for the 3-D random orientation of the nanotube as:

mn ? %zw +m<awu +.¢5LT* +?<WNL§+%§+29N+ 9&
me +(8VE 412V, +7 ) Ky +2(Gus + ni

= mw_u.%ﬁﬂ

 (6.63)

where E, (=Egyg) is the effective elastic modulus of RVE1 according to
equation (6.61), K,, is the plane bulk modulus for dilatation in the y—=z
plane with €, = 0, and all other properties in equation (6.63) are for RVEIL
in accordance with those defined in ref. [50]. Note that equation (6.63) is
the same as equation (6.53), except for the substitution of coordinates
described above. An expression for the effective elastic modulus of RVE2
with 3-D random orientation of nanotubes, Esp pyp, is approximated by
means of another inverse rule of mixtures for the series arrangement in
RVE2 (fig. 6.33) as _ v

1 1 Lt 1 Lo ‘
= +— 6.64
Esprvez  Esprver \ L + Lt En \ Lin + Ly (6.64)

where E;ppyr; is the effective elastic modulus of RVEL for 3-D random
orientation of the nanotubes according to equation (6.63).

Figure 6.34 shows a comparison of the predictions of Ezp gy, from equa-
tion (6.64) with experimental results on MWNT/polystyrene composites
published by Andrews et al. [51]. In the predictions, the modulus of the
polystyrene matrix was: assumed to be 1.9 GPa, the local modulus of the
nanotube was assumed to be 1 TPa, and the nanotube volume fraction in
RVE2 was varied by assuming Ly./L,, ratios of 0, 1, 2, 3, 4, and 5. It is
seen that if waviness is neglected (i.e., w = 0), equation (6.64) significantly
overpredicts the experimental data, but as waviness increases, the predicted
modulus is reduced accordingly. For waviness factors lying within the
range 0.075-0.25, the predictions are in best agreement with the published
experimental results. These values of waviness seem quite reasonable in
view of microscopic images such as the one in figure 6.32.

Nanofibers and nanotubes can be used not only as the principal reinforce-
ment in composites, but as a third phase in composites consisting .of con-
ventional fiber reinforcement. Such a nanocomposite matrix material can

~—w=0
~i- w = 0,05
—-A—w=0.1
= w=-0.25
—%-w=0,5
& Exp

rvEz (in GPa)
[o))

IS

\%

Esp

0 0.05 0.1 0.15 02 025
True volume fraction of nanotube in RVE2

FIGURE 6.34

Comparison of experimental modulus data for MWNT/polystyrene composite from Andrews
et &.. N.ooN Micromolecular Materials Engineering, 287(6), 395-403 with micromechanics
predictions m.aog equation (6.64). (From Anumandla, V. and Gibson, R.F, 2006 Composites
Part A: Applied Science and Manufacturing 37(12), 2178-2185. With permission.) . -

mprove the matrix-dominated properties of a conventional continuous fiber
nos.%oﬁﬂm\ such as compressive strength. A nanocomposite matrix material
typically has a higher modulus than the plain polymer matrix, thus increas-
ing ?w lateral support for the continuous fibers, increasing the buckling load

and improving the compressive strength of the conventional composite. moun
example, Vlasveld et al. [52] developed hybrid composites consisting of
conventional glass or carbon fibers in a nanocomposite matrix (fig. 6.35),

FIGURE 6.35

Nanoparticle reinforcement of the matrix in a c

. 1 . m._ .A
ﬁ Tom C—chmmﬁ D.F N. memmm Hw.m.z. and HUH.OWQH_. m.-. 2005. I QT mer, 46, HON@CIHON.\. 8. f;:_.
7 ’ 7 7 4
v .\ ’ ’
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FIGURE 6.36
- SEM micrographs of carbon fibers (a) before and (b) after CNT growth on the fiber surface.

(From Thostenson, E.T., Li, W.Z., Wang, D.Z., Ren, Z.F, and Chou, T.W. 2002. Journal of
Applied Physics, 91(9), 6034-6037. With permission.)

Tmi L]

where the nanocomposite matrix was made of polyamide 6 (PA6) polymer -
(b)

reinforced with synthetic mica-layered silica nanopatticles. The nanocom-
posite matrix led to significant increases in flexural strength, which was
dominated by fiber microbuckling on the compression side of the speci-
mens. The effect was particularly significant at elevated temperatures.

FIGURE 6.37

a kuﬁumn with rectan E—NH G:vmmnmmnﬁc: mH.:._UmQ.QmQ in matrix. _U Hm—wmwmwﬁwmﬂ WH—WDH stress

Thostenson et al. [53] developed a hybrid multiscale composite by growing
CNTs directly on the surfaces of conventional carbon fibers, which were
then combined with a conventional epoxy matrix. Figure 6.36 shows micro-
graphs of the carbon fiber before and after nanotube growth.

6.6 Problems

1. A short fiber composite is to be modeled using the RVE in
figure 6.2(b). Assuming that the matrix is rigid-plastic in shear
but that both the fiber and matrix are elastic in extension, develop
an equation for the longitudinal modulus of the RVE. What values
of the longitudinal modulus does the model give as the fiber
length becomes very large? very small?

2. Using the result from problem 6.1, develop an expression for the
longitudinal modulus of the RVE shown in figure 6.2(a) that
includes the effect of the matrix material at the fiber ends.

A carbon/epoxy single fiber test specimen is subjected to a uni-
axial tensile stress that is increased until the fiber breaks up into

W

pieces having a length of 0.625 mm. If the fiber has a diameter of -

0.01 mm, a longitudinal modulus of 240 GPa, and an ultimate
tensile strength of 2.5 GPa, what is the interfacial shear strength
of the specimen? If the composite longitudinal modulus is 80 GPa,

. A linear elastic fiber of rectangular cross-section is embedded in

a :bwmm.&mmmn matrix material, and the composite is subjected to
a uniaxial stress as shown in figure 6.37(a). The interfacial shear
stress distribution along the fiber is to be approximated by a linear
m:bnﬁos\ as shown in figure 6.37(b). Determine the fiber length, L,
that is required to develop the ultimate tensile stress, sy, at mrm\

midpoint of the fiber, Neglect the stress t i
ends of the fiber. ransmitted across the

A short fiber moﬁ%oﬂﬁm is made from boron fibers of length

0.125 in (3.175 mm) and diameter 0.0056 in (0.142 mm) randomly

ozmﬁmm in a high-modulus (HM) epoxy matrix with a fiber volume
fraction of 0.4. Using the fiber and matrix properties in table 3.1
and table 3.2, respectively, estimate the modulus of elasticity mﬁ.ﬁ.
the nou.b@oﬂﬁm. Compare the modulus for the randomly oriented
short fiber composite with the longitudinal and transverse moduli

of an orthotropically aligned discontinuous fiber lamina of the
same material. -

- Express the isotropic moduli £ and G of a randomly oriented

fiber composite in equations (6.43) i
. . in terms of the ort ;
lamina stiffnesses Q... rthotropic
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Composite panel with fibers arranged in X-pattern.

7. Determine the isotropic moduli £ and G for a composite consist-
ing of randomly oriented T300 carbon fibers in a 934 epoxy matrix
if the fibers are long enough to be considered continuous. Use the
properties in table 2.2. Compare the values of E and G calculated
from the invariant expressions (egs. [6.43]) with those calculated
from the approximate expressions in equations (6.44).

8. In order to reduce material costs, a composite panel is to be made
by placing fibers in the matrix material in an X-pattern of o as
shown in figure 6.38, instead of randomly distributing the fibers

“over all angles. The X-pattern composite is to be designed so that
it has at least 90% of the stiffness of the randomly oriented fiber
composite along the longitudinal (L) axis. From tensile tests of a

- unidirectional composite consisting of the same fiber and matrix
materials and the same fiber volume fraction, it is found that the
off-axis Young’s modulus of the composite can be described by

. the equation

E.(0)=100-90sin® (GPa) (0<0<m/2)

whereas the Young’s modulus of the matrix material is E,, =3.5 GPa.
Determine the angle o in figure 6.38 such that the longitudinal
Young’s modulus of the X-pattern composite is equal to 90% of the
Young’s modulus of the randomly oriented fiber composite.

9. Determine the coefficient of thermal expansion for a randomly
oriented fiber composite in terms of the longitudinal and trans-
verse coefficients of thermal expansion o, and o, of the corre-
sponding unidirectional composite lamina.

10. Using micromechanics and the Tsai-Hill criterion, set up the equa-
tion for the averaged isotropic tensile strength for a randomly
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onm.sﬁmm short fiber composite. The equation should be in terms
of fiber and matrix properties and volume fractions and the angle 6.

11. The RVE for an aligned discontinuous fiber composite without

12.

matrix material at its ends is shown in figure 6.4. Assume that
when the RVE is loaded along the fiber direction, the interfacial
shear stress distribution is given by

2Tmax [ L
T= -
Eate

and the fiber tensile stress is given by

— %QmamxkAﬁ - Rv

O'¢ Hm

where L = fiber length, x = distance from left end of RVE, Ty =

maximum interfacial shear stress, and O'tmax =mMaximum fiber ten-
sile normal stress.

Amv wwﬁnr Em&m.ﬁwcmosm&amsmqm along the length of the
iber. A

(b) me_mnﬁsm the stress transmitted across the ends of the fiber,
derive the H.&mmobmwao between T,,, and O fmax - ’

(o) If *,.T.m interfacial shear strength is about the same as the fiber
tensile strength, and the fiber aspect ratio L/d is very large
(say L/d >1000), will the most likely mode of failure be inter-
facial shear failure or fiber tensile failure?

For the RVE in figure 6.4, assume that the fiber length is greater

5»5. the ineffective length, and. that the distribution of the fiber
tensile normal stress is given by

.
46 -
O = mamkah_ %) for 0<x<hi
L; 2
Of =O¢ma  fOr W <x< W

(a) Determine @5 expression for the fiber/matrix interfacial stress,
T, and plot its distribution along the fiber length.

(b) Determine the magnitude and location of the maximum inter-

mmﬁ.& shear stress, T,..x, and show it on the shear stress distri-
bution from part (a).
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Using the Maximum Strain ﬂiﬁmiosw and Emnnogwnﬁmanm\%ﬂmﬁ MM
the equation for ‘predicting the m&mwmmmm isotropic .mﬁmﬂm om
randomly oriented short m_umaémEmonn.mm composite. Nc m_u M
. assume that the, matrix failure strain is mmmmﬁmw than the fibe
failure strain. Your answer should be given in terms ﬁ.vm the mwﬁﬂu-
priate fiber and matrix properties and volume fractions an Mﬂm
variable fiber orientation angle 6. It is not necessary to solve the

equation.
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