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Preface to First Edition

Composite materials is truly an interdisciplinary subject, and the number
of students taking courses in this area is steadily increasing. Books on the
subject tend to emphasize either the mechanics or the materials science
aspects of composites. Principles of Composite Material Mechanics is mechanics
oriented. Composite materials technology is new enough for many work-
ing engineers to have had no training in this area, so a textbook in com-
posite material mechanics should be useful not only for the education of
new engineers, but also for the continuing education of practicing engi-
neers and for reference. The high level of interest in composite materials,
the interdisciplinary nature of the subject, the need to re-educate practicing
engineers, and the need for a new composite mechanics textbook at the
introductory level all led to my decision to write this book.

Chapters 1 through 7 form the basis of a one-semester senior/graduate-
level course in mechanical engineering, which I have taught for the last
15 years. Chapters 8 through 10, along with selected papers from technical
journals and student research projects/presentations, form the basis of a
second one-semester course, which is taken only by graduate students,
and which I have taught for the last four years. The book could also be
the basis for a two-quarter sequence by omitting some topics. Prerequisi-
ties for the course are knowledge of mechanics of materials, introduction
to materials engineering, and ordinary differential equations, and previ-
ous exposure to linear algebra is highly desirable. For some of the graduate-
level material, earlier courses in advanced mechanics of materials, elas-
ticity, and _wm:q:& differential equations are recommended, but not
required. :

Some of the basic elements of composite mechanics covered in this book
have not changed since the first books on the subject were published in
the 1960s and 1970s, and, where possible, I have tried to use the accepted
terminology and nomenclature. For example, the coverage of stress—strain
H&mmosmgﬁm and transformation of properties for anisotropic materials
in Chapter 2 and the classical lamination theory in Chapter 7 is consistent
with that of previous textbooks such as the Primer on Composite Materials
by Ashton, Halpin, and Petit, and Mechanics of Composite Materials by
Jones. However, rather than beginning the study of laminates by jumping
directly into classical lamination theory, I have concluded that a better
pedagogical approach is to introduce first basic laminate concepts by
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using the simpler theory of laminated beams in pure flexure. Also, I
believe that the concept of an effective Eomc_cm of an equivalent homo-
geneous material, which had wwmﬁo:&% been covered only in advanced
books such as Mechanics of Composite Materials by Christensen, is essential

for the proper development of Tmﬂmaommmmosm composite micromechanics.

Thus, effective Boﬁr_bcm concepts are mnfurmmﬁma from their introduction
in Chapter 2 to their use in the mﬁmqma of viscoelastic and QVSNBE
behavior in Chapter 8. ,

Although many basic concepts have Wmms presented in earlier textbooks,
numerous new developments in composite mechanics over the last two
decades have made it increasingly necessary to supplement these books
with my own notes. Thus, I have added coverage of such important topics
as hygrothermal effects in Chapter 5, discontinuous fiber composites in
Chapter 6, viscoelastic behavior and dynamic behavior in Chapter 8, frac-
ture in Chapter 9, and mechanical testing in Chapter 10. The coverage of
mxwmagma& mechanics of composites has been expanded to include sum-
maries of the most important ASTM standard test methods, many of which
did not exist when the early mechanics of composites books were pub-
lished. A variety of example problems and homework problems, a number
of them related to practical composite structures, are also included.

The contents of this book represent the cumulative effects of more than
25 years of interactions with colleagues and students, and I would be
remiss if I 'did not mention at least some of them. My fascination with
composites began in 1965 with my first engineering position in what is
now part of Oak Ridge National Laboratory in Tennessee, where I .was
involved in the design and development of high-speed rotating equip-
ment. At that time I realized that the advantages of using composites in
rotating equipment are numerous, as is the case in many other applica-
tions. My experiences working with Dean Waters and other colleagues in
the mechanical development group in Oak Ridge have had a strong influ-
ence on my later career decision to emphasize composites research and
education. My doctoral research on vibration damping characteristics of
composites with Robert Plunkett at the University of Minnesota further
cemented my desire to continue working in the composites area and
ultimately led to my career in university teaching and research.

After beginning my academic career at Iowa State University in 1975, 1
began a long and productive association with C.T. Sun, and later had the
pleasure of spending a one-year leave working with C.T. and his colleagues
Robert Sierakowski and Shive Chaturvedi at the University of Florida. T
owe much of my understanding of composite mechanics to interactions
with them. The notes leading to this book were developed by teaching
composite mechanics courses at lowa State University, the University of
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Idaho, the University of Florida, Michigan State University, and Wayne
State University, and I am indebted to the students who took my classes
and helped me to “debug” these notes over the years. Most recently, my
students at Wayne State University have been particularly effective at
finding the inevitable errors in my notes. Interaction with my graduate
students over the years has contributed immeasurably to my understand-
ing of composite mechanics, and the work of several of those students
has been referred to in this book. I am particularly indebted to Stalin
Suarez, Lyle Deobald, Raju Mantena, and Jimmy Hwang, all former grad-
uate students at the University of Idaho.

Serious work on this book actually began during a sabbatical leave at
Michigan State University in 1987, and I am indebted to Larry Drzal and
his colleages for our many stimulating discussions during that year.
Particularly important was the interaction with Cornelius Horgan, with
whom I team-taught a course on advanced mechanics of composites. Most
recently, my collaboration with John Sullivan and his colleagues of the
Ford Scientific Research Laboratory has proved to be very rewarding, and
I'am indebted to John for his careful review of the manuscript and helpful
comments. I am grateful to Carl Johnson, also of the Ford Scientific
Research Laboratory, for his encouragement and support and for providing
several of the figures in Chapter 1. The strong support of Wayne State
University, which made it possible to establish the Advanced Composites
Research Laboratory there in 1989, is gratefully acknowledged. The sup-
port and encouragement of my department chairman, Ken Kline, has been
particularly important. Generous support for my composites research from
numerous funding agencies over the years has also helped to make this
book possible. Grants from the Air Force Office of Scientific Research,.the
National Science Foundation, the Army Research Office, the Boeing Com-
pany, and the Ford Motor Company have been particularly important.

McGraw-Hill and I would like to thank the following reviewers for their
many helpful comments and suggestions: Charles W. Bert, University of
Oklahoma; Olivier A. Bauchau, Rensselaer Polytechnic Institute; Shive
Chaturvedi, Ohio State University; Vincent Choo, New Mexico State
University; John M. Kennedy, Clemson University; Vikram K. Kinra, Texas
A & M University; C.T. Sun, University of Florida; and Steven W. Yurgartis,
Clarkson University.

Finally, my wife and best friend, Maryanne, has been my strongest
supporter as I labored on this project, and there is no way that I could have
done it without her love, encouragement, patience, and understanding,

- Ronald F. Gibson




Preface

- There have been many developments in mechanics of composite materials
since the first edition of this book was published. Accordingly, the second
edition has new sections on recent applications of composite mechanics
to nanocomposites, composite grid structures, and composite sandwich
structures. To strengthen the emphasis on the basic principles of mechanics,
[ have added a review of the basic mechanics of materials equations in
the Introduction, and appendices covering the derivations of stress equi-
librium equations and strain—displacement relations from elasticity the-
ory. Coverage of micromechanics in Chapter 3 has been revised to include
more detailed discussions of elasticity and finite element models. Chapter
4 on strength analysis has been updated to include results from the World
Wide Failure Exercise. Chapter 8 has been improved by adding a phe-
nomenological approach to understanding linear viscoelastic behavior of
composites. Chapter 9 on fracture has been updated to include coverage
of the finite element implementation of the virtual crack closure technique.
Chapter 10 on testing of composites and their constituents has been exten-
sively updated to include coverage of both new and revised ASTM stan-
dard test methods. Finally, more example problems and homework
problems have been added to most chapters, and new references have
been cited throughout.

As with the first edition, I am indebted to many colleagues, graduate
students, and sponsors. I am grateful to Wayne State University for pro-
viding a nurturing ‘environment for my teaching and research, and for
granting me sabbatical leaves, which were essential to the completion of
this project. My graduate students have been particularly helpful in iden-
tifying the inevitable errors in the first edition, and their thesis research
findings have enabled me to add important new dimensions in the second
edition. And as with the first edition, my wife and best friend, Maryanne,
has continued to be my strongest supporter, and I will be forever grateful
for her love, encouragement, patience, and understanding.

Ronald F. Gibson




Introduction

1.1 Basic Concepts

Structural materials can be divided into four basic categories: metals,
polymers, ceramics, and composites. Composites, which consist of two ot
more separate materials combined in a structural unit, are typically made
from various combinations of the other three materials. In the early days
of modern man-made composite materials, the constituents were typically
macroscopic. As composites technology advanced over the last few
decades, the constituent materials, particularly the reinforcement materials,
steadily decreased in size. Most recently, there has been considerable
interest in “nanocomposites” having nanometer-sized reinforcements,
such as-carbon nanotubes. :

The relative importance of the four basic materials in a historical context
has been presented by Ashby [1], as shown schematically in figure 1.1 that
clearly shows the steadily increasing importance of polymers, composites,
and ceramics and the decreasing role of metals. Composites are generally
used because they have desirable properties that cannot be achieved by
any of the constituent materials acting alone. The most common example
is the fibrous composite consisting of reinforcing fibers embedded in a
binder or matrix material. Particle or flake reinforcements are also used,
but they are generally not so effective as fibers. :

Although it is difficult to say with certainty when or where humans
first learned about fibrous composites, nature provides us with numerous
examples. Wood consists mainly of fibrous cellulose in a matrix of lignin,
whereas most mammalian bone is made up of layered and oriented
collagen fibrils in a protein-calcium phosphate matrix [2]. The book of
Exodus in the Old Testament recorded what surely must be one of the first
examples of man-made fibrous composites, the straw-reinforced clay
bricks used by the Israelites. The early natives of South and Central
America apparently used plant fibers in their pottery. These early uses of
fibrous reinforcement, however, were probably based on the desire to
keep the clay from cracking during drying rather than on structural
reinforcement. Much later, humans developed structural composites such
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FIGURE 1.1 !

The relative importance of metals, polymers, composites, and ceramics as a function of
time. The diagram is schematic and describes neither tonnage nor value. The time scale is
nonlinear. (From Ashby, M.F. 1987. Philosophical Transactions of the Royal Society of London,
A322, 393-407. With permission.)

as steel-reinforced concrete, polymers reinforced with fibers such as mwmmm
and graphite, and many other materials.

Fibrous reinforcement is so effective because many materials are much
stronger and stiffer in fiber form than in bulk form. It is believed that this
phenomenon was first demonstrated scientifically in 1920 by Griffith [3],
who measured the tensile strengths of glass rods and glass fibers of different
diameters. Griffith found that as the rods and fibers got thinner, they got
stronger (see fig. 1.2 from ref. [3], as shown in ref. [4]), apparently because
the smaller the diameter, the smaller the likelihood that failure-inducing
surface cracks would be generated during fabrication and handling. By
extrapolating these results, Griffith found that for very small diameters,
the fiber strength approached the theoretical cohesive strength between
adjacent layers of atoms, whereas for large diameters, the fiber strength
dropped to near the strength of bulk glass.

Results similar to those published by Griffith have been reported for a
wide variety of other materials. The reasons for the %mmﬁmbomm between
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Griffith’s measurements of tensile strength as a function of fiber thickness for glass fibers.
(Data from Griffith, A.A. 1920. Philosophical Transactions of the Royal Society, 221A, 163-198,
as analyzed by Gordon, J.E. 1976. The New Science of Strong Materials, 2d ed. [Princeton
University Press, Princeton, NJ]. With permission.)

fiber and bulk behavior, however, are not necessarily the same for the
other materials. For example, polymeric fibers are stronger and stiffer than
bulk polymers because of the highly aligned and extended polymer chains
in the fibers and the randomly oriented polymer chains in the bulk poly-
mer. A similar effect occurs in crystalline materials such as graphite. In
addition, a single crystal tends to have a lower dislocation density than
a polycrystalline solid; so single-crystal “whisker” materials are much
stronger than the same material in polycrystalline bulk form. Whiskers
typically have dimensions in the micrometer range, and for many years
it was thought that whiskers were the strongest and stiffest reinforcement
materials available. However, it is now believed that carbon nanotubes,
which have dimensions in the nanometer range, are the strongest and
stiffest reinforcement materials in existence [5,6].

There can be no doubt that fibers allow us to obtain the maximum tensile
strength and stiffness of a material, but there are obvious disadvantages
of using a material in fiber form. Fibers alone cannot support longitudinal
compressive loads and their transverse mechanical properties are gener-
ally not so good as the corresponding longitudinal properties. Thus, fibers
are generally useless as structural materials unless they are held together
in a structural unit with a binder or matrix material and unless some
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Surface area-to-volume ratio A/ V of a cylindrical particle of given volume plotted vs. particle
aspect ratio a = 1/d. (From McCrum, N.G., Buckley, C.P, and Bucknall, C.B. 1988. Principles
of Polymer Engineering [Oxford University Press, New York]. Copyright 1988, Oxford
University Press with permission.) .

transverse reinforcement is provided. Fortunately, the geometrical config-
uration of fibers also turns out to be very efficient from the point of view
of interaction with the binder or matrix. As shown in figure 1.3 from
ref. [7], the ratio of surface area to volume for a cylindrical particle is
greatest when the particle is in either platelet or fiber form. Thus, the
fiber /matrix interfacial area available for stress transfer per unit volume
of fiber increases with increasing fiber length-to-diameter ratio. The matrix
also serves to protect the fibers from external damage and environmental
attack. Transverse reinforcement is generally provided by orienting fibers
at various angles according to the stress field in the component of interest.
Filler particles are also commonly used in composites for a vatiety of
reasons such as weight reduction, cost reduction, flame and smoke’ sup-
pression, and prevention of ultraviolet degradation due to exposure to
sunlight.

The need for fiber placement in different directions according to the
particular application has led to various types of composites, as shown
in figure 1.4. In the continuous fiber composite laminate (fig. 1.4[a]), indi-
vidual continuous fiber/matrix laminae are oriented in the required direc-
tions and bonded together to form a laminate. Although the continuous
fiber laminate is used extensively, the potential for delamination, or sep-
aration of the laminae, is still a major problem because the interlaminar
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FIGURE 1.4
Types of fiber-reinforced composites.

strength is matrix dominated. Woven fiber composites (fig. 1.4[b]) do not
have distinct laminae and are not susceptible to delamination, but strength
and stiffness are sacrificed because the fibers are not so straight as in the
continuous fiber laminate. Chopped fiber composites may have short
fibers randomly dispersed in the matrix, as shown in figure 1.4(c).
Chopped fiber composites are used extensively in high-volume applica-
tions due to their low manufacturing cost, but their mechanical properties
are considérably poorer than those of continuous fiber composites. Finally,
hybrid composites may consist of mixed chopped and continuous fibers,
as shown in figure 1.4(d), or mixed fiber types such as glass and graphite.
Another common composite configuration, the sandwich structure
(fig. 1.5), consists of high-strength composite facing sheets (which could
be any of the composites shown in fig. 1.4) bonded to a lightweight foam
or honeycomb core. Sandwich-structures have extremely high flexural
stiffness-to-weight ratios and are widely used in aerospace structures. The
design flexibility offered by these and other composite configurations is
obviously quite attractive to designers, and the potential exists to design
not only the structure but also the structural material itself.
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FIGURE 1.5
Composite sandwich structure.

1.2 Constituent Materials for Composites

Fiberglass-reinforced plastics were among the first structural composites.
Composites incorporating glass or other relatively low-modulus fibers

(less than about 83 GPa (12 x 10¢ psi) are used in many high-volume -

applications such as automotive vehicles because of their low cost, and
are sometimes referred to as “basic” composites. The so-called
“advanced” composites made from carbon, silicon carbide, aramid poly-
mer, boron, or other higher-modulus fibers are used mainly in more exotic
applications such as aerospace structures where their higher cost can be
justified by improved performance.

The tremendous advantages of advanced fibers over glass fibers and
conventional bulk materials are shown in table 1.1, by comparing selected
properties. The main advantages are higher modulus, higher strength,
and lower density. In many applications such as aerospace and automo-
tive structures, structural weight is very important. Depending on
whether the structural design is strength-critical or stiffness-critical, the
material used should have a high strength-to-weight ratio (or specific
strength) or a high stiffness-to-weight ratio (or specific stiffness). As
shown in figure 1.6, advanced fibers also have significant advantages over
conventional materials in both these measures, and this is the principal
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TABLE 1.1

Selected Properties of Bulk and Fibrous Materials

Specific

Modulus

Tensile

Tensile

Specific
Strength

Manufacturer

Ultimate
Strain

(GPa/
[g/lem?])

(MPa/

[g/cm))

Density
(g/cm®)

Strength Modulus
(MPa). (GPa)

Material

Bulk Metals

0.17
0.19
0.06

255

1144
1315
191.7

69
200

310
1030
345

271
7.83
8

606176 Aluminum

4340 Steel

255

25

1

45

AZ80 Magnesium

Bulk Polymers

25 0.5

65.8

1
1.2

144

1

.28

75
65

Nylon 6/6

542 11

24

Polycarbonate

22 04

27.8

3.1

40

Polyvinylchloride

Bulk Ceramics

0.001

0.1 - 117.6

4

3
38

0
0

401

04
0.5

Sﬂicén carbide

0.001

100

0.1

38

Aluminum oxide

Glass Fibers

Owens-Coming
Owens-Corning

28.3 0.04

1357.5

2.54
249

72

3448

4830

E-glass

34.9 0.057

1939.8

87

S-2 glass

PAN-Based Carbon Fibers

Hexcel
Hexcel

0.0187
0.0178

127.4
155.1

2389.9
2907.3

1.79
1.78

228
276

5175

4278

(Continued)




Manufacturer

Strain

Ultimate

(GPa/
[g/cm®])

Speéiﬁc

Modulus

Specific
(MPa/
[g/cm®])

Strength

Densi
(g/cm®)

Tensile
Modulus
(GPa)

Strength
(MPa)

Tensile

Material

Selected Properties of Bulk and Fibrous Materials

TABLE 1.1 (CONTINUED)
PAN-Based Carbon Fibers (Continued)
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1.2.1 Fiber Materials o

Glass fibers consist primarily of Ernm (silicon dioxide) and metallic
oxamlabogumv:ﬁm elements and are mmzﬁ.m:% produced by mechanical
drawing of molten glass through a small orifice. E-glass (named for its
electrical properties) accounts for most of the glass fiber production and
is the most widely used reinforcement for composites. The second most
popular glass fiber; S-glass, has roughly 40% greater tensile strength and
20% greater Boa.:_:m of elasticity than E-glass (table 1.1), but it is not as
widely used, because of its higher cost. S-glass actually has greater
strength than many advanced fibers, but its relatively low modulus limits
its application. Glass/epoxy and glass/polyester composites are used
extensively in applications ranging from fishing rods to storage tanks and
aircraft parts.

Graphite or carbon fibers are the most widely used advanced fibers, and
graphite/epoxy or carbon/epoxy composites are now used Hossbm_% in
aerospace structures. Unfortunately, the names “carbon” and “graphite”
are often used interchangeably to describe fibers based on the element
carbon. These fibers are usually produced by subjecting organic precursor
fibers such as polyacrylonitrile (PAN) or rayon to a sequence of heat treat-
ments, so that the precursor is converted to carbon by pyrolysis. The major
difference is that graphite fibers are subjected to higher temperature pyrol-
ysis than carbon fibers. The result is that carbon fibers typically are less
than 95% carbon, whereas graphite fibers are at least 99% carbon [8].
Although. carbon fibers were once prohibitively expensive, the cost has
dropped significantly as production capacity and demand has increased.
Development of new carbon and graphite fibers continues at a rapid pace.
For example, fibers based on a pitch precursor (P-120S) with a modulus
more than four times that of steel are now available (Table 1.1). High-
strength carbon fibers such as T-1000G, which are based on a PAN precursor,
have a tensile strength more than six times that of steel. Either high strength
or high modulus is obtained by using the appropriate heat treatment.

Advanced polymeric fibers such as Kevlar® aramid fibers by DuPont,
Spectra® polyethylene fibers by Honeywell, Technora® aramid fibers by
Teijin, and Zylon® para-phenylene benzobisoxazole (PBO) fibers by Toy-
obo have extremely high specific strengths because of their combinations
of high strength and low density. The polymeric fibers also have higher
failure strains (i.e., better ductility) than the glass or carbon fibers. The
main disadvantages of the polymeric fibers are that they are generally not
suitable for use at extremely high temperatures, and some of them are
also susceptible to moisture-induced degradation. The effects of temper-
ature and moisture on polymers and polymer composites. will be dis-
cussed in more detail in chapter 5.

Boron fibers are actually composites consisting of a boron nomﬁsm on a
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the largest of all the advanced fibers, typically 0.002 to 0.008 in.(0.05 to
0.2 mm). Boron fibers have much higher moduli than most carbon fibers
(table 1.1), but they also have higher density. Boron/epoxy and boron/
aluminum composites are widely used in aerospace structures where high
stiffness is needed, but high cost still prevents more widespread use.

Silicon carbide (SiC) fibers are used primarily in high-temperature metal
and ceramic matrix composites because of their excellent oxidation resis-
tance ahd high-temperature strength retention. At room temperature, the
strength and stiffness of SiC fibers are about the same as those of boron.
SiC whisker-reinforced metals are also receiving considerable attention
as alternatives to unreinforced metals and continuous fiber-reinforced
metals. SiC whiskers are very small, typically 8 to 20 u in (20 to 51 nm)
in diameter and about 0.0012 in (0.03 mm) long, so that standard metal-
forming processes such as extrusion, 8:5@ and forging can be easily
used [7].

The ultimate reinforcement material to date is the carbon nanotube.
Carbon nanotubes, which were first observed in 1991, are two-dimen-
sional hexagonal networks of carbon atoms (graphene sheets) that have
been rolled up to form a cage-like hollow tube having a diameter of several-
nanometers [5,6]. The properties for nanotubes presented in table 1.1 are
only approximate, as nanotubes have so many different possible config-
urations. For example, they can be single-walled or multi-walled, and
they may occur in the form of bundles or ropes.

Hybrids consisting of mixed fiber materials can be used when a single
fiber material does not have all the desired properties. More complete
descriptions of fiber materials and their properties can be found in several
composites handbooks [8-13]. Further discussion of fiber properties,
including anisotropic behavior, will be given in chapter 3.

1.2.2 Matrix and Filler Materials

Polymers, metals, and ceramics are all used as matrix materials in com-
posites, depending on the particular requirements. The matrix holds the
fibers together in a structural unit and protects them from external dam-
age, transfers and distributes the applied loads to the fibers, and in many
cases contributes some needed property such as ductility, toughness, or
electrical insulation. A strong interface bond between the fiber and matrix
is obviously desirable, so the matrix must be capable of developing a
mechanical or chemical bond with the fiber. The fiber and matrix materials
should also be chemically compatible, so that undesirable reactions do
not take place at the interface. Such reactions tend to be more of a _wHoEmE
in gm?#mgmmwmgmm composites. Service temperature is often the main
consideration in the selection of a matrix material. Thus, the materials
will he disctissed below in order of increasing temperature capability.
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Polymers are unquestionably the most widely used matrix materials in
modern composites: Polymers are described as being either thermosets (e.g.,
epoxy, polyester, phenolic) or thermoplastics (e.g., polyimide [PI], polysul-
fone, polyetheretherketone [PEEK], Hu,od%_umsﬁmaﬁ sulfide. [PPS]). ‘Upon
curing, thermosets form a highly cross-linked, three-dimensional molecular
network that does not melt at high temperatures. Thermoplastics, however,
are based on polymer chains that do not cross-link. As a result, thermoplas-
tics will soften and melt at high temperatures, then harden again upon
cooling. - _ :

Epoxies and polyesters have been the principal polymer matrix materials
for several decades, but advanced thermoplastics such as PEEK and PPS
are now receiving considerable attention for their excellent toughness and
low moisture absorption properties, their simple processing cycles, and
their higher-temperature capabilities. Aerospace grade epoxies are typically
cured at about 177°C (350°F) and are generally not used at temperatures
above 150°C (300°F), whereas advanced thermoplastics such as PPS; PI, and
PEEK have melting temperatures in the range 315 to 370°C (600: to 700°F).

At this time, it appears that polymer matrix materials for use up to 425°C

'(800°F) are feasible. For higher temperatures, metal, ceramic, or carbon

matrix materials are required.

By using lightweight metals such as aluminum, titanium, and magne-
sium and their alloys and intermetallics such as titanium aluminide and
nickel aluminide, operating temperatures can be extended to about 1250°C
(2280°F). Other advantages of metal matrices are higher strength, stiffness,
and ductility than polymers but at the expense of higher density. Ceramic
matrix materials such as silicon carbide and silicon nitride can be used at
temperatures up to 1650°C (3000°F). Ceramics have poor tensile strength
and are notoriously brittle, however, and there is a need for much research
before these materials can be routinely used. Finally, carbon fiber/carbon
matrix composites can be used at temperatures approaching 2760°C
(5000°F), but the cost of these materials is such that they are used only in

.a few critical aerospace applications. For further details on matrix materials

and their properties, the reader is referred to any of several handbooks
[8-13]. Matrix properties will be discussed again in chapter 3, where prop-
erties for typical matrix materials will be given.

The third constituent material of a composite, the filler material, is mixed
in with the matrix material during fabrication. Fillers are not generally
used to improve mechanical properties but, rather, are used to enhance
some other aspect of composite behavior. For example, hollow glass micro-
spheres are used to reduce weight, clay or mica particles are used to reduce
cost, carbon black particles are used for protection against ultraviolet radi-
ation, and alumina trihydrate is used for flame and smoke suppression
[11]. Fillers truly add another dimension to the &mmHms flexibility we have
in composites.
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1.3 Structural Applications of Composites

Composite structural elements are now used in a variety of components
for automotive, aerospace, marine, and architectural structures in addition
to consumer products such as skis, golf clubs, and tennis rackets. Since
much of the current composites technology evolved from aerospace appli-
cations, it is appropriate to begin this brief overview there.

Military aircraft designers were among the first to realize the tremen-
dous potential of composites with high specific strength and high specific
stiffness, since performance and maneuverability of those vehicles depend
so heavily on weight. Composite construction also leads to smooth sur-
faces (no rivets or sharp transitions as in metallic construction), which
reduce drag. Since boron and graphite fibers were first developed in the
early 1960s, applications of advanced composites in military aircraft have
accelerated quickly. OonOm:m structural elements such as horizontal and
vertical stabilizers, flaps, wing skins, and various control surfaces have
been used in fighter aircraft such as the F-14, B-15, F-16, ..., B-22 (fig. 1.7).
The steady growth in the use of composite structures in military fighter
aircraft in recent years is shown graphically in figure 1.8. Not shown in

FIGURE 1.7

Lockheed Martin F-22 Raptor: (From Harris, CE., m.,ﬁmgmm\ J.H., Jr., and Shuart, M.]J. 2001.
An Assessment of the State-of-the-Art in the Design and Manufacturing of Large Composite Struc-
tures for Aerospace Vehicles. NASA TM-2001-210844.) .
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FIGURE 1.8

Composite structural applications in military fighter aircraft. (From Harris, C.E., Starnes,
J.FL, Jr., and Shuart, M.J. 2001. An Assessment of the State-of-the-Art in the Design and Manu-
facturing of Large Composite Structures for Aerospace Vehicles. NASA TM-2001-210844).

figure 1.8 are the data for the B-2 Stealth bomber, which has a primary
structure consisting of essentially all composite materials [14]:
Composites applications in commercial aircraft have been steadily
increasing as material costs come down, as design and manufacturing
technology evolves, and as the experience with composites in aircraft
continues to build. A 1994 NASA report [15] indicated excellent in-service
performance of composite components in commercial aircraft over a
15-year evaluation period, and such results have encouraged increased
usage of composites in aircraft structures, including small business-type
aircraft and large, commercial-transport aircraft. Initial use in these air-
craft was restricted to smaller, lightly loaded secondary structures, but
recently composites are being used increasingly in large, heavily loaded
" primary structures such as the wings and the fuselage. For example, the
Cirrus SR-22 single-engine, four-passenger aircraft shown in figure 1.9 has
a composite fuselage and wings. As an excellent example of innovative
design made possible by composites, the use of composites in this airplane
resulted in enough weight savings to accommodate the extra weight of
an airframe parachute system for safe descent of the entire aircraft in the
event of a loss of engine power. The application of composites in com-
mercial airliners has shown steady, conservative growth, but based on the
increased prices of fuels, demands by airlines for more efficient aircraft,
and other recent trends, this growth promises to be rapid in the future.
About 10% of the structural weight of the Boeing 777 (fig. 1.10) consists
of composite materials, primarily graphite/epoxy [14]. However, based
o tha morfnrmance record of composites in the 757 /767 /777 series and
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FIGURE 1.11

Composite construction of a helicopter rotor blade. (From McCrum, N.G., Buckley, C.P., and
Bucknall, C.B. 1988. Principles of Polymer Engineering [Oxford University Press, New York].
Copyright 1988, Oxford University Press. Reprinted by permission.)

other airliners, the Boeing 787 will be the first commercial airliner with a

composite fuselage and wings, and is expected to enter service in 2008.

* A similar new airliner, the Airbus A350, with composite wings and rear
section fuselage, is expected to enter service in 2010.

The level of sophistication attained in aircraft composite construction

is strikingly illustrated by the composite helicopter rotor blade in

figure 1.11. The construction of such a component obviously requires a

multistep fabrication procedure involving many materials, and some of~

these fabrication processes will be discussed in the next section.

Due to the tremendous cost per unit weight to place an object in space,
the value of weight saved is even greater for spacecraft. Thus, composites
are extremely attractive for spacecraft applications. The NASA Space
Shuitle has a number of composite parts, including graphite/epoxy cargo
bay doors and experimental graphite/epoxy solid rocket-booster motor
cases. For large space structures such as the proposed space station, the
key properties of the structural materials are high stiffness-to-weight ratio,
low thermal expansion coefficient, and good vibration-damping charac-
teristics. In all three of these areas composites offer significant advantages
over conventional metallic materials.

Scaled Composite’s SpaceShipOne (fig. 1.12), the first private manned
spacecraft to achieve suborbital flight, is constructed primarily from com-
posite materials, and promises to lead the way to commercial manned
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FIGURE 1.12
SpaceShipOne and its mother ship White Knight. (© 2004 Mojave Aerospace Ventures LLC,
photograph by Scaled Composites. SpaceShipOne is a Paul G. Allen project.)

space travel. In other spacecraft components such as precision reflectors
(fig. 1.13), special composite structures such as carbon fiber-reinforced
isogrids are used for their superior dimensional stability characteristics.
As shown later, some advanced fibers such as carbon have extremely low
(and in some cases, negative) thermal expansion coefficients, which makes
it possible to design composite structures having excellent dimensional
stability.

Structural weight is also very important in automotive vehicles, and the
use of composite automotive components continues to grow. Glass
fiber-reinforced polymers continue to dominate the automotive compos-
ites market, but advanced composites with carbon fiber reinforcement are
getting increased attention as the cost of carbon fibers continues to drop.
In cargo trucks, the reduced weight of composite components translates
into increased payloads, which can have a significant economic impact.
For example, the composite concrete mixer drum shown in figure 1.14
weighs 2000 1b less than the conventional steel mixer drum that it
replaced. According to the manufacturet, this means that an additional
one-half cubic yard of concrete per load can be transported, which trans-
lates into an estimated productivity gain of $7500 per year.

Weight savings on specific components such as composite leaf springs
can exceed 70% compared with steel springs (composite leaf springs have
also proved to be more fatigue resistant). Experimental composite engine




FIGURE 1.13
Composite isogrid spacecraft reflector. (Courtesy of Composite Optics, Inc.)

¢

blocks have been fabricated from graphite-reinforced thermoplastics, but
the ultimate goal is a ceramic composite engine that would not require
water cooling. Chopped glass fiber—reinforced polymers have been used
extensively in body panels (fig. 1.15) where stiffness and appearance are
the principal design criteria. Composite primary structures such as Auto-
motive Composites Consortium’s composite “body-in-white” (fig. 1.16)
are only experimental at this point, but they offer weight reduction, fewer
parts, and smaller assembly and manufacturing costs. As with airliners,
so far the applications of composites in automotive vehicles have been
mainly in secondary structural elements and appearance parts, and the
full potential of composite primary structures remains to be explored.
Other applications of structural composites are numerous, so only a few
examples will be given here. I-beams, channel sections, and other struc-
tural elements (fig. 1.17) used in civil infrastructure may be made of fiber-
reinforced plastic using the pultrusion process, which will be discussed
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FIGURE 1.14

Composite mixer drum on concrete transporter truck weighs 2000 1b less than conventional
steel mixer drum. (Courtesy of Oshkosh Truck Corporation.)

FIGURE 1.15

Ford Thunderbird with composite body panels. (Courtesy of Ford Motor Company, Research
Staff.)
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Lo FIGURE 1.16
Automotive Composites Consortium’s composite “body-in-white
Automotive Composites Consortium.)

’ ”

concept. (Courtesy of

in the next section. Corrosion resistance and electrical and thermal insu-
lation are added advantages of composites over steel in such applications. |
, Wind turbines (fig. 1.18) are getting increased attention as environmen- |
, tally attractive, alternative energy sources, and their blades are typically |
” made from composites due to their high strength-to-weight ratio, high

stiffness-to-weight ratio, excellent vibration damping, and fatigue resis-
tance. The bodies of large mass-transportation vehicles such as airport

FIGURE 1.18 :
Composite wind turbine blades. (Courtesy of GE Energy.)

people movers (fig. 1.19) are often fabricated from composites for the same
reasons that they are used in many other transportation vehicles, and
because, as shown in the next section, high-volume, low-cost processes
for fabricating such large structures are now believed to be relatively
mature technologies. One of the fastest growing applications of composites
in civil infrastructure is in prefabricated bridge decks for either new
bridges or rehabilitation of older bridges. Fiber-reinforced polymer (FRP)
composite bridge decks (fig. 1.20) have many advantages over conven-
tional concrete and steel decks: FRP decks weigh much less, are more
resistant to corrosion and freeze-thaw cycles, and are more easily and

- FIGURE 1.17
o Pultruded fiberglass composite structural elements. (Courtesy of Strongwell Coxporation.)
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FIGURE 1.19 .
Airport people mover with.composite body. (Courtesy of TPI Composites.)

@EQAE installed. A major related application is the now common practice
of seismic retrofitting of conventional concrete-steel bridge columns by
wrapping them with composite tapes in earthquake-prone areas. In these

examples, as well as in many of the previous examples, cost is a major-

consideration limiting the more widespread use of composites. The fab-
rication process is the key to cost control, and the next section will describe
the fabrication processes used to make the components described here.

FIGURE 1.20
Hsmﬁmzmaos of FRP composite deck for _E..Emm rehabilitation. Anomﬂamm% of Zmasz Marietta
OOQ%Om:mm )
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1.4 Fabrication Processes

Although this book is concerned primarily with the mechanics of com-
posite materials, it is essential for the reader to know how these materials
are made. This is because, with composites, we design and build not only
the structure, but also the structural material itself. The selection of a
fabrication process obviously depends on the constituent materials in the
composite, with the matrix material being the key (i.e., the processes for
polymer matrix, metal matrix, and ceramic matrix composites are gener-
ally quite different). In this summary of fabrication processes, only those
used for polymer matrix composite fabrication will be discussed, and the
reader is referred to other books for details on metal matrix and ceramic
matrix composite fabrication [8-13,16].

A summary of fabrication processes used for polymer composites with
various types of fiber reinforcement is given in table 1.2. The open mold
process with hand lay-up of woven fiber mat or chopped strand mat
(fig. 1.21) or spray-up of chopped fibers (fig. 1.22) is used. for development
work, prototype fabrication, and production of large components in rela-
tively small quantities. A mold having the desired shape is first coated with
a mold release, which prevents bonding of the resin matrix material to the
mold. If a smooth surface on the part is desired (i.e., boat hulls or aircraft
exterior parts), a gel coat is then applied to the mold, followed by a thermo-
setting polymer resin and the fibers. A roller may then be used for consoli-
dation, followed by curing the polymer resin at the required temperature.

TABLE 1.2

Fabrication Processes for Polymer Matrix Composites

Type of Reinforcement
Process Continuous  Chopped Woven  Hybrid

Open mold
Hand lay-up X X
Spray-up X
Autoclave
Compression molding
Filament winding
Roll-wrapping
Pultrusion
Liquid composite molding
Reinforced reaction :dmn:o: molding
Resin infusion
Automated fiber placement
Thermoplastic molding
Programmable powdered preform X
process

KX XXX X
= X
= X

x XX
XX
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Roller

Wax coating on mold
(or mold release)

Yo Mold

) -

FIGURE 1.21
Open mold, hand lay-up composite fabrication.

A major breakthrough in composite manufacturing technology was the
development of “prepreg tape,” which is a tape consisting of fibers pre-
coated with the polymer resin. This innovation means that the fabricator
no longer has to worry about mixing the resin components in the right
proportions and combining the resin with the fibers in the correct fashion.

Most prepreg tape is made by the hot-melt process (fig. 1.23). If a thermo--

setting resin is used, the resin coating is partially cured, and the tape must
be meﬁ refrigerated to prevent full curing until final use. If a ﬁrmﬁsoﬁwmnn
resin is used, the tape can be stored at room temperature until it is melted
during final use. The fabrication of a laminated structure with prepreg tape
involves simply “laying-up” the tape at the required orientation on a mold,
stacking layers of tape in the required stacking sequence, and then curing
the assembly under elevated temperature and pressure.

Autoclave molding (fig. 1.24) is the standard aerospace industry process
for fabrication with prepreg tapes. The autoclave is simply a heated pressure

Chopper-spray gun

Mold

FIGURE 1.22
Open mold, spray-up composite fabrication.
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Scrap top film carrier

Hot-melt prepregging 3_6‘:@ voll

reinforcement
S Pull rolls

Ooo:sm 3=m

Prepreg with

o m:ﬁ—:m devices
; ] Heat and Film/prepreg carrier interleaf
Resin film on pressure rolls scrap edges take-up
carrier interleaf take-up roll

FIGURE 1.23

Hot-melt prepregging process. (Courtesy of Suppliers of Advanced Composite Materials
Association [SACMAL.)

vessel into which the mold (with lay-up) is placed and subjected to the
required temperature and pressure for curing. The mold and lay-up are often
covered with a release fabric, a bleeder cloth, and a vacuum bag. A vacuum
line is then attached to the mold for evacuation of volatile gases during the
cure process. Without the vacuum bagging, these gases would be trapped
and could cause void contents of greater than 5% in the cured laminate. With
the vacuum bag, void contents of the order of 0.1% ate attainable. Autoclaves
come in a wide range of sizes, from bench-top laboratory versions to the
room-size units used to cure large aircraft structures. The autoclave-style
press cure [17] is often used to cure small samples for research. In this case,
a vacuum-bagged mold assembly (fig. 1.25) is inserted between the heated

Pressure chamber
Vacuum bag

Lay-up (prepreg)’

Compressor

Heaters

Vacuuin pump

FIGURE 1.24

Autoclave molding.
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Vacuum bag mount

Spacer plate

Vacuum bag

Pressure plate .

Bleeder cloth
Release fabric
Laminate

Toll

Heated platen

Rubber dam

FIGURE 1.25 :
Lay-up sequence for autoclave-style press molding.

platens of a hydraulic press, and the press then generates the temperature
and pressure required for curing. A vacuum press is a variation on this
concept involving the use of a vacuum chamber surrounding the platen-
mold assembly, and a-sealed door on this chamber eliminates the need
for a vacuum bag. T

Sheet-molding compounds (SMCs) are an important innovation in com-
posite manufacturing that are used extensively in the automobile industry.
SMCs are similar to prepreg tape in that the fibers and the resin are
“prepackaged” in a form that is more easily usable by fabricators. SMCs
consist of a relatively thick, chopped fiber-reinforced resin sheet, whereas
prepreg usually has continuous fibers in a thin tape. A machine for pro-
ducing SMCs is shown schematically in figure 1.26. An alternative to
SMCs are bulk-molding compounds (BMCs), which consist of the
chopped fiber/resin mixture in bulk form. SMCs or BMCs may be molded
by using the matched metal die process (fig. 1.27). :

Filament winding (fig. 1.28), which involves winding resin-coated fibers
onto a rotating mandrel, may be used to produce any composite structure
having the form of a body of revolution. Fiber orientation is controlled
by the traverse speed of the fiber winding head and the rotational speed
of the mandrel. Another advantage of this process is that by controlling
the winding tension on the fibers, they can be packed together very tightly
to produce high-fiber-volume fractions. Upon completion of the winding
process, the composite structure may be cured by placing the mandrel in
an oven or by passing hot fluid through the mandrel itself.

Filament winding is widely used to produce such structures as rocket
motor cases, pressure vessels, power transmission shafts, piping, and
tubing. Prepreg tape is often produced by filament winding and removing
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Chopper

Paste doctor blade

Resin filler paste

Resin filler
paste

Doctor blade Plastic carrier film
Take-up roll
Plastic carrier film

Chopped roving

Compaction section

FIGURE 1.26- . :

Machine for producing SMCs. (From Reinhart, T.J. et al. eds. 1987. Engineered Materials
Handbook, vol. 1, Composites [ASM International, Materials Park, OH]. Reprinted by permis-
sion of ASM International.)

*
the tape from the mandrel before curing. Imaginative variations on the
filament winding process have produced a variety of structures such as
leaf springs for automotive vehicles. A composite leaf spring may be fab-
ricated by winding on an ellipsoidal mandrel, then cutting the cured shell
into the required pieces. Experimental programs are underway to produce
large, complex structures such as aircraft fuselages and automobile body

i Prepreg tape or
sheet-molding

\ compound (SMC)

=&

Heated die

FIGURE 1.27- :
Compression molding with matched metal dies.
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. |
Tension-adjust

Resin-coated fibers | "

FIGURE 1.28
Filament winding process.

structures by filament winding. Filament winding machines for such struc-
tures will require the liberal use of computer control and robotics.

The roll wrapping (or tube rolling) process also involves the placement
of resin-impregnated fibers on a cylindrical mandrel to produce a com-
posite tube or other body of revolution. However, in the case of roll
wrapping, sheets of composite prepreg tape are wrapped around the
mandrel by rolling the mandrel over the prepreg, which lies flat on a table.
In this manner, prepreg tape is wrapped around the mandrel at a rate of
one layer per revolution, and the mandrel is indexed after each revolution
so that the abutting joints of prepreg tape are offset by some amount, thus
avoiding an undesirable region of weakness that would be generated if
all the abutting joints line up along a radial line. Once the wrapping
process is completed, the mandrel is externally pressurized and heated at
the required cure pressure and temperature. One advantage of roll wrap-

_ ping over filament winding is that the fibers can be oriented in the true
- circumferential direction for maximum hoop strength, whereas in filament

winding, some amount of deviation from circumferential fiber orientation
will be introduced as the winding head traverses along the rotating man-
drel. Either unidirectional fiber or woven fabric—reinforced prepreg can
be used in roll wrapping, whereas filament winding is typically restricted
to unidirectional fiber tows. Roll wrapping is often used to produce fishing
rods, golf club shafts, hockey sticks, and tubing for bicycle frames.
Many of the processes described above are fairly time consuming. Pro-
cesses with faster production cycles are needed for high-volume applica-
tions such as automotive parts. For example, reinforced reaction injection
molding (RRIM) is a very fast process that is widely used to produce such
components as automobile body panels. The RRIM process (fig. 1.29)
involves the injection of a chopped fiber /resin mixture into a mold under
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Resin
Heated mold

fibers

Hardener -

FIGURE 1.29
RRIM process.

high pressure and then curing it at the required temperature. “Pultrusion”
(fig. 1.30) is the process of pulling a continuous fiber /resin mixture through
a heated die to form structural elements such as I-beams and channel
sections (fig. 1.17), This process is relatively fast but is restricted to struc-
tures whose shapes do not change along the length. In the thermoplastic
molding process (fig. 1.31), a blank (an uncured laminate consisting of
thermoplastic prepreg tape layers) is passed through an infrared oven
where it is heated to near the melting point of the thermoplastic resin.
Thermoplastic yarn or woven textiles consisting of commingled reinforcing
fibers and thermoplastic matrix fibers (fig. 1.32) are also used. The heated
blank is then quickly placed in a matched metal die mold for final forming,
In another form of thermoplastic molding, solid cylindrical pellets contain-
ing either long or short chopped fibers in a thermoplastic resin are melted
and molded by using a screw injection machine, or by compression
molding. Resin transfer molding (RTM) and structural reaction injection
molding (SRIM) are attracting considerable attention because of their
relatively fast production cycles and the near-net-shape of resulting parts. -
In both the RTM process (fig. 1.33) and the SRIM process, a “preform”

Heated die

) o~

AN
Puller

el

Fiber roving

Resin bath

FIGURE 1.30
Pultrusion process.
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FIGURE 1.31 ‘
Thermoplastic molding process. |

consisting of fibers and possibly a foam core is first produced in the general
shape of the finished part. The preform is then placed in a closed metal
mold and the liquid resin is injected under pressure. The major difference
between the two processes is that with RTM, the resin and hardener are
premixed before injection into the mold, whereas with SRIM, the resin and
hardener are mixed by impingement as they are injected into the mold.
Three-dimensionally shaped parts with foam cores can be produced with
both RTM and SRIM, but SRIM tends to be faster than RTM. ,

In the vacuum-assisted RTM (VARTM) process, a vacuum pump is
connected to the closed mold to pull the resin through the fiber preform.
The SCRIMP™ (Seeman composites resin infusion molding process)
shown in figure 1.34 is an open mold/vacuum bag version of the VARTM

Reinforcing fibers

Thermoplastic fibers which
form matrix after melting

FIGURE 1.32
Commingled reinforcing fibers and thermoplastic matrix fibers in a thermoplastic yarn.

i
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FIGURE 1.33

RTM process. (Courtesy of Ford Motor Company, Research Staff.)

Vacuum bag

Rasin flow

Laminate <.

Typical SCRIMP™ schematic
Vacuum pump
FIGURE 1.34

Schematic of SCRIMP™ (Seeman composites resin infusion molding process). (Courtesy of
TPT Composites.) .
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process; it is effective for fabricating very large composite structures. The
resin film infusion (RFI) process is similar to the SCRIMP™ process except
that a solid resin film is used instead of a liquid resin. In RFI, the lay-up
consists of the fiber preform and a solid resin film covered with a vacuum

bag in an open mold, followed by heating and melting of the resin film, -

which infuses the fiber preform. Finally, the composite part is cured and
released from the mold. The automated fiber placement process involves
robotic placement of thermoset or thermoplastic prepreg tapes on a mold
and is widely used in the aerospace industry. In processing methods that
involve fiber preforms, one of the most costly and time-consuming steps

‘is the fabrication of the fiber preform itself. An innovative breakthrough

in preform fabrication involves the use of robotic fiber placement in the
so-called P4 (programmable powder preform process). In the P4 process,
continuous fibers are chopped and sprayed onto a mold screen by a
programmable robot, along with a small amount of resin binder to hold
the fibers in place. A vacuum also helps to hold the fibers in place on the
screen. The completed fiber preform is removed from the screen and
placed in a mold where it is infiltrated with resin that is cured to form
the composite part. :

In conclusion, many innovative processes exist for manufacturing
polymer composites. Much of the success that composite materials
have had in the past several decades is due to innovative fabrication
technology, and the future success of composites will surely depend
on further advances in this area. Computer-aided-manufacturing tech-
nology and robotics are expected to play important roles in the con-
tinuing drive to reduce cost and to improve the quality of composite
structures.

T ——
1.5 Elements of Mechanical Behavior of Composites

This book is concerned with the analysis of both the micromechanical and
the macromechanical behavior of fiber-reinforced composite materials. As
shown schematically in figure 1.35, micromechanics is concerned with the
mechanical behavior of constituent materials (in this case, fiber and matrix
materials), the interaction of these constituents, and the resulting behavior
of the basic composite (in this case, a single lamina in a laminate). Mac-
romechanics is concerned with the gross mechanical behavior of compos-
ite materials and structures (in this case, lamina, laminate, and structure),
without regard for the constituent materials or their interactions. As we
will see in chapter 2, this macromechanical behavior may be characterized
by averaged stresses and strains and averaged, or “effective,” mechanical
properties in an equivalent homogeneous material. As shown in chapter 3

Introduction . 33

Macromechanics
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Matrix (binder)
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fibers

FIGURE 1.35 .
Micromechanics and macromechanics of composites.

to chapter 6, the focus in micromechanics'is on the relationships between
the effective composite properties and the effective constituent properties.
Subsequent chapteérs deal with macromechanical behavior of laminates
and structures. - o :

When dealing with composite materials, we find very quickly that
we can no longer draw upon the “intuition” about material behavior
that we developed from years of experience with conventional metallic
structural materials, and that we must learn to “think composites.”
Most metallic structural materials are homogeneous (properties do not
vary from point to point in the material) and isotropic (properties do
not depend on orientation), whereas most composites are heteroge-
neous and anisotropic. That is, the properties in a composite change as
we move from matrix to fiber and as we change the direction along
which they are measured. For example, in a “unidirectional” composite,
having reinforcement in only one direction, the strength and stiffness
are much greater along the reinforcement direction than in the trans-
verse direction. , :

The relationships between forces and deformations (or between
stresses and strains) are much more complicated in anisotropic compos-
ites than in conventional isotropic materials, and this can lead to unex-
pected behavior. For example, in an isotropic material, a normal stress
induces: only normal strains (extensions and/or contractions), and a
shear stress induces only shear strains (distortions). In an anisotropic
composite, however, a normal stress may induce both normal strains and
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shear strains, and a shear stress may induce both shear strains and
normal strains. A temperature change in an isotropic material causes
expansion or contraction that is uniform in all directions, whereas a
temperature change in an mamoﬁoﬁﬁ material may cause nonuniform
expansion or contraction plus distortion. These so-called “coupling”
effects have important implications not only for the analytical mechanics
of composites; but for the experimental characterization of composite
behavior as well. :

It is hoped that _mem general observations regarding composite mate-
rials will provide motivation for further study in subsequent chapters,
where the analytical and experimental characterization of mechanical
behavior of composites is discussed in more detail.

I
1.6 Review of Basic Mechanics of Materials Equations

The basic equations of the mechanics of materials are used throughout
this book, and this section briefly reviews and reinforces those equations,
with examples of application to composite systems. As shown in many
textbooks on mechanics of solids [18,19], when the loading is static or
quasistatic in nature, three basic categories of equations are typically used,
separately or in combination, to solve problems in elementary mechanics
of materials. They are: . oo

» Equations of static equilibrium based on Newton’s Second Law
e Force—deformation or stress—strain relationships for the materials

e Geometric compatibility equations or assumed relationships
regarding the geometry of deformation

In addition, using accurate free-body diagrams is essential to setting up
the correct equations of static equilibrium. The equations of mechanics of
materials are often algebraic, but in some cases involving differential
equations, a fourth category of equations, usually referred to as boundary
conditions, is also needed. For example, the well-known beam-deflection
equations are second-order ordinary linear differential equations whose
solution requires two boundary conditions. In problems involving
dynamic loading, equations of motion are used instead of static equilib-
rium equations, and the equations of motion may be either ordinary or
partial differential equations, depending on whether the mass is assumed
to be discretely or continuously distributed, respectively. Most of the cases
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considered in this book will involve static or quasistatic Hom&sm\, and
dynamic loading is discussed mainly in chapter 8. Finally, it is important
to recognize that, for statically determinant systems, the three categories
of equations described above can be solved independently, but for stati-
cally indeterminate systems, they must be solved simultaneously.

The remainder of this section consists of examples demonstrating the
application of the basic equations of mechanics of materials to the analysis
of composite systems. These preliminary examples involve only simple
composite systems having isotropic constituents, and the force-deforma-
tion and stress—strain relationships of isotropic materials should be familiar
from previous studies of elementary mechanics of materials. However, it is
important to realize that many composites and their constituents are aniso-
tropic, and the corresponding force—deformation and stress-strain relation-
ships of anisotropic materials are complex compared with those of isotropic
materials. The study of anisotropic materials will begin in chapter 2.

EXAMPLE 1.1

We wish to find the stresses and deformations in the axially loaded composite
bar system in figure 1.36a. The composite bar consists of two bars made of
different isotropic materials A and B having different diameters and which are
securely bonded together in a series arrangement and loaded by an axial load P.
The bar of material A has length L,, cross-sectional area Ay, and modulus of

Bonded joint
/

Bar A . Bar B

_.A‘ Lo ll'lv/_A|rm|V_

(a) Series arrangement of axially loaded bars

Bar B

(b) Free-body diagrams for bars A and B

FIGURE 1.36
Composite bar system for example 1.1.
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elasticity E,, while the bar of material B has length Ly, cross-sectional area Ag,
and modulus of elasticity Eg. Free-body diagrams of the two bars are shown in
figure 1.36(b). : B

Solution. For static equilibrium of bar A, S%.nw has internal force Py,

! )
_ Mumns,lwno (L)
Similarly, for bar B, WSEOT has internal force Py,
D E=P—R=0 (12

so that P=P, = B; and the load is the same for each bar in the series ar-
rangement, _

The axial stresses in the two bars are therefore

P,
Q>H>|w

B

yo (1.3)

and o=

)

The axial elongations of the bars are given by the familiar force-deformation
equations

— ~u>H.>
>>m>

Bly
AgEg

da

and 8=

(1.4)

Since the bars are assumed to be securely joined together in a series arrange-
ment, the total axial elongation is given by the geometric compatibility
equation, :

m.on: = M.P + mm AHWV

So for the series m@mﬁ@m?mﬂﬁ the forces are the same in each member,
and the total deformation is the suin of the deformations in the members.
This is also an example of a statically determinate system, since the forces
in the members can be determined from the static equilibrium equations
alone. For such a system, the force-deformation equations and the geo-
metric compatibility equation are not needed to find the forces in the
members., The next example will be a statically indeterminate composite
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Composite bar system for example 1.2.

system, where the three basic types of equations must be solved simulta-
neously in order to find the forces in the members.

EXAMPLE 1.2

Now we wish to find the stresses and deformations in the composite system of
figure 1.37(a), where a solid isotropic bar A is securely bonded inside a hollow
isotropic bar B of the same length and both bars are axially loaded by a load P
that is transmitted through rigid plates. The free-body diagrams for the bars and
one of the rigid plates are shown in figure 1.37(b).

Solution. Static equilibrium of the rigid plate requires that the applied force
P must be related to the internal forces in the members, P, and Py, by the
equation

Y E=Pi+B-P=0 or P=Py+B (1.6)
This is the only nontrivial static equilibrium equation for this system, but the
equation contains two unknown forces, P, and Py, Thus, unlike example 1.1,
the forces in the members cannot be determined from the static equilibrium

equations alone, and the system is said to be statically indeterminate, A second
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equation is needed to solve for the two E%boib forces, and that equation
may be generated by combining the moHn?mmmoH.Bmsos relationships and the
geometric compatibility condition. As S:T example 1.1, the force-deforma-
tion relationships moH. the bars are W

|
PaLa , BLy

Q p—1
AL, 4 =g

m 8a= (1.7)
Since the bars are mm_mcgma to be securely bonded together, the geometric
compatibility condition for the parallel arrangement is

m> HMW , A”_..mv

So for the parallel arrangement, the deformations in the members are equal
and the total applied force is equal to the sum of the member forces. By
combining the force-deformation and geometric compatibility equations,
we obtain a second equation in the two unknown forces P, and Py that can
be solved simultaneously with the static equilibrium equation. Once the
forces P, and Py are found, the stresses and deformations in the members
can be found.

EXAMPLE 1.3

In the 83%8% system shown in figure 1.38(a), a rigid h-mw%m& ws\ is hinged
at point O and is also supported by a wood post and a steel cable. Before the load
P is applied, the system is unstressed, and we wish to find the stresses and
deformations in the steel cable and the wood-post after the load P is applied.

Solution. For a two-dimensional problem such as this, three static equi-
librium equations are available, but from the free-body diagram of the
L-shaped bar in figure 1.38(b), it is seen that there are four unknown reaction
forces: the force in the steel cable, F,, the hinge forces O, and Oy, and the
force in the wood post, F,.. The hinge forces are not of interest here, and can
be eliminated from the problem by writing the equation for static equilib-
rium of moments about an axis through the hinge point O, as

Y Mo=Pc—Fb+Ra=0 (1.9)

We now have one equation in two unknowns, F,, and F,, and although
there are two remaining available static equations, those equations would
involve the hinge forces O, and O,, so nothing can be gained by consid-
ering them. Thus, the problem is statically indeterminate, and we must
develop the geometric compatibility and force—deformation equations
and solve all the equations simultaneouslv. The geometrv of deformation
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FIGURE 1.38
Composite system for example 1.3.

of the rigid L- mrmﬁmm bar that rotates about the hinge point O is-shown
in figure 1.38(c). From this drawing, it is clear that the geometric compat-
ibility equation is

Ow 8 (1.10)

b 4
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where §,, and 9§, are the deformations in ?m wood post and the steel cable,
Hmmwmnﬁ:\md\ The corresponding moH.nmrmmmoHBm-nOS equations are

ElLw _ ELs
Oy = and mel AL

(1.11)
| |

where A, and A, m_H.m the cross-sectional areas and E,, and E, the elastic
moduli of the wood post and the steel cable, respectively. Now the equilib-
rium, compatibility, land force-deformation equations can be solved simul-
taneously for the forces F,, and F,; the forces and areas can then be used to

determine the stresses.

Thus, the general anmggm for analyzing statically indeterminate struc-
tures is to solve the static equilibrium equations, the force-deformation
equations, and the geometric compatibility equations simultaneously for
the forces in the members, then use the member forces to find the corre-
sponding stresses and deformations. Although these same basic principles
are used throughout this book, we find that it is often more convenient
and practical to work with the stresses rather than the forces, the strains
rather than the deformations, and the stress—strain relationships rather
than the force-deformation relationships. Example 1.4 illustrates these
concepts. _

EXAMPLE 1.4

The composite ring assembly in figure 1.39 (a) consists of a thin steel inner ring
of mean radius r,, wall thickness t, modulus of elasticity E,, and coefficient of
thermal expansion o, which just fits inside an aluminum outer ring of mean
radius t,, wall thickness t,, modulus of elasticity E,, and coefficient of thermal
expansion o,, so that both rings are initially unstressed at room temperature. We
wish to determine the strvesses in each ring after the assembly has been cooled by
an amount AT < 0, where AT is the temperature drop.

Solution. From material property tables, we find that o, > o, so that when
the assembly is cooled, the aluminum ring tries to contract more than the
steel ring. As a result of this differential contraction, a radial pressure, p,
develops at the aluminum-steel interface, as shown in the free-body dia-
grams in figure 1.39(b). The effect of the interface pressure p is to put the
inner steel ring in compression and the outer aluminum ring in tension.
From the static equilibrium analysis of thin-walled cylinders or rings, which
is found in any mechanics of materials book, the tangential (hoop) stresses
in the two rings are

o, =% and o,=-E2 (1.12)

| - T
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(a) Composite ring assembly
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Steel inner ring Aluminum outer ring

(b) Free-body diagrams of rings after cooling and differential contraction

FIGURE 1.39
Composite ring system for example 1.4

However, it is clear from the free-body diagrams in figure 1.39(b) that the
pressure p and the corresponding stresses above cannot be found from the
static equilibrium equations alone. Thus, the system must be statically in-
determinate, and we must develop additional equations based on geometric
compatibility and stregs-strain relationships.

From mechanics of materials, the tangential (hoop) strains in the rings must
be .

Ar, . A
2 and g, =—2
ta s

g, =

(1.13)

where Ar, and Ar, are the radial displacements in the aluminum and steel
, rings, respectively. Since the two rings are securely bonded together, geo-
: metric compatibility requires that Ar, = Ar,, so that

g, = Hlm (1.14)
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The tangential stress—strain relationships for the two materials including

 thermal effects are ﬁ

mw,.nw.rofbﬁ and mmHW+Qm>H , s (1.15)
| Fa | s

G

)

By combining the gbove equations, we can reduce the problem to one

equation in one cbw__aﬁois\ the interfacial pressure p, as shown below.

m Wm- mﬁ N\.ﬂ Wmmm

By substituting the known geometrical and material properties along with
the temperature change, we can solve this equation for p. Once p is deter-
mined, the corresponding stresses in the rings can be easily calculated.

§w+85ﬂumﬁ1w$+gBﬂw (1.16)

1.7 Problems

\

1. For a cylindrical particle, derive the relationship between the ratio
of surface area-to-volume, A/V, and the particle aspect ratio, //d,
and verify the shape of the curve shown in figure 1.3.

2. Explain qualitatively why sandwich structures (fig. 1.5) have such
high flexural stiffness-to-weight ratios. Describe the key parame-
ters affecting the flexural stiffness-to-weight ratio of a sandwich
panel. :

3. Describe a possible sequence of fabrication processes that might
be used to manufacture the helicopter rotor blade in figure 1.11.
Note that several different materials and fiber lay-ups are used.

4. Which of the reinforcing fibers listed in table 1.1 would be best

for use in an orbiting space satellite antenna structure that is
o subjected to relatively low stresses but has very precise dimen-
, sional stability requirements? The answer should be based only
on the properties given in table 1.1.

5. A thin-walled filament wound composite pressure vessel has
fibers wound at a helical angle 6, as shown in figure 1.40. Ignore

E the resin matrix material and assume that the fibers carry all of
2 the load. Also assume that all fibers are uniformly stressed in
tension. This gross oversimplification is the basis of the so-called

- “netting analysis,” which is actually more appropriate for stress
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FIGURE 1.40 B :

Filament wound composite pressure vessel for problem 5.

analysis of all-fiber textile fabrics. Using this simplified analysis,
show that the angle 6 must be 54.74° in order to support both the
hoop (tangential) and axial stresses that are generated in a thin-
walled pressure vessel. (See any mechanics of materials book for
the stress analysis of a thin-walled pressure vessel.)

6. A filament wound E-glass/epoxy pressure vessel has a diameter
of 50 in (127 c¢m), a wall thickness of 0.25 in (6.35 mm), and a
helical wrap angle 6 =54.74°, Using a netting analysis and a safety
factor of 2, estimate the allowable internal pressure in the vessel.
Compare with the allowable internal pressure in a 6061-T6 alu-
minum alloy pressure vessel having the same dimensions. For
the aluminum vessel, assume that the tensile yield stress is 40,000
psi (276 MPa) and use the Maximum Shear Stress yield criterion.
Although the netting analysis is greatly oversimplified, these
approximate results should demonstrate the significant advan-
tages of fiber composite construction over conventional metallic
construction.

7. The 2000 mm long composite bar shown in figure 1.41 consists of
an aluminum bar having a modulus of elasticity E,, = 70 GPa and
length L,, =500 mm, which is securely fastened to a steel bar having
modulus of elasticity Eg =210 GPa and length Le,= 1500 mm. After

43
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500 BBIV_

1500 mm -

FIGURE 1.41 i
Composite bar system for m:“,oEmB 7.

the force P is mﬁﬁﬁmm\ a tensile normal strain of g,; = 1000 x 10-¢ is
measured in the aluminum bar. Find the tensile normal stress in
each bar and the total elongation of the composite bar.

8. A support cable in a structure must be 5 m long and must with-
stand a tensile load of 5 kN with a safety factor of 2.0 against
tensile failure. Assuming a solid cylindrical cross-section for the
cable as an approximation, (a) determine and compare the
weights of cables made of 4340 steel and AS-4 carbon fibers that
meet the above requirements, and (b) for an AS-4 carbon fiber
cable having the same weight, length, and safety factor as the
4340 steel cable from part (a). How much tensile load s:: the
carbon fiber cable be able to withstand?

9. Aflywheel for energy storage is modeled as a rotating thin-walled
cylindrical ring (f << ) as shown in figure 1.42. Find the equation
for the tensile stress in the ring as a function of the mean radius,
t, the rotational speed, ®, and the mass density, p, of the ring, then
compare the maximum peripheral speed (tangential velocity) and

t—p

-

FIGURE 1.42

Simnlified model of flywheel for problem 9.
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the kinetic energy stored per unit mass of a ring made from 4340
steel with that of a ring made from IM-7 carbon fibers. For the
carbon fiber ring, assume: that the fibers are oriented in the cir-
cumferential direction, and that all of the tensile load is m:_.u@oimm
by the fibers.
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Lamina Stress—Strain Relationships

l
2.1 Introduction

The basic building block of a composite structure is the lamina, which
usually consists of one of the fiber/matrix configurations shown in
figure 1.4. For the purposes of mechanics analysis, however, the “unidirec-
tionally reinforced” or “unidirectional” lamina with an arrangement of
parallel, continuous fibers is the most convenient starting point. As shown
in subsequent chapters, the stress-strain relationships for the unidirec-
tional lamina form the basis for the analysis of not only the continuous
fiber composite laminate (fig. 1.4[a]), but also of woven fiber (fig. 1.4[b])
and chopped fiber composites (fig. 1.4]c]) and (fig. 1.4[d]) as well.

A composite material is obviously heterogeneous at the constituent mate-
rial level, with properties possibly changing from point to point. For example,
the stress-strain relationships at a point are different for a point in the fiber
material from how they are for a point in the matrix material. If we take the
composite lamina as the basic building block, however, the “macromechan-
ical” stress-strain relationships of the lamina can be expressed in terms of
average stresses and strains and effective properties of an equivalent homo-
geneous material [1]. This chapter is concerned with the development and
manipulation of these macromechanical stress-strain relationships. The
“micromechanical” relationships between the constituent material properties
and the effective lamina properties will be discussed in more detail in chapter
3, but the basic concept of an effective modulus will be discussed here.

To complicate matters further, the properties of a composite are usually
anisotropic. That is, the properties associated with an axis passing through
a point in the material generally depend on the orientation of the axis. By

‘comparison, conventional metallic materials are nearly isotropic since

their properties are essentially independent of orientation. Fortunately,
each type of composite has characteristic material property symmetries
that make it possible to simplify the general anisotropic stress—strain
relationships. In particular, the symmetry possessed by the unidirectional
lamina makes it a so-called orthotropic material. The symmetries associ-
ated with various types of composite laminae and the resulting lamina
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stress—strain relationships are discussed i 5 this nrm?mc &obm with certain
mathematical manipulations that make it easier to deal with the direc-

tional nature of composite properties.

|

J I
2.2 Effective Moduli in Stress—Strain Relationships

A general 3-D state of stress at point in a material can be described by
nine stress components c; (where i, j = 1, 2, 3), as shown in figure 2.1.
According to the 853365& subscript notation, when i = j, the stress
component oy is a normal stress; and when i # j, the stress'component is
a shear stress. The first subscript refers to the direction of the outward normal
to the face on which the stress component acts, and the second subscript
refers to the direction in which the stress component itself acts.
Corresponding to each of the stress components, there is a strain compo-
nent €; describing the deformation at the point. Normal strains (i = j)
describe the extension or contraction per unit length along the x; direction,
and shear strains (i # j) describe the distortional deformations associated
with lines that were originally parallel to the x; and x; axes. It is very
important to distinguish between the “tensor” strain g NSQ the “engineer-
ing” strain ;. In the case of normal strain, the engineering strain is the same
as the tensor strain, but for shear strain g; = v;/2. Thus, the engineering
shear strain y; describes the total distortional change in the angle between

FIGURE 2.1

2T otata ~nf cfroce
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' Yxy = Engineering strain

Exy = Tensor strain

Total change in original angle = y,,
Amount each edge rotates = v,,/2 = g,

FIGURE 2.2 .
Geometric interpretation of engineering shear strain and tensor shear strain.

lines that were originally parallel to the x; and x; axes, but the tensor shear

strain €; describes the amount of rotation of either of the lines (fig. 2.2).
In the most general stress-strain relationship at a nosﬁ in an elastic
material each stress component is related to each of the nine strain com-

ponents by an equation of the form

Oy = fy(€11,812,€13,€21, €2, €23, €31, €32, E33) 2.1)
Marﬁm the functions f; may be nonlinear. For the linear elastic material, which
is the primary concern in this book, the most general linear stress—strain
relationships at a point in the material (excluding effects of environmental
conditions) are given by equations of the form

Cn Cin Cun Cus Cus Cum Cue Cum Cus Cua |[&nn
Oxn Con Com Cuss Con Cost Coiz Caze Cois Cont | |2
Os3 Castr Casr Caazzs Cams Caszr Casz Cassz Cams Casar || €35
O3 e oo ves . ves vee o | | €23
O3 ¢ =| ... Vs ves e s e e . ver |$€31 ¢
O12 vee ves s ves ves ves s €12
O3 vee e e . Ve . e ves ves €3y
O3 . €13
Oun) (Can Cuan Cum Cun Cust Can Cusm Gz Coun 41821
(2.2)
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where [C] is a fully populated 9 X 9 matrix of stiffnesses or elastic constants

(or moduli) having 81 components. Note that the first two subscripts on

|
the elastic constants correspond to those of the stress, whereas the last

two subscripts correspond to those of the Mmﬁ.m.wb. .ﬁ no msirmmu Hmmqp.nﬂmﬂw
are placed on the elastic constants, the Em_ﬁmﬁmy is ow&mm mﬂHmoﬂﬂan and
equation (2.2) is referred to as the generalized Eoﬁ.qu s FS or m.Emobamﬁm
materials. In practice, there is no need to deal with ,&.Hm. m@ﬁmﬁobm o
81 elastic constants _uw_m\nmcmm various symmetry conditions simplify

i iderably.
mmwwﬁwﬂﬂﬂmwsrw any mechanics of materials book [2], both mﬂmmmmw me
strains are symmetric (i.e., 6; = 0; msﬂ.w g = i), so that 9.@8 are o%ﬁwam
independent stress components and six independent mﬂm:ﬂ ..omgw, ner 8.
This means that the elastic constants must be symmetric wit respect
the first two subscripts and with respect to .&m_ Hm.mﬁ two mﬂ@moﬁﬁﬁ mm..wm
Ciju = Cjiw and Cyy = Cyy where 4, j, k, 1 =1, 2, 3), and ﬁmﬁ H.m..w H.wsswm " of
nonzero elastic constants is now reduced to 36. These simp ifica wo h
to a contracted notation that reduces the number of subscripts based on
the following changes in notation [3-6]:

=€
O011= 01 . €1=8

‘ e _
Gy =02 €» 2

=€
G33 =03 €33 = €3

Og3 =033 =04 Nm.mw = Nmmw =Y23=Y32 = &4

Gq3 = O3 =05 2€13 =283 = Y13 =Y3 =&

01y =Op = Og 281 =289 = Y12 = Y21 = &

1

With this contracted notation, the generalized Hooke’s law can now be
written as .

Qm”ﬁ_@.m\\ N.\.N.”H\N\...\O Awav

and the repeated subscript j implies summation on that subscript. Alter-
natively, in matrix form

(o) =IClte) | (2.4

where the elastic constant matrix or stiffness matrix [C] is now 6 X 6 with
36 noﬁ%osmam..wbm the stresses {o} and strains {€} are column vectors,
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each having six elements. Alternatively, the generalized Hooke’s law relat-
ing strains to stresses can be written as

&=80;, i,j=12,..,6 (2.5)

or in matrix form as

te}=[Sl{c} (2.6)

where [S] is the compliance matrix, which is the inverse of the stiffness
matrix ([S]=[C]!). As shown later, due to the existence of the strain energy
density, the stiffness and compliance matrices are symmetric. Note that
nothing has been said thus far about any symmetry that the material itself
may have. All real materials have some form of symmetry, however, and
no known material is completely anisotropic.

Before discussing the various simplifications of the stress—strain rela-
tionships, it is appropriate to deal with the problem of heterogeneity in
the composite material. Recall that the stress-strain relationships pre-
sented up to now are only valid af 2 point in the material, and that the
stresses, strains, and elastic moduli will change as we move from point
to point in a composite (i.e., the elastic modulj for the matrix material are
different from those of the fiber). In order to analyze the macromechanical
behavior of the composite, it is more convenient to deal with averaged
stresses and strains that are related by “effective moduli” of an equivalent
homogeneous material. Figure 2.3 shows schematically how the stresses
in a heterogeneous composite may be nonuniform even though the
imposed strain is uniform. ‘

As shown in figure 2.3, if the scale of the inhomogeneity in a material
can be characterized by some length dimension, d, then the length dimen-
sion, L, over which the macromechanical averaging is to take place, must
be much larger than d if the average stresses and strains are to be related
by effective moduli of an equivalent homogeneous material. We now
define the average stresses, G;, and the average strains, g, (i =1, 2,..., 6)

to be averaged over a volume V, which is characterized by the dimension
L, so that [1]

5= [ odosv @)
v

&= edo/v (2.8)
v
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Concept of an effective modulus of an equivalent homogeneous material.

-wherei=1,2,...,6 and the c;, and the g, are the position-dependent stresses

and strains at a point, respectively. If these averaged stresses and strains
are used in place of the stresses and strains mﬁ a @o:; the mmﬁmamerm
Hooke’s law O €., eq. [2.3]) becomes

51 =CyE; | (2.9)
and ﬁrm elastic moduli C; then _umno:pm the “effective moduli” of-the
equivalent homogeneous material in volume V. Similarly, the “effective
compliances” S; may be defined by

For example, in figure 2.3, the scale of the inhomogeneity is assumed to
be the diameter of the fiber, d, and the averaging dimension, L, is assumed
to be a characteristic lamina dimension such that L > d. The effective
modulus C,, of the lamina is thus defined as Cy, = G, /%,. In the remainder
of this book, lamina properties are assumed to be effective properties as
described above.
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FIGURE 2.4

Stress and strain distributions for calculation of effective modulus in example 2,1,

EXAMPLE 2.1
A x%«mwmmggm volume element (RVE) from a &wmzﬁsﬁoé& 83@%% lamina
is shown in figure 2.4, along with the longitudinal stress and strain distributions
across the fiber and matrix materials in the section. The fiber has a uniform
longitudinal stress of 4000 psi (along the 1 direction) and a diameter of 0.0003 in.,
while the matrix has a uniform longitudinal stress of 1000 psi. A uniform
longitudinal strain of 0.000423 in./in. acts over the entire section. The RVE has
edge dimensions 0.0004 in. x 0.0004 in. in the 23 plane. Assume that the cross-
sectional dimensions of the section do not change along the longitudinal divection,
and use the concept of the effective modulus of an equivalent homogeneous
material to find the numerical value of the effective longitudinal modulus, E,
(or E4;) of the composite.

N

Solution. The effective longitudinal modulus is given by

mH = .m.
€
where the average stress is
.—.an:\ -_-ng OtA;f +OnAn

nle” =
._.&\ TS A+ An

- T (0.0003)%] )
4 ~ = 2325 psi

ﬁooeme.ooomvw +(1000)[(0.0004)%
2 (0.0004)2
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and the stresses and cross-sectional areas of the fiber and matrix are denoted
by the subscripts f and m, respectively. The| average strain is g =0.000423,
so the effective modulus is |

m_H - m 2325

W

|
=225 5 496(109Ypsi
& 0.000423 m%mao Jpsi

|
|
T

2.3 Symmetry in Stress—Strain Relationships

In this section, the generalized anisotropic Hooke’s law will be simplified
and specialized using various symmetry conditions. The first symmetry
condition, which has nothing to do with material symmetry, is strictly a
result of the existence of a strain energy density function [3,6]. The strain

energy density function, W, is such that the stresses can be derived accord-

ing to the equation A : . ,

oW
O; = ®|m~ = ﬁuqm\ AN”:.V
: Svmﬂm,
1.
W= Mﬁqmﬁ.m& AN”_.MV
By taking a second derivative of W, we find that
ﬂ W \

=C; 2.13
mmﬁ.wm\. / A v

and by reversing the order of differentiation, we find that

*W

=C; - (2.14
. @m\.wmm / . A v
Since the result must be the same regardless of the order of the differenti-
ation, C; = C;;, the stiffness matrix is symmetric. Similarly, W can be
expressed in terms of compliances and stresses, and by taking two deriva-
tives with respect to stresses, it can be shown that S;; = S;. Thus, the com-
pliance matrix is also symmetric. Due to these mathematical manipulations,
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only 21 of the 36 anisotropic elastic moduli or compliances are independent,
and we still have not said anything about any inherent symmetry of the
material itself. , G

According to.the above developments, the stiffness matrix for the linear.
elastic anisotropic material without any material property symmetry is of
the form ,

Ci Co Cs Cu Cs G
,ONN‘ humm QN» A.J\Nm ﬁwm
Oww ﬁw» Qmm ﬁuwo

Cy= 2.15
! SYM Cu Cis Cus 215)
Css  Cse
L : Ces |

Further simplifications of the stiffness matrix are possible only if the
! material properties have some form of symmetry. For example, a mono-
. clinic material has one plane of material property symmetry. It can be
shown [3,7] that since the C; for such a material must be invariant under
a transformation of coordinates corresponding to reflection in the plane
of symmetry, the number of independent elastic constants for the mono-
clinic material is reduced to 13. Such a symmetry condition is generally
not of practical interest in composite material analysis, however.

As shown in figure 2.5, a unidirectional composite lamina has three
mutually orthogonal planes of material property symmetry (i.e., the 12,

FIGURE 2.5
Orthotropic lamina with principal (123) and nonprincipal (¥yz) coordinate systems.
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23, and 13 planes) and is called an orthotropic matetial. The term “ortho-
tropic” alone is not sufficient to describe the form of the stiffness matrix,
however. Unlike the anisotropic stiffness matrix (eq. [2.15]), which has
the same form (but different terms) for Qﬁmama coordinate systems, the
form of the stiffness matrix for the orthotropic material depends on the
coordinate system used. The 123 coordinate axes in figure 2.5 are referred
to as the principal material coordinates since they are associated with the
reinforcement Qﬁmoﬁo_sm. Invariance of the C; under transformations of
coordinates corresponding to reflections in two orthogonal planes [3,7]
may be used to show that the stiffness matrix for a so-called mﬁmnﬂa:w
orthotropic material associated with the principal Bﬁmﬁ& coordinates is

of the form

Ch Cn Cs O 0 O
. Cp Gy O 0 0
¢ = Cs O 0 0 o (216)
SYM Cy. O 0 ,
Cs O
: ] Qm_m |

A stiffness matrix of this form in terms of engineering constants will be
obtained in the next section using observations from simple experiments.
Note that there are.only 12 nonzero elastic constants and 9 Emm_.umsmma
elastic constants for the specially orthotropic material.

Table 2.1 summarizes similar results for the different combinations of
materials and coordinate systems used in this book. It will also be shown
later that if the stress—strain relationships for the same orthotropic mate-
rial are developed for a nonprincipal coordinate system xyz as shown

“in figure 2.5, the stiffness matrix is of the same form as that of the
anisotropic material in equation (2.15). In such a nonprincipal or off-
axis coordinate system, the material is called generally orthotropic
(table 2.1). There are two other types of material symmetry that are
important in the study of composites. The details will be developed in
the next section, but the general forms of the stiffness matrices are given
here for completeness. In most composites the fiber-packing arrange-
ment is statistically random in nature, so that the properties are nearly
the same in any direction perpendicular to the fibers (i.e., that properties
along the 2 direction are the same as those along the 3 direction), and
the material is fransversely isotropic. For such a material we would expect
that C,, = Cg3, Cyy = Cy3, Cy5 = Cg, and that Cy would not be independent
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TABLE 2.1

Elastic Coefficients in the Stress-Strain Relationships for Different Materials
and Coordinate Systems

s

Number of Nonzero Number of Independent

Material and Coordinate System Coefficients Coefficients

3-D Case

Anisotropic 36 <21

Generally orthotropic 36 9
(nonprincipal coordinates)

Specially orthotropic (principal 12 a 9
coordinates)

Specially orthotropic, , 12 5
transversely isotropic . )

Isotropic 12 2

2-D Case (Lamina) :

Anisotropic 9 6

Generally orthotropic 9 ) 4
(nonprincipal coordinates)

Specially orthotropic (principal 5 4
coordinates) . . )

Balanced orthotropic, or square B g -3
symmetric (principal .
coordinates) _ .

Isotropic . 5 2

from the other stiffnesses. It can be shown [1] that the complete stiffness

matrix for a specially oﬁ?oﬁmo?o\ transversely isotropic material is of
the form

[Ch Co Cp 0 0 0]
Cn Cyp 0 . 0 0
Ci=| - o 0 0 0 (2.17)
SYM (Cn=Cx)/2 0 0
Qaa -0
i e |

where the 23 plane and all parallel planes are assumed to be planes of
isotropy. In the next section, a stiffness matrix of the same form will be
derived, except that the so-called engineering constants will be used instead
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of the C;. Note that now there are still 12 BTBNmHo elastic moduli but that
only 5 are independent (table 2.1). |

The simplest form of the stress—strain _AHmeﬁosmrﬁu occurs when ‘the
material is isotropic and every coordinate axis is an axis of symmetry. Now
we would expect that Cy; = Cp, = Cyy, Cyy L Cia = Cy, that Cyy = Css = Cgg,
and that C, again would not be independent from the other C;. The

isotropic stiffness matrix is of the form [11

|
|

(Ch Cn Gy 0 0 o ]
Cn  Cp 0 0 0
c - Cn 0 0 0
! SYM . (Cyu—-Cu)/2 0 0
(Cu—Ci2)/2 0
i (Ci—Cn)/ 2]

(2.18)

Now there are still 12 nonzero elastic constants, but only 2 are independent
(table 2.1). Similar equations based on the engineering constants will be
derived in the next section. Equations of this form can be found in any
mechanics of materials book, and the design of metallic components is
~usually based on such formulations.

2.4 Orthotropic and Isotropic Engineering Constants

In the previous section, symmetry conditions were shown to reduce the
number of elastic constants (the C; or S;) in the stress—strain relationships
for several important classes of materials and the general forms of the
relationships were presented. When a material is characterized experi-
mentally, however, the so-called “engineering constants” such as Young’s
modulus (or modulus of mﬂwmmﬁgv\mﬁwww modulus, and Poisson’s ratio
are usually measured instead of the C;; or the S;- The engineering constants
are also widely used in analysis and design because they are easily defined
and interpreted in terms of simple states of stress and strain. In this
section, several simple tests and their resulting states of stress and strain
will be used to develop the 3-D and 2-D stress—strain relationships for

orthotropic and isotropic materials.
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FIGURE 2.6
Simple states of stress used to define lamina engineering constants.

Consider a simple uniaxial tensile test consisting of an applied longi-
tudinal normal stress, o;, along the reinforcement direction (i.e., the
1 direction) of a specimen from an orthotropic material, as shown in
figure 2.6(a). It is assumed that all other stresses are equal to zero. Within
the linear range the experimental observation is that the resulting strains
\m\mmoﬂﬁmm with the 123 axes can be expressed empirically in terms of

engineering constants” as

< €1 ”,QH,\mH

€ =—Vp€1 =<Vy0, / E;
o (2.19)
€3 =—Vi3€ =—V1301 / E

Y12 =Y23 =Y13=0

érmmm E, = longitudinal modulus of elasticity associated with the 1 direc-
tion, and v; = g;/¢; is the Poisson’s ratio, the ratio of the strain in the j
direction to the strain in the perpendicular i direction when the applied
stress is in the i direction. .

Recall from mechanics of materials [2] that for isotropic materials no
subscripts are needed on properties such as the modulus of elasticity and
the Poisson’s ratio because mrm properties are the same in all directions.

-This is not the case with orthotropic materials, however, and subscripts

are needed on these properties because of their directional nature. For
example, E; # E, and v;, # v,,. Note that, as with isotropic materials, a
negative sign must be used in the definition of Poisson’s ratio. A property
like vy, is usually called a major Poisson’s ratio, whereas a property like
Vy is called a minor Poisson’s ratio. As with isotropic materials, a normal
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This lack of shear/normal interaction is observed only for the principal
material coordinate system, however. For any other set of coordinates
the so-called “shear-coupling” effect is present. This effect will be dis-
cussed in more detail later. | , ,

Now consider a mmgmma experiment where a transverse normal stress,
o, is applied to the same material as shown in figure 2.6(b), with all other
stresses being equal _*o zero. Now the experimental observation is that the
resulting strains nm:_g expressed as .

stress induces only normal strains, and %_ shear strains are equal to zero.
,

€ =0,/E

‘€1 =—Vyn€ =—Vy0,/E;
(2.20)

€3 =—Vn€ =—Vu0y /b

fw =Y3=Y13=0

where E, is the transverse modulus of elasticity associated with the 2
direction. A similar result for an applied transverse normal stress, G,,
can be obtained by changing the appropriate subscripts in equation
(2.20). _

Next, consider a shear test where a pure shear stress, 63, = Ty, is applied
to the material in the 12 plane, as shown in figure 2.6(c). Now the exper-
imental observation is that resulting strains can be written as

Y12 =T12 / G
(2.21)

,.mHHmNHmmnﬁwuﬁwuo

where G, is the shear modulus associated with the 12 plane. Similar
results can be obtained for pure shear in the 13 and 23 planes by changing
the appropriate subscripts in equation (2.21). Again, notice that there is
no shear/normal interaction (or shear coupling). As before, however, this
is only true for the principal material axes. . .
Finally, consider a general 3-D state of stress consisting of all possible
normal and shear stresses associated with the 123 axes as shown in
figure 2.1. Since we are dealing with linear behavior, it is appropriate to
use superposition and add all the resulting strains due to the simple
uniaxial and shear tests, as given in equation (2.19), equation (2.20),
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equation (2.21), and similar equations as described above. The resulting
set of equations is given below:

qr

€1 [ 1 / Ei ~Vau/E —va/E; 0 0 0 (9]

& ~Viz / E - 1/E Vg / m,u 0 0 0 02

€3 | Vs /E =V /E, 1/E, 0 0 0 G3

- 0 0 0 1/Gy 0 0 |]1s|

Va1 0 0 0 0 1/ Gy 0 Ts1

Y) | O 0 0 0 0 1/ Gy | T2
(2.22)

Note that the compliance matrix is of the same form as the stiffness matrix
for a specially orthotropic material (eq. [2.16]) as it should be because
[S] = [C]™". Note also that due to symmetry of the compliance matrix,
v/ E;=v;/E; and only nine of the engineering constants are independent.

If we now consider a simple uniaxial tensile test consisting of an applied
normal stress, 6,, along some arbitrary x axis as shown in figure 2.5 we find
that the full complement of normal strains and shear strains are developed.
The generation of shear strains due to normal stresses and normal strains
due to shear stresses is often referred to as the “shear-coupling effect.” As
a result of shear coupling, all the zeros disappear in the compliance matrix
and it becomes fully populated for the general 3-D state of stress associated
with the arbitrary xyz axes;-this is the generally orthotropic material. The
stiffness or compliance matrices for the generally orthotropic material are
of the same form as those for the general anisotropic material (eq. [2.15]),
although the material still has its orthotropic symmetries with respect to
the principal material axes. Obviously then, the experimental characteriza-
tion of such a material is greatly simplified by testing it as a specially
orthotropic material along the principal material directions. As shown later,
once we have the stiffnesses or compliances associated with the 123 axes,
we can obtain those for an arbitrary off-axis coordinate system such as xyz
by transformation equations involving the angles between the axes.

If the material being ﬁmmw@«m is specially orthotropic and transversely
isotropic, the subscripts 2 and 3 in equations (2.22) are interchangeable,
and we have Gy; = Gyy, E, = E;, Vy; = Vg, and V,; = vs,. In addition, the
familiar relationship among the isotropic engineering constants [2] is now
valid for the engineering constants associated with the 23 plane, so that

Gy = (2.23)
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Now the compliance matrix is of the same form as equation (2.17) and
only five of the engineering constants are independent. .

Finally, for the isotropic material ?Q,o is no need for subscripts and
Giz=Gp=Gyp=G,E =E,=E;=E, Vip=Vy3 =V =V, E&,O =E/2(1 + V).
Now the compliance matrix is of the same form as equation (2.18) and
only two of the mwpmm:mmagm constants are independent.

|

2.5 The m_umnwm:% Orthotropic Lamina

As shown later in the analysis of laminates, the lamina is often assumed
to be in a simple 2-D state of stress (or plane stress). In this case the
specially orthotropic stress—strain relationships in equations (2.22) can be
simplified by letting 65 = Ty; = T3 = 0, so that

€1 m: .ms 0 (o] ) . o
€y ¢ = MNH MMM 0 (o)) ANN%V
Y12 0 0 Se ||

where the compliances S; and the engineering constants are related by
the equations :

(2.25)

v ve g1
E, E’ G2

Thus, there are five nonzero compliances and only four ?Qm@mb&.ma
compliances for the specially orthotropic lamina (table 2.1). The lamina
stresses in terms of fensor strains are given by

O1 Qu Qw 0 €1
Gy ;=|Qu On 0 € (2.26)
T12 0 0 20 ||V12/2
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where the Q; are the nogvozmaw of the lamina stiffness matrix, which
are related to the compliances and the engineering constants by

@ﬁ = S22 = E
SuSn~Sh  1-Vivm
@HN = mHN = <HMmM =y
SuSn =S  1-Vipvy 2.27)
_ . Su __E
Qe SuSp—Sh  1-Vipvn
. 1
Dma = WN =Gy

Note that the factor of 2 has been introduced in the Qg term of equation
(2.26) to compensate for the use of tensor shear strain ;, = y;,/2. The reason
for this will become apparent in the next section. As shown later, the exper-
imental characterization of the orthotropic lamina involves the measurement
of four independent engineering constants such as E;, E,, G;,, and v, Typical
values of these properties for several composites are shown in table 2.2.

The balanced orthotropic lamina shown schematically in figure 2.7
often occurs in practice when the fiber reinforcement is woven or cross-
plied at 0° and 90°. In this case the number of independent elastic
constants in equations (2.24) to equation (2.27) is reduced to 3 because
of the double symmetry of properties with respect to the 1 and 2 axes
(table 2.1). :

Thus, for the balanced orthotropic lamina, we have E, =E, Qu=Qu
and S;; = S,,.

2.6 The Generally QMEOSQEn Lamina

In the analysis of laminates having multiple laminae, it is often necessary
to know the stress-strain relationships for the generally orthotropic lamina in
nonprincipal coordinates (or “off-axis” coordinates) such as x and y in
figure 2.5. Fortunately, the elastic constants in these so-called “off-axis”
stress—strain relationships are related to the four independent elastic con-
stants in the principal material coordinates and the lamina orientation
angle. The sign convention for the lamina orientation angle, 6, is given in
figure 2.8. The relationships are found by combining the equations for trans-
formation of stress and strain components from the 12 axes to the xy axes.
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TABLE 2.2

H%?nm_./\&:mm% ﬁmbbm“msmEmmibmnosmmbﬁmmonmA\mH.mﬁOoBﬁOmﬁmm
Having Fiber Volume Fraction v

i ! Gy, (Msi o
Material | E4 (Msi [GPa]) E, (Msi [GPa)) [GPal]) Via Uy

T300/934 carbon/epoxy | 19.0 (131) 1.5 (10.3) 10(69) 022 065

AS/3501 carbon/epoxy _ 20.0 (138) 1.3 (9.0) 1.0 (6.9) 03 065

P-100/ERL 1962 pitch/ |  68.0 (468.9) 0.9 (6.2) 081 (558) 031 0.62
carbon/epoxy m

IM7/8551-7 catbon/  :  23.5(162) 1.21(8.34) 03(207) 034 06
toughened epoxy .

AS4/APC2 carbon/ 19.1(131) 1.26(8.7) 073(5.0) 028 0.58
PEEK m ,

Boron/6061 boron/ T 34.1(235) 19.9(137) 6.8(47.0) 03 05
aluminum

Kevlar® 49/934 aramid/ 11.0 (75.8) 0.8 (5.5) 033 (23) 034 065
epoxy :

Scotchply® 1002 5.6 (38.6) 1.2 (8.27) 0.6 (414) 026 045
E-glass/epoxy ‘ . :

Boron/5505 boron/ 29.6 (204.0) 2.68 (18.5) 081 (559) 023 05
epoxy .

Spectra® 900/826 4.45 (30.7) 0.51 (3.52) 0.21(145) 032 0.65
polyethylene/epoxy

E-glass/470-36 3.54 (24.4) 1.0 (6.87) 042 (289) 032 030

E-glass/vinylester

Kevlar® is a registered trademark of DuPont Company, Wilmington, Delaware; Scotch-
ply® is a registered trademark of 3M Company, St. Paul, Minnesota; and Spectra® is a
registered trademark of Honeywell International, Inc.

FIGURE 2.7

Balanced orthotropic lamina consisting of fibers oriented at 0° and 90°.
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FIGURE 2.8 .
Sign convention for lamina orientation.

Relationships for transformation of stress components between coordi-
nate axes may be obtained by writing the equations of static equilibrium
for the wedge-shaped differential element in figure 2.9. For example, the
force equilibrium along the x direction is given by o

Mm« =0,dA - 6,dAcos? 0 ~0,dAsin? 6+ 271,dAsin®cosB =0

(2.28)

which, after dividing through by d4, gives an equation relating o, to the
stresses in the 12 system: ,

Oy = 010820+ 0, sin? 0 — 274, 5in B cos O (2.29)

CqdA sinf
v/ TyodA sinf

TyydA

o A
6,dA cosf o O

TiodA cosO \ [\ 4

FIGURE 2.9
- Differential element under static equilibrium with forces in two coordinate systems.
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Using a similar approach, the ooﬁ%wm.ﬂmw set of transformation equations
for the stresses in the xy-coordinate system can be developed and written
in matrix form as

o, A & 20 |[o oy .
~1
o, s ¢ 2 |0, ¢=[TT"%0; (2.30)
2 2
Ty) |8 -5 =8 || Ty

and the stresses in the 12 system can be written as

(o3} Oy
o, (=[T] oy N (2.31)
T12 . . aé

where ¢ = cos 0, s = sin 0, and the transformation matrix, [T], is defined as

¢ s 2¢s .
[T]1=| s> c* —2cs _ (2.32)
—cs ¢s ¢*—¢*

Methods for determining the matrix inverse [T]! are described in any
book dealing with matrices. It can also be shown [2,3] that the tensor strains
transform the same way as the stresses, and that

€1 €y .
g =[TH & (2.33)
Y12 \N ‘<x< \N

Substituting equation (2.33) into equation (2.26), and then substituting the
resulting equations into equations (2.30), we find that

, (o% €y

o, t=[TTQIT]] e, (2.34)
dé \<.é \N

where the stiffness matrix [Q] in equations (2.34) is defined in equations
Via Ba T4

11‘.11 - - , S
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Carrying out the indicated matrix multiplications and converting back

to engineering strains, we find that

Oy 0: @S @R €y :
Oy r=|CQr Qn Qsl{e, (2.35)
Ty Qi Qos Qos || Vay

where the Q; are the components of the transformed lamina stiffness matrix
which are defined as follows:

Qu = Qu cos* 0+ Qy sin” 8+ 2(Qy +2Qs) sin® 6 cos? 0

Qu2 = (Qu1 + Qa2 — 4Q4s)sin* 0 Smm.o +Qia(cos? 0 +sin* 9)

Qx = Qursin® 8+ Qs cos* 6+ 2(Q, + 2 ) sin 0 cos? 6

@; =(Qu — Qu2 — 2Qss) cos’® Bsin 6 — (Q2 — Qi2 —2Q4s) cos Bsin® 6

Qs = (Qu — Q12 — 2Qs) 05 05in° 6 — (Qsp — Q12 — 2Q46) cos® Bsin O

Qss = (Qu + Q2 —2Q1, — 2Q%5) sin* B cos® O + Qg (sin 6 + cos? 0)

L ) (2.36)

Although the transformed lamina stiffness matrix now has the same form
as that of an anisotropic material with nine nonzero coefficients, only four
of the coefficients are independent because they can all be expressed in
terms of the four independent lamina stiffnesses of the specially ortho-
tropic material. That is, the material is still orthotropic, but it is not rec-
ognizable as such in the off-axis coordinates.- As in the 3-D case, it is
obviously much easier to characterize the lamina experimentally in the
principal material coordinates than in the off-axis coordinates. Recall that
the engineering constants, u%m,vaowmammm that are normally measured, are
H&mﬁmn:oﬂrmymsa.bmmmmmsmmmmm_o%mmsmzobmAm.muv.

Alternatively, the strains can be expressed in terms of the stresses as

€, Su Sw w; G«
€y = MHN MNN ,m.mo, oy ) ANWV.V
Yy Si6 Sx Ses Ty

where the S are the components of the transformed lamina compliance

matrix that are defined by equations similar to, but not exactly the same
form as. eariations (7 36) :
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The lamina engineering constants omL also ‘be transformed from the
principal material axes to the off-axis ooﬁ&sﬂmm. For example, the off-
axis modulus of elasticity associated with uniaxial loading the x direction
is defined as ;

7. E.,= mmla = IQa HIP ' ANmmv
|

where the strain €, in the denominator has been found by substituting the
stress conditions 6, #0, 6, =1,, =0 in equations (2.37). By replacing S with
an equation similar to/the first of equations (2.36) and then using equations
(2.25), we get the first of equation (2.39): .

-1

1 4 1 2viplao, 1 4
= — el T+
E, THn + G E s°c mwm
1 1 2 1T
|4 L Vio |22, 1 4
E, I_THM + G E s*c +mpn , wov
IH_ ’
1 1.1 2vy 1
QHTI%J&L ErE R a6 )

where ¢ = cos 0 and s = sin 0 as before.

The variation of these properties with lamina orientation for several
composites is shown graphically in figure 2.10 from ref. [8]. As intu-
itively expected, E, varies from a maximum at 8 = 0° to a minimum at
® = 90° for this particular material. It is not necessarily true that the
extreme values of such material properties occur along the principal
material directions, however [6]. What may not be intuitively expected
is the sharp drop in modulus as the angle changes slightly from 0° and
the fact that over much of the range of lamina orientations the modulus
is very low. This is why transverse reinforcement is needed in most
composites.

The shear-coupling effect has been described previously as the gener-
ation of shear strains by, off-axis normal stresses and the generation of
normal strains by off-axis shear stresses. One way to quantify the degree
of choar cotnline ic hv definine dimensionless shear-coupline ratios [4.5]
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FIGURE 2.10

Variations of off-axis engineering constants with lamina orientation for carbon/epoxy,

boron/aluminum and glass/epoxy nogm%mxmm. (From Sun, C.T. 1998. Mechanics of Aircraft
Structures. John Wiley & Sons, New York. With permission.)

or mutual influence coefficients [9] or shear-coupling coefficients [10].

. For example, when the state of stress is defined as c,#0,0,=1, =0, the

ratio

€

35é - - w mx 2 N<HN 1 3 2 N<HN 1 3

€ Sp E E  Gp E, E Gp
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|
is a measure of the amount of shear strain generated in the xy plane per
unit normal strain along the direction of the applied normal stress, 6,. Thus,
the shear-coupling ratio is analogous to the Poisson’s ratio, which is a
measure of the coupling between normal strains. As shown in figure 2.10,
M.y Strongly depends on orientation and Wmm its maximum value at some
intermediate angle which depends on the material. Since there is no cou-
pling along principal HTmﬁmam_ directions, Ja\é\u 0 for 6 =0°and 6 =90°. As
the shear-coupling ratio increases, the amount of shear coupling increases.
Other shear-coupling ratios can be defined for different states of stress. For

example, when the m.a._Wmmmm are T, #0,0,=0,=0, the ratio

n _ €y “%”Nm W+N<HN 1 3 2 N<HN., 1 3
e Yy 66 YI\E, B Gp E, E  Gn

(2.41)

characterizes the normal strain response along the y direction due to a
shear stress in the xy plane.

Finally, for a generally orthotropic lamina under plane stress, the
stress—strain relationship for the normal strain €, in terms of off-axis engi-
neering constants can be expressed as:

1 v
€ =70yx— =
E T E

MNuy,x
Gyy

o, + Tay (2.42)

with similar relationships for €, and y,,. As with the specially orthotropic
case and the general anisotropic case, the stiffness and compliance matri-

ces are still symmetric. So, for example, the oﬁwmxwm moﬁ%:msnmm Sip =Sy,
or in terms of off-axis engineering constants, mﬁ = m@ . ¥
Y x

EXAMPLE 2.2 ‘
A 45° off-axis tensile test is conducted on a generally orthotropic test specimen
by applying a normal stress G, as shown in figure 2.11. The specimen has strain
gages attached so as to measure the normal strains €, and €, along the x and y
directions, respectively. How many engineering constants for this material can
be determined from the measured parameters G, €,, and €,7

Solution. The off-axis modulus of elasticity along the x direction is deter-
mined from
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45° off-axis tensile
test specimen

. A}

/

Strain gage for
measuring €,

Strain gage for
measuring g,

/

FIGURE 2.11
Strain-gaged specimen for a 45° off-axis tensile test.

The off-axis major Poisson’s ratio is given by

€
Vi = lm
Although it may not be obvious at first glance, the in-plane shear modulus
Gy, may also be found from these measurements by using the appropriate
transformation equations for stress and strain, Using 6 = 45° in equation
(2.33), the shear strain y;, is found from

|

% =—co0s45°sin 45°¢, + cos 45° sin 45°¢, +(cos? 45° —sin? 45°) <%

or

Y12 =—€; + €y

Note that the vy,, term drops out of ?m\mwoﬁw equation only when 6 = 45°,
For any o.ﬁrﬁ,, value of 0, we would need to know Yy as well as €, and g, in
order to find v,, from this transformation equation. Likewise, the shear stress

12 is found by substituting the tensile test conditions 06,#20,0,=1,=0in
equation (2.31): N

Typ = —c0845°5in 45°G, = IW

Finally, the shear modulus Gy, is given in terms of the measured parameters
as ’

T O,
QSHFIS = 2

- YN S
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The effects of lamina orientation on stiffness are difficult to assess from
inspection of stiffness transformation equations such as equations (2.36)
and equation (2.39). In addition, the m<mb%& incorporation of lamina stiff-
nesses into laminate analysis requires integration of lamina stiffnesses over
the laminate thickness, and integration of such complicated equations is
also difficult. In view!of these difficulties, a more convenient “invariant”
form of the lamina mm_m?mmm transformation equations has been proposed
by Tsai and Pagano [11]. By using trigonometric identities to convert from
power functions to multiple angle functions and then using additional
mathematical manipulations, Tsai and Pagano showed that equations (2.36)
could also be written as P

Qu =U; +U, cos 20 + U5 cos 40
Qup =U, —~Uj; cos 46
05 =U; - U, cos20 + Uy cos 40

Qe = Tsin20+Ussin 40 | (.09
Qu = %as 26 — Uy sin 40 o
= 1

Qss = o (Un ~Ua) ~Us cos 46

N

where the set of “invariants” is defined as

U, = WGD: +3Q0 +2Q1 +4Q%)
1
U, = MADE - ONNV
(2.44)
Us = WAD: + Q2 — 2012 — 4Qs)
Uy = WAD: + Q22 +6Q12 —4Qs6)

As the name implies, the invariants, which are simply linear combinations
of the Qy, are invariant to rotations in the plane of the lamina. Note that
there are four independent invariants, just as there are four independent
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Qmm&n constants. Equation (2.43) is obviously easier to manipulate and
nterpret than equations (2.36). For example, all the stiffness expressions
except those for the coupling stiffnesses consist of one constant term and
terms that vary with lamina orientation. Thus, the effects of lamina ori-
entation on stiffness are easier to interpret.

Invariant formulations of lamina compliance transformations are also

:mmm:w. It can be shown [5,10] that the off-axis compliance components in
equation (2.37) can be written as

Sit = Vi + V, c0s 20 + V; cos 40
WHN = a\p - d\m cos 40
Son =V, -V, cos 20+ V; cos 40

_ ) (2.45)

Sis = Vs mEN@.TNS sin 40

Sy =V, in 20 — 2V sin 46

Ses = 2(Vy = Vi) — 4V, cos 40

where the invariants are
1
S = wAm,m.: + mmeN + N.WHN + QOv
. ,

Vo= MAm: —5»)

; (2.46)

. ”_, !
Va= WAm: +5p — Nm_wxw Se6)
1
Vy= WAm: + 532 + 651 — )

F<maw2 formulations also lend themselves well to graphical interpreta-
tion. As shown in any mechanics of materials book [2], stress transforma-

tion equations such as equations (2.30) can be combined and manipulated

S0 as to generate the equation of Mohr’s circle. As shown in figure 2.12,

the transformation of a normal stress component o, can be described by
the invariant formulation .

[

Oy = It +1; cos 26, (247)
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FIGURE 2.12 :
Moht’s circle for stress transformation.

O, +0,

> =invariant

where [ =

L=, ==L | +1%, =invariant

8, = angle between the x-axis and the principal stress axis

In this case the invariants are I;, which defines the position of the center
of the circle, and I,, which is the radius of the circle. Note that, as with
equation (2.43), the invariant formulation typically consists of a constant
term and a term that varies with orientation. Similarly, the invariant forms
of the stiffness transformations can also be interpreted graphically using
Mohr’s circles. For example, Tsai and Hahn [10] have shown that the
stiffness transformation equation

Oy = U, +U, cos 20 +Us cos 40 (2.48)

can be represented graphically by using two Mohr’s circles, as shown in
figure 2.13. The distance between points on each of the two circles represents
the total stiffness Q;;, whereas the distance between the centers of the two
circles is given by U,. The radius and angle associated with one circle are
U, and 26, respectively, and the radius and angle associated with the other
circle are U, and 48, respectively. Thus, the distance between the centers of
the circles is a measure of the isotropic component of stiffness, whereas the
radii of the circles indicate the strength of the orthotropic component. If
L, = U, = 0, the circles collapse to points and the material is isotropic.
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U,

490

FIGURE 2.13

w\:m:ad circles for stiffness transformation. (From Tsai, S.W. and Hahn, H.T. 1980. NEWQ&RWN%
o Composite Materials. Technomic Publishing Co., Lancaster, PA. Reprint: 'Missi
of Technomic Publishing Co.) s , printed by permission

Invariants will prove to be very useful later in the analysis of randomly
olwama short fiber composites and laminated plates. For additional appli-
cations of invariants in composite analysis, the reader is referred to books
by Halpin [5] and Tsai and Hahn [10].

EXAMPLE 2.3

A filament wound cylindrical pressure vessel (fig. 2.14) of mean diameter d =1 m
and wall thickness t = 20 mm is subjected to an jnternal pressure, p. The filament
winding angle O = 53.1° from the 8:%&:&:& axis of the pressure vessel, and
the glass/epoxy material has the following properties: E;, = 40 GPa = 40(10%)
MPa, E, =10 GPa, G, = 3.5 GPa, and v,, = 0.25. By the use of a strain gage,
the normal strain along the fiber direction is determined to be &, = 0.001. Deter-
mine the internal pressure in the vessel.

I3

[/

W

FIGURE 2.14
Filament wound vessel.
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Solution. From mechanics of materials, the stresses in a thin-walled cylin-
drical pressure vessel are given by !

« _pr_ 05p - , .
O =T 500 " AP T =0
_ pr _0.5p |
*Snﬂ]alwg ,

(Note that 7 =d/2 =0.5 m.)

These equations are based on static equilibrium and geometry only. Thus, they
apply to a vessel made of any material. Since the given strain is along the fiber
direction, we must ttansform the above stresses to the 12 axes. Recall that in
the “netting analysis” in problem 5 and problem 6 of chapter 1 only the fiber
longitudinal normal stress was considered. This was because the matrix was
ignored, and the fibers alone cannot support transverse or shear stresses. In.
the current problem, however, the transverse normal stress, o,, and the shear
stress, Ty, are also considered because the fiber and matrix are now assumed
to act as a composite, From equations (2.31), the stresses along the 12 axes are

1 =0, cos’0+0,sin?0+21,,5inOcosO

= (12.5p)(0.6) + (25p)(0.8) + 0 = 20.5p(MPa)

0, =0,8in*0+0, no%olmaémwbonnumo -
= (12.5p)(0.8)2 + (25p)(0.6)% — 0 = 17.0p(MPa)

Tip =—0, sinBcosf+ G, 5inBcosO+ T, (cos” B —sin” 6)

= —(12.5p)(0.8)(0.6) +(25p)(0.6)(0.8) + 0 = 6.0p(MPa)

Srmﬁmﬁrm?mmmﬁmvwmgv\%m.Eogﬁrmmmmﬁ& m@:mao.bm ﬁ.mbhrmboagm_
strain g, is v ;

_ 01 VipOy _ 205p  0.25(17.0p)
Ei  Ei  40(10°)  40(10%)

€1 =0.001

and the resulting pressure is p = 2.46 MPa.

EXAMPLE 2.4 ,, b

A tensile test specimen is cut out along the x direction of the pressure vessel
described in example 2.3. What effective modulus of elasticity would you expect
to get during a test of this specimen?
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m.&:zo:. The modulus of elasticity, E,, associated with the x direction is
given by the first of equations (2.39) with § = 53.1°.

Fe=y 2 -
SELIPY I D 7P SN T
E, E Gl t TR
E=— s« © 1 9.33 GP
T o T 2025 1 1 Coo e
——(0.6) +| -2 2 %(0.8)% +-—(0.8)*
500 ﬁ o +w.La.@ 08 +75(08)
EXAMPLE 2.5

A S.§.§ consisting of continuous fibers randomly oriented in the plane of the
lamina is said to be “planar isotropic,” and the elastic properties in the plane are

mmomaommnmx:&:@.E:&m%é%&:m,\%§m§§.§. stiffnesses for a planar
isotropic lamina. - .

Solution. Since the fibers are assumed to be randomly oriented in the plane,

the \.\Emsﬁ. isotropic stiffnesses” can be found by averaging the transformed
lamina stiffnesses as follows:

J,

\J

where the m:vmamnaﬁﬁ (") denotes an averaged property.

It is convenient to use the invariant forms of the transformed lamina stiff-
nesses because they are easily integrated. For example, if we substitute the
first of equations (2.43) in the above equation, we get

n ._. Qnde ._v [Uy +U, c0820 + U, cos 40]1d0
Qu =<2 =0 =,

W ._. 46 T
0 \ . }

Zoﬁ.m ﬁrmﬁ.gm averaged stiffness equals the isotropic part of the transformed
lamina ms.mbmmm\ and that the orthotropic parts drop out in the averaging
process. Similarly, the other averaged stiffnesses can be found in terms of

the invariants, The derivations of the remaining expressions are left as an
exercise.
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2.7
1.

G

Oy

Problems

A representative section from a composite lamina is shown in
figure 2.15 along with the transverse stress and strain distribu-
tions across the fiber and matrix materials in the section. Assum-
ing that the %Bmsmwosm of the section do not change along
the longitudinal direction (perpendicular to the page), find the
numerical value of the effective transverse modulus for the
section.

Derive the first of equations (2.39) for the off-axis modulus, E,.

Derive the third of equations (2.39) for the off-axis shear modulus,

xy*

Using the result from problem 3: . .

(a) Find the value of the angle 8 Ao‘%m:g,s 0° or 90°) where the
curve of G, vs. § has a possible maximum, minimum, or
inflection point. .

(b) For the value of 8 found in part (a), find the bounds on Gy,
which must be satisfied if G,, is to have a maximum or min-
imum. C

(c) Qualitatively sketch the variation of G, vs. 8 for the different
cases and identify each curve by the corresponding bounds
on G,,, which give that curve.

(d) Using the bounds on G, from part (b), find which conditions
apply for E-glass/epoxy composites. The bounds on Gy, in
part (b) should be expressed in terms of E;, E,, and Vy,.

%3 : %3

N - (0.0015
...Holv_ NOlO_ o 10..08..4 I”
— — |

— O O |.VQ 0.1 mm

. — lﬂl_ 1 mm

e e . 0.1 mm
- © 0|z T

Stress, 0, (MPa) Strain, €,

FIGURE 2.15
Transverse stress and strain distribution over a section of lamina.
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50 MPa
50 MPa

[ ——

100 MPa

FIGURE 2.16
Stresses acting on an element of balanced orthotropic lamina,

5. Describe a series of tensile tests that could be used to measure
the four independent engineering constants for an orthotropic
lamina without using a pure shear test. Give the necessary equa-
tions for the data reduction.

6. A balanced oﬁmo,\ﬂo?n\,oﬂ square symmetric lamina, is made up
of 0° and 90° fibers woven into a fabric and bonded together, as
shown in figure 2.7. .

(a) Describe the stress-strain relationships for such a lamina in
terms of the appropriate engineering constants.

(b) For a typical ‘glass/epoxy composite lamina of this type,
sketch the expected variations of all the engineering con-

stants for the lamina from 0° to 90°. Numerical values are not
required.

7. An element of a balanced orthotropic carbon/epoxy lamina is
under the state of stress shown in figure 2.16. If the properties of
the woven carbon fabric/epoxy material are E, = 70 GPa, Vip =

0.25, Gy, = 5 GPa, determine all the strains along the fiber direc-
tions.

8. Derive equations (2.27).

9. Express the stress-strain relationships in equations (2.37) in terms
of off-axis engineering constants such as the moduli of elasticity,
shear modulus, Poisson’s ratios, and shear-coupling ratios.
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10. Derive the first two equations of m@fmﬁosm (2.43).

11. Find all components of the stiffness and compliance matrices for
a specially orthotropic lamina made| of AS/3501 carbon/epoxy.

12. Using the results of problem 11, Qm,ﬁﬁmgﬂwzm the invarjants U; and
V; for the AS/3501 lamina, where.i =1, 2, 3, 4.

13. Using the Hmmc:m of problem 11 or E,.OEWE 12, compare the trans-
formed lamina m_‘.amSmmmmm for AS/3501 carbon/epoxy plies ori-
“ented at +45° and 45°.

|

14. Show how the Mohr’s circles in figure 2.13 can be used to interpret
the transformed lamina stiffness Q.

15. Using the approach described in example 2.5, derive the expres-
sions for all the averaged stiffnesses for the planar isotropic lamina
in terms of invariants. Use these results to find the corresponding
averaged engineering constants (modulus of elasticity, shear mod-
ulus, and Poisson’s ratio) in terms of invariants.

16. For a specially orthotropic, transversely isotropic material the
“plane strain bulk modulus,” K, is an engineering constant that
is defined by the stress conditions ¢, = 6; = ¢ and the strain
conditions €, = 0, €, = €, = &. Show that these conditions lead to
the stress—strain relationship ¢ = 2Ky, and find the relationship
among Ky, Ey, Ey, Gy, and vy, . _

17. Describe the measurements that would have to be taken and the
equations that would have to be used to determine Gy, Vg, and
E, for a specially orthotropic, transversely isotropic material from
a single tensile test.

18. A45° off-axis tensile test specimen has three strain gages attached.
Two of the gages are mounted as shown in figure 2.11 so as to
measure the normal strains €, and €,, and a third gage is mounted
at 8 = 45° so as to measure the normal strain €;. If the applied
stress 6, =100 MPa and the measured strains are e, = 0.00647,

g,=-0.00324 and g, = 0.00809, determine the off-axis modulus of

Y
elasticity E,, the off-axis major Poisson’s ratio v,, and the shear

coupling ratio My .
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