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The mechanics of materials deal with stresses, strains, and deformations in

engineering structures subjected to mechanical and thermal loads. A common

assumption in the mechanics of conventional materials, such as steel and

aluminum, is that they are homogeneous and isotropic continua. For a homo-

geneous material, properties do not depend on the location, and for an iso-

tropic material, properties do not depend on the orientation. Unless severely

cold-worked, grains in metallic materials are randomly oriented so that, on a

statistical basis, the assumption of isotropy can be justified. Fiber-reinforced

composites, on the other hand, are microscopically inhomogeneous and non-

isotropic (orthotropic). As a result, the mechanics of fiber-reinforced composites

are far more complex than that of conventional materials.

The mechanics of fiber-reinforced composite materials are studied at

two levels:

1. The micromechanics level, in which the interaction of the constituent

materials is examined on a microscopic scale. Equations describing the

elastic and thermal characteristics of a lamina are, in general, based on

micromechanics formulations. An understanding of the interaction

between various constituents is also useful in delineating the failure

modes in a fiber-reinforced composite material.

2. The macromechanics level, in which the response of a fiber-reinforced

composite material to mechanical and thermal loads is examined on a

macroscopic scale. The material is assumed to be homogeneous. Equa-

tions of orthotropic elasticity are used to calculate stresses, strains, and

deflections.

In this chapter, we look into a few basic concepts as well as a number of simple

working equations used in the micro- and macromechanics of fiber-reinforced

composite materials. Detailed derivations of these equations are given in the

references cited in the text.
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3.1 FIBER–MATRIX INTERACTIONS IN A UNIDIRECTIONAL
LAMINA

We consider the mechanics of materials approach [1] in describing fiber–matrix

interactions in a unidirectional lamina owing to tensile and compressive load-

ings. The basic assumptions in this vastly simplified approach are as follows:

1. Fibers are uniformly distributed throughout the matrix.

2. Perfect bonding exists between the fibers and the matrix.

3. The matrix is free of voids.

4. The applied force is either parallel to or normal to the fiber direction.

5. The lamina is initially in a stress-free state (i.e., no residual stresses are

present in the fibers and the matrix).

6. Both fibers and matrix behave as linearly elastic materials.

A review of other approaches to the micromechanical behavior of a composite

lamina is given in Ref. [2].
3.1.1 LONGITUDINAL TENSILE LOADING

In this case, the load on the composite lamina is a tensile force applied parallel

to the longitudinal direction of the fibers.
3.1.1.1 Unidirectional Continuous Fibers

Assuming a perfect bonding between fibers and matrix, we can write

«f ¼ «m ¼ «c, (3:1)

where «f, «m, and «c are the longitudinal strains in fibers, matrix, and compos-

ite, respectivel y (Figure 3.1) .

Since both fibers and matrix are elastic, the respective longitudinal stresses

can be calculated as

sf ¼ Ef«f ¼ Ef«c, (3:2)

sm ¼ Em«m ¼ Em«c: (3:3)

Comparing Equation 3.2 with Equation 3.3 and noting that Ef > Em, we

conclude that the fiber stress sf is always greater than the matrix stress sm.

The tensile force Pc applied on the composite lamina is shared by the fibers

and the matrix so that

Pc ¼ Pf þ Pm: (3:4)
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FIGURE 3.1 Longitudinal tensile loading of a unidirectional continuous fiber lamina.
Since force ¼ stress 3 area, Equat ion 3.4 can be rew ritten a s

sc Ac ¼ s f A f þ s m Am

or

sc ¼ s f
Af

Ac

þ sm

Am

Ac

, ( 3: 5)

where

sc ¼ average tensile stress in the composi te

Af ¼ net c ross-sect ional area for the fibers

Am ¼ net cross-sect ional area for the matrix

Ac ¼ A f þ Am

Since vf ¼ Af

Ac

and vm ¼ ( 1 � vf ) ¼ Am

Ac

, Equation 3.5 gives

sc ¼ s f vf þ s m vm ¼ s f vf þ s m (1 � vf ) : ( 3: 6)

Dividing both sides of Equation 3.6 by «c , and using Equat ions 3.2 and 3.3, we
can write the longitudinal modulus for the composite as

EL ¼ Efvf þ Emvm ¼ Efvf þ Em(1� vf) ¼ Em þ vf(Ef � Em): (3:7)
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Equation 3.7 is called the rule of mixtures . This equati on shows that the

longitudinal modulus of a unidirectional continuous fiber composite is inter-

mediate between the fiber modulus and the matrix modulus; it increases linearly

with increasing fiber volume fraction; and since Ef > Em, it is influenced more

by the fiber modulus than the matrix modulus.

The fraction of load carried by fibers in longitudinal tensile loading is

Pf

Pc

¼ sfvf

sfvf þ sm(1� vf)
¼ Efvf

Efvf þ Em(1� vf)
: (3:8)

Equation 3.8 is plotted in Figure 3.2 as a function of Ef

Em
ratio and fiber volume

fraction. In polymer matrix composites, the fiber modulus is much greater than

the matrix modulus. In most polymer matrix composites, Ef

Em
> 10. Thus, even

for vf¼ 0.2, fibers carry >70% of the composite load. Increasing the fiber

volume fraction increases the fiber load fraction as well as the composite

load. Although cylindrical fibers can be theoretically packed to almost 90%

volume fraction, the practical limit is close to ~80%. Over this limit, the matrix

will not be able to wet the fibers.

In general, the fiber failure strain is lower than the matrix failure strain, that

is, «fu < «mu. Assuming all fibers have the same tensile strength and the tensile

rupture of fibers immediately precipitates a tensile rupture of the composite, the
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FIGURE 3.2 Fraction of load shared by fibers in longitudinal tensile loading of a

unidirectional continuous fiber lamina.
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longitu dinal tensile stren gth sLtu of a unidir ectio nal con tinuous fiber c omposi te

can be estimat ed as

sLtu ¼ s fu vf þ s 0m ( 1 � vf ) , ( 3: 9)

where

sfu ¼ fiber tensi le stre ngth (assuming a single tensi le stre ngth v alue for all

fibers, which is not actual ly the case)

s 0m ¼ matr ix stre ss at the fiber fail ure stra in, that is, at «m ¼ «fu (Figur e 3.1)

For effe ctive reinfo rceme nt of the matrix, that is, for sLtu > s mu , the fiber

volume fract ion in the composi te must be greate r than a critical value. This

critical fiber volume fract ion is calculated by sett ing sLtu ¼ smu . Thus , from

Equation 3.9,

Critic al vf ¼ smu � s 0m
sfu � s 0m

: ( 3: 10 a)

Equation 3.9 assum es that the matrix is una ble to ca rry the load transferr ed to

it after the fiber s ha ve fail ed, and theref ore, the matrix fails imm ediat ely after

the fiber failure. How ever, at low fiber volume fract ions, it is pos sible that the

matrix wi ll be able to carry ad ditional load even afte r the fiber s have failed. For

this to occur,

smu ( 1 � vf ) > s fu vf þ s 0m ( 1 � v f ),

from whi ch the min imum fiber volume fraction can be c alculated as

Minimum vf ¼ smu � s 0m
smu þ s fu � s 0m

: ( 3:10b)

If the fiber vo lume fraction is less than the minimum value given by Equation

3.10b, the matr ix will con tinue to carry the load even afte r the fiber s have failed

at sf ¼ sfu . As the load on the composi te is increased, the stra in in the matr ix

will also increa se, but some of the load will be trans ferred to the fiber s. The

fibers will continue to break into smal ler and smaller lengths, and wi th decreas -

ing fiber lengt h, the a verage stress in the fiber s will con tinue to de crease.

Eventual ly, the matrix will fail when the stre ss in the matr ix reaches smu ,

causing the composi te to fail also. The longitud inal tensile stre ngth of the

composi te in this case will be smu (1� vf).

Figure 3.3 shows the longitu dinal stren gth varia tion with fiber volume

fraction for a unid irectional continuou s fiber compo site con taining an elastic,

brittle matrix. Table 3.1 shows critical fiber volume fraction and minimum fiber
� 2007 by Taylor & Francis Group, LLC.
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FIGURE 3.3 Longitudinal tensile strength variation with fiber volume fraction in a

unidirectional continuous fiber composite in which the matrix failure strain is greater

than the fiber failure strain.
volume fraction for unidirectional continuous fiber-reinforced epoxy. For all

practical applications, fiber volume fractions are much greater than these values.

There are other stresses in the fibers as well as the matrix besides the

longitudinal stresses. For example, transverse stresses, both tangential and

radial, may arise due to the difference in Poisson’s ratios, nf and nm, between
the fibers and matrix. If nf < nm, the matrix tends to contract more in the

transverse directions than the fibers as the composite is loaded in tension in the

longitudinal direction. This creates a radial pressure at the interface and, as a

result, the matrix near the interface experiences a tensile stress in the tangential
TABLE 3.1
Critical and Minimum Fiber Volume Fractions in E-glass, Carbon,

and Boron Fiber-Reinforced Epoxy Matrixa Composite

Property E-Glass Fiber Carbon Fiber Boron Fiber

Ef 10 3 106 psi 30 3 106 psi 55 3 106 psi

sfu 250,000 psi 400,000 psi 450,000 psi

«fu ¼ sfu

Ef

0.025 0.0133 0.0082

sm
0 ¼Em «fu 2,500 psi 1,330 psi 820 psi

Critical vf 3.03% 2.17% 2.04%

Minimum vf 2.9% 2.12% 2%

a Matrix properties: smu¼ 10,000 psi, Em¼ 0.1 3 106 psi, and «mu¼ 0.1.
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direction an d a compres sive stre ss in the radial direct ion. Tangenti al an d radial

stresses in the fiber s are both compres sive. How ever, all these stre sses are

relative ly smal l compa red wi th the longitu dinal stresses .

Anothe r source of intern al stresses in the lamina is due to the diff erence in

therma l con traction betw een the fibers and matrix as the lamina is cooled down

from the fabri cation tempe rature to room tempe ratur e. In general, the matr ix

has a higher coefficie nt of therm al expansi on (or contrac tion), and, therefo re,

tends to co ntract more than the fibers, creating a ‘‘squ eezing’’ effect on the

fibers. A three- dimens ional state of resi dual stre sses is created in the fibers as

well as in the matrix. These stresses can be calculated using the equations given

in App endix A.2 .

3.1.1.2 Unidirectional Discontinuous Fibers

Tensile load applied to a discontinuous fiber lamina is transferred to the fibers

by a shearing mechanism between fibers and matrix. Since the matrix has a

lower modulus, the longitudinal strain in the matrix is higher than that in

adjacent fibers. If a perfect bond is assumed between the two constituents,

the difference in longitudinal strains creates a shear stress distribution across

the fiber–matrix interface. Ignoring the stress transfer at the fiber end cross

sections and the interaction between the neighboring fibers, we can calculate

the normal stress distribution in a discontinuous fiber by a simple force equi-

librium analysis (Figure 3.4).

Consider an infinitesimal length dx at a distance x from one of the fiber

ends (Figure 3.4). The force equilibrium equation for this length is
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FIGURE 3.4 Longitudinal tensile loading of a unidirectional discontinuous fiber lamina.
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which on sim plificat ion gives

dsf

dx
¼ 4t

df
, ( 3: 11 )

wher e

sf ¼ longit udinal stre ss in the fiber at a distan ce x from one of its en ds

t ¼ shear stress at the fiber–mat rix inter face

df ¼ fiber diame ter

Ass uming no stre ss trans fer at the fiber end s, that is, sf ¼ 0 at  x ¼ 0, and

integ rating Equation 3.11, we determine the longitudinal stress distribut ion in

the fiber as

sf ¼ 4

df

ðx
0

t dx: ( 3: 12 )

For simp le analys is, let us assum e that the inter facial shear stress is constant

and is eq ual to ti. With this assump tion, integrati on of Equat ion 3.12 gives

sf ¼ 4ti
df

x: ( 3: 13 )

From Equation 3.13, it c an be observed t hat for a composite lamina

containi ng discontinuous fibers, t he fiber stress is not uniform. According to

E q u a t i o n 3.13, it is zero at each end of the fiber (i.e., x ¼ 0) and it increases linea rly

with x. The maximum fiber stress occurs at the central porti on of the fiber

(Figur e 3.5). The maxi mum fiber stre ss that can be ach ieved a t a given load is

( sf ) max ¼ 2t i
lt

df
, ( 3: 14 )

wher e x ¼ lt=2 ¼ load trans fer lengt h from each fiber end. Thus , the load

trans fer lengt h, lt, is the mini mum fiber lengt h in whi ch the maxi mum fiber

stress is achieve d.

For a given fiber diame ter an d fiber –matrix inter facial con dition, a critical

fiber lengt h lc is calcul ated from Equation 3.14 as

lc ¼ sfu

2ti
df , ( 3: 15 )

wher e

sfu ¼ ultimat e tensile stre ngth of the fiber

lc ¼ mini mum fiber lengt h requ ired for the maxi mum fiber stress to be eq ual

to the ultimate tensi le stren gth of the fiber at its midlen gth (Figur e 3.6b)

ti ¼ shear strength of the fiber–matrix interface or the shear strength of the

matrix adjacent to the interface, whichever is less
� 2007 by Taylor & Francis Group, LLC.
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Fro m Equat ions 3.14 and 3.15, we mak e the followi ng observat ions:

1. For lf < l c , the maximum fiber stre ss may never reach the ulti mate fiber

stre ngth (Figur e 3.6a). In this case, eithe r the fiber–mat rix interfaci al

bond or the matr ix may fail before fibers achieve their potential

stre ngth.

2. For lf > l c, the maximum fiber stre ss may reach the ultimat e fiber

stre ngth over much of its lengt h (Figur e 3.6c) . How ever, ov er a distance

equ al to lc =2 from each end , the fiber remain s less effe ctive.

3. For effective fiber reinfo rcement, that is, for using the fiber to its

potenti al stre ngth, one must select lf � l c .

4. For a given fiber diame ter and stren gth, lc can be co ntrolled by increa s-

ing or decreas ing ti . For exampl e, a matrix-co mpatible cou pling age nt

may increase ti, which in turn decreas es l c . If  lc can be redu ced relat ive
to lf through proper fiber surface treat ments, effecti ve reinforcem en t can

be achieve d withou t changing the fiber lengt h.

Althou gh normal stresses near the two fiber end s, that is, at x < lt=2, are low er
than the maxi mum fiber stress, their con tributions to the total load-c arrying

capacit y of the fiber can not be complet ely ignored. Includin g these end stre ss

distribut ions, an average fiber stre ss is calcul ated as

�sf ¼ 1

lf

ðlf
0

sf dx,

which gives

�sf ¼ ( s f ) max 1 � lt

2lf

� �
: ( 3:16)

Note that the load trans fer length for lf < lc is
lf

2 
, whereas that for lf > lc is

lc

2 
.

For l f > lc , the longit udinal tensile strength of a unidir ectional discont inu-

ous fiber composi te is calculated by substitut ing ( sf) max ¼ sfu and lt¼ lc (Figure

3.6c). Thus,

sLtu ¼ �sfuvf þ s0
m(1� vf)

¼ sfu 1� lc

2lf

� �
vf þ s 0m (1 � vf ) : ( 3: 17 )

In Equation 3.17, it is assum ed that all fibers fail at the same strength level of

sfu . Com pariso n of Equations 3.9 and 3.17 shows that discon tinuous fiber s

always strengthen a matrix to a lesser degree than continuous fibers. However,
� 2007 by Taylor & Francis Group, LLC.
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FIGURE 3.7 Variation in the longitudinal strength of a unidirectional discontinuous

fiber composite as a function of fiber length. (After Hancock, P. and Cuthbertson, R.C.,

J. Mater. Sci., 5, 762, 1970.)
for lf > 5l c , streng thening great er than 90% can be ach ieved even with discon -

tinuous fibers. An exampl e is shown in Figure 3.7.

For lf < lc , there will be no fiber failu re. Instead , the lamina fails prim arily

because of matr ix tensi le failure. Since the average tensile stre ss in the fiber is

�sf ¼ t i
lf

df
, the longitud inal tensile streng th of the co mposite is given by

sLtu ¼ t i
lf

df
vf þ s mu (1 � v f ) , ( 3: 18 )

where smu is the tensi le stre ngth of the matrix material .

A sim ple method of de termining the fiber–mat rix inter facial shear strength

is called a single fiber fragm entat ion test, whi ch is based on the obs ervation that

fibers do not break if their lengt h is less than the crit ical value. In this test, a

single fiber is embedded along the center line of a matr ix tensi le specim en

(Figur e 3.8). When the sp ecimen is tested in axial tensio n, the tensi le stress is

transferr ed to the fiber by shear stre ss at the fiber–mat rix interface. The

embedded fiber breaks when the maxi mum tensi le stress in the fiber reaches

its tensi le stren gth. With increa sed loading , the fiber break s into success ively

shorte r lengths until the fragmen ted length s be come so short that the maximum
� 2007 by Taylor & Francis Group, LLC.
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FIGURE 3.8 Single fiber fragmentation test to determine fiber–matrix interfacial shear

strength.
tensile stress can no longer reach the fiber tensile strength. The fragmented fiber

lengths at this point are theoretically equal to the critical fiber length, lc. How-

ever, actual (measured) fragment lengths vary between lc=2 and lc. Assuming a

uniform distribution for the fragment lengths and a mean value of �l equal to
0.75lc, Equation 3.15 can be used to calculate the interfacial shear strength tim [3]:

tim ¼ 3df s fu

8�l
, ( 3: 19 )

wher e �l is the mean fragment length .

Equat ion 3.13 was obtaine d assum ing that the inter facial shear stre ss ti is a
constant . The analysis that follo wed Equat ion 3.13 was used to demonst rate

the impor tance of critical fiber lengt h in discon tinuous fiber composi tes. How -

ever, strictl y sp eaking, this ana lysis is valid only if it can be shown that ti is a
constant . This wi ll be true in the case of a duc tile matr ix that y ields due to high

shear stre ss in the interfaci al zon e before the fiber –matrix bond fails an d then

flows plastical ly with littl e or no strain hardening (i.e., the matr ix be haves as a

perfec tly plastic mate rial wi th a co nstant yield strength as shown in Figure 3.9) .

When this occurs, the interfaci al shear stre ss is equal to the shear y ield strength of

the matrix (w hich is approxim ately eq ual to half of its tensile yiel d stre ngth)

and remai ns con stant at this value. If the fiber –matrix bond fails before matr ix

yield ing, a frictio nal force may be generated at the inter face, whi ch trans fers the

load from the matrix to the fibers through slippage (sliding). In a polymer

matrix composite, the source of this frictional force is the radial pressure on the

fiber surface created by the shrinkage of the matrix as it cools down from the
� 2007 by Taylor & Francis Group, LLC.
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FIGURE 3.9 Stress–strain diagrams of (a) an elastic-perfectly plastic material and (b) an

elastic-strain hardening material.
curing temperature. In this case, the interfacial shear stress is equal to the

product of the coefficient of sliding friction and the radial pressure.

When the matrix is in the elastic state and the fiber–matrix bond is still

unbroken, the interfacial shear stress is not a constant and varies with x.

Assuming that the matrix has the same strain as the composite, Cox [4] used

a simple shear lag analysis to derive the following expression for the fiber stress

distribution along the length of a discontinuous fiber:

sf ¼ Ef«1 1�
coshb

lf

2
� x

� �

cosh
blf
2

2
664

3
775 for 0 � x � lf

2
, (3:20)

where

sf¼ longitudinal fiber stress at a distance x from its end

Ef¼ fiber modulus

«1¼ longitudinal strain in the composite

b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Gm

Efr
2
f ln (R=rf )

s
,

where

Gm¼matrix shear modulus

rf ¼ fiber radius

2R ¼ center-to-center distance from a fiber to its nearest neighbor
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FIGURE 3.10 (a) Normal stress distribution along the length of a discontinuous fiber

according to Equation 3.20 and (b) shear stress distribution at the fiber–matrix

interface according to Equation 3.21.
Usi ng Equation s 3.11 and 3.20, shear stre ss a t the fiber–mat rix inter face is

obtaine d as:

t ¼ 1

2 
Ef «1 br f

sinh b
lf

2 
� x

� �

cosh
blf
2

: ( 3: 21 )

Equation s 3.20 and 3.21 are plotted in Figure 3.10 for various values of blf. It
shows that the fiber stress builds up over a shorte r load trans fer lengt h if blf is
high. This means that not only a high fiber lengt h to diameter rati o (called the

fiber aspect rati o) but also a high rati o of Gm=E f is desir able for streng thening a
discont inuous fiber compo site.

Note that the stre ss distribut ion in Figu re 3.5 or 3.10 doe s not take into

accoun t the inter actio n between fibers. When ever a discont inuity due to fiber

end oc curs, a stress con centration must arise since the tensile stress normal ly

assum ed by the fiber without the discont inuity mu st be taken up by the

surround ing fibers. As a resul t, the longit udinal stre ss dist ribution for each

fiber may contai n a num ber of peaks.
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EXAMPLE 3.1

A unidirectional fiber composite contains 60 vol% of HMS-4 carbon fibers in an

epoxy matrix. Using the fiber properties in Table 2.1 and matrix properties as

Em ¼ 3.45 GPa and smy ¼ 138 MPa, determine the longitudinal tensile strength of

the composite for the following cases:

1. The fibers are all continuous.

2. The fibers are 3.17 mm long and ti is (i) 4.11 MPa or (ii) 41.1 MPa.

SOLUTIO N

Since HMS-4 carbon fibers are linearly elastic, their failure strain is

«fu ¼ sfu

Ef

¼ 2480 MPa

345 � 103 MPa 
¼ 0: 0072:

Assuming that the matrix behaves in an elastic-perfectly plastic manner, its yield

strain can be calculated as

«my ¼ smy

Em

¼ 138 MPa

3: 45 � 103 MPa 
¼ 0: 04:

Thus, the fibers are expected to break before the matrix yields and the stress in the

matrix at the instance of fiber failure is

s 0m ¼ Em «fu ¼ ( 3: 45 � 103 MPa) (0: 0072 ) ¼ 24: 84 MPa:

1. Using Equation 3.9, we get

sLtu ¼ (2480 )(0: 6) þ (24 :84 )(1 � 0: 6)

¼ 1488 þ 9: 94 ¼ 1497: 94 MPa:

2. (i) When ti ¼ 4.11 MPa, the critical fiber length is

lc ¼ 2480 MPa

( 2)(4: 11 MPa) 
( 8 � 10� 3 mm) ¼ 2: 414 mm:

Since lf > l c , we can use Equation 3.17 to calculate

sLtu ¼ (2480) 1� 2:414

(2)(3:17)

� �
(0:6)þ (24:84)(1� 0:6)

¼ 921:43þ 9:94 ¼ 931:37 MPa:

(ii) When ti¼ 41.1 MPa, lc¼ 0.2414 mm. Thus, lf > lc.
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Equation 3.17 now gives sLtu ¼ 1441.28 MPa.

This example demonstrates that with the same fiber length, it is possible to

achieve a high longitudinal tensile strength for the composite by increasing the

interfacial shear stress. Physically, this means that the bonding between the fibers

and the matrix must be improved.

3.1.1 .3 Mic rofailure Modes in Lon gitudinal Ten sion

In derivin g Equations 3.9 and 3.17, it was assumed that all fibers have equ al

strength and the composite lamina fails immediately after fiber failure. In

practice, fiber strength is not a unique value; instead it follows a statistical

distribution. Therefore, it is expected that a few fibers will break at low stress

levels. Although the remaining fibers will carry higher stresses, they may not

fail simultaneously.

When a fiber breaks (Figure 3.11), the normal stress at each of its broken

ends becomes zero. However, over a distance of lc=2 from each end, the stress

builds back up to the average value by shear stress transfer at the fiber–matrix

interface (Figure 3.11c). Additionally, the stress states in a region close to the

broken ends contain

1. Stress concentrations at the void created by the broken fiber

2. High shear stress concentrations in the matrix near the fiber ends

3. An increase in the average normal stress in adjacent fibers (Figure 3.11b)
(a) (b) (c)
1 2 3 4

P

P

Fiber
breakage

FIGURE 3.11 Longitudinal stress distributions (a) in unidirectional continuous fibers

before the failure of fiber 3, (b) in fibers 2 and 4 after the failure of fiber 3, and (c) in fiber

3 after it fails.
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Owing to these local stress magnifications, possibilities for several microfailure

modes exist:

1. Partial or total debonding of the broken fiber from the surrounding

matrix due to high interfacial shear stresses at its ends. As a result, the

fiber effectiveness is reduced either completely or over a substantial

length (Figure 3.12a).

2. Initiation of a microcrack in the matrix due to high stress concentration

at the ends of the void (Figure 3.12b).
P

Fiber
breakage

(c)
P

1 2 3 4

P

Matrix
cracking

P
(b)

1 2 3 4

P

P
(a)

1 2 3 4

Debonding
at the

fiber–matrix
interface

FIGURE 3.12 Possible microfailure modes following the breakage of fiber 3.
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3. Plast ic deform ation (mi croyielding) in the matr ix, particular ly if the

matr ix is duc tile.

4. Failur e of other fiber s in the vicin ity of the fir st fiber break due to high

average normal stre sses and the local stre ss co ncentra tions (Figur e

3.12c) . Each fiber break creates additio nal stre ss con centrations in the

matr ix a s well as in other fiber s. Eve ntually, many of these fiber break s

and the surroun ding matr ix microcracks may join to form a long micr o-

crack in the lami na.

The presence of long itudinal stre ss (syy ) co ncentra tion at the tip of an advan -

cing crack is well know n. Cook and Gordon [5] have shown that the stre ss

components sxx and txy may also reach high values slightly ahead of the crack

tip (Figure 3.13a). Depending on the fiber–matrix interfacial strength, these

stress components are capable of debonding the fibers from the surrounding

matrix even before they fail in tension (Figure 3.13b). Fiber–matrix debonding

ahead of the crack tip has the effect of blunting the crack front and reducing the

notch sensitivity of the material. High fiber strength and low interfacial

strength promote debonding over fiber tensile failure.

With increasing load, fibers continue to break randomly at various loca-

tions in the lamina. Because of the statistical distribution of surface flaws, the
Debonding
ahead
of the 

crack tip

s

syy

sxx

s

x

y

(a) (b)

FIGURE 3.13 Schematic representation of (a) normal stress distributions and (b) fiber–

matrix debonding ahead of a crack tip.
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FIGURE 3.14 Schematic representation of fiber pullout and matrix bridging by broken

fibers (a) fiber breakage; (b) fiber pullout; and (c) matrix bridging.
fiber failure does not alw ays oc cur in the crack plane (Figur e 3.14). Ther efore,

the open ing of the matrix crack may cause broken fibers to pull out from the

surroundi ng matrix (Figure 3.15), which is resisted by the friction at the fiber–

matrix inter face. If the inter facial stre ngth is high or the broken fiber lengths

are greater than lc =2, the fiber pullout is preceded by either debo nding or fiber
failure even behind the crack front . Thus , brok en fibers act as a bridge between

the tw o faces of the matr ix crack. In some instan ces, multiple parallel cracks are

formed in the matrix normal to the fiber direction. If these cracks are bridged

by fibers, the volume of matr ix between the cracks may deform signifi cantly

before rupture .

Fractur e tough ness of a unid irectional 08 lamin a is the sum of the energies

consumed by various micr ofailure proc esses, namel y, fiber fracture, matrix

cracki ng or yield ing, de bonding, and fiber pullout . Theoreti cal mo dels to

calcula te the energy contribu tions from some of these failure mod es are given

in Table 3.2. Although the true nature of the fracture process and stress fields

are not known, these models can serve to recognize the variables that play
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FIGURE 3.15 Fracture surface of a randomly oriented discontinuous fiber composite

showing the evidence of fiber pullout.
major roles in the developm en t of high fractu re toughness for a fiber -reinforce d

composi te lami na. It should be noted that en ergy co ntributions from the

fracturi ng of brit tle fiber s and a brit tle matr ix are ne gligible (< 10%) compared

with those lis ted in Table 3.2.

3.1.2 T RANSVERSE TENSILE LOADING

When a transve rse tensi le load is ap plied to the lamina, the fibers act as hard

inclus ions in the matrix instead of the princi pal load-c arryi ng member s.

Althou gh the matrix mod ulus is increa sed by the presence of fiber s, local

stresses and stra ins in the surroundi ng matr ix are higher than the applie d stress.

Figure 3.16b shows the varia tion of radial stress ( srr ) and tangent ial stre ss ( suu )

in a lamin a contain ing a single cyli ndrical fiber. Near the fiber–mat rix interface,

the radial stress is tensile and is nearly 50% higher than the applied stress.

Because of this radial stress component, cracks normal to the loading direction
� 2007 by Taylor & Francis Group, LLC.



TABLE 3.2
Important Energy Absorpti on Mechani sms During Longit udinal Ten sile

Loading of a Uni directi onal Cont inuous Fiber Lamin a

Stress relaxation energy (energy dissipated

owing to reduction in stresses at the

ends of a broken fiber [6])

Er ¼ vf s 
2
fu lc

6Ef

Stored elastic energy in a partially

debonded fiber [7]

Es ¼ vf s 
2
fu y

4Ef

(where y ¼ debonded length of

the fiber when it breaks)

Fiber pullout energy ½8� Epo ¼ vf s fu l 
2
c

12lf
for lf > lc

¼ vf s fu l 
2
f

12lc
for lf < lc

Energy absorption by matrix deformation

between parallel matrix cracks [9]

Emd ¼ (1 � vf ) 
2

vf

smu df

4ti

� �
Um

(where Um ¼ energy required in deforming

unit volume of the matrix to rupture)

Notes:

1. All energy expressions are on the basis of unit fracture surface area.

2. Debonding of fibers ahead of a crack tip or behind a crack tip is an important energy absorption

mechanism. However, no suitable energy expression is available for this mechanism.

3. Energy absorption may also occur because of yielding of fibers or matrix if either of these

constituents is ductile in nature.
may develop either at the fiber –matrix inter face or in the matrix at u ¼ 908
(Figur e 3.16c) .

In a lamin a contai ning a high volume fraction of fiber s, there wi ll be

interacti ons of stre ss fields from neighbo ring fibers. Adams and Doner [10]

used a finite difference method to calcul ate the stre sses in unidir ectio nal co m-

posites unde r trans verse loading . A rectan gular pac king arrange men t of paral-

lel fiber s was assum ed, and solutions wer e obtaine d for various inter fiber

spacing s repres enting different fiber volume fract ions. Radi al stre sses at the

fiber–mat rix interface for 55% a nd 75% fiber volume fract ions are shown in

Figure 3.17. The maxi mum princi pal stress increases with increasing Ef=E m
ratio and fiber vo lume fraction, as indica ted in Figu re 3.18. The transverse

modulus of the compo site ha s a sim ilar trend. Alt hough an increa sed transv erse

modulus is desir able in many a pplications , an increa se in local stre ss concen -

trations at high volume fract ions and high fiber modulus may redu ce the

transve rse stren gth of the composi te (Table 3.3).

The simplest model used for deriving the equation for the transverse modulus

of a unidirectional continuous fiber-reinforced composite is shown in Figure 3.19
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FIGURE 3.16 (a) Transverse tensile loading on a lamina containing a single cylindrical

fiber, (b) stress distribution around a single fiber due to transverse tensile loading, and

(c) possible microfailure modes.
in which the fibers and the matrix are replaced by their respective ‘‘equivalent’’

volumes and are depicted as two structural elements (slabs) with strong bond-

ing across their interface. The tensile load is acting normal to the fiber direc-

tion. The other assumptions made in this simple slab model are as follows.
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FIGURE 3.17 Variation of shear stress tru and normal stress srr at the surface of a

circular fiber in a square array subjected to an average tensile stress s transverse to the

fiber directions: (a) vf ¼ 55% and (b) vf ¼ 75%. (After Adams, D.F. and Doner, D.R.,

J. Compos. Mater., 1, 152, 1967.)
1. Total deformation in the transverse direction is the sum of the total

fiber deformation and the total matrix deformation, that is, DWc¼
DWfþDWm.

2. Tensile stress in the fibers and the tensile stress in the matrix are both

equal to the tensile stress in the composite, that is, sf¼sm¼sc.

Since «c ¼ DWc

Wc
, «f ¼ DWf

Wf
, and «m ¼ DWm

Wm
, the deformation equationDWc¼DWfþ

DWm can be written as

«cWc ¼ «fWf þ «mWm: (3:22)
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FIGURE 3.18 Ratio of the maximum principal stress in the matrix to the applied

transverse stress on the composite for various fiber volume fractions. (After Adams,

D.F. and Doner, D.R., J. Compos. Mater., 1, 152, 1967.)

TABLE 3.3
Effect of Transverse Loading in a Unidirectional Composite

Composite Material
Ef
Em

vf (%)

Transverse

Modulus,

GPa (Msi)

Transverse

Strength,

MPa (ksi)

E-glass–epoxy 20 39 8.61 (1.25) 47.2 (6.85)

67 18.89 (2.74) 30.87 (4.48)

E-glass–epoxy 24 46 8.96 (1.30) 69.1 (10.03)

57 13.23 (1.92) 77.92 (11.31)

68 21.91 (3.18) 67.93 (9.86)

73 25.9 (3.76) 41.27 (5.99)

Boron–epoxy 120 65 23.43 (3.4) 41.96 (6.09)

Source: Adapted from Adams, D.F. and Doner, D.R., J. Compos. Mater., 1, 152, 1967.
Dividing both sides by Wc and noting that
Wf

Wc
¼ vf an d

Wm

Wc
¼ vm , we can rewrite

Equation 3.22 as

«c ¼ «fvf þ «mvm: (3:23)
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FIGURE 3.19 Transverse loading of a unidirectional continuous fiber lamina and the

equivalent slab model.
Since «c ¼ sc

ET

, «f ¼ sf

Ef

, and «m ¼ sm

Em

, Equat ion 3.23 can be writt en as

sc

ET

¼ sf

Ef

vf þ sm

Em

vm : ( 3: 24 )

In Equation 3.24, ET is the trans verse modulus of the uni directional continuous

fiber compo site.

Finall y, since it is assum ed that sf ¼ sm ¼ sc , Equation 3.24 becomes

1

ET

¼ vf

Ef

þ vm

Em

: ( 3: 25 )

Rear ranging Equat ion 3.25, the express ion for the transverse mod ulus ET

becomes

ET ¼ Ef Em

Ef vm þ Em v f
¼ Ef Em

Ef � vf (E f � Em ) 
: ( 3: 26 )

Equation 3.26 shows that the trans verse mod ulus increa ses nonlinear ly with

increa sing fiber volume fraction . By compari ng Equat ions 3.7 an d 3.26, it can

be seen that the trans verse modulus is low er than the lon gitudinal mod ulus and

is influ enced more by the matr ix modulus than by the fiber modulus.

A simp le equati on for predicting the transve rse tensile stre ngth of a unidir -

ection al con tinuous fiber lami na [11] is

sTtu ¼ smu

Ks
, (3:27)
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wher e

Ks ¼ 1 � vf [1 � ( Em = Ef )]

1 � ( 4vf =p )
1 = 2 [ 1 � (E m =Ef )] 

:

Equation 3.27 a ssumes that the transverse tensile stre ngth of the co mposi te is

limited by the ultimate tensile strength of the matrix. Note that Ks represents

the maximum stress concentration in the matrix in which fibers are arranged in

a square array. The transverse tensile strength values predicted by Equation

3.27 are found to be in reasonable agreement with those predicted by the finite

difference method for fiber volume fractions <60% [2]. Equation 3.27 predicts

that for a given matrix, the transverse tensile strength decreases with increasing

fiber modulus as well as increasing fiber volume fraction.

3.1.3 LONGITUDINAL COMPRESSIVE LOADING

An important function of the matrix in a fiber-reinforced composite material is

to provide lateral support and stability for fibers under longitudinal compres-

sive loading. In polymer matrix composites in which the matrix modulus is

relatively low compared with the fiber modulus, failure in longitudinal com-

pression is often initiated by localized buckling of fibers. Depending on whether

the matrix behaves in an elastic manner or shows plastic deformation, two

different localized buckling modes are observed: elastic microbuckling and fiber

kinking.

Rosen [12] considered two possible elastic microbuckling modes of fibers in

an elastic matrix as demonstrated in Figure 3.20. The extensional mode of
(a) (b)

FIGURE 3.20 Fiber microbuckling modes in a unidirectional continuous fiber compos-

ite under longitudinal compressive loading: (a) extensional mode and (b) shear mode.
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microb uckling occurs at low fiber vo lume fract ions (vf < 0.2) and creates an

extens ional strain in the matrix becau se of out-of-ph ase buckling of fiber s. The

shear mod e of micr obuck ling occurs at high fiber volume fract ions and creates

a shear stra in in the matr ix because of in-phas e buckling of fiber s. Usi ng

buckling theory for columns in an elastic foun dation, Rosen [12] pred icted

the co mpres sive streng ths in extension al mode and shear mode as

Exten sional mode : sLcu ¼ 2vf
vf Em E f

3( 1 � vf )

� �1= 2

, ( 3: 28 a)

Shear mode : sLcu ¼ Gm

( 1 � vf ) 
, ( 3:28b)

where

Gm is the matr ix shear modulus

vf is the fiber vo lume fraction

Since most fiber-re inforced composi tes con tain fiber volume fraction

> 30%, the shear mode is more impor tant than the extens ional mode. As

Equation 3.28b shows, the shear mode is controlled by the matr ix shear

modulus as well as fiber volume fraction. The measur ed lon gitudinal compres -

sive strengths are generally foun d to be lower than the theoret ical values

calcula ted from Equation 3.28b. Som e exp erimental data suggest that the

longitu dinal co mpressive stre ngth follows a rule of mixt ures prediction similar

to Equat ion 3.9.

The second impor tant fail ure mode in longitud inal co mpres sive load ing is

fiber kink ing, whi ch occu rs in high ly local ized areas in whi ch the fibers are

initially sli ghtly misalign ed from the direct ion of the comp ressive loading . Fiber

bundles in these areas ro tate or tilt by an add itional angle from their initial

config uration to form kink ba nds an d the surroundi ng matrix undergoes large

shearin g deform ation (Figur e 3.21) . Expe riments con ducted on glass and car-

bon fiber-reinforced composites show the presence of fiber breakage at the ends

of kink bands [13]; however, whether fiber breakage precedes or follows the

kink band formation has not been experimentally verified. Assuming an elastic-

perfectly plastic shear stress–shear strain relationship for the matrix, Budiansky

and Fleck [14] have determined the stress at which kinking is initiated as

sck ¼ tmy

wþ gmy

, (3:29)

where

tmy ¼ shear yield strength of the matrix

gmy¼ shear yield strain of the matrix

w ¼ initial angle of fiber misalignment
� 2007 by Taylor & Francis Group, LLC.
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FIGURE 3.21 Kink band geometry. a¼Kink band angle, b¼Fiber tilt angle, and

v¼Kink band width.
Besides fiber micr obuck ling and fiber kink ing, a numb er of other failure mod es

have also been observed in longit udinal compres sive loading of unidir ection al

continuou s fiber -reinforce d compo sites. They include she ar failu re of the com-

posit e, compres sive failure or yiel ding of the reinfo rcement, longitudinal split-

ting in the matr ix due to Poi sson’s rati o effect, matr ix yielding, interfaci al

debo nding, and fiber splittin g or fibrillatio n (in Kevl ar 49 composi tes). Fac tors

that appear to impr ove the longitud inal co mpressive stre ngth of unidir ectio nal

composi tes are increa sing values of the matrix shear mod ulus, fiber tensile

modulus, fiber diameter, matrix ultimat e stra in, an d fiber–mat rix interfaci al

stren gth. Fib er misali gnment or bowi ng, on the other hand , tends to reduce the

longitu dinal compres sive strength.

3.1.4 T RANSVERSE COMPRESSIVE LOADING

In trans verse compres sive loading , the compres sive load is app lied nor mal to

the fiber direction , and the most co mmon failu re mode obs erved is the matr ix

shear failure along planes that are pa rallel to the fiber direct ion, but inclin ed to

the loading direction (Figure 3.22). The fail ure is init iated by fiber –mat rix

debo nding. The trans verse comp ressive modulus and stre ngth are co nsidera bly

lower than the longitu dinal compres sive modulus and strength. The trans verse

compressive modulus is higher than the matrix modulus and is close to the

transverse tensile modulus. The transverse compressive strength is found to be

nearly independent of fiber volume fraction [15].
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FIGURE 3.22 Shear failure (a) in longitudinal compression (compressive load parallel to

the fiber direction) and (b) in transverse compression (compressive load normal to the

fiber direction).
3.2 CHARACTERISTICS OF A FIBER-REINFORCED LAMINA

3.2.1 FUNDAMENTALS

3.2.1.1 Coordinate Axes

Consider a thin lamina in which fibers are positioned parallel to each other in a

matrix, as shown in Figure 3.23. To describe its elastic properties, we first

define two right-handed coordinate systems, namely, the 1-2-z system and the
z

y

1

x

q

2

FIGURE 3.23 Definition of principal material axes and loading axes for a lamina.
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FIGURE 3.24 Right-handed coordinate systems. Note the difference in fiber orientation

in (a) and (b).
x- y- z system. Bot h 1-2 and x- y axes are in the plane of the lamina, a nd the z axis

is nor mal to this plane. In the 1-2- z syst em, axis 1 is a long the fiber lengt h and

repres ents the longitud inal direct ion of the lamin a, an d axis 2 is nor mal to the

fiber length and rep resents the trans verse direct ion of the lami na. Together they

consti tute the princ ipal mat erial d irection s in the plane of the lamin a. In the xyz

system, x and y axes repres ent the loadi ng directio ns .

The angle betw een the pos itive x axis a nd the 1-axi s is called the fiber

orien tation angle and is repres ented by u. The sign of this an gle depen ds on the
right-han ded coordinat e system selected. If the z axis is verti cally upwar d to the

lamina plane, u is posit ive when measure d cou nterclock wise from the posit ive

x axis (Figur e 3.24a). On the other hand , if the z axis is verti cally downw ard, u is
posit ive when measur ed clockwise from the positive x axis (Figur e 3.24b) . In a 0 8
lamina, the princi pal material axis 1 coinci des wi th the loading axis x, but in a

908 lamin a, the princi pal mate rial ax is 1 is at a 90 8 angle with the loading axis x.

3.2.1 .2 Not ations

Fiber and matrix propert ies are deno ted by sub scripts f and m, respectivel y.

Lamina pro perties, such as tensile mod ulus, Poi sson’s ratio, and shear modu -

lus, are den oted by two subscri pts. The first sub script repres ents the loading

direction , and the second subscri pt rep resents the direction in whi ch the par-

ticular propert y is measur ed . For exampl e, n12 rep resents the ratio of strain in
direction 2 to the ap plied stra in in direction 1, and n21 represents the ratio of

strain in direction 1 to the applied strain in direction 2.

Stres ses and stra ins are also den oted wi th doubl e subscripts (Figur e 3.25) .

The first of these subscripts represents the direction of the outward normal to

the plane in which the stress component acts. The second subscript represents
� 2007 by Taylor & Francis Group, LLC.
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FIGURE 3.25 Normal stress and shear stress components.
the direction of the stress component. Thus, for example, the subscript x in the

shear stress component txy represents the outward normal to the yz plane and

the subscript y represents its direction. The stress components sxx, syy, and txy
are called in-plane (intralaminar) stresses, whereas szz, txz, and tyz are called

interlaminar stresses.

In order to visualize the direction (sense) of various stress components, we

adopt the following sign conventions:

1. If the outward normal to a stress plane is directed in a positive coordi-

nate direction, we call it a positive plane. A negative plane has its

outward normal pointing in the negative coordinate direction.

2. A stress component is positive in sign if it acts in a positive direction on

a positive plane or in a negative direction on a negative plane. On the

other hand, the stress component is negative in sign if it acts in a

negative direction on a positive plane or in a positive direction on

a negative plane. Thus, all stress components in Figure 3.25 are positive

in sign.
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3.2.1.3 Stress and Strain Transformations in a Thin Lamina

under Plane Stress

In stress analysis of a thin lamina with fiber orientation angle u, it is often

desirable to transform stresses in the xy directions to stresses in the 12 direc-

tions. The stress transformation equations are

s11 ¼ sxx cos
2 uþ syy sin

2 uþ 2txy cos u sin u,

s22 ¼ sxx sin
2 uþ syy cos

2 u� 2txy cos u sin u,

t12 ¼ (�sxx þ syy) sin u cos uþ txy(cos
2 u� sin2 u): (3:30)

where sxx, syy, and txy are applied stresses in the xy directions and s11, s22, and

t12 are transformed stresses in the 12 directions. Similar equations can also be

written for strain transformation by replacing each s with « and each t with

g=2 in Equation 3.30. Thus, the strain transformation equations are

«11 ¼ «xx cos
2 uþ «yy sin

2 uþ gxy cos u sin u,

«22 ¼ «xx sin
2 uþ «yy cos

2 u� gxy cos u sin u,

g12 ¼ 2(�«xx þ «yy) sin u cos uþ gxy(cos
2 u� sin2 u): (3:31)

EXAMPLE 3.2

A normal stress sxx of 10 MPa is applied on a unidirectional angle-ply lamina

containing fibers at 308 to the x axis, as shown at the top of the figure. Determine

the stresses in the principal material directions.

Note: q = −30°

sxx sxx
q

y

x

s22

s11

s11

s

30°

2

1

t12 t12
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SOLUTION

Since syy¼ txy¼ 0, the transformation equations become

s11 ¼ sxx cos
2 u,

s22 ¼ sxx sin
2 u,

t12 ¼ �sxx sin u cos u:

In this example, sxx¼þ10 MPa and u¼�308. Therefore,

s11 ¼ 7:5 MPa,

s22 ¼ 2:5 MPa,

t12 ¼ 4:33 MPa:

The stresses in the principal material directions are shown in the figure.

3.2.1.4 Isotropic, Anisotropic, and Orthotropic Materials

In an isotropic material, properties are the same in all directions. Thus, the

material contains an infinite number of planes of material property symmetry

passing through a point. In an anisotropic material, properties are different in all

directions so that thematerial contains no planes ofmaterial property symmetry.

Fiber-reinforced composites, in general, contain three orthogonal planes of

material property symmetry, namely, the 1–2, 2–3, and 1–3 plane shown in

Figure 3.26, and are classified as orthotropic materials. The intersections of
3

2

1

FIGURE 3.26 Three planes of symmetry in an orthotropic material.
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FIGURE 3.27 Differences in the deformations of isotropic, specially orthotropic and

anisotropic materials subjected to uniaxial tension ((a) Isotropic, (b) Special orthotropic,

and (c) General orthotropic and anisotropic) and pure shear stresses.
these three planes of symmetry, namely, axes 1, 2, and 3, are called the principal

material directions.

Differences in the mechanical behavior of isotropic, orthotropic, and aniso-

tropic materials are demonstrated schematically in Figure 3.27. Tensile normal

stresses applied in any direction on an isotropic material cause elongation in the

direction of the applied stresses and contractions in the two transverse direc-

tions. Similar behavior is observed in orthotropic materials only if the normal

stresses are applied in one of the principal material directions. However,

normal stresses applied in any other direction create both extensional and

shear deformations. In an anisotropic material, a combination of extensional

and shear deformation is produced by a normal stress acting in any direction.

This phenomenon of creating both extensional and shear deformations by the

application of either normal or shear stresses is termed extension-shear coupling

and is not observed in isotropic materials.

The difference in material property symmetry in isotropic, orthotropic, and

anisotropic materials is also reflected in the mechanics and design of these types

of materials. Two examples are given as follows.

1. The elastic stress–strain characteristics of an isotropic material are

described by three elastic constants, namely, Young’s modulus E,

Poisson’s ratio n, and shear modulus G. Only two of these three elastic
� 2007 by Taylor & Francis Group, LLC.



constants are independent since they can be related by the following

equation:

G ¼ E

2(1þ n)
: (3:32)

The number of independent elastic constants required to characterize

anisotropic and orthotropic materials are 21 and 9, respectively [16].

For an orthotropic material, the nine independent elastic constants are

E11, E22, E33, G12, G13, G23, n12, n13, and n23.
Unidirectionally oriented fiber composites are a special class

of orthotropic materials. Referring to Figure 3.28, which shows a
Lamina
thickness

1
(Fiber direction)

2

Longitudinal
tension (s11)

Transverse
tension (s22)

Transverse
tension (s33)

In-plane
shear (t12)

Out-of-plane
shear (t23)

Out-of-plane
shear (t13)

3

FIGURE 3.28 Tensile and shear loading on a unidirectional continuous fiber composite.
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compo site in whi ch the fibers are in the 12 plane, it can be visual ized that

the elastic pr operties are eq ual in the 2–3 direct ion so that E22 ¼ E 33 ,

n12 ¼ n13 , and G12 ¼ G13 . Fur therm ore, G 23 can be express ed in term s of

E22 and n 23 by an express ion similar to Equation 3.32.

G23 ¼ E22

2( 1 þ n23 ) 
: ( 3: 33 )

Thus , the number of indepen dent elast ic constant s for a unid irectional ly

orient ed fiber composi te reduces to 5, namely, E11 , E22 , n12 , G12 , and n23 .
Suc h co mposi tes are often called trans versely isotropi c .

Note that n21 6¼ n12 and n 31 6¼ n13 , but n 31 ¼ n21 . How ever, n21 is
related to n12 by the followin g equ ation, and theref ore is not an inde-
pen dent elast ic con stant.

n21 ¼ E22

E11

� �
n12 : ( 3: 34 )

Christ ensen [17] has sh own that in the case of unidir ectio nal fiber -

reinf orced composi tes with fiber s orient ed in the 1 -directio n, n23 can
be related to n12 and n 21 us ing the followin g eq uation:

n23 ¼ n 32 ¼ n 12
(1 � n21 )

(1 � n12 ) 
: ( 3: 35 )

Equat ion 3.35 fits the experi menta l data within the range of experi men-

tal accuracy . Thus, for a unid irectional fiber-re inforce d composi te, the

numb er of independ ent elast ic constant s is reduced from 5 to 4.

2. For an isotropic mate rial, the sign conven tion for shear stresses and

shear strains is of little practi cal signi ficance, since its mechani cal beh av-

ior is independ ent of the direction of shear stre ss. For an orthot ropic or

anisot ropic material, the direction of shear stre ss is critically impor tant

in determini ng its stren gth and mod ulus [18] . For exampl e, consider a

unidir ectio nal fiber-re infor ced lami na (Figur e 3.29) subjected to state s

of pure shear of oppos ite sense. For posit ive shear (Figur e 3.29a), the

maxi mum (tensil e) princip al stress is parallel to the fiber direction that

causes fiber fracture. For negative shear (Figure 3.29b), the maximum

(tensile) principal stress is normal to the fiber direction, which causes

either a matrix failure or a fiber–matrix interface failure. Obviously, a

positive shear condition will favor a higher load-carrying capacity than

the negative shear condition. For an isotropic material, shear strength is

equal in all directions. Therefore, the direction of shear stress will not

influence the failure of the material.
� 2007 by Taylor & Francis Group, LLC.
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FIGURE 3.29 Normal stress components parallel and perpendicular to the fibers due to

(a) positive shear stress and (b) negative shear stress on a 458 lamina.
3.2.2 ELASTIC P ROPERTIES OF A LAMINA

3.2.2.1 Uni directio nal Cont inuous F iber 0 8 La mina

Elastic propert ies of a unidir ectional continuou s fiber 0 8 lamina (Figur e 3.30)

are ca lculated from the followin g eq uations .

1. Referri ng to Figu re 3.30a in whi ch the tensi le stress is applie d in the

1-direc tion,

Longitud inal modulus:

E11 ¼ Ef vf þ E m vm ( 3: 36)
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FIGURE 3.30 Applications of (a) longitudinal tensile stress, (b) transverse tensile stress,

and (c) in-plane shear stress on a unidirectional continuous fiber 08 lamina.
and

Major Poisson’s ratio:

n12 ¼ nfvf þ nmvm, (3:37)

where n12 ¼ � Strain in the 2-direction

Strain in the 1-direction (i:e:, the stress direction)
.

2. Referring to Figure 3.30b in which the tensile stress is applied in the

2-direction

Transverse modulus:

E22 ¼ EfEm

Efvm þ Emvf
(3:38)

and

Minor Poisson’s ratio:

n21 ¼ E22

E11

n12, (3:39)

where n21 ¼ � Strain in the 1-direction

Strain in the 2-direction (i:e:, the stress direction)
.
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3. Referri ng to Figure 3.30c in whi ch the shea r stre ss is applied in 12 plane
FIGURE
continu

� 2007 by
In-pl ane shear mod ulus:
G12 ¼ G21 ¼ Gf G m

Gf vm þ G m vf
: ( 3: 40 )

The follo wing points sho uld be note d from Equations 3.36 throu gh 3.40:

1. The longit udinal mod ulus ( E11 ) is always great er than the transv erse

modulus ( E22 ) (Figur e 3.31).

2. The fibers contribu te more to the de velopm ent of the lon gitudinal

modulus, and the matrix co ntributes more to the developm ent of the

trans verse modu lus.

3. The major Poi sson’s rati o (n12 ) is always great er than the minor Poi s-

son’s ratio ( n21 ). Sin ce these Poisson ’s rati os are relat ed to Equation
3.39, only one of them can be con sidered indep endent.

4. As for E22 , the matr ix contribu tes mo re to the developm ent of G 12 than

the fibers.

5. Four independ ent elastic constant s, na mely, E11 , E 22 , n12 , and  G 12, are

required to describe the in-plane elastic behavior of a lamina. The ratio

E11=E22 is often considered a measure of orthotropy.
vf

Ef

E11

Em

C
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po
si

te
 m

od
ul

us

E22

0 1

3.31 Variations of longitudinal and transverse modulus of a unidirectional

ous fiber 08 lamina with fiber volume fraction.
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Equation s 3.36 through 3.40 are derived using the sim ple mechani cs of mate r-

ials approach alon g wi th the followin g assum ptions :

1. Both fiber s an d matrix are linea rly elastic isotropic mate rials.

2. Fibers are uni formly distribut ed in the matrix.

3. Fibers are pe rfectly alig ned in the 1-dir ection .

4. Ther e is perfect bondin g be tween fibers and matrix.

5. The co mposi te lamina is free of vo ids.

Since, in pr actice, none of these assum ptions is complet ely vali d, these equ a-

tions pr ovide only approxim ate va lues for the elastic propert ies of a continuou s

fiber 08 lamina. It has been found that the values of E11 and n 12 pr edicted by
Equation s 3.36 and 3.37 ag ree well with the e xperimental data, but values of

E22 an d G12 predicted by Equation s 3.38 and 3.40 are lowe r than the experi -

menta l data [19]. Both E22 an d G12 are sensitiv e to void co ntent, fiber anisot -

ropy, and the matrix Poi sson’s ratio. Since eq uations based on the theory of

elastici ty or the varia tional a pproach, for exampl e, are difficul t to solve, Equa-

tions 3.36 through 3.40 or empir ically modif ied versi ons of these equati ons (see

Appendix A.3) are use d frequen tly for the laminate design.

In Equat ions 3.36 through 3.40, it is assum ed that both fibers and matr ix

are isotro pic material s. W hile the matr ix in most fiber-re inforced compo-

sites exhibi ts isotrop ic beh avior, many reinfo rcing fiber s are not isotrop ic

and their elastic modulus in the longitudinal direction, EfL, is much greater than

their elastic modulus in the transverse direction, EfT. Accordingly, Equations

3.36 and 3.38 should be modified in the following manner.

E11 ¼ E fL vf þ E m vm , ( 3: 41 )

E22 ¼ EfT E m

EfT vm þ Em vf
: ( 3: 42 )

The Poisson ’s ratio of the fiber in Equation 3.37 sho uld be repres ented by nfLT ,
and its shear modulus in Equat ion 3.40 shou ld be repres ented by GfLT. Since for

most of the fibers, EfT , nfLT , and G fLT are diff icult to measure and are not

available, Equations 3.36 and 3.40 are commonly used albeit the errors that

they can introduce.

EXAMPLE 3.3

To demonstrate the difference between n12 and n21, consider the following

example in which a square composite plate containing unidirectional continuous

T-300 carbon fiber-reinforced epoxy is subjected to a uniaxial tensile load of 1000 N.

The plate thickness is 1 mm. The length (Lo) and width (Wo) of the plate are

100 mm each.
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Consider two loading cases, where

1. Load is applied parallel to the fiber direction

2. Load is applied normal to the fiber direction

Calculate the changes in length and width of the plate in each case. The basic

elastic properties of the composite are given in Appendix A.5.

SOLUTIO N

From Appendix A.5, E11 ¼ 138 GPa, E 22 ¼ 10 GPa, and n12 ¼ 0.21. Using Equa-

tion 3.39, we calculate n21.

n 21 ¼ E22

E11

n12 ¼ 10 GPa

138 GPa

� �
( 0: 21) ¼ 0: 0152 :

1. Tensile load is applied parallel to the fiber direction, that is, in the

1-direction. Therefore, s11 ¼ 1000 N
(100 mm)( 1 mm) 

¼ 10 MPa and s 22 ¼ 0.

Now, we calculate the normal strains «11 and «22.

«11 ¼ s11

E11

¼ 10 MPa

138 GPa 
¼ 0: 725� 10�4 ,

«22 ¼ �n 12 «11 ¼ �( 0: 21) (0:725 � 10�4) ¼ �0:152� 10�4:

Since «11 ¼ D L
Lo 

and «22 ¼ D W
Wo

,

D L ¼ Lo « 11 ¼ (100 mm) ( 0:725 � 10�4 ) ¼ 0: 00725 mm,

D W ¼ W o«22 ¼ ( 100 mm) ( � 0:152� 10�4) ¼ �0:00152 mm:

2. Tensile load is applied normal to the fiber direction, that is, in the

2-direction. Therefore, s22 ¼ 1000 N
(100 mm)( 1 mm) 

¼ 10 MPa and s 11¼ 0.

The normal strains in this case are

«22 ¼ s22

E22

¼ 10 MPa

10 GPa 
¼ 10� 10�4 ,

«11 ¼ �n 21 « 22 ¼ �(0: 0152) (10 � 10�4) ¼ �0:152� 10�4:

Since «11 ¼ D L
Lo 

and «22 ¼ D W
Wo

,

DL ¼ L o «11 ¼ ( 100 mm) ( � 0:152 � 10�4 ) ¼ �0:00152 mm,

DW ¼ W o «22 ¼ (100 mm) (10� 10�4) ¼ 0:1 mm:
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3.2.2 .2 Uni directi onal Cont inuous Fiber Angle- Ply Lami na

The following eq uations are us ed to calculate the elastic propert ies of a n angle-

ply lamin a in whi ch con tinuous fibers are align ed at an angle u wi th the posit ive
x direction (Figur e 3.32):

1

Exx

¼ cos 4 u

E11

þ sin4 u

E22

þ 1

4

1

G12

� 2n12
E11

� �
sin2 2u, ( 3: 43 )

1

Eyy

¼ sin4 u

E11

þ cos 4 u

E22

þ 1

4

1

G12

� 2n12
E11

� �
sin 2 2u, ( 3: 44 )

1

Gxy

¼ 1

E11

þ 2n12
E11

þ 1

E22

� 1

E11

þ 2n12
E11

þ 1

E22

� 1

G12

� �
cos 2 2u, ( 3: 45 )

nxy ¼ Exx

n12
E11

� 1

4

1

E11

þ 2n12
E11

þ 1

E22

� 1

G12

� �
sin2 2u

� �
, ( 3: 46 )

nyx ¼ Eyy

Exx

nxy , ( 3: 47 )

wher e E11 , E22 , n12 , and G12 are calculated using Equations 3.36 throug h 3.40.

Figure 3.33 shows the varia tion of Exx as a functi on of fiber orient ation

angle u for an angle-p ly lami na. Note that at u ¼ 08 , Exx is e qual to E11 , and at

u ¼ 90 8 , Exx is equ al to E22 . Depend ing on the shear modulus G12 , Exx can be
x

y

2

1

θ

θ

FIGURE 3.32 Unidirectional continuous fiber angle-ply lamina.
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FIGURE 3.33 Variation of elastic constants of continuous E-glass fiber lamina with

fiber-orientation angle.
either great er than E11 or less than E22 at some inter mediate values of u. The
range of G12 for which E xx is wi thin E11 and E 22 [20] is given by

E11

2( 1 þ n12 ) 
> G12 >

E11

2 E11

E22
þ n12

� � : ( 3: 48 )

For glass fiber–epoxy, high-strength carbon fiber–epoxy, and Kevlar 49 fiber–

epoxy composites, G12 is within the range given by Equation 3.48, and therefore,

for these composi te laminas, E22 < Exx < E 11. Ho wever, for very high-m odulus

carbon fiber–epo xy and boron fiber –epoxy co mposi tes, G12 is less than the

lower limit in Equation 3.48, an d theref ore for a range of an gles betwe en 0 8 and
90 8 , Exx for these laminas can be lower than E22 .

3.2.2.3 Uni directio nal Discont inuous Fiber 0 8 Lamin a

Elastic prop erties of a unidir ection al discon tinuous fiber 08 lamin a are calcu-

lated using the following equ ations (Figur e 3.34).

Longitudinal modulus:

E11 ¼ 1þ 2(lf=df )hLvf

1� hLvf
Em, (3:49)
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1,x

FIGURE 3.34 Unidirectional discontinuous fiber 08 lamina.
Transverse modulus:

E22 ¼ 1þ 2hTvf

1� hTvf
Em, (3:50)

Shear modulus:

G12 ¼ G21 ¼ 1þ hGvf

1� hGvf
Gm, (3:51)

Major Poisson’s ratio:

n12 ¼ nfvf þ nmvm, (3:52)

Minor Poisson’s ratio:

n21 ¼ E22

E11

n12, (3:53)

where

hL ¼ (Ef=Em)� 1

(Ef=Em)þ 2(lf=df )

hT ¼ (Ef=Em)� 1

(Ef=Em)þ 2

hG ¼ (Gf=Gm)� 1

(Gf=Gm)þ 1
(3:54)
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Equations 3.49 through 3.53 are de rived from the Halpi n–Tsai equati ons

(Appe ndix A.4 ) wi th the followi ng a ssumptions:

1. Fiber cross secti on is circul ar.

2. Fibers are arrange d in a square array.

3. Fibers are unifor mly distribut ed throughout the matr ix.

4. Perfect bondi ng exists between the fibers and the matrix.

5. Matrix is free of vo ids.

Fiber a spect ratio, defined as the ratio of average fiber lengt h lf to fiber diame ter

df, has a signifi cant effect on the long itudinal modulus E 11 (Figur e 3.35). On the

other han d, the trans verse modulus E22 is not affected by the fiber aspect ratio .

Furtherm ore, the longitu dinal modulus E11 for a discontinu ous fiber 0 8 lamina

is always less than that for a continuous fiber 0 8 lami na.

3.2.2.4 Ran domly Oriente d Discont inuou s Fiber La mina

A thin lamin a contai ning randoml y oriented discontinuo us fibers (Figur e 3.36)

exhibi ts planar isotro pic be havior. The propert ies are ideal ly the same in all

directions in the plan e of the lamina. For such a lami na, the tensile modu lus

and shear modulus are calculated from

Erandom ¼ 3

8 
E 11 þ 5

8 
E22 , ( 3:55)

105

104

lf 
/

 
df

103

1 10 100

Nylon fiber
in 

rubber matrix

Halpin−Tsai
equation

E
11

 (
ps

i)

1000

FIGURE 3.35 Variation of longitudinal modulus of a unidirectional discontinuous fiber

lamina with fiber length–diameter ratio. (After Halpin, J.C., J. Compos. Mater., 3, 732,

1969.)
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FIGURE 3.36 Randomly oriented discontinuous fiber lamina.
Grandom ¼ 1

8 
E11 þ 1

4 
E22 , ( 3: 56 )

wher e E11 and E 22 are the longitudinal and transverse tensi le mod uli given by

Equation s 3.49 and 3.50, respect ively, for a unidir ection al discont inuous fiber

08 lamina of the same fiber aspect ratio and same fiber volume fraction as the

randomly oriented discontinuous fiber composite. The Poisson’s ratio in the

plane of the lamina is

nrandom ¼ Erandom

2Grandom

� 1: (3:57)

EXAMPLE 3.4

Consider a sheet molding compound composite, designated SMC-R65, containing

E-glass fibers in a thermoset polyester matrix. The following data are known.

For E-glass fiber,

Ef ¼ 68:9 GPa

rf ¼ 2:54 g=cm3

lf ¼ 25 mm

df ¼ 2:5 mm:

For polyester,

Em ¼ 3:45 GPa

rm ¼ 1:1 g=cm3:

Calculate the tensile modulus, shear modulus, and Poisson’s ratio for the material.
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SOLUTIO N

Step 1: Calculate the fiber volume fraction vf .

Fiber weight fraction in SMC-R65 is wf ¼ 0.65. Therefore, from Equation 2.7,

vf ¼ 0: 65=2: 54

( 0: 65=2: 54) þ (1 � 0:65 )=1: 1 
¼ 0: 446 or 44 :6% :

Step 2: Calculate E11 for a unidirectional lamina containing 44.6 vol% discon-

tinuous fibers of length lf ¼ 25 mm.

Ef

Em

¼ 68 :9

3: 45 
¼ 19: 97,

lf

df
¼ 25

2: 5 
¼ 10:

Therefore, from Equation 3.54,

hL ¼
19: 97 � 1

19 :97 þ (2)( 10) 
¼ 0 :475 :

Using Equation 3.49, we calculate

E11 ¼ 1 þ ( 2)( 10)(0: 475)( 0: 446)

1 � ( 0: 475)( 0: 446)

¼ 22: 93 GPa :

Step 3: Calculate E22 for a unidirectional lamina containing 44.6 vol% discon-

tinuous fibers of length lf ¼ 25 mm. From Equation 3.54,

hT ¼
19: 97 � 1

19: 97 þ 2 
¼ 0: 863:

Using Equation 3.50, we calculate

E22 ¼ 1 þ ( 2)(0: 863 )(0: 446)

1 � ( 0: 863)( 0: 446)

¼ 9: 93 GPa:

Step 4: Calculate E and G for SMC-R65 using values of E11 and E 22 in Equations

3.55 and 3.56, and then calculate n using Equation 3.57.

E ¼ Erandom ¼ 3

8
E11 þ 5

8
E22 ¼ 14:81 GPa,

G ¼ Grandom ¼ 1

8
E11 þ 1

4
E22 ¼ 5:35 GPa,

n ¼ nrandom ¼ E

2G
� 1 ¼ 0:385:
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3.2.3 COEFFICIENTS OF LINEAR THERMAL EXPANSION [21]

For a unidirectional continuous fiber lamina, coefficients of linear thermal

expansion in the 08 and 908 directions can be calculated from the following

equations:

a11 ¼ aflEfvf þ amEmvm

Efvf þ Emvm
(3:58)

and

a22 ¼ (1þ nf )
(afl þ afr)

2
vf þ (1þ nm)amvm � a11n12, (3:59)

where

n12 ¼ nfvf þ nmvm
afl ¼ coefficient of linear thermal expansion for the fiber in the longitudinal

direction

afr ¼ coefficient of linear thermal expansion for the fiber in the radial direction

am¼ coefficient of linear thermal expansion for the matrix

Equations 3.58 and 3.59 are plotted in Figure 3.37 as a function of fiber volume

fraction for a typical glass fiber-reinforced polymer matrix composite for which

am�af. It should be noted that the coefficient of linear thermal expansion in

such composites is greater in the transverse (908) direction than in the longitu-

dinal (08) direction.
If the fibers are at an angle u with the x direction, the coefficients of thermal

expansion in the x and y directions can be calculated using a11 and a22:
am

a11

af

10
vf

a22

2

1

a

FIGURE 3.37 Variation of longitudinal and transverse coefficients of thermal expansion

with fiber volume fraction in a 08 unidirectional continuous E-glass fiber-reinforced

epoxy lamina.
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axx ¼ a11 cos
2 uþ a22 sin

2 u,

ayy ¼ a11 sin
2 uþ a22 cos

2 u,

axy ¼ (2 sin u cos u) (�11 � a22), (3:60)

where axx and ayy are coefficients of linear expansion and axy is the coefficient

of shear expansion. It is important to observe that, unless u¼ 08 or 908, a
change in temperature produces a shear strain owing to the presence of axy.

The other two coefficients, axx and ayy, produce extensional strains in the x and

y directions, respectively.

3.2.4 STRESS–STRAIN RELATIONSHIPS FOR A THIN LAMINA

3.2.4.1 Isotropic Lamina

For a thin isotropic lamina in plane stress (i.e., szz¼ txz¼ tyz¼ 0) (Figure 3.38),

the strain–stress relations in the elastic range are

«xx ¼ 1

E
(sxx � nsyy),

«yy ¼ 1

E
(�nsxx þ syy),

gxy ¼
1

G
txy, (3:61)
syy

syy

sxxsxx

txy

txy

y

x

FIGURE 3.38 Stresses in an isotropic lamina under a plane stress condition.
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wher e E, G, and n repres ent the Young’ s modulus, shear modulus, and Pois-

son’s rati o, respect ively.

An impor tant point to note in Equat ion 3.61 is that there is no cou pling

between the shear stress txy and normal stresses sxx and syy. In other words,

shear stress txy does not influence the normal strains «xx and «yy just as the

normal stresses sxx and syy do not influence the shear strain gxy.

3.2.4.2 Orthotropic Lamina

For a thin orthotropic lamina in plane stress (szz¼ txz¼ tyz¼ 0) (Figure 3.39),

the strain–stress relations in the elastic range are

«xx ¼ sxx

Exx

� nyx
syy

Eyy

�mxtxy, (3:62)

«yy ¼ �nxy
sxx

Exx

þ syy

Eyy

�mytxy, (3:63)

gxy ¼ �mxsxx �mysyy þ txy

Gxy

, (3:64)
syy

syy

txy

txy

sxxsxx
q

2
y

1

x

FIGURE 3.39 Stresses in a general orthotropic lamina under a plane stress condition.
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where Exx , Eyy , Gxy , nxy , and nyx are elast ic co nstants for the lami na obtaine d

from Equations 3.43 through 3.47 and mx and my are given by the foll owing

equati ons:

mx ¼ (sin 2u)
n12
E11

þ 1

E22

� 1

2G12

� (cos 2 u)
1

E11

þ 2n12
E11

þ 1

E22

� 1

G12

� �� �
, ( 3: 65 )

my ¼ (sin 2u)
n12
E11

þ 1

E22

� 1

2G12

� (sin 2 u)
1

E11

þ 2n12
E11

þ 1

E22

� 1

G12

� �� �
: ( 3: 66 )

The new e lastic constant s mx and m y repres ent the influence of shear stresses on

extens ional stra ins in Equations 3.62 and 3.63 an d the influ ence of nor mal

stresses on she ar strain in Equat ion 3.64. These constant s are called coeffici ents

of mut ual influence .

The followin g impor tant obs ervations can be made from Equation s 3.62

through 3.66:

1. Unlik e isotropic lamin a, extens ional and shear deforma tions are

coup led in a general orthotrop ic lamin a; that is, normal stre sses cause

both normal strains an d shear strains, and shear stress cau ses both shear

strain and normal stra ins. The effe cts of such extens ion-s hear coup ling

phen omena are de monstrated in Figure 3 .27c.

2. For u ¼ 08 and 90 8, both mx and m y are zero, an d therefo re, for these

fiber orient ations , there is no ex tension-shea r coup ling. Such a lamin a,

in whi ch the princi pal mate rial axes (1 and 2 axes) coincide with the

loading axes ( x an d y axes), is called specia lly ortho tropic . For a specia lly

orthot ropic lamina (Figur e 3.40) , the strain–st ress relation s are

«xx ¼ «11 ¼ sxx

E11

� n21
syy

E22

, ( 3: 67 )

«yy ¼ «22 ¼ �n 12
sxx

E11

þ syy

E22

, ( 3: 68 )

gxy ¼ g yx ¼ g 12 ¼ g 21 ¼
txy

G12

: ( 3: 69 )

3. Both mx an d m y are fun ctions of the fiber orient ation an gle u and exhibi t
maxi mum values at an intermedi ate angle betw een u ¼ 08 and 908
(Figur e 3.41).

A critical point to note is that, unlike isotropic materials, the directions of

principal stresses and principal strains do not coincide in a general orthotropic

lamina. The only exception is found for specially orthotropic lamina in which

principal stresses are in the same direction as the material principal axes.
� 2007 by Taylor & Francis Group, LLC.
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FIGURE 3.40 Stresses in a specially orthotropic lamina under a plane stress condition.
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FIGURE 3.41 Variation of coefficients of mutual influence with fiber orientation angle

in an E-glass fiber–epoxy lamina.
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Greszcz uk [22] has shown that the difference betw een the princi pal stress and

princip al strain directions is a function of the material orthot ropy (i.e., the ratio

E11 =E22 ) as well a s the ratio of the two princi pal stresses (i.e., the ratio s2=s 1,
Figure 3.42).

EXAMPLE 3.5

A thin plate is subjected to a biaxial stress field of sxx ¼ 1 GPa and syy ¼ 0.5 GPa.

Calculate the strains in the xy directions if the plate is made of (a) steel, (b) a 08
unidirectional boron–epoxy composite, and (c) a 458 unidirectional boron–epoxy

composite.

Use the elastic properties of the boron–epoxy composite given in Appendix A.5.
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FIGURE 3.42 Difference in principal stress and principal strain directions as a function

of fiber orientation angle in an E-glass–epoxy composite (E11=E22 ¼ 2.98). Note that,

for the biaxial normal stress condition shown in this figure, sxx and syy represent the

principal stresses s1 and s2, respectively. (After Greszczuk, L.B., Orientation Effects in

the Mechanical Behavior of Anisotropic Structural Materials, ASTM STP, 405, 1, 1966.)
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SOLUTIO N

1. Using E ¼ 207 GPa and n ¼ 0.33 for steel in Equation 3.61, we obtain

«xx ¼ 1

207 
[ 1 � ( 0: 33) (0: 5)] ¼ 4: 034 � 10 �3 ,

«yy ¼ 1

207 
[ � ( 0:33 ) (1) þ 0: 5] ¼ 0: 821 � 10� 3 ,

gxy ¼ 0:

2. For the 08 unidirectional boron–epoxy (from Appendix A.5):

E11 ¼ 207 GPa (same as steel’s modulus)

E22 ¼ 19 GPa

n12 ¼ 0 :21

G12 ¼ 6 :4 GPa :

We first calculate n21:

n21 ¼ ( 0: 21)
19

207 
¼ 0: 0193:

Since 08 unidirectional boron–epoxy is a specially orthotropic lamina, we

use Equations 3.67 through 3.69 to obtain

«xx ¼ 1

207 
� ( 0:0193 )

0: 5

19
¼ 4 :323 � 10�3 ,

«yy ¼ �( 0: 21)
1

207 
þ 0:5

19
¼ 25: 302 � 10�3 ,

gxy ¼ 0 :

3. We first need to calculate the elastic constants of the 458 boron–epoxy
laminate using Equations 3.43 through 3.47:

Exx ¼ E yy ¼ 18: 896 GPa,

nxy ¼ n yx ¼ 0: 476 :

Next, we calculate the coefficients of mutual influence using Equations

3.65 and 3.66:

mx ¼ my ¼ 0:0239 GPa�1:
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Now, we use Equations 3.62 through 3.64 to calculate:

«xx ¼ 1

18: 896 
� (0: 476)

0: 5

18 :896 
¼ 40: 326 � 10�3 ,

«yy ¼ �( 0: 476)
1

18: 896 
þ 0: 5

18: 896 
¼ 1: 270 � 10�3 ,

gxy ¼ �( 0: 0239) (1 þ 0: 5) ¼ �35: 85 � 10�3 :

Note that although the shear stress is zero, there is a shear strain due to

extension-shear coupling. This causes a distortion of the plate in addition

to the extensions due to «xx and «yy as shown in the figure. In addition,
note that a negative shear strain means that the initial 908 angle between
the adjacent edges of the stress element is increased.

sxx = 1 GPa

syy = 0.5 GPa

sxx = 1 GPa

syy = 0.5 GPa

y

x

(a) Steel (b) 08 Boron fiber–epoxy (c) 458 Boron fiber–epoxy

3.2.5 COMPLIANCE AND STIFFNESS MATRICES

3.2.5.1 Isotropic Lamina

For an isotrop ic lamin a, Equat ion 3.61 can be written in the matr ix form as

«xx

«yy

gxy

2
64

3
75 ¼

1
E

� n
E

0

� n
E

1
E

0

0 0 1
G

2
64

3
75 sxx

syy

txy

2
4

3
5 ¼ [S]

sxx

syy

txy

2
4

3
5, (3:70)
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wher e [S ] rep resents the compl iance mat rix relating strains to known stresses .

The inverse of the compli ance matr ix is called the stiffness mat rix, whi ch is used

in relating stresses to known strains. Thus , the stiffne ss matrix [ Q ] for an

isotrop ic lamin a is

[ Q] ¼ [ S ]� 1 ¼
E

1 � n 2
n E
1 � n 2 

0

n E
1 � n 2

E
1 � n 2 

0

0 0 G

2
64

3
75: (3:71)

3.2.5.2 Specially Orthotropic Lamina (u508 or 908)

Arran ging Equations 3.67 through 3.69 in matr ix form , we can write the stra in–

stress relation for a specially orthotropic lamina as

«xx

«yy

gxy

2
64

3
75 ¼

S11 S12 0

S21(¼S12) S22 0

0 0 S66

2
4

3
5 sxx

syy

txy

2
4

3
5 ¼ [S]

sxx

syy

txy

2
4

3
5, (3:72)

where

S11 ¼ 1

E11

S12 ¼ S21 ¼ � n12
E11

¼ � n21
E22

S22 ¼ 1

E22

S66 ¼ 1

G12

(3:73)

The [S] matrix is the compliance matrix for the specially orthotropic lamina.

Inverting Equation 3.72, we can write the stress–strain relations for a specially

orthotropic lamina as

sxx

syy

txy

2
4

3
5 ¼

Q11 Q12 0

Q21(¼ Q12) Q22 0

0 0 Q66

2
4

3
5 «xx

«yy

gxy

2
64

3
75 ¼ [Q]

«xx

«yy

gxy

2
64

3
75, (3:74)

where [Q] represents the stiffness matrix for the specially orthotropic lamina.

Various elements in the [Q] matrix are
� 2007 by Taylor & Francis Group, LLC.



Q11 ¼ E11

1 � n12 n 21
,

Q22 ¼ E22

1 � n12 n 21
,

Q12 ¼ Q 21 ¼ n12 E22

1 � n12 n 21
¼ n21 E11

1 � n12 n 21
,

Q66 ¼ G 12 : ( 3: 75 )

3.2.5.3 Gener al Orth otropic Lamin a ( u 6¼ 0 8 or 908 )

The stra in–stress relat ions for a gen eral orthot ropic lami na, Equat ions 3 .62

through 3.64, can be express ed in matr ix nota tion as

«xx
«yy
gxy

2
4

3
5 ¼

�S11
�S12

�S16
�S12

�S22
�S26

�S16
�S26

�S66

2
4

3
5 sxx

syy

txy

2
4

3
5 ¼ [ �S ]

sxx

syy

txy

2
4

3
5, ( 3: 76 )

where [ �S ] repres ents the compli ance matrix for the lamin a. Variou s elem ents in

the [ �S ] matrix are express ed in terms of the elem ents in the [ S ] matr ix for a

specia lly orthot ropic lami na. Thes e e xpressions are

�S11 ¼ 1

Exx

¼ S11 cos
4 u þ ( 2S12 þ S66 ) sin 

2 u cos2 u þ S22 sin
4 u,

�S12 ¼ � nxy

Exx

¼ S12 (sin 
4 u þ cos 4 u) þ ( S11 þ S22 � S66 ) sin 

2 u cos 2 u,

�S22 ¼ 1

Eyy

¼ S11 sin
4 u þ (2S 12 þ S66 ) sin

2 u cos 2 u þ S22 cos 
4 u,

�S16 ¼ �m x ¼ ( 2S11 � 2S12 � S66 ) sin u cos 
3 u � (2 S22 � 2S12 � S66 ) sin 

3 u cos u,

�S26 ¼ �m y ¼ ( 2S 11 � 2S 12 � S66 ) sin
3 u cos u � ( 2S22 � 2S 12 � S66 ) sin u cos 

3 u,

�S66 ¼ 1

Gxy

¼ 2(2S11 þ 2S22 � 4S12 � S66) sin
2 u cos2 uþ S66(sin

4 uþ cos4 u):

(3:77)

On substitution for S11, S12, and so on, into Equation 3.77, we obtain the same

equati ons as Equat ions 3 .43 through 3.46 for Exx, Eyy, Gxy, and nxy, and

Equations 3.65 a nd 3.66 for mx and my.

Inverting Equation 3.76, the stress–strain relations for a general orthotropic

lamina can be written as

sxx

syy

txy

2
4

3
5 ¼

�Q11
�Q12

�Q16
�Q12

�Q22
�Q26

�Q16
�Q26

�Q66

2
4

3
5 «xx

«yy
gxy

2
4

3
5 ¼ [�Q]

sxx

syy

gxy

2
4

3
5, (3:78)
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wher e [ �Q] repres ents the stiffne ss matrix for the lamina. Var ious elemen ts in the

[ �Q] matrix are exp ressed in terms of the elem ents in the [Q ] matr ix as

�Q11 ¼ Q 11 cos 
4 u þ 2( Q 12 þ 2Q66 ) sin 

2 u cos 2 u þ Q 22 sin 
4 u,

�Q12 ¼ Q 12 (sin 
4 u þ cos 4 u) þ ( Q 11 þ Q22 � 4Q 66 ) sin

2 u cos 2 u,

�Q22 ¼ Q 11 sin
4 u þ 2( Q12 þ 2Q 66 ) sin

2 u cos 2 u þ Q22 cos 
4 u,

�Q16 ¼ ( Q11 � Q 12 � 2Q 66 ) sin u cos
3 u þ ( Q12 � Q 22 þ 2Q66 ) sin 

3 u cos u,

�Q26 ¼ ( Q11 � Q 12 � 2Q 66 ) sin
3 u cos u þ ( Q12 � Q 22 þ 2Q66 ) sin u cos 

3 u,

�Q66 ¼ ( Q11 þ Q 22 � 2Q 12 � 2Q 66 ) sin 
2 u cos2 u þ Q 66 (sin 

4 u þ cos 4 u): ( 3: 79 )

In using Equations 3.77 and 3.79, the following poi nts sho uld be noted:

1. Element s �S16 and �S 26 in the [ �S ] matrix or �Q 16 and �Q 26 in the [ �Q] matr ix

repres ent extension -shear coup ling.

2. Fro m Equat ion 3.77 or 3.79, it appears that there are six elastic con -

stant s that gove rn the stress–s train behavior of a lamina. Ho wever, a

closer examin ation of these eq uations would ind icate that �S16 an d �S 26
(or �Q16 and �Q 26) are linear combinations of the four basic elastic con-

stants, namely, �S11, �S 12, �S 22, and  �S 66, and therefore are not independent.
3. Element s in both the [ �S ] and [ �Q] matrices are exp ressed in terms of the

prop erties in the principal mate rial direct ions, namel y, E11 , E22 , G12 , and

n12 , which can be eithe r experi mentally determ ined or pre dicted from the

con stituent pro perties using Equat ions 3.36 through 3.40.

4. Elements in the [�Q] and [�S] matrices can be expressed in terms of five

invariant properties of the lamina, as shown below.

Using trigonometric identities, Tsai and Pagano [23] have shown that the

elements in the [�Q] matrix can be written as

�Q11 ¼ U1 þU2 cos 2uþU3 cos 4u,

�Q12 ¼ �Q21 ¼ U4 �U3 cos 4u,

�Q22 ¼ U1 �U2 cos 2uþU3 cos 4u,

�Q16 ¼ 1

2
U2 sin 2uþU3 sin 4u,

�Q26 ¼ 1

2
U2 sin 2u�U3 sin 4u,

�Q66 ¼ U5 �U3 cos 4u, (3:80)

where U1 through U5 represent angle-invariant stiffness properties of a lamina

and are given as
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U1 ¼ 1

8 
(3Q 11 þ 3Q 22 þ 2 Q12 þ 4Q 66 ) ,

U2 ¼ 1

2 
(Q 11 � Q 22 ),

U3 ¼ 1

8 
(Q 11 þ Q 22 � 2Q 12 � 4Q 66 ),

U4 ¼ 1

8 
(Q 11 þ Q 22 þ 6Q 12 � 4Q 66 ),

U5 ¼ 1

2
(U1 �U4): (3:81)

It is easy to observe from Equation 3.80 that for fiber orientation angles u and �u,

�Q11(�u) ¼ �Q11(u),

�Q12(�u) ¼ �Q12(u),

�Q22(�u) ¼ �Q22(u),

�Q66(�u) ¼ �Q66(u),

�Q16(�u) ¼ ��Q16(u),

�Q26(�u) ¼ ��Q26(u):

Similar expressions for the elements in the [�S] matrix are

�S11 ¼ V1 þ V2 cos 2uþ V3 cos 4u,

�S12 ¼ �S21 ¼ V4 � V3 cos 4u,

�S22 ¼ V1 � V2 cos 2uþ V3 cos 4u,

�S16 ¼ V2 sin 2uþ 2V3 sin 4u,

�S26 ¼ V2 sin 2u� 2V3 sin 4u,

�S66 ¼ V5 � 4V3 cos 4u, (3:82)

where

V1 ¼ 1

8
(3S11 þ 3S22 þ 2S12 þ S66),

V2 ¼ 1

2
(S11 � S22),

V3 ¼ 1

8
(S11 þ S22 � 2S12 � S66),

V4 ¼ 1

8
(S11 þ S22 þ 6S12 � S66),

V5 ¼ 2(V1 � V4): (3:83)

These invariant forms are very useful in computing the elements in [�Q] and [�S]
matrices for a lamina.
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EXAMPLE 3.6

Determine the elements in the stiffness matrix for an angle-ply lamina containing

60 vol% of T-300 carbon fibers in an epoxy matrix. Consider fiber orientation

angles of both þ45 8 and �458 for the fiber, Ef ¼ 220 GPa and nf ¼ 0.2, and for the

matrix, Em ¼ 3.6 GPa and nm ¼ 0.35.

SOLUTIO N

Step 1: Calculate E11 , E22 , n12 , n21, and G12 using Equations 3.36 through 3.40.

E11 ¼ ( 220)( 0: 6) þ ( 3: 6)( 1 � 0: 6) ¼ 133: 44 GPa ,

E22 ¼ ( 220)( 3: 6)

( 220)( 1 � 0: 6) þ (3: 6)( 0: 6) 
¼ 8: 78 GPa ,

n12 ¼ ( 0: 2)(0: 6) þ ( 0: 35)(1 � 0: 6) ¼ 0: 26,

n21 ¼ 8: 78

133: 44 
( 0:26 ) ¼ 0: 017:

To calculate G12, we need to know the values of G f and G m . Assuming isotropic

relationships, we estimate

Gf ¼ Ef

2(1 þ nf ) 
¼ 220

2(1 þ 0: 2) 
¼ 91: 7 GPa ,

Gm ¼ Em

2(1 þ nm ) 
¼ 3: 6

2(1 þ 0:35 ) 
¼ 1: 33 GPa :

Therefore,

G12 ¼ ( 91: 7)(1: 33)

( 91: 7)(1 � 0: 6) þ ( 1: 33)(0: 6) 
¼ 3: 254 GPa:

Note that the T-300 carbon fiber is not isotropic, and therefore, the calculation of

Gf based on the isotropic assumption will certainly introduce error. Since the

actual value of Gf is not always available, the isotropic assumption is often made

to calculate Gf.

Step 2: Calculate Q11 , Q 22 , Q 12 , Q 21 , and Q 66 using Equation 3.75.

Q11 ¼ 133:44

1� (0:26)(0:017)
¼ 134:03 GPa,

Q22 ¼ 8:78

1� (0:26)(0:017)
¼ 8:82 GPa,

Q12 ¼ Q21 ¼ (0:26)(8:78)

1� (0:26)(0:017)
¼ 2:29 GPa,

Q66 ¼ 3:254 GPa:
� 2007 by Taylor & Francis Group, LLC.



� 2
Step 3: Calculate U1, U 2, U 3 , U 4, and U5 using Equation 3.81.

U1 ¼ 1

8 
[( 3)(134: 03) þ ( 3)(8: 82) þ ( 2)(2: 29) þ ( 4)(3 :254 )] ¼ 55: 77 GPa,

U2 ¼ 1

2 
( 134: 03 � 8: 82) ¼ 62: 6 GPa ,

U3 ¼ 1

8 
[ 134: 03 þ 8: 82 � ( 2)( 2:29 ) � ( 4)( 3: 254)] ¼ 15: 66 GPa ,

U4 ¼ 1

8 
[ 134: 03 þ 8: 82 þ ( 6)( 2:29 ) � ( 4)( 3: 259)] ¼ 17: 95 GPa ,

U5 ¼ 1

2 
( 55: 77 � 17: 95) ¼ 18: 91 GPa :

Step 4: Calculate �Q11 , �Q 22 , �Q 12 , �Q 16 , �Q 26 , and �Q 66 using Equation 3.80. For a

u¼þ458 lamina,

�Q11 ¼ 55:77þ (62:6) cos 90� þ (15:66) cos 180� ¼ 40:11 GPa,

�Q22 ¼ 55:77� (62:6) cos 90� þ (15:66) cos 180� ¼ 40:11 GPa,

�Q12 ¼ 17:95� (15:66) cos 180� ¼ 33:61 GPa,

�Q66 ¼ 18:91� (15:66) cos 180� ¼ 34:57 GPa,

�Q16 ¼ 1

2
(62:6) sin 90� þ (15:66) sin 180� ¼ 31:3 GPa,

�Q26 ¼ 1

2
(62:6) sin 90� � (15:66) sin 180� ¼ 31:3 GPa:

Similarly, for a u¼�458 lamina,

�Q11 ¼ 40:11 GPa,

�Q22 ¼ 40:11 GPa,

�Q12 ¼ 33:61 GPa,

�Q66 ¼ 34:57 GPa,

�Q16 ¼ �31:3 GPa,

�Q26 ¼ �31:3 GPa:

In the matrix form,

[�Q]45� ¼
40:11 33:61 31:3
33:61 40:11 31:3
31:3 31:3 34:57

2
4

3
5 GPa,

[�Q]�45� ¼
40:11 33:61 �31:3
33:61 40:11 �31:3

�31:3 �31:3 34:57

2
4

3
5 GPa:
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FIGURE 3.43 Unidirectional laminate.
3.3 LAMINATED STRUCTURE

3.3.1 F ROM L AMINA TO L AMINATE

A lamin ate is con structed by stacki ng a num ber of laminas in the thickne ss ( z)

direction . Exa mples of a few specia l types of lami nates and the standar d

laminati on code are given a s follo ws:

Unidire ctional lam inate : In a unid irectional lami nate (Figur e 3.43) , fiber

orientati on ang les are the same in all laminas. In unidir ection al 08 lami n-

ates, for exampl e, u ¼ 08 in all laminas.

Angle-p ly laminat e : In an an gle-ply lami nate (Figur e 3.44), fiber orient ation

angles in alternate layers are =u=�u =u=�u= when u 6¼ 08 or 90 8 .
Cross- ply laminat e : In a cross- ply laminate (F igure 3.45), fiber orient ation

angles in alternate layers are =08=908=08 =90 8 =.
Symm etric laminat e: In a symm etric lamin ate, the ply orient ation is symm et-

rical abo ut the center line of the laminate; that is, for each ply above the

midplane, there is an identical ply (in material, thickness, and fiber

orientation angle) at an equal distance below the midplane. Thus, for a

symmetric laminate,
FIGURE 3.44 Angle-ply laminate.
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FIGURE 3.45 Cross-ply laminate.
u(z) ¼ u(�z),

where z is the distance from the midplane of the laminate. Some examples

of symmetric laminates and their codes are listed.

1 2 3 4 5 6

1. [0=þ45=90=90 þ45=0]
Code: [0=45=90]S

Subscript S in the code indicates symmetry about the midplane.

1 2 3 4 5

2. [0=þ45=90=þ45=0]
Code: [0=45=90]S

The bar over 90 indicates that the plane of symmetry passes midway

through the thickness of the 908 lamina.

1 2 3 4 5 6 7

3. [0=þ45=�45=90=�45=þ45=0]
Code: [0=+45=90]S

Adjacent þ458 and �458 laminas are grouped as ±458.

1 2 3 4 5 6 7 8 9 10 11 12 13 14

4. [0 = 90 = 0 = 0 = 0 = 0 = 45 = 45 = 0 = 0 = 0 = 0 = 90 = 0]
Code: [0=90=04=45]S

Four adjacent 08 plies are grouped together as 04.

1 2 3 4 5 6 7 8 9 10

5. [0=45=�45=þ45=�45=�45=þ45=�45=þ45=0]
Code: [0=(±45)2]S

Two adjacent ±458 plies are grouped as (±45)2.
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6. [0=45=�45=45=�45=45=�45=0=0=0=0=0=�45=45=�45=45=�45=45=0]
Code: [0=(+45)3=02=�0]S

7. [u=�u=u=�u=�u=u=�u=u]
Code: [u=� u]2S or [±u]2S

Two adjacent ±u plies on each side of the plane of symmetry are denoted

by the subscript 2S.

8. Symmetric angle-ply laminate

[u= �u= u=�u=u=�u=u]
Code: [�u=u=��u]S

Note that symmetric angle-ply laminates contain an odd number of plies.

9. Symmetric cross-ply laminate

[0=90=0=90=0=90=0=90=0]
Code: [(0=90)2=�0]S

Note that symmetric cross-ply laminates contain an odd number of plies.

10. Hybrid (interply) laminate.

[0B=0B=45C=�45C=90G=90G=�45C=45C=0B=0B]
Code: [02B=(±45)C=90G]S

where B, C, and G represent boron, carbon, and glass fiber, respectively.

Antisymmetric laminate: In antisymmetric laminates, the ply orientation is

antisymmetric about the centerline of the laminate; that is, for each ply of

fiber orientation angle u above the midplane, there is a ply of fiber

orientation angle �u with identical material and thickness at an equal

distance below the midplane. Thus, for an antisymmetric laminate,

u(z) ¼ �u(�z):

For example, u= �u= u = �u is an antisymmetric laminate. In contrast,

u=�u=� u=u is symmetric.

Unsymmetric laminate: In unsymmetric laminates, there is no symmetry or

antisymmetry. Examples are 0=0=0=90=90=90 and 0=u=�u=90.
Quasi-isotropic laminate: These laminates are made of three or more laminas

of identical thickness and material with equal angles between each

adjacent lamina. Thus, if the total number of laminas is n, the orientation

angles of the laminas are at increments of p=n. The resulting laminate
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exhibits an in-plan e isot ropic elastic behavior in the xy plane. How ever,

its strength pro perties may still vary with the direction of loading .

Example s of simp le quasi-isot ropic laminates are [ þ 60 =0=� 60] and

[þ 45=0=� 45 =90]. Othe r combinat ions of these stackin g sequences, such

as [0 =þ60=�60] and [0=þ 45 =� 45 =90], also exh ibit in-pl ane isotropic
elastic behavior . A very common an d wid ely used qua si-isotro pic sym-

metrical stacki ng sequence is [0 =±45=90 ]S .

3.3.2 LAMINATION THEORY

Laminat ion theory is useful in calcul ating stresses and strains in each lamina of

a thin laminated structure. Beginning with the stiffne ss matrix of each lamin a,

the step- by-step pro cedure in lami nation theory includes

1. Calculat ion of sti ffness matrices for the laminate

2. Calculat ion of midplane strains an d curvat ures for the laminate due to a

given set of applied forces and moment s

3. Calculat ion of in-pl ane strains «xx, «yy , and g xy for each lamina

4. Calculat ion of in-pl ane stresses sxx, syy , and  txy in each lamina

The deriva tion of laminati on theory is given in Ref. [16]. The princi pal equ a-

tions and a numb er of exampl es are present ed in the followi ng sections.

3.3.2.1 Assu mptions

Basic assump tions in the lamin ation theory are

1. Laminat e is thin an d wide (width � thickne ss).

2. A pe rfect interlam inar bond exists between various laminas.

3. Strain dist ribution in the thickne ss direct ion is linear.

4. All laminas are macros copical ly homo geneous and behave in a linea rly

elastic manner.

The geometric midplane of the laminate contains the xy axes, and the z

axis defines the thickness direction. The total thickness of the laminate is h,

and the thickness of various laminas are represented by t1, t2, t3, and so on.

The total number of laminas is N. A sketch for the laminate is shown in

Figure 3.46.

3.3.2.2 Laminate Strains

Following assumption 3, laminate strains are linearly related to the distance

from the midplane as
� 2007 by Taylor & Francis Group, LLC.



tN

hN

hN −1

hj −1

Midplane

1st Lamina t1

j th Laminatj

h/2

h/2 h0
h1

h

+z

N th Lamina

hj

FIGURE 3.46 Laminate geometry.
«xx ¼ «�xx þ zk xx ,

«yy ¼ «�yy þ zk yy ,

gxy ¼ g �xy þ zk xy , ( 3: 84 )

wher e

«8xx , «8yy ¼ midpl ane normal stra ins in the lami nate

g8xy ¼ midpl ane shear stra in in the laminate

kxx , k yy ¼ bend ing cu rvatures of the lamin ate

kxy ¼ twist ing cu rvature of the lamin ate

z ¼ distan ce from the midpl ane in the thickne ss direction

3.3.2 .3 Lami nate Fo rces and Mome nts

Applied force an d momen t resultant (Figure 3.47) on a lami nate are related to

the midplane stra ins and cu rvatures by the foll owing equ ations:

Nxx ¼ A 11 «
�
xx þ A12 «

�
yy þ A 16 g 

�
xy þ B 11 kxx þ B12 k yy þ B16 k xy ,

Nyy ¼ A 12 «
�
xx þ A22 «

�
yy þ A 26 g 

�
xy þ B 12 kxx þ B22 k yy þ B26 k xy ,

Nxy ¼ A 16 «
�
xx þ A26 «

�
yy þ A 66 g 

�
xy þ B 16 kxx þ B26 k yy þ B66 k xy ,

Mxx ¼ B 11 «
�
xx þ B 12 «

�
yy þ B16 g 

�
xy þ D 11 kxx þ D 12 kyy þ D 16 kxy ,

Myy ¼ B12«
�
xx þ B22«

�
yy þ B26g

�
xy þD12kxx þD22kyy þD26kxy,

Mxy ¼ B16«
�
xx þ B26«

�
yy þ B66g

�
xy þD16kxx þD26kyy þD66kxy:
� 2007 by Taylor & Francis Group, LLC.



Nxx Nxx

Nyy

Nyy

Mxy

Myx = Mxy

Myy

Myy
Mxx

Mxx Mxy

Myx

y
z

x

Nyx = Nxy

Nxy

FIGURE 3.47 In-plane, bending, and twisting loads applied on a laminate.
In matrix notation,

Nxx

Nyy

Nxy

2
4

3
5 ¼ [A]

«�xx
«�yy
g�
xy

2
4

3
5þ [B]

kxx
kyy
kxy

2
4

3
5 (3:85)

and

Mxx

Myy

Mxy

2
4

3
5 ¼ [B]

«�xx
«�yy
g�
xy

2
4

3
5þ [D]

kxx
kyy
kxy

2
4

3
5, (3:86)

where

Nxx ¼ normal force resultant in the x direction (per unit width)

Nyy ¼ normal force resultant in the y direction (per unit width)

Nxy ¼ shear force resultant (per unit width)

Mxx¼ bending moment resultant in the yz plane (per unit width)

Myy ¼ bending moment resultant in the xz plane (per unit width)

Mxy¼ twisting moment (torsion) resultant (per unit width)

[A]¼ extensional stiffness matrix for the laminate (unit: N=m or lb=in.)

[A] ¼
A11 A12 A16

A12 A22 A26

A16 A26 A66

2
4

3
5, (3:87)

[B]¼ coupling stiffness matrix for the laminate (unit: N or lb)

[B] ¼
B11 B12 B16

B12 B22 B26

B16 B26 B66

2
4

3
5, (3:88)
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[D ] ¼ ben ding sti ffness matrix for the laminate (unit: N m or lb in.)

[ D] ¼ 

D 11 D12 D16

D 12 D22 D 26
D 16 D26 D 66

2
4

3
5: ( 3: 89 )

Referri ng to Equat ion 3.85, it can be observed that

1. A 16 and A26 couple in-plane normal forces to midplane shear strain and

in-plane shear force to midplane normal strains.

2. B11, B12, and B22 couple in-plane normal forces to bending curvatures

and bending moments to midplane normal strains.

3. B16 and B26 couple in-plane normal forces to twisting curvature and

twisting moment to midplane normal strains.

4. B66 couples in-plane shear force to twisting curvature and twisting

moment to midplane shear strain.

5. D16 and D26 couple bending moments to twisting curvature and twisting

moment to bending curvatures.

The couplings between normal forces and shear strains, bending moments

and twisting curvatures, and so on, occur only in laminated structures and

not in a monolithic structure. If the laminate is properly constructed, some of

these couplings can be eliminated. For example, if the laminate is constructed

such that both A16 and A26¼ 0, there will be no coupling between in-plane

normal forces and midplane shear strains, that is, in-plane normal forces will

not cause shear deformation of the laminate. Similarly, if the laminate is

constructed such that both D16 and D26¼ 0, there will be coupling between

bending moments and twisting curvature, that is, bending moments will not

cause twisting of the laminate. These special constructions are described in the

following section.
3.3.2.4 Elements in Stiffness Matrices

The elements in [A], [B], and [D] matrices are calculated from

Amn ¼
XN
j¼1

�Qmn

	 

j
hj � hj�1

	 

, (3:90)

Bmn ¼ 1

2

XN
j¼1

�Qmn

	 

j
h2j � h2j�1

� �
, (3:91)
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Dmn ¼ 1

3

XN
j ¼ 1

�Qmn

	 

j
h3j � h3j � 1

� �
, ( 3: 92 )

where

N ¼ total num ber of lamin as in the laminate

( �Qmn) j ¼ elem ents in the [ �Q ] matr ix of the j th lamina

hj� 1 ¼ distan ce from the midpl ane to the top of the j th lamina

hj ¼ dist ance from the midplan e to the bottom of the j th lamina

For the coordinat e system sho wn in Figure 3.46, hj is positive be low the mid-

plane and negative above the midplane.

The elements of the stiffness matrices [A], [B], and [D] are functions of the

elastic properties of each lamina and its location with respect to the midplane of

the laminate. The following observations are important regarding these stiff-

ness matrices:

1. If [B] is a nonzero matrix, a normal force, such as Nxx, will create

extension and shear deformations as well as bending–twisting curva-

tures. Similarly, a bending moment, such as Mxx, will create bending and

twisting curvatures as well as extension-shear deformations. Such

‘‘extension-bending coupling,’’ represented by the [B] matrix, is unique

in laminated structures regardless of whether the layers are isotropic or

orthotropic. The coupling occurs because of the stacking of layers.

2. For a symmetric laminate, [B]¼ [0] and there is no extension-bending

coupling. To construct a symmetric laminate, every lamina of þu
orientation above the midplane must be matched with an identical (in

thickness and material) lamina of þu orientation at the same distance

below the midplane (Figure 3.48). Note that a symmetric angle-ply or

cross-ply laminate contains an odd number of plies.
t 0

t 0

Midplane

h1

h1

+q

+q

FIGURE 3.48 Symmetric laminate configuration for which [B] ¼ [0], and therefore no

extension-bending coupling.
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Midplane

+q

−q

t0

t0

h2

h1

FIGURE 3.49 Balanced laminate configuration for which A16 ¼ A26 ¼ 0, and therefore

no extension-shear coupling.
3. If for every lamina of þu orientation, there is an identical (equal in

thickness and material) lamina of �u orientation (Figure 3.49), the

normal stress–shear strain coupling (represented by A16 and A26 in

the [A] matrix) for the laminate is zero. The locations of these

two laminas are arbitrary. Such a laminate is called balanced;

for example, [0=þ30=�30=þ30=�30=0] is a balanced laminate for

which A16¼A26¼ 0. Note that, with proper positioning of layers, it

is possible to prepare a balanced symmetric laminate. For example,

[0=þ30=�30=�30=þ30=0] is a balanced symmetric laminate, for which

A16¼A26¼ 0 as well as [B]¼ [0].

4. If for every lamina of þu orientation above the midplane, there is

an identical lamina (in thickness and material) of �u orientation at

the same distance below the midplane (Figure 3.50), the bending
Midplane

+q

−q

t0

t0

h1

h1

FIGURE 3.50 Laminate configuration for which D16¼D26¼ 0, and therefore no bend-

ing-twisting coupling.

� 2007 by Taylor & Francis Group, LLC.



moment-twisting curvature coupling (represented by D16 and D26

in the [D] matrix) for the laminate is zero. For example, for a

[0=þ30=�30=þ30=�30=0] laminate, D16¼D26¼ 0. Note that the D16

and D26 terms cannot be zero for a symmetric laminate, unless u¼ 08
and 908.
EXAMPLE 3.7

Determine [A], [B], and [D] matrices for (a) a [þ45=�45] angle-ply laminate, (b) a

[þ45=�45]S symmetric laminate, and (c) a [þ45=0=�45] unsymmetric laminate.

Each lamina is 6 mm thick and contains 60 vol% of T-300 carbon fiber in an epoxy

matrix. Use the same material properties as in Example 3.6.

Laminated structure

Mid

plane

(a)

Mid

plane

(b)

h0

h0

h0

h2

h2

h4
h2

h1

h1

h3

−h3

+z

+z

+z

(1)  +45�

(2)  −45�

(1)  +45�

(4)  +45�

(2)  −45�

(1) +45�

(2) 0�

(3)  −45�

(3) −45�

−h1

Mid

plane

(c)

SOLUTION

From Example 3.6, [�Q] matrices for the 08, þ458, and �458 layers are written as

[�Q]0� ¼ [Q]0� ¼
134:03 2:29 0

2:29 8:82 0

0 0 3:254

2
664

3
775GPa,

[�Q]þ45� ¼
40:11 33:61 31:3

33:61 40:11 31:3

31:3 31:3 34:57

2
664

3
775 GPa,

[�Q]�45� ¼
40:11 33:61 �31:3

33:61 40:11 �31:3

�31:3 �31:3 34:57

2
664

3
775 GPa:
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� 2
(a) [þ45=�45] Angle-ply laminate: From the figure (top left), we note

h0¼�0.006 m, h1¼ 0, and h2¼ 0.006 m. In this laminate, (�Qmn)1¼
(�Qmn)þ458 and (�Qmn)2¼ (�Qmn)�458. Therefore,

Amn ¼ (�Qmn)1(h1 � h0)þ (�Qmn)2(h2 � h1)

¼ 6� 10�3(�Qmn)þ45� þ 6� 10�3(�Qmn)�45� ,

Bmn ¼ 1

2
(�Qmn)1 h21 � h20

	 
þ (�Qmn)2 h22 � h21
	 
� �

¼ �18� 10�6(�Qmn)þ45� þ 18� 10�6(�Qmn)�45� ,

Dmn ¼ 1

3
(�Qmn)1 h31 � h30

	 
þ (�Qmn)2 h32 � h31
	 
� �

¼ 72� 10�9(�Qmn)þ45� þ 72� 10�9(�Qmn)�45� :

Substituting for various (�Qmn) values, we calculate

[A] ¼
481:32 403:32 0

403:32 481:32 0

0 0 414:84

2
6664

3
7775� 106 N=m,

[B] ¼
0 0 �1126:8

0 0 �1126:8

�1126:8 �1126:8 0

2
6664

3
7775� 103 N,

[D] ¼
5775:84 4839:84 0

4839:84 5775:84 0

0 0 4978:08

2
6664

3
7775Nm:

Note that for a [þ45=�45] angle-ply laminate, A16¼A26¼ 0 (since it is

balanced) as well as D16¼D26¼ 0.

(b) [(45=�45)]S Symmetric laminate: From the figure (top right), we note that

h3¼�h1¼ 0.006 m, h4¼ h0¼ 0.012 m, and h2¼ 0. In this laminate,

(�Qmn)4 ¼ (�Qmn)1 ¼ (�Qmn)þ45�
007 by Taylor & Francis Group, LLC.



� 2
and

(�Qmn)3 ¼ (�Qmn)2 ¼ (�Qmn)�45� :

Therefore,

Amn ¼ (�Qmn)1(h1 � h0)þ (�Qmn)2(h2 � h1)þ (�Qmn)3(h3 � h2)þ (�Qmn)4(h4 � h3)

¼ (�Qmn)þ45� (h1 � h0 þ h4 � h3)þ (�Qmn)�45� (h2 � h1 þ h3 � h2)

¼ 12� 10�3(�Qmn)þ45� þ 12� 10�3(�Qmn)�45� ,

Bmn ¼ 1

2
(�Qmn)1 h21 � h20

	 
þ (�Qmn)2 h22 � h21
	 
þ (�Qmn)3 h23 � h22

	 
þ (�Qmn)4 h24 � h23
	 
� �

¼ 1

2
(�Qmn)45� h21 � h20 þ h24 � h23

	 
þ (�Qmn)�45� h22 � h21 þ h23 � h22
	 
� �

¼ 0 since h21 ¼ h23 and h20 ¼ h24,

Dmn ¼ 1

3
(�Qmn)1 h31 � h30

	 
þ (�Qmn)2 h32 � h31
	 
þ (�Qmn)3 h33 � h32

	 
þ (Qmn)4 h34 � h33
	 
� �

¼ 1

3
(�Qmn)þ45� h31 � h30 þ h34 � h33

	 
þ (�Qmn)�45� h32 � h31 þ h33 � h32
	 
� �

¼ 1008� 10�9(�Qmn)þ45� þ 144� 10�9(�Qmn)�45� :

Substituting for various (�Qmn) values, we calculate

[A] ¼
962:64 806:64 0

806:64 962:64 0

0 0 829:68

2
664

3
775� 106 N=m,

[B] ¼ [0],

[D] ¼
46:21 38:72 27:04

38:72 46:21 27:04

27:04 27:04 39:82

2
664

3
775� 103 N m:

Note that [±45]S is a balanced symmetric laminate in which A16¼A26¼ 0

and [B]¼ [0].

(c) [þ45=0=�45] Unsymmetric laminate: From the figure (bottom), we note

h2 ¼ �h1 ¼ 3� 10�3 m,

h3 ¼ �h0 ¼ 9� 10�3 m:
007 by Taylor & Francis Group, LLC.



� 2
In this laminate,

(�Qmn)1 ¼ (�Qmn)þ45� ,

(�Qmn)2 ¼ (�Qmn)0� ,

(�Qmn)3 ¼ (�Qmn)�45� :

Therefore,

Amn ¼ (�Qmn)1(h1 � h0)þ (�Qmn)2(h2 � h1)þ (�Qmn)3(h3 � h2)

¼ 6� 10�3(�Qmn)þ45� þ 6� 10�3(�Qmn)0� þ 6� 10�3(�Qmn)�45� ,

Bmn ¼ 1

2
(�Qmn)1 h21 � h20

	 
þ (�Qmn)2 h22 � h21
	 
þ (�Qmn)3 h23 � h22

	 
� �
¼ �36� 10�6(�Qmn)þ45� þ 36� 10�6(�Qmn)�45� ,

Dmn ¼ 1

3
(�Qmn)1 h31 � h30

	 
þ (�Qmn)2 h32 � h31
	 
þ (�Qmn)3 h33 � h32

	 
� �
¼ 234� 10�9(�Qmn)þ45� þ 18� 10�9(�Qmn)0� þ 234� 10�9(�Qmn)�45� :

Substituting for [�Qmn] values, we calculate

[A] ¼
1285:50 417:06 0

417:06 534:24 0

0 0 434:36

2
4

3
5� 106 N=m,

[B] ¼
0 0 �2253:6

0 0 �2253:6

�2253:6 �2253:6 0

2
4

3
5� 103 N,

[D] ¼
21,183:84 15,770:70 0

15,770:70 18,930:24 0

0 0 16,237:33

2
4

3
5N m:

Comparing cases (a) and (c), we note that the addition of a 08 lamina

increases the value of A11 by a significant amount, but A12, A22, and A66

are only marginally improved. Elements in the [D] matrix are improved

owing to the presence of the 08 lamina as well as the additional thickness

in the [þ45=0=�45] laminate.
EXAMPLE 3.8

Compare the stiffness matrices of [0=90=90=0] and [0=90=0=90] laminates. Assume

each ply has a thickness of h=4.
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� 2
0

90

h/2

h/2
h/2

h/2

+z

h/4

h/4

Midplaneh/4

h/4 90

0

(a) (b)

0

90

0

90

SOLUTION

First, we note that for 08 and 908 plies,

(Q11)0 ¼ (Q22)90,

(Q22)0 ¼ (Q11)90,

(Q12)0 ¼ (Q12)90,

(Q66)0 ¼ (Q66)90,

(Q16)0 ¼ (Q16)90 ¼ 0,

(Q26)0 ¼ (Q26)90 ¼ 0:

For the [0=90=90=0] laminate on the left,

Aij ¼ (Qij)0 � h

4
� � h

2

� �� �
þ (Qij)90 0� � h

4

� �� �

þ (Qij)90
h

4
� 0

� �
þ (Qij)0

h

2
� h

4

� �

¼ h

2
[(Qij)0 þ (Qij)90],

Bij ¼ 0 (since this is a symmetric laminate),

Dij ¼ 1

3

(
(Qij)0 � h

4

� �3

� � h

2

� �3
" #

þ (Qij)90 0� � h

4

� �3
" #

þ (Qij)90
h

4

� �3

�0

" #
þ (Qij)0

h

2

� �3

� h

4

� �3
" #)

¼ h3

96
[7(Qij)0 þ (Qij)90]:

For the [0=90=0=90] laminate on the right,
007 by Taylor & Francis Group, LLC.



Aij ¼ ( Q ij ) 0 � h

4

� �
� � h

2

� �� �
þ (Qij )90 0 � � h

4

� �� �

þ (Qij )0
h

4 
� 0

� �
þ ( Qij ) 90

h

2 
� h

4

� �

¼ h

2 
[( Q ij ) 0 þ ( Q ij ) 90 ] ,

Bij ¼ 1

2

(
( Qij ) 0 � h

4

� �2

� � h

2

� �2
" #

þ ( Qij ) 90 0 � � h

4

� �2
" #

þ (Qij )0
h

4

� �2

�0

" #
þ (Qij ) 90

h

2

� �2

� h

4

� �2
" #)

¼ h2

16 
[� (Qij )0 þ (Qij )90 ],

Dij ¼ 1

3

(
( Qij ) 0 � h

4

� �3

� � h

2

� �3
" #

þ (Qij ) 90 0 � � h

4

� �3
" #

þ (Qij )0
h

4

� �3

�0

" #
þ (Qij )90

h

2

� �3

� h

4

� �3
" #)

¼ h3

24 
[(Q ij ) 0 þ ( Q ij ) 90 ] :

This example demonstrates the influence of stacking sequence on the stiffness

matrices and the difference it can make to the elastic response of laminates

containing similar plies, but arranged in different orders. In this case, although

[ A] matrices for the [0=90 =90=0] and [0 =90=0=90] are identical, their [B ] and [ D]

matrices are different.

3.3.2 .5 Midpl ane Strains and Curvatur es

If the normal force and moment resultant s acting on a lami nate are known , its

midpl ane stra ins an d cu rvatures can be ca lculated by inverting Equations 3.85

and 3.86. Thus ,

«�xx
«�yy
g�
xy

2
4

3
5 ¼ [A1]

Nxx

Nyy

Nxy

2
4

3
5þ [B1]

Mxx

Myy

Mxy

2
4

3
5 (3:93)

and

kxx
kyy
kxy

2
4

3
5 ¼ [C1]

Nxx

Nyy

Nxy

2
4

3
5þ [D1]

Mxx

Myy

Mxy

2
4

3
5, (3:94)
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where

[A1] ¼ [A�1]þ [A�1][B][(D*)�1][B][A�1]

[B1] ¼ �[A�1][B][(D*)�1]

[C1] ¼ �[(D*)�1][B][A�1] ¼ [B1]
T

[D*] ¼ [D]� [B][A�1][B]

[D1] ¼ [(D*)�1] (3:95)

Note that for a symmetric laminate, [B]¼ [0], and therefore, [A1]¼ [A�1], [B1]¼
[C1]¼ [0], and [D1]¼ [D�1]. In this case, equations for midplane strains and

curvatures become

«�xx
«�yy
g�
xy

2
4

3
5 ¼ [A�1]

Nxx

Nyy

Nxy

2
4

3
5 (3:96)

and

kxx
kyy
kxy

2
4

3
5 ¼ [D�1]

Mxx

Myy

Mxy

2
4

3
5: (3:97)

Equation 3.96 shows that for a symmetric laminate, in-plane forces cause only

in-plane strains and no curvatures. Similarly, Equation 3.97 shows that bending

and twisting moments cause only curvatures and no in-plane strains.

EXAMPLE 3.9

Elastic properties of a balanced symmetric laminate: For a balanced symmetric

laminate, the extensional stiffness matrix is

[A] ¼
A11 A12 0

A12 A22 0

0 0 A66

2
4

3
5

and the coupling stiffness matrix [B]¼ [0].

The inverse of the [A] matrix is

[A�1] ¼ 1

A11A22 � A2
12

A22 �A12 0

�A12 A11 0

0 0
A11A22 � A2

12

	 

A66

2
664

3
775:
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EX

� 2
Therefore, Equation 3.96 gives

«�xx
«�yy
g�
xy

2
4

3
5 ¼ 1

A11A22 � A2
12

A22 �A12 0

�A12 A11 0

0 0
A11A22 � A2

12

� �
A66

2
664

3
775

Nxx

Nyy

Nxy

2
4

3
5: (3:98)

Let us assume that the laminate is subjected to a uniaxial tensile stress sxx in the

x direction, and both syy and txy are zero. If the laminate thickness is h, the tensile

force per unit width in the x direction Nxx¼ hsxx, Nyy¼ 0, and Nxy¼ 0. Thus,

from Equation 3.98, we obtain

«�xx ¼ A22

A11A22 � A2
12

hsxx,

«�yy ¼ � A12

A11A22 � A2
12

hsxx,

g�
xy ¼ 0,

which give

Exx ¼ sxx

«�xx
¼ A11A22 � A2

12

hA22

, (3:99)

nxy ¼ � «�yy
«�xx

¼ A12

A22

: (3:100)

In turn, applying Nyy and Nxy separately, we can determine

Eyy ¼ A11A22 � A2
12

hA11

, (3:101)

nyx ¼ A12

A11

which is the same as nxy
Eyy

Exx

� �
, (3:102)

and

Gxy ¼ A66

h
: (3:103)
AMPLE 3.10
Elastic properties of a symmetric quasi-isotropic laminate: For a symmetric quasi-

isotropic laminate,

[A] ¼
A11 A12 0

A12 A22 ¼ A11 0

0 0 A66 ¼ A11 � A12

2

2
64

3
75

and [B]¼ [0]
007 by Taylor & Francis Group, LLC.
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Now using the results of Example 3.9, we obtain

Exx ¼ Eyy ¼ A2
11 � A2

12

hA11

,

nxy ¼ A12

A11

,

Gxy ¼ A11 � A12

2h
,

where h is the laminate thickness.

Note that for a quasi-isotropic laminate, Exx¼Eyy and, from the previous

equations, it can be easily shown that

Gxy ¼ Exx

2(1þ nxy)
:

However, Exx¼Eyy does not necessarily mean quasi-isotropy. For example, Exx

and Eyy are equal for a [0=90]S laminate, but it is not a quasi-isotropic laminate.

For a quasi-isotropic laminate, elastic modulus at any arbitrary angle in the plane

of the laminate is the same as Exx or Eyy. That will not be the case with the [0=90]S
laminate.
EXAMPLE 3.11

Elastic properties of symmetric angle-ply laminates: For angled plies with u and

�u fiber orientation angles,

�Q11(u) ¼ �Q11(�u),

�Q22(u) ¼ �Q22(�u),

�Q12(u) ¼ �Q12(�u),

�Q66(u) ¼ �Q66(�u),

�Q16(u) ¼ ��Q16(�u),

�Q26(u) ¼ ��Q26(�u):

Referring to the four-layer angle-ply laminate shown in the left side of the

figure, we can write the elements in the extensional stiffness matrix [A] of the

[u=�u]S as
007 by Taylor & Francis Group, LLC.



�xy

� 2
175

Exx

Exx, Eyy,

Gxy

(GPa)

Eyy

Gxy

�xy

140

105

70

35

0
0 30 60

q (Degrees)(b)

90

2.0

1.5

1.0

0.5

0

h/2

h/2

h/4

q

q

−q

+z
−qh/4

(a)

Midplane

Aij ¼ ( �Q ij ) u � h

4 
þ h

2

� �
þ ( �Q ij )�u 0 þ h

4

� �

þ ( �Q ij )� u

h

4 
� 0

� �
þ ( �Qij )u

h

2 
� h

4

� �

¼ h

2
( �Q ij )u þ ( �Qij ) �u

� �
:

Thus,

[ A ] ¼
h �Q11 h �Q 12 0

h �Q12 h �Q 22 0

0 0 h�Q66

2
64

3
75:

Now, using Equations 3.99 through 3.103, we can write

Exx ¼
�Q11

�Q22 � �Q2
12

�Q22

,

Eyy ¼
�Q11

�Q22 � �Q2
12

�Q11

,

nxy ¼
�Q12

�Q22

,

Gxy ¼ �Q66:

Since �Q11, �Q22, �Q12, and �Q66 are functions of the fiber orientation angle u,

the elastic properties of the angle-ply laminate will also be functions of u. This
007 by Taylor & Francis Group, LLC.
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is illustrated in the right side of the figure. Note that the shear modulus is

maximum at u ¼ 458, that is, for a [±45]S laminate. In addition, note the variation

in the Poisson’s ratio, which has values greater than unity for a range of fiber

orientation angles. In an isotropic material, the Poisson’s ratio cannot exceed a

value of 0.5.
EXAMPLE 3.12

Bending of a balanced symmetric laminate beam specimen: For a balanced

symmetric laminate, [B ] ¼ [0].

[ D] ¼
D11 D 12 D16

D12 D 22 D26

D16 D 26 D66

2
64

3
75 ,

[ D� 1 ] ¼ 1

D0

D �11 D �12 D �16
D �12 D �22 D �26
D �16 D �26 D �66

2
64

3
75,

wher e 	 


D0 ¼ D11 D 22 D 66 � D 226 � D12 ( D 12 D66 � D 16 D 26 ) þ D 16 ( D 12 D 26 � D 22 D 16 )

D �11 ¼ D 22 D 66 � D 226
	 


D �12 ¼ �(D 12 D66 � D 16 D 26 )

D �16 ¼ (D12 D 26 � D 22 D16 )

D �22 ¼ D 11 D 66 � D 216
	 


D�
26 ¼ �(D11D26 �D12D16)

D�
66 ¼ D11D12 �D2

12

	 


If a bending moment is applied in the yz plane so that Mxx is present and

Myy ¼ Mxy ¼ 0, the specimen curvatures can be obtained from Equation 3.97:

kxx ¼ D�
11

D0

Mxx,

kyy ¼ D�
12

D0

Mxx,

kxy ¼ D�
16

D0

Mxx: (3:104)
007 by Taylor & Francis Group, LLC.



Thus, even though no twisting moment is applied, the specimen would tend to twist

unless D816 ¼ ( D 12D 26 � D 22 D 16 ) ¼ 0. This is possible only if the balanced symmet-

ric laminate contains fibers in the 08 and 908 directions. The twisting phenomenon

can be easily demonstrated in a three-point flexural test in which the specimen lifts

off the support on opposite corners of its span, as shown in the figure.

3.3.2 .6 Lami na Strains and Stresses Due to Applie d Loads

Knowing the midplane strains and curvatures for the laminate, strains at the

midplane of each lamina can be calculated using the following linear relationships:

«xx
«yy
gxy

2
4

3
5
j

¼
«�xx
«�yy
g �xy

2
4

3
5þ zj

kxx
kyy
kxy

2
4

3
5, ( 3: 105 )

wher e zj is the dist ance from the laminate midpl ane to the midpl ane of the jth

lamina.

In turn, stresses in the j th lamina can be calcul ated using its stiffne ss matrix.

Thus,

sxx

syy

txy

2
4

3
5
j

¼ [�Qmn]j

«xx
«yy
gxy

2
4

3
5
j

¼ [�Qmn]j

«�xx
«�yy
g�
xy

2
4

3
5þ zj[�Qmn]j

kxx
kyy
kxy

2
4

3
5: (3:106)

Figure 3.51 demonst rates schema tically the stra in and stress distribut ions in a

laminate. Note that the strain distribution is continuous and linearly varies

with the distance z from the laminate midplane. The stress distribution is not

continuous, although it varies linearly across each lamina thickness. For thin

laminas, the strain and stress variation across the thickness of each lamina is

small. Therefore, their average values are calculated using the center distance zj,

as shown in Equations 3.105 and 3.106.
� 2007 by Taylor & Francis Group, LLC.



x
Nxx

Mxx

h

z
(a) (b) (c) (d)

y

FIGURE 3.51 Strain and stress distributions in a laminate. (a) Laminate; (b) Strain

distribution; (c) Stress distribution; and (d)Normal force and bendingmoment resultants.
EXAMPLE 3.13

Calculate lamina stresses at the midplane of each lamina in the [þ45=�45]

laminate in Example 3.7 due to Nxx¼ 100 kN=m.

SOLUTION

Step 1: From the laminate stiffness matrices [A], [B], and [D], determine [A�1],

[D*], [A1], [B1], [C1], and [D1].

[A�1] ¼
0:697 �0:584 0

�0:584 0:697 0

0 0 0:241

2
64

3
75�10�8 m=N,

[B][A�1][B] ¼
3:06 3:06 0

3:06 3:06 0

0 0 2:87

2
64

3
75�103 Nm,

[D*] ¼ [D]� [B][A�1][B] ¼
2715:84 1779:84 0

1779:84 2715:84 0

0 0 2108:08

2
64

3
75Nm,

[D1] ¼ [(D*)�1] ¼
6:45 �4:23 0

�4:23 6:45 0

0 0 4:74

2
64

3
75�10�4 1

Nm
,

[B1] ¼ �[A�1][B][(D*)�1] ¼
0 0 603:54

0 0 603:54

602:74 602:74 0

2
64

3
75�10�9 1

N
,

[C1] ¼ �[(D*)�1][B][A�1] ¼
0 0 602:74

0 0 602:74

603:54 603:54 0

2
64

3
75�10�9 1

N
,
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[ A1 ] ¼ [ A �1 ] þ [ A �1 ][ B][(D*) �1 ] [B][ A� 1 ] ¼
7: 7385 �5: 0715 0

�5: 0715 7: 7385 0

0 0 5: 683

2
64

3
75� 10�9 m=N :

Step 2: Using Equations 3.93 and 3.94, calculate the [« 8] and [k] matrices.

[ «� ] ¼
«�xx
«�yy
g �xy

2
4

3
5 ¼ [A1 ]

100 � 103 N =m
0

0

2
4

3
5:

Therefore,

«�xx ¼ 77: 385 � 10� 5 m=m ,

«�yy ¼ �50: 715 � 10� 5 m =m ,

g �xy ¼ 0:

[k] ¼
kxx
kyy
kxy

2
4

3
5 ¼ [ C1 ]

100 � 103 N =m
0

0

2
4

3
5,

Therefore,

kxx ¼ 0

kyy ¼ 0

kxy ¼ 0.060354 per m

Step 3: Using Equation 3.105, calculate «8xx, «8 yy , and gxy at the midplane of þ458
and �458 laminas.

«xx

«yy

gxy

2
64

3
75
þ45 �

¼
77: 385 � 10 �5

�50: 715 � 10� 5

0

2
64

3
75þ ( � 3 � 10�3 )

0

0

0: 060354

2
64

3
75

¼
77: 385

�50: 715

�18: 106

2
64

3
75� 10 �5 :

Similarly,

«xx
«yy
gxy

2
4

3
5
�45 �

¼
77: 385
�50:715
18:106

2
4

3
5� 10�5:

Step 4: Using Equation 3.106, calculate sxx, syy, and txy at the midplanes of þ458
and �458 laminas.
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sxx

syy

txy

2
4

3
5
þ 45�

¼
40 :11 33: 61 31 :3
33 :61 40: 11 31 :3
31: 3 31: 3 34: 57

2
4

3
5 GPa

77: 385 � 10�5

�50: 715 � 10�5

�18: 106 � 10�5

2
4

3
5 ¼

8:33
0

2:09

2
4

3
5 MPa :

Similarly,

sxx

syy

txy

2
4

3
5
� 45�

¼
8 :33
0

�2: 09

2
4

3
5 MPa:

Using the stress transformation Equation 3.30, we may compute the longitudinal,

transverse, and shear stresses in the 1–2 directions, which give the following

results:
007 by Taylor & Francis G
458 Layer (MPa) �458 Layer (MPa)
roup, LLC.
s11 
6.255 
6.255
s22 
2.075 
2.075
t12 
�4.165 
4.165
3.3.2.7 The rmal Strains a nd Stresses

If a tempe rature varia tion D T is involv ed, lami na strains will be

«xx ¼ «Mxx þ « Txx ¼ «�xx þ zk xx ,

«yy ¼ «Myy þ «Tyy ¼ «�yy þ zkyy ,

gxy ¼ g Mxy þ g Txy ¼ g �xy þ zk xy , ( 3:107)

where the sup erscripts M and T de note the mech anical and thermal stra ins,

respect ively.

Thermal strains are due to free expansi ons (or contrac tions) caused by

tempe rature varia tions, but mechan ical strains are due to both applied loads

and therm al loads. Ther mal loads appear due to restrictions impos ed by

various layer s agains t their free therm al expansi on. In many ap plications

involv ing polyme r matrix composi tes, mois ture can also influen ce the lamin ate

strains owing to vo lumetric exp ansion (swell ing) or contrac tion of the matr ix

caused by moisture absorption or desorption [24]. In such cases, a third

term representing hygroscopic strains must be added in the middle column of

Equation 3.107.

Mod ifying Equations 3.85 an d 3.86 for therm al effects, we can write



Nxx

Nyy

Nxy

2
4

3
5 ¼ [A ]

«�xx
«�yy
g �xy

2
4

3
5þ [ B]

kxx
kyy
kxy

2
4

3
5� [ T *] D T ( 3: 108 )

and

Mxx

Myy

Mxy

2
4

3
5 ¼ [B ]

« �xx
«�yy
g �xy

2
4

3
5þ [ D ]

kxx
kyy
kxy

2
4

3
5� [ T 		 ] D T , ( 3: 109 )

wher e

[T *] ¼

PN
j ¼ 1

( �Q11 )j ( axx ) j þ ( �Q12 ) j ( ayy ) j þ ( �Q 16 )j ( axy )j
� �

( hj � hj � 1 )

PN
j ¼ 1

( �Q12 )j ( axx ) j þ ( �Q22 ) j ( ayy ) j þ ( �Q 26 )j ( axy )j
� �

( hj � hj � 1 )

PN
j ¼ 1

( �Q16 )j ( axx ) j þ ( �Q26 ) j ( ayy ) j þ ( �Q 66 )j ( axy )j
� �

( hj � hj � 1 )

2
6666666664

3
7777777775

[T 		 ] ¼ 1

2

PN
j ¼ 1

( �Q 11 )j (a xx ) j þ ( �Q 12 )j (a yy )j þ ( �Q 16 ) j ( axy ) j
� �	

h 2j � h2j � 1



PN
j ¼ 1

( �Q 12 )j (a xx ) j þ ( �Q 22 )j (a yy )j þ ( �Q 26 ) j ( axy ) j
� �	

h 2j � h2j � 1



PN
j ¼ 1

( �Q 16 )j (a xx ) j þ ( �Q 26 )j (a yy )j þ ( �Q 66 ) j ( axy ) j
� �	

h 2j � h2j � 1




2
6666666664

3
7777777775

( 3: 110 )

Note that even if no external load s are app lied, that is, if [ N] ¼ [ M] ¼ [0], there

may be midplane strains and curvatures due to thermal effects, which in turn

will create thermal stresses in various laminas. These stresses can be calculated

using midpl ane strains and curvat ures due to thermal effects in Equation 3.106.

When a composite laminate is cooled from the curing temperature to room

temperature, significant curing (residual) stresses may develop owing to the

thermal mismatch of various laminas. In some cases, these curing stresses may

be sufficiently high to cause intralaminar cracks [25]. Therefore, it may be

prudent to consider them in the analysis of composite laminates.

For example, consider a [0=90]S laminate being cooled from the curing

temperature to room temperature. If the plies were not joined and could

contract freely, the 08 ply will contract much less in the x direction than the

908 ply, while the reverse is true in the y direction. Since the plies are joined and

must deform together, internal residual stresses are generated to maintain the

geometric compatibility between the plies. In [0=90]S laminate, residual stresses
� 2007 by Taylor & Francis Group, LLC.



are compres sive in the fiber direction , but tensile in the transverse direction in

both 08 and 908 plies (see Exa mple 3.16) . Thus , when such a lamin ate is loaded

in tensi on in the x direction , resid ual tensi le stress added to the ap plied tensi le

stress can initiate trans verse cracks in the 908 plies at relat ively low loads.
Equation s 3.108 and 3.109 are also use ful for calcul ating the coeff icients of

thermal expansion and the cured shapes of a laminate. This is demonstrated in

the following two examples.

EXAMPLE 3.14

Coefficients of thermal expansion for a balanced symmetric laminate

SOLUTION

For a balanced symmetric laminate, A16¼A26¼ 0 and [B]¼ [0]. In a thermal

experiment, [N]¼ [M]¼ [0]. Therefore, from Equation 3.108,

0

0

0

2
4

3
5 ¼

A11 A12 0

A12 A22 0

0 0 A66

2
4

3
5 «�xx

«�yy
g�
xy

2
4

3
5�

T1*

T2*

T3*

2
4

3
5DT ,

which gives

A11«
�
xx þ A12«

�
yy ¼ T1*DT ,

A12«
�
xx þ A22«

�
yy ¼ T2*DT ,

and

A66g
�
xy ¼ T3*DT :

From the first two of these equations, we calculate «xx8 and «yy8 as

«�xx ¼ A22T1*� A12T2*

A11A22 � A2
12

DT ,

«�yy ¼
A11T2*� A12T1*

A11A22 � A2
12

DT :

Following the definitions of thermal expansion coefficients, we write

axx ¼ «�xx
DT

¼ A22T1*� A12T2*

A11A22 � A2
12

,

ayy ¼
«�yy
DT

¼ A11T2*� A12T1*

A11A22 � A2
12

,

axy ¼
g�
xy

DT
¼ T3*

A66

:
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For a balanced symmetric laminate, elements in the [T **] matrix are zero. There-

fore, there will be no curvatures due to temperature variation. However, the same

is not true for unsymmetric laminates.

EXAMPLE 3.15

Determine the curvatures of a two-layer unsymmetric [0 =90] laminate after it

is cooled from the curing temperature to the room temperature. The material is

T-300 carbon fiber in an epoxy matrix for which a11 ¼�0.5 3 10� 6 m=m per 8 C
and a22 ¼ 12 3 10�6 m=m per 8 C. Other material properties are the same as those

in Example 3.6. The thickness of each layer is t, and the temperature drop is DT .

SOLUTIO N

From Example 3.6, the stiffness matrices for the 0 8 and 908 layers are

[ Q]0 � ¼
134: 03 2: 29 0

2: 29 8: 82 0

0 0 3: 254

2
64

3
75� 10 9 N =m 

2 
,

[Q]90 � ¼
8: 82 2: 29 0

2: 29 134: 03 0

0 0 3: 254

2
64

3
75� 109 N=m2:

Step 1: Determine the [A], [B], and [D] matrices for the laminate.

Referring to the figure (top), we note that h0¼�t, h1¼ 0, and h2¼ t. Following

Equations 3.90 through 3.92, the [ A ], [ B], and [ D] matrices for the [0 =90] laminate

can be written.

[A] ¼
142:85 4:58 0

4:58 142:85 0

0 0 6:508

2
64

3
75� 109 t N=m,

[B] ¼
�62:605 0 0

0 62:605 0

0 0 0

2
64

3
75� 109 t2 N,

[D] ¼
47:62 1:53 0

1:53 47:62 0

0 0 2:17

2
64

3
75� 109 t3 Nm:

Step 2: Determine the [T*] and [T**] matrices for the laminate.

The first element in the [T*] matrix is

T1* ¼ [(�Q11)1(axx)1 þ (�Q12)1(ayy)1](0þ t)

þ [(�Q11)2(axx)2 þ (�Q12)2(ayy)2](t� 0):
� 2007 by Taylor & Francis Group, LLC.



� 2
t

t h2

h0
y

z

Saddle
shape

08

908

(a) (b)

h1 = 0

Two possible
cylindrical shapes

(c)

Since ( axx) 1 ¼ ( ayy )2 ¼ a 11 ¼�0.5 3 10� 6 m=m per 8C and ( axx) 2 ¼ ( ayy )1 ¼
12 3 10 �6 m=m per 8C, we obtain

T1
* ¼ [(134: 03)( � 0: 5) þ ( 2:29 )(12)](109 )(10�6 )t

þ [( 8:82 )(12) þ ( 2: 29)( � 0: 5)](109 )(10 �6 ) t

¼ 65: 16 � 103 t N=m 
� 
C:

Using appropriate expressions for other elements in [ T*] and [T **], we obtain

[ T *] ¼
65: 16

65: 16

0

2
64

3
75� 103 t N =m� 

C,

[ T **] ¼
72: 12

�72: 12

0

2
64

3
75� 103 t2 N=�C:

Step 3: Determine the laminate curvature matrix.

Substitution of [ T*] and [ T**] in Equations 3.108 and 3.109 gives

0

0

0

2
64

3
75 ¼ [A]

«�xx
«�yy
g�
xy

2
64

3
75þ [B]

kxx

kyy

kxy

2
64

3
75�

65:16

65:16

0

2
64

3
75� 103tDT ,

0

0

0

2
64

3
75 ¼ [B]

«�xx
«�yy
g�
xy

2
64

3
75þ [D]

kxx

kyy

kxy

2
64

3
75�

72:12

�72:12

0

2
64

3
75� 103t2DT ,

where [A], [B], and [D] are laminate stiffness matrices.

Eliminating the midplane strain matrix from the previous equations, we

obtain the following expression relating the laminate curvature matrix to tem-

perature variation DT:

[k] ¼ [C1][T*]þ [D1][T
		],
007 by Taylor & Francis Group, LLC.



where [ C1] and [ D1 ] are given in Equation 3.95.

In this example,

[C1] ¼
0:0218 0 0

0 �0:0218 0

0 0 0

2
64

3
7510�9t�2 1

N
,

[D1] ¼
0:0497 �0:0016 0

�0:0016 0:0497 0

0 0 0:4608

2
64

3
7510�9t�3 1

Nm
:

Therefore, solving for [k], we obtain

kxx ¼ �kyy ¼ 5:119� 10�6t�1DT per m,

kxy ¼ 0:

From the expressions for kxx and kyy, we note that both curvatures decrease with

increasing layer thickness as well as decreasing temperature variation. Further-

more, since kyy¼�kxx, the laminate will assume a saddle shape at room tempera-

ture, as shown in the figure ((b) on page 207).

Classical lamination theory, such as that used here, predicts the room tempera-

ture shapes of all unsymmetric laminates to be a saddle. However, Hyer [26,27] has

shown that both cylindrical and saddle shapes are possible, as shown in the figure ((c)

on page 207). The cured shape of the laminate depends on the thickness–width ratio

as well as the thickness–length ratio. Saddle shapes are obtained for thick laminates,

but depending on the relative values of length and width, two different cylindrical

shapes (with either kxx or kyy¼ 0) are obtained for thin laminates in which the

thickness–length or thickness–width ratios are small. It should be noted that sym-

metric laminates do not curve (warp) on curing since [B]¼ [0] as well as [T**]¼ [0].

EXAMPLE 3.16

Residual stresses generated because of cooling from high curing temperatures:

A [0=902]S laminate of AS-4 carbon fiber–epoxy is cured at temperature

Ti¼ 1908C and slowly cooled down to room temperature, Tf¼ 238C. Determine

the residual stresses generated in each layer because of cooling from the curing

temperature. Assume each layer in the laminate has a thickness t0.

Midplane

t0(1)   0

(2)   90

(3)   90

(4)   90

(5)   90

(6)   0

+z
� 2007 by Taylor & Francis Group, LLC.
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Following material properties are known:

E11 ¼ 142 GPa ,

E22 ¼ 10: 3 GPa ,

n12 ¼ 0: 27,

G12 ¼ 7: 6 GPa ,

a11 ¼ �1: 8 � 10� 6 per �  C,

a22 ¼ 27 � 10 �6 per � C:

SOLUTION

Step 1: Using Equation 3.80, determine stiffness matrices for the 08 and 908 layers.

[�Q]0� ¼
142:77 2:796 0

2:796 10:356 0

0 0 7:6

2
64

3
75� 109 N=m2

,

[�Q]90� ¼
10:356 2:796 0

2:796 142:77 0

0 0 7:6

2
64

3
75� 109 N=m2:

Step 2: Determine the [A] matrix for the laminate.

Note that because of symmetry, [B]¼ [0] and, since [k]¼ [0], we need not deter-

mine the [D] matrix.

For a [0=902]S laminate, Amn¼ 2t0 [(�Qmn)0þ 2(�Qmn)90]. Therefore,

[A] ¼ 2t0

163:48 8:39 0

8:39 295:90 0

0 0 22:8

2
4

3
5� 109 N=m:

Step 3: Determine the [T*] matrix for the laminate.

T1* ¼ 2[{(�Q11)0(axx)0 þ (�Q12)0(ayy)0 þ 0}(� 2t0 þ 3t0)

þ {(�Q11)90(axx)90 þ (�Q12)90(ayy)90 þ 0}(� t0 þ 2t0)

þ {(�Q11)90(axx)90 þ (�Q12)90(ayy)90 þ 0}(0þ t0)]:

Since (axx)0¼ (ayy)90¼a11¼�1.83 10�6 per 8C and (ayy)0¼ (axx)90¼a22¼ 273

10�6 per 8C, we obtain

T1* ¼ 735:32t0 � 103 N=m�
C:
007 by Taylor & Francis Group, LLC.
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Similarly, T2* ¼�176.82 t 0 3 103 N=m 8 C and T 3* ¼ 0.

Therefore,

[T *] ¼
735: 32t0
�176: 82t0

0

2
4

3
5� 103 N =m� 

C:

Step 4: Using Equation 3.108, determine the midplane strains.

Since there are no external forces, [N]¼ [0]. Since [B]¼ [0], we can write Equation

3.108 as

[0] ¼ [A]

«�xx
«�yy
g�
xy

2
4

3
5þ [0]�

T1*

T2*

T3*

2
4

3
5DT ,

where DT¼Tf � Ti (which, in this case, has a negative value).

Solving for the strain components gives

«�xx
«�yy
g�
xy

2
4

3
5 ¼

2:267
�0:352

0

2
4

3
5� 10�6DT m=m:

Step 5: Determine strains in each layer.

Since [k]¼ [0], strains in each layer are the same as the midplane strains.

Step 6: Determine the free thermal contraction strains in each layer.

«xxf
«yyf
gxyf

2
4

3
5
0�

¼
�1:8
27

0

2
4

3
5� 10�6DT m=m

and

«xxf
«yyf
gxyf

2
4

3
5
90�

¼
27

�1:8
0

2
4

3
5� 10�6DT m=m:

Step 7: Subtract free thermal contraction strains from strains determined in Step 5

to obtain residual strains in each layer.

«xxr
«yyr
gxyr

2
4

3
5
0�

¼
(2:267� (�1:8)� 10�6DT
(�0:352�27)� 10�6DT

0

2
4

3
5 ¼

4:067
�27:352

0

2
4

3
5� 10�6DT m=m

and

«xxr
«yyr
gxyr

2
4

3
5
90�

¼
(2:267� 27)� 10�6DT

(�0:352� (�1:8))� 10�6DT
0

2
4

3
5 ¼

�24:733
1:448
0

2
4

3
5� 10�6DT m=m:
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Step 8: Calculate the residual stresses in each layer

sxxr

syyr

txyr

2
64

3
75
0 �

¼ [ �Q]0�

«xxr

«yyr

gxyr

2
64

3
75
0�

¼
504: 17

�271: 89

0

2
64

3
75� 103 DT N=m 

2

and

sxxr

syyr

txyr

2
64

3
75
90 �

¼ [ �Q]90 �

«xxr

«yyr

gxyr

2
64

3
75
90 �

¼
�252: 087

137: 550

0

2
64

3
75� 10 3 DT N =m2 :

Since, in this case, DT ¼ 23 8C � 1908C ¼�1678C, the residual stresses are as follows:
007 by Taylor &
08 Layer 908 Layer
Francis Group, LLC.
In the fiber direction 
�84.2 MPa 
�22.97 MPa
In the transverse direction 
45.40 MPa 
42.10 MPa
3.4 INTERLAMINAR STRESSES

Load trans fer between adjacent layers in a fiber -reinforce d laminate takes place

by means of inter laminar stresses , such as szz, t xz , and t yz. To visualize the
mechani sm of load trans fer, let us consider a balanced symm etric [±45]S
laminate under uniaxial tensile load Nxx (F igure 3.52). Since A 16 ¼ A 26 ¼ 0

and [B]¼ [0] for this laminate, the midplane strains are given by

«�xx ¼ A22

A11A22 � A2
12

Nxx,

«�yy ¼ � A12

A11A22 � A2
12

Nxx,

g�
xy ¼ 0:

The state of stress in the jth layer is

sxx

syy

txy

2
64

3
75
j

¼
�Q11

�Q12
�Q16

�Q12
�Q22

�Q26

�Q16
�Q26

�Q66

2
64

3
75
j

«�xx
«�yy
0

2
64

3
75:
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FIGURE 3.52 Interlaminar shear stress txz between the þ458 and �458 plies at the free

edges of a [±45]S laminate. (After Pipes, R.B. and Pagano, N.J., J. Compos. Mater., 4,

538, 1970.)
Thus, although the shear stress resultant Nxy on the laminate is zero, each layer

experiences an in-plane shear stress txy. Since there is no applied shear stress at

the laminate boundary, the in-plane shear stress must diminish from a finite

value in the laminate interior to zero at its free edges. The large shear stress

gradient at the ends of the laminate width is equilibrated by the development of

the interlaminar shear stress txz near the free edges, as shown in Figure 3.52.

Similar equilibrium arguments can be made to demonstrate the presence of tyz
and szz in other laminates.

The principal reason for the existence of interlaminar stresses is the mis-

match of Poisson’s ratios nxy and coefficients of mutual influence mx and my

between adjacent laminas. If the laminas were not bonded and could deform

freely, an axial loading in the x direction would create dissimilar transverse

strains «yy in various laminas because of the difference in their Poisson’s ratios.

However, in perfect bonding, transverse strains must be identical throughout

the laminate. The constraint against free transverse deformations produces

normal stress syy in each lamina and interlaminar shear stress tyz at the lamina
� 2007 by Taylor & Francis Group, LLC.
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FIGURE 3.53 Source of interlaminar shear stress tyz and interlaminar normal stress szz

in a [0=90=90=0] laminate.
interfaces (Figure 3.53). Similarly, the difference in the coefficients of mutual

influence mx would create dissimilar shear strains gxy in various laminas only if

they were not bonded. For a bonded laminate, equal shear strains for all

laminas require the development of interlaminar shear stress tzx. Although

the force equilibrium in the y direction is maintained by the action of syy and

tyz, the force resultants associated with syy and tyz are not collinear.

The moment equilibrium about the x axis is satisfied by the action of the

interlaminar normal stress szz.

Interlaminar stresses szz, txz, and tyz are determined by numerical methods

(e.g., finite difference [28] or finite element methods [29,30]), which are beyond

the scope of this book. A few approximate methods have also been developed

[31,32]. For practical purposes, it may be sufficient to note the following.

1. Interlaminar stresses in laminated composites develop owing to mis-

match in the Poisson’s ratios and coefficients of mutual influence

between various layers. If there is no mismatch of these two engineering

properties, there are no interlaminar stresses regardless of the mismatch

in elastic and shear moduli.

2. Interlaminar stresses can be significantly high over a region equal to the

laminate thickness near the free edges of a laminate. The free edges may

be at the boundaries of a laminated plate, around a cutout or hole, or at

the ends of a laminated tube. As a result of high interlaminar stresses,
� 2007 by Taylor & Francis Group, LLC.
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stresses are normalized with respect to the average normal strain in the x direction.)

(Adapted from Pipes, R.B., Fibre Sci. Technol., 13, 49, 1980.)
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delamina tion (i. e., separation be tween various lami nas) may initiat e at

the free edges.

3. For an [ u=� u] an gle-ply laminate in uniaxial tensio n, txz is the most

signifi cant interlam inar stre ss at the interfaces of the u and –u lamin as.

Its magni tude and direction depend strong ly on the fiber orientati on

angle u (Figur e 3.54) . Furtherm ore, txz has a higher value at the ( u=� u)
interfaces in a clustered [un=� un] S lami nate than in an alternati ng

[(u=� u)n] S lamin ate.

4. For a [0 =90] type lamin ate in uniaxi al tensi on, the signi ficant interlam i-

nar stresses are szz and tyz. Their magnitude, locations, and directions

depen d strong ly on the stackin g seq uence (Figur e 3 .55). For exampl e,

the maximum szz at the midplane of a [0=90=90=0] laminate is tensile,

but maximum szz at the midplane of a [90=0=0=90] laminate is compres-

sive. Thus, delamination is likely in the [0=90=90=0] laminate.

5. For a general laminate, different combinations of txz, tyz, and szz may

be present between various laminas. For example, consider a

[45=�45=0=0=–45=45] laminate in uniaxial tension. In this case, all
TABLE 3.4
Effect of Stacking Sequence on the Critical Interlaminar Stresses

in Quasi-Isotropic [0=90=±45]S T-300 Carbon–Epoxy

Laminates under Uniaxial Tensiona

Max szz Max txz

Laminate Value Location Value Location

[90=45=0=�45]S �6.8 Midplane �6.9 08=�458

[0=�45=90=45]S 6.2 908 layer �6.6 908=458

[45=90=0=�45]S 6.6 908 layer 5.9 08=�458

[45=90=�45=0]S 6.9 908 layer �6.5 458=908

[45=0=90=�45]S 7.6 908 layer �5.8 908=�458

[45=0=�45=90]S 10.4 Midplane �6.0 08=�458

[90=0=�45=45]S �8.2 �458=458 9.0 �458=458

[90=45=�45=0]S �7.4 458=�458 �9.2 458=�458

[0=90=45=�45]S �7.6 458 layer �9.2 458=�458

[0=45=�45=90]S 10.0 Midplane �8.3 458=�458

[45=�45=90=0]S 9.0 08 layer �7.7 458=�458

[45=�45=0=90]S 10.9 Midplane �7.2 458=�458

Source: Adapted from Herakovich, C.T., J. Compos. Mater., 15, 336, 1981.

a The stress magnitudes are in ksi. To transform to MPa, multiply by 6.89. The (=) indicates

interface between adjacent layers.
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three inter laminar stress co mponents are present between the 45 =�45

layer s as well as the 0=� 45 layer s. However, the inter laminar shear stre ss

txz between adjacent 45 =�45 laminas is higher than that between adja-

cent 0 =�45 laminas. On the other ha nd, the interlam inar shear stre ss tyz
betw een 0=� 45 laminas is higher than that between 4 5=�45 lami nas.

How ever, the maximum szz oc curs at the lami nate midpl ane.

6. Stacki ng sequence has a strong influ ence on the nature, magnitud e, and

locat ion of inter laminar stresses . Thi s is de monst rated in Table 3.4.

Note that laminates with interspersed ±458 layers (separated by 08 or
908 layers) have lower txz than those with adjacent ±458 layers, and,

therefore, are less likely to delaminate. Among the laminates with
0
−1.0

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

N
or

m
al

iz
ed

 in
te

rla
m

in
ar

 s
he

ar
 a

nd
 n

or
m

al
 s

tr
es

se
s

La
m

in
at

e 
fr

ee
 e

dg
e

La
m

in
at

e 
ce

nt
er

lin
e

0.8

0.25 0.50

b

y

Carbon fiber–epoxy

(c) 
Glass fiber–epoxy

Carbon fiber–epoxy
(b) tyz

txz

Glass fiber–epoxy

Carbon fiber–epoxy

(45/−45/0/0/−45/45)

(a) szz
Glass fiber–epoxy

y /b

0.75 1.00

b

FIGURE 3.56 Distribution of interlaminar stresses in [±45=0]S laminates with carbon

and glass fibers in an epoxy matrix. (Adapted from Pipes, R.B., Fibre Sci. Technol., 13,

49, 1980.)
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intersp ersed ±45 8 layers, [90 =45 =0=� 45]S has the most favora ble s zz
unde r a uniaxi al tensi le load applie d on the laminates .

7. Mater ial propert ies also ha ve a strong infl uence on the inter laminar

shear stresses of a laminate, a s shown in Fig ure 3.56.
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PROBLEMS

P3.1. Calculate the longitudinal modulus, tensile strength, and failure strain

of a unidirectional continuous fiber composite containing 60 vol% of

T-800 carbon fibers (Ef¼ 294 GPa and sfu¼ 5.6 GPa) in an epoxy

matrix (Em¼ 3.6 GPa, smu¼ 105 MPa, and «mu¼ 3.1%). Compare

these values with the experimentally determined values of EL¼ 162

GPa, sLtu¼ 2.94 GPa, and «Ltu¼ 1.7%. Suggest three possible reasons

for the differences. What fraction of load is carried by the fibers in this

composite?
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P3.2. The material of a tension link is changed from a Ti-6A1-4V (aged)

titanium alloy to a unidirectional continuous GY-70 carbon fiber–

epoxy. The stress–strain curve of the epoxy resin is shown in the

following figure. Calculate the volume fraction of GY-70 fibers

required in the composite link to match the modulus of the titanium

alloy.
� 2007 by
In addition, estimate the tensile strength of the composite link and

compare its strength–weight ratio with that of the titanium alloy.
10

s (ksi)

e 
(Percent)

8

6

4

2

0
0 1 2

P3.3. To increase the longitudinal tensile modulus of a unidirectional con-

tinuous E-glass fiber-reinforced epoxy, some of the E-glass fibers are

replaced with T-300 carbon fibers. The total fiber volume fraction is

kept unchanged at 60%. Assume that the E-glass and T-300 carbon

fibers in the new composite are uniformly distributed.

1. Calculate the volume fraction of T-300 carbon fibers needed in the

new composite to double the longitudinal tensile modulus

2. Compare the longitudinal tensile strength of the new composite with

that of the original composite

3. Schematically compare the stress–strain diagrams of the fibers, the

matrix, and the composite

The tensile modulus and strength of the epoxy are 5 GPa and 50 MPa,

respectively. Assume that the tensile stress–strain diagram of the epoxy

is linear up to the point of failure.
Taylor & Francis Group, LLC.



P3.4. Consider a unidirectional continuous fiber lamina containing brittle,

elastic fibers in an elastic-perfectly plastic matrix. The stress–strain

diagrams for the fibers and the matrix are shown as follows:

Fiber

Matrix

e fuemy

smy

sfu

s

e

1. Calculate the longitudinal modulus of the composite lamina before

and after the matrix yielding

2. Calculate the failure stress for the lamina

3. Draw the stress–strain diagram for the lamina, and explain how it

may change if the matrix has the capacity for strain hardening

4. Compare the loads carried by the fibers before and after the matrix

yields

P3.5. Compare ET=EL vs. vf of a unidirectional continuous IM-7 carbon fiber-

reinforced epoxy and a unidirectional continuous fiber E-glass-reinforced

epoxy. Assume Em¼ 2.8 GPa. What observations will you make from

this comparison?

P3.6. A unidirectional continuous fiber lamina is subjected to shear stress as

shown in the following figure.Using the ‘‘slab’’model, show that the shear

modulus GLT of the lamina can be represented by the following equation.

1

GLT

¼ vf

Gf

þ (1� vf)

Gm

:
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Matrix

Fiber

Unidirectional continuous fiber-reinforced composite
and the equivalent slab model in in-plane shear loading

P3.7. Com pare the minimu m critical fiber aspect ratios for E-glas s, T-300

carbon , P-1 00 carbon, and Kevl ar 49 fiber s in an epoxy matrix. Ass ume

that the epo xy matrix beh aves as an elast ic, perfec tly plastic mate rial

with a tensile yield stren gth of 10,000 ps i.

P3.8. Com pare the fail ure stren gth of a uni directional alumi na whi sker

( lf= d f ¼ 200)-rei nforced epoxy with that of a unid irectional continuous

alumi na fiber -reinforce d epo xy. The tensi le stren gth of alumina whis-

kers is 1,000, 000 psi, but that of continuou s alumina fibers is 275,00 0

psi. Ass ume vf ¼ 0.5 an d t my ¼ 4,800 psi.

P3.9. A unidirectional discontinuous E-glass fiber-reinforced vinyl ester com-

posite is required to have a longitudinal tensile strength of 1000 MPa. The

fiber volume fraction is 60%. Fiber length and fiber bundle diameter are

12 and 1 mm, respectivel y. Dete rmine the fiber–mat rix interfaci al shear

stre ngth need ed to ach ieve the requir ed longit udinal tensi le strength.

The fiber and matrix propert ies are as foll ows:

Fib er: Mod ulus ¼ 72.4 GP a, tensile stren gth ¼ 2500 MPa

M atrix: M odulus ¼ 2.8 GPa, tensi le stre ngth ¼ 110 MPa .

P3.10. Deri ve an express ion for the critical fiber volume fract ion in a uni direc-

tional discontinuous fiber composite. On a plot of the composite tensile

strength vs. fiber volume fraction, indicate how the critical fiber volume

fraction depends on the fiber length.

P3.11. In derivi ng Equation 3.13, the interfaci al shear stress has been assum ed

constant. Instead, assume that

ti ¼ 3000 � 6000
x

lt
psi for 0 � x � 1

2
lt

¼ 0 for
1

2
lt � x � 1

2
lf
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(a) Show how the fiber stre ss varies with x, (b) Cal culate the critical

fiber lengt h, and (c) Calculat e the average fiber stre ss.

P3.12. Usi ng Equat ion 3.20, de rive an express ion for the average longitu dinal

stre ss in a discont inuou s fiber . Assu ming a simple square array of AS-1

carbo n fiber s in an epoxy matrix (Gm ¼ 1.01 GPa), plot the average

longit udinal fiber stress as a functio n of lf=df for vf ¼ 0.2, 0.4, and 0.6.

P3.13. The interfaci al she ar stre ngth of a fiber–mat rix joint is often measur ed

by a pullou t test. This involv es pulling a fiber bundle out of a resin disk

cast around a small lengt h of the bundl e. A typic al load–di splace ment

curve obtaine d in a pul lout test is sho wn.

1. Cal culate the average inter facial shear strength of the joint

2. W hat mu st the maximu m thickne ss of the resin disk be so that the

fiber bundle pulls out before it breaks within the disk?

Lo
ad

 (
P

)

Displacement

Fiber bundle

Resin disk

P

h

df

Pmax

P3.14. Usi ng the equ ations for the fiber pullout energi es (Table 3.2) show that

the maximum energy dissipation by fiber pullout occurs at lf¼ lc. How

do the fiber tensile strength and fiber–matrix interfacial strength affect

the pullout energy?

P3.15. Longitudinal tensile tests of single-fiber specimens containing AS-1

carbon fiber in epoxy and HMS-4 carbon fiber in epoxy produce

cleavage cracks (normal to the fiber direction) in the matrix adjacent

to the fiber rupture. However, the cleavage crack in the AS specimen is

longer than in the HMS specimen. Furthermore, the longitudinal tensile

strength of the AS specimen increases significantly with increasing

matrix ductility, but that of the HMS carbon specimen remains
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unaffected. Explain both phenomena in terms of the energy released on

fiber fracture.

P3.16. A fiber breaks at a location away from the matrix crack plane and pulls

out from the matrix with the opening of the matrix crack. Assuming

that the embedded fiber length l in the figure is less than half the critical

length lc, show that the work required to pull out the fiber is

Wpo ¼ p

2
df l

2ti,

where ti is the interfacial shear stress (assumed constant). What might

be expected if the embedded fiber length l is greater than 1
2
lc?

dy
ti

y

Fiber crack

Matrix

crack plane

P3.17. Using the rule of mixture approach as was done for longitudinal tensile

loading, derive equations for the longitudinal compressive modulus and

strength of a unidirectional continuous fiber composite for the follow-

ing cases:

1. «fc < «myc

2. «fc > «myc

where

«fc ¼ fiber ‘‘fracture’’ strain in compression

«myc¼matrix yield strain in compression
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Compare the rule of mixtures approach with Rosen’s microbuckling

approach for a carbon fiber-reinforced epoxy composite using the

following information: Efc¼ 517 GPa, «fc¼ 0.25%, Emc¼ 2.1 GPa,

«myc¼ 2.85%, nm¼ 0.39, and vf¼ 0.4, 0.5, 0.6.

P3.18. Under longitudinal compressive loads, a unidirectional continuous

fiber-reinforced brittle matrix composite often fails by longitudinal

matrix cracks running parallel to the fibers. Explain this failure mode

in terms of the stress and strain states in the matrix, and, derive an

equation for the longitudinal compressive strength of the composite for

this failure mode.

P3.19. A 500 mm long 3 25 mm wide 3 3 mm thick composite plate contains

55% by weight of unidirectional continuous T-300 carbon fibers in an

epoxy matrix parallel to its length.

1. Calculate the change in length, width, and thickness of the plate if it

is subjected to an axial tensile force of 75 kN in the length direction

2. Calculate the change in length, width, and thickness of the plate if it

subjected to an axial tensile force of 75 kN in the width direction

Assume that the density, modulus, and Poisson’s ratio of the epoxy

matrix are 1.25 g=cm3, 3.2 GPa, and 0.3, respectively.

P3.20. A round tube (outside diameter¼ 25 mm, wall thickness¼ 2.5 mm, and

length¼ 0.5 m) is made by wrapping continuous AS-4 carbon fiber-

reinforced epoxy layers, all in the hoop direction. The fiber volume

fraction is 60%.

1. Determine the change in length and diameter of the tube if it is

subjected to an axial tensile load of 2 kN

2. Determine the maximum axial tensile load that can be applied on the

tube?

3. Suppose the tube is used in a torsional application. What will be its

torsional stiffness (torque per unit angle of twist)?

The modulus, tensile strength, and Poisson’s ratio of the epoxy matrix

are 5 GPa, 90 MPa, and 0.34, respectively.

P3.21. The normal stress sxx of 100 MPa and shear stress txy of 25 MPa are

applied on a unidirectional angle-ply lamina containing fibers at an

angle u as shown in the figure. Determine the stresses in the principal

material directions for u¼ 08, 158, 308, 458, 608, 758, and 908. Do these

stresses remain the same (a) if the direction for the shear stress txy is

reversed and (b) if the fiber orientation angles are reversed?
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y

sxxsxx

txy

txy

x

2

1

q

P3.22. A tubular specim en contai ning fibers at a helix angle a wi th the tube
axis is test ed in a combined tensi on–tors ion test. Determi ne the ratio of

sxx an d t xy as well as the requir ed he lix angle a that will create biaxi al
princi pal stresses s11 and s 22 of ratio m . No te that the shear stress t 12 in
the princip al stress direction s is zero.

P3.23. A cyli ndrical oxygen tank made of an E-glas s fiber -reinforce d epoxy

con tains ox ygen at a pressur e of 10 MPa. The tank has a mean diame ter

of 300 mm and a wall thickne ss of 8.9 mm. The fiber orient ation an gles

in various layer s of the tank wall are ±55 8 with its longit udinal axis.
Negl ecting the inter action be tween the layer s, calcul ate the stre sses in

the princip al mate rial directions for both fiber orientati on angles .

P3.24. The following tensile modulus values were experimentally determined for

a unidir ection al carbon fiber -reinforce d PEEK composi te (vf ¼ 0.62) :
Fiber orientation

angle (degrees)
� 2007 by Taylor & Francis Gro
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5 
10 
30 
45 
60 
75 
90
Modulus (GPa) 
135.2 
113.4 
72 
25.4 
11.5 
9.65 
8.36 
9.20
Plot the data as a function of the fiber orientation angle and compare

them with the theoretical predictions assuming Ef ¼ 230 GPa, nf ¼ 0.28,

Em ¼ 3.45 GPa, and nm ¼ 0.4. Verify the valid ity of Equat ion 3.36.

P3.25. Calculate the elastic constants Exx, Eyy, nxy, nyx, and Gxy for a T-300

carbon fiber-reinforced epoxy lamina. The fiber orientation angle is 308,



and the fiber volume fraction is 0.6. For the epoxy matrix, use

Em¼ 2.07 GPa and nm¼ 0.45.

P3.26. A unidirectional discontinuous fiber lamina contains T-300 carbon

fiber in an epoxy matrix. The fiber aspect ratio (lf=df) is 50, and the

fiber volume fraction is 0.5. Determine the elastic constants E11, E22,

n12, n21, and G12 for the lamina. For the matrix, use Em¼ 2.07 GPa and

nm¼ 0.45. If the fibers are misaligned by 108 with the uniaxial loading

direction, how would these elastic constants change?

P3.27. The material used in the transmission gears of an automobile is an

injection-molded nylon 6,6 containing 20 wt% of chopped randomly

oriented E-glass fibers. The tensile modulus of this material is 1.25 3
106 psi.

In a more demanding application for the transmission gears, the

modulus of the material must be 50% higher. An engineer wants to

accomplish this by replacing the E-glass fibers with carbon fibers. If the

fiber weight fraction remains the same, calculate the length of carbon

fibers that must be used to obtain the desired modulus.

Use the following information in your calculations. (a) For the

carbon fiber, rf¼ 1.8 g=cm3, Ef¼ 30 3 106 psi, and df¼ 0.0006 in. and

(b) for nylon 6,6, rm¼ 1.14 g=cm3 and Em¼ 0.4 3 106 psi.

P3.28. A unidirectional discontinuous E-glass fiber-reinforced polyphenylene

sulfide (PPS) composite needs to be developed so that its longitudinal

tensile modulus is at least 25 GPa and its longitudinal tensile strength is

at least 950 MPa. Through the use of proper coupling agent on the glass

fiber surface, it would be possible to control the interfacial shear

strength between 10 and 30 MPa. The fiber bundle diameter is 0.30 mm

and the fiber weight fraction is 60%. Determine the fiber length required

for this composite.

The matrix properties are: rm¼ 1.36 g=cm3, Em¼ 3.5 GPa, and

Smu¼ 165 MPa.

P3.29. A unidirectional continuous fiber lamina contains carbon fibers in

an epoxy matrix. The fiber volume fraction is 0.55. The coefficient

of longitudinal thermal expansion for the lamina is measured as

�0.61 3 10�6 per 8C, and that for the matrix at the same temperature

is 54 3 10�6 per 8C. Estimate the coefficient of thermal expansion for

the fiber. The longitudinal modulus of the lamina is 163.3 GPa and the

matrix modulus is 3.5 GPa.

P3.30. Coefficients of axial and transverse thermal expansion of 08 unidirec-
tional Spectra 900 fiber-reinforced epoxy composite (vf¼ 60%) are
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�9 3 10�6 and 100 3 10�6 per 8C, respectively. For the same compos-

ite, the major Poisson’s ratio is 0.32. The matrix properties are Em¼ 2.8

GPa, nm¼ 0.38, and am¼ 60 3 10�6 per 8C. Using these values, esti-

mate (a) the Poisson’s ratio of the fiber, (b) coefficients of thermal

expansion of the fiber in longitudinal and radial directions, and (c)

the fiber volume fraction at which the composite has a zero CTE.

P3.31. A 1 m long thin-walled composite tube has a mean diameter of 25 mm

and its wall thickness is 2 mm. It contains 60 vol% E-glass fibers in a

vinyl ester matrix. Determine the change in length and diameter of the

tube if the temperature is increased by 508C. The matrix properties are

Em¼ 3.5 GPa, nm¼ 0.35, am¼ 70 3 10�6 per 8C.

P3.32. An E-glass fiber–epoxy laminate has the following construction:

[0=30=� 30=45=� 45=90=� 45=45=� 30=30=0]:

The following are known: vf¼ 0.60, Ef¼ 10 3 106 psi, Em¼ 0.34 3 106

psi, nf¼ 0.2, nm¼ 0.35, af¼ 53 10�6 per 8C, and am¼ 603 10�6 per 8C.
Determine the coefficients of thermal expansion in the x and y directions

for each lamina.

P3.33. Consider a unidirectional continuous fiber lamina. Applying s11, s22,

and t12 separately, show that the engineering elastic constants E11, E22,

n12, n21, and G12 can be expressed in terms of the elements in the lamina

stiffness matrix as

E11 ¼ Q11 �Q2
12

Q22

,

E22 ¼ Q22 �Q2
12

Q11

,

n12 ¼ Q12

Q22

,

n21 ¼ Q12

Q11

,

G12 ¼ Q66:

P3.34. A T-300 carbon fiber–epoxy lamina (vf¼ 0.60) with a fiber orientation

angle of 458 is subjected to a biaxial stress state of sxx¼ 100 MPa and

syy¼�50 MPa. Determine (a) the strains in the x�y directions, (b) the

strains in the 1–2 directions, and (c) the stresses in the 1–2 directions.

Use the material property data of Example 3.6.
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P3.35. Plot and compare the coefficients of mutual influence as functions of

fiber orientation angle u in T-300 carbon fiber–epoxy laminas contain-

ing fibers at the þu and �u orientations. For what fiber orientation

angle u do the coefficients of mutual influence have the maximum

values? Use the material property data of Example 3.6.

P3.36. The elastic constants of a 08 unidirectional carbon fiber-reinforced

PEEK lamina are E11¼ 132.2 GPa, E22¼ 9.2 GPa, G12¼ 4.90 GPa,

and n12¼ 0.35. Write the compliance and stiffness matrices for the

same material if the fiber orientation angle is (a) 308, (b) �308, (c) 608,
and (d) 908.

P3.37. A T-300 carbon fiber–epoxy lamina (vf¼ 0.6) is subjected to a uniaxial

normal stress sxx. Compare the strains in the x�y directions as well as

in the 1–2 directions for u¼ 08, þ458, �458, and 908. Use the material

property data of Example 3.6 and Problem P3.35.

P3.38. Compare the stiffness matrices of three-layered [0=60=�60],

[�60=0=60], and [�60=60=�60] laminates. Which of these laminates

can be considered quasi-isotropic, and why? Assume that each layer

has the same thickness t0.

P3.39. Compare the stiffness matrices of two-layered, three-layered, and four-

layered angle-ply laminates containing alternating u and �u laminas.

Assume that each layer has the same thickness t0.

P3.40. Show that the extensional stiffness matrices for quasi-isotropic [0=
±60]S, [±60=0]S, and [60=0=�60]S laminates are identical, while their

bending stiffness matrices are different.

P3.41. The modulus of a [0m=90n] laminate can be calculated using the follow-

ing ‘‘averaging’’ equation.

Exx ¼ m

mþ n
E11 þ n

mþ n
E22:

Suppose a [0=90=0]3S laminate is constructed using continuous T-300

fibers in an epoxy matrix. Verify that the modulus of the laminate

calculated by the averaging equation is the same as calculated by the

lamination theory. Use the material properties given in Example 3.6.

P3.42. The [A] matrix for a boron fiber–epoxy [±45]S laminate of thickness h is
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[A] ¼
0:99h 0:68h 0

0:68h 0:99h 0

0 0 0:72h

2
4

3
5� 107 lb=in:

1. Calculate the engineering elastic constants for the laminate

2. Calculate the strains in the þ458 and �458 laminas owing to average

laminate stresses Nxx=h¼Nyy=h¼ p and Nxy=h¼ 0. Assume that

each lamina has a thickness of h=4

P3.43. The elastic properties of unidirectional carbon fiber–epoxy lamina are

E11¼ 181.3 GPa, E22¼ 10.27 GPa, G12¼ 7.17 GPa, and n12¼ 0.28.

Compare the engineering elastic constants of the [±45=0]S and

[±45=0=90]S laminates manufactured from this carbon fiber–epoxy

material.

P3.44. Show that the shear modulus of a thin [±45]nS plate is given by

Gxy ¼ 1

4

E11 þ E22 � 2n12E22

1� n12n21

� �
:

P3.45. Show that the elements in the bending stiffness matrix of [0=�60=60]S
and [0=90=45=�45]S laminates are given by

Dij ¼ h3

12

(�Qij)60� þ 7(�Qij)�60� þ 19(�Qij)0�

27

� �

and

Dij ¼ h3

12

(�Qij)�45� þ 7(�Qij)45� þ 19(�Qij)90� þ 37(�Qij)0�

64

� �
,

respectively. Here, h represents the laminate thickness.

P3.46. A torsional momentMxy applied to a symmetric laminated plate creates

a bending curvature as well as a twisting curvature. Find an expression

for the additional bending moment Mxx that must be applied to the

plate to create a pure twisting curvature kxy.

P3.47. An ARALL-4 laminate contains three layers of 2024-T8 aluminum

alloy sheet (each 0.3 mm thick) and two layers of 08 unidirectional

Kevlar 49-epoxy in an alternate sequence, [A1=0K=A1=0K=A1]. Elastic

properties of the aluminum alloy are E¼ 73 GPa and n¼ 0.32, whereas
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those for the Kevlar layers are E11¼ 56.2 GPa, E22¼ 4.55 GPa,

n12¼ 0.456, and G12¼ 1.85 GPa. The nominal thickness of the laminate

is 1.3 mm. Calculate the elastic properties of the ARALL-4 laminate.

P3.48. Using the basic ply level properties of Example 3.6, determine the

stresses in each layer of a [±45]32S laminate subjected to Nxx¼ 0.1

N=mm. The ply thickness is 0.013 mm.

P3.49. Using the material properties in Example 3.16, determine the residual

thermal stresses in each lamina of (i) a [902=0]S and (ii) a [0=90=0]S
laminate. Both laminates are slowly cooled down from a curing tem-

perature of 1908C to 238C.

P3.50. The following thermomechanical properties are known for a carbon

fiber–epoxy composite: E11¼ 145 GPa, E22¼ 9 GPa, G12¼ 4.5 GPa,

n12¼ 0.246, a11¼�0.25 3 10�6 per 8C, and a22¼ 34.1 3 10�6 per 8C.
Determine the coefficients of thermal expansion of a [45=�45]S lamin-

ate of this material.

P3.51. Using the ply level thermomechanical properties given in Problem 3.49,

determine the coefficients of thermal expansion of a [0=45=�45=90]S
laminate of this material.

P3.52. An approximate expression for the maximum interlaminar shear stress

txz in a [u=�u]nS class of laminates* is

Max txz ¼ 1

2n

A22
�Q16 � A12

�Q26

A11A22 � A2
12

� �
Nxx

h
,

where Nxx=h is the average tensile stress on the laminate in the x

direction.
* J.M. W

posite M

� 2007 by
Using this expression, compare the maximum interlaminar shear

stress txz in [15=�15]8S and [45=�45]8S T-300 carbon–epoxy laminates.

Use Example 3.6 for the basic material property data.
P3.53. Following is an approximate expression* for the maximum interlami-

nar normal stress, szz, at an interface position z from the midplane of a

symmetric [0=90]S type laminate:
hitney, I.M. Daniel, and R.B. Pipes, Experimental Mechanics of Fiber Reinforced Com-

aterials, Society for Experimental Mechanics, Brookfield Center, CT (1984).
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Maxszz(z) ¼ 90�sxx

7Ah

X
j

A22
�Q12

	 

j
�A12

�Q22

	 

j

h i
tj(hj � z),

where

sxx¼ applied normal stress in the x direction

A ¼A11A22 � A12
2

h ¼ laminate thickness

hj ¼ distance from the midplane of the laminate to the midplane of

the jth lamina

tj ¼ thickness of the jth lamina

and the summation extends over all the laminas above the interface

position z. This equation is valid for thin laminas in which the variation

of in-plane stresses is assumed to be negligible over the thickness of each

lamina.

Using this approximate expression, compare the maximum inter-

laminar normal stresses at the midplanes of [0=90=90=0] and

[90=0=0=90] laminates.
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