3 Mechanics

The mechanics of materials deal with stresses, strains, and deformations in
engineering structures subjected to mechanical and thermal loads. A common
assumption in the mechanics of conventional materials, such as steel and
aluminum, is that they are homogeneous and isotropic continua. For a homo-
geneous material, properties do not depend on the location, and for an iso-
tropic material, properties do not depend on the orientation. Unless severely
cold-worked, grains in metallic materials are randomly oriented so that, on a
statistical basis, the assumption of isotropy can be justified. Fiber-reinforced
composites, on the other hand, are microscopically inhomogeneous and non-
isotropic (orthotropic). As a result, the mechanics of fiber-reinforced composites
are far more complex than that of conventional materials.

The mechanics of fiber-reinforced composite materials are studied at
two levels:

1. The micromechanics level, in which the interaction of the constituent
materials is examined on a microscopic scale. Equations describing the
elastic and thermal characteristics of a lamina are, in general, based on
micromechanics formulations. An understanding of the interaction
between various constituents is also useful in delineating the failure
modes in a fiber-reinforced composite material.

2. The macromechanics level, in which the response of a fiber-reinforced
composite material to mechanical and thermal loads is examined on a
macroscopic scale. The material is assumed to be homogeneous. Equa-
tions of orthotropic elasticity are used to calculate stresses, strains, and
deflections.

In this chapter, we look into a few basic concepts as well as a number of simple
working equations used in the micro- and macromechanics of fiber-reinforced
composite materials. Detailed derivations of these equations are given in the
references cited in the text.
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3.1 FIBER-MATRIX INTERACTIONS IN A UNIDIRECTIONAL
LAMINA

We consider the mechanics of materials approach [1] in describing fiber—matrix
interactions in a unidirectional lamina owing to tensile and compressive load-
ings. The basic assumptions in this vastly simplified approach are as follows:

Fibers are uniformly distributed throughout the matrix.

Perfect bonding exists between the fibers and the matrix.

The matrix is free of voids.

The applied force is either parallel to or normal to the fiber direction.
The lamina is initially in a stress-free state (i.e., no residual stresses are
present in the fibers and the matrix).

6. Both fibers and matrix behave as linearly elastic materials.

ARl e

A review of other approaches to the micromechanical behavior of a composite
lamina is given in Ref. [2].

3.1.1 LoNGITUDINAL TENSILE LOADING

In this case, the load on the composite lamina is a tensile force applied parallel
to the longitudinal direction of the fibers.

3.1.1.1 Unidirectional Continuous Fibers

Assuming a perfect bonding between fibers and matrix, we can write
& = &q = &, 3.1

where &, £, and & are the longitudinal strains in fibers, matrix, and compos-
ite, respectively (Figure 3.1).

Since both fibers and matrix are elastic, the respective longitudinal stresses
can be calculated as

ot = Erer = Exec, (3.2)

Om = Enenm = Eneéc. (3.3)

Comparing Equation 3.2 with Equation 3.3 and noting that E; > E,, we
conclude that the fiber stress o is always greater than the matrix stress oy,.

The tensile force P, applied on the composite lamina is shared by the fibers
and the matrix so that

P, = P; + Py, 3.4
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FIGURE 3.1 Longitudinal tensile loading of a unidirectional continuous fiber lamina.

Since force =stress X area, Equation 3.4 can be rewritten as

0 Ac = o As + o An

or
f Am
O.=0r—+0pm—oi, 3.5
[¢ f Ac + o Ac ( )
where
o. =average tensile stress in the composite
Ay =net cross-sectional area for the fibers
A, = net cross-sectional area for the matrix
A. = A; + A
. A A . .
Since v¢ = Zfand v = (1 — vp) = ==, Equation 3.5 gives
A A
O = 0¢Vf + OpVm = o¢Ve + om(1 — vy). 3.6)

Dividing both sides of Equation 3.6 by &, and using Equations 3.2 and 3.7, we
can write the longitudinal modulus for the composite as

EL = Eyve + EqnVin = Epve + En(1 — vi) = Eq + vi(Er — En). (3.7
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Equation 3.7 is called the rule of mixtures. This equation shows that the
longitudinal modulus of a unidirectional continuous fiber composite is inter-
mediate between the fiber modulus and the matrix modulus; it increases linearly
with increasing fiber volume fraction; and since E; > E,,, it is influenced more
by the fiber modulus than the matrix modulus.

The fraction of load carried by fibers in longitudinal tensile loading is

& - OfVf _ Efo (3 8)

P. opvi+om(l —ve)  Epve+ En(1 — vy)

Equation 3.8 is plotted in Figure 3.2 as a function of 5—* ratio and fiber volume

fraction. In polymer matrix composites, the fiber modulus is much greater than
the matrix modulus. In most polymer matrix composites, % £t > 10. Thus, even
for v=0.2, fibers carry >70% of the composite load. Increasmg the fiber
volume fraction increases the fiber load fraction as well as the composite
load. Although cylindrical fibers can be theoretically packed to almost 90%
volume fraction, the practical limit is close to ~80%. Over this limit, the matrix
will not be able to wet the fibers.

In general, the fiber failure strain is lower than the matrix failure strain, that
18, &y < €mu. Assuming all fibers have the same tensile strength and the tensile
rupture of fibers immediately precipitates a tensile rupture of the composite, the
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FIGURE 3.2 Fraction of load shared by fibers in longitudinal tensile loading of a
unidirectional continuous fiber lamina.
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longitudinal tensile strength o7y (, of a unidirectional continuous fiber composite
can be estimated as

OLw = oV + ol (1 — vyp), (3.9

where
op, = fiber tensile strength (assuming a single tensile strength value for all
fibers, which is not actually the case)
ol =matrix stress at the fiber failure strain, that is, at e, = &g, (Figure 3.1)

For effective reinforcement of the matrix, that is, for o, > oy, the fiber
volume fraction in the composite must be greater than a critical value. This
critical fiber volume fraction is calculated by setting oy, = 0my. Thus, from
Equation 3.9,

_ ]
%. (3.10a)

Critical vf =

Equation 3.9 assumes that the matrix is unable to carry the load transferred to
it after the fibers have failed, and therefore, the matrix fails immediately after
the fiber failure. However, at low fiber volume fractions, it is possible that the
matrix will be able to carry additional load even after the fibers have failed. For
this to occur,

Tmu(l = vp) > oy + ol (1 — vyp),
from which the minimum fiber volume fraction can be calculated as

/
Omu — O

Minimum v¢ = (3.10b)

- -
Omu + Ofu — On

If the fiber volume fraction is less than the minimum value given by Equation
3.10b, the matrix will continue to carry the load even after the fibers have failed
at or=o7p,. As the load on the composite is increased, the strain in the matrix
will also increase, but some of the load will be transferred to the fibers. The
fibers will continue to break into smaller and smaller lengths, and with decreas-
ing fiber length, the average stress in the fibers will continue to decrease.
Eventually, the matrix will fail when the stress in the matrix reaches o,
causing the composite to fail also. The longitudinal tensile strength of the
composite in this case will be o, (1—vy).

Figure 3.5 shows the longitudinal strength variation with fiber volume
fraction for a unidirectional continuous fiber composite containing an elastic,
brittle matrix. l'able 3.1 shows critical fiber volume fraction and minimum fiber
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FIGURE 3.3 Longitudinal tensile strength variation with fiber volume fraction in a
unidirectional continuous fiber composite in which the matrix failure strain is greater
than the fiber failure strain.

volume fraction for unidirectional continuous fiber-reinforced epoxy. For all
practical applications, fiber volume fractions are much greater than these values.

There are other stresses in the fibers as well as the matrix besides the
longitudinal stresses. For example, transverse stresses, both tangential and
radial, may arise due to the difference in Poisson’s ratios, v and vy, between
the fibers and matrix. If vy < vy, the matrix tends to contract more in the
transverse directions than the fibers as the composite is loaded in tension in the
longitudinal direction. This creates a radial pressure at the interface and, as a
result, the matrix near the interface experiences a tensile stress in the tangential

TABLE 3.1
Critical and Minimum Fiber Volume Fractions in E-glass, Carbon,
and Boron Fiber-Reinforced Epoxy Matrix* Composite

Property E-Glass Fiber Carbon Fiber Boron Fiber
E; 10 X 10° psi 30 X 10° psi 55 % 10° psi
o, 250,000 psi 400,000 psi 450,000 psi
& = Ffu 0.025 0.0133 0.0082

f
om=En & 2,500 psi 1,330 psi 820 psi
Critical vy 3.03% 2.17% 2.04%
Minimum v¢ 2.9% 2.12% 2%

4 Matrix properties: o, = 10,000 psi, E, =0.1 X 10° psi, and &4,,, =0.1.

© 2007 by Taylor & Francis Group, LLC.



direction and a compressive stress in the radial direction. Tangential and radial
stresses in the fibers are both compressive. However, all these stresses are
relatively small compared with the longitudinal stresses.

Another source of internal stresses in the lamina is due to the difference in
thermal contraction between the fibers and matrix as the lamina is cooled down
from the fabrication temperature to room temperature. In general, the matrix
has a higher coefficient of thermal expansion (or contraction), and, therefore,
tends to contract more than the fibers, creating a “squeezing” effect on the
fibers. A three-dimensional state of residual stresses is created in the fibers as
well as in the matrix. These stresses can be calculated using the equations given
in Appendix A.2.

3.1.1.2 Unidirectional Discontinuous Fibers

Tensile load applied to a discontinuous fiber lamina is transferred to the fibers
by a shearing mechanism between fibers and matrix. Since the matrix has a
lower modulus, the longitudinal strain in the matrix is higher than that in
adjacent fibers. If a perfect bond is assumed between the two constituents,
the difference in longitudinal strains creates a shear stress distribution across
the fiber-matrix interface. Ignoring the stress transfer at the fiber end cross
sections and the interaction between the neighboring fibers, we can calculate
the normal stress distribution in a discontinuous fiber by a simple force equi-
librium analysis (Figure 3.4).

Consider an infinitesimal length dx at a distance x from one of the fiber
ends (Figure 3.4). The force equilibrium equation for this length is

(; dfz) (o¢ + doy) — (; dfz)af — (wdy dx)T =0,

: li: T O'f+d0'f
n

Longitudinal
direction

|
l oy

Pc df

FIGURE 3.4 Longitudinal tensile loading of a unidirectional discontinuous fiber lamina.
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which on simplification gives

doy 4t

—_— 3.11
o d (3.11)

where
or=longitudinal stress in the fiber at a distance x from one of its ends
T =shear stress at the fiber-matrix interface
dr = fiber diameter

Assuming no stress transfer at the fiber ends, that is, oy=0 at x=0, and
integrating Equation 3.11, we determine the longitudinal stress distribution in
the fiber as

O'f:ij 7 dx. (3.12)
dr Jo

For simple analysis, let us assume that the interfacial shear stress is constant
and is equal to 7;. With this assumption, integration of Equation 3.12 gives

47'1

of = —X.
dr

(3.13)

From Equation 3.13, it can be observed that for a composite lamina
containing discontinuous fibers, the fiber stress is not uniform. According to
Equation 3.13, it is zero at each end of the fiber (i.e., x = 0) and it increases linearly
with x. The maximum fiber stress occurs at the central portion of the fiber
(Figure 3.5). The maximum fiber stress that can be achieved at a given load is

k

o (3.14)

(Uf)max =2

where x=1//2=1load transfer length from each fiber end. Thus, the load
transfer length, /, is the minimum fiber length in which the maximum fiber
stress is achieved.

For a given fiber diameter and fiber-matrix interfacial condition, a critical
fiber length /. is calculated from Equation 3.14 as

_ Ony

. =—d, 1
/ 2Tidf (3.15)

where
o, = ultimate tensile strength of the fiber
l. =minimum fiber length required for the maximum fiber stress to be equal
to the ultimate tensile strength of the fiber at its midlength (Figure 3.6t)
7; =shear strength of the fiber—matrix interface or the shear strength of the
matrix adjacent to the interface, whichever is less
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FIGURE 3.5 Idealized (a) longitudinal stress and (b) shear stress distributions along a
discontinuous fiber owing to longitudinal tensile loading.
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FIGURE 3.6 Significance of critical fiber length on the longitudinal stresses of a discon-
tinuous fiber.
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From Equations 3.14 and 3.15, we make the following observations:

1. For /i < [, the maximum fiber stress may never reach the ultimate fiber
strength (Figure 3.6a). In this case, either the fiber—matrix interfacial
bond or the matrix may fail before fibers achieve their potential
strength.

2. For It > [, the maximum fiber stress may reach the ultimate fiber
strength over much of its length (Figure 3.6¢c). However, over a distance
equal to /./2 from each end, the fiber remains less effective.

3. For effective fiber reinforcement, that is, for using the fiber to its
potential strength, one must select /> /..

4. For a given fiber diameter and strength, /. can be controlled by increas-
ing or decreasing 7. For example, a matrix-compatible coupling agent
may increase 7;, which in turn decreases /.. If /. can be reduced relative
to /r through proper fiber surface treatments, effective reinforcement can
be achieved without changing the fiber length.

Although normal stresses near the two fiber ends, that is, at x < /;/2, are lower
than the maximum fiber stress, their contributions to the total load-carrying
capacity of the fiber cannot be completely ignored. Including these end stress
distributions, an average fiber stress is calculated as

1
&f——J oy dx,
k Jo
which gives
or = (0%) 1 —i (3.16)
Ot = (Of)max 21f . .

] A
Note that the load transfer length for [y < . is Ef, whereas that for /r > [ is >

For Iy > [, the longitudinal tensile strength of a unidirectional discontinu-
ous fiber composite is calculated by substituting (o) max = o1, and [ = [, (Figure
3.6¢). Thus,

OLw = OVt + 0-]/-“(1 - Vf)

=oqn|l —£ vi+ 0o (1 —wvy). (3.17)
2l m

In Equation 3.17, it is assumed that all fibers fail at the same strength level of

ot Comparison of Equations 3.9 and 3.17 shows that discontinuous fibers
always strengthen a matrix to a lesser degree than continuous fibers. However,
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FIGURE 3.7 Variation in the longitudinal strength of a unidirectional discontinuous
fiber composite as a function of fiber length. (After Hancock, P. and Cuthbertson, R.C.,
J. Mater. Sci., 5, 762, 1970.)

for Iy > 51, strengthening greater than 90% can be achieved even with discon-
tinuous fibers. An example is shown in Figure 3.7.

For [y < [, there will be no fiber failure. Instead, the lamina fails primarily
because of matrix tensile failure. Since the average tensile stress in the fiber is

/ o . o
Or = Ti d—f, the longitudinal tensile strength of the composite is given by
f

/
OLw = Tio Vi + ol — Vi), (3.18)
dy

where o, is the tensile strength of the matrix material.

A simple method of determining the fiber—matrix interfacial shear strength
is called a single fiber fragmentation test, which is based on the observation that
fibers do not break if their length is less than the critical value. In this test, a
single fiber is embedded along the centerline of a matrix tensile specimen
(Figure 3.8). When the specimen is tested in axial tension, the tensile stress is
transferred to the fiber by shear stress at the fiber-matrix interface. The
embedded fiber breaks when the maximum tensile stress in the fiber reaches
its tensile strength. With increased loading, the fiber breaks into successively
shorter lengths until the fragmented lengths become so short that the maximum
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FIGURE 3.8 Single fiber fragmentation test to determine fiber-matrix interfacial shear
strength.

tensile stress can no longer reach the fiber tensile strength. The fragmented fiber
lengths at this point are theoretically equal to the critical fiber length, /.. How-
ever, actual (measured) fragment lengths vary between /./2 and /.. Assuming a
uniform distribution for the fragment lengths and a mean value of / equal to
0.75[., Equation 3.15 can be used to calculate the interfacial shear strength 7;, [3]:

_ 3droryy

im — 1 ) 319
T Y (3.19)

where / is the mean fragment length.

Equation 3.13 was obtained assuming that the interfacial shear stress 7; is a
constant. The analysis that followed Equation 3.13 was used to demonstrate
the importance of critical fiber length in discontinuous fiber composites. How-
ever, strictly speaking, this analysis is valid only if it can be shown that 7; is a
constant. This will be true in the case of a ductile matrix that yields due to high
shear stress in the interfacial zone before the fiber-matrix bond fails and then
flows plastically with little or no strain hardening (i.e., the matrix behaves as a
perfectly plastic material with a constant yield strength as shown in Figure 3.9).
When this occurs, the interfacial shear stress is equal to the shear yield strength of
the matrix (which is approximately equal to half of its tensile yield strength)
and remains constant at this value. If the fiber—matrix bond fails before matrix
yielding, a frictional force may be generated at the interface, which transfers the
load from the matrix to the fibers through slippage (sliding). In a polymer
matrix composite, the source of this frictional force is the radial pressure on the
fiber surface created by the shrinkage of the matrix as it cools down from the
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FIGURE 3.9 Stress—strain diagrams of (a) an elastic-perfectly plastic material and (b) an

elastic-strain hardening material.

curing temperature. In this case, the interfacial shear stress is equal to the

product of the coefficient of sliding friction and the radial pressure.

When the matrix is in the elastic state and the fiber-matrix bond is still
unbroken, the interfacial shear stress is not a constant and varies with x.
Assuming that the matrix has the same strain as the composite, Cox [4] used
a simple shear lag analysis to derive the following expression for the fiber stress

distribution along the length of a discontinuous fiber:

I
cosh,B(é—x) /
f
- \= 7 < x < 4
1 Bl for()fxfz,

h—
COS B

ot = Epey

where
op=longitudinal fiber stress at a distance x from its end
E;=fiber modulus
&1 =longitudinal strain in the composite

2Gm
B= 5
7 In (R/7r)
where

G, = matrix shear modulus
rp = fiber radius
2R = center-to-center distance from a fiber to its nearest neighbor
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FIGURE 3.10 (a) Normal stress distribution along the length of a discontinuous fiber
according to Equation 3.20 and (b) shear stress distribution at the fiber-matrix
interface according to Equation 3.21.

Using Equations 3.11 and 3.20, shear stress at the fiber-matrix interface is
obtained as:

sinh 8 (%f — x)
Bl -

T = = Ete1Bry
2 cosh—
2

(3.21)

Equations 3.20 and 3.21 are plotted in Figure 3.10 for various values of B/ It
shows that the fiber stress builds up over a shorter load transfer length if B/ is
high. This means that not only a high fiber length to diameter ratio (called the
fiber aspect ratio) but also a high ratio of G,/ E¢ is desirable for strengthening a
discontinuous fiber composite.

Note that the stress distribution in Figure 3.5 or 3.10 does not take into
account the interaction between fibers. Whenever a discontinuity due to fiber
end occurs, a stress concentration must arise since the tensile stress normally
assumed by the fiber without the discontinuity must be taken up by the
surrounding fibers. As a result, the longitudinal stress distribution for each
fiber may contain a number of peaks.
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EXAMPLE 3.1

A unidirectional fiber composite contains 60 vol% of HMS-4 carbon fibers in an
epoxy matrix. Using the fiber properties in Table 2.1 and matrix properties as
E=3.45 GPa and o,y = 138 MPa, determine the longitudinal tensile strength of
the composite for the following cases:

1. The fibers are all continuous.
2. The fibers are 3.17 mm long and 7; is (i) 4.11 MPa or (ii) 41.1 MPa.

SoLUTION

Since HMS-4 carbon fibers are linearly elastic, their failure strain is

Oty 2480 MPa

— =——7——=0.0072.
E; 345 x 10° MPa ’

Efu =

Assuming that the matrix behaves in an elastic-perfectly plastic manner, its yield
strain can be calculated as

Omy 138 MPa
E,  3.45x 103 MPa

Emy =

=0.04.

Thus, the fibers are expected to break before the matrix yields and the stress in the
matrix at the instance of fiber failure is

0! = Enen = (3.45 x 10° MPa) (0.0072) = 24.84 MPa.

1. Using Equation 3.9, we get

oL = (2480)(0.6) + (24.84)(1 — 0.6)
= 1488 4 9.94 = 1497.94 MPa.

2. (1) When 1;=4.11 MPa, the critical fiber length is

2480 MPa

2480 MPa L
e = D@11 Mpay & X 1077 mm) = 2414 mm.

Since /; > ., we can use Equation 3.17 to calculate

2414
@)@3.17)
=921.43 +9.94 = 931.37 MPa.

OLw = (2480) [1 }(0.6) +(24.84)(1 — 0.6)

(if) When 7, =41.1 MPa, [.=0.2414 mm. Thus, /f > ..
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Equation 3.17 now gives oy, = 1441.28 MPa.

This example demonstrates that with the same fiber length, it is possible to
achieve a high longitudinal tensile strength for the composite by increasing the
interfacial shear stress. Physically, this means that the bonding between the fibers
and the matrix must be improved.

3.1.1.3 Microfailure Modes in Longitudinal Tension

In deriving Equations 3.9 and 3.17, it was assumed that all fibers have equal
strength and the composite lamina fails immediately after fiber failure. In
practice, fiber strength is not a unique value; instead it follows a statistical
distribution. Therefore, it is expected that a few fibers will break at low stress
levels. Although the remaining fibers will carry higher stresses, they may not
fail simultaneously.

When a fiber breaks (Figure 3.11), the normal stress at each of its broken
ends becomes zero. However, over a distance of /./2 from each end, the stress
builds back up to the average value by shear stress transfer at the fiber—-matrix
interface (Figure 3.11c). Additionally, the stress states in a region close to the
broken ends contain

1. Stress concentrations at the void created by the broken fiber
2. High shear stress concentrations in the matrix near the fiber ends
3. Anincrease in the average normal stress in adjacent fibers (Figure 3.11b)

—> 3
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P
FIGURE 3.11 Longitudinal stress distributions (a) in unidirectional continuous fibers

before the failure of fiber 3, (b) in fibers 2 and 4 after the failure of fiber 3, and (c) in fiber
3 after it fails.
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Owing to these local stress magnifications, possibilities for several microfailure
modes exist:

1. Partial or total debonding of the broken fiber from the surrounding
matrix due to high interfacial shear stresses at its ends. As a result, the
fiber effectiveness is reduced either completely or over a substantial
length (Figure 3.12a).

2. Initiation of a microcrack in the matrix due to high stress concentration
at the ends of the void (Figure 3.12b).
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fiber—matrix cracking
interface
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—
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FIGURE 3.12 Possible microfailure modes following the breakage of fiber 3.
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3. Plastic deformation (microyielding) in the matrix, particularly if the
matrix is ductile.

4. Failure of other fibers in the vicinity of the first fiber break due to high
average normal stresses and the local stress concentrations (Figure
3.12¢). Each fiber break creates additional stress concentrations in the
matrix as well as in other fibers. Eventually, many of these fiber breaks
and the surrounding matrix microcracks may join to form a long micro-
crack in the lamina.

The presence of longitudinal stress (o)) concentration at the tip of an advan-
cing crack is well known. Cook and Gordon [5] have shown that the stress
components o, and 7., may also reach high values slightly ahead of the crack
tip (Figure 3.13a). Depending on the fiber-matrix interfacial strength, these
stress components are capable of debonding the fibers from the surrounding
matrix even before they fail in tension (Figure 3.13b). Fiber—matrix debonding
ahead of the crack tip has the effect of blunting the crack front and reducing the
notch sensitivity of the material. High fiber strength and low interfacial
strength promote debonding over fiber tensile failure.

With increasing load, fibers continue to break randomly at various loca-
tions in the lamina. Because of the statistical distribution of surface flaws, the

u Oy

Debonding /

ahead
of the
crack tip

(a) (b)

FIGURE 3.13 Schematic representation of (a) normal stress distributions and (b) fiber—
matrix debonding ahead of a crack tip.
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FIGURE 3.14 Schematic representation of fiber pullout and matrix bridging by broken
fibers (a) fiber breakage; (b) fiber pullout; and (c) matrix bridging.

fiber failure does not always occur in the crack plane (Figure 3.14). Therefore,
the opening of the matrix crack may cause broken fibers to pull out from the
surrounding matrix (Figure 3.15), which is resisted by the friction at the fiber—
matrix interface. If the interfacial strength is high or the broken fiber lengths
are greater than /./2, the fiber pullout is preceded by either debonding or fiber
failure even behind the crack front. Thus, broken fibers act as a bridge between
the two faces of the matrix crack. In some instances, multiple parallel cracks are
formed in the matrix normal to the fiber direction. If these cracks are bridged
by fibers, the volume of matrix between the cracks may deform significantly
before rupture.

Fracture toughness of a unidirectional 0° lamina is the sum of the energies
consumed by various microfailure processes, namely, fiber fracture, matrix
cracking or yielding, debonding, and fiber pullout. Theoretical models to
calculate the energy contributions from some of these failure modes are given
in lable 3.2. Although the true nature of the fracture process and stress fields
are not known, these models can serve to recognize the variables that play
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FIGURE 3.15 Fracture surface of a randomly oriented discontinuous fiber composite
showing the evidence of fiber pullout.

major roles in the development of high fracture toughness for a fiber-reinforced
composite lamina. It should be noted that energy contributions from the
fracturing of brittle fibers and a brittle matrix are negligible (<10%) compared
with those listed in l'able 3.2.

3.1.2 TRANSVERSE TENSILE LOADING

When a transverse tensile load is applied to the lamina, the fibers act as hard
inclusions in the matrix instead of the principal load-carrying members.
Although the matrix modulus is increased by the presence of fibers, local
stresses and strains in the surrounding matrix are higher than the applied stress.
Figure 3.16b shows the variation of radial stress (o) and tangential stress (ggg)
in a lamina containing a single cylindrical fiber. Near the fiber-matrix interface,
the radial stress is tensile and is nearly 50% higher than the applied stress.
Because of this radial stress component, cracks normal to the loading direction
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TABLE 3.2
Important Energy Absorption Mechanisms During Longitudinal Tensile
Loading of a Unidirectional Continuous Fiber Lamina

2
. .. \or ¥/
Stress relaxation energy (energy dissipated E = i Ui
. .2 6E;
owing to reduction in stresses at the
ends of a broken fiber [6]) 5
_ ViOJY

Stored elastic energy in a partially E (where y =debonded length of

) 4F¢
debonded fiber [7] the fiber when it breaks)
2
Fiber pullout energy [8] Ep = fozf;lc for Iy > I
f
_ ViOfy [t2 -
RTTA for If < I,
1—vp)? (Omud
Energy absorption by matrix deformation Eng = % <%> Un
f T

between parallel matrix cracks [9] (where Uy, =energy required in deforming

unit volume of the matrix to rupture)

Notes:

1. All energy expressions are on the basis of unit fracture surface area.

2. Debonding of fibers ahead of a crack tip or behind a crack tip is an important energy absorption
mechanism. However, no suitable energy expression is available for this mechanism.

3. Energy absorption may also occur because of yielding of fibers or matrix if either of these
constituents is ductile in nature.

may develop either at the fiber-matrix interface or in the matrix at 6 =90°
(Figure 3.16¢).

In a lamina containing a high volume fraction of fibers, there will be
interactions of stress fields from neighboring fibers. Adams and Doner [10]
used a finite difference method to calculate the stresses in unidirectional com-
posites under transverse loading. A rectangular packing arrangement of paral-
lel fibers was assumed, and solutions were obtained for various interfiber
spacings representing different fiber volume fractions. Radial stresses at the
fiber-matrix interface for 55% and 75% fiber volume fractions are shown in
Figure 3.17. The maximum principal stress increases with increasing E/Ey,
ratio and fiber volume fraction, as indicated in Figure 3.1&. The transverse
modulus of the composite has a similar trend. Although an increased transverse
modulus is desirable in many applications, an increase in local stress concen-
trations at high volume fractions and high fiber modulus may reduce the
transverse strength of the composite (Table 3.2).

The simplest model used for deriving the equation for the transverse modulus
of a unidirectional continuous fiber-reinforced composite is shown in Figure 3.1Y
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FIGURE 3.16 (a) Transverse tensile loading on a lamina containing a single cylindrical
fiber, (b) stress distribution around a single fiber due to transverse tensile loading, and
(c) possible microfailure modes.

(©)

in which the fibers and the matrix are replaced by their respective “‘equivalent”
volumes and are depicted as two structural elements (slabs) with strong bond-
ing across their interface. The tensile load is acting normal to the fiber direc-
tion. The other assumptions made in this simple slab model are as follows.
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FIGURE 3.17 Variation of shear stress 7,4 and normal stress o, at the surface of a
circular fiber in a square array subjected to an average tensile stress o transverse to the
fiber directions: (a) v = 55% and (b) v¢ = 75%. (After Adams, D.F. and Doner, D.R.,
J. Compos. Mater., 1, 152, 1967.)

1. Total deformation in the transverse direction is the sum of the total
fiber deformation and the total matrix deformation, that is, AW.=
AW+ AW,

2. Tensile stress in the fibers and the tensile stress in the matrix are both
equal to the tensile stress in the composite, that is, o= o, = 0.

Since &, = AVIIZ < e = AVVI?, and g, = AMV,I::“, the deformation equation AW, =AW+
AW, can be written as

eW. =t Wi + emWh- 3.22)

© 2007 by Taylor & Francis Group, LLC.



u Circular fibers arranged in a square array

1)
[%]
i
®
el
Q2
o
&
P 3.0 078
0 L i=0.
3 ¥ Denotes locations
K B of maximum principal 0.75
g - stress 0.70
3]
£ o
a 2.0
g . 0.55
£ B
% | 0.40
1S
ks - 0.04
ie]
‘a' -
o
10 | | | 11 | | | | | | |
1 2 4 6 810 20 40 60 100 200 400 600 1000

Ratio of fiber modulus to matrix modulus, E;/E,

FIGURE 3.18 Ratio of the maximum principal stress in the matrix to the applied
transverse stress on the composite for various fiber volume fractions. (After Adams,

D.F. and Doner, D.R., J. Compos. Mater., 1, 152, 1967.)

TABLE 3.3
Effect of Transverse Loading in a Unidirectional Composite
Transverse
E Modulus,
Composite Material E—f vi (%) GPa (Msi)
m
E-glass—epoxy 20 39 8.61 (1.25)
67 18.89 (2.74)
E-glass—epoxy 24 46 8.96 (1.30)
57 13.23 (1.92)
68 21.91 (3.18)
73 25.9 (3.76)
Boron—epoxy 120 65 23.43 (3.4)

Transverse
Strength,
MPa (ksi)

472 (6.85)
30.87 (4.48)
69.1 (10.03)
77.92 (11.31)
67.93 (9.86)
41.27 (5.99)
41.96 (6.09)

Source: Adapted from Adams, D.F. and Doner, D.R., J. Compos. Mater., 1, 152, 1967.

Dividing both sides by W, and noting that % = v¢ and % = Vm, We can rewrite

Equation 3.22 as

& = &Vt + EmVm-
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FIGURE 3.19 Transverse loading of a unidirectional continuous fiber lamina and the
equivalent slab model.

. o o Om . Y -
Since &, = =%, &5 = —, and &, = -, Equation 3.23 can be written as
Er E; En

— = —Vf+—Vnm. (3.24)

In Equation 3.24, Et is the transverse modulus of the unidirectional continuous
fiber composite.
Finally, since it is assumed that o¢= o, = o, Equation 3.24 becomes

1 Vi Vm
—=—=+—. 3.25
Er E; + E, (3.25)
Rearranging Equation 3.25, the expression for the transverse modulus Et
becomes

EfEm EfEm

_ _ . (3.26)
Eevg + Enve  Ep — ve(Er — Ep)

Er

Equation 3.26 shows that the transverse modulus increases nonlinearly with
increasing fiber volume fraction. By comparing Equations 3.7 and 3.26, it can
be seen that the transverse modulus is lower than the longitudinal modulus and
is influenced more by the matrix modulus than by the fiber modulus.

A simple equation for predicting the transverse tensile strength of a unidir-
ectional continuous fiber lamina [11] is
(3.27)

0T = 5
K
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where

_ 1 — ve[l — (En/Ep)]
1 — (@ve/mY2 1 — (Em/ED]

(o

Equation 3.27 assumes that the transverse tensile strength of the composite is
limited by the ultimate tensile strength of the matrix. Note that K, represents
the maximum stress concentration in the matrix in which fibers are arranged in
a square array. The transverse tensile strength values predicted by Equation
3.27 are found to be in reasonable agreement with those predicted by the finite
difference method for fiber volume fractions <60% [2]. Equation 3.27 predicts
that for a given matrix, the transverse tensile strength decreases with increasing
fiber modulus as well as increasing fiber volume fraction.

3.1.3 LoNGITUDINAL COMPRESSIVE LOADING

An important function of the matrix in a fiber-reinforced composite material is
to provide lateral support and stability for fibers under longitudinal compres-
sive loading. In polymer matrix composites in which the matrix modulus is
relatively low compared with the fiber modulus, failure in longitudinal com-
pression is often initiated by localized buckling of fibers. Depending on whether
the matrix behaves in an elastic manner or shows plastic deformation, two
different localized buckling modes are observed: elastic microbuckling and fiber
kinking.

Rosen [12] considered two possible elastic microbuckling modes of fibers in
an elastic matrix as demonstrated in Figure 3.20. The extensional mode of

i l

(@) (b)

FIGURE 3.20 Fiber microbuckling modes in a unidirectional continuous fiber compos-
ite under longitudinal compressive loading: (a) extensional mode and (b) shear mode.
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microbuckling occurs at low fiber volume fractions (vy < 0.2) and creates an
extensional strain in the matrix because of out-of-phase buckling of fibers. The
shear mode of microbuckling occurs at high fiber volume fractions and creates
a shear strain in the matrix because of in-phase buckling of fibers. Using
buckling theory for columns in an elastic foundation, Rosen [12] predicted
the compressive strengths in extensional mode and shear mode as

E E N\ 2
Extensional mode: o1, = 2vs VBBt R (3.28a)
3(1 — Vf)
Gn
Shear mode: o ¢y = —, (3.28b)
(I —vp)

where
G, is the matrix shear modulus
vy 18 the fiber volume fraction

Since most fiber-reinforced composites contain fiber volume fraction
>30%, the shear mode is more important than the extensional mode. As
Equation 3.28b shows, the shear mode is controlled by the matrix shear
modulus as well as fiber volume fraction. The measured longitudinal compres-
sive strengths are generally found to be lower than the theoretical values
calculated from Equation 3.28b. Some experimental data suggest that the
longitudinal compressive strength follows a rule of mixtures prediction similar
to Equation 3.Y.

The second important failure mode in longitudinal compressive loading is
fiber kinking, which occurs in highly localized areas in which the fibers are
initially slightly misaligned from the direction of the compressive loading. Fiber
bundles in these areas rotate or tilt by an additional angle from their initial
configuration to form kink bands and the surrounding matrix undergoes large
shearing deformation (Figure 3.21). Experiments conducted on glass and car-
bon fiber-reinforced composites show the presence of fiber breakage at the ends
of kink bands [13]; however, whether fiber breakage precedes or follows the
kink band formation has not been experimentally verified. Assuming an elastic-
perfectly plastic shear stress—shear strain relationship for the matrix, Budiansky
and Fleck [14] have determined the stress at which kinking is initiated as

Tmy
= , 3.29
Ock ot Yy ( )

where
Tmy = shear yield strength of the matrix
Ymy = shear yield strain of the matrix
¢ =initial angle of fiber misalignment
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FIGURE 3.21 Kink band geometry. « =Kink band angle, g =Fiber tilt angle, and
o = Kink band width.

Besides fiber microbuckling and fiber kinking, a number of other failure modes
have also been observed in longitudinal compressive loading of unidirectional
continuous fiber-reinforced composites. They include shear failure of the com-
posite, compressive failure or yielding of the reinforcement, longitudinal split-
ting in the matrix due to Poisson’s ratio effect, matrix yielding, interfacial
debonding, and fiber splitting or fibrillation (in Kevlar 49 composites). Factors
that appear to improve the longitudinal compressive strength of unidirectional
composites are increasing values of the matrix shear modulus, fiber tensile
modulus, fiber diameter, matrix ultimate strain, and fiber-matrix interfacial
strength. Fiber misalignment or bowing, on the other hand, tends to reduce the
longitudinal compressive strength.

3.1.4 TRrRANSVERSE COMPRESSIVE LOADING

In transverse compressive loading, the compressive load is applied normal to
the fiber direction, and the most common failure mode observed is the matrix
shear failure along planes that are parallel to the fiber direction, but inclined to
the loading direction (Figure 3.22). The failure is initiated by fiber-matrix
debonding. The transverse compressive modulus and strength are considerably
lower than the longitudinal compressive modulus and strength. The transverse
compressive modulus is higher than the matrix modulus and is close to the
transverse tensile modulus. The transverse compressive strength is found to be
nearly independent of fiber volume fraction [15].

© 2007 by Taylor & Francis Group, LLC.



Fiber
direction

}/Fi'ber

direction

(a)

FIGURE 3.22 Shear failure (a) in longitudinal compression (compressive load parallel to
the fiber direction) and (b) in transverse compression (compressive load normal to the
fiber direction).

3.2 CHARACTERISTICS OF A FIBER-REINFORCED LAMINA
3.2.1 FUNDAMENTALS

3.2.1.1 Coordinate Axes

Consider a thin lamina in which fibers are positioned parallel to each other in a
matrix, as shown in Figure 3.23. To describe its elastic properties, we first
define two right-handed coordinate systems, namely, the 1-2-z system and the

X

FIGURE 3.23 Definition of principal material axes and loading axes for a lamina.
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FIGURE 3.24 Right-handed coordinate systems. Note the difference in fiber orientation
in (a) and (b).

x-y-z system. Both 1-2 and x-y axes are in the plane of the lamina, and the z axis
is normal to this plane. In the 1-2-z system, axis 1 is along the fiber length and
represents the longitudinal direction of the lamina, and axis 2 is normal to the
fiber length and represents the transverse direction of the lamina. Together they
constitute the principal material directions in the plane of the lamina. In the xyz
system, x and y axes represent the loading directions.

The angle between the positive x axis and the l-axis is called the fiber
orientation angle and is represented by 6. The sign of this angle depends on the
right-handed coordinate system selected. If the z axis is vertically upward to the
lamina plane, 6 is positive when measured counterclockwise from the positive
x axis (Figure 3.24a). On the other hand, if the z axis is vertically downward, 6 is
positive when measured clockwise from the positive x axis (Figure 3.24b). Ina 0°
lamina, the principal material axis 1 coincides with the loading axis x, but in a
90° lamina, the principal material axis 1 is at a 90° angle with the loading axis x.

3.2.1.2 Notations

Fiber and matrix properties are denoted by subscripts f and m, respectively.
Lamina properties, such as tensile modulus, Poisson’s ratio, and shear modu-
lus, are denoted by two subscripts. The first subscript represents the loading
direction, and the second subscript represents the direction in which the par-
ticular property is measured. For example, v, represents the ratio of strain in
direction 2 to the applied strain in direction 1, and »,; represents the ratio of
strain in direction 1 to the applied strain in direction 2.

Stresses and strains are also denoted with double subscripts (Figure 3.2%).
The first of these subscripts represents the direction of the outward normal to
the plane in which the stress component acts. The second subscript represents
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FIGURE 3.25 Normal stress and shear stress components.

the direction of the stress component. Thus, for example, the subscript x in the
shear stress component 7, represents the outward normal to the yz plane and
the subscript y represents its direction. The stress components oy, 0y, and 7,
are called in-plane (intralaminar) stresses, whereas 0., Ty, and 7,. are called
interlaminar stresses.

In order to visualize the direction (sense) of various stress components, we
adopt the following sign conventions:

1. If the outward normal to a stress plane is directed in a positive coordi-
nate direction, we call it a positive plane. A negative plane has its
outward normal pointing in the negative coordinate direction.

2. A stress component is positive in sign if it acts in a positive direction on
a positive plane or in a negative direction on a negative plane. On the
other hand, the stress component is negative in sign if it acts in a
negative direction on a positive plane or in a positive direction on

a negative plane. Thus, all stress components in Figure 3.25 are positive
in sign.
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3.2.1.3 Stress and Strain Transformations in a Thin Lamina
under Plane Stress

In stress analysis of a thin lamina with fiber orientation angle 6, it is often
desirable to transform stresses in the xy directions to stresses in the 12 direc-
tions. The stress transformation equations are

011 = Oy cos® 0 + o)y sin” @ + 27y, cosBsin0,
02 = Oy sin® 0 + Ty cos? 6 — 27y, cosBsin 6,
Tia = (— Oy + 0,) sin 0 cos O + 7y, (cos” 6 — sin® 0). (3.30)

where o, 0),, and 7, are applied stresses in the xy directions and o7;, 05, and
71, are transformed stresses in the 12 directions. Similar equations can also be
written for strain transformation by replacing each o with ¢ and each 7 with
v/2 in Equation 3.30. Thus, the strain transformation equations are

E11 = Exx cos? 6 + Eyy sin® 6 + Yy COS 0sin6,

£2) = Exx sin® 0 + Eyy cos’ 6 — Yy COS 6 sin 6,
Y12 = 2(—&xx + &) sinf cos 6 + yxy(cos2 6 — sin’ 6). (3.31)

EXAMPLE 3.2

A normal stress o, of 10 MPa is applied on a unidirectional angle-ply lamina
containing fibers at 30° to the x axis, as shown at the top of the figure. Determine
the stresses in the principal material directions.

y
A
Oxx +—— Oxx X
\; 0
Note: 6 =-30°
30°
/ O22
T2 Tyo
2
4
\7\ 011
o Ny
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SOLUTION

Since o, =7, =0, the transformation equations become

Tl = Oy cos’ 0,
022 = Oxx SiI‘l2 9,

T2 = —Oxy Sin6cos 6.

In this example, o, = +10 MPa and 6§ = —30°. Therefore,

o111 = 7.5 MPa,
O = 2.5 MPa,
T2 = 4.33 MPa.

The stresses in the principal material directions are shown in the figure.

3.2.1.4 Isotropic, Anisotropic, and Orthotropic Materials

In an isotropic material, properties are the same in all directions. Thus, the
material contains an infinite number of planes of material property symmetry
passing through a point. In an anisotropic material, properties are different in all
directions so that the material contains no planes of material property symmetry.
Fiber-reinforced composites, in general, contain three orthogonal planes of
material property symmetry, namely, the 1-2, 2-3, and 1-3 plane shown in
Figure 3.26, and are classified as orthotropic materials. The intersections of

FIGURE 3.26 Three planes of symmetry in an orthotropic material.
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FIGURE 3.27 Differences in the deformations of isotropic, specially orthotropic and
anisotropic materials subjected to uniaxial tension ((a) Isotropic, (b) Special orthotropic,
and (c) General orthotropic and anisotropic) and pure shear stresses.

these three planes of symmetry, namely, axes 1, 2, and 3, are called the principal
material directions.

Differences in the mechanical behavior of isotropic, orthotropic, and aniso-
tropic materials are demonstrated schematically in Figure 3.27. Tensile normal
stresses applied in any direction on an isotropic material cause elongation in the
direction of the applied stresses and contractions in the two transverse direc-
tions. Similar behavior is observed in orthotropic materials only if the normal
stresses are applied in one of the principal material directions. However,
normal stresses applied in any other direction create both extensional and
shear deformations. In an anisotropic material, a combination of extensional
and shear deformation is produced by a normal stress acting in any direction.
This phenomenon of creating both extensional and shear deformations by the
application of either normal or shear stresses is termed extension-shear coupling
and is not observed in isotropic materials.

The difference in material property symmetry in isotropic, orthotropic, and
anisotropic materials is also reflected in the mechanics and design of these types
of materials. Two examples are given as follows.

1. The elastic stress—strain characteristics of an isotropic material are

described by three elastic constants, namely, Young’s modulus F,
Poisson’s ratio v, and shear modulus G. Only two of these three elastic
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constants are independent since they can be related by the following
equation:

E

The number of independent elastic constants required to characterize
anisotropic and orthotropic materials are 21 and 9, respectively [16].
For an orthotropic material, the nine independent elastic constants are
E\1, Ex, E33, Gia, G13, Ga3, 12, V13, and v23.

Unidirectionally oriented fiber composites are a special class
of orthotropic materials. Referring to Figure 3.28, which shows a

Longitudinal
tension (oy4)

Transverse
tension (oyy)

2 Transverse
tension (o33)

1 —

4+ (Fiber direction)

I Y ]

In-plane
Lamina shear (71,)
thickness

OO ONNO)

Qut-of-plane
shear (753)

® ® ® &

| P rear ()
shear (743)

-~

FIGURE 3.28 Tensile and shear loading on a unidirectional continuous fiber composite.
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composite in which the fibers are in the 12 plane, it can be visualized that
the elastic properties are equal in the 2-3 direction so that Ej; = Ej3,
V1> =13, and G» = G3. Furthermore, G,3 can be expressed in terms of
E>> and v,3 by an expression similar to Equation 3.32.

Ey

Gpy="2 .
2720+ o)

(3.33)

Thus, the number of independent elastic constants for a unidirectionally
oriented fiber composite reduces to 5, namely, E|;, Ey, v12, G2, and v3.
Such composites are often called transversely isotropic.

Note that 1231 7& V12 and V31 7& V13, but V3| = V1. HOWCVCI', 1231 is
related to v, by the following equation, and therefore is not an inde-
pendent elastic constant.

_ (Exn
v = <EH>V12~ (3.34)

Christensen [17] has shown that in the case of unidirectional fiber-
reinforced composites with fibers oriented in the 1-direction, v,3 can
be related to vy, and v,; using the following equation:

(I =)

D 3.35
(I —-v12) (3.39)

V3 = V32 = V12

Equation 3.35 fits the experimental data within the range of experimen-
tal accuracy. Thus, for a unidirectional fiber-reinforced composite, the
number of independent elastic constants is reduced from 5 to 4.

2. For an isotropic material, the sign convention for shear stresses and
shear strains is of little practical significance, since its mechanical behav-
ior is independent of the direction of shear stress. For an orthotropic or
anisotropic material, the direction of shear stress is critically important
in determining its strength and modulus [18]. For example, consider a
unidirectional fiber-reinforced lamina (Figure 3.29) subjected to states
of pure shear of opposite sense. For positive shear (Figure 3.29a), the
maximum (tensile) principal stress is parallel to the fiber direction that
causes fiber fracture. For negative shear (Figure 3.29b), the maximum
(tensile) principal stress is normal to the fiber direction, which causes
either a matrix failure or a fiber-matrix interface failure. Obviously, a
positive shear condition will favor a higher load-carrying capacity than
the negative shear condition. For an isotropic material, shear strength is
equal in all directions. Therefore, the direction of shear stress will not
influence the failure of the material.
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FIGURE 3.29 Normal stress components parallel and perpendicular to the fibers due to
(a) positive shear stress and (b) negative shear stress on a 45° lamina.

3.2.2 ELAsTIC PROPERTIES OF A LAMINA

3.2.2.1 Unidirectional Continuous Fiber 0° Lamina

Elastic properties of a unidirectional continuous fiber 0° lamina (Figure 3.30)
are calculated from the following equations.

1. Referring to Figure 3.30a in which the tensile stress is applied in the
1-direction,
Longitudinal modulus:

E\ = Erve + Eqpv (3.36)
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FIGURE 3.30 Applications of (a) longitudinal tensile stress, (b) transverse tensile stress,
and (c) in-plane shear stress on a unidirectional continuous fiber 0° lamina.

and

Major Poisson’s ratio:

V12 = VfVf + VmVm, (3.37)

Strain in the 2-direction

where vi; = — —— — —
Strain in the 1-direction (i.e., the stress direction)

2. Referring to Figure 3.30b in which the tensile stress is applied in the
2-direction

Transverse modulus:

EEy

Ey—=— """ 3.38
2 EfVm + Eme ( )
and
Minor Poisson’s ratio:
Ey
V] = — V12, (3.39)
21 il 12

Strain in the 1-direction
where vy = —

Strain in the 2-direction (i.e., the stress direction)’
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3.

Referring to Figure 3.30c in which the shear stress is applied in 12 plane

In-plane shear modulus:

GiGpy

Gp=Gy1=———F —.
12 21 Gover + Gove

(3.40)

The following points should be noted from Equations 3.36 through 3.40:

1.

2.

The longitudinal modulus (E;;) is always greater than the transverse
modulus (E»,) (Figure 3.31).

The fibers contribute more to the development of the longitudinal
modulus, and the matrix contributes more to the development of the
transverse modulus.

The major Poisson’s ratio (v;,) is always greater than the minor Pois-
son’s ratio (v,;). Since these Poisson’s ratios are related to Equation
3.39, only one of them can be considered independent.

. As for E,,, the matrix contributes more to the development of G, than

the fibers.

. Four independent elastic constants, namely, E|;, E», v», and Gy,, are

required to describe the in-plane elastic behavior of a lamina. The ratio
E\1/Ey, is often considered a measure of orthotropy.

Composite modulus

m

Vi ——»

FIGURE 3.31 Variations of longitudinal and transverse modulus of a unidirectional
continuous fiber 0° lamina with fiber volume fraction.
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Equations 3.36 through 3.40 are derived using the simple mechanics of mater-
ials approach along with the following assumptions:

Both fibers and matrix are linearly elastic isotropic materials.
Fibers are uniformly distributed in the matrix.

Fibers are perfectly aligned in the 1-direction.

There is perfect bonding between fibers and matrix.

The composite lamina is free of voids.

SNk WD =

Since, in practice, none of these assumptions is completely valid, these equa-
tions provide only approximate values for the elastic properties of a continuous
fiber 0° lamina. It has been found that the values of £, and v;, predicted by
Equations 3.36 and 3.37 agree well with the experimental data, but values of
E>> and G, predicted by Equations 3.3¥ and 3.40 are lower than the experi-
mental data [19]. Both E,, and Gy, are sensitive to void content, fiber anisot-
ropy, and the matrix Poisson’s ratio. Since equations based on the theory of
elasticity or the variational approach, for example, are difficult to solve, Equa-
tions 3.36 through 3.40 or empirically modified versions of these equations (see
Appendix A.3) are used frequently for the laminate design.

In Equations 3.36 through 3.40, it is assumed that both fibers and matrix
are isotropic materials. While the matrix in most fiber-reinforced compo-
sites exhibits isotropic behavior, many reinforcing fibers are not isotropic
and their elastic modulus in the longitudinal direction, E, is much greater than
their elastic modulus in the transverse direction, Err. Accordingly, Equations
3.36 and 3.38 should be modified in the following manner.

Ei = Eqvi + Envi, (3.41)

EqEn

Ey=——"-—7-—.
2 EtTVm + Emvf

(3.42)

The Poisson’s ratio of the fiber in Equation 3.37 should be represented by v T,
and its shear modulus in Equation 3.40 should be represented by Gy 1. Since for
most of the fibers, Efr, viit, and Gt are difficult to measure and are not
available, Equations 3.36 and 3.40 are commonly used albeit the errors that
they can introduce.

EXAMPLE 3.3

To demonstrate the difference between vy, and wv,;, consider the following
example in which a square composite plate containing unidirectional continuous
T-300 carbon fiber-reinforced epoxy is subjected to a uniaxial tensile load of 1000 N.
The plate thickness is 1 mm. The length (L,) and width (W) of the plate are
100 mm each.
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Consider two loading cases, where

1. Load is applied parallel to the fiber direction
2. Load is applied normal to the fiber direction

Calculate the changes in length and width of the plate in each case. The basic
elastic properties of the composite are given in Appendix A.5.
SoLuTIiON

From Appendix A.5, E;; =138 GPa, E», =10 GPa, and v, =0.21. Using Equa-
tion 3.39, we calculate v,.

E22 ( 10 GPa
V1 = 12 =

o2 21) = 0.0152.
Ev’ 138 GPa)(O )= 0015

1. Tensile load is applied parallel to the fiber direction, that is, in the

1-direction. Therefore, o = % = 10 MPa and o = 0.

Now, we calculate the normal strains €;; and &5,.

g11 10 MPa 4
= =—"""=0.725x10
en E11 138 GPa % ’
£ = —vpen = —(0.21) (0.725 x 1074 = —0.152 x 107*.
Since &1 = AL—IO‘ and & = AWV(I)/,

AL = Lyey; = (100 mm) (0.725 x 107%) = 0.00725 mm,

AW = Woey = (100 mm) (— 0.152 x 107%) = —0.00152 mm.

2. Tensile load is applied normal to the fiber direction, that is, in the
2-direction. Therefore, o5 = % = 10 MPa and o, =0.

The normal strains in this case are

(k) 10 MPa 4
=2 = =10 x 10
&2 = ~10GPa A
&1 = —vnen = —(0.0152) (10 x 1074 = —0.152 x 107*.
Since ¢); = AL—f and e = AWVOV,

AL = Logy; = (100 mm) (—0.152 x 107 = —0.00152 mm,

AW = Wyezn = (100 mm) (10 x 107%) = 0.1 mm.

© 2007 by Taylor & Francis Group, LLC.



3.2.2.2 Unidirectional Continuous Fiber Angle-Ply Lamina

The following equations are used to calculate the elastic properties of an angle-
ply lamina in which continuous fibers are aligned at an angle 6 with the positive

x direction (Figure 3.32):

1 cos*o
Exx Ell

1 _ sin* 6
Eyy Ei

1 1 @ 1

Gy Eu  En Epn

V12
Vxy = Ey, |:

Ey 4

1 1 2V12> )
4o [ ——=")sin?20,

4 <G12 Ey

1 1 21/12) .2
4+ [ — —="=)sin’* 26,

4 <G12 £y

+@+L—i> cos? 20,

Eyn  En Gp

21/12 1

1y ., ]
+—+———|sin" 20|,
Ey  Exn Gu)

_ 7wy
Vyx = E_ Vxys

XX

(3.43)

(3.44)

(3.45)

(3.46)

(3.47)

where E|;, E», V12, and G, are calculated using Equations 3.36¢ through 3.40.

Figure 3.33 shows the variation of E,, as a function of fiber orientation
angle 0 for an angle-ply lamina. Note that at  =0°, E., is equal to £}, and at
0=90°, E., is equal to E»,. Depending on the shear modulus G,, E,, can be

FIGURE 3.32 Unidirectional continuous fiber angle-ply lamina.
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0° 45° 90°
Fiber orientation angle, 6

FIGURE 3.33 Variation of elastic constants of continuous E-glass fiber lamina with
fiber-orientation angle.

either greater than E; or less than E>, at some intermediate values of 6. The
range of Gy, for which E, is within E;; and E», [20] is given by

Ey Ey

— >G> —F. 3.48
21 +wp)~ 7 2(%+v12) (.49)

For glass fiber—epoxy, high-strength carbon fiber—epoxy, and Kevlar 49 fiber—
epoxy composites, G, is within the range given by Equation 3.48, and therefore,
for these composite laminas, E», < E,, < E{;. However, for very high-modulus
carbon fiber-epoxy and boron fiber—epoxy composites, Gy, is less than the
lower limit in Equation 3.48, and therefore for a range of angles between 0° and
90°, E.., for these laminas can be lower than E»,.

3.2.2.3 Unidirectional Discontinuous Fiber 0° Lamina

Elastic properties of a unidirectional discontinuous fiber 0° lamina are calcu-
lated using the following equations (Figure 3.34).

Longitudinal modulus:

1+2
£ = + 2(l¢ /d)my ve

E,, (3.49)
1-— MLVt
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2,y

Transverse modulus:

Shear modulus:

Major Poisson’s ratio:

Minor Poisson’s ratio:

where

— — — 1,x
FIGURE 3.34 Unidirectional discontinuous fiber 0° lamina.
2
Ey — MEW (3.50)
I- N1Vt
1
G = Gy = 81 G, 351
— MgVt
V12 = ViVf + YmVm, (3.52)
Ey
= 3.53
V1 En V12, (3.53)
o = /B — 1
Y (Ei/Em) + 23 /dy)
o /B = 1
T (Er/Enm) +2
(Gt /Gp) — 1
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FIGURE 3.35 Variation of longitudinal modulus of a unidirectional discontinuous fiber
lamina with fiber length-diameter ratio. (After Halpin, J.C., J. Compos. Mater., 3, 732,
1969.)

Equations 3.49 through 3.53 are derived from the Halpin—Tsai equations
(Appendix A.4) with the following assumptions:

Fiber cross section is circular.

Fibers are arranged in a square array.

Fibers are uniformly distributed throughout the matrix.
Perfect bonding exists between the fibers and the matrix.
Matrix is free of voids.

DAl e

Fiber aspect ratio, defined as the ratio of average fiber length /s to fiber diameter
dy, has a significant effect on the longitudinal modulus £/ (Figure 3.35). On the
other hand, the transverse modulus E», is not affected by the fiber aspect ratio.
Furthermore, the longitudinal modulus E4; for a discontinuous fiber 0° lamina
is always less than that for a continuous fiber 0° lamina.

3.2.2.4 Randomly Oriented Discontinuous Fiber Lamina

A thin lamina containing randomly oriented discontinuous fibers (Figure 3.36)
exhibits planar isotropic behavior. The properties are ideally the same in all
directions in the plane of the lamina. For such a lamina, the tensile modulus
and shear modulus are calculated from

3 5
Eangom = gEll +§E22> (355)
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FIGURE 3.36 Randomly oriented discontinuous fiber lamina.

Grandom = éEll + %Ezz, (3.56)
where E; and E», are the longitudinal and transverse tensile moduli given by
Equations 3.49 and 3.50, respectively, for a unidirectional discontinuous fiber
0° lamina of the same fiber aspect ratio and same fiber volume fraction as the
randomly oriented discontinuous fiber composite. The Poisson’s ratio in the
plane of the lamina is

E,
Vrandom — 2Grand:m -1 (3.57)
randaom

EXAMPLE 3.4

Consider a sheet molding compound composite, designated SMC-R65, containing
E-glass fibers in a thermoset polyester matrix. The following data are known.

For E-glass fiber,

E; = 68.9 GPa
p; = 2.54 g/em’
lf =25 mm
dr = 2.5 mm.
For polyester,
E, =3.45GPa
p = 1.1 g/em’.

Calculate the tensile modulus, shear modulus, and Poisson’s ratio for the material.
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SOLUTION
Step 1: Calculate the fiber volume fraction vy.
Fiber weight fraction in SMC-R65 is wy=0.65. Therefore, from Equation 2.7,

0.65/2.54

-~ — 0.446 or 44.6%.
(0.65/2.54) + (1 — 0.65)/1.1 or 44.6%

vt

Step 2: Calculate E; for a unidirectional lamina containing 44.6 vol% discon-
tinuous fibers of length /r=25 mm.

E: 689
25
—=—=10.
d 2.5
Therefore, from Equation 3.54,
19.97 — 1
=—— = 0475.
1997 a0 - A

Using Equation 3.4S, we calculate

£ _ L+ @10)0475)(0.446)
N T 2(0.475)(0.446)
—22.93 GPa.

Step 3: Calculate E, for a unidirectional lamina containing 44.6 vol% discon-
tinuous fibers of length /r=25 mm. From Equation 3.54,

1997 -1

Using Equation 3.50, we calculate

_ 1+(2)(0.863)(0.446)
T 1 —(0.863)(0.446)
=9.93 GPa.

Ey

Step 4: Calculate E and G for SMC-R65 using values of E;; and Ej; in Equations
3.55 and 3.56, and then calculate v using Equation 3.57.

3 5
E = Erandom - _Ell +_E22 = 1481 GPa,

8 8
1 1
G= Grandom = gEll +ZE22 =5.35 GPa,
E
= Vrandom = 7 — 1 = 0.385.
V = Vrand G 0.385
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3.2.3 COEerrICIENTS OF LINEAR THERMAL ExpaNsiON [21]

For a unidirectional continuous fiber lamina, coefficients of linear thermal
expansion in the 0° and 90° directions can be calculated from the following
equations:

_ aﬂEfo + amEme
Eivi + Eqvim

(3.58)

aqy

and

(ap + o)

5 vi + (1 + vm)omVm — a11v12, (3.59)

axn = (1 +v)

where
V12 = VfVf + VmVm
aq = coefficient of linear thermal expansion for the fiber in the longitudinal
direction
ag = coefficient of linear thermal expansion for the fiber in the radial direction
ay, = coefficient of linear thermal expansion for the matrix

Equations 3.58 and 3.59 are plotted in Figure 3.37 as a function of fiber volume
fraction for a typical glass fiber-reinforced polymer matrix composite for which
am > ay. It should be noted that the coefficient of linear thermal expansion in
such composites is greater in the transverse (90°) direction than in the longitu-
dinal (0°) direction.

If the fibers are at an angle 6 with the x direction, the coefficients of thermal
expansion in the x and y directions can be calculated using a;; and ay»:

o 257} 2 T

Vs
FIGURE 3.37 Variation of longitudinal and transverse coefficients of thermal expansion

with fiber volume fraction in a 0° unidirectional continuous E-glass fiber-reinforced
epoxy lamina.
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aqg cos® 0 + axn sin’ 0,

Q
g
g

Il

ay, = aq) sin® 6 + a2y cos? 6,
(2sinfcos B) (a1 — an), (3.60)

R
<
|

where o, and a,,, are coefficients of linear expansion and a,,, is the coefficient
of shear expansion. It is important to observe that, unless § =0° or 90°, a
change in temperature produces a shear strain owing to the presence of a,.
The other two coefficients, a,, and «,,,, produce extensional strains in the x and
y directions, respectively.

3.2.4 STRESS—STRAIN RELATIONSHIPS FOR A THIN LAMINA

3.2.4.1 Isotropic Lamina

For a thin isotropic lamina in plane stress (i.e., 0.. = 7. = 7,. = 0) (Figure 3.38),
the strain—stress relations in the elastic range are

1
Exy = = (O — Va—yy)a

E

1
Eyy = E(_Va'xx + U'yy)a

1

Yo = G T (3.61)

y
Oyy
e E—
Tyy
Oxx ,‘T Oxx X

Tyy

Oyy

FIGURE 3.38 Stresses in an isotropic lamina under a plane stress condition.
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where E, G, and v represent the Young’s modulus, shear modulus, and Pois-

son’s ratio, respectively.

An important point to note in Equation 3.61 is that there is no coupling
between the shear stress 7., and normal stresses o, and o,,. In other words,
shear stress 7,, does not influence the normal strains &,, and &, just as the

normal stresses o, and o, do not influence the shear strain v,

3.2.4.2 Orthotropic Lamina

For a thin orthotropic lamina in plane stress (0.. = 7. = 7,. = 0) (Figure 3.39),

the strain—stress relations in the elastic range are

& = T v Ty myT
XX — - Pyx — Mixitxys
E.. E,
Txx  Oyy
Eyy = —Vxy E + E — My Txy,
XX yy
_ Txy
Yy = TMxOxx — MyOyy + Giw )
Oyy

TXy

Oxx <

/

O,

y
2
1
A X
o/
vy

Oxx

(3.62)

(3.63)

(3.64)

FIGURE 3.39 Stresses in a general orthotropic lamina under a plane stress condition.
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where E,,, E,,, G,,, Vy,, and v, are elastic constants for the lamina obtained
from Equations 3.43 through 3.47 and m, and m, are given by the following

equations:

my = (sin 26) {% L . ) (L e, 1 i)} , (3.65)
11

Ey 2Gp En En  En Gp
. Vi2 1 1 .2 ( 1 21/12 1 1 >:|
m, =6in20)|—+————-—-@Gin" )| —+—+—-——]1|. (3.66
y = )|:E11 Eyn 2Gp ( ) Ey Eu  Exn G (3.66)

The new elastic constants m, and m, represent the influence of shear stresses on
extensional strains in Equations 3.62 and 3.63 and the influence of normal
stresses on shear strain in Equation 3.64. These constants are called coefficients
of mutual influence.

The following important observations can be made from Equations 3.62
through 3.66:

1. Unlike isotropic lamina, extensional and shear deformations are
coupled in a general orthotropic lamina; that is, normal stresses cause
both normal strains and shear strains, and shear stress causes both shear
strain and normal strains. The effects of such extension-shear coupling
phenomena are demonstrated in Figure 3.27c.

2. For §=0° and 90°, both m, and m, are zero, and therefore, for these
fiber orientations, there is no extension-shear coupling. Such a lamina,
in which the principal material axes (1 and 2 axes) coincide with the
loading axes (x and y axes), is called specially orthotropic. For a specially
orthotropic lamina (Figure 3.4U), the strain—stress relations are

Oxx Tyy

= €1l = o — , 3.67
T TR M Ey 3.67)
O vy g
gy = &n = —Vi2 E11 +E—Z, (3.68)
Tyv
Yop = Vyx = Y12 = Y21 = G% (3.69)

3. Both m, and m, are functions of the fiber orientation angle 6 and exhibit
maximum values at an intermediate angle between #=0° and 90°
(Figure 3.41).

A critical point to note is that, unlike isotropic materials, the directions of
principal stresses and principal strains do not coincide in a general orthotropic
lamina. The only exception is found for specially orthotropic lamina in which
principal stresses are in the same direction as the material principal axes.
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x,1

Ty

Syy

FIGURE 3.40 Stresses in a specially orthotropic lamina under a plane stress condition.

I I I I
0° 45° 90°

Fiber orientation angle, 6

FIGURE 3.41 Variation of coefficients of mutual influence with fiber orientation angle
in an E-glass fiber-epoxy lamina.
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y direction
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Oyy

Angular difference in principal stress and
principal strain directions (degrees)

| |
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Fiber orientation angle, 6 (degrees)

FIGURE 3.42 Difference in principal stress and principal strain directions as a function
of fiber orientation angle in an E-glass—epoxy composite (E1;/E» = 2.98). Note that,
for the biaxial normal stress condition shown in this figure, o, and o,, represent the
principal stresses o; and o, respectively. (After Greszczuk, L.B., Orientation Effects in
the Mechanical Behavior of Anisotropic Structural Materials, ASTM STP, 405, 1, 1966.)

Greszczuk [22] has shown that the difference between the principal stress and
principal strain directions is a function of the material orthotropy (i.e., the ratio
E|/Ey) as well as the ratio of the two principal stresses (i.e., the ratio o»/07,
Figure 3.42).

EXAMPLE 3.5

A thin plate is subjected to a biaxial stress field of o, =1 GPa and ¢, = 0.5 GPa.
Calculate the strains in the xy directions if the plate is made of (a) steel, (b) a 0°
unidirectional boron-epoxy composite, and (c) a 45° unidirectional boron-epoxy
composite.

Use the elastic properties of the boron—epoxy composite given in Appendix A.5.
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SOLUTION

1. Using £=207 GPa and »=0.33 for steel in Equation 3.61, we obtain

. 1 — =3
£xx = 35711 = (033) (0.5)] = 4.034 x 107,

&y = ;ﬁ[— (0.33) (1) +0.5] = 0.821 x 1077,

Yy = 0.

2. For the 0° unidirectional boron—epoxy (from Appendix A.5):

Ej; =207 GPa (same as steel’s modulus)

E22 =19 GPa
v = 0.21
G1p = 6.4 GPa.

We first calculate v,;:

1
vy = (0.21)% =0.0193.

Since 0° unidirectional boron—epoxy is a specially orthotropic lamina, we
use Equations 3.67 through 3.6Y to obtain

1 0.5 .

B 105 ,
£y = ~(0.2) 37 + 55 = 25302 x 107,

Yy = 0.

3. We first need to calculate the elastic constants of the 45° boron—epoxy
laminate using Equations 3.43 through 3.47/:

E..=E, = 18.896 GPa,
Vyy = vy = 0.476.

Next, we calculate the coefficients of mutual influence using Equations
3.65 and 3.6¢€:

my =m, =0.0239 GPa™"'.
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Now, we use Equations 3.62 through 3.64 to calculate:

1 0.5 3
1 .
&y = —(0.476)7+70 S 1270 1073,

18.896 * 18.896
Yy = —(0.0239) (1 +0.5) = —35.85 x 107°.

Note that although the shear stress is zero, there is a shear strain due to
extension-shear coupling. This causes a distortion of the plate in addition
to the extensions due to &, and &,, as shown in the figure. In addition,
note that a negative shear strain means that the initial 90° angle between
the adjacent edges of the stress element is increased.

o,,=0.5GPa

T

oyx=1GPa «— I on,=1GPa

(a) Steel (b) 0° Boron fiber—epoxy  (c) 45° Boron fiber—epoxy

3.2.5 COMPLIANCE AND STIFFNESS MATRICES

3.2.5.1 Isotropic Lamina

For an isotropic lamina, Equation 3.61 can be written in the matrix form as

Exx % - % 0 T xx O xx
Ey | = | — % % 0 oy | =S| oy |, (3.70)
Yoy 0 0 é Txy Tyy

© 2007 by Taylor & Francis Group, LLC.



where [S] represents the compliance matrix relating strains to known stresses.
The inverse of the compliance matrix is called the stiffness matrix, which is used
in relating stresses to known strains. Thus, the stiffness matrix [Q] for an
isotropic lamina is

1E2 1VE2 0
[01=1I81"= | £ 0 (3.71)
0 0 G

3.2.5.2 Specially Orthotropic Lamina (@ =0° or 90°)

Arranging Equations 3.67 through 3.69 in matrix form, we can write the strain—
stress relation for a specially orthotropic lamina as

Exx Sll S12 0 O xx O xx
gy | = [Sa(=8S1) S» 0 oy | =[S1] oy | (3.72)
’ny 0 0 566 Txy Txy
where
1
S = —
11 £
V12 1
Sp=81=—"7"7+-=—"F-
12 21 Eu Frr
1
Syy — —
22 Er
1
Sep = —— 3.73
% = Grs (3.73)

The [S] matrix is the compliance matrix for the specially orthotropic lamina.
Inverting Equation 3.72, we can write the stress—strain relations for a specially
orthotropic lamina as

O xx Ou On 0 Exx Exx
Oy | = [ 0a(=01) On 0 gy | =101 &w |, (3.74)
Txy 0 0 Q66 Yxy Yxy

where [Q] represents the stiffness matrix for the specially orthotropic lamina.
Various elements in the [Q] matrix are
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Ep

On = T

— Vvl

E

On = %,

— vaval
O1r = 0 = vinEp _ v By ’

1 —viovy 1 —vpvy

Qss = G12. (3.75)

3.2.5.3 General Orthotropic Lamina (6 # 0° or 90°)

The strain-stress relations for a general orthotropic lamina, Equations 3.62
through 3.64, can be expressed in matrix notation as

Eoxx Sll ~:912 ?16 Oxx _ | Txx
gy | =[S Sn S| |ow | =[S0y, (3.76)
Yy Si6 S22 Ses | | Txy Ty

where [S] represents the compliance matrix for the lamina. Various elements in
the [S] matrix are expressed in terms of the elements in the [S] matrix for a
specially orthotropic lamina. These expressions are

1
E XX
_ ny
S =—

12 Eer

_ 1
Sn=1—=5n sin* @ + (2812 + Ses) sin® 6 cos” 0 + S», cos* 6,

vy
Si6 = —my = (2511 — 2512 — See) sin O cos® 6 — (255, — 2512 — Sge) sin’ 6 cos 6,

She = —my = (2511 — 2812 — See) sin® @ cos 6 — (282 — 28515 — Se6) sin 6 cos® 0,

S = =57 cos* 0 + (2815 + Ses) sin 6 cos’ 6 + S sin* 0,

= Slg(sin4 0 + cos* 0) + (S11 + S2 — Se) sin® 0 cos? 0,

- 1
Se6 = G = 22811 +28» — 4812 — Se6) sin® O cos® 0 + 566(sin4 0 + cos* 0).

xy

(3.77)

On substitution for Sy, S, and so on, into Equation 3.77, we obtain the same
equations as Equations 3.43 through 3.46 for E.,, E,,, G,,, and v,,, and
Hquations 3.65 and 3.66 for m, and m,,

Inverting Equation 3.76, the stress—strain relations for a general orthotropic
lamina can be written as

Oxx Qn le Qlé Exx | Oxx
Oy | = |Qn On Qx| |&w|=[01|0w], (3.78)
Txy O Ox Qes| | Vry Yy
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where [Q] represents the stiffness matrix for the lamina. Various elements in the
[Q] matrix are expressed in terms of the elements in the [Q] matrix as

O = 0n cos* 0 + 2(012 + 20¢6) sin® 6 cos® 0 + 0x» sin* 6,

Q12 = Qia(sin* 0 4 cos* 0) + (Q11 + 02 — 4Q) sin” H cos™ 6,

02 =0 sin* 6 + 2(012 + 20¢6) sin® 6 cos® 6 + 0O» cos* 6,

Q16 = (Q11 — Q12 — 2Q¢6) sin cos’ 6 + (Q12 — O + 2Qgs) sin’ 0 cos 6,

02 = (Q11 — 012 — 2Q¢6) sin’ B cos 6 + (Q12 — O + 2Q¢6) sin 6 cos’ 6,

Ocs = (O11 + 02 — 2012 — 2Q6s) sin® B cos® 6 + Qge(sin* 6 + cos* §). (3.79)

In using Equations 3.77 and 3.79, the following points should be noted:

1. Elements S;s and S, in the [S] matrix or Q¢ and Q¢ in the [Q] matrix
represent extension-shear coupling.

2. From Equation 3.77 or 3.79, it appears that there are six elastic con-
stants that govern the stress—strain behavior of a lamina. However, a
closer examination of these equations would indicate that S, and S,
(or Q16 and O») are linear combinations of the four basic elastic con-
stants, namely, S}, Si», S», and S, and therefore are not independent.

3. Elements in both the [S] and [Q] matrices are expressed in terms of the
properties in the principal material directions, namely, E1;, E>,, G, and
V15, Which can be either experimentally determined or predicted from the
constituent properties using Equations 3.36 through 3.40.

4. Elements in the [Q] and [S] matrices can be expressed in terms of five
invariant properties of the lamina, as shown below.

Using trigonometric identities, Tsai and Pagano [23] have shown that the
elements in the [Q] matrix can be written as

011 = Uj + Uy cos20 + Us cos 46,
012 = 051 = Uy — Uz cos 46,
0 = Uy — Uscos 20 + Us cos 46,

_ 1
Oi6 = 3 U, sin20 + Us sin 40,

_ 1

O = 3 U, sin 20 — Us sin 40,

Qs = Us — Us cos 40, (3.80)

where U; through Us represent angle-invariant stiffness properties of a lamina
and are given as
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U = %(3Q11 + 302 + 2012 +40¢s),
U, = %(Qn — On),

Us = %(Qu + 02 — 2012 — 40¢6),
Us = é(Qll + 00 + 6012 — 40¢),

1
Us = E(Ul — Us).

(3.81)

It is easy to observe from Equation 3.80 that for fiber orientation angles # and —#),

Similar expressions for the elements in the [S] matrix are

where

01(—6) = 011(0),
012(—6) = 012(6),
0n(—0) = 0x(6),
Qs6(—6) = Qg6(0),
O16(—0) = —016(0),
026(—0) = —02(8).

Si1 = Vi + Vacos20 + V3 cosdo,
S = 8y = Vs — V3cos40,
Sy = Vi — V50820 + V5 cos 40,
316 V,sin26 + 2173 sin46,
She = Vo sin26 — 2 V5 sin 46,
Ses = Vs — 4V5 cos 40,

1
Vi =<03S1 + 382 + 2512 + Ses),

8
1
V) = E(S” — S»),
1
Vi = 5(511 + 82 — 28512 — See),
1
Vi = g(Sn + S5 + 6512 — See),
Vs =2V — Vy).

(3.82)

(3.83)

These invariant forms are very useful in computing the elements in [Q] and [S]

matrices for a lamina.
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EXAMPLE 3.6

Determine the elements in the stiffness matrix for an angle-ply lamina containing
60 vol% of T-300 carbon fibers in an epoxy matrix. Consider fiber orientation
angles of both +45° and —45° for the fiber, E;=220 GPa and v;=0.2, and for the
matrix, £y, = 3.6 GPa and v,, =0.35.

SoLuUTION

Step 1: Calculate E}y, Es, v12, 21, and Gy, using Equations 3.36 through 3.40.

Eyp = (220)(0.6) + (3.6)(1 — 0.6) = 133.44 GPa,
B (220)(3.6)

(220)(1 — 0.6) + (3.6)(0.6)
vi2 = (0.2)(0.6) + (0.35)(1 — 0.6) = 0.26,
878

133.44

Ey

= 8.78 GPa,

Va1 (0.26) = 0.017.

To calculate G1,, we need to know the values of Gy and G,,. Assuming isotropic
relationships, we estimate

E 220
_ _ =91.7 GP
Gy 2(1+v) 2(1+0.2) e
E, 3.6
- _ =1. Pa.
O = 30w 201035 O
Therefore,
- (91.7)(1.33) = 3.254 GPa.

~ O1.7)1 — 0.6) + (1.33)(0.6)

Note that the T-300 carbon fiber is not isotropic, and therefore, the calculation of
Gy based on the isotropic assumption will certainly introduce error. Since the
actual value of Gy is not always available, the isotropic assumption is often made
to calculate Gy.

Step 2: Calculate Q;1, 0»s, 015, 051, and Qge using Equation 3.75.

133.44
- M 13403 GP.
21 =T 0260007 a’
8.78
- S _g¢erGp
Q2 =106 0017 ~ o82 OPa.
0.26)(8.78
On=0y= 0.208.78) __ 2.29 GPa,

1 —(0.26)(0.017)
Qg6 = 3.254 GPa.
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Step 3: Calculate U;, U,, Us, Uy, and Us using Equation 3.81.

U = é[(3)(134.03) +(3)(8.82) + (2)(2.29) + (4)(3.254)] = 55.77 GPa,

U, = %(134.03 — 8.82) = 62.6 GPa,

Us = é[134.03 +8.82 — (2)(2.29) — (4)(3.254)] = 15.66 GPa,
Uy = é[134.03 +8.82 4 (6)(2.29) — (4)(3.259)] = 17.95 GPa,
Us = %(55.77 —17.95) = 18.91 GPa.

Step 4: Calculate Q,;, 05, O12, O16, 06, and Ogs using Equation 3.80. For a
6 = +45° lamina,

011 = 55.77 + (62.6) cos 90° + (15.66) cos 180° = 40.11 GPa,
02 = 55.77 — (62.6) cos 90° + (15.66) cos 180° = 40.11 GPa,
O1» = 17.95 — (15.66) cos 180° = 33.61 GPa,
Oss = 18.91 — (15.66) cos 180° = 34.57 GPa,

_ 1
O16 = 5(62‘6) sin 90° + (15.66) sin 180° = 31.3 GPa,

_ 1
O = 5(62.6) sin 90° — (15.66) sin 180° = 31.3 GPa.

Similarly, for a § = —45° lamina,

011 = 40.11 GPa,
0 = 40.11 GPa,
01, = 33.61 GPa,
Qg5 = 34.57 GPa,
016 = —31.3 GPa,
0 = —31.3 GPa.

In the matrix form,

- [40.11 33.61 31.3
[Olyse = | 33.61 40.11 313
| 31.3  31.3 3457

GPa,

[0]_4s- = | 33.61 40.11 -31.3
| —31.3 -313 34.57

[ 40.11 33.61 —31.3
GPa
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FIGURE 3.43 Unidirectional laminate.

3.3 LAMINATED STRUCTURE
3.3.1 From LAMINA TO LAMINATE

A laminate is constructed by stacking a number of laminas in the thickness (z)
direction. Examples of a few special types of laminates and the standard
lamination code are given as follows:

Unidirectional laminate: In a unidirectional laminate (Figure 3.43), fiber
orientation angles are the same in all laminas. In unidirectional 0° lamin-
ates, for example, 6 = 0° in all laminas.

Angle-ply laminate: In an angle-ply laminate (Figure 3.44), fiber orientation
angles in alternate layers are /60/—6/6/—6/ when 6 # 0° or 90°.

Cross-ply laminate: In a cross-ply laminate (Figure 3.4%), fiber orientation
angles in alternate layers are /0°/90°/0°/90°/.

Symmetric laminate: In a symmetric laminate, the ply orientation is symmet-
rical about the centerline of the laminate; that is, for each ply above the
midplane, there is an identical ply (in material, thickness, and fiber
orientation angle) at an equal distance below the midplane. Thus, for a
symmetric laminate,

FIGURE 3.44 Angle-ply laminate.
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FIGURE 3.45 Cross-ply laminate.

6(2) = 0(—2),

where z is the distance from the midplane of the laminate. Some examples
of symmetric laminates and their codes are listed.

1 2 3 4 5 6
1. [0/+45/90/90 +45/0]
Code: [0/45/90]s

Subscript S in the code indicates symmetry about the midplane.
1 2 3 4 5

2. [0/445/90/+45 /0]
Code: [0/45/90]s

The bar over 90 indicates that the plane of symmetry passes midway
through the thickness of the 90° lamina.

1 2 3 4 5 6 7
3. [0/+45/-45/90/—45/+45/0]
Code: [0/ +45/90]s

Adjacent +45° and —45° laminas are grouped as +45°.

1 2 3456 7 8 910111213 14
4. [0/90/0/0/0/0/45/45/0/0/0/0/90/0]
Code: [0/90/04/45]s

Four adjacent 0° plies are grouped together as (4.

1 2 3 4 5 6 7 8 9 10
5. [0/45)—45 )45 —45 | —45 |45 | —45 | +45 /0]
Code: [0/(£45)2]s

Two adjacent £45° plies are grouped as (£45),.
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10.

[0/45/—45/45/—45/45/—-45/0/0/0/0/0/—45/45/—45/45/—45/45/0]
Code: [0/(+45);/0,/0]s

[6/—6/6/-6/-6/6/—6/6]
Code: [6/— 0]25 or [i@]zs

Two adjacent *0 plies on each side of the plane of symmetry are denoted
by the subscript 2S.

. Symmetric angle-ply laminate

[0/ —6/6/—6/6/—6/6]
Code: [+£6/60/—06]s

Note that symmetric angle-ply laminates contain an odd number of plies.

Symmetric cross-ply laminate
[0/90/0/90/0/90/0/90/0]
Code: [(0/90),/01s

Note that symmetric cross-ply laminates contain an odd number of plies.

Hybrid (interply) laminate.
[08/08/45¢/—45¢/906/90G/—45¢/45¢/08/08]
Code: [028/(£45)c/906]s

where B, C, and G represent boron, carbon, and glass fiber, respectively.

Antisymmetric laminate: In antisymmetric laminates, the ply orientation is
antisymmetric about the centerline of the laminate; that is, for each ply of
fiber orientation angle 6 above the midplane, there is a ply of fiber
orientation angle —6 with identical material and thickness at an equal
distance below the midplane. Thus, for an antisymmetric laminate,

0(z) = —0(—2).

For example, 6/ —0/ 6 / —60 is an antisymmetric laminate. In contrast,
0/—0/— 0/6 is symmetric.

Unsymmetric laminate: In unsymmetric laminates, there is no symmetry or
antisymmetry. Examples are 0/0/0/90/90/90 and 0/6/—6/90.

Quasi-isotropic laminate: These laminates are made of three or more laminas
of identical thickness and material with equal angles between each
adjacent lamina. Thus, if the total number of laminas is », the orientation
angles of the laminas are at increments of m/n. The resulting laminate
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exhibits an in-plane isotropic elastic behavior in the xy plane. However,
its strength properties may still vary with the direction of loading.
Examples of simple quasi-isotropic laminates are [+60/0/—60] and
[+45/0/—45/90]. Other combinations of these stacking sequences, such
as [0/460/—60] and [0/+45/—45/90], also exhibit in-plane isotropic
elastic behavior. A very common and widely used quasi-isotropic sym-
metrical stacking sequence is [0/+45/90]s.

3.3.2 LAMINATION THEORY

Lamination theory is useful in calculating stresses and strains in each lamina of
a thin laminated structure. Beginning with the stiffness matrix of each lamina,
the step-by-step procedure in lamination theory includes

1. Calculation of stiffness matrices for the laminate

2. Calculation of midplane strains and curvatures for the laminate due to a
given set of applied forces and moments

3. Calculation of in-plane strains &y, &y, and vy, for each lamina

4. Calculation of in-plane stresses oy, 0y,, and 7y, in each lamina

The derivation of lamination theory is given in Ref. [16]. The principal equa-
tions and a number of examples are presented in the following sections.

3.3.2.1 Assumptions

Basic assumptions in the lamination theory are

Laminate is thin and wide (width > thickness).

A perfect interlaminar bond exists between various laminas.

Strain distribution in the thickness direction is linear.

All laminas are macroscopically homogeneous and behave in a linearly
elastic manner.

Rl e

The geometric midplane of the laminate contains the xy axes, and the z
axis defines the thickness direction. The total thickness of the laminate is 4,
and the thickness of various laminas are represented by ¢, 5, 3, and so on.
The total number of laminas is N. A sketch for the laminate is shown in
Figure 3.46.

3.3.2.2 Laminate Strains

Following assumption 3, laminate strains are linearly related to the distance
from the midplane as
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1st Lamina 4
h/2 h
o hy
Midplane
h N7 '__'_'_'r'_'_"_ - - T
h/-’1
h
hi2 J/ +z i | Ay
7 jth Lamina Iy
] v
N th Lamina

FIGURE 3.46 Laminate geometry.

o
Exx = Eyy + kax:

. o
ey =€), + zkyy,

Yxy = ')’;y + zkyy, (3.84)
where
&y, &y = midplane normal strains in the laminate
Y’y ~ =midplane shear strain in the laminate
Ky, ky, =bending curvatures of the laminate
kyy = twisting curvature of the laminate
z =distance from the midplane in the thickness direction

3.3.2.3 Laminate Forces and Moments

Applied force and moment resultant (Figure 3.47) on a laminate are related to
the midplane strains and curvatures by the following equations:

Nyx = Anel, + Aney, + AieYy, + Btk + Biokyy + Bieksy,

=

w = A&l + Anej, + Arxyy, + Biokcx + Bukyy + Bockyy,

P

w = A6€y, + A28}, + Ae6Vs, + Biokxx + Bagkyy + Beokxy,

<

w = B, + Bigl, + BieYy, + Ditkxx + Diokyy + Digkyy,

b

v = Buaey, + Bne), + By, + Diokyx + Dnkyy + Dackyy,

=

s = Bieet, + Brssl, + Booyy, + Dickxx + Dagkyy + Dok
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M,

x = Mxy

FIGURE 3.47 In-plane, bending, and twisting loads applied on a laminate.

In matrix notation,

Ny S;x kw
Zvyy = [4] g;y + [B] kyy (385)
ny 'ycx)‘y k‘@
and
Mxx Sfcx kxx
M,y | =[Bl| &, | +[D1| ky |, (3.86)
Mxy ’yfcy kxy
where

N, =normal force resultant in the x direction (per unit width)
N,,, =normal force resultant in the y direction (per unit width)
N, =shear force resultant (per unit width)

M .. =bending moment resultant in the yz plane (per unit width)
M,,, =bending moment resultant in the xz plane (per unit width)
M, = twisting moment (torsion) resultant (per unit width)

[A4] = extensional stiffness matrix for the laminate (unit: N/m or 1b/in.)

Ay A Ais
[Al = | A1 Axn A |, (3.87)
As Az Ass

[B] = coupling stiffness matrix for the laminate (unit: N or Ib)

By By Bis
[Bl=| B Bn Bx|, (3.88)
Bis By Bess

© 2007 by Taylor & Francis Group, LLC.



[D] = bending stiffness matrix for the laminate (unit: N m or Ib in.)

Dy D Dis
[Dl = | Din Dy Dyx|. (3.89)
Dis Dy Degs

Referring to Equation 3.85, it can be observed that

1. Ai6 and A, couple in-plane normal forces to midplane shear strain and
in-plane shear force to midplane normal strains.

2. Bi1, Bys, and By, couple in-plane normal forces to bending curvatures
and bending moments to midplane normal strains.

3. Bjs and By couple in-plane normal forces to twisting curvature and
twisting moment to midplane normal strains.

4. Bgg couples in-plane shear force to twisting curvature and twisting
moment to midplane shear strain.

5. Djg and D4 couple bending moments to twisting curvature and twisting
moment to bending curvatures.

The couplings between normal forces and shear strains, bending moments
and twisting curvatures, and so on, occur only in laminated structures and
not in a monolithic structure. If the laminate is properly constructed, some of
these couplings can be eliminated. For example, if the laminate is constructed
such that both 4,6 and A,5=0, there will be no coupling between in-plane
normal forces and midplane shear strains, that is, in-plane normal forces will
not cause shear deformation of the laminate. Similarly, if the laminate is
constructed such that both D¢ and D,s=0, there will be coupling between
bending moments and twisting curvature, that is, bending moments will not
cause twisting of the laminate. These special constructions are described in the
following section.

3.3.2.4 Elements in Stiffness Matrices

The elements in [A4], [B], and [D] matrices are calculated from

N
A =D (Omn) (B = hy-1), (3.90)

=1

~,

N
Bun =3 > (Qu), (12~ 17.). (3.91)
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w |

EN: (Ormn) ( .y ) (3.92)

where
N =total number of laminas in the laminate
(Omn); = elements in the [Q] matrix of the jth lamina
h;_y =distance from the midplane to the top of the jth lamina
h; =distance from the midplane to the bottom of the jth lamina
For the coordinate system shown in Figure 3.4¢, h; is positive below the mid-
plane and negative above the midplane.

The elements of the stiffness matrices [A4], [B], and [D] are functions of the
elastic properties of each lamina and its location with respect to the midplane of
the laminate. The following observations are important regarding these stiff-
ness matrices:

1. If [B] is a nonzero matrix, a normal force, such as N, will create
extension and shear deformations as well as bending-twisting curva-
tures. Similarly, a bending moment, such as M, will create bending and
twisting curvatures as well as extension-shear deformations. Such
“extension-bending coupling,” represented by the [B] matrix, is unique
in laminated structures regardless of whether the layers are isotropic or
orthotropic. The coupling occurs because of the stacking of layers.

2. For a symmetric laminate, [B]=[0] and there is no extension-bending
coupling. To construct a symmetric laminate, every lamina of +6
orientation above the midplane must be matched with an identical (in
thickness and material) lamina of +6 orientation at the same distance
below the midplane (Figure 3.48). Note that a symmetric angle-ply or
cross-ply laminate contains an odd number of plies.

[’

+6
|
hy

) B B Midpla_ne } | ) L

|
hy
|

+6

lr

FIGURE 3.48 Symmetric laminate configuration for which [B] = [0], and therefore no
extension-bending coupling.
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fy

+0

hy
Midplane
ho
)
-0

FIGURE 3.49 Balanced laminate configuration for which 4,4 = 4,5 = 0, and therefore
no extension-shear coupling.

3. If for every lamina of +6 orientation, there is an identical (equal in
thickness and material) lamina of —6 orientation (Figure 3.49), the
normal stress—shear strain coupling (represented by 4, and A in
the [4] matrix) for the laminate is zero. The locations of these
two laminas are arbitrary. Such a laminate is called balanced,
for example, [0/+30/—30/+30/—30/0] is a balanced laminate for
which 4,¢= A4,6=0. Note that, with proper positioning of layers, it
is possible to prepare a balanced symmetric laminate. For example,
[0/+30/—-30/—30/+30/0] is a balanced symmetric laminate, for which
A= A>=0 as well as [B] =[0].

4. If for every lamina of +6 orientation above the midplane, there is
an identical lamina (in thickness and material) of —6 orientation at
the same distance below the midplane (Figure 3.50), the bending

+6
|
hy
~ ~ _ Midpleine B % ~
h
—0 J/

o

FIGURE 3.50 Laminate configuration for which D= D, =0, and therefore no bend-
ing-twisting coupling.
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moment-twisting curvature coupling (represented by D¢ and D¢
in the [D] matrix) for the laminate is zero. For example, for a
[0/4+30/—30/4+30/—30/0] laminate, Djs=D,s=0. Note that the D¢
and D¢ terms cannot be zero for a symmetric laminate, unless 6 =0°
and 90°.

EXAMPLE 3.7

Determine [A], [B], and [D] matrices for (a) a [+45/—45] angle-ply laminate, (b) a
[+45/—45]s symmetric laminate, and (c) a [+45/0/—45] unsymmetric laminate.
Each lamina is 6 mm thick and contains 60 vol% of T-300 carbon fiber in an epoxy
matrix. Use the same material properties as in Example 3.6.

(1) +45° h
) o
Laminated structure Mid (2) —45° hy
>y
Mid (1) +45° ho plane (3) —45° hs
—h h
plane (2) -45° B (b) (4) +45° ' +z
(a) +z
o h.
(1) +45 U,
Mid - D |
plane @ ) |-hs
(3) —45° hy
(C) +z
SOLUTION

From Example 3.6, [O] matrices for the 0°, +45°, and —45° layers are written as

[134.03 2.29 0 7

[Olp = [Qlp 229 882 0 |GPa,

0 0 3.254 |
[40.11 33.61 31.37
[Olis = | 33.61 40.11 31.3 | GPa,

| 31.3  31.3 34.57]
[40.11 33.61 -31.3
[Ol_4s» = | 33.61 40.11 —31.3| GPa.

| —-31.3 —31.3 3457
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(a) [+45/—45] Angle-ply laminate: From the figure (top left), we note
hg:—0.006 m,_h1:0, alnd h,=0.006 m. In this laminate, (Omn)i =
(an)+45° and (an)Z: (an)—45°' Therefore:

Amn = ()1 (11 = o) + (Qun)a (2 — hy)
=6 % 107 (Qumn) 50 + 6 X 107 (Oumn) a5,
1. - _
an = E [(an)l (h% - h%) + (an)Z (hg - h%)]
=—-18x 1076(an)+45° + 18 x 1076(@mn)—45°>
1. - _
Dy = § [(an)l (h? - h(3)) + (an)2 (hg - h?)]

=725 107°(Qun) 445 + 72 X 107" (Qrun) _s5--
Substituting for various (Qmy) values, we calculate

[481.32 403.32 0
[A] = | 403.32 481.32 0 x 10® N/m,

0 0 414.84
[0 0 —1126.8
[B] = 0 0 —1126.8 | x 10> N,

| —1126.8 —1126.8 0

[5775.84 4839.84 0
[D] = | 4839.84 5775.84 0 Nm.

0 0 4978.08
Note that for a [+45/—45] angle-ply laminate, 4;5= A,s=0 (since it is
balanced) as well as Dig = D»¢=0.

(b) [(45/—45)]s Symmetric laminate: From the figure (top right), we note that
hy=—h;=0.006 m, hy=rho=0.012 m, and /s, =0. In this laminate,

(an)4 = (an)l = (an)+45°
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and

(an)3 = (an)2 = (an)—45°'

Therefore,

Amn = (Omn)1(h1 — ho) + (Omn)a (2 — hy) + (Omn)3(h3 — 1) + (Omn)a(ha — h3)
= (Omn) 1451 — ho + ha — h3) + (Oumn)_45-(ha — hy + 3 — hy)

=12 % 107(Qmn) 145 + 12 X 107°(Qan)_ss-
) _ _ _
an = 5 [(an)l (h% - hé) + (an)Z (hg - h%) + (an)3 (hg - h%) + (an)4 (hzzt - h%)]
1. - _
= 5 [(an)45° (h% - h(z) + hézl - h%) + (an)—45° (h% - h% + h% - h%)}
=0 since /i = 43 and K} = I3,
[ _ _
Dy, = § [(an)l (h? - h(a)) + (an)Z (hg - h?) + (an)3 (h% - h;) + (an)4 (hz - hg)]
1. - _
= 5 [(an)+45° (h? - h?) + hi - h%) + (an)—45° (hg - h? + h: - h;)}
= 1008 x 107 (Omn)s45- + 144 x 107 (Oumn)_ss: -

Substituting for various (Qy,,) values, we calculate

962.64 806.64 0
[4] = [ 806.64 962.64 0 x 10® N/m,
0 0 829.68
[B] = [0],
46.21 38.72 27.04
[D] = | 38.72 4621 27.04| x 10° N m.
27.04 27.04 39.82

Note that [£45]s is a balanced symmetric laminate in which 4= A4,,=0
and [B] =[0].

(c) [+45/0/—45] Unsymmetric laminate: From the figure (bottom), we note

hy=—h; =3 %1073 m,
hy = —hy =9 x 1073 m.
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In this laminate,

(an)l = (an)+450,
(an)2 = (an)oa’
(an)3 = (an),45o.

Therefore,
Amn = (Oun)1 (1 — ho) + (Quun)a(ha — 1) + (Qmn)3(h3 — ha)
=6x 1073(an)+45° + 6 x 1073(an)0° + 6 x 1073(an)745°5
1~ _ _
By = E [(an)l (h% - h%) + (an)Z (h% - h%) + (an)3 (hg - h%)}
= =36 x 107°(Qmn)45- + 36 X 107°(Oun)_ss-
1, - _ _
Do = 3 [(Qun)1 (1] = 1) + Q)2 (15 = 11}) + Qo) (15 = 1)
=234 x 107(Omn) 45> + 18 X 1072 (Omn)oe + 234 x 107°(Opnn) _sse -

Substituting for [Omn] values, we calculate

[1285.50 417.06 0
[A] = | 417.06 534.24 0 x 10° N/m,

| 0 0 434.36
T 0 0 —2253.6

[B] = 0 0 —2253.6 | x 10° N,
| —2253.6 —2253.6 0

[D] = [ 15,770.70 18,930.24 0
0 0 16,237.33

[21,183.84 15,770.70 0
N m

Comparing cases (a) and (c), we note that the addition of a 0° lamina
increases the value of A4, by a significant amount, but 45, 4>, and Age
are only marginally improved. Elements in the [D] matrix are improved
owing to the presence of the 0° lamina as well as the additional thickness
in the [+45/0/—45] laminate.

EXAMPLE 3.8

Compare the stiffness matrices of [0/90/90/0] and [0/90/0/90] laminates. Assume
each ply has a thickness of /1/4.

© 2007 by Taylor & Francis Group, LLC.



0 0
hi2 - h/2
o 90 hi4 hi4 90 Midplane
hia a0 o 0 h/a
e h/2 I
0 h/2 20
(a) (b)
SOLUTION

First, we note that for 0° and 90° plies,

(1o = (@22)90,
(022)0 = (Q11)90s
(Q12)0 = (Q12)90,
(Q66)o = (Qo6)905
(Q16)0 = (Q16)90 = 0,
(Q26)9 = (Q26)90 = 0.

For the [0/90/90/0] laminate on the left,

I/ h h
A = Qo [_21 - (— E)} + (@)oo {0 - <— Z)}

h h h
+ (Qioo <Zl - 0) +(Qio <§ - Z)

/
= %[(Qij)o + (@)ool

Bjj =0 (since this is a symmetric laminate),

D=1 {(Q,;,)o [(— Z)a— (— ’51)3] (0o {o . (_h
sl

3
+(fo)90[(1) -0

h3
=% [7(Qi)o + (Qip)oo]-

For the [0/90/0/90] laminate on the right,
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h h h
Ay = (@i K— é_l) - (_E)] + (@)oo {0 - (— Z)}
h h
+(@io (Z - 0> + (Qi)9o G - i)

h
= E[(Qij)o + (Qi)ool,
n\? n\? n\?
EREIRNEE
n\? N (h\*
+(Qi/)0|:<1) =0| + (@i |:<§) _(Z) ]}
h2
= E[_ (Qio + (Qiool,
1 n\? n\* n\?
Dy =§{(Qg/)o{(—z) _<_§) +(Qi)oo {0— (_Z)
n\* N om\?
+(Qij)o[<4) —0] 4+ ()90 {(2) *(Z) }}

h3
=51 [(QiDo + (Qip)ool-

| E—

1
B = 3 {(Qij)o

[

This example demonstrates the influence of stacking sequence on the stiffness
matrices and the difference it can make to the elastic response of laminates
containing similar plies, but arranged in different orders. In this case, although
[A4] matrices for the [0/90/90/0] and [0/90/0/90] are identical, their [B] and [D]
matrices are different.

3.3.2.5 Midplane Strains and Curvatures

If the normal force and moment resultants acting on a laminate are known, its
midplane strains and curvatures can be calculated by inverting Equations 3.85
and 3.86. Thus,

8;)6 Nxx Mxx
g;y = [Al] va + [Bl] Myy (393)
Yy Ny My

and
kxx Nxx M\x
kyy | =[C1l| Nyy | +[D11| M,y |, (3.94)
k)Cy ny M)(}
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where

[A1] =[A7"]+ 4 "[BID* [BI47"]

[Bi] = —[4"1[BI(D*) ']

[Ci] = —[(D" B4 "] = [B/]"

[D*] = [D] — [BI[4"1[B]

[Di]=[(D*] (3.95)
Note that for a symmetric laminate, [B] =[0], and therefore, [4,]=[4""], [Bi] =

[C]1=]0], and [D,]=[D""]. In this case, equations for midplane strains and
curvatures become

gfcx N)C)C
g, | =147 Ny (3.96)
Y Nyy

and
kxx MXX
kyy | =[D711| M, |. (3.97)
Ky My,

Equation 3.96 shows that for a symmetric laminate, in-plane forces cause only
in-plane strains and no curvatures. Similarly, Equation 3.97 shows that bending
and twisting moments cause only curvatures and no in-plane strains.

EXAMPLE 3.9

Elastic properties of a balanced symmetric laminate: For a balanced symmetric
laminate, the extensional stiffness matrix is

Ay Ap 0
[A] = | 412 A4» O
0 0 Ag

and the coupling stiffness matrix [B]=[0].
The inverse of the [4] matrix is

An —An 0
(4] = 1 —App  An 0 .
A11A22—A%2 0 0 (A”A227A12)
Ass
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Therefore, Equation 3.96 gives

Ap —Anp 0

8?\‘,’( 1 A A O Nxx

e |l=—" |77 1 Ny, |. 3.98
s Andn — 45, | 0 (41142 — 43) N (G9%)
v Ass v

Let us assume that the laminate is subjected to a uniaxial tensile stress o, in the
x direction, and both o, and 7, are zero. If the laminate thickness is /4, the tensile
force per unit width in the x direction Ny, =ho, N, =0, and N,,=0. Thus,
from Equation 3.98, we obtain

o Axn
xx T 2 ho s
A1 Az — Ay,
A
8?, = 12 2 ho’xn
4 AyAxn — A,
Yo =0,
which give
O Andmn — A3,
E.. = == (3.99)
. 9y hAx»
&y An
)= —— = 3.100
Vyy e Ay ( )

XX

In turn, applying N,, and N, separately, we can determine

_ AnAy — A3,

E, = 3.101
vy hA]] ’ ( )
A ( L Eyv)

v,y = — | which is the same as v,, — |, 3.102)

! A ! Eyx (

and
A

Gy = % (3.103)

EXAMPLE 3.10

Elastic properties of a symmetric quasi-isotropic laminate: For a symmetric quasi-
isotropic laminate,

Ay A 0
A A» =A4 0
(4] = |42 An 11
A — A
0 0 T 12

2
and [B]=[0]
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Now using the results of Example 3.9, we obtain

Af — 44
E = Eyy = hAll
A
Vxy = T”a
A — 4
ny = B P

where /i is the laminate thickness.
Note that for a quasi-isotropic laminate, E,, = E,, and, from the previous
equations, it can be easily shown that

E XX

ny = 2(1 —+ ny) .

However, E,, = E,, does not necessarily mean quasi-isotropy. For example, E.
and E,, are equal for a [0/90]s laminate, but it is not a quasi-isotropic laminate.
For a quasi-isotropic laminate, elastic modulus at any arbitrary angle in the plane
of the laminate is the same as E, or E,,. That will not be the case with the [0/90]s
laminate.

EXAMPLE 3.11

Elastic properties of symmetric angle-ply laminates: For angled plies with 6 and
—6 fiber orientation angles,

011(0) = O (=0),
022(0) = O022(=0),
012(0) = O12(~0),
066(60) = Qe6(—0),
016(0) = —016(—0),
06(0) = — O26(—0).
Referring to the four-layer angle-ply laminate shown in the left side of the

figure, we can write the elements in the extensional stiffness matrix [A4] of the
[6/—0]s as
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140 / XX Yy \ d20
105 - /vxy —15

Exo Eyp
Gy Yy
p (GPa) 70| 1.0
h/2 G
Midplane -0 ’1/4 xy
s S 35 |- /o5
vz
) hi2
0 1 1 1 1 1 0
0 30 60 90
(a) (b) 6 (Degrees)
_ h h _ h
Ay = Qi <— i E) +(Qi)-0 (O + 4_1)
_ h _ h h
+(Qi)—g (Z - 0) +(Qije <§ - 4_1)
hoo ~
=3 [(Qi)g + (Qi)—p]-
Thus,
hOn hQp, 0
[A]= |hQ1n hO»n O
0 0 hQes

Now, using Equations 3.99 through 3.103, we can write

p _ Qu0n -0

O»n ’
5 Qu0s-0h
On
T On
Gy = Oeo-

Since Q11, O, 012, and Qg are functions of the fiber orientation angle 6,
the elastic properties of the angle-ply laminate will also be functions of 6. This
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is illustrated in the right side of the figure.

Note that the shear modulus is

maximum at 6 =45° that is, for a [+45]g laminate. In addition, note the variation
in the Poisson’s ratio, which has values greater than unity for a range of fiber
orientation angles. In an isotropic material, the Poisson’s ratio cannot exceed a

value of 0.5.

EXAMPLE 3.12

Bending of a balanced symmetric laminate
symmetric laminate, [B] =[0].

Dy
Dy
Dis

Dy
D2
Do

[D] =

o
Dll
o
DIZ
o
D16

1

—17 _
D ]—DO

where

o
D] 2
o
D22
o
DZ()

beam specimen: For a balanced

D
Dy |,
Des

o
Dl6
o
D26 s
o
Dﬁf}

Dy = Dy1(D2nDes — D%ﬁ) — D12(D12Dgs — D16D26) + Di16(D12D26 — Do Dig)

DTI = (D22D66 - D%e)
D}, = —(D12Dgs — Di6Dog)
Dis = (D12D35 — D2y Dig)

D3, = (DllDéé - D%é)
D5 = —(D11D2s — D12Di6)
Dy, = (D11Dy» — Di,)

If a bending moment is applied in the yz plane so that M, is present and
M,,= M,, =0, the specimen curvatures can be obtained from Equation 3.9

DO
kXV: llM‘ch
X0 Do X0
DO
kyy = le‘CYa
Yy DO X2
DO
kv == M,,. 3.104
w =, M~ ( )
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Thus, even though no twisting moment is applied, the specimen would tend to twist
unless D° = (D12D26 — D»»D1s) = 0. This is possible only if the balanced symmet-
ric laminate contains fibers in the 0° and 90° directions. The twisting phenomenon
can be easily demonstrated in a three-point flexural test in which the specimen lifts
off the support on opposite corners of its span, as shown in the figure.

3.3.2.6 Lamina Strains and Stresses Due to Applied Loads

Knowing the midplane strains and curvatures for the laminate, strains at the
midplane of each lamina can be calculated using the following linear relationships:

Exx E;x kxx
gy | = 8§y +zi | kyy | (3.105)
’ny j yxy kxy

where z; is the distance from the laminate midplane to the midplane of the jth
lamina.

In turn, stresses in the jth lamina can be calculated using its stiffness matrix.
Thus,

O xx B Exx B & i» B Koxx
Oyy = [an]j Eyy = [an]j a;y + Zj[an]j kyy . (3106)
Txy j Yxy j 7; y kx y

Figure 3.51 demonstrates schematically the strain and stress distributions in a
laminate. Note that the strain distribution is continuous and linearly varies
with the distance z from the laminate midplane. The stress distribution is not
continuous, although it varies linearly across each lamina thickness. For thin
laminas, the strain and stress variation across the thickness of each lamina is
small. Therefore, their average values are calculated using the center distance z;,
as shown in Equations 3.105 and 3.106.
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FIGURE 3.51 Strain and stress distributions in a laminate. (a) Laminate; (b) Strain
distribution; (c) Stress distribution; and (d) Normal force and bending moment resultants.

EXAMPLE 3.13

Calculate lamina stresses at the midplane of each lamina in the [+45/—45]
laminate in Example 3.7 due to N, =100 kN/m.

SOLUTION

Step 1: From the laminate stiffness matrices [4], [B], and [D], determine [4~'],
[D*]a [Al]a [BI]a [Cl]a and [Dl]

r0.697 —0.584 0

[A7']=]-0584 0697 0 |x107%m/N,
L 0 0 0241
£3.06 3.06 0
[BI[A""[B] = |3.06 3.06 0 |x10°Nm,
Lo 0 287

r2715.84 1779.84 0
[D*] = [D] — [B][A'][B] = | 1779.84 2715.84 0 Nm,

L 0 0 2108.08
r 645 —423 0
[D)]=[(D* 1= |—-423 645 0 xlof“i,
Nm
L 0 0 474
roo0 0  603.547
[B)] = —[4 "[BI(D* '] = 0 0  603.54 ><10’9%,
1 602.74 602.74 0
0 0  602.747
[Ci] = —[(D*) "[BI[4""] = 0 0 602.74 xlO""%,
1603.54 603.54 0 |
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7.7385 —5.0715 0
(4] =[4"N+ 4" NBID* N[BI[4 1= | -5.0715 7.7385 0 | x10~" m/N.
0 0 5683

Step 2: Using Equations 3.93 and 3.94, calculate the [¢°] and [k] matrices.

Exx 100 x 10 N/m
[£°1= | &, | =[4i] 0

Yy 0
Therefore,
£, =77.385x 107> m/m,
&y, =—50.715x 107> m/m,
'yiy =0.
kxx 100 x 103 N/m
[k] - kyy = [Cl] 0 5
Xy 0
Therefore,
k.xx =0
kyy=0
Ky, =0.060354 per m

Step 3: Using Equation 3.105, calculate &°,,, &°),, and v, at the midplane of +45°
and —45° laminas.

Exx [ 77.385 x 1073 0
Eyy =1 -50.715x 1075 | +(=3x1073) 0
Yool yase L 0 0.060354
77.385
= | =50.715 | x 107,
| -18.106

Similarly,

Exx 77.385
&y = |-50.715 | x 107°.
Yo | a5 18.106

Step 4: Using Equation 3.10¢, calculate oy, 0,, and 7, at the midplanes of 4+-45°
and —45° laminas.
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Oxx 40.11 33.61 313 77.385 x 1073 8.33

ayy = |33.61 40.11 31.3 | GPa| -50.715x10°| =| 0 | MPa.
L S 313 31.3  34.57 —18.106 x 1073 2.09
Similarly,

Oxx 8.33
ayy = 0 MPa.
Ty | _ase —2.09

Using the stress transformation Equation 3.3C, we may compute the longitudinal,
transverse, and shear stresses in the 1-2 directions, which give the following
results:

45° Layer (MPa) —45° Layer (MPa)
oy 6.255 6.255
T 2.075 2.075
TI> —4.165 4.165

3.3.2.7 Thermal Strains and Stresses

If a temperature variation A7 is involved, lamina strains will be

M T o

Exx = Epy + & = &0 F Zhx,
_ M T _ o

gy =&, te&, =¢,+ zkyy,

Yo = Yo+ Yay = Yoy + Ty (3.107)

where the superscripts M and T denote the mechanical and thermal strains,
respectively.

Thermal strains are due to free expansions (or contractions) caused by
temperature variations, but mechanical strains are due to both applied loads
and thermal loads. Thermal loads appear due to restrictions imposed by
various layers against their free thermal expansion. In many applications
involving polymer matrix composites, moisture can also influence the laminate
strains owing to volumetric expansion (swelling) or contraction of the matrix
caused by moisture absorption or desorption [24]. In such cases, a third
term representing hygroscopic strains must be added in the middle column of
Equation 3.107.

Modifying Equations 3.85 and 3.86 for thermal effects, we can write
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Ny | =141| &, | +[B]| kyy | — [THAT (3.108)
NYy ’Y,c;y kY_}
and
Mxx E;X kxx
M,, | =[Bl| &), | +[D]| k,, | = [T™]AT, (3.109)
Mvcy 'yg)cy k*}
where
. -
Zl [(O11)j(axy); + (012),(ayy); + (O16),(eny); | (B — hj—y)
J:
N
[T*] = 2} [(O12)/(axx); + (022)i(ayy); + (Qa6)i(etny); | (hj — hj—1)
=
N
> [(O16))(ax); + (Q26)j(ayy); + (Qe6) ()| (hy — hj1)
-]_:IN 1 3110
Zl [(O1D)(@x); + (Q12)(ayy); + Q)] (7 —h7y)
J=
N
(7= 3 (@) et + (@) (et + (@ac) e (= 1)
J=
N
Z [(Ql6)](axx)j + (Q26)J(ay} )] =+ (Q66)](avy)]] (h - h )
Li=1 i

Note that even if no external loads are applied, that is, if [N]=[M]=[0], there
may be midplane strains and curvatures due to thermal effects, which in turn
will create thermal stresses in various laminas. These stresses can be calculated
using midplane strains and curvatures due to thermal effects in Equation 3.106.

When a composite laminate is cooled from the curing temperature to room
temperature, significant curing (residual) stresses may develop owing to the
thermal mismatch of various laminas. In some cases, these curing stresses may
be sufficiently high to cause intralaminar cracks [25]. Therefore, it may be
prudent to consider them in the analysis of composite laminates.

For example, consider a [0/90]s laminate being cooled from the curing
temperature to room temperature. If the plies were not joined and could
contract freely, the 0° ply will contract much less in the x direction than the
90° ply, while the reverse is true in the y direction. Since the plies are joined and
must deform together, internal residual stresses are generated to maintain the
geometric compatibility between the plies. In [0/90]s laminate, residual stresses
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are compressive in the fiber direction, but tensile in the transverse direction in
both 0° and 90° plies (see Example 3.1€¢). Thus, when such a laminate is loaded
in tension in the x direction, residual tensile stress added to the applied tensile
stress can initiate transverse cracks in the 90° plies at relatively low loads.

Equations 3.108 and 3.109Y are also useful for calculating the coefficients of
thermal expansion and the cured shapes of a laminate. This is demonstrated in
the following two examples.

EXAMPLE 3.14

Coefficients of thermal expansion for a balanced symmetric laminate

SOLUTION

For a balanced symmetric laminate, 4;6= A2=0 and [B]=[0]. In a thermal
experiment, [N] =[M]=[0]. Therefore, from Equation 3.108,

0 Ay A 0 £ Ti*
0f=14 1 Ax» 0 S;y — Tz* AT,
0 0 0 Ades| |75 T5*

which gives
A&}, +A126‘;y = TFAT,
Apel, + Anel, = TFAT,
and
Assvs, = TYAT.
From the first two of these equations, we calculate ¢¢, and ¢, as

0 :A22T1*_A12T5<
Y Andy — A3,
& :AIIT;*AIZTI*
WV AnAn — A3,

AT

s

AT.

Following the definitions of thermal expansion coefficients, we write

&y AnTi — AT

XX

AT Apdn - 43,
gy AuTy — ApTT

Oy = =—5—,
WUAT T Apdy — A3,
Yy TF

SAT Ay

axx

Qyy
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For a balanced symmetric laminate, elements in the [7%*] matrix are zero. There-
fore, there will be no curvatures due to temperature variation. However, the same
is not true for unsymmetric laminates.

EXAMPLE 3.15

Determine the curvatures of a two-layer unsymmetric [0/90] laminate after it
is cooled from the curing temperature to the room temperature. The material is
T-300 carbon fiber in an epoxy matrix for which a;; =—0.5 X 10~% m/m per °C
and a2, =12 X 107° m/m per °C. Other material properties are the same as those
in Example 3.6. The thickness of each layer is ¢, and the temperature drop is AT.

SOLUTION

From Example 3.6, the stiffness matrices for the 0° and 90° layers are

[134.03 229 0

Ol = | 229 882 0 | x10°N/m?%
0 0 3.254)
(882 229 0 ]

[Olop = | 229 13403 0 | x10° N/m’.
0 0 3.254]

Step 1: Determine the [A4], [B], and [D] matrices for the laminate.

Referring to the figure (top), we note that hy=—t, h; =0, and h, =1t. Following
Equations 3.90 through 3.9Z, the [4], [B], and [D] matrices for the [0/90] laminate
can be written.

[142.85 4.58 0
[A]=| 458 14285 0 | x10° tN/m,
| 0 0 6.508
[—62.605 0 0
[B] = 0 62.605 0| x 10° £ N,
| 0 0 0
(4762 153 0
[D]=| 1.53 4762 0 | x10° £ Nm.
| 0 0 217

Step 2: Determine the [7%*] and [7%*] matrices for the laminate.

The first element in the [7*] matrix is

TT = [(O1)1(axo)1 + (012)1 () 100 + 1)
+ [(Q11)2(@x)2 + (Q12)2(ay )2 1(2 — 0).
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t 0° hy
hy=0 Yy
90° hy Saddle
shape
z
(b)

Two possible
cylindrical shapes

(©

Since (@)1 =(ay)r=a;;=-0.5 X 10° m/m per °C and (@yy)>=(ay,)1=
12 X 10~° m/m per °C, we obtain

T7 = [(134.03)(—=0.5) + (2.29)(12)](10%)(10~%)¢
+ [(8.82)(12) + (2.29)(—0.5)](10%)(10~%)¢
=65.16 x 10’ N/m°C.

Using appropriate expressions for other elements in [7*] and [T**], we obtain

[65.16
[T*] = | 65.16 | x 10 t N/m°C,
|0
[ 72.12
[T*¥] = | =72.12 | x 10° 2 N/°C.
0

Step 3: Determine the laminate curvature matrix.

Substitution of [7*] and [T**] in Equations 3.10%8 and 3.109Y gives

0 (&2, ] Koy [65.16

0| =[41| &, | +[Bl|ky | — | 6516 | x 10%AT,
10 ] | Yo | Lk | | O

[07 [, ] (k] [ 7212

0| =I[Bl| &, | +[D1| ky | — | =72.12 | x 10°2AT,
10 ] B2 Lk | | O

where [A], [B], and [D] are laminate stiffness matrices.

Eliminating the midplane strain matrix from the previous equations, we
obtain the following expression relating the laminate curvature matrix to tem-
perature variation AT

(k] = [CUIT*] + [DIIT™],
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where [C] and [D,] are given in Equation 3.95.
In this example,

[0.0218 0 0 1
[C1=] 0  —0.0218 0 10*91*2@
L 0 0 0
[0.0497 —0.0016 0 1
[D1] = | —0.0016  0.0497 0 [107%3—.
Nm
0 0 0.4608

Therefore, solving for [k], we obtain

kyw = —kyy = 5.119 x 107 'AT per m,
ky = 0.

From the expressions for k., and k,,, we note that both curvatures decrease with
increasing layer thickness as well as decreasing temperature variation. Further-
more, since k,, = —k,, the laminate will assume a saddle shape at room tempera-
ture, as shown in the figure ((b) on page 207).

Classical lamination theory, such as that used here, predicts the room tempera-
ture shapes of all unsymmetric laminates to be a saddle. However, Hyer [26,27] has
shown that both cylindrical and saddle shapes are possible, as shown in the figure ((c)
on page 207). The cured shape of the laminate depends on the thickness—width ratio
as well as the thickness—length ratio. Saddle shapes are obtained for thick laminates,
but depending on the relative values of length and width, two different cylindrical
shapes (with either k,, or k,,=0) are obtained for thin laminates in which the
thickness—length or thickness—width ratios are small. It should be noted that sym-
metric laminates do not curve (warp) on curing since [B] = [0] as well as [T**] =[0].

EXAMPLE 3.16

Residual stresses generated because of cooling from high curing temperatures:
A [0/90,]s laminate of AS-4 carbon fiber—epoxy is cured at temperature
T;=190°C and slowly cooled down to room temperature, 7y=23°C. Determine
the residual stresses generated in each layer because of cooling from the curing
temperature. Assume each layer in the laminate has a thickness .

!

(Mo fo

(2) 90 f

(3) 90

@ Midplane
4) 90

(5) 90 y

6) 0
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Following material properties are known:

Ey; =142 GPa,
E» =10.3 GPa,
v = 0.27,

G2 = 7.6 GPa,

ay = —1.8 x 107° per°C,
an =27x10"° per °C.

SOLUTION

Step 1: Using Equation 3.8, determine stiffness matrices for the 0° and 90° layers.

r142.77 2796 0 7
[l = | 2796 10.356 0 | x 10° N/m?,
0 0 76
r10.356 2796 0 7
[Olyp- = | 2796 14277 0 | x 10° N/m’.
0 0 76

Step 2: Determine the [4] matrix for the laminate.

Note that because of symmetry, [B]=[0] and, since [k] =[0], we need not deter-
mine the [D] matrix. B -
For a [0/90,]s laminate, A = 2%y [(Omn)o + 2(Omn)eo]- Therefore,

16348 839 0
[A]=21,| 839 29590 0 | x10° N/m.
0 0 2238

Step 3: Determine the [7*] matrix for the laminate.

Ti = 2[{(O11)o(@xx)o + (Q12)0(ayy)o + 0}(— 280 + 31p)
+ {(O11)90(@xx)o0 + (Q12)00 ()00 + 0} (— 1o + 210)
+ {(O11)90(xx)90 + (O12)90(@yy)90 + 030 + £0)].

Since (ax.x)O = (ayy)QO =)= —1.8 X 1076 per °Cand (ayy)o = (axx)go =0y = 27 X
107 per °C, we obtain

TF = 735.32t) x 10> N/m°C.
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Similarly, T5 = —176.82 £, X 10> N/m °C and 7% =0.
Therefore,

735.321
[T%] =

—176.82t0] x 103 N/m°C.
0

Step 4: Using Equation 3.10%, determine the midplane strains.

Since there are no external forces, [V] =[0]. Since [B] =[0], we can write Equation

3.108 as
£ TY
[0] = [4]] &, | +10]— | T3 | AT,
Y T3

where AT = T; — T; (which, in this case, has a negative value).
Solving for the strain components gives

£, 2.267
&y, | =|-0352| x 107 °AT m/m.
Yy 0

Step S5: Determine strains in each layer.

Since [k] =[0], strains in each layer are the same as the midplane strains.

Step 6: Determine the free thermal contraction strains in each layer.

Exxf [—1.8]
ey | =1 27 | x 10 °AT m/m
Yf 1o 0

and

Exxf 27
Epf = | —1.8| x 107°AT m/m.
Yf 1900 0

Step 7: Subtract free thermal contraction strains from strains determined in Step 5
to obtain residual strains in each layer.

Exxr (2.267 — (—1.8) x 107°AT 4.067
gyr | = | (0352 -27) x 10°0AT | = | —27.352 | x 10 °A7 m/m
00

'Y,xyr 0 0
and
Exxr (2.267 —27) x 10°°AT 24733
Epr | = |(=0352—(=18) x 10°AT | = | 1448 | x 107 °AT m/m.
'yxyr 90° 0 0
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Step 8: Calculate the residual stresses in each layer

O s Exur 504.17
oy | =1[0lo | & | = | =271.89 | x 10°AT N/m*
Txyr 0° ’nyr 0° 0
and
O xxr Exxr —252.087
Oy | =10l | &y | = | 137.550 | x 10°AT N/m”*.
TXy}’ 90° ’YXyl‘ 90° 0

Since, in this case, AT =23°C — 190°C = —167°C, the residual stresses are as follows:

0° Layer 90° Layer
In the fiber direction —84.2 MPa —22.97 MPa
In the transverse direction 45.40 MPa 42.10 MPa

3.4 INTERLAMINAR STRESSES

Load transfer between adjacent layers in a fiber-reinforced laminate takes place
by means of interlaminar stresses, such as 0., 7,., and 7,.. To visualize the
mechanism of load transfer, let us consider a balanced symmetric [+45]g
laminate under uniaxial tensile load N, (Figure 3.52). Since A;s=A26=0

and [B] =[0] for this laminate, the midplane strains are given by

o A
Exx = B
Ay Ay — Ay,
A

o
&, = _7]\])5)5:
7 AnAry — A3,

NXXa

The state of stress in the jth layer is

O xx On O O &
Oy | =101 O0n Ox| |,
Twl; LQ Q% Qsl;[ 0
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FIGURE 3.52 Interlaminar shear stress 7,. between the +45° and —45° plies at the free
edges of a [+45]s laminate. (After Pipes, R.B. and Pagano, N.J., J. Compos. Mater., 4,
538, 1970.)

Thus, although the shear stress resultant N,,, on the laminate is zero, each layer
experiences an in-plane shear stress 7,,. Since there is no applied shear stress at
the laminate boundary, the in-plane shear stress must diminish from a finite
value in the laminate interior to zero at its free edges. The large shear stress
gradient at the ends of the laminate width is equilibrated by the development of
the interlaminar shear stress 7,. near the free edges, as shown in Figure 3.52.
Similar equilibrium arguments can be made to demonstrate the presence of 7.
and 0. in other laminates.

The principal reason for the existence of interlaminar stresses is the mis-
match of Poisson’s ratios v, and coefficients of mutual influence m, and m,
between adjacent laminas. If the laminas were not bonded and could deform
freely, an axial loading in the x direction would create dissimilar transverse
strains &y, in various laminas because of the difference in their Poisson’s ratios.
However, in perfect bonding, transverse strains must be identical throughout
the laminate. The constraint against free transverse deformations produces
normal stress 0, in each lamina and interlaminar shear stress 7, at the lamina
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FIGURE 3.53 Source of interlaminar shear stress 7. and interlaminar normal stress o-..
in a [0/90/90/0] laminate.

interfaces (Figure 3.53). Similarly, the difference in the coefficients of mutual
influence m, would create dissimilar shear strains 7y, in various laminas only if
they were not bonded. For a bonded laminate, equal shear strains for all
laminas require the development of interlaminar shear stress 7.,. Although
the force equilibrium in the y direction is maintained by the action of o), and
7., the force resultants associated with o,, and 7, are not collinear.
The moment equilibrium about the x axis is satisfied by the action of the
interlaminar normal stress o-..

Interlaminar stresses o-., 7., and 7,. are determined by numerical methods
(e.g., finite difference [28] or finite element methods [29,30]), which are beyond
the scope of this book. A few approximate methods have also been developed
[31,32]. For practical purposes, it may be sufficient to note the following.

1. Interlaminar stresses in laminated composites develop owing to mis-
match in the Poisson’s ratios and coefficients of mutual influence
between various layers. If there is no mismatch of these two engineering
properties, there are no interlaminar stresses regardless of the mismatch
in elastic and shear moduli.

2. Interlaminar stresses can be significantly high over a region equal to the
laminate thickness near the free edges of a laminate. The free edges may
be at the boundaries of a laminated plate, around a cutout or hole, or at
the ends of a laminated tube. As a result of high interlaminar stresses,
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stresses are normalized with respect to the average normal strain in the x direction.)
(Adapted from Pipes, R.B., Fibre Sci. Technol., 13, 49, 1980.)
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delamination (i.e., separation between various laminas) may initiate at
the free edges.

. For an [#/—0] angle-ply laminate in uniaxial tension, 7. is the most
significant interlaminar stress at the interfaces of the 6§ and —6 laminas.
Its magnitude and direction depend strongly on the fiber orientation
angle 6 (Figure 3.54). Furthermore, 7. has a higher value at the (6/—6)
interfaces in a clustered [0,/—0,]s laminate than in an alternating
[(6/—0),]s laminate.

. For a [0/90] type laminate in uniaxial tension, the significant interlami-
nar stresses are o.. and 7,.. Their magnitude, locations, and directions
depend strongly on the stacking sequence (Figure 3.55). For example,
the maximum o, at the midplane of a [0/90/90/0] laminate is tensile,
but maximum o, at the midplane of a [90/0/0/90] laminate is compres-
sive. Thus, delamination is likely in the [0/90/90/0] laminate.

. For a general laminate, different combinations of 7., 7,., and o.. may
be present between various laminas. For example, consider a
[45/—45/0/0/-45/45] laminate in uniaxial tension. In this case, all

TABLE 3.4

Effect of Stacking Sequence on the Critical Interlaminar Stresses
in Quasi-Isotropic [0/90/£45]s T-300 Carbon-Epoxy

Laminates under Uniaxial Tension®

[90/45/0/—45
[0/—45/90/45
[45/90/0/—45
[45/90/—45/0
[45/0/90/—45
[45/0/—45/90
[90/0/—45/45
[90/45/—45/0
[0/90/45/—45
[0/45/—45/90
[45/—-45/90/0
[45/—-45/0/90

Max Ozz Max Txz
Laminate Value Location Value Location
Is —6.8 Midplane —6.9 0°/—45°
Is 6.2 90° layer ~6.6 90°/45°
Is 6.6 90° layer 5.9 0°/—45°
Is 6.9 90° layer —6.5 45°/90°
Is 7.6 90° layer —5.8 90°/—45°
Is 10.4 Midplane —6.0 0°/—45°
Is -8.2 —45°/45° 9.0 —45°/45°
Is —7.4 45°/—45° -9.2 45°/—45°
Is ~7.6 45° layer -9.2 45°/—45°
Is 10.0 Midplane -8.3 45°/—45°
Is 9.0 0° layer =77 45°/—45°
Is 10.9 Midplane -7.2 45°/—45°

Source: Adapted from Herakovich, C.T., J. Compos. Mater., 15, 336, 1981.

# The stress magnitudes are in ksi. To transform to MPa, multiply by 6.89. The (/) indicates
interface between adjacent layers.
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three interlaminar stress components are present between the 45/—45
layers as well as the 0/—45 layers. However, the interlaminar shear stress
7., between adjacent 45/—45 laminas is higher than that between adja-
cent 0/—45 laminas. On the other hand, the interlaminar shear stress 7,
between 0/—45 laminas is higher than that between 45/—45 laminas.
However, the maximum o, occurs at the laminate midplane.

6. Stacking sequence has a strong influence on the nature, magnitude, and
location of interlaminar stresses. This is demonstrated in lable 3.4.
Note that laminates with interspersed £45° layers (separated by 0° or
90° layers) have lower 7. than those with adjacent +£45° layers, and,
therefore, are less likely to delaminate. Among the laminates with

0.8
(45/-45/0/0/-45/45)
06 [~
Carbon fiber—epoxy
o @ %2 9 Giass fib
ass fiber—epox
2 04 |- pory
o
ﬁ Carbon fib
T arbon fiber—epoxy
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FIGURE 3.56 Distribution of interlaminar stresses in [+45/0]s laminates with carbon
and glass fibers in an epoxy matrix. (Adapted from Pipes, R.B., Fibre Sci. Technol., 13,
49, 1980.)
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interspersed +45° layers, [90/45/0/—45]s has the most favorable o-..
under a uniaxial tensile load applied on the laminates.

7. Material properties also have a strong influence on the interlaminar
shear stresses of a laminate, as shown in Figure 3.56.
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PROBLEMS

P3.1. Calculate the longitudinal modulus, tensile strength, and failure strain

of a unidirectional continuous fiber composite containing 60 vol% of
T-800 carbon fibers (E;=294 GPa and o, =5.6 GPa) in an epoxy
matrix (E,=3.6 GPa, o,,=105 MPa, and e&,,=3.1%). Compare
these values with the experimentally determined values of Ep =162
GPa, o1, =2.94 GPa, and &, = 1.7%. Suggest three possible reasons
for the differences. What fraction of load is carried by the fibers in this
composite?
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P3.2. The material of a tension link is changed from a Ti-6A1-4V (aged)
titanium alloy to a unidirectional continuous GY-70 carbon fiber—
epoxy. The stress—strain curve of the epoxy resin is shown in the
following figure. Calculate the volume fraction of GY-70 fibers
required in the composite link to match the modulus of the titanium
alloy.

In addition, estimate the tensile strength of the composite link and
compare its strength—weight ratio with that of the titanium alloy.

o (ksi)
A

10 —

»

£
(Percent)

N S

P3.3. To increase the longitudinal tensile modulus of a unidirectional con-
tinuous E-glass fiber-reinforced epoxy, some of the E-glass fibers are
replaced with T-300 carbon fibers. The total fiber volume fraction is
kept unchanged at 60%. Assume that the E-glass and T-300 carbon
fibers in the new composite are uniformly distributed.

1. Calculate the volume fraction of T-300 carbon fibers needed in the
new composite to double the longitudinal tensile modulus

2. Compare the longitudinal tensile strength of the new composite with
that of the original composite

3. Schematically compare the stress—strain diagrams of the fibers, the
matrix, and the composite

The tensile modulus and strength of the epoxy are 5 GPa and 50 MPa,

respectively. Assume that the tensile stress—strain diagram of the epoxy

is linear up to the point of failure.
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P3.4. Consider a unidirectional continuous fiber lamina containing brittle,
elastic fibers in an elastic-perfectly plastic matrix. The stress—strain
diagrams for the fibers and the matrix are shown as follows:

o A
Ofy F————————— ]
1
) 1
Fiber :
1
1
1
1
1
1
1
1
| .
I Matrix
Omy ——/—— 1
my | |
| |
o
1
] | >
Emy &ty 5

1. Calculate the longitudinal modulus of the composite lamina before
and after the matrix yielding

2. Calculate the failure stress for the lamina

3. Draw the stress—strain diagram for the lamina, and explain how it
may change if the matrix has the capacity for strain hardening

4. Compare the loads carried by the fibers before and after the matrix
yields

P3.5. Compare Et/Ey vs. v¢of a unidirectional continuous IM-7 carbon fiber-
reinforced epoxy and a unidirectional continuous fiber E-glass-reinforced
epoxy. Assume E,, =2.8 GPa. What observations will you make from
this comparison?

P3.6. A unidirectional continuous fiber lamina is subjected to shear stress as
shown in the following figure. Using the “‘slab”” model, show that the shear
modulus Gyt of the lamina can be represented by the following equation.

I v (=)
G G Gn
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P3.7.

P3.8.

P3.9.

P3.10.

P3.11.

Matrix

Fiber

- -

Unidirectional continuous fiber-reinforced composite
and the equivalent slab model in in-plane shear loading

Compare the minimum critical fiber aspect ratios for E-glass, T-300
carbon, P-100 carbon, and Kevlar 49 fibers in an epoxy matrix. Assume
that the epoxy matrix behaves as an elastic, perfectly plastic material
with a tensile yield strength of 10,000 psi.

Compare the failure strength of a unidirectional alumina whisker
(!e/dr=200)-reinforced epoxy with that of a unidirectional continuous
alumina fiber-reinforced epoxy. The tensile strength of alumina whis-
kers is 1,000,000 psi, but that of continuous alumina fibers is 275,000
psi. Assume ve=0.5 and 7,y = 4,800 psi.

A unidirectional discontinuous E-glass fiber-reinforced vinyl ester com-
posite is required to have a longitudinal tensile strength of 1000 MPa. The
fiber volume fraction is 60%. Fiber length and fiber bundle diameter are
12 and 1 mm, respectively. Determine the fiber-matrix interfacial shear
strength needed to achieve the required longitudinal tensile strength.
The fiber and matrix properties are as follows:

Fiber: Modulus = 72.4 GPa, tensile strength =2500 MPa

Matrix: Modulus =2.8 GPa, tensile strength =110 MPa.

Derive an expression for the critical fiber volume fraction in a unidirec-
tional discontinuous fiber composite. On a plot of the composite tensile
strength vs. fiber volume fraction, indicate how the critical fiber volume
fraction depends on the fiber length.

In deriving Equation 3.13, the interfacial shear stress has been assumed
constant. Instead, assume that

1
7 = 3000 — 600015psi for 0 < x <2
t

=0 for = <x<=I

N —
| —
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P3.12.

P3.13.

Load (P)

P3.14.

P3.15.

(a) Show how the fiber stress varies with x, (b) Calculate the critical
fiber length, and (c) Calculate the average fiber stress.

Using Equation 3.20, derive an expression for the average longitudinal
stress in a discontinuous fiber. Assuming a simple square array of AS-1
carbon fibers in an epoxy matrix (Gy,=1.01 GPa), plot the average
longitudinal fiber stress as a function of /t/d; for vp=0.2, 0.4, and 0.6.

The interfacial shear strength of a fiber—matrix joint is often measured

by a pullout test. This involves pulling a fiber bundle out of a resin disk

cast around a small length of the bundle. A typical load—displacement

curve obtained in a pullout test is shown.

1. Calculate the average interfacial shear strength of the joint

2. What must the maximum thickness of the resin disk be so that the
fiber bundle pulls out before it breaks within the disk?

P
Pmax
df
/ -
Displacement Resin disk

Fiber bundle

Using the equations for the fiber pullout energies (Table 3.2) show that
the maximum energy dissipation by fiber pullout occurs at /=1.. How
do the fiber tensile strength and fiber—-matrix interfacial strength affect
the pullout energy?

Longitudinal tensile tests of single-fiber specimens containing AS-1
carbon fiber in epoxy and HMS-4 carbon fiber in epoxy produce
cleavage cracks (normal to the fiber direction) in the matrix adjacent
to the fiber rupture. However, the cleavage crack in the AS specimen is
longer than in the HMS specimen. Furthermore, the longitudinal tensile
strength of the AS specimen increases significantly with increasing
matrix ductility, but that of the HMS carbon specimen remains
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unaffected. Explain both phenomena in terms of the energy released on
fiber fracture.

P3.16. A fiber breaks at a location away from the matrix crack plane and pulls
out from the matrix with the opening of the matrix crack. Assuming
that the embedded fiber length / in the figure is less than half the critical
length /., show that the work required to pull out the fiber is

an
Wpo = 5 dflsz .

where 7; is the interfacial shear stress (assumed constant). What might
be expected if the embedded fiber length / is greater than %ZC?

- Fiber crack M)
RN
) | ! ][ i—
Matrix T T
/ crack plane y

TZ777 77 7%77777777 -— —

2~

P3.17. Using the rule of mixture approach as was done for longitudinal tensile
loading, derive equations for the longitudinal compressive modulus and
strength of a unidirectional continuous fiber composite for the follow-
ing cases:

1. & < Emye
2. & > Emye

where

er. = fiber “fracture” strain in compression
Emyc = matrix yield strain in compression
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P3.18.

P3.19.

P3.20.

P3.21.

Compare the rule of mixtures approach with Rosen’s microbuckling
approach for a carbon fiber-reinforced epoxy composite using the
following information: Er =517 GPa, &=0.25%, E,.=2.1 GPa,
Emye =2.85%, v =0.39, and v¢=0.4, 0.5, 0.6.

Under longitudinal compressive loads, a unidirectional continuous
fiber-reinforced brittle matrix composite often fails by longitudinal
matrix cracks running parallel to the fibers. Explain this failure mode
in terms of the stress and strain states in the matrix, and, derive an
equation for the longitudinal compressive strength of the composite for
this failure mode.

A 500 mm long X 25 mm wide X 3 mm thick composite plate contains
55% by weight of unidirectional continuous T-300 carbon fibers in an
epoxy matrix parallel to its length.
1. Calculate the change in length, width, and thickness of the plate if it
is subjected to an axial tensile force of 75 kN in the length direction
2. Calculate the change in length, width, and thickness of the plate if it
subjected to an axial tensile force of 75 kN in the width direction
Assume that the density, modulus, and Poisson’s ratio of the epoxy
matrix are 1.25 g/cm3, 3.2 GPa, and 0.3, respectively.

A round tube (outside diameter =25 mm, wall thickness = 2.5 mm, and

length=0.5 m) is made by wrapping continuous AS-4 carbon fiber-

reinforced epoxy layers, all in the hoop direction. The fiber volume

fraction is 60%.

1. Determine the change in length and diameter of the tube if it is
subjected to an axial tensile load of 2 kN

2. Determine the maximum axial tensile load that can be applied on the
tube?

3. Suppose the tube is used in a torsional application. What will be its
torsional stiffness (torque per unit angle of twist)?

The modulus, tensile strength, and Poisson’s ratio of the epoxy matrix

are 5 GPa, 90 MPa, and 0.34, respectively.

The normal stress o, of 100 MPa and shear stress 7., of 25 MPa are
applied on a unidirectional angle-ply lamina containing fibers at an
angle 0 as shown in the figure. Determine the stresses in the principal
material directions for 6 =0°, 15°, 30°, 45°, 60°, 75°, and 90°. Do these
stresses remain the same (a) if the direction for the shear stress 7, is
reversed and (b) if the fiber orientation angles are reversed?
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P3.22. A tubular specimen containing fibers at a helix angle « with the tube
axis is tested in a combined tension—torsion test. Determine the ratio of
o and 7, as well as the required helix angle o that will create biaxial
principal stresses o, and o5, of ratio m. Note that the shear stress 71, in
the principal stress directions is zero.

P3.23. A cylindrical oxygen tank made of an E-glass fiber-reinforced epoxy
contains oxygen at a pressure of 10 MPa. The tank has a mean diameter
of 300 mm and a wall thickness of 8.9 mm. The fiber orientation angles
in various layers of the tank wall are +55° with its longitudinal axis.
Neglecting the interaction between the layers, calculate the stresses in
the principal material directions for both fiber orientation angles.

P3.24. The following tensile modulus values were experimentally determined for
a unidirectional carbon fiber-reinforced PEEK composite (vi=0.62):

Fiber orientation 0 5 10 30 45 60 75 90
angle (degrees)
Modulus (GPa) 135.2 113.4 72 254 11.5 9.65 8.36 9.20

Plot the data as a function of the fiber orientation angle and compare
them with the theoretical predictions assuming Er=230 GPa, v;=0.28,
E..=3.45 GPa, and v,, =0.4. Verify the validity of Equation 3.3¢.

P3.25. Calculate the elastic constants E.., E,,, vy, v,,, and Gy, for a T-300
carbon fiber-reinforced epoxy lamina. The fiber orientation angle is 30°,
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P3.26.

P3.27.

P3.28.

P3.29.

P3.30.

and the fiber volume fraction is 0.6. For the epoxy matrix, use
E,,=2.07 GPa and v,, =0.45.

A unidirectional discontinuous fiber lamina contains T-300 carbon
fiber in an epoxy matrix. The fiber aspect ratio (//dr) is 50, and the
fiber volume fraction is 0.5. Determine the elastic constants E;q, E»,
V12, V1, and Gy, for the lamina. For the matrix, use E,, = 2.07 GPa and
vm = 0.45. If the fibers are misaligned by 10° with the uniaxial loading
direction, how would these elastic constants change?

The material used in the transmission gears of an automobile is an
injection-molded nylon 6,6 containing 20 wt% of chopped randomly
oriented E-glass fibers. The tensile modulus of this material is 1.25 X
10° psi.

In a more demanding application for the transmission gears, the
modulus of the material must be 50% higher. An engineer wants to
accomplish this by replacing the E-glass fibers with carbon fibers. If the
fiber weight fraction remains the same, calculate the length of carbon
fibers that must be used to obtain the desired modulus.

Use the following information in your calculations. (a) For the
carbon fiber, pr=1.8 g/cm3, Er=30 X 10° psi, and dy=0.0006 in. and
(b) for nylon 6,6, py, = 1.14 g/cm® and E,, =0.4 X 10° psi.

A unidirectional discontinuous E-glass fiber-reinforced polyphenylene
sulfide (PPS) composite needs to be developed so that its longitudinal
tensile modulus is at least 25 GPa and its longitudinal tensile strength is
at least 950 MPa. Through the use of proper coupling agent on the glass
fiber surface, it would be possible to control the interfacial shear
strength between 10 and 30 MPa. The fiber bundle diameter is 0.30 mm
and the fiber weight fraction is 60%. Determine the fiber length required
for this composite.

The matrix properties are: p,=1.36 g/ em?, E,=3.5 GPa, and
Siu =165 MPa.

A unidirectional continuous fiber lamina contains carbon fibers in
an epoxy matrix. The fiber volume fraction is 0.55. The coefficient
of longitudinal thermal expansion for the lamina is measured as
—0.61 X 107 per °C, and that for the matrix at the same temperature
is 54 X 107° per °C. Estimate the coefficient of thermal expansion for
the fiber. The longitudinal modulus of the lamina is 163.3 GPa and the
matrix modulus is 3.5 GPa.

Coefficients of axial and transverse thermal expansion of 0° unidirec-
tional Spectra 900 fiber-reinforced epoxy composite (ve=60%) are
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P3.31.

P3.32.

P3.33.

P3.34.

—9 X 10~%and 100 X 10~ per °C, respectively. For the same compos-
ite, the major Poisson’s ratio is 0.32. The matrix properties are £, = 2.8
GPa, v,,=0.38, and @, =60 X 107° per °C. Using these values, esti-
mate (a) the Poisson’s ratio of the fiber, (b) coefficients of thermal
expansion of the fiber in longitudinal and radial directions, and (c)
the fiber volume fraction at which the composite has a zero CTE.

A 1 m long thin-walled composite tube has a mean diameter of 25 mm
and its wall thickness is 2 mm. It contains 60 vol% E-glass fibers in a
vinyl ester matrix. Determine the change in length and diameter of the
tube if the temperature is increased by 50°C. The matrix properties are
Em=3.5GPa, vy, =0.35, ay =70 X 107 per °C.

An E-glass fiber-epoxy laminate has the following construction:
[0/30/ —30/45/ — 45/90/ — 45/45/ — 30/30/0].

The following are known: v¢=0.60, E;=10 X 10° psi, E, =0.34 X 10°
psi, 1 =0.2, v, =0.35, ap="5 X 10~ per °C, and a,,, = 60 X 10~ per °C.
Determine the coefficients of thermal expansion in the x and y directions
for each lamina.

Consider a unidirectional continuous fiber lamina. Applying oy, 022,
and 7, separately, show that the engineering elastic constants £}, E»,,
V12, V21, and G, can be expressed in terms of the elements in the lamina
stiffness matrix as

2
12
Ey = QO Or’
1
Ey =0» o0’
v = 7Q125
O»
by = 212
On
G12 = Qes-

A T-300 carbon fiber—epoxy lamina (vg=0.60) with a fiber orientation
angle of 45° is subjected to a biaxial stress state of o, = 100 MPa and
0, =—50 MPa. Determine (a) the strains in the x—y directions, (b) the
strains in the 1-2 directions, and (c) the stresses in the 1-2 directions.
Use the material property data of Example 3.6.
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P3.35.

P3.36.

P3.37.

P3.38.

P3.39.

P3.40.

P3.41.

P3.42.

Plot and compare the coefficients of mutual influence as functions of
fiber orientation angle 6 in T-300 carbon fiber—epoxy laminas contain-
ing fibers at the +6 and —6 orientations. For what fiber orientation
angle # do the coefficients of mutual influence have the maximum
values? Use the material property data of Example 3.6.

The elastic constants of a 0° unidirectional carbon fiber-reinforced
PEEK lamina are E;;=132.2 GPa, E»;=9.2 GPa, G;,=4.90 GPa,
and v, =0.35. Write the compliance and stiffness matrices for the
same material if the fiber orientation angle is (a) 30°, (b) —30°, (c¢) 60°,
and (d) 90°.

A T-300 carbon fiber—epoxy lamina (vy=0.6) is subjected to a uniaxial
normal stress o,. Compare the strains in the x—y directions as well as
in the 1-2 directions for 6 =0°, +45°, —45°, and 90°. Use the material
property data of Example 3.6 and Problem P3.35.

Compare the stiffness matrices of three-layered [0/60/—60],
[-60/0/60], and [—60/60/—60] laminates. Which of these laminates
can be considered quasi-isotropic, and why? Assume that each layer
has the same thickness 7.

Compare the stiffness matrices of two-layered, three-layered, and four-
layered angle-ply laminates containing alternating 6 and —6 laminas.
Assume that each layer has the same thickness 7.

Show that the extensional stiffness matrices for quasi-isotropic [0/
+60]s, [£60/0]s, and [60/0/—60]s laminates are identical, while their
bending stiffness matrices are different.

The modulus of a [0,,/90,] laminate can be calculated using the follow-
ing “averaging” equation.

n

Exx = Ell +

E>.

m-+n m+n 2
Suppose a [0/90/0]3s laminate is constructed using continuous T-300
fibers in an epoxy matrix. Verify that the modulus of the laminate
calculated by the averaging equation is the same as calculated by the
lamination theory. Use the material properties given in Example 3.6.

The [A] matrix for a boron fiber—epoxy [+45]s laminate of thickness / is

© 2007 by Taylor & Francis Group, LLC.



P3.43.

P3.44.

P3.45.

P3.46.

P3.47.

099 0.68h 0
(4] =
0 0 0.72h

0.68% 0.99h 0 ]><107 Ib/in.

1. Calculate the engineering elastic constants for the laminate

2. Calculate the strains in the +45° and —45° laminas owing to average
laminate stresses Ny/h=N,,/h=p and N,,/h=0. Assume that
each lamina has a thickness of /4

The elastic properties of unidirectional carbon fiber—epoxy lamina are
E;;=181.3 GPa, E»=10.27 GPa, G;»=7.17 GPa, and v;,=0.28.
Compare the engineering elastic constants of the [+45/0]s and
[+45/0/90]s laminates manufactured from this carbon fiber-epoxy
material.

Show that the shear modulus of a thin [+45],5 plate is given by

G _ L En+ En —2vpEy

W4 1 —viovy '
Show that the elements in the bending stiffness matrix of [0/—60/60]s
and [0/90/45/—45]s laminates are given by

D =

7 [@isor +7(Qi) 60 + 19(Q)or
12 27

and

D

= h_3 (Qij)—45° + 7(@1']')450 + 19(@1)‘)900 + 37(@1’;‘)00
) 7 ,

respectively. Here, & represents the laminate thickness.

A torsional moment M., applied to a symmetric laminated plate creates
a bending curvature as well as a twisting curvature. Find an expression
for the additional bending moment M, that must be applied to the
plate to create a pure twisting curvature k.

An ARALL-4 laminate contains three layers of 2024-T8 aluminum
alloy sheet (each 0.3 mm thick) and two layers of 0° unidirectional
Kevlar 49-epoxy in an alternate sequence, [A1/0x/A1/0x /Al]. Elastic
properties of the aluminum alloy are £= 73 GPa and v =0.32, whereas
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P3.48.

P3.49.

P3.50.

P3.51.

P3.52.

P3.53.

those for the Kevlar layers are E;;=56.2 GPa, E,,=4.55 GPa,
v12 =0.456, and G|, = 1.85 GPa. The nominal thickness of the laminate
is 1.3 mm. Calculate the elastic properties of the ARALL-4 laminate.

Using the basic ply level properties of Example 3.6, determine the
stresses in each layer of a [£45]3,5 laminate subjected to N, =0.1
N/mm. The ply thickness is 0.013 mm.

Using the material properties in Example 3.16, determine the residual
thermal stresses in each lamina of (i) a [90,/0]s and (ii) a [0/90/0]s
laminate. Both laminates are slowly cooled down from a curing tem-
perature of 190°C to 23°C.

The following thermomechanical properties are known for a carbon
fiber-epoxy composite: Ej; =145 GPa, E»», =9 GPa, G, =4.5 GPa,
1, =0.246, a1, = —0.25 X 107 per °C, and a», =34.1 X 10~ per °C.
Determine the coefficients of thermal expansion of a [45/—45]s lamin-
ate of this material.

Using the ply level thermomechanical properties given in Problem 3.49,
determine the coefficients of thermal expansion of a [0/45/—45/90]s
laminate of this material.

An approximate expression for the maximum interlaminar shear stress
T, in a [6/—6),s class of laminates* is

Max 7. _ 1 [A20Q16 — 41202 Nxx’
2n A11A22 7A%2 h

where N,,/h is the average tensile stress on the laminate in the x
direction.

Using this expression, compare the maximum interlaminar shear
stress 7. in [15/—15]gs and [45/—45]gs T-300 carbon—epoxy laminates.
Use Example 3.6 for the basic material property data.

Following is an approximate expression* for the maximum interlami-
nar normal stress, o-.., at an interface position z from the midplane of a
symmetric [0/90]s type laminate:

* J.M. Whitney, .M. Daniel, and R.B. Pipes, Experimental Mechanics of Fiber Reinforced Com-
posite Materials, Society for Experimental Mechanics, Brookfield Center, CT (1984).
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Max o..(z) = —— {A22<Q12)_7_A12(Q22)j} ti(m; — 2),
J

where
o = applied normal stress in the x direction
A =Andn — 43
h =laminate thickness
n; =distance from the midplane of the laminate to the midplane of
the jth lamina
t; =thickness of the jth lamina

and the summation extends over all the laminas above the interface
position z. This equation is valid for thin laminas in which the variation
of in-plane stresses is assumed to be negligible over the thickness of each
lamina.

Using this approximate expression, compare the maximum inter-
laminar normal stresses at the midplanes of [0/90/90/0] and
[90/0/0/90] laminates.
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