
CHAPTER 3 

STRAINS BEYOND THE ELASTIC LIMIT 

Summary 

For rectangular-sectioned beams strained up to and beyond the elastic limit, i.e. for plastic 
bending, the bending moments (B.M.) which the beam can withstand at each particular stage 
are: 

maximum elastic moment 
BD* 

M E  = -C 
6 v  

BUY 2 2 Mpp 1 -[3D - d  ] 
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partially plastic moment 

fully plastic moment 

where oy is the stress at the elastic limit, or yield stress. 

fully plastic moment 
maximum elastic moment 

Shape factor h = 

For I-section beams: 
BD3 bd3 2 

ME = oy [y - 121 

The position of the neutral axis (N.A.) for fully plastic unsymmetrical sections is given by: 

area of section above or below N.A. = x total area of cross-section 

Deflections of partially plastic beams are calculated on the basis of the elastic areas only. 
In plastic limit or ultimate collapse load procedures the normal elastic safety factor is 

replaced by a load factor as follows: 

collapse load 
allowable working load 

load factor = 

For solid shafts, radius R ,  strained up to and beyond the elastic limit in shear, i.e. for 
plastic torsion, the torques which can be transmitted at each stage are 

lrR3 
2 

T E  = -ty maximum elastic torque 

n'5 
Tpp = 2 [ 4 R 3  - R:] (yielding to radius R I )  

6 
partially plastic torque 
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fully plastic torque 

where ty is the shear stress at the elastic limit, or shear yield stress. Angles of twist of 
partially plastic shafts are calculated on the basis of the elastic core only. 

For hollow shafts, inside radius R I  , outside radius R yielded to radius R2, 

= t v  3 4 
T p p  = - [4R R2 - R2 - 3R:] 

6R2 

For eccentric loading of rectangular sections the fully plastic moment is given by 

BD2 P2N2 
4 4Bav 

M F p  = -ay - - 

where P is the axial load, N the load factor and B the width of the cross-section. 
The maximum allowable moment is then given by 

B D ~  P 2 N  
4N 4Bo,  

M z - 0  -- 

For a solid rotating disc, radius R ,  the collapse speed w p  is given by 

where p is the density of the disc material. 
For rotating hollow discs the collapse speed is found from 

Introduction 

When the design of components is based upon the elastic theory, e.g. the simple bending or 
torsion theory, the dimensions of the components are arranged so that the maximum stresses 
which are likely to occur under service loading conditions do not exceed the allowable 
working stress for the material in either tension or compression. The allowable working 
stress is taken to be the yield stress of the material divided by a convenient safety factor 
(usually based on design codes or past experience) to account for unexpected increase in 
the level of service loads. If the maximum stress in the component is likely to exceed the 
allowable working stress, the component is considered unsafe, yet it is evident that complete 
failure of the component is unlikely to occur even if the yield stress is reached at the outer 
fibres provided that some portion of the component remains elastic and capable of carrying 
load, i.e. the strength of a component will normally be much greater than that assumed on 
the basis of initial yielding at any position. To take advantage of the inherent additional 
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strength, therefore, a different design procedure is used which is often referred to as plastic 
limit design. The revised design procedures are based upon a number of basic assumptions 
about the material behaviour. 

Figure 3.1 shows a typical stress-strain curve for annealed low carbon steel indicating 
the presence of both upper and lower yield points and strain-hardening characteristics. 
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Fig. 3.1, Stress-strain curve for annealed low-carbon steel indicating upper and lower yield points and strain- 
hardening characteristics. 
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Fig. 3.2. Assumed stress-curve for plastic theory - no strain-hardening, equal yield points, u,, = c,,~ = c". 

Figure 3.2 shows the assumed material behaviour which: 

(a) ignores the presence of upper and lower yields and suggests only a single yield point; 
(b) takes the yield stress in tension and compression to be equal; 



64 Mechanics of Materials 2 53.1 

(c) assumes that yielding takes place at constant strain thereby ignoring any strain-hardening 
characteristics. Thus, once the material has yielded, stress is assumed to remain constant 
throughout any further deformation. 

It is further assumed, despite assumption (c), that transverse sections of beams in bending 
remain plane throughout the loading process, i.e. strain is proportional to distance from the 
neutral axis. 

It is now possible on the basis of the above assumptions to determine the moment which 
must be applied to produce: 

(a) the maximum or limiting elastic conditions in the beam material with yielding just 

(b) yielding to a specified depth; 

(c) yielding across the complete section. 

initiated at the outer fibres; 

The latter situation is then termed a fully plastic state, or “plastic hinge”. Depending on the 
support and loading conditions, one or more plastic hinges may be required before complete 
collapse of the beam or structure occurs, the load required to produce this situation then 
being termed the collapse load. This will be considered in detail in 53.6. 

3.1. Plastic bending of rectangular-sectioned beams 

Figure 3.3(a) shows a rectangular beam loaded until the yield stress has just been reached 
in the outer fibres. The beam is still completely elastic and the bending theory applies, i.e. 

. .  

DI M = -  
Y 

BD3 2 
maximum elastic moment = cry x - x - 

12 D 
B D ~  

ME = - 
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Beam Stress 
Cross-section dis+,,bvtion 

(3.1) 

( a )  Maximum elastic (b)  Partially plastic ( c )  Fully plastic 

Fig. 3.3. Plastic bending of rectangular-section beam. 
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If loading is then increased, it is assumed that instead of the stress at the outside increasing 
still further, more and more of the section reaches the yield stress o,,,. Consider the stage 
shown in Fig. 3.3(b). 

Partially plastic moment, 

M p p  = moment of elastic portion + total moment of plastic portion 

stress area moment arm 

1 B 
M p p  = cy [T + x ( D  - d ) ( D  + d )  

= BO, -[2d2 + 3(D2 - d 2 ) ]  = B -[3D2 or - d 2 ]  
12 12 (3.2) 

When loading has been continued until the stress distribution is as in Fig. 3.3(c) (assumed), 
the beam with collapse. The moment required to produce this fully plastic state can be 
obtained from eqn. (3.2), since d is then zero, 
i.e. 

BU,, B D ~  
fully plastic moment, M F P  = - x 3D2 = - 

12 4 uy 
(3.3) 

This is the moment therefore which produces a plastic hinge in a rectangular-section beam. 

3.2. Shape factor - symmetrical sections 

The shape factor is defined as the ratio of the moments required to produce fully plastic 

(3.4) 

and maximum elastic states: 
MFP shape factor A = ~ 

ME 

It is a factor which gives a measure of the increase in strength or load-carrying capacity 
which is available beyond the normal elastic design limits for various shapes of section, e.g. 
for the rectangular section above, 

B D ~  
4 

shape factor = -cy/? cy = 1.5 

Thus rectangular-sectioned beams can carry 50% additional moment to that which is 
required to produce initial yielding at the edge of the beam section before a fully plastic 
hinge is formed. (It will be shown later that even greater strength is available beyond this 
stage depending on the support conditions used.) It must always be remembered, however, 
that should the stresses exceed the yield at any time during service there will be some 
associated permanent set or deflection when load is removed, and consideration should be 
given to whether or not this is acceptable. Bearing in mind, however, that normal design office 
practice involves the use of a safety factor to take account of abnormalities of loading, it 
should be evident that even at this stage considerable advantages are obtained by application 
of this factor to the fully plastic condition rather than the limiting elastic case. It is then 



66 Mechanics of Materials 2 93.2 

possible to arrange for all normal loading situations to be associated with elastic stresses in 
the beam, the additional strength in the partially plastic condition being used as the safety 
margin to take account of unexpected load increases. 

Figure 3.4 shows the way in which moments build up with increasing depth or penetration 
of yielding and associated radius of curvature as the beam bends. 
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Fig. 3.4. Variation of moment of resistance of beams of various cross-section with depth of plastic penetration and 
associated radius of curvature. 

Here the moment M carried by the beam at any particular stage and its associated radius 
of curvature R are considered as ratios of the values at the maximum elastic or initial yield 
condition. It will be noticed that at large curvature ratios, i.e. high plastic penetrations, 
the values of M I M E  approach the shape factor of the sections indicated, e.g. 1.5 for the 
rectangular section. 

Shape factors of other symmetrical sections such as the I-section beam are found as follows 
(Fig. 3.5). 

Stress distributions 
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Fig. 3.5. Plastic bending of symmetrical (I-section) beam. 

First determine the value of the maximum elastic moment M E  by applying the simple 
bending theory 
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with y the maximum distance from the N.A. (the axis of symmetry passing through the 
centroid) to an outside fibre and (T = oY, the yield stress. 

Then, in the fully plastic condition, the stress will be uniform across the section at oY and 
the section can be divided into any convenient number of rectangles of area A and centroid 
distance h from the neutral axis. 

Then M F P  = x ( c y A ) h  ( 3 . 5 )  

The shape factor M F p / M E  can then be determined. 

33. Application to I-section beams 

When the B.M. applied to an I-section beam is just sufficient to initiate yielding in the 
extreme fibres, the stress distribution is as shown in Fig. 3.5(a) and the value of the moment 
is obtained from the simple bending theory by subtraction of values for convenient rectangles. 

(TI 

Y 
i.e. M E  = - 

BD3 bd3 2 
= u y  [T - -4 5 

M F P  ‘Cy [T - -4 
If the moment is then increased to produce full plasticity across the section, i.e. a plastic 

hinge, the stress distribution is as shown in Fig. 3 3 b )  and the value of the moment is 
obtained by applying eqn. (3.3) to the same convenient rectangles considered above. 

BD2 bd2 

The value of the shape factor can then be obtained as the ratio of the above equations 
M F P / M E .  A typical value of shape factor for commercial rolled steel joists is 1.18, thus indi- 
cating only an 18% increase in “strength” capacity using plastic design procedures compared 
with the 50% of the simple rectangular section. 

3.4. Partially plastic bending of unsymmetrical sections 

Consider the T-section beam shown in Fig. 3.6. Whilst stresses remain within the elastic 
limit the position of the N.A. can be obtained in the usual way by taking moments of area 

Fig. 3.6. Plastic bending of unsymmetrical (T-section) beam. 
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about some convenient axis as described in Chapter 4.t A typical position of the elastic 
N.A. is shown in the figure. Application of the simple blending theory about the N.A. will 
then yield the value of M E  as described in the previous paragraph. 

Whatever the state of the section, be it elastic, partially plastic or fully plastic, equilibrium 
of forces must always be maintained, i.e. at any section the tensile forces on one side of the 
N.A. must equal the compressive forces on the other side. 

1 stress x area above N.A. = 1 stress x area below N.A. 

In the fully plastic condition, therefore, when the stress is equal throughout the section, 
the above equation reduces to 

areas above N.A. = areas below N.A. (3.6) 

and in the special case shown in Fig. 3.5 the N.A. will have moved to a position coincident 
with the lower edge of the flange. Whilst this position is peculiar to the particular geometry 
chosen for this section it is true to say that for all unsymmetrical sections the N.A. will 
move from its normal position when the section is completely elastic as plastic penetration 
proceeds. In the ultimate stage when a plastic hinge has been formed the N.A. will be 
positioned such that eqn. (3.6) applies, or, often more conveniently, 

area above or below N.A. = total area (3.7) 

In the partially plastic state, as shown in Fig. 3.7, the N.A. position is again determined by 
applying equilibrium conditions to the forces above and below the N.A. The section is divided 
into convenient parts, each subjected to a force = average stress x area, as indicated, then 

-- 

Yielded ----- 

=* 

Fig. 3.7. Partially plastic bending of unsymmetrical section beam. 

and this is an equation in terms of a single unknown 7,. which can then be determined, as 
can the independent values of F 1 ,  F2, F3 and F 4 .  

The sum of the moments of these forces about the N.A. then yields the value of the 
partially plastic moment M p p .  Example 3.2 describes the procedure in detail. 

E.J. Hearn, Mechanics of Materials 1 ,  Butterworth-Heinemann, 1991. 
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35. Shape factor - unsymmetrical sections 

Whereas with symmetrical sections the position of the N.A. remains constant as the axis 
of symmetry through the centroid, in the case of unsymmetrical sections additional work 
is required to take account of the movement of the N.A. position. However, having deter- 
mined the position of the N.A. in the fully plastic condition using eqn. (3.6) or (3.7), the 
procedure outlined in $3.2 can then be followed to evaluate shape factors of unsymmetrical 
sections - see Example 3.2. 

3.6. Deflections of partially plastic beams 

Deflections of partially plastic beams are normally calculated on the assumption that the 
yielded areas, having yielded, offer no resistance to bending. Deflections are calculated 
therefore on the basis of the elastic core only, i.e. by application of simple bending theory 

t and/or the standard deflection equations of Chapter 5 to the elastic material only. Because 
the second moment of area I of the central cors is proportional to the fourth power of d ,  
and I appears in the denominator of deflection formulae, deflections increase rapidly as d 
approaches zero, i.e. as full plasticity is approached. 

If an experiment is carried out to measure the deflection of beams as loading, and hence 
B.M., is increased, the deflection graph for simply supported end conditions will appear as 
shown in Fig. 3.8. Whilst the beam is elastic the graph remains linear. The initiation of 
yielding in the outer fibres of the beam is indicated by a slight change in slope, and whtn 
plastic penetration approaches the centre of the section deflections increase rapidly for very 
small increases in load. For rectangular sections the ratio M F P / M E  will be 1.5 as determined 
theoretically above. 

P 

J 
x 

Theoretical collapse load 

Theoret lcal 
w 

-2oding condition 

L 

Deflection 

/ 
Fig. 3.8. Typical load-deflection curve for plastic bending 

3.7. Length of yielded area in beams 

Consider a simply supported beam of rectangular section carrying a central concentrated 
load W. The B.M. diagram will be as shown in Fig. 3.9 with a maximum value of WL/4  at 

E.J. Hearn, Mechanics of Materials I ,  Butterworth-Heinemann, 1997. 
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w/2 F-% L/2 & L/2 w/2 

Fig. 3.9. 

the centre. If loading is increased, yielding will commence therefore at the central section 
when ( W L / 4 )  = (BD2/6)o,  and will gradually penetrate from the outside fibres towards 
the N.A. As this proceeds with further increase in loads, the B.M. at points away from the 
centre will also increase, and in some other positions near the centre it will also reach the 
value required to produce the initial yielding, namely BD20,/6. Thus, when full plasticity is 
achieved at the central section with a load W,, there will be some other positions on either 
side of the centre, distance x from the supports, where yielding has just commenced at the 
outer fibres; between these two positions the beam will be in some elastic-plastic state. Now 
at distance x from the supports: 

x 2  2 W,L B.M. = W,- = - M F p  = -- 
2 3  3 4  

L 
3 

x = -  . .  

The central third of the beam span will be affected therefore by plastic yielding to some 
depth. At any general section within this part of the beam distance x’ from the supports the 
B .M. will be given by 

Now since 

XI B o  
B.M. = W,- = ‘ [ 3 D 2  - d 2 ]  

2 12 

L WPL --(Tv=wp- -(T -- 
B D ~  

4 4 ’- BD2 

Therefore substituting in ( l ) ,  

x’ B WPL W,,- = -[3D2 - d 2 ] -  
2 12 BD2 

L 
I (3D2 - d 2 )  

6D2 
x =  

2 

This is the equation of a parabola with 

XI = L / 2  when d = 0 (i.e. fully plastic section) 
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and x' = L/3 when d = D (i.e. section elastic)

The yielded portion of the beam is thus as indicated in Fig. 3.10.

Fig. 3.10. Yielded area in beam carrying central point load

Other beam support and loading cases may be treated similarly. That for a simply supported
beam carrying a uniformly distributed load produces linear boundaries to the yielded areas
as shown in Fig. 3.11.

Fig. 3.11. Yielded area in beam carrying uniformly distributed load.

3.8. Collapse loads -plastic limit design

Having determined the moment required to produce a plastic hinge for the shape of beam
cross-section used in any design it is then necessary to decide from a knowledge of the
support and loading conditions how many such hinges are required before complete collapse
of the beam or structure takes place, and to calculate the corresponding load. Here it is
necessary to consider a plastic hinge as a pin-joint and to decide how many pin-joints are
required to convert the structure into a "mechanism". If there are a number of points of
"local" maximum B.M., i.e. peaks in the B.M. diagram, the first plastic hinge will form at
the numerical maximum; if further plastic hinges are required these will occur successively
at the next highest value of maximum B.M. etc. It is assumed that when a plastic hinge has
developed at any cross-section the moment of resistance at that point remains constant until
collapse of the whole structure takes place owing to the formation of the required number
of further plastic hinges.

Consider, therefore, the following loading cases.

(a) Simply supported beam or cantilever

Whatever the loading system there will only be one point of maximum B.M. and plastic
collapse will occur with one plastic hinge at this point (Fig. 3.12).
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rn Mox. B.M.- one hinp Mox.B.M.- one hinge 
" /  

Fig. 3.12 

(6) Propped cantilever 

In the case of propped cantilevers, i.e. cantilevers carrying opposing loads, the B.M. 
diagram is as shown in Fig. 3.13. The maximum B.M. then occurs at the built-in support 
and a plastic hinge forms first at this position. Due to the support of the prop, however, 
the beam does not collapse at this stage but requires another plastic hinge before complete 
failure or collapse occurs. This is formed at the other local position of maximum B.M., i.e. 
at the prop position, the moments at the support remaining constant until that at the prop 
also reaches the value required to form a plastic hinge. 

Two ooints of "mxl'  B.M. 

B.M L Diagram 

Fig. 3.13. 

Collapse therefore occurs when MA = MB = MFP,  and thus two plastic hinges are 
required. 

( e )  Built-in beam 

In this case there are three positions of local maximum B.M., two of them being at the 
supports, and three plastic hinges are required for collapse (Fig. 3.14). 

Three p o s i t m s  of local m a x  BM 
-three hinges 

B Y  Diagram 

Fig. 3.14 
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Other structures may require even more plastic hinges depending on their particular support 
conditions and degree of redundancy, but these need not be considered here. It should be 
evident, however, that there is now even more strength or load-carrying capacity available 
beyond that suggested by the shape factor, i.e. with a knowledge of the yield stress and hence 
the maximum elastic moment for any particular cross-section, the shape factor determines 
the increase in moment required to produce a fully plastic section or plastic hinge; depending 
on the support and loading conditions it may then be possible to increase the moment beyond 
this value until a sufficient number of plastic hinges have been formed to produce complete 
collapse. In order to describe the increased strength available using this “plastic limit” or 
“collapse load” procedure a load factor is introduced defined as 

collapse load 
allowable working load 

load factor = (3.9) 

This is completely different from, and must not be confused with, the safety factor, which 
is a factor to be applied to the yield stress in simple elastic design procedures. 

3.9. Residual stresses after yielding: elastic-perfectly plastic material 

Reference to the results of simple tensile or proof tests detailed in 8 1 .7t shows that when 
materials are loaded beyond the yield point the resulting deformation does not disappear 
completely when load is removed and the material is subjected to permanent deformation or 
so-called permanent set (Fig. 3.15). In bending applications, therefore, when beams may be 
subjected to moments producing partial plasticity, i.e. part of the beam section remains elastic 
whilst the outer fibres yield, this permanent set associated with the yielded areas prevents 
those parts of the material which are elastically stressed from returning to their unstressed 
state when load is removed. Residual stress are therefore produced. In order to determine 
the magnitude of these residual stresses it is normally assumed that the unloading process, 
from either partially plastic or fully plastic states, is completely elastic (see Fig. 3.15). The 
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Fig. 3.15. Tensile test stress-strain curve showing elastic unloading process from any load condition. 

t E.J. Hearn, Mechanics of Materials I ,  Buttenvorth-Heinemann. 1997 
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unloading stress distribution is therefore linear and it can be subtracted graphically from the
stress distribution in the plastic or partially plastic state to obtain the residual stresses.

Consider, therefore, the rectangular beam shown in Fig. 3.16 which has been loaded to its
fully plastic condition as represented by the stress distribution rectangles oabc and odef. The
bending stresses which are then superimposed during the unloading process are given by
the line goh and are opposite to sign. Subtracting the two distributions produces the shaded
areas which then indicate the residual stresses which remain after unloading the plastically
deformed beam. In order to quantify these areas, and the values of the residual stresses, it
should be observed that the loading and unloading moments must be equal, i.e. the moment
of the force due to the rectangular distribution oabc about the N .A. must equal the moment
of the force due to the triangular distribution oag .

Fig. 3.16. Residual stresses produced after unloading a rectangular-section beam from a fully plastic state.

Now, moment due to oabc

= stress x area x moment arm

= ab x A x oa/2

md moment due to oag

= average stress x area x moment arm

= ag/2 x A x 2oa/3

Equating these values of moment yields

ag = ~ab

Now ab = yield stress ay ...ag = 14ay

Thus the residual stresses at the outside surfaces of the beam = tUy. The maximum residual
stresses OCCu( at the N.A. and are equal to the yield stress. The complete residual stress
distribution is shown in Fig. 3.16.

In loading cases where only partial plastic bending has occurred in the beam prior to
unloading the stress distributions obtained, using a similar procedure to that outlined above,
are shown in Fig. 3.17. Again, the unloading process is assumed elastic and the line goh in
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Fig. 3.17. Residual stress produced after unloading a rectangular-section beam from a partially plastic state.

this case is positioned such that the moments of the loading and unloading stress distributions
are once more equal, i.e. the stress at the outside fibre ag is determined by considering the
plastic moment M pp applied to the beam assuming it to be elastic; thus

My Mpp D
ag = a = --'- = --

I I 2

Whereas in the previous case the maximum residual stress occurs at the centre of the beam,
in this case it may occur either at the outside or at the inner boundary of the yielded portion
depending on the depth of plastic penetration. There is no residual stress at the centre of the
beam.

Because of the permanent set mentioned above and the resulting stresses, beams which
have been unloaded from plastic or partially plastic states will be deformed from their original
shape. The straightening moment which is required at any section to return the beam to its
original position is that which is required to remove the residual stresses from the elastic
core (see Example 3.3).

The residual or permanent radius of curvature R after load is removed can be found from

-= (3.10)
R RE

where Rp is the radius of curvature in the plastic condition and RE is the elastic spring-back,

calculated by applying the simple bending theory to the complete section with a moment of
M pp or M FP as the case may be.

R.,

3.10. Torsion of shafts heyond the elastic limit -plastic torsion

The method of treatment of shafts subjected to torques sufficient to initiate yielding of the
material is similar to that used for plastic bending of beams (§3.1), i.e. it is usual to assume
a stress-strain curve for the shaft material of the form shown in Fig. 3.2, the stress being
proportional to strain up to the elastic limit and constant thereafter. It is also assumed that
plane cross-sections remain plane and that any radial line across the section remains straight.

Consider, therefore, the cross-section of the shaft shown in Fig. 3 .18(a) with its associated
shear stress distribution. Whilst the shaft remains elastic the latter remains linear, and as the
torque increases the shear stress in the outer fibres will eventually reach the yield stress in
shear of the material Ty. The torque at this point will be the maximum that the shaft can
withstand whilst it is completely elastic.
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Shaft Stress 
cross-section disbibution 
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ore0 

( 0 1  Maximum ( b )  Portiolly ( c )  Fully 
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Fig. 3.18. Plastic torsion of a circular shaft. 

From the torsion theory 
T t  

Therefore maximum elastic torque 

t , J  t, nR4 
R R 2  
nR3 

T E  = - = -- 

-- (3.1 1) 

If the torque is now increased further it is assumed that, instead of the stress in the outer 
fibre increasing beyond T,, more and more of the material will yield and take up the stress 
t, , giving the stress distribution shown in Fig. 3.18(b). Consider the case where the material 
has yielded to a radius R1, then: 
Partially plastic torque 

2 ty 
- 

T p p  = torque owing to elastic core + torque owing to plastic portion 

The first part is obtained directly from eqn. (3.1 1) with RI  replacing R ,  

X R ;  
i.e. 2 SY 

For the second part consider an element of radius r and thickness d r ,  canying a stress r y ,  
(see Fig. 3.18(b)), 

force on element = T, x 2nrdr  

contribution to torque = force x radius 

= (tv x 2nrdr ) r  

= 2nr2 d r t ,  

total contribution = IR: t,2nr2 d r  
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Therefore, partially plastic torque 

nR? 2rs 
TPP = -5 ,  + -r [R - R , ]  2 3 v  

(3.12) 

In Fig. 3.lS(c) the torque has now been increased until the whole cross-section has yielded, 
i.e. become plastic. The torque required to reach this situation is then easily determined from 
eqn. (3.12) since R ,  = 0. 

rsr', 3 fully plastic torque T F P  = A x 4R- 
6 

. .  

2r 3 = -R zy 
3 

(3.13) 

There is thus a considerable torque capacity beyond that required to produce initial yield, 
the ratio of fully plastic to maximum elastic torques being 

4 
3 

- -  - 

The fully plastic torque for a solid shaft is therefore 33% greater than the maximum elastic 
torque. As in the case of beams this can be taken account of in design procedures to increase 
the allowable torque which can be carried by the shaft or it may be treated as an additional 
safety factor. In any event it must be remembered that should stresses in the shaft at any 
time exceed the yield point for the material, then some permanent deformation will occur. 

3.11. Angles of twist of shafts strained beyond the elastic limit 

Angles of twist of shafts in the partially plastic condition are calculated on the basis of 
the elastic core only, thus assuming that once the outer regions have yielded they no longer 
offer any resistance to torque. This is in agreement with the basic assumption listed earlier 
that radial lines remain straight throughout plastic torsion, i.e. Opp = 0, for the core. 

For the elastic core, therefore, 

i.e. 
r,L 

e p p  = A 
R I G  

3.12. Plastic torsion of hollow tubes 

(3.14) 

Consider the hollow tube of Fig. 3.19 with internal radius R ,  and external radius R 
subjected to a torque sufficient to produce yielding to a radius R2. The torque carried by the 
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Stress distribution 

aea 

Fig. 3.19. Plastic torsion of a hollow shaft. 

equivalent partially plastic solid shaft, i.e. ignoring the central hole, is given by eqn. (3.12) 
with R2 replacing R1 as 

7 [ 4 R 3  - R;] 

The torque carried by the hollow tube can then be determined by subtracting from the 
above the torque which would be carried by a solid shaft of diameter equal to the central 
hole and subjected to a shear stress at its outside fibre equal to t. 
i.e. from eqn. (3.1 1) torque on imaginary shaft 

but by proportions of the stress distribution diagram 

Therefore torque on imaginary shaft equal in diameter to the hollow core 

ITRf -- - 
2R2 " 

Therefore, partially plastic torque for the hollow tube 

X t Y  3 3 XR;' T p p  = -[4R - R2] - --ty 
6 2 R2 

= 2 [ 4 R 3 R 2  - R i  - 3R;] 
xr  
6R2 

The fully plastic torque is then obtained when R2 = R1, 

i.e. 

(3.15) 

(3.16) 

This equation could also have been obtained by adaptation of eqn. (3.13), subtracting a fully 
plastic core of diameter equal to the central hole. 

As an aid in visualising the stresses and torque capacities of members loaded to the fully 
plastic condition an analogy known as the sand-heap analogy has been introduced. Whilst 
full details have been given by Nadait it is sufficient for the purpose of this text to note that 

A. Nadai, Theory ofFlow and Fracture of Solids, Vol. I ,  2nd edn., McGraw-Hill, New York, 1950. 
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if dry sand is poured on to a raised flat surface having the same shape as the cross-section of
the member under consideration, the sand heap will assume a constant slope, e.g. a cone on
a circular disc and a pyramid on a square base. The volume of the sand heap, and hence its
weight, is then found to be directly proportional to the fully plastic torque which would be
carried by that particular shape of cross-section. Thus by calibration, i.e. with a knowledge
of the fully plastic torque for a circular shaft, direct comparison of the weight of appropriate
sand heaps yields an immediate indication of the fully plastic torque of some other more
complicated section.

3.13. Plastic torsion of case-hardened shafts

Consider now the case-hardened shaft shown in Fig. 3.20. Whilst it is often assumed in
such cases that the shear-modulus is the same for the material of the case and core, this is
certainly not the case for the yield stresses; indeed, there is often a considerable difference,
the value for the case being generally much larger than that for the core. Thus, when the
shaft is subjected to a torque sufficient to initiate yielding at the outside fibres, the normal
triangular elastic stress distribution required to maintain straight radii must be modified,
since this would imply that some of the core material is stressed beyond its yield stress.
Since the basic assumption used throughout this treatment is that stress remains constant
at the yield stress for any increase in strain, it follows that the stress distribution must be
as indicated in Fig. 3.20. The shaft thus contains at this stage a plastic region sandwiched
between two elastic layers. Torques for each portion must be calculated separately, therefore,
and combined to yield the partially plastic torque for the case-hardened shaft. (Example 3.5.)

Fig. 3.20. Plastic torsion of a case-hardened shaft

3.14. Residual stresses after yield in torsion

If shafts are stressed at any time beyond their elastic limit to a partially plastic state
as described previously, a permanent deformation will remain when torque is removed.
Associated with this plastic deformation will be a system of residual stresses which will
affect the strength of the shaft in subsequent loading cycles. The magnitudes of the residual
stresses are determined using the method described in detail for beams strained beyond the
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elastic limit on page 73, i.e. the removal of torque is assumed to be a completely elastic 
process so that the associated stress distribution is linear. The residual stresses are thus 
obtained by subtracting the elastic unloading stress distribution from that of the partially 
plastic loading condition. Now, from eqn. (3.12), partially plastic torque = T p p .  

Therefore elastic torque to be applied during unloading = T p p .  

The stress tf at the outer fibre of the shaft which would be achieved by this torque, 
assuming elastic material, is given by the torsion theory 

T 5 . T p p R  ' 

J R '  J 
1.e. t = - _ -  - - 

Thus. for a solid shaft the residual stress distribution 

T" -T' 

.-- 
(b) Unloading 

- elastic 

is obtained as shown in Fig. 3 

7.. T' - (T' -7" ) 

(a) and (b) (c) Residual 
Superimposed stresses 

.21. 

Soli shaft cross-section 
(partially plastic) 

Fig. 3.21. Residual stresses produced in a solid shaft after unloading from a partially plastic state. 

Similarly, for hollow shafts, the residual stress distribution will be as shown in Fig. 3.22. 

7.. 7' py ----- 

(a) Loading (b) Unloading 
-partially - elastic 
plastic 

7" 7' 

(c) Residual 
stresses 

Hollow shaft cross-section 
(partially plastic) 

Fig. 3.22. Residual stresses produced in a hollow shaft after unloading from a partially plastic state. 

3.15. Plastic bending and torsion of strain-hardening materials 

( a )  Inelastic bending 

Whilst the material in this case no longer follows Hookes' law it is necessary to assume that 
cross-sections of the beam remain plane during bending so that strains remain proportional 
to distance from the neutral axis. 
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Consider, therefore, the rectangular section beam shown in Fig. 3.23(b) with its neutral 
axis positioned at a distance hl from the lower surface and h2 from the upper surface. Bearing 
in mind the assumption made in the preceding paragraph we can now locate the neutral axis 
position by the usual equilibrium conditions. 

Fig. 3.23(a). Stress-strain curve for a beam in 
bending constructed from a strain - hardening 

material. 

Fig. 3.23(b). 

i.e. Since the sum of forces normal to any cross-section must always be zero then: 

J * d a = [ , n . b d y = O  

But, from eqn (4.1)t 
0 

y = R- = RE 
E 

:. d y  = RdE 

or 

where E ]  and ~2 are the strains in the top and bottom surfaces of the beam, respectively. 
They are also indicated on Fig. 3.23(a). 

Since b and R are constant then the position of the neutral axis must be such that: 

p & = O  (3.17) 

i.e. the total area under the 0-E curve between E ]  and ~2 must be zero. This is achieved by 
marking the length ET on the horizontal axis of Fig. 3.23(a) in such a way as to make the 
positive and negative areas of the diagram equal. This identifies the appropriate values for 
E I  and ~2 with: 

t E.J. Hearn, Mechanics of Materials 1 ,  Butterworth-Heinemann, 1997 
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i.e. (3.18) 

Because strains have been assumed linear with distance from the neutral axis the position 
of the N.A. is then obtained by simple proportions: 

(3.19) 

The value of the applied bending moment M is then given by the sum of the moments of 
forces above and below the neutral axis. 

i.e. 

and, since d y  = R . d e  and y = RE. 

M = 6:' ob . R2& dE = R2b OE dE. 6:' 
Substituting, from eqn. (3.18), R = d/ET: 

(3.20) 

The integral part of this expression is the first moment of area of the shaded parts of 
Fig. 3.23(a) about the vertical axis and evaluation of this integral allows the determination 
of M for any assumed value of E T .  

An alternative form of the expression is obtained by multiplying the top and bottom of 
the expression by 12R using R = d/&T for the numerator, 

i.e. OE dE. 
12R [ E :  6, w d r ]  = 

(d /ET)  bd2  
M = l 2 -  - 

which can be reduced to a form similar to the standard bending eqn. (4.3)t M = EI/R 

i.e. 

with E, known as the reduced modulus and given by: 

(3.21) 

(3.22) 

The appropriate value of the reduced modulus E,. for any particular curvature is best obtained 
from a curve of E,. against E T .  This is constructed rather laboriously by determining the 
relevant values of E [  and ~2 for a set of assumed ET values using the condition of equal 
positive and negative areas for each ET value and then evaluating the integral of eqn. (3.22). 
Having found E , ,  the value of the bending moment for any given curvature R is found from 
eqn. (3.21). 

It is sometimes useful to remember that, because strains are linear with distance from the 
neutral axis, the distribution of bending stresses across the beam section will take exactly 
the same form as that of the stress-strain diagram of Fig. 3.23(a) turned through 90" with 

E.J. Hearn, Mechunics ofMrrturials 1.  Butterworth-Heinemann, 1977 
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ET replaced by the beam depth d .  The position of the neutral axis indicated by eqn. (3.19) 
is then readily observed. 

(6) Inelastic torsion 

A similar treatment can be applied to the torsion of shafts constructed from materials which 
exhibit strain hardening characteristics. Figure 3.24 shows the shear stress-shear strain curve 
for such a material. 

Fig. 3.24. Shear stress-shear strain curve for torsion of materials exhibiting strain-hardening characteristics. 

Once again it is necessary to assume that cross-sections of the shaft remain plane and 
that the radii remain straight under torsion. The shear strain at any radius r is then given by 
eqn. (8.9)t as: 

re 
y = -  

L 
For a shaft of radius R the maximum shearing strain is thus 

R8 
Ymax = - L 

the corresponding shear stress being given by the relevant ordinate of Fig. 3.24. 
Now the torque T has been shown in $8. l t  to be given by: 

T = 1" 2nr2r'dr 

where 7' is the shear stress at any general radius r .  

Now, since 
re e 

y = - then d y  = - .  d r  
L L 

and, substituting for r and d r ,  we have: 

(3.23) 

E.J. Hearn, Mechanics of Materials I ,  Butterworth-Heinemann, 1997. 
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The integral part of the expression is the second moment of area of the shaded portion of
Fig. 3.24 about the vertical axis. Thus, determination of this quantity for a given Ymax value
yields the corresponding value of the applied torque T .

As for the case of inelastic bending, the form of the shear stress-strain curve, Fig. 3.24,
is identical to the shear stress distribution across the shaft section with the y axis replaced

by radius r.

3.16. Residual stresses -strain-hardening materials

The procedure for determination of residual stresses arising after unloading from given
stress states is identical to that described in §3.9 and §3.l4.

For example, it has been shown previously that the stress distribution across a beam
section in inelastic bending will be similar to that shown in Fig. 3.23(a) with the beam depth
corresponding to the strain axis. Application of the elastic unloading stress distribution as
described in §3.9 will then yield the residual stress distribution shown in Fig. 3.25. The same
procedure should be adopted for residual stresses in torsion situations, reference being made

to §3.l4.

Fig. 3.25. Residual stresses produced in a beam constructed from a strain-hardening material

3.17. InOuence of residual stresses on bending and torsional strengths

The influence of residual stresses on the future loading of members has been summarised

by Juvinallt into the following rule:

An overload causing yielding produces residual stresses which are favourable to future over-
loads in the same direction and unfavourable to future overloads in the opposite direction.

This suggests that the residual stresses represent a favourable stress distribution which has
to be overcome by any further load system before any adverse stress can be introduced into
the member of structure. This principle is taken advantage of by spring manufacturers, for
example, who intentionally yield springs in the direction of anticipated service loads as part
of the manufacturing process. A detailed discussion of residual stress can be found in the

Handbook of Experimental Stress Analysis of Hetenyi.:J:

t R. C. Juvinall, Engineering Considerations of Stress, Strain and Strength, McGraw-Hill, 1967.

4. M. Hetenyi, Handbook of Experimenta[ Stress Ana[ysis, John Wiley, 1966.
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3.18. Plastic yielding in the eccentric loading of rectangular sections 

When a column or beam is subjected to an axial load and a B.M., as in the application 
of eccentric loads, the elastic stress distribution is as shown in Fig. 3.25(a), the N.A. being 
displaced from the centroidal axis of the section. As the load increases the yield stress will 
be reached on one side of the section first as shown in Fig. 3.26(b) and, as in the case of the 
partially plastic bending of unsymmetrical sections in $3.4, the N.A. will move as plastic 
penetration proceeds. In the limiting case, when plasticity has spread across the complete 
section, the N.A. will be situated at a distance h from the centroidal axis (the axis through 
the centroid of the section) (Fig. 3.26(c)). The precise position of the N.A. is related to 
the excess of the total tensile force over the total compressive force, i.e. to the area shown 
shaded in Fig. 3.26(c). In simple bending, for example, there is no resultant force across the 
section and the shaded area reduces to zero. Thus, the magnitude of the axial load for full 
plasticity as given by the shaded area 

= PFP = 2h x B x aY 

Beam OT cdumn (a) Max. elastic (b) Partially (c) Fully plastic 
section stress distribution plastic 

Fig. 3.26. Plastic yielding of eccentrically loaded rectangular section. 

where B is the width of the section, 
PFP i.e. h = -  
2Bay 

(3.24) 

The fully plastic load is sometimes written in terms of a load factor N defined as 
fully plastic load - P F P  - load factor N = - 

axial load P 
PN 

2Bav 
then h = -  (3.25) 

The fully plastic moment on the section is given by the difference in the moments produced 
by the stress distributions of Fig. 3.27, 

i.e. 
B D ~  h 

M F P  = -u,, - 2(Bhay)- 
4 .  2 

B D ~  
M F P  = -ay - Bh2av 

4 
BD2 P2N2 

uy - - 4 4B uy 
-- - (3.26) 
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(a) As Fig.18.26(c) (b) Fully plastic moment 
assuming pure bending load 

(c) Effect of eccentric 

Fig. 3.27. 

The fully plastic moment required in eccentric load conditions is therefore reduced from that 
in the simple bending case by an amount depending on the values of the load, yield stress, 
section shape and load factor. 

The maximum allowable working moment for a single plastic hinge in eccentric loading 
situations with a load factor N is therefore given by 

MFP BD2 P2N 
= 4 N a y - q  M = -  

N 
(3.27) 

3.19. Plastic yielding and residual stresses under axial loading with stress 
concentrations 

If a bar with uniform cross-section is loaded beyond its yield point in pure tension (or 
compression), the bar will experience permanent deformation when load is removed but 
no residual stresses will be created since all of the material in the cross-section will have 
yielded simultaneously and all will return to the same unloaded condition. If, however, 
stress concentrations such as notches, keyways, holes, etc., are present in the bar, these will 
result in local stress increases or stress concentrations, and the material will yield at these 
positions before the rest of the cross-section. If the local stress concentration factor is K 
then the maximum stress in the section with an axial load P is given by 

omax = K ( P / A )  

where PIA is the mean stress across the section assuming no stress concentration is present. 
When the load has been increased to a value P, ,  just sufficient to initiate yielding at the 

root of the notch or other stress concentration, the stress distribution will be as shown in 
Fig. 3.28(a). Since equilibrium considerations require the mean stress across the section to 
equal P , / A  it follows that the stress at the centre of the section must be less than P , / A .  

If the load is now increased to P2, yielding will continue at the root of the notch and 
plastic penetration will proceed towards the centre of the section. At some stage the stress 
distribution will appears as in Fig. 3.28(b) with a mean stress value of P2/A.  If the load 
is then removed the residual stresses may be obtained using the procedure of $03.9 and 
3.14, i.e. by superimposing an elastic stress distribution of opposite sign but equal moment 
value (shown dotted in Fig. 3.28(b)). The resulting residual stress distribution would then 
be similar to that shown in Fig. 3.28(c). 
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distribution 
I 

LI 1 Elastic 
unloading 

i 

Partially plastic (c) 
loading 

I I X X 

t P  
Fig. 3.28. Residual stresses at stress concentrations. 

Whilst subsequent application of loads above the value of P2 will cause further yielding, no 
yielding will be caused by the application of loads up to the value of P2 however many times 
they are applied. With a sufficiently high value of stress concentration factor it is possible 
to produce a residual stress distribution which exceeds the compressive yield stress at the 
root of the notch, i.e. the material will be stressed from tensile yield to compressive yield 
throughout one cycle. Provided that further cycles remain within these limits, the component 
will not experience additional yielding, and it can be considered safe in, for example, high 
strain, low-cycle fatigue conditions. 

3.20. Plastic yielding of axially symmetric components? 

( a )  Thick cylinders under internal pressure - collapse pressure 

Consider the thick cylinder shown in Fig. 3.29 subjected to an internal pressure P I  of 

Now for ductile materials, from $10.17,$ yield is deemed to occur when 
sufficient magnitude to produce yielding to a radius R, .  

c y  = O H  - or. (3.28) 

but from eqn. (10.2)$, the equilibrium equation, 

do, 
UH - 0, = r -  

d r  

t J. Heyman, f r o c .  1.Mech.E. 172 (1958). W.R.D. Manning, High Pressure Engineering, Bulleid Memorial 

* EJ .  Hearn, Mechanics of Materials 1 ,  Butterworth-Heinemann, 1997. 
Lecture, 1963, University of Nottingham. 
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. .  

Integrating: 

Now 

. .  

i.e. 

and from eqn. (3.28) 

Yielded area 

\T/ 
Fig. 3.29. 

dar 
IS, = r -  

d r  
dur u y  _ -  - - 
d r  r 

IS, = IS,, log, r + constant 

ur = -P3 at r =  R ,  

constant = -P3 - IS?, log, R ,  

IS, = C T ~  log, r - P3 - IS?, log, R ,  

a, = by log, - - P3 
r 

RP 
(3.29) 

(3.30) 

These equations thus yield the hoop and radial stresses throughout the plastic zone in terms 
of the radial pressure at the elastic-plastic interface P3. The numerical value of P3 may be 
determined as follows (the sign has been allowed for in the derivation of eqn. (3.29)). 

At the stage where plasticity has penetrated partly through the cylinder walls the cylinder 
may be considered as a compound cylinder with the inner tube plastic and the outer tube 
elastic, the latter being subjected to an internal pressure P3. From eqns. (10.5) and (10.6)t 
the hoop and radial stresses in the elastic portion are therefore given by 

and 

E.J. Heam, Mechunics of'Muteriuls I ,  Butterworth-Heinemann, 1997. 
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i.e. the maximum shear stress is 

Again, applying the Tresca yield criterion, 

i.e. the radial pressure at the elastic interface is 

f fY 2 2 P3 = -[R2 - R ] 2R; P 

Thus from eqns. (3.29) and (3.30) the stresses in the plastic zone are given by 

and 

(3 .31)  

(3 .32)  

(3 .33)  

The pressure required for complete plastic “collapse” of the cylinder is given by eqn. (3.29) 
when r = R ,  and R ,  = R2 with P3 = P2 = 0 (at the outside edge). 

For “collapse” a, = -PI = uy log, R1 - 
R2 

(3 .34)  

With a knowledge of this collapse pressure the design pressure can be determined by dividing 
it by a suitable load factor as described in $3.8. 

The pressure at initial yield is found from eqn. (3.31) when R ,  = R I ,  

i.e. initial yield pressure = -[R: CY - Rt] 2Ri 
(3 .35)  

Finally, the internal pressure required to cause yielding to a radius R ,  is given by 
eqn. (3.32) when r = R l ,  

i.e. R1 1 
Rp 2Ri a, = -PI = uy [log, - - -(RZ - R;)] (3 .36)  

(b)  Thick cylinders under internal pressure ( “auto-frettage ”) 

When internal pressure is applied to thick cylinders it has been shown that maximum 
tensile stresses are set up at the inner surface of the bore. If the internal pressure is increased 
sufficiently, yielding of the cylinder material will take place at this position and the working 
safety factor n according to the Tresca theory will be given by 

OH - or = a y / n  

where OH and a, are the hoop and radial stresses at the bore. 
Fortunately, the condition is not too serious at this stage since there remains a considerable 

bulk of elastic material surrounding the yielded area which contains the resulting strains 
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within reasonable limits. As the pressure is increased further, however, plastic penetration 
takes place deeper and deeper into the cylinder wall and eventually the whole cylinder will 
yield. Fatigue life of the cylinder will also be heavily dependent upon the value of the 
maximum tensile stress at the bore so that any measures which can be taken to reduce the 
level of this stress will be beneficial to successful operation of the cylinder. Such methods 
include the use of compound cylinders with force or shrink fits and/or external wire winding; 
the largest effect is obtained, however, with a process known as “autofrettage”. 

If the pressure inside the cylinder is increased beyond the initial yield value so that plastic 
penetration occurs only partly into the cylinder wall then, on release of the pressure, the 
elastic zone attempts to return to its original dimensions but is prevented from doing so 
by the permanent deformation or “set” of the yielded material. The result is that residual 
stresses are introduced, the elastic material being held in a state of residual tension whilst the 
inside layers are brought into residual compression. On subsequent loading cycles, therefore, 
the cylinder is able to withstand a higher internal pressure since the compressive residual 
stress at the bore has to be overcome before this region begins to experience tensile stresses. 
The autofrettage process has the same effect as shrinking one tube over another without 
the complications of the shrinking process. With careful selection of cylinder dimensions 
and autofrettage pressure the resulting residual compressive stresses can significantly reduce 
or even totally eliminate tensile stresses which would otherwise be achieved at the bore 
under working conditions. As a result the fatigue life and the safety factor at the bore are 
considerably enhanced and for this reason gun barrels and other pressure vessels are often 
pre-stressed in this way prior to service. 

Care must be taken in the design process, however, since the autofrettage process intro- 
duces a secondary critical stress region at the position of the elastic/plastic interface of the 
autofrettage pressure loading condition. This will be discussed further below. 

The autofrettage pressure required for yielding to any radius R, is given by the High 
Pressure Technology Association (HFTA) code of practice? as 

(3.37) 

where K = R2/R, and m = R,/RI, where RI the internal radius and R2 the external radius. 
This is simply a modified form of eqn. (3.36) developed in the preceding section. 
The maximum allowable autofrettage pressure is then given as that which will produce 

yielding to the geometric mean radius R, = m. 
Stress distribution under autofrettage pressure loading 

From eqns. (3.32) and (3.33) the stresses in the plastic zone at any radius r are given by: 

(3.38) 

(3.39) 

t High Pressure Safery Code. High Pressure Technology Association, 1975. 
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Also in $3.20 (a) it has been shown that stresses at any radius r in the elastic zone are 
obtained in terms of the radial pressure P3 = P p  set up at the elastic-plastic interface with: 

(3 .40)  

(3 .41)  

(3.3 l ) (bis)  

The above equations yield hoop and radial stress distributions throughout the cylinder wall 
typically of the form shown in Fig. 3.30. 

with P - - [ R i - R , ]  f f Y  2 
- 2R: 

Pbstic 1 Elastic region 
region - 

Hoop stress 

ki 
E 
0 

% 0 
- 

Fig. 3.30. Stress distributions under autofrettage pressure. 

Residual stress distributions 
Residual stress after unloading can then be obtained using the procedure introduced in 

$3.9 of elastic unloading, i.e. the autofrettage loading pressure is assumed to be removed 
(applied in a negative sense) elastically across the whole cylinder, the unloading elastic stress 
distribution being given by eqns. (10.5) and (10.6)t as: 

(3 .42)  

(3 .43)  

E.J. H e m ,  Mechanics of Materials I ,  Butterworth-Heinernann, 1997. 
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Superposition of these distributions on the previous loading distributions allows the two 
curves to be subtracted for both hoop and radial stresses and produces residual stresses of 
the form shown in Figs. 3.31 and 3.32. 

9 Residual hoop stresses 

Fig. 3.31. Determination of residual hoop stresses by elastic unloading. 

I Restduo1 stresses 1 

Radial loading stresses 

- - 
0 
1 

- - 
L L 

(D 0 c 
C 
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I Residud rodiol stresses 

re-plottad on horizontal base line 

Fig. 3.32. Determination of residual radial stresses by elastic unloading. 

Working stress distributions 

Finally, if the stress distributions due to an elastic internal working pressure P ,  are 
superimposed on the residual stress state then the final working stress state is produced 
as in Figs. 3.33 and 3.34. 

The elastic working stresses are given by eqns. (3.42) and (3.43) with PA replaced by P,. 
Alternatively a Lam6 line solution can be adopted. The final stress distributions show that 
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Hoop working stresses 

(by addition of above diagram 
taking account of sign) 

Fig. 3.33. Evaluation of hoop working stresses. 

Residual radial stresses as in Fig. 3.32 

/ ’ Elostic loading rodial stresses 
I under working pressure P, 

- - - - 
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L t - 0 
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ladditionof curves obove since 
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Fig. 3.34. Evaluation of radial working stresses. 

the maximum tensile stress, instead of being at the bore as in the plain cylinder, is now at 
the elastic/plastic interface position. Application of the Tresca maximum shear stress failure 
criterion : 

i.e. an - a, = a,/n 

also indicates the elastic/plastic interface as now more critical than the internal bore - see 
Fig. 3.35. 
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Maximum volue a t  I ' e b s t i c -  piostic interface' 

i/ 
z I 
C 
t4 I 

Fig. 3.35. Distribution of maximum shear stress = +(a@ - a,) by combination of Figs. 3.33 and 3.34. 

Effect of axial stresses and end restraint 

Depending on the end conditions which can be assumed for the cylinder during both the 
autofrettage process and its normal working condition a further complication can arise since 
the axial stresses a, which are produced can affect the application of the Tresca criterion. 

Strictly, Tresca requires the use of the greatest difference in the principal stresses which, 
if az is zero, = OH - a,. If, however, a, has a value it must be used in conjunction with OH 
and a, to produce the greatest difference. 

The procedure used above to determine residual hoop and radial stresses and subsequent 
working stresses should therefore be repeated for axial stresses with values in the plastic 
region being found as suggested by Franklin and Morrison? from: 

(3.44) 

and axial stresses under elastic conditions being given by eqn. (10.7)f with P2 = 0 and 
P I  = PA or Pw as required. 

(c )  Rotating discs 

It will be shown in Chapter 4 that the centrifugal forces which act on rotating discs produce 
two-dimensional tensile stress systems. At any given radius the hoop or circumferential stress 
is always greater than, or equal to, the radial stress, the maximum values occurring at the 
inside radius. It follows, therefore, that yielding will first occur at the inside surface when 
the speed of rotation has increased sufficiently to make the circumferential stress equal to the 
tensile yield stress. With further increase of speed, plastic penetration will gradually proceed 
towards the centre of the disc and eventually complete plastic collapse will occur. 

t G.J. Franklin and J.L.M. Morrison, Autofrettage of cylinders: reduction of pressure/external expansion curves 
and calculation of residual stresses. Proc. J .  Mech. E.  174 (35) 1960. 

E.J. Hearn, Mechanics of Marerials I ,  Butterworth-Heinemann, 1997. 
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Now for a soEid disc the equilibrium eqn. (4.1) derived on page 120 is, with OH = cy, 

dar 2 2  ay -a, - r- = pr w 
dr  

dnr 2 2  a, + r- = ay - pr w 
dr  . .  

(1) 
r3w2 

3 
ra, = ray - p -  + A  Integrating, 

Now since the stress cannot be infinite at the centre where r = 0, then A must be zero. 

r3w2 
rn, = rav - p -  

3 

Now at r = R ,  i.e. at the outside of the disc, a, = 0. 

. .  

R3w2 
Ru, = p -  3 

i.e. the collapse speed w p  is given 

For a disc with a central hole, ( 1 )  
is determined from the condition 

i.e. 

2 3CY up = - 
PR2 

(3.45) 

still applies, but in this case the value of the constant A 

a, = 0 at r = RI the inside radius 

Again, or = 0 at the outside surface where r = R. 
Substituting in ( l ) ,  

w2 
0 = a,(R - R I )  - p 7 ( R 3  - R:) 

i.e. the collapse speed wp is given by 

(3.46) 

If a rotating disc is stopped after only partial penetration, residual stresses are set up 
similar to those discussed in the case of thick cylinders under internal pressure (auto-frettage). 
Their values may be determined in precisely the same manner as that described in earlier 
sections, namely, by calculating the elastic stress distribution at an appropriate higher speed 
and subtracting this from the partially plastic stress distribution. Once again, favourable 
compressive residual stresses are set up on the surface of the central hole which increases 
the stress range - and hence the speed limit - available on subsequent cycles. This process 
is sometimes referred to as overspeeding. 
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Doc cdae 

Fig. 3.36. Residual stresses produced after plastic yielding (“overspeeding”) of rotating disc with a central hole. 

A typical residual stress distribution is shown in Fig. 3.36. 

Ex amp 1 e s 

Example 3.1 

(a) A rectangular-section steel beam, 50 mm wide by 20 mm deep, is used as a simply 
supported beam over a span of 2 m with the 20 mm dimension vertical. Determine the value 
of the central concentrated load which will produce initiation of yield at the outer fibres of 
the beam. 

(b) If the central load is then increased by 10% find the depth to which yielding will take 
place at the centre of the beam span. 

(c) Over what length of beam will yielding then have taken place? 
(d) What are the maximum deflections for each load case? 
For steel gv in simple tension and compression = 225 MN/m2 and E = 206.8 GN/m2. 

Solution 
(a) From eqn. (3.1) the B.M. required to initiate yielding is 

50 202 10-9 
-cry = x 225 x lo6 = 750 N m 
B D ~  

6 .  6 

But the maximum B.M. on a beam with a central point load is W L / 4 ,  at the centre. 

i.e. W = 1 5 0 0 N  

The load required to initiate yielding is 1500 N. 
(b) If the load is increased by 10% the new load is 

W’ = 1500 + 150 = 1650 N 

The maximum B .M. is therefore increased to 
, W‘L 1650 x 2 M = - =  = 825 Nm 

4 4 
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and this is sufficient to produce yielding to a depth d ,  and from eqn. (3.2), 

M,, = 9 [ 3 D 2  - d2] = 825 Nm 
12 

. .  
50 x lop3 x 225 x IO6 

12 
825 = [3 x 22 - d2]10-4 

where d is the depth of the elastic core in centimetres, 

. .  8.8 = 12 - d2 

d2 = 3.2 and d = 1.79 cm 

. .  depth of yielding = i ( D  - d)  = i(20 - 17.9) = 1.05 mm 
(c) With the central load at 1650 N the yielding will have spread from the centre as shown 

in Fig. 3.37. At the extremity of the yielded region, a distance x from each end of the beam, 
the section will just have yielded at the extreme surface fibres, i.e. the moment camed at this 
section will be the maximum elastic moment and given by eqn. (3.1) - see part (a) above. 

1650 - 2 1650 
-2- 

Fig. 3.37 

Now the B.M. at the distance x from the support is 
1650x BD2 _ _ -  oy = 750 - - 

2 
2 x 750 

1650 
x=- = 0.91 m 

Therefore length of beam over which yielding has occurred 
= 2 - 2 x 0.91 = 0.18 m = 180 mm 

(d) For W = 1500 N the beam is completely elastic and the maximum deflection, at the 
centre, is given by the standard form of eqn. (5.15)t: 

A=-- 
48EZ 

1500 x Z3 x 12 
48 x 206.8 x lo9 x 50 x 203 x 10-I2 

- 
WL3 

= 0.0363 m = 36.3 mm 
With W = 1650 N and the beam partially plastic, deflections are calculated on the basis of 
the elastic core only, 

W'L3 i.e. A = -  
48EI' 

1650 x 23 x 12 
48 x 206.8 x lo9 x 50 x 17.93 x 10-I2 

- - 

= 0.0556 m = 55.6 mm 

t E.J. H e m ,  Mechanics of Materials I ,  Butterworth-Heinemann, 1997. 
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Example 3 2  

(a) Determine the “shape factor” of a T-section beam of dimensions 100 mm x 150 mm 
x 12 mm as shown in Fig. 3.38. 

(b) A cantilever is to be constructed from a beam with the above section and is designed to 
carry a uniformly distributed load over its complete length of 2 m. Determine the maximum 
u.d.1. that the cantilever can carry if yielding is permitted over the lower part of the web to 
a depth of 25 mm. The yield stress of the material of the cantilever is 225 MN/m2. 

u v  

Fig. 3.38. 

Solution 

( 4  
fully plastic moment 

maximum elastic moment 
Shape factor = 

To determine the maximum moment carried by the beam while completely elastic we 

Take moments of area about the top edge (see Fig. 3.38): 
must first determine the position of the N.A. 

(100 x I2 x 6) + (138 x 12 x 81) = [(loo x 12) + (138 x 12)] JJ 

7200 + 134136 = (1200 + 1656) 7 
- y = 49.5 mm 

] 10-12 m4 
100 x 49S3 12 x 100S3 88 x 37S3 - 

INA = [ 3  + 3  3 

= f[121.29 + 121.81 - 46.4]10-7 

= 6.56 x IOp6 m4 

Now from the simple bending theory the moment required to produce the yield stress at 
the edge of the section (in this case the lower edge), Le. the maximum elastic moment, is 

a1 6.56 x low6 
- 100.5 x lop3 M E  = - = 0,- x = 0.065 x 10-3a, 

Ymax 
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When the section becomes fully plastic the N.A. is positioned such that 

area below N.A. = half total area 

i.e. if the plastic N.A. is a distance y p  above the base, then 

y p  x 12 = i(1200 + 1656) 
- . .  y p  = 119 mm 

The fully plastic moment is then obtained by considering the moments of forces on conve- 
nient rectangular parts of the section, each being subjected to a uniform stress ay, 

i.e. 
(31 - 12) 

2 x 12)(31 - 6) + ay(31 - 12) x 12 x 

= ~~~(30000 + 2166 + 84966)1OP9 
= 0.117 x 10-3a, 

M F P  0.117 x 

M E  0.065 x 
. .  shape factor = - - - = 1.8 

(b) For this part of the question the load on the cantilever is such that yielding has 
progressed to a depth of 25 mm over the lower part of the web. It has been shown in 
$3.4 that whilst plastic penetration proceeds, the N.A. of the section moves and is always 
positioned by the rule: 

compressive force above N.A. = tensile force below N.A. 

Thus if the partially plastic N.A. is positioned a distance y above the extremity of the yielded 
area as shown in Fig. 3.39, the forces exerted on the various parts of the section may be 
established (proportions of the stress distribution diagram being used to determine the various 
values of stress noted in the figure). 

Fig. 3.39. 
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Force on yielded area F I  = stress x area 

= 225 x 106(12 x 25 x lod6) 

= 67.5 kN 

Force on elastic portion of web below N.A. 

F2 = average stress x area 

(12 x y x 10-6) 
225 x lo6 

2 
- - 

= 1 . 3 5 ~  kN 

where y is in millimetres. 
Force in web above N.A. 

F3 = average stress x area 

- - ('13 - "(225 x 106)(113 - y)12 x 
2Y 

kN 
(113 - 

= 1.35 
Y 

Force in flange 

F4 = average stress x area 

1 (113-y) (125-y) = - [  + ] (225 x 106)100 x 12 x approximately 
2 Y Y 

225 x lo6 x 100 x 12 x 
(238 - 2y) 

2Y 
(238 - 2y) 

Y 

- - 

kN = 135 

Now for the resultant force across the section to be zero, 

F 1 +  F2 = F3 + F4 
1.35(113 - Y ) ~  135(238 - 2y) 

67.5 + 1 . 3 5 ~  = + 
Y Y 

6 7 . 5 ~  + 1 . 3 5 ~ ~  = 17.24 x lo3 - 305y + 1.35~'  + 32.13 x lo3 - 270y . .  
642.5~ = 49 370 

y = 76.8 mm 

Substituting back, 

F I  = 67.5 kN 

F3 = 23 kN 

F2 = 103.7 kN 

F4 = 148.1 kN 
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The moment of resistance of the beam can now be obtained by taking the moments of these 
forces about the N.A. Here, for ease of calculation, it is assumed that F4 acts at the mid-point 
of the web. This, in most cases, is sufficiently accurate for practical purposes. 

Moment of resistance = { F l ( y  + 12.5) + F2 ($) + F3 [ i ( l 1 3  - y)] 

+ F4[(113 - y) + 61 kNm I 
= (6030 + 5312 + 554 + 6243)10-3 kNm 

= 18.14 kNm 

Now the maximum B.M. present on a cantilever carrying a u.d.1. is wL2/2 at the support 

The maximum u.d.1. which can be carried by the cantilever is then 

18.15 x IO3 x 2 
4 

W =  = 9.1 kN/m 

Example 3 3  

(a) A steel beam of rectangular section, 80 mm deep by 30 mm wide, is simply supported 
over a span of 1.4 m and carries a u.d.1. w .  If the yield stress of the material is 240 MN/m2, 
determine the value of w when yielding of the beam material has penetrated to a depth of 
20 mm from each surface of the beam. 

(b) What will be the magnitudes of the residual stresses which remain when load is 
removed? 

(c) What external moment must be applied to the unloaded beam in order to return it to 
its undeformed (straight) position? 

Solution 
(a) From eqn. (3.2) the partially plastic moment carried by a rectangular section is given by 

BO, 
12 

M,, = -[3D2 - d 2 ]  

Thus, for the simply supported beam carrying a u.d.l., the maximum B.M. will be at the 
centre of the span and given by 

wL2 Bay 
8 12 

BM,,, = ~ = ;[3D2 - d 2 ]  

8 x 30 x x 240 x lo6 
W =  [3 x 802 - 402]10-6 

1.42 x 12 
= 43.1 kN/m 
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(b) From the above working 

1.42 
8 

= 43.1 x IO3 x - = 10.6 kNm 

During the unloading process a moment of equal value but opposite sense is applied to the 
beam assuming it to be completely elastic. Thus the equivalent maximum elastic stress 0’ 
introduced at the outside surfaces of the beam by virtue of the unloading is given by the - -  

simple bending theory with M = M,,, = 10.6 kNm, 

i.e. g = - =  
, M y  10.6 x 10’ x 40 x x 12 

I 30 x 80’ x 

= 0.33 x lo9 = 330 MN/m2 

The unloading, elastic stress distribution is then linear from zero at the A. to 
f 3 3 0  MN/m2 at the outside surfaces, and this may be subtracted from the partially plastic 
loading stress distribution to yield the residual stresses as shown in Fig. 3.40. 

Beom cross- Looding ad unloading 
section stress distributions 

Residual stresses 

Fig. 3.40. 

(c) The residual stress distribution of Fig. 3.40 indicates that the central portion of the 
beam, which remains elastic throughout the initial loading process, is subjected to a residual 
stress system when the beam is unloaded from the partially plastic state. The beam will 
therefore be in a deformed state. In order to remove this deformation an external moment 
must be applied of sufficient magnitude to return the elastic core to its unstressed state. The 
required moment must therefore introduce an elastic stress distribution producing stresses of 
f 7 5  MN/m2 at distances of 20 mm from the N.A. Thus, applying the bending theory, 

crl 75 x IO6 30 x 80’ x IO-’* 
20 10-3 12 

M I - =  X 

= 4.8 kNm 
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Alternatively, since a moment of 10.6 kNm produces a stress of 165 MN/m2 at 20 mm from 
the N.A., then, by proportion, the required moment is 

75 
M = 10.6 x - = 4.8 kNm 

165 

Example 3.4 

A solid circular shaft, of diameter 50 mm and length 300 mm, is subjected to a gradually 
increasing torque T .  The yield stress in shear for the shaft material is 120 MN/m2 and, up 
to the yield point, the modulus of rigidity is 80 GN/m2. 

(a) Determine the value of T and the associated angle of twist when the shaft material first 
yields. 

(b) If, after yielding, the stress is assumed to remain constant for any further increase in 
strain, determine the value of T when the angle of twist is increased to twice that at 
yield. 

Solution 
(a) For this part of the question the shaft is elastic and the simple torsion theory applies, 

i.e. 

= 2.95 kNni 
r~ 120 106 x 300 x 10-3 
GR 80 x 109 x 25 x 10-3 

e = - =  = 0.0 18 radian 

= 1.03" 

If the torque is now increased to double the angle of twist the shaft will yield to some 
radius R I  . Applying the torsion theory to the elastic core only, 

t L  
@ = -  

GR 
120 106 300 10-3 

80 x 109 x R ,  
i.e. 2 x 0.018 = 

. .  
120 io6 300 10-3  
2 x 0.018 80 x 109 R I  = = 0.0125 = 12.5 mm 

Therefore partially plastic torque, from eqn. (3.12), 

7r x 120 x 106 
6 

[4 x 253 - 12.53]10-9 - - 
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Example 3.5 

A 50 mm diameter steel shaft is case-hardened to a depth of 2 mm. Assuming that the 
inner core remains elastic up to a yield stress in shear of 180 MN/m2 and that the case can 
also be assumed to remain elastic up to failure at the shear stress of 320 MN/m2, calculate: 

(a) the torque required to initiate yielding at the outside surface of the case; 
(b) the angle of twist per metre length at this stage. 

Take G = 85 GN/m2 for both case and core whilst they remain elastic. 

Solution 
Since the modulus of rigidity G is assumed to be constant throughout the shaft whilst 

elastic, the angle of twist 8 will be constant. 
The stress distribution throughout the shaft cross-section at the instant of yielding of the 

outside surface of the case is then as shown in Fig. 3.41, and it is evident that whilst the 
failure stress of 320 MN/m2 has only just been reached at the outside of the case, the yield 
stress of the core of 180 NM/m2 has been exceeded beyond a radius r producing a fully 
plastic annulus and an elastic core. 

i 
Fig. 3.41 

By proportions, since G,,,, = GcOrer then 

(T) = ('> 
r case Y core 

180 320 
r 25 

- _ _ _ _  - 

. .  
180 
320 

r = - x 25 = 14.1 mm 

The shaft can now be considered in three parts: 

( i )  A solid elastic core of 14.1 mm external radius; 
( i i )  A fully plastic cylindrical region between r = 14.1 mm and r = 23 mm; 

(iii) An elastic outer cylinder of external diameter 50 mm and thickness 2 mm. 

s,.J 180x IO6 ~ ( 1 4 . 1  x 
2 R 14.1 x IO-3 

X - - - _  - Torque on elastic core 

= 793 Nm = 0.793 kNm 
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rz 
Torque on plastic section = 2nr ,L ,  r 2 d r  

27r x 180 x 106 
3 

- - [233 - 14.13]10-9 

t,.J 320 x lo6 254 -234 
Torque on elastic outer case = - - - 

n [ ] r 25 x 10-3 

= 2.23 kNm 

Therefore total torque required = (0.793 + 3.53 + 2.23)103 

= 6.55 kNm 

Since the angle of twist is assumed constant across the whole shaft its value may be deter- 
mined by application of the simple torsion theory to either the case or the elastic core. 

For the case: 

= 0.15 rad = 8.6" 

Example 3.6 

(Fig. 3.42) is subjected to a gradually increasing torque T. Determine the value of T: 

(a) when the material of the bar first yields; 
(b) when plastic penetration has occurred to a depth of 5 mm; 
(c) when the section is fully plastic. 

A hollow circular bar of 100 mm external diameter and 80 mm internal diameter 

Fig. 3.42 

The yield stress in shear of the shaft material is 120 MN/m*. 
Determine the distribution of the residual stresses present in the shaft when unloaded from 

conditions (b) and (c). 
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Solution 
(a) Maximum elastic torque from eqn. (3.1 1) 

Jr t , ,  Jr x 120 x 106 
2 x 50 x 10-3 

= -[@ - Rf] = (625 - 256)10-' 
2R 

= 13900 Nm = 13.9 kNm 

(b) Partially plastic torque, from eqns. (3.1 1) and (3.13), 

Jr x 120 x 106 
2 x 45 x 10-3 

2Jr x 120 x lo6 
3 

- - (4S4 - 256)10-' + (125 - 91)10-6 

= 6450 + 8550 = 15000 Nm = 15 kNm 

(c) Fully plastic torque from eqn. (3.16) or eqn. (3.13) 

2nr, 
3 

- - -[R3 - R:] 

2Jr x 120 x 106 - - [ 125 - 641 = 15330 = 15.33 kNm 
3 

In order to determine the residual stresses after unloading, the unloading process is 
assumed completely elastic. 

Thus, unloading from condition (b) is equivalent to applying a moment of 15 kNm of oppo- 
site sense to the loading moment on a complete elastic bar. The effective stress introduced 
at the outer surface by this process is thus given by the simple torsion theory 

i.e. 
TR 15 x 10' x 50 x x 2 r = - =  
J ~r x (504 - 4O4)1O-l2 

15 io3 x 50 x 1 0 - ~  x 2 - - 
~ ( 5 ~  - 44)10-8 

= 129 MN/m2 

The unloading stress distribution is then linear, from zero at the centre of the bar to 
129 MN/m2 at the outside. This can be subtracted from the partially plastic loading stress 
distribution as shown in Fig. 3.43 to produce the residual stress distribution shown. 

Similarly, unloading from the fully plastic state is equivalent to applying an elastic torque 
of 15.33 kNm of opposite sense. By proportion, from the above calculation, 

15.33 
15 

equivalent stress at outside of shaft on unloading = - x 129 = 132 MN/m2 

Subtracting the resulting unloading distribution from the fully plastic loading one gives the 
residual stresses shown in Fig. 3.44. 
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45 

Fig. 3.43 

stresses 

50 

Fig. 3.44. 

Example 3.7 

(a) A thick cylinder, inside radius 62.5 mm and outside radius 190 mm, forms the pressure 
vessel of an isostatic compacting press used in the manufacture of ceramic components. 
Determine, using the Tresca theory of elastic failure, the safety factor on initial yield of the 
cylinder when an internal working pressure PW of 240 MN/m2 is applied. 

(b) In view of the relatively low value of the safety factor which is achieved at this 
working pressure the cylinder is now subjected to an autofrettage pressure PA of 580 MN/m2. 
Determine the residual stresses produced at the bore of the cylinder when the autofrettage 
pressure is removed and hence deterniine the new value of the safety factor at the bore when 
the working pressure PW = 240 MN/m2 is applied. 

The yield stress of the cylinder material is oy = 850 MN/m2 and axial stresses may be 
ignored. 

Solution 

From eqn (10.5)t 
( a )  Plain cylinder - working conditions K = 190162.5 = 9.24 

= -240 MN/m2 at the bore surface ( r  = 0.0625 mm) 

E.J. H e m ,  Mechanics of Materials 1 .  Butterworth-Heinemann, 1997. 
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and from eqn . ( 10.6)t 

( R z / ~ ) ~  + 1 240 0.192 
O H = ' [  K2-1 ]==[Ti'] 

= 298.3 MN/m2 at the bore surface 

Thus, assuming axial stress will be the intermediate stress (o2) value, the critical stress condi- 
tions for the cylinder at the internal bore are o1 = 298.3 MN/m2 and 03 = -240 MN/m2. 
:. Applying the Tresca theory of failure ((TI - 03 = oy/n)  

Safety = 1.58 
850 

factor n = 
298.3 - (-240) 

(b) Autofrettage conditions 

From eqn 3.37 the radius R ,  
580 MN/m2 will be given by: 

of the elastic/plastic interface under autofrettage pressure of 

K2 - m2 
PA = [ K2 ] +o,log,m 

850 x lo6 3.042 - m2 
2 

[ 3.042 ] + 850 x 10610g, m 580 x lo6 = 

By trial and error: 

850 3.042 -m2  
- 2 [ 3.042 ] m 850 log, m 

1.6 399.5 307.3 706.8 
1.4 286.0 334.8 620.8 
1.3 223 .0 347.3 570.3 
1.33 242.4 343.6 585.6 
1.325 239.2 344.2 583.4 

:. to a good approximation m = 1.325 = R,/R, 

:. R, = 1.325 x 62.5 = 82.8 mm 

:. From eqns 3.38 and 3.39 stresses in the plastic zone are: 

a,, = 850 x lo6 log, 1 (1902 - 82.82)] [ (&) - 2 x  I9O2 

= 850 x 106[10g,(r/82.8) - 0.4051 

= 850 x 106[log,(r/82.8> + 0.5951 and 

:. At the bore surface where r = 62.5 mm the stresses due to,autofrettage are: 

or, = -580 MN/m2 and ISH = 266.7 MN/m2. 

E.J. Hearn, Mechanics ofA4uteriul.s I ,  Butterworth-Heinemann, 1997 
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Residual stresses are then obtained by elastic unloading of the autofrettage pressure, i.e. by 
applying a,, = +580 MN/m2 at the bore in eqns (10.5) and (10.6)t; i.e. by proportions: 

580 2 a,, = 580 MN/m2 and a@ = -298.3 x - = -721 MN/m , 
240 

Giving residual stresses at the bore of 

a;, = 580 - 580 1 0  

ab = 266.1 - 721 = -453 MN/m* 

Working stresses are then obtained by the addition of elastic loading stresses due to an 
internal working pressure of 240 MN/m2 

i.e. from part (a) = -240 MN/m2, = 298.3 MN/m2 

:. final working stresses are: 

arru = 0 - 240 = -240 MN/m2 

a@,. = 298.3 - 454.3 = -156 MN/m2. 

:. New safety factor according to Tresca theory 

850 
n =  = 10.1. 

-156 - (-240) 

N.B. It is unlikely that the Tresca theory will give such a high value in practice since the 
axial working stress (ignored in this calculation) may well become the major principal stress 
a1 in the working condition and increase the magnitude of the denominator to reduce the 
resulting value of n .  

Problems 

3.1 (NB) .  Determine the shape factors for the beam cross-sections shown in Fig. 3.45, in the case of section (c) 
11.23, 1.81, 1.92, 1.82.1 treating the section both with and without the dotted area. 

All dimensions in mm 

c I 60 4 
- '  

2 "X T 

( b )  

Fig. 3.45 

E.J. H e m ,  Mechanics of Marerials I ,  Butterworth-Heinemann, 1997. 
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3.2 (B). A 50 mm x 20 mm rectangular-section beam is used simply supported over a span of 2 m. If the beam 
is used with its long edges vertical, determine the value of the central concentrated load which must be applied to 
produce initial yielding of the beam material, 

If this load is then increased by 10% determine the depth to which yielding will take place at the centre of the 
beam span. 

Over what length of beam has yielding taken place? 
What are the maximum deflections for each load case’? Take = 225 MN/m2 and E = 206.8 GN/m’. 

[ I  .5 kN; 1 .OS mm: I80 mm; 36.3, 55.5 mm.] 
3 3  (B). A steel bar of rectangular section 72 mm x 30 mm is used as a simply supported beam on a span of 

I .2 m and loaded at mid-span. If the yield stress is 280 MN/m2 and the long edges of the section are vertical, find 
the loading when yielding first occurs. 

Assuming that a further increase in load causes yielding to spread inwards towards the neutral axis, with the 
stress in the yielded part remaining at 280 MN/m2, find the load required to cause yielding for a depth of 12 mm 
at the top and bottom of the section at mid-span, and find the length of beam over which yielding has occurred. 

(24.2 kN; 31 kN: 0.264 m.1 

3.4 (B). A 300 mm x 125 mm I-beam has flanges 13 mm thick and web 8.5 mm thick. Calculate the shape 

1 1 . 1 1 ,  141 kNm.1 

3.5 (B). Find the shape factor for a IS0 mm x 75 mm channel in pure bending with the plane of bending 

factor and the moment of resistance in the fully plastic state. Take uy = 250 M N h ’  and I , . ,  = 85 x m4. 

perpendicular to the web of the channel. The dimensions are shown in Fig. 3.46 and Z = 21 x IO-‘ m3.  

150 mm 

I! 

- 

f 
1 
75 mm 

12.2.1 

Fig. 3.46 

3.6 (B). A cantilever is to be constructed from a 40 mm x 60 mm T-section beam with a uniform thickness of 
5 mm. The cantilever is to carry a u.d.1. over its complete length of I m. Determine the maximum u.d.1. that the 
cantilever can carry if yielding is permitted over the lower part of the web to a depth of 10 mm. o? = 225 MN/m’. 

[2433 N/m.] 

3.7 (B). A 305 mm x 127 mm symmetrical I-section has flanges 13 mm thick and a web 5.4 mm thick. Treating 
the web and flanges as rectangles. calculate the bending moment of resistance of the cross-section (a) at initial 
yield, (b) for full plasticity of the flanges only, and (c) for full plasticity of the complete cross-section. Yield stress 
in simple tension and compression = 310 MN/m2. What is the shape factor of the cross-section? 

[167. 175.6, 188.7 kNm: 1.13.1 

3.8 (B). A steel bar of rectangular section 80 mm by 40 mm is used as a simply supported beam on a span of 
1.4 m and point-loaded at mid-span. If the yield stress of the steel is 300 MN/m2 in simple tension and compression 
and the long edges of the section are vertical, find the load when yielding first occurs. 

Assuming that a further increase in load causes yielding to spread in towards the neutral axis with the stress in 
the yielded part remaining constant at 300 MN/m2, determine the load required to cause yielding for a depth of 
IO mm at the top and bottom of the section at mid-span and find the length of beam over which yielding at the 
top and bottom faces will have occurred. [U.L.] [36.57,44.6 kN; 0.232 m.] 

3.9 (B). A straight bar of steel of rectangular section, 76 mm wide by 25 mm deep, is simply supported at two 
points 0.61 m apart. It is subjected to a uniform bending moment of 3 kNm over the whole span. Determine the 
depth of beam over which yielding will occur and make a diagram showing the distribution of bending stress over 
the full depth of the beam. Yield stress of steel in tension and compression = 280 MN/m2. 

Estimate the deflection at mid-span assuming E = 200 GN/m2 for elastic conditions. 15.73, 44.4 mm.1 

3.10 (B) .  A symmetrical I-section beam of length 6 m is simply supported at points I .2 m from each end and is 
to carry a u.d.1. II’ kN/m run over its entire length. The second moment of area of the cross-section about the neutral 
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axis parallel to the flanges is 6570 cm' and the beam cross-section dimensions are: flange width and thickness, 
154 mm and 13 mm respectively, web thickness I O  mm, overall depth 254 mm. 
(a) Determine the value of w to just cause initial yield. stating the position of the transverse section in the beam 

(b) By how much must w be increased to ensure full plastic penetration of the flanges only, the web remaining 

Take the yield stress of the beam material in simple tension and compression as 340 MN/m2. 

length at which it occurs. 

elastic? 

[B.P.] [195,20 kN/m.] 

3.11 (B). A steel beam of rectangular cross-section. 100 mm wide by 50 mm deep, is bent to the arc of a circle 
until the material just yields at the outer fibres, top and bottom. Bending takes place about the neutral axis parallel 
to the 100 mm side. If the yield stress for the steel is 330 M N h 2  in simple tension and compression, determine 
the applied bending moment and the radius of curvature of the neutral layer. E = 207 GN/m2. 

Find how much the bending moment has to be increased so that the stress distribution is as shown in Fig. 3.47. 
[I.Mech.E.] [13.75 kNm; 15.7 m; 16.23 kNm.] 

m 

Fig. 3.47. 

3.12 (B). A horizontal steel cantilever beam, 2.8 m long and of uniform I-section throughout. has the following 
cross-sectional dimensions: flanges 150 mm x 25 mm, web 13 mm thick, overall depth 305 mm. It is fixed at one 
end and free at the other. 
(a) Determine the intensity of the u.d.1. which the beam has to carry across its entire length in order to produce 

(b) What is the value of the shape factor of the cross-section? 
(c)  Determine the length of the beam along the top and bottom faces, measured from the fixed end, over which 

Yield stress of steel = 330 MN/m2. [ 106.2 kN/m; I .16; 0.2 m.] 
3.13 (B). A rectangular steel beam. 60 mm deep by 30 mm wide, is supported on knife-edges 2m apart and 

loaded with two equal point loads at one-third of the span from each end. Find the load at which yielding just 
begins, the yield stress of the material in simple tension and compression being 300 MN/m2. 

If the loads are increased to 25% above this value, estimate how far the yielding penetrates towards the neutral 
axis, assuming that the yield stress remains constant. [U.L.] [8.1 kN; 8.79 mm.] 

3.14 (B). A steel bar of rectangular section, 72 mm deep by 30 mm wide. is used as a beam simply supported 
at each end over a span of 1.2 m and loaded at mid-span with a point load. The yield stress of the material is 
2x0 MN/m2. Determine the value of the load when yielding first occurs. 

Find the load to cause an inward plastic penetration of 12 mm at the top and bottom of the section at mid-span. 
Also lind the length. measured along the top and bottom faces, over which yielding has occurred, and the residual 
\trcsws present after unloading. [U.L.] [24.2 kN; 31 kN; 0.26 m, ~ 7 9 ,  540.7 MN/m2.] 

3.15 (B).  A symmetrical I-section beam, 300 mm deep, has flanges 125 mm wide by 13 mm thick and a web 
X.5 mm thick. Determine: 
(a) thc applied bending moment to cause initial yield; 
(b)  the applied bending moment to cause full plasticity of the cross-section: 
(c) the shape factor of the cross-section. 
Take the yield stress = 250 MN/m' and assume I = 8.5 x IOh mm4. 

fully developed plasticity of the cross-section. 

yielding will occur due to the load found in (a). 

[I41 x IOh N mm; 156 x IO6 N mm; l . l l . ]  
3.16 (B).  A rectangular steel beam AB, 20 mm wide by IO mm deep, is placed symmetrically on two knife- 

cdgcs C and D. 0.5 m apart, and loaded by applying equal loads at the ends A and B. The steel follows a linear 
strewktrain law (E = 200 GN/m2) up to a yield stress of 300 MN/m2; at this constant stress considerable plastic 
deformation occurs. It may be assumed that the properties of the steel are the same in tension and compression. 
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Calculate the bending moment on the central part of the beam CD when yielding commences and the deflection 
at the centre relative to the supports. 

If the loads are increased until yielding penetrates half-way to the neutral axis, calculate the new value of the 
bending moment and the corresponding deflection. [U.L.] [IO0 Nm, 9.375 mm; 137.5 Nm, 103 mm.] 

3.17 (B). A steel bar of rectangular material, 75 mm x 25 mm, is used as a simply supported beam on a span 
of 2 m and is loaded at mid-span. The 75 mm dimension is placed vertically and the yield stress for the material 
is 240 MN/m2. Find the load when yielding first occurs. 

The load is further increased until the bending moment is 20% greater than that which would cause initial yield. 
Assuming that the increased load causes yielding to spread inwards towards the neutral axis, with the stress in the 
yielded part remaining at 240 MN/m2, find the depth at the top and bottom of the section at mid-span to which 
the yielding will extend. Over what length of the beam has yielding occurred? 

[B.P.] [11.25 kN; 8.45 mm; 0.33 m.] 
3.18 (B). The cross-section of a beam is a channel, symmetrical about a vertical centre line. The overall width 

of the section is 150 mm and the overall depth 100 mm. The thickness of both the horizontal web and each of the 
vertical flanges is 12 mm. By comparing the behaviour in both the elastic and plastic range determine the shape 
factor of the section. Work from first principles in both cases. [ 1.806.1 

3.19 (B). The T-section beam shown in Fig. 3.48 is subjected to increased load so that yielding spreads to 
within 50 mm of the lower edge of the flange. Determine the bending moment required to produce this condition. 
n, = 240 MN m2. [44 kN m.] 

Fig. 3.48. 

320 (B). A steel beam of I-section with overall depth 300 mm, flange width 125 mm and length 5 m, is simply 
supported at each end and carries a uniformly distributed load of 114 kN/m over the full span. Steel reinforcing 
plates 12 mm thick are welded symmetrically to the outside of the flanges producing a section of overall depth 
324 mm. If the plate material is assumed to behave in an elastic-ideally plastic manner, determine the plate width 
necessary such that yielding has just spread through each reinforcing plate at mid-span under the given load. 

Determine also the positions along the reinforcing plates at which the outer surfaces have just reached the yield 
point. At these sections what is the horizontal shearing stress at the interfaces of the reinforcing plates and the 
flanges? 

Take the yield stress cry = 300 MN/m2 and the second moment of area of the basic I-section to be 80 x m4. 
[C.E.I.] [I75 mm; 1.926 m; 0.94 MN/m2.] 

321 (B). A horizontal cantilever is propped at the free end to the same level as the fixed end. It is required to 
carry a vertical concentrated load W at any position between the supports. Using the normal assumption of plastic 
limit design, determine the least favourable position of the load. (Note that the calculation of bending moments 
under elastic conditions is not required.) 

Hence calculate the maximum permissible value of W which may be carried by a rectangular-section cantilever 
with depth d equal to twice the width over a span L .  Assume a load factor of n and a yield stress for the beam 
material or. [OS86 L from built-in end: d'cr! / 1.371 Ln.] 

3.22 (B) .  (a) Sketch the idealised stress-strain diagram which is used to establish a quantitative relationship 
between stress and strain in the plastic range of a ductile material. Include the effect of strain-hardening. 

(b) Neglecting strain-hardening, sketch the idealised stress-strain diagram and state, in words. the significance 
of any alteration you make in the diagram shown for part (a) when calculations are made, say. for pure bending 
beyond the yield point. 

(c) A steel beam of rectangular cross-section, 200 mm wide x 100 mm deep, is bent to the arc of a circle, 
bending taking place about the neutral axis parallel to the 200 mm side. 
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Determine the bending moment to be applied such that the stress distribution is as shown in (i) Fig. 3.49(a) and 

Take the yield stress of steel in tension and compression as 250 MN/m2. [B.P.] [98.3, 125 kN m.] 
(ii) Fig. 3.49(b). 

Fig. 3.49. 

3 2 3  (B). (a) A rectangular section beam is 80 mm wide, 120 mm deep and is simply supported at each end 
over a span of 4 m. Determine the maximum uniformly distributed load that the beam can carry: 

(i) if yielding of the beam material is permitted to a depth of 40 mm; 
(ii) before complete collapse occurs. 

(b) What residual stresses would be present in the beam after unloading from condition (a) (i)? 
(c) What external moment must be applied to the beam to hold the deformed bar in a straight position after 

unloading from condition (a) (i)? 
The yield stress of the material of the beam = 280 MN/m2. 

[B.P.] [38.8,40.3 kN/m; f 123, f 146 MN/m2: 84.3 kN m.] 
3.24 (C). A rectangular beam 80 mm wide and 20 mm deep is constructed from a material with a yield stress 

in tension of 270 MN/m2 and a yield stress in compression of 300 MN/m2. If the beam is now subjected to a pure 
bending moment find the value required to produce: 
(a) initial yield; 
(b) initial yield on the compression edge; 
(c) a fully plastic section. [1.44; 1.59, 2.27 kN m.] 

325 (C). Determine the load factor of a propped cantilever carrying a concentrated load W at the centre. 
Allowable working stress = 150 MN/m2, yield stress = 270 MN/m2. The cantilever is of I-section with dimen- 

[2.48.] 
3.26 (C). A 300 mm x 100 mm beam is carried over a span of 7 m the ends being rigidly built in. Find the 

Take a load factor of I .8 and 0, = 240 MN/m2. 
I = 85 x m4 and the shape factor = 1.135. [ I 0 0  kN; 172 MN/m2.] 

327 (C). A 300 mm x 125 mm I-beam is carried over a span of 20 m the ends being rigidly built in. Find the 
maximum point load which can be carried at 8 m from one end and the maximum working stress set up. Take a 
load factor of I .8 and n, = 250 MN/m2; Z = 56.6 x 

[36 kN; 183 MN/m2.] 
3.28 (C). Determine the maximum intensity of loading that can be sustained by a simply supported beam, 75 mm 

wide x 100 mm deep, assuming perfect elastic-plastic behaviour with a yield stress in tension and compression 
of 135 MN/mZ. The beam span is 2 m. 

sions 300 mm x 80 mm x 8 mm. 

maximum point load which can be carried at 3 m from one end and the maximum working stress set up. 

m3 and shape factor b = 1 . I  1 .  

What will be the distribution of residual stresses in the beam after unloading? 
r50.6 kN/m; 67, 135, -67 MN/m2.] 
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329 (C). A short column of 0.05 m square cross-section is subjected to a compressive load of 0.5 MN parallel 
to but eccentric from the central axis. The column is made from elastic - perfectly plastic material which has a 
yield stress in tension or compression of 300 MN/m2. Determine the value of the eccentricity which will result in 
the section becoming just fully plastic. Also calculate the residual stress at the outer surfaces after elastic unloading 
from the fully plastic state. 110.4 mm; 250, 150 MN/mZ.] 

330 (C). A rectangular beam 75 mm wide and 200 mm deep is constructed from a material with a yield stress 
in tension of 270 MN/m2 and a yield stress in compression of 300 MN/m2. If the beam is now subjected to a pure 
bending moment, determine the value of the moment required lo produce (a) initial yield, (b) initial yield on the 
compression edge, (c) a fully plastic section. [135, 149.2, 213.2 kN m.] 

331 (C). Figure 3.50 shows the cross-section of a welded steel structure which forms the shell of a gimbal 
frame used to support the ship-to-shore transport platform of a dock installation. The section is symmetrical about 
the vertical centre-line with a uniform thickness of 25 m m  throughout. 

As a preliminary design study what would you assess as the maximum bending moment which the section can 
withstand in order to prevent: 
(a) initial yielding at any point in the structure if the yield stress for the material is 240 MN/m*. 
(b) complete collapse of the structure? 
What would be the effect of adverse weather conditions which introduce instantaneous loads approaching, but not 
exceeding that predicted in (b). Quantify your answers where possible. 

State briefly the factors which you would consider important in the selection of a suitable material for such a 
structure. 1309.3 kN m; 423 kN m; local yielding, residual stress max = 279 MN/m2.] 
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Fig. 3.50. 

332 (B). A solid shaft 40 mm diameter is made of a steel the yield point of which in shear is 150 MN/m2. After 
yielding, the stress remains constant for a very considerable increase in strain. Up to the yield point the modulus 
of rigidity G = 80 GN/m2. If the length of the shaft is 600 mm calculate: 
(a) the angle of twist and the twisting moment when the shaft material first yields; 
(b) the twisting moment when the angle of twist is increased to twice that at yield. 13.32"; 1888, 2435 Nm.] 

333 (B) .  A solid steel shaft, 76 mm diameter and 1.53 m long, is subjected to pure torsion. Calculate the applied 
torque necessary to cause initial yielding if the material has a yield stress in pure tension of 310 MN/m*. Adopt 
the Tresca criterion of elastic failure. 

(b) If the torque is increased to 10% above that at first yield, determine the radial depth of plastic penetration. 
Also calculate the angle of twist of the shaft at this increased torque. Up to the yield point in shear, G = 83 GN/mZ. 

(c) Calculate the torque to be applied to cause the cross-section to become fully plastic. 
113.36 kNm; 4.26 mm. 0.085 rad; 17.8 kNm.] 

3.34 (B). A hollow steel shaft having outside and inside diameters of 32 mm and I8 mm respectively is subjected 
to a gradually increasing axial torque. The yield stress in shear is reached at the surface when the torque is I kNm, 
the angle of twist per metre length then being 7.3". Find the magnitude of the yield shear stress. 

If the torque is increased to 1 . I  kN m. calculate (a) the depth to which yielding will have penetrated. and (b) 
the angle of twist per metre length. 

State any assumptions made and prove any special formulae used. 
[U.L.1 (172.7 MNlm'; 1.8 mm; 8.2T.1 
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335 (B). A hollow shaft. 50 mm diameter and 25 mm bore, is made of steel with a yield stress in shear of 
150 MN/m2 and a modulus of rigidity of 83 GN/m2. Calculate the torque and the angle of twist when the material 
first yields. if the shaft has a length of 2 m. 

On the assumption that the yield stress, after initial yield, then remains constant for a considerable increase in 
strain. calculate the depth of penetration of plastic yield for an increase in torque of 10% above that at initial yield. 
Determine also the angle of twist of the shaft at the increased torque. 

[U.L.] [3.45 kN m; 8.29"; 2.3 mm, 9.1Y.j 

336 (C). A steel shaft of length 1.25 m has internal and external diameters of 25 mm and 50 mm respectively. 
The shear stress at yield of the steel is 125 MN/m2. The shear modulus of the steel is 80 GN/m*. Determine the 
torque and overall twist when (a) yield first occurs, (b) the material has yielded outside a circle of diameter 40 
mm. and (c) the whole section has just yielded. What will be the residual stresses after unloading from (b) and (c)? 

12.88, 3.33, 3.58 kN m: 0.0781.0.0975.0.1562 rad, (a) 19.7. -9.2, -5.5 MN/m2. (b) 30.6, -46.75 MN/m2.] 

337 (B). A shaft having a diameter of 90 mm is turned down to 87 rnm for part of its length. If a torque is 
applied to the shaft of sufficient magnitude just to produce yielding at the surface of the shaft in the unturned part, 
determine the depth of yielding which would occur in the turned part. Find also the angle of twist per unit length 
in the turned part to that in the unturned part of the shaft. [U.L.] [5.3 mm; 1.18.1 

338 (B). A steel shaft, 90 mm diameter, is solid for a certain distance from one end but hollow for the remainder 
of its length with an inside diameter of 38 mm. If a pure torque is transmitted from one end of the shaft to the 
other of such a magnitude that yielding just occurs at the surface of the solid part of the shaft, find the depth of 
yielding in the hollow part of the shaft and the ratio of the angles of twist per unit length for the two parts of the 
shaft. [U.L.] [ 1.5 mm; 1.0345: I .] 

339 (B). A steel shaft of solid circular cross-section is subjected to a gradually increasing torque. The diameter 
of the shaft is 76 mm and it is I .22 m long. Determine for initial yield conditions in the outside surface of the 
shaft (a) the angle of twist of one end relative to the other, (b) the applied torque, and (c) the total resilience 
stored. 

Assume a yield in shear of 155 MN/m2 and a shear modulus of 85 GN/m2. If the torque is increased to a value 
10% greater than that at initial yield, estimate (d) the depth of penetration of plastic yielding and (e) the new angle 
of twist. [B.P.] [3.35": 13.4 kN m; 391 J: 4.3 mm: 3.8O.I 

(a) Determine the power to be transmitted at this speed to cause yielding of the outer fibres of the shaft if the 
yield stress in shear is 170 MN/m2. 

(b) Determine the increase in power required to cause plastic penetration to a radial depth of 6.5 mm, the speed 
of rotation remaining at 10 rev/s. What would be the angle of twist of the shaft in this case? G for the steel 
is 82 GN/m2. [B.P.] (262 kW. 52 kW, 7.83O.I 

3.41 (B). A marine propulsion shaft of length 6 m and external diameter 300 mm is initially constructed from 

In order to increase its powdweight ratio the shaft is machined to convert it into a hollow shaft with internal 

Compare the torques which may be transmitted by the shaft in both its initial and machined states: 

3.40 (B). A solid steel shaft, 50 mm diameter and 1.22 m long, is transmitting power at I O  rev/s. 

solid steel bar with a shear stress at yield of 150 MN/m2. 

diameter 260 mm, the outer diameter remaining unchanged. 

(a) when yielding first occurs, 
(b) when the complete cross-section has yielded. 

what will be the distribution of the residual stresses remaining in the shaft after torque has been removed? 
If, in service, the hollow shaft is subjected to an unexpected overload during which condition (b) is achieved, 

[795 kN m, 346 kN m, 1060 kN m, 370 kN m; -10.2, + I  1.2 MN/m2.] 

3.42 (C). A solid circular shaft 100 mm diameter is in an elastic-plastic condition under the action of a pure 
torque of 24 kN m. If the shaft is of steel with a yield stress in shear of 120 MN/m2 determine the depth of the 
plastic zone in the shaft and the angle of twist over a 3 m length. Sketch the residual shear stress distribution on 
unloading. G = 85 GN/m2. [0.95 mm: 4.95O.I 

3.43 (C). A column is constructed from elastic - perfectly plastic material and has a cross-section 60 mm square. 
It is subjected to a compressive load of 0.8 MN parallel to the central longitudinal axis of the beam but eccentric 
from it. Determine the value of the eccentricity which will produce a fully plastic section if the yield stress of the 
column material is 280 MN/m2. 

What will be the values of the residual stresses at the outer surfaces of the column after unloading from this 
condition? 17 mm: 213. -97 MNlm'.] 

3.44 (C). A beam of rectangular cross-section with depth d is constructed from a material having a stress-strain 
diagram consisting of two linear portions producing moduli of elasticity El in tension and E? in compression. 
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Assuming that the beam is subjected to a positive bending moment M and that cross-sections remain plane, 
show that the strain on the outer surfaces of the beam can be written in the form 

where R is the radius of curvature. 
Hence derive an expression for the bending moment M in terms of the elastic moduli, the second moment of 

area I of the beam section and R the radius of curvature. 

3A5 (C). Explain what is meant by the term “autofrettage” as applied to thick cylinder design. What benefits 
are obtained from autofrettage and what precautions should be taken in its application? 

(b) A thick cylinder, inside radius 62.5 mm and outside radius 190 mm, forms the pressure vessel of an isostatic 
compacting press used in the manufacture of sparking plug components. Determine, using the Tresca theory of 
elastic failure, the safety factor on initial yield of the cylinder when an internal working pressure P, of 240 MN/m2 
is applied. 

(c) In view of the relatively low value of safety factor which is achieved at this working pressure, the cylinder 
is now subjected to an autofrettage pressure of PA = 580 MN/m2. 

Determine the residual stresses produced at the bore of the cylinder when the autofrettage pressure is removed 
and hence determine the new value of the safety factor at the bore when the working pressure P ,  is applied. 

The yield stress of the cylinder material cy = 850 MN/m2 and axial stresses may be ignored. 

3.46 (C). A thick cylinder of outer radius 190 mm and radius ratio K = 3.04 is constructed from material with a 
yield stress of 850 MN/m2 and tensile strength 1 GN/m2. In order to prepare it for operation at a working pressure 
of 248 MN/m2 it is subjected to an initial autofrettage pressure of 584 MN/m2. 

Ignoring axial stresses, compare the safety factors against initial yielding of the bore of the cylinder obtained 
with and without the autofrettage process. [1.53, 8.95.1 

3.47 (C). What is the maximum autofrettage pressure which should be applied to a thick cylinder of the dimen- 
sions given in problem 3.46 in order to achieve yielding to the geometric mean radius? 

Determine the maximum hoop and radial residual stresses produced by the application and release of this pressure 
and plot the distributions of hoop and radial residual stress across the cylinder wall. 

[758 MN/m2; -55.2 MN/m2; -8.5 MN/m2.] 


