
CHAPTER 12 

MISCELLANEOUS TOPICS 

12.1. Bending of beams with initial curvature 

The bending theory derived and applied in Mechanics of Materials 1 was concerned with 
the bending of initially straight beams. Let us now consider the modifications which are 
required to this theory when the beams are initially curved before bending moments are 
applied. The problem breaks down into two classes: 

(a) initially curved beams where the depth of cross-section can be considered small in 

(b) those beams where the depth of cross-section and initial radius of curvature are approx- 
relation to the initial radius of curvature, and 

imately of the same order, i.e. deep beams with high curvature. 

In both cases similar assumptions are made to those for straight beams even though some 
will not be strictly accurate if the initial radius of curvature is small. 

(a) Initially curved slender beams 

Consider now Fig. 12.1, with Fig. 12.1 (a) showing the initial curvature of the beam before 
bending, with radius R1, and Fig. 12.1 (b) the state after the bending moment M has been 
applied to produce a new radius of curvature R2. In both figures the radii are measured to 
the neutral axis. 

The strain on any element A’B’ a distance y from the neutral axis will be given by: 

A’B’ - AB 
strain on A’B’ = E = 

AB 
- w2 + y)e2 - wI + Y ) e l  - 

(RI + Y)OI 

(R1 + Y)OI 
- R262 + $2 - Riel - @I - 

Since there is no strain on the neutral axis in either figure CD = C’D’ and Riel = R2&. 

y e 2  - ye1 - Y(02 - 01) 
( R ~  + Y)eI 

E =  - . .  
( R ~  + y)oI  

and, since e2 = R l e l / R 2 .  

(12.1) 
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Fig. 12.1. Bending of beam with initial curvature (a) before bending, (b) after bending to new radius of 
curvature R z .  

For the case of slender, beams with y small in comparison with R1 (i.e. when y can be 
neglected in comparison with R I ) ,  the equation reduces to: 

(12.2) 

The strain is thus directly proportional to y the distance from the neutral axis and, as for 
the case of straight beams, the stress and strain distribution across the beam section will be 
linear and the neutral axis will pass through the centroid of the section. Equation (12.2) can 
therefore be incorporated into a modified form of the “simple bending theory” thus: 

M a  
Z Y  

For initially straight beams R1 is infinite and eqn. (12.2) reduces to: 

Y Y  
R2 R 

& = - - = -  

(12.3) 

(b) Deep beams with high initial curvature (Le. small radius of curvature) 

For deep beams where y can no longer be neglected in comparison with Rl eqn. (12.1) 
must be fully applied. As a result, the strain distribution is no longer directly proportional 
to y and hence the stress and strain distributions across the beam section will be non-linear 
as shown in Fig. 12.2 and the neutral axis will not pass through the centroid of the section. 

From eqn. (12.1) the stress at any point in the beam cross-section will be given by: 

(1 2.4) 

For equilibrium of transverse forces across the section in the absence of applied end load 
adA must be zero. 

. .  (12.5) 
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axis section 

( a )  Initially straight beam -Linear ( b Initially curved beam - Non-linear stress 
stress distribution distribution 

Fig. 12.2. Stress distributions across beams in bending. (a) Initially straight beam linear stress distribution; 
(b) initially curved deep beam-non-linear stress distribution. 

i.e. * d A = O  J& (12.6) 

Unlike the case of bending of straight beams, therefore, it will be seen by inspection that 
the above integral no longer represents the first moment of area of the section about the 
centroid. Thus, the centroid and the neutral axis can no longer coincide. 

The bending moment on the section will be given by: 

but 

(12.7) 

and from eqn. (12.5) the second integral term reduces to zero for equilibrium of transverse 
forces. 

. .  

where h is the distance of the neutral axis from the centroid axis, see Fig. 12.3. Substituting 
in ean. (12.7) we have: 

From eqn. (12.4) 

i.e. 

or 

(12.8) 

(1 2.9) 

(12.10) 

(12.1 1) 
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Fig. 12.3. Relative positions of neutral axis and centroidal axis. 

On the opposite side of the neutral axis, where y will be negative, the stress becomes: 

(12.12) 

These equations show that the stress distribution follows a hyperbolic form. Equation (12.12) 
can be seen to be similar in form to the “simple bending” equationt. 

a M  - _ _  - 
Y I  

with the term hA(R1 + y )  replacing the second moment of area I .  
Thus in order to be able to calculate stresses in deep-section beams with high initial 

curvature, it is necessary to evaluate h and R I ,  Le. to locate the position of the neutral 
axis relative to the centroid or centroidal axis. This was shown above to be given by the 
condition: 

Now fibres distance y from the neutral axis will be some distance y,  from the centroidal 
axis as shown in Figs. 12.3 and 12.4 such that, in relation to the axis of curvature, 

R1 + y = R, + yc 
with Y = Y c + h  

:. from eqn. (12.5) 

TTimoshenko and Roark both give details of correction factors which may be applied for standard cross- 
sectional shapes to be used in association with the simple straight beam equation. (S. Timoshenko, Theory of 
Plares and Shells, McGraw Hill, New York; R. J. Roark and W.C. Young, Formulas for Stress and Strain, McGraw 
Hill, New York). 
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. .  

Axis of curvature 
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Fig. 12.4. 

P 1  

= A - (R, - h )  . d A  = O  

A 
= R e - -  (12.13) 

A 
h= R, - 

(12.14) 
A A 

J dA =E and R1= Re - h = 

(Rc + Y e )  

Examples 12.1 and 12.2 show how the theory may be applied and Table 12.1 gives some 

useful equations for J - for standard shapes of beam cross-section. 

Note 
Before applying the above theory for bending of initially curved members it is perhaps 

appropriate to consider the benefits to be gained over that of an approximate solution using 
the simple bending theory. 

Provided that the curvature is not large then the simple theory is reasonably accurate; for 
example, for a radius to beam depth ratio R,/d of as low as 5 the error introduced in the 
maximum stress value is only of the order of 7%. The error then rises steeply, however, as 
curvature increases to a figure of approx. 30% at R,/d  = 1.5. 

d A  
r 

(c) Initially curved beams subjected to bending and additional direct load 

In many practical engineering applications such as chain links, crane hooks, G-clamps 
etc., the component cross-sections will be subjected to both bending and additional direct 
load, whereas the equations derived in the previous sections have all been derived on the 
assumption of pure bending only. It is therefore necessary in such cases to obtain a solution 
by the application of the principle of superposition i.e. by resolving the loading system into 
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Table 12.1. Values of - for curved bars. s 
$12.1 

Cross-section 

( a  Rectangle b b  I 

axis of curvoture -fRi 

( b  T-section 

J ?  

N.B. The two following cross-sections are simply produced 
iy the addition of terms of this form for each rectangular 
lortion) 

As above (d) with b2 = 0 

As above (d) with bl = 0 
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its separate bending, normal (and perhaps shear) loads on the section and combining the stress 
values obtained from the separate stress calculations. Normal and bending stresses may be 
added algebraically and combined with the shearing stresses using two- or three-dimensional 
complex stress equations or Mohr's circle. 

Care must always be taken to consider the direction in which the moment is applied. 
In the derivation of the equations in the previous sections it has been shown acting in a 
direction to increase the initial curvature of the beam (Fig. 12.1) producing tensile bending 
stresses on the outside (convex) surface and compression on the inner (concave) surface. In 
the practical cases mentioned above, however, e.g. the chain link or crane hook, the moment 
which is usually applied will tend to straighten the beam and hence reduce its curvature. In 
these cases, therefore, tensile stresses will be set up on the inner surface and these will add 
to the tensile stresses produced by the direct load across the section to produce a maximum 
tensile (and potentially critical) stress condition on this surface - see Fig. 12.5. 

P': P t 1 P 

Fig. 12.5. Loading of a crane hook. (a) Load effect on section AA is direct load P' = P plus moment M = Pe; 
(b) stress distributions across the section AA. 

12.2. Bending of wide beams 

The equations derived in Mechanics of Materials 1 for the stress and deflection of beams 
subjected to bending relied on the assumption that the beams were narrow in relation to their 
depths in order that expansions or contractions in the lateral ( 2 )  direction could take place 
relatively freely. 
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For beams that are very wide in comparison with their depth - see Fig. 12.6 - lateral 
deflections are constrained, particularly towards the centre of the beam, and such beams 
become stiffer than predicted by the simple theory and deflections are correspondingly 
reduced. In effect, therefore, the bending of narrow beams is a plane stress problem whilst 
that of wide beams becomes a plane strain problem - see 98.22. 
For the beam of Fig. 12.6 the strain in the z direction is given by eqn. (12.6) as: 

1 
E - -(az - wax - way). 
Z - E  

t Y  t ’  

Beam cross-section ‘I 
Fig. 12.6. Bending of wide beams (b  >> d )  

Now for thin beams cry = 0 and, for total constraint of lateral (z) deformation at z = 0, 
E ,  = 0. 

i.e. 

1 
E 

0 = -(az - wa,) 

a, = wax 

Thus, the strain in the longitudinal x direction will be: 
1 
E 

E ,  = -(a, - uay - wa,) 

1 
E 

= -(a, - 0 - u(uax)) 

(12.15) 
1 
E 

= - ( 1  - w2)ax 

(1 - u2) M y  _ _ _ . -  - - 
E I 

(12.16) 

Compared with the narrow beam case where E, = a,/E there is thus a reduction in strain 
by the factor (1  - w2) and this can be introduced into the deflection equation to give: 

d2Y M - = (1 - 2)- 
d x 2  EI 

(12.17) 

Thus, all the formulae derived in Book 1 including those of the summary table, may be used 
for wide beams provided that they are multiplied by (1  - u’). 
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12.3. General expression for stresses in thin-walled shells subjected to pressure or

self-weight

Consider the general shell or "surface of revolution" of arbitrary (but thin) wall thickness
shown in Fig. 12.7 subjected to internal pressure. The stress system set up will be three-
dimensional with stresses a) (hoop) and a2 (meridional) in the plane of the surface and a3
(radial) normal to that plane. Strictly, all three of these stresses will vary in magnitude through
the thickness of the shell wall but provided that the thickness is less than approximately one-
tenth of the major, i.e. smallest, radius of curvature of the shell surface, this variation can be
neglected as can the radial stress (which becomes very small in comparison with the hoop
and meridional stresses).

Fig. 12.7. (a) General surface of revolution subjected to internal pressure p; (b) element of surface with radii of
curvature rl and r2 in two perpendicular planes.

Because of this limitation on thickness, which makes the system statically determinate, the
shell can be considered as a membrane with little or no resistance to bending. The stresses
set up on any element are thus only the so-called "membrane stresses" al and a2 mentioned
above, no additional bending stresses being required.

Consider, therefore, the equilibrium of the element ABCD shown in Fig. 12.7(b) where
rl is the radius of curvature of the element in the horizontal plane and r2 is the radius of
curvature in the vertical plane.

The forces on the "vertical" and "horizontal" edges of the element are altdsl and a2tds2,
respectively, and each are inclined relative to the radial line through the centre of the element,
one at an angle d(}l/2 the other at d(}2/2.

Thus, resolving forces along the radial line we have, for an internal pressure p:

.d(}l .d(}22(al t dsJ .SIn ~ + a2 t ds2 .SIn -= p .dsl .dS2

"2

Now for small angles sinde/2 = de/2 radians

( del 2 (11 t dsl .-+ (12 t dS2
~ ) = pdsl .dS2

2 2
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Also dsl = r2d62 and ds2 = rI d81 

. .  01 tdsl . 

and dividing through by dsl . ds2 . t we have: 

(12.18) 

For a general shell of revolution, al and a2 will be unequal and a second equation is 
required for evaluation of the stresses set up. In the simplest application, i.e. that of the 
sphere, however, rl = r2 = r and symmetry of the problem indicates that (TI = 0 2  = a. 
Equation (12.18) thus gives: 

P‘ 
2t 

u = -  

In some cases, e.g. concrete domes or dishes, the self-weight of the vessel can produce 
significant stresses which contribute to the overall failure consideration of the vessel and to 
the decision on the need for, and amount of, reinforcing required. In such cases it is necessary 
to consider the vertical equilibrium of an element of the dome in order to obtain the required 
second equation and, bearing in mind that self-weight does not act radially as does applied 
pressure, eqn. (12.18) has to be modified to take into account the vertical component of the 
forces due to self-weight. 

Thus for a dome of subtended arc 28 with a force per unit area q due to self-weight, 
eqn . ( 12.18) becomes: 

(12.19) 

Combining this equation with one obtained from vertical equilibrium considerations yields 
the required values of a1 and 0 2 .  

12.4. Bending stresses at discontinuities in thin shells 

It is normally assumed that thin shells subjected to internal pressure show little resistance 
to bending so that only membrane (direct) stresses are set up. In cases where there are 
changes in geometry of the shell, however, such as at the intersection of cylindrical sections 
with hemispherical ends, the “incompatibility” of displacements caused by the membrane 
stresses in the two sections may give rise to significant local bending effects. At times these 
are so severe that it is necessary to introduce reinforcing at the junction locations. 

Consider, therefore, such a situation as shown in Fig. 12.8 where both the cylindrical 
and hemispherical sections of the vessel are assumed to have uniform and equal thickness 
membrane stresses in the cylindrical portion are 

whilst for the hemispherical ends 
Pr 
t 0 1  = 0 2  = OH = -. 
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0, 

( a )  

Fig. 12.8. Loading conditions at discontinuities in thin shells. 

The radial displacements set up by these stress systems are; for the cylinder: 

and for the hemispherical ends: 

There will thus be a difference in deformation radially of 

Pr2 6 - 6’ = --[(2 - u )  - 2(1 - v ) ]  
2tE 

- vpr2  
2tE 

- 

which can only be reacted by the introduction of shear forces and moments as shown in 
Fig. 12.8(a) where Q = shear force and M = moment, both per  unit length. 

Because of the total symmetry of the cylinder about its axis we may now consider bending 
of a small element of the cylinder of unit width as shown in Fig. 12.8 (b). 

The shear stress Q produces inward bending of the elemental strip through a radial 
displacement 15, and a compressive hoop or circumferential strain given by: 
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with a corresponding hoop stress: 
Ear 

UH = - 
r 

This stress sets up a force in the circumferential direction of 

This force has an outward radial component from both sides of the element of: 

ES, t d e  
r 

-- - 

and since the strip is of unit width, rde = 1 

ES,t . .  F R  = - 
r2 

This force can be considered as a distributed load along the strip (since equal values will 
apply to all other unit lengths) and will act in opposition to the mismatch displacements 
caused by the membrane stresses. 

It the strip were considered to be a simple beam then, the differential equation of bending 
would be: 

EId4y E6,t 
dx4 r2 
__. - -- - 

but, as for the case of the deformation of circular plates in 7.2, the restraint on distortion 
produced by adjacent strips needs to be allowed for by replacing EI by the plate stiffness 
constant or flexural rigidity 

Et3 
D =  

12(1 - LJ2) : 

i.e. 

where 
3(1 - w4) 

and y = 6, .  
r2t2 s”= 

The solution to eqn. (1) is of the form: 

Y = 6, = eS*(Al COS Bx + A2 sin Bn) + e-@*(A, cos #?x + A4 sin #?x) ( 2 )  

Now as x -+ 00, S, -+ 00 and A I  = A2 = 0. 
d2Y At x = 0, M = MA and D- = - M A .  
dx2 
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dY3 A t x = O ,  Q = Q A  and D -  = - Q A  
dx3 

Substituting these conditions into equation ( 2 )  gives: 

1 
A3 = - ( Q A  - BMA) 283 D 

and MA 
2B2D 

A4 = - 

Substituting back into eqn. ( 2 )  we have: 

e-BX 
y = 6, = - [QA cos ,9x - MA  COS ,9x - sin px)] (12.20) 

which is the equation of a heavily damped oscillation, showing that significant values of a,., 
i.e. significant bending, will only be obtained at points local to the cylinder-end intersection. 
Any stiffening which is desired need, therefore, only to be local to the “joint”. 

In the special case where the material and the thickness are uniform throughout there will 
be no moment set up at the intersection A since the shear force QA will produce equal slopes 
and deflections in both the cylinder and the hemispherical end. 

2,933~ 

Bending stresses can be obtained from the normal relationship: 

d2Y M = D -  
dx2 

i.e by differentiating equation (12.20) twice and by substitution of appropriate boundary 
conditions to determine the unknowns. For cases where the thickness is not constant 
throughout, and M therefore has a value, the conditions are: 

(a) the sum of the deflections of the cylinder and the end at A must be zero, 
(b) the slope or angle of rotation of the two parts at A must be equal. 

125. Viscoelasticity 

Certain materials, e.g., rubbers and plastics, exhibit behaviour which combines the char- 
acteristics of a viscous liquid and an elastic solid and the term which is used to describe this 
behaviour is “viscoelasticity”. In the case of the elastic solid which follows Hooke’s law 
(a “Hookean” solid) stress is linearily related to strain. For so-called “Newtonian” viscous 
liquids, however, stress is proportional to strain rate. If, therefore, a tensile test is carried 
out on a viscoelastic material the resulting stress-strain diagram will depend significantly on 
the rate of straining E ,  as shown in Fig. 12.9. Further, whilst the material may well recover 
totally from its strained position after release of loading it may do so along a different line 
from the loading line and stress will not be proportional to strain even within this “elastic” 
range. 

One starting point for the mathematical consideration of the behaviour of viscoelastic 
materials is the derivation of a linear differential equation which, in its most general form, 
can be written as: 

A a  = BE 
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Stress - Strain curves a t  different strain rates 6 

Stress u Stress u 

- 
Strum c 

( a  1 F a  "brittle" plastic 
Strain c 

( b 1 For ''toqh" pbstlc 

Fig. 12.9. Stress-strain curves at different strain rates i. 

with A and B linear differential operators with respect to time, or as: 

d 2 E  

dt2 
d a  d 2 a  dE 

dt  dt  A o ~  + A I  - + A2 - + . . . = Bo& +B1- + B 2 -  + .  . . (12.2 1 ). 
dt2 

In most cases this equation can be simplified to two terms on either side of the expression, 
the first relating to stress (or strain) the second to its first differential. This will be shown 
below to be equivalent to describing viscoelastic behaviour by mechanical models composed 
of various configurations of springs and dashpots. The simplest of these models contain one 
spring and one dashpot only and are due to VoigdKelvin and Maxwell. 

(a) Voigt-Kelvin Model 

is directly and linearly related to strain, 

i.e. a, = EE, 

The Newtonian liquid, however, needs to be represented by a dashpot arrangement in which 
a piston is moved through the Newtonian fluid. The constant of proportionality relating stress 
to strain rate is then the coefficient of viscosity q of the fluid. 

The behaviour of Hookean solids can be simply represented by a spring in which stress 

i.e. CD = V&D (12.22) 

In order to represent a viscoelastic material, therefore, it is necessary to consider a suitable 
combination of spring and dashpot. One such arrangement, known as the Voigt-Kelvin model, 
combines the spring and dashpot in parallel as shown in Fig. 12.10. 

The response of this model, i.e. the relationship between stress a, strain E and strain rate 
& is given by: 

(T = a, + a0 
and since the strain is common to both parts of the parallel model ES = ED = E 

. .  ~ = E ~ + q t f  (12.23) 
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Fig. 12.10. Voigt-Kelvin spring/dashpot model with elements in parallel. 

with the stress 0,  in effect, shared between the two components of the model (the spring 
and the dashpot) as for any system of components in parallel. 

The inclusion of the strain rate term & makes the stress response time-dependent and this 
represents the principal difference in behaviour from that of elastic solids. 

If a stress 00 is applied to the model, held constant for a time t and then released the 
strain response will be that indicated in Fig. 12.10. The first part of the response, i.e. the 
change in strain at constant stress is termed the creep of the material, the second part, when 
stress is removed, is termed the recovery. 

For stress relaxation, i.e. relaxation of stress at constant strain 

d s  
dt 

E =constant and - = O  

Equation (1 2.23) then gives 
0 = E E  

indicating that, according to the Voigt-Kelvin model, the material behaves as an elastic 
solid under these conditions -clearly an inaccurate representation of viscoelastic behaviour 
in general. 

For creep under constant stress = ao, however, eqn. (12.23) now gives; 

from which it can be shown that 

( 1  2.24) 

In the special case where a = 00 = 0, the so-called “recovery” stage, this reduces to: 

E = Eoe-Ef/s = Eoe-f/f‘ (1  2.25) 

and this equation indicates that the strain recovers exponentially with time, with t’ a char- 
acteristic time constant known as the “retardation time”. 
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(b) Maxwell model 

nation of a spring and dashpot but this time in series as shown in Fig. 12.11. 

in the Maxwell (series) model the stress is common to both elements. 

An alternative model for viscoelastic behaviour proposed by Maxwell again uses a combi- 

Whereas in the Voigt-Kelvin (parallel) model the stress is shared between the components, 

'Hookeon' 
spring 

element 

'Newtonian' 
doshpot 
element 

Stress Stress input 

Stress suddenly 
/released here 

input 

Strain c I 
t I 

E 

Time t 

Strain response 

Fig. 12.11. Maxwell model with elements in series. 

The strain, however, will be the sum of the strains of the two parts, Le., the strain of the 
spring ES plus the strain of the dashpot ED 

. .  
Differentiating: 

. 3s 
ES = - 

E 
NOW OS = EES ... 

Now, for the series model, 0s  = OD = 0 

:. substituting in (1) we obtain the basic response equation for the Maxwell model. 

u u  
i=-+- 

E r l  
(12.26) 

The response of this model to a stress 00 held constant over a time t and released, is shown 
in Fig. 12.11. 

Let us now consider the response of the Maxwell model to the "standard" relaxation and 
recovery stages as was carried out previously for the Voigt-Kelvin model. 
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For stress relaxation ds/dt = 0, and from eqn. (12.26) 

i.e. 

If, at t = 0, a = 00, the initial stress, this equation can be integrated to yield 

= ,oe-E‘/S = uoe-t/t’’ (12.27) 

This is analogous to the strain “recovery” equation (12.25) showing that, in this case, stress 
relaxes from its initial value a0 exponentially with time dependent upon the relaxation 
time t”.  

For the creep recovery stage from a constant level of stress, da/dr = 0 and eqn. (12.26) 
gives 

i=- (12.28) 

the basic equation of pure Newtonian flow. Generally, however, the creep behaviour of 
viscoelastic materials is far more complex and, once again, the model does not adequately 
represent both recovery and relaxation situations. More accurate model representations can 
only be obtained, therefore, by suitable combinations of the Voigt-Kelvin and Maxwell 
models (see Figs. 12.12 and 12.13). 

U 

rl 

Fig. 12.12. The “standard linear solid” model. 

Fig. 12.13. Maxwell and Voigt-Kelvin models in series. 
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(e) Linear and non-linear viscoelasticity 

Both the Voigt-Kelvin and Maxwell models represent so-called linear viscoelasticiry 
(which must not be interpreted as meaning that stress is proportional to strain as indicated 
earlier). Linear viscoelasticity is said to occur when, as a result of a series of creep tests at 
constant stress levels, the ratios of strain to stress are plotted against time either in the form: 

E = af(t) or E = fl(a)f2(t). 

The strain to stress ratio in such tests is termed the creep compliance. 
Neither the Voigt-Kelvin nor the Maxwell model, will fully represent the behaviour of 

polymers although the combination of the two, in series, as shown in Fig. 12.13, will give a 
reasonable approximation of polymer linear viscoelastic behaviour. Unfortunately, however, 
the range of strain over which linear viscoelasticity is exhibited by polymers is very small. 

Non-linear viscoelasticity occurs when the creep compliance-time curve follows an equa- 
tion of the form: 

E = f’(a, t )  

This form of viscoelasticity can only be modelled using non-linear springs and dashpots, 
and the analysis of such systems can become extremely complex. 

A convenient approximate solution(’*2) for the design of components constructed from 
polymers employs the use of “isochronous” stress-strain curves and a “secant modulus” 
Es(r) .  If a series of creep tests are carried out to produce a set of strain-time curves at 
various stress levels a number of constant time sections can be taken through the curves to 
enable isochronous (constant time) stress-strain diagrams to be plotted in Fig. 12.14. Such 
results may be obtained under tensile, compressive or shear loading. Alternatively these data 
may be obtained from manufacturers’ data sheets. One of these isochronous curves can then 
be selected on the basis of the known lifetime requirement of the component and used for 
the determination of the secant modulus. 

b 
D 

2 
c 
m 

C Stroin c 

modulus ES 

Anticipated moxknm 

Strain 

Fig. 12.14. Use of isochronous curves for design. 

Defining a point P on the isochronous curve, be it either the expected maximum stress or 
strain (usually taken as l%), allows a straight line to be drawn from P to the origin 0, the 
slope of which gives the secant modulus. As stated above, this modulus may be as a result of 
tension, compression or shear and the appropriate value can then be used to replace E and G 
in the standard elastic formulae derived in other chapters of this text. If such formulae also 
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contains Poisson’s ratio v this must also be replaced by its equivalent under creep conditions, 
the so-called “creep contraction” or “lateral strain ratio” v( t ) .  See Example 12.2. 
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Examples 

Example 12.1 
The gantry shown in Fig. 12.15 is constructed from 100 mm x 50 mm rectangular cross- 

section and, under service conditions, supports a maximum load P of 20 kN. Determine 
the maximum distance d at which P can be safely applied if the maximum tensile and 
compressive stresses for the material used are limited to 30 MN/m2 and 100 MN/m2 
respectively. 

I d  P 

I 

Fig. 12.15. 

How would this value change if the cross-section were circular, but of the same cross- 
sectional area? 

Solution 
For the gantry and cross-section of Fig. 12.15 the following values are obtained by inspec- 

tion: 
R, = 150 mm Ri = 100 mm R, = 200 mm b = 50 mm. 
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:. From Table 12.l(a) 

= 34.6574 mm 
A 50 x 100 

= 144.269 mm 

J r  
h = R, - R1 = 150 - 144.269 = 5.731 mm. 

P 20 x 103 
Direct stress (Compressive) due to P = - = = 4 MN/m2 

A (100 x 50)10-6 

Thus, for maximum tensile stress of 30 MN/m2 to be reached at B the bending stress (tensile) 
must be 30 + 4 = 34 MN/m2. 

 NOW^,,, = 50 + 5.731 

= 55.731 at B 

and bending stress at B = M y  = 34 MN/m2, 
U ( R I  + Y )  

(40 x 103d) x 55.731 x 
(5.731 x 10-3)(50 x 100 x 10-6)(200 x 

. .  = 34 x lo6 

. .  d = 174.69 mm. 

For maximum compressive stress of 100 MN/m2 at A the compressive bending stress must 
be limited to 100 - 4 = 96 MN/m2 in order to account for the additional direct load effect. 

. .  At A, with ymin = 50 - 5.731 = 44.269 

(20 x 103)44.269 x 

(5.731 x 10-3)(50 x 100 x 10-6)(100 x 
bending stress = = 96 x lo6 

. .  d = 310.7 mm. 

The critical condition is therefore on the tensile stress at B and the required maximum value 
of d is 174.69 mm. 

If a circular section were used of radius R and of equal cross-sectional area to the rectan- 
gular section then nR2 = 100 x 50 and R = 39.89 mm. 
:. From Table 12.1 assuming R, remains at 150 mm 

/ $ = 2n{(R; + R) - ~ ( R I  + R)2 - R 2 )  

= 2n( 150 - dl5O2 - 39.8942) 

= 2n x 5.4024 = 33.944 mm. 

. .  
50 x 100 

- = 147.301 mm, 
A 

R I  = - 
r d A  - 33.944 
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with h = R, - R1 = 150 - 147.3 = 2.699 mm. 

. .  For critical tensile stress at B with y = 39.894 + 2.699 = 42.593. 

M y  = 34 MN/m2. 
M(RI + Y )  

(20 x 103 x d)(42.593 x 10-3) 
= 34 x 106 

2.699 x x (n x 39.8942 x 10-6)(150 + 39.894) 
d =  102.3 

i.e. Use of the circular section reduces the limit of d within which the load P can be applied. 

Example 122 

A constant time section of lo00 h taken through a series of strain-time creep curves 
obtained for a particular polymer at various stress levels yields the following isochronous 
stress-strain data. 

a(kN/m2) 1.0 2.25 3.75 5.25 6.54 7.85 9.0 
4%) 0.23 0.52 0.85 1.24 1.68 2.17 2.7 

The polymer is now used to manufacture: 

(a) a disc of thickness 6 mm, which is to rotate at 500 rev/min continuously, 
(b) a diaphragm of the same thickness which is to be subjected to a uniform lateral pressure 

of 16 N/m2 when clamped around its edge. 

Determine the radius required for each component in order that a limiting stress of 6 kN/m2 
is not exceeded after lo00 hours of service. Hence find the maximum deflection of the 
diaphragm after this lo00 hours of service. 

The lateral strain ratio for the polymer may be taken as 0.45 and its density as 1075 kN/m3. 

Solution 

(a) From eqn. (4.1 1) the maximum stress at the centre of a solid rotating disc is given by: 

For the limiting stress condition, therefore, with Poissons ratio u replaced by the lateral 
strain ratio: 

(500 x 2 ~ ) ~  R2 
60 8 

6 x lo3 = 3.45 x 1075 x x -  

From which 

and 

R2 = 0.00472 

R = 0.0687 m = 68.7 mm. 
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(b) For the diaphragm with clamped edges the maximum stress is given by eqn. (22.24) as: 

3qR2 
4t2 ormaX = - 

3 x 1 6 x R 2  
4 x (6 x 10-3)2 

6 x IO3 = 

From which R = 0.134 m = 134 mm. 
The maximum deflection of the diaphragm is then given in Table 7.1 as: 

Here it is necessary to replace Young’s modulus E by the secant modulus obtained from the 
isochronous curve data and Poisson’s ratio by the lateral strain ratio. 

The lo00 hour isochronous curve has been plotted from the given data .in Fig. 12.16 
producing a secant modulus of 405 kN/m2 at the stated limiting stress of 6 kN/m2; this 
being the slope of the line from the origin to the 6 kN/m2 point on the isochronous curve. 

3 x 16 x (134 x 10-3)4 x ( 1  -0.452) 
16 x 405 x IO3 x (6 x 10-3)3 . .  amax = 

= 0.0088 m = 8.8 mm. 

Secant modulus 

= 6 x 100 
I .48 

= 405 kN/m2 
b 

I 1.48 2 3 
c ( Y e )  

Fig. 12.16. 
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Problems 

12.1 (B). The bracket shown in Fig. 12.17 is constructed from material with 50 mm x 25 mm rectangular 
cross-section and it supports a vertical load of 10 kN at C. Determine the magnitude of the stresses set up at A 
and E.  

C 

I 

I v IO 

50, I mm 

In- 
N 

50, I mm 

I 
Section at AB 

kN 

Fig. 12.17. 

What percentage error would be obtained if the simple bending theory were applied? 
[-161.4 MN/m2, + 169.4 MN/m2, 19%. 13.6%) 

122 (B). A crane hook is constructed from trapezoidal cross-section material. At the critical section AB the 
dimensions are as shown in Fig. 12.18. The hook supports a vertical load of 25 kN with a line of action 40 mm 
from B on the inside face. Calculate the values of the stresses at points A and B taking into account both bending 
and direct load effects across the section. [129.2 MN/m2, -80.3 MN/m2] 

. 25 kN 

Fig. 12.18. 

N 

Section at AB 

123 (B). A G-clamp is constructed from I-section material as shown in Fig. 12.19. Determine the maximum 
stresses at the central section AB when a clamping force of 2 kN is applied. 
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Fig. 12.19. 

How do these values compare with those which would be obtained using simple bending theory applied to a 
[267 MN/mZ, -347.5 MN/mz, 240 MN/m2, 380.7 MN/m2] 

12.4 (B). Part of the frame of a machine tool can be considered to be of the form shown in Fig. 12.20. A decision 

Compare the critical stresses set up at section AB for each of the cross-sections when the frame is subjected to 

straight beam of the same cross-section? 

is required whether to construct the frame from T or rectangular section material of the dimensions shown. 

a peak load of 5 kN and discuss the results obtained in relation to the decision required. 

5kN Alternotwe sectlons ot AB 

3:1-- - 
25 mm 

Fig. 12.20. 

Plot diagrams of the stress distribution across AB for each cross-sectional shape. 
[122.7 MN/m2, -198 MN/mZ, 193.4 MN/mz, -143.2 MN/mZ] 

125 (B). (a) By consideration of the Maxwell model, derive an expression for the internal stress after time t 
of a polymer held under constant strain conditions and hence show that the relaxation time is equal to q/G where 
q is the coefficient of viscosity and G is the shear modulus. 

(b) A shear stress of 310 MN/m2 is applied to a polymer which is then held under fixed strain conditions. After 
1 year the internal stress decreases to a value of 207 MN/mZ. Calculate the value to which the stress will fall after 
2 years, assuming the polymer behaves according to the Maxwell model. (5  = roe-c'/v; 138 MN/m2] 

12.6 (B). (a) Spring and dashpot arrangements are often used to represent the mechanical behaviour of polymers. 
Analyse the mathematical stress strain relationship for the Maxwell and Kelvin-Voigt models under conditions of 
(i) constant stress, (ii) constant strain, (iii) recovery, and draw the appropriate strain-time, stress-time diagrams, 
commenting upon their suitability to predict behaviour of real polymers. 
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(b) Maxwell and Kelvin-Voigt models are to be set up to simulate the behaviour of a plastic. The elastic 
and viscous constants for the Kelvin-Voigt model are 2 x lo9 N/m’ and 100 x lo9 Ns/m’ respectively and the 
viscous constant for the Maxwell model is 272 x lo9 Nslm’. Calculate a value for the elastic constant for the 
Maxwell model if both models are to predict the same strain after 100 seconds when subjected to the same stress. 

[15.45 x lo9 N/m2] 
12.7 (B). The model shown in Fig. 12.21 is frequently used to simulate the mechanical behaviour of polymers: 

Fig. 12.21. 

(a) With reference to Figure 12.21, state what components of total strain the elements A, B and C represent. 
(b) Sketch a typical strain-time graph for the model when the load F is applied and then removed. Clearly label 

(c) A certain polymer may be modelled on such a system by using the following constants for the elements: 
those parts of the graph corresponding to the strain components 81, 82 and 8 3 .  

Dashpot A: 
Dashpot B: 
Spring A: 
Spring B: 
This polymer is subjected to a direct stress of 6 x lo3 N/m’ for 30 seconds ONLY. 
Determine the strain in the polymer after 30 seconds, 60 seconds and 2000 seconds. 

viscosity = lo6 Ns/m’ 
viscosity = 100 x lo6 Ns/m’ 
shear modulus = 50 x lo3 N/m’ 
shear modulus = lo9 N/m’ 

[3.17 x lo-’, 0.75 x lo-’, 0.06 x lo-’] 
12.8 (C). For each of the following typical engineering components and loading situations sketch and dimension 

the components and allocate appropriate loadings. As a preliminary step towards finite element analysis of each 
case, select and sketch a suitable analysis region, specify complete boundary conditions and add an appropriate 
element mesh. Make use of symmetry and St. Venant’s criteria wherever possible. 

(a) A shelf support bracket welded to a vertical upright. 
(b) An engine con-rod with particular attention paid to shoulckr fillet radii for weight reduction purposes (see 

Fig. 6.1) 
(c) A washing machine agitator cross-section (see Fig. 5.14). bar-tube fillet radii and relative thicknesses of 

particular concern. 
(d) The extruded alloy section of Fig. 1.21. Model to be capable of consideration of varying lines of action of 

applied force. 
(e) A circular pipe flange used to connect two internally pressurised pipes. Model to be capable of including the 

effect of bolt tensions and external moments on the joint. You may assume that the pipe is free to expand 
axially. 

( f )  A C.T.S. (compact test specimen) for brittle fracture compliance testing. Stress distributions at the crack tip 
are required. 

(g) A square storage hopper fabricated from thin rectangular plates welded together and supported by means of 
welded angle around the upper edge. It may be assumed that the hopper is full with an equivalent hydrostatic 
pressure p throughout. The supporting frame can be assumed rigid. 

(h) A four-point beam bending test rig with plastic beam mounted on steel pads over steel knife edges. The degree 
of indentation of the plastic and deformation of the steel pad are required. 

(i) Thick cylinder with flat ends and sharp fillet radii subjected to internal pressure. The model should be capable 
of assessing the effect of different end plate thicknesses. 

(j) A pressurised thick cylinder containing a 45” nozzle entry. Stress concentrations at the nozzle entry are required. 


