
CHAPTER 8 

INTRODUCTION TO ADVANCED ELASTICITY THEORY 

8.1. Type of stress 

Any element of material may be subjected to three independent types of stress. Two of 
these have been considered in detai previously, namely direct stresses and shear stresses, 
and need not be considered further here. The third type, however, has not been specifically 
mentioned previously although it has in fact been present in some of the loading cases 
considered in earlier chapters; these are the so-called body-force stresses. These body forces 
arise by virtue of the bulk of the material, typical examples being: 

(a) gravitational force due to a component’s own weight: this has particular significance in 

(b) centrifugal force, depending on radius and speed of rotation, with particular significance 

(c) magnetic field forces. 

civil engineering applications, e.g. dam and chimney design; 

in high-speed engine or turbine design; 

In many practical engineering applications the only body force present is the gravitational 
one, and in the majority of cases its effect is minimal compared with the other applied 
forces due to mechanical loading. In such cases it is therefore normally neglected. In high- 
speed dynamic loading situations such as the instances quoted in (b) above, however, the 
centrifugal forces far exceed any other form of loading and are therefore the primary factor 
for consideration. 

Unlike direct and shear stresses, body force stresses are defined as force per unit volume, 
and particular note must be taken of this definition in relation to the proofs of formulae which 
follow. 

8.2. The Cartesian stress components: notation and sign convention 

Consider an element of material subjected to a complex stress system in three dimensions. 
Whatever the type of applied loading the resulting stresses can always be reduced to the 
nine components, i.e. three direct and six shear, shown in Fig. 8.1. 

It will be observed that in this case a modified notation is used for the stresses. This is 
termed the double-suffix notation and it is particularly useful in the detailed study of stress 
problems since it indicates both the direction of the stress and the plane on which it acts. 

Thefirst suffix gives the direction of the stress. 
The second suffix gives the direction of the normal of the plane on which the stress acts. 

Thus, for example, 

220 



58.3 Introduction to Advanced Elasticity Theory 

-% 

Y 

22 1 

Fig. 8.1. The Cartesian stress components. 

a,, is the stress in the X direction on the X facing face (i.e. a direct stress). Common 
suffices therefore always indicate that the stress is a direct stress. Similarly, a,, is the stress 
in the X direction on the Y facing face (i.e. a shear stress). Mixed suffices always indicate 
the presence of shear stresses and thus allow the alternative symbols oxy or xx, .  Indeed, the 
alternative symbol x is not strictly necessary now since the suffices indicate whether the 
stress a is a direct one or a shear. 

8.2.1. Sign conventions 

(a) Direct stresses. As always, direct stresses are assumed positive when tensile and nega- 
tive when compressive. 

(b) Shear stresses. Shear stresses are taken to be positive if they act in a positive Cartesian 
(X, Y or Z )  direction whilst acting on a plane whose outer normal points also in a positive 
Cartesian direction. 

Thus positive shear is assumed with + direction and + facing face. 
Alternatively’, positive shear is also given with -- direction and - facing face (a double 

A careful study of Fig. 8.1 will now reveal that all stresses shown are positive in nature. 
The cartesian stress components considered here relate to the three mutually perpendicular 

axes X,  Y and Z .  In certain loading cases, notably those involving axial symmetry, this 
system of components is inconvenient and an alternative set known as cylindrical components 
is used. These involve the variables, radius r ,  angle 6 and axial distance z ,  and will be 
considered in detail later. 

negative making a positive, as usual). 

83 .  The state of stress at a point 

Consider any point Q within a stressed material, the nine Cartesian stress components at 
Q being known. It is now possible to determine the normal, direct and resultant stresses 
which act on any plane through Q whatever its inclination relative to the Cartesian axes. 
Suppose one such plane ABC has a normal n which makes angles n x ,  n y  and n z  with the 
Y Z ,  X Z  and X Y  planes respectively as shown in Figs. 8.2 and 8.3. (Angles between planes 
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Fig. 8.3. The state of stress bn an inclined plane through any given point in a three-dimensional Cartesian 
stress system. 

ABC and Y Z  are given by the angle between the normals to both planes n and x, etc.) 
For convenience, let the plane ABC initially be some perpendicular distance h from Q so 
that the Cartesian stress components actually acting at Q can be shown on the sides of the 
tetrahdedron element ABCQ so formed (Fig. 8.3). In the derivation below the value of h 
will be reduced to zero so that the equations obtained will relate to the condition when ABC 
passes through Q .  

In addition to the Cartesian components, the unknown components of the stress on the 
plane ABC, i.e. p x n ,  pvn and p z n ,  are also indicated, as are the body-force field stress 
components which act at the centre of gravity of the tetrahedron. (To improve clarity of the 
diagram they are shown displaced from the element.) 

Since body-force stresses are defined as forces/unit volume, the components in the X ,  Y 
and Z directions are of the form 

F x AS; 

where Ash13 is the volume of the tetrahedron. If the area of the surface ABC, i.e. AS, is 
assumed small then all stresses can be taken to be uniform and the component of force in 
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the X direction due to a, is given by 

a,AS cos nx 

Stress components in the other axial directions will be similar in form. 
Thus, for equilibrium of forces in the X direction, 

h 
3 

pxnAS + F,AS- = cxxAScosnx + t,!,AScosny + t,,AScosnz 

As h + 0 (i.e. plane ABC passes through Q), the second term above becomes very small 
and can be neglected. The above equation then reduces to 

p x n  = a,, COS nx + txy COS ny + r,, COS nz (8.1) 

Similarly, for equilibrium of forces in the y and z directions, 

(8.2) i (8.3) 

pYn = uyy cos ny + tyx cos nx + tyz cos nz 

pm = a, cos nz + tu cos nx + tzy cos ny 

The resultant stress pn on the plane ABC is then given by 

P n  Jb:n + P;n + P z n )  (8.4) 

The normal stress a, is given by resolution perpendicular to the face ABC, 

i.e. 

and, by Pythagoras’ theorem (Fig. 8.4), the shear stress sn is given by 

= p x n  COS nx + P y n  COS ny + Pzn COS nz 

r n  = J(Pi-4) 

Fig. 8.4. Normal, shear and resultant stresses on the plane ABC. 

It is often convenient and quicker to define the line of action of the resu-.ant stress pn by 
the direction cosines 

(8.7) 1’ = cos(pnx) = PxnIpn 
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The direction of the plane ABC being given by other direction cosines 

I = cosnx, tn = cosny, n = cosny 

It can be shown by simple geometry that 

l 2  + m2 + n2 = 1 and (l’)’ + (m’)2 + (n’ )*  = 1 

Equations (8.1), (8.2) and (8.3) may now be written in two alternative ways. 

(a) Using the cummon symbol cr for stress and relying on the double suffix notation to 

pxn = axx cos nx + uxy cos ny + axz cos nz (8. IO) 

pYn = uyx cos nx + ayy cos ny + uyz cos nz (8.1 1) 

pm = a, cos nx + azy cos ny + a, cos nz (8.12) 

In each of the above equations the first suffix is common throughout, the second suffix on 
the right-hand-side terms are in the order x, y, z throughout, and in each case the cosine 
term relates to the second suffix. These points should aid memorisation of the equations. 

discriminate between shear and direct stresses: 

(b) Using the direction cosine form: 

P x n  = uxxl + uxym + axzn 

p y n  = u y x l +  uyym + u y z n  

pzn = uzrl + u,m + u,n 

(8.13) 

(8.14) 

(8. IS) 

Memory is again aided by the notes above, but in this case it is the direction cosines, 1 ,  rn 
and n which relate to the appropriate second suffices x ,  y and z .  

Thus, provided that the direction cosines of a plane are known, together with the Cartesian 
stress components at some point Q on the plane, the direct, normal and shear stresses 
on the plane at Q may be determined using, firstly, eqns. (8.13-15) and, subsequently, 
eqns. (8.4-6). 

Alternatively the procedure may be carried out graphically as will be shown in $8.9. 

8.4. Direct, shear and resultant stresses on an oblique plane 

Consider again the oblique plane ABC having direction cosines I ,  m and n ,  i.e. these are 

In general, the resultant stress on the plane pII  will not be normal to the plane and it can 
the cosines of the angle between the normal to plane and the x, y .  z directions. 

therefore be resolved into two alternative sets of Components. 

(a) In the co-ordinate directions giving components pI,, , pyn and p:,, , as shown in Fig. 8.5, 
with values given by eqns. (8.13), (8.14) and (8.15). 

(b) Normal and tangential to the plane as shown in Fig. 8.6, giving components, of a,, 
(normal or direct stress) and r,, (shear stress) with values given by eqns. (8.5) and (8.6). 

The value of the resultant stress can thus be obtained from either of the following equations: 

p ,Z=d+d (8.16) 
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Fig. 8.5. Cartesian components of resultant stress on an inclined plane 

X 

Fig. 8.6. Normal and tangential components of resultant stress on an inclined plane. 

2 or ~ , 2  = P:n + P;n + PW 
these being alternative forms of eqns. (8.6) and (8.4) respectively. 

From eqn. (8.5) the normal stress on the plane is given by: 

(8.17) 

a n  = P x n  . I  + p b I I  . m + pill  . 
But from eqns. (8.13), (8.14) and (8.15) 

pxr, = a,, . I + a,\ . m + a,,? . n 

P y n  = aVx . 1  + a), . m + 0): . n 

pzn = a, . I + a,, . m + az, . n 

:. Substituting into eqn (8.5) and using the relationships a,, = ayx; ax, = 
which will be proved in 58.12 

and a,: = a,, 

Un = u x x ~ 1 2 + u y y ~ m  2 + u , . n  2 + 2 u , , ~ l m + 2 u y ~ ~ m n + 2 u x ~ ~ l n .  (8.18) 
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and from eqn. (8.6) the shear stress on the plane will be given by 

4, =P:n +P;n + P z n  - 02, (8.19) 

In the particular case where plane ABC is a principal plane (i.e. no shear stress): 

and 

the above equations reduce to: 

8.4.1. Line of action of resultant stress 

As stated above, the resultant stress p,* is generally not normal to the plane ABC but 
inclined to the x ,  y and z axes at angles ex, 8" and 6, - see Fig. 8.7. 

i 
Fig. 8.7. Line of action of resultant stress. 

The components of p n  in the x, y and z directions are then 

1 pxn = P n  . COS 0, 
Pyn = Pn. COS 0.v 
P 2 n  = p n .  cos ez 

and the direction cosines which define the line of actions of the resultant stress are 

1' = COS 0.r = P.m l P n  
m' = cos0, = pynn/pn 
n' = cos OZ = p_,* / P , ~  

(8.22) 

(8.23) 
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8.4.2. Line of action of normal stress 

By definition the normal stress is that which acts normal to the plane, i.e. the line of action 
of the normal stress has the same direction cosines as the normal to plane viz: 1 ,  m and n .  

8.4.3. Line of action of shear stress 

As shown in 58.4 the resultant stress p,, can be considered to have two components; one 
normal to the plane (a,,) and one along the plane (the shear stress t,,) - see Fig. 8.6. 

Let the direction cosines of the line of action of this shear stress be l,, in, and n,. 
The alternative components of the resultant stress, pxn, py,, and p z n ,  can then either be 

obtained from eqn (8.22) or by resolution of the normal and shear components along the x ,  
y and z directions as follows: 

(8.24) 
p x n  = a n  - 1  + t n  1s 
Pyn  = a n  * m + rn * m, 
Pzn = a n  * n + r n  ns 

Thus the direction cosines of the line of action of the shear stress t,, are: 

1 Pxn - 1 a n  

f n  

Pyn  - m ‘ a n  

rn  

Pzn - n a n  

r n  

1, = 

m, = 

n, = 

(8.25) 

8.4.4. Shear stress in any other direction on the plane 

Let 4 be the angle between the direction of the shear stress r,, and the required direction. 

cos4 = 1,. 14 + m, . rn4 + n, . n+ (8.26) 
where 14, m4, n4 are the direction cosines of the new shear stress direction, it follows that 
the required magnitude of the shear stress on the “q5” plane will be given by 

z+ = T, * cos4 (8.27) 

Alternatively, resolving the components of the resultant stress (pXl t ,  pvn and pz, ,)  along the 
new direction we have: 

(8.28) 

Then, since the angle between any two lines in space is given by, 

= P x n  + P y f l  . “4 + Pzn ’ ng 

and substituting eqns. (8.13), (8.14) and (8.15) 

q = a,, 11+ + uyy - mmg + a, - nn+ + axy (lm+ + 1, - m 1 
+ axz (In+ + nl+) + ayz (mn+ + nm+) (8.29) 

Whilst eqn. (8.28) has been derived for the shear stress tg it will, in fact, apply equally for 
any type of stress (Le. shear or normal) which acts on the plane ABC in the 4 direction. 

In the case of the shear stress, however, its line of action must always be perpendicular 
to the normal to the plane so that 

l l g  + rnm4 + nng = 0. 
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In the case of a normal stress the relationship between the direction cosines is simply 

1 = 14, m = m# and n = n6 

since the stress and the normal to the plane are in the same direction. Eqn. (8.29) then 
reduces to that found previously, viz. eqn. (8.18). 

8.5. Principal stresses and strains in three dimensions - Mohr’s circle representation 

The procedure used for constructing Mohr’s circle representation for a three-dimensional 
principal stress system has previously been introduced in Q 13.7? For convenience of refer- 
ence the resulting diagram is repeated here as Fig. 8.8. A similar representation for a 
three-dimensional principal strain system is shown in Fig. 8.9. 

t 

Fig. 8.8. Mohr circle representation of three-dimensional stress state showing the principal circle, the radius of 
which is equal to the greatest shear stress present in the system. 

Fig. 8.9. Mohr representation for a three-dimensional principal strain system. 

J. ’ E.J. Hearn. Mechanics of Materids I ,  Butterworth-Heinemann, 1977. 
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In both cases the principal circle is indicated, the radius of which gives the maximum 
shear stress and h a y  the maximum shear strain, respectively, in the three-dimensional system. 

This form of representation utilises different diagrams for the stress and strain systems. 
An alternative procedure uses a single combined diagram for both cases and this is described 
in detail $98.6 and 8.7. 

8.6. Graphical determination of the direction of the shear stress tn on an inclined 
plane in a three-dimensional principal stress system 

As before, let the inclined plane have direction cosines 1 ,  m and n . A true representation 
of this plane is given by constructing a so-called “true shape triangle” the ratio of the lengths 
of its sides being the ratio of the direction cosines-Fig. 8.10. 

Fig. 8.10. Graphical determination of direction of shear stress on an inclined plane. 

If lines are drawn perpendicular to each side from the opposite vertex, meeting the sides 
at points P, R and S, they will intersect at point T the “orthocentre”. This is also the point 
through which the normal to the plane from 0 passes. 

If 01,02 and a3 are the three principal stresses then point M is positioned on AC such that 

C M  (a2 - 03) 

CA ( 0 1  - 0 2 )  

The equivalent procedure on the Mohr circle construction is as follows (see Fig. 8.1 1). 

-- - 

The required direction of the shear stress is then perpendicular to the line BD. 

Construct the three stress circles corresponding to the three principal stresses a1 , 0 2  and 0 3 .  

Set off line AB at an angle a! = cos-’ 1 to the left of the vertical through A ,  
Set off line CB at an angle y = cos-’ n to the right of the vertical through C to meet 
AB at B.  
Mark the points where these lines cut the principal circle R and P respectively. 
Join AP and CR to cut at point T .  
Join BT and extend to cut horizontal axis AC at S. 
With point M the 0 2  position, join BM. 

The required shear stress direction is then perpendicular to the line BM. 
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C M A 

Fig. 8.1 1. Mohr circle equivalent procedure to that of Fig. 8.10. 

8.7. The combined Mohr diagram for three-dimensional stress and strain systems 

Consider any three-dimensional stress system with principal stresses 01, a 2  and a3 (all 
assumed tensile). Principal strains are then related to the principal stresses as follows: 

1 
E 

~1 = -(a1 - ua2 - ua3), etc. 

E E I  1 CTI - 4 0 2  + ~ 3 )  

= 01 - u(a1 + 0 2  + a3) + V a l  

Now the hydrostatic, volumetric or mean stress 5 is defined as 
- 
0 = + 0 2  + a 3 )  

Therefore substituting in (l),  
E E I  = al(l + U) - 3 ~ 5  

But the volumetric stress 5 may also be written in terms of the bulk modulus, 

i.e. 
volumetric stress 
volumetric strain 

bulk modulus K = 

and 

volumetric strain = sum of the three linear strains 

= E1 4- E2 -I- &3 = A 

. .  

but 

- a K = -  
A 

E = 3K(l - 2 ~ )  
E- 

. .  
I 4  - a = A K = A  

3(1 - 2 ~ )  
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Substituting in (2), 
3uAE 

EEI = a1(l + v )  - 
3(1 - 2 ~ )  

and, since E = 2G(1 + v ) ,  

But, mean strain 

. .  

Alternatively, re-writing eqn. (8.16) in terms of E I ,  

0 1  &I=------- 
2G (1 - 2 ~ )  

3u - 
E 

But 

But 

i.e. 

.. 

. .  

i.e. 

- A 5  
3 3K 

E = - - = -  

E = 2G(1+ U) = 3K(l - 2 ~ )  

(1 + v )  3K = 2G- 
( 1  -2u) 

- a(1 - 2u) 
2G(1+ u )  

01 a (1 - 2u) - + -- 
2G 2G (1+u)  

E =  

(8.30) 

(8.31) 

In t.c above derivation the Cartesian stresses a,, aYY  an^ nZz could ..ave been used in place 
of the principal stresses a1, a2 and c73 to yield more general expressions but of identicial 
form. It therefore follows that the stress and associated strain in any given direction within 
a complex three-dimensional stress system is given by eqns. (8.30) and (8.31) which must 
satisfy the three-dimensional Mohr’s circle construction. 

Comparison of eqns. (8.30) and (8.31) indicates that 

Thus, having constructed the three-dimensional Mohr’s stress circle representations, the 
equivalent strain values may be obtained simply by reference to a new axis displaced a 
distance (3u/(l + u))5 as shown in Fig. 8.12 bringing the new axis origin to 0. 
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Fig. 8.12. The “combined Mohr diagram” for three-dimensional stress and strain systems. 

Distances from the new axis to any principal stress value, e.g. (TI ,  will then be 2G times 
the corresponding principal strain value, 

i.e. 0’01 t 2G = E ]  

Thus the same circle construction will apply for both stresses and strains provided that: 

3v - (a) the shear strain axis is offset a distance ___ (T to the right of the shear stress axis; 

(b) a scale factor of 2G, [= E/(1 + u ) ] ,  is applied to measurements from the new axis. 
(1 + v )  

8.8. Application of the combined circle to two-dimensional stress systems 

The procedure of $14.13? uses a common set of axes and a common centre for Mohr’s 
stress and strain circles, each having an appropriate radius and scale factor. An alternative 
procedure utilises the combined circle approach introduced above where a single circle can 
be used in association with two different origins to obtain both stress and strain values. 

As in the above section the relationship between the stress and strain scales is 

stress scale E 
strain scale (1 + v) - - 2G 

This is in fact the condition for both the stress and strain circles to have the same radius$ and 
should not be confused with the condition required in §14.13? of the alternative approach 
for the two circles to be concentric, when the ratio of scales is E/(1 - u) .  

t E.J. Hearn, Mechanics of Materiuls I ,  Butterworth-Heinemann, 1997. 
For equal radii of both the stress and strain circles 

(@I - 0 2 )  - (El - E ? )  - 
2 x stress scale 2 x strain scale 

stress scale (ui - a2) (01 - uz) E E 
strain scale (el - e2)  (ui - 0 2 )  ( I  + u)  ( 1  + v )  - - - 
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Fig. 8.13. Combined Mohr diagram for two-dimensional stress and strain systems. 

With reference to Fig. 8.13 the two origins must then be positioned such that 
( 0 1  + 02) 

2 x strees scale 
OA = 

(El +E2) 
2 x strain scale 

O‘A = 

. .  OA - (01 + 02) strain scale 
O’A (&I  + ~ 2 )  stress scale 

(01 + 0 2 >  (1 + u> 
(El + E2)  E 

-- 

x- - - 

1 
E 

E ]  = -(01 - ua2) But 

Thus the distance between the two origins is given by 

233 

(8.32) 
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where 5 is the mean stress in the two-dimensional stress system = :(a1 + 0 2 )  = position of 
centre of stress circle. 

The relationship is thus identical in form to the three-dimensional equivalent with 2 
replacing 3 for the two-dimensional system. 

Again, therefore, the single-circle construction applies for both stresses and strain provided 
that the axes are offset by the appropriate amount and a scale factor for strains of 2G is  
applied. 

8.9. Graphical construction for the state of stress at a point 

The following procedure enables the determination of the direct (a,) and shear ( rn )  stresses 
at any point on a plane whose direction cosines are known and, in particular, on the octa- 
hedral planes (see 58.19). 

The construction procedure for Mohr’s circle representation of three-dimensional stress 
systems has been introduced in 58.4. Thus, for a given state of stress producing principal 
stress a’, a;? and a3, Mohr’s circles are as shown in Fig. 8.8. 

For a given plane S characterised by direction cosines I ,  m and n the remainder of 
the required construction proceeds as follows (Fig. 8.14). (Only half the complete Mohr’s 
circle representation is shown since this is sufficient for the execution of the construction 
procedure.) 

Fig. 8.14. Graphical construction for the state of stress on a general stress plane. 

(1) Set off angle a! = cos-’ 1 from the vertical at a’ to cut the circles in Q2 and Q3. 
( 2 )  With centre CI (centre of a2, a3 circle) draw arc QzQ3. 

(3) Set off angle y = cos-’ n from the vertical at a3 to cut the circles at P I  and P2. 
(4) With centre C3 (centre of 0 1 ,  a2 circle) draw arc P1P2. 
(5) The position S representing the required plane is then given by the point where the 

two arcs Q2Q3 and  PIP^ intersect. The stresses on this plane are then a, and r, as 
shown. Careful study of the above’construction procedure shows that the suffices of 
points considered in each step always complete the grouping 1, 2, 3. This should aid 
memorisation of the procedure. 

(6) As a check on the accuracy of the drawing, set off angles /? = cos-’ m on either side 
of the vertical through a2 to cut the 0 2 5 3  circle in T I  and the 0 1 0 2  circle in T3.  
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(7) With centre C2 (centre of the a1 a3 circle) draw arc T I  T3 which should then pass through 
S if all steps have been carried out correctly and the diagram is accurate. The construction 
is very much easier to follow if all steps connected with points P, Q and T are carried 
out in different colours. 

8.10. Construction for the state of strain on a general strain plane 

The construction detailed above for determination of the state of stress on a general stress 
plane applies equally to the determination of strains when the symbols a ~ ,  a2 and 03 are 
replaced by the principal strain values E I  , E:! and ~ 3 .  

Thus, having constructed the three-dimensional Mohr representation of the principal strains 
as described in $8.4, the general plane is located as described above and illustrated in 
Fig. 8.15. 

Fig. 8.15. Graphical construction for the state of strain on a general strain plane. 

8.11. State of stress-tensor notation 

The state of stress equations for any three-dimensional system of Cartesian stress compo- 
nents have been obtained in $8.3 as: 

The Cartesian stress components within this equation can then be remembered conveniently 
in tensor notation as: 

uxx uxy a, 
(general stress tensor) (8.33) 
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For a principal stress system, i.e. no shear, this reduces to: 

0 1  0 0 
(principal stress tensor) (8.34) 

and a special case of this is the so-called “hydrostatic” stress system with equal principal 
stresses in all three directions, i.e. (TI = a2 = a3 = 5, and the tensor becomes: 

[ i] (hydrostatic stress tensor) (8.35) 
O O Z  

As shown in $23.16 it is often convenient to divide a general stress into two parts, one 
= $(al + 0 2  + a3), the other due to shearing deformations. 

Another convenient tensor notation is therefore that for pure shear, ie a, = aVy = a,? = 0 

[ :: u- ] (pure shear tensor) (8.36) 

The general stress tensor (8.33) is then the combination of the hydrostatic stress tensor and 
the pure shear tensor. 
i.e. General three-dimensional stress state = hydrostatic stress state + pure shear state. 
This approach is utilised in other sections of this text, notably: 58.16, 58.19 and 58.20. 

stress is, in tensor form: 

due to a hydrostatic stress 

giving the tensor: 
0 axy  ax2 

It therefore follows that an alternative method of presentation of a pure shear state of 

(8.37) 

N.B.: It can be shown that the condition for a state of stress to be one of pure shear is that 
the first stress invariant is zero. 

i.e. 1 ,  = a, +a,, +a,, = 0 (see 8.15) 

8.12. The stress equations of equilibrium 

( a )  In Cartesian components 

In all the previous work on complex stress systems it has been assumed that the stresses 
acting on the sides of any element are constant. In many cases, however, a general system 
of direct, shear and body forces, as encountered in practical engineering applications, will 
produce stresses of variable magnitude throughout a component. Despite this, however, 
the distribution of these stresses must always be such that overall equilibrium both of the 
component, and of any element of material within the component, is maintained, and it is 
a consideration of the conditions necessary to produce this equilibrium which produces the 
so-called stress equations of equilibrium. 

Consider, therefore, a body subjected to such a general system of forces resulting in 
the Cartesian stress components described in $8.2 together with the body-force stresses F, ,  
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Fy and F z .  The element shown in Fig. 8.16 then displays, for simplicity, only the stress 
components in the X direction together with the body-force stress components, It must be 
realised, however, that similar components act in the Y and 2 directions and these must be 
considered when deriving equations for equilibrium in these directions: they, of course, have 
no effect on equilibrium in the X direction. 

X J 
Fig. 8.16. Small element showing body force stresses and other stresses in the X direction only. 

It will be observed that on each pair of opposite faces the stress changes in magnitude in 
the following manner, 

e.g. stress on one face = a, 

stress on opposite face = a, + change in stress 

= a, + rate of change x distance between faces 

Now the rate of change of CT,, with x is given by ao,/ax, partial differentials being used 
since a, may well be a function of y and z as well as of x.  

Therefore 
aaxx 

ax 
stress on opposite face = a,, + -dx 

Multiplying by the area d y  dz of the face on which this stress acts produces the force in the 
X direction. 

Thus, for equilibrium of forces in the X direction, 

a 

1 a 
d x d y + F , d x d y d z = O  

(The body-force term being defined as a stress per unit volume is multiplied by the volume 
(dx  dy  d z )  to obtain the corresponding force.) 
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Dividing through by d x d y  dz and simplifying, 

I Similarly, for equilibrium in the Y direction, 

(8.38) 

I and in the Z direction, 

these equations being termed the general stress equations of equilibrium. 
Bearing in mind the comments of $8.2, the symbol t in the above equations may be 

replaced by o, the mixed suffix denoting the fact that it is a shear stress, and the above 
equations can be remembered quite easily using a similar procedure to that used in $8.2 
based on the suffices, i.e. first suffices and body-force terms are constant for each horizontal 
row and in the normal order x ,  y and z .  

The above equations have been derived by consideration of equilibrium of forces only, 
and this does not represent a complete check on the equilibrium of the system. This can 
only be achieved by an additional consideration of the moments of the forces which must 
also be in balance. 

Consider, therefore, the element shown in Fig. 8.17 which, again for simplicity, shows 
only the stresses which produce moments about the Y axis. For convenience the origin of 
the Cartesian coordinates has in this case been chosen to coincide with the centroid of the 
element. In this way the direct stress and body-force stress terms will be eliminated since 
the forces produced by these will have no moment about axes through the centroid. 

It has been assumed that shear stresses tx,,, tyz and txz act on the coordinate planes 
passing through G so that they will each increase and decrease on either side of these planes 
as described above. 

Thus, for equilibrium of moments about the Y axis, 

dx 
- r, + -(t,)- dydz- - tu - -(tu)- dy&- = 0 [ ax a " 1  2 dx 2 [ ax a " 1  2 2 

Dividing through by (dw dy dz) and simplifying, this reduces to 

txz = 
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Fig. 8.17. Element showing only stresses which contribute to a moment about the Y axis. 

Similarly, by consideration of the equilibrium of moments about the X and Z axes, 

tzr = ZYZ 

G y  = ryx 

Thus the shears and complementary shears on adjacent faces are equal as in the simple 
two-dimensional case. The nine Cartesian stress components thus reduce to sir independent 
values, 

1.e. 

(6) In cylindrical coordinates 

The equations of equilibrium derived above in Cartesian components are very useful for 
components and stress systems which can easily be referred to a set of three mutually perpen- 
dicular axes. There are many cases, however, e.g. those components with axial symmetry, 
where other coordinate axes prove far more convenient. One such set of axes is the cylindrical 
coordinate system with variables r ,  8 and z as shown in Fig. 8.18. 

Consider, therefore, the equilibrium in a radial direction of the element shown in 
Fig. 8.19(a). Again, for simplicity, only those stresses which produce force components in 
this direction are indicated. It must be observed, however, that in this case the terms will 
also produce components in the radial direction as shown by Fig. 8.19(b). The body-force 
stress components are denoted by F R ,  F Z  and F Q .  

Therefore, resolving forces radially, 

de  
2 

drdzsin - + F R  rdrdedz = 0 
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Fig. 8.1 8. Cylindrical coordinates. 

dtl [u, + $ a, dtl] sin - 
2 

2 2 

(b) 

Fig. 8.19. (a) Element showing stresses which contribute to equilibrium in the radial and circumferential 
directions. (b) Radial components of hoop stresses. 

dfi' d0 d0 
2 2 2  

With cos - 2 1 and sin - 2 -, this equation reduces to 

Similarly, in the fi' direction, the relevant equilibrium equation reduces to I 

and in the Z direction (Fig. 8.20) 

(8.39) 
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These are, then, the stress equations of equilibrium in cylindrical coordinates and in 
their most general form. Clearly these are difficult to memorise and, fortunately, very 
few problems arise in which the equations in this form are required. In many cases axial 
symmetry exists and circular sections remain concentric and circular throughout loading, i.e. 
a& = 0. 

Fig. 8.20. Element indicating additional stresses which contribute to equilibrium in the axial (z) direction 

Thus for axial symmetry the equations reduce to 

(8.40) 

Further simplification applies in cases where the coordinate axes can be selected to 
coincide with principal stress directions as in the case of thick cylinders subjected to 
uniform pressure or thermal gradients. In such cases there will be no shear, and in the 
absence of body forces the equations reduce to the relatively simple forms 

(8.41) 
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8.13. Principal stresses in a three-dimensional Cartesian stress system 

As an alternative to the graphical Mohr's circle procedures the principal stresses in three- 

The equations for the state of stress at a point derived in $8.3 may be combined to give 
dimensional complex stress systems can be determined analytically as follows. 

the equation 
3 2 

2 2 

an - (an + c y y  + e z z )  0: + ( ~ x r a y y  + c y y a z z  + a n ~ z ,  - T:~ - T $ ~  - T ~ )  a n  

(8.42) 

With a knowledge of the Cartesian stress components this cubic equation can be solved for 
a, to produce the three principal stress values required. A general procedure for the solution 
of cubic equations is given below. 

- (~.z\ .~yyazz - ant& - ayyr, - azzrXy + 2 r X y ~ y z ~ X z )  = 0 

8.13.1. Solution of cubic equations 

Consider the cubic equation 

+ ax2 + bx + = o 
Substituting, x = y - a / 3  

with p = b - a 2 / 3  

and 

we obtain the modified equation 

Substituting, 

ab 2a3 q = c - - + -  
3 27 

y3 + p y  + q = 0 

y = r z  
3 PZ 9 z + - + - = o  

r2 r3 
Now consider the standard trigonometric identity 

cos 38 = 4c0s3 8 - 3cosO 

Rearranging and substituting z = cos 8,  

3 32 1 
z - - - -cos38 = o  

4 4  
( 7 )  and ( I O )  are of similar form and will be identical provided that 

and 

Three values of 8 may be obtained to satisfy ( 1  2), 

i.e. 8,8 + 120" and 8 + 240" 
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Then, from (9), three corresponding values of z are obtained, namely 

ZI = case" 
z2 = cos(e + 1200) 

z3 =  COS(^ + 240”) 

(6) then yields appropriate values of y and hence the required values of x via (2). 

8.14. Stress invariants; Eigen values and Eigen vectors 

Consider the special case of the “stress at a point” tetrahedron Fig. 8.3 where plane ABC 
is a principal plane subjected to a principal stress a, and, by definition, zero shear stress. 
The normal stress is thus coincident with the resultant stress and both equal to a,. 

If the direction cosines of a, (and hence of the principal plane) are 1 ,, m,, n , then: 

P x n  = up . 1, 

Pun = U p  . mp 

Pzn = 0 p . n ~  

i.e. substituting in eqns. (8.13), (8.14) and (8.15) we have: 

or 

(8.43) 

0 = (uxx - up)Zp + uxy - mp + uxz - np 

0 = uyxZp + (ayy - up)mp + uyz - np 

0 = uwlp + uzy - mp + (uu - up)np 

Considering eqn. (8.43) as a set of three homogeneous linear equations in unknowns 
I , ,  m ,  and n, ,  the direction cosines of the principal plane, one possible solution, viz. 
1, = m, = n ,  = 0, can be dismissed since l 2  + m2 + n2 = 1 must always be maintained. 
The only other solution which gives real values for the direction cosines is that obtained by 
equating the determinant of the R.H.S. to zero: 

i.e. 
( O x z  - 0,) 4 r y  

Evaluating the determinant yields the so-called “characteristic equation” 

4 - (a;x + uyy + %)bzp + [ ( u x x u y y  + a y y u u  + u u u x x )  - (& + <z +&)lap 
- [%xayy% + 2 ~ x y ~ y z % r  - (uxx<z + u y y a ‘ ,  + u,<y)l = 0 (8.44) 

Thus, for any given set of Cartesian stress components in three dimensions a solution of 
this cubic equation is required before principal stress value can be determined; a graphical 
solution is not possible. 
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Eigen values 

The solutions for the principal stresses 01,  a 2  and 0 3  from the characteristic equation are 
known as the Eigen values whilst the associated direction cosines l,, m p  and n p  are termed 
the Eigen vectors. 

One procedure for solution of the cubic characteristic equation is given in $8.10. 

8.15. Stress invariants 

If, for the same applied stress system, the stress components had been given relative 
to some other set of Cartesian co-ordinates x’, y’ and z’, the above equation would still 
apply (with x’ replacing x ,  y’ replacing y and z’ replacing z )  and would still produce the 
same principal stress values. It follows, therefore, that whatever axis system is chosen the 
coefficients of the various terms of the characteristics equation must have the same values, 
i .e. they are “non-varying quantities” or “invariant”. 

The equation can thus be re-written in the form: 

dp - ZI< - z p p  - 13 = 0 (8.45) 

(8.46) 1 with 1 1  = a, + a y p  + a,, 
1 2  = (O;y + a;, + 0; ) - (a, . 0 y y  + a,, . a,, + 0, .a,) 

1 3  = a,, . or) . a,, + 2ax, . aytaVc - ana;, - 0,,a; - cTZc& 

the three quantities 1 1  , 1 2  and 1 3  being termed the stress invariants. 

components reduce to zero and the equations (8.46) reduce to: 
Zf the reference axes selected are the principal stress axes in the system then all shear 

(8.47) 

The first and second invariants are particularly important in development of the theory of 
plasticity since it is assumed that: 

(a) 11 has no influence on initial yielding 
(b) I2 = constant can be taken as an important criterion of yielding. 

For biaxial stress conditions, i.e. 0 3  = 0, the third stress invariant vanishes and the others 
reduce to 

(8.48) 

or, in the xy plane, from eqn. (8.46) 

(8.49) 
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Now from eqn. (13.1 I)? the principal stresses in a two-dimensional stress system are given by: 
1 

0 1 , 2  = ;(a= + a,,) f ;[(a= - a,,)2 + 40&]' 
1 

= ;(axx + a,,) f ;[(axx + a,,)2 - 4a,a,, - a 3 2  

which is the general solution of the following quadratic equation: 
2 CT; = ( 0 x 1  + a,,)a, + (a,a,, - ax,) = 0 

i.e. a ; -z la ,+z2=0 

The graphical solution of this equation is as follows (see Fig. 8.21): 

(8.50) 

Fig. 8.21. Graphical determination of principal stresses in a two-dimensional stress system from known stress 
invariant I values (solution for positive 12 value) 

On a horizontal (direct stress) axis mark off a length OA = i Z 1 .  

Draw semi-circle on OA as diameter. 
With centre 0 draw arc OB, radius a, to cut the semi-circle at B. 
With centre A and radius AB draw semi-circle to cut stress axis at a1 and 02 the required 
principal stress values. 

N.B. If 12 is negative (see §8.46), algebraically a > :Z1 and the line OB cannot cut the 
semi-circle on OA as diameter and no solution can be obtained. In this case an alternative 
construction is required - see Fig. 8.22. 

Fig. 8.22. As Fig. 8.21 but for negative 12 value 

(i) Again mark off length OA = ~ Z I .  
(ii) Erect perpendicular at 0 of length OC = a. 

t E.J. Heam, Mechanics of Materials I ,  Butterworth-Heinemann, 1977 
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(iii) With centre A and radius AC draw a circle to cut OA (produced as necessary) at a1 and 
a 2  the required principal stress values. 

Returning to a three-dimensional principal stress system a further interesting graphical 
relationship is obtained from the 3D Mohr circle construction - see Fig. 8.23.* 

Fig. 8.23. Stress invariants for a three-dimensional stress system in terms of tangents to the Mohr stress circles 
11 =U1 + U ~ + U ~ , ~ ~ = O B ~ $ - O B ~ + O B ~ . ~ ~ = O B I . O B ~ . O B ~ .  

The three stress invariants are given in Fig. 8.23 in terms of the tangents to the three 
circles from the origin 0 as: 

11 = 0 1  + a 2  + a 3  

1 2  = + a2a3  + a301 = OB; + OB; + OB: 

1 3  = 0 1 ~ 2 0 3  = OB1 x OB2 x OB3 

8.16. Reduced stresses 

An alternative form of the cubic characteristic equation is obtained if a “hydrostatic stress” 
of 11/3 is substracted from the original stress system to produce “reduced stresses” d = 
d - 1113. 

Thus, replacing ap by (a’ + 1113) in eqn. (8.45) we have: 

) = O  ar3 - ( T) 1: 4- 312 a! - ( 21: + 91112 4- 2713 
27 

or 

with 

(8.51) 

* M.G. Derrington and W. Johnson, The Defect of Mohr’s Circle for Three-Dimensional Stress Stares. 
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The terms J I  , J 2  and J 3  are termed the invariants ofreduced stress and, again, have special 
significance in the consideration of yielding of metals and associated plastic theory. 

It will be shown in 58.20 that the hydrostatic stress component does not affect the yield 
of metals and 

I hydrostatic stress = 7 (ai + a 2  + a3) = f I I 

It therefore follows that first stress invariant I1 also has no significance on yielding and 
since the principal stress system can be written, as above, in terms of reduced stresses 
a’ = (a - 1/3 I I )  it also follows that it must be the reduced stress components which 
influence yielding. 

(N.B .: “Reduced stresses” are synonymous with the deviatoric stresses introduced in 98.20.) 

(8.52) 

and (a, - ayy) + (ayy - + (a, - + 6 ( ~ : ~  + T ; ~  + T:) = 21: + 612 (8.53) 

The left-hand sides of both equations are thus, in themselves, invarimt and are useful in 
further considerations of strain energy, yielding and failure. 

Other useful relationships which can be derived from the above eqi ations are: 

(01 - a 2 )  2 + (02 - ~ 3 ) ~  + (a3  - 0 1 ) ~  = 652 
2 

For example, the shear strain energy theory of elastic failure uses tt e criterion: 
2 2 (a1 - ~ 2 ) ~  + (a2 - 0 3 )  + (a3 - aI 1 = 2 4  = const int 

which, from eqn. (8.52), can be simply re-written as 

J 2  = constant. 

N.B.: It should be remembered that eqns. (8.52) and 18.53) are merely different ways of 
presenting the same information since: 

6J2 = 21: + 612. 

8.17. Strain invariants 

It has been shown in 914.10f that the basic transformation equations for stress and strain 
have identical form provided that E is used in place of a and y/2 in place of 5.  The equations 
derived above €or the stress invariants will therefore apply equally for strain conditions 
provided that the same rules are followed. 

8.18. Alternative procedure €or determination of principal stresses (eigen vahes) 

An alternative solution to the characteristic cubic equation expressed in stress invariant 

Given the basic equation: 
format, viz. eqn. (8.45), is as foliows: 

(8.45)bis 2 ui - 110,  - 12a, - = o 
EJ. Heam, Mechanics OfMateriuls I ,  Butterworth-Heinemann, 1997. 
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the stress invariants may be calculated from: 

I1 = a,, +a,, + a:, 

and the required principal stresses obtained from*: 

ap, = 2s cos (u /3)  + z1/3 

up* = 2s COS [ ( U / 3 )  4- 120'1 + 11/3 

up3 = 2s COS [ (a /3  + 240'1 + 11/3 

(8.54) 

with 

and 

S = (R/3)'I2 and 01 = cos-'(-Q/2T) 

1 2 3  Q = -1112 - 1 3  - - I ,  
3 27 

After calculation of the three principal stress values, they can be placed in their normal 
conventional order of magnitude, viz. (TI, a 2  and 03. 

The procedure is, in effect, the same as that of $8.13 but carried out in terms of the stress 
invariants. 

8.18.1. Evaluation of direction cosines for principal stresses (eigen vectors) 

Having determined the three principal stress values for a given three-dimensional complex 
stress state using the procedures of 58.13.1 or $8.18, above, a complete solution of the 
problem generally requires a determination of the directions in which these stresses act-as 
given by their respective direction cosines or eigen vector values. 

The relationship between a particular principal stress a,, and the Cartesian stress compo- 
nents is given by eqn (8.43) 

i.e. (a, - a,)/ + rX, . m + txz . n = 0 

t X \  . l  + (a,y - a,)m + t yzn  = 0 

rXz . 1 + ryz m + (a,, - a,)n = 0 

If one of the known principal stress values, say G I ,  is substituted in the above equations 
together with the given Cartesian stress components, three equations result in the three 
unknown direction cosines for that principal stress i.e. 1 1 ,  ml and n I .  

However, only two of these are independent equations and the additional identity 1; + 
my + n: = 1 is required in order to evaluate 1 ~ m l  and n I .  

E.E. Messal, "Finding true maximum shear stress", Machine Design, Dec. 1978. 
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The procedure can then be repeated substituting the other principal stress values 02 and 
0 3 ,  in turn, to produce eigen vectors for these stresses but it is tedious and an alternative 
matrix approach is recommended as follows: 

Equation (8.43) above can be expressed in matrix form, thus: 

with the direction cosines or eigen vectors of the principal stresses given by: 

with 

l p = a k  m,=bk n p  = c k  

1 
d a 2  + b2 + c2 

k =  

thus satisfying the identity 1: + rnt + n t  = 1 .  
Substitution of any principal stress value, again say 0 1 ,  into the above equations together 

with the given Cartesian stress components allows solution of the determinants and yields 
values for a i ,  bl and C I  , hence kl and hence 11 , rnl and n 1 ,  the desired eigen vectors. The 
process can then be repeated for the other principal stress values 02 + 0 3 .  

8.19. Octahedral planes and stresses 

Any complex three-dimensional stress system produces three mutually perpendicular prin- 
cipal stresses (TI, 02, and 0 3 .  Associated with this stress state are so-called octahedrazplanes 
each of which cuts across the comers of a principal element such as that shown in Fig. 8.24 
to produce the octahedron (8-sided figure) shown in Fig. 8.25. The stresses acting on the 
octahedral planes have particular significance. 

The normal stresses acting on each of the octahedral planes are equal in value and tend 
to compress or enlarge the octahedron without distorting its shape. They are thus said to be 
hydrostatic stresses and have values given by 

(8 .55 )  1 
goct = +l + u2 + a31 = a 

Similarly, the shear stresses acting on each of the octahedral planes are also identical and 
tend to distort the octahedron without changing its volume. 
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Fig. 8.24. Cubical principal stress element ~howing one of the octahedral planes.

Fig. 8.25. Principal stress system showing the eight octahedral planes forming an octahedron.

t"12, t"23 1\nd t"13 being the maximum shear stresses in the 1-2, 2-3 and 1-3 planes respec-

tively.
Thus the general state of stress may be represented on octahedral planes as shown in

Fig. 8.26, the direction cosines of .tbe octahedral planes being given by

1 = m = n = %I/VI2 + 12 + 12 = %1/J3 (8.58)

The values of the octahedral shear and direct stresses may also be obtained by the graphical
construction of §8.9 since they are represented by a point in the shaded area of the three-
dimensional Mohr's circle -construction of Figs. 8.8 and 8.9.

t A.J. Durelli, E.A. Phillips and C.H. Tsao. Analysis of Stress and Strain, chap. 3. p. 26, McGraw-Hill, New

York. 1958.
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Octahedral p l a m  

25 1 

Octahedral normal Octahedral shear Principal stresses 
stresses stresses 

Fig. 8.26. Representation of a general state of stress on the octahedral planes. 

The octahedral shear stress has a particular significance in relation to the elastic failure 
of materials. Whilst its value is always smaller than the greatest numerical (principal) shear 
stress, it nevertheless has a value which is influenced by all three principal stress values 
and has been shown to be a reliable criterion for predicting yielding under complex loading 
conditions. 

The maximum octahedral shear stress theory of elastic failure thus assumes that yield 
or failure under complex stress conditions will occur when the octahedral shear stress has a 
value equal to that obtained in the simple tensile test at yield. 

Now for uniaxial tension, 0 2  = 03 = 0 and ~1 = cry and from eqn. (8.56) 

Jz 
tact = 30, 

Therefore the criterion of failure becomes 

- [(Ul - ad2 + (a2 - a3)2 + (63 - 01)211’2 39‘- 3 
i.e. (8.59) 

This is clearly the same criterion as that referred to earlier as the Maxwell/von Mises distor- 
tion or shear strain energy theory. 

2 4  = (a1 - ad2 + ( a 2  - ad2 + (63 - ad2 

820. Deviatoric stresses 

It is sometimes convenient to consider stresses with reference to some false zero, i.e. to 
measure their values above or below some selected datum stress value, and not their absolute 
values. This is particularly useful in advanced analysis using the theory of plasticity. 

or “false zero” is taken to be that stress which produces only 
a change in volume. This is the stress which acts equally in all directions and is referred to 
earlier (page 251) as the hydrostatic or dilatational stress. This is defined in terms of the 
principal stresses or the Cartesian stresses as follows: 

The selected datum stress 

i.e. 
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The principal stresses in any three-dimensional complex stress system may now be written 
in the form 

01 = mean stress + deviation from the mean 

= hydrostatic stress + deviatoric stress 

Thus the additional terms required to make up any stress value from the datum to the absolute 
value are termed the deviatoric stresses and written with a prime superscript, 

i.e. a1 = o + a’, etc. 

Cartesian stresses a,, a,, and a,, can now be referred to the new datum as follows: 

(8.61) I - 
.‘,=axx - u =  5 ( 2 u x x  - u y y  - %z) 

<y = uyy - u = 3 ( 2 u y y  - u x x  - uu) 
.’,=a, - u =  3 (2% - u x x  - u y y )  

- 

1 - 

All the above values then represent deviatoric stresses. 
It may be observed that the system used for representing stresses in terms of the datum 

stress and the deviation from the datum is, in effect, a consideration of the normal and shear 
stresses respectively, on the octahedral planes, since the octahedral and deviatoric planes are 
equally inclined to all three axes (I = m = n = f l / & )  and the selected datum stress 

1 - 
0 = ?(Dl + 0 2  + a3) 

is also the octahedral normal stress value. 

yield behaviour of materials. 

fundamental requirements of the theory should be understood. These are: 

As stated earlier when discussing octahedral stresses, this has a particular relevance to the 

Whilst any detailed study of the theory of plasticity is beyond the scope of this text, the 

(a) the volume of material remains constant under plastic deformation; 
(b) the hydrostatic stress component 
(c) the hydrostatic stress component 5 does not influence the point at which yielding occurs. 

From these points it is clear that it is therefore the deviatoric or octahedral shear stresses 
which must govern the yield behaviour of materials. This is supported by the accuracy of 
the octahedral shear stress (distortion energy) theory and, to a lesser extent, the maximum 
shear stress theory, in predicting the elastic failure of ductile materials. Both theories involve 
stress differences, i.e. shear stresses, and are therefore independent of the hydrostatic stress 
as indicated by (b) above. 

The representation of a principal stress system in terms of the octahedral and deviatoric 
stresses may thus be shown as in Fig. 8.27. 

It should now be clear that the terms hydrostatic, volumetric, mean, dilational and octa- 
hedral normal stresses all indicate the same quantity. 

The standard elastic stress-strain relationships of eqn. (8.7 1) 

does not cause yielding of the material; 

I 
E X X  = E [cGx - v o y y  - %Zl 

Eyy  = E b y y y  - v a n  - vazzl 

E,, = E[%,  - va, - v o y y l  

1 

I 
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t u  

Principal stresses Octahedral, mean, Ociahedrol shear of 
deviatoric Stresses 
[equate to+ uy 

dilatational or hydrostatic stresses 

for failure I 

Fig. 8.27. Representation of a principal stress system in terms of octahedral and deviatoric stresses. 

may be re-written in a form which distinguishes between those parts which contribute only 
to a change in volume and those producing a change of shape. 

Thus, for a hydrostatic or mean stress a, = (axx + uyy + a,,) and remembering the rela- 
tionship between the elastic constants E = 2G(1 + u j  

1 1 1 
E 2G 

E, = -(1 - 2u)a, + -(u, - a,) 

(8.62) 

1 1 
E 2G 

E,, = - (1 - 2u)a, + - (a,z - a, j 

with yxy = rxy/2G; yyz = ryz/2G; yu = t,/2G. 
The terms (axx - a,), (ayy - a,) and (az - a,) are the deviatoric components of stress. 

The volumetric strain E, associated with the hydrostatic or mean stress a, is then: 

urn 
K 

E, = - = E ,  + E y y  + E,, 

where K is the bulk modulus. 

8.21. Deviatoric strains 

As for the deviatoric stresses the deviatoric strains are also defined with reference to some 
selected “false zero” or datum value, 

(8.63) - 
E = $(E1 + E 2  + E 3 )  

= mean of the three principal strain values. 

Thus, referred to the new datum, the principal strain values become 

E; = & 1 - z = & 1 - ; ( & 1 + & 2 + & 3 )  
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8~ = ~(281 -82 -83}

Similarly, 82 = ~(282 -81 -83)

8; = ~(283 -81- 8V.

and these are the so-called deviatoric strains. It may now be observed that the following

relationship applies:

(8.64)

, , , Oel + e2 + e3 =

It can also be shown that the deviatoric strains are related to the principal strains as follows:

(8'1)2 + (8;)2 + (8;)2 = ~[(81 -82)2 + (82- 83)2 + (83- 81)1 (8.66)

8.22. Plane stress and plane strain

If a body consists of two parallel planes a constant thickness apart and bounded by any
closed surface as shown in Fig. 8.28, it is said to be a plane body. Associated with this type
of body there is a particular class of problems within the general theory of elasticity which
are termed plane elastic problems, and these allow a number of simplifying assumptions in
their treatment.

y

x

Fig. 8.28. A plane element.

In order to qualify for these simplifications, however, there are a number of restrictions
which must be placed on the applied load system:

(1) no loads may be applied to the top and bottom plane surfaces (in practice there is often
a uniform stress in the Z direction on the planes but this can always be reduced to zero
by superimposing a suitable stress au of opposite sign);

(2) the loads on the lateral boundaries (and the surface shears) must be in the plane of the
body and must be uniformly distributed across the thickness;

(3) similarly, body forces in the X and y directions directions must be uniform across the
thickness and the bodv force in the Z direction must be zero.
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There is no limitation on the thickness of the plane body and, indeed, the thickness serves as a 
means of classification within the general type of problem. Normally a plane stress approach 
is applied to members which are relatively thin in relation to their other dimensions, whereas 
plane strain methods are employed for relatively thick members. The terms plane stress and 
plane strain are defined in detail below. 

The plane elastic type of problem may thus be defined as one in which stresses and strains 
do not vary in the Z direction. Additionally, lines parallel to the Z axis remain straight and 
parallel to the axis throughout loading. 

i.e. 

(The problem of torsion provides an exception to this rule.) 

Yzr = Y z y  = 0 

8.22.1. Plane stress 

A plane stress problem is taken to be one in which a, is zero. As stated above, cases 
where a uniform stress is applied to the plane surfaces can easily be reduced to this condition 
by application of a suitable a,, stress of opposite sign. Shear components in the Z direction 
must also be zero. 

i.e. r, = Tv = 0 (8.67) 

Under these conditions the stress equations of equilibrium in Cartesian coordinates reduce to 

t (8.68) 

The following stress and strain relationships then apply: 

E 
txy = Gy,, = ~ 

2(1 + u) yxy 

Plane stress systems are often referred to as two-dimensional or bi-axial stress systems, a 
typical example of which is the case of thin plates loaded at their edges with forces applied 
in the plane of the plate. 

8.22.2. Plane strain 

Plane strain problems are normally defined as those in which the strains in the Z direction 
are zero. Again, problems with a uniform strain in the Z direction at all points on the plane 
surface can be reduced to the above case by the addition of a suitable uniform stress a,, the 
additional lateral strains and displacements so introduced being easily calculated. 
Thus 

E, = yyz = y a  = 0 (8.69) 
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Also, from the basic assumptions of plane elastic problems, 

t-. = r- = 0 
i) 

The equations of stress equilibrium in this case reduce to 

(8.70) 

The stress-strain relations are then as follows: 

E(l  - V) V 

(1 + v)(l - 2v) 
a x x  = 

E( l  - v) V 
ayy = (1 + u)(l - 2u) [.- + mb] 

Also r x y  = GYX, 

It should be noted that the plane strain equations can be derived simply from the plane 
stress equations by replacing 

A typical example of plane strain is the pressurisation of long cylinders where the above 
equations given accurate results, particularly in the middle portion of the cylinder, whether 
the end conditions are free, partially fixed or rigidly fixed. 

An example of the transfer of a plane stress to a corresponding plane strain solution is 
given when the relevant equations for the hoop and radial stresses present in rotating thick 
cylinders are readily obtained from those of rotating thin discs by use of the substitution 
v / ( l  - u )  in place of v (see $4.4). 

8.23. The stress-strain relations 

The following formulae form a useful summary of the relationships which exist between 
the stresses and strains in a general three-dimensional stress system. 

(a )  Strains in terms of stress 

(8.71) 
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E E \ 

[Ea, + V ( E , ,  + - E, , )  r,, = = Gy,, a, = 
(1  + v)( l  - 2u) 

(1 + u)(l - 2u)  

(1 + u)( l  - 2u) 

E E 
= [E, ,  + V ( E ,  + cZi - E , , )  r,: = ~ 2(1 + = Gy, 

E E 
a,, = [E,; + V(E,  + E , ,  - E Z i )  s, = ~ 2( + u )  Y?X = Gy, 

with E = 2G(1 + u )  and E = 3 K ( 1  - 2u) I 
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> (8.72) 

(b) Stresses in terms of strains 

hence 

(c )  For biaxial stress conditions: 

(a) Strains in terms of stresses 

U 
E,, = -- E [a,, + 4vvl 

(b) Stresses in terms of strains 

E E 
[E, + UE,,] and txy = ~ 0, = ~ 

2(1 + u )  yxy ~. (1 - u2) 

Equivalent expressions apply for polar coordinates with r ,  8 and z replacing x ,  y and z 
respectively. 

824. The strain-displacement relationships 

Consider the deformation of a cubic element of material as load is applied. Any comer of 
the element, e.g. P ,  will then move to some position P’, the movement having components 
u, u and w in the X ,  Y and 2 directions respectively as shown in Fig. 8.29. Other points in 
the cube will also be displaced but generally by different amounts. 

The movement in the X direction will be given by 

u = (g) 6x 
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'' Element under strain 
deforms and moves 

Unstrained element p to new position 

dy Q P' ! w' 
i w  I 

u' _ _ _ _ _ _ _  i-- _ _ _ _  J 
", d F 4  V' i 
&--.J. 3 

- Y  
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J 
X 

Fig. 8.29. Deformation of a cubical element under load. 

The strain in the X direction will then be 

i.e. 

Similarly, 

change in length 
original length 

€n = 

Exx = 

aw 
E,, = - 

Consider now Fig. 8.30 which shows the deformations in the XY plane enlarged. 

Y 

- X  

Fig. 8.30. Deformations under load in the XY plane. 

(8.73) 

Shear strains are defined as angles of deformation or changes in angles between two 
perpendicular segments. Thus yr,- is the change in angle between two perpendicular segments 
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in the XY plane as load is applied, 

i.e. 

. .  

Similarly, 

and 

yxy = - + - ax a y  
(8.74) 

Summary of the strain-displacement equations 

(a) In Cartesian coordinates with displacements u,  v and w along x ,  y and z respectively. 
au av au 

yxy = - + - ax ax ay  
av aw av 

Eyy  = - yy, = - + - aY a y  az 
aw au aw 

E, = - yLx=-+- az az ax 

E, = - 

(b) In polar coordinates with displacements u,, UQ and uz along r ,  6 and z respectively: these 
equations become: 

au, 
E ,  = - 

ar 
ur I aue 
r r a6 

auZ 
E, = - 

az 
I au, au8 u8 y& = - . - + - - - 
r M  ar r 
1 au, au8 ye 
r a6 az 

Em = - + - .  - 

z -  

with 

835. The strain equations of transformation 

Using the experimental or theoretical procedures described in earlier sections it is possible 
to derive the values of the direct and shear stresses acting at a point on a body. These are 
normally obtained with reference to some convenient set of X, Y coordinates which, for 
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example, may be parallel to the edges of the component considered. Sometimes, however, 
it may be more convenient to refer the values obtained to some other set of axes X’Y’ at an 
angle 8 to the original axes. 

In this case the two-dimensional versions of eqns. (8.73) and (8.74) apply equally well to 
the new axes (Fig. 8.31), 

P 

t 

P 

Fig. 8.31. Alternative coordinates to which strains may be referred. 

Now, using the partial differentiation chain rule, 

a 

ax 

= cXx cos2 8 + sin2 8 + yxy sin 8 cos 0 

Or, in terms of the double angle 20, 

= $ (exx + eyu) + f (sxx - eyy) cos 28 + $ yxy sin 28 (8.75) 

This is the same as eqn. (14.14) obtained in $14.107 for the normal strain on any plane in 
terms of the coordinate strains. Indeed, the above represents an alternative proof for what 
are really similar requirements. 

f E.J. Hearn, Mechanics of Marerials I ,  Butterworth-Heinemann, 1997 
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826. Compatibility 

Equations (8.73) and (8.74) relate the six components of strain (three direct and three 
shear) to the equivalent displacements under a three-dimensional stress system. If, however, 
the situation arises where the six strain components are known, as they could well be 
following some theoretical or experimental strain analysis, then the above equations represent 
three in excess of that required for solution of the three unknown displacements (three 
unknowns require only three equations for solution). Thus, unless the solution obtained from 
any three equations satisfies the other three equations, then the values cannot be accepted as 
a valid solution. Certain specific relations must therefore be satisfied before a valid solution 
is obtained and these are termed the compatibility relations. 

The problem can be considered physically as follows: consider a body divided into a 
large number of small cubic elements. When load is applied the elements deform and simple 
measurements of length and angle changes will yield the direct and shear strains in each 
element. These can be summated to produce the overall component strains if required. If, 
however, the deformed elements are separated and provided in their deformed shapes as a 
jigsaw puzzle, the puzzle can only be completed, i.e. the elements fully assembled without 
voids or discontinuities, if each element is correctly strained or deformed. The procedure 
used to check this condition then represents the compatibility equations. The compatibility 
relationships in terms of strain are derived as follows: 

But 
au av 

y x y  = - + - ay ax 

Therefore differentiating once with respect to x and once with respect to y, 

i.e. 

Similarly, 

and 

(8.76) 

These are three of the compatibility equations. 
It can also be shown7 that a further three compatibility relationships apply, namely 

t A.E.H. Love, Treatise on the Mathematical Theory of Elastirig, 4th edn., Dover Press, New York, 1944. 
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ay ax 

The compatibility equations can also be written in terms of stress as follows: 
Consider the first of the strain compatibility relationships given in eqn. (8.41). 

(8.77) 

i.e. 

For plane strain conditions (and a similar derivation shows that the equation derived is 
equally appropriate for plane stress) we have: 

and 

Substituting: 

( 1 )  _ _ _ _ _ _ _  +-----.--- - 

Now from the equilibrium equations assuming plane stress and zero body force stresses we 
have: 

1 a2a, azo,, 1 a2avy 2, a2axx 2(1 + W) a2txy 
E ay2 E ay2 E ax2 E ax2 E axay 

ar,, aa,, ---+-=o 
ax ay 

Differentiating (2) with respect to x and (3) with respect to y and adding we have: 

a2gu a2u,) a 2 t x ,  

ax2 ay2 axay 

1 a2nr, v a2a,, 1 a2a,, v a2a, (1 + V) azo, a2ayy 
+ - +- 

E ay2 E a y 2  E ax2 E ax2 E ax2 ay2 

-+- = -2- 

Eliminating t,, between eqns (4) and (1) we obtain: 

i.e. 

or 

(4) 

(8.78) 
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A similar development for cylindrical coordinates yields the stress equation of compability 

(8.79) 

which in the case of axial symmetry (where stresses are independent of e) reduces to: 

(8.80) 

8.27. The stress function concept 

From the earlier work of this chapter it should now be evident that in elastic stress analysis 
there are generally fifteen unknown quantities to be determined; six stresses, six strains and 
three displacements. These are functions of the independent variables x, y and z (in Cartesian 
coordinates) or r ,  0 and z (in cylindrical polar coordinates). A quick look at the governing 
equations presented earlier in the chapter will convince the reader that the equations are 
difficult to solve for these unknowns, except for a number of relatively simple problems. 

In order to extend the range of useful solutions several techniques are available. In the 
first instance one may make certain assumptions about the physical problem in an effort to 
simplify the equations. For example, are the loading and boundary conditions such that: 

(i) the plane stress assumption is adequate - as in a thin-walled pressure vessel? or, 
(ii) does plane strain exist - as in the case of a pressurised thick cylinder? 

If we can convince ourselves that these assumptions are valid we reduce the three-dimensional 
problem to the two-dimensional case. 

Having simplified the governing differential equations one must then devise techniques to 
solve, or further reduce, their complexity. One such concept was that proposed by Sir George 
B. Airy.?. His approach was to assume that the stresses in the two-dimensional problem a,, 
avy and rxxr could be described by a single function of x and y .  This function 4 is referred to 
as a “stressfunction” (later the “Airy stressfunction”) and it appears to be the first time that 
such a concept was used. Airy’s approach was later generalised for the three-dimensional 
case by Clerk Maxwell.$ 

Airy proposed that the stresses be derived from a particular function 4 such that: 

(8.81) 

G.B. Airy, Brit. Assoc. Advancement of Sci. Rep. 1862; Phil. Trans. Roy. Sur. 153 (1863), 49-80 * J.C. Maxwell Edinburgh Roy. SOC. Trans., 26 (1872), 1-40. 
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It should be noted that these equations satisfy the two-dimensional versions of equilibrium 
equations (8.38): 

i.e. 
(8.82) 

It is also necessary that the stress function 4 must not only satisfy the equilibrium conditions 
of the problem but must also satisfy the compatibility relationships, i.e. eqn. 8.76. For the 
two-dimensional case these reduce to: 

(8.76)bis. 

This equation can be written in terms of stress using the appropriate constitutive (stress-strain) 
relations. To illustrate the procedure the plane strain case will be considered. In this the 
relevant equations are: 

(8.83) 

By substituting these into 

zxy + v >  
YXY = - = E tx>. G 

the compatibility equation (8.76) the following is obtained: 

a2 a2 
-[(l - w)a, - v o y y ] +  -[(l - v)ayy - va,] 
a Y 2  ax2 

From the equilibrium eqn. (8.70) we get: 

Combining these equations to eliminate the shear stress txy , gives: 

1 ax ay 

A similar equation can be obtained for the plane stress case, namely: 

(8.84) 

(8.85) 

If the body forces X and Y have constant values the same equation holds for both plane stress 
and plane strain, namely: 

(8.86) 
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This equation is known as the “Laplace differential equation” or the “harmonic differential 
equation.” The function (a, + uYy) is referred to as a “harmonic” function. It is interesting 
to note that the Laplace equation, which of course incorporates all the previous equations, 
does not contain the elastic constants of the material. This is an important conclusion for 
the experimentalist since, providing there exists geometric similarity, material isotropy 
and linearity and similar applied loading of both model and prototype, then the stress 
distribution per unit load will be identical in each. The stress function, previously defined, 
must satisfy the ‘Laplace equation’ (8.86). Thus: 

($+$) ( $ + 7 $ ) 4 = 0  

or. (8.87) 

Alternatively, this can be re-written in the form 

or abbreviated to V4+0 (8.88) 

indicating that the stress function must be a biharmonic function. Equation (8.87) is often 
referred to as the “biharmonic equation” with 4 known as the “Airy stressfunction”. 

It is worth noting, at this point in the development, that the problem of plane strain, or 
plane stress, has been reduced to seeking a solution of the biharmonic equation (8.87) such 
that the stress components satisfy the boundary conditions of the problem. 

Thus, provided that a suitable polynomial expression in x and y (or r and 0) is used 
for the stress function 4 then both equilibrium and compatibility are automatically assured. 
Consideration of the boundary conditions associated with any particular stress system will 
then yield the appropriate coefficients of the various terms of the polynomial and a complete 
solution is obtained. 

8.27.1. Forms of Airy stress function in Cartesian coordinates 

The stress function concept was developed by Airy initially to investigate the bending 
theory of straight rectangular beams. It was thus natural that a rectangular Cartesian coordi- 
nate system be used. As an introduction to this topic, therefore, forms of stress function in 
Cartesian coordinates will be explored and applied to a number of fairly simple beam prob- 
lems. It is hoped that the reader will gain confidence in using the approach and be able to 
tackle a range of more interesting problems where cylindrical polars ( r ,  0) is an appropriate 
alternative coordinate system. 

(a) The eqns. (8.81) which define the stress function imply that the most simple function 
of 4 to produce a stress is 4 = Ax2, since the lower orders when differentiated twice give 
a zero result. Substituting this into eqns. (8.81) gives: 

a, = 0 ,  aYY = 2A and rxy = O  

Thus a stress function of the form 4 = Ax2 can be used to describe a condition of constant 
stress 2A in the y direction over the entire region of a component, e.g. uniform tension or 
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compression testing 

c $ = B y .  3 (b) 

For this stress function 

with ovv and tlr zero. 
Thus B ,  is a linear function of vertical dimension y, a situation typical of beam bending. 

(c) 4  AX^ + BXY + c y 2 .  

In this case 

a24 
a y  oyy = __ = 2C (a constant) 

a24 
. -  ax2 

(Try = ~ = 2A (a constant) 

= -B (a constant) tXF = - a24 
axay 

and the stress function is suitable for any uniform plane stress state. 

(4 
Then 

c$ = Ax3 + Bx’y + Cxy’ + Dy3. 

= 2Cx + 6Dy 
B.r.r = ay2 

and all stresses may be seen to vary linearly with x and y .  
For the particular case where A = B = C = 0 the situation resolves itself into that of 

case (b) i.e. suitable for pure bending. 
For many problems an extension of the above function to a comprehensive polynomial 

expression is found to be rather useful. An appropriate technique is to postulate a general 
form which will adequately represent the applied loading and boundary conditions. The form 
of this could be: 

4 = Ax’ + Bxy + C y 2  + D.w3 + Ex’y + Fxy2 + Cy3 

+ H x 4  + Jx’v  + K x 2 y 2  + Lxv3 + M y 4  + Nx’ + P x 4 y  

+ Qx3y2 + Rx2y3 + Sxy4 + Ty’ + . . . (8.89) 

Any term containing x or y up to the third power will automatically satisfy the biharmonic 
equation V4(q5) = 0. However, terms containing x4 or y4,  or higher powers, will appear in 
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the biharmonic equation. Relations of the associated coefficients can thereby be found which 
will satisfy ~ ~ ( 4 )  = 0. 

Although beyond the scope of the present text, it is worth noting that the polynomial 
approach has severe limitations when applied to cases with discontinuous loads on the 
boundary. For such cases, a stress function in the form of a trigonometric series - a Fourier 
series for example - should be used. 

8.27.2. Case I - Bending of a simply supported beam by a uniformly distributed loading 

An end-supported beam of length 2L, depth 2d and unit width is loaded with a uniformly 
distributed load w h i t  length as shown in Fig. 8.32. From the work of Chapter 47 the reader 
will be aware of the solution of this problem using the simple bending theory sometimes 
known as "engineers bending". Using this simple approach it is possible to obtain values for 
the longitudinal stress (T, and the shear stress rXV. However, the stress function provides the 
stress analyst with information about all the two-dimensional stresses and thereby the regions 
of applicability where the more straightforward methods can be used with confidence. 
The boundary conditions of this problem are: 

(i) at y = +d; 
(ii) at y = -d; 

(iii) at y = f d ;  

cry,, . .  = 0 
oYY = -w 
try = 0 

for all values of x, 
for all values of x, 
for all values of x. 

The overall equilibrium requirements are: - 

d 

d 
(iv) J-, a,y . d y  = w(L2 - x2)/2 for the equilibrium of moments at any position x, 

for the equilibrium of forces at any position x. (') J-d ( T X X d y  = 

The biharmonic equation: 

(vi) V4(4) = 0 must also be satisfied. 

To deal with these conditions it, is necessary to use the 5th-order polynomial as given in 
eqn. (8.89) containing eighteen coefficients A to T .  

t E.J. Heam, Mechanics of Materials I ,  Buttenvorth-Heinemann. 1997 
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a, = - = 2C + 2Fx + 6Gy + 2Kx2 + 6Lxy + 12My2 + 2Qx3 + 6Rx2y ' 
aY2 

a2#J 
ax2 

+ i2sxy2 + 2 0 ~ ~ ~  

aYY = - = 2.4 + 6Dx + 2Ey + 12Hx2 + 6Jxy + 2Ky2 + 20Nx3 + 12Px2y 

+ 6Qxy2 + 2Ry3 

$8.27 

> (8.90) 

txy = -- a2#J - - -[B + 2Ex + 2Fy + 3Jx2 + 4Kxy + 3Ly2 + 4Px3 + 6Qx2y 
axay 

J + 6Rxy2 + 4Sy31 

Using the conditions (i) to (vi) it is possible to set up a series of algebraic equations to 
determine the values of the eighteen coefficients A to T .  Since these conditions must be 
satisfied for all x values it is appropriate to equate the coefficients of the x terms, for 
example x3 ,  x2 ,  x and the constants, on both sides of the equations. In the case of the 
biharmonic equation, condition (vi), all x and y values must be satisfied. This procedure 
gives the following results: 

A =  - ~ / 4  G = (wL2/8d3)  - ~ / 2 0 d  N = 0 
B = O  H = O  P=O 
c=o J = O  Q = O  
D = O  K = O  R = -w/8d3 

F = O  M = O  T = w/40d3 
E = 3w/8d L=O s=o 

The stress function 4 can thus be written: 

(8.91) 3 w 2 3  5 # J = - - x 2 + - x y +  y --x y +-y5 
4 3w 8d (::: g d )  8d3 40d3 

The values for the stresses follow using eqn. (8.90) with I = 2d3/3 

a, = 
21 

wx 
txv = - - (d2 - y 2 )  

21 

(8.92a- c) 

J 
These stresses are plotted in Fig. 8.32. The longitudinal stress a, consists of two parts. 
The first term w(L2 - x2)y/2Z is that given by simple bending theory (an = M y / l ) .  The 
second term may be considered as a correction term which arises because of the effect of 
the avy compressive stress between the longitudinal fibres. The term is independent of x 
and therefore constant along the beam. It thus has a value on the ends of the beam given 
by x = & L .  The expression for a, in eqn. (8.92a) is, therefore, only an exact solution 
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if normal forces on the end exist and are distributed in such a manner as to produce the 
a, values given by eqn. (8.92a) at x = f L .  That is as shown by the correction term in 
Fig. 8.32. However, conditions (iv) and (v) have guaranteed that forces and moments are in 
equilibrium at the ends x = f L and thus, from Saint-Venant's principle, one could conclude 
that at distance larger than, say, the depth of the beam, the stress distribution given by 
eqn. (8.92a) is accurate even when the ends are free. Such correction stresses are, however, 
of small magnitude compared with the simple bending terms when the span of the beam is 
large in comparison with its depth. 

The equation for the shear stress (8.92~) predicts a parabolic distribution of txy on every 
section x .  This implies that at the ends x = f L  the beam must be supported in such a 
way that these shear stresses are developed. The values predicted by eqn. (8.92~) coincide 
with the simple solution. The ayy stress decreases from its maximum on the top surface to 
zero at the bottom edge. This again is of small magnitude compared to a, in a thin beam 
type component. However, these stresses can be of importance in a deep beam, or a slab 
arrangement. 

Derivation of the displacements in the beam 

From the strain displacement relations, the constitutive relations and the derived stresses 
it is possible to obtain the displacements in the beam. Although this approach is not really 
part of the stress function concept, it is included for interest at this point in the development. 
The procedure is as follows: 

1 au 1 
ax E 

EUr = - = -(ax, - vayy)  

I av 1 

aY 
E y y  = - = E("yy  - vo,) (8.93a-c) 

Substituting for a, and ayy from eqns (8.92a,b) and integrating (8.93a,b) the following is 
obtained: 

u = [ (Lzx  - ;) y + ( $ y 3  - - d 2 y )  2 x + vx (i . y3 - d 3 y  + - d 3 ) ]  2 + uO(y)  2EI 5 3 
(8.94) 

where uo(y) is a function of y ,  

6 5  " I  W d2y2  2d3y u U + - + 2(L2 - x2)y2  + -y4 - -d2y  + U O ( X )  (8.95) 
3 

where vo(x) is a function 
From eqns (8.92~) and 

of x. 
(8.93~) 

w ( l  +v) 
E l  

(d2  - y2)x Y x y  = - (8.96) 
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Differentiating u with respect to y and v with respect to x and adding as in eqn. (8.93~) one 
can equate the result to the right hand side of eqn. 8.96. After simplifying: 

In eqn. (8.97) some terms are functions of x alone and some are functions of y alone. There 
is no constant term. Denoting the functions of x and y by F ( x )  and G ( y )  respectively, we 
have: 

x3 2 2 +- 
2EI E l  

Equation (8.97) is thus written 
F ( x )  + G ( y )  = 0 

If such an equation is to apply for all values of x and y then the functions F ( x )  and G ( y )  
must themselves be constants and they must be equal in value but opposite in sign. That is 
in this case, F ( x )  = A1 and G(y) = - A I .  

1 x3 2 - a v O ( X >  - - -- k 2 x  - - ?xd2 - uxd2 + 2(1 + u)d2x + A I  
ax 2EI 

1 . .  + ( 1  + v)d2X2 + A ~ x  + C1 (8.99) 
2EI 

Using the boundary conditions of the problem: 
at x = 0, y = 0, u = 0: substituting eqn. (8.98) into (8.94) gives B I  = 0, 
at x = 0, y = 0 ,  v = 6: substituting eqn. (8.99) into (8.95) gives CI  = 6, 

at x = 0, y = 0, - = 0 thus A I  = 0. 
ax 

av 

Thus: 

(8.100) 

u = ~  [ ( L 2 x - : ) y + x ( ; y 2 - - d 2 y )  2 + v x ( $ - d 2 . y + - d 3 ) ]  2 
2EI 5 3 

W d 2 y 2  2 2 Y 2  v v + v(L2 - x )- + - y 4  - - d 2 y  
2 6  5 

x 2  x4 d 2 x 2  
2 12 5 +L2- - - - __ + ( 1  + i) d 2 x 2 ]  + 6 

To determine the vertical deflection of the central axis we put y = 0 in the above equation, 
that is: 

v , = o = 6 - -  2Et W [ 2;2 ;; d y 2  + (1 + i) d 2 x 2 ]  
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Using the fact that u = 0 at x = f L we find that the central deflection 6 is given by: 

5 wL4 
(8.101) 

The first term is the central deflection pizdicted by the simple bending theory. The second 
term is the correction to include deflection due to shear. As indicated by the form of 
eqn. (8.101) the latter is small when the spaddepth ratio is large, but is more significant for 
deep beams. By combining equations (8.100) and (8.101) the displacements u and u can be 
obtained at any point (x ,  y )  in the beam. 

8.2 7.3. The use of polar. coordinates in t"o dimensions 

Many engineering components have a degree of axial symmetry, that is they are either 
rotationally symmetric about a central axis, as in a circular ring, disc and thick cylinder, or 
contain circular holes which dominate the stress field, or yet again are made up from parts 
of hollow discs, like a curved bar. In such cases it is advantageous to use cylindrical polar 
coordinates ( r ,  8, z), where r and 8 are measured from a fixed origin and axis, respectively 
and z is in the axial direction. The equilibrium equations for this case are given in eqns. (8.40) 
and (8.41). 

restricted to the simple 
rotationally symmetric cases dealt with in earlier chapters. In fact the great value of the 
stress function concept is that complex loading patterns can be adequately represented by 
the use of either cos n8 and/or sin ne, where n is the harmonic order. 

A two-dimensional stress field (arr, am, r H )  is again used for these cases. That is 
plane stress or plane strain is assumed to provide an adequate approximation of the three- 
dimensional problem. The next step is to transform the biharmonic eqn. (8.87) to the relevant 
polar form, namely: 

The form of applied loading for these components need not 

(8.102) 

The stresses arr, om and r,+ are related to the stress function 
and avv. . .  The resulting values are: 

in a similar manner to a, 

1 
(8.103) 

The derivation of these from the corresponding Cartesian coordinate values is a worthwhile 
exercise for a winter evening. 
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8.27.4. Forms of stress function in polar coordinates 

In cylindrical polars the stress function is, in general, of the form: 

= f (r)cosnO or 4 = f ( r )s inne (8.104) 

where f (r) is a function of r alone and n is an integer. 

expression used for the Cartesian coordinates, by considering the following three cases: 

(a) The axi-symmetric case when n = 0 (independent of e), 4 = f (I). Here the biharmonic 

In exploring the form of 4 in polars one can avoid the somewhat tedious polynomial 

eqn. (8.102) reduces to: 
2 ($+;;) 4 = 0  

and the stresses in eqn. (8.103) to: 

-c# = 0 d24 , a&?=- a,, = -- 
r d r  dr2 ' 
1 d4 

Equation (8.105) has a general solution: 

q5 = Ar2 In r + Br2 + C l n r  + D 
(b) The asymmetric case n = 1 

4 = f l(r)sinO or 4 = f l(r)cosO. 

Equation (8.102) has the solution for 

f l(r) = Air3 +Bl / r  + Clr  + D l r l n r  

i.e. 

(c) The asymmetric cases n 3 2. 

4 = (Alr3 + Bl/r + Clr  +Dlrlnr)sinO (or cos@ 

(8.105) 

(8.106) 

(8.107) 

(8.108) 

4 = f,(r)sinnO or 4 = fn(r)cosnO 

fn ( r )  = A,r" + B,r-" + Cnrflf2 + D,,r-n+2 (8.109) 

i.e. 4 = (A,r" + B,r-" + C,rn+2 + D,r-n+2)sinnt9 (orcosne) 

Other useful solutions are 4 = C r  sin6 or 4 = CrcosO (8.110) 

In the above A ,  B, C and D are constants of integration which enable formulation of the 
various problems. 

As in the case of the Cartesian coordinate system these stress functions must satisfy the 
compatibility relation embodied in the biharmonic equation (8.102). Although the reader is 
assured that they are satisfactory functions, checking them is always a beneficial exercise. 

In those cases when it is not possible to adequately represent the form of the applied 
loading by a single term, say cos28, then a Fourier series representation using eqn. (8.109) 
can be used. Details of this are given by Timoshenko and G0odier.t 

t S.  Timoshenko and J.N. Goodier, Theory ofElasricify, McGraw-Hill, 1951. 
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In the presentation that follows examples of these cases are given. It will be appreciated 
that the scope of these are by no means exhaustive but a number of worthwhile solutions are 
given to problems that would otherwise be intractable. Only the stress values are presented 
for these cases, although the derivation of the displacements is a natural extension. 

8.27.5. Case 2 - Axi-symmetric case: solid shaji and thick cylinder radially loaded with 
uniform pressure 

This obvious case will be briefly discussed since the Lam6 equations which govern this 

Substituting eqn. (8.107) into the stress equations (8.106) results in 
problem are so well known and do provide a familiar starting point. 

= A(l + 21nr) + 2B + C/r2 

am = A(3 + 2 In r) + 2B - C/r2 

Td = 0 J 
(8.111) 

When a solid shaft is loaded on the external surface, the constants A and C must vanish to 
avoid the singularity condition at r = 0. Hence arr = am = 2B. That is uniform tension, or 
compression over the cross section. 

In the case of the thick cylinder, three constants, A, B, and C have to be determined. The 
constant A is found by examining the form of the tangential displacement w in the cylinder. 
The expression for this turns out to be a multi-valued expression in 8, thus predicting a 
different displacement every time 8 is increased to 8 + 2rr. That is every time we scan one 
complete revolution and arrive at the same point again we get a different value for v. To 
avoid this difficulty we put A = 0. Equations (8.1 11) are thus identical in form to the Lam6 
eqns. (10.3 and 10.4).? The two unknown constants are determined from the applied load 
conditions at the surface. 

8.27.6. Case 3 - The pure bending of a rectangular section curved beam 

Consider a circular arc curved beam of narrow rectangular cross-section and unit width, 
bent in the plane of curvature by end couples M (Fig. 8.33). The beam has a constant cross- 
section and the bending moment is constant along the beam. In view of this one would 
expect that the stress distribution will be the same on each radial cross-section, that is, it 
will be independent of 8. The axi-symmetric form of @, as given in eqn. (8.107), can thus 
be used:- 

i.e. @ = Ar2 ln r  + Br2 + C l n r  + D 

The corresponding stress values are those of eqns (8.1 11) 

a,, =A(1 +21nr )+2B+C/ r2  

am = A(3 + 2 In r) + 2B - C/r2 

rd = 0 

t E.J. H e m ,  Mechanics of Muteriols I ,  Butterworth-Heinemann, 1997. 
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Fig. 8.33. Pure bending of a curved beam 

The boundary conditions for the curved beam case are: 

(i) a,, = 0 at r = a and r = b (a and b are the inside and outside radii, respectively); 
(ii) s, a@ = 0, for the equilibrium of forces, over any cross-section; 

(iii) s, ow r d r  = -M, for the equilibrium of moments, over any cross-section; 
(iv) rd = 0, at the boundary r = a and r = 6. 

b 

b 

Using these conditions the constants A,  B and C can be determined. The final stress 
equations are as follows: 

r 1 r 
a,, = - - - a2 In - - b2 In - 

U 

r 
a2b2 b r 

Q a 
In - - a2 In - - b2 In 

(8.112) 

rfi = 0 J 

where Q = 4a2b2 In - - (b2 - a2)* 

The distributions of these stresses are shown on Fig. 8.33. Of particular note is the 
nonlinear distribution of the am stress. This predicts a higher inner fibre stress than the 
simple bending (a = M y / [ )  theory. 

( :)2 

8.27.7. C a u  4 .  Asymmetric case n = 1. Shear loading of a circular arc cantilever beam 

To illustrate this form of stress function the curved beam is again selected; however, in 
this case the loading is a shear loading as shown in Fig. 8.34. 

As previously the beam is of narrow rectangular cross-section and unit width. Under 
the shear loading P the bending moment at any cross-section is proportional to sin8 and, 
therefore it is reasonable to assume that the circumferential stress would also be associated 
with sin8. This points to the case n = 1 and a stress function given in eqn. (8.108). 

i .e. $ =  ( A ~ r ~ + B ~ / r + C ~ r + D ~ r I n r ) s i n B  (8. I 13) 

Using eqns. (8.103) the three stresses can be written 
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arr = - P ( r +  - sine ' 
S r r 

a@ = - ( i . - r i - -  a2b2 a' + b')  

r* = -- r+-------- 

S r 

P ( a::' a' + b 2 )  COS e S r I 
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- !'EloS+ici+y' opprooch 

Simple bending 

Qee 

For 
8 . L  

2 

Fig. 8.34. Shear loading of a curved cantilever. 

a,, = (2Alr - 2Bl /r3  + Dl/r)sinO 

am = ( 6 A 1 r + 2 B 1 / r ~ + D l / r ) s i n Q  

rrc, = - (2Alr  - 2Bl /r3  +D~/r )cosO 

(8.1 14) 

The boundary conditions are: 

(i) a,, = rd = 0 ,  for r = a and r = 6. 
(ii) sob rd d r  = P ,  for equilibrium of vertical forces at 8 = 0. 

(8.115) 

where s = a2 - b2 + (a2 + 6') In b/a. 
It is noted from these equations that at the load point 6 = 0, 

or, = am = 0 

rd=--(r+T------- P a2b2 a2 + b 2 ) }  
S r r 

(8.1 16) 
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As in the previous cases the load P must be applied to the cantilever according to 
eqn. (8.1 16) - see Fig. 8.34. 

n 
2 S r 

P ( a::2 a2 + b 2 )  1 r + - - ___ At the fixed end, 8 = -; a,, = - 

a2b2 a2 + b2 
r 

(8.117) 

Td = 0 

The distributions of these stresses are shown in Fig. 8.34. They are similar to that for the pure 
moment application. The simple bending (a = M y / Z )  result is also shown. As in the previous 
case it is noted that the simple approach underestimates the stresses on the inner fibre. 

8.27.8. Case 5-The asymmetric cases n 3 2-stress concentration at a circular hole in a 
tension field 

The example chosen to illustrate this category concerns the derivation of the stress concen- 
tration due to the presence of a circular hole in a tension field. A large number of stress 
concentrations arise because of geometric discontinuities-such as holes, notches, fillets, etc., 
and the derivation of the peak stress values, in these cases, is clearly of importance to the 
stress analyst and the designer. 

The distribution of stress round a small circular hole in a flat plate of unit thickness subject 
to a uniform tension a,, in the x direction was first obtained by Prof. G. Kirsch in 1898.t 
The width of the plate is considered large compared with the diameter of the hole as shown 
in Fig. 8.35. Using the Saint-Venant'sf principle the small central hole will not affect the 

Fig. 8.35. 

l o  

I 
I 
\ 
\ I 

/ 
/ 

- .. 
\ / 
\ / 

'\ 
\ 

Elements in a stress field some distance from a circular hole. 

G. Kirsch Verein Deutsher Ingenieure (V.D.I.) Zeifschrif, 42 (1898), 797-807. 
B.  de Saint-Venant, Mem. Acud. Sr.  Savants E'frungers, 14 (1855). 233-250. 
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stress distribution at distances which are large compared with the diameter of the hole-say 
the width of the plate. Thus on a circle of large radius R the stress in the x direction, on 
8 = 0 will be a,. Beyond the circle one can expect that the stresses are effectively the same 
as in the plate without the hole. 

Thus at an angle 8, equilibrium of the element ABC, at radius r = R, will give 

a,.,.AC = a,BCcos8, and since, cos8 = BC/AC 

o r ,  = O , C O S ~ ~ ,  

*, 
2 

TH. AC = -o,BC sin 8 

or o r ,  1 - (1  f c 0 ~ 2 8 ) .  

Similarly, 
ffn 

2 
:. ~d = -crxx cos 8 sin 8 = - - sin 28. 

Note the sign of ~d indicates a direction opposite to that shown on Fig. 8.35. 
Kirsch noted that the total stress distribution at r = R can be considered in two parts: 

(a) a constant radial stress an/2 
(b) a condition varying with 28, that is; or, = - cos 26, T~ = - - sin 28. ff, ff, 

2 2 

The final result is obtained by combining the distributions from (a) and (b). Part (a) ,  shown 
in Fig. 8.36, can be treated using the Lam6 equations; The boundary conditions are: 

at r = a  or, = 0 

Using these in the Lam6 equation, a,, = A + B / r 2  

gives, A = ! ? ( L )  and B=-%(-.) R2a2 
2 R2 - a2 2 R2 - a z  

Fig. 8.36. A circular plate loaded at the periphery with a uniform tension. 
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a, a= 2 When R >> a these can be modified to A = - and B = --a 
2 2 

(8.1 18) 1 a,, = a- ( 1  - $) 
am = a- ( 1  + ;) 

Thus 2 

2 
rd = 0 

Part (b), shown in Fig 8.37 is a new case with normal stresses varying with cos 28 and shear 
stresses with sin 28. 

Fig. 8.37. A circular plate loaded at the periphery with a radial stress = 2 cos20 (shown above) and a shear 

stress = - - sin 28. 
2 

0, 

2 

This fits into the category of n = 2 with a stress function eqn. (8.109); 

i.e. 

Using eqns. (8.103) the stresses can be written: 

4 = (A2r2 + Bz/ r2  + C2r4 + D2)cos 28 (8.119) 

(8.120) 1 a,, = -(2A2 + 6B2/r4 + 4D2/r2)  cos 28 

OM = (2A2 + 6B2/r4 + 12C2r2)cos28 

rd = (2A2 - 6B2/r4 + 6C2r2 - 2D2/r2) sin 28 

The four constants are found such that a,, and r,+ satisfy the boundary conditions: 

at r = a, 

at r = R -+ co, 

a,, = rd = 0 
am 0, 

2 2 
or, = - cos28, rd = -- sin28 

From these, 

A2 = -a,/4,  B2 = --a,a4/4 

C2 = 0,  0 2  = axxa2/2 
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Thus: 
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am = -0- 2 (1 + Z) cos26 

279 

(8.121) 

a, 
2 

T,+ = --( 1 + 2a2/r2 - 3a4/r4) sin26 

The sum of the stresses given by eqns. (8.120) and (8.121) is that proposed by Kirsch. At 
the edge of the hole a,, and T,+ should be zero and this can be verified by substituting r = a 
into these equations. 

The distribution of am round the hole, i.e. r = a ,  is obtained by combining eqns. (8.120) 
and (8.121): 

i.e. am = a,(i - 2cOsm) (8.122) 

and is shown on Fig. 8.38(a). 

When 6 = 0; am = -axx and when 6 = -; am = 30,. 

The stress concentration factor (S.C.F) defined as Peak stresslAverage stress, gives an 
S.C.F. = 3 for this case. 

?r 

2 

The distribution across the plate from point A 

a m = -  a,, ( 2 + - + -  ;; 3;4) 
2 

(8.123) 

This is shown in Fig. 8.38(b), which indicates the rapid way in which am approaches a, 
as r increases. Although the solution is based on the fact that R >> a ,  it can be shown that 
even when R = 4a, that is the width of the plate is four times the diameter of the hole, the 
error in the S.C.F. is less than 6%. 

Using the stress distribution derived for this case it is possible, using superposition, to 
obtain S.C.F. values for a range of other stress fields where the circular hole is present, see 
problem No. 8.52 for solution at the end of this chapter. 

A similar, though more complicated, analysis can be carried out for an elliptical hole of 
major diameter 2a across the plate and minor diameter 26 in the stress direction. In this 
case the S.C.F. = 1 + 2a/b (see also 98.3). Note that for the circular hole a = 6 ,  and the 
S.C.F. = 3, as above. 

8.27.9. Other useful solutions of the hiharmonic equation 

(a) Concentrated line load across a plate 

The way in which an elastic medium responds to a concentrated line of force is the 
final illustrative example to be presented in this section. In practice it is neither possible to 
apply a genuine line load nor possible for the plate to sustain a load without local plastic 
deformation. However, despite these local perturbations in the immediate region of the load, 
the rest of the plate behaves in an elastic manner which can be adequately represented by 
the governing equations obtained earlier. It is thus possible to use the techniques developed 
above to analyse the concentrated load problem. 
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c 

I 

W t- 

Fig. 8.38. (a) Distribution of circumferential stress am round the hole in a tension field; (b) distribution of 
circumferential stress C T ~  across the plate. 

I P  

t v  

Fig. 8.39. Concentrated load on a semi-infinite plate. 

Consider a force P per unit width of the plate applied as a line load normal to the 
surface - see Fig. 8.39. The plate will be considered as equivalent to a semi-infinite solid, 
that is, one that extends to infinity in the x and y directions below the horizon, 8 = &:; The 
plate is assumed to be of unit width. It is convenient to use cylindrical polars again for this 
problem. 



$8.27 Introduction to Advanced Elasticity Theory 28 1 

Using Boussinesq's solutions? for a semi-infinite body, Alfred-Aim6 Flamant obtained (in 
1892)zthe stress distribution for the present case. He showed that on any semi-circumference 
round the load point the stress is entirely radial, that is: a@ = t,s = 0 and a,, will be 
a principal stress. He used a stress function of the type given in eqn. (8.110), namely: 
C$ = C r  8 sin 0 which predicts stresses: 

Applying overall equilibrium to this case it is noted that the resultant vertical force over any 
semi-circle, of radius r ,  must equal the applied force P :  

Pr6  . 
Thus C$ = -- sm8 

n 

and 

This can be transformed into x and y coordinates: 

I a, = arr sin2 0 
txy = Drr sinecoso J 
avy = a,, cos2 e 

(8.124) 

t (8.125) 

See also $8.3.3 for further transformation of these equations. 

line load as shown in Figs. 8.40(a) and (b). 
This type of solution can be extended to consider the wedge problem, again subject to a 

Fig. 8.40. Forces on a wedge. 

t J .  Boussinesq, Applicarion de potentiels a l'e'tude de l'equilihre! Pans, 1885; also Cornptes Rendus Acad Sci., 
114 (1892). 1510-1516. 

Flamant AA Compres Rendus Acud. Sci.. 114 (1892). 1465-1468. 
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(b) The wedge subject to an axial load - Figure 8.40(a) 

For this case, 

Thus, 

P = - L(arr. rd6)cos6 

P =  -[a2C.cos26d6 

P = -C(2a + sin 2a) 
2P cos 6 

r(2a + sin 2a) 
a,, = - 

(c) The wedge subject to a normal end load - Figure 8.40(a) 

Here, 

Thus, 

P = - C  (a, . rd$)cos$ 

%+a 
p = -  2C.  cos26d6 

P = -C(2a - 2 sin 2a). 
2p cos 6 

arr = - 
r(2a - sin 2a) 

(8.126) 

(8.127) 

From a combination of these cases any inclination of the load can easily be handled. 

(d) Uniformly distributed normal load on part of the surface - Fig. 8.41 

The result for a,, obtained in eqn. (8.1 24) can be used to examine the case of a uniformly 
distributed normal load q per unit length over part of a surface-say 8 = 5.  It is required 
to find the values of the normal and shear stresses (on, ayv, rxxv) at the point A situated as 
indicated in Fig. 8.41. In this case the load is divided into a series of discrete lengths 6x 
over which the load is 6P, that is 6P = qSx. To make use of eqn. (8.124) we must transform 
this into polars ( r ,  6). That is 

dx = rd6/cos6. Thus, d P  = q .  rde/cosO (8.128) 

q/unit length 
/ 

Fig. 8.41. A distributed force on a semi-infinite plate. 
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Then from eqn. (8.124) 
L 

darr = --dPcosO 
nr 

2 2q Substituting eqn. (8.128): 

Making use of eqns. (8.125): 

d o  rr - - -- . q . rde = --de 

do,, = -- 2q cos2 @dB 

nr n 

n . .  

2q dux, = -- sin2 8 dB 
n 

dt,, = -3 sinecose 

The total stress values at the point A due to all the discrete loads over 61 to 02 can then be 
written. 

n 

(8.129) 

Closure 

The stress function concept described above was developed over 100 years ago. Despite 
this, however, the ideas contained are still of relevance today in providing a series of classical 
solutions to otherwise intractable problems, particularly in the study of plates and shells. 

Examples 

Example 8.1 

coordinates are: 
At a point in a material subjected to a three-dimensional stress system the Cartesian stress 

a, = 100 MN/m2 

a,, = 40 MN/m2 

a,, = 80 MN/m2 

ayz = -30 MN/m2 

Determine the normal, shear and resultant stresses on a plane whose normal makes angles 
of 52" with the X axis and 68" with the Y axis. 

Solution 

a, = 150 MN/m2 

a, = 50 MN/m2 

The direction cosines for the plane are as follows: 

1 = ~ 0 ~ 5 2 "  = 0.6157 

m = cos68" = 0.3746 
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and, since 1’ + m2 + n’ = 1, 

n 2  = 1 - (0.6157’ + 0.37462) 

= 1 - (0.3791 + 0.1403) = 0.481 

. .  n = 0.6935 

Now from eqns. (8.13-15) the components of the resultant stress on the plane in the X,Y 
and Z directions are given by 

pxn = a,E + axrm + axzn 

pyn  = ayym + a,l + ayzn 

Pzn = azzn + 4 + az,m 

pxn = (100 x 0.6157) + (40 x 0.3746) + (50 x 0.6935) = 11 1.2 MN/m2 

pyn  = (80 x 0.3746) + (40 x 0.6157) + (-30 x 0.6935) = 33.8 MN/m2 

pzn = (150 x 0.6935) + (50 x 0.6157) + (-30 x 0.3746) = 123.6 MN/m2 

Therefore from eqn. (8.4) the resultant stress p n  is given by 
112 

pn = [p:, + p;, + p:,] 

= 169.7 MN/mZ 

= [111.22 +33.g2 + 123.62]1’2 

The normal stress a, is given by eqn. (8.5), 

a n  = pxnl+ pynm + pznn 
= (111.2 x 0.6157) + (33.8 x 0.3746) + (123.6 x 0.6935) 

= 166.8 MN/m2 

and the shear stress t, is found from eqn. (8.6), 

t, = J(p’ ,  - a:) = (28798 - 27830)’12 

= 31 MN/m2 

Example 8.2 

system can be reduced to the form 
Show how the equation of equilibrium in the radial direction of a cylindrical coordinate 

ao;, ( o r ,  - a m )  -+  = o  
r 

Hence show that for such a cylinder of internal radius Ro, external radius R and wall 

ar 
for use in applications involving long cylinders of thin uniform wall thickness. 

thickness T (Fig. 8.42) the radial stress a,, at any thickness t is given by 

RO ( T - t )  a,, = - p - -  
T (Ro + f> 

where p is the internal pressure, the external pressure being zero. 
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Fig. 8.42. 

For thin-walled cylinders the circumferential stress am can be assumed to be independent 

What will be the equivalent expression for the circumferential stress? 
of radius. 

Solution 
The relevant equation of equilibrium is 

aa, 1 aa,g aa, ( a r r  - gee) -+ --+-+ + F , = O  ar r M az r 

Now for long cylinders plane strain conditions may be assumed, 

- = o  a% i.e. 
82 

By symmetry, the stress conditions are independent of 8, 

- = o  an, 
a0 

F ,  = O  

. .  

and, in the absence of body forces, 

Thus the equilibrium equation reduces to 

h r r  + (0, - %9) = O  - 
ar r 

Since a@ is independent of r this equation can be conveniently rearranged as follows: 

a,, + r- = am 
ar 

Integrating, 
ra,, = amr +- C 

Now at r = R, a,, = 0 

:. substituting in ( l ) ,  

. .  
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Also at r = Ro, orr = - p ,  

. .  -Rap =Roam + C 

= - ( R  - RO)UM 

Ro P 
( R  - RO) 

. .  am = 

Substituting in ( l ) ,  

ra,., = crmr - Ram = - (R  - r)am 

Example 8.3 

50 MN/m2 and - 120 MN/m2. Determine (a) analytically and (b) graphically: 

(i) the limiting value of the maximum shear stress; 
(ii) the values of the octahedral normal and shear stresses. 

A three-dimensional complex stress system has principal stress values of 280 MN/m2, 

Solution (a) :  Analytical 

(i) The limiting value of the maximum shear stress is the greatest value obtained in any 
plane of the three-dimensional system. In terms of the principal stresses this is given by 

I 
rmax = 3 (01 - 0 3 )  

= ;[280 - (-120) = 200 MN/m2 

(ii) The octahedral normal stress is given by 
1 

aoct = 3 + 0 2  + 0 3 1  

= f [280 + 50 + (-120)] = 70 MN/m2 

(iii) The octahedral shear stress is 

1 roct = 5 [(a1 - ad2 + ( 0 2  - 03)2  + ( 0 3  - a1 )'I 1'2 

1 /2 = 4 [(280 - 50)2 + (50 + 120)2 + (-120 - 280)2] 
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= 

= 163.9 MN/m2 

[52900 + 28900 + 160000]''2 

Solution (6): Graphical 

(i) The graphical solution is obtained by constructing the three-dimensional Mohr's repre- 
sentation of Fig. 8.43. The limiting value of the maximum shear stress is then equal to 
the radius of the principal circle. 

i.e. tmax = 200 MN/m2 

(ii) The direction cosines of the octahedral planes are 

1 

i.e. = /3 = y = COS-' 0.5774 = 54"52' 

The values of the normal and shear stresses on these planes are then obtained using the 
procedures of 58.7. 

By measurement, omt = 70 MN/m2 

tmt = 164 MN/m2 

Fig. 8.43. 
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Example 8.4 

A rectangular strain gauge rosette bonded at a point on the surface of an engineering 
component gave the following readings at peak load during test trials: 

EO = 1240 x 645 = 400 x EN = 200 x 

Determine the magnitude and direction of the principal stresses present at the point, and hence 
construct the full three-dimensional Mohr representations of the stress and strain systems 
present. E = 210 GN/m2, u = 0.3. 

Solution 

the surface at the point in question is drawn using the procedure of §14.14$ (Fig. 8.44). 
The two-dimensional Mohr's strain circle representing strain conditions in the plane of 

r 

- 

Y 
2 
- Stroin clrcle 

Fig. 8.44. 

I 

240 

200 

c p ;  A 1240 

I 

S t r o i n  circle scale 

e.9. Icm = 200 x 10-6 

This establishes the values of the principal strains in the surface plane as 1330 p~ and 
110 V E .  

E.J. Hearn. Mechanits of'Materiuls 1. Butterworth-Heinemann, 1997. 
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The relevant two-dimensional stress circle can then be superimposed as described in 
0 14.13 using the relationships: 

radius of stress circle = 

- - 

stress scale = 

- - 

- - 

(' - ') x radius of strain circle 
(1 + v) 
0.7 
- x 3.05 = 1.64 cm 
1.3 

x strain scale 
(1 - v) 

0.7 

E 

210 109 
x 200 x 

60 MN/m2 

i.e. 1 cm on the stress diagram represents 60 MN/m2. 
The two principal stresses in the plane of the surface are then: 

a1 (= 5.25 cm) = 315 MN/m2 

Q(= 2.0 cm) = 120 MN/m2 

The third principal stress, normal to the free (unloaded) surface, is zero, 

i.e. a 3  = 0 

The directions of the principal stresses are also obtained from the stress circle. With 
reference to the 0" gauge direction, 

ol lies at el = 15" clockwise 

a2 lies at (15" + 90") = 105" clockwise 

with a3 normal to the surface and hence to the plane of 01 and a 2 .  

N.B. - These angles are the directions of the principal stresses (and strains) and they do 
not refer to the directions of the plane on which the stresses act, these being normal to the 
above directions. 

It is now possible to determine the value of the third principal strain, i.e. that normal to 
the surface. This is given by eqn. (14.2) as 

1 
E 

E3 = - [a3 - v(T1 - '021 

[0 - 0.3(315 + 120)] lo6 - - 
210 x 109 

= -621 x = -621 PS 

The complete Mohr's three-dimensional stress and strain representations can now be drawn 
as shown in Figs. 8.45 and 8.46. 

E.J. H e m ,  Mechanics of Materials I ,  Butterworth-Heinemann, 1997. 
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“t 

2 

Fig. 8.45. Mohr stress circles. 

Fig. 8.46. Mohr strain circles. 

Problems 

8.1 (B). Given that the following strains exist at a point in a three-dimensional system determine the equivalent 

Take E = 206 GN/m2 and Y = 0.3. 
stresses which act at the point. 

EXX = 0.0010 

E\.? = O.OOO5 

E ~ ;  = 0.0007 

yrr = 0.0002 

yz,r = 0.0008 

yyz = 0.0010 
[420, 340, 372, 15.8.63.4.79.2 MN/m2.] 

8.2 (B). The following Cartesian stresses act at a point in a body subjected to a complex loading system. If 
E = 206 GN/m* and v = 0.3, determine the equivalent strains present. 

n.,., = 225 MN/m2 

ty = 1 IO MN/m2 

uyJ = 75 MN/m2 

r-yr = 50 MN/m2 

or; = 150 MN/m2 

r, = 70 MN/m2 
[764.6, 182,291, 1388,631,883.5, all x IO-‘.] 

8.3 (B). Does a uniaxial stress field produce a uniaxial strain condition? Repeat Problem 8.2 for the following 
stress field: 

urr = 225 MN/m2 

n,,,, = n-- = r,, = rV- = 5- - 0 -. . .. ..Y - 
[No; 1092, -327.7, -327.7,O. 0 ,0 ,  all x 
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8.4 (C). The state of stress at a point in a body is given by the following equations: 

a, = ax + b y 2  + cz3 

ury = dx + e y 2  + f z3  

rx, = I + mz 

ryZ = n y + p z  

a,, = gx + hy2 + kz3 S, = qx2 + sz2 

If equilibrium is to be achieved what equations must the body-force stresses X, Y and Z satisfy? 

8.5 (C). At a point the state of stress may be represented in standard form by the following: 

[ - ( a  + 2sz) ;  - ( p  + 2ey ) ;  -(n + 2qx + 3kz2) . ]  

3 (3.2 + 3y2 - z )  ( z  - 6xy - $ )  (x + y - ?) 

(Z - 6 ~ y  - i) 3Y2 0 

( X + Y - z  0 ( 3 x + y - z +  $1 3 

Show that, if body forces are neglected, equilibrium exists. 

8.6 (C). The plane stress distribution in a flat plate of unit thickness is given by: 

3 = YX - 2 a ~ y  + b y  

a,, = xy3 - 2X3y 

3 2 2  x4 
a,, = -3x y + a y 2 +  - + c  

Show that, in the absence of body forces, equilibrium exists. The load on the plate is specified by the following 
boundary conditions: 

2 

W 
At x = +-, a,, = 0 2 

A t x = - - - ,  u,=O 
2 
W 

where w is the width of the plate. 

the edge of the plate, x = w / 2 .  
If the length of the plate is L ,  determine the values of the constants a b  and c and determine the total load on 

[3;2 w3 w4 w3L’] 
[B.P.]  -, --, --, 

4 32 4 

8.7 (C). Derive the stress equations of equilibrium in cylindrical coordinates and show how these may be 
simplified for plane strain conditions. 

A long, thin-walled cylinder of inside radius R and wall thickness T is subjected to an internal pressure p .  
Show that, if the hoop stresses are assumed independent of radius, the radial stress at any thickness t is given by 

8.8 (B). Prove that the following relationship exists between the direction cosines: 

1 2 + m 2 + n 2  = 1 
8.9 (C). The six Cartesian stress components are given at a point P for three different loading cases as follows 

(all MN/m2): 

Case 1 Case 2 Case 3 

0X.x 100 100 100 
a,, 200 200 -200  
a22 300 100 100 
TXY 0 300 200 
TYZ 0 100 300 
7, 0 200 300 



292 Mechanics of Materials 2 

Determine for each case the resultant stress at P on a plane through P whose normal is coincident with the X axis. 
[IOO, 374,374 MN/m2.] 

8.10 (C). At a point in a material the stresses are: 

a, = 37.2 MN/m2 uyy = 78.4 MN/m2 uzz = 149 MN/m2 

a,, = 68.0 MN/m2 uyz = -18.1 MN/m2 

Calculate the shear stress on a plane whose normal makes an angle of 48" with the X axis and 71" with the Y axis. 
[4 1.3 MN/m2 .] 

a, = 32 MN/m2 

8.11 (C) .  At a point in a stressed material the Cartesian stress components are: 

a, = -40 MN/m2 ayy = 80 MN/m2 a, = 120 MN/m2 

a,, = 72 MN/m2 uyz = 46 MN/m2 a, = 32 MN/m2 

Calculate the normal, shear and resultant stresses on a plane whose normal makes an angle of 48" with the X axis 
and 61" with the Y axis. [135, 86.6, 161 MN/m2.] 

8.12 (C). Commencing from the equations defining the state of stress at a point, derive the general stress 
relationship for the normal stress on an inclined plane: 

a,, = aUl2 + a,n2 + ayym2 + 2uXy1m + 2uyzrnn + 2a,1n 

Show that this relationship reduces for the plane stress system (a, = a, = uzy = 0) to the well-known equation 

1 un = (an + ayv) + 1 (a, - ayy) cos 28 + a,, sin 28 

where cos 8 = I .  

8.13 (C). At a point in a material a resultant stress of value 14 MN/m2 is acting in a direction making angles 
of 43", 75" and 50"53' with the coordinate axes X,  Y and Z .  
(a) Find the normal and shear stresses on an oblique plane whose normal makes angles of 67"13', 30" and 71"34', 

(b) If u,, = 1.5 MN/mZ, ayz = -0.2 MN/m2 and a,, = 3.7 MN/m2 determine a,, a,, and uti. 

respectively, with the same coordinate axes. 

[IO, 9.8, 19.9,3.58,23.5 MN/mZ.] 

8.14 (C). Three principal stresses of 250, 100 and -150 MN/m2 act in a direction X, Y and Z respectively. 
Determine the normal, shear and resultant stresses which act on a plane whose normal is inclined at 30" to the Z 
axis, the projection of the normal on the X Y  plane being inclined at 55" to the X Z  plane. 

[-75.2, 134.5, 154.1 MN/m2.] 

8.15 (C). The following Cartesian stress components exist at a point in a body subjected to a three-dimensional 
complex stress system: 

a, = 97 MN/m2 ugy = 143 MN/m2 a, = 173 MN/m2 
ULY = o  uyz = 0 a, = 102 MN/m2 

Determine the values of the principal stresses present at the point. [233.8, 143.2, 35.8 MN/m2.] 

8.16 (C). A certain stress system has principal stresses of 300 MN/m2, 124 MN/mZ and 56 MN/m2. 
(a) What will be the value of the maximum shear stress? 
(b) Determine the values of the shear and normal stresses on the octahedral planes. 
(c) If the yield stress of the material in simple tension is 240 MN/m2, will the above stress system produce 

failure according to the distortion energy and maximum shear stress criteria? 
[I22 MN/m2; 104, 160 MN/m2; No, Yes.] 

8.17 (C). A pressure vessel is being tested at an internal pressure of 150 atmospheres (1 atmosphere = 1.013 bar). 
Strains are measured at a point on the inside surface adjacent to a branch connection by means of an equiangular 
strain rosette. The readings obtained are: 

EO = 0.23% ~+120 = 0.145% ~-120 =0.103% 
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Draw Mohr's circle to determine the magnitude and direction of the principal strains. E = 208 GN/m2 and u = 0.3. 
Determine also the octahedral normal and shear strains at the point. 

8.18 (C). At a point in a stressed body the principal stresses in the X, Y and Z directions are: 

[0.235%, 0.083%, -0.142%. 9"28'; E W ~  = 0.0589%, ymt = 0.310%.] 

ul = 49 MN/m2 a 2  = 27.5 MN/m2 u3 = -6.3 MN/m2 

Calculate the resultant stress on a plane whose normal has direction cosines 1 = 0.73, m = 0.46, n = 0.506. Draw 
Mohr's stress plane for the problem to check your answer. [38 MN/m2.] 

8.19 (C). For the data of Problem 8.18 determine graphically, and by calculation, the values of the normal and 
shear stresses on the given plane. 

Determine also the values of the octahedral direct and shear stresses. (30.3.23 MN/m2; 23.4, 22.7 MN/m2.] 
8.20 (C). During tests on a welded pipe-tee, internal pressure and torque are applied and the resulting distortion 

A rectangular strain gauge rosette mounted at the point in question yields the following strain values for an 
at a point near the branch gives rise to shear components in the r ,  8 and z directions. 

internal pressure of 16.7 MN/m2: 

EO = 0.0013 ~ 4 5  = 0.00058 egg = 0.00187 

Use the Mohr diagrams for stress and strain to determine the state of stress on the octahedral plane. E = 208 GN/m2 
and v = 0.29. 

What is the direct stress component on planes normal to the direction of zero extension? 
[uOct = 310 MN/m2; rWt = 259 MN/m2; 530 MN/m2.] 

8.21 (C). During service loading tests on a nuclear pressure vessel the distortions resulting near a stress concen- 
tration on the inside surface of the vessel give rise to shear components in the r ,  8 and z directions. A rectangular 
strain gauge rosette mounted at the point in question gives the following strain values for an internal pressure of 
5 MN/m2. 

EO = 150 x ~ 4 5  = 220 x and egg = 60 x lop6 

Use the Mohr diagrams for stress and strain to determine the principal stresses and the state of stress on the 
octahedral plane at the point. For the material of the pressure vessel E = 210 GN/m2 and u = 0.3. 

[B.P.] [52.5, 13.8, -5 MN/m2; uWt = 21 MN/m2, rXt = 24 MN/m2.] 

8.22 (C). From the construction of the Mohr strain plane show that the ordinate i y  for the case of Q = f i  = y 
(octahedral shear strain) is 

:[(El - E 2 ) 2  + (E2 - E 3 ?  + ( F 3  - E l  j2]1'2 

8.23 (C). A stress system has three principal values: 

U I  = 154 MN/m2 u2 = 1 13 MN/m2 
(a) Find the normal and shear stresses on a plane with direction cosines of I = 0.732, m = 0.521 with respect to 

(b) Determine the octahedral shear and normal stresses for this system. Check numerically. 

u3 = 68 MN/m2 

the U I  and a2 directions. 

[126, 33.4 MN/mZ; 112, 35.1 MN/m2.] 

8.24 (C). A plane has a normal stress of 63 MN/m2 inclined at an angle of 38" to the greatest principal stress 
which is 126 MN/m2. The shear stress on the plane is 92 MN/m2 and a second principal stress is 53 MN/m2. Find 
the value of the third principal stress and the angle of the normal of the plane to the direction of stress. 

[-95 MN/m2; W . ]  
8.25 (C). The normal stress a, on a plane has a direction cosine I and the shear stress on the plane is s , ~ .  If the 

two smaller principal stresses are equal show that 

If r, = 75 MN/m2, u,, = 36 MN/m2 and 1 = 0.75, determine, graphically U I  and u2. [102, -48 MN/m2.] 
8.26 (C). If the strains at a point are E = 0.0063 and y = 0.00481, determine the value of the maximum principal 

strain el if it is known that the strain components make the following angles with the three principal strain 
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directions: 

For E : u = 38.5" /3 =56" y = positive 
For y : u' = 128"32' B' = 45"IO' y' = positive [0.0075.] 

8.27 (C). What is meant by the term deviatoric strain as related to a state of strain in three dimensions? Show 
that the sum of three deviatoric strains e', , E; and E; is zero and also that they can be related to the principal strains 
E ] ,  E? and ~3 as follows: 

[C.E.I.] 

8.28 (C). The readings from a rectangular strain gauge rosette bonded to the surface of a strained component 

2 2 2 
& ; 2 + & ; 2 + E I : =  ; [ ( E ,  - E 2 )  + ( E 2 - E 1 )  + ( E X - E l )  I 

are as follows: 
&u = 592 x ~ 4 5  = 308 x E& = -432 x IO-' 

Draw the full three-dimensional Mohr's stress and strain circle representations and hence determine: 
(a) the principal strains and their directions; 
(b) the principal stresses; 
(c) the maximum shear stress. 

Take E = 200 GN/m2 and u = 0.3. 
at 12" and 102" to A ,  109, -63.5,86.25 MN/m2] 

8.29 (C). For a rectangular beam, unit width and depth 2d, simple beam theory gives the longitudinal stress 

y = ordinate in depth direction (+ downwards) 

[640 x -480 x 

a,, = CM y/I where 

M = BM in yx plane (+ sagging) 

The shear force is Q and the shear stress rXr is to be taken as zero at top and bottom of the beam. 
uvv = 0 at the bottom and sYv = -w/unit length, i.e. a distributed load, at the top. 

a:: = uz, = or? = 0 

Using the equations of equilibrium in Cartesian coordinates and without recourse to beam theory, find the 
distribution of uv\. and arv. 

urv = - - ( d 2  - y 2 ) .  
21 " I  

8.30 (C). Determine whether the following strain fields are compatible: 

(a) E, = 2x2 + 3y2 + z + 1 
E,.,. = 24'2 + x2 + 3z + 2 

(b) E, = 3y2 + xy 
E,,  = 2.v + 41 + 3 

E.-; = 3x + 2 y  + ;2 + I E/.: = 37x + 2x.Y + 3yz + 2 
~ x y  = 6xy 
Yyz  = 2x 
Yzr = 2Y 

~ x ?  = ~ X Y  
YX = 0 
Y:.r = 0 
[Yes1 [No1 

8.31 (C). The normal stress a,, on a plane has a direction cosine 1 and the shear stress on the plane is r .  If the 
two smaller principal stresses are equal show that 

8.32 (C). (i) A long thin-walled cylinder of internal radius Ro, external radius R and wall thickness T is subjected 
to an internal pressure p, the external pressure being zero. Show that if the circumferential stress (om) is independent 
of the radius r then the radial stress (err) at any thickness r is given by 

The relevant equation of equilibrium which may be used is: 
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(ii) Hence determine an expression for om in terms of T .  
( i i i )  What difference in approach would you adopt for a similar treatment in the case of a thick-walled cylinder? 

LB.P.1 WoplT.1 
8 3 3  (C). Explain what is meant by the following terms and discuss their significance: 

(a) Octahedral planes and stresses. 
(b) Hydrostatic and deviatoric stresses. 
(c) Plastic limit design. 
(d) Compatibility. 
(e) Principal and product second moments of area. [B.P.] 

8.34 (C). At a point in a stressed material the Cartesian stress components are: 

ut, = -40 MN/m2 o,, = 80 MN/m’ ucc = I20 MN/mZ 

or, = 72 MN/m? cry. = 32 MN/m2 u,; = 46 MN/m’ 

Calculate the normal, shear and resultant stresses on a plane whose normal makes an angle of 48” with the X axis 
and 61” with the Y axis. [B.P.] [135.3, 86.6, 161 MN/m2.] 

8.35 (C). The Cartesian stress components at a point in a three-dimensional stress system are those given in 
problem 8.33 above. 
(a) What will be the directions of the normal and shear stresses on the plane making angles of 48” and 61” with 

[l’m’n’ = 0.1625,0.7OlO, 0.6934; I,,m,n., = -0.7375,0.5451,0.4053] 

[10.7 MN/m2] 

the X and Y axes respectively‘? 

(b) What will be the magnitude of the shear stress on the octahedral planes where 1 = m = n = I/a? 

8.36 (C). Given that the Cartesian stress components at a point in a three-dimensional stress system are: 

a, = 20 MN/m2, 

rrr = 0. 

oY\. = 5 MN/m2. 
ry; = 20 MN/m2, 

(a) Determine the stresses on planes with direction cosines 0.8165,0.4082 and 0.4082 relative to the X, Y and Z 
axes respectively. [- 14.2.46.1.43.8 MN/mZ] 

(b) Determine the shear stress on these planes in a direction with direction cosines of 0, -0.707.0.707. 
[39 MN/m2] 

8.37 (C). In a finite element calculation of the stresses in a steel component, the stresses have been determined 

a,, = -50 MN/m2 
r,, = -40 MN/mZ 

as follows. with respect to the reference directions X,  Y and Z: 

o.rr = 10.9 MN/m’ 
r.,? = -41.3 MN/m2 

uyy = 51.9 MN/m2 
r\.: = -8.9 MN/mZ 

It is proposed to change the material from steel to unidirectional glass-fibre reinforced polyester, and it is important 
that the direction of the fibres is the same as that of the maximum principal stress, so that the tensile stresses 
perpcndicular to the fibres are kept to a minimum. 

Determine the values of the three principal stresses, given that the value of the intermediate principal stress is 
3.9 MN/m2. [-53.8; 3.9; 84.9 MN/m2] 

Compare them with the safe design tensile stresses for the glass-reinforced polyester of parallel to the fibres, 
90 MN/m2: perpendicular to the fibres, I O  MN/m2. 

Then take the direction cosines of the major. principal stress as 1 = 0.569, m = -0.78 I ,  n = 0.256 and determine 
the maximum allowable misalignment of the fibres to avoid the risk of exceeding the safe design tensile stresses. 
(Hint: compression stresses can be ignored.) [ 15.97 

a,, = -27.8 MN/m2 
r:r = 38.5 M N / d  

8.38 (C). The stresses at a point in an isotropic material are: 

or., = IO MN/m2 

sry = 15 MN/mZ 

uyy = 25 MN/m2 

r,, = 10 MN/m2 

Determine the magnitudes of the maximum principal normal strain and the maximum principal shear strain at this 
point. if Young’s modulus is 207 GN/mZ and Poisson’s ratio is 0.3. [280p;  4 1 9 ~ 1  

uzT = 50 MN/m2 

rCt = 20 MN/mZ 
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8.39 (C). Determine the principal stresses in a three-dimensional stress system in which: 

a,, = 40 MN/m2 

a,, = 30 MN/m2 

ur, = 60 MN/m2 

uXy = 20 MN/m2 

a, = 50 MN/m2 

ayz = 10 MN/m2 

[90 MN/m2, 47.3 MN/m2, 12.7 MN/m2] 

8.40 (C). If the stress tensor for a three-dimensional stress system is as given below and one of the principal 
stresses has a value of 40 MN/m2 determine the values of the three eigen vectors. 

30 10 10 

10 20 
[ I O  0 2;] 

[0.816,0.408,0.408] 
8.41 (C). Determine the values of the stress invariants and the principal stresses for the Cartesian stress compo- 

[450; 423.75; 556.25; 324.8; 109.5; 15.6 MN/mZ] 

8.42 (C). The stress tensor for a three-dimensional stress system is given below. Determine the magnitudes of 
nents given in Problem 8.2. 

the three principal stresses and determine the eigen vectors of the major principal stress. 

80 15 10 

10 25 
[ 15 0 2!5] 

[85.3, 19.8, -25.1 MN/m2, 0.9592,0.2206,0.1771.] 

8.43 (C). A hollow steel shaft is subjected to combined torque and internal pressure of unknown magnitudes. 
In order to assess the strength of the shaft under service conditions a rectangular strain gauge rosette is mounted 
on the outside surface of the shaft, the centre gauge being aligned with the shaft axis. The strain gauge readings 
recorded from this gauge are shown in Fig. 8.47. 

\ t,=6oox 10-6 

Fig. 8.47. 

If E for the steel = 207 GN/m2 and u = 0.3, determine: 
(a) the principal strains and their directions; 
(b) the principal stresses. 

maximum shear stresses and maximum shear strain. 
Draw complete Mohr's circle representations of the stress and strain systems present and hence determine the 

perp. to plane; 159, -90.0 MN/m2; 
79.5 MN/m2. 996 x 

8.44 (C). At a certain point in a material a resultant stress of 40 MN/m2 acts in a direction making angles of 
45". 70" and 60" with the coordinate axes X, Y and Z. Determine the values of the normal and shear stresses on 
an oblique plane through the point given that the normal to the plane makes angles of 80". 54" and 38" with the 
same coordinate axes. 

If u.~,. = 25 MN/m2, a.,: = 18 MN/m2 and a,.: = - 10 MN/m2, determine the values of u,, avy and a, which 
act at the point. [28.75,27.7 MN/m2; -3.5, 29.4, 28.9 MNIm'.] 

I636 x at 16.8" to A, -204 x at 106.8" to A, -360 x 
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8.45 (C). The plane stress distribution in a flat plate of unit thickness is given by 

3 a, = x3y - 2y  x 

ayy = y3x - 2pxy + qx 

ax, = - y4  - 9 y 2  + px2 + s 
- 2 2  

If body forces are neglected, show that equilibrium exists. 
The dimensions of the plate are given in Fig. 8.48 and the following boundary conditions apply: 

and 

b 
at y = f -  * 

b 
at y = -- 

2 ,- 

o x y  = 0 

ayy = 0 

I* 

Fig. 8.48. 

Determine: 
(a) the values of the constants p .  q and s; 

(b) the total load on the edge y = f b / 2 .  1 3b2 -b3 -b4 b3L2 
8 4 3 2 4  

-, -, -, -. 

8.46 (C). Derive the differential equation in cylindrical coordinates for radial equilibrium without body force of 
an element of a cylinder subjected to stresses a,, ao. 

A steel tube has an internal diameter of 25 mm and an external diameter of 50 mm. Another tube, of the 
same steel, is to be shrunk over the outside of the first so that the shrinkage stresses just produce a condition of 
yield at the inner surfaces of each tube. Determine the necessary difference in diameters of the mating surfaces 
before shrinking and the required external diameter of the outer tube. Assume that yielding occurs according to 
the maximum shear stress criterion and that no axial stresses are set up due to shrinking. The yield stress in simple 
tension or compression = 420 MN/m2 and E = 208 GN/m2.  [C.E.I.] r0.126 mm, 100 mm.] 

8.47 (C). For a particular plane strain problem the strain displacement equations in cylindrical coordinates are: 

Show that the appropriate compatibility equation in terms of stresses is 

where u is Poisson’s ratio. 
State the nature of a problem that the above equations can represent. [C.E.I.] 
8.48 (C). A bar length L ,  depth d, thickness t is simply supported and loaded at each end by a couple C as 

shown in Fig. 8.49. Show that the stress function 9 = Ay3 adequately represents this problem. Determine the value 
of the coefficient A in terms of the given symbols. [A = 2 C / t d 3 ]  
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Fig. 8.49 

8.49 (C). A cantilever of unit width and depth 2d is loaded with forces at its free end as shown in Fig. 8.50. 
The stress function which satisfies the loading is found to be of the form: 

@ = ay' + by.' + c.ry3 + exy 

where the coordinates are as shown. 

I W  

Fig. 8.50. 

Determine the value of the constants a,  b. c and e and hence show that the stresses are: 

u.~., = P/2d  + 3My/2d3  - 3WxV/2d3, 

CrVY = 0 

7.,> = 3Wy2/4d' - 3W/4d .  

8.50 (C). A cantilever of unit width length L and depth 213 is loaded by a linearly distributed load as shown in 
Fig. 8.5 I ,  such that the load at distance x is qx per unit length. Proceeding from the sixth order polynomial derive 
the 25 constants using the boundary conditions, overall equilibrium and the biharmonic equation. Show that the 
stresses are: 

Examine the state of stress at the free end (x = 0) and comment on the discrepancy of the shear stress. Compare the 
shear stress obtained from elementary theory, for L / 2 a  = 10, with the more rigorous approach with the additional 
terms. 

Fig. 8.5 I .  
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8.51 (C). Determine if the expression C$ = (cos3 8 ) / r  is a permissible Airy stress function, that is, make sure 
it satisfies the biharmonic equation. Determine the radial and shear stresses (a, and r d )  and sketch these on the 
oeriDherv of a circle of radius a. 
. a ,  

1 2 6 
cos 8(3 - 5 cos2 e), rfi = - -i cos2 8 sin 8. 

r- 
8.52 (C). The stress concentration factor due to a small circular hole in a flat plate subject to tension (or 

compression) in one direction is three. By superposition of the Kirsch solutions determine the stress concentration 
factors due to a hole in a flat plate subject to (a) pure shear, (b) two-dimensional hydrostatic tension. Show that 
the same result for case (b) can be obtained by considering the Lam6 solution for a thick cylinder under external 

8.53 (C). Show that C$ - Cr2(a  - 8 + sin 8 c o s 8  - tanacos' 8 )  is a permissible Airy stress function and derive 

These expressions may be used to solve the problem of a tapered cantilever beam of thickness carrying a 

tension when the outside radius tends to infinity. [(a) 4; (b) 2.1 

expressions for the corresponding stresses err. urn and r 8 .  

uniformly distributed load q/unit length as shown in Fig. 8.52. 

q/,unit lengih 

Fig. 8.52. 

Show that the derived stresses satisfy every boundary condition along the edges 8 = 0" and 8 = a. Obtain a 
value for the constant C in terms of q and a and thus show that: 

0, = " when 0 =0" 
r(tana -a) 

Compare this value with the longitudinal bending stress at 8 = 0" obtained from the simple bending theory when 
a = 5" and a = 30". What is the percentage error when using simple bending? 

I -0.2% and -7.6% (simple bending is lower) [C = 4 
2t(tana - a)' 


