
CHAPTER 9 

INTRODUCTION TO THE FINITE ELEMENT METHOD 

Introduction 

So far in this text we have studied the means by which components can be analysed 
using so-called Mechanics of Materials approaches whereby, subject to making simplifying 
assumptions, solutions can be obtained by hand calculation. In the analysis of complex 
situations such an approach may not yield appropriate or adequate results and calls for other 
methods. In addition to experimental methods, numerical techniques using digital computers 
now provide a powerful alternative. Numerical techniques for structural analysis divides 
into three areas; the long established but limited capability finite diference method, the 
finite element method (developed from earlier structural matrix methods), which gained 
prominence from the 1950s with the advent of digital computers and, emerging over a 
decade later, the boundary element method. Attention in this chapter will be confined to the 
most popular finite element method and the coverage is intended to provide 

0 an insight into some of the basic concepts of the finite element method (fern.), and, hence, 

0 the theoretical development associated with some relatively simple elements, enabling 

0 a range of worked examples to show typical applications and solutions. 

It is recommended that the reader wishing for further coverage should consult the many 
excellent specialist texts on the subject.'-'' This chapter does require some knowledge of 
matrix algebra, and again, students are directed to suitable texts on the subject.'' 

some basis of finite element (fe.), practice, 

analysis of applications which can be solved with the aid of a simple calculator, and 

9.1. Basis of the finite element method 

The fem. is a numerical technique in which the governing equations are represented in 
matrix form and as such are well suited to solution by digital computer. The solution region 
is represented, (discretised), as an assemblage (mesh), of small sub-regions called finite 
elements. These elements are connected at discrete points (at the extremities (corners), and 
in some cases also at intermediate points), known as nodes. Implicit with each element is 
its displacement function which, in terms of parameters to be determined, defines how the 
displacements of the nodes are interpolated over each element. This can be considered as an 
extension of the Rayleigh-Ritz process (used in Mechanics of Machines for analysing beam 
vibrations6). Instead of approximating the entire solution region by a single assumed displace- 
ment distribution, as with the Rayleigh-Ritz process, displacement distributions are assumed 
for each element of the assemblage. When applied to the analysis of a continuum (a solid or 
fluid through which the behavioural properties vary continuously), the discretisation becomes 
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an assemblage of a number of elements each with a limited, Le. finite number of degrees 
of freedom (dof). The element is the basic “building unit”, with a predetermined number 
of dof., and can take various forms, e.g. one-dimensional rod or beam, two-dimensional 
membrane or plate, shell, and solid elements, see Fig. 9.1. 

In stress applications, implicit with each element type is the nodal force/displacement 
relationship, namely the element stiffness property. With the most popular displacement 
formulation (discussed in 09.3), analysis requires the assembly and solution of a set of 
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Fig. 9.l(a). Examples of element types with nodal points numbered. 
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Fig. 9.l(b). Examples of element types with nodal points numbered. 

simultaneous equations to provide the displacements for every node in the model. Once the 
displacement field is determined, the strains and hence the stresses can be derived, using 
strain-displacement and stress-strain relations, respectively. 

9.2. Applicability of the finite element method 

The fem. emerged essentially from the aerospace industry where the demand for extensive 
structural analyses was, arguably, the greatest. The general nature of the theory makes it 
applicable to a wide variety of boundary value problems (i.e. those in which a solution 
is required in a region of a body subject to satisfying prescribed boundary conditions, as 
encountered in equilibrium, eigenvalue and propagation or transient applications). Beyond the 
basic linear elastichtatic stress analysis, finite element analysis (fea.), can provide solutions 
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to non-linear material and/or geometry applications, creep, fracture mechanics, free and 
forced vibration. Furthermore, the method is not confined to solid mechanics, but is applied 
successfully to other disciplines such as heat conduction, fluid dynamics, seepage flow and 
electric and magnetic fields. However, attention in this text will be restricted to linearly 
elastic static stress applications, for which the assumption is made that the displacements 
are sufficiently small to allow calculations to be based on the undeformed condition. 

93. Formulation of the finite element method 

Even with restriction to solid mechanics applications, the fem. can be formulated 
in a variety of ways which broadly divides into ‘differential equation’, or ‘variational’ 
approaches. Of the differential equation approaches, the most important, most widely used 
and most extensively documented, is the displacement, or stiffness, based fem. Due to 
its simplicity, generality and good numerical properties, almost all major general purpose 
analysis programmes have been written using this formulation. Hence, only the displacement 
based fem. will be considered here, but it should be realised that many of the concepts are 
applicable to other formulations. 

In 99.7,9.8 and 9.9 the theory using the displacement method will be developed for a rod, 
simple beam and triangular membrane element, respectively. Before this, it is appropriate 
to consider here, a brief overview of the steps required in a fe. linearly elastic static stress 
analysis. Whilst it can be expected that there will be detail differences between various 
packages, the essential procedural steps will be common. 

9.4. General procedure of the finite element method 

The basic steps involved in a fea. are shown in the flow diagram of Fig. 9.2. Only a simple 
description of these steps is given below. The reader wishing for a more in-depth treatment 
is urged to consult some of numerous texts on the subject, referred to in the introduction. 

9.4.1. Identification of the appropriateness of analysis by the finite element method 

Engineering components, except in the simplest of cases, frequently have non-standard 
features such as those associated with the geometry, material behaviour, boundary condi- 
tions, or excitation (e.g. loading), for which classical solutions are seldom available. The 
analyst must therefore seek alternative approaches to a solution. One approach which can 
sometimes be very effective is to simplify the application grossly by making suitable approx- 
imations, leading to Mechanics of Materials solutions (the basis of the majority of this text). 
Allowance for the effects of local disturbances, e.g. rapid changes in geometry, can be 
achieved through the use of design charts, which provide a means of local enhancement. 
In current practice, many design engineers prefer to take advantage of high speed, large 
capacity, digital computers and use numerical techniques, in particular the fem. The range of 
application of the fern. has already been noted in 09.2. The versatility of the fem. combined 
with the avoidance; or reduction in the need for prototype manufacture and testing offer 
significant benefits. However, the purchase and maintenance of suitable fe. packages, provi- 
sion of a computer platform with adequate performance and capacity, application of a suitably 
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Fig. 9.2. Basic steps in the finite element method. 

trained and experienced analyst and time for data preparation and processing should not be 
underestimated when selecting the most appropriate method. Experimental methods such as 
those described in Chapter 6 provide an effective alternative approach. 

It is desirable that an analyst has access to all methods, i.e. analytical, numerical and 
experimental, and to not place reliance upon a single approach. This will allow essential 
validation of one technique by another and provide a degree of confidence in the results. 
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9.4.2. IdentiJication of the type of analysis 

The most appropriate type(s) of analysis to be employed needs to be identified in order 
that the component behaviour can best be represented. The assumption of either plane stress 
or plane strain is a common example. The high cost of a full three-dimensional analysis 
can be avoided if the assumption of both geometric and load symmetry can be made. If the 
application calls for elastic stress analysis, then the system equations will be linear and can be 
solved by a variety of methods, Gaussian elimination, Choleski factorisation or Gauss-Seidel 
procedure ? 

For large displacement or post-yield material behaviour applications the system equations 
will be non-linear and iterative solution methods are required, such as that of Newton- 
Raphson? 

9.4.3. Idealisation 

Commercially available finite element packages usually have a number of different 
elements available in the element library. For example, one such package, HKS ABAQUS'* 
has nearly 400 different element variations. Examples of some of the commonly used 
elements have been given in Fig. 9.1. 

Often the type of element to be employed will be evident from the physical application. For 
example, rod and beam elements can represent the behaviour of frames, whilst shell elements 
may be most appropriate for modelling a pressure vessel. Some regions which are actually 
three-dimensional can be described by only one or two independent coordinates, e.g. pistons, 
valves and nozzles, etc. Such regions can be idealised by using axisymmetric elements. 
Curved boundaries are best represented by elements having mid-side (or intermediate) nodes 
in addition to their comer nodes. Such elements are of higher order than linear elements 
(which can only represent straight boundaries) and include quadratic and cubic elements. 
The most popular elements belong to the so-called isoparametric family of elements, where 
the same parameters are used to define the geometry as define the displacement variation 
over the element. Therefore, those isoparametric elements of quadratic order, and above, are 
capable of representing curved sides and surfaces. 

In situations where the type of elements to be used may not be apparent, the choice could 
be based on such considerations as 

(a) number of dof., 
(b) accuracy required, 
(c) computational effort, 
(d) the degree to which the physical structure needs to be modelled. 

Use of the elements with a quadratic displacement assumption are generally recommended 
as the best compromise between the relatively low cost but inferior performance of linear 
elements and the high cost but superior performance of cubic elements. 

9.4.4. Discretisation of the solution region 

This step is equivalent to replacing the actual structure or continuum having an infinite 
number of dof. by a system having a finite number of dof. This process, known as 
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discretisation, calls for engineering judgement in order to model the region as closely as
necessary .Having selected the element type, discretisation requires careful attention to
extent of the model (i.e. location of model boundaries), eleme~t size and grading, number
of elements, and factors influencing the quality of the mesh, to achieve adequately accurate
results consistent with avoiding excessive computational effort and expense. These aspects

are briefly considered below.

Extent of model

Reference has already been made above to applications which are axisymmetric, or those
which can be idealised as such. Generally, advantage should be taken of geometric and
loading symmetry wherever it exists, whether it be plane or axial. Appropriate boundary
conditions need to be imposed to ensure the reduced portion is representative of the whole.
For example, in the analysis of a semi-infinite tension plate with a central circular hole,
shown in Fig. 9.3, only a quadrant need be modelled. However, in order that the quadrant
is representative of the whole, respective v and u displacements must be prevented along
the x and y direction symmetry axes, since there will be no such displacements in the full

t:nodel/component.

Fig. 9.3. Finite element analysis of a semi-infinite tension plate with a central circular hole, using triangular
elements.

Further, it is known that disturbances to stress distributions due to rapid changes in geometry
or load concentrations are only local in effect. Saint-Venant's principle states that the effect
of stress concentrations essentially disappear within relatively small distances (approximately
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equal to the larger lateral dimension), from the position of the disturbance. Advantage can 
therefore be taken of this principle by reducing the necessary extent of a finite element 
model. A rule-of-thumb is that a model need only extend to one-and-a-half times the larger 
lateral dimension from a disturbance, see Fig. 9.4. 
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Fig. 9.4. ldealisation of a shouldered tension strip. 

Element size and grading 

The relative size of elements directly affects the quality of the solution. As the element 
size is reduced so the accuracy of solution can be expected to increase since there is better 
representation of the field variable, e.g. displacement, and/or better representation of the 
geometry. However, as the element size is reduced, so the number of elements increases 
with the accompanying penalty of increased computational effort. Needlessly small elements 
in regions with little variation in field variable or geometry will be wasteful. Equally, in 
regions where the stress variation is not of primary interest then a locally coarse mesh can 
be employed providing it is sufficiently far away from the region of interest and that it 
still provides an accurate stiffness representation. Therefore, element sizes should be graded 
in order to take account of anticipated stresshtrain variations and geometry, and the results 
required. The example of stress analysis of a semi-infinite tension plate with a central circular 
hole, Fig. 9.3, serves to illustrate how the size of the elements can be graded from small-size 
elements surrounding the hole (where both the stresdstrain and geometry are varying the 
most), to become coarser with increasing distance from the hole. 

Number of elements 

The number of elements is related to the previous matter of element size and, for a given 
element type, the number of elements will determine the total number of dof. of the model, 
and combined with the relative size determines the mesh density. An increase in the number 
of elements can result in an improvement in the accuracy of the solution, but a limit will be 
reached beyond which any further increase in the number of elements will not significantly 
improve the accuracy. This matter of convergence of solution i s  clearly important, and with 
experience a near optimal mesh may be achievable. As an alternative to increasing the number 
of elements, improvements in the model can be obtained by increasing the element order. 
This alternative form of enrichment can be performed manually (by substituting elements), 
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or can be performed automatically, e.g. the commercial package RASNA has this capability. 
Clearly, any increase in the number of elements (or element order), and hence dof., will 
require greater computational effort, will put greater demands on available computer memory 
and increase cost. 

Quality of the mesh 
The quality of the fe. predictions (e.g. of displacements, temperatures, strains or stresses), 

will clearly be affected by the performance of the model and its constituent elements. The 
factors which determine quality13 will now be explored briefly, namely 

coincident elements, 
free edges, 
poorly positioned “midside” nodes, 
interior angles which are too extreme, 
warping, and 
distortion. 

Coincident elements 

Coincident elements refer to two or more elements which are overlaid and share some of 
the nodes, see Fig. 9.5. Such coincident elements should be deleted as part of cleaning-up 
of a mesh. 

coincident 
nodes 

Fig. 9.5. Coincident elements. 

(b) Free edges 

A free edge should only exist as a model boundary. Neighbouring elements should share 
nodes along common inter-element boundaries. If they do not, then a free edge exists and 
will need correction, see Fig. 9.6. 

( e )  Poorly positioned “midside” nodes 

Displacing an element’s “midside” node from its mid-position will cause distortion in the 
mapping process associated with high order elements, and in extreme cases can significantly 
degrade an element’s performance. There are two aspects to “midside” node displacement, 
namely, the relative position between the corner nodes, and the node’s offset from a straight 
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Interior 

Fig 9 6 Free edges 

line joining the corner nodes, see Fig. 9.7. The midside node’s relative position should 
ideally be 50% of the side length for a parabolic element and 33.3% for a cubic element. An 
example of the effect of displacement of the “midside” node to the 25% position, is reported 
for a parabolic elementI4 to result in a 15% error nn the major stress prediction. 

Percent displacement = 100 b/c 

Fig 9 7 “Midside” node displacement 

Offset = a/c 
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(d)  Interior angles which are too extreme 

Interior angles which are excessively small or large will, like displaced “midside” nodes, 
cause distortion in the mapping process. A re-entrant corner (i.e. an interior angle greater 
than 180”), see Fig. 9.8, will cause failure in the mapping as the Jacobian matrix (relating 
the derivatives with respect to curvilinear ( r p ) ,  coordinates, to those with respect to carte- 
sian (x,y), coordinates), will not have an inverse (i.e. its determinate will be zero). For 
quadrilateral elements the ideal interior angle is 90”, and for triangular elements it is 60”. 

Fig. 9.8. Extreme interior angles. 

( e )  Warping 

Warping refers to the deviation of the face of a “planar” element from being planar, see 
Fig. 9.9. The analogy of the three-legged milking stool (which is steady no-matter how 
uneven the surface is on which it is placed), to the triangular element serves to illustrate an 
advantage of this element over its quadrilateral counterpart. 

Non-pbnner 
element 

Fig. 9.9. Warping. 



$9.4 Introduction to the Finite Element Method 31 1 

If) Distortion 

Distortion is the deviation of an element from its ideal shape, which corresponds to that 
in curvilinear coordinates. SDRC I-DEASI3 gives two measures, namely 

(1) the departure from the basic element shape which is known as distortion, see Fig. 9.10. 
Ideally, for a quadrilateral element, with regard to distortion, the shape should be a 
rectangle, and 

Fig. 9.10. Distortion 

(2) the amount of elongation suffered by an element which is known as stretch, or aspect 
ratio distortion, see Fig. 9.1 1. Ideally, for a quadrilateral element, with regard to stretch, 
the shape should be square. 

Fig. 9.1 I .  Stretch. 

Whilst small amounts of deviation of an element’s shape from that of the parent element 
can, and must, be tolerated, unnecessary and excessive distortions and stretch, etc. must be 
avoided if degraded results are to be minimised. High order elements in gradually varying 
strain fields are most tolerant of shape deviation, whilst low order elements in severe strain 
fields are least tolerant? There are automatic means by which element shape deviation can 
be measured, using information derived from the Jacobian matrix. Errors in a solution and 
the rate of convergence can be judged by computing so-called energy norms derived from 
successive solutions.’ However, it is left to the judgement of the user to establish the degree 
of shape deviation which can be tolerated. Most packages offer quality checking facilities, 
which allows the user to interrogate the shape deviation of all, or a selection of, elements. I- 
DEAS provides a measure of element quality using a value with a range of - 1  to + I ,  (where 
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+ I  is the target value corresponding to zero distortion, and stretch, etc.). Negative values, 
which arise for example, from re-entrant comers, referred to above, will cause an attempted 
solution to fail, and hence need to be rectified. A distortion value above 0.7 can be considered 
acceptable, but errors will be incurred with any value below 1.0. However, circumstances 
may dictate acceptance of elements with a distortion value below 0.7. Similarly, as a rule- 
of-thumb, a stretch value above 0.5 can be considered acceptable, but again, errors will be 
incurred with any value below 1 .O. Companies responsible for analyses may issue guidelines 
for quality, an example of which is shown in Table 9.1. 

Table 9.1. Example of element quality guidelines. 

Element Interior angle" Warpage Distortion Stretch 

Triangle 30 - 90 N/A 0.35 0.3 
Quadrilateral 45-135 0.2 0.60 0.3 
Wedge 30-90 N/A 0.35 0.3 
Tetrahedron 30-90 N/A 0.10 0.1 
Hexahedron 45- 135 0.2 0.5 0.3 

9.4.5. Creation of the material model 

The least material data required for a stress analysis is the empirical elastic modulus for the 
component under analysis describing the relevant stresshtrain law. For a dynamic analysis, 
the material density must also be specified. Dependent upon the type of analysis, other 
properties may be required, including Poisson's ratio for two- and three-dimensional models 
and the coefficient of thermal expansion for thermal analyses. For analyses involving non- 
linear material behaviour then, as a minimum, the yield stress and yield criterion, e.g. von 
Mises, need to be defined. If the material within an element can be assumed to be isotropic 
and homogeneous, then there will be only one value of each material property. For non- 
isotropic material, i.e. orthotropic or anisotropic, then the material properties are direction 
and spacially dependent, respectively. In the extreme case of anisotropy, 21 independent 
values are required to define the material matrix? 

9.4.6. Node and element ordering 

Before moving on to consider boundary conditions, it is appropriate to examine node and 
element ordering and its effect on efficiency of solution by briefly exploring the methods 
used. The formation of the element characteristic matrices (to be considered in §9.7,9.8 and 
9.9), and the subsequent solution are the two most computationally intensive steps in any 
fe. analysis. The computational effort and memory requirements of the solution are affected 
by the method employed, and are considered below. 

It will be seen in Section 9.7, and subsequently, that the displacement based method 
involves the assembly of the structural, or assembled, stiffness matrix [ K ] ,  and the load and 
displacement column matrices, {PI and { p ) ,  respectively, to form the governing equation for 
stress analysis ( P )  = [ K ] { p ] .  With reference to $9.7, and subsequently, two features of the 
fem. will be seen to be that the assembled stiffness matrix [ K ] ,  is sparsely populated and 
is symmetric. Advantage can be taken of this in reducing the storage requirements of the 
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computer. Two solution methods are used, namely, banded or frontal, the choice of which
is dependent upon the number of dof. in the model.

Banded method of solution

The banded method is appropriate for small to medium size jobs (i.e. up to 10 000 dof.).
By carefully ordering the dof. the assembled stiffness matrix [K], can be banded with non-
zero terms occurring only on the leading diagonal. Symmetry permits only half of the band to
be stored, but storage requirements can still be high. It is advantageous therefore to minimise
the bandwidth. A comparison of different node numbering schemes is provided by Figs. 9.12
and 9.13 in which a simple model comprising eight triangular linear elements is considered,
and for further simplicity the nodal contributions are denoted as shaded squares, the empty
squares denoting zeros.

The semi-bandwidth can be seen to depend on the node numbering scheme and the number
of dof. per node and has a direct effect on the storage requirements and computational effort.

Fig. 9.12. Structural stiffness matrix corresponding to poor node ordering.
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For a given number of dof. per node, which is generally fixed for each assemblage, the
bandwidth can be minimised by using a proper node numbering scheme.

With reference to Figs. 9.12 and 9.13 there are a total of 20 dof. in the model (i.e. 10 nodes
each with an assumed 2 dof.), and if the symmetry and bandedness is not taken advantage of,
storage of the entire matrix would require 202 = 400 locations. For the efficiently numbered
model with a semi-bandwidth of 8, see Fig. 9.13, taking advantage of the symmetry and
bandedness, the storage required for the upper, or lower, half-band is only 8 x 20 = 160

locations.

Fig. 9.13. Structural stiffness matrix corresponding to efficient node ordering.

From observation of Figs. 9.12 and 9.13 it can be deduced that the semi-bandwidth can
be calculated from

semi-bandwidth = f(d + I)
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where f is the number of dof. per node and d is the maximum largest difference in the 
node numbers for all elements in the assemblage. This expression is applicable to any type 
of finite element. It follows that to minimise the bandwidth, d must be minimised and this 
is achieved by simply numbering the nodes across the shortest dimension of the region. 

For large jobs the capacity of computer memory can be exceeded using the above banded 
method, in which case a frontal solution is used. 

Frontal method of solution 
The frontal method is appropriate for medium to large size jobs (i.e. greater than 10000 

dof.). To illustrate the method, consider the simple two-dimensional mesh shown in Fig. 9.14. 
Nodal contributions are assembled in element order. With reference to Fig. 9.14, with the 
assembly of element number 1 terms (Le. contributions from nodes 1 ,  2, 6 and 7), all 
information relating to node number 1 will be complete since this node is not common 
to any other element. Thus the dofs. for node 1 can be eliminated from the set of system 
equations. Element number 2 contributions are assembled next, and the system matrix will 
now contain contributions from nodes 2, 3, 6, 7 and 8.  At this stage the dofs. for node 
number 2 can be eliminated. Further element contributions are merged and at each stage any 
nodes which do not appear in later elements are reduced out. The solution thus proceeds 
as a front through the system. As, for example, element number 14 is assembled, dofs. for 
the nodes indicated by line B are required, see Fig. 9.14. After Aiminations which follow 
assembly of element number 14, dofs. associated with line C are needed. The solution front 
has thus moved from line A to C .  

5 

4~ 3 

2 

I 
Element number 

Fig. 9.14. Frontal method of solution 

To minimise memory requirements, which is especially important for jobs with large 
numbers of dof., the instantaneous width, i.e.front size, of the stiffness matrix during merging 
should be kept as small as possible. This is achieved by ensuring that elements are selected for 
merging in a specific order. Figures 9.15(a) and (b) serve to illustrate badly and well ordered 
elements, respectively, for a simple two-dimensional application. Front ordering facilities are 
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available with some fe. packages which will automatically re-order the elements to minimise 
the front size. 

3 

2 

1 

6 9 12 15 

5 8 11 14 

10 13 4 7 

(a) Badly ordered elements (b) Well ordered elements 

Fig. 9.15. Examples of element ordering for frontal method. 

9.4.7. Application of boundary conditions 

Having created a mesh of finite elements and before the job is submitted for solution, 
it is necessary to enforce conditions on the boundaries of the model. Dependent upon the 
application, these can take the form of 

0 restraints, 
0 constraints, 
0 structural loads, 
0 heat transfer loads, or 
0 specification of active and inactive dof. 

Attention will be restricted to a brief consideration of restraints and structural loads, which 
are sufficient conditions for a simple stress analysis. The reader wishing for further coverage 
is again urged to consult the many specialist texts.'-'' 

Restraints 

Restraints, which can be applied to individual, or groups of nodes, involve defining the 
displacements to be applied to the possible six dof., or perhaps defining a temperature. As 
an example, reference to Fig. 9.3(b) shows the necessary restraints to impose symmetry 
conditions. It can be assumed that the elements chosen have only 2 dof. per node, namely u 
and 'u translations, in the x and y directions, respectively. The appropriate conditions are 

along the x-axis, 'u = 0, and 
along the y-axis, u = 0. 

The usual symbol, representing a frictionless roller support, which is appropriate in this case, 
is shown in Fig. 9.16(a), and corresponds to zero normal displacement, i.e. 6, = 0, and zero 
tangential shear stress, i.e. r, = 0, see Fig. 9.16(b). 

In a static stress analysis, unless sufficient restraints are applied, the system equations (see 
$9.43, cannot be solved, since an inverse will not exist. The physical interpretation of this 
is that the loaded body is free to undergo unlimited rigid body motion. Restraints must be 
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(a) Symbolic representation (b) Actual restraii 

Fig. 9.16. Boundary node with zero shear traction and zero normal displacement. 

chosen to be sufficient, but not to create rigidity which does not exist in the actual component 
being modelled. This important matter of appropriate restraints can call for considerable 
engineering judgement, and the choice can significantly affect the behaviour of the model 
and hence the validity of the results. 

Structural loads 

Structural loads, which are applied to nodes can, through usual program facilities, be 
specified for application to groups of nodes, or to an entire model, and can take the form 
of loads, temperatures, pressures or accelerations. At the program level, only nodal loads 
are admissible, and hence when any form of distributed load needs to be applied, the nodal 
equivalent loads need to be computed, either manually or automatically. One approach is 
to simply define a set of statically equivalent loads, with the same resultant forces and 
moments as the actual loads. However, the most accurate method is to use kinematically 
equivalent loads5 as simple statically equivalent loads do not give a satisfactory solution for 
other than the simplest element interpolation. Figure 9.17 illustrates the case of an element 
with a quadratic displacement interpolation. Here the distributed load of total value W ,  is 
replaced by three nodal loads which produce the same work done as that done by the actual 
distributed load. 

Total load W 

(a) Actual uniformly distributed load (b) Kinematically equivalent nodal loads 

Fig. 9.17. Structural load representation 

9.4.8. Creation of a datafile 

The data file, or deck, will need to be in precisely the format required by the particular 
program being used; although essentially all programs will require the same basic model data, 
i .e. nodal coordinates, element type(s) and connectivity, material properties and boundary 
conditions. The type of solution will need to be specified, e.g. linear elastic, normal modes, 
etc. The required output will also need to be specified, e.g. deformations, stresses, strains, 
strain energy, reactions, etc. Much of the tedium of producing a data file is removed if 
automatic data preparation is available. Such an aid is beneficial with regard to minimising 
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the possibility of introducing data errors. The importance of avoiding errors cannot be over- 
emphasised, as the validity of the output is clearly dependent upon the correctness of the 
data. Any capability of a program to detect errors is to be welcomed. However, it should 
be realised that it is impossible for a program to detect all forms of error. e.g. incorrect but 
possible coordinates, incorrect physical or material properties, incompatible units, etc., can 
all go undetected. The user must, therefore, take every possible precaution to guard against 
errors. Displays of the mesh, including “shrunken” or “exploded” element views to reveal 
absent elements, restraints and loads should be scrutinised to ensure correctness before the 
solution stage is entered; the material and physical properties should also be examined. 

9.4.9. Computer, processing, steps 

The steps performed by the computer can best be followed by means of applications using 
particular elements, and this will be covered in 59.7 and subsequent sections. 

9.4.10. Interpretation and validation of results 

The numerical output following solution is often provided to a substantial number of 
decimal places which gives an aura of precision to the results. The user needs to be mindful 
that the fem. is numerical and hence is approximate. There are many potential sources of 
error, and a responsibility of the analyst is to ensure that errors are not significant. In addition 
to approximations in the model, significant errors can arise from round-off and truncation in 
the computation. 

There are a number of checks that should be routine procedure following solution, and 
these are given below 

0 Ensure that any warning messages, given by the program, are pursued to ensure that the 
results are not affected. Error messages will usually accompany a failure in solution and 
clearly, will need corrective action. 

0 An obvious check is to examine the deformed geometry to ensure the model has behaved 
as expected, e.g. Poisson effect has occurred, slope continuity exists along axes of 
symmetry, etc. 

0 Ensure that equilibrium has been satisfied by checking that the applied loads and moments 
balance the reactions. Excessive out of balance indicates a poor mesh. 

0 Examine the smoothness of stress contours. Irregular boundaries indicate a poor mesh. 
0 Check inter-element stress discontinuities (stress jumps), as these give a measure of the 

quality of model. Large discontinuities indicate that the elements need to be enhanced. 
0 On traction-free boundaries the principal stress normal to the boundary should be zero. 

Any departure from this gives an indication of the quality to be expected in the other 
principal stress predictions for this point. 

0 Check that the directions of the principal stresses agree with those expected, e.g. normal 
and tangential to traction-free boundaries and axes of symmetry. 

Results should always be assessed in the light of common-sense and engineering judgement. 
Manual calculations, using appropriate simplifications where necessary, should be carried 
out for comparison, as a matter of course. 
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9.4.1 1. Modification and re-run 

Clearly, the need for design modification and subsequent fe. re-runs depends upon the 
particular circumstances. The computational burden may prohibit many re-runs. Indeed, for 
large jobs, (which may involve many thousands of dof. or many increments in the case of 
non-linear analyses), re-runs may not be feasible. The approach in such cases may be to 
run several exploratory crude models to gain some initial understanding how the component 
behaves, and hence aid final modelling. 

9.5. Fundamental arguments 

Regardless of the type of structure to be analysed, irrespective of whether the loading is 
static or dynamic, and whatever the material behaviour may be, there are only three types 
of argument to be invoked, namely, equilibrium, compatibility and stresslstrain law. Whilst 
these arguments will be found throughout this text it is worthwhile giving them some explicit 
attention here as a sound understanding will help in following the theory of the fem. in the 
proceeding sections of this chapter. 

9.5.1. Equilibrium 

External nodal equilibrium 

Static equilibrium requires that, with respect to some orthogonal coordinate system, the 
reactive forces and moments must balance the externally applied forces and moments. In 
fea. this argument extends to all nodes in the model. With reference to Fig. 9.18, some 
nodes may be subjected to applied forces and moments, (node number 4), and others may 
be support points (node numbers 1 and 6). There may be other nodes which appear to be 
neither of these (node numbers 2, 3, and 5 ) ,  but are in fact nodes for which the applied 
force, or moment, is zero, whilst others provide support in one or two orthogonal directions 
and are loaded (or have zero load), in the remaining direction(s) (node number 6). Hence, 
for each node and with respect to appropriate orthogonal directions, satisfaction of external 
equilibrium requires 

external loads or reactions = summation of internal, element, loads 

 odes 1 a6:supportnodes 
Node 4: Loaded node yk Nodes 2.3 5: Unloaded nodes 

x, 1 - 6 

Fig. 9.18. Structural framework. 
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m 

Then, for the j th node {Pi} = C{S@)) 
e= I 

where the summation is of the internal loads at node j from all rn elements joined at node j .  
Use of this relation can be illustrated by considering the simple frame, idealised as planar 

with pin-joints and discretised as an assemblage of three elements, as shown in Fig. 9.19. 
The nodal force column matrix for the structure is 

= (PIP2P3) = ~x1yIx2y2x3y3} 

Node number 

3.4 
Dof. numbers 

Fig. 9.19. Simple pin-jointed plane frame. 

and the element force column matrix for the structure is 

{ S }  = { { S q S ( b ) } { s ( c ) } }  = (UIVIU2V2. u2v2u3v3, U,VlU3V3} 

It follows from the above that external, nodal, equilibrium for the structure is satisfied by 
forming the relationship between the nodal and element forces as 

- 1  0 0 0 0 0 0 0 1 0  0 0 
0 1 0 0 0 0 0 0 0 1 0 0  
0 0 1 0 1 0 0 0 0 0 0 0  
0 0 0 1 0 1 0 0 0 0 0 0  
0 0 0 0 0 0 1 0 0 0 1 0  

~ 0 0 0 0 0 0 0  1 0 0 0  1 

Or, more concisely, {PI = [aIT(V (9.1 ) 

which relates the nodal forces { P )  to the element forces { S }  for the whole structure. 

Internal element equilibrium 

Internal equilibrium can be explained most easily by considering an axial force element. 
For static equilibrium, the axial forces at each end will be equal in magnitude and opposite 
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in direction. If the element is pin-ended and has a uniform cross-sectional area, A, then for 
equilibrium within the element 

Aa, = U ,  (9.2) 

in which the axial stress a, is taken to be constant over the cross-section. 

9.5.2. Compatibility 

External nodal compatibility 

The physical interpretation of external compatibility is that any displacement pattern is not 
accompanied with voids or overlaps occumng between previously continuous members. In 
fea. this requirement is usually only satisfied at the nodes. Often it is only the displacement 
field which is continuous at the nodes, and not an element's first or higher order displacement 
derivatives. Figure 9.20 shows quadratically varying displacement fields for two adjoining 
quadrilateral elements and serves to illustrate these limitations. 

Inter-element 
slope discontinuity 

Fig. 9.20. Quadrilateral elements with quadratically varying displacement fields. 

External, nodal, displacement compatibility will be shown to be automatically satisfied 
by a system of nodal displacements. For the simple frame shown in Fig. 9.19, the nodal 
displacement column matrix is 

{PI = ( P I P 2 P 3 )  = ( U I 2 r l 9  u2212, u32131 

and the element displacement column matrix is 

{s} = {{s( ' )}{~S(~)}{s(~))}  = (uIVIu2V2, u2212u3213, uI21Iu3V3} 

It follows from the above that external, nodal, compatibility is satisfied by forming the 
relationship between the element and nodal displacements as 
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Or, more concisely, ( s}  = [ a ] ( p }  

1 0 0 0 0 0  
0 1 0 0 0 0  
0 0 1 0 0 0  
0 0 0 1 0 0  
0 0 1 0 0 0  
0 0 0 1 0 0  
0 0 0 0 1 0  
0 0 0 0 0 1  
1 0 0 0 0 0  
0 1 0 0 0 0  
0 0 0 0 1 0  
0 0 0 0 0 1  

(9.3) 

which relates all the element displacements (s} to the nodal displacements ( p }  for the whole 
structure. 

Internal element compatibility 

Again, for simplicity consider an axial force element. For the displacement within such 
an element not to introduce any voids or overlaps the displacement along the element, u ,  
needs to be a continuous function of position, x. The compatibility condition is satisfied by 

9.5.3. Stresslstrain law 

Assuming for simplicity the material behaviour to be homogeneous, isotropic and linearly 
elastic, then Hooke’s law applies giving, for a one-dimensional stress system in the absence 
of thermal strain, 

&.r = ax/E (9.5) 

in which E is the empirical modulus of elasticity. 

9.5.4. Forceldisplacement relation 

Combining eqns. (9.2), (9.4) and (9.5) and taking u to be a function of x only, gives 

Or. 

U I A  = a, = a,E = E du/dx 

U d x  = A E d u  

Integrating, and taking u(0)  = ui and u(L)  = u,, corresponding to displacements at nodes i 
and j of an axial force element of length L, gives the force/displacement relationship 

U = AE(uj - ui ) /L  (9.6) 
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in which (uj - ui) denotes the deformation of the element. Thus the force/displacement 
relationship for an axial force element has been derived from equilibrium, compatibility and 
stress/strain arguments. 

9.6. The principle of virtual work 

In the previous section the three basic arguments of equilibrium, compatibility and consti- 
tutive relations were invoked and, in the subsequent sections, it will be seen how these 
arguments can be used to derive rod and simple beam element equations. However, some 
situations, for example, may require elements of non-uniform cross-section or representation 
of complex geometry, and are not amenable to solution by this approach. In such situations, 
alternative approaches using energy principles are used, which allow the field variables to 
be represented by approximating functions whilst still satisfying the three fundamental argu- 
ments. Amongst the number of energy principles which can be used, the one known as the 
principle of virtual work will be considered here. 

The equation of the principle of virtual work 

Virtual work is produced by perturbing a system slightly from an equilibrium state. This 
can be achieved by allowing small, kinematically possible displacements, which are not 
necessarily real, and hence are virtual displacements. In the following brief treatment the 
corresponding equation of virtual work is derived by considering the linearly elastic, uniform 
cross-section, axial force element in Fig. 9.21. For a more rigorous treatment the reader is 
referred to Ref. 8 (p. 350). In Fig. 9.21 the nodes are shown detached to distinguish between 
the nodal and element quantities. 

-- 
X 

i i i i 

Fig. 9.21. Axial force element, shown with detached nodes. 

Giving the nodal points virtual displacements E; and si;, the virtual work for the two nodal 

(9.7) 

This virtual work must be zero since the two nodal points are rigid bodies. It follows, since 
the virtual displacements are arbitrary and independent, that 

P ,  +Si. = 0 or Pi  = -St 

P . + s ?  = o  or p j  = -S* 
J J  J 

points is - 
w = (Pi + s ; )Ei  + (P;  + S p i j  

and 

which, for the single element, are the equations of external equilibrium. 
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Applying Newton’s third law, the forces between the nodes and element are related as 

ST = -Si and ST J = - S .  J (9.8) 

Substituting eqns. (9.8) into eqn. (9.7) gives 
- w = 0 = (Pi - Si)U; + (P j  - Sj)Uj 

= (Pia; + PjUj) - (SiUj + S j U j )  (9.9) 

The first quantity (PiUi + P j U , ) ,  to first order approximation assuming linearly elastic 
behaviour represents the virtual work done by the applied external forces, denoted as we. 
The second quantity, (S;Ui + S j U ; ) ,  again to first order approximation represents the virtual 
work done by element internal forces, denoted as mi. Hence, eqn. (9.9) can be abbreviated to 

0 = we - wi (9.10) 

which is the equation of the principle of virtual work for a deformable body. 
The external virtual work will be found from the product of external loads and corre- 

sponding virtual displacements, recognising that no work is done by reactions since they are 
associated with suppressed dof. The internal virtual work will be given by the strain energy, 
expressed using real stress and virtual strain (arising from virtual displacements), as 

W ;  = Eadv - I  (9.11) 

which, for the case of a prismatic element with constant stress and strain over the volume, 
becomes 

- 
W ;  = ECTAL 

9.7. A rod element 

The formulation of a rod element will be considered using two approaches, namely the 
use of fundamental equations, based on equilibrium, compatibility and constitutive (i.e. 
stresshtrain law), arguments and use of the principle of virtual work equation. 

9.7.1. Formulation of a rod element using fundamental equations 

Consider the structure shown in Fig. 9.18, for which the deformations (derived from the 
displacements), member forces, stresses and reactions are required. Idealising the structure 
such that all the members and loads are taken to be planar, and all the joints to act as fric- 
tionless hinges, i.e. pinned, and hence incapable of transmitting moments, the corresponding 
behaviour can be represented as an assemblage of rod finite elements. A typical element is 
shown in Fig. 9.22, for which the physical and material properties are taken to be constant 
throughout the element. Changes in properties, and load application are only admissible at 
nodal positions, which occur only at the extremities of the elements. Each node is considered 
to have two translatory freedoms, i.e. two dof., namely u and displacements in the element 
x and y directions, respectively. 
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Fig. 9.22. An axial force rod element. 

Element stiflness matrix in local coordinates 

Quantities in the element coordinate directions are denoted with a prime (’), to distinguish 
from those with respect to the global coordinates. Displacements in the local element x’ 
direction will cause an elongation of the element of us - ui, with corresponding strain, (u5 - 
ui)/L. Assuming Hookean behaviour, the element loads in the positive, local, x’ direction 
will hence be given as 

Ui = AE(ui - u>)/L and 

which are force/displacement relations similar to eqn. (9.6), and hence satisfy internal element 
equilibrium, compatibility and the appropriate stresdstrain law. 

In isolation, the element will not have any stiffness in the local y’ direction. However, stiff- 
ness in this direction will arise from assembly with other elements with different inclinations. 
The element force/displacement relation can now be written in matrix form, as 

175 = AE(u> - ui)/L 

U ;  1 0 -1 0 u; [;\I =F[4 0 0  0 0 0  1 0] [$I 
0 0  0 0  

(9.12) 

from which the element stiffness matrix with respect to local coordinates is: 

r 1 0 -1 01  
[/p’] = - A E I  L - 1 0  O O O 1 0  O 1  

t o o  0 0 1  

(9.14) 

Element stress matrix in local coordinates 

local coordinates, the axial stress for a rod element will be given as: 
For a pin-jointed frame the only significant stress will be axial. Hence, with respect to 
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Or, more concisely, 

from which the stress matrix with respect to local coordinates is: 

,(e) = [ ~ ’ ( e ) ] ( ~ ’ ( e ) ~  

E 
L 

[H’(‘)]  = -[-1 0 1 01 

(9.15) 

(9.16) 

(9.17) 

Transformation of displacements and forces 

To enable assembly of contributions from each constituent element meeting at each joint, 
it is necessary to transform the force/displacement relationships to some global coordinate 
system, by means of a transformation matrix [ T @ ) ] .  This matrix is derived by establishing 
the relationship between the displacements (or forces), in local coordinates x’, y’, and those 
in global coordinates x,y. Note that the element inclination a, is taken to be positive when 
acting clockwise viewed from the origin along the positive z-axis, and is measured from the 
positive global x-axis. With reference to Fig. 9.23, for node i ,  

ui = ui cos a! + vi sin a!, and vi = -ui sin a + vi cos a!. 

Fig. 9.23. Transformation of displacements. 

Similarly, for node j , 

ut. = u . cos a! + vi sin a!, and vi = -uj sin a! + vj cos a!. 
J J  

Writing in matrix form the above becomes: 
cosa sina 0 0 

0 0 
0 0 -sina! cosa! 

-s ina cosa! 0 

Or, more concisely, ( S ’ 9  = [T‘e’ ] {s ‘e ’ )  (9.18) 
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in which the transformation matrix is: 
cosa! sina! 0 0 

-sina! cosa! 0 

0 -sina! cosa! 

[Tte)] = (9.19) 

The same transformation enables the relationship between member loads in local and global 
coordinates to be written as: 

(S’(“’} = [T‘4] (s (e )}  (9.20) 

Expressing eqn. (9.20) in terms of the member loads with respect to the required global 
coordinates, we obtain: 

{ s ( e ) }  = [ ~ ( e ) l - I  {s ’ (e ) j  

Substituting from eqn. (9.13) gives: 
{ s ( e ) }  = [ T @ ) I - ~  [ k ’ ( e ) ~ ( ~ ’ ( e ) }  

Further, substituting from eqn. (9.18) gives: 
( s ( e ) }  = [ ~ ( e ) ] - l  [ , p ) ] [ ~ ( e ) ] { ~ ( e ) j  

It can be shown, by equating work done in the local and global coordinates systems, that 
[ ~ ( e ) l T  = [ ~ ( e ) ] - l  

(This property of the transformation matrix, [ T(e)], whereby the inverse equals the transpose 
is known as orthogonality.) Hence, element loads are given by: 

( s ( e ) j  = [~(e)]T[k’(e)l[~(“)~{~(e)} 

Or, more simply {sq = [k’(e)](s(e)} (9.21) 

in which the element stiffness matrix in global coordinates is 

[k(e)] = [ ~ ( e ) ] T [ p ) l [ ~ ( ‘ ) ]  (9.22) 

Element stiflness matrix in global coordinates 

Substituting from eqns. (9.14) and (9.19) into eqn. (9.22), transposing the transformation 
matrix and performing the triple matrix product gives the element stiffness matrix in global 
coordinates as: 

1 cos2 a! cos a! sin a! - cos2 a! - cos a! sin a! 
sin2 a! - sin a! cos a! - sin2 a! 

cos2 a! cos a! sin a! 
- sin a! cos a! - sin2 a! sin a! cos a! sin2 a! 

[k‘e’]  1 - (9.23) 

Element stress matrix in global coordinates 

global coordinates by substituting from eqn. (9.18) into eqn. (9.16) to give 
The element stress matrix found in local coordinates, eqn. (9.17), can be transformed to 

,(e) - - [H”e’] [ T“’] { ,(e)) (9.24) 
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in which the element stress matrix in global coordinates is 

[ H q  = [ H " e ) ] [ p ' ]  (9.25) 

Substituting from eqn. (9.17) and (9.19) into eqn. (9.25) gives the element stress matrix in 
global coordinates as 

= E@'[-  cos 01 - sin 01 cos 01 sin o ~ ] ( ~ ) / L ( ~ )  (9.26) 

Formation of structural governing equation and assembled stiflness matrix 

( P } ,  to the element loads, (S}, via 
With reference to 8 9.5, external nodal equilibrium is satisfied by relating the nodal loads, 

(PI = [alT(S1 (9.1) 

Similarly, external, nodal, compatibility is satisfied by relating the element displacements, 
(s), to the nodal displacements, ( p } ,  via 

(SI = [allpl (9.3) 

Substituting from eqn. (9.3) into eqn. (9.21) for all elements in the structure, gives: 

(SI = [kl[aIIp} (9.27) 

in which [ k ]  is the unassembled stiffness matrix. Premultiplying the above by [aIT and 
substituting from eqn. (9.1) gives: 

(PI = [alT[kl[aIIp} 

Or, more simply (PI = [Kl lPl  (9.28) 

which is the structural governing equation for static stress analysis, relating the nodal forces 
{P} to the nodal displacements (p} for all the nodes in the structure, in which the structural, 
or assembled stiffness matrix 

[KI = [alT[kl[al (9.29) 

9.7.2. Formulation of a rod element using the principle of virtual work equation 

Here, the principle of virtual work approach, described in 0 9.6, will be used to formu- 
late the equations for an axial force rod element. As described, the approach permits the 
displacement field to be represented by approximating functions, known as interpolation or 
shape functions, a brief description of which follows. 

Shape functions 

As the name suggests shape functions describe the way in which the displacements are 
interpolated throughout the element and often take the form of polynomials, which will 
be complete to some degree. The terms required to form complete linear, quadratic and 
cubic, etc., polynomials are given by Pascal's triangle and tetrahedron for two- and three 
dimensional elements, respectively. As well as completeness, there are other considerations 
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to be made when choosing polynomial terms to ensure the element is well behaved, and the 
reader is urged to consult detailed texts6 One consideration, which will become apparent, is 
that the total number of terms in an interpolation polynomial should be equal to the number 
of dof. of the element. 

Consider the axial force rod element shown in Fig. 9.24, for which the local and global 
axes have been taken to coincide. The purpose is to simplify the appearance of the equations 
by avoiding the need for the prime in denoting local coordinate dependent quantities. This 
element has only two nodes and each is taken to have only an axial dof. The total of only two 
dof. for this element limits the displacement interpolation function to a linear polynomial, 
namely 

u(x) = a1 + a2x 

't 

Fig. 9.24. Axial force rod element aligned with global x-axis. 

where a1 and a2, to be determined, are known as generalised coefficients, and are dependent 
on the nodal displacements and coordinates. 
Writing in matrix form 

[::I u(x) = [l x] 

Or, more concisely, 

At the nodal points, u(0)  = ui and 

Substituting into eqn. (9.30) gives 

u ( x )  = bib) 

u(L)  = Uj. 

(9.30) 

1 0  [:;I = [ 1 L ]  [::I 
Or, more concisely 

{ul = [ A I I 4  
The column matrix of generalised coefficients, {a}, is obtained by evaluating 

= [AI-'{u} (9.3 1 )  

for which the required inverse of matrix [A], i.e. [AI-' is obtained using standard matrix 
inversion whereby 

in which 

[AI-' = adj [A ] /  det [A] 

adj [A] = [C]*, where [C] is the cofactor matrix of [A] 

i.e. 
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and det [A]  = 1 x L - 0 x 1 = L 

Hence, L O  
L -1 1 

[AI-' = [ ] 
Substituting eqn. (9.31) into eqn. (9.30) and utilising the above result for [AI-', gives 

(9.32) 

in which [ N ]  is the matrix of shape functions. In this case, N I  = 1 - x / L  and N Z  = x / L ,  and 
hence vary linearly over the element, as shown in Fig. 9.25. Note that the shape functions 
have the value unity at the node corresponding to the nodal displacement being interpolated 
and zero at all other nodes (in this case at the only other node), and is a property of all 
shape functions. 

i LJ 

Fig. 9.25. Shape functions for the axial force rod element. 

Element stiffness matrix in local coordinates 

Consider the axial force element shown in Fig. 9.24. The only strain present will be a 
direct strain in the axial direction and is given by eqn. (9.4) as 

E, = E = au/ax 

Substituting from eqn. (9.32), gives 

E = a [ N ] { u } / a x  = [ B ] [ u }  

and, taking the virtual strain to have a similar form to the real strain, gives 
- e = [B] {E)  

(9.33) 

(9.34) 
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where 
[ B ]  = a [ N ] / a x  

1 
L 

In the present case of the two-node linear rod element, eqn. (9.32) shows [ N ]  = -[L - x ,  XI, 
and hence 

1 
L 

Note that in this case the derivative matrix [B] contains only constants and does not involve 
functions of x and hence the strain, given by eqn. (9.33), will be constant along the length 
of the rod element. 

[ B ]  = -1-1 1 1  (9.35) 

Assuming Hookean behaviour and utilising eqn. (9.33) 

(T = E [ B ] ( u )  (9.36) 

It follows for the linear rod element that the stress will be constant and is given as 

E E 
L L 

CJ = -[-1 1 3  [ ;;] = - ( u j  - u ; )  

in which (u j  - u ; ) / L  is the strain. 

eqn. (9.36) into eqn. (9.1 1) gives the internal virtual work as 
Substituting the expression for virtual strain from eqn. (9.34) and the real stress from 

Wi = Eadw = { U } T [ B ] T E [ B ] ( ~ )  d v  
- 1- J, 

Since the real and virtual displacements are constant, they can be taken outside the integral, 
to give 

(9.37) 

The external virtual work will be given by 

we = { U ) T { P }  (9.38) 

Substituting from eqns. (9.37) and (9.38) into the equation of the principle of virtual work, 
eqn. (9.10) gives 

0 = {U)T{P) - 

The virtual displacements, (U), are arbitrary and nonzero, and hence the quantity in paren- 
theses must be zero. 

i.e. { P )  = / [BITE[B] d v  { u )  = [k"e'](u) 
1: 

(9.39) 



332 Mechanics of Materials 2 59.7 

where [k"e'] = [BITE[B] dw I (9.40) 

Evaluating the element stiffness matrix [ / c ' ( ~ ) ]  for the linear rod element by substituting from 
eqns. (9.35) gives 

1 - 1  1 
[k'")] = It [ 1 ]  EL[-l l l dv  

For a prismatic element J, dv = AL, and the element stiffness matrix becomes 

(9.41) 

Expanding the force/displacement eqn. (9.39) to include terms associated with the y- direc- 
tion, requires the insertion of zeros in the stiffness matrix of eqn. (9.41) and hence becomes 
identical to eqn. (9.14). 

Element stress matrix in local coordinates 

For the case of a linear rod element, substituting from eqn. (9.35) into eqn. (9.36) gives 
the element stress as 

(9.42) 

Again, by inserting zeros in the matrix, to accommodate terms associated with the y- direc- 
tion, eqn. (9.42) becomes identical to eqn. (9.15). 

Transformation of element stiffness and stress matrices to global coordinates 

The element stiffness and stress matrices obtained above can be transformed from local 
to global coordinates using the procedures of 0 9.7.1 to give the results previously obtained, 
namely the stiffness matrix of eqn. (9.23) and stress matrix of eqn. (9.26). 

Formation of structural governing equation and assembled stiffness matrix 

Section 9.7.1 has covered the combination of individual element stiffness contributions, 
necessary to analyse an assemblage of elements representing a complete framework. Equilib- 
rium and compatibility arguments were used to form the structural governing eqn. (9.28) and 
hence the assembled stiffness matrix, eqn. (9.29). Now, the alternative principle of virtual 
work will be used to derive the same equations. 

Eqn. (9.37) gives the element internal virtual work in local coordinates as 
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Summing all such contributions for the entire structure of m elements, gives 
rn 

(9.43) 

Summing the contributions over all n nodes, the external virtual work will be given by 
n 

(9.44) 
i= 1 

where (7) is the column matrix of all nodal virtual displacements for the structure and { P )  
is the column matrix of all nodal forces. Substituting from eqns. (9.43) and (9.44) into the 
equation of the principle of virtual work, eqn. (9.10) gives 

m 

(9.45) 

Summing the contributions and recalling { F }  denotes the nodal displacements for the entire 
structure, gives 

rn rn rn m 

e= 1 e= 1 e= 1 e= 1 

Hence, eqn. (9.45) can be re-written as 
m 

where 

and the assembled stiffness matrix 
m 

[ K ]  = -y[k'"I 
e= 1 

(9.47) 

It follows from eqn. (9.46) since @} is arbitrary and non-zero, that 

{PI = [KllPJ 

(9.46) 

which is the structural governing equation and the same as eqn. (9.28), and implies nodal 
force equilibrium. 
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9.8. A simple beam element 

As with the previous treatment of the rod element, the two approaches using fundamental 
equations and the principle of virtual work will be employed to formulate the necessary 
equations for a simple beam element. 

9.8.1. Formulation of a simple beam element using fundamental equations 

Consider the case, similar to 39.7.1, in which the deformations, member stresses and 
reactions are required for planar frames, excepting that the member joints are now taken 
to be rigid and hence capable of transmitting moments. The behaviour of such frames can 
be represented as an assemblage of beam finite elements. A typical simple beam element is 
shown in Fig. 9.26, the physical and material properties of which are taken to be constant 
throughout the element. As with the previous rod element, changes in properties and load 
application are only admissible at nodal positions. In addition to u and u translatory freedoms, 
each node has a rotational freedom, 0, about the z axis, giving three dof. per node. Hence, 
axial, shear and flexural deformations will be represented, whilst torsional deformations 
which are inappropriate for planar frames will be ignored. 

Fig. 9.26. A simple beam element. 

Element stiffness matrix in local coordinates 

The differential equation of flexure appropriate to a beam element can be written as 

d2u’/dd2 = N ’ / E I  (9.48) 

in which u’ denotes the displacement in the local y’ direction, N’ is the element moment, E 
is the modulus of elasticity and I is the relevant second moment of area of the beam. The 
first derivative of the moment with respect to distance x’ along a beam is known to give the 
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shear force, V‘,  

i.e. dN’/dx’ = V’ (9.49) 

Similarly, the first derivative of the shear force will give the loading intensity, w’, 

i.e. dV‘/dx’ = w’ (9.50) 

Differentiating eqn. (9.48) and utilising eqn. (9.49) gives 

d3u’/dxf3 = V’/EI (9.51) 

Differentiating again and utilising eqn. (9.50) gives 

d4v’/dxf4 = w’/EI (9.52) 

Integrating eqn. (9.52), recalling that loads can only be applied at the nodes, and hence 
w‘ = 0, gives 

d3v’/d~’3 = CI = V’/EI ,  (from eqn. 9.51) (9.53) 

Further integration gives 

d2d /dx f2  = Clx’ + C2 = N‘/EI,  (from eqn. 9.48) (9.54) 

(9.55) 

(9.56) 

With reference to Fig. 9.26, it can be seen that 

~ ’ ( 0 )  = vi, d ( L )  = v>, dv’/dx’(O) = Oi/, dv’/dx’(L) = 0; 

It follows from eqn. (9.56) that vi = C4 (9.57) 

from eqn. (9.55) 0; = c3 (9.58) 

from eqn. (9.56) 

U> = C1L3/6 + C2L2/2 + C3L + C4 = C1L3/6 + C2L2/2 + OlL + U: (9.59) 

and from eqn. (9.55) 

0’. J = C,L2/2+C2L+C3 = CIL2/2+C2L+0i’ (9.60) 

An expression for C2 can now be obtained by multiplying eqn. (9.60) throughout by L/3 
and subtracting the result from eqn. (9.59), (to eliminate Cl), to give 

U) - 8;L/3 C2(L2/2 - L2/3 )  + Oi/(L - L/3 )  + U: = C2L2/6 + 0(2L/3 + 
Rearranging, C:! = 6 ( 4  - vi)/L2 - 6(OiL/3 + Oj2L/3)/L 

= 6 ( - 4  + v j ) /L2  - 2(20( + O;)/L 

Rearranging eqn. (9.60) and substituting from eqn. (9.61) gives 

(9.61) 

(9.62) 
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A E / L  0 0 -AE/L 0 0 - 

0 12EI/L3 6EI/L2 0 -12EI/L3 6EI/L2 
0 6EI/L2 4EIIL 0 -6EI/L2 2EIIL 

0 -12EI/L3 -6EI/L2 0 12EI/L3 -6EI/L2 
-AE/L 0 0 AEIL 0 0 

- 0  6EI/L2 2EIIL 0 -6EI/L2 4EIIL - 

Substituting for constant CI from eqn. (9.62) into eqn. (9.53) gives shear force 

V’ = EICl = 12EI(v; - v>)/L3 +SEI(@; + e(i)/L2 (9.63) 

Substituting for constants CI and C2 from eqns. (9.62) and (9.63) into eqn. (9.54) gives the 
moment 

N’ = EI(C1x’ + C2) 

= 6EI(2x’ - L)(v; - v) ) /L3  + 6EIx’(ei + @>)/L2 - 2E1(20,’ + @(i)/L (9.64) 

Note that the shear force, eqn. (9.63) is independent of distance x’ along the beam, i.e. 
constant, whilst the moment, eqn. (9.64) is linearly dependent on distance x’, consistent with 
a beam subjected to concentrated forces. 

It follows that the nodal shear force and moments are given as 

V’(0) = V’(L) = 12EI(vj - v) ) /L3  + 6EI(@i + e(i)/L2 

”(0) = 6EI(-v: + v) ) /L2  - 2E1(2e,’ + @>)/L 

N’(L) = ~ E I ( ~ ;  - v>)/L2 + 2 ~ r ( e ;  + 2 e ( i ) / ~  

(9.65) 

(9.66) 

(9.67) 

The shear force and moments given by eqns. (9.65)-(9.67) use a Mechanics of Materials 
sign convention, namely, a positive shear force produces a clockwise couple and a positive 
moment produces sagging. To conform with the sign convention shown in Fig. 9.26, the 
following changes are required: 

v! = -v’. = V’(0) 
I 

Ni = -N’(O) 

N >  = N’(L) 

Writing in matrix form, eqns. (9.65)-(9.67) become 

12/L2 6 / L  -12/L2 6 / L  vi 

(9.68) I::] 1 6 / L  4 -6/L 
v> - _  - -12/L2 -6/L 12/L2 -L] [ z] 
N J  6 / L  2 -6/L 4 

Combining eqn. (9.68) with eqn. (9.12) gives the matrix equation relating element axial and 
shear forces and moments to the element displacements as 
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- AE/L 0 0 -AE/L 0 0 

0 0 AEIL 0 0 

- 
0 12EI/L3 6EI/L2 0 -12EI/L3 6EIIL2 
0 6EI/L2 4EIIL 0 -6EI/L2 2EIIL 

0 -12EI/L3 -6EI/L2 0 12EIIL3 -6EI/L2 

[k“’] = 
-AE/L 

- 0  6EI/L2 2EIIL 0 -6EI/L2 4EIIL - 
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(9.70) 

u; - 
Vi 
N ;  

V !  
U‘. 

Element stress matrix in local coordinates 

Only bending and axial stresses will be considered, shear stresses being taken as insignif- 
icant. The points for stress calculation will be the extreme top and bottom fibres at each 
end of the element, which will always include the maximum stress point. With reference to 
Fig. 9.27, the beam element stress matrix will be 

top btrn top btrn {a@)} = {a; a; aj aj } 

top y‘ t 
btrn btrn 

Fig. 9.27. Locations for beam element stress calculation. 

Relating these stresses to the internal loads gives 

-1/A 0 t / I  0 0 0 
-1/A 0 -b/I 0 0 0 

0 0 0 1/A 0 -t/I 
btrn 0 0 0 1/A 0 b/I  

Or, more concisely, = [h(e)]{S’(e)} 

(9.71) 

(9.72) 

Substituting for the element loads column matrix using a relation of the form of eqn. (9.13) 
gives 

{&I} = [h(e)][k’(e)]{S’(e)} = [H’(e)]{s’(e)} 

which is the same form as eqn. (9.16) and [H’@)] is the stress matrix with respect to local 
coordinates. Evaluating [h“)] [k’@)] gives the stress matrix as 

-1 6blL 2b 1 6blL 4b 

-1 6t/L 4t 1 6 t /L  
-1 -6blL -4b 1 -6blL -2b 
-1 -6tlL -2t 1 -6tlL -4t (9.73) 
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- 

Transformation of displacements and loads 

Relations of similar form to those of eqns. (9.18)-(9.23) but with additional rotational 
dof. terms, previously not included in the rod element transformation, will enable the above 
element stiffness and stress matrices to be transformed from local to global coordinates. The 
expanded form of eqn. (9.18) for the beam element will be given as 

- cosa! s ina 0 0 0 0- 
-sina! cosa 0 0 0 0  

0 0 1  0 0 0  
- 0  0 0 cosa! sina! 0 

0 0 0 -sina! cosa! 0 
- 0  0 0  0 0 1 -  

IT(“)] = 

- cosa sina! 0 0 0 0  
-sina! cosa! 0 0 0 0  

0 0 1  0 0 0  
0 0 0 cosa! sina! 0 
0 0 0 -sina! cosa! 0 

- 0  0 0  0 0 1  

Element stiffness matrix in global coordinates 

(9.74) 

. A cos’ a! + (121 sin2 a / ~ ’  ), 
( A  - 121/L2) cos a! sin a!, 

-(61 sina)/L, 
-A cos’ a! - (121 sin’ (Y)/L’, 
( - A  + 121/L2)cosa!sina!, 

-(61 sin a!)/L, 

A cos’ a! + (121 sin’ a!)/L’, 
( A  - 1 21/L2) cos a! sin a!, 

(61 sin a)/L, 

S 

A sin2 a! + (1 21 cos’ a!)/L’, 

( - A  + 121/L2)cosa!sina, (6Zsina!)/L, 
(61 cos a)/L, 41, 

-A sin’ a! - (1  21 cos’ a!)/L’, 

ymrnetric 

-(61 cos a)/L, 
(61 cos a)/L, 21 9 

(9.75) I A sin’ a! + (121 cos’ a)/L’, 
-(61 COS a) /L ,  41 

Element stress matri,u in global coordinates 

Substituting from eqns. (9.73) and (9.74) into eqn. (9.25) gives the element stress matrix 
in global coordinates as: 

- cos a! - 6t sin(a!)/L - sin a! + 6t cos(a)/L 4t 
-4b 
-2t 

2b 

- cos a! + 6b sin(a)/L - sin a! - 66 cos(a)/L 
- cosa! + 6t sin(cr)/L - sin a! - 6t cos(a!)/L 
- cos a - 6b sin(a)/L 

cosa! + 6t sin(a!)/L 
cos a - 6b sin(a!)/L 
cos a! - 6t sin(a!)/L 
cos a! + 6b sin(a)/L 

- sin a! + 6bcos(a!)/L 
sincr - 6tcos(a!)/L 
sin a! + 6b cos(a)/L 
sin a! + 6t cos(a)/L 
sin a! - 6b cos(a!)/L 

(9.76) -4t 
4b 
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Formation of structural governing equation and assembled stiffness matrix 

Whilst the beam element matrices include rotational dof. terms, not present in the rod 
element matrices, the procedures of Section 9.7.1 still apply, and lead to the structural 
governing equation 

{PI = [Kl{PJ (9.28) 

and the assembled stiffness matrix 

[KI = [ a l T [ k l [ 4  (9.29) 

9.8.2. Formulation of a simple beam element using the principle of virtual work equation 

As Section 9.7.2 the principle of virtual work equation will be invoked, this time to 
formulate the equations for a simple beam element. 

Consider the simple beam element shown in Fig. 9.28, for which the local and global axes 
have again been taken to coincide to avoid need for the prime and hence to simplify the 
appearance of the equations. The two nodes are each taken to have only normal and rotational 
dof. The terms associated with the omitted axial dof. have already been derived for the linear 
rod element in $9.7 and will be incorporated once the other terms have been derived. The 
total of four dof. for this beam element permits the displacement to be interpolated by a 
fourth order polynomial, namely 

v ( x )  = a1 + cY2x/L + a3x2/L2 + a4x3/L3 

Y 

"i 

s, 

t 
t V- 

t,' 

Fig. 9.28. Simple beam element, aligned with global x-axis. 

where a1 to a4 are generalised coefficients to be determined. Utilisation of eqns. (9.48) and 
(9.49) shows this polynomial will provide for a linearly varying moment and constant shear 
force and hence will enable an exact solution for beams subjected to concentrated loads. 

Writing in matrix form, 

v ( x )  = [ 1 ,  x / L ,  x2/L2,  x3/L3]  

cYA 

or, more concisely 
(9.77) 
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1 0  0 0 

1 1  1 1  
0 1/L 0 0 ] 
0 1/L 2 /L  3 /L  

$9.8 

q 4 4  

At the nodal points, w(0) = vi; v(L)  = wj; 
and dvldx(0) = 8i; dv/dx(L)  = Oj 

Substituting into eqn. (9.77) gives 

Or, more concisely, 

Expressing in terms of the column matrix of generalised coefficients, (a}, gives 

Evaluation of eqn. (9.78) requires the inverse of matrix [A] obtained from 

r l l L 2  0 -3/L2 2 /L2IT  
0 1/L -2jL 
0 0  3/L2 -2/L2 adj [A] = [CIT = 

L 0 0 -1/L 1 /L  1 
1/L2 0 0 

1/L 0 
-3/L2 -2/L 3/L2 -1/L 

2/L2 1/L -2/L2 1/L 

and det [A] = 1(1/L)(1 x 3/L  - 1 x 2/L)  = 1/L2 

1/L2 0 0 
0 1/L 0 

-3/L2 2 /L  3/L2 -1/L 
2/L2 1/L -2/L2 1/L 

1 0 0 0  
L O  

Hence, [A]-' = L2 

- - 

Substituting eqn. (9.78) into eqn. (9.77) and utilising the above result for [AI-', gives 
1 0 0  

v(x)  = [ l ,  x /L,  x2/L2, x3/L31 [-: -2k : -PI [;I 
2 L - 2  L 

= [l - 3X2/L2 + 2X3/L3,x - 2X2/L +X3/L2,3XZ/L2 - 2X3/L3, -x2/L +x3/L2] [;I 
(9.79) 



99.8 Introduction to the Finite Element Method 341 

which has the same form as eqn. (9.32), in this case with shape functions 

N1 = 1 - 3x2/L2 + 2n3/L3 

N2 = x - 2x2/L + x3/L2 

N 3  = 3x2/L2 - 2U3/L3 

N4 = -x2/L + x3/L2 
the variation of which is shown in Fig. 9.29. 

't 

Fig. 9.29. Shape functions for a simple beam element. 

Element stiffness matrix in local coordinates 

Longitudinal bending stress is given by simple bending theory as 

(T = My/I  
in which, from the differential equation of flexure, eqn. (9.48), 

M = EId2v/dx2 

(T = Eyd2v/dx2 (9.80) 
to give 

Substituting eqn. (9.79) into eqn. (9.80) gives [3] o = Ey[(l2U/L3 - 6/L2)(6x/L2 - 4/L)(-12x/L3 + 6/L2)(6x/L2 - 2/L)]  

= E[BIIu) (9.81) 
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which has the same form as eqn. (9.36), except in this case 

[B] = yd2[N] /dx2  (9.82) 
Assuming Hookean behaviour, the longitudinal bending strain is obtained using 
eqn. (9.81), as 

which has the same form as eqn. (9.33). 

i.e. = [Bl{u)  (9.83) 
Substituting the real stress from eqn. (9.81) and the virtual strain from eqn. (9.83) into the 
equation of the principle of virtual work, (9.10), gives 

E = o/E = [B] {u)  

Taking the virtual longitudinal strain to be given in a form similar to the real strain, 

{U)T[B]TE[B]{U) dv 

The real and virtual displacements, being constant, can be taken outside the integral, to give 

= b)T({p) - / [BITEIBl dv {u)) 
V 

The virtual displacements, { u) , are arbitrary and nonzero, hence 

[ P )  = / [BITE[B] dv {u} = [k""'](u) 
V 

where [k'c")] = S,[BlTE[B] dv, which is an identical result to eqn. (9.40). 
Substituting from eqn. (9.82) gives 

[k'(e)]  = y(d2[N]/dx2)TEy(d2[N]/d~2) dv 

= El 4 (d2[N]/d~2>T(d2[N]/dx2)dx L 

L 
= E l i  

- 6  

6 X 

2 (3: - 1) 
- L  L 

X 

X [; pE - 1) (3; - 2 )  5 ( - 2 ~  + 1)  2 ( 3 ;  - I ) ]  dx (9.84) 

The following gives examples of evaluating the integrals of eqn. (9.84) for two elements of 
the stiffness matrix, the rest are obtained by the same procedure. 

k11 = E I I L  [g ( 2 ;  - 1) $ ( 2 ;  - l ) ]  d x =  L4 36EI I' (4; - 4 ;  + 1) dx 
36EI 4 12EI 

=- - - 2 + l  =- I L3 [ 3  1 L3 
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and k12 = k21 = EI lL [g (2; - 1 )  

6EI 
L2 

12EI 7 

Evaluation of all the integrals of eqn. (9.84) leads to the beam element flexural stiffness 
matrix 

12/L2 6/L -12/L2 
[k’(e)] = EI - 1 6/L 4 -6/L 

L -12/L2 -6lL 12/L2 -6/L 
L 6/L 2 -6)L 4 1 

which is identical to the stiffness matrix of eqn. (9.68) derived using fundamental equations. 
The same arguments made in Section 9.8.1 apply with regard to including axial terms to 
give the force/displacement relation, eqn. (9.69), and corresponding element stiffness matrix, 
eqn. (9.70). 

Element stress matrix in local coordinates 

Bending and axial stresses are obtained using the same relations as those in $9.8.1. 

Transformation of element stiffness and stress matrices to global coordinates 

The element stiffness and stress matrices are transformed from local to global coordinates 
using the procedures of $2.4.8.1 to give the stiffness matrix of eqn. (9.75) and stress matrix 
of eqn. (9.76). 

Formation of structural governing equation and assembled stiffness matrix 

The theorem of virtual work used in $9.7.2 to formulate rod element assemblages applies 
to the present beam elements. It follows, therefore, that the assembled stiffness matrix will be 
given by eqn. (9.47). The displacement column matrices will, for beams, include rotational 
dof., not present for rod elements. Further, at the nodes, moment equilibrium, as well as 
force equilibrium, is now implied by eqn. (9.28). 

9.9. A simple triangular plane membrane element 

The common occurrence of thin-walled structures merits devoting attention here to their 
analysis. Many applications are designed on the basis of in-plane loads only with resistance 
arising from membrane action rather than bending. Whilst thin plates can be curved to resist 
normal loads by membrane action, for simplicity only planar applications will be considered 
here. Membrane elements can have three or four edges, which can be straight or curvilinear, 
however, attention will be restricted here to the simpiest, triangular, membrane element. 

Unlike the previous rod and beam element formulations, with which displacement fields 
can be represented exactly and derived from fundamental arguments, the displacement fields 
represented by two-dimensional elements can only be approximate, and need to be derived 
using an energy principle. Here, the principle of virtual work will be invoked to derive the 
membrane element equations. 
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-a1 
- 

l x y 0 0 0  
O O O l x y  

ff5 

-a6 - 

9.9.1. Formulation of a simple triangular plane membrane element using the principle of 
virtual work equation 

With reference to Fig. 9.30, each node of the triangular membrane element has two dof., 
namely u and v displacements in the global x and y directions, respectively. The total of six 
dof. for the element limits the u and w displacement to linear interpolation. Hence 

"k 

A 

Fig. 9.30. Triangular plane membrane element. 

or. in matrix form 

Substituting into eqn. (9.85) gives 

(9.85) 

(9.86) 

Or, more concisely, { p }  = [ A l ( a ]  
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-ui - 
ui 

O O O Ni N j  Nk O 1  uk vk 
N i  N j  Nk 0 0 [:::;;I = [ 

-vk - 

Similar to the previous sections, the column matrix of generalised coefficients, (a) ,  is 

= [AI-'IP)  (9.87) 
obtained by evaluating 

(9.89) 

Note that the shape functions of eqns. (9.89) are linear in x and y .  Further, evaluation of 
eqns. (9.89) shows that shape function Ni(xi ,  y i )  = 1 and N ; ( x ,  y )  = 0 at nodes j and k, and 
at all points on the line joining these nodes. Similarly, N , ( x j ,  y j )  = 1 and Nk(xk, yk) = 1, 
and equal zero at, and on the line between, the other nodes. 

Formulation of element stiffness matrix 

For plane stress analysis, the strain/displacement relations are 

ex, = au/ax, E , , ~  . .  = a v / a y ,  E,.,, = au/ay  + av/ax 

where E, and E,,  are the direct strains parallel to the x and y axes, respectively, and E,, is 
the shear strain in  the x y  plane. Writing in matrix form gives 
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alax o 

E,?. a/ay alax 

Substituting from eqn. (9.85) and performing the partial differentiation, the above becomes 

1 [ 0 0 1 0 1 0  

0 1 0 0 0 0  
( E ) =  0 0 0 0 0 1 

Substituting from eqn. (9.87) gives 

YO 1 0 0 0 0 1  
( E }  = 0 0 0 0 0 1 

L O O l O l O  

Or, more concisely, ( E )  = [Bl(uJ 

1 0 1 0 0 0 0  

0 0 1 0 1 0  
0 0 0 0 0 1 [A]-' where 

(9.90) 

(9.91) 

Note that matrix [B] is independent of position within the element with the consequence that 
the strain, and hence the stress, will be constant throughout the element. 

For plane stress analysis (azz = a,, = a?? = 0) with isotropic material behaviour, the 
stresdstrain relations in matrix form are 

Or, more concisely, IO) = [Dlb) (9.92) 

where a, and aVy are the direct stresses parallel to x and y axes, respectively, a,, is the 
shear stress in the xy plane, and [D] is known as the elasticity matrix. 

Following the same arguments used in the rod and beam formulations, namely, taking 
the expression for virtual strain to have a similar form to the real strain, eqn. (9.90), and 
substituting this and the expression for real stress, eqn. (9.92), into the equation of the 
principle of virtual work, (9.10), gives the element stiffness matrix as 

(9.93) 

The only departure of eqn. (9.93) from the previous expressions is the replacement of the 
modulus of elasticity, E, by the elasticity matrix [D], due to the change from a one- to a 
two-dimensional stress system. 



$9.10 Introduction to the Finite Element Method 347 

Recalling, for the present case that the displacement fields are linearly varying, then matrix 
[B] is independent of the x and y coordinates. The assumption of isotropic homogeneous 
material means that matrix [D] is also independent of coordinates. It follows, assuming 
a constant thickness, t ,  throughout the element, of area, a ,  eqn. (9.93) can be integrated 
to give 

= at [ B I ~ [ D ] [ B ]  (9.94) 

Element stress matrix 

The expression for the element direct and shear stresses is obtained by substituting from 
eqn. (9.90) into eqn. (9.92), to give 

{&)j = [ D I [ B I { U )  

or, more fully, 
r u; 1 

(9.95) 

These stresses are with respect to the global coordinate axes and are taken to act at the 
element centroid. 

Formation of structural governing equation and assembled stiffness matrix 

As Sections 9.7.2 and 9.8.2, the structural governing equation is given by eqn. (9.28) and 
the assembled stiffness matrix by eqn. (9.47). 

9.10. Formation of assembled stiffness matrix by use of a dof. correspondence table 

Element stiffness matrices given, for example, by eqn. (9.23), are formed for each element 
in the structure being analysed, and are combined to form the assembled stiffness matrix 
[ K ] .  Where nodes are common to more than one element, the assembly process requires 
that appropriate stiffness contributions from all such elements are summed for each node. 
Execution of finite element programs will enable assembly of the element stiffness contri- 
butions by utilising, for example, eqn. (9.29) deriving matrix [ a ] ,  and hence from the 
connectivity information provided by the element mesh. Alternatively, eqn. (9.47) can be 
used, the matrix summation requiring that all element stiffness matrices, are of the 
same order as the assembled stiffness matrix [ K ] .  However, by efficient “housekeeping” only 
those rows and columns containing the non-zero terms need be stored. 

For the purpose of performing hand calculations, the tedium of evaluating the triple 
matrix product of eqn. (9.29) can be avoided by summing the element stiffness contri- 
butions according to eqn. (9.47). The procedure to be adopted follows, and uses a so-called 
dof. correspondence table. Consider assembly of the element stiffness contributions for the 
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simple pin-jointed plane frame idealised as three rod elements, shown in Fig. 9.19. The 
element stiffness matrices in global coordinates can be illustrated as: 

all a12 a13 a14 
a21 a22  a23 a24 [ a32  ::t [k‘”’] = 

a42 

Y ~ I I  b12 h 3  6141 
[k‘b’] = 1 621 b22 b23 b24 1 

b31 b32 b33 634 

The procedure is as follows: 

0 Label a diagram of the frame with dof. numbers in node number sequence. 
0 Construct a dof. correspondence table, entering a set of dof. numbers for each node of 

every element. For the rod element there will be two dof. in each set, namely, u and 
displacements, and two sets per element, one for each node. The sequence of the sets 
must correspond to progression along the local axis direction, i.e. along each positive x’ 
direction. This is essential to maintain consistency with the element matrices, above, the 
terms of which have been shown in eqn. (9.23) to involve angle a, the value of which 
will correspond to the inclination of the element at the end chosen as the origin of its 
local axis. The sequence shown in Table 9.2 corresponds to ffa = 330”, f f b  = 180” and 
a, = 210”. The u and w dof. sequence within each set must be maintained. 

0 Choose an element for which the stiffness contributions are to be assembled. 
0 Assemble by either rows or columns according to the dof. correspondence table. 
0 Repeat for the remaining elements until all are assembled. 

Table 9.2. Dof. correspondence table for assembly of structural stiffness matrix, [K]. 

Row and/or column 
in element stiffness 

Row and/or column in assembled stiffness matrix, [K] 

matrix, element a element b element c 

1 1 3 1 
2 2 4 2 
3 3 5 5 
4 4 6 6 

For example, choosing to assemble element b contributions by rows, then the first and the 
“element b” columns of the dof. table, Table 9.2, are used. Start by inserting in row 3, 
columns 3, 4, 5 ,  6 of structural stiffness matrix [K], the stiffness contributions respectively 
from row 1, columns 1, 2, 3, 4 of element stiffness matrix, [ k ( b ) ] .  Repeat for the remaining 
rows 4, 5, 6, inserting in columns 3, 4, 5,  6 of [ # I ,  the respective contributions from rows 
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2, 3 , 4 ,  columns 1, 2, 3 , 4  of [ l ~ ' ~ ) ] .  Repeat for remaining elements a and c, to give finally: 

[KI = 

-ail + C I I  a12 + c12 a13 a14 C l 3  cl4 

a21 + c21 a22 + c22 a23 a24 c23 c24 

b14 
b23 b24 

a32 a33 + 611 a34 + 612 b13 
a42 a43 + b21 am + b22 

a3 I 
a4 1 

b32 b33 + ~ 3 3  b34 + ~ 3 4  

b42 b43 + C43 bm + Cm 

c3 1 c32 b3 1 

- C4l  c42 b4 1 

The above assembly procedure is generally applicable to any element, albeit with detail 
changes. In the case of the simple beam element, with its rotational, as well as translational 
dof., reference to $ 9.8 shows that the element stiffness matrix is of order 6 x 6, and hence 
there will be two additional rows in the dof. correspondence table. A similar argument holds 
for the triangular membrane element, with its three nodes each having 2 dof. The Examples 
at the end of this chapter illustrate the assembly for rod, beam and membrane elements. 

9.11. Application of boundary conditions and partitioning 

With reference to $9.4.7, before the governing eqn. (9.28) can be solved to yield the 
unknown displacements, appropriate restraints need to be imposed. At some nodes the 
displacements will be prescribed, for example, at a fixed node the nodal displacements 
will be zero. Hence, some of the nodal displacements will be unknown, (pa), and some 
will be prescribed, ( p p } .  Following any necessary rearrangement to collect together equa- 
tions relating to unknown, and those relating to prescribed, displacements, eqn. (9.28) can 
be partitioned into 

(9.96) 

It will be found that where the loads are known, ( P , } ,  [i.e. prescribed nodal forces (and 
moments, in beam applications)], the corresponding displacements will be unknown, (pa}, 
and where the displacements are known, ( p p ) .  (i.e. prescribed nodal displacements), the 
forces, (Po], (and moments, in beam applications), usually the reactions, will be unknown. 

9.12. Solution for displacements and reactions 

A solution for the unknown nodal displacements, (pa}, is obtained from the upper partition 
of eqn. (9.96) 

Rearranging 

To obtain a solution for the unknown nodal displacements, ( p a ] ,  it is only necessary to invert 
the submatrix [K, , ] .  Pre-multiplying the above equation by [K, , ] - '  (and using the matrix 
relation, [Kaa]-l[K,a] = [I], the unit matrix), will yield the values of the unknown nodal 
displacements as 

(9.97) 

{ P a }  = [K,,l(p,l + [K,gl(pfi) 

[Kaul ( p a )  = (Pa 1 - [KapI ( PPI 

(pa) = [ ~ a a l - I ( ~ a ~  - [K,,I-~[K~~I(PBI 
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If all the prescribed displacements are zero, i.e. { p g }  = {0), the above reduces to 

{Pal = [Kaal-l{Pa) (9.98) 

The unknown reactions, ( P g ) ,  can be found from the lower partition of eqn. (9.96) 

{Pgl = [KB.II(PaJ + [KggI{PpJ (9.99) 

Again, if all the prescribed displacements are zero, the above reduces to 

(PgJ = KB.IlIPa1 (9.100) 
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Examples 

Example 9.1 

Figure 9.31 shows a planar steel support structure, all three members of which have the 
same axial stiffness, such that AEIL = 20 MN/m throughout. Using the displacement based 
finite element method and treating each member as a rod: 

(a) assemble the necessary terms in the structural stiffness matrix; 
(b) hence, determine, with respect to the global coordinates (i) the nodal displacements, and 

(ii) the reactions, showing the latter on a sketch of the structure and demonstrating that 
equilibrium is satisfied. 
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Fig. 9.31 

Solution 
(a) Figure 9.32 shows suitable node, dof. and element labelling. Lack of symmetry prevents 

any advantage being taken to reduce the calculations. None of the members are redundant 
and hence the stiffness contributions of all three members need to be included. 

All three elements will have the same stiffness matrix scalar, 

i.e. ( A E / L ) ( ~ )  = ( A E / L ) ( ~ )  = ( A E / L ) ( ~ )  = A E / L  

Fig. 9.32. 

With reference to 99.7, the element stiffness matrix with respect to global coordinates is 
given by 

cos2 a 

- cos2 a - sin a! cos a! cos2 a! 
[k")] = (?)>'" [ sin a! cos a! sin2 a! symmetric 

- sin a cos a! - sin2 a sin a cos a sin2 (Y 
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Evaluating the stiffness matrix for each element: 

Row/ 
column 

in 

1 
2 
3 
4 

[M.,] 

Element a 

Rowkolumn in 
[Kl 

a (' 

3 3 5  
4 4 6  
I S 1  
2 6 2  

0.36 -0.48 -0.36 0.481 
-0.48 0.64 0.48 -0.64 
-0.36 0.48 0.36 -0.48 

0.48 -0.64 -0.48 0.64 

Element b 

[p] = - A E I  L - 1 0  O O 0 ° 1  1 0  
L o o  O O J  

Element c 

0 0 0  0 
[,("I = [; 1 0  -4 

L 
0 -1 0 

The structural stiffness matrix can now be assembled using a dof. correspondence table, (ref. 
$9.10). Observation of the highest dof. number, i.e. 6, gives the order (size), of the struc- 
tural stiffness matrix, i.e. 6 x 6. The structural governing equations and hence the required 
structural stiffness matrix are therefore given as 

AE 
L 

= -  
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(b) (i) Rearranging and partitioning, with u1 = u2 = u3 = 213 = 0, (i.e. (pp} = 0)  

Inverting [K,,] to enable a solution for the displacements using { p a )  = [K, ] - ' {P , )  

AE 0.64 0.64 
L 0.64 1.64 adj [K,,] = - [ ] and det[K,,] = 0.64(AE/L)2 

= [I1 1 ] Check: - L [ 1 1  ] AE [ '*@ -0.64 [' AE 1 2.5625 -0.64 0.64 
Then [K,]-' = - AE 1 2.5625 

The required displacements are found from 

L 1 1  90. lo3 
Substituting' [::I = E [ 1 2.56251 [ = -5 lo-* [ i.56251 [ 72.10)] 

The required nodal displacements are therefore V I  = -8.10 mm and 212 = -13.73 mm. 
(ii) With reference to $9.12, nodal reactions are obtained from 

IPp} = [K&lIPaJ 

Substituting gives 

-0.48 0.48 

0 0 -13.725 x 1 
- 1  0 

-54 

The required nodal reactions are therefore X1 = -54 kN, X2 = 54 kN, X3 = 0 and Y3 = 
162 kN. 

Representing these reactions together with the applied forces on a sketch of the structure, 
Fig. 9.33, and considering force and moment equilibrium, gives 

F ,  = (54 - 54) kN 

F ,  = (162 - 90 - 72) kN 

= o  
= 0 

E M 3  = (54 x 4 - 73 x 3) kNm = 0 

Hence, equilibrium is satisfied by the system of forces 
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90 kN 

162 ldrl 

Fig. 9.33. 

Example 9.2 

Figure 9.34 shows the members and idealised support conditions for a roof truss. All 
three members of which are steel and have the same cross-sectional area such that AE = 12 
MN throughout. Using the displacement based finite element method, treating the truss as a 
pin-jointed plane frame and each member as a rod: 
(a) assemble the necessary terms in the structural stiffness matrix; 
(b) hence, determine the nodal displacements with respect to the global coordinates, for the 
condition shown in Fig. 9.34. 
(c) If, under load, the left support sinks by 5 mm, determine the resulting new nodal displace- 
ments, with respect to the global coordinates. 

I 4 m  
... 
I I 4 m  I 

r 1 

Fig. 9.34. 

Solution 
(a) Figure 9.35 shows suitable node, dof. and element labelling. Lack of symmetry prevents 

any advantage being taken to reduce the calculations. However, since both ends of the 
horizontal member are fixed it is redundant therefore and does not need to be considered 
further. 
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5.6 

4 m  

Fig. 9.35. 

All three members have the same AE, hence 

(AE)'a' = (AE)'b' = AE 

With reference to $9.7, the element stiffness matrix with respect to global coordinates is 
given by 

cos2 a 

- cos2 a - sin a cos a cos2 a 
[k(e) ]  = ( y )  ( e )  [ sin a cos a sin2 a symmetric 

- sin a cos a - sin2 a! sin a cos a sin2 a! 

Evaluating the stiffness matrix for both elements: 

Element a 

Element b 

L@)  = 2&m, a@) = 150",  COS^(') = -&3)/2, sincda) = 1/2 

1 J3 - 1  -a 1 
-1 I / &  1 

J3 -1 
1 -l/& -1 l / J 3  

[k 'b ' ]  = - 

The structural stiffness matrix can now be multi-assembled using a dof. correspondence 
table, (ref. $9.10), and will be of order 6 x 6. Only the upper sub-matrices need to be 
completed, i.e. [E laa]  and [K,p] ,  since the reactions are not required in this example. The 
necessary structural governing equations and hence the required structural stiffness matrix 
are therefore given as 
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Row/ Rowkolumn in 
column IKI 

in 
[k'')] a b 

1 3 5 
2 4 6 
3 1 1 
4 2 2 

1\13 

\13 1 3 

\13 1 -1 

-1 1 1 1\13 - - - - A - - - - - -  
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

I I I 

I I 
I 

- l  1 4 3  I I 

1 I 4 3  1 
I 
I 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

(b) Corresponding to u2 = v2 = u3 = 713 = 0, the partitioned equations reduce to: 

Inverting [K,,] to enable a solution for the displacements from { p a }  = [K,,]-'[P,] 
2 ] and det [K,,] = ( y )  9.2378 3.5774 -0.7321 

2.7321 adj lKa,l = (?I2 [ -0.7321 

Then [K,,]-' 
0.3873 -0,079251 check:- 8 [ 0.3873 -0.079251 [2.7321 0.7321 

-0.07925 0.2958 AE -0.07925 0.2958 AE 0.7321 3.57741 = ['I 

Hence, the required displacements are given by 

{Pa} = lKaal-'(',1 

0.3873 -0.079251 [ -20.103] - - [ -3.051 
-0.07925 0.2958 -40.103 -6.83 mm 

Substituting, [ = 

The required nodal displacements are therefore U I  = -3.05 mm and V I  = -6.83 mm. 
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(c) With reference to $9.12, for non-zero prescribed displacements, i.e. { p p )  # IO),  the 
full partition of the governing equation is required, namely, 

Pa.) = [KaaI{paJ + [KapIIPpJ 

{pal  = [Kaal-lIRY1 - [~aal-'IKaSl{pflJ 

Rearranging for the unknown displacements 

Evaluating 

I 0.3873 -1.7321 -1.7321 1 
[ ~ a a l - ~ [ ~ a p ]  = [ -0.07925 -:::;:?] [ 1t.7321 -3 1 -0.5773 

-0.25 -0.4331 -0.75 
= [ -0.4331 -0.75 0.4331 -::;z3'] 

Recalling from part (b) that 

0 
-5 x 10-2 

0 
0 

and substituting into the above rearranged governing equation, 

-3.05 2.1655 -5.22 [ 6:] = [ -6.831 - [ 3.75 ] = [ -10.58]mm 

yields the required new nodal displacements, namely, u1 = -5.22 mm and w1 = - 10.58 mm. 

Example 9.3 

A steel beam is supported and loaded as shown in Fig. 9.36. The relevant second moments 
of area are such that I(') = 21@) = 2 x m' and Young's modulus E for the beam 
material = 200 GN/m2. Using the displacement based finite element method and representing 
each member by a simple beam element: 

Fig. 9.36. 

(a) determine the nodal displacements; 
(b) hence, determine the nodal reactions, representing these on a sketch of the deformed 

geometry. Show that both force and moment equilibrium is satisfied. 
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Solution 

any advantage being taken to reduce the calculations. There are no redundant members. 

elements will have the same EIL, i.e, 

(a) Figure 9.37 shows suitable node, dof. and element labelling. Lack of symmetry prevents 

Employing two beam finite elements, (which is the least number in this case), both 

(E/L)(" = (E/L)'b' = E / L  

Fig. 9.37. 

However, the second moments of area will be different, such that 

and will be the only difference between the two element stiffness matrices. 

with respect to local coordinates is given as 
With reference to $9.8 and in the absence of axial forces, each element stiffness matrix 

12/L2 
[k'e)]  = (T) ( e )  [ 6 / L  4 symmetric 

-12/L2 - 6 / L  12/L2 
6 / L  2 - 6 / L  4 

The above local coordinate element stiffness matrix will, in this case, be identical to that 
with respect to global coordinates since the local and global axes coincide. 

Substituting for both elements: 

Element a 

Recalling I(') = 21 

24/L2 

-24/L2 -12/L 24/L2 
12/L 4 - 1 2 1 ~  a 

[k(")] = (!?!) [ l 2 I L  8 symmetric 
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Element h 

Recalling I ( b )  = I 

(b) - I 6 iL  4 symmetric 
[k  l - -  L -12/L2 -6/L 12/L2 

The structural stiffness matrix can now be assembled. A dof. correspondence table can be 
used as an aid to assembly. However, observation of the relatively simple element connec- 
tivity, shows that the stiffness contributions for element a will occupy the upper left 4 x 4 
locations, whilst those for element h will occupy the lower right 4 x 4 locations of the 6 x 
6 structural stiffness matrix. The reduced structural stiffness matrix is due to the omission 
of axial terms, otherwise the matrix would have been of order 9 x 9. Hence, completing 
only those columns needed for the solution, gives 

El 
L 

= -  

I 
I I I I 

I I I I I 

I I I 12/L 

I I I I 
I I I 6/L I 61L 

{I I I 

I 4  

No need to complete these columns 

Corresponding to V I  = 81 = w2 = 03 = 0 (by omitting axial terms it has already been taken 
that u1 = u2 = u3 = 0), the partitioned equations reduce to 

Inverting [K,] to enable a solution for the displacements from ( p a )  = [Kaa]-'{Pa} 

E l  
where adj [K,]  = - [ -; and det [Kea]  = 44(EI/L)2 

The required displacements are found from 

{ p a l  = [ ~ a a ~ - I ~ p a )  
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Substituting [it] =- L [ 4 -2 12] [E:] 
44EI -2 

2 4 5 x 104 - - 
4 4 x 2 0 0 ~  109 x 1 x 10-5 [-2 I:] [o 1 

20 4.545.10-3 0.260 [ -101 = [ -2.273.10-3]~~ = [ - 0 . 1 3 0 ] ~ ~ ~  =2.2727 

The required nodal displacements are therefore 02 = 0.26" and 133 = -0.13". 
(b) With reference to 59.12, nodal reactions are obtained from 

(pa) = [ K a ~ l I ~ a l  
YI 12/L 0 

Substituting gives =$ [ - f / ,  6yL ] [z] 
-6/L -6/L 

- - 
2 -2.273 x 

-3 -3 
27.27 kN 
18.18 kNm 

= [-.::;E I 
The required nodal reactions are therefore Y 1 = 27.27 kN, M I  = 18.18 kNm, Yz = 
-20.45 kN and Y3 = -6.82 kN. 

Representing these reactions together with the applied moment on a sketch of the deformed 
beam, Fig. 9.38, and considering force and moment equilibrium, gives 

C F ,  = (27.27 - 20.45 - 6.82) kN = 0 

EMI = (18.18 + 50 - 20.45 x 2 - 6.82 x 4) kNm = 0 

27.27 kN 27.45 kN 6.82 kN 

Fig. 9.38. 

Example 9.4 

The vehicle engine mounting bracket shown in Fig. 9.39 is made from uniform steel 
channel section for which Young's modulus, E = 200 GN/m2. It can be assumed for both 
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M.=OSkNm 

'I 
N A  - 

w 
\ 

f 
SeClDn A-A 

Fig. 9.39. 

channels that the relevant second moment of area, I = 2 x lo-* m4 and cross-sectional 
area, A = 4 x m2. The bracket can be idealised as two beams, the common junction of 
which can be assumed to be infinitely stiff and the other ends to be fully restrained. Using 
the displacement based finite element method, and representing the constituent members as 
simple beam elements: 
(a) assemble the necessary terms in the structural stiffness matrix; 
(b) hence, determine for the condition shown in Fig. 9.39 (i) the nodal displacements with 
respect to the global coordinates, and (ii) the combined axial and bending extreme fibre 
stresses at the built-in ends and at the common junction. 

Solution 
(a) Figure 9.40 shows suitable node, dof. and element labelling. The structure does not 

have symmetry or redundant members. The least number of beam elements will be used to 

@ 4.5.8 1.2.3 0 

@ 7.8.9 

Fig. 9.40. 
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minimise the hand calculations which, in this example, is two.
Both elements will have the same A, E and I,

i.e. (A, E, Ifa) = (A, E, Ifb) =A,E,I,

but will have different lengths, i.e. L(a) and L(b).
With reference to §9.8, the element stiffness matrix inclusive of axial terms and in global

coordinates is appropriate, namely:

A COs2a + (121 sin2a)/L2,
(A- 121 /L2)cos a sina, A sin2 a + (121 cos2 a)/L2,

k(e) -
(~ ) (e) -(6Isina)L, (6Icosa)/L, 41,

[ ]- L -Acos2a-(12Isin2a)/L2, -(A-121/L2)cosasina, (6Isina)/L,

-(A -121/L2)cosasina, -Asin2a- (12Icos2a)/L2, -(6Icosa)/L,
-(6Isina)/L, (6Icosa)/L, 21

A COS2 a +(121 sin2 a)/ L 2,

(A- 121/L2)cosasina,

(6Isina)/L,

symmetric
A sin2 a + (121 COs2 a)/L2,

-(61 cos a)/ L, 41

Evaluating, for both elements, only those stiffness terms essential for the analysis:
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The structural stiffness matrix can now be assembled. Whilst the structure has a total of 9 
dof., only 3 are active, the remaining 6 dof. are suppressed corresponding to the statement 
in the question regarding the ends being fully restrained. The node numbering adopted in 
Fig. 9.40 simplifies the stiffness assembly, whereby the first 3 x 3 submatrix terms for 
both elements are assembled in the first 3 x 3 locations of the structural stiffness matrix; 
these being the only terms associated with the active dofs. It follows that rearrangement is 
unnecessary, prior to partitioning. The necessary structural governing equations and hence 
the required structural stiffness matrix are therefore given as 

= E  x10-4 

I 
I 

I 

40 0 0 
0 0.1875 I 4.6875 

0 2.4 -0.12 I 

0 -0.12 8x10-3 
0 50 0 1  

0.1875 o 10x10-3 I 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

These submatrices are not required, for this example. 
(b) (i) Corresponding to u2 = v2 = 02 = u3 = 'u3 = 193 = 0, the partitioned equations 

reduce to 

52.4 -0.12 
0.1875 -0.12 

89.375 0 0.375 

44.6875 0 

104.8 -0.24 ] [ 
0.375 - 0.24 0.036 

i.e. (pal = [Kaal (pa}  

Inverting [K,,] to enable a solution for the displacements from ( p , ]  = [K, , ] - ' {P , ]  

where 1 3.7152 -0.09 -39.3 

-39.3 21.45 9366.5 
adj [K,,] = lOI4 3.0769 21.45 
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and det [K,] = 102'(89.375[104.8 x 0.036 

- (-0.24)(-0.24)] - 0 + 0.375(0 - 0.375 x 104.8)) 

= 317.3085 x 10" 

1 11.7085 -0.2836 - 123.8542 
[K,]-' = lo-'' -0.2836 9.6969 67.5998 [ -123.8542 67.5998 29518.59 

Then 

The required displacements are found from 

Pa = [KlYal-IIPa} 

11.7085 -0.2836 -123.85421 [ -o.i] 
Substituting[ = lo-'' [ -0.2836 9.6969 67.5998 lo3 -2.5 

-123.8542 67.5998 29518.59 

1 7.434 x m 
-5.833 x m 
-1.505 x rad 

The required nodal displacements are therefore u1 = 7.434 x m, V I  = -5.833 x 

(b) (ii) With reference to 89.8, the element stress matrix in global coordinates is given as 

- cos a - 6b sin(a)/L - sin a + 66 cos(a)/L 26 cos a + 6b sin(a)/l sin a - 66 cos(a)/L 4b "1 - cosa - 6r s in(a) / l  - sin a + 6t cos(a) / l  4t cos CY + 6t sin(a)/l sin a - 6f cos(a)/L 
- E - cos a + 6b sin(a)/L. - sin a - 6b cos(a) / l  -4b cosa - 6b sin(a)/L sin a + 6b cos (a ) / l  -2b 

L - cosa + 6r sin(a)/ l  - sin a - 6r cos(a) / l  -2r cos a - 6t sin(a)/ l  s ina + 6r cos(a) / l  -4r 

m and 81 = -1.505 x rad. 

[ [H(  1 - - 

Evaluating, for both elements, only those terms essential for the analysis: 

Element a 

6') = 14 x m, b(') = 6 x lop3 m, and recalling from part (a) L@) = 0.1 m, &) = 
180", cos a!(') = - 1, sin a(') = 0 

I I I I I 

I I 

I I 

1 I -0.84 1 56 x 10-3 I I I 

200 x 109 1 1 0.36 I -24X I I I 

1 1 0.84 I -28 X 
I i I I I I 

[H(a)] = 
0.1 

I 
1 1  

-0.36 I 12 X I 

No need to complete these columns for this example 
With reference io 99.7, the element stresses are obtained from 

With reference to $9.7, the element stresses are obtained from 

{ d e ) }  = [H'e']""'} 

where, for element a ,  the displacement column matrix is 

{s(')) = (UI V I  81 u:! ~2 82) in which uz = vz = OZ = 0 in this example. 
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= 2 x  1012 

Substituting for element a and letting superscript i denote extreme inner fibres and superscript 

- 

1 7.434 x 10-6 

-5.833 x 10-6 
-143.89 x 106 

82.91 x 106 
1.505 x 10-3 89.35 x 106 

0 -17.05 x 106 

I 
I 

I I I I I 

I I I I 

1 -0.84 56 X 1 1 
1 I 0.36 1-24 x 10-31 I I 

1 I 0.84 1-28 x 10-3 I I I 

- 1  1-0.36 1 12 x 10-3 I I I 

~. 

o denote extreme outer fibres, gives 

- 
I 
I 

I 

I I 

0.45 1; 24x la3; 
1.051 11-56x 1U31 I I 

I 

1 
1.051 1 ;  28x lo3; I I 

I I  I I  

- 7.434 x la6- - -96.52 x 16 
-5.833 x IO6 176.60~ I6 

= 
-1.505 x lU3 22.20 x 16 

0 
0 
0 

The required element stresses are therefore a; = 143.89 MN/m2 (C), ai' = 82.91 MN/m2(T), 
IS; = 89.35 MN/m2(T) and a; = 17.05 MN/m2 (C). 

Element h 

m, b'b) = 14 x 
270", cos a(') = 0, sin db) = - 1, 

t @ )  = 6 x m, and recalling from part (a) L(b) = 0.08 m, = 

The required element stresses are therefore ai = 176.60 MN/m2 (T), a: = 96.52 MN/m2 
( C ) ,  ffi = 100.42 MN/m2(C) and ai = 22.20 MN/m2 (T). 

Example 9.5 

Derive the stiffness matrix in global coordinates for a three-node triangular membrane 
element for plane stress analysis. Assume that the elastic modulus, E, and thickness, I ,  are 
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constant throughout, and that the displacement functions are 

u(x ,  y )  = a1 + a2x + a 3 y  

v ( x ,  y )  = a 4  + a5x + afjy 

Solution 

[A]  will be given as: 
With reference to $9.9 and with respect to the node labelling shown in Fig. 9.41, matrix 

1 XI y 1 ; o  0 0 
1 x2 y q o  0 0 

I 
0 0 0 11 x2 Y 2  

0 0 0 I 1  x3 y3 I 

y l  i 

XI 5 x, X 

Fig. 9.41. 

Obtaining the inverse of the partition 



Introduction to the Finite Element Method 367 

- 
X 

Fig. 9.42. 

$9.9 gives matrix [ B ]  as 

1 0 1 0 0 0 0  

0 0 1 0 1 0  
0 0 0 0 0 1 [A]- '  
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Substituting for [A]-' from above and evaluating the product gives 

O I  [ x 3  - x 2  XI -x3 x 2  -XI Y2 - Y3 y3 - yI y1  - y 2  

1 Y2 - Y3 Y3 - Yl YI - y 2  0 0 
0 x 3  - x 2  XI - x 3  x 2  -XI  [B]  = - 0 0 

2a 

The required element stiffness matrix can now be found by substituting into the relation 

[kl = at [BIT[mBl 

where the abbreviation y23 denotes y 2  - y3 ,  etc. 
Choosing to evaluate the product [D][B] first, gives 

Ef 
[kl = 4 4  1 - u2) 

Completing the matrix multiplication, reversing the sequence of some of the coordinates so 
that all subscripts are in descending order, gives the required element stiffness matrix as 

Example 9.6 

(a) Evaluate the element stiffness matrix, in global coordinates, for the three-node trian- 
gular membrane element, labelled a in Fig. 9.43. Assume plane stress conditions, Young's 
modulus, E = 200 GN/m2, Poisson's ratio, v = 0.3, thickness, t = 1 mm, and the same 
displacement functions as Example 9.5. 



Introduction to the Finite Element Method 369 

t 

Fig. 9.43. 

(b) Evaluate the element stiffness matrix for element b, assuming the same material prop- 
erties and thickness as element a. Hence, evaluate the assembled stiffness matrix for the 
continuum. 

Solution 
(a) Figure 9.44 shows suitable node labelling for a single triangular membrane element. 

The resulting element stiffness matrix from the previous Example, 9.5, can be utilised. A 
specimen evaluation of an element stiffness term is given below for kl 1 . The rest are obtained 
by following the same procedure. 

Et - - [(Y3 - Y2l2 + (x3 - x2)2(1 - u)/21 4u(l - 9) 
200 x 109 x 1 x 10-3 

Substituting - - [(2 - 0)2 + (0 - 2)2(1 - 0.3)/2] 
4 x 2(1 - 0.32) 

= 14.835 x lo7 N/m 

' t  

Fig. 9.44. 
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lk'"'] = 107[N'm1 

Evaluation of all the terms leads to the required triangular membrane element stiffness matrix 
for element a, namely 

r 14.835 1 
- 10.989 10.989 symmetric 

7.143 -3.297 -3.846 14.835 
-3.846 0 3.846 

-3.846 0 3.846 -3.846 3.846 
-3.297 3.297 0 -10.989 0 10.989 

(b) Element b can temporarily also be labelled with node numbers 1 , 2  and 3, as element a .  
To avoid confusion, this is best done with the elements shown "exploded", as in Fig. 9.45. 
The alternative is to re-number the subscripts in the element stiffness matrix result from 
Example 9.5. 

Fig. 9.45. 

Performing the evaluations similar to part (a) leads to the required stiffness matrix for element 
b, namely 

-::::: 14.835 symmetric 1 
- 10.989 10.989 
-3.297 3.297 10.989 = IO' [N/m] 

-3.846 7.143 -3.297 -10.989 14.835 
3.846 -3.846 0 0 -3.846 3.846 

With reference to 99.10, the structural stiffness matrix can now be assembled using a dof. 
correspondence table. The order of the structural stiffness matrix will be 8 x 8, corresponding 
to four nodes, each having 2 dof. The dof. sequence, U I  , u2, u3, VI, 212, 213, adopted for the 
convenience of inverting matrix [ A ] ,  covered in 59.9, can be converted to the more usual 
sequence, i.e. u1, 211, u2, 712, u3, 213, with the aid a dof. correspondence table. Whilst this 
re-sequencing is optional, the converted sequence is likely to result in less rearrangement of 
rows and columns, prior to partitioning the assembled stiffness matrix, than would otherwise 
be needed. 

If row and column interchanges are to be avoided in solving the following Example, 9.7, 
and therefore save some effort, then the dof. labelling of Fig. 9.46 is recommended. This 
implies the final node numbering, also shown. 
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Rowkolumn in [k'')] 

Rowkolumn in [K] 

37 1 

1 2 3 4 5 6  

a 5 3 7 6 4 8  

b 3  1 7 4 2 8  

Fig. 9.46. 

-XI - 14.835 7.143 -3.846 -3.297 0 0 -10.989 -3.846- 
YI 7.143 14.835 -3.846 -10.989 0 0 -3.297 -3.846 
xz -3.846 -3.846 14.835 0 -10.989 -3.297 0 7.143 

0 -10.989 -3.846 14.835 7.143 -3.846 -3.297 yz  = lo7 [N/m] 
x3 
y3 0 0 -3.297 -3.846 7.143 14.835 -3.846 -10.989 
x4 -10.989 -3.297 0 7.143 -3.846 -3.846 14.835 0 

-3.297 -10.989 0 14.835 -3.846 -3.846 7.143 0 

-y4 -  - -3.846 -3.846 7.143 0 -3.297 -10.989 0 14.835 J 

The dof. correspondence table will be as follows: 

Assembling the structural stiffness matrix, gives 

[m = 107[N/m] 

I I I I I I I 
14.8351 7.1431 -3.846 I -3.297 I I 1-10.989 1-3.846 

I I I I I I I 
I I I I I I I 

- - - - - - -_----_---___--------- - - - - - - - - - - -  

I -3.297 I -3.846 
I 1 10.989 I 0 1-10.989 I -3.297 1 0 I 3.297 

-3.8461 -3.846 I 3.846 I 01 I I 0 I 3.846 - - _ -  7 - - - - 7 - - - - ~ - - - - ~ - - - - - 1 - - - -  
'----:-?I-- I I 3.846 I -3.846 I -3.846 I 3.846 I 0 

-3.297 I - 10.9891 0 1 10.989 1 I I 3.297 I 0 

I 7.143 14 835' -3 846 '-10 989 I 

I I I 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
I 1-10.9891 -3.846 I 14.835 I 7.143 1-3.846 1-3.297 
I I I I I I 1 
I I I I I I I _ - _ - - - - _ - - - - - _ - _ _ - _ _ - - - - - - - - - - - - - - - - - - -  
I I 

I -3.297 1-3.846 I 7.143 I 14.835 I-3.846 1-10.985 
I I I I I I I - - _ -  t----t----t----t----l----l---- 
I I O  I 3.846 I -3.846 I -3.846 I 3.846 I 0 

-10.9891 -3.297 I 0 ;  3.297; I I I 10.989; C 

0 I 3.846 

- - - _ - _ _ _ - - - _ - _ - - _ _ _ - _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  
I I 3.297 I 0 -3.297 1-10.989 1 0 I 10.989 
I I 

I I I I I I 
-3.846 I -3.846 1 3.846 I 01  I I 

Summing the element stiffness contributions, and writing the structural governing equa- 
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Example 9.7 
Figure 9.47 shows a 1 mm thick sheet of steel, one edge of which is fully restrained 

whilst the opposite edge is subjected to a uniformly distributed tension of total value 40 kN. 
For the material Young’s modulus, E = 200 GN/m2 and Poisson’s ratio, u = 0.3, and plane 
stress condition can be assumed. 

Fig. 9.47. 

(a) Taking advantage of any symmetry, using two triangular membrane elements and hence 
the assembled stiffness matrix derived for the previous Example, 9.6, determine the nodal 
displacements in global coordinates. 
(b) Determine the corresponding element principal stresses and their directions and illustrate 
these on a sketch of the continuum. 

Solution 
(a) Advantage can be taken of the single symmetry by modelling only half of the 

continuum. Figure 9.48 shows suitable node and dof. labelling, and division of the upper 
half of the continuum into two triangular membrane elements. Reference to the previous 
Example, 9.6, will reveal that the assembled stiffness matrix derived in answering this 
question can, conveniently, be utilised in solving the current example. 

To simulate the clamped edge, dofs. 5 to 8 need to be suppressed, i.e. u3 = 213 = u4 = v4 = 
0. Additionally, whilst node number 2 should be unrestrained in the x-direction, freedom 
in the y-direction needs to be suppressed to simulate the symmetry condition, i.e. 212 = 0. 
Applying these boundary conditions and hence partitioning the structural stiffness matrix 
result from Example 9.6, gives the reduced equations as 

14.835 7.143 - 3.846 [ 3 = 107[N/m] [ 7.143 14.835 - 3.8461 [ Le. {Pa]  = [K,,]{p,) 
- 3.846 - 3.846 14.835 
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Inverting [K,] to enable a solution for the displacements from { p a }  = [K,]-'{P,} 

1 205.286 -91.175 29.583 
where adj [K,,] = lOI4 -91.175 205.286 29.583 

29.583 29.583 169.055 

and det [K,] = 1021[14.835(205.286) - 7.143(91.175) - 3.846(29.583)] = 2280.4 x lo2' 

Then [KaU]-* = lo-'' -39.98 90.03 12.97 1 12.97 12.97 74.13 1 90.03 -39.98 12.97 

With reference to 99.4.7, the nodal load column matrix corresponding to a uniformly 
distributed load of 10 kN/m, will be given by 

Hence, the nodal displacements are found from 

Substituting, 

90.03 -39.98 12.97 10 103 0.103 

12.97 12.97 74.13 
-39.98 90.03 12.971 lo3 [ 01 = io-6 [ -;;Irn = [ 
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- 0 

0 

- 
87 x -2 2 0 -0.6 0 0.6 

-0.6 0.6 0 -2 0 2 1 :  
- 0 

[ 0, 200 x 109 [::I = *(l - 0'32) -0.7 0 0.7 -0.7 0.7 0 

- 

The required nodal displacements are therefore U I  = 0.103 mm, 211 = -0.027 mm and u2 = 
0.087 mm. 

(b) With reference to 59.9, element direct and shearing stresses are found from 

- 87 x 
103 x 

0 

- 

0 2 -2 -0.6 0.6 0 
0 0.6 -0.6 -2 2 

-0.7 0.7 0 0 0.7 -0.7 
- 27 x low6 

- 0 

200 109 

- 

where, from Example 9.5, 

Y31 - Y12 1 Y23 Y3 1 Y12 21x32 21x13 

vY3 1 VY12 x 3 2  x 1 3  
(1 -v) (I -v) (1 -v) (1 -v) (1 -v) (1 - 2 1 )  

2 Y23 ~ 
x 1 3  - X2I - 2 [ q . 3 2  ___ 2 

Evaluating the stresses for each element: 

The principal stresses are found from 
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Substituting gives 

01, a 2  = [ 4 (10.43 + 0.43) f i J[< 10.43 - 0.43)2 + 4 x 2.92*]) lo6 N/m2 

= (5.43 f 5.79)106 N/m2 

giving C T ~  = 11.22 MN/m2 (T) and a2 = 0.36 MN/m2 (C) 
The directions are found from 

e = 4 tan-'[2a,,/(an - ayy)] 

substituting gives 

0 = i tan-'[2 x 2.92/(10.43 - 0.43)] = 15.14" 

The required principal stresses for element b are therefore (TI = 11.22 MN/m2 (T) and 0 2  = 
0.36 MN/m2 (C) and are illustrated in Fig. 9.49. 

't 

--t 
X 

Fig. 9.49. 

Problems 

9.1 Figure 9.50 shows a support structure in the form of a pin-jointed plane frame, all three members of which 
are steel, of the same uniform cross-sectional area and length, such that A E / L  = 200 kN/m, throughout. 
(a) Using the displacement based finite element method and treating each member as a rod, determine the nodal 

displacements with respect to global coordinates for the frame shown in Fig. 9.50. 
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't 
Fig. 9.50. 

(b) Hence, determine the nodal reactions. 
[-0.387, -13.557 mm, -1.116.0.644, 1.233,0.712, -1.116.0.644 kN] 

9.2 Figure 9.51 shows a roof truss, all members of which are made from steel, and have the same cross-sectional 
area, such that A E  = 10 MN, throughout. For the purpose of analysis the truss can be treated as a pin-jointed plane 
frame. Using the displacement based finite element method, taking advantage of any symmetry and redundancies 
and treating each member as a rod element, determine the nodal displacements with respect to global coordinates. 

[0.516, -2.280, -2.313 mm] 

20 kN 

2 m  2m 2m 
1-  - 

Fig. 9.51. 

9.3 A recovery vehicle towing jib is shown in Fig. 9.52. It can be assumed that the jib can be idealised as a pin- 
jointed plane frame, with all three members made from steel, of the same uniform cross-sectional area, such that 
AE = 40 MN, throughout. Using the displacement based finite element method and treating each member as a rod, 
determine the maximum load P which can be exerted whilst limiting the resultant maximum deflection to 10 mm. 

[36.5 kN] 
9.4 A hoist frame, arranged as shown in Fig. 9.53, comprises uniform steel members, each Im long for which 

A E  = 200 MN, throughout. 
(a) Using the displacement based finite element method and assuming the frame members to be planar and 

pin-jointed, determine the nodal displacements with respect to global coordinates for the frame loaded as 
shown. 

(b) Hence, determine the corresponding nodal reactions. 
[ O S .  0.75, -0.722 mm, 0, 86.6, -25.0, -43.3 kN] 
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I m  

Fig. 9.52. 

't X 

/ \Jm 

/ \  
/ \ / WkN 

Fig. 9.53. 

9.5 Figure 9.54 shows a towing "bracket" for a motor vehicle. Both members are made from uniform cylindrical 
mz, relevant second moment of 

m4 and Young's modulus 200 GN/m2. Using the displacement based finite element method, a 
section steel tubing, of outside diameter 40 mm, cross-sectional area 2.4 x 
area 4.3 x 
simple beam element representation and assuming both members and load are coplanar: 
(a) assemble the necessary terms in the structural stiffness matrix; 
(b) hence, for the idealisation shown in Fig. 9.54, determine (i) the nodal displacements with respect to global 

[0.421 mm,0.103", 131.34, 106.77, 127.20, 110.91 MN/m2] 
9.6 A stepped steel shaft supports a pulley, as shown in Fig. 9.55, is rigidly built-in at one end and is supported 

in a bearing at the position of the step. The bearing provides translational but not rotational restraint. Young's 
modulus for the material is 200 GN/m2. 
(a) Using the displacement based finite element method obtain expressions for the nodal displacements in global 

(b) Given that, because of a design requirement, the angular misalignment of the bearing cannot exceed OS", 

(c) Sketch the deformed geometry of the beam. 

coordinates, and (ii) the resultant maximum stresses at the built-in ends and at the common junction. 

coordinates, using a two-beam model. 

determine the maximum load, P ,  that can be exerted on the pulley. 

[4.985 x 10-8P, -2.905 x IO-*P, 8.475 x IO-'P, 175 kN] 
9.7 Figure 9.56 shows a chassis out-rigger which acts as a body support for an all-terrain vehicle. The out- 

rigger is constructed from steel channel section rigidly welded at the out-board edge and similarly welded to the 
vehicle chassis. For the channel material, Young's modulus, E = 200 GN/m2, relevant second moment of area, 
I = 2 x m4 and cross-sectional area, A = 4 x IO-5 m2. Using the displacement based finite element method, 
and representing the constituent members as simple beam elements 



318 Mechanics of Materials 2 

e 4- 

Fig. 9.54. 

40 kN 

YA Pulley 

I 1  " . .  . .  
l l  

. .  .p--b - I I  

a m m  1 
dia. 

L 
" 7 

' .  .c 
20 mm . .  

' ' dia. 
I I  

I 1  

S P  

Fig. 9.55 

(a) determine the nodal displacements with respect to global coordinates. 
(b) A modal analysis reveals that, to avoid resonance, the vertical stiffness of the out-rigger needs to be increased. 

Assuming only one of the members is to be stiffened, state which member and whether it should be the 
cross-sectional area or the second moment of area which should be increased, for most effect. 

[0.1155, -0.4418 mm, -0.322", inclined member's csa.1 

9.8 The plane frame shown in Fig. 9.57 forms part of a steel support structure. The three members are rigidly 
connected at the common junction and are built-in at their opposite ends. All three members can be assumed to 
be axially rigid, and of constant cross-sectional area, A ,  relevant second moment of area, I ,  and Young's modulus, 
E .  Using the displacement based finite element method and representing each member as a simple beam: 
(a) show that the angular displacement of the common node, due to application of the moment, M ,  is given by 

M L  f 8 E I ;  
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Fig. 9.56. 

e 4- 
M 

2L 2L 

Fig. 9.57. 

(b) determine all nodal reaction forces and moments due to this moment, and represent these reactions on a sketch 
of the frame. Show that both force and moment equilibrium is satisfied. 

(c) If, due to a manufacturing defect, the joint at the lower end of the vertical member undergoes an angular 
displacement of ML/4EI, whilst all other properties remain unchanged, obtain a new expression for the 
angular displacement at the common junction. 

[0, -3M/16L, M/8, -3M/4L,0,0, 3M/16L, M/8,3M/4L, 0, M/4, ML/16EI] 
9.9 Using the displacement based finite element method and a three-node triangular membrane element repre- 

sentation, determine the nodal displacements in global coordinates for the continuum shown in Fig. 9.58. Take 
advantage of any symmetry, assume plane stress conditions and use only two elements in the discretisation. For 
the material assume Young’s modulus, E = 200 GN/m2 and Poisson’s ratio, v = 0.3. 

[-3.00 x 10.01 x -3.00 x 10.01 x ml 
9.10 A crude lifting device is fabricated from a triangular sheet of steel, 6 mm thick, as shown in Fig. 9.59. 

Assume for the material Young’s modulus, E = 200 GN/m2 and Poisson’s ratio, IJ = 0.3, and that plane stress 
conditions are appropriate. 
(a) Taking advantage of any symmetry, ignoring any instability and using only a single three-node triangular 

membrane element representation, use the displacement based finite element method to predict the nodal 
displacements in global coordinates. 

(b) Determine the corresponding element principal stresses and their directions, and show these on a sketch of the 
element. [-0.05, -0.17, -0.60 mm, 134.85 MN/m2 (T) at 31.7” from x-direction, 51.50 MN/m2 (C)]  

9.11 The web of a support structure, fabricated from steel sheet 1 mm thick, is shown in Fig. 9.60. Assume for 
the material Young’s modulus, E = 207 GN/m2 and Poisson’s ratio, IJ = 0.3, and that plane stress conditions are 
appropriate. 
(a) Neglecting any stiffening effects of adjoining members and any instability and using only a single three-node 

triangular membrane element representation, use the displacement based finite element method to predict the 
nodal displacements with respect to global coordinates. 
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Fig. 9.58. 

Fig. 9.59. 

't 
Fig. 9.60. 

(b) Determine the corresponding element principal stresses and their directions, and show these on a sketch of 

[0.058, -0.60, -0.10 mm, 123.6 MN/m2 (T) at -31.7" from x-direction, 323.6 MNIm2 (C)] 
9.12 Derive the stiffness matrix in global coordinates for a three-node triangutar membrane element for plane 

the web. 

strain conditions. Assume the displacement functions are the same as those of Example 9.5. 


