
CHAPTER 11 

STRAIN ENERGY 

Summary 

The energy stored within a material when work has been done on it is termed the strain 
energy or resilience, 

i.e. strain energy = work done 

In general there are four types of loading which can be applied to a material: 
1. Direct load (tension or compression) 

P 2  L 1% or - 2 AE Strain energy U = 

O ~ A L  a2 
x volume of bar =-- -- 

2E 2E 
2. Shear load j‘g or - QZL 

2 AG Strain energy U = 

7 2  T 2  

2G 2G 

1:; or - if M is constant Strain energy U = - 

= - x A L  = - x volume of bar 

3. Bending 
M 2 L  
2 EZ 

4. Torsion 

if T is constant 
T 2 L  1;; or - 2GJ Strain energy U = - 

From 1 above, the strain energy or resilience when the tensile stress reaches the proof stress 
ap, i.e. the proof resilience, is 

4 - x volume of bar 2E 
and the modulus of resilience is 

- 0; 

2E 
The strain energy per unit volume of a three-dimensional principal stress system is 

1 
2E U =--a:+a 
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The volumetric or “dilatational” strain energy per unit volume is then 

and the shear, or “distortional”, strain energy per unit volume is 

1 
- [(ai- 0 2 ) 2  + ( 0 2  - 4 + ( 0 3  - (71)21 12G 

The maximum instantaneous stress in a uniform bar caused by a weight W falling through a 
distance h on to the bar is given by 

2 WEh 
A -  

The instantaneous extension is then given by 

d L  6 = -  
E 

If this is small compared to the height h, then 

/ /2 WEh\ 

For any shock-loaded system the instantaneous deflection is given by 

6 = 6, [ 1 * J( 1 +;)I 
where 6, is the deflection under an equal static load. 

Castigliano’sfirst theorem for tiefiction states that: 
I f  the total strain energy expressed in terms of the external loads is partially diyerentiated 
with respect to one of the loads the result is the defection of the point of application of that 
load and in the direction of that load (see Examples 11.5 and 11.6): 

au 
aw Deflection in direction of W = - = 6 i.e. 

In applications where bending provides practically all of the strain energy, 

This is sometimes written in the form 

8M where m = ~ = the bending moment resulting from a unit load only in the place of W. This 

method of solution is then termed the unit load method. 
aw 
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Beam loading 

Castigliano’s theorem also applies to angular movements: 
I f  the total strain energy expressed in terms of the external moments be partially 
diferentiated with respect to one of the moments, the result is the angular deflection in 
radians of the point of application of that moment and in its direction 

M 8M 
O =  - - d ~  

1.1 aMi 

where Mi is the actual or imaginary moment at the point where 0 is required, 
Deflections due to shear 

Shear deflection 

Rectangular-section beam I-section beam 

6 W L  W L  
Cantileverxoncentrated 
end load W ’  

Cantilever-u.d.1. 
3WLZ 
5AG 
__ 

Simply supported 3WL 
beam -central 
concentrated load W 

Simply supported 
beam - concentrated 
load dividing span 
into lengths a and b 

Simply supported 
beam-u.d.1. 

6 Wab 
5AGL 

~ 

wL2 W L  
2AG ZAG 

I d l o  W L  

3wL2 
20AG 
__ wL2 W L  

8AG 8AG 

Introduction 

Energy is normally defined as the capacity to do work and it may exist in any of many forms, 
e.g. mechanical (potential or kinetic), thermal, nuclear, chemical, etc. The potential energy of a 
body is the form of energy which is stored by virtue of the work which has previously been 
done on that body, e.g. in lifting it to some height above a datum. Strain energy is a particular 
form of potential energy which is stored within materials which have been subjected to strain, 
i.e. to some change in dimension. The material is then capable of doing work, equivalent to 
the amount of strain energy stored, when it returns to its original unstrained dimension. 

Strain energy is therefore deJined as the energy which is stored within a material when work 
has been done on the material. Here it is assumed that the material remains elastic whilst work 
is done on it so that all the energy is recoverable and no permanent deformation occurs due to 
yielding of the material, 

i.e. strain energy U = work done 

the shaded area under the load-extension graph of Fig. 11.1. 
Thus for a gradually applied load the work done in straining the material will be given by 

U = i P G  
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Load 
P 

P 6 Extension 

Fig. 1 1 . 1 .  Work done by a gradually applied load. 

The strain energy per unit volume is often referred to as the resilience. The value of the 
resilience at the yield point or at the proof stress for non-ferrous materials is then termed the 
proof resilience. 

The unshaded area above the line OB of Fig. 11.1 is called the complementary energy, a 
quantity which is utilised in some advanced energy methods of solution and is not considered 
within the terms of reference of this text. t 

11.1. Strain energy - tension or compression 

(a) Neglecting the weight of the bar 

Consider a small element of a bar, length ds, shown in Fig. 11.1. If a graph is drawn of load 
against elastic extension the shaded area under the graph gives the work done and hence the 
strain energy, 

i.e. strain energy U = f P 6  

Now 

. .  

stress P ds 
strain - A s Young’s modulus E = - - - 

Pds a = -  
AE 

P 2 d s  
for the bar element U = __ 

2 AE 
. .  

L 

1E :. total strain energy for a bar of length L = 

0 

Thus, assuming that the area of the bar remains constant along the length, 

P2 L u=-- 
2AE (11.1) 

t See H. Ford and J. M. Alexander, Advanced Mechanics of Materials (Longmans, London, 1963). 
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or, in terms of the stress o (= P/A) ,  

0 2 A L  s2 
2E 2E 

u=- = - x volume of bar (11.2) 

i.e. strain energy, or resilience, per unit volume of a bar subjected to direct load, tensile or 
compressive 

a' 

2E 
=- (11.3) 

or, alternatively, 

i.e. resilience = istress x strain 

(b) Including the weight of the bar 

Consider now a bar of length L mounted vertically, as shown in Fig. 11.2. At any section 
AB the total load on the section will be the external load P together with the weight of the bar 
material below AB. 

Fig. 11.2. Direct load - tension or compression. 

Assuming a uniform cross-section of area A with density p, 

load on section AB = P pgAs 

the positive sign being used when P is tensile and the negative sign when P is compressive. 
Thus, for a tensile force P the extension of the element ds is given by the definition of Young's 
modulus E to be 

ods 6 = -  
E 

- (' + ' g  As) ds - 
AE 
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. .  work done = 3 x load x extension 

:. total strain energy or work done 
L L L 

- - -  p 2  d s +  j F s d s +  { w s 2 d s  
2AE 2E 

0 0 0 

(1 1.4) 
P z L  PpgL’ + ( p g ) ’ A L 3  
2 A E  2E 6 E  +--- - -- 

The last two terms are therefore the modifying terms to eqn. (1 1.1) to account for the 
body-weight effect of the bar. 

11.2. Strain energy-shear 

Consider the elemental bar now subjected to a shear load Q at one end causing 
deformation through the angle y (the shear strain) and a shear deflection 6, as shown in 
Fig. 11.3. 

Now 

. .  

t Q  
Fig. 11.3. Shear. 

Strain energy U = work done = 3QS = 3 Q y d s  

shear stress t Q 
shear strain y y A  

=-=-  G =  

Q y = -  
AG 

Q shear strain energy = 3Q x - x ds = ds 
AG 2AG 
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:. total strain energy resulting from shear 
L 

or, in terms of the shear stress 5 = ( Q / A ) ,  

T 2 ~ ~  z 2  
ty=-- -- x volume of bar 

2G 2G 

(11.5) 

(11.6) 

11.3. Strain energy -bending 

Let the element now be subjected to a constant bending moment M causing it to bend into 
an arc of radius R and subtending an angle d e  at the centre (Fig. 11.4). The beam will also have 
moved through an angle de .  

M 

\ I 

But 

Fig. 11.4. Bending. 

Strain energy = work done = x moment x angle turned through (in radians) 

= $ M d 0  

M E  
ds = R d 0  and -= -  

I R  

M M’ds  
strain energy = 3 M  x -ds  = ~ 

EI 2EI 
... 

Total strain energy resulting from bending, 

(11.7) 
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If the bending moment is constant this reduces to 

11.4. Strain energy - torsion 

The element is now considered subjected to a torque T as shown in Fig. 11.5, producing an 
angle of twist dO radians. 

Fig. 11.5. Torsion. 

Strain energy = work done = 3TdO 

But, from the simple torsion theory, 
Tds  

and dO =- 
T GdO 
J ds GJ 
- 

.'. total strain energy resulting from torsion, 

T 2 d s  T 2 L  
2GJ 2GJ 

0 

since in most practical applications T is constant. 
For a hollow circular shaji eqn. (1 1.8) still applies 

T ~ L  
Strain energy U = - 

2GJ i.e. 

Now, from the simple bending theory 
T 7 Tmax - - -- - -- 
J r R  

where R is the outer radius of the shaft and 

7t J = - ( R 4 - r 4 )  
2 

(11.8) 
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Substituting in the strain energy equation (1 1.8) we have: 
[%(R4-r4) ]  2 L 

U =  
x 

2 G - ( R 4 - r 4 )  

z L x  z ( R 4  - r4 )L  
4G R 2  

2 

-- - 

tLx [ R z  + r 2 ]  
4G R 2  

-- - x volume of shaft 

or 
zLax [R2 +r2] 
4G R2 Strain energy/unit volume = - (11.8a) 

It should be noted that in the four types of loading case considered above the strain energy 
expressions are all identical in form, 

i.e. 
(applied “load”)’ x L 

2 x product of two related constants 
strain energy U = 

the constants being related to the type of loading considered. In bending, for example, the 
relevant constants which appear in the bending theory are E and I, whilst for torsion G and J 
are more applicable. Thus the above standard equations for strain energy should easily be 
remembered. 

11.5. Strain energy of a three-dimensional principal stress system 

The reader is referred to $14.17 for the derivation of the following expression for the strain 
energy of a system of three principal stresses: 

a: + ai + 63 - 2v(ala2 + a 2 6 3  + a3a1)] per unit volume v=-[ 1 2E 

It is then shown in $14.17 that this total strain energycan beconvenientlyconsidered as made 
up of two parts: 

(a) the volumetric or dilatational strain energy; 
(b) the shear or distortional strain energy. 

11.6. Volumetric or dilatational strain energy 

This is the strain energy associated with a mean or hydrostatic stress of 
$(a, + o2 + os) = 0 acting equally in all three mutually perpendicular directions giving rise to 
no distortion, merely a change in volume. 

Then from eqn. (14.22), 

(1 - 2v) 
volumetric strain energy = ___ [(al + a2 + a3)’] per unit volume 

6 E  
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11.7. Shear or distortional strain energy 

In order to consider the general principal stress case it has been shown necessary, in 5 14.6, 
to add to the mean stress 5 in the three perpendicular directions, certain so-called deviatoric 
stress values to return the stress system to values of al, a’ and a3. These deuiatoric stresses are 
then associated directly with change of shape, i.e. distortion, without change in volume and 
the strain energy associated with this mechanism is shown to be given by 

1 
12G 

1 
6G 

shear strain energy = __ [(a, - a’)’ + (a2 - a3)’ + (a3 - ol)’] 

= - [u: + u: + t ~ :  - (al u2 + u2 uj + uj ul )] per unit volume 

This equation is used as the basis of the Maxwell-von Mises theory of elastic failure which is 
discussed fully in Chapter 15. 

per unit volume 

11.8. Suddenly applied loads 

If a load Pis applied gradually to a bar to produce an extension 6 the load-extension graph 
will be as shown in Fig. 11.1 and repeated in Fig. 11.6, the work done being given by 
u = iP6 .  

Fig. 11.6. Work done by a suddenly applied load. 

If now a load P’ is suddenly applied (i.e. applied with an instantaneous value, not gradually 
increasing from zero to P’) to produce the same extension 6, the graph will now appear as a 
horizontal straight line with a work done or strain energy = P‘6. 

The bar will be strained by an equal amount 6 in both cases and the energy stored must 
therefore be equal, 

i.e. P’6 = 3P6 

or p’ = & p  

Thus the suddenly applied load which is required to produce a certain value of 
instantaneous strain is half the equivalent value of static load required to perform the same 
function. It is then clear that vice versa a load P which is suddenly applied will produce twice the 
effect of the same load statically applied. Great care must be exercised, therefore, in the design 



264 Mechanics of Materials $1 1.9 

of, for example, machine parts to exclude the possibility of sudden applications of load since 
associated stress levels are likely to be doubled. 

11.9. Impact loads - axial load application 

Consider now the bar shown vertically in Fig. 11.7 with a rigid collar firmly attached at the 
end. The load W is free to slide vertically and is suspended by some means at a distance h 
above the collar. When the load is dropped it will produce a maximum instantaneous 
extension 6 of the bar, and will therefore have done work (neglecting the mass of the bar and 
collar) 

= force x distance = W (h + 6) 

Load W 

Bar-- 

Fig. 11.7. Impact load-axial application. 

This work will be stored as strain energy and is given by eqn. (1 1.2): 

where o is the instantaneous stress set up. 

(11.9) 

If the extension 6 is small compared with h it may be ignored and then, approximately, 

o2 = 2 WEhJAL 

i.e. u = J(F) (11.10) 

If, however, b is not small compared with h it must be expressed in terms of 6, thus 

stress O L  OL E=-  =- and 6 =- 
strain 6 E 

Therefore substituting in eqn. (1 1.9) 
O ~ A L  WOL 
-- - W h + -  
2E E 
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U = A L  W L  
2E E 

__- a--Wh=O 

2W 2WEh 
02---a-- = O  

A A L  

Solving by “the quadratic formula” and ignoring the negative sign, 

i.e. u =E+ A J [ ( Z > ’ + T ]  (11.11) 

This is the accurate equation for the maximum stress set up, and should always be used if 

Instantaneous extensions can then be found from 
there is any doubt regarding the relative magnitudes of 6 and h. 

If the load is not dropped but suddenly applied from effectively zero height, h = 0, and 
eqn. (11.11) reduces to 

w w 2w a=--+-=- 
A A  A 

This verifies the work of 4 11.8 and confirms that stresses resulting from suddenly applied 
loads are twice those resulting from statically applied loads of the same magnitude. 
Inspection of eqn. (11.11) shows that stresses resulting from impact loads of similar 
magnitude will be even higher than this and any design work in applications where impact 
loading is at all possible should always include a safety factor well in excess of two. 

11.10. Impact loads - bending applications 

Consider the beam shown in Fig. 11.8 subjected to a shock load W falling through a height 
h and producing an instantaneous deflection 6. 

Work done by falling load = W ( h  + 6) 

In these cases it is often convenient to introduce an equivalent static load WE defined as 
that load which, when gradually applied, produces the same deflection as the shock load 

h 
/ -- - _ - _ _ _  _ _ _ _ _ _ - - -  - --_ H 

Fig. 11.8. Impact load - bending application. 
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which it replaces, then 

work done by equivalent static load = 3 WE6 

W ( h + 6 )  =$WE6 (11.12) 

Thus if 6 is obtained in terms of WE using the standard deflection equations of Chapter 5 for 
the support conditions in question, the above equation becomes a quadratic equation in one 
unknown WE.  Hence W E  can be determined and the required stresses or deflections can be 
found on the equivalent beam system using the usual methods for static loading, Le. the 
dynamic load case has been reduced to the equivalent static load condition. 

Alternatively, if W produces a deflection 6, when applied statically then, by proportion, 

Substituting in eqn. (11.12) 
6 

W ( h + 6 )  = ~ W X -  x 6  
6, 

. .  6’ - 26,6 - 26,h = 0 

. .  6 = 6, J(6, + 26,h) 

6 = 6, [ 1 f (1 +$)’I (11.13) 

The instantaneous deflection of any shock-loaded system is thus obtained from a 
knowledge of the static deflection produced by an equal load. Stresses are then calculated as 
before. 

11.11. Castigliano’s first theorem for deflection 

Castigliano’s first theorem states that: 

If the total strain energy of a body or framework is expressed in terms of the external loads 
and is partially dixerentiated with respect to one of the loads the result is the deflection of 
the point of application of that load and in the direction of that load, 

i.e. if U is the total strain energy, the deflection in the direction of load W = aU/a  W. 

forces Pa, PB, Pc, etc., acting at points A, B, C, etc. 

the system is equal to the work done. 

In order to prove the theorem, consider the beam or structure shown in Fig. 11.9 with 

If a, b, c, etc., are the deflections in the direction of the loads then the total strain energy of 

u =+PAa+fPBb+$PcC+ . . . (11.14) 

N.B. Limitations oftheory. The above simplified approach to impact loading suffers severe limitations. For example, 
the distribution of stress and strain under impact conditions will not strictly be the same as under static 
loading, and perfect elasticity of the bar will not be exhibited. These and other effects are discussed by Roark 
and Young in their advanced treatment of dynamic stresses: Formulas for Stress & Strain, 5th edition 
(McGraw Hill), Chapter 15. 
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> -__- -  Beam loaded with . 

PA, PB,pc, e'c 1- -Beam loaded with P,,P,, 
Pc , etc plus extra load 8% 

Fig. 11.9. Any beam or structure subjected to a system of applied concentrated loads 
P A ,  P,, P ,  . . . P,, etc. 

If one of the loads, P A ,  is now increased by an amount SPAthe changes in deflections will be 
Sa, Sb and Sc, etc., as shown in Fig. 11.9. 

Load at A Load at B 

a o+80 b b+8b 

Fig. 11.10. Load-extension curves for positions A and E. 

Extra work done at A (see Fig. 11.10) 

= (PA+fdPA)da 

Extra work done at B, C, etc. (see Fig. 11.10) 

= PBSb, Pc6c, etc. 

Increase in strain energy 
= total extra work done 

. .  6u = PA6a+36PA6a+P,6b+Pc6C+ . . . 
and neglecting the product of small quantities 

6 U = P A & l + P , d b + P c 6 C +  . . (1 1.15) 

But if the loads PA+ 6PA, PB, Pc, etc., were applied gradually from zero the total strain 

U + SU = 1 4  x load x extension 

energy would be 

u+6u =3(PA+6PA)(a+ba)+4P, (b+6b)+3Pc(C+6C)+  . . . 
= +PA a + + P A  6a ++ 6P,  a ++SPA ha +:p,  b ++P,6b  + 4 P c c  +iP,6C + . . . 

Neglecting the square of small quantities (f6PAGa) and subtracting eqn. (1 1.14), 

6U=+6PAa+3PA6a+3P,6b+4Pc6C+ . . . 
or 26u = 6PAa+PA6a+Pg6b+PCbC+ . . . 
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Subtracting eqn. (1 1.15), 

or, in the limit, 

i.e. the partial differential of the strain energy U with respect to PA gives the deflection under 
and in the direction of PA. Similarly, 

In most beam applications the strain energy, and hence the deflection, resulting from end 
loads and shear forces are taken to be negligible in comparison with the strain energy 
resulting from bending (torsion not normally being present), 

i.e. 

dU - dU x - = [ - d s x -  dM 2M dM 
aP dM dP 2EI ap 

(11.16) 

which is the usual form of Castigliano’s first theorem. The integral is evaluated as it stands to 
give the deflection under an existing load P, the value of the bending moment M at some 
general section having been determined in terms of P. If no general expression for M in terms 
of P can be obtained to cover the whole beam then the beam, and hence the integral limits, can 
be divided into any number of convenient parts and the results added. In cases where the 
deflection is required at a point or in a direction in which there is no load applied, an 
imaginary load P is introduced in the required direction, the integral obtained in terms of P 
and then evaluated with P equal to zero. 

The above procedures are illustrated in worked examples at the end of this chapter. 

11.12. “Unit-load” method 

It has been shown in $1 1.11 that in applications where bending provides practically all of 
the total strain energy of a system 

M dM 6 =  ---& s EI aw 
Now W is an applied concentrated load and M will therefore include terms of the form 

Wx, where x is some distance from W to the point where the bending moment (B.M.) is 
required plus terms associated with the other loads. The latter will reduce to zero when 
partially differentiated with respect to W since they do not include W. 

Now 
d 

__ ( WX) = x = 1 x x  
dW 
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i.e. the partial differential of the B.M. term containing W is identical to the result achieved if 
W is replaced by unity in the B.M. expression. Using this information the Castigliano 
expression can be simplified to remove the partial differentiation procedure, thus 

a = p s  EZ (11.17) 

where m is the B.M. resulting from a unit load only applied at the point of application of W 
and in the direction in which the deflection is required. The value of M remains the same as in 
the standard Castigliano procedure and is tkrefore the B.M. due to the applied load system, 
including W. 

This so-called “unit l o a d  method is particularly powerful for cases where deflections are 
required at points where no external load is applied or in directions different from those of 
the applied loads. The method mentioned previously of introducing imaginary loads P and 
then subsequently assuming Pis zero often gives rise to confusion. It is much easier to simply 
apply a unit load at the point, and in the direction, in which deflection is required regardless of 
whether external loads are applied there or not (see Example 11.6). 

11.13. Application of Castigliano’s theorem to angular movements 

Castigliano’s theorem can also be applied to angular rotations under the action of bending 

If the total strain energy, expressed in terms of the external moments, be partially 
diferentiated with respect to one of the moments, the result is the angular deflection (in 
radians) of the point of application of that moment and in its direction, 

moments or torques. For the bending application the theorem becomes: 

i.e. (11.18) 

where Mi is the imaginary or applied moment at the point where 8 is required. 
Alternatively the “unit-load procedure can again be used, this time replacing the applied 

or imaginary moment at the point where 8 is required by a “unit moment”. Castigliano’s 
expression for slope or angular rotation then becomes 

where M is the bending moment at a general point due to the applied loads or moments and m 
is the bending moment at the same point due to the unit moment at the point where 8 is 
required and in the required direction. See Example 11.8 for a simple application of this 
procedure. 

11.14. Shear deflection 

(a)  Cantilever carrying a concentrated end load 

In the majority of beam-loading applications the deflections due to bending are all that 
need be considered. For very short, deep beams, however, a secondary deflection, that due to 
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shear, must also be considered. This may be determined using the strain energy formulae 
derived earlier in this chapter. 

For bending, 

For shear, 

2EI 
0 

L 

Q2ds  7’ 

2AG 2G 
= - x volume 

0 

Consider, therefore, the cantilever, of solid rectangular section, shown in Fig. 11.1 1. 

Fig. 11.11 

For the element of length dx 
r “ 2  

But 7=- QAy (see 47.1) 
Ib 

2 
= Q x  

IB  

- - Q (Ey.) 
21 4 

2 

US = & (: - y 2 ) }  B d x d y  

Dl2 

=E { - ( - - y ’ ) Y d y  Q D2 
2G 21 4 

- D/2 
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To obtain the total strain energy we must now integrate this along the length of the cantilever. 
In this case Q is constant and equal to W and the integration is simple. 

L 

W 2 B  D5 W2BLD5 
8G12 30 L =  240G (%y =-- 

3 W 2 L  
5AG 

-- - 

where A = BD. 
Therefore deflection due to shear 

Similarly, since M = - W x  

( -  WX)2 W 2 L 3  
ds = ~ u B = [  0 2EI 6EI 

Therefore deflection due to bending 

au WLJ gB=-=- aw 3EI 

(11.19) 

(1 1.20) 

Comparison of eqns. (1 1.19) and (11.20) then yields the relationship between the shear and 
bending deflections. For very short beams, where the length equals the depth, the shear 
deflection is almost twice that due to bending. For longer beams, however, the bending 
deflection is very much greater than that due to shear and the latter can usually be neglected, 
e.g. for L = 1OD the deflection due to shear is less than 1 % of that due to bending. 

(b)  Cantilever carrying ungormly distributed load 

Consider now the same cantilever but carrying a uniformly distributed load over its 

The shear force at any distance x from the free end 
complete length as shown in Fig. 11.12. 

Q = wx 

w per unit lengrh 

Fig. 11.12. 
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Therefore shear deflection over the length of the small element dx 

- (wx) dx from (11.19) 
5 AG 

Therefore total shear deflection 
L 

6 wxdx 3wL2 
5AG 

-- 6 s =  5AG- s 0 
(11.21) 

(c) Simply supported beam carrying central concentrated load 

In this case it is convenient to treat the beam as two cantilevers each of length equal to half 
the beam span and each carrying an end load half that of the central beam load (Fig. 11.13). 
The required central deflection due to shear will equal that of the end of each cantilever, i.e. 
from eqn. (11.19), with W = W / 2  and L = L/2, 

(11.22) 

W 

W W L 
2 2 

- - 

Fig. 11.13. Shear deflection of simply supported beam carrying central concentrated 
load-equivalent loading diagram. 

(d) Simply supported beam carrying a concentrated load in any position 

If the load divides the beam span into lengths a and b the reactions at each end will be W a / L  
and W b / L .  The equivalent cantilever system is then shown in Fig. 11.14 and the shear 

Fig. 11.14. Equivalent loading for offset concentrated load. 
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deflection under the load is equal to the end deflection of either cantilever and given by 
eqn. (1 1.19), 

6,=-(%)b 5AG 6 L or 6 , = -  5AG ( w b ) a  - L 

6 Wab 
SAGL 

6, = ~ . .  (11.23) 

(e) Simply supported beam carrying uniformly distributed load 

Using a similar treatment to that described above, the equivalent cantilever system is 
shown in Fig. 11.15, i.e. each cantilever now carries an end load of wL/2 in one direction and a 
uniformly distributed load w over its complete length L/2 in the opposite direction. 

From eqns. (11.19) and (11.20) 

3wL2 
6 ,  = ~ 

20AG 

w/unif length 

(11.24) 

Fig. 11.15. Equivalent loading for uniformly loaded beam. 

(f) 1-section beams 

If the shear force is assumed to be uniformly distributed over the web area A, a similar 
treatment to that described above yields the following approximate results: 

W L  6 =- 
AG 

cantilever with concentrated end load W 

cantilever with uniformly distributed 
load w 

wL2 W L  
2AG == 6, = __ 

W L  
6, = - 

4AG 
simply supported beam with concentrated 

end load W 

wL2 W L  
6, = __ 

~ A G  =8AG simply supported beam with uniformly 
distributed load w 
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In the above expressions the effect of the flanges has been neglected and it therefore follows 
that the same formulae would apply for rectangular sections if it were assumed that the shear 
stress is evenly distributed across the section. The result of WL/AG for the cantilever carrying 
aconcentrated end load is then directly comparable to that obtained in eqn. (1 1.19) taking full 
account of the variation of shear across the section, i.e. 6/5 ( WL/AG).  Since the shear strain 
y = 6 / L  it follows that both the deflection and associated shear strain is underestimated by 
20% if the shear is assumed to be uniform. 

(g) Shear dejlections at points other than loading points 

In the case of simply supported beams, deflections at points other than loading positions 
are found by simple proportion, deflections increasing linearly from zero at the supports 
(Fig. 11.16). For cantilevers, however, if the load is not at the free end, the above remains true 
between the load and the support but between the load and the free end the beam remains 
horizontal, Le. there is no shear deflection. This, of course, must not be confused with 
deflections due to bending when there will always be some deflection of the end of a cantilever 
whatever the position of loading. 

Fig. 11.16. Shear deflections of simply supported beams and cantilevers. 
These must not be confused with bending de$ections. 

Examples 

Example 11.1 

Determine the diameter of an aluminium shaft which is designed to store the same amount 
of strain energy per unit volume as a 50mm diameter steel shaft of the same length. Both 
shafts are subjected to equal compressive axial loads. 

What will be the ratio of the stresses set up in the two shafts? 

Esteel = 200 GN/m2; Ealuminium = 67 GN/mZ. 

Solution 

0 2  
Strain energy per unit volume = - 

2E 
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Since the strain energyjunit volume in the two shafts is equal, 

then 

Now 

05 EA 67 - =-=-- - f (approximately) 
0% E s  200 

30;  = a: 

P 
a=- where P is the applied load 

area 

Therefore from (1) 

Df 1 
Dt 3 

0; = 3 x Df = 3 x (50)4 

DA = 4/(1875 x lo4) = 65.8 mm 

=-  - ..  

. .  
= 3 x 625 x 104 

. .  
The required diameter of the aluminium shaft is 65.8mm. 

From (2)  30: = a: 

. .  “ “ 4 3  
a A  

Example 11.2 

Two shafts are of the same material, length and weight. One is solid and 100 mm diameter, 
the other is hollow. If the hollow shaft is to store 25 % more energy than the solid shaft when 
transmitting torque, what must be its internal and external diameters? 

Assume the same maximum shear stress applies to both shafts. 

Solution 

Let A be the solid shaft and B the hollow shaft. If they are the same weight and the same 
material their volume must be equal. 

Now for the same maximum shear stress 

Tr  TD 
J 2 5  

T = - = -  
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i.e. 

But the strain energy of B = 1.25 x strain energy of A. 

then T’, J A  -- T;L T; L - 1.25- or -- E&- ~ G J A  T i  1.25JB 

Therefore substituting from (2), 

D; JB 
D’, 1.255, 

=--- - 

- 0;- (0:- 10 x 10-3)2 - 
1.25 x io 1 0 - 3  

12.5 x l op3  0% = D; - D;+ 20 x D i -  100 x 

. .  7.5 x 10-3 x ~ z g =  1 0 0  10-6 

100 x 10-6 
Dzg= = 13.3 x 10-3 

7.5 x 1 0 - 3  

D B  = 115.47 mm 

13.3 10 3.3 d i =  Di-D’,  = =- 
io3 io3 103 

. .  d B  = 57.74 mm 

115.5 mm respectively. 
The internal and external diameters of the hollow tube are therefore 57.7mm and 

Example 11.3 

(a) What will be the instantaneous stress and elongation of a 25 mm diameter bar, 2.6 m 
long, suspended vertically, if a mass of 10 kg falls through a height of 300 mm on to a collar 
which is rigidly attached to the bottom end of the bar? 

Take g = 10m/s2. 
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(b) When used horizontally as a simply supported beam, a concentrated force of 1 kN 
applied at the centre of the support span produces a static deflection of 5 mm. The same load 
will produce a maximum bending stress of 158 MN/m’. 

Determine the magnitude of the instantaneous stress produced when a mass of 10 kg is 
allowed to fall through a height of 12mm on to the beam at mid-span. 

What will be the instantaneous deflection? 

Solution 

(a) From eqn. (11.9) 

w h +- = - x volume (Fig. 11.7) ( :) ;; 
25’ 
lo6 volume of bar = in x ~ x 2.6 = 12.76 x 

O’ x 12.76 x 
Then 10 x 10 

1.30 O2 
30+- = 

109 3 i 3 x  1012 
. .  

1.30 
30 x 313 x 10” f- x 313 x 10” = O’ 

109 
and 

Then u2 - 406.9 x lo3 x u - 9390 x 10l2 = 0 

406.9 x lo3 f J(166 x lo9 + 37560 x 
2 

O =  

406.9 x l o3  f 193.9 x lo6 
2 

- - 

= 97.18 MN/m2 

If the instantaneous deflection is ignored (the term aL/E omitted) in the above calculation 
a very small difference in stress is noted in the answer, 

i.e. 
O’ x volume 

2E 
W (h)  = 

o2 x 12.76 x l op4  . .  100 x 0.3 = 
2 x 200 x 109 

30 400 109 
. .  0 2  = = 9404 x 10” 

12.76 x 

. .  o = 96.97 MN/mZ 

This suggests that if the deflection 6 is small in comparison to h (the distance through which 



278 Mechanics of Materials 

the mass falls) it can, for all practical purposes, be ignored in the above calculation: 

aL 97.18 x 2.6 x lo6 
deflection produced (6) = - = 

E 200 x 109 

i.e. elongation of bar = 1.26mm 

(b) Consider the loading system shown in Fig. 11.8. Let WE be the equivalent force that 
produces the same deflection and stress when gradually applied as that produced by the 
falling mass. 

Then ws 

6max 6 s  
-=- 

where W, is a known load, gradually applied to the beam at mid-span, producing deflection 6, 
and stress a,. 

Then 
w~6, W E X  5 x a,=-- - 

1 x 103 K 

. .  

SOOWE 2.5 W’, 
10 10. 

1 . 2 + - 3 - = -  

By factors, w ~ = 8 0 0 N  or - 6 o N  

. .  WE = 800N 

By proportion 6 s  a m a x  -=- 
WE 

and the maximum stress is given by 

And since WE -=- 
6 6, 
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the deflection is given by 

= 4 x 10-3 
800 x 5 x - - 

1 x 103 

= 4mm 

Example 11.4 

A horizontal steel beam of I-section rests on a rigid support at one end, the other end being 
supported by a vertical steel rod of 20mm diameter whose upper end is rigidly held in a 
support 2.3 m above the end of the beam (Fig. 11.17). The beam is a 200 x 100 mm B.S.B. for 
which the relevant I-value is 23 x m4 and the distance between its two points of support 
is 3 m. A load of 2.25 kN falls on the beam at mid-span from a height of 20 mm above the 
beam. 

Determine the maximum stresses set up in the beam and rod, and find the deflection of the 
beam at mid-span measured from the unloaded position. Assume E = 200 GN/m2 for both 
beam and rod. 

dio 

W = 2 2 5 k N  

Fig. 11.17. 

Solution 

Let the shock load cause a deflection SBof the beam at the load position and an extension S R  
of the rod. Then if WE is the equivalent static load which produces the deflection SB and P is 
the maximum tension in the rod, 

P 2 L R  1 
2AE 2 total strain energy = - +- WES, 

= work done by falling mass 
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Now the mass falls through a distance 

L 

where 6R/2 is the effect of the rod extension on the mid-poin 
the beam remains straight and rotates about the fixed support position.) 

f the beam. (This 

. .  work done by falling mass = W 

If P = reaction at one end of beam 

then WE p = -  
2 

ssumes that 

WL3 6 = -  
48 EI  For a centrally loaded beam 

(2) 
WEX 33 - WE 

48 x 200 x lo9 x 23 x - 8.18 x lo6 6.q = 

WL 
AE 

6R = - For an axially loaded rod 

. .  

Substituting (2) and (3) in (l), 

WE Wix2.3  
2.25 x 103 -+ [ :09 8.18 x lo6 + 

8 (4 x 202 x x 200 x lo9 

w’, 
2 x 8.18 x lo6 + 

W2 x 2.3 
8 x 314 x loW6 x 200 x lo9 

+ 

- - 2.25 x 103 wE 2.25 x 103 wE 
45+ 8.18 x lo6 + 54.6 x lo6 

w’, 
16.36 x lo6 

45+275 x WE+41.2 x WE = 4.58 x W’,+61.1 x W’, 

45 + 316.2 WE x = 65.68 x low9 W’, 

Then 
316.2 x 45 
65.68 x 65.68 x low9 = 

W’,- WE - 

. .  W’,-4.8 x lo3 WE-685 x lo6 = 0 
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and 
4.8 x lo3 f J(23 x lo6 + 2740 x lo6) 

2 
WE = 

- 4.8 x lo3 f J(2763 x lo6) - 
2 

4.8 x 103 52.59 x 103 

57.3 x 103 

- - 
2 

- - 
2 

= 28.65 x 103N 

WEL Maximum bending moment = ~ 

4 

28.65 x lo3 x 3 
4 

- - 

= 21.5 x 1 0 3 ~  

MY Then maximum bending stress = __ 
I 

21.5 x 103 x io0 x 10-3 - - 
23 x 

= 93.9 x lo6 N/m2 

3 WE Maximum stress in rod = - 
area 

28.65 x lo3 - - 
2 x 2 x 202 x 10-6 

= 45.9 x lo6 N/m’ 

WE Deflection of beam 6 - - 8.18 x lo6 

28.65 x lo3 
8.18 x lo6 

= 3.52 x m 

- - 

This is the extension at mid-span and neglects the extension of the rod. 

U L  PL WEL Extension of rod = - = - = ~ E AE 2AE 

28.8 x lo3 x 2.3 - - 
2 x 314 x 10-6 x 200 x 109 

= 0.527 x m 
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Assuming, as stated earlier, that the beam remains straight and that the beam rotates about 
the fixed end, then the effect of the rod extension at the mid-span 

6R 0.527 x 
2 2 

= 0.264 x 10-3m =- -  - 

Then, total deflection at mid-span = a,+ 6R/2 
= 3.52 x 10-3 +0.264 x 1 0 - 3  
= 3.784 x m 

Example 11.5 

Using Castigliano's first theorem, obtain the expressions for (a) the deflection under a 
single concentrated load applied to a simply supported beam as shown in Fig. 11.18, (b) the 
deflection at the centre of a simply supported beam carrying a uniformly distributed load. 

AF&;B 

!e wo 

Fig. 11.18. 

L L 

Solution 

(a) For the beam shown in Fig. 11.18 

s = ]ggds 
B 

C B 

a b 

- 
0 0 

a b 

wa2 
Wb2 

L~ E I  L 2 E l  
= - jx:dx, +- 

0 0 

Wb2a3 Wa2b3 Wa2b2 Wa2b2 
3L2EI 3L2EI 3L2E1 3LEI =- +-=- (U + b) = ~ 

(b) For the u.d.1. beam shown in Fig. 11.19a an imaginary load P must be introduced at 
mid-span; then the mid-span deflection will be 

L Ll2 
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but 

Then 

aM x ( W L  + P )  x - -  wx2 and - 
2 2 aw 2 Mx, = 

Ll2 

a=-! 2 [ ( w L + P )  x - - 1 - d x  wx2 x 
EX 2 2 2  

0 

1 
2EX 

= - 1 (wLx2 - w x 3 ) d x  since P = 0 
0 

P =o 

I (Unit  load) 

Fig. 11.19. 

Alternatively, using a unit load applied vertically at mid-span (Fig. 11.19b), 
L 1/2 

where 

Then 

LIZ 
( T - $ ) ; d x  w L x  

EX 
0 

LI2 
1 

2EI 
= - 1 (wLxz  - w x 3 ) d x  

0 

as before. Thus, in each case, 
Lx3 x4 Ll2 a = -  __-_ 

2 3  3 4 1 ,  

- wL4 [8-3] -  5WL4 
2EI 192 384EI 
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For C D  

M, ,  = W (0.25 + s,) 

Example 11.6 

M,, = W (0.25 + s,) 

Determine by the methods of unit load and Castigliano's first theorem, (a) the vertical 
deflection of point A of the bent cantilever shown in Fig. 11.20 when loaded at A with a 
vertical load of 600N. (b) What will then be the horizontal movement of A? 

The cantilever is constructed from 50 mm diameter bar throughout, with E = 200 GN/mZ. 

I25 

1 W = 6 0 0 N  

Fig. 11.20. 

Solution 

The total deflection of A can be considered in three parts, resulting from AB, BC, and CD. 
Since the question requires solution by two similar methods, they will be worked in parallel. 

(a) For vertical dejection 

Castigliano I Unit load 

M dM 
6 =  - - d s  

S E I  dW 

where rn = bending moment resulting from a unit load 
at A. 

dM 
-= 0.25 + sg 
d W  

0 . 3  

W(0.25 +s,)(0.25 +s,)ds,  
E l  6 C D  = 

m =  l(0.25) +s,) 

0 .3  

W (0.25 + s,) (0.25 + s,) ds ,  
E l  

:. &-D = 

Thus the same equation is achieved by both methods. 
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Castigliano Unit load I 
0 . 3  

6 c ~  = !! E l  
(0.0625 +0.5 s3 + s:)ds3 

0 

W 
E l  

= - c0.01875 + 0.0225 + 0.0091 
30.15 = - 600 x 0.05025 = ~ 

E l  E l  

For BC 
M,,  = w (0.25 - 0.25 cos e) 

ds, = 0.25 dB 

M,, = w (0.25 -0.25 cos e) 

m = 1 (0.25 - 0.25 cos e) 

ds, = 0.25dO 

Once again the same equation for deflection is obtained 

w (0.25 - 0.25 cos e) 
i.e. 6BC= T (0.25 - 0.25 COS e) o . m e  

0 

but 

. .  

= E?!? [e - zsin 0 +- ; +- si;28]: 

= , , [ T - 2 + q ]  (0.25)3 W II 

E l  

(0.25)3 x 600 
E l  C2.-21 - - 

3.34 
E l  

=- 

Total vertical deflection at A 

30.15 + 3.34 33.49 x 64 x 10" 
= 0.546 mm - - - - 

E l  200 x 109 x II x 504 
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Castigliano Unit load I 
Again, working in parallel with Castigliano and unit load methods:- 

(b) For the horizontal deflection using Castigliano's 
method an imaginary load P must be applied horizontally 
since there is no external load in this direction at  
A (Fig. 11.21). 

W 

Fig. 11.21. 

Then 8 ~ =  SEladjfds,  -- with P = 0 

For AB 

M,, = P X S ,  + W X O  = PSI 

dM 
... s1 

.'. 648 = 12 x s1 ds, 

-= 

but P=O 
:. SAB= 0 

For BC 
M,, = w (0.25 - 0.25 COS e) 

+P(0.125+0.25sinO) 

dM 
- = 0.125+0.25sinO 
a P  
ds, = 0.25dO 

:. 6Bc = 'j. (0.25 - 0.25 cos e) 
0 

x (0.125 +0.25sinO)0.25de 
since P = 0 

For the unit load method a unit load must be applied at 
A in the direction in which the deflection is required 
is shown in Fig. 11.22. 

w 
Fig. 11.22. 

Then S H =  - d s  J% 
M,,= W X O = O  

m = l x s ,  

.'. 8 A B  = 0 

M,, = ~ ( 0 . 2 5  -o.zcOse) 
m= 1(0.125+0.25sinO) 

ds, = 0.2510 

X I 2  

0 

x (0.125 -0.25sine)o.2~de 

Thus, once again, the same equation is obtained. This is always the case and there is little difference in the amount 
of work involved in the two methods. 

0 

cos e - - (0.5 -2 + sin 0 -sin 0cosO)dO 
E l  

0 



Strain Energy 287 

Castigliano Unit load I 

=~ case+-- 

0.253 W 
E l  =- C ( f - t - t ) - ( - l + t ) I  

- 0.25; 600 (;) =- 7.36 
E l  

- 

For CD, using unit load method, 
M,, = W(O.25+s3) rn = 1(0.125+0.25) = 0.375 

0 . 3  

6cD= j” W (0.25 + s3) (0.375) ds ,  
E l  

0 

0.3 

- - j“ (0.25 +s3)ds3  
E l  

0 

0.375 W [  . :Ip’ 
E l  0 

=- 0 2 5 ~ 3  +- 
0.375 W 

E l  
=- c0.075 + 0.0453 

0.375 x 600 27 
x (0.12) = - 

E l  E l  
- - 

Therefore total horizontal deflection 
7.36 + 27 34.36 x 64 x 1 O I 2  

=-= 
E l  2oox109xxx504 

= 0.56mm 

Example 11.7 

The frame shown in Fig. 11.23 is constructed from rectangular bar 25 mm wide by 12 mm 
thick. The end A is constrained by guides to move in a vertical direction and carries a vertical 
load of 400 N. For the frame material E = 200 GN/mZ. 

Determine (a) the horizontal reaction at the guides, (b) the vertical deflection of A. 

Solution 

(a) Consider the frame of Fig. 11.23. If A were not constrained in guides it would move in 
some direction (shown dotted) which would have both horizontal and vertical components. If 
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--H 

W= 400 N 

Unrestrai f i td def lect ion 

Fig. 11.23. 

the horizontal movement is restricted by guides a horizontal reaction H must be set up as 
shown. Its value is determined by equating the horizontal deflection of A to zero, 

i.e. [" E 
E l  d H  ds = O  

For AB 
dM 
d H  

M,,= W s ,  and - = O  

. .  b A B  = 0 

For BC 
- - -s, 

aM 
My,  = 0.1 W - H s ,  and ~ 

a H  
0 . 2 5  

. I  

0 

0.25 

1 
E1 = - 1 (-0.1 W s ,  + H s : ) d s ,  

0 

1 0.0156258 
+ 3  

( -  3.125 W +  5 . 2 0 8 8 )  
1 -- - 

EI  x 103 
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For CD 
aM 
aH 

M,, = Ws, +0.258 and ~ = 0.25 

0.15 

sc* = (Ws3-t-l.25H) 0.25ds3 
-6.10 

0.15 

- - { (0.25 WS, + 0.0625H)ds3 
E l  

-0 .10 

1 0.25 Ws: 
= - [ + 0 . 0 6 2 5 8 ~ ~  

E l  2 

1 = -!- {["':" x 0.0225+0.06258 x 0.15 
E l  

x 0.01 +0.06258(-0.1) 

1 
=- { (1.25 x 2.25 W+6.25 x 1.5H)- (1.25 W-6.258)) 

EI  x 103 

1 
{ (2.81 W + 9.3758) - (1.25 W - 6.258) 1 -- - 

E I  x 103 

1 
=- (1.56 W+ 15.6258) 

E I  x 103 

Now the total horizontal deflection of A = 0 

. .  -3.125 W+ 5.2088 + 1.56 W +  15.6258 = 0 

- 1.565 W +  20.8338 0 

1.565 x 400 
20.833 

. .  H =  = 30N 

Since a positive sign has been obtained, 8 must be in the direction assumed. 
(b) For vertical deflection 

For AB 

. .  

aM 
and ~ a w = S l  M,, = Ws, 

0.1 
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For BC 

. .  

0.4 0.133 
3EI = 

=- 

aM My,, = W x 0.1 - 3 0 ~ ~  and - = 0.1 aw 
0.2s 

0 

= '1' (0.01 x 400 - 3s2)ds, 
E l  

0 

0.906 
EZ 

=- 

For C D  
aM M,, = Ws3 +0.25H and - - aw+ 

(Wsi + 0.25Hs3)ds3 
E l  

-0.1 

1 = [4ooO.375 10-3 + 1 x 10-3) +0*25; 30 (22.5 x 10-3- io x 10-3) 
EZ 3 

=-[- 400 4.375 x 10-3 + 0.25 30 x 12.5 x 10-3 
E1 3 2 

_ -  - [0.583+0.047] 
E l  

0.63 
E l  

=- 
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Total vertical deflection of A 

1 
E l  

= - (0.133 + 0.906 + 0.63) 

1.669 
EI  

=- 

1.669 x 12 x 10’’ 
= 2.32mm - - 

200 x 109 x 25 x 123 

Example 11.8 ( B )  

Derive the equation for the slope at the free end of a cantilever carrying a uniformly 
distributed load over its full length. 

Fig. 11.24, 

Solution (a)  

Using Castigliano’s procedure, apply an imaginary moment M i  in a positive direction at 
point B where the slope, i.e. rotation, is required. 
BM at XX due to applied loading and imaginary couple 

WX’ M = M . - -  
‘ 2  

from Castigliano’s theorem 

0 =  f M  -.-. aM dx 
E l  aMi  

0 

which, with M i  = 0 in the absence of any applied moment at B, becomes 
L 

wL3 
2EI 6EI 

x2 . dx  = - radian 
0 
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The negative sign indicates that rotation of the free end is in the opposite direction to that 
taken for the imaginary moment, Le. the beam will slope downwards at Bas should have been 
expected. 

Alternative solution (b) 

Using the “unit-moment’’ procedure, apply a unit moment at the point B where rotation is 
required and since we know that the beam will slope downwards the unit moment can be 
applied in the appropriate direction as shown. 

I (Un i t  m o m e n t )  

Fig. 11.25. 

wxz 
B.M. at XX due to applied loading = M = -- 

2 

B.M. at XX due to unit moment = m = - 1 

The required rotation, or slope, is now given by 

Mm 

0 

L =‘s EI (-%)(- 1)dx. 

0 

L 

wL3 
xz dx = ~ radian. 

2EI 6EI 
= 

0 

The answer is thus the same as before and a positive value has been a-tainec indicating 1 iat 
rotation will occur in the direction of the applied unit moment (ie. opposite to Mi in the 
previous solution). 

Problems 

11.1 (A). Define what is meant by “resilience” or “strain energy”. Derive an equation for the strain energy of a 
uniform bar subjected to a tensile load of P newtons. Hence calculate the strain energy in a 50 mm diameter bar, 4 m 
long, when carrying an axial tensile pull of 150 kN. E = 208 GN/mz. [ 110.2 N m.] 

11.2 (A). (a) Derive the formula for strain energy resulting from bending of a beam (neglecting shear). 
(b) A beam, simply supported at its ends, is of 4m span and carries, at 3 m from the left-hand support, a load of 

20 kN. If I is 120 x m4 and E = 200 GN/mz, find the deflection under the load using the formula derived in 
part (4.  [0.625 mm.] 
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11.3 (A) Calculate the strain energy stored in a bar of circular cross-section, diameter 0.2 m, length 2 m: 
(a) when subjected to a tensile load of 25 kN, 
(b) when subjected to a torque of 25 kNm, 
(c) when subjected to a uniform bending moment of 25 kNm. 

For the bar material E = 208 GN/m2, G = 80 GN/m2. c0.096, 49.7, 38.2 N m.] 

11.4 (A/B). Compare the strain energies of two bars of the same material and length and carrying the same 
gradually applied compressive load if one is 25 mm diameter throughout and the other is turned down to 20 mm 
diameter over half its length, the remainder being 25 mm diameter. 

If both bars are subjected to pure torsion only, compare the torsional strain energies stored if the shear stress in 
both bars is limited to 75 MN/m2. C0.78, 2.22.1 

11 .S (A/B). Two shafts, one of steel and the other of phosphor bronze, are of the same length and are subjected to 
equal torques. If the steel shaft is 25 mm diameter, find the diameter of the phosphor-bronze shaft so that it will store 
the same amount of energy per unit volume as the steel shaft. Also determine the ratio of the maximum shear stresses 
induced in the two shafts. Take the modulus of rigidity for phosphor bronze as 50 GN/mZ and for steel as 80 GN/mZ. 

C27.04 mm, 1.26.1 

11.6 (A/B). Show that the torsional strain energy ofa  solid circular shaft transmitting power at a constant speed 
is given by the equation: 

T2 

4G 
U = - x volume. 

Such a shaft is 0.06 m in diameter and has a flywheel of mass 30 kg and radius of gyration 0.25 m situated at a 
distance of 1.2 m from a bearing. The flywheel is rotating at 200 rev/min when the bearing suddenly seizes. Calculate 
the maximum shear stress produced in the shaft material and the instantaneous angle of twist under these conditions. 
Neglect the shaft inertia. For the shaft material G = 80 GN/mZ. [B.P.] C196.8 MN/m2, 5.W.I  

11.7 (AIB). A solid shaft carrying a flywheel of mass 100 kg and radius of gyration 0.4m rotates at a uniform 
speed of 75 revimin. During service, a bearing 3 m from the flywheel suddenly seizesproducinga fixation of the shaft 
at this point. Neglecting the inertia of the shaft itself determine the necessary shaft diameter if the instantaneous 
shear stress produced in the shaft does not exceed 180 MN/mZ. For the shaft material G = 80 GN/m2. Assume all 
kinetic energy of the shaft is taken up as strain energy without any losses. [22.7 mm.] 

11.8 (A/B). A multi-bladed turbine disc can be assumed to have a combined mass of 150 kg with an effective 
radius of gyration of 0.59 m. The disc is rigidly attached to a steel shaft 2.4m long and, under service conditions, 
rotatesat a speed of 250rev/min. Determine the diameter of shaft required in order that the maximum shear stress set 
up in the event of sudden seizure of the shaft shall not exceed 200 MN/m2. Neglect the inertia of the shaft itself and 
take the modulus of rigidity G of the shaft material to be 85 GN/mZ. [ 284 mm.] 

11.9 (A/B). Develop from first principles an expression for the instantaneous stress set up in a vertical bar by a 
weight W falling from a height h on to a stop at the end of the bar. The instantaneous extension x may not be 
neglected. 

A weight of 500 N can slide freely on a vertical steel rod 2.5 m long and 20 mm diameter. The rod is rigidly fixed at 
its upper end and has a collar at the lower end to prevent the weight from dropping off. The weight is lifted to a 
distance of 50 mm above the collar and then released. Find the maximum instantaneous stress produced in the rod. 
E = 200 GN/m3. [114 MN/m2.] 

11.10 (A/B). A load of 2 kN falls through 25 mm on to a stop at the end of a vertical bar 4 m long, 600 mm2 cross- 
sectional area and rigidly fixed at its other end. Determine the instantaneous stress and elongation of the bar. 
E = 200 GN/m2. C94.7 MN/m2, 1.9 mm.] 

11.11 (A/B). A load of 2.5 kN slides freely on a vertical bar of 12 mm diameter. The bar is fixed at its upper end 
and provided with a stop at the other end to prevent the load from falling off. When the load is allowed to rest on the 
stop the bar extends by 0.1 mm. Determine the instantaneous stress set up in the bar if the load is lifted and allowed to 
drop through 12 mm on to the stop. What will then be the extension of the bar? [365 MN/m2, 1.65 mm.] 

11.12 (A/B). A bar of acertain material, 40 mm diameter and 1.2 m long, has a collar securely fitted to one end. It 
is suspended vertically with the collar at the lower end and a mass of 2000 kg is gradually lowered on to the collar 
producing an extension in the bar of 0.25 mm. Find the height from which the load could be dropped on to the collar 
if the maximum tensile stress in the bar is to be 100 MN/mZ. Take g = 9.81 m/s2. The instantaneous extension 
cannot be neglected. [U.L.] [3.58 mm] 

11.13 (A/B). A stepped bar is 2 m long. It is 40 mm diameter for 1.25 m of its length and 25 mm diameter for the 
remainder. If this bar hangs vertically from a rigid structure and a ring weight of 200 N falls freely from a height of 
75 mm on to a stop formed at the lower end of the bar, neglecting all external losses, what would be the maximum 
instantaneous stress induced in the bar, and the maximum extension? E = 200 GN/m2. 

C99.3 MN/mZ, 0.615 mm.] 
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11.14 (B). A beam of uniform cross-section, with centroid at mid-depth and length 7 m, is simply supported at its 
ends and carries a point load of 5 kN at 3 m from one end. If the maximum bending stress is not to exceed 90 MN/m2 
and the beam is 150 mm deep, (i) working from first principles find the deflection under the load, (ii) what load 
dropped from a height of 75 mm on to the beam at 3 m from one end would produce a stress of 150 MN/mZ at the 
point of application of the load? E = 200 GN/m2. [24 mm; 1.45 kN.] 

11.15 (B). A steel beam of length 7 m is built in at both ends. It has a depth of 500 mm and the second moment of 
area is 300 x lo-' m4. Calculate the load which, falling through a height of 75 mm on to the centre of the span, will 
produce a maximum stress of 150 MN/mZ. What would be the maximum deflection if the load were gradually 
applied? E = 200 GN/mZ. [B.P.] C7.77 kN, 0.23 mm.] 

11.16 (B). When a load of 20 kN is gradually applied at a certain point on a beam it produces a deflection of 
13 mm and a maximum bending stress of 75 MN/m2. From what height can a load of 5 kN fall on to the beam at this 
point if the maximum bending stress is to be 150 MN/m2? [U.L.] [78 mm.] 

11.17 (B). Show that the vertical and horizontal deflections of the end Bof the quadrant shown in Fig. 11.26 are, 
respectively, 

WR3 
E [ : - 2 ]  and -. 

E l  2EI 
What would the values become if W were applied horizontally instead of vertically? 

t 
W 

Fig. 11.26. 

11.18 (B). A semicircular frame of flexural rigidity E1 is built in at A and carries a vertical load Wat Bas shown 
in Fig. 11.27. Calculate the magnitudes of the vertical and horizontal deflections at Band hence the magnitude and 
direction of the resultant deflection. 

1 3nWR3 WR3 WR3 
2-; 5.12- at 23" to vertical. [yy; E1 E l  

t 
W 

Fig. 11.27. 

11.19 (B). A uniform cantilever, length Land flexural rigidity E1 carries a vertical load Wat mid-span. Calculate 
the magnitude of the vertical deflection of the free end. [GI 

11.20 (B). A steel rod, of flexural rigidity E l ,  forms a cantilever ABC lying in a vertical plane as shown in 
Fig. 11.28. A horizontal load of P acts at C .  Calculate: 
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C 

Fig. 11.28. 

(a) the horizontal deflection of C; 
(b) the vertical deflection of C; 
(c) the slope at B. 
Consider the strain energy resulting from bending only. + 3b]; -; -. 

PabZ 2EI Pab El  1 
11.21 (B). Derive the formulae for the slope and deflection at the free end of a cantilever when loaded at the end 

with a concentrated load W. Use a strain energy method for your solution. 
A cantilever is constructed from metal strip 25 mm deep throughout its length of 750 mm. Its width, however, 

varies uniformly from zero at the free end to 50 mm at the support. Determine the deflection of the free end of the 
cantilever if it carries uniformly distributed load of 300 N/m across its length. E = 200 GN/m2. [1.2 mm.] 

11.22 (B). Determine the vertical deflection of point A on the bent cantilever shown in Fig. 11.29 when loaded at 
A with a vertical load of 25 N. The cantilever is built in at B, and E l  may be taken as constant throughout and equal to 
450 N mz. [B.P.] C0.98 mm.] 

25 N 

Fig. 11.29. 

11.23 (B). What will be the horizontal deflection of A in the bent cantilever of Problem 11.22 when carrying the 
vertical load of 25 N? C0.56 mm.] 

11.24 (B). A steel ring of mean diameter 250 mm has a square section 2.5 mm by 2.5 mm. It is split by a narrow 
radial saw cut. The saw cut is opened up farther by a tangential separating force of 0.2 N. Calculate the extra 
separation at the saw cut. E = 200 GN/mZ. [U.E.I.] [5.65 mm.] 

11.25 (B). Calculate the strain energy of the gantry shown in Fig. 11.30 and hence obtain the vertical deflection of 

the point C. Use the formula for strain energy in bending U = dx,  where M is the bending moment, E is 

Young’s modulus, I is second moment of area of the beam section about axis XX. The beam section is as shown in 
Fig. 11.30. Bending takes place along A B  and BC about the axis XX. E = 210 GN/m2. [U.L.C.I.] C53.9 mm.] 

7rn 
2 5 0 m  *- 

Fig. 11.30 
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11.26 (B). A steel ring, of 250 mm diameter, has a width of 50 mm and a radial thickness of 5 mm. It is split to 
leave a narrow gap 5 mm wide normal to the plane of the ring. Assuming the radial thickness to be small compared 
with the radius of ring curvature, find the tangential force that must be applied to the edges of the gap to just close it. 
What will be the maximum stress in the ring under the action of this force? E = 200 GN/m2. 

CI.Mech.E.1 C28.3 N; 34 MN/m2.] 
11.27 (B). Determine, for the cranked member shown in Fig. 11.31: 
(a) the magnitude of the force P necessary to produce a vertical movement of P of 25 mm; 
(b) the angle, in degrees, by which the tip of the member diverges when the force P is applied. 
The member has a uniform width of 50mm throughout. E = 200GN/mZ. [B.P.] C6.58 kN; 4.1O.I 

11.28 (C). A 12 mm diameter steel rod is bent to form a square with sides 2a = 500mm long. The ends meet at the 
mid-point of one side and are separated by equal opposite forces of 75 N applied in a direction perpendicular to the 
plane of the square as shown in perspective in Fig. 11.32. Calculate the amount by which they will be out of 
alignment. Consider only strain energy due to bending. E = 200GN/mZ. C38.3 mm.] 

Fig. 11.32 

11.29 (B/C). A state of two-dimensional plane stress on an element of material can be represented by the 
principal stresses ul and u2 (a, > u2). The strain energy can be expressed in terms of the strain energy per unit 
volume. Then: 

(a) working from first principles show that the strain energy per unit volume is given by the expression 

1 

2E 
--(u:+u; -2vu,u,) 

for a material which follows Hooke’s law where E denotes Young’s modulus and v denotes Poisson’s ratio, 
and 

(b) by considering the relations between each of ux, up, 7c,y respectively and the principal stresses, where x and yare 
two other mutually perpendicular axes in the same plane, show that the expression 

1 

2E 
- [ Uf + U: - 2VU,U, f 2( 1 + V)Tf,] 

[City U.] is identical with the expression given above. 


