CHAPTER 11

STRAIN ENERGY

Summary

The energy stored within a material when work has been done on it is termed the strain
energy or resilience,

ie. strain energy = work done

In general there are four types of loading which can be applied to a material:
1. Direct load (tension or compression)

Strai ergy U = p*ds P*L
rain energy U = S AE or 7AE
g*AL ¢?

=SE ~3F x volume of bar

2. Shear load

) _ [Q%ds Q%L
Strain energy U = f 246 " 246
2 2
=——=XAL=— \ f
2Gx 5¢ < Volume o bar
3. Bending
M?2ds MZL
. _ it M i
Strain energy U J 2Bl or 3BT if M is constant
4. Torsion
T2 T?L
Strain energy U = J > GJS or >G] if T is constant

From 1 above, the strain energy or resilience when the tensile stress reaches the proof stress
6, i.e. the proof resilience, is ,

aP
—£ f
SE x volume of bar

and the modulus of resilience is
2
S
2E
The strain energy per unit volume of a three-dimensional principal stress system is

1
U= T [6i+06%+06%—2v(6,0,+0,05+050,)]
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The volumetric or “dilatational” strain energy per unit volume is then

(1-2v)
6E

[(6,+0,+03)"]
and the shear, or “distortional”, strain energy per unit volume is
1
126 [(e,— 0, + (0, — 03)2 +(03— 0,)*]

The maximum instantaneous stress in a uniform bar caused by a weight W falling througha
distance h on to the bar is given by

_w, [[(wY, 2wER
7= T A AL

The instantaneous extension is then given by

_oL

°=F

If this is small compared to the height h, then

-

For any shock-loaded system the instantaneous deflection is given by

o (-2)

where J, is the deflection under an equal static load.

Castigliano’s first theorem for deflection states that:
If the total strain energy expressed in terms of the external loads is partially differentiated
with respect to one of the loads the result is the deflection of the point of application of that
load and in the direction of that load (see Examples 11.5 and 11.6):

ie. Deflection in direction of W = g—g/ =9

In applications where bending provides practically all of the strain energy,
_ 8 [M?*ds (MM
“ow ) 2EI T JEIaW®
This is sometimes written in the form
Mm
0= |—
£l ds
oM . . . . .
wherem = W the bending moment resulting from a unit load only in the place of W. This

method of solution is then termed the unit load method.
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Castigliano’s theorem also applies to angular movements:
If the total strain energy expressed in terms of the external moments be partially
differentiated with respect to one of the moments, the result is the angular deflection in
radians of the point of application of that moment and in its direction

J‘M@M

Emds

where M, is the actual or imaginary moment at the point where 0 is required.
Deflections due to shear

Beam loading Shear deflection
Rectangular-section beam I-section beam
L
Cantilever—concentrated 6—W» zﬁ
end load W’ 54G AG
2 2
Cantilever—u.d.l. 3&1‘_ ZV_L_ = E
SAG 24G 224G
Simply supported IWL WL
beam - central - o
concentrated load W 104G 44G
Simply supported
beam —concentrated 6Wab
load dividing span SAGL
into lengths a and b
. 3wlL? wl? WL
Simply supported — =
beam—u.d.l 20AG 8AG 8AG
Introduction

Energy is normally defined as the capacity to do work and it may exist in any of many forms,
e.g. mechanical (potential or kinetic), thermal, nuclear, chemical, etc. The potential energy of a
body is the form of energy which is stored by virtue of the work which has previously been
done on that body, e.g. in lifting it to some height above a datum. Strain energy is a particular
form of potential energy which is stored within materials which have been subjected to strain,
i.e. to some change in dimension. The material is then capable of doing work, equivalent to
the amount of strain energy stored, when it returns to its original unstrained dimension.

Strain energy is therefore defined as the energy which is stored within a material when work
has been done on the material. Here it is assumed that the material remains elastic whilst work
is done on it so that all the energy is recoverable and no permanent deformation occurs due to
yielding of the material,

ie. strain energy U = work done

Thus for a gradually applied load the work done in straining the material will be given by
the shaded area under the load—extension graph of Fig. 11.1.

U=14iP5
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Load
/ P
ds
- o

Work
done =U

P Area A 3 Extension

(@ (b)

Fig. 11.1. Work done by a gradually applied load.

The strain energy per unit volume is often referred to as the resilience. The value of the
resilience at the yield point or at the proof stress for non-ferrous materials is then termed the
proof resilience.

The unshaded area above the line OB of Fig. 11.1 is called the complementary energy, a
quantity which is utilised in some advanced energy methods of solution and is not considered
within the terms of reference of this text.t

11.1. Strain energy — tension or compression
(@) Neglecting the weight of the bar

Consider a small element of a bar, length ds, shown in Fig. 11.1. If a graph is drawn of load
against elastic extension the shaded area under the graph gives the work done and hence the
strain energy,

ie. strain energy U = 1 P§

stress P ds

’ dulus E = =
Now Young’s modulus stram = 4 X 5
Pds
d=—
AE
P2ds
for the bar el tU =
or the bar elemen VT

L
P%ds
2AE

total strain energy for a bar of length L = J

0

Thus, assuming that the area of the bar remains constant along the length,
P2L

U=324E

(11.1)

t See H. Ford and J. M. Alexander, Advanced Mechanics of Materials (Longmans, London, 1963).
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or, in terms of the stress g (= P/A),

c?AL ¢?

SE = 2E x volume of bar (11.2)
i.e. strain energy, or resilience, per unit volume of a bar subjected to direct load, tensile or
compressive

U=

=2 (11.3)

or, alternatively,
1

g _1
=50xp=10xe

2

ie. resilience = 4 stress x strain

(b) Including the weight of the bar

Consider now a bar of length L mounted vertically, as shown in Fig. 11.2. At any section
AB the total load on the section will be the external load P together with the weight of the bar

material below AB.

L

Fig. 11.2. Direct load —tension or compression.

Assuming a uniform cross-section of area A with density p,
load on section 4B = P+ pgAs

the positive sign being used when P is tensile and the negative sign when P is compressive.
Thus, for a tensile force P the extension of the element ds is given by the definition of Young’s

modulus E to be

ods
S=TF

_ (P +dgAs)

1E ds
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work done = 4 x load x extension

(P +pgA®
=L(P+ pgAs)— L2~
3 (P + pg As) AE
P? Ppg (pg)* A $2
—2AEd s +—— £ sds +—— 2E ds

". total strain energy or work done
L

2
P ds+J‘—Pp—gsds+J‘(pg) 4 s2ds
0

2AE E 2E

O{_—}h

0
_P?L  PpgL* (pg)*AL®
" 24E 2E 6E

(11.4)

The last two terms are therefore the modifying terms to eqn. (11.1) to account for the
body-weight effect of the bar.

11.2. Strain energy —shear
Consider the elemental bar now subjected to a shear load Q at one end causing

deformation through the angle y (the shear strain) and a shear deflection J, as shown in
Fig. 11.3.

Fig. 11.3. Shear.

Strain energy U = work done = 104 = $Qvds

shear stress  t  Q

No G=—— —=-==
W shear strain 7 yA
Q
"= 4G
2
shear strain energy = $Q x g xds = —g-— ds

AG 2AG
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§11.3
.. total strain energy resulting from shear
L
_[Q%s QL
"~ ] 24G " 246 (11.5)
[¢]
or, in terms of the shear stress 1 = (Q/A),
12AL 2
U= = fb .
Te 2G x volume of bar (11.6)

11.3. Strain energy —bending

Let the element now be subjected to a constant bending moment M causing it to bend into
anarc of radius R and subtending an angle d0 at the centre (Fig. 11.4). The beam will also have

moved through an angle 40.

\ /"
. \(/de\/,
Fig. 11.4. Bending.

Strain energy = work done = 1 x moment x angle turned through (in radians)

=1Mdo
M E
But ds = Rdf and T=§
ds M
M32ds

M
strain energy = + M x £l ds = SEI

Total strain energy resulting from bending,

L
M32ds
= ad 11.7
v 2EI ( )
1)
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If the bending moment is constant this reduces to
M 2L
~ 2EI

U

11.4. Strain energy — torsion

The element is now considered subjected to a torque 7" as shown in Fig. 11.5, producing an
angle of twist 46 radians.

Fig. 11.5. Torsion.

Strain energy = work done = $7df

But, from the simple torsion theory,

T Gdo Tds
L7 and el
7= a4 2d d=357

‘. total strain energy resulting from torsion,
L
T%ds T3L

U=1367 =267

(11.8)

O

since in most practical applications T is constant.
For a hollow circular shaft eqn. (11.8) still applies

2
L
ie. Strai U=_——
ie train energy 2GT
Now, from the simple bending theory
Z _ E _ Tmax
J r R
where R is the outer radius of the shaft and
J= g (R*—r%)
T=2" 1 (R*—rY
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Substituting in the strain energy equation (11.8) we have:

U =

2G§(R‘—-r4)

_ ThaxT(R*—r*)L

4G R?
R2
14“‘5"[ R '] x volume of shaft
2 2., .2
or Strain energy/unit volume = 1:%" ER—R-:—L—] (11.8a)

It should be noted that in the four types of loading case considered above the strain energy
expressions are all identical in form,

(applied “load”)? x L
2 x product of two related constants

ie. strain energy U =

the constants being related to the type of loading considered. In bending, for example, the
relevant constants which appear in the bending theory are E and I, whilst for torsion G and J
are more applicable. Thus the above standard equations for strain energy should easily be
remembered.

11.5. Strain energy of a three-dimensional principal stress system

The reader is referred to §14.17 for the derivation of the following expression for the strain
energy of a system of three principal stresses:

1
U= 2 —[6?+ 062+ 03 —2v(a,0,+ 0,05+ 636,)] per unit volume
It is then shown in §14.17 that this total strain energy can be conveniently considered as made
up of two parts:
(@) the volumetric or dilatational strain energy;
(b) the shear or distortional strain energy.

11.6. Volumetric or dilatational strain energy

This is the strain energy associated with a mean or hydrostatic stress of
1(o, + 0, + 05) = & acting equally in all three mutually perpendicular directions giving rise to
no distortion, merely a change in volume.

Then from eqn. (14.22),

—2v)

E [(6y + 65+ 65)%] per unit volume

. . 1
volumetric strain energy = (
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11.7. Shear or distortional strain energy

In order to consider the general principal stress case it has been shown necessary, in §14.6,
to add to the mean stress ¢ in the three perpendicular directions, certain so-called deviatoric
stress values to return the stress system to values of o,, 6, and g5. These deviatoric stresses are
then associated directly with change of shape, i.e. distortion, without change in volume and
the strain energy associated with this mechanism is shown to be given by

1 .
shear strain energy = DG [(6, —0;)*+ (6, —03)* + (65 —0,)*)] per unit volume

1 .
=%C [63+063+63—(0,6,+06,65+035;)] per unit volume

This equation is used as the basis of the Maxwell-von Mises theory of elastic failure which is
discussed fully in Chapter 15.

11.8. Suddenly applied loads
Ifaload Pisapplied gradually to a bar to produce an extension ¢ the load—extension graph

will be as shown in Fig. 11.1 and repeated in Fig. 11.6, the work done being given by
U=4%Pé.

Load

Pl — — — — — ’ Work done
gradually applied
load

2
Work done
(suddenly
applied load) ) Extension

=P’8
Fig. 11.6. Work done by a suddenly applied load.

If now aload P’ is suddenly applied (i.e. applied with an instantaneous value, not gradually
increasing from zero to P’) to produce the same extension J, the graph will now appear as a
horizontal straight line with a work done or strain energy = P‘4.

The bar will be strained by an equal amount ¢ in both cases and the energy stored must
therefore be equal,

ie. Pé6=1P6
or P=1%iP

Thus the suddenly applied load which is required to produce a certain value of
instantaneous strain is half the equivalent value of static load required to perform the same
function. It is then clear that vice versa a load P which is suddenly applied will produce twice the
effect of the same load statically applied. Great care must be exercised, therefore, in the design
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of, for example, machine parts to exclude the possibility of sudden applications of load since
associated stress levels are likely to be doubled.

11.9. Impact loads - axial load application

Consider now the bar shown vertically in Fig. 11.7 with a rigid collar firmly attached at the
end. The load W is free to slide vertically and is suspended by some means at a distance h
above the collar. When the load is dropped it will produce a maximum instantaneous
extension & of the bar, and will therefore have done work (neglecting the mass of the bar and
collar)

= force x distance = W (h+d)

Load W T

B o] T
T

Bar--— h

Rigid A1 s

collar

< N | SNNNNNNY
L T

Fig. 11.7. Impact load —axial application.

This work will be stored as strain energy and is given by eqn. (11.2):

gAL
U=k
where ¢ is the instantaneous stress set up.
2
AL _ h+o) (119)

If the extension ¢ is small compared with h it may be ignored and then, approximately,

6> =2WEh/AL

ie. ¢ = \/(2 v:f") (11.10)

If, however, & is not small compared with h it must be expressed in terms of o, thus

stress oL ol
= =— and 0=—
strain é E

Therefore substituting in eqn. (11.9)

g2AL Wol
= Wh-
2E +
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o2AL WL

—eZE _wh=0
2E °E

QW 2WEh
2_ T T o
o 1 c 1L 0

Solving by “the quadratic formula” and ignoring the negative sign,
. 2W+ 2_14_/2+4 2WEh
7724 A AL

, w W\2 2WEh
ie. a—;ﬁ-[K;)+ AL] (11.11)

This is the accurate equation for the maximum stress set up, and should always be used if
there is any doubt regarding the relative magnitudes of é and h.
Instantaneous extensions can then be found from

__aL
T E

0

If the load is not dropped but suddenly applied from effectively zero height, h = 0, and
eqn. (11.11) reduces to
_w + w_2w
T4T AT A

This verifies the work of §11.8 and confirms that stresses resulting from suddenly applied
loads are twice those resulting from statically applied loads of the same magnitude.
Inspection of eqn. (11.11) shows that stresses resulting from impact loads of similar
magnitude will be even higher than this and any design work in applications where impact
loading is at all possible should always include a safety factor well in excess of two.

11.10. Impact loads—bending applications
Consider the beam shown in Fig. 11.8 subjected to a shock load W falling through a height
h and producing an instantaneous deflection 6.
Work done by falling load = W (h+ )

In these cases it is often convenient to introduce an equivalent static load W defined as
that load which, when gradually applied, produces the same deflection as the shock load

Fig. 11.8. Impact load —bending application.
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which it replaces, then
work done by equivalent static load = $ W;é
W(h+6) =41 Wb (11.12)

Thus if é is obtained in terms of Wy using the standard deflection equations of Chapter 5 for
the support conditions in question, the above equation becomes a quadratic equation in one
unknown W;. Hence Wjcan be determined and the required stresses or deflections can be
found on the equivalent beam system using the usual methods for static loading, i.e. the
dynamic load case has been reduced to the equivalent static load condition.
Alternatively, if W produces a deflection d; when applied statically then, by proportion,

W, W 5
“Eo or WE=6—W

s s

Substituting in egn. (11.12)

WM+&=%WX§X6

62—26,6—25,h =0
8 =d,+./(5,+20,h)

3
6=6,[1i<1+§—h>] (11.13)

The instantaneous deflection of any shock-loaded system is thus obtained from a
knowledge of the static deflection produced by an equal load. Stresses are then calculated as
before.

11.11. Castigliano’s first theorem for deflection

Castigliano’s first theorem states that:

If the total strain energy of a body or framework is expressed in terms of the external loads
and is partially differentiated with respect to one of the loads the result is the deflection of
the point of application of that load and in the direction of that load,

i.e. if U is the total strain energy, the deflection in the direction of load W = 0U/0W.

In order to prove the theorem, consider the beam or structure shown in Fig. 11.9 with
forces P,, Pg, P, etc., acting at points A4, B, C, etc.

If a, b, ¢, etc., are the deflections in the direction of the loads then the total strain energy of
the system is equal to the work done.

U=134P,a+4Psb+4Pcc+ ... (11.14)

N.B. Limitations of theory. The above simplified approach to impact loading suffers severe limitations. For example,
the distribution of stress and strain under impact conditions will not strictly be the same as under static
loading, and perfect elasticity of the bar will not be exhibited. These and other effects are discussed by Roark
and Young in their advanced treatment of dynamic stresses: Formulas for Stress & Strain, 5th edition
(McGraw Hill), Chapter 15.
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Pt SPA) P Fe
Al Bl Cl Untoaded beam position
\:0 tb :c -
Beam loaded with™ . Yt
P Fys Ry €t - /&Beom loaded with P, P

—~ - ./'r Ay
'8 ?Sb 3, P., efc plus extra load 3P,

Fig. 11.9. Any beam or structure subjected to a system of applied concentrated loads
P, Pg, Pp... Py, ctc.

If one of the loads, P, is now increased by an amount 6 P, the changes in deflections will be
éa, 6b and dc, etc., as shown in Fig. 11.9.

Load ot A Load at B
8b
Sa r.__.
Py |- — — — e
R+3R |- — —— 3 Extrg_work
pl-——— Extra \IAIOI'k x =P 3b
A =(R + 43R )8a
N\
Extension N N\ Extension
o 0+3a b b+3b

Fig. 11.10. Load-extension curves for positions 4 and B.

Extra work done at A (see Fig. 11.10)

= (P4+316P)éa
Extra work done at B, C, etc. (see Fig. 11.10)

= Py b, P.dc, etc.

Increase in strain energy
= total extra work done

oU = P,da+16P,8a+Psdb+ Pcéc+ . ..
and neglecting the product of small quantities
oU =P, 8a+ Pgdb+Pcoc+ ... (11.15)

But if the loads P,+ 6P,, Pg, Pc, etc., were applied gradually from zero the total strain
energy would be

U +6U =) } xload x extension
U+6U =4 (P,+6Py)(a+d6a)+3iPs(b+b)+4+Pc(c+dc)+ . ..
=4iP,a+4iP,0a+%6P,a+46P,6a+4Psb+3Psdb+4Pec+3Pcéc+ ...
Neglecting the square of small quantities (18P, a) and subtracting eqn. (11.14),
SU =18P,a+4P,6a+4Psdb+4Pcdc+ ...
or 20U = 6P,a+P,0a+ Pgdb+ Pcoc+ ...
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Subtracting eqn. (11.15),

oU
oU = 6P — =
4Q 6PA a
. .. 0
or, in the limit, 8_}1’]4 =a

1.e. the partial differential of the strain energy U with respect to P, gives the deflection under
and in the direction of P,. Similarly,

oU oU
= —p d — = .
aP, an 3Pe ¢, etc

In most beam applications the strain energy, and hence the deflection, resulting from end
loads and shear forces are taken to be negligible in comparison with the strain energy
resulting from bending (torsion not normally being present),

M2
U—j-ﬁ?ds
QU _oU oM _ (2, oM
oP oM 3P J2EI "GP
. oU M oM

which is the usual form of Castigliano’s first theorem. The integral is evaluated as it stands to
give the deflection under an existing load P, the value of the bending moment M at some
general section having been determined in terms of P. If no general expression for M in terms
of P can be obtained to cover the whole beam then the beam, and hence the integral limits, can
be divided into any number of convenient parts and the results added. In cases where the
deflection is required at a point or in a direction in which there is no load applied, an
imaginary load P is introduced in the required direction, the integral obtained in terms of P
and then evaluated with P equal to zero.
The above procedures are illustrated in worked examples at the end of this chapter.

11.12. ““Unit-load” method

It has been shown in §11.11 that in applications where bending provides practically all of
the total strain energy of a system
M oM
= J M oM ds

ElI oW

Now W is an applied concentrated load and M will therefore include terms of the form
Wx, where x is some distance from W to the point where the bending moment (B.M.) is
required plus terms associated with the other loads. The latter will reduce to zero when
partially differentiated with respect to W since they do not include W.

Now 6—0”—/(Wx)=x=1><x
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i.e. the partial differential of the B.M. term containing W is identical to the result achieved if
W is replaced by unity in the B.M. expression. Using this information the Castigliano
expression can be simplified to remove the partial differentiation procedure, thus

Mm

where m is the B.M. resulting from a unit load only applied at the point of application of W
and in the direction in which the deflection is required. The value of M remains the same asin
the standard Castigliano procedure and is therefore the B.M. due to the applied load system,
including W.

This so-called “unit load” method is particularly powerful for cases where deflections are
required at points where no external load is applied or in directions different from those of
the applied loads. The method mentioned previously of introducing imaginary loads P and
then subsequently assuming P is zero often gives rise to confusion. It is much easier to simply
apply a unit load at the point, and in the direction, in which deflection is required regardless of
whether external loads are applied there or not (see Example 11.6).

11.13. Application of Castigliano’s theorem to angular movements

Castigliano’s theorem can also be applied to angular rotations under the action of bending
moments or torques. For the bending application the theorem becomes:

If the total strain energy, expressed in terms of the external moments, be partially
differentiated with respect to one of the moments, the result is the angular deflection (in
radians) of the point of application of that moment and in its direction,

M oM
0=|— 11.
ie JEI oM, ds (11.18)

where M, is the imaginary or applied moment at the point where 8 is required.

Alternatively the “unit-load” procedure can again be used, this time replacing the applied
or imaginary moment at the point where 8 is required by a “unit moment”. Castigliano’s
expression for slope or angular rotation then becomes

Mm
6 —J"EI— ds

where M is the bending moment at a general point due to the applied loads or momentsand m
is the bending moment at the same point due to the unit moment at the point where 0 is
required and in the required direction. See Example 11.8 for a simple application of this
procedure.

11.14. Shear deflection

(a) Cantilever carrying a concentrated end load

In the majority of beam-loading applications the deflections due to bending are all that
need be considered. For very short, deep beams, however, a secondary deflection, that due to
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shear, must also be considered. This may be determined using the strain energy formulae
derived earlier in this chapter.

L

M?2ds
. U. =
For bending, B J EI
0
L
Q%ds 1?
F = =— 1
or shear, Us 241G = 3G x volume

0

Consider, therefore, the cantilever, of solid rectangular section, shown in Fig. 11.11.

w
1 X dx "—B——i
l’._ _’! !‘_: T _by
| ’ D N_____T_V_
) —_T m |
_w&\s\}'i { Beam cross-section
Fig. 11.11.

For the element of length dx

QAy
=== 7.1
But T Th (see §7.1)
D D
Bl=-y 5=y
=Q x 2 2 +
= 1B 7 7
_om_,
B AR
_ 1 Q D2 5 2

)
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To obtain the total strain energy we must now integrate this along the length of the cantilever.
In this case Q is constant and equal to W and the integration is simple.
: 5
W2B D
=|—=5=d
O j 8GIZ 30
]

w?B D* W?2BLD? ( 12 >2

T8GIZ 30 © 240G \BD®
_ 3IW3AL
S5AG
where A = BD.
Therefore deflection due to shear
oU, 6WL
“= oW = 54G (1119)
Similarly, since M = — Wx
L
v (WP, _ WL
B 2EI " 6EI
0
Therefore deflection due to bending
ou wL?
6a= 53 = 357 (11.20)

Comparison of eqns. (11.19) and (11.20) then yields the relationship between the shear and
bending deflections. For very short beams, where the length equals the depth, the shear
deflection is almost twice that due to bending. For longer beams, however, the bending
deflection is very much greater than that due to shear and the latter can usually be neglected,
e.g. for L = 10D the deflection due to shear is less than 19 of that due to bending.

(b) Cantilever carrying uniformly distributed load

Consider now the same cantilever but carrying a uniformly distributed load over its
complete length as shown in Fig. 11.12.
The shear force at any distance x from the free end

Q =wx

w per unit length

o e

L

- — X

Fig. 11.12.
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Therefore shear deflection over the length of the small element dx

=_———dx from (11.19)

Therefore total shear deflection

=" (11.21)

(¢) Simply supported beam carrying central concentrated load

In this case it is convenient to treat the beam as two cantilevers each of length equal to half
the beam span and each carrying an end load half that of the central beam load (Fig. 11.13).
The required central deflection due to shear will equal that of the end of each cantilever, i.e.
from eqn. (11.19), with W = W/2 and L = L/2,

6 (W L 3WL
% =54G (7 8 5) ~ 104G (11.22)

i

[NES
-
INES

L

%2 g % ——

n|E
njE

Fig. 11.13. Shear deflection of simply supported beam carrying central concentrated
load-equivalent loading diagram.

(d) Simply supported beam carrying a concentrated load in any position

If the load divides the beam span into lengths aand b the reactions at each end willbe Wa/L
and Wb/L. The equivalent cantilever system is then shown in Fig. 11.14 and the shear

w
le— @ +b——.i

wo Wa
L L

(-3

Fig. 11.14. Equivalent loading for offset concentrated load.
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deflection under the load is equal to the end deflection of either cantilever and given by

eqn. (11.19),
6 (Wa 6 [Wb
%=34¢ (T) boor % =34G (T) 4

_ 6Wab

9, = 5AGL

(11.23)

(e) Simply supported beam carrying uniformly distributed load

Using a similar treatment to that described above, the equivalent cantilever system is
shown in Fig. 11.15, i.e. each cantilever now carries an end load of wL/2 in one direction and a
uniformly distributed load w over its complete length L/2 in the opposite direction.

From eqns. (11.19) and (11.20)

s _ 6 (wL L\ 3 (LY
s=546\ 2 72) 7546 " \2

3wl?
s = 204G (11.24)
w/unit length
WL L wL
2 2
w w

~E
o

Fig. 11.15. Equivalent loading for uniformly loaded beam.

(f) I-section beams

If the shear force is assumed to be uniformly distributed over the web area A, a similar
treatment to that described above yields the following approximate results:

cantilever with concentrated end load W O = %
L> W
cantilever with uniformly distributed o, = ;AG = —2—L
load w AG
. . WL
simply supported beam with concentrated 0, = ——
end load W 44G
_wlL? WL

simply supported beam with uniformly = =_—_
distributed load w 84G  84G
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In the above expressions the effect of the flanges has been neglected and it therefore follows
that the same formulae would apply for rectangular sections if it were assumed that the shear
stress is evenly distributed across the section. The result of W L/ AG for the cantilever carrying
a concentrated end load is then directly comparable to that obtained in eqn. (11.19) taking full
account of the variation of shear across the section, i.e. 6/5 (W L/ AG). Since the shear strain
y = 8/L it follows that both the deflection and associated shear strain is underestimated by
209, if the shear is assumed to be uniform.

(g) Shear deflections at points other than loading points

In the case of simply supported beams, deflections at points other than loading positions
are found by simple proportion, deflections increasing linearly from zero at the supports
(Fig. 11.16). For cantilevers, however, if the load is not at the free end, the above remains true
between the load and the support but between the load and the free end the beam remains
horizontal, i.e. there is no shear deflection. This, of course, must not be confused with
deflections due to bending when there will always be some deflection of the end of a cantilever
whatever the position of loading.

NW%
/ w Hori tal
orizonta
/

Fig. 11.16. Shear deflections of simply supported beams and cantilevers.
These must not be confused with bending deflections.

Examples
Example 11.1

Determine the diameter of an aluminium shaft which is designed to store the same amount
of strain energy per unit volume as a 50 mm diameter steel shaft of the same length. Both
shafts are subjected to equal compressive axial loads.

What will be the ratio of the stresses set up in the two shafts?

Egeel = 200 GN/mz; Ealuminium = 67 GN/mz‘

Solution

2
. . g
Strain energy per unit volume = 2E
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Since the strain energy/unit volume in the two shafts is equal,

o _a}
th 4 75
o 2E,  2E;
2 E 67
%é = E: =300 = 1 (approximately) 1)
36% = o} )
P . .
Now o = —— where P is the applied load
area
PP [3DFP 1
Therefore from (1) [‘I‘Dﬁ] x [ip—s] =3
bs_1
DYy 3
D% =3 x D¥= 3 x (50)*
=3 x 625 x 10*

D, = Y(1875 x 10*) = 65.8 mm
The required diameter of the aluminium shaft is 65.8 mm.

From (2) 36% = o}
Gs
[+ ] - \/3
Example 11.2
Two shafts are of the same material, length and weight. One is solid and 100 mm diameter,
the other is hollow. If the hollow shaft is to store 25 %, more energy than the solid shaft when

transmitting torque, what must be its internal and external diameters?
Assume the same maximum shear stress applies to both shafts.

Solution

Let A be the solid shaft and B the hollow shaft. If they are the same weight and the same
material their volume must be equal.

gDZAx L= % [D3—d3]L
1002
D2=D%——d2=—1—0—6—m2=10x 107 3m? 1)
Now for the same maximum shear stress
Tr TD
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o T.D, TsDy
- Jyo  Js
T4 Duld @
Ty DuJs
But the strain energy of B = 1.25 x strain energy of 4.
T2L
ince U =
smce 2GJ
T3iL T%L T J,
th =125 A2 A=
en 267, 267, » 1371257,
Therefore substituting from (2),
Di_ _Js
D% 125J,
T
e D4__d4
D} 33 [P~ d3] _ Di-ds
D% n " 1.25D%
1.25— D%
33 D4
,_ Dy—di
#7125D7

_ D4~ (D}—10x 1073y

T 125x10x10°3
125x 1073 D% = D} —D4+20x 1073D3—100x 10~¢
75%x1073xD3=100x 10"¢

-6
D}= %)’:—1%0__3 =133x10"3
Dg=115.47Tmm
133 10 33
45 = Di= D=7 ~1ps " 1p8
dz=57.74mm

The internal and external diameters of the hollow tube are therefore 57.7mm and
115.5mm respectively.

Example 11.3

(a) What will be the instantaneous stress and élongation of a 25 mm diameter bar, 2.6 m
long, suspended vertically, if a mass of 10 kg falls through a height of 300 mm on to a collar
which is rigidly attached to the bottom end of the bar?

Take g = 10m/s2.
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(b) When used horizontally as a simply supported beam, a concentrated force of 1kN
applied at the centre of the support span produces a static deflection of 5 mm. The same load
will produce a maximum bending stress of 158 MN/m?.

Determine the magnitude of the instantaneous stress produced when a mass of 10kg is
allowed to fall through a height of 12mm on to the beam at mid-span.

What will be the instantaneous deflection?

Solution

I n X ’01unle (Il * 11‘ )

2
volume of bar = irn x 108 26 =1276x10"*

2.60 B a? %1276 x 1074
200x 10° / ~ 2% 200 x 10°

130 o
10° ~ 313 x 1012

Then 10 x 10 <0.3 +

30+

13
and 30 x 313 x 1012+1—0§x313x 1012 = g2

Then 62— 4069 x 10°> x 6 — 9390 x 102 =0

5 _ 4069 x 10° + /(166 x 10° + 37560 x 10'2)
B 2

4069 x 10® +193.9 x 10°
- 2

= 97.18 MN/m?

If the instantaneous deflection is ignored (the term ¢ L/E omitted) in the above calculation
a very small difference in stress is noted in the answer,

a? x volume

ie. W (h) =
1€ (h) 2E
o2 x 1276 x 10~ 4
100 x 0.3 =
x03 =300 % 10°
30 x 400 x 10°
2 _ - 12
D6 x10-+ — 2404x10

o = 96.97 MN/m?

This suggests that if the deflection ¢ is small in comparison to h (the distance through which
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the mass falls) it can, for all practical purposes, be ignored in the above calculation:

_ oL _97.18x 2.6 x 10°

deflection produced (9) = - = —— 50—

ie. elongation of bar = 1.26 mm

(b) Consider the loading system shown in Fig. 11.8. Let W; be the equivalent force that
produces the same deflection and stress when gradually applied as that produced by the
falling mass.

We W,

Th =
o 5 max 55

where W, is a known load, gradually applied to the beam at mid-span, producing deflection J
and stress o,

W.d, Wex5x1073

= E s ——
Then 3 ax W 1% 10°
5
0 max= 106 We
W,
Now Wik +3,4) = 5 Omax
12 SWE WE 5WE
IOO[W+ 10° ] =72 108
500 Wy 25W3i
12+ 05 = 10°
500 W; 1.2x108
2_ - =0
Wi——3s 25
and W2—-200W;—048x10=0
By factors, Wg=800N or —-600N
W= 800N
By proportion Fs _ Tmax
Y prop W, = W,

and the maximum stress is given by

o, . 158x10°x 800

- = ——— = o 2
o W —3 126.4 MN/m

amax =

And since — =
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the deflection is given by

__800x5x10'3
T 1x103

= 4mm

=4x10"3

Example 11.4

A horizontal steel beam of I-section rests on a rigid support at one end, the other end being
supported by a vertical steel rod of 20 mm diameter whose upper end is rigidly held in a
support 2.3 m above the end of the beam (Fig. 11.17). The beam is a 200 x 100 mm B.S.B. for
which the relevant I-value is 23 x 10~ ¢ m* and the distance between its two points of support
is 3m. A load of 2.25kN falls on the beam at mid-span from a height of 20 mm above the
beam.

Determine the maximum stresses set up in the beam and rod, and find the deflection of the
beam at mid-span measured from the unloaded position. Assume E = 200 GN/m? for both
beam and rod.

20 mm—e f=-
dia.

W £2.25 kN L=23m

20 mmr@—"f’m 4
L_4___3m—4

Fig. 11.17.

Solution

Let the shock load cause a deflection dgof the beam at the load position and an extension
of the rod. Then if W is the equivalent static load which produces the deflection dzand P is
the maximum tension in the rod,

P2Lp, 1

24E T2 Ve

total strain energy =

= work done by falling mass
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Now the mass falls through a distance

o
h+6,,+—2—R

where /2 is the effect of the rod extension on the mid-point of the beam. (This assumes that
the beam remains straight and rotates about the fixed support position.)

work done by falling mass = W<h+65+62—R)

If P = reaction at one end of beam
Wg
p=_=
then >
5R WéLB W563
Ry 1
W<h+65+2) 8AE+ > 4}
F trally loaded beam 5_W_L3
or a centrally e = 18El
5o Wex 33 W o
P48 %x200x 10°x23 x 1076~ 8.18 x 10°
. WL
For an axially loaded rod o= ~“E
Wgx 23 W,
R ol E 3)

TEx202x10 °x200x10°  27.3 x 10°
Substituting (2) and (3) in (1),

225x10%| 0y We _We |_ Wix2.3
. 10  8.18 x 10° " 54.6 x 10° 8(14[X202X10‘6)x200x109

R
2 x 8.18 x 10°

225 x 103 W, +2.25 x10° Wy Wix23
8.18 x 10 546x 105 ~ 8x 314 x 107 x 200 x 10°

cWE
16.36 x 10°
45+275x 1078 Wp+41.2x 107 Wy =458 x 107° W1+61.1 x 107° W}
4543162 Wyx 1076 = 65.68 x 107° W}

3162 x 10°° 45
2 _ —
Then W= 6568 x10-° £ 6568 x 109

Wi-48x10°W;—685%x 106 =0

45+

=0
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48 x 103 +.,/(23 x 10° + 2740 x 10°)

2
48 x10°+,/(2763 x 10%)
- 2

_ 48x10%+52.59 x 103
- 2

_ 57.3x10°
- 2

= 28.65x 10°N

and WE

WeL
Maximum bending moment = —

_ 28.65x 10°x3
B 4

=21.5x 10°N

. . M
Then maximum bending stress = matd

_21.5x 103 x 100 x 103
B 23x 1076

= 93.9 x 10° N/m?
$We

arca

_ 2865x10°

T 2x3x202x10°8
= 45.9 x 10° N/m?

Maximum stress in rod =

We
8.18 x 10°

_ 2865x10°
~ 8.18 x 108

=352x10"3m
This is the extension at mid-span and neglects the extension of the rod.

. clL PL WL
Extension of rod = £ = 4E = 34E

_ 28.8 x 103 x 2.3
T 2x314x 107 x 200 x 10°

=0.527x10"*m

Deflection of beam 65 =
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Assuming, as stated earlier, that the beam remains straight and that the beam rotates about
the fixed end, then the effect of the rod extension at the mid-span

_Or _0527x1073
T2 2

Then, total deflection at mid-span = §z+ 6z/2
=352x1072+0.264 x 1073
=3.784x 10 3m

=0264x10"3m

Example 11.5

Using Castigliano’s first theorem, obtain the expressions for (a) the deflection under a
single concentrated load applied to a simply supported beam as shown in Fig. 11.18, (b) the
deflection at the centre of a simply supported beam carrying a uniformly distributed load.

W
}-—‘ ———+¥b ——»1
A ! ’ 4 B
1 L
X . C L Xy

——1 '.‘___.

fe——— L

Wb Wwo
L L
Fig. 11.18.
Solution
(@) For the beam shown in Fig. 11.18
A
M oM
= | =—d
= |Eraw®
B
(o} B
_ M&Md + MM s
“VEIow® " | E1ow
A C
a b
1 { Wbx, bx, 1 [ Wax, ax,
=_—- — — —<xd
Ei T XLde‘+EI_[ 7 xLxx2
3] 0
a b
wb? Wa?
= 7] ~[‘xfdxl + 73 {x%dxz
(4] o
_ wba® N Wa?b3 _ Wa?b? (@+b) = Wa%b?
" 3L2EI " 3L?El  3L%El "~ 3LEI

(b) For the u.d.l. beam shown in Fig. 11.19a an imaginary load P must be introduced at
mid-span; then the mid-span deflection will be

L L2

_[(MoM =2 M oM
T VEIow T " %) Elow
0

0o

ds
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_(wL+P)  wx? oM x
but Mo==7%—x-7 ad 7,=3
L2
2 wL+P) wx?x
Then é —EIJ\ I: 3 x——2—j|-2—dx

(wLx?* —wx%dx since P =0

" 2EI
]
P=0
X w/unit length
[
i {a)
WL b - wk P
> *t = 2 2
2
I (Uit lead)
i X —>} w
|
1
| (b)
) el
Fig. 11.19.

Alternatively, using a unit load applied vertically at mid-span (Fig. 11.19b),

L L2
Mm Mm
o= —Eds=2j‘ﬁds
0 0
wlL wx? x
where M=T———2— and m=:2-
L2
2 wLx wx?*\x
Th = MRS D
en o EIJ( 2 2 >2dx

as before. Thus, in each case,

_wl*[8-37] swL*
- 192 | = 384EI
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Example 11.6

Determine by the methods of unit load and Castigliano’s first theorem, (a) the vertical
deflection of point A4 of the bent cantilever shown in Fig. 11.20 when loaded at 4 with a
vertical load of 600 N. (b) What will then be the horizontal movement of A4?

The cantilever is constructed from 50 mm diameter bar throughout, with E = 200 GN/m?,

W=600N

Fig. 11.20.

Solution

The total deflection of A can be considered in three parts, resulting from 4B, BC, and CD.
Since the question requires solution by two similar methods, they will be worked in parallel.

(a) For vertical deflection

Castigliano Unit load
MM Mm
— —ds d=|—ds
El ow EI
where m = bending moment resulting from a unit load
at A.
For AB M, = 0. Hence vertical deflection resulting from AB = 0 by both methods.
For CD
M, = W(0.25+s,) M, = W(0.25+s5)
oM
W =025+s, m= 1(0.25) +s,)
0.3 0.3
W(0.25+s3) (0 25+ 53)ds, . W (0.25 4+ 53) (0.25 + 55) ds;
dcp = S dcp= £l
0 0

Thus the same equation is achieved by both methods.
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Castigliano Unit load
0.3
W
écp= I J (0.0625 + 0.5 53 + s2)ds,
[
w 0.5s2 s}
=—| 00625 =
El [ St tT ),
W
=5l [0.01875 +0.0225 + 0.009]
600 30.15
= E x 0.05025 = ?
For BC
M, = W (0.25—-0.25cos8) M, = W (0.25—-0.25cos )
oM =0.25~0.25cos 8 m=1(025-0.25cos )
ow
ds,= 02540 ds, = 0.25d6

Once again the same equation for deflection is obtained

x/2

W (0.25-0.25¢c0s6)

ie. dpc = J. El (0.25 —0.25co0s 0) 0.2548
0
®/2
—(O'ZS)BW (1 ~2cos 8 +cos® 6)d8
=g cos 8 +cos® §)
0
1 20
but cos?f = H%

dp

Total vertical deflection at A

=/2

0253 w 1+cos20
I\ M —2cos8 +—— =
C El 1—-2cosf+ ) dé
]

025w ) 0 sin20 |2
=—— | 6-2sin0+=
£l sin +2 + X
0253w = n
= | —=24-
B |27°":
(0.25)° x 600 .
T A
334
" El
30.15+3.34  33.49 x 64 x 1012
= = = 0.546 mm
EI 200 x 10° x & x 50*
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Castigliano

Unit load

Again, working in parallel with Castigliano and unit load methods: -

(b) For the horizontal deflection using Castigliano’s
method an imaginary load P must be applied horizontally
since there is no external load in this direction at
A (Fig. 11.21).

For the unit load method a unit load must be applied at

A in the direction in which the deflection is required
as shown in Fig. 11.22.

P=Q A
w
Fig. 11.21. Fig. 11.22.
MM Mm
= | =——ds, with P=0 ==
Then éy jEI&P s, wi Then dy J.EI ds
For AB
M, =Pxs;+ Wx0=Ps, M, =Wx0=0
oM m=1xs,
— = §
F S bup=0
Ps,
5,45 = —E—I xS dsl
but P=0
' 84p=0
For BC
M,, = W(025~-0.25cos8) M, = W(0.25-0.25c0s 6)
+ P (0.125+0.25sin ) m=1(0.125 +0.25sin f)
oM
35" 0.125+0.25sin 8 ds,= 0.25d0
ds, = 0.254d0
nj2 x/2
w w
dpc = .[ 57 (025—025c0s6) dpc = j gy (025 —0.25cos 6)
0 o
x (0.125 +0.25sin 6)0.25d0

x (0.125—0.25sin 6)0.2540
since P=0

Thus, once again, the same equation is obtained. This is always the case and there is little difference in the amount
of work involved in the two methods.
®/2
W x0.25° .
bpc = %— J (1—cos ) (0.5 +sin 6)d6
(4]

x/2

025 W 9
— J ©.5 —5‘325— +sin 8 —sin 8 cos 6)d6

o
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Castigliano Unit load
but sinf cos @ = 4 sin? 0
0253 W g in 20
sc= (~—?—025—+sin0—sm >d9
[
0253w [ sinf cos 26 ]"’ 2
= ——————~cosf+
Ei 2 2 o
_ 025w

El (F-1-D-(-1+D]

0253 % 600 (= _7.36
T El 4/ EI

For CD, using unit load method,

M, = W({025+s,) m =1(0.125+0.25) = 0.375
0.3

1
deo= 5 J W (0.25 + 55) (0.375) ds,

o
0.3

0 315w
(0.25 + 54)ds,

(4]
_037sW
[025 S3+= ]

0375 w

[0.075 +0.045]

0.375 x 600 27
==X . 12)= %
El

Therefore total horizontal deflection

736+27 34.36 x 64 x 10'2
El  200x10° x 7 x 50°

= 0.56 mm

Example 11.7

The frame shown in Fig. 11.23 is constructed from rectangular bar 25 mm wide by 12 mm
thick. The end A is constrained by guides to move in a vertical direction and carries a vertical
load of 400 N. For the frame material E = 200 GN/m?2,

Determine (a) the horizontal reaction at the guides, (b) the vertical deflection of A.

Solution

(a) Consider the frame of Fig. 11.23. If 4 were not constrained in guides it would move in
some direction (shown dotted) which would have both horizontal and vertical components. If
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le—— 250 mm—————=

y
’ W= 400 N
/

Unrestrained deflection

Fig. 11.23.

the horizontal movement is restricted by guides a horizontal reaction H must be set up as
shown. Its value is determined by equating the horizontal deflection of A4 to zero,

. M oM
1.€. ja ﬁ dS = O
For AB
oM
= W —_— =
M., s, and 3H 0
5AB =0
For BC
oM
M, =01W-—-Hs, and H- %
0.25
0.1W —Hs
Opc= j g—#(—sz)dsz

0.25

~0.1Ws, + Hs3)ds,

El-—

0

EI~ E\H

00625 w 0 015625H:|
3

0
[ 01Ws2 Hs3:|°25
1

= Frige (~3125W +5.208H)
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For CD

oM
M, =W 0.25H d — =025
. 53+ an 3H

0.15

(Ws; +0.25H)

- 0.25ds,

6CD =

-0.10
0.15

== (0.25 Ws, +0.0625H)ds,
-0.10
1 [0.25 Ws?

0.15

=53 +O.0625Hs3]

-0.10

1 025w
= {[—T x 0.0225 4+ 0.0625H x 0.15}

025w
2

x0.01 + 0.0625H(—0.1)] }

1
T EIx10°

1
= £ 1o {81 W+9.375H) ~ (125 W~ 6.25H))

{(1.25 x 225 W+ 6.25 x 1.5H) — (1.25 W — 6.25H)}

1

Now the total horizontal deflection of 4 =0
—3.125W +5208H +1.56 W+ 15.625H =0
—1.565W +20.833H =0

_ 1,565 x 400

20833 ~ ON

Since a positive sign has been obtained, H must be in the direction assumed.
(b) For vertical deflection

M oM
oM
For AB M. =Ws,  and FT7u
0.1
14
LU

EI
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For BC

For CD
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400
" EI

04

=§E—I=

MY y

0.25

53(;:

l"J‘r—

I

= l"j‘._. l"i[.—-

“EI

= Wx0.1-30s,

.f
[
E

S? 0.1
5]

0.133
El

and

(0.1 W—30s,)
El

(0.01 x 400 —

382]0 .25

3 x 00625]

oM

x 0.1ds,

3s,)ds,

oM

W. .25H d
s3+0.25H an W

=S3
+0.15
(Ws, +025H)

£l 53dS,

-0.10
+0.15

J (Ws3 +0.25Hs,)ds,

-0.1
:|0.15
-0.1

1. [400 x s3
1073+

1
" EI

0.25Hs?
2

3

L Lﬂ(3375x10 d41x

! ? x 43751073 +

@Q(zz.s x 107310 x 10—3)]

x 12.5 x 10’3]

0.25 x 30
2

1
=—[0. 0.047
FI {0.583 + ]

_0.63
T EI
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Total vertical deflection of A
1
=z (0.133 +0.906 4+ 0.63)

_ 1669

~ EI

1,669 x 12 x 1012
T 200 % 10% x 25 x 123

= 2.32 mm

Example 11.8 (B)

Derive the equation for the slope at the free end of a cantilever carrying a uniformly
distributed load over its full length.

e X
// w/metre . 8
A : M,

]

X

Fig. 11.24.

Solution (a)

Using Castigliano’s procedure, apply an imaginary moment M, in a positive direction at
point B where the slope, i.e. rotation, is required.
BM at XX due to applied loading and imaginary couple

wx?
M=M ——~_
! 2
oM _
oM,

from Castigliano’s theorem

L
M 0
o[ R,
0

1 wx?
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The negative sign indicates that rotation of the free end is in the opposite direction to that
taken for the imaginary moment, i.e. the beam will slope downwards at B as should have been
expected.

Alternative solution (b)

Using the “unit-moment” procedure, apply a unit moment at the point B where rotation is
required and since we know that the beam will slope downwards the unit moment can be
applied in the appropriate direction as shown.

X

X
/ w/metre

. B
A I > I (Unit moment)
X

L
Fig. 11.25.

. . wx?

B.M. at XX due to applied loading = M = — =

B.M. at XX due to unit moment =m = —1

The required rotation, or slope, is now given by

The answer is thus the same as before and a positive value has been obtained indicating that
rotation will occur in the direction of the applied unit moment (i.e. opposite to M, in the
previous solution).

Problems

11.1 (A). Define what is meant by “resilience” or “strain energy”. Derive an equation for the strain energy of a
uniform bar subjected to a tensile load of P newtons. Hence calculate the strain energy in a 50 mm diameter bar, 4 m
long, when carrying an axial tensile pull of 150 kN. E = 208 GN/m?. (1102 N m.]

11.2 (A). (a) Derive the formula for strain energy resulting from bending of a beam (neglecting shear).

(b) A beam, simply supported at its ends, is of 4m span and carries, at 3 m from the left-hand support, a load of
20kN. If I is 120 x 10~ ° m* and E = 200 GN/m?, find the deflection under the load using the formula derived in
part (a). [0.625 mm.)
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11.3 (A) Calculate the strain energy stored in a bar of circular cross-section, diameter 0.2 m, length 2 m:
(a) when subjected to a tensile load of 25 kN,
(b) when subjected to a torque of 25 kNm,
(c) when subjected to a uniform bending moment of 25 kNm.
For the bar material E = 208 GN/m?, G = 80 GN/m?. [0.096, 49.7, 38.2 Nm.]

11.4 (A/B). Compare the strain energies of two bars of the same material and length and carrying the same
gradually applied compressive load if one is 25 mm diameter throughout and the other is turned down to 20 mm
diameter over half its length, the remainder being 25 mm diameter.

If both bars are subjected to pure torsion only, compare the torsional strain energies stored if the shear stress in
both bars is limited to 75 MN/m?. [0.78, 2.22]

11.5 (A/B). Two shafts, one of steel and the other of phosphor bronze, are of the same length and are subjected to
equal torques. If the steel shaft is 25 mm diameter, find the diameter of the phosphor-bronze shaft so that it will store
the same amount of energy per unit volume as the steel shaft. Also determine the ratio of the maximum shear stresses
induced in the two shafts. Take the modulus of rigidity for phosphor bronze as 50 GN/m? and for steel as 80 GN/m?.

[27.04 mm, 1.26.]

11.6 (A/B). Show that the torsional strain energy of a solid circular shaft transmitting power at a constant speed
is given by the equation:

.(2

U = — x volume.
4

Such a shaft is 0.06 m in diameter and has a flywheel of mass 30 kg and radius of gyration 0.25 m situated at a
distance of 1.2 m from a bearing. The flywheel is rotating at 200 rev/min when the bearing suddenly seizes. Calculate
the maximum shear stress produced in the shaft material and the instantaneous angle of twist under these conditions.
Neglect the shaft inertia. For the shaft material G = 80 GN/m?. [B.P.] [196.8 MN/m?, 5.64°.]

11.7 (A/B). A solid shaft carrying a flywheel of mass 100 kg and radius of gyration 0.4 m rotates at a uniform
speed of 75 rev/min. During service, a bearing 3 m from the flywheel suddenly seizes producing a fixation of the shaft
at this point. Neglecting the inertia of the shaft itself determine the necessary shaft diameter if the instantaneous
shear stress produced in the shaft does not exceed 180 MN/m?. For the shaft material G = 80 GN/m?. Assume all
kinetic energy of the shaft is taken up as strain energy without any losses. [22.7 mm.]

11.8 (A/B). A multi-bladed turbine disc can be assumed to have a combined mass of 150 kg with an effective
radius of gyration of 0.59 m. The disc is rigidly attached to a steel shaft 2.4 m long and, under service conditions,
rotates at a speed of 250 rev/min. Determine the diameter of shaft required in order that the maximum shear stress set
up in the event of sudden seizure of the shaft shall not exceed 200 MN/m?. Neglect the inertia of the shaft itself and
take the modulus of rigidity G of the shaft material to be 85 GN/m?. [284mm.]

11.9 (A/B). Develop from first principles an expression for the instantaneous stress set up in a vertical bar by a
weight W falling from a height h on to a stop at the end of the bar. The instantaneous extension x may not be
neglected.

A weight of 500 N can slide freely on a vertical steel rod 2.5 m long and 20 mm diameter. The rod is rigidly fixed at
its upper end and has a collar at the lower end to prevent the weight from dropping off. The weight is lifted to a
distance of 50 mm above the collar and then released. Find the maximum instantaneous stress produced in the rod.
E =200 GN/m3. [114 MN/m? ]

11.10 (A/B). Aload of2 kN falls through 25 mm on to a stop at the end of a vertical bar 4 m long, 600 mm? cross-
sectional area and rigidly fixed at its other end. Determine the instantaneous stress and elongation of the bar.
E = 200 GN/m2. {94.7 MN/m?, 1.9 mm.}

11.11 (A/B). Aload of 2.5 kN slides freely on a vertical bar of 12 mm diameter. The bar is fixed at its upper end
and provided with a stop at the other end to prevent the load from falling off. When the load is allowed to rest on the
stop the bar extends by 0.1 mm. Determine the instantaneous stress set up in the bar if the load is lifted and allowed to
drop through 12 mm on to the stop. What will then be the extension of the bar? [365 MN/m?, 1.65 mm.]

11.12 (A/B). A bar of a certain material, 40 mm diameter and 1.2 m long, has a collar securely fitted to one end. It
is suspended vertically with the collar at the lower end and a mass of 2000 kg is gradually lowered on to the collar
producing an extension in the bar of 0.25 mm. Find the height from which the load could be dropped on to the collar
if the maximum tensile stress in the bar is to be 100 MN/m?2. Take g = 9.81 m/s%. The instantaneous extension
cannot be neglected. [U.LJ{3.58 mm]

11.13 (A/B). A stepped bar is 2 m long. it is 40 mm diameter for 1.25 m of its length and 25 mm diameter for the
remainder. If this bar hangs vertically from a rigid structure and a ring weight of 200 N falls freely from a height of
75 mm on to a stop formed at the lower end of the bar, neglecting all external losses, what would be the maximum
instantaneous stress induced in the bar, and the maximum extension? E = 200 GN/m?2.

[99.3 MN/m?, 0.615 mm.]
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11.14 (B). A beam of uniform cross-section, with centroid at mid-depth and length 7 m, is simply supported at its
ends and carries a point load of 5 kN at 3 m from one end. If the maximum bending stress is not to exceed 90 MN/m?
and the beam is 150 mm deep, (i) working from first principles find the deflection under the load, (ii) what load
dropped from a height of 75 mm on to the beam at 3 m from one end would produce a stress of 150 MN/m? at the
point of application of the load? E = 200 GN/m?. [24 mm; 145kN.]

11.15 (B). A steel beam of length 7 m is built in at both ends. It has a depth of 500 mm and the second moment of
area is 300 x 10™¢ m*, Calculate the load which, falling through a height of 75 mm on to the centre of the span, will
produce a maximum stress of 150 MN/m?2. What would be the maximum deflection if the load were gradually
applied? E = 200 GN/m?. [B.P.][7.77kN, 0.23 mm.]

11.16 (B). When a load of 20 kN is gradually applied at a certain point on a beam it produces a deflection of
13 mm and a maximum bending stress of 75 MN/m2. From what height can a load of 5 kN fall on to the beam at this

point if the maximum bending stress is to be 150 MN/m?? [U.L]J[78 mm.]
11.17 (B). Show that the vertical and horizontal deflections of the end B of the quadrant shown in Fig. 11.26 are,
respectively,
WR3 [ 3n WR?
——21| and .
EI L4 2E1
) ) ) ) WR? /n\ WR?
What would the values become if W were applied horizontally instead of vertically? I, ; R B

18
w
Fig. 11.26.

11.18 (B). A semi-circular frame of flexural rigidity EI is built in at 4 and carries a vertical load W at B as shown
in Fig. 11.27. Calculate the magnitudes of the vertical and horizontal deflections at B and hence the magnitude and
direction of the resultant deflection.

— ; 5 5.12
2 EI EI EI

3n WR3 WR? WR? .
at 23° to vertical.

Fig. 11.27.

11.19 (B). A uniform cantilever, length L and flexural rigidity EJ carries a vertical load W at mid-span. Calculate
the magnitude of the vertical deflection of the free end. [5 WL’]

48EIl

11.20 (B). A steel rod, of flexural rigidity EI, forms a cantilever ABC lying in a vertical plane as shown in
Fig. 11.28. A horizontal load of P acts at C. Calculate:
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s
a
e
Fig. 11.28.

(a) the horizontal deflection of C;

(b) the vertical deflection of C;

(c) the slope at B. Pa? Pab® Pab
Consider the strain energy resulting from bending only. [UEL] [E {a+3b]; E; -

11.21 (B). Derive the formulae for the slope and deflection at the free end of a cantilever when loaded at the end
with a concentrated load W. Use a strain energy method for your solution.

A cantilever is constructed from metal strip 25 mm deep throughout its length of 750 mm. Its width, however,
varies uniformly from zero at the free end to 50 mm at the support. Determine the deflection of the free end of the
cantilever if it carries uniformly distributed load of 300 N/m across its length. E = 200 GN/m?. [1.2mm.]

11.22 (B). Determine the vertical deflection of point A on the bent cantilever shown in Fig. 11.29 when loaded at
A witha vertical load of 25 N. The cantilever is built in at B,and EI may be taken as constant throughout and equal to
450 N m?. [B.P.] [0.98 mm.]

25N
Fig. 11.29.

11.23 (B). What will be the horizontal deflection of A4 in the bent cantilever of Problem 11.22 when carrying the
vertical load of 25 N? [0.56 mm.]

11.24 (B). A steel ring of mean diameter 250 mm has a square section 2.5 mm by 2.5 mm. It is split by a narrow
radial saw cut. The saw cut is opened up farther by a tangential separating force of 0.2 N. Calculate the extra
separation at the saw cut. E = 200 GN/m?, [U.E.L] [5.65 mm.]

11.25 (B). Calculate the strain energy of the gantry shown in Fig. 11.30 and hence obtain the vertical deflection of
2
the point C. Use the formula for strain energy in bending U = de, where M is the bending moment, E is

Young’s modulus, I is second moment of area of the beam section about axis X X. The beam section is as shown in
Fig. 11.30. Bending takes place along AB and BC about the axis XX. E = 210 GN/m?. [U.L.C1][53.9 mm.]

-

Fig. 11.30.
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11.26 (B). A steel ring, of 250 mm diameter, has a width of 50 mm and a radial thickness of 5 mm. It is split to
leave a narrow gap 5 mm wide normal to the plane of the ring. Assuming the radial thickness to be small compared
with the radius of ring curvature, find the tangential force that must be applied to the edges of the gap to just close it.

What will be the maximum stress in the ring under the action of this force? E = 200 GN/m?,
[LMech.E.] [28.3 N; 34 MN/m?2.]

11.27 (B). Determine, for the cranked member shown in Fig. 11.31:
(a) the magnitude of the force P necessary to produce a vertical movement of P of 25 mm;
(b) the angle, in degrees, by which the tip of the member diverges when the force P is applied.

The member has a uniform width of 50 mm throughout. E = 200 GN/m?. [B.P.] [6.58kN;4.1°]
4
T*ﬁ . [*— 50 mm
250 mm l 25;""“ Lp

fe——500mm L_.l

Fig. 11.31.

11.28 (C). A 12 mm diameter steel rod is bent to form a square with sides 2a = 500 mm long. The ends meet at the
mid-point of one side and are separated by equal opposite forces of 75 N applied in a direction perpendicular to the
plane of the square as shown in perspective in Fig. 11.32. Calculate the amount by which they will be out of

alignment. Consider only strain energy due to bending. E = 200 GN/m?. [38.3mm.]
C

2a 2a

75N o

8
a

s F 20

75N E
Fig. 11.32

11.29 (B/C). A state of two-dimensional plane stress on an element of material can be represented by the
principal stresses ¢, and o, (¢, > g,). The strain energy can be expressed in terms of the strain energy per unit

volume. Then:
{a) working from first principles show that the strain energy per unit volume is given by the expression

1
Z—E(af +03—2va,0;)

for a material which follows Hooke’s law where E denotes Young’s modulus and v denotes Poisson’s ratio,

and
(b) by considering the relations between each of ¢, 5,, 7, respectively and the principal stresses, where x and y are
two other mutually perpendicular axes in the same plane, show that the expression

1
}-—E»[af +062—2vo,0,+2(1 +v)1Z]

is identical with the expression given above. [CityU.]



