
CHAPTER 10 

THICK CYLINDERS 

Summary 

The hoop and radial stresses at any point in the wall cross-section of a thick cylinder at 
radius r are given by the Lam6 equations: 

B 
hoop stress OH = A + - r2 

B 
radial stress cr, = A - - 

r2 

With internal and external pressures P ,  and P ,  and internal and external radii R ,  and R ,  
respectively, the longitudinal stress in a cylinder with closed ends is 

P1R: - P2R: 
aL = = Lame constant A 

(R:  - R : )  

Changes in dimensions of the cylinder may then be determined from the following strain 
formulae: 

circumferential or hoop strain = diametral strain 

'JH c r  O L  v- - v- =-- 
E E E  

O L  or OH longitudinal strain = - - v- - v- 
E E E  

For compound tubes the resultant hoop stress is the algebraic sum of the hoop stresses 
resulting from shrinkage and the hoop stresses resulting from internal and external pressures. 

For force and shrink fits of cylinders made of diferent materials, the total interference or 
shrinkage allowance (on radius) is 

CEH, - 'Hi 1 
where E", and cH,  are the hoop strains existing in the outer and inner cylinders respectively 
at the common radius r. For cylinders of the same material this equation reduces to 

For a hub or sleeve shrunk on a solid shaft the shaft is subjected to constant hoop and radial 
stresses, each equal to the pressure set up at the junction. The hub or sleeve is then treated as a 
thick cylinder subjected to this internal pressure. 

21 5 
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Wire-wound thick cylinders 

If the internal and external radii of the cylinder are R ,  and R ,  respectively and it is wound 
with wire until its external radius becomes R,, the radial and hoop stresses in the wire at any 
radius r between the radii R, and R3 are found from: 

radial stress = ( -27i-) r2 - R: Tlog, (-) Ri  - R: 
r2 - Rt 

r2 + R: R; - R: hoop stress = T { 1 - ( - 2r2 )'Oge(r2-Rf)} 

where T is the constant tension stress in the wire. 
The hoop and radial stresses in the cylinder can then be determined by considering the 

cylinder to be subjected to an external pressure equal to the value of the radial stress above 
when r = R,. 

When an additional internal pressure is applied the final stresses will be the algebraic sum 
of those resulting from the internal pressure and those resulting from the wire winding. 

Plastic yielding of thick cylinders 

For initial yield, the internal pressure P ,  is given by: 

For yielding to a radius R,, 

and for complete collapse, 

10.1. Difference io treatment between thio and thick 
cylinders - basic assumptions 

The theoretical treatment of thin cylinders assumes that the hoop stress is constant across 
the thickness of the cylinder wall (Fig. lO.l), and also that there is no pressure gradient across 
the wall. Neither of these assumptions can be used for thick cylinders for which the variation 
of hoop and radial stresses is shown in Fig. 10.2, their values being given by the Lame 
equations: 

B B 
a n = A + -  and q = A - -  

r2 r2 

Development of the theory for thick cylinders is concerned with sections remote from the 
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Fig. 10.1. Thin cylinder subjected to internal pressure. 

Stress distributions 

uH=A + B / r 2  u,= A-B/r2 

Fig. 10.2. Thick cylinder subjected to internal pressure. 

ends since distribution of the stresses around the joints makes analysis at the ends 
particularly complex. For central sections the applied pressure system which is normally 
applied to thick cylinders is symmetrical, and all points on an annular element of the cylinder 
wall will be displaced by the same amount, this amount depending on the radius of the 
element. Consequently there can be no shearing stress set up on transverse planes and stresses 
on such planes are therefore principal stresses (see page 331). Similarly, since the radial shape 
of the cylinder is maintained there are no shears on radial or tangential planes, and again 
stresses on such planes are principal stresses. Thus, consideration of any element in the wall of 
a thick cylinder involves, in general, consideration of a mutually prependicular, tri-axial, 
principal stress system, the three stresses being termed radial, hoop (tangential or 
circumferential) and longitudinal (axial) stresses. 

10.2. Development of the Lam6 theory 

Consider the thick cylinder shown in Fig. 10.3. The stresses acting on an element of unit 
length at radius rare as shown in Fig. 10.4, the radial stress increasing from a, to a, + da, over 
the element thickness dr (all stresses are assumed tensile), 

For radial equilibrium of the element: 

de  ( a , + d a , ) ( r + d r ) d e  x 1 - 6 ,  x rd0 x 1 = 2aH x dr x 1 x sin- 
2 
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Fig. 10.3. 

q +do, 

length 

Fig. 10.4. 

For small angles: 
. d9 d9 

2 2  
sin - - radian 

Therefore, neglecting second-order small quantities, 

rda, + a,dr = aHdr 

. .  

or 

do, a, + r -  = an 
dr 

(10.1) 

Assuming now that plane sections remain plane, Le. the longitudinal strain .zL is constant 
across the wall of the cylinder, 

1 
E 
1 
E 

EL = - [aL - v a ,  - VaH] then 

= - [aL - v(a,  + OH)] = constant 

It is also assumed that the longitudinal stress aL is constant across the cylinder walls at 
points remote from the ends. 

. .  a, + aH = constant = 2A (say) (10.2) 
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Substituting in (10.1) for o ~ ,  

dor 2 A - a r - a r  = r -  
dr 

Multiplying through by r and rearranging, 

dor 2orr + r2 - - 2Ar = 0 
dr 

i.e. 

Therefore, integrating, 

. .  

d 
-(or? -A?)  = 0 
dr 

orrZ - Ar2 = constant = - B (say) 

and from eqn. (10.2) 

(10.4) 
B 

U H = A + -  rz 

The above equations yield the radial and hoop stresses at any radius r in terms of constants 
A and B. For any pressure condition there will always be two known conditions of stress 
(usually radial stress) which enable the constants to be determined and the required stresses 
evaluated. 

10.3. Thick cylinder - internal pressure only 

Consider now the thick cylinder shown in Fig. 10.5 subjected to an internal pressure P, the 
external pressure being zero. 

Fig. 10.5. Cylinder cross-section. 

The two known conditions of stress which enable the Lame constants A and B to be 
determined are: 

At r = R ,  o r =  - P  and at r = R, or = O  
N.B. -The internal pressure is considered as a negative radial stress since it will produce a 

radial compression (i.e. thinning) of the cylinder walls and the normal stress convention takes 
compression as negative. 
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Substituting the above conditions in eqn. (10.3), 

i.e. 

B 
radial stress 6, = A - - 

r2 

(10.5) 

where k is the diameter ratio D2 /Dl = R ,  f R ,  

and hoop stress o,, = 

(10.6) PR: r Z + R i  w z m 2  + 1 
( R ; - R : )  [ T I = ' [  k2-1 ] - - 

These equations yield the stress distributions indicated in Fig. 10.2 with maximum values 
of both a, and aH at the inside radius. 

10.4. Longitudinal stress 

Consider now the cross-section of a thick cylinder with closed ends subjected to an internal 
pressure P I  and an external pressure P ,  (Fig. 10.6). 

U L  - 

t t \  
Closed ends 

Fig. 10.6. Cylinder longitudinal section. 

For horizontal equilibrium: 

P ,  x ITR:  - P ,  x IT R$ = aL x n(R;  - R : )  
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where bL is the longitudinal stress set up in the cylinder walls, 

PIR; - P ,  Ri  
R ; - R :  . .  longitudinal stress nL = (10.7) 

i.e. a constant. 
I t  can be shown that the constant has the same value as the constant A of the Lame equations. 

This can be verified for the “internal pressure only” case of $10.3 by substituting P ,  = 0 in 
eqn. (10.7) above. 

For combined internal and external pressures, the relationship ( T L  = A also applies. 

10.5. Maximum shear stress 

It has been stated in $10.1 that the stresses on an element at any point in the cylinder wall 

It follows, therefore, that the maximum shear stress at any point will be given by eqn. (13.12) 
are principal stresses. 

as 
b l - a 3  

7max= ___ 2 

i.e. half the diference between the greatest and least principal stresses. 
Therefore, in the case of the thick cylinder, normally, 

OH - Qr 
7ma7.= ~ 2 

since on is normally tensile, whilst Q, is compressive and both exceed nL in magnitude. 

B 
nux = - r2 

(10.8) 

The greatest value of 7,,thus normally occurs at the inside radius where r = R,. 

10.6. Cbange of cylinder dimensions 

(a) Change of diameter 

It has been shown in $9.3 that the diametral strain on a cylinder equals the hoop or 

Therefore 
arcumferential strain. 

change of diameter = diametral strain x original diameter 
= circumferential strain x original diameter 

With the principal stress system of hoop, radial and longitudinal stresses, all assumed tensile, 
the circumferential strain is given by 

1 
E 

EH = - [QH - V b r  - V b L ]  
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Thus the change of diameter at any radius r of the cylinder is given by 

2r 
E A D  = -[uH- VU, - V U L ]  

(b) Change of length 

Similarly, the change of length of the cylinder is given by 

L 
E A L  = - [ u L - u v , - v u H ]  

0 10.7 

(10.9) 

(10.10) 

10.7. Comparison with thin cylinder theory 

In order to determine the limits of D/t ratio within which it is safe to use the simple thin 
cylinder theory, it is necessary to compare the values of stress given by both thin and thick 
cylinder theory for given pressures and D/t values. Since the maximum hoop stress is 
normally the limiting factor, it is this stress which will be considered. 
From thin cylinder theory: 

i.e. where K = D/t OH _ -  -- 
P 2  

For thick cylinders, from eqn. (10.6), 

1.e. 

Now, substituting for R, = R, + t and D = 2R,, 

a H m x  t(D + t) 
D2 + 11, 

= [ 2t2 (D/t + 1) 

i.e. K2 -- 
P 2 ( K + l ) + l  

(10.1 1) 

(10.12) 

Thus for various D/t ratios the stress values from the two theories may be plotted and 
compared; this is shown in Fig. 10.7. 

Also indicated in Fig. 10.7 is the percentage error involved in using the thin cylinder theory. 
It will be seen that the error will be held within 5 % if D/t ratios in excess of 15 are used. 
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1 
Thick cylinder 

theory 

a 

60 

40 

K =  D / 1  

Fig. 10.7. Comparison of thin and thick cylinder theories for various diarneter/thickness ratios. 

However, if D is taken as the mean diameter for calculation of the thin cylinder values 
instead of the inside diameter as used here, the percentage error reduces from 5 %  to 
approximately 0.25 % at D/t = 15. 

10.8. Graphical treatment -Lame line 

The Lame equations when plotted on stress and 1 /rz axes produce straight lines, as shown 
in Fig. 10.8. 

Stress 
b 

Rodiol' stress yo' / = A -  B/r '  

Fig. 10.8. Graphical representation of Lam6 equations- Lam6 line. 

Both lines have exactly the same intercept A and the same magnitude of slope B, the only 
difference being the sign of their slopes. The two are therefore combined by plotting hoop 
stress values to the left of the aaxis (again against l /rz) instead of to the right to give the single 
line shown in Fig. 10.9. In most questions one value of a, and one value of oH, or alternatively 
two values of c,, are given. In both cases the single line can then be drawn. 

When a thick cylinder is subjected to external pressure only, the radial stress at the inside 
radius is zero and the graph becomes the straight line shown in Fig. 10.10. 
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Fig. 10.9. Lam15 line solution for cylinder with internal and external pressures. 

Fig. 10.10. Lam6 line solution for cylinder subjected to external pressure only. 

N.B. -From $10.4 the value of the longitudinal stress CT is given by the intercept A on the 
u axis. 

It is not sufficient simply to read off stress values from the axes since this can introduce 
appreciable errors. Accurate values must be obtained from proportions of the figure using 
similar triangles. 

10.9. Compound cylinders 

From the sketch of the stress distributions in Fig. 10.2 it is evident that there is a large 
variation in hoop stress across the wall of a cylinder subjected to internal pressure. The 
material of the cylinder is not therefore used to its best advantage. To obtain a more uniform 
hoop stress distribution, cylinders are often built up by shrinking one tube on to the outside 
of another. When the outer tube contracts on cooling the inner tube is brought into a state of 
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compression. The outer tube will conversely be brought into a state of tension. If this 
compound cylinder is now subjected to internal pressure the resultant hoop stresses will be 
the algebraic sum of those resulting from internal pressure and those resulting from shlinkflge 
as drawn in Fig. 10.11; thus a much smaller total fluctuation of hoop stress is obtained. A 
similar effect is obtained if a cylinder is wound with wire or steel tape under tension (see 
410.19). 

( a )  Internal pressure ( b )  Shrinkage only ( c )  Combined shrinkage 
only and internal pressure 

Fig. 10.1 1. Compound cylinders-combined internal pressure and shrinkage effects. 

(a) Same materials 

The method of solution for compound cylinders constructed from similar materials is to 

(a) shrinkage pressure only on the inside cylinder; 
(b) shrinkage pressure only on the outside cylinder; 

break the problem down into three separate effects: 

(c) internal pressure only on the complete cylilider (Fig. 10.12). 

( a )  Shrinkage-internal (b)  Shrinkage-aternol C y l w  ( c )  In tnna I  pressure- 
cylinder compound cylinder 

Fig. 10.12. Method of solution for compound cylinders. 

For each of the resulting load conditions there are two known values of radial stress which 
enable the Lame constants to be determined in each case. 

i.e. condition (a) shrinkage - internal cylinder: 
At r =  R,, u r = O  

At r = R,, u, = - p  (compressive since it tends to reduce the wall thickness) 
condition (b) shrinkage - external cylinder: 

At r =  R,, u,=O 

At r = R,, u, = - p  
condition (c) internal pressure - compound cylinder: 

At r = R,, u, = O  

At r = R,, a, = -PI  
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Thus for each condition the hoop and radial stresses at any radius can be evaluated and the 
principle of superposition applied, i.e. the various stresses are then combined algebraically to 
produce the stresses in the compound cylinder subjected to both shrinkage and internal 
pressure. In practice this means that the compound cylinder is able to withstand greater 
internal pressures before failure occurs or, alternatively, that a thinner compound cylinder 
(with the associated reduction in material cost) may be used to withstand the same internal 
pressure as the single thick cylinder it replaces. 

Toto I 

... 

( a )  Hoop stresses ( b )  Rodiol stresses 

Fig. 10.13. Distribution of hoop and radial stresses through the walls of a compound cylinder. 

(b) Diferent materials 

(See $10.14.) 

10.10. Compound cylinders - graphical treatment 

The graphical, or Lame line, procedure introduced in 4 10.8 can be used for solution of 
compound cylinder problems. The vertical lines representing the boundaries of the cylinder 
walls may be drawn at their appropriate l / r2  values, and the solution for condition (c) of 
Fig. 10.12 may be carried out as before, producing a single line across both cylinder sections 
(Fig. 10.14a). 

The graphical representation of the effect of shrinkage does not produce a single line, 
however, and the effect on each cylinder must therefore be determined by projection of 
known lines on the radial side of the graph to the respective cylinder on the hoop stress side, 
i.e. conditions (a) and (b) of Fig. 10.12 must be treated separately as indeed they are in the 
analytical approach. The resulting graph will then appear as in Fig. 10.14b. 

The total effect of combined shrinkage and internal pressure is then given, as before, by the 
algebraic combination of the separate effects, i.e. the graphs must be added together, taking 
due account of sign to produce the graph of Fig. 10.14~. In practice this is the only graph 
which need be constructed, all effects being considered on the single set of axes. Again, all 
values should be calculated from proportions of the figure, i.e. by the use of similar triangles. 

10.11. Shrinkage or interference allowance 

In the design of compound cylinders it is important to relate the difference in diameter of 
the mating cylinders to the stresses this will produce. This difference in diameter at the 
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Fig. 10.14. Graphical (Lam6 lirie) solution for compound cylinders. 

“common” surface is normally termed the shrinkage or interference allowance whether the 
compound cylinder is formed by a shrinking or a force fit procedure respectively. Normally, 
however, the shrinking process is used, the outer cylinder being heated until it will freely slide 
over the inner cylinder thus exerting the required junction or shrinkage pressure on cooling. 

Consider, therefore, the compound cylinder shown in Fig. 10.15, the material ofthe two 
cylinders not necessarily being the same. 

Let the pressure set up at the junction of two cylinders owing to the force or shrink fit be p. 
Let the hoop stresses set up at the junction on the inner and outer tubes resulting from the 
pressure p be uHi (compressive) and aHo (tensile) respectively. 

Then, if 
6, = radial shift of outer cylinder 

ai = radial shift of inner cylinder (as shown in Fig. 10.15) 
and 
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Final common radius 

Originol I D of 
outer cylinder 

g10.11 

/ 
Fig. 10.15. Interference or shrinkage allowance for compound cylinders- 

total interference = 6, + 4. 

since 

circumferential strain at radius r on outer cylinder = - = 2 = E 

circumferential strain = diametral strain 
26, 6 
2r r Ho 

26, hi circumferential strain at radius r on inner cylinder = - = - = - E  

(negative since it is a decrease in diameter). 

Hi 2r r 

Total interference or shrinkage = 6,+6,  
= r'EHo + r( - & H i )  

= (&Ho - & H i ) ) .  

Now assuming open ends, i.e. oL = 0, 

and since o , ~  = - p OH, v 2  & H . = -  - - ( - p )  
' E2 E ,  

where E, and v , ,  E ,  and v2 are the elastic modulus and Poisson's ratio of the two tubes 
respectively. 

Therefore total interference or shrinkage allowance (based on radius) 

(10.13) 

where r is the initial nominal radius of the mating surfaces. 
N.B. oHi, being compressive, will change the negative sign to a positive one when its value is 
substituted. Shrinkage allowances based on diameter will be twice this value, i.e. replacing 
radius r by diameter d .  

Generally, however, the tubes are of the same material. 

. .  E ,  = E ,  = E and v ,  = v ,  = v  

r . .  Shrinkage allowance = E (oH0 - o,,,) (10.14) 
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The values of one and ani may be determined graphidly or analytidly in terms of the 
shrinkage pressure p which can then be evaluated for any known shrinkage or interference 
allowance. Other stress values throughout the cylinder can then be determined as described 
previously. 

10.12. Hub on solid shaft 

Since a,, and a, cannot be infinite when r = 0, i.e. at the centre of the solid shaft, it follows 
that B must be zero since this is the only solution which can yield finite values for the stresses. 

From the above equations, therefore, it follows that nH = u, = A for all values of r. 
Now at the outer surface of the shaft 

u, = - p  the shrinkage pressure. 

Therefore the hoop and radial stresses throughout a solid shaft are everywhere equal to the 
shrinkage or interference pressure and both are compressive, The maximum shear stress 
= 4 (al - az) is thus zero throughout the shaft. 

10.13. Force fits 

It has been stated that compound cylinders may be formed by shrinking or byforce-fit 
techniques. In the latter case the interference allowance is small enough to allow the outer 
cylinder to be pressed over the inner cylinder with a large axial force. 

If the interference pressure set up at the common surface is p ,  the normal force N between 
the mating cylinders is then 

N = p x 2nrL 

where L is the axial length of the contact surfaces. 

thus 

where p is the coefficient of friction between the contact surfaces. 

The friction force F between the cylinders which has to be overcome by the applied force is 

F = p N  

F = p ( p  x 2nrL)  . .  

= 2xpprL ( 10.1 5 )  

With a knowledge of the magnitude of the applied force required the value of p may be 
determined. 

Alternatively, for a known interference between the cylinders the procedure of 4 10.1 1 may 
be carried out to determine the value of p which will be produced and hence the force F which 
will be required to carry out the press-fit operation. 
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10.14. Compound cylinder - different materials 

The value of the shrinkage or interference allowance for compound cylinders constructed 
from cylinders of different materials is given by eqn. (10.13). The value of the shrinkage 
pressure set up owing to a known amount of interference can then be calculated as with the 
standard compound cylinder treatment, each component cylinder being considered sep- 
arately subject to the shrinkage pressure. 

Having constructed the compound cylinder, however, the treatment is different for the 
analysis of stresses owing to applied internal and/or external pressures. Previously the 
compound cylinder has been treated as a single thick cylinder and, e.g., a single Lam6 line 
drawn across both cylinder walls for solution. In the case of cylinders of different materials, 
however, each component cylinder must be considered separately as with the shrinkage 
effects. Thus, for a known internal pressure PI which sets up a common junction pressure p ,  
the Lam6 line solution takes the form shown in Fig. 10.16. 

StreSSeS 

Outer 
ylinde 

Inner 
cylinder 

P 

\ 

Fig. 10.16. Graphical solution for compound tubes of different materials. 

For a full solution of problems of this type it is often necessary to make use of the equality 
of diametral strains at the common junction surface, i.e. to realise that for the cylinders to 
maintain contact with each other the diametral strains must be equal at the common surface. 

diametral strain = circumferential strain Now 

1 
E 

= -[OH - V b r  - V b L l  

Therefore at the common surface, ignoring longitudinal strains and stresses, 

(10.16) 
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where E, and v, = Young’s modulus and Poisson’s ratio of outer cylinder, 
Ei and v i  = Young’s modulus and Poisson’s ratio of inner cylinder, 

oHo and cHi = (as before) the hoop stresses at the common surface for the 
c, = - p  = radial stress at common surface, 

and 
outer and inner cylinders respectively. 

10.15. Uniform heating of compound cylinders of different materials 

When an initially unstressed compound cylinder constructed from two tubes of the same 
material is heated uniformly, all parts of the cylinder will expand at the same rate, this rate 
depending on the value of the coefficient of expansion for the cylinder material. 

If the two tubes are of different materials, however, each will attempt to expand at different 
rates and digerential thermal stresses will be set up as described in 42.3. The method of 
treatment for such compound cylinders is therefore similar to that used for compound bars in 
the section noted. 

Consider, therefore, two tubes of different material as shown in Fig. 10.17. Here it is 
convenient, for simplicity of treatment, to take as an example steel and brass for the two 
materials since the coefficients of expansion for these materials are known, the value for brass 
being greater than that for steel. Thus if the inner tube is of brass, as the temperature rises the 
brass will attempt to expand at a faster rate than the outer steel tube, the “free” expansions 
being indicated in Fig. 10.17a. In practice, however, when the tubes are joined as a compound 
cylinder, the steel will restrict the expansion of the brass and, conversely, the brass will force 
the steel to expand beyond its “free” expansion position. As a result a compromise situation is 
reached as shown in Fig. 10.17b, both tubes being effectively compressed radially (i.e. on their 
thickness) through the amounts shown. An effective increase p t  in “shrinkage” pressure is thus 
introduced. 

Compression of 

‘Free’ expansion Of 

(a  1 Cylinders before heating 

Fig. 10.1 7. Uniform heating of compound cylinders constructed from tubes of different 
materials- in this case, steel and brass. 

(b 1 Cylinders after heotcng ( c  ) Stress system at common surface 

p, is the radial pressure introduced at the common interface by virtue of the diferential 

Therefore, as for the compound bar treatment of $2.3: 
thermal expansions. 

compression of steel +compression of brass = difference in “free” lengths 

E,d+Egd = (ag -as ) td  

= ( a B - M G - T A d  ( 10.1 7) 
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where d is the initial nominal diameter of the mating surfaces, aB and as are the coefficients of 
linear expansion for the brass and steel respectively, t = T, -TI is the temperature change, 
and 

Alternatively, using a treatment similar to that used in the derivation of the thick cylinder 
“shrinkage fit” expressions 

and E, are the diametral strains in the two materials. 

Ad = ( E ~ ,  - cHi )d  = (ag  - a,)td 

being compressive, then producing an identical expression to that obtained above. 
Now since diametral strain = circumferential or hoop strain 

or. and or, being the hoop stresses set up at the common interface surfaces in the steel and 
brass respectively due ro the differential thermal expansion and ur the effective increase in 
radial stress at the common junction surface caused by the same effect, i.e. a, = - p t .  

However, any radial pressure at the common interface will produce hoop tension in the 
outer cylinder but hoop compression in the inner cylinder. The expression for obtained 
above will thus always be negative when the appropriate stress values have been inserted. 
Since eqn. (10.17)deals with magnitudes of displacements only, it follows that a negative sign 
must be introduced to the value of before it can be sQbstituted into eqn. (10.17). 

Substituting for cS and in eqn. (10.17) with o, = - p t  

The values of or, and otg are found in terms of the radial stress pt  at the junction surfaces by 
calculation or by graphical means as shown in Fig. 10.18. 

iteel 

- 
\ 
,I 

Brass 

/ 

Fig. 10.18. 
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Substitution in eqn. (10.18) then yields the value of the “unknown” pt  and hence the other 
resulting stresses. 

10.16. Failure theories- yield criteria 

For thick cylinder design the Tresca (maximum shear stress) criterion is normally used for 
ductile materials (see Chapter 15), i.e. the maximum shear stress in the cylinder wall is equated 
to the maximum shear stress at yield in simple tension, 

Zma)r= ay/2 

Now the maximum shear stress is at the inside radius ( 9  10.5) and is given by 

d H - a r  
Tmax= ~ 2 

Therefore, for cylinder failure 

i.e. by = dH -or 

Here, a” and or are the hoop and radial stresses at the inside radius and cy is the allowable 
yield stress of the material taking into account any safety factors which may be introduced by 
the company concerned. 

For brittle materials such as cast iron the Rankine (maximum principal stress) theory is 
used. In this case failure is deemed to occur when 

10.17. Plastic yielding- “auto-frettage” 

It has been shown that the most highly stressed part of a thick cylinder is at the inside 
radius. It follows, therefore, that if the internal pressure is increased sufficiently, yielding of 
the cylinder material will take place at this position. Fortunately the condition is not too 
serious at this stage since there remains a considerable bulk of elastic material surrounding 
the yielded area which contains the resulting strains within reasonable limits. As the pressure 
is increased further, however, plastic penetration takes place deeper and deeper into the 
cylinder wall and eventually the whole cylinder will yield. 

If the pressure is such that plastic penetration occurs only partly into the cylinder wall, on 
release of that pressure the elastic outer zone attempts to return to its original dimensions but 
is prevented from doing so by the permanent deformation or “set” of the yielded material. 
The result is that the elastic material is held in a state of residual tension whilst the inside is 
brought into residual compression. This process is termed auto-frettage and it has the same 
effect as shrinking one tube over another without the necessary complications of the 
shrinking procedure, i.e. on subsequent loading cycles the cylinder is able to withstand a 
higher internal pressure since the compressive residual stress at the inside surface has to be 
overcome before this region begins to experience tensile stresses. For this reason gun barrels 
and other pressure vessels are often pre-stressed in this way prior to service. 
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A full theoretical treatment of the auto-frettage process is introduced in Chapter 18 
together with associated plastic collapse theory. 

10.18. Wire-wound thick cylinders 

Consider a thick cylinder with inner and outer radii R ,  and R ,  respectively, wound with 
wire under tension until its external radius becomes R,. The resulting hoop and radial stresses 
developed in the cylinder will depend upon the way in which the tension T in the wire varies. 
The simplest case occurs when the tension in the wire is held constant throughout the winding 
process, and the solution for this condition will be introduced here. Solution for more 
complicated tension conditions will be found in more advanced texts and are not deemed 
appropriate for this volume. The method of solution, however, is similar. 

(a) Stresses in the wire 

Let the combined tube and wire be considered as a thick cylinder. The tension in the wire 
produces an “effective” external pressure on the tube and hence a compressive hoop stress. 

Now for a thick cylinder subjected to an external pressure P the hoop and radial stresses 
are given by 

O H =  - 

and 

r2 + R :  
i.e. OH = a,[ -1 

If the initial tensile stress in the wire is T the final tensile hoop stress in the winding at any 
radius r is less than T by an amount equal to the compressive hoop stress set up by the effective 
“external” pressure caused by the winding, 

i.e. final hoop stress in the winding at radius r = T -  a, [ 1:: “;;;I (10.19) 

Using the same analysis outlined in 8 10.2, 

dar aH = a , + r -  dr 

a r + r - = T - o r  dar 
dr 

1 dar 
dr 

r2 + R :  - r2  + R: ‘[ ( r 2 - R : )  r -  =T-a  =.-[--I 2R:ar 
r2 - R: 
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r 
(rZ - R:) 

Multiplying through by and rearranging, 

r2 do, R: r Tr 
- + 2  

(rZ - R:) dr (rZ - R:)' = (r2 - R:) 

. .  
r2 Tr ' dr [ (r2-R:) = (rZ - R:) 

rz T 
(rZ-R1) 2 

1- or = - log,(r2 - R:)  + A 

But or = 0 when r = R,, 
T 
2 

0 = -log,(R: - R:) + A . .  

T 
A = - -log,(R: 2 - R:) 

Therefore substituting in eqn. (10.20), 

rz T (rZ - R:) 
(rZ-R:) 2 (Ri-R:) 

6, = -log, 

From eqn. (10.19), 
(T" =T-o,[-] r2 + R: 

rz - R: 

(10.20) 

(10.21) 

Therefore since the sign of or has been taken into account in setting up eqn. (10.19) 

( rZ + R:)  
a , = T  [ 1- 2r2 loge 

(r2 - R:)  
(10.22) 

Thus eqns. (10.21) and (10.22) give the stresses in the wire winding for all radii between 
R, and R,. 

(b) Stresses in the tube 

The stresses in the tube due to wire winding may be found from the normal thick cylinder 
expressions when it is considered subject to an external pressure P, at radius R,. The value of 
P, is that obtained from eqn. (10.21) with r = R,. 

If an additional internal pressure is applied to the wire-wound cylinder it may be treated as 
a single thick cylinder and the resulting stresses combined algebraically with those due to 
winding to obtain the resultant effect. 
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Examples 

Example 10.1 ( B )  

A thick cylinder of 100 mm internal radius and 150 mm external radius is subjected to an 
internal pressure of 60 MN/mZ and an external pressure of 30 MN/mz. Determine the hoop 
and radial stresses at the inside and outside of the cylinder together with the longitudinal 
stress if the cylinder is assumed to have closed ends. 

Solution (a): analytical 

Fig. 10.19. 

The internal and external pressures both have the effect of decreasing the thickness of the 
cylinder; the radial stresses at both the inside and outside radii are thus compressive, i.e. 
negative (Fig. 10.19). 

. .  ur = - 60 MN/m2 

and at r = 0.15m, or = -30MN/m2 

Therefore, from eqn. (10.3), with stress units of MN/m2, 

at r = 0.1 m, 

-60=A-lOOB 

and -30 = A-44.5B 

Subtracting (2) from (l), 
-30 = - 5 5 . 5 8  

B = 0.54 

Therefore, from (l), A =  -60+100~0.54 

A =  -6 

Therefore, at r = 0.1 m, from eqn. (10.4), 

B 
rz 

a , = A + - =  -6+0 .54~100  

= 48 MN/mZ 
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and at r = 0.15 m, t ~ "  = - 6 + 0 . 5 4 ~ 4 4 . 5  = -6+24 

= 18MN/rn2 

From eqn. (10.7) the longitudinal stress is given by 

P,R: - P2Ri  - (60 x 0.l2 - 30 x 0.152) - 
(0.152 -0.l2) t J L  = 

(R:  - R:)  
102(60 - 30 x 2.25) - - = - 6 MN/rn2 i.e. compressive 

1.25 x lo2 

Solution (b): graphical 

The graphical solution is shown in Fig. 10.20, where the boundaries of the cylinder are 
given by 

- = 100for the inner radius where I = 0.1 m 1 
r2 

1 
rz 
- 44.5 for the outer radius where r = 0.15 m _ -  

H O ~ P  stresses 

Stress 

I MN/& 

3 50 40 60 80 120 1;? 
'. 

C 

B 

Radial sfresses 

Fig. 10.20. 

The two conditions which enable the Lame line to be drawn are the same as those used above 
for the analytical solution, 

i.e. 0, = -60MN/m2 at r = 0.1 m 

a, = -30MN/m2 at r = 0.15m 

The hoop stresses at these radii are then given by points P and Q on the graph. For 
complete accuracy these values should be calculated by proportions of the graph thus: 
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. .  

by similar triangles PAS and BAC 

CB - - P S  
100 + 44.5 100 - 44.5 

PL+LS 30 
144.5 55.5 

=- 

i.e. hoop stress at radius r = 0.1 m 

30 x 144.5 - Ls = p L  = 
55.5 

= 78 - 30 = 48 MN/m2 

Similarly, the hoop stress at radius r = 0.15 m is Q M  and given by the similar triangles QAT 
and BAC, 

i.e. 
Q M  +- M T  30 - 
44.5 +44.5 - 55.5 

30 
30 x 89 

55.5 
Q M = - - - - - -  

= 48 - 30 = 18 MN/mZ 

The longitudinal stress oL = the intercept on the a axis (which is negative) 

= DO = O E  - DE = 30- DE 

Now 
DE 30 
44.5 55.5 
-=- 

. .  DE = 24 

. .  oL = 30 - 24 = 6 MN/m2 compressive 

Example 10.2 ( B )  

An external pressure of 10 MN/mZ is applied to a thick cylinder of internal diameter 
160 mm and external diameter 320 mm. If the maximum hoop stress permitted on the inside 
wall of the cylinder is limited to 30 MN/mZ, what maximum internal pressure can be applied 
assuming the cylinder has closed ends? What will be the change in outside diameter when this 
pressure is applied? E = 207 GN/mZ, v = 0.29. 

Solution (a): analytical 

The conditions for the cylinder are: 

When r = 0.08 m, a, = - p 
1 

and - = 156 
I2 
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1 
r’ 

when r =0.16m, a, = -10MN/m’ and - =  39 

and when r = 0.08 m, an = 30 MN/m’ 

since the maximum hoop stress occurs at the inside surface of the cylinder. 
Using the latter two conditions in eqns. (10.3) and (10.4) with units of MN/m’, 

- 10 = A - 39B (1) 

(2) 30 = A + 156B 

Subtracting (1) from (2), 

Substituting in (l), 
40 = 195B .’. B = 0.205 

A = - 10 + (39 x 0.205) 

= -10+8 .’. A =  - 2  

Therefore, at r = 0.08, from eqn. (10.3), 

O, = - p  = A -  156B 

= - 2 - 1 5 6 ~ 0 . 2 0 5  

= -2-32 = -34MN/m2 

i.e. the allowable internal pressure is 34 MN/m’. 
From eqn. (10.9) the change in diameter is given by 

H - YO, - vaL) 2ro A D = - ( o  
E 

Now at the outside surface 
B 

O, = - 10 MN/m’ and an = A +  - 
r’ 

= - 2 + (39 x 0.205) 

= -2+8 = 6MN/mZ 

PI R:  - P z R ;  - (34 x 0.08’ - 10 x 0.16’) 
O L  = - 

( R :  - R:)  (0.16’ -0.08’) 

21.8 - 25.6 (34 x 0.64 - 10 x 2.56) - - - - 
(2.56 - 0.64) 1.92 

. .  

3.8 
1.92 

0.32 

=---  - 1.98 MN/mZ compressive 

[6 - 0.29( - 10) - 0.29( - 1.98)] lo6 
207 x 109 

207 x 103 

AD = 

- - 0*32 (6 + 2.9 + 0.575) 

= 14.7pm 
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Solution (b): graphical 

known) 
IO 

I 156 I I 
1601 I20 80 40 

-20 ! -30 1 HOOP stresses 1 

Stress 

MN/m2 1 U 

i Radial stresses 

39 I I 15C 
+4c 80 120 

LI 
60 r2  

:nternol 
mssure 

P 

Fig. 10.21. 

The graphical solution is shown in Fig. 10.21. The boundaries of the cylinder are as 
follows: 

for r = 0.08 m, 1 
- = 156 
r2 

1 
and for r = 0.16 m, - = 39 r2 

The two fixed points on the graph which enable the line to be drawn are, therefore, 

and c, = - 10 MN/mZ at r = 0.16 O H  = 30 MN/m2 at r = 0.08 m 

The allowable internal pressure is then given by the value of c, at r = 0.08 m - = 156 , 
(r: ) 

i.e. 34 MN/m2. 
1 

r2 
Similarly, the hoop stress at the outside surface is given by the value of uH at - = 39, i.e. 

6 MN/m2, and the longitudinal stress by the intercept on the CT axis, Le. 2 MN/m2 
compressive. 

N.B. -In practice all these values should be calculated by proportions. 

Example 10.3 ( B )  

(a) In an experiment on a thick cylinder of 100 mm external diameter and 50 mm internal 
diameter the hoop and longitudinal strains as measured by strain gauges applied to the outer 
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surface of the cylinder were 240 x and 60 x respectively, for an internal pressure 
of 90 MN/m2, the external pressure being zero. 

Determine the actual hoop and longitudinal stresses present in the cylinder if 
E = 208 GN/m2 and v = 0.29. Compare the hoop stress value so obtained with the 
theoretical value given by the Lame equations. 

(b) Assuming that the above strain readings were obtained for a thick cylinder of 100 mm 
external diameter but unkonwn internal diameter calculate this internal diameter. 

Solution 

(a) 
1 1 
E E 

E H  = - ( o H - v G L )  and E L  = - (oL-  V O H )  

since a, = 0 at the outside surface of the cylinder for zero external pressure. 

. .  240 x x 208 x lo9 = aH-0.29aL = 50 x lo6 (1) 

(2) 60 x x 208 x lo9 = aL-0.29aH = 12.5 x lo6 

(1) x 0.29 
(2) 

0.29aH- 0.0840L = 14.5 x lo6 (3) 
aL-0.29~H = 12.5 x lo6 

(3) + (2) 0.916aL = 27 x lo6 

. .  0 = 29.5 MN/m2 

Substituting in (2) 0.29aH= 29.5 - 12.5 = 17 x lo6 

an = 58.7 MN/m2 
The theoretical values of for an internal pressure of 90 MN/m2 may be obtained from 

Fig. 10.22, the boundaries of the cylinder being given by r = 0.05 and r = 0.025, 

i.e. 

i.e. 

= 400 and 1600 respectively 
1 

r2 
an = 60 MN/m2 theoretically 

- 

Fig. 10.22. 
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(b) From part (a) on = 58.7 MN/m2 at r = 0.05 

58.7 MN/m2 

I I I 1x0 800 400 

al 
F 

2 
L 

a 

and 
. .  

Adding: 

and since 

\- v) 

m'-\, g 
ll I I 

ROO 1200 
\o 

-20 - 
- 4 0 -  

-60- 

-80 - 

-100 - 

or = 0 at r=  0.05 
58.7 = A+400B 

O =  A-400B 

58.7 = 2A .'. A = 29.35 

A = 400B .'. B = 0.0734 

Therefore for the internal radius R, where 0, = 90 MN/m2 

0.0734 
-90 = 29.35 -- 

R: 
0.0734 

- 119.35 
R 2  - - = 0.000615 

= 6.15 x 10-4 

. .  

. .  
R ,  = 2.48 x lo-' m = 24.8mm 

Internal diameter = 49.6 mm 

For a graphical solution of part (b), see Fig. 10.23, where the known points which enable 
the Lame line to be drawn are, as above: 

1 1 
rz r2 

o H =  58.7 at - = 400 and 0, = O  at - = 400 

It is thus possible to determine the value of 1/R: which will produce 0, = -90 MN/m2. 

L L  
r z  

Fig. 10.23. 

1 
Let the required value of R7 = x 

58.7 -- 90 
then by proportions ~ - 

X-400 800 
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= 1225 
90 x 800 

58.7 
X - 4 0 0  = 

..  x = 1625 

. .  R ,  = 24.8 mm 

i.e. required internal diameter = 49.6 mm 

Example 10.4 ( B )  

A compound cylinder is formed by shrinking a tube of 250 mm internal diameter and 
25 mm wall thickness onto another tube of 250 mm external diameter and 25 mm wall 
thickness, both tubes being made of the same material. The stress set up at the junction owing 
to shrinkage is 10 MN/m2. The compound tube is then subjected to an internal pressure of 
80 MN/m2. Compare the hoop stress distribution now obtained with that of a single cylinder 
of 300 mm external diameter and 50 mm thickness subjected to the same internal pressure. 

Solution (a): analytical 

A solution is obtained as described in fj 10.9, i.e. by considering the effects of shrinkage and 

Shrinkage only - outer tube 

At r = 0.15, or = 0 and 

internal pressure separately and combining the results algebraically. 

at r = 0.125, or = - 10 MN/m2 

B . .  O = A - -  o.152 = A-44.58 

Subtracting (1)- (2), 10 = 19.5B :. B = 0.514 

Substituting in (l), A =  44.5B .'. A = 22.85 

. .  hoop stress at 0.15 m radius = A+44.5B = 45.7 MN/m2 

hoop stress at 0.125 m radius = A + 648 = 55.75 MN/m2 

Shrinkage only- inner tube 

At r = 0.10, or = 0 and at r = 0.125, or = - 10 MN/m2 

. .  

Subtracting (3) - (4), 10 = - 3 6 8  :. B= - 0.278 

Substituting in (3) ,  A = lOOB .'. A = -27.8 



244 Mechanics of Materials 

. .  hoop stress at 0.125 m radius = A + 64B = - 45.6 MN/m2 

hoop stress at 0.10 m radius = A + lOOB = - 55.6 MN/m2 

Considering internal pressure only (on complete cylinder) 

At r = 0.15, u, = 0 and at r = 0.10, or = -80 

. .  0 = A-44.58 

- 80 = A - lOOB 

Subtracting (5) - (6), 80 = 55.5B .'. B = 1.44 

From (9, A = 44.58 .'. A = 64.2 

. .  At r = 0.15 m, O H  = A + 44.58 = 128.4 MN/m2 

uH = A + 648 = 156.4 MN/m2 
OH = A + lOOB = 208.2 MN/mZ 

r = 0.125 m, 
r = 0.1 m, 

The resultant stresses for combined shrinkage and internal pressure are then: 

outer tube: r = 0.15 C H  = 128.4 +45.7 = 174.1 MN/m2 

U H  = 156.4+ 55.75 = 212.15 MN/m2 

inner tube: r = 0.125 uH = 156.4-45.6 = 110.8 MN/m2 

r = 0.125 

r = 0.1 O H  = 208.2 - 55.6 = 152.6 MN/m2 

Solution (b): graphical 

shrinkage and internal pressure as shown in Fig. 10.24. 
The graphical solution is obtained in the same way by considering the separate effects of 

Fig. 10.24. 
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The final results are illustrated in Fig. 10.25 (values from the graph again being determined 
by proportion of the figure). 

,Resultant stress 

208 

‘Single thick cylinder 

0 Irn 0 l25rn 0. I5 m 

1-Cylinder wall 

Fig. 10.25. 

Example 10.5 ( B )  

A compound tube is made by shrinking one tube of 100 mm internal diameter and 25 mm 
wall thickness on to another tube of 100 mm external diameter and 25 mm wall thickness. 
The shrinkage allowance, bused on radius, is 0.01 mm. If both tubes are of steel (with 
E = 208 GN/m’), calculate the radial pressure set up at the junction owing to shrinkage. 

Solution 

Let p be the required shrinkage pressure, then for the inner tube: 

At r = 0.025, a, = 0 and at r = 0.05, a, = -p 

B 
0.025’ 

0 = A -  - = A -  16WB 

Subtracting (2) - (l), 
- p  = 1200B :_ B = -p/1200 

From (l), 
1600p 4p 
1200 3 

A = - - - - -  - A = 1600B ... 

Therefore at the common radius the hoop stress is given by eqn. (10.4), 

oHi = A + BjO.05’ 

For the outer tube: 

at r = 0.05, a, = -p and at r = 0.075, or = 0 

- p =  A-B/0.05’ = A - 4 @ ) B  
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0 = A - B/0.075'= A - 178B 

Subtracting (4) - (3), p =222B .'. B =p/222 

From (4) 178p 
A = 178B .'. A = - 

222 

Therefore at the common radius the hoop stress is given by 

178P P 578p 
222 222 222 

-- - +-~4400=-=2.6~ 

Now from eqn. (10.14) the shrinkage allowance is 

. .  

r 
[OHo - OHi] 

0.01 x 10-3 = 50 [2.6p - (- 1.67p)I lo6 
208 x 109 

where p has units of MN/mZ 

0.01 x 208 x 103 
= 41.6 

50 
. .  4.27~ = 

. .  p = 9.74 MN/m2 

Hoop and radial stresses in the compound cylinder owing to shrinkage and/or internal 
pressure can now be determined if desired using the procedure of the previous example. 

Once again a graphical solution could have been employed to obtain the values of oH0 and 
oHi in terms of the unknown pressure p which is set off to some convenient distance on the 
r = 0.05, i.e. l / rz  = 400, line. 

Example 10.6 ( B )  

Two steel rings of radial thickness 30 mm, common radius 70 mm and length 40 mm are 
shrunk together to form a compound ring. It is found that the axial force required to separate 
the rings, i.e. to push the inside ring out, is 150 kN. Determine the shrinkage pressure at the 
mating surfaces and the shrinkage allowance. E = 208 GN/mZ. The coefficient of friction 
between the junction surfaces of the two rings is 0.15. 

Solution 

Let the pressure set up between the rings be p MN/mZ. 
Then, normal force between rings = p x 2arL = N 

= 106 2n 70 x 10-3 x 40 x 10-3 

= 5600ap newtons. 
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friction force between rings = p N  = 0.15 x 5600np 

0.15 x 560071~  = 150 x lo3 

150 x 103 
= 0.15 x 560071 

= 57 MN/mZ 
Now, for the inner tube: 

a, = - 57 at r = 0.07 and a, = 0 at r = 0.04 

. .  -57 = A-B/0.072 = A-204B 

0 = A-B/0.04’ = A-625B 

Subtracting (2) - (l), 

From (2), A = 625B .‘. A = -84.5 

57 = -421B .’. B = -0.135 

Therefore at the common radius the hoop stress in the inner tube is given by 
B 

0.07 
aHi = A+7 = A+204B = -112.1 MN/m2 

For the outer tube: 

a, = - 57 at r = 0.07 and a, = 0 at r = 0.1 

. .  -57 = A-204B 

0ZA-100B 

Subtracting (4) - (3), 

From (4), A = l00B .’. A = 54.8 

Therefore at the common radius the hoop stress in the outer tube is given by 

57 = 104B .’. B = 0.548 

B 
0.07 aH0 = A + = A + 204B = 166.8 MN/m2 

r 
E shrinkage allowance = - (aHo - aHi )  

- - 70 C166.8 - (-  112.1)] lo6 
208 x 109 

70 x 278.9 
208 

- - 

= 93.8 x = 0.094 mm 

Example 10.7 ( B )  

(3) 

(4) 

(a) A steel sleeve of 150 mm outside diameter is to be shrunk on to a solid steel shaft of 
100 mm diameter. If the shrinkage pressure set up is 15 MN/m2, find the initial difference 
between the inside diameter of the sleeve and the outside diameter of the shaft. 
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(b) What percentage error would be involved if the shaft were assumed to be incom- 
pressible? For steel, E = 208 GN/m2; v = 0.3. 

Solution 

(a) Treating the sleeve as a thick cylinder with internal pressure 15 MN/m2, 
at r = 0.05, a, = - 15 MN/m2 and at r = 0.075, a, = 0 

(1) 

(2) 

- 15 = A - B/0.05* = A - 4008 

0 = A - B/0.0752 = A - 1788 

Subtracting (2) - (I), 
From (2), A = 1788 .'. A = 12.05 

Therefore the hoop stress in the sleeve at r = 0.05 m is given by 

15 = 2228 .'. B = 0.0676 

a H 0  = A + B/0.052 

= A+4008 = 39 MN/m2 

The shaft will be subjected to a hoop stress which will be compressive and equal in value to 
the shrinkage pressure (see §10.12), 

i.e. aHi = - 15 MN/m2 

Thus the difference in radii or shrinkage allowance 

[39 + 151 lo6 
r 50 x 10-3 

= E (OHo - O f f i )  = 

. .  difference in diameters = 0.026mm 

(b) If the shaft is assumed incompressible the difference in diameters will equal the 
necessary change in diameter of the sleeve to fit the shaft. This can be found from the 
diametral strain, i.e. from eqn. (10.9) 

2r 
E AD = - ( c H -  YO,) assuming oL = 0 

loo 
[39 - 0.3( - 15)] lo6 208 x 109 

change of diameter = 

-- - 43*5 x 10-4 = 20.9 x 10-6 
208 

. = 0.0209 mm 

. .  (o.026 - 0.0209) 100 = 19.6 % percentage error = 
0.026 
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Example 10.8 (C) 

A thick cylinder of 100 mm external diameter and 50 mm internal diameter is wound with 
steel wire of 1 mm diameter, initially stressed to 20 MN/m’ until the outside diameter is 
120 mm. Determine the maximum hoop stress set up in the cylinder if an internal pressure of 
30 MN/m’ is now applied. 

Solution 

To find the stresses resulting from internal pressure only the cylinder and wire may be 
treated as a single thick cylinder of 50 mm internal diameter and 120 mm external diameter. 

Now 6, = - 30 MN/m2 at r = 0.025 and 6, = 0 at r = 0.06 

. .  - 30 = A - B/0.0252 = A - 16008 (1) 

0 = A -B/0.06’ = A-2788 (2) 
Subtracting (2) - (l), 

From (2), A = 278B .’. A = 6.32 

. .  

30 = 1322B .*. B = 0.0227 

hoop stress at 25 mm radius = A + 16008 = 42.7 MN/m2 

hoop stress at 50 mm radius = A + 400B = 15.4 MN/m’ 

The external pressure acting on the cylinder owing to wire winding is found from eqn. 
(10.21), 

i.e. 

. .  where r = R ,  = 0.05 m, R ,  = 0.025 and R ,  = 0.06 

(0.05’ - 0.025’) (0.062 - 0.025’) p =  - 
2 x 0.052 ‘loge (0.052 - 0.0252) 

(25 - 6.25) (36 - 6.25) 
50 (25 - 6.25) 

- - -  20 log, MN/mZ 

18.75 x 20 29.75 
loge 18.75 = -  

50 

= - 7.5 log, 1.585 = - 7.5 x 0.4606 

= - 3.45 MN/mZ 

Therefore for wire winding only the stresses in the tube are found from the conditions 

6, = - 3.45 at r = 0.05 and IJ, = 0 at r = 0.025 

. .  -3.45 = A - m B  

0 = A - 1 6 0 8  
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Subtracting, - 3.45 = 1 2 0 0 ~  - B = - 2.88 x 10- 3 

.*. A = -4.6 

. .  hoop stress at 25 mm radius = A + 1600B = - 9.2 MN/m’ 

hoop stress at 50 mm radius = A + 400B = - 5.75 MN/m’ 

The resultant stresses owing to winding and internal pressure are, therefore: 

At r = 25 mm, 

At r = 50 mm, 

Thus the maximum hoop stress is 33.5 MN/m2 

OH = 42.7 - 9.2 = 33.5 MN/m’ 

OH = 15.4 - 5.75 = 9.65 MN/m’ 

Example 10.9 (C) 

A thick cylinder of internal and external radii 300 mm and 500 mm respectively is subjected 

(a) the material of the cylinder first commences to yield; 
(b) yielding has progressed to mid-depth of the cylinder wall; 
(c) the cylinder material suffers complete “collapse”. 

Take uY = 600 MN/m’. 

to a gradually increasing internal pressure P. Determine the value of P when: 

Solution See Chapter 3 from Mechanics of Materials 2t 

From eqn. (3.35) the initial yield pressure 

[OS’ - 0.3’1 ts = L [ R ~ - R ~ ]  =------- 
2Ri 2 x 0.5’ 

[25 - 91 = 192 MN/m2 
600 

2 x 25 
-- - 

The pressure required to cause yielding to a depth Rp = 40 mm is given by eqn. (3.36) 

1 
1 (0.5’ - 0.4’) =600 log,--- 

0.3 1 [ 0.4 2 x 0.5’ 

= - 6 0 0 F o g e l . 3 3 + ( T ) ]  

= - 600(0.2852 + 0.18) 

= - 600 x 0.4652 = - 280 MN/m’ 

t E. J. Hearn, Mechanics of Materials 2, 3rd edition (Butterworth-Heinemann. Oxford, 1997). 
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i.e. the required internal pressure = 280 MN/m2 

For complete collapse from eqn. (3.34), 

R l  R2 p = - by log, - = 0, log, - 
R2 R l  

0.5 
0.3 = by log, - 

= 600 x log, 1.67 

= 600 x 0.513 = 308 MN/mZ 

Problems 

10.1 (B). A thick cylinder of 150mm inside diameter and 200mm outside diameter is subjected to an internal 

C53.4 MN/m2.] 

10.2 (B). A cylinder of 100 mm internal radius and 125 mm external radius is subjected to an external pressure of 
14bar (1.4 MN/m2). What will be the maximum stress set up in the cylinder? [ - 7.8 MN/m2.] 

10.3 (B). The cylinder of Problem 10.2 is now subjected to an additional internal pressure of 200bar 
(20 MN/mZ). What will be the value of the maximum stress? C84.7 MN/m2.] 

10.4 (B). A steel thick cylinder of external diameter 150 mm has two strain gauges fixed externally, one along the 
longitudinal axis and the other at right angles to read the hoop strain. The cylinder is subjected to an internal 
pressure of 75 MN/mz and this causes the following strains: 

pressure of 15 MN/mZ. Determine the value of the maximum hoop stress set up in the cylinder walls. 

(a) hoop gauge: 455 x 
(b) longitudinal gauge: 124 x 

tensile; 
tensile. 

Find the internal diameter of the cylinder assuming that Young’s modulus for steel is 208 GN/m2 and Poisson’s 
ratio is 0.283. [B.P.] C96.7 mm.] 

10.5 (B) A compound tube of 300mm external and 100 mm internal diameter is formed by shrinking one cylinder 
on to another, the common diameter being 200 mm. If the maximum hoop tensile stress induced in the outer cylinder 
is 90 MN/m2 find the hoop stresses at the inner and outer diameters of both cylinders and show by means of a sketch 
how these stresses vary with the radius. [90, 55.35; - 92.4, 57.8 MN/mZ.] 

10.6 (B). A compound thick cylinder has a bore of 100 mm diameter, a common diameter of 200 mm and an 
outside diameter of 300 mm. The outer tube is shrunk on to the inner tube, and the radial stress at the common 
surface owing to shrinkage is 30 MN/m2. 

Find the maximum internal pressure the cylinder can receive if the maximum circumferential stress in the outer 
tube is limited to 110 MN/m2. Determine also the resulting circumferential stress at the outer radius of the inner 
tube. [B.P.] [79, - 18 MN/m2.] 

10.7 (B). Working from first principles find the interference fit per metre of diameter if the radial pressure owing 
to this at the common surface of a compound tube is 90 MN/mZ, the inner and outer diameters of the tube being 
100 mm and 250 mm respectively and the common diameter being 200 mm. The two tubes are made of the same 
material, for which E = 200 GN/m2. If the outside diameter of the inner tube is originally 200 mm, what will be the 
original inside diameter of the outer tube for the above conditions to apply when compound? [199.44mm.] 

10.8 (B). A compound cylinder is formed by shrinking a tube of 200 mm outside and 150 mm inside diameter on 
to one of 150 mm outside and 100 mm inside diameter. Owing to shrinkage the radial stress at the common surface is 
20 MN/m2. If this cylinder is now subjected to an internal pressure of 100 MN/mZ (lo00 bar), what is the magnitude 
and position of the maximum hoop stress? [164 MN/m2 at inside of outer cylinder.] 

10.9 (B). A thick cylinder has an internal diameter of 75 mm and an external diameter of 125 mm. The ends are 
closed and it cames an internal pressure of 60 MN/mZ. Neglecting end effects, calculate the hoop stress and radial 
stress at radii of 37.5 mm, 40 mm, 50 mm, 60 mm and 62.5 mm. Plot the values on a diagram to show the variation of 
these stresses through the cylinder wall. What is the value of the longitudinal stress in the cylinder? 

[C.U.] [Hoop: 128, 116, 86.5, 70.2, 67.5 MN/m2. Radial: -60, -48.7, -19, -2.9, OMN/m2; 33.8MN/m2.] 
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10.10 (B). A compound tube is formed by shrinking together two tubes with common radius 150 mm and 
thickness 25 mm. The shrinkage allowance is to be such that when an internal pressure of 30 MN/m2 (300 bar) is 
applied the final maximum stress in each tube is to be the same. Determine the value of this stress. What must have 
been the difference in diameters of the tubes before shrinkage? E = 210GN/m2. C83.1 MN/m*; 0.025mm.l 

10.11 (B). A steel shaft of 75 mm diameter is pressed into a steel hub of l00mm outside diameter and 200mm 
long in such a manner that under an applied torque of 6 kN m relative slip is just avoided. Find the interference fit, 
assuming a 75 mm common diameter, and the maximum circumferential stress in the hub. p = 0.3. E = 210GN/m2 

C0.0183 mm; 40.4 MN/m2.] 
10.12 (B). A steel plug of 75mm diameter is forced into a steel ring of 125mm external diameter and 50mm 

width. From a reading taken by fixing in a circumferential direction an electric resistance strain gauge on the external 
surface of the ring, the strain is found to be 1.49 x Assuming p = 0.2 for the mating surfaces, find the force 
required to push the plug out of the ring. Also estimate the greatest hoop stress in the ring. E = 210GN/mZ. 

CI.Mech.E.1 C65.6 kN; 59 MN/mZ.] 
10.13 (B). A steel cylindrical plug of 125 mm diameter is forced into a steel sleeve of 200mm external diameter 

and 100 mm long. If the greatest circumferential stress in the sleeve is 90 MN/mZ, find the torque required to turn the 
sleeve, assuming p = 0.2 at the mating surfaces. [U.L.] C19.4 kNm.] 

10.14 (B). A solid steel shaft of 0.2 m diameter hasa bronze bush of 0.3 m outer diameter shrunk on to it. In order 
to remove the bush the whole assembly is raised in temperature uniformly. After a rise of 100°C the bush can just be 
moved along the shaft. Neglecting any effect of temperature in the axial direction, calculate the original interface 
pressure between the bush and the shaft. 

For steel E = 208 GN/mZ, v = 0.29, a = 12 x per "C. 
For bronze: E = 112 GN/m2, v = 0.33, a = 18 x per "C. 

[C.E.I.] C20.2 MN/mZ.] 
10.15 (B). (a) State the Lame equations for the hoop and radial stresses in a thick cylinder subjected to an 

internal pressure and show how these may be expressed in graphical form. Hence, show that the hoop stress at the 
outside surface of such a cylinder subjected to an internal pressure P is given by 

2PR: 
OH=--- 

( R :  - R : )  
where R, and R ,  are the internal and external radii of the cylinder respectively. 

(b) A steel tube is shrunk on to another steel tube to form acompound cylinder 60mm internal diameter, 180mm 
external diameter. The initial radial compressive stress at the 120 mm common diameter is 30 MN/mZ. Calculate the 
shrinkage allowance. E = 200 GN/mZ. 

(c) If the compound cylinder is now subjected to an internal pressure of 25 MN/m2 calculate the resultant hoop 
stresses at the internal and external surfaces of the compound cylinder. c0.0768 mm; - 48.75, + 54.25 MN/mZ.] 

10.16 (B). A bronze tube, 60mm external diameter and 50mm bore, fits closely inside a steel tube of external 
diameter 100mm. When the assembly is at a uniform temperature of 15°C the bronze tube is a sliding fit inside the 
steel tube, that is, the two tubes are free from stress. The assembly is now heated uniformly to a temperature of 115°C. 

(a) Calculate the radial pressure induced between the mating surfaces and the thermal circumferential stresses, in 

[10.9MN/mZ; 23.3, 12.3, -71.2, -60.3MN/m2.] 
(b) Sketch the radial and circumferential stress distribution across the combined wall thickness of the assembly 

when the temperature is 115" C and insert the numerical values. Use the tabulated data given below. 

magnitude and nature, induced at the inside and outside surfaces of each tube. 

Young's modulus Poisson's ratio Coefficient of 
( E )  (4 linear expansion 

(4 

Steel 200 GN/mZ 0.3 12 x 10-6/"c 

Bronze 100GN/mZ 0.33 19 x C 

10.17 (B) A steel cylinder, 150 mm external diameter and 100 mm internal diameter, just fits over a brass cylinder 
of external diameter 100 mm and bore 50 mm. The compound cylinder is to withstand an internal pressure of such a 
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magnitude that the pressure set up between the common junction surfaces is 30 MN/m2 when the internal pressure is 
applied. The external pressure is zero. Determine: 

(a) the value of the internal pressure; 
(b) the hoop stress induced in the material of both tubes at the inside and outside surfaces. 

Lamt's equations for thick cylinders may be assumed without proof, and neglect any longtudinal stress and strain. 

For steel, E = 207 GN/m2 (2.07 Mbar) and v = 0.28. 
For brass, E = 100GN/mZ (1.00Mbar) and v = 0.33. 

Sketch the hoop and radial stress distribution diagrams across the combined wall thickness, inserting the peak 
values. [B.P.] [123 MN/m2; 125.4, 32.2 MN/m2; 78.2, 48.2 MN/m2.] 

10.18 (C). Assuming the Lame equations for stresses in a thick cylinder, show that the radial and circumferential 
stresses in a solid shaft owing to the application of external pressure are equal at all radii. 

A solid steel shaft having a diameter of 100 mm has a steel sleeve shrunk on to it. The maximum tensile stress in the 
sleeve is not to exceed twice the compressive stress in the shaft. Determine (a) the least thickness of the sleeve and 
(b) the maximum tensile stress in the sleeve after shrinkage if the shrinkage allowance, based on diameter, is 
0.015 mm. E = 210GN/mZ. [I.Mech.E.] C36.6 mrn; 21 MN/m2.] 

10.19 (C). A steel tube of internal radius 25 mm and external radius 40 mm is wound with wire of 0.75 mm 
diameter until the external diameter of the tube and wire is 92 mm. Find the maximum hoop stress set up within the 
walls of the tube if the wire is wound with a tension of 15 MN/mZ and an internal pressure of 30 MN/m2 (300 bar) 
acts within the tube. [49 MN/rn2.] 

10.20 (C). A thick cylinder of lOOmm internal diameter and 125 mm external diameter is wound with wire until 
the external diameter is increased by 30 %. If the initial tensile stress in the wire when being wound on the cylinder is 
135 MN/m2, calculate the maximum stress set up in the cylinder walls. [ - 144.5 MN/mz.] 


