
CHAPTER 5 

TORSION OF NON-CIRCULAR AND THIN-WALLED 
SECTIONS 

Summary 

For torsion of rectangular sections the maximum shear stress tmax and angle of twist 0 
are given by 

T 
tmax = ~ kldb2 

T - e 
L k2db3G 

kl and k2 being two constants, their values depending on the ratio d l b  and being given 
in Table 5.1. 

For narrow rectangular sections, kl = k2 = i .  
Thin-walled open sections may be considered as combinations of narrow rectangular 

sections so that 
3T - - _ _ _ -  T 

Ckldb2 Cdb2 rmax = 

3T - - T - - 0 
- 

L Xk2db’G GCdb’ 

The relevant formulae for other non-rectangular, non-tubular solid shafts are given in 

For thin-walled closed sections the stress at any point is given by 
Table 5.2. 

T 
2At 

r = -  

where A is the area enclosed by the median line or mean perimeter and t is the thickness. 
The maximum stress occurs at the point where t is a minimum. 

The angle of twist is then given by 

- e = - - - - / d s  T L  
4A2G t 

which, for tubes of constant thickness, reduces to 

T s  rs 
- - 

e 
L 4A2Gt 2AG 

where s is the length or perimeter of the median line. 

141 
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Thin-walled cellular sections may be solved using the concept of constant shear flow 
q(= ~ t ) ,  bearing in mind that the angles of twist of all cells or constituent parts are 
assumed equal. 

5.1. Rectangular sections 

Detailed analysis of the torsion of non-circular sections which includes the warping of 
cross-sections is beyond the scope of this text. For rectangular shcrfrs, however, with longer 
side d and shorter side 6 ,  it can be shown by experiment that the maximum shearing stress 
occurs at the centre of the longer side and is given by 

’F 
I 

where kl is a constant depending on the ratio dlb and given in Table 5.1 below. 

Table 5.1. Table of kl and k2 values for rectangular sections in torsion‘“’. 

d l b  1.0 1.5 1.75 2.0 2.5 3.0 4.0 6 .O 8.0 10.0 00 

kl 0.208 0.231 0.239 0.246 0.258 0.267 0.282 0.299 0.307 0.313 0.333 
k2 0.141 0.196 0.214 0.229 0.249 0.263 0.281 0.299 0.307 0.313 0.333 

“” S .  Timoshenko, Strength of Materials. Part I ,  Elemeiiruri Theor) a id  Problenrs, Van Nostrand. New York. 

The essential difference between the shear stress distributions in circular and rectangular 
members is illustrated in Fig. 5.1, where the shear stress distribution along the major and 
minor axes of a rectangular section together with that along a “radial” line to the corner of 
the section are indicated. The maximum shear stress is shown at the centre of the longer 
side, as noted above, and the stress at the comer is zero. 

Fig. 5.1. Shear stress distribution in a solid rectangular shaft. 

The angle of twist per unit length is given by 
T - 8 

L kzdb3G 
k2 being another constant depending on the ratio d lb  and also given in Table 5.1. 
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In the absence of Table 5.1, however, it is possible to reduce the above equations to the 
following approximate forms: 

T T 
rmax = [3 + 1 . 8 3  = -[3d db3 + 1.8bI (5.3) 

and 
42TW 4 2 T W  

GA4 Gd4b4 (5.4) - (j=- - 

where A is the cross-sectional area of the section (= bd) and J = (bd/12)(b2 + d2). 

5 2 .  Narrow rectangular sections 

From Table 5.1 it is evident that as the ratio d/b increases, i.e. the rectangular section 
becomes longer and thinner, the values of constants k ,  and k2 approach 0.333. Thus, for 
narrow rectangular sections in which d l b  > I O  both kl and k2 are assumed to be 113 and 
eqns. (5.1) and (5.2) reduce to 

3T 
db2 h a x  = - 

e 3~ - 
L db3G 

( 5 . 5 )  

(5.6) 

53 .  Thin-walled open sections 

There are many cases, particularly in civil engineering applications, where rolled steel or 
extruded alloy sections are used where some element of torsion is involved. In most cases 
the sections consist of a combination of rectangles, and the relationships given in eqns. (5.1) 
and (5.2) can be adapted with reasonable accuracy provided that: 

(a) the sections are “open”, i.e. angles, channels. T-sections, etc., as shown in Fig. 5.2; 
(b) the sections are thin compared with the other dimensions. 

-F I 
Fig. 

i 
5.2. Typical thin-walled open sections. 
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For such sections eqns. (5.1) and (5.2) may be re-written in the form 

T 
kldb2 Z’ 

- 
T 

Tmax = 

and 
T - ~- - T 

- 
I9 

L k2db3G J,,G 
_ -  

where Z’ is the torsion section modulus 

= Z’ web + Z’ flanges = k ld lb t  + kld2b; + . . . etc. 

= Ckldb2 

and J,,  is the “effective” polar moment of area or “equivalent J” (see $5.7) 

= J,, web + J,, flanges = k2dl b: + k2d2b: + . . . etc. 

= Ck2db3 
T 

kldb2 i.e. Tmax = 

and 

l and for d / b  ratios in excess of 10, kl = k:! = 3 ,  so that 

3T 
Tmax = ~ db2 

3T - - e - 
L G C d b 3  

(5.9) 

(5.10) 

(5.11) 

(5.12) 

To take account of the stress concentrations at the fillets of such sections, however, Timo- 
shenko and Young? suggest that the maximum shear stress as calculated above is multiplied 
bv the factor 

(Figure 5.3). This has been shown to be fairly reliable over the range 0 < a / b  < 0.5. In 
the event of sections containing limbs of different thicknesses the largest value of b should 
be used. 

Fig. 5.3 

‘S.  Timoshenko and A D .  Young, Strength offuteritrls, Van Nostrand. New York. 1968 edition. 
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5.4. Thin-walled split tube 

The thin-walled split tube shown in Fig. 5.4 is considered to be a special case of the 
thin-walled open type of section considered in 65.3. It is therefore treated as an equivalent 
rectangle with a longer side d equal to the circumference (less the gap), and a width b equal 
to the thickness. - 
Then 

and 

I 

T - e _ - -  
L k2db3G 

demeon ctrcumference : 2rrr 

Fig. 5.4. Thin tube with longitudinal split. 

where kl and k f  for thin-walled tubes are usually equal to f .  
It should be noted here that the presence of even a very small cut or gap in a thin-walled 

tube produces a torsional stiffness (torque per unit angle of twist) very much smaller than 
that for a complete tube of the same dimensions. 

5.5. Other solid (non-tubular) shafts 

Table 5.2 (see p. 146) indicates the relevant formulae for maximum shear stress and angle 
of twist of other standard non-circular sections which may be encountered in practice. 

Approximate angles of twist for other solid cross-sections may be obtained by the substi- 
tution of an elliptical cross-section of the same area A and the same polar second moment 
of area J .  The relevant equation for the elliptical section in Table 5.2 may then be applied. 

Alternatively, a very powerful procedure which applies for all solid sections, however 
irregular in shape, utilises a so-called “inscribed circle” procedure described in detail by 
Roarkt . The procedure is equally applicable to thick-walled standard T ,  I and channel 
sections and is outlined briefly below: 

Inscribed circle procedure 

Roark shows that the maximum shear stress which is set up when any solid section is 
subjected to torque occurs at, or very near to, one of the points where the largest circle which 

’ R.J. Roark and W.C. Young, Formulas for Sfress & Strain, 5th edn. McCraw-Hill, Kogakusha. 
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Table 5.2'") 

Cross-section Maximum shear stress Angle of twist per unit length 

E I  liptic 
I 

16T 4n2TJ 
r b 2 h  AJG 

Equilateral triangle 

20 T 
b' 

at the middle of each side 

- 
46.2T 
b4 G 

~ 

Regu lor h e m  

T 
0.217 Ad 

T 
0.133 Ad2G 

where d is the diameter of inscribed circle and A is the cross-sectional area 

"') From S. Timoshenko. Strength of Materials. Part 11, Adwnced Theory nml Problems. Van Nostrand, New York, p. 235. 
Approximate angles of twist for other solid cross-sections may be obtained by the substitution of an equivalent elliptical cross- 
section of the same area A and the same polar second moment of area J .  The relevant equation for the elliptical section in Table 5.2 
may then be applied. 

can be constructed within the cross-section touches the section boundary - see Fig. 5.5. 
Normally it occurs at the point where the curvature of the boundary is algebraically the least, 
convex curvatures being taken as positive and concave or re-entrant curvatures negative. 

The maximum shear stress is then obtained from either: 

where, for positive curvatures (i.e. straight or convex boundaries), 

with D = diameter of the largest inscribed circle, 

r = radius of curvature of boundary at selected position (positive), 

A = cross-sectional area of section, 
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Largest inscribed circle 
/ 

stress 
position 

Fig. 5.5. Inscribed circle stress evaluation procedure. 

or, for negative curvatures (concave or re-entrant boundaries): 

D 
1 + O.1181oge I - - -0.238- tanh- 

C =  n2D4 [ { ( :) z} ?] 
with 4 = angle through which a tangent to the boundary rotates in travelling around the 
re-entrant position (radians) and r being taken as negative. 

For standard thick-walled open sections such as T ,  I ,  Z ,  angle and channel sections Roark 
also introduces formulae for angles of twist based upon the same inscribed circle proce- 
dure parameters. 

5.6. Thin-walled closed tubes of non-circular section (Bredt-Batho theory) 

Consider the thin-walled closed tube shown in Fig. 5.6 subjected to a torque T about the 
Z axis, i.e. in a transverse plane. Both the cross-section and the wall thickness around the 
periphery may be irregular as shown, but for the purposes of this simplified treatment it 
must be assumed that the thickness does not vary along the length of the tube. Then, if r 
is the shear stress at B and r’ is the shear stress at C (where the thickness has increased to 
t’) then, from the equilibrium of the complementary shears on the sides AB and C D  of the 
element shown, it follows that 

rt d z  = r‘t’ d z  

tt = r’t’ 

i.e. the product of the shear stress and the thickness is constant at all points on the periphery 
of the tube. This constant is termed the shearjow and denoted by the symbol q (shear force 
per unit length). 

Thus q = tt = constant (5.13) 

The quantity q is termed the shear flow because if one imagines the inner and outer 
boundaries of the tube section to be those of a channel carrying a flow of water, then, 
provided that the total quantity of water in the system remains constant, the quantity flowing 
past any given point is also constant. 
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Fig. 5.6. Thin-walled closed section subjected to axial torque. 

At any point, then, the shear force Q on an element of length d s  is Q = rt d s  = q d s  and 

Consider now, therefore, the element BC subjected to the shear force Q = q d s  = t t d s .  
The moment of this force about 0 

the shear stress is q/t .  

= d T = Q p  

where p is the perpendicular distance from 0 to the force Q .  

. .  dT = q d s p  

Therefore the moment, or torque, for the whole section 

But the area COB = 4 base x height = i p d s  

i.e. d A =  i p d s  or 2 d A = p d s  

torque T = 2q dA . .  s 
T = 2qA 

where A is the area enclosed within the median line of the wall thickness. 
Now, since 

q = rt 

it follows that 

or 

T = 2ttA 
T - 

t =  - 
2At 

(5.14) 

(5.15) 

where t is the thickness at the point in question. 
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It is evident, therefore, that the maximum shear stress in such cases occurs at the point of 

Consider now an axial strip of the tube, of length L,  along which the thickness and hence 
minimum thickness. 

the shear stress is constant. The shear strain energy per unit volume is given by 

Thus, with thickness t ,  width ds and hence V = tLds 

- - 1 (’>’ & ds 
2At 

But the energy stored equals the work done = ;TO. 

The angle of twist of the tube is therefore given by @=-I-  TL ds 
4A2G t 

For tubes of constant thickness this reduces to 
tLs 

4A2Gt 2AG 
- TLs 

@ = - - -  (5.16) 

where s is the perimeter of the median line. 

abrupt changes in thickness or re-entrant comers. 

one part of the perimeter to another: 

The above equations must be used with care and do not apply to cases where there are 

For closed sections which have constant thickness over specified lengths but varying from 

1 T si s2 s3 
- + - + - +.. .  etc. -= - [  e 

L 4A2G t i  t 2  t3 

5.7. Use of “equivalent J”  for torsion of non-circular sections 

The simple torsion theory for circular sections can be written in the form: 

8 T  
L GJ 

and, as stated on page 143, it is often convenient to express the twist of non-circular sections 
in similar form: 

- - -  - 
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i.e. 

where J, ,  is the “equivalent J ’  or “effective polar moment of area” for the section 
in question. 

Thus, for open sections: 
T -- - T - - 0 

L Ck2db3G GJeq 
- 

with J,,  = Ck2db3 (= i C d b 3  for d l b  > 10). 
Similarly, for square tubes of closed section: 

6’ TLs T -- - T - - - 
L 4A2Gt G[4A2t/s]  GJeq 

and J,,  = 4A2t/s.  

unit length, is then directly given by the value of GJ or GJ,, Le. 
The torsional stiffness of any section, i.e. the ratio of torque divided by angle of twist per 

T 
Stiffness = ~ = GJ (or GJes). 

@/L  

5.8. Thin-walled cellular sections 

The Bredt-Batho theory developed in the previous section may be applied to the solution 
of problems involving cellular sections of the type shown in Fig. 5.7. 

S R P 

Fig. 5.7. Thin-walled cellular section. 

Assume the length RSMN is of constant thickness tl and subjected therefore to a constant 
shear stress rl . Similarly, N O P R  is of thickness t2 and stress t2 with N R  of thickness t g  and 
stress r3. 

Considering the equilibrium of complementary shear stresses on a longitudinal section at 
N ,  it follows that 

(5.17) T l t l  = t2 t2  + T3t3 
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Alternatively, this equation may be obtained considering the arrows shown to be directions 
of shear flow q(= t t ) .  At N the flow q1 along M N  divides into q2 along N O  and q3 along N R ,  

i.e. 

or 
91 = q 2  + q 3  

till = r2t2 + t 3 t 3  (as before) 

The total torque for the section is then found as the sum of the torques on the two cells 
by application of eqn. (5.14) to the two cells and adding the result, 

i.e. 

(5.18) 

Also, since the angle of twist will be common to both cells, applying eqn. (5.16) to each 
cell gives 

' = - (  2G A1 ) = % (  A2 ) L ?IS1 + f3S3 L q s 2  - r3s3 

where s1 , s2 and s3 are the median line perimeters RSMN, N O P R  and N R  respectively. 

opposes that in the remainder of the perimeter. 
The negative sign appears in the final term because the shear flow along N R  for this cell 

2G8 1 1 
L Ai A2 
-- - --(?IS1 + r3s3) = - ( w 2  - T3S3) (5.19) 

5.9. Torsion of thin-walled stiffened sections 

The stiffness of any section has been shown above to be given by its value of GJ or GJ,, . 
Consider, therefore, the rectangular polymer extrusion of simple symmetrical cellular 

constructions shown in Fig. 5.8(a). The shear flow in each cell is indicated. 

At A 91 = q 2  + q 3 .  

But because of symmetry q1 must equal q 3  
Le., for a symmetrical cellular thin-walled member there is no shear carried by the central 
web and therefore as far as stiffness of the section is concerned the web can be ignored. 

:. q 2  = 0; 

Fig. 5.8(a). Polymer cellular section with symmetrical cells. (b) Polymer cell with central web removed but 
reinforced by steel I section. 
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:. Stiffness of complete section, from eqn. (5.16) 

4A2t 
= GJE = -G 

S 

where A and s are the area and perimeter of the complete section. 
Now since G of the polymer is likely to be small, the stiffness of the section, and its 

resistance to applied torque, will be low. It can be reinforced by metallic insertions such as 
that of the I section shown in Fig. 5.8(b). 

For the I section, from eqn. (5.8) 

GJE = GCk2db3 

and the value represents the increase in stiffness presented by the compound section. 

For the tube 
Stress conditions for limiting twist per unit lengths are then given by: 

T = GJE(e/L)  = Utt 

and for the I section 

T = GJE(t)/L) = (Ck2db3G)B/L 

or T = (Ckldb2) t  

Usually (but not always) this would be considerably greater than that for the polymer tube, 
making the tube the controlling design factor. 

5.10. Membrane analogy 

It has been stated earlier that the mathematical solution for the torsion of certain solid 
and thin-walled sections is complex and beyond the scope of this text. In such cases it is 
extremely fortunate that an analogy exists known as the membrane analogy, which provides 
a very convenient mental picture of the way in which stresses build up in such components 
and allows experimental determination of their values. 

It can be shown that the mathematical solution for elastic torsion problems involving 
partial differential equations is identical in form to that for a thin membrane lightly stretched 
over a hole. The membrane normally used for visualisation is a soap film. Provided that the 
hole used is the same shape as the cross-section of the shaft in question and that air pressure 
is maintained on one side of the membrane, the following relationships exist: 

(a) the torque carried by the section is equal to twice the volume enclosed by the membrane; 
(b) the shear stress at any point in the section is proportional to the slope of the membrane 

(c) the direction of the shear stress at any point in the section is always at right angles to 
at that point (Fig. 5.9); 

the slope of the membrane at the same point. 
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I I 
1 ! Slope a T I Pressurised soap 

Maximum slope 

Fig. 5.9. Membrane analog 

Application of the above rules to the open sections of Fig. 5.2 shows that each section will 
carry approximately the same torque at the same maximum shear stress since the volumes 
enclosed by the membranes and the maximum slopes of the membranes are approximately 
equal in each case. 

The membrane analogy is particularly powerful in the study of the comparative torsional 
properties of different sections without the need for detailed calculations. For example, it 
should be evident from the volume relationship (a) above that if two cross-sections have 
the same area, that which is nearer to circular will be the stronger in torsion since it will 
produce the greatest enclosed volume. 

The analogy also helps to support the theory used for thin-walled open sections in 55.3 
when thin rectangular sections are taken to have the same torsional stiffness be they left as 
a single rectangle or bent into open tubes, angle sections, channel sections, etc. 

From the slope relationship (b) the greatest shear stresses usually occur at the boundary 
of the thickest parts of the section. They are usually high at positions where the boundary 
is sharply concave but low at the ends of outstanding flanges. 

5.11. Effect of warping of open sections 

In the preceding paragraphs it has been assumed that the torque is applied at the ends 
of the member and that all sections are free to warp. In practice, however, there are often 
cases where one or more sections of a member are constrained in some way so that cross- 
sections remain plane, i.e. warping is prevented. Whilst this has little effect on the angle of 
twist of certain solid cross-sections, e.g. rectangular or elliptical sections where the length 
is significantly greater than the section dimensions, it may have a considerable effect on the 
twist of open sections. In the latter case the constraint of warping is often accompanied by 
considerable bending of the flanges. Detailed treatment of warping is beyond the scope of 
this text? and it is sufficient to note here that when warping is restrained, angles of twist are 
generally reduced and hence torsional stiffnesses increased. 

S. Timoshenko and J.N. Goodier, Theory of ElasticiQ. McGraw-Hill, New York. 
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Examples 

Example 5.1 

A rectangular steel bar 25 mm wide and 38 mm deep is subjected to a torque of 450 Nm. 
Estimate the maximum shear stress set up in the material of the bar and the angle of twist, 
using the experimentally derived formulate stated in $5.  I . 

What percentage error would be involved in each case if the approximate equations are 
used? 

For steel, take G = 80 GN/m2. 

Solution 
The maximum shear stress is given by eqn. (5.1): 

T 
rmax = - kldb2 

In this case d = 38 mm, b = 25 mm, Le. d /b  = 1.52 and kl for d /b  of 1.5 = 0.231. 

450 
0.231 x 38 x IO-' x (25 x lO-3)2 

. .  Trnax = = 82 MN/m2 

The angle of twist per unit length is given by eqn. (5.2): 

T - - 8 
L k2db3G 
- _ _ _  

and from the tables, for d/b = 1.5, k2 is 0.196. 

450 
0.196 x 38 x lo-' x (25 x 10-3)3 x 80 x lo9 

. .  B =  

= 0.0483 radm 

= 2.77 degreedm 

Approximately 

%ax = 

- - 

- - 

Therefore percentage error 

T 
db2 
-(3 + 1.8b/d) 

3 +  1.8 x - 
38 

450 
38 x 10-3 x (25 x 10-312 

450 
2.375 x 

(3 + I .  184) = 79.3 MN/m2 

100 = -3.3% 
79.3 - 82.02 

= ( 82.02 

Again, approximately, 

42 TJ 
GA4 per metre 

e = -  
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Now 
bd3 db3 bd 
12 12 12 

J = Z n + Z y y  = - + - = - (d  + b  ) 

42 x 450 x 0.164 x lop6 
O =  = 0.0476 rad/m so x 109 x (25 x 38 x 10-94 
= 2.73 degreedm 

Percentage error = ( 2'7:i:'77) 100 = -1.44% 

Example 5.2 

be of unit length. Compare also the maximum shear stresses set up in each case: 

(a) a hollow tube 40 mm mean diameter and 2 mm wall thickness; 
(b) the same tube with a 2 mm wide saw-cut along its length; 
(c) a rectangular solid bar, side ratio 4 to 1, having the same cross-sectional area as that 

(d) an equal-leg angle section having the same perimeter and thickness as the tube; 
(e) a square box section having the same perimeter and thickness as the tube. 

Compare the torsional stiffness of the following cross-sections which can be assumed to 

enclosed by the mean diameter of the hollow tube; 

Solution 
(a) In the case of the closed hollow tube we can apply the standard torsion equation 

together with the simplified formula for the polar moment of area J of thin tubes, 

3 J = 2nr t 

T GJ 2n x (20 x 10-313 x 2 x 1 0 - 3 ~  
1 

torsional stiffness = - = - = 
O L  

= 100.5 ~ o - ~ G  
TR 
J 2n (20 10-3)3 x 2 x 10-3 

20 x 10-3  x T 
maximum shear stress = - = 

= 0.198 x 106T 

(b) Tube with split 
From the work of 95.4, 

T 
- 

8 T 
L k2 db3G k2(2nr - x)t3G 

angle of twis th i t  length = - = ~ - 



Mechanics of Materials 2 156 

T k2(2nr - x)t3G 
torsional stiffness = = 

0 L 

- o.333pn x 20 x 1 0 - ~  - 2 x 10-~](2 1 0 - ~ ) ~ c  
- 

1 
= 0.333(125.8 - 2)8 x 10-12G 

= 329.8 x 10-12G 
T 

kidb2 
Maximum shear stress = ~ 

T - - 
0.333 x 123.8 x x (2 x 

= 6.06 x 106T 

i.e. splitting the tube along its length has reduced the stiffness by a factor of approximately 
300, the maximum stress increasing by approximately 30 times. 

(c) Rectangular bar 

Area of hollow tube = area of bar 

= (20 1 0 - ~ ) ~  

. .  4b2 = 877 x 

b2 = 2n x lop4 

. .  b = 2.5 x m = 25 mm 

d = 4 b = 1 0 0 m m  

d l b  ratio = 4 

. .  kl = 0.282 and k2 = 0.281 

. .  

Therefore from eqn. (5.2), 

T 
- 

8 
L k2db3G 
T 
- = 0.281 x 10 x lo-’ x (2.5 x 10-2)3G 
8 

= 43.9 x 10-*G 

= 439 1 0 - 9 ~  

From eqn. (5.1), 

T - - T 
rmax = - kIdb2 0.282 x 10 x lo-’ x (2.5 x 

= 0.057 x 106T 
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(d) Equal-leg angle section 

Perimeter of angle = perimeter of tube 

= 275 x 20 x 10 -~  m 

. .  

Therefore applying eqn. (5.12), 

Length of side d = 2017 x lop3 m 

3T - 8 
L GCdb3 

. .  

3T - - 
2G x 2017 x x (2 x 10-3)3 

T 
- = (2G x 2 0 ~  x 8 x 10-12)/3 
8 

= 0.335 x 10-9G 

And from eqn. (5.1 1 )  

3T 
Cdb2 %ax = - 

3T - - 
2 x 20I7 x 10-3  x (2 x 10-3)2 

= 5.97 x IO6 T 

(e) Square box section (closed) 

Perimeter s = tube perimeter = 2n x 20 x 1 0 - ~  m 

2n x 20 x 10-3  
side length = = 17 x lop2 m 

4 

Therefore area enclosed by median line 
2 2  = A  = (T x 10- ) 

From eqn. (5.16), 

TLs Q=- 
4A2Gt 

. .  T 4 x (n x 10-2)4G x 2 x lop3 _ -  - 
6 I x 2n x 20 x 10-3 

= 62 ~ o - ~ G  

From eqn. (5.15) 

T - - T 
Tmax = - u t  2 x (T x 10-212 x 2 x 10-3  

= 0.253 x 106T 
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Example 5 3  
A thin-walled member 1.2 m long has the cross-section shown in Fig. 5.10. Determine the 

maximum torque which can be carried by the section if the angle of twist is limited to 10". 
What will be the maximum shear stress when this maximum torque is applied? For the 
material of the member G = 80 GN/m2. 

I 4 I 

i 
I 

-- 
I 
I 

Fig. 5.10. 

Solution 

and the area enclosed by, the median line. 
Now, 

This problem is of the type considered in 95.6, a solution depending upon the length of, 

perimeter of median line = s = (2 x 25 + 2n x 10) mm 

= 112.8 mm 

area enclosed by median = A = (20 x 25 + n x lo2) mm2 

= 814.2 mm2 
TLS 

4A2 Gt 
From eqn (5.16), .g=- 

10 x 2n 
360 

T x 1.2 x 112.8 x 
4(814.2 x 10-6)2 x 80 x lo9 x 1 x 

-- - . .  

i .e. maximum torque possible, 

T =  
207r x 4 x 814.22 x 80 x lop6 

360 x 1.2 x 112.8 x 

= 273 Nm 
T 

From eqn. (5.15), rmax - 2At 
273 - - 

2 x 814.2 x 10-6 1 10-3 

= 168 x lo6 = 168 M N h 2  
The maximum stress produced is 168 MN/m2. 

Example 5.4 
The median dimensions of the two cells shown in the cellular section of Fig. 5.6 are A1 = 

20 mm x 40 mm and A2 = 50 mm x 40 mm with wall thicknesses t l  = 2 mm, t2 = 1.5 mm 
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and r3 = 3 mm. If the section is subjected to a torque of 320 Nm, determine the angle of 
twist per unit length and the maximum shear stress set up. The section is constructed from 
a light alloy with a modulus of rigidity G = 30 GN/m2. 

Solution 

From eqn. (5.19), 
From eqn. (5.18), 320 = 2(7l x 2 x 20 x 40 + 72 x 1.5 x 50 x 40)10-9 (1) 

1 
2 x 3 0 x 1 0 9 x 8 =  [t1(40 + 2 20)10-~ + t3 40 x 

20 x 40 x 

I 
and 

Equating (2) and (3), 

2 x 30 x lo9 x 8 = [t2(40 + 2 x 50)10-3 - 73 x 40 x (3) 50 x 40 x 

From eqn. (5.17), 2 t l  = 1.5t2 -I- 373 (4) 

;[80tl +40t3] = &[I4072 - 40t31 

Multiply through by 40, 

400r1 + 20073 = 280t2 - 80x3 

4071 = 28r2 - 2873 

85.7r1 = 6Ot2 - 60x3 (5) x 60/28 

But, from (4), multiplied by 20, 

4071 = 3072 + 60t3 

(6) + (7), 

and from (l), 

125.771 = 9072 

320 = (3.2t1 + 6 ~ ~ ) l O - ~  

320 x lo6 = 3.271 + 6t2 (9) 

substituting for r2 from (8), 
125.7 

90 
320 x lo6 = 3.2~1 + 6 x - TI 

= 3.2t1 + 8.471 

320 x lo6 
11.6 

125.7 
90 

. .  tl = = 27.6 x lo6 = 27.6 MN/m2 

From (8), 

r 2  = - x 27.6 = 38.6 MN/m2 

From (4), 

t3 = f ( 2  x 27.6 - 1.5 x 38.6) 

= i(55.2 - 57.9) = f x (-2.7) = -0.9 MN/m2 

The negative sign indicates that the direction of shear flow in the wall of thickness t 3  is 
reversed from that shown in Fig. 5.6. 
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The maximum shear stress present in the section is thus 38.6 MN/m2 in the 1.5 mm 
wall thickness. 

From (3), 
( 140r2 - 40t3) 

50 x 40 x 
2 x 3 0 x 1 0 9 x 0 =  

140 x 38.6 x lo6 - 40(-0.9 x lo6) 

(5.40 + 0.036) 
120 

- - 
50 x 40 x 10-3 x 2 x 30 x 109 

radian - - 

5.440 360 
120 2T 

x ~ = 2.6" -- - 

The angle of twist of the section is 2.6". 

Problems 

5.1 (A). A 40 mm x 20 mm rectangular steel shaft is subjected to a torque of I kNm. What will be the approx- 
imate position and magnitude of the maximum shear stress set up in the shaft? Determine also the corresponding 
angle of twist per metre length of the shaft. 

1254 MN/m2; 9.78"/m.] For the bar material G = 80 GN/m2. 

5.2 (B). An extruded light alloy angle section has dimensions 80 mm x 60 mm x 4 mm and is subjected to a 
torque of 20 Nm. If G = 30 GN/m' determine the maximum shear stress and the angle of twist per unit length. 
How would the former answer change if one considered the stress concentration effect at the fillet owing to a fillet 
radius of I O  mm? [27.6 MN/m2; 13.2"/m; 30.4 MN/m2.] 

5.3 (B).  Compare the torsional rigidities of the following sections: 
(a) a hollow tube 30 mm outside diameter and 1.5 mm thick; 
(b) the same tube split along its length with a 1 mm gap; 
(c) an equal leg angle section having the same perimeter and thickness as (b); 
(d) a square box section with side length 30 mm and I .5 mm wall thickness; 
(e) a rectangular solid bar, side ratio 2.5 to I .  having the same metal cross-sectional area as the hollow tube. 

[2.7 x G.] 
[0.0996 x IO-' G.] 
[0.0996 x IO-' G.] 

[3.48 x IO-* G.] 

U1.79  IO-^ G.] 
Compare also the maximum stresses arising in each case. 

[OS22 x IO'T; 15 x 106T; 15 x 10"; 0.41 x IO'T; 4.05 x IO'T.] 
5.4 (B). The spring return of an interlocking device for a cold room door is to be made of a rectangular strip 

of spring steel loaded in torsion. The width of the strip cannot be greater than I O  mm and the effective length 
100 mm. Calculate the thickness of the strip if the torque is to be 15 Nm at an angle of IO" and if the torsion 
yield stress of 420 MN/m' is not to be exceeded at this angle. Take G as 83 GN/m2. 

Assume k~ = k? = +. [3.27 mm.] 

5 5  (B). A thin-walled member of 2 m long has the section shown in Fig. 5.1 I .  Determine the torque that can 
be applied and the angle of twist achieved if the maximum shear stress is limited to 30 MN/m*. G = 250 GN/m2. 

[42.85 Nm: 0 . 9 9 O . I  

5.6 (B) .  A steel sheet, 400 mm wide by 2 mm thick, is to be formed into a hollow section by bending through 
360" and butt-welding the long edges together. The shape may be (a) circular, (b) square, (c) a rectangle 140 mm 
x 60 mm. Assume a median length of 400 mm in each case (i.e. no stretching) and square corners for non-circular 
sections. The allowable shearing stress is 90 MN/m2. For each of the shapes listed determine the magnitude of the 
maximum permissible torque and the angles of twist per metre length if G = 80 GN/m2. 

[4.58. 3.6, 3.01 kNm; I " ,  1"17', 1"31'.] 

5.7 (B) .  Figure 5.12 represents the cross-section of an aircraft fuselage made of aluminium alloy. The sheet 
thicknesses are: 1 mm from A to 6! and C to D; 0.8 mm from B to C and 0.7 mm from D to A.  For a maximum 
torque of 5000 Nm determine the magnitude of the maximum shear stress and the angle of twist/metre length. 
G = 30 GN/rn'. [SO MN/m2; 0.0097 rad.] 
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-2Q rnrn 

Fig. 5.1 I 

Fig. 5.12. 

Fig. 5.13. 

5 8  (BIC). Show that for the symmetrical section shown in Fig. 5.13 there is no stress in the central web. Show 
also that the shear stress in the remainder of the section has a value of T/4rb2. 

5.9 (C). A washing machine agitator of the cross-section shown in Fig. 5.14 acts as a torsional member subjected 
to a torque T .  The central tube is 100 mm internal diameter and 12 mm thick; the rectangular bars are 50 mm x 
18 mm section. Assuming that the total torque carried by the member is given by 

T = Ttubr + 4Tbar 

detennine the maximum value of T which the shaft can carry if the maximum stress is limited to 80 MN/m2. 
(Hint: equate angles of twist of tube and bar.) [ 19.1 kNm.1 

Fig. 5.14 
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5.10 (C). The cross-section of an aeroplane elevator is shown in Fig. 5.15. If the elevator is 2 m long and 
constructed from aluminium alloy with G = 30 GN/m2, calculate the total angle of twist of the section and the 
magnitude of the shear stress in each part for an applied torque of 40 Nm. 

[0.0169"; 3.43, 2.58, 1.15 x IO5 N/m2.] 

Fig. 5.15 

5.11 (B/C). Develop a relationship between torque and angle of twist for a closed uniform tube of thin-walled 
non-circular section and use this to derive the twist per unit length for a strip of thin rectangular cross-section. 

Use the above relationship to show that, for the same torque, the ratio of angular twist per until length for 
a closed square-section tube to that for the same section but opened by a longitudinal slit and free to warp is 
approximately 4 t2 /3b2 ,  where t ,  the material thickness, is much less than the mean width b of the cross-section. 

[C .E .I .I 
5.12 (C). A torsional member used for stirring a chemical process is made of a circular tube to which is welded 

four rectangular strips as shown in Fig. 5.16. The tube has inner and outer diameters of 94 mm and 100 mm 
respectively, each strip is 50 mm x 18 mm, and the stirrer is 3 m in length. 

Y 
Fig. 5.16 

If the maximum shearing stress in any part of the cross-section is limited to 56 MN/m2, neglecting any stress 
concentration, calculate the maximum torque which can be carried by the stirrer and the resulting angle of twist 
over the full length. 

For torsion of rectangular sections the torque T is related to the maximum shearing stress, rmax. and angle of 
twist, 0, in radians per unit length, as follows: 

T = klbd2r, , ,  = kzbd-' GO 

where b is the longer and d the shorter side of the rectangle and in this case, kl = 0.264, k2 = 0.258 and 
G = 83 GN/m2. [C.E.I.] [2.83 kNm, 2.4O.I 

5.13 (C). A long tube is subjected to a torque of 200 Nm. The tube has the double-cell, thin-walled, effective 
cross-section illustrated in Fig. 5.17. Assuminglhat no buckling occurs and that the twist per unit length of the 
tube is constant, determine the maximum shear stresses in each wall of the tube. 

[C.E.I.] t0.76, 1.01,0.19 MN/m2.] 
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Fig. 5.17. 

Fig. 5.18. 

5.14 (B/C). An I-section has the dimensions shown in Fig. 5.18(a), and is subjected to an axial torque. Find the 
maximum value of the torque if the shear stress in the material is limited to 56 MN/m2 and the twist per metre 
length is limited to 9". Assume the modulus of rigidity G for the material is 82 GN/m2. 

If the I-section is replaced by a T-section made of the same material and transmits the same torque, what will 
be the limb length, D, of the T-section and the angle of twist per metre length? Assume the T-section is subjected 
to the same limiting conditioning as the I-section and that it has the dimensions shown in Fig. 5.18(b). For narrow 
rectangular sections assume k values of f in the formulae for torque and angle of twist. 

[B.P.] [0.081 m; 6.5"/m.] 
5.15 (B/C). (a) An aluminium sheet, 600 mm wide and 4 mm thick, is to be formed into a hollow section tube 

by bending through 360" and butt-welding the long edges together. The cross-section shape may be either circular 
or square. 

Assuming a median length of 600 mm in each case, i.e. assuming no stretching occurs, determine the maximum 
torque that can be carried and the resulting angle of twist per metre length in each case. 

Maximum allowable shearing stress = 65 MN/m2, shear modulus G = 40 GN/m2. 
(b) What would be the effect on the stiffness per metre length of each type of section of a narrow saw-cut 

through the tube wall along the length of the tube? In the case of the square section assume that the cut is taken 
along the centre of one face. 

[B.P.] 114.9 kNm, 0.975"; 11.7k Nm, 1.24"; reduction 1690 times, reduction 1050 times.] 
5.16 (B). The two sections shown in Fig. 5.19 are under consideration for an engineering application which 

includes both bending and applied torque. Make a critical comparison of the strengths of the two sections under 
the two modes of loading and make a recommendation as to the section which should be adopted. The material to 
be used is to be the same for both sections. 

The rectangular section torsion constants kl and k2 may be found in terms of the section d / b  ratio from Table 3.1. 
[Tubular] 

5.17 (B). Compare the angles of twist of the following sections when each is subjected to the same torque of 
3 kNm; 
(a) circular tube, 80 mm outside diameter, 6 mm thick; 
(b) square tube, 52 mm side length (median dimension), 6 mm thick; 
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Fig. 5.19. 

(c) circular tube as (a) but with additional four rectangular fins 80 mm long by 15 mm wide symmetrically placed 

All sections have the same length of 2 m and G = 80 GN/m2 [0.039 rad; 0.088 rad; 0.038 rad] 
To what maximum torque can sections (a), (b) and (c) be subjected if the maximum shear stress is limited to 
100 MN/m2? [4.8 kNm; 3.24 kNm; 5.7 kNm] 

What maximum angle of twist can be accepted by tube (c) for the same limiting shear stress? [0.0625 rad] 
5.18 (B). Figure 5.20 shows part of the stirring mechanism for a chemical process, consisting of a circular 

stainless-steel tube of length 2 m, outside diameter 75 mm and wall thickness 6 mm, welded onto a square mild- 
steel tube of length 1.5 m. Four blades of rectangular section stainless-steel, 100 mm x 15 mm, are welded along 
the full length of the stainless-steel tube as shown. 

(a) Select a suitable section for the square tube from the available stock list below so that when the maximum 
allowable shear stress of 58 MN/m2 is reached in the stainless-steel, the shear stress in the mild steel of the square 
tube does not exceed 130 MN/m2. 

around the tube periphery. 

Section Dimension Wall thickness Torsion constant 

1 50 x 50 mm 5 mm 476000 mm4 
2 6 0 x 6 0 m m  4 mm 724000 mm4 
3 70 x 70 mm 3.6 mm 1080000 mm4. 

(J equiv) 

(b) Having selected an appropriate mild steel tube, determine how much the entire mechanism will twist during 

The shear modulus of stainless steel is 78 GN/m2 and of mild steel is 83 GN/m*. Neglect the effect of any 
[50 mm x 50 mm; 0.152 rad] 

operation at a constant torque of 3 kNm. 

stress concentration. 

Fig. 5.20. 
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5.19 (B). Figure 5.21 shows the cross-section of a thin-walled fabricated service conduit used for the protection 
of long runs of electrical wiring in a production plant. The lower plate AB may be removed for inspection and 
re-cabling purposes. 

Owing to the method by which the conduit is supported and the weight of pipedwires that it carries, the section 
is subjected to a torque of 130 Nm. With plate AB assumed in position, determine the maximum shear stress set 
up in the walls of the conduit. What will be the angle of twist per unit length? 

By consideration of maximum stress levels and angles of twist, establish whether the section design is appro- 
priate for the removal of plate AB for maintenance purposes assuming that the same torque remains applied. If 
modifications are deemed to be necessary suggest suitable measures. 

For the conduit material G = 80 GN/m2 and maximum allowable shear stress = 180 MN/m2. 
[ I67 MNlm'; 39"/ml 

Fig. 5.21. 

5.20 (B). (a) Figure 5.22 shows the cross-section of a thin-walled duct which forms part of a fluid transfer system. 
The wire mesh, FC, through which sediment is allowed to pass, may be assumed to contribute no strength 

Fig. 5.22.  All dimensions (mm) may be taken as median dimensions 

to the section. Owing to the method of support, the weight of the fluid and duct introduces a torque to the section 
which may be assumed uniform. 

If the maximum shear stress in the duct material is limited to 150 MN/m2; determine the maximum torque 
which can be tolerated and the angle of twist per metre length when this maximum torque is applied. For the duct 
material G = 85 GN/m2. [432.6 kNm; 0.516"/m] 

(b) In order to facilitate cleaning and inspection of the duct, plates AB and ED are removable. What would 
be the effect on the results of part (a) if plate AB were inadvertently left off over part of the duct length after 
inspection? [5.12 kNm; 12.6"/m] 

5 2 1  (C). Figure 5.8 shows a polymer extrusion of wall thickness 4 mm. The section is to be stiffened by the 
insertion of an aluminium I section as shown, the centre web of the polymer extrusion having been removed. The 
I section wall thickness is also 4 mm. 

If G = 3.3 GN/m2 for the polymer and 70 GN/m2 for the aluminium, what increase in stiffness is achieved'? 
What increase in torque is allowable, if the design is governed by maximum allowable stresses of 5 MN/m' and 
100 MN/m2 in the polymer and aluminium respectively? [258%, 7.481 


