
CHAPTER 13 

COMPLEX STRESSES 

Summary 

The normal stress a and shear stress z on oblique planes resulting from direct loading are 

a = ay sin’ 8 and z = 30, sin 28 

The stresses on oblique planes owing to a complex stress system are: 

normal stress = +(a, + ay) ++(ax - a,) cos 28 + zXy sin 28 

shear stress = +(a, - cy) sin 28 - zXy cos 28 

The principal stresses (i.e. the maximum and minimum direct stresses) are then 

a1 = *(a, + a,,) + ,J[ (a, -ay)’ + 45py] 

0’ = *(a, + ( t y )  - $J[ (6, - o~) ’  + 4~:,] 

and these occur on planes at an angle 0 to the plane on which a, acts, given by either 

where aP = alr  or a’, the planes being termed principal planes. The principal planes are 
always at 90” to each other, and the planes of maximum shear are then located at 45” to them. 

The maximum shear stress is 

zmax= 3 J C ( ~ x - ~ , ) 2 + 4 ~ ~ , l  = a@, -a’) 
In problems where the principal stress in the third dimension u3 either is known or can be 

assumed to be zero, the true maximum shear stress is then 

+(greatest principal stress - least principal stress) 

Normal stress on plane of maximum shear = $(a, + a,) 
Shear stress on plane of maximum direct stress (principal plane) = 0 

Most problems can be solved graphically by Mohr’s stress circle. All questions which are 
capable of solution by this method have been solved both analytically and graphically. 

13.1. Stresses on oblique planes 

Consider the general case, shown in Fig. 13.1, of a bar under direct load F giving rise to 
stress by vertically. 
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Fig. 13.1. Bar subjected to direct stress, showing stresses acting on any inclined plane. 

Let the block be of unit depth; then considering the equilibrium of forces on the triangular 

resolving forces perpendicular to BC, 
portion ABC: 

oo x BC x 1 = Q,, x AB x 1 x sin8 

But AB = BC sin 8, 

. .  bg = uy sin2 8 (13.1) 

Now resolving forces parallel to BC, 

T , x ~ c x i  = o , , x ~ ~ x i x c o s e  

Again AB = BC sin 8, 

. .  to = sin 8 cos 8 

= 30, sin 28 

The stresses on the inclined plane, therefore, are not simply the resolutions of o, 
perpendicular and tangential to that plane. The direct stress uo has a maximum value of Q, 

when 8 = 90" whilst the shear stress q, has a maximum value of 30, when 8 = 45". 
Thus any material whose yield stress in shear is less than half that in tension or 

compression will yield initially in shear under the action of direct tensile or compressive 
forces. 

This is evidenced by the typical "cup and cone" type failure in tension tests of ductile 
specimens such as low carbon steel where failure occurs initially on planes at 45" to the 
specimen axis. Similar effects occur in compression tests on, for example, timber where failure 
is again due to the development of critical shear stresses on 45" planes. 

(1 3.2) 

13.2. Material subjected to pure shear 

Consider the element shown in Fig. 13.2 to which shear stresses have been applied to the 
sides AB and DC. Complementary shear stresses of equal value but of opposite effect are then 
set up on sides AD and BC in order to prevent rotation of the element. Since the applied and 
complementary shears are of equal value on the x and y planes, they are both given the 
symbol rXy. 
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Fig. 13.2. Stresses on an element subjected to pure shear. 

Consider now the equilibrium of portion PBC. 
Resolving normal to PC assuming unit depth, 

no x PC = zxy x BC sin8+zxy x PB cos8 

(13.3) 

= zxy x PC cos 8 sin 8 + zxy x PC sin 8 cos 8 

. .  

The maximum value of no is zxy when 8 = 45". 
Similarly, resolving forces parallel to PC, 

q, = zXy sin 28 

z, x PC = zxy x PB sin 8 - zxy BC cos 8 

= zxy x PC sin2 8 - zXy x PC cos2 e 
. .  -zxycos28 (13.4) 

The negative sign means that the sense of To is opposite to that assumed in Fig. 13.2. 
The maximum value of 7, is zxy when 8 = 0" or 90" and it has a value of zero when 8 = 45", 

i.e. on the planes of maximum direct stress. 
Further consideration of eqns. (13.3) and (13.4) shows that the system of pure shear stresses 

produces an equivalent direct stress system as shown in Fig. 13.3, one set compressive and one 
tensile, each at 45" to the original shear directions, and equal in magnitude to the applied 
shear. 

X Y  

Fig. 13.3. Direct stresses due to shear. 

This has great sign@ance in the measurement of shear stresses or torques on shafts using 
strain gauges where the gauges are arranged to record the direct strains at 45" to the shaft axis. 

Practical evidence of the theory is also provided by the failure of brittle materials in shear. 
A shaft of a brittle material subjected to torsion will fail under direct stress on planes at 45" to 
the shaft axis. (This can be demonstrated easily by twisting a piece of blackboard chalk in 
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one's hands; see Fig. 8.8a on page 185.) Tearing of a wet cloth when it is being wrung out is 
also attributed to the direct stresses introduced by the applied torsion. 

13.3. Material subjected to two mutually perpendicular direct stresses 

Consider the rectangular element of unit depth shown in Fig. 13.4 subjected to a system of 

For equilibrium of the portion ABC, resolving perpendicular to AC, 
two direct stresses, both tensile, at right angles, ax and ay. 

b o x  A C x  1 = a, x BC x 1 xcos8+oY x A B x  1 x sin8 

= a, x AC cos' 8 +ay x AC sin'8 

. .  = +ox (1 + COS 28) + icy (1 - cos 28) 

i.e. u g  = ~ ( u x + u y ) + ~ ( u x - u b g ) c ~ ~ 2 e  (1 3.5) 

t 

i 
Fig. 13.4. Element from a material subjected to two mutually perpendicular direct stresses. 

Resolving parallel to AC: 

zo x AC x 1 = a, x BC x 1 x sine-a, x AB x 1 x cos8 

. .  
zo = a, cos 8 sin 8 - ay cos 8 sin 8 

re = $(ux - uy) sin 28 (13.6) 

The maximum direct stress will equal a, or by, whichever is the greater, when 8 = 0 or 90". 
The maximum shear stress in the plane of the applied stresses (see $13.8) occurs when 

e = 450, 

i.e. rm.x = 4 (ax - b y )  (13.7) 

13.4. Material subjected to combined direct and shear stresses 

Consider the complex stress system shown in Fig. 13.5 acting on an element of material. 
The stresses a, and ay may be compressive or tensile and may be the result of direct forces 

or bending. The shear stresses may be as shown or completely reversed and occur as a result of 
either shear forces or torsion. 
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t 

Fig. 13.5. Two-dimensional complex stress system 

The diagram thus represents a complete stress system for any condition of applied load in 
two dimensions and represents an addition of the stress systems previously considered in 
Gg13.2 and 13.3. 

The formulae obtained in these sections may therefore be combined to give 

u g  = +(u, + u,) ++(u, - u,) cos 28 +7,, sin 28 (1 3.8) 

and z g =  ~(u,-u,)sin28--z, ,cos28 (1 3.9) 

determined as follows: 
The maximum and minimum stresses which occur on any plane in the material can now be 

For ag to be a maximum or minimum 

Now 

~ = o  
40 

dg = +(a, + a,) ++(a, - a,) COS 20 + T , ~  sin 20 

3 = - (a, - ay) sin 20 + 25,, cos 20 = o d e  
. .  

or 

.'. from Fig. 13.6 sin20 = - 
JW, - + 4e,1 

(1 3.10) 

(u,-u,) 

Fig. 13.6 
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Therefore substituting in eqn. (13.Q the maximum and minimum direct stresses are given by 

These are then termed the principal stresses of the system. 
The solution of eqn. (13.10) yields two values of 28 separated by 180", i.e. two values of 8 

separated by 90". Thus the two principal stresses occur on mutually perpendicular planes 
termed principal planes, and substitution for 8 from eqn. (13.10) into the shear stress 
expression eqn. (13.9) will show that z, = 0 on the principal planes. 

The complex stress system of Fig. 13.5 can now be reduced to the equivalent system of 
principal stresses shown in Fig. 13.7. 

Fig. 13.7. Principal planes and stresses. 

From eqn. (13.7) the maximum shear stress present in the system is given by 

z,= +@l-oZ) (1 3.12) 

( 1 3.1 3) = &JC(n, - @,I2 + 421y1 
and this occurs on planes at 45" to the principal planes. 

This result could have been obtained using a similar procedure to that used for determining 
the principal stresses, i.e. by differentiating expression (13.9), equating to zero and 
substituting the resulting expression for 8. 

13.5. Principal plane inclination in terms of the associated principal stress 

It has been stated in the previous section that expression (13.10), namely 

25xy 
( a x  - a,) 

tan 28 = ~ 

yields two values of 8, i.e. the inclination of the two principal planes on which the principal 
stresses o1 and a2 act. It is uncertain, however, which stress acts on which plane unless eqn. 
(13.8) is used, substituting one value of 8 obtained from eqn. (13.10) and observing which one 
of the two principal stresses is obtained. The following alternative solution is therefore to be 
preferred. 



332 Mechanics of Materials 513.6 

Consider once again the equilibrium of a triangular block of material of unit depth 
(Fig. 13.8); this time AC is a principal plane on which a principal stress up acts, and the shear 
stress is zero (from the property of principal planes). 

U Y  

t 

Fig. 13.8. 

Resolving forces horizontally, 

(1 3.14) 

Thus we have an equation for the inclination of the principal planes in terms of the principal 
stress. If, therefore, the principal stresses are determined and substituted in the above 
equation, each will give the corresponding angle of the plane on which it acts and there can 
then be no confusion. 

The above formula has been derived with two tensile direct stresses and a shear stress 
system, as shown in the figure; should any of these be reversed in action, then the appropriate 
minus sign must be inserted in the equation. 

13.6. Graphical solution - Mohr’s stress circle 

Consider the complex stress system of Fig. 13.5 (p. 330). As stated previously this 
represents a complete stress system for any condition of applied load in two dimensions. 

In order to find graphically the direct stress and shear stress tg on any plane inclined at 8 
to the plane on which CT, acts, proceed as follows: 

(1) Label the block ABCD. 
(2) Set up axes for direct stress (as abscissa) and shear stress (as ordinate) (Fig. 13.9). 
(3) Plot the stresses acting on two adjacent faces, e.g. A B  and BC, using the following sign 

conventions: 
direct stresses: tensile, positive; compressive, negative; 
shear stresses: tending to turn block clockwise, positive; tending to turn block 
counterclockwise, negative. 

This gives two points on the graph which may then be labelled AB and E respectively 
to denote stresses on these planes. 
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Fig. 13.9. Mohr’s stress circle. 

Join AB and z. 
The point P where this line cuts the a axis is then the centre of Mohr’s 
line is the diameter; therefore the circle can now be drawn. 

circle, and the 

Every point on the circumference of the circle then represents a state of stress on some plane 
through C .  

Proof 

Consider any point Q on the circumference of the circle, such that PQ makes an angle 28 
with E, and drop a perpendicular from Q to meet the a axis at N .  

Coordinates of Q: 

O N  = O P + P N  = ~ ( 0 , + a , ) + R ~ 0 ~ ( 2 8 - f l )  

= $(ax + a,) + R cos 28 cos p + R sin 28 sin p 
But R cos p = +(a, - a,) and R sin p = T , ~  

. .  

On inspection this is seen to be eqn. (13.8) for the direct stress 
BC in Fig. 13.5. 

ON = +(ax + a,) ++(a, - a,)cos 28 + T,, sin 28 

on the plane inclined at 8 to 

Similarly, 
Q N  = R sin (28 - p) 

= R s i n 2 8 c o s ~ - R c o s 2 8 s i n ~  

= +(ax - a,) sin 28 - T , ~  cos 28 

Again, on inspection this is seen to be eqn. (13.9) for the shear stress TO on the plane inclined at 
t) to BC. 
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Thus the coordinates of Q are the normal and shear stresses on a plane inclined at  8 to BC 
in the original stress system. 

N.B.-Single angle Z P Q  is 28 on Mohr’s circle and not 8, it is evident that angles are 
doubled on Mohr’s circle. This is the only difference, however, as they are measured in the 
same direction and from the same plane in both figures (in this case counterclockwise from 
BC ). 
- 

Further points to note are: 

(1) The direct stress is a maximum when Q is at M, i.e. OM is the length representing the 
maximum principal stress a1 and 28, gives the angle of the plane 8, from BC. Similarly, 
OL is the other principal stress. 

(2) The maximum shear stress is given by the highest point on the circle and is represented 
by the radius of the circle. This follows since shear stresses and complementary shear 
stresses have the same value; therefore the centre of the circle will always lie on the a axis 
midway between a, and a,. 

(3) From the above point the direct stress on the plane of maximum shear must be midway 
between a, and a,,, i.e. $(a, + a,). 

(4) The shear stress on the principal planes is zero. 
( 5 )  Since the resultant of two stresses at 90” can be found from the parallelogram of vectors 

as the diagonal, as shown in Fig. 13.10, the resultant stress on the plane at 8 to BC is 
given by OQ on Mohr’s circle. 

Fig. 13.10. Resultant stress (8,) on any plane. 

The graphical method of solution of complex stress problems using Mohr’s circle is a very 
powerful technique since all the information relating to any plane within the stressed element 
is contained in the single construction. It thus provides a convenient and rapid means of 
solution which is less prone to arithmetical errors and is highly recommended. 

With the growing availability and power of programmable calculators and microcom- 
puters it may be that the practical use of Mohr’s circle for the analytical determination of 
stress (and strain-see Chapter 14) values will become limited. It will remain, however, a 
highly effective medium for the teaching and understanding of complex stress systems. 

A free-hand sketch of the Mohr circle construction, for example, provides a convenient 
mechanism for the derivation (by simple geometric relationships) of the principal stress 
equations (13.1 1) or of the equations for the shear and normal stresses on any inclined plane 
in terms of the principal stresses as shown in Fig. 13.11. 

13.7. Alternative representations of stress distributions at  a point 

The way in which the stress at a point vanes with the angle at which a plane is taken through 
the point may be better understood with the aid of the following alternative graphical 
representations. 
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Fig. 13.11. Free-hand sketch of Mohr's stress circle. 

Equations (13.8) and (13.9) give the values of the direct stress ug and shear stress re on any 
plane inclined at an angle 8 to the plane on which the direct stress u, acts within a two- 
dimensional complex stress system, viz: 

ug = *(a, + a,) +3(ux - 0,) cos 28 + s,, sin 28 

q, = i(u, - cy)  sin 28 - T~~ cos 28 

(a) Uniaxial stresses 

For the special case of a single uniaxial stress ux as in simple tension or on the surface of a 
beam in bending, u, = zxy = 0 and the equations (13.8) and (13.9) reduce to 

0 0  = $0, (1 + COS 28) = 6, COS' 8. 

N.B. If the single stress were selected as u, then the relationship would have reduced to that of 
eqn. (13.1), i.e. ae = uy sin' 8. 

Similarly: 7 0  = 3 ox sin 28. 

Plotting these equations on simple Cartesian axes produces the stress distribution diagrams 
of Fig. 13.12, both sinusoidal in shape with shear stress "shifted by 45" from the normal 
stress. 

Principal stresses op and oq occur, as expected, at 90" intervals and the amplitude of the 
normal stress curve is given by the difference between the principal stress values. It should 
also be noted that shear stress is proportional to the derivative of the normal stress with 
respect to 8, i.e. 70  is a maximum where doe/d8 is a maximum and 7 0  is zero where da,/d8 is 
zero, etc. 

Alternatively, plotting the same equations on polar graph paper, as in Fig. 13.13, gives an 
even more readily understood pictorial representation of the stress distributions showing a 
peak value of direct stress in the direction of application of the applied stress ox falling to zero 
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I u p  = u x  
uq =uy = o  
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Fig. 13.12. Cartesian plot of stress distribution at a point under uniaxial applied stress. 

Y 

Direct (normal) stress us 
/ 

X 

Shear stress ro 

Fig. 13.13. Polar plot of stress distribution at a point under uniaxial applied stress. 

in directions at right angles and maximum shearing stresses on planes at 45" with zero shear 
on the x and y (principal) axes. 

(b) Biaxial stresses 

In almost all modes of loading on structural members or engineering components the 
stresses produced are a maximum at the free (outside) surface. This is particularly evident for 
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the cases of pure bending or torsion as shown by the stress diagrams of Figs. 4.4 and 8.4, 
respectively, but is also true for other more complex combined loading situations with the 
major exception of direct bearing loads where maximum stress conditions can be sub-surface. 
Additionally, at free surfaces the stress normal to the surface is always zero so that the most 
severe stress condition often reduces, at worst, to a two-dimensional plane stress system 
within the surface of the component. It should be evident, therefore that the biaxial stress 
system is of considerable importance to practical design considerations. 

The Cartesian plot of a typical bi-axial stress state is shown in Fig. 13.14 whilst Fig. 13.15 
shows the polar plot of stresses resulting from the bi-axial stress system present on the surface 
of a thin cylindrical pressure vessel for which oP = oH and oq = uL = 3oH with t,,, = 0. 

Fig. 13.14. Cartesian plot of stress distribution at a point under a typical biaxial applied stress 
system. 

It should be noted that the whole of the information conveyed on these alternative 
representations is also available from the relevant Mohr circle which, additionally, is more 
amenable to quantitative analysis. They do not, therefore, replace Mohr’s circle but are 
included merely to provide alternative pictorial representations which may aid a clearer 
understanding of the general problem of stress distribution at a point. The equivalent 
diagrams for strain are given in 914.16. 
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Fig. 13.15. Polar plot of stress distribution under typical biaxial applied stress system. 

13.8. Three-dimensional stresses - graphical representation 

Figure 13.16 shows the general three-dimensional state of stress at any point in a body, i.e. 
the body will be subjected to three mutually perpendicular direct stresses and three shear 
stresses. 

Figure 13.17 shows a principal element at the same point, i.e. one in general rotated relative 
to the first until the stresses on the faces are principal stresses with no associated shear. 

Figure 13.18 then represents true views on the various faces of the principal element, and 
for each two-dimensional stress condition so obtained a Mohr circle may be drawn. These 

F 
QYY 

Fig. 13.16. Three-dimensional stress system. 
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Fig. 13.17. Principal element. 

Q3 

Q- 
( a )  ( b )  ( C )  

Fig. 13.18. True views on the various faces of the principal element 

can then be combined to produce the complete three-dimensional Mohr circle representation 
shown in Fig. 13.19. 

The largecircle between points u1 and o3 represents stresses on all planes through the point 
in question containing the o2 axis. Likewise the small circle between o2 and u3 represents 

Fig. 13.19. Mohr circle representation of three-dimensional stress state showing the principal circle, 
the radius of which is equal to the greatest shear stress present in the system. 
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stresses on all planes containing the o1 axis and the circle between o1 and o2 all planes 
containing the o3 axis. 

There are, of course, an infinite number of planes passing through the point which do not 
contain any of the three principal axes, but it can be shown that all such planes are repre- 
sented by the shaded area between the circles. The procedure involved in the location of a 
particular point in the shaded area which corresponds to any given plane is covered in 
Mechanics ojMaterials 2.t In practice, however, it is often the maximum direct and shear 
stresses which will govern the elastic failure of materials. These are determined from the 
larger of the three circles which is thus termed the principal circle (T,,.,~~ = radius). 

It is perhaps evident now that in many two-dimensional cases the maximum (greatest) shear 
stress value will be missed by not considering o3 = 0 and constructing the principal circle. 

Consider the stress state shown in Fig. 13.20(a). If the principal stresses ol, o2 and o3 all 
have non-zero values the system will be termed “three-dimensional”; if one of the principal 
stresses is zero the system is said to be “two-dimensional” and with two principal stresses zero 
a “uniaxial” stress condition is obtained. In all cases, however, it is necessary to consider all 
three principal stress values in the determination of the maximum shear stress since out-of- 
plane shear stresses will be dependent on all three values and one will be a 
maximum - see Fig. 13.20(b), (c) and (d). 

1” 

Fig. 13.20. Maximum shear stresses in a three-dimensional stress system. 

Examples of the crucial effect of consideration of the third (zero) principal stress value in 
apparently “two-dimensional” stress states are given below: 

(a)  Thin cylinder. 

principal stresses: 
An element in the surface of a thin cylinder subjected to internal pressurep will have 

o1 = OH = pd/2t 

o2 = aL = pd/4t 

$E. J. Hearn, Mechanics of Materials 2 ,  3rd edition (Butterworth-Heinemann, Oxford, 1997). 
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with the third, radial, stress o, assumed to be zero-see Fig. 13.21(a). 

Fig. 13.21(b) with a maximum shear stress: 
A two-dimensional Mohr circle representation of the stresses in the element will give 

1 
T m a x = T ( o 1 - 0 ~ )  

I ( b )  3 D  Mohr circles 

Fig. 13.21. Maximum shear stresses in a pressurised thin cylinder 

A three-dimensional Mohr circle construction, however, is shown in Fig. 13.21(c), the zero 
value of o3 producing a much larger principal circle and a maximum shear stress: 

Tmax=+(o l -u j )=$  --0 =- (E ) : 
i.e. twice the value obtained from the two-dimensional circle. 

(b) Sphere 

Consider now an element in the surface of a sphere subjected to internal pressure pas shown 

in Fig. 13.22(a). Principal stresses on the element will then be o1 = o2 = - with or = o3 = 0 pd 
4t 

normal to the surface. 
The two-dimensional Mohr circle is shown in Fig. 13.22(b), in this case reducing to a point 

since o1 and u2 are equal. The maximum shear stress, which always equals the radius of 
Mohr's, circle is thus zero and would seem to imply that, although the material of the vessel 
may well be ductile and susceptible to shear failure, no shear failure could ensue. However, 
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‘ t  

I ( b )  2D Mohr circle 

TI 

. Pd 
UH - - 4t 

I ( C) 30 Mohr circles 

Fig. 13.22. Maximum shear stresses in a pressurised thin sphere. 

this is far from the truth as will be evident when the full three-dimensional representation is 
drawn as in Fig. 13.22(c) with the third, zero, principal stress taken into account. 

A maximum shear stress is now produced within the olo3 plane of value: 

T,,, = 3 (01 - 03) = pd/8 t  

The greatest value of z can be obtained analytically by using the statement 

z max = 3 (greatest principal stress - least principal stress) 

and considering separately the principal stress conditions as illustrated in Fig. 13.18. 

Examples 

Example 13.1 ( A )  

A circular bar 40 mm diameter carries an axial tensile load of 100 kN. What is the value of the 
shear stress on the planes on which the normal stress has a value of 50 MN/m’ tensile? 

So 1 ut ion 

Tensile stress = 79.6 MN/mZ 
F 100 x 103 
A It x (0.02)’ 

= - =  

Now the normal stress on an oblique plane is given by eqn. (13.1): 

og = o, sin’ 8 

50 x lo6 = 79.6 x lo6 sin’ 6 

8 = 52” 28’ 
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The shear stress on the oblique plane is then given by eqn. (13.2): 

T@ = ioy sin 28 

= 3 x 79.6 x lo6 x sin 104" 5 6  

= 38.6 x lo6 

The required shear stress is 38.6 MN/rnZ. 

Example 13.2 (AIB) 

Under certain loading conditions the stresses in the walls of a cylinder are as follows: 

(a) 80 MN/mZ tensile; 
(b) 30 MN/mZ tensile at right angles to (a); 
(c) shear stresses of 60 MN/m2 on the planes on which the stresses (a) and (b) act; the shear 

Calculate the principal stresses and the planes on which they act. What would be the effect 
on these results if owing to a change of loading (a) becomes compressive while stresses (b) 
and (c) remain unchanged? 

couple acting on planes carrying the 30 MN/m' stress is clockwise in effect. 

Solution 

Fig. 13.23. 

The principal stresses are given by the formula 

c1 and oz =$(o,+oy)f)J[(ox-oy)2+47,2y] 

= 3 (80 + 30) 

= 55 5J (25  + 144) 

= 55+65 

$J[ (80 - 30)' + (4 x 602)] 

o1 = 120MN/m2 

o2 = - 10MN/mZ (i.e. compressive) 

. .  
and 
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The planes on which these stresses act can be determined from eqn. (13.14), 

i.e. 
6 -6, 

tan 8, = P 
ZXY 

120 - 80 tan 8, = ____ - - 0.6667 
60 

. .  e, = 330 41' 

- 10- 80 
60 = 1.50 Also tan 8, = = 

. .  8, = - 56" 19  or 123" 41' 

N.B.-The resulting angles are at 90" to each other as expected. 
If the loading is now changed so that the 80 MN/m' stress becomes compressive: 

6, = f ( - 80+ 30)+*J[ ( -80-  30)' + (4  x 60')] 

= - 25 + 5J(  121 + 144) 

= - 25 + 81.5 = 56.5 MN/m2 

o2 = -25-81.5 = - 106.5MN/m2 and 

Then tan8, = 
56.5 - ( - 80) 

= 2.28 
60 

and 

8, = 6 6  1 9  

8, = 66" 19' + 90 = 156" 1 9  

Mohr's circle solutions 

In the first part of the question the stress system and associated Mohr's circle are as drawn 

By measurement: 
in Fig. 13.24. 

o1 = 120MN/m2 tensile 

6' = 10MN/m2 compressive 

8,  = 34" counterclockwise from BC 

8, = 124" counterclockwise from BC 

and 

When the 80 MN/m' stress is reversed, the stress system is that in Fig. 13.25, giving Mohr's 

The required values are then: 
circle as drawn. 

o1 = 56.5MN/m2 tensile 

o2 = 106.5 MN/m' compressive 

8, = 66" 15' counterclockwise to BC 

and 8, = 156" 15' counterclockwise to BC 
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= 120 MN/m2 -----I 
u2=-10 MN/rn2 

Fig. 13.24. 

30 
t 

I I  
-80 -40 

r-_u2=-106.5 MN/rn2,, 
u, =56.5 MN/rnq 

Fig. 13.25 

Example 13.3 ( B )  

A material is subjected to two mutually perpendicular direct stresses of 80 MN/mZ tensile 
and 50 MN/mZ compressive, together with a shear stress of 30 MN/mZ. The shear couple 
acting on planes carrying the 80 MN/m2 stress is clockwise in effect. Calculate 
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the 
the 

magnitude and nature of the principal stresses; 
magnitude of the maximum shear stresses in the plane of the given stress system; 
direction of the planes on which these stresses act. 

Confirm your answer by means of a Mohr’s stress circle diagram, and from the diagram 
determine the magnitude of the normal stress on a plane inclined at 20” counterclockwise to 
the plane on which the 50 MN/m’ stress acts. 

Solution 

80 MN/m2 

t 

Fig. 13.26. 

(a) To find the principal stresses: 

u1 and o2 = +(ox + by) ++&ox - o,)* + ~ T Z , , ]  
= +( - 50+80)f+J[( - 50 - 80)’ + (4 x 9OO)] 

= 5[3 f J(169 + 36)] = 5[3 f 14.311 

. .  u1 = 86.55 MN/mZ 

o2 = - 56.55 MN/m’ 

The principal stresses are 

86.55 MN/m2 tensile and 56.55 MN/m2 compressive 

(b) To find the maximum shear stress: 

01 - ~2 86.55 - (-  56.55) 143.1 - - - 71.6 MN/m2 7max= ~ - 
2 2 2 

Maximum shear stress = 71.6MN/m2 

(c) To find the directions of the principal planes: 

0 -6, 86.55-(-50) 
30 

tan8, = = 
TXY 

136.55 
30 

= - = 4.552 
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. .  e, = 77036 

. .  e2 = 770 36' + 900 = 1670 3 6  

The principal planes are inclined at 77" 36' to the plane on which the 50 MN/m2 stress acts. 
The maximum shear planes are at 45" to the principal planes. 

Mohr's circle solution 

The stress system shown in Fig. 13.26 gives the Mohr's circle in Fig. 13.27. 

80 M N h 2  

Fig. 13.27. 

By measurement 

c, = 87MN/mZ tensile 

c2 = 57 MN/mZ compressive 

T,,, = 72 MN/m2 

and 

The direct or normal stress on a plane inclined at 20" counterclockwise to BC is obtained by 

c = 16 MN/mZ compressive 

measuring from 

This gives 

on the Mohr's circle through 2 x 20" = 40" in the same direction. 
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Example 13.4 ( B )  

At a given section a shaft is subjected to a bending stress of 20 MN/m2 and a shear stress of 
40 MN/m2. Determine: 

(a) the principal stresses; 
(b) the directions of the principal planes; 
(c) the maximum shear stress and the planes on which this acts; 
(d) the tensile stress which, acting alone, would produce the same maximum shear stress; 
(e) the shear stress which, acting alone, would produce the same maximum tensile 

principal stress. 

Solution 

(a) The bending stress is a direct stress and can be treated as acting on the x axis, so that 
a, = 20 MN/m2; since no other direct stresses are given, a, = 0. 

Principal stress 0, = +(a ,+a, )+ iJ~(~ , - - , )~  +42:,1 
= 3 x 20 + 3J[202 + (4 x 402)] 

= 10+ 5J(68) = 10+ 5 x 8.246 

= 51.23MN/mZ 

and a2 = 10-41.23 

= - 31.23 MN/m2 

(b) Then 
a -a, 51.23 -20 31.23 - o.7808 =-- 

40 40 
tan8, = JL- = 

Z X Y  

. .  el = 370 59' 

and 
- 31.23 - 20 - 51.23 - 1.2808 - --= 

40 40 tan8, = 

. .  O2 = - 52" 1' or 127" 59' 

both angles being measured counterclockwise from the plane on which the 20 MN/m2 stress 
acts. 

(c) Maximum shear stress 

aI - 0, 

2 
51.23 - (- 31.23) 

2 Zmax= ~ = 

82.46 
2 = __ = 41.23 MN/m2 

This acts on planes at 45" to the principal planes, 

i.e. at 82"59' or -7" 1' 

(d) Maximum shear stress 
zmax= +Jc(~, - 0,)' + 4 ~ 2 ~ 1  
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Thus if a tensile stress is to act alone to give the same maximum shear stress (6, = 0 and 

maximum shear stress = i,/(oz) = 30, 
ZXY = 0): 

41.23 = $0, 

i.e. ox = 82.46 MN/m2 

The required tensile stress is 82.46 MN/mZ. 
(e) Principal stress 

8 1  = t ( u , + b y ) + f J ~ ( u x - b y ) 2 + 4 ? z y l  

0 1  = 3J(4?3 = T x y  

Thus if a shear stress is to act alone to give the same principal stress (0, = uY = 0): 

51.23 = rxY 

The required shear stress is 51.23 MN/m2. 

Mohr's circle solutions 

(a), (b), (c) The stress system and corresponding Mohr's circle are as shown in Fig. 13.28. 
By measurement: 

(a) u1 N 51 MN/m2 tensile 

u2 'v 31 MN/m2 compressive 

76" 
(b) 8, = - = 380 2 

8 2  = 38" + 90" = 128" 

(c) rrnaX= 41 MN/m2 

Fig. 13.28. 
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Angle of maximum shear plane 

- 83" 
166 
2 

--- - 

(d) If a tensile stress (T, is to act alone to give the same maximum shear stress, then (T,, = 0, 
z,,, = 0 and zmax = 41 MN/mZ. The Mohr's circle therefore has a radius of 41 MN/mZ and 
passes through the origin (Fig. 13.29). 

Hence the required tensile stress is 82 MN/rn2. 

r 

60 t 

Fig. 13.29. 

(e) If a shear stress is to act alone to produce the same principal stress, ox = 0, (T,, = 0 and 
u1 = 51 MN/m2. The Mohr's circle thus has its centre at the origin and passes through 
u = 51 MN/m2 (Fig. 13.30). 

Hence the required shear stress is 51 MN/rnZ . 

t 

I 
Fig. 13.30. 
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Example 13.5 ( B )  

At a point in a piece of elastic material direct stresses of 90 MN/m2 tensile and 50 MN/mZ 
compressive are applied on mutually perpendicular planes. The planes are also subjected to a 
shear stress. If the greater principal stress is limited to 100MN/mZ tensile, determine: 

(a) the value of the shear stress; 
(b) the other principal stress; 
(c) the normal stress on the plane of maximum shear; 
(d) the maximum shear stress. 

Make a neat sketch showing clearly the positions of the principal planes and planes of 
maximum shear stress with respect to the planes of the applied stresses. 

Solution 

(a) Principal stress crl = $(ax + by) + $J[(o, - cry)' + 47,2,] 

This is limited to 100MN/mZ; therefore shear stress T~~ is given by 

100 = $(90 - 50) + $J[ (90 + 50)2 + 47,2,] 

200 = 40 + lOJC14' + O.Mr$] . .  

. .  

= 38.8 MN/mZ 

The required shear stress is 38.8 MN/m2. 
(b) The other principal stress (r2 is given by 

6 2  = 3 ( 6 x + 6 y ) - 3 J [ ( 6 , - 6 Y ) 2  +47'$] 

40- OJ(2 6) 
2 

=$[(90-50)-10J(142+60)] = 

40- 160 
2 

- - -60 MN/m2 

The other principal stress is 60 MN/m2 compressive. 
(c) The normal stress on the plane of maximum shear 

a1+a2 100-60 =-=- 
2 2 

= 20MN/m2 

The required normal stress is 20 MN/m2 tensile. 
(d) The maximum shear stress is given by 

6 1 - 6 2  100+60 
Tmax= ~ = ____ 

2 2 
= 80MN/mZ 

The maximum shear stress is 80 MN/m'. 
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In order to be able to draw the required sketch (Fig. 13.31) to indicate the relative positions 
of the planes on which the above stresses act, the angles of the principal planes are required. 
These are given by 

0 - 0  100-(-50) tang = = 
T X Y  38.8 

. .  el = 750 30’ 

to the plane on which the 50 MN/mZ stress acts. 
The required sketch is then shown in Fig. 13.31. 

50 MN/m‘ 

Fig. 13.31. Summary of principal planes and maximum shear planes. 

Mohr’s circle solution 

The stress system is as shown in Fig. 13.32. The centre of the Mohr’s circle is positioned 
midway between the two direct stresses given, and the radius is such that g1 = 100 MN/m2. 

By measurement: 

7 = 39MN/mZ 

uz = 60 MN/mZ compressive 

7 max = 80 MN/mz 

151 
2 

8, = ~ = 75” 30’ to BC, the plane on which the 50MN/m2 stress acts 
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Fig. 13.32 

Example 13.6 ( B )  

In a certain material under load a plane ABcarries a tensile direct stress of 30 MN/mZ and a 
shear stress of 20 MN/m2, while another plane BC carries a tensile direct stress of 20 MN/m2 
and a shear stress. If the planes are inclined to one another at 30" and plane AC at right angles 
to plane AB carries a direct stress unknown in magnitude and nature, find: 

(a) the value of the shear stress on BC; 
(b) the magnitude and nature of the direct stress on AC; 
(c) the principal stresses. 

Solution 

Referring to Fig. 13.33 let the shear stress on BC be 5 and the direct stress on AC be ox, 
assumed tensile. Consider the equilibrium of the elemental wedge ABC. Assume this wedge to 
be of unit depth. A complementary shear stress equal to that on AB will be set up on AC. 

X) MN/m2 

Fig. 13.33 
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(a) To find 2, resolve forces vertically: 

30x(ABx l ) + 2 0 x ( A C x  1 ) = 2 0 x ( B C x l ) c o s 3 0 " + ~ x ( B C x  l)sin30" 

Now AB = BC cos 30 and AC = BC sin 30 

. .  30 x BCcos 30 +20 x BCsin30 = 20 x BCcos30+ 7 x BCsin30 

1 
2 30- +20 x - = 20 x - + 7 x - 1 J 3  

2 2 
J 3  
2 

30J3 + 20 = 20J3 + 7 

7 = lOJ3 + 20 = 37.32 MN/mZ . .  
The required shear stress is 37.32 MN/m2. 

(b) To find ox, resolve forces horizontally: 

20x(ABx l ) + a , x ( A C x  l ) + ~ x ( B C x l ) c o s 3 0 " = 2 0 x ( B C x  l)sin30" 

2 0 x B C c o s 3 0 " + a , x B C s i n 3 0 " + ~ x B C c o s 3 0 "  =20xBCsin30" 

1 J 3  1 
2 2 2 20 x - + u, x -+ 7 x - = 20 x - J 3  

2 

20J3 -k B, + J3 x 37.32 = 10 

. .  B, = 10- J3 x 57.32 = 10-99.2 

= - 89.2 MN/m2, i.e. compressive 

(c) The principal stresses are now given by 

fJ1,z = f (a, + C y )  f fJC(a, - + 4?&1 

= +{(  - 89.2 + 30) k J[( - 89.2 - 30)2 + 4  x 2023) 

= 5{-5.92+J[(-11.92)2+16]} 

= 5 [  -5.92+ ,/l58] = 5 [  - 5.92 12.571 

. .  a1 = 33.25MN/mZ 

c2 = - 92.45 MN/m2 

The principal stresses are 33.25 MN/m2 tensile and 92.45 MN/m2 compressive. 

Example 13.7 ( B )  

A hollow steel shaft of 100 mm external diameter and 50 mm internal diameter transmits 
0.75 MW at 500 rev/min and is also subjected to an axial end thrust of 50 kN. Determine the 
maximum bending moment which can be safely applied in conjunction with the applied 
torque and thrust if the maximum compressive principal stress is not to exceed 100 MN/m2 
compressive. What will then be the value of: 

(a) the other principal stress; 
(b) the maximum shear stress? 
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Solution 

355 

The torque on the shaft may be found from 

power = T x o 

0.75 x lo6 x 60 
2a x 500 

. .  T =  = 14.3 x lo3 = 14.3 kNm 

The shear stress in the shaft at the surface is then given by the torsion theory 

T z  - 
J = E  

T R  14.3 x 103 x 50 x 10-3 x 2 
. 5 = - =  

J a(504 - 254)10-12 

= 0.78 x lo8 

= 78 MN/m2 

The direct stress resulting from the end thrust is given by 

load -5Ox lo3 
area n(502 - 252) 

g d = - -  - 

= - 8.5 x lo6 

= -8.5MN/m2 

The bending moment to be applied will produce a direct stress in the same direction as o,,. 
Thus the total stress in the x direction is 

6, = bb + bd 
the greatest value of 0, being obtained where the bending stress is of the same sign as the end 
thrust or, in other words, compressive. The stress system is therefore as shown in Fig. 13.34. 

Fig. 13.34 

N.B. oy = 0; there is no stress in the y direction. 

6 1  = +47:,1 

Therefore substituting all stresses in units of MN/m2, 

- 100 = $7, & )J(aZ + 4.52) 
. .  - 200 - 6, = f J(6: + 4.52) 
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. .  

Therefore stress owing to bending 

~ i ,  = gX - od = - 39.2 - (- 8.5) 

= - 30.7 MN/m2 (i.e. compressive) 
But from bending theory 

MY 

30.7 x lo6 x n(504-254)10-'2 

o* = ~ 

I 

. .  M =  
5 0 ~ 1 0 - ~ x 4  

= 2830 N m  

= 2.83 kNm 

i.e. the bending moment which can be safely applied is 2.83 kN m. 

(a) The other principal stress 

6 2  = $ax +$J(CJZ + 472) 

= - 19.6 +$J(39.2' + 24320) 

= - 19.6+ 80.5 

= 60.9 MN/m2 (tensile) 

(b) The maximum shear stress is given by 

7max = - a z )  

= $( - 100 - 60.9) 

= - 80.45 MN/m2 

i.e. the maximum shear stress is 80.45 MN/mZ. 

Example 13.8 

A beam of symmetrical I-section is simply supported at each end and loaded at the centre of 
its 3 m span with a concentrated load of 100 kN. The dimensions of the cross-section are: 
flanges 150 mm wide by 30 mm thick; web 30 mm thick; overall depth 200 mm. 

For the transverse section at the point of application of the load, and considering a point at 
the top of the web where it meets the flange, calculate the magnitude and nature of the 
principal stresses. Neglect the self-mass of the beam. 
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Solution 

At any section of the beam there will be two sets of stresses acting simultaneously: 

(1) bending stresses 

(2) shear stresses 

together with their associated complementary shear stresses of the same value (Fig. 13.35a). 
The stress system on any element of the beam can therefore be represented as in Fig. 13.36. 

The stress distribution diagrams are shown in Fig. 13.35b. 
Bending stress 

MY 
ob = ~ I 

M = maximum bending moment 

= 75kNm 
W L  1 0 0 ~ 1 0 ~ x 3  =-- - 
4 4 

and 
0.15 x 0.23 -0.12 x 0.143 

12 
m4 I =  

= 72.56 x lOW6m4 

Shear stress Bending stress 
distribution distribution 

Fig. 13.35. 
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Fig. 13.36. 

Therefore at the junction of web and flange 

75 x 103 x 0.07 
a* = 

72.56 x 

= 72.35 x lo6 = 72.35 MN/m2 and is compressive 
Shear stress 

50 x lo3 x (150 x 30) x 85 x lo-' - - 
72.56 x 10-4 x 30 x 10-3 

= 8.79 MN/m2 

The principal stresses are then given by 

a1 or a2 =3(a,+ay)f~J[(. ,- .y)2+4t~y] 

with a, = -ab and ay = 0 

. .  a1 or a2 = *(- 72.35)+3J[( -72.3q2 + 4  x 8.792] MN/m2 

= - 36.2 f J(5544) 

= -36.2f74.5 
. .  a2 = - 110.7 MN/m2 

o1 = + 38.3 MN/m2 

i.e. the principal stresses are 110.7 MN/m2 compressive and 38.3 MN/m2 tensile in the top of 
the web. At the bottom of the web the stress values obtained would be of the same value but of 
opposite sign. 

Problems 

13.1 (A). An axial tensile load of 10 kN is applied to a 12 mm diameter bar. Determine the maximum shearing 

C44.1 MN/m2 at 45" and 135"; k 44.2 MN/m2.] 

13.2 (A). A compressive member of a structure is of 25mm square cross-section and carries a load of 50 kN. 
Determine, from first principles, the normal, tangential and resultant stresses on a plane inclined at 60" to the axis of 
the bar. [60, 34.6, 69.3 MN/m2.] 

stress in the bar and the planes on which it acts. Find also the value of the normal stresses on these planes. 
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13.3 (A). A rectangular block of material is subjected to a shear stress of 30 MN/m2 together with its associated 
complementary shear stress. Determine the magnitude of the stresses on a plane inclined at 30" to the directions of 
the applied stresses, which may be taken as horizontal. C26, 15 MN/m2.] 

13.4 (A). A material is subjected to two mutually perpendicular stresses, one 60 MN/m2 compressive and the 
other 45 MN/m2 tensile. Determine the direct, shear and resultant stresses on a plane inclined at 60" to the plane on 
which the 45 MN/m2 stress acts. C18.75, 45.5, 49.2 MN/m2.] 

13.5 (A/B). The material of Problem 13.4 is now subjected to an additional shearing stress of 10MN/m2. 
Determine the principal stresses acting on the material and the maximum shear stress. 

[46, - 61, 53.5 MN/m2.] 

13.6 (A/B). At a certain section in a material under stress, direct stresses of 45 MN/m2 tensile and 75 MN/m2 
tensile act on perpendicular planes together with a shear stress T acting on these planes. If the maximum stress in the 
material is limited to 150MN/mZ tensile determine the value of T. C88.7 MN/m2.] 

13.7 (A/B). At a point in a material under stress there is a compressive stress of 200 MN/m2 and a shear stress of 
300 MN/m2 acting on the same plane. Determine the principal stresses and the directions of the planes on which they 
act. [216MN/mZ at 54.2" to 200MN/m2 plane; -416MN/mZ at 144.2O.I 

13.8 (A/B). Atacertain point inamaterial thefol1owingstressesact:a tensilestressof 150 MN/mZ,acompressive 
stress of 105 MN/m2 at right angles to the tensile stress and a shear stress clockwise in effect of 30 MN/m2. Calculate 
the principal stresses and the directions of the principal planes. 

C153.5, - 108.5MN/m2; at 6.7" and 96.7" counterclockwise to 150MN/m2 plane.] 

13.9 (B). The stresses across two mutually perpendicular planes at a point in an elastic body are 120 MN/m2 
tensile with 45 MN/m2 clockwise shear, and 30 MN/m2 tensile with 45 MN/m2 counterclockwise shear. Find (i) the 
principal stresses, (ii) the maximum shear stress, and (iii) the normal and tangential stresses on a plane measured at 
20" counterclockwise to the plane on which the 30 MN/m2 stress acts. Draw sketches showing the positions of the 
stresses found above and the planes on which they act relative to the original stresses. 

C138.6, 11.4, 63.6, 69.5, -63.4MN/m2.] 

13.10 (B). At a point in a strained material the stresses acting on planes at right angles to each other are 
200 MN/m2 tensile and 80 MN/m2 compressive, together with associated shear stresses whch may be assumed 
clockwise in effect on the 80 MN/m2 planes. If the principal stress is limited to 320 MN/m2 tensile, calculate: 

(a) the magnitude of the shear stresses; 
(b) the directions of the principal planes; 
(c) the other principal stress; 
(d) the maximum shear stress. 

[219 MN/m2, 28.7 and 118.7" counterclockwise to 200 MN/m2 plane; - 200MN/m2; 260 MN/m2.] 

13.11 (B). A solid shaft of 125 mm diameter transmits 0.5 MW at 300rev/min. It is also subjected to a bending 
moment of 9 kN m and to a tensile end load. If the maximum principal stress is limited to 75 MN/m2, determine the 
permissible end thrust. Determine the position of the plane on which the principal stress acts, and draw a diagram 
showing the position of the plane relative to the torque and the plane of the bending moment. 

[61.4kN 61" to shaft axis.] 

13.12 (B). At a certain point in a piece of material there are two planes at right angles to one another on whch 
there are shearing stresses of 150 MN/m2 together with normal stresses of 300 MN/m2 tensile on one plane and 
150 MN/m2 tensile on the other plane. If the shear stress on the 150 MN/m2 planes is taken as clockwise in effect 
determine for the given point: 

(a) the magnitudes of the principal stresses; 
(b) the inclinations of the principal planes; 
(c) the maximum shear stress and the inclinations of the planes on which it acts; 
(d) the maximum strain if E = 208 GN/m2 and Poisson's ratio = 0.29. 

C392.7, 57.3 MN/m2; 31.7". 121.7"; 167.7 MN/m2, 76.7", 166.7'; 1810p.1 

13.13 (B). A 250mm diameter solid shaft drives a screw propeller with an output of 7 MW. When the forward 
speed of the vessel is 35 km/h the speed of revolution of the propeller is 240rev/min. Find the maximum stress 
resulting from the torque and the axial compressive stress resulting from the thrust in the shaft; hence find for a point 
on the surface of the shaft (a) the principal stresses, and (b) the directions of the principal planes relative to the shaft 
axis. Make a diagram to show clearly the direction of the principal planes and stresses relative to the shaft axis. 

[U.L.] C90.8, 14.7, 98.4, -83.7MN/m2; 47" and 137".] 
13.14 (B). A hollow shaft is 460mm inside diameter and 25 mm thick. It is subjected to an internal pressure of 

2 MN/m2, a bending moment of 25 kN m and a torque of 40 kN m. Assuming the shaft may be treated as a thin 
cylinder, make a neat sketch of an element of the shaft, showing the stresses resulting from all three actions. 
Determine the values of the principal stresses and the maximum shear stress. C21.5, 11.8, 16.6 MN/m2.] 
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13.15 (B). In a piece of material a tensile stress ul and a shearing stress 7 act on a given plane. Show that the 
principal stresses are always of opposite sign. If an additional tensile stress u2 acts on a plane perpendicular to that of 

13.16 (B). A shaft l00mm diameter is subjected to a twisting moment of 7kNm, together with a bending 

C47.3, - 26.9 MN/m2; 37.1 MN/mZ.] 

13.17 (B). A material is subjected to a horizontal tensile stress of 90MN/mZ and a vertical tensile stress of 
120 MN/mZ, together with shear stresses of 75 MN/m2, those on the 120 MN/mZ planes being counterclockwise in 
effect. Determine: 

ul , find the condition that both principal stresses may be of the same sign. CU.L.1 [T = J(.l%).I 

moment of 2 kN m. Find, at the surface of the shaft, (a) the principal stresses, (b) the maximum shear stress. 

(a) the principal stresses; 
(b) the maximum shear stress; 
(c) the shear stress which, acting alone, would produce the same principal stress; 
(d) the tensile stress which, acting alone, would produce the same maximum shear stress. 

C181.5, 28.5 MN/mZ; 76.5 MN/m2; 181.5 MN/m2; 153 MN/mZ.] 

13.18 (B). Two planes AB and BC in an elastic material under load are inclined at 45" to each other. The loading 

On AB, 150 MN/mZ direct stress and 120 MN/m2 shear. 
On BC, 80 MN/m2 shear and a direct stress u. 

on the material is such that the stresses on these planes are as follows: 

Determine the value of the unknown stress u on BC and hence determine the principal stresses which exist in the 
material. [lW, 214, - 74 MN/mZ.] 

13.19 (B). A beam of I-section, 500 mm deep and 200 mm wide, has flanges 25 mm thck and web 12 mm thick. It 
carries a concentrated load of 300 kN at the Centre of a simply supported span of 3 m. Calculate the principal stresses 
set up in the beam at the point where the web meets the flange. C83.4, - 6.15 MN/mZ.] 

13.20 (B). At a certain point on the outside of a shaft which is subjected to a torque and a bending moment the 
shear stresses are 100 MN/m2 and the longitudinal direct stress is 60 MN/m2 tensile. Find, by calculation from first 
principles or by graphical construction which must be justified: 

(a) the maximum and minimum principal stresses; 
(b) the maximum shear stress; 
(c) the inclination of the principal stresses to the original stresses. 

Summarize the answers clearly on a diagram, showing their relative positions to the original stresses. 
[E.M.E.U.] C134.4, -74.4MN/mZ; 104.4MN/m2; 35.5".] 

13.21 (B). A short vertical column is firmly fixed at the base and projects a distance of 300mm from the base. The 
column is of I-section, 200mm deep by l00mm wide, tlanges lOmm thick, web 6mm thick. 

An inclined load of 80 kN acts on the top of the column in the centre of the section and in the plane containing the 
central line of the web; the line of action is inclined at 30 degrees to the vertical. Determine the position and 
magnitude of the greatest principal stress at the base of the column. 

[U.L.] [48 MN/m2 at junction of web and flange.] 


