
CHAPTER 8 

TORSION 

Sommary 

For a solid or hollow shf t  of uniform circular cross-section throughout its length, the 
theory of pure torsion states that 

T T GO 
J R = L  
- = -  

where Tis  the applied external torque, constant over length L; 
J is the polar second moment of area of shaft cross-section 

x(D4 - d 4, 
for a hollow shaft; 

xD4 
32 32 

= - for a solid shaft and 

D is the outside diameter; R is the outside radius; 
d is the inside diameter; 
T is the shear stress at radius R and is the maximum value for both solid and hollow 
shafts; 
G is the modulus of rigidity (shear modulus); and 
8 is the angle of twist in radians on a length L. 

For very thin-walled hollow shafts 

J = 2nr3 t ,  where T is the mean radius of the shaft wall and t is the thickness. 

Shear stress and shear strain are related to the angle of twist thus: 

GB 
L 

T = - R = G ~  

Strain energy in torsion is given by 

U=- x volume for solid shafis 
2GJ 2L 

For a circular shaft subjected to combined bending and torsion the equivalent bending 
moment is 

M e  = i [ M  + J ( M z  + T  ')I 
and the equivalent torque is 

where M and T are the applied bending moment and torque respectively. 
The p a ~ e r  transmitted by a shaft carrying torque Tat  o rad/s = To. 

T, = +J( M +T 2, 

176 
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8.1. Simple torsion theory

When a uniform circular shaft is subjected to a torque it can be ShOWn that every sectiOn of
the shaft is subjected to a state of pure shear (Fig. 8.1 ), the moment of resistance developed by
the shear stresses being everywhere equal to the magnitude, and opposite in sense, to the
applied torque. For the purposes of deriving a simple theory to describe the behaviour of
shafts subjected to torque it is necessary to make the following basic assumptionS:

(1) The material is homogeneous, i.e. of uniform elastic properties throughout.
(2) The material is elastic, following Hooke's law with shear stress proportional to shear

strain.
(3) The stress does nOt exceed the elastic limit or limit of proportionality.
(4) Circular SectiOnS remain circular.
(5) Cross-sectioDS remain plane. (This is certainly nOt the case with the torsion of DOD-

circular SectiOnS.)
(6) Cross-sectioDS rotate as if rigid, i.e. every diameter rotates through the same angle.

Fig. 8.1. Shear system set up on an elem-ent in thesufface of a shaft subjected to torsion.

Practical tests carried out on circular shafts have shown that the theory developed below on
the basis of these assumptions shows excellent correlation with experimental results.

(a) Angle of twist

Consider now the solid circular shaft of radius R subjected to a torque T at one end, the
other end being fixed (Fig. 8.2). Under the action of this torque a radial line at the free end of
the shaft twists through an angle 9, point A moves to B, and AB subtends an angle y at the
fixed end. This is then the angle of distortion of the shaft, i.e. the shear strain.

SinCe angle in radians = arc + radius

arc AB = R8 = Ly

y = R8/ L (8.1)

From the definition of rigidity modulus
shear stress T

shear strain y
G=
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T 

. .  

Fig. 8.2. 

T y = -  
G 

where T is the shear stress set up at radius R. 
Therefore equating eqns. (8.1) and (8.2), 

where T' is the shear stress at any other radius r. 

(b) Stresses 

Let the cross-section of the shaft be considered as divided into elements of radius r and 
thickness dr as shown in Fig. 8.3 each subjected to a shear stress z'. 

Fig. 8.3. Shaft cross-section. 

The force set up on each element 

= stress x area 

= 2' x 2nr dr (approximately) 
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This force will produce a moment about the centre axis of the shaft, providing a contribution 
to the torque 

= (7' x 2nrdr) x r 

= 2n7'r2 dr 

The total torque on the section T will then be the sum of all such contributions across the 
section, 

i.e. T = 2nz'r2dr i 
J 
0 

Now the shear stress z' will vary with the radius rand must therefore be replaced in terms of r 
before the integral is evaluated. 

From eqn. (8.3) 

R 

. .  
0 

= E L j k r 3  dr 
0 

The integral 5 0" 2nr3 dr is called the polar second moment of area J ,  and may be evaluated as a 
standard form for solid and hollow shafts as shown in $8.2 below. 

GO 
L 

T = - J  . .  

or 
T GO 
J L  

=- - 

Combining eqns. (8.3) and (8.4) produces the so-called simple theory of torsion: 

T z G8 -- - J - R - L  

8.2. Polar second moment of area 

As stated above the polar second moment of area J is defined as 

J = 2nr3dr 
0 i' 
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For a solid shafi, 
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nD* 
or - 

4 32 
2 n ~ 4  =- 

For a hollow shaft of internal radius r, 

J = 2 n  r 3 d r = 2 n  - i [:I: 
x x 

= -(R4-r4) or -(D4-d*) 
2 32 

$8.3 

For thin-walled hollow shafis the values of D and d may be nearly equal, and in such cases 
there can be considerable errors in using the above equation involving the difference of two 
large quantities of similar value. It is therefore convenient to obtain an alternative form of 
expression for the polar moment of area. 

Now 

J = 2nr3dr = C(2nrdr)r’ 

= AY’ 

0 i 
where A ( = 2nr dr) is the area of each small element of Fig. 8.3, i.e. J is the sum of the Ar2 
terms for all elements. 

If a thin hollow cylinder is therefore considered as just one of these small elements with its 
wall thickness t = dr, then 

J = Ar’ = (2nrt)r’ 

= 2xr3t (approximately) (8.8) 

8.3. Shear stress and shear strain in shafts 

The shear stresses which are developed in a shaft subjected to pure torsion are indicated in 
Fig. 8.1, their values being given by the simple torsion theory as 

GO 
L 

7 = - R  

Now from the definition of the shear or rigidity modulus G, 
r = Gy 

It therefore follows that the two equations may be combined to relate the shear stress and 
strain in the shaft to the angle of twist per unit length, thus 
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or, in terms of some internal radius r, 

(8.10) 

These equations indicate that the shear stress and shear strain vary linearly with radius and 
have their maximum value at the outside radius (Fig. 8.4). The applied shear stresses in the 
plane of the cross-section are accompanied by complementary stresses of equal value on 
longitudinal planes as indicated in Figs. 8.1 and 8.4. The significance of these longitudinal 
shears to material failure is discussed further in 88.10. 

Fig. 8.4. Complementary longitudinal shear stress in a shaft subjected to torsion. 

8.4. Section modulus 

It is sometimes convenient to re-write part of the torsion theory formula to obtain the 
maximum shear stress in shafts as follows: 

T T  
J R  
-= -  

With R the outside radius of the shaft the above equation yields the greatest value possible 
for T (Fig. 8.4), 

i.e. 
TR 

7-= - 
J 

T 
Z T-=- . .  (8.11) 

where 2 = J/R is termed the polar section modulus. It will be seen from the preceding section 
that: 

nD3 
16 

Z=- (8.12) for solid shafts, 

and for hollow shafts, ~ ( D 1 - d ~ )  
160 

Z- (8.13) 
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8.5. Torsional rigidity 

The angle of twist per unit length of shafts is given by the torsion theory as 

e~ 
L = G J  
- 

The quantity G J  is termed the torsional rigidity of the shaft and is thus given by 

T 
GJ =- 

9 1 ~  
(8.14) 

i.e. the torsional rigidity is the torque divided by the angle of twist (in radians) per unit length. 

8.6. Torsion of hollow shafts 

It has been shown above that the maximum shear stress in a solid shaft is developed in the 
outer surface, values at other radii decreasing linearly to zero at the centre. It is clear, 
therefore, that if there is to be some limit set on the maximum allowable working stress in the 
shaft material then only the outer surface of the shaft will reach this limit. The material within 
the shaft will work at a lower stress and, particularly near the centre, will not contribute as 
much to the torque-carrying capacity of the shaft. In applications where weight reduction is 
of prime importance as in the aerospace industry, for instance, it is often found advisable to 
use hollow shafts. 

The relevant formulae for hollow shafts have been introduced in $8.2 and will not be 
repeated here. As an example of the increased torque-to-weight ratio possible with hollow 
shafts, however, it should be noted for a hollow shaft with an inside diameter half the outside 
diameter that the maximum stress increases by 6 % over that for a solid shaft of the same 
outside diameter whilst the weight reduction achieved is approximately 25 %. 

8.7. Torsion of thin-walled tubes 

The torsion of thin-walled tubes of circular and non-circular cross-section is treated fully 
in Mechanics of Materials 2. t 

8.8. Composite shafts - series connection 

If two or more shafts of different material, diameter or basic form are connected together in 
such a way that each carries the same torque, then the shafts are said to be connected in series 
and the composite shaft so produced is therefore termed series-connected (Fig. 8.5) (see 
Example 8.3). In such cases the composite shaft strength is treated by considering each 
component shaft separately, applying the torsion theory to each in turn; the composite shaft 
will therefore be as weak as its weakest component. If relative dimensions of the various parts 
are required then a solution is usually effected by equating the torques in each shaft, e.g. for 
two shafts in series 

T=-----  GlJlO1 =- 

Ll L2 

t E. J. Hearn, Mechanics of Materials 2, 3rd edition (Butterworth-Heinemann, Oxford, 1997). 

(8.15) 
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Fig. 8.5. “Series<onnected shaft - common torque. 

In some applications it is convenient to ensure that the angles of twist in each shaft are 
equal, i.e. 8, = f12, so that for similar materials in each shaft 

J l  Jz 
Ll L2 

LZ J 2  

- -_  - 

- Ll =- J1 or (8.16) 

8.9. Composite shafts - parallel connection 

If two or more materials are rigidly fixed together such that the applied torque is shared 
between them then the composite shaft so formed is said to be connected in parallel (Fig. 8.6). 

Torque T 

Fig. 8.6. “Parallelconnected” shaft - shared torque. 

For parallel connection, 
total torque T = TI +Tz 

In this case the angles of twist of each portion are equal and 

(8.17) 

(8.18) 
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i.e. for equal lengths (as is normally the case for parallel shafts) 

(8.19) 

Thus two equations are obtained in terms of the torques in cach part of the composite shaft 
and these torques can therefore be determined. 

The maximum stresses in each part can then be found from 

T2 R2 and T~ =- TI =- Tl Rl 
Jl  J2 

8.10. Principal stresses 

It will be shown in 813.2 that a state of pure shear as produced by the torsion of shafts is 
equivalent to a system of biaxial direct stresses, one stress tensile, one compressive, of equal 
value and at 45" to the shaft axis as shown in Fig. 8.7; these are then the pMcipal stresses. 

Fig. 8.7. Shear and principal stresses in a shaft subjected to torsion. 

Thus shafts which are constructed from brittle materials which are notably weaker under 
direct stress than in shear (cast-iron, for example) will fail by cracking along a helix inclined at 
45" to the shaft axis. This can be demonstrated very simply by twisting a piece of chalk to 
failure (Fig. 8.8a). Ductile materials, however, which are weaker in shear, fail on the shear 
planes at right angles to the shaft axis (Fig. 8.8b). In some cases, e.g. timber, failure occurs by 
cracking along the shear planes parallel to the shaft axis owing to the nature of the material 
with fibres generally parallel to the axis producing a weakness in shear longitudinally rather 
than transversely. The complementary shears of Fig. 8.4 then assume greater significance. 

8.11. Strain energy in torsion 

It will be shown in 511.4 that the strain energy stored in a solid circular bar or shaft 
subjected to a torque Tis  given by the alternative expressions 

T2L GJg2 72 

2GJ 2L 4G u = = - - --_ - - xvolume (8.20) 
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Fig. 8.8a. Typical failure of a brittle material (chalk) in torsion. Failure occurs on a 45° helix
owing to the action of the direct tensile stresses produced at 45° by the applied torque.

Fig. 8.8b. (Foreground) Failure of a ductile steel in torsion on a plane perpendicular to the specimen
longitudinal axis. Scribed lines on the surface of the specimen which were parallel to the longitudinal
axis before torque application indicate the degree of twist applied to the specimen. (Background)
Equivalent failure of a more brittle, higher carbon steel in torsion. Failure again occurs on 450 planes

but in this case, as often occurs in practice, a clean fracture into two pieces did not take place.
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8.12. Variation of data along shaft leogth-torsion of tapered shafts 

This section illustrates the procedure which may be adopted when any of the quantities 
normally used in the torsion equations vary along the length of,the shaft. Provided the 
variation is known in terms of x, the distance along the shaft, then a solution can be obtained. 

I-L-' 

Fig. 8.9. Torsion of a tapered shaft. 

Consider, therefore, the tapered shaft shown in Fig. 8.9 with its diameter changing linearly 
from d ,  to d B  over a length L. The diameter at any section x from end A is then given by 

Provided that the angle of the taper is not too great, the simple torsion theory may be applied 
to an element at section XX in order to determine the angle of twist of the shaft, i.e. for the 
element shown, 

Gd8 T 
dx  J x x  

- 

Therefore the total angle of twist of the shaft is given by 

Now 

Substituting and integrating, 

the standard result for a parallel shaft. 
32 TL 

When d A  = d B  = d this reduces to 8 = - 
nGd 

8.13. Power transmitted by shafts 

If a shaft carries a torque T Newton metres and rotates at o rad/s it will do work at the rate 
of 

Tw Nm/s (or joule/s). 
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Now the rate at which a system works is defined as its power, the basic unit of power being the 
Watt (1 Watt = 1 Nm/s). 
Thus, the power transmitted by the shaft: 

= To Watts. 

Since the Watt is a very small unit of power in engineering terms use is normally made of SI .  
multiples, i.e. kilowatts (kW) or megawatts (MW). 

8.14. Combined stress systems - combined bending and torsion 

In most practical transmission situations shafts which carry torque are also subjected to 
bending, if only by virtue of the self-weight of the gears they carry. Many other practical 
applications occur where bending and torsion arise simultaneously so that this type of 
loading represents one of the major sources of complex stress situations. 

In the case of shafts, bending gives rise to tensile stress on one surface and compressive 
stress on the opposite surface whilst torsion gives rise to pure shear throughout the shaft. An 
element on the tensile surface will thus be subjected to the stress system indicated in Fig. 8.10 
and eqn. (13.11) or the Mohr circle procedure of 513.6 can be used to obtain the principal 
stresses present. 

Fig. 8.10. Stress system on the surface of a shaft subjected to torque and bending. 

Alternatively, the shaft can be considered to be subjected to equivalent torques or equivalent 
bending moments as described below. 

8.15. Combined bending and torsion - equivalent bending moment 

For shafts subjected to the simultaneous application of a bending moment M and torqueT 
the principal stresses set up in the shaft can be shown to be equal to those produced by afi 
equivalent bending moment, of a certain value M e  acting alone. 

From the simple bending theory the maximum direct stresses set up at the outside surface 
of the shaft owing to the bending moment M are given by 

Similarly, from the torsion theory, the maximum shear stress in the surface of the shaft is 
given by 

TR TD 
J 2 5  

7=-=- 
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But for a circular shaft J = 21, 
TD 
41 

. .  T = -  

The principal stresses for this system can now be obtained by applying the formula derived 
in 5 13.4, 
i.e. 

and, with o,, = 0, the maximum principal stress o1 is given by 

o1 or o2 = i (a, + cy) f 3 ,/[(a, - oJ2 + 4 ~ ~ 1  

c1 =-(-) 1 M D  +:J[ ( $ r + 4 ( $ r ]  
2 21 

Now if M e  is the bending moment which, acting alone, will produce the same maximum 
stress, then 

. .  -=-( MeD 1 D ) [ M + , / ( M 2 + T 2 ) ]  
21 2 z 

i.e. the equivalent bending moment is given by 

Me = 3 [M + J ( M 2  + T 2 ) ]  

and it will produce the same maximum direct stress as the combined bending and torsion 
effects. 

(8.21) 

8.16. Combined bending and torsion - equivalent torque 

Again considering shafts subjected to the simultaneous application of a bending moment 
M and a torque T the maximum shear stress set up in the shaft may be determined by the 
application of an equivalent torque of value Te acting alone. 

From the preceding section the principal stresses in the shaft are given by 

o1 = - ( - ) [ M + J ( M 2 + T 2 ) ]  1 D  = f ( P ) I M + , / ( M 2 + T 2 ) 1  
2 21 

and a 2 = j  ( Ti ) [ M  - J ( M 2  + T 2 ) ]  = [ M  - J ( M 2  + T 2 ) ]  

Now the maximum shear stress is given by eqn. (13.12) 
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But, from the torsion theory, the equivalent torque T, will set up a maximum shear stress of 

Thus if these maximum shear stresses are to be equal, 

T, = J ( M ~  + T ~ )  (8.22) 

It must be remembered that the equivalent moment M, and equivalent torqueT, are merely 
convenient devices to obtain the maximum principal direct stress or maximum shear stress, 
respectively, under the combined stress system. They should not be used for other purposes 
such as the calculation of power transmitted by the shaft; this depends solely on the torque T 
carried by the shaft (not on T,). 

8.17. Combined bending, torsion and direct thrust 

Additional stresses arising from the action of direct thrusts on shafts may be taken into 
account by adding the direct stress due to the thrust od to that of the direct stress due to 
bending ob taking due account of sign. The complex stress system resulting on any element in 
the shaft is then as shown in Fig. 8.11 and may be solved to determine the principal stresses 
using Mohr’s stress circle method of solution described in 0 13.6. 

Fig. 8.11. Shaft subjected to combined bending, torque and direct thrust. 

This type of problem arises in the service loading condition of marine propeller shafts, the 
direct thrust being the compressive reaction of the water on the propeller as the craft is 
pushed forward. This force then exists in combination with the torque carried by the shaft in 
doing the required work and any bending moments which exist by virtue of the self-weight of 
the shaft between bearings. 

The compressive stress od arising from the propeller reaction is thus superimposed on the 
bending stresses; on the compressive bending surface it will be additive to ob whilst on the 
”tensile” surface it will effectively reduce the value of ob, see Fig. 8.1 1. 

8.18. Combined bending, torque and internal pressure 

In the case of pressurised cylinders, direct stresses will be introduced in two perpendicular 
directions. These have been introduced in Chapters 9 and 10 as the radial and circumferential 
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stresses u, and uH. If the cylinder also carries a torque then shear stresses will be introduced, 
their value being calculated from the simple torsion theory of 48.3. The stress system on an 
element will thus become that shown in Fig. 8.12. 

If bending is present it will generally be on the x axis and will result in a modification to the 
value of 6,. If the element is taken on the tensile surface of the cylinder then the bending stress 
ub will add to the value of uH, if on the compressive surface it must be subtracted from crH. 

Once again a solution to such problems can be effected either by application of eqn. (13.1 1) 
or by a Mohr circle approach. 

Fig. 8.12. Stress system under combined torque and internal pressure. 

Examples 

Example 8.1 

(a) A solid shaft, 100 mm diameter, transmits 75 kW at 150 rev/min. Determine'the value 
of the maximum shear stress set up in the shaft and the angle of twist per metre of the shaft 
length if G = 80 GN/m2. 

(b) If the shaft were now bored in order to reduce weight to produce a tube of 100 mm 
outside diameter and 60mm inside diameter, what torque could be carried if the same 
maximum shear stress is not to be exceeded? What is the percentage increase in power/weight 
ratio effected by this modification? 

Solution 

power .'. torque T = - Power = Tw 
0 

= 4.77 kNm 
75 x 103 

T =  
150 x 27c/60 

From the torsion theory . 
K * - = -  ' and J = - x loo4 x = 9.82 x m4 

J R  32 

TR,,- 4.77 x 103 x 50 x 10-3 
= 24.3 MN/m2 

9.82 x 
tma,= - - 

J 
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Also from the torsion theory 

191 

4.77 x 103 x 1 
= 6.07 x 1O-j rad/m TL 

GJ 
e = - - =  

80 x lo9 x 9.82 x 

360 
2n = 6.07 x x - = 0.348 degrees/m 

(b) When the shaft is bored, the polar moment of area J is modified thus: 

72 n 
J=-(D4-d4)=-(1004-604)10-12 =8.545x 10e6m4 

32 32 

The torque carried by the modified shaft is then given by 

= 4.15 x lo3 Nm TJ 24.3 x lo6 x 8.545 x T = - =  
R 50 x 10-3 

Now, weight/metre of original shaft 

n 
= - x x 1 x pg = 7.854 x pg 

4 

where p is the density of the shaft material. 

72 
Also, weight/metre of modified shaft = - (loo2 - 602)10T6 x 1 x pg 4 

= 5.027 x pg 

TO 
weight/metre 

Power/weight ratio for original shaft = 

4.77 x 103 w 
= 6.073 x lo5- 

7.854 x pg P9 
- - 

Power/weight ratio for modified shaft 

4.15 x 103 O 
= 8.255 x lo5 - 

5.027 x pg P9 
- - 

Therefore percentage increase in power/weight ratio 

(8.255 - 6.073) 
x 100 = 36% - - 

6.073 

Example 8.2 

Determine the dimensions of a hollow shaft with a diameter ratio of 3:4 which is to 
transmit 60 kW at 200 revh in .  The maximum shear stress in the shaft is limited to 
70 MN/m2 and the angle of twist to 3.8" in a length of 4 m. 

For the shaft material G = 80 GN/m2. 



192 Mechanics of Materials 

Solution 

The two limiting conditions stated in the question, namely maximum shear stress and angle 
of twist, will each lead to different values for the required diameter. The larger shaft must then 
be chosen as the one for which neither condition is exceeded. 

Maximum shear stress condition 

2n 
60 Since power = Tw and o = 200 x - = 20.94 rad/s 

then = 2.86 x lo3 Nm 
60 x 103 

20.94 
T =  

From the torsion theory 
TR 

J = -  
T 

. .  n 2.86 x 103 x D 
- (04 - d4)  = 
32 70 x lo6 x 2 

But d/D = 0.75 

n . .  -D4(l -0.754) = 20.43 x 10-6D 
32 

= 304.4 x 
20.43 x D3 = 

0.067 1 

. .  
and 

D = 0.0673 m = 67.3 mm 
d = 50.5 mm 

Angle of twist condition 

Again from the torsion theory 
T L  

J = -  
GO 

n 
-D4(l -0.754) =.2.156 x 32 

and 
D = 0.0753 m = 75.3 mm 
d = 56.5 mm 
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Thus the dimensions required for the shaft to satisfy both conditions are outer diameter 
75.3mm; inner diameter 565 mm. 

Exarnplc 8.3 

(a) A steel transmission shaft is 510 mm long and 50 mm external diameter. For part of its 
length it is bored to a diameter of 25 mm and for the rest to 38 mm diameter. Find the 
maximum power that may be transmitted at a speed of 210 rev/min if the shear stress is not to 
exceed 70 MN/m2. 

(b) If the angle of twist in the length of 25 mm bore is equal to that in the length of 38 mm 
bore, find the length bored to the latter diameter. 

Solution 

(a) This is, in effect, a question on shafts in series since each part is subjected to the same 

From the torsion theory 
torque. 

and as the maximum stress and the radius at which it occurs (the outside radius) are the same 
for both shafts the torque allowable for a known value of shear stress is dependent only on 
the value of J. This will be least where the internal diameter is greatest since 

A 
J = -((04-d4) 

32 

IC .. least value of J = - (504 - 384)10-12 = 0.41 x m4 32 

Therefore maximum allowable torque if the shear stress is not to exceed 70 MN/mf (at 
25 mm radius) is given by 

T =  = 1.15 x 103 
70 x lo6 x 0.41 x 

25 x 10-3  Nm 

2x Maximum power = Tw = 1.15 x lo3 x 210 x - 
60 

= 25.2 x lo3 = 25.2 kW 

(b) Let suffix 1 refer to the 38 mm diameter bore portion and suffix 2 to the other part. 
Now for shafts in series, eqn. (8.16) applies, 

i.e. 
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. .  

. .  
But 
. .  

L2 = 1.43 L, 
Ll + L2 = 510mm 

Ll( l  + 1.43) = 510 

= 1.43 

510 
2.43 L1 = - = 210mm 

Example 8.4 

A circular bar ABC, 3 m long, is rigidly fixed at its ends A and C .  The portion AB is 1.8 m 
long and of 50 mm diameter and BC is 1.2 m long and of 25 mm diameter. If a twisting 
moment of 680 N m is applied at B, determine the values of the resisting momentsat A and C 
and the maximum stress in each section of the shaft. What will be the angle of twist of each 
portion? 

For the material of the shaft G = 80 GN/m2. 

Solution 

In this case the two portions of the shuft are in parallel and the applied torque is shared 

Since the angles of twist in each portion are equal and G is common to both sections, 
between them. Let suffix 1 refer to portion AB and suffix 2 to portion BC. 

then 

. .  

n 
- x SO4 

1.2 J ,  L2 32 
n 1.8 
32 

x - x T ~  Tl =- x - x T ~  = 

- ~ 2 5 ~  5 2  Ll 

16 x 1.2 
1.8 

- -- T2 = 10.67T2 

Total torque = T, +T2 = T2(10.67 + 1) = 680 

and Tl = 621.7Nm 

For portion AB, 

T I R ,  621.7 x 25 x lo-’ 

- x 504 x 
32 

rmax= - - - = 25.33 x lo6 N/m2 
IL J ,  
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For portion BC, 
TzRz 58.3 x 12.5 x lo-' 

32 

5,,,= - - - = 19.0 x lo6 N/mZ 
J2 1 x 254 x 10-12 

Tl Ll 
JIG 

Angle of twist for each portion = - 

621.7 x 1.8 

- x 504 x lo-'' x 80 x lo9 
32 

- - = 0.0228 rad = 1.3 degrees 
It 

Problems 

8.1 (A). A solid steel shaft A of Mmm diameter rotates at 25Orev/min. Find the greatest power that can be 

It is proposed to replace A by a hollow shaft E,  of the Same external diameter but with a limiting shearing stress of 

[38.6kW, 33.4mm.l 

8.2 (A). Calculate the dimensions of a hollow steel shaft which is required to transmit 7% kW at a speed of 
400 rev/min if the maximum torque exceeds the mean by 20 % and the greatest intensity of shear stress is limited to 
75 MN/m2. The internal diameter of the shaft is to be 80 % of the external diameter. (The mean torque is that derived 
from the horsepower equation.) C135.2, 108.2 mm.] 

8.3 (A). A steel shaft 3 m long is transmitting 1 MW at 240 rev/min. The working conditions to be satisfied by the 
shaft are: 

(a) that the shaft must not twist more than 0.02radian on a length of 10 diameters; 
(b) that the working stress must not exceed 60 MN/m2. 
If the modulus of rigidity of steel is 80 GN/m2 what is 

(i) the diameter of the shaft required 
(ii) the actual working stress; 

(iii) the angle of twist of the 3 m length? [B.P.] [lMmm; 60MN/m2; 0.03Orad.l 

8.4 (A). A hollow shaft has to transmit 6MW at 150rev/min. The maximum allowable stress is not to exceed 
60 MN/m2 nor the angle of twist 0.3" per metre length of shafting. If the outside diameter of the shaft is 300 mm find 

[61.5mm.] the minimum thickness of the hollow shaft to satisfy the above conditions. G = 80 GN/m2. 
8.5 (A). A flanged coupling having six bolts placed at a pitch circle diameter of 180mm connects two lengths of 

solid steel shafting of the same diameter. The shaft is required to transmit 80kW at 240rev/min. Assuming the 
allowable intensities of shearing stresses in the shaft and bolts are 75 MN/m2 and 55 MN/m2 respectively, and the 
maximum torque is 1.4 times the mean torque, calculate: 

transmitted for a limiting shearing stress of 60 MN/m2 in the steel. 

75 MN/m2. Determine the internal diameter of B to transmit the same power at the same speed. 

(a) the diameter of the shaft; 
(b) the diameter of the bolts. [B.P.] C67.2, 13.8 mm.] 

8.6 (A). A hollow low carbon steel shaft is subjected to a torque of 0.25 MN m. If the ratio of internal to external 
diameter is 1 to 3 and the shear stresdiTe to torque has to be limited to 70 MN/m2 determine the required diameters 
and the angle of twist in degrees per metre length of shaft. 

G = 80GN/m2. [I.Struct.E.] [264, 88 mm; 0.38O.I 

8.7 (A). Describe how you would carry out a torsion test on a low carbon steel specimen and how, from data 
taken, you would find the modulus of rigidity and yield stress in shear of the steel. Discuss the nature of the 
torque- twist curve a d  compare it with the shear stress-shear strain relationship. CU.Birm.1 

8.8 (A/B). Opposing axial torques are applied at the ends of a straight bar ABCD. Each of the parts AB, BC and 
CD is 500 mm long and has a hollow circular cross-section, the inside and outside diameters bein& respectively, AB 
25 mm and 60 mm, BC 25 mm and 70 mm, CD 40 mm and 70 mm. The modulus of rigidity of the material is 
80 GN/m2 throughout. Calculate: 

(a) the maximum torque which can be applied if the maximum shear stress is not to exceed 75 MN/mZ; 
(b) the maximum torque if the twist of D relative to A is not to exceed 2". [E.I.E.] C3.085 kN m, 3.25 kN m.] 
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8.9 (A/B). A solid steel shaft of 200mm diameter transmits 5MW at 500rev/min. It is proposed to alter the 
horsepower to 7 MW and the speed to 440rev/min and to replace the solid shaft by a hollow shaft made of the same 
type of steel but having only 80 % of the weight of the solid shaft. The length of both shafts is the same and the hollow 
shaft is to have the same maximum shear stress as the solid shaft. Find 

(a) the ratio between the torque per unit angle of twist per metre for the two shafts; 
(b) the external and internal diameters for the hollow shaft. [LMech.E.] [2.085; 261, 190mm.1 
8.10 (A/B). A shaft ABC rotates at 600 rev/min and is driven through a coupling at the end A. At B a puUey takes 

off two-thirds of the power, the remainder being absorbed at C. The part AB is 1.3 m long and of lOOmm diamew, 
BC is 1.7m long and of 75mm diameter. The maxlmum shear stress set up in BC is 40MN/mZ. Determine the 
maximum stress in AB and the power transmitted by it, and calculate the total angle of twist in the length AC. 

Take G = 80 GN/mZ. [I.Mech.E.] C16.9 MN/mZ; 208 k W  1.61O.I 
8.11 (A/B). A composite shaft consists of a steel rod of 75 mm diameter surrounded by a closely fitting brass tube 

firmly fixed to it. Find the outside diameter of the tube such that when a torque is applied to the composite shaft i t ,  
will be shared equally by the two materials. 
Gs = 80GN/m2; G B  = 40GN/mZ. 
If the torque is 16 kN m, calculate the maximum shearing stress in each material and the angle of twist on a length 

of 4m. [U.L.] [98.7mm; 96.6, 63.5 MN/m2; 7.3V.l 

8.12 (A/B). A circular bar 4 m long with an external radius of 25 mm is solid over half its length and bored to an 
internal radius of 12 mm over the other half. If a torque of 120N m is applied at the Centre of the shaft, the two ends 
being fixed, determine the maximum shear stress set up in the surface of the shaft and the work done by the torque in 
producing this stress. C2.51 MN/m2; 0.151 NUL] 

8.13 (A/B). The shaft of Problem 8.12 is now fixed at one end only and the torque applied at  the free end. How 
will the values of maximum shear stress and work done change? [5.16MN/m2; 0.603Nm.l 
8.14 (B). Calculate the minimum diameter of a solid shaft which is required to transmit 70 kW at 6oom/min if 

the shear stress is not to exceed 75 MN/m2. If a bending moment of 300 N m is now applied to the shaft lind the speed 
at which the shaft must be driven in order to transmit the same horsepower for the same value of maximum shear 
stress. [630 rev/min.] 

8.15 (B). A sohd shaft of 75 mm diameter and 4 m span supports a flywheel of weight 2.5 kN at a point 1.8 m from 
one support. Determine the maximum direct stress produced in the surface of the shaft when it transmits 35 kW at 
200 rev/min. C65.9 MN/m2.] 

8.16 (B). The shaft of Problem 12.15 is now subjected to an axial compressive end load of 80kN, the other 
conditions remaining unchanged. What will be the magnitudes of the maximum principal stress in the shaft? 

[84 MN/mz.] 
8.17 (B). A horizontal shaft of 75 mm diameter projects from a bearing, and in addition to the torque transmitted 

the shaft camesa vertical load of 8 kN at 300 mm from the bearing. If the safe stress for the material, as determined in 
a simple tension test, is 135 MN/m2 find the safe torque to which the shaft may be subjected using as the criterion 
(a) the maximum shearing stress, (b) the maximum strain energy per unit volume. Poisson’s ratio v = 0.29. 

CU.L.1 C5.05, 8.3 kN m.] 
8.18 (B). A pulley subjected to vertical belt drive develops 10 kW at 240rev/min, the belt tension ratio being 0.4. 

The pulley is fixed to the end of a length of overhead shafting which is supported in two self-aligning bearings, the 
centre line of the pulley overhanging the centre line of the left-hand bearing by 150mm. If the pulley is of 250mm 
diameter and weight 270N, neglecting the weight of the shafting, find the minimum shaft diameter required if the 
maximum allowable stress intensity at a poiat on the top surface of the shaft at  thecentre line of the left-hand bearing 
is not to exceed 90 MN/m2 direct or 40 MN/m2 shear. [ S O 3  mm.] 

8.19 (B). A hollow steel shaft of l00mm external diameter and 50mm internal diameter transmits 0.6MW at 
500 rev/min and is subjected to an end thrust of 45 kN. Find what bending moment may safely be applied if the 
greater principal stress is not to exceed 90 MN/m’. What will then be the value of the smaller principal stress? 

[City U.] 13.6 kN m; - 43.1 MN/m2.] 
8.20 (B). A solid circular shaft is subjected to an axial torque T and to a bending moment M. If M = kT, 

determine in terms of k the ratio of the maximum principal stress to the maximum shear stress. Find the power 
transmitted by a 50mm diameter shaft, at a speed of 300rev/min when k = 0.4 and the maximum shear s t m  is 
75 MN/m’. [LMech.] [l + k / , / ( k 2  + 1);57.6kW.] 

8.21 (B). (a) A solid circular steel shaft is subjected to a bending moment of 10 kN m and is required to transmit a 
maximum power of 550 kW at 420 rev/min. Assuming the shaft to be. simply supported at each end and neglecting the 
shaft weight, determine the ratio of the maximum principd stress to the maximum shear stress induced in the shaft 
material. 
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(b) A 300 mm external diameter and 200 mm internal diameter hollow steel shaft operates under the following 
COIlditi0nS: 

power transmitted = 22sOkW; maximum torque = 1.2 x mean torque; maximum bending moment 
= 11 kN m; maximum end thrust = 66 k N  maximum priocipal compressive stress = 40 MN/mz. 

Determine the maximum safe speed of rotation for the shaft. [ 1.625 : 1; 169 rev/min.] 

8.22 (C). A uniform solid shaft of circular cross-section will drive the propeller of a ship. It will therefore 
neassady be subject simultaneously to a thrust load and a torque. The magnitude of the thrust QUI be related to the 
magnitude of the torque by the simple relationship N = KT, where N denotes the magnitude of the thrust, Tthat of 
the torque and K is a constant, There will also be some bending moment on the shaft. Assuming that the design 
requirement is that the maximum shearing stress in the material shall nowhere exceed a certain value, denoted by r, 
show that the maximum bending moment that can be allowed is given by the expression 

bending moment, M = [ ($ - 1 )”’ - 
where r denotes the radius of the shaft cross-sxtion. [City U.] 


