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Introduction 

When dealing with the design of structures or components the physical properties of the 
constituent materials are usually found from the results of laboratory experiments which 
have only subjected the materials to the simplest stress conditions. The most usual test is the 
simple tensile test in which the value of the stress at yield or at fracture (whichever occurs first) 
is easily determined. The strengths of materials under complex stress systems are not 
generally known except in a few particular cases. In practice it is these complicated systems of 
stress which are more often encountered, and therefore it is necessary to have some basis for 
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determining allowable working stresses so that failure will not occur. Thus the function of the 
theories of elastic failure is to predict from the behaviour of materials in a simple tensile test 
when elastic failure will occur under any condition of applied stress. 

A number of theoretical criteria have been proposed each seeking to obtain adequate 
correlation between estimated component life and that actually achieved under service load 
conditions for both brittle and ductile material applications. The five main theories are: 

(a) Maximum principal stress theory (Rankine). 
(b) Maximum shear stress theory (Guest-Tresca). 
(c) Maximum principal strain (Saint-Venant). 
(d) Total strain energy per unit volume (Haigh). 
(e) Shear strain energy per unit volume (Maxwell-Huber-von Mises). 

In each case the value of the selected critical property implied in the title of the theory is 
determined for both the simple tension test and a three-dimensional complex stress system. 
These values are then equated to produce the so-called criterion for failure listed in the last 
column of Table 15.1. 

In Table 15.1 u,, is the stress at the yield point in the simple tension test, and ul, u2 and u3 
are the three principal stresses in the three-dimensional complex stress system in order of 
magnitude. Thus in the case of the maximum shear stress theory u1 -u3 is the greatest 
numerical difference between two principal stresses taking into account signs and the fact 
that one principal stress may be zero. 

Each of the first five theories listed in Table 15.1 will be introduced in detail in the following 
text, as will a sixth theory, (f) Mobr's modified sbear stress theory. Whereas the previous 
theories (a) to (e) assume equal material strength in tension and compression, the Mohr's 
modified theory attempts to take into account the additional strength of brittle materials in 
compression. 

15.1. Maximum principal stress theory 

This theory assumes that when the maximum principal stress in the complex stress system 
reaches the elastic limit stress in simple tension, failure occurs. The criterion of failure is thus 

Ul = by 

It should be noted, however, that failure could also occur in compression if the least 
principal stress u3 were compressive and its value reached the value of the yield stress in 
compression for the material concerned before the value of u,,, was reached in tension. An 
additional criterion is therefore 

uj = up (compressive) 

Whilst the theory can be shown to hold fairly well for brittle materials, there is considerable 
experimental evidence that the theory should not be applied for ductile materials. For 
example, even in the case of the pure tension test itself, failure for ductile materials takes place 
not because of the direct stresses applied but in shear on planes at 45" to the specimen axis. 
Also, truly homogeneous materials can withstand very high hydrostatic pressures without 
failing, thus indicating that maximum direct stresses alone do not constitute a valid failure 
criteria for all loading conditions. 
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15.2. Maximum shear stress theory 

This theory states that failure can be assumed to occur when the maximum shear stress in 
the complex stress system becomes equal to that at the yield point in the simple tensile test. 

Since the maximum shear stress is half the greatest difference between two principal 
stresses the criterion of failure becomes 

i.e. (15.1) 

the value of a3 being algebraically the smallest value, i.e. taking account of sign and the fact 
that one stress may be zero. This produces fairly accurate correlation with experimental 
results particularly for ductile materials, and is often used for ductile materials in machine 
design. The criterion is often referred to as the “Tresca” theory and is one of the widely used 
laws of plasticity. 

15.3. Maximum principal strain theory 

This theory assumes that failure occurs when the maximum strain in the complex stress 
system equals that at the yield point in the tensile test, 

i.e. 

a1 --a2 - v a 3  = ap 

This theory is contradicted by the results obtained from tests on flat plates subjected to two 
mutually perpendicular tensions. The Poisson’s ratio effect of each tension reduces the strain 
in the perpendicular direction so that according to this theory failure should occur at a higher 
load. This is not always the case. The theory holds reasonably well for cast iron but is not 
generally used in design procedures these days. 

(15.2) 

15.4. Maximum total strain energy per unit volume theory 

The theory assumes that failure occurs when the total strain energy in the complex stress 
system is equal to that at the yield point in the tensile test. 

From the work of $14.17 the criterion of failure is thus 

1 0: - [a: + a: + a: - 2v(a,a, + a2a3 + a3a1)] = - 
2E 2E 

i.e. uf + af +a: - 2v(a1 a2 + aza3  + 0 3 ~ 1 )  = a: (15.3) 

The theory gives fairly good results for ductile materials but is seldom used in preference to 
the theory below. 

15.5. Maximum shear strain energy per unit volume 
(or distortion energy) theory 

Section 14.17 again indicates how the strain energy of a stressed component can be divided 
into volumetric strain energy and shear strain energy components, the former being 
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associated with volume change and no distortion, the latter producing distortion of the 
stressed elements. This theory states that failure occurs when the maximum shear strain 
energy component in the complex stress system is equal to that at the yield point in the tensile 
test, 

i.e. 

or 1 u2 
- 6G c0: + 0: + 0: - (ala2 + 0 2 0 3  + O3O1) = 2 6G 

. .  (a1 - a2)2 + (a2 - up)? + (a3 - 6 1  )2 = 2 4  (15.4) 

This theory has received considerable verification in practice and is widely regarded as the 
most reliable basis for design, particularly when dealing with ductile materials. It is often 
referred to as the “von Mises” or “Maxwell” criteria and is probably the best theory of the 
five. It is also sometimes referred to as the distortion energy or maximum octahedral shear 
stress theory. 

In the above theories it has been assumed that the properties of the material in tension and 
compression are similar. It is well known, however, that certain materials, notably concrete, 
cast iron, soils, etc., exhibit vastly different properties depending on the nature of the applied 
stress. For brittle materials this has been explained by Griffith,? who has introduced the 
principle of surface energy at microscopic cracks and shown that an existing crack will 
propagate rapidly if the available elastic strain energy release is greater than the surface 
energy of the crack.$ In this way Griffith indicates the greater seriousness of tensile stresses 
compared with compressive ones with respect to failure, particularly in fatigue environments. 
A further theory has been introduced by Mohr to predict failure of materials whose strengths 
are considerably different in tension and shear; this is introduced below. 

15.6. Mohr’s modified shear stress theory for brittle materials 
(sometimes referred to as the internal friction theory) 

Brittle materials in general show little ability to deform plastically and hence will usually 
fracture at, or very near to, the elastic limit. Any of the so-called “yield criteria” introduced 
above, therefore, will normally imply fracture of a brittle material. It has been stated 
previously, however, that brittle materials are usually considerably stronger in compression 
than in tension and to allow for this Mohr has proposed a construction based on his stress 
circle in the application of the maximum shear stress theory. In Fig. 15.1 the circle on 
diameter OA is that for pure tension, the circle on diameter OB that for pure compression and 
the circle centre 0 and diameter CD is that for pure shear. Each of these types of test can be 
performed to failure relatively easily in the laboratory. An envelope to these curves, shown 
dotted, then represents the failure envelope according to the Mohr theory. A failure condition 
is then indicated when the stress circle for a particular complex stress condition is found to cut 
the envelope. 

t A. A. Griffith, The phenomena of rupture and flow of solids, Phil. Trans. Royal SOC., London, 1920. 
$ J. F. Knott, Fundamentals of Fracture Mechanics (Butterworths, London), 1973. 
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Y I 

Fig. 15.1. Mohr theory on 0-T axes. 

As a close approximation to this procedure Mohr suggests that only the pure tension and 
pure compression failure circles need be drawn with OA and OB equal to the yield or fracture 
strengths of the brittle material. Common tangents to these circles may then be used as the 
failure envelope as shown in Fig. 15.2. Circles drawn tangent to this envelope then represent 
the condition of failure at the point of tangency. 

r 

Fig. 15.2. Simplified Mohr theory on g-7 axes. 

In order to develop a theoretical expression for the failure criterion, consider a general 
stress circle with principal stresses of o1 and 02. It is then possible to develop an expression 
relating ol, 02, the principal stresses, and o,,, o,,, the yield strengths of the brittle material in 
tension and compression respectively. 

From the geometry of Fig. 15.3, 
K L  J L  
K M  MH 
-=- 

Now, in terms of the stresses, 

K L  =$(.I +o,)-oa, + $ c ~ , = $ ( D ~ , - Q ~  +a,) 

K M = $a,, + *oyc = f (oY, + on) 

J L  = $(01+ 0 2 )  -$o,, = $(GI + 6 2  - oy,) 

M H = ' ~  -Lo -o ) 
2 Yc 2 Y,  2 Yc Y ,  
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T 

t 

Fig. 15.3. 

Substituting, 
ayI-ao,+a2 al+a2-ayl - - 

CY1 + OYc CY, - QYI 

Cross-multiplying and simplifying this reduces to 

(15.5) 0 1  0 2  -+-= 1 
by, CY, 

which is then the Mohr's modified shear stress criterion for brittle materials. 

15.7. Graphical representation of failure theories for two-dimensional 
stress systems (one principal stress zero) 

Having obtained the equations for the elastic failure criteria above in the general three- 
dimensional stress state it is relatively simple to obtain the corresponding equations when 
one of the principal stresses is zero. 

Each theory may be represented graphically as described below, the diagrams often being 
termed yield loci. 

(a) Maximum principal stress theory 

For simplicity of treatment, ignore for the moment the normal convention for the principal 
stresses, i.e. a1 > a2 > a3 and consider the two-dimensional stress state shown in Fig. 15.4 

i-' 
Fig. 15.4. Two-dimensional stress state (as = 0). 
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where a3 is zero and a2 may be tensile or compressive as appropriate, i.e. a2 may have a value 
less than a3 for the purpose of this development. 

The maximum principal stress theory then states that failure will occur when a1 or a2 = a,,, 
or a,,,. Assuming a,,, = a,,, = a,,, these conditions are represented graphically on aI, a2 
coordinates as shown in Fig. 15.5. If the point with coordinates (al, a2) representing any 
complex two-dimensional stress system falls outside the square, then failure will occur 
according to the theory. 

0 2  

t 

Fig. 15.5. Maximum principal stress failure envelope (locus). 

(b) Maximum shear stress theory 

For like stresses, i.e. a1 and a2, both tensile or both compressive (first and third quadrants), 
the maximum shear stress criterion is 

+(al -0)  = $0, or $(a2 -0) =+ay 

i.e. a1 = ay or a2 = a y  

thus producing the same result as the previous theory in the first and third quadrants. 
For unlike stresses the criterion becomes 

+(a1 - 6 2 )  = 3.y 

since consideration of the third stress as zero will not produce as large a shear as that when a2 
is negative. Thus for the second and fourth quadrants, 

These are straight lines and produce the failure envelope of Fig. 15.6. Again, any point outside 
the failure envelope represents a condition of potential failure. 

(c )  Maximum principal strain theory 

For yielding in tension the theory states that 

6 1  --a2 = by 
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Fig. 15.6. Maximum shear stress failure envelope 

and for compressive yield, with o2 compressive, 

Since this theory does not find general acceptance in any engineering field it is sufficient to 
note here, without proof, that the above equations produce the rhomboid failure envelope 
shown in Fig. 15.7. 

4 

Fig. 15.7. Maximum principal strain failure envelope. 

(d) Maximum strain energy per unit oolume theory 

With c3 = 0 this failure criterion reduces to 

a:+a;-2vo,02 = 6; 

i.e. 
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This is the equation of an ellipse with major and minor semi-axes 

*Y *' and 
J(1  - 4 J(1  + 4 

respectively, each at 45" to the coordinate axes as shown in Fig. 15.8. 

Fig. 15.8. Failure envelope for maximum strain energy per unit volume theory. 

(e) Maximum shear strain energy per unit volume theory 

With o3 = 0 the criteria of failure for this theory reduces to 

$[ (01 - a2)2 + *: + 4 1  = 0; 

a:+a;-rJa,a2 = 0; 

py+(;y-(:)(;)= 1 

again an ellipse with semi-axes J(2)ay and ,/(*)cy at 45" to the coordinate axes as shown in 
Fig. 15.9. The ellipse will circumscribe the maximum shear stress hexagon. 

\Sheor diagonal 

I 

Fig. 15.9. Failure envelope for maximum shear strain energy per unit volume theory. 
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(f) Mohr’s modijied shear stress theory (cJ,,, > cy,) 

For the original formulation of the theory based on the results of pure tension, pure 
compression and pure shear tests the Mohr failure envelope is as indicated in Fig. 15.10. 

In its simplified form, however, based on just the pure tension and pure compression 
results, the failure envelope becomes that of Fig. 15.11. 

Fig. 15.10. (a) Mohr theory on u-T axes. (b) Mohr theory failure envelope on u,-u2 axes. 

Q2 

Fig. 15.1 1. (a) Simplified Mohr theory on u-T axes. (b) Failure envelope for simplified Mohr theory. 

15.8. Graphical solation of two-dimensional theory of failure problems 

The graphical representations of the failure theories, or yield loci, may be combined onto a 
single set of ol and o2 coordinate axes as shown in Fig. 15.12. Inside any particular locus or 
failure envelope elastic conditions prevail whilst points outside the loci suggest that yielding 
or fracture will occur. It will be noted that in most cases the maximum shear stress criterion is 
the most conservative of the theories. The combined diagram is particularly useful since it 
allows experimental points to be plotted to give an immediate assessment of failure 
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Fig. 15.12. Combined yield loci for the various failure theories. 

probability according to the various theories. In the case of equal biaxial tension or 
compression for example al/uz = 1 and a so-called load line may be drawn through the 
origin with a slope of unity to represent this loading case. This line cuts the yield loci in the 
order of theories d; (a, b, e, f ); and c. In the case of pure torsion, however, u1 = z and uz = - z, 
i.e. al/az = - 1. This load line will therefore have a slope of - 1 and the order of yield 
according to the various theories is now changed considerably to (b; e, f, d,  c,  a). The load line 
procedure may be used to produce rapid solutions of failure problems as shown in 
Example 15.2. 

15.9. Graphical representation of the failure theories for 
threedimensional stress systems 

15.9.1. Ductile materials 

(a) Maximum shear strain energy or distortion energy (uon Mises) theory 

It has been stated earlier that the failure of most ductile materials is most accurately 
governed by the distortion energy criterion which states that, at failure, 

(al - az)’ + (az - a3)’ + (a3 - al)’ = 2a,Z = constant 

In the special case where u3 = 0, this has been shown to give a yield locus which is an ellipse 
symmetrical about the shear diagonal. For a three-dimensional stress system the above 
equation defines the surface of a regular prism having a circular cross-section, i.e. a cylinder 
with its central axis along the line u1 = uz = u3. The axis thus passes through the origin of the 
principal stress coordinate system shown in Fig. 15.13 and is inclined at equal angles to each 
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Fig. 15.13. Three-dimensional yield locus for Maxwell-von Mises distortion energy (shear strain
energy per unit volume) theory.

axis. It will be observed that when 0'3 = O the failure condition reverts to the ellipse

mentioned above, i.e. that produced by intersection of the (0'1'0'2) plane with the inclined

cylinder.
The yield locus for the von Mises theory in a three-dimensional stress system is thus the

surface of the inclined cylinder. Points within the cylinder represent safe conditions, points
outside indicate failure conditions. It should be noted that the cylinder axis extends
indefinitely along the 0' 1 = 0' 2 = 0' 3line, this being termed the hydrostatic stress line. It can be

shown that hydrostatic stress alone cannot cause yielding and it is presumed that all other
stress conditions which fall within the cylindrical boundary may be considered equally safe.

(b) Maximum shear stress (Tresca) theory

With a few exceptions, e.g. aluminium alloys and certain steels, the yielding of most ductile
materials is adequately governed by the Tresca maximum shear stress condition, and because
ofits relative simplicity it is often used in preference to the von Mises theory. For the Tresca
theory the three-dimensional yield locus can be shown to be a regular prism with hexagonal
cross-section (Fig. 15.14). The central axis of this figure is again on the line 0"1 = 0"2 = 0"3 (the

hydrostatic stress line) and again extends to infinity.
Points representing stress conditions plotted on the principal stress coordinate axes

indicate safe conditions if they lie within the surface of the hexagonal cylinder. The two-
dimensional yield locus of Fig. 15.6 is obtained as before by the intersection of the 0"1' 0"2
plane (0"3 = 0) with this surface.

15.9.2. Brittle materials

Failure of brittle materials has been shown previously to be governed by the maximum
principal tensile stress present in the three-dimensional stress system. This is thought to be
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Fig. 15.14. Three-dimensional yield locus for Tresca (maximum shear stress) theory. 

due to the microscopic cracks, flaws or discontinuities which are present in most brittle 
materials and which act as local stress raisers. These stress raisers, or stress concentrations, 
have a much greater adverse effect in tension and hence produce the characteristic weaker 
behaviour of brittle materials in tension than in compression. 

Thus if the greatest tensile principal stress exceeds the yield stress then failure occurs, and 
such a simple condition does not require a graphical representation. 

15.10. Limitations of the failure theories 

It is important to remember that the theories introduced above are those of elastic failure, 
i.e. they relate to the “failure” which is assumed to occur under elastic loading conditions at an 
equivalent stage to that of yielding in a simple tensile test. If it is anticipated that loading 
conditions are such that the component may fail in service in a way which cannot easily be 
related to standard simple loading tests (e.g. under fatigue, creep, buckling, impact loading, 
etc.) then the above “classical” elastic failure theories should not be applied. A good example 
of this is the brittle fracture failure of steel under low temperature or very high strain rate 
(impact) conditions compared with simple ductile failure under normal ambient conditions. 
If any doubt exists about the relevance of the failure theories then, ideally, specially designed 
tests should be carried out on the component with loading conditions as near as possible to 
those expected in service. If, however, elastic failure can be assumed to be relevant it is 
necessary to consider which of the theories is the most appropriate for the material in 
question and for the service loading condition expected. 

In most cases the Von Mises “distortion energy” theory is considered to be the most 
reliable and relevant theory with the following exceptions: 

(a) For brittle materials the maximum principal stress or Mohr “internal friction” theories 
are most suitable. (It must be noted, however, that the former is definitely unsafe for 
ductile materials.) Some authorities also recommend the Mohr theory for extension of 
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the theories to ductilefracture consideration as opposed to ductile yielding as assumed in 
the elastic theories. 

(b) All theories produce similar results in loading situations where one principal stress is 
large compared to another. This can be readily appreciated from the graphical 
representations if a load-line is drawn with a very small positive or negative slope. 

(c) The greatest discrepancy between the theories is found in the second and fourth 
quadrants of the graphical representations where the principal stresses are of opposite 
sign but numerically equal. 

(d) For bi-axial stress conditions, the Mohr modified theory is often preferred, provided that 
reliable test data are available for tension, compression and torsion. 

(e) In most general bi-axial and tri-axial stress conditions the Tresca maximum shear stress 
theory is the most conservative (i.e. the safest) theory and this, together with its easily 
applied and simple formula, probably explains its widespread use in industry. 

(f) The St. Venant maximum principal strain and Haigh total strain energy per unit volume 
theories are now rarely, if ever, used in general engineering practice. 

15.11. Effect of stress concentrations 

Whilst stress concentrations have their most significant effect under fatigue loading 
conditions and impact situations, nevertheless, there are also some important considerations 
for static loading applications, namely: 

(a) In the presence of ductile yielding, stress concentrations are relatively unimportant since 
the yielding which will occur at the concentration, e.g. the tip of a notch, will merely 
redistribute the stresses and not necessarily lead to failure. If, however, there is only 
marginal ductility, or in the presence of low temperatures, then stress concentrations 
become more significant as the likelihood of brittle failure increases. It is wise, therefore, 
to keep stress concentration factors as low as possible. 

(b) For brittle materials like cast iron, internal stress concentrations arise within the material 
due to the presence of, e.g., flaws, impurities or graphite flakes. These produce stress 
increases at least as large as those given by surface stress concentrations which, therefore, 
may have little or no effect on failure. A cast iron bar with a small transverse hole, for 
example, may not fracture at the hole when a tensile load is applied! 

15.12. Safety factors 

When using elastic design procedures incorporating any of the failure theories introduced 
in this chapter it is normal to incorporate safety factors to take account of various 
imponderables which arise when one attempts to forecast accurately service loads or 
operating conditions or to make allowance for variations in material properties or behaviour 
from those assumed by the acceptance of “standard values. “Ideal” application of the 
theories, i.e. a rigorous mathematical analysis, is thus rarely possible and the following factors 
indicate in a little more detail the likely sources of inaccuracy: 

1. Whilst design may have been based up nominally static loading, changing service 
conditions or misuse by operators can often lead to dynamic, fluctuating or impact 
loading situations which will produce significant increases in maximum stress levels. 
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2. A precise knowledge of the mechanical properties of the material used in the design is 
seldom available. Standard elastic values found in reference texts assume ideal homoge- 
neous and isotropic materials with equal “strengths” in all directions. This is rarely true in 
practice and the effect of internal flaws, inclusions or other weaknesses in the material may 
be quite significant. 

3. The method of manufacture or construction of the component can have a significant effect 
on service life, particularly if residual stresses are introduced by, e.g., welding or straining 
beyond the elastic limit during the assembly stages. 

4. Complex designs often give rise to difficult analysis problems which even after time- 
consuming and expensive theoretical procedures, at best yield only a reasonable estimate 
of maximum service stresses. 

Despite these problems and the assumptions which are often required to overcome them, it 
has been shown that elastic design procedures can be made to agree with experimental results 
within a reasonable margin of error provided that appropriate safety factors are applied. 

It has been shown in $1.16 that alternative definitions are used for the safety factor 
depending upon whether it is based on the tensile strength of the material used or its yield 
strength, i.e., either 

tensile strength 
allowable working stress safety factor, n = 

Application 

Steelwork in buildings 
Pressure vessels 
Transmission shafts 
Connecting rods 

or 

(a) (b) (4 Overall 
Nature of Nature of Type, of safety factor 

1 1 2 2 
1 1 3 3 
3 1 2 6 
3 2 1.5 9 

stress load SerVlCe (4 x (b) x (4 

yield stress (or proof stress) 
allowable working stress 

safety factor, n = 

Clearly, it is important when quoting safety factors to state which definition has been used. 
Safety values vary depending on the type of industry and the area of application of the 

component being designed. National codes of practice (e.g. British Standards) or other 
external authority regulations often quote mandatory values to be applied and some 
companies produce their own guideline values. 

Table 15.2 shows the way in which the various factors outlined above contribute to the 
overall factor of safety for some typical service conditions. These values are based on the yield 
stress of the materials concerned. 

TABLE 15.2. Typical safety factors. 

It should be noted, however, that the values given in the “type of service” column can be 
considered to be conservative and severe misuse or overload could increase these (and, hence, 
the overall factors) by as much as five times. 

Recent legislative changes such as “Product Liability” and “Health and Safety at Work” 
will undoubtedly cause renewed concern that appropriate safety factors are applied, and may 
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lead to the adoption of higher values. Since this could well result in uneconomic utilisation of 
materials, such a trend would be regrettable and a move to enhanced product testing and 
service load monitoring is to be preferred. 

15.13. Modes of failure 

Before concluding this chapter, the first which looks at design procedures to overcome 
possible failure (in this case elastic overload), it is appropriate to introduce the reader to the 
many other ways in which components may fail in order that an appreciation is gained of the 
complexities often facing designers of engineering components. Subclassification and a 
certain amount of cross-referencing does make the list appear to be formidably long but even 
allowing for these it is evident that the designer, together with his supporting materials and 
stress advisory teams, has an unenviable task if satisfactory performance and reliability of 
components is to be obtained in the most complex loading situations. The list below is thus a 
summary of the so-called “modes (or methods) offailure” 

1. Mechanical overload/under-design 
2. Elastic yielding - force and/or temperature induced. 
3. Fatigue 

high cycle 
low cycle 
thermal 
corrosion 
fretting 
impact 
surface 

4. Brittle fracture 
5. Creep 
6. Combined creep and fatigue 
7. Ductile rupture 
8. Corrosion 

direct chemical 
galvanic 
pitting 
cavitation 
stress 
intergranular 
crevice 
erosion 
hydrogen damage 
selective leaching 
biological 
corrosion fatigue 

fracture 
fatigue 

9. Impact 
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deformation 
wear 
fretting 

10. Instability 
buckling 
creep buckling 
torsional instability 

adhesive 
abrasive 
corrosive 
impact 
deformation 
surface fatigue 
fretting 

12. Vibration 
13. Environmental 

11. Wear 

thermal shock 
radiation damage 
lubrication failure 

spalling 
pitting 
galling and seizure 

15. Stress rupture 
16. Thermal relaxation 

14. Contact 

Examples 

Example 15.1 

A material subjected to a simple tension test shows an elastic limit of 240 MN/m2. 
Calculate the factor of safety provided if the principal stresses set up in a complex two- 
dimensional stress system are limited to 140 MN/mZ tensile and 45 MN/m2 compressive. The 
appropriate theories of failure on which your answer should be based are: 

(a) the maximum shear stress theory; 
(b) the maximum shear strain energy theory. 

Solution 

(a) Maximum shear stress theory 

This theory states that failure will occur when the maximum shear stress in the material 
equals the maximum shear stress value at the yield point in a simple tension test, i.e. when 

or 
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In this case the system is two-dimensional, i.e. the principal stress in one plane is zero. 
However, since one of the given principal stresses is a compressive one, it follows that the zero 
value is that of a2 since the negative value of a3 associated with the compressive stress will 
produce a numerically greater value of stress difference a, - u3 and hence must be used in the 
above criterion. 

Thus a, = 140 MN/m2, u2 = 0 and a3 = - 45 MN/m2. 
Now with a factor of safety applied the design yield point becomes o , / n  and this must 

replace cy in the yield criterion which then becomes 

240 
n 

. .  - = 140- (-45) units of MN/m2 throughout 

240 
185 

n = - = 1.3 

The required factor of safety is 1.3. 

(b) Maximum shear strain energy theory 

Once again equating the values of the quantity concerned in the tensile test and in the 
complex stress system, 

a; = 5 [(a, - a2)2 + (a2 - a3)2 + (a3 - 01)23 

With the three principal stress values used above and with o,/n replacing ay 

( F)2 = + {  (140-0)2 + [0- ( -45)12 + (-45 - 140)2} 

5.76 x 104 
= f C1.96 + 0.203 + 3.421 lo4 

n2 

2 x 5.76 x 104 
n2 = = 2.063 

5.583 x lo4 

. .  n = 1.44 

The required factor of safety is now 1.44. 

Example 15.2 

A steel tube has a mean diameter of 100mm and a thickness of 3 mm. Calculate the torque 
which can be transmitted by the tube with a factor of safety of 2.25 if the criterion of failure is 
(a) maximum shear stress; (b) maximum strain energy; (c) maximum shear strain energy. The 
elastic limit of the steel in tension is 225 MN/m2 and Poisson’s ratio v is 0.3. 
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Solution 

From the torsion theory 

T . r .  TR 
J = R  “ ‘=y - 

Now mean diameter of tube = 100 mm and thickness = 3 mm. 

nd3t 
J = ndt x r’ = - (approximately) 

4 
. .  

x 0.13 x 0.003 - - = 2.36 x 10-6m4 
4 

T x 51.5 x 10-3 . .  shear stress T = = (2.18 x 104)T N/m’ 
2.36 x 

= 21.8T kN/m’ 

(a)  Maximum shear stress 

Torsion introduces pure shear onto elements within the tube material and it has been 
shown in Q 13.2 that pure shear produces an equivalent principal direct stress system, one 
tensile and one compressive and both equal in value to the applied shear stress, 

i.e. o1 = 7, o3 = -7 (and o2 = 0) 

Thus for the maximum shear stress criterion, taking account of the safety factor, 

- OY = 0 1 - 0 3 = 7 - ( - 7 )  
n 

= 27 = 2 x 2 1 . 8 ~  x 103 
225 x lo6 

2.25 
. .  

100 x 106 
T =  = 2.3x 1 0 3 ~ m  

2 x 21.8 x 103 

The torque which can be safely applied = 2.3 kN m. 

(b) Maximum strain energy 

From eqn. (15.3) the relevant criterion of failure is 

CT: = 0: + C: + 0: - 2~(0102 + 0203 + 0301) 

Taking account of the safety factor 

(22:;;“)’ 
= 7’ +o  + ( -  7)’ - 2 x 0 . 3 ~ ~  x (-41 

= 2 . 6 ~ ~  

= 2.6(21.8 x 103T)’ 
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loo x 106 
J(2.6) x 21.8 x lo3 

. .  T =  = 2.84 x 103 N rn 

The safe torque is now 2.84 kN m. 

(c) Maximum shear strain energy 

From eqn. (15.4) the criterion of failure is 

6; = 3 [(ol - az)z + (a2 - + (63 - 6 1 ) Z l  

= 2.65 x 103 N rn 100 x lo6 
. .  T=zxzKp  
The safe torque is now 2.65 kNm. 

Example 15.3 

A structure is composed of circular members of diameter d. At a certain position along one 
member the loading is found to consist of a shear force of 10 kN together with an axial tensile 
load of 20 kN. If the elastic limit in tension of the material of the members is 270 MN/mZ and 
there is to be a factor of safety of 4, estimate the magnitude of d required according to (a) the 
maximum principal stress theory, and (b) the maximum shear strain energy per unit volume 
theory. Poisson’s ratio v = 0.283. 

Solution 

The stress system at the point concerned is as shown in Fig. 15.15, the principal stress 

Now the direct stress along the axis of the bar is tensile, i.e. positive, and given by 
normal to the surface of the member being zero. 

=-=- 6, = - load 2o 8o kN/mZ 
area x d 2 / 4  ndz 

Fig. 15.15. 
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and the shear stress is 
=--- 40 kN/m2 shear load 10 

nd2/4- lrdZ 
t =  

area 

The principal stresses are given by Mohr’s circle construction (nd2 being a common 
denominator) or from 

a1 and a3 = 3 (a, + oy) f 3 &J, - + 4t,Zy] 
with ay zero, 

i.e. 

40 
nd2 

=- ( l fJ2 )  

. .  40 x 2.414 30.7 kN,m2 
=- 

dZ 
61 = 

nd2 

5.27 
d2  = -~ kN/m2 

40 x 0.414 
nd2 

a3 = - 

and 0 2  = 0 

Since the elastic limit in tension is 270 MN/mZ and the factor of safety is 4, the working stress 
or effective yield stress is 

a,, = - = 67.5 MN/m2 270 
4 

(a) Maximum principal stress theory 

Failure is assumed to occur when 

6 1  = ay 

30.7 x 103 
= 67.5 x lo6 

d2  
. .  

. .  d = 2.13 x m = 21.3mm 
(b) Maximum shear strain energy 

From eqn. (15.4) the criterion of failure is 

20; = (a1 - a2)2 + (a2 - O3)Z + (a3 - a1)2 
Therefore taking account of the safety factor 

- 2264 x 106 - 
d 4  
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. .  

. .  

. .  

1132 x lo6 
(67.5 x 106)2 

d4 = 

33.6 x 103 
d2  = = 4.985 x 10-4m2 67.5 x lo6 

d = 22.3mm 

Example 15.4 

Assuming the formulae for the principal stresses and the maximum shear stress induced in 
a material owing to combined stresses and the fundamental formulae for pure bending, 
derive a formula in terms of the bending moment M and the twisting moment T for the 
equivalent twisting moment on a shaft subjected to combined bending and torsion for 

(a) the maximum principal stress criterion; 
(b) the maximum shear stress criterion. 

Solution 

The equivalent torque, or turning moment, is defined as that torque which, actingalone, will 

At failure the stress produced by the equivalent torque TE is given by the torsion theory 
produce the same conditions of stress as the combined bending and turning moments. 

T z  
J R  
- _ -  - 

TER TEx D =- 
25 zmax= - J 

. .  

The direct stress owing to bending is 

4 Myma,- M D  M D  a,=--- =- 
I 21 J 

and the shear stress due to torsion is 
T D  
2 3  

z = -  

The principal stresses are then given by 

al, = 3 (a, + a,) k 3 ,/[(a, - a,)' + 4zr , ]  with Q, = 0 and a2 = 0 

D 
2 5  

= - ( ( M _ + J [ M Z + T 2 ] )  
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. .  D 
25 

D 
25 

o1 = - ( M + J [ M Z + T z ] )  

a3 = - ( M - J [ M Z + T 2 ] )  

(a) For maximum principal stress criterion 

D 
25 25 

TED -- - 0 1  = - ( M  + J[MZ + T q )  

. .  T~ = M + J ( M ~  + T ~ )  

(b) For maximum shear stress criterion 

D 
25 - ( M  + J[MZ + T Z ] )  - - ( M  - J[MZ + T Z ] )  

Example 15.5 

The test strengths of a material under pure compression and pure tension are 
UY, - - 350 MN/mZ and cy, = 300 MN/mZ. In a certain design of component the material may 
be subjected to each of the five biaxial stress states shown in Fig. 15.16. Assuming that failure 
is deemed to occur when yielding takes place, arrange the five stress states in order of 
diminishing factor of safety according to the maximum principal or normal stress, maximum 
shear stress, maximum shear strain energy (or distortion energy) and modified Mohr’s (or 
internal friction) theories. 

Solution 

A graphical solution of this problem can be employed by constructing the combined yield 
loci for the criteria mentioned in the question. Since u1 the maximum principal stress is 
+ 100 MN/mZ in each of the stress states only half the combined loci diagram is required, i.e. 
the positive u1 half. 

Here it must be remembered that for stress conditio8 (e) pure shear is exactly equivalent to 
two mutually perpendicular direct stresses - one tensile, the other compressive, acting on 45” 
planes and of equal value to the applied shear, i.e. for condition (e) a1 = 100 MN/m2 and 
az = - 100 MN/m2 (see $13.2). 

It is now possible to construct the “load lines” for each stress state with slopes of az/al. An 
immediate solution is then obtained by considering the intersection of each load line with the 
failure envelopes. 
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Max. 

Load line ( c )  

Max shear strain energy 
(distort ion energy theory) 

Max. principal stress 

shear stress 

Fig. 15.16. 

Maximum principal stress theory 

All five load lines cut the failure envelope for this theory at o1 = 300 MN/mZ. According to 
this theory, therefore, all the stress states will produce failure when the maximum direct stress 
reaches 300MN/m2. Since the maximum principal stress present in each stress state is 
100MN/mZ it therefore follows that the safety factor for each state according to the 

maximum principal stress theory is - = 3. 
300 
100 

Maximum shear stress theory 

The load lines a, band c cut the failure envelope for this theory at o1 = 300 MN/m2 whilst d 
and e cut it at o1 = 200 MN/m2 and o1 = 150 MN/m2 respectively as shown in Fig. 15.16. 
The safety factors are, therefore, 

300 200 150 
100 a,b,c=---=3, d = - = 2  e = - - . = 1 5  100 ' 100 * 

Maximum shear strain energy theory 

In decreasing order, the factors of safety for this theory, found as before from the points 
where each load line crosses the failure envelope, are 
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Mohr’s modified or internal friction theory (with cy, = 350 MN/mZ) 

In this case the safety factors are: 

Example 15.6 

The cast iron used in the manufacture of an engineering component has tensile and 

(a) If the maximum value of the tensile principal stress is to be limited to one-quarter of the 
tensile strength, determine the maximum value and nature of the other principal stress 
using Mohr’s modified yield theory for brittle materials. 

(b) What would be the values of the principal stresses associated with a maximum shear 
stress of 450 MN/mZ according to Mohr’s modified theory? 

(c) At some point in a component principal stresses of 100MN/mZ tensile and 
100MN/mZ compressive are found to be present. Estimate the safety factor with 
respect to initial yield using the maximum principal stress, maximum shear stress, 
distortion energy and Mohr’s modified theories of elastic failure. 

compressive strengths of 400 MN/m2 and 1.20 GN/mZ respectively. 

k2=-7WMN/mZ ~ l ! i C l  MN/m2 

Fig. 15.17. 

Solution 

400 
4 

(a) Maximum principal stress = - = 100MN/mZ 

According to Mohr’s theory 
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100 x lo6 0 2  

400 x io6 + - 1.2 x 109 
. ,  

. .  o2 = - 1.2 x 109(1 - a )  = -900MN/m2 

(b) In any Mohr circle construction the radius of the circle equals the maximum shear 
stress value. In order to answer this part of the question, therefore, it is necessary to 
draw the Mohr failure envelope on o-r axes as shown in Fig. 15.17 and to construct the 
circle which is tangential to the envelope and has a radius of 450MN/m2. This is 
achieved by drawing a line parallel to the failure envelope and a distance of 
450 MN/m2 (to scale) from it. Where this line cuts the CJ axis is then the centre of the 
required circle. The desired principal stresses are then, as usual, the extremities of the 
horizontal diameter of the circle. 

Thus from Fig. 15.17 

ul = 150 MN/m2 and u2 = - 750 MN/m2 

(c) The solution here is similar to that used for Example 15.5. The yield loci are first 
plotted for the given failure theories and the required safety factors determined from 
the points of intersection of the loci and the load line with a slope of 100/ - 100 = - 1. 

400k2 Distortion energy 

Max principal stress 

Fig. 15.18. 

Thus from Fig. 15.18 the safety factors are: 

Maximum principal stress = - = 4 

= - = 2 

400 
100 

200 
100 Maximum shear stress 
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Distortion energy 

Mohr theory 

240 = - = 2.4 
100 

300 - - - = 3  
100 

Problems 

15.1 (B). If the principal stresses at a point in an elastic material are 120 MN/m2 tensile, 180 MN/m2 tensile and 
75 MN/m2 compressive, find the stress at the limit of proportionality expected in a simple tensile test assuming: 

(a) the maximum shear stress theory; 
(b) the maximum shear strain energy theory; 
(c) the maximum principal strain theory. 

Assume v = 0.294. [255, 230.9, 166.8 MN/m2.] 

15.2 (B). A horizontal shaft of 75 mm diameter projects from a bearing, and in addition to the torque transmitted 
the shaft carries a vertical load of 8 kN at 300 mm from the bearing. If the safe stress for the material, as determined in 
a simde tensile test. is 135 MN/m2. find the safe torque to which the shaft may be subjected using as the criterion 
(a) the maximum shearing stress; (b) the maximum strain energy. Poisson’s ratio v = 0.29. 

[U.L.] C5.05, 6.3 kNm.] 

15.3 (B). Show that the strain energy per unit volume of a material under a single direct stress is given by f (stress 
x strain). Hence show that for a material under the action of the principal stresses ul, u2 and u3 the strain energy per 
unit volume becomes 

A thin cylinder 1 m diameter and 3 m long is filled with a liquid to a pressure of 2 MN/m2. Assuming a yield stress 
for the material of 240 MN/m2 in simple tension and a safety factor of 4, determine the necessary wall thickness of 
the cylinder, taking the maximum shear strain energy as the criterion of failure. 

For the cylinder material, E = 207 GN/mz and v = 0.286. [ 14.4 mm.] 
15.4 (B). An aluminium-alloy tube of 25 mm outside diameter and 22 mm inside diameter is to be used as a shaft. 

It is Mo mm long, in self-aligning bcarings, and supports a load of 0.5 kN at mid-span. In order to find the maximum 
allowable shear stress a length of tube was tested in tension and reached the limit of proportionality at 21 kN. 
Assuming the criterion for elastic failure to be the maximum shear stress, find the greatest torque to which the shaft 
could be subjected. C98.2 N m.] 

15.5 (B). A bending moment of 4 kN m is found to cause elastic failure of a solid circular shaft. An exactly similar 
shaft is now subjected to a torque T. Determine the value of T which will cause failure of the shaft according to the 
following theories: 

(a) maximum principal stress; 
(b) maximum principal strain; 
(c) maximum shear strain energy. (v = 0.3.) 

Which of these values would you expect to be the most reliable and why? [8,6.15,4.62 kNm.] 
15.6 (B). A thin cylindrical pressure vessel with closed ends is required to withstand an internal pressure of 

4 MN/m2. The inside diameter of the vessel is to be Momm and a factor of safety of 4 is required. A sample of the 
proposed material tested in simple tension gave a yield stress of 360 MN/mz. 

Find the thickness of the vessel, assuming the criterion of elastic failure to be (a) the maximum shear stress, (b) the 
shear strain energy. [E.M.E.U.] [11.1,9.62mm.l 

15.7 (B). Derive an expression for the strain energy stored in a material when subjected to three principal stresses. 
A material is subjected to a system of three mutually perpendicular stresses as follows: f tensile, 2f tensile and f 

compressive. If this material failed in simple tension at a stress of 180 MN/m2, determine the value offif the criterion 
of failure is: 

(a) maximum principal stress; 
(b) maximum shear stress; 
(c) maximum strain energy. 

Take Poisson’s ratio v = 0.3. 

1 

2E 
- cu: + u: + u: - 2v(u,u2 + u1u3 + u2u3)] 

[W, 60,70 MN/m2.] 
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15.8 (B). The external and internal diameters of a hollow steel shaft are l5Omm and 100mm. A power 
transmission test with a torsion dynamometer showed an angle of twist of 0.13 degree on a 250 mm length when the 
speed was 500 rev/min. Find the power being transmitted and the torsional strain energy per metre length. 

If, in addition to this torque, a bending moment of 15 kN m together with an axial compressive force of 80 kN also 
acted upon the shaft, find the value of the equivalent stress in simple tension corresponding to the maximum shear 
strain energy theory of elastic failure. Take G = 80 GN/m2. 

CI.Mech.E.1 C1.52 MW; 13.13 J/m; 113 MN/m2.] 
15.9 (B/C). A closecoiled helical spring has a wire diameter of 2.5 mm and a mean coil diameter of 4Omm. The 

spring is subjected to a combined axial load of 60N and a torque acting about the axis of the spring. ktermine the 
maximum permissible torque if (a) the material is brittle and ultimate failure is to beavoided, the criterion of failure is 
the maximum tensile stress, and the ultimate tensile stress is 1.2 GN/m2, (b) the material is ductile and failure by 
yielding is to be avoided, the criterion of failure is the maximum shear stress, and the yield in tension is 0.9 GN/m2. 

CI.Mech.E.1 [1.645,0.68Nm.l 
15.10 (C). A closed-ended thick-walled steel cylinder with a diameter ratio of 2 is subjected to an internal 

pressure. If yield occurs at a pressure of 270 MN/m2 find the yield strength of the steel used and the diametral strain 
at the bore at yield. Yield can be assumed to occur at a critical value of the maximum shear stress. It can be assumed 
that the stresses in a thick-walled cylinder are: 

B 
hoop stress UH = A + - 

r 2  
B 

radial stress a, = A - - 
r z  

axial stress uL = +(an+ u r )  

where A and B are constants and r is any radius. 
For the cylinder material E = 210GN/m2 and v = 0.3. 
15.11 (C). For a certain material subjected to plane stress it is assumed that the criterion of elastic failure is the 

shear strain energy per unit volume. By considering cosrdinates relative to two axes at 45” to the principal axes, 
show that the limiting values of the two principal stresses can be represented by an ellipse having semi-diameters 
u,J2 and ae,/f, where a, is the equivalent simple tension. Hence show that for a given value of the major principal 
stress the elastic factor of safety is greatest when the minor principal stress is half the major, both stresses being of the 

15.12 (C). A horizontal circular shaft of diameter d and second moment of area I is subjected to a bending 
moment M cos 0 in a vertical plane and to an axial twisting moment M sin 0. Show that the principal stresses at the 
ends of a vertical diameter are + Mk (cos 0 f l), where 

d k = -  
21 

[I.Mech.E.] [721 MN/m2; 2.4 x 

same sign. [U.L.] 

If strain energy is the criterion of failure, show that 

20 J2 
[cos2 e(i - V) + (1 + v)]t t m x =  

where T-= maximum shearing stress, 
to = maximum shearing stress in the special case when 0 = 0, 

v = Poisson’s ratio. [U.L.] 

15.13 (C). What are meant by the terms “yield criterion” and “yield locus” as related to ductile metals and why, in 
general, are principal stresses involved? 

Deline the maximum shear stress and shear strain energy theories of yielding. Describe the three-dimensional loci 
and sketch the plane stress loci for the above theories. [C.E.I.] 

15.14 (B). The maximum shear stress theory of elastic failure is sometimes criticised because it makes no 
allowance for the magnitude of the intermediate principal stress. On these grounds a theory is preferred which 
predicts that yield will not occur provided that 

(a1 - u2)2 + (u2 - u3)2 + (a3 - u1)2 < 2 4  
What is the criterion of failure implied here? 

Assuming that U ,  and a3 are fixed and unequal, lind the value of u2 which will be most effective in preventing 
failure according to this theory. If this theory is correct, by what percentage does the maximum shear stress theory 
underestimate the strength of a material in this case? [City U.] [+(a, +a,); 13.4z.1 
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15.15 (B) The w t  iron used in the manufacture of an engineering component has tensile and compressive 

(a) If the maximum value of the tensile principal stress is to be limited to one-quarter of the tensile strength, 
determine the maximum value and nature of the other principal stress using Mohr’s modified yield theory for 
brittle materials. 

(b) What would be the values of the principal stresses associated with a maximum shear stress of 450 MN/mZ 
according to Mohr’s modified theory? 

strengths of 400 MN/m2 and 1.20GN/mZ respectively. 

50 MN/rn2 100 MN/rn2 

MN/rnz 

Fig. 15.19. 

(c) Estimate the safety factor with respect to initial failure for the stress conditions of Fig. 15.19 using the 
maximum principal stress, maximum shear stress, distortion energy and Mohr’s modified theories of elastic 
failure. [B.P.] [-900MN/m2; 150, -750MN/m2; 4,4, 4.7, 4 and 4, 2, 2.4, 3.1 

15.16 (B). Show that for a material subjected to two principal stresses, u1 and u2, the strain energy per unit 
volume is 

1 
- 2E (a12 + u22 - 2u1u2) 

A thin-walled steel tube of internal diameter 150mm, closed at its ends, is subjected to an internal fluid pressure of 
3 MN/m2. Find the thickness of the tube if the criterion of failure is the maximum strain energy. Assume a factor of 
safety of 4 and take the elastic limit in pure tension as 300 MN/m2. Poisson’s ratio v = 0.28. 

CI.Mech.E.1 C2.95 mm] 
15.17 (B). A circular shaft, 100 mm diameter is subjected to combined bending moment and torque, the bending 

moment being 3 times the torque. If the direct tension yield point of the material is 300 MN/m2 and the factor of 
safety on yield is to be 4, calculate the allowable twisting moment by the three following theories of failure: 

(a) Maximum principal stress theory 
(b) Maximum shear stress theory 
(c) Maximum shear strain energy theory. [U.L.] c2.86, 2.79, 2.83 kNm] 
15.18 (B). A horizontal shaft of 75mm diameter projects from a bearing and, in addition to the torque 

transmitted, the shaft carries a vertical load of 8 kN at 300 mm from the bearing. If the safe stress for the material, as 
determined in a simple tension test, is 135 MN/mZ find the safe torque to which the shaft may be subjected usingas a 
criterion 

(a) the maximum shearing, stress, 
(b) the maximum strain energy per unit volume. 

Poisson’s ratio v = 0.29. [U.L.] C5.59, 8.3 kNm.] 


