
CHAPTER 1 1  

FATIGUE, CREEP AND FRACTURE 

Summary 

Fatigue loading is generally defined by the following parameters 

stress range, a, = 2a, 

mean stress, a,,, = Z(a,,,ax + a,,,,,) 
alternating stress amplitude, a, = (arna - ami,) 

1 

When the mean stress is not zero 
amin 

amax 
stress ratio, R, = - 

The fatigue strength CN for N cycles under zero mean stress is related to that a, under a 
condition of mean stress am by the following alternative formulae: 

a, = a ~ [ 1  - (am/a~s ) ]  

a, = a~[l - ( a m / a ~ ~ ) 2 ]  

a, = a ~ [ l  - (am/ay)] 

(Goodman) 

(Geber) 

(Soderberg) 

where CTTS = tensile strength and ay = yield strength of the material concerned. Applying a 
factor of safety F to the Soderberg relationship gives 

a, = “N [ l -  ( 3 1  a m  F )  
F 

Theoretical elastic stress concentration factor for elliptical crack of major and minor axes A 
ahd B is 

K t  = 1 + 2A/B 

The relationship between any given number of cycles n at one particular stress level to 
that required to break the component at the same stress level N is termed the “stress ratio” 
( n / N ) .  Miner’s law then states that for cumulative damage actions at various stress levels: 

nl n2 n3 -+ -+-+ . . .  + etc. = 1 
N1 N2 N3 

The Coffin-Manson law relating the plastic strain range 
failure N f  is: 

to the number of cycles to 

AS, = K ( N f ) - b  

or 
-b 

A E ~  = (%) 
443 
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where D is the ductility, defined in terms of the reduction in area r during a tensile test as 

D = 1 ,  (-) 1 
1 - r  

The total strain range = elastic + plastic strain ranges 

i.e. 

the elastic range being given by Basquin's law 

AS, = AE, + A E ~  

Under creep conditions the secondary creep rate E: is given by the Arrhenius equation 

E, 0 = A e  (-x) 
where H is the activation energy, R the universal gas constant, T the absolute temperature 
and A a constant. 

Under increasing stress the power law equation gives the secondary creep rate as 

&; = pa" 

with p and n both being constants. 
The latter two equations can then be combined to give 

E; = Ka"e (-k) 
The Larson -Miller parameter for life prediction under creep conditions is 

P I  = T(log1, tr + C )  

The Sherby-Dorn parameter is 
a 

Pz = log,,tr - - 
T 

and the Manson-Haferd parameter 

where tr = time to rupture and T, and log,, t ,  are the coordinates of the point at which 
graphs of T against log,, tr converge. C and cx are constants. 

For stress relaxation under constant strain 

where a is the instantaneous stress, oi the initial stress, /? and n the constants of the power 
law equation, E is Young's modulus and t the time interval. 

Grifith predicts that fracture will occur at a fracture stress of given by 

2bE y 
of 2 = for plane strain 

na(1 - U * )  
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or for plane stress 2 2bEY 
Of = - 

na 

where 2a = initial crack length (in an infinite sheet) 
b = sheet thickness 
y = surface energy of crack faces. 

Irwin’s expressions for the Cartesian components of stress at a crack tip are, in terms of 
polar coordinates; 

ayy = - cos - 1 + sin sin ”1 
- 2  e [  2 2  

cos - 1 - sin - sin - a,, = - e [  2 2  e 3 7  - 2  
K e e 3e 

G 2 2 2  
Oxy = - cos - sin - cos - 

where K is the stress intensity factor = 06 
or, for an edge-crack in a semi-infinite sheet 

K = 1.12a& 

For finite size components with cracks generally growing from a free surface the stress 
intensity factor is modified to 

K = a Y &  

where Y is a compliance function of the form 

In terms of load P ,  thickness b and width W 

P 
bW1/2  

K=----.Y 

For elastic-plastic conditions the plastic zone size is given by 

K2 
rp = - for plane stress nay2 

and 
K2 

rp = - for plane strain 
3na; 

rp  being the extent of the plastic zone along the crack axis measured from the crack tip. 
Mode I1 crack growth is described by the Paris-Erdogan Law 

da - = C(AK)*  
dN 

where C and m are material coefficients. 
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11.1. Fatigue 

Introduction 

Fracture of components due to fatigue is the most common cause of service failure, 
particularly in shafts, axles, aircraft wings, etc., where cyclic stressing is taking place. With 
static loading of a ductile material, plastic flow precedes final fracture, the specimen necks 
and the fractured surface reveals a fibrous structure, but with fatigue, the crack is initiated 
from points of high stress concentration on the surface of the component such as sharp 
changes in cross-section, slag inclusions, tool marks, etc., and then spreads or propagates 
under the influence of the load cycles until it reaches a critical size when fast fracture of the 
remaining cross-section takes place. The surface of a typical fatigue-failed component shows 
three areas, the small point of initiation and then, spreading out from this point, a smaller 
glass-like area containing shell-like markings called “arrest lines” or “conchoidal markings” 
and, finally, the crystalline area of rupture. 

Fatigue failures can and often do occur under loading conditions where the fluctuating 
stress is below the tensile strength and, in some materials, even below the elastic limit. 
Because of its importance, the subject has been extensively researched over the last one 
hundred years but even today one still occasionally hears of a disaster in which fatigue is a 
prime contributing factor. 

11 .I . I .  The SIN curve 

Fatigue tests are usually carried out under conditions of rotating - bending and with a 
zero mean stress as obtained by means of a Wohler machine. 

From Fig. 11.1, it can be seen that the top surface of the specimen, held “cantilever 
fashion” in the machine, is in tension, whilst the bottom surface is in compression. As the 
specimen rotates, the top surface moves to the bottom and hence each segment of the surface 
moves continuously from tension to compression producing a stress-cycle curve as shown 
in Fig. 11.2. 

Main beoring 
/ Boll race 

Chuck 

Saecimen 

Fig. I I . I .  Single point load arrangement in a Wohler machine for zero mean stress fatigue testing. 

In order to understand certain terms in common usage, let us consider a stress-cycle curve 
where there is a positive tensile mean stress as may be obtained using other types of fatigue 
machines such as a Haigh “push-pull” machine. 
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Fig. 1 1.2. Simple sinusoidal (zero mean) stress fatigue curve, “reversed-symmetrical”. 

t 

I 

0 Time ( t )  

Fig. 11.3. Fluctuating tension stress cycle producing positive mean stress. 

The stress-cycle curve is shown in Fig. 11.3, and from this diagram it can be seen that: 

Stress range, a, = 2a,. (11.1) 

amax + amin 

2 
Mean stress, a,,, = (11.2) 

(11.3) amax - amin 

2 
Alternating stress amplitude, a, = 

If the mean stress is not zero, we sometimes make use of the “stress ratio” R, where 

(11.4) 

The most general method of presenting the results of a fatigue test is to plot a graph of 
the stress amplitude as ordinate against the corresponding number of cycles to failure as 

amin R, = - 
amax 
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abscissa, the amplitude being varied for each new specimen until sufficient data have been 
obtained. This results in the production of the well-known SIN curve - Fig. 11.4. 

Cycles TO failure (N,) 

Fig. 1 I .4. Typical S/N curve fatigue life curve 

In using the S/N curve for design purposes it may be advantageous to express the rela- 
tionship between a, and N f  , the number of cycles to failure. Various empirical relationships 
have been proposed but, provided the stress applied does not produce plastic deformation, 
the following relationship is most often used: 

a ; N f  = K (11.5) 

Where u is a constant which varies from 8 to 15 and K is a second constant depending on 
the material - see Example 1 1.1. 

From the S/N curve the “fatigue limit” or “endurance limit” may be ascertained. The 
“jiztigue limit” is the stress condition below which a material may endure an infinite number 
of cycles prior to failure. Ferrous metal specimens often produce S/N curves which exhibit 
fatigue limits as indicated in Fig. 11.5(a). The ‘yarigue srrength” or “endurance limit”, is the 
stress condition under which a specimen would have a fatigue life of N cycles as shown in 

I I 
I N  - 

Cyc les  to failure Cyc les  to f a i l u r e  

Fig. I 1.5. SIN curve showing (a) fatigue limit. (b) endurance limit. 
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Fig. 10.5(b). Non-ferrous metal specimens show this type of curve and hence components 
made from aluminium, copper and nickel, etc., must always be designed for a finite life. 

Another important fact to note is that the results of laboratory experiments utilising plain, 
polished, test pieces cannot be applied directly to structures and components without modifi- 
cation of the intrinsic values obtained. Allowance will have to be made for many differences 
between the component in its working environment and in the laboratory test such as the 
surface finish, size, type of loading and effect of stress concentrations. These factors will 
reduce the intrinsic (i.e. plain specimen) fatigue strength value thus, 

(11.6) 

where oh is the “modified fatigue strength” or “modified fatigue limit”, ON is the intrinsic 
value, K f  is the fatigue strength reduction factor (see $ 11.1.4) and C,, Cb and C,  are 
factors allowing for size, surface finish, type of loading, etc. 

The types of fatigue loading in common usage include direct stress, where the material is 
repeatedly loaded in its axial direction; plane bending, where the material is bent about its 
neutral plane; rotating bending, where the specimen is being rotated and at the same time 
subjected to a bending moment; torsion, where the specimen is subjected to conditions which 
produce reversed or fluctuating torsional stresses and, finally, combined stress conditions, 
where two or more of the previous types of loading are operating simultaneously. It is 
therefore important that the method of stressing and type of machine used to carry out the 
fatigue test should always be quoted. 

Within a fairly wide range of approximately 100 cycles/min to 6000 cycledmin, the effect 
of speed of testing (i.e. frequency of load cycling) on the fatigue strength of metals is 
small but, nevertheless, frequency may be important, particularly in polymers and other 
materials which show a large hysteresis loss. Test details should, therefore, always include 
the frequency of the stress cycle, this being chosen so as not to affect the result obtained 
(depending upon the material under test) the form of test piece and the type of machine 
used. Further details regarding fatigue testing procedure are given in BS3518: Parts 1 to 5. 

Most fatigue tests are carried out at room temperature but often tests are also carried out 
at elevated or sub-zero temperatures depending upon the expected environmental operating 
conditions. At low temperatures the fatigue strength of metals show no deterioration and 
may even show a slight improvement, however, with increase in temperature, the fatigue 
strength decreases as creep effects are added to those of fatigue and this is revealed by a 
more pronounced effect of frequency of cycling and of mean stress since creep is both stress- 
and time-dependent . 

When carrying out elevated temperature tests in air, oxidation of the sample may take 
place producing a condition similar to corrosion fatigue. Under the action of the cyclic stress, 
protective oxide films are cracked allowing further and more severe attack by the corrosive 
media. Thus fatigue and corrosion together ensure continuous propagation of cracks, and 
materials which show a definite fatigue limit at room temperature will not do so at elevated 
temperatures or at ambient temperatures under corrosive conditions - see Fig. 11.6. 

I I .I .2. PISIN curves 

The fatigue life of a component as determined at a particular stress level is a very variable 
quantity so that seemingly identical specimens may give widely differing results. This scatter 
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102 lo4 106 108 io1O 

Cycles to failure (N,) 

Fig. 11.6. The effect of corrosion on fatigue life. S/N Curve for (a) material showing fatigue limit; (b) same 
material under corrosion conditions. 

arises from many sources including variations in material composition and heterogeneity, 
variations in surface finish, variations in axiality of loading, etc. 
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Fig. 11.7. P/S/N curves indicating percentage chance of failure for given stress level after known number of cycles 
(zero mean stress) 

To overcome this problem, a number of test pieces should be tested at several different 
stresses and then an estimate of the life at a particular stress level for a given probability 
can be made. If the probability of 50% chance of failure is required then a P/S/N curve can 
be drawn through the median value of the fatigue life at the stress levels used in the test. 
It should be noted that this 50% (p = 0.5) probability curve is the curve often displayed 
in textbooks as the S/N curve for a particular material and if less probability of failure is 
required then the fatigue limit value will need to be reduced. 
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11 .I .3. Effect of mean stress 

If the fatigue test is carried out under conditions such that the mean stress is tensile 
(Fig. 11.3), then, in order that the specimen will fail in the same number of cycles as 
a similar specimen tested under zero mean stress conditions, the stress amplitude in the 
former case will have to be reduced. The fact that an increasing tensile mean stress lowers 
the fatigue or endurance limit is important, and all S/N curves should contain information 
regarding the test conditions (Fig. 11.8). 
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Fig. 1 1.8. Effect of mean stress on the SIN curve expressed in alternative ways. 

A number of investigations have been made of the quantitative effect of tensile mean 
stress resulting in the following equations: 

Goodman(') a, = UN (11.7) 

S~derberg(~)  a, = UN [I - (z)]  
(11.8) 

(11.9) 

where ON = the fatigue strength for N cycles under zero mean stress conditions. 
a, = the fatigue strength for N cycles under condition of mean stress a,. 

CTTS = tensile strength of the material. 
cry = yield strength of the material. 

The above equations may be shown in graphical form (Fig. 11.9) and in actual practice 
it has been found that most test results fall within the envelope formed by the parabolic 
curve of Geber and the straight line of Goodman. However, because the use of Soderberg 
gives an additional margin of safety, this is the equation often preferred - see Example 1 1.2. 

Even when using the Soderberg equation it is usual to apply a factor of safety F to both 
the alternating and the steady component of stress, in which case eqn. (1 1.9) becomes: 

( 1  1.10) 
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0 Pr 
Mean stress (urn) 

Fig. 11.9. Amplitude/mean stress relationships as per Goodman. Geber and Soderberg. 
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Fig. 11 .lo. Smith diagram. 

The interrelationship of mean stress and alternating stress amplitude is often shown in 
diagrammatic form frequently collectively called Goodman diagrams. One example is shown 
in Fig. 11.10, and includes the experimentally derived curves for endurance limits of a 
specific steel. This is called a Smith diagram. Many alternative forms of presentation of 
data are possible including the Haigh diagram shown in Fig. 11.1 1, and when understood 
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Fig. 11.1 1. Haigh diagram. 

by the engineer these diagrams can be used to predict the fatigue life of a component under 
a particular stress regime. If the reader wishes to gain further information about the use of 
these diagrams it is recommended that other texts be consulted. 

The effect of a compressive mean stress upon the life of a component is not so well 
documented or understood as that of a tensile mean stress but in general most materials do 
not become any worse and may even show an improved performance under a compressive 
mean stress. In calculations it is usual therefore to take the mean stress as zero under these 
conditions. 

1 I .I .4. Effect of stress concentration 

The influence of stress concentration (see 910.3) can be illustrated by consideration of an 
elliptical crack in a plate subjected to a tensile stress. Provided that the plate is very large, 
the “theoretical stress concentration” factor K ,  is given by: 

2A 
K f = l + B  (11.11) 

where “A” and “B’ are the crack dimensions as shown in Fig. 1 1.12. 
If the crack is perpendicular to the direction of stress, then A is large compared with B 

and hence K ,  will be large. If the crack is parallel to the direction of stress, then A is very 
small compared with B and hence K ,  = 1. If the dimensions of A and B are equal such that 
the crack becomes a round hole, then K t  = 3 and a maximum stress of 3an,, acts at the 
sides of the hole. 

The effect of sudden changes of section, notches or defects upon the fatigue performance 
of a component may be indicated by the “fatigue notch” or “fatigue strength reduction” factor 
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Nominal stress (am) 

Fig. 11.12. Elliptical crack in semi-infinite plate. 

K f ,  which is the ratio of the stress amplitude at the fatigue limit of an un-notched specimen, 
to rhat of a notched specimen under the same loading conditions. 

K f  is always less than the static theoretical stress concentration factor referred to above 
because under the compressive part of a tensile-compressive fatigue cycle, a fatigue crack is 
unlikely to grow. Also the ratio of K f / K r  decreases as K ,  increases, sharp notches having less 
effect upon fatigue life than would be expected. The extent to which the stress concentration 
effect under fatigue conditions approaches that for static conditions is given by the “notch 
sensitivity factor” q, and the relationship between them may be simply expressed by: 

K f  - 1 q = -  
Kt - 1 

(1 1.12) 

thus q is always less than 1. See also $10.3.5. 
Notch sensitivity is a very complex factor depending not only upon the material but also 

upon the grain size, a finer grain size resulting in a higher value of q than a coarse grain 
size. It also increases with section size and tensile strength (thus under some circumstances 
it is possible to decrease the fatigue life by increasing tensile strength!) and, as has already 
been mentioned, it depends upon the severity of notch and type of loading. 

In dealing with a ductile material it is usual to apply the factor K f  only to the fluctuating 
or alternating component of the applied stress. Equation (1 1 .lo) then becomes: 

ON u,,, .F 
0, = - [l- (--)I 

F X f  
(11.13) 

A typical application of this formula is given in Example 11.3. 

I 1  .I .5. Cumulative damage 

In everyday, true-life situations, for example a car travelling over varying types of roads 
or an aeroplane passing through various weather conditions on its flight, stresses will not 
generally be constant but will vary according to prevailing conditions. 
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Several attempts have been made to predict the fatigue strength for such variable stresses 
using S / N  curves for constant mean stress conditions. Some of the predictive methods avail- 
able are very complex but the simplest and most well known is “Miner’s Law.” 

Mined7) postulated that whilst a component was being fatigued, internal damage was 
taking place. The nature of the damage is difficult to specify but it may help to regard 
damage as the slow internal spreading of a crack, although this should not be taken too 
literally. He also stated that the extent of the damage was directly proportional to the number 
of cycles for a particular stress level, and quantified this by adding, “Thefraction of the total 
damage occurring under one series of cycles at a particular stress level, is given by the ratio 
of the number of cycles actually endured n to the number of cycles N required to break the 
component at the same stress level”. The ratio n/N is called the “cycle ratio” and Miner 
proposed that failure takes place when the sum of the cycle ratios equals unity. 

i.e. when Xn/N = 1 

or nl n2 n3 
- + - + -+.as+ etc = 1 
N1 N2 N3 

(11.14) 

If equation (1 1.14) is merely treated as an algebraic expression then it should be unimpor- 
tant whether we put n3/N3 before nl/N1 etc., but experience has shown that the order of 
application of the stress is a matter of considerable importance and that the application of 
a higher stress amplitude first has a more damaging effect on fatigue performance than the 
application of an initial low stress amplitude. Thus the cycle ratios rarely add up to 1, the 
sum varying between 0.5 and 2.5, but it does approach unity if the number of cycles applied 
at any given period of time for a particular stress amplitude is kept relatively small and 
frequent changes of stress amplitude are carried out, i.e. one approaches random loading 
conditions. A simple application of Miner’s rule is given in Example 11.4. 

11.1.6. Cyclic stress-strain 

Whilst many components such as axle shafts, etc., have to withstand an almost infinite 
number of stress reversals in their lifetime, the stress amplitudes are relatively small and 
usually do not exceed the elastic limit. On the other hand, there are a growing number of 
structures such as aeroplane cabins and pressure vessels where the interval between stress 
cycles is large and where the stresses applied are very high such that plastic deformation may 
occur. Under these latter conditions, although the period in time may be long, the number 
of cycles to failure will be small and in recent years interest has been growing in this “low 
cycle fatigue”. 

If, during fatigue testing under these high stress cycle conditions, stress and strain are 
continually monitored, a hysteresis loop develops characteristic of each cycle. 

Figure 11.13 shows typical loops under constant stress amplitude conditions, each loop 
being displaced to the right for the sake of clarity. It will be observed that with each cycle, 
because of work hardening, the width of the loop is reduced, eventually the loop narrowing 
to a straight line under conditions of total elastic deformation. 

The relationship between the loop width W and the number of cycles N is given by: 

w   AN-^ (11.15) 

where A is a constant and h the measure of the rate of work hardening. 
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Fig. 11.13. Cyclic stress-strain under constant stress conditions - successive loading loops displaced to right for 
clarity. Hysteresis effects achieved under low cycle, high strain (constant stress amplitude) fatigue. 

Plastic strain ' I 
ronga Ac, L- 

Fig. 1 1.14. Cyclic stress-strain under constant strain amplitude conditions. 

If instead of using constant stress amplitude conditions, one uses constant strain amplitude 
conditions then the form of loop is indicated in Fig. 11.14. Under these conditions the stress 
range increases with the number of cycles but the extent of the increase reduces with each 
cycle such that after about 20% of the life of the component the loop becomes constant. 
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If now a graph is drawn (using logarithmic scales) of the plastic strain range against 
the number of cycles to failure a straight line results (Fig. 11.15). From this graph we 
obtain the following equation for the plastic strain range Asp  which is known as the 
Coffin-Manson Law .@) 

A&, = K(Nf)-b (11.16) 

\ 
Log ” 

Fig. 11.15. Relationship between plastic strain and cycles to failure in low cycle fatigue. 

The value of b varies between 0.5 and 0.6 for most metals, whilst the constant K can be 
related to the ductility of the metal. Equation (1 1.16) can also be expressed as: 

-b 
AE, = (z) (1 1.17) 

where D is the ductility as determined by the reduction in area r in a tensile test. 

i.e. 
D = l ,  (-) 1 

1 - r  

In many applications, the total strain range may be known but it may be difficult to separate 
it into plastic and elastic components; thus a combined equation may be more useful. 

A E ~  = A E ~  + 
Where A E ~ ,  AE, and stand for total, elastic and plastic strain ranges respectively. 
Relationships between A&, and N f  are given above but AE, may be related to N f  by the 
following modified form of Basquin’s Law.f9) 

CTS Ace = 3.5 x ~ x NT0. lz  
E 

(1 1.18) 

If a graph is plotted (Fig. 1 1.16) of strain range against number of cycles to failure, it can 
be seen that the beginning part of the curve closely fits the slope of Coffin’s equation while 
the latter part fits the modified Basquin’s equation, the cross-over point being at about lo5 
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Fig. 11.16. Relationship between total strain and cycles to failure in low and high cycle fatigue. 

cycles. Therefore, it can be said that up to this figure fatigue performance is a function of 
the material’s ductility, whilst for cycles in excess of this, life is a function of the strength 
of the material. 

I 1  .I .7. Combating fatigue 

When selecting a material for use under fatigue conditions it may be better to select one 
which shows a fatigue limit, e.g. steel, rather than one which exhibits an endurance limit, 
e.g. aluminium. This has the advantage of enabling the designer to design for an infinite 
life provided that the working stresses are kept to a suitably low level, whereas if the latter 
material is selected then design must be based upon a finite life. 

In general, for most steels, the fatigue limit is about 0.5 of the tensile strength, there- 
fore, by selecting a high-strength material the allowable working stresses may be increased. 
Figure 11.17. 

LOO N, 

Fig. 11.17. Relative performance of various materials under fatigue conditions. 
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Following on the above, any process that increases tensile strength should raise the fatigue 
limit and one possible method of accomplishing this with steels is to carry out heat treatment. 
The general effect of heat treatment on a particular steel is shown in Fig. 11.18. 

~ 

LOP N, 

Fig. 11.18. Effect of heat treatment upon the fatigue limit of steel. 

Sharp changes in cross-section will severely reduce the fatigue limit (see Q 10.3.4), and 
therefore generous radii can be used to advantage in design. Likewise, surface finish will also 
have a marked effect and it must be borne in mind that fatigue data obtained in laboratory tests 
are often based upon .highly polished, notch-free, samples whilst in practice the component 
is likely to have a machined surface and many section changes. The sensitivity of a material 
to notches tends to increase with increase in tensile strength and decrease with increase in 
plasticity, thus, in design situations, a compromise between these opposing factors must be 
reached. 

Figure 1 1.19 shows the fatigue limits of typical steels in service expressed as a percentage 
of the fatigue limits obtained for the same steels in the laboratory and it will be noticed that 

Highly polished, notch free 
loo I 

Tensile strengrh of moterial 

Fig. 11.19. Effect of surface conditions on the fatigue strength of materials. 
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the fatigue limit of a low-strength steel is not affected to the same extent as the high- 
strength steel. i.e. the former is less notch-sensitive (another factor to be taken account of 
when looking at the relative cost of the basic material). However, it must be pointed out 
that it may be poor economy to overspecify surface finish, particularly where stress levels 
are relatively low. 

Because fatigue cracks generally initiate at the surface of a component under tensile stress 
conditions, certain processes, both chemical and mechanical, which introduce residual surface 
compressive stresses may be utilised to improve fatigue properties (see $ 10.2). However, the 
extent of the improvement is difficult to assess quantitatively at this juncture of time. Among 
the chemical treatments, the two most commonly employed are carburising and nitriding 
which bring about an expansion of the lattice at the metal surface by the introduction of 
carbon and nitrogen atoms respectively. Figure 11.20 shows the effect upon fatigue limit. 

Nitrided and polished 

As  mochined 

I 

Cycles to failure (N,) 

Fig. 11.20. Effect of processes which introduce surface residual stresses upon the fatigue strength of a steel. 

The most popular mechanical method of improving fatigue limits is shot peening, the 
surface of the material being subjected to bombardment by small pellets or shot of suitable 
material. In this manner, compressive residual stresses are induced but only to a limited depth, 
roughly 0.25 mm. Other mechanical methods involve improving fatigue properties around 
holes by pushing through balls which are slightly over-sized - a process called “bullising,” 
and the use of balls or a roller to cold work shoulders on fillets - a process called “rolling”. 

11 .I .8. Slip bands and fatigue 

The onset of fatigue is usually characterised by the appearance on the surface of the 
specimen of slip bands which, after about 5% of the fatigue life, become permanent and 
cannot be removed by electropolishing. With increase in the number of load cycles these 
bands deepen until eventually a crack is formed. 

Using electron microscopical techniques Forsyth‘”) observed extrusions and intrusions 
from well-defined slip bands and Cottrell(“) proposed a theory of cross-slip or slip on 
alternate slip planes whereby, during the tensile half of the stress cycle, slip occurs on each 
plane in turn to produce two surface steps which on the compressive half of the cycle are 
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converted into an intrusion and an extrusion (see Fig. 1 1.2 1). Although an intrusion is only 
very small, being approximately 1 pm deep, it nevertheless can act as a stress raiser and 
initiate the formation of a true fatigue crack. 

Fig. 11.2 1. Diagrammatic representation of the formation of intrusions and extrusions. 

Fatigue endurance is commonly divided into two periods: (i) the “crack initiation” period; 
(ii) the “crack growth” or “propagation” period. It is now accepted that the fatigue crack is 
initiated by the deepening of the slip band grooves by dislocation movement into crevices 
and finally cracks, but this makes it very difficult to distinguish between crack initiation and 
crack propagation and therefore a division of the fatigue based upon mode of crack growth 
is often more convenient. 

Initially the cracks will form in the surface grains and develop along the active slip plane 
as mentioned briefly above. These cracks are likely to be aligned with the direction of 
maximum shear within the component, Le. at 45” to the maximum tensile stress. This is 
often referred to as Stage I growth and is favoured by zero mean stress and low cyclic stress 
conditions. 

Stage I \ ‘  

\ 

Slip 
planes 

\ \  
\ 

d 

Fig. 11.22. Stage I and I1 fatigue crack propagation. 
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At some point, usually when the crack encounters a grain boundary. Stage I is replaced 
by Stage ZZ growth in which the crack is normal to the maximum principal tensile stress. 
This stage is favoured by a tensile mean stress and high cyclic stress conditions. Close 
examination of the fractured surface shows that over that part associated with Stage 11, there 
are a large number of fine lines called “striations”, each line being produced by one fatigue 
cycle and by measuring the distance between a certain number of striations the fatigue crack 
growth rate can be calculated. 

Once the fatigue crack has reached some critical length such that the energy for further 
growth can be obtained from the elastic energy of the surrounding metal, catastrophic failure 
takes place. This final fracture area is rougher than the fatigue growth area and in mild 
steel is frequently crystalline in appearance. Sometimes it may show evidence of plastic 
deformation before final separation occurred. Further discussion of fatigue crack growth is 
introduced in 5 1 1.3.7. 

11.2. Creep 

Introduction 

Creep is the time-dependent deformation which accompanies the application of stress to a 
material. At room temperatures, apart from the low-melting-point metals such as lead, most 
metallic materials show only very small creep rates which can be ignored. With increase 
in temperature, however, the creep rate also increases and above approximately 0.4 T,, 
where T, is the melting point on the Kelvin scale, creep becomes very significant. In 
high-temperature engineering situations related to gas turbine engines, furnaces and steam 
turbines, etc., deformation caused by creep can be very significant and must be taken into 
account. 

I I .2 . l .  The creep test 

The creep test is usually carried out at a constant temperature and under constant load 
conditions rather than at constant stress conditions. This is acceptable because it is more 
representative of service conditions. A typical creep testing machine is shown in Fig. 11.23. 
Each end of the specimen is screwed into the specimen holder which is made of a creep- 
resisting alloy and thermocouples and accurate extensometers are fixed to the specimen in 
order to measure temperature and strain. The electric furnace is then lowered into place and 
when all is ready and the specimen is at the desired temperature, the load is applied by 
adding weights to the lower arm and readings are taken at periodic intervals of extension 
against time. It is important that accurate control of temperature is possible and to facilitate 
this the equipment is often housed in a temperature-controlled room. 

The results from the creep test are plotted in graphical form to produce a typical curve 
as shown in Fig. 11.24. After the initial extension OA which is produced as soon as the test 
load is applied, and which is not part of the creep process proper (but which nevertheless 
should not be ignored), the curve can be divided into three stages. In the first or primary 
stage AB, the movement of dislocations is very rapid, any barriers to movement caused 
by work-hardening being overcome by the recovery processes, albeit at a decreasing rate. 
Thus the initial creep strain rate is high but it rapidly decreases to a constant value. In the 
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Fig. 11.23. Schematic diagram of a typical creep testing machine. 
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Fig. 11.24. Typical creep curve 

secondary stage BC, the work-hardening process of “dislocation pile-up” and “entanglement” 
are balanced by the recovery processes of “dislocation climb” and “cross-slip”, to give a 
straight-line relationship and the slope of the graph in this steady-state portion of the curve 
is equal to the secondary creep rate. Since, generally, the primary and tertiary stages occur 
quickly, it is the secondary creep rate which is of prime importance to the design engineer. 
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The third or tertiary stage C D  coincides with the formation of internal voids within the 
specimen and this leads to “necking”, causing the stress to increase and rapid failure to 
result. 

The shape of the creep curve for any material will depend upon the temperature of the test 
and the stress at any time since these are the main factors controlling the work-hardening 
and recovery processes. With increase in temperature, the creep rate increases because the 
softening processes such as “dislocation climb” can take place more easily, being diffusion- 
controlled and hence a thermally activated process. 

It is expected, therefore, that the creep rate is closely related to the Arrhenius equation, 
viz.: 

8; = A e - H / R T  (1 1.19) 

where E: is the secondary creep rate, H is the activation energy for creep for the material 
under test, R is the universal gas constant, T is the absolute temperature and A is a constant. 
It should be noted that both A and H are not true constants, their values depending upon 
stress, temperature range and metallurgical variables. 

The secondary creep rate also increases with increasing stress, the relationship being most 
commonly expressed by the power law equation: 

(1 1.20) E, 0 =pa“ 

where /? and n are constants, the value of n usually varying between 3 and 8. 
Equations ( 1 1.19) and (1 1.20) may be combined to give: 

(11.21) 

Figure 11.25 illustrates the effect of increasing stress or temperature upon the creep curve 
and it can be seen that increasing either of these two variables results in a similar change of 
creep behaviour, that is, an increase in the secondary or minimum creep rate, a shortening 
of the secondary creep stage, and the earlier onset of tertiary creep and fracture. 

Time 

Fig. 1 I .25. Creep curves showing effect of increasing temperature or stress 
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1 I .2.2. Presentation of creep data 

When dealing with problems in which creep is important, the design engineer may wish to 
know whether the creep strain over the period of expected life of the component is tolerable, 
or he may wish to know the value of the maximum operating stress if the creep strain is not 
to exceed a specified figure over a given period of time. 

In order to assist in the answering of these questions, creep data are often published in 
other forms than the standard strain-time curve. Figure 11.26 shows a number of fixed strain 
curves presented in the form of an isometric stress-time diagram which relates strain, stress 
and time for a fixed, specified, temperature and material, while Fig. 11.27 is an isometric 
strain -time diagram. 

I 
Time 

Fig. 11.26. Isometric stress-time diagrams. 
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Fig. 11 27. Isometric strain-time diagram 
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Sometimes, instead of presenting data relating to a fixed temperature, the strain may be 
constant and curves of equal time called isochronous stress-temperature curves. Fig. 11.28 
may be given. Such curves can be used for comparing the properties of various alloys and 
Fig. 11.29 shows relations for a creep strain of 0.2% in 3000 hours. Such information might 
be applicable to an industrial gas turbine used intermittently. 

Al loy  B 
0.2% creep stroin 

I 
Temperoture 

Fig. 11.28. Isochronous stress-temperature curves. 

0.2% creep strain 
3000 hours 

Ternperoture 

Fig. 11.29. 3000 hours, 0.2% creep-strain curves for various alloys. 

11.2.3. The stress-rupture test 

Where creep strain is the important design factor and fracture may be expected to take a 
very long time, the test is often terminated during the steady state of creep when sufficient 
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information has been obtained to produce a sufficiently accurate value of the secondary creep 
rate. Where life is the important design parameter, then the test is carried out to destruction 
and this is known as a stress-rupture test. 

Because the total strain in a rupture test is much higher than in a creep test, the equipment 
can be less sophisticated. The loads used are generally higher, and thus the time of test 
shorter, than for creep. The percentage elongation and percentage reduction in area at fracture 
may be determined but the principal information obtained is the time to failure at a fixed 
temperature under nominal stress conditions. 

A graph (Fig. 11.30), is plotted of time to rupture against stress on a log-log basis, 
and often a straight line results for each test temperature. Any change in slope of this 
stress-rupture line may be due to change in the mechanism of creep rupture within the 
material. 

Time to rupture 

Fig. 11.30. Stress-rupture time curves at various temperatures. 

11.2.4. Parameter methods 

Very often, engineers have to confirm to customers that a particular component will with- 
stand usage at elevated temperatures for a particular life-time which, in the case of furnace 
equipment or steam applications, may be a considerable number of years. It is impracticable 
to test such a component, for example, for twenty years before supplying the customer and 
therefore some method of extrapolation is required. The simplest method is to test at the 
temperature of proposed usage, calculate the minimum creep rate and assume that this will 
continue for the desired life-time and then ascertain whether the creep strain is acceptable. 
The obvious disadvantage of this method is that it does not allow for tertiary creep and 
sudden failure (which the creep curve shows will take place at some time in the future but 
at a point which cannot be determined because of time limitations). 

In order to overcome this difficulty a number of workers have proposed methods involving 
accelerated creep tests, whereby the test is carried out at a higher temperature than that used 
in practice and the results used to predict creep-life or creep-strain over a longer period of 
time at a lower temperature. 

The most well-known method is that of Larson and Miller and is based upon the Arrhenius 
equation (eqn. 11.19) which can be rewritten, in terms of log,o as in eqn. (1 1.22) or in terms 



468 Mechanics of Materials 2 $11.2 

of 1, without the constant 0.4343. 

(1 1.22) 

where I, is the time to rupture, G is a constant, T is the absolute temperature, R is 
the universal gas constant, and H is the activation energy for creep and is assumed to be 
stress-dependent. 

1 
log,, t ,  + C = m . - 

T 
where m is a function of stress. 

. .  

this can be re-written as: 

T(log,, t ,  + C j = m 

p1 = f(4 
where the Larson-Miller parameter 

P1 = T(logl0 tr  + C) (1 1.23) 

the value of the constant C can be obtained from the intercept when log,, t, is plotted against 
1/T. For ferrous metals it usually lies between 15 and 30. If a test is carried out under a 
certain value of stress and temperature, the value of tr can be determined and, if repeated for 
other stress and temperature values, the results can be plotted on a master curve (Fig. 11.3 1). 

I 

P=T (log,,, t, + C )  

Fig. 11.31. Larson-Miller master curve. 

The value of the parameter P is the same for a wide variety of combinations of t, and 
temperature, ranging from short times and high temperatures representing test conditions, to 
long times at lower temperatures representing service conditions. 

Results obtained by other workers, notably Sherby and Dorn(14), suggest that G in the 
above equation (eqn. 11.22) is not a true constant but varies with stress whilst E is essentially 
constant. If 0.4343 E / R  in eqn. (1 1.22) is replaced by (11 and log,, G by 4 then eqn. (11.22) 
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can be written as: 
a 

log,, t, - - = I$ 
T 

or P2 = f(4 
where the Sherby-Dorn parameter 

(1  1.24) 

the constant a being determined from the common slope of a plot of loglot, versus 1/T. 
After a series of creep tests, a master curve can then be plotted and used in the same manner 
as for the Larson-Miller parameter. 

Another parameter was suggested by Manson and Haferd(13) who found that, for a given 
material under different stress and temperature conditions, a family of lines was obtained 
which intercepted at a point when log t, was plotted against T. The family of lines of this 
kind could be represented by the equation: 

T - Ta = m(lOg1o  tr  - log10 t a )  (11.25) 

where the slope m is a function of stress and Tu and log,, tu are the coordinates of the 
converging point (Fig. 11.32). 

Temperature 
T, 

Fig. 11.32. Manson and Haferd curves. 

The Manson-Haferd parameter can then be stated as: 

(1  1.26) 

where P3 = m = f(a). 
A master curve can then be plotted in a similar manner to the other methods. 

When using any of the above methods, certain facts should be borne in mind with regard to 
their limitations. Firstly, since the different methods give slightly differing results, this casts 
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doubts on the validity of all three methods and, in general, although the Manson-Haferd 
parameter has been found to produce more accurate predictions, it is difficult to deter- 
mine the exact location of the point of convergence of the lines. Secondly, if one is using 
higher test temperatures than operating temperatures then the mechanisms of creep may be 
different and unrelated one to the other. Thirdly, the mechanism of creep failure may change 
with temperature; at lower temperatures, failure is usually transcrystalline whilst at higher 
temperatures it is intercrystalline, the change-over point being the equi-cohesive tempera- 
ture. Results above this temperature are difficult to correlate with those obtained below this 
temperature. 

11.2.5. Stress relaxation 

So far we have been concerned with the study of material behaviour under constant loading 
or constant stress conditions where increase in strain is taking place and may eventually 
lead to failure. However, there are important engineering situations involving cylinder-head 
bolts, rivets in pressure vessels operating at elevated temperatures, etc., where we consider 
the strain to be constant and then we need to evaluate the decrease in stress which may 
take place. This time-dependent decrease in stress under constant strain conditions is called 
"stress relaxation". 

Consider two plates held together by a bolt deformed by a stress ai producing an initial 
strain ~i which is all elastic. 

Then ~i = E ,  = a i /E  (1)  

At elevated temperatures and under conditions of steady-state creep, this bolt will tend to 
elongate at a rate E' dictated by the power law: 

and, assuming the thickness of the plates remain constant, the strain caused by creep E ,  

simply reduces the elastic part E ,  of the initial strain, 

i.e. E, = E j  - E ,  (3) 

But, since the creep strain decreases the elastic component of the initial strain, a corre- 
sponding decrease in stress must also result from eqn. (1). 

Since ~i is constant, if we differentiate eqn. (3) with respect to time we obtain: 

but E ,  = aE where a is the instantaneous stress, therefore the LHS of eqn. (4) can be replaced 
by (1/E) . (da/d t )  whilst, from eqn. (2), the RHS of eqn. (4) can be replaced by Pa". 

Therefore, eqn. (4) can be rewritten: 

1 d o  
E dt 
- . _ -  - -Pa" 

. .  



911.2 Fatigue, Creep and Fracture 47 1 

= -EPt + c 1 - . .  ( n  - 1)a“-’ 

To find C ,  consider the time t = 0, when the stress would be the initial stress ai 

Then 
1 C = -  

( n  - l)ai”-’ 
(7) 

substituting for C in eqn. (6),  multiplying through by (n - 1) and re-arranging, gives: 

(11.27) 

11.2.6. Creep-resisfant alloys 

The time-dependent deformation called “creep”, as with all deformation processes, is 
largely dependent upon dislocation movement and, therefore, the development of alloys with 
a high resistance to creep involves producing a material in which movement of dislocations 
only takes place with difficulty. 

Since creep only becomes an engineering problem above about 0.4 x melting point temper- 
ature on the Kelvin scale T,, the higher the melting point of the major alloy constituent the 
better. However, there are practical limitations; for instance, some high-melting-point metals 
e.g. tungsten ( M R  3377“ C) are difficult to machine, some Molybdenum (M.Pt 2607” C) 
form volatile oxides and some others, e.g. Osmium (M.Pt 3027 C) are very expensive and 
therefore Nickel (M.Pt 1453) and Cobalt (M.Pt 1492” C) are used extensively at the moment. 

The movement of dislocations will be hindered to a greater extent in an alloy rather than 
in a pure metal and alloying elements such as chromium and cobalt are added therefore 
to produce a solid-solution causing “solid-solution-hardening”. Best results are obtained by 
rising an alloying element whose atomic size and valency are largely different from those of 
the parent metal, but this limits the amount that may be added. Also, the greater the amount 
of alloying element, the lower is likely to be the melting range of the alloy. Thus, the benefits 
of solution-hardening which hinders the dislocation movement may be outweighed at higher 
temperatures by a close approach to the solidus temperature. 

Apart from solution-hardening , most creep-resisting alloys are further strengthened by 
precipitation hardening which uses carbides, oxides, nickel-titanium-aluminium, and nitride 
particles to block dislocation movement. Further deformation can then only take place by the 
dislocation rising above or “climbing” over the precipitate in its path and this is a diffusion- 
controlled process. Thus, metals with a low rate of self-diffusion e.g. face-centered-metals 
such as nickel are preferred to body-centred-metals. 

Finally, cold-working is another method of increasing the high-temperature strength of an 
alloy and hindering dislocation movement but, since cold work lowers the re-crystallization 
temperature, for best results it is limited to about 15-20%. The use of alloying elements 
which raise the re-crystallization temperature in these circumstances will be beneficial. 

All the methods above have their limitations. In solid-solution-hardening , a temperature 
increase will produce a corresponding increase in the mobility of the solute atoms which 
tend to lock the dislocations, thus making dislocation movement easier. With precipitation 
hardening, the increase in temperature may produce “over-ageing”, resulting in a coarsening 
of the precipitate or even a complete solution of the precipitate, both effects resulting in 
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a softening and decrease in creep resistance. It may be possible, however, to arrange for 
a second precipitate to form which may strengthen the alloy. The effects of cold work 
are completely nullified when the temperature rises above the re-crystallisation temperature, 
hence the application of this technique is very limited. 

At room temperature, grain boundaries are normally stronger than the grain material but, 
with increase in temperature, the strength of the boundary decreases at a faster rate than does 
the strength of the grain interior such that above the “equi-cohesive temperature” (Fig. 11.33), 
a coarse-grain material will have higher strength than a fine-grain material since the latter is 
associated with an increase in the amount of grain boundary region. It should be noted that 
T ,  is not fixed, but dependent upon stress, being higher at high stresses than at low stresses. 

\. 
Transgronulor Intercrystolline - I- f roc ture B fracture 

Temperoture 

Fig. 1 I .33. Diagram showing concept of equi-cohesive temperature (T,) 

It can be shown also that creep rate is inversely proportional to the square of the grain 
size and dictated by the following formula: 

KuD 
Creep rate= - 

dZT 
(1 1.28) 

where K is a constant, (T is the applied stress, D is the coefficient of self diffusion, d is the 
grain size and T is the temperature. Thus, grain boundary strengthening, by the introduction 
of grain boundary carbide precipitates which help to prevent grain boundary sliding, and 
the control of grain size are important. Better still, the component may be produced from a 
single crystal such as the RB211 intermediate pressure turbine blade. 

Apart from high creep resistance, alloys for use at high temperatures generally require 
other properties such as high oxidation resistance, toughness, high thermal fatigue resistance 
and low density, the importance of these factors depending upon the application of the 
material, and it is doubtful if any single test would provide a simple or accurate index of 
the qualities most desired. 

11.3. Fracture mechanics 

Introduction 

The use of stress analysis in modem design procedures ensures that in normal service very 
few engineering components fail because they are overloaded. However, weakening of the 
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component by such mechanisms as corrosion or fatigue-cracking may produce a catastrophic 
fracture and in some instances, such as in the design of motorcycle crash helmets, the 
fracture properties of the component are the most important consideration. The study of how 
materials fracture is known as fracture mechanics and the resistance of a material to fracture 
is colloquially known as its “toughness”. 

No structure is entirely free of defects and even on a microscopic scale these defects act as 
stress-raisers which initiate the growth of cracks. The theory of fracture mechanics therefore 
assumes the pre-existence of cracks and develops criteria for the catastrophic growth of these 
cracks. The designer must then ensure that no such criteria can be met in the structure. 

In a stressed body, a crack can propagate in a combination of the three opening modes 
shown in Fig. 1 1.34. Mode I represents opening in a purely tensile field while modes I1 and 
III are in-plane and anti-plane shear modes respectively. The most commonly found failures 
are due to cracks propagating predominantly in mode I, and for this reason materials are 
generally characterised by their resistance to fracture in that mode. The theories examined 
in the following sections will therefore consider mode I only but many of the conclusions 
will also apply to modes I1 and 111. 

II m I 

Fig. 11.34. The three opening modes, associated with crack growth: mode I-tensile; mode 11-in-plane shear; 
mode 111-anti-plane shear. 

11.3.1. Energy variation in cracked bodies 

A basic premise in thermodynamic theory is that a system will move to a state where the 
free energy of the system is lower. From this premise a simple criterion for crack growth 
can be formulated. It is assumed that a crack will only grow if there is a decrease in the free 
energy of the system which comprises the cracked body and the loading mechanism. The 
first usable criterion for fracture was developed from this assumption by Griffith(”), whose 
theory is described in detail in $ 1 1.3.2. 

For a clearer understanding of Griffith’s theory it is necessary to examine the changes 
in stored elastic energy as a crack grows. Consider, therefore, the simple case of a strip 
containing an edge crack of length a under uniaxial tension as shown in Fig. 11.35. If load 
W is applied gradually, the load points will move a distance x and the strain energy, U ,  
stored in the body will be given by 

u = ; w x  
for purely elastic deformation. 

The load and displacement are related by the “compliance” C ,  

i.e. x = c w  ( I  1.29) 
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( a )  t b )  

Fig. 11.35. (a) Cracked body under tensile load W; (b) force-displacement curves for a body with crack lengths a 
and a + da. 

The compliance is itself a function of the crack length but the exact relationship varies with 
the geometry of the cracked body. However, if the crack length increases, the body will 
become less stiff and the compliance will increase. 

There are two limiting conditions to be considered depending on whether the cracked 
body is maintained at (a) constant displacement or (b) constant loading. Generally a crack 
will grow with both changing loads and displacement but these two conditions represent the 
extreme constraints. 

(a )  Constant displacement 

Consider the case shown in Fig. 11.35(b). If the body is taken to be perfectly elastic then 
the load-displacement relationship will be linear. With an initial crack length a loading 
will take place along the line OA. If the crack extends a small distance 6a while the points 
of application of the load remain fixed, there will be a small increase in the compliance 
resulting in a decrease in the load of 6 W .  The load and displacement are then given by the 
point B. The change in stored energy will then be given by 

SU, = Z(W I - 6W)X - ; w x  

au, = -$wx (11.30) 

(b) Constant loading 

In this case, if the crack again extends a small distance 6a the loading points must move 
through an additional displacement Sx in order to keep the load constant. The load and 
displacement are then represented by the point C .  

There would appear to be an increase in stored energy given by 

s u = ; w ( x + 6 x ) - ; w x  

= kW6x 
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However, the load has supplied an amount of energy 

= wsx 
This has to be obtained from external sources so that there is a total reduction in the potential 
energy of the system of 

6UW = & w a x -  W6X 

SUW = +WbX (11.31) 

For infinitesimally small increases in crack length the compliance C remains essentially 
constant so that 

sx = caw 
Substituting in eqn. (1 1.31) 

s u w  = -qWCGW 1 = -$GW 

Comparison with eqn. (1 1.30) shows that, for small increases in crack length, 

su, = su, 
It is therefore evident that for small increases in crack length there is a similar decrease in 
potential energy no matter what the loading conditions. For large changes in crack length 
there is no equality but, generally, we are interested in the onset of crack growth since for 
monotonic (continuously increasing) loading catastrophic failure commonly follows crack 
initiation. 

If there is a decrease in potential energy when a crack grows then there must be an energy 
requirement for the production of a crack - otherwise all cracked bodies would fracture 
instantaneously. The following section examines the most commonly used fracture criterion 
based on a net decrease in energy. 

1 I .3.2. Linear elastic fracture mechanics (L.E.F.M.) 

(a)  Griffrth’s criterion for fracture 

Griffith’s thermodynamics approach was the first to produce a usable theory of fracture 
mechanics.(I2) His theoretical model shown in Fig. 11.36 was of an infinite sheet under a 
remotely applied uniaxial stress u and containing a central crack of length 2u. The preceding 
section has shown that when a crack grows there is a decrease in potential energy. Griffith, 
by a more mathematically rigorous treatment, was able to show that if that decrease in 
energy is greater than the energy required to produce new crack faces then there will be a 
net decrease in energy and the crack will propagate. For an increase in crack length of 6a. 

6U = 2ybSa 

y is the surface energy of the crack faces; 
b is the thickness of the sheet. 

At the onset of crack growth, 6a is small and we have 

dU 
da 
- = 2by 
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- 
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Fig. 11.36. Mathematical model for Griffith’s analysis. 

The expression on the left-hand side of the above equation is termed the “critical strain 
energy release” (with respect to crack length) and is usually denoted as Gc,  

(11.32) 

This is the Griflth criterion for fracture. 
Griffith’s analysis gives G, in terms of the fracture stress of 

+ na 
Gc= - in plane stress 

E 
(1 1.33) 

$ na 
E 

G,= -(1 - uz) in plane strain. (1 1.34) 

For finite bodies and those with edge cracks, correction factors must be introduced. Usually 
this involves replacing the factor n by some dimensionless function of the cracked body’s 
geometry. 

From eqns. (1 1.32) and (1 1.34) we can predict that, for plane strain, the fracture stress 
should be given by 

or, for plane stress: 

(11.35) 

Griffith tested his theory on inorganic glasses and found a reasonable correlation between 
predicted and observed values of fracture stress. However, inorganic glasses are extremely 
brittle and when more ductile materials are examined it is found that the predicted values 
are far less than those observed. It is now known that even in apparently brittle fractures 
a ductile material will produce a localised plastic zone at the crack tip which effectively 
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blunts the crack. This has not prevented some workers measuring G, experimentally and 
using it as a means of comparing materials but it is then understood that the energy required 
to propagate the crack includes the energy to produce the plastic zone. 

(b) Stress intensity factor 

Griffith's criterion is an energy-based theory which ignores the actual stress distribution 
near the crack tip. In this respect the theory is somewhat inflexible. An alternative treatment 
of the elastic crack was developed by Irwin('6), who used a similar mathematical model to 
that employed by Griffith except in this case the remotely applied stress is biaxial - (see 
Fig. 11.37). Irwin's theory obtained expressions for the stress components near the crack 
tip. The most elegant expression of the stress field is obtained by relating the Cartesian 
components of stress to polar coordinates based at the crack tip as shown in Fig. 11.38. 

Fig. 11.37. Mathematical model for Irwin's analysis. 

Fig. 11.38. Coordinate system for stress components in Irwin's analysis. 
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Then we have: 

a,., = ~ cos - 1 - sin sin ”1 
d G - 2  2 2  

(1 1.36) 

K H 0 30 
al\ = - cos - sin - cos - 

z 2 2 2  

a,, = 0 
With, for plane stress, 

or, for plane strain, 

0,: = ! J ( a r r  + a\\ 1 
with a,, = a,, = 0 for both cases. 

The expressions on the right-hand side of the above equations are the first terms in series 
expansions but for regions near the crack tip where r / n  >> 1 the other terms can be neglected. 

It is evident that each stress component is a function of the parameter K and the polar 
coordinates determining the point of measurement. The parameter K ,  which is termed the 
‘‘srress intensity factor”, therefore uniquely determines the stress field near the crack tip. If 
we base our criterion for fracture on the stresses near the crack tip then we are implying 
that the value of K determines whether the crack will propagate or not. The stress intensity 
factor K is simply a function of the remotely applied stress and crack length. 

If more than one crack opening mode is to be considered then K sometimes carries the 
suffix I, I1 or I11 corresponding to the three modes shown in Fig. 11.34. However since this 
text is restricted to consideration of mode I crack propagation only, the formulae have been 
simplified by adopting the symbol K without its suffix. Other texts may use the full symbol 
K ,  in development of similar formulae. 

For Irwin’s model, K is given by 

K = a G  (1 1.37a) 

For an edge crack in a semi-infinite sheet 

K = 1 . 1 2 a G  (1 1.37b) 

To accommodate different crack geometries a flaw shape parameter Q is sometimes intro- 
duced thus 

or, for an edge crack 

K +  

K = 1 . 1 2 0 E  

(1 1 .37~)  

( 1  1.37d) 

Values of Q for various aspect (depth to width) ratios of crack can be obtained from standard 
texts*, but, typically, they range from 1.0 for an aspect ratio of zero to 2.0 for an aspect 
ratio of 0.4. 

* Knott and Elliot, Worked E.wn1pk.s it7 Fruc.ture, Mec~hanic~.s. Inst. met. 
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Normal manufactured components are of finite size and generally cracks grow from a 
free surface. However, for regions near the crack tip it is found that eqn (1 1.36) is a good 
approximation to the stress field if the stress intensity factor is modified to 

K = u Y &  (1 1.38) 

where a is the length of the edge crack and Y is a dimensionless correction factor often termed 
a “compliance function”. Y is a polynomial of the ratio a/  W where W is the uncracked width 
in the crack plane (see Table 11.1). 

Table 1 1 . 1 .  Table of compliance functions (Y), 

Compliance function Y = A (G) I ”  - B (i) 312 + C ( i)s‘z - D ( i)7‘z + ,lj ( ,)9’2 

with W = uncracked specimen width; a = length of edge crack; b = specimen thickness; 
P = total load; L = distance between loading points 

Specimen 
geometry 

V 

Specimen 
nomenclature 

Single edge notched 
(S.E.N.) 

Three-point bend 
(L = 4 W )  

Four-point bend 

Compact tension 
(C.T.S.) 

Equation for K 
_.  

Compliance function constants 

A B  c D E 

1.99 0.41 18.70 38.48 53.85 

1.93 3.07 14.53 25.11 25.80 

1.99 2.47 12.97 23.17 24.80 

29.60 185.50 655.70 1017.0 638.90 

It is common practice to express K in the directly measurable quantities of load P, thick- 
ness b, and width W. The effect of crack length is then totally incorporated into Y 

i.e. (11.39) 

In practice, values of K can be determined for any geometry and for different types of loading. 
Table 1 1 . 1 gives the expressions derived for common laboratory specimen geometries. 

Photoelastic determination of stress intensity factors 

The stress intensity factor K defined in $ 11.3.2 is an important and useful parameter 
because it uniquely describes the stress field around a crack tip under tension. In a 
two-dimensional system the stress field around the crack tip has been defined, in polar 
co-ordinates, by eqns. (1 1.36) as 
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6 0 30 
cos - sin - cos - rxb  = ~ 

a,, = ~ 

fJ\, = ~ 

K 
G 2 2 2  

(1 1.36)bis 

with the crack plane running along the line 0 = T ,  see Fig. 1 1.38. 

stress r,,, and from Mohr circle proportions, or from eqn. (13.13)) 
From 46.15 photoelastic fringes or “isochromatics” are contours of equal maximum shear 

Substituting eqns. ( 1  1.36) gives 
K sin 6 

t,,, = - 
2& 

(1 1.40) 

If, therefore, a photoelastic model is constructed of the particular crack geometry under 
consideration (see Fig. 11.39) a plot of r,,, against l / f i  from the crack tip will produce a 
straight line graph from the slope of which K can be evaluated. 

It is usual to record fringe order (and hence rmax values) along the line 6 = 90” when r 
will be at a maximum r,,,,. Then: 

i.e. 
K 

slope of graph = ~ 

2& 

Correction factors 

Equations (1 1.36), above, were derived for mathematical convenience for an infinite sheet 
containing a central crack of length 2a loaded under biaxial tension. For these conditions it 
is found that 

K = a l / r r a  

In order to allow for the fact that the loading in the photoelastic test is uniaxial and that 
the model is of finite, limited size, a correction factor needs to be applied to the above K 
value in order that the “theoretical” value can be obtained and compared with the result 
obtained from the photoelastic test. This is normally written in terms of the function ( a / w )  
where a = edge crack length and w = plate width. Then: 

K = f ~ & [ I . 9 9 - 0 . 4 1  (i) + 1 8 . 7 ( ~ ) 2 - 3 8 . 4 8 ( ~ ) 3 + 5 3 . 8 5 ( % ) l ]  

.L ’ E.J. Hearn. Mrc./rrrr!ic.s of Mtrter.iti/.\ I .  Butterworth-Heinemann. 1997. 
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Fig. 11.39. Photoelastic fringe pattern associated with a particular crack geometry (relevant stress componenl
nomenclature given in Fig. 11.38)

11.3.3 .Elastic-plastic fracture mechanics (E.P .P.M.

Irwin's description of the stress components near an elastic crack can be summarised as

.36

which implies that each stress component rises to infinity as the crack tip is approached and
as r nears zero.

In particular, the vertical stress in the crack plane where () = O is given by

K
-(2nx)I/2 (11.41)

which is represented by the dotted line shown in Fig. 11.40(a).

In a ductile material then, at some point the stress will exceed the yield stress and the

material will yield. By following Knott's analysis(17) we can estimate the extent of the plastic

deformation.
If we consider plane stress conditions then ayy is the maximum and azz the minimum

(= 0) principal stress. Then, by the Tresca criterion, the material will shear in the yz plane

O"yy
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Fig. 11.40. Schematic representation of crack tip plasticity in; (a) plane stress; (b) plane strain.

and at 45 to the y and z axes when

or

ayy -au = ay

ayy = ay

where ay is the yield stress in uniaxial tension.
At some distance ro from the crack tip ayy=ay as shown in Fig. 11.40(a). By simple
integration, the area under the curve between the crack tip and ro is equal to 2ayro. The
shaded area in the figure must therefore have an area ayro. It is conventional to assume that
the higher stress levels associated with the shaded area are redistributed so that the static
zone extends a distance r p where

K2
-' (11.42)

7ro:;;
Figure 11.40(a) shows the behaviour of ayy(x, 0), i.e. the variation of a yy with x at y = 0,

for the case of plane stress. This is only a first approximation, but the estimate of the plastic
zone size differs only by a small numerical factor from refined treatments. In the case of
plane strain au is non-zero and a xx is the smallest principal stress in the vicinity of the

rp = 2ro =
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crack tip. Again, by using the Tresca criterion, we have 

g y y  - axx = CJy 

oyy = o y  + a,, or 

In the plastic zone the difference between ayy and a,, must be maintained at a?. As x 
increases from the crack tip a,, rises from zero and so ayy must rise above ay. The normal 
stress azr must also increase and a schematic representation is shown in Fig. 1 1.40(b). The 
stress configuration is one of triaxial tension and the constraints on the material produce 
stresses higher than the uniaxial yield stress. The maximum stress under these conditions is 
often conveniently taken to be 30,. The plane strain plastic zone size is therefore taken to 
be one-third of the plane stress plastic zone 

i.e. ( 1  1.43) 

In both states of stress it is seen that the square of the stress intensity factor determines 
the size of the plastic zone. This would seem paradoxical as K is derived from a perfectly 
elastic model. However, if the plastic zone is small, the elastic stress field in the region 
around the plastic zone will still be described by eqn. ( 1  1.43). The plasticity is then termed 
“well-contained” or “K-controlled” and we have an elastic-plastic stress distribution. A 
typical criterion for well-contained plasticity is that the plastic zone size should be less than 
one-fiftieth of the uncracked specimen ligament. 

11.3.4. Fracture toughness 

A fracture criterion for brittle and elastic-plastic cracks can be based on functions of the 
elastic stress components near the crack tip. No matter what function is assumed it is implied 
that K reaches some critical value since each stress component is uniquely determined by 
K. In other words the crack will become unstable when K reaches a value Klc ,  the Critical 
stress inrensity factor in mode I. Klc is now almost universally denoted as the “jYac’ture 
toughness”, and is used extensively to classify and compare materials which fracture under 
plane strain conditions. 

The fracture toughness is measured by increasing the load on a pre-cracked laboratory 
specimen which usually has one of the geometries shown in Table 1 I . I .  When the onset of 
crack growth is detected then the load at that point is used to calculate K,c. 

In brittle materials, the onset of crack growth is generally followed by a catastrophic 
failure whereas ductile materials may withstand a period of stable crack growth before the 
final fracture. The start of the stable growth is usually detected by changes in the compliance 
of the specimen and a clip-gauge mounted across the mouth of the crack produces a sensitive 
method of detecting changes in compliance. It is important that the crack is sharp and that 
its length is known. In soft materials a razor edge may suffice, but in metals the crack is 
generally grown by fatigue from a machined notch. The crack length can be found after 
the final fracture by examining the fracture surfaces when the boundary between the two 
types of growth is usually visible. Typical values of the fracture toughness of some common 
materials are given in Table 1 1.2. 
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Table 1 1.2. Typical K l c  values. 

Material Klc (MN/m3/*) 

Concrete (dependent on mix and 
void content) 0.1-0.15 
Epoxy resin 0.5 - 2.0 
Pol ymethylmethacrylate 2-3 
Aluminium 20 - 30 
Low alloy steel 40-60 

11.3.5. Plane strain and plane stress fracture modes 

Generally, in plane stress conditions, the plastic zone crack tip is produced by shear 
deformation through the thickness of the specimen. Such deformation is enhanced if the 
thickness of the specimen is reduced. If, however, the specimen thickness is increased then 
the additional constraint on through-thickness yielding produces a triaxial stress distribution 
so that approximate plane strain deformation occurs with shear in the x y  plane. There is 
usually a transition from plane stress to plane strain conditions as the thickness is increased. 
As KIc values are generally quoted for plane strain, it is important that this condition prevails 
during fracture toughness testing. 

A well-established criterion for plane strain conditions is that the thickness B should obey 
the following: 

(1 1.44) 

It should be noted that, even on the thickest specimens, a region of plane stress yielding is 
always present on the side surfaces because no triaxial stress can exist there. The greater 
plasticity associated with the plane stress deformation produces the characteristic “shear lips” 
often seen on the edges of fracture surfaces. In some instances the plane stress regions on the 
surfaces may be comparable in size with nominally plane strain regions and a mixed-mode 
failure is observed. However, many materials show a definite transition from plane stress to 
plane strain. 

11.3.6. General yielding fracture mechanics 

When the extent of plasticity which accompanies the growth of a crack becomes compa- 
rable with the crack length and the specimen dimensions we cannot apply linear elastic 
fracture mechanics (LEFM) and other theories have to be sought. It is beyond the scope of 
this book to review all the possible attempts to provide a unified theory. We will, however, 
examine the J integral developed by Rice(’*) because this has found the greatest favour in 
recent years amongst researchers in this field. In its simplest form the J integral can be 
defined as 

au* 
aa 

J = -  (1 1.45) 

where the asterisk denotes that this energy release rate includes both linear elastic and 
non-linear elastic strain energies. For linear elasticity J is equivalent to G .  
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The theory of the J integral was developed for non-linear elastic behaviour but, in the 
absence of any rival theory, the J integral is also used when the extent of plasticity produces 
a non-linear force-displacement curve. 

As the crack propagates and the crack tip passes an element of the material, the element 
will partially unload. In cases of general yielding the elements adjacent to the crack tip will 
have been plastically deformed and will not unload reversibly, and the strain energy released 
will not be as great as for reversible non-linear elastic behaviour. At the initiation of growth 
no elements will have unloaded so that if we are looking for a criterion for crack growth 
then the difference between plastic and nonlinear elastic deformation may not be significant. 
By analogy with Griffith’s definition of Gc in eqn. (1 1.32) we can define 

J ,  = (g )  
C 

(1 1.46) 

the critical strain energy release rate for crack growth. Here the energy required to extend 
the crack is dominated by the requirement to extend the plastic zone as the crack grows. 
The surface energy of the new crack faces is negligible in comparison. Experiments on mild 
steel(’6) show that J, is reasonably constant for the initiation of crack growth in different 
specimen geometries. 

Plastic deformation in many materials is a time-dependent process so that, at normal rates 
of loading, the growth of cracks through structures with gross yielding can be stable and 
may be arrested by removing the load. 

Calculation of J 

Several methods of calculating J exist, but the simplest method using normal laboratory 
equipment is that developed by Begley and Landes.(’’) Several similar specimens of any 
suitable geometry are notched or pre-cracked to various lengths. The specimens are then 
extended while the force-displacement curves are recorded. Two typical traces where the 
crack length a2 is greater than a1 are shown in Fig. 11.41. At any one displacement x ,  the 
area under the W-x curve gives U*. For any given displacement, a graph can be plotted of 

DisDlacament I x f 

Fig. 11.41. Force-displacement curves for cracked bodies exhibiting general yielding (crack length al < a2) 
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U* against crack length (Fig. 11.42). The slopes of these curves give J for any given combi- 
nation of crack length and displacement, and can be plotted as a function of displacement 
(Fig. 11.43). By noting the displacement at the onset of crack growth, J ,  can be assessed. 

I 

Crack length ( a  1 

Fig. 11.42. Total energy absorbed as a function of crack length and at constant displacement (x3 > x2 > X I  ) 

Displacement 

Fig. 11.43. The J integral as a function of displacement. 

1 I .3.7. Fatigue crack growth 

The failure of engineering components most commonly occurs at stress levels far below 
the maximum design stress. Also, components become apparently more likely to fail as their 
service life increases. This phenomenon, commonly termed fatigue, see $1 1.1, involves the 
growth of small defects into macroscopic cracks which grow until Klc is exceeded and 
catastrophic failure occurs. One of the earliest observations of fatigue failure was that the 
amplitude of fluctuations in the applied stress had a greater influence on the fatigue life of 
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a component than the mean stress level. In fact if there is no fluctuation in loading then 
fatigue failure cannot occur, whatever magnitude of static stress is applied. 

As stated earlier, fatigue failure is generally considered to be a three-stage process as 
shown schematically in Fig. 11.44. Stage I involves the initiation of a crack from a defect 
and the subsequent growth of the crack along some favourably orientated direction in the 
microstructure. Eventually the crack will become sufficiently large that the microstructure 
has a reduced effect on the crack direction and the crack will propagate on average in a 
plane normal to the maximum principal stress direction. This is stage 11 growth which has 
attracted the greatest attention because it is easier to quantify than the initiation stage. When 
the crack has grown so that KIC is approached the crack accelerates more rapidly until Klc 
is exceeded and a final catastrophic failure occurs. This accelerated growth is classified as 
stage III .  

Fig. 11.44.  Schematic representation of the three stages of fatigue crack growth. 

The rate of growth of a fatigue crack is described in terms of the increase in crack length 
per load cycle, da/dN.  This is related to the amplitude of the stress intensity factor, A K ,  
during the cycle. If the amplitude of the applied stress remains constant then, as the crack 
grows, A K  will increase. Such conditions produce growth-rate curves of the type shown 
in Fig. 11.45. Three distinct sections, which corresponds to the three stages of growth, can 
be seen. 

There is a minimum value of AK below which the crack will not propagate. This is 
termed the threshold value or AKth and is usually determined when the growth rate falls 
below mdcycle can 
be detected but at this point we are measuring the average increase produced by a few areas 
of localised growth over the whole crack front. To remove any possibility of fatigue failure 
in a component it would be necessary to determine the maximum defect size, assume it was 
a sharp crack, and then ensure that variations in load do not produce AKth. 

Usually this would result in an over-strong component and it is necessary in many appli- 
cations to assume that some fatigue crack growth will take place and assess the lifetime of 
the component before failure can occur. Only sophisticated detection techniques can resolve 

d c y c l e  or, roughly, one atomic spacing. Growth rates of 
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Fig. 11.45. Idealised crack growth rate plot for a constant load amplitude. 

cracks in the initiation stage and generally it is assumed that the lifetime of fatigue cracks 
is the number of cycles endured in stage 11. 

For many materials stage I1 growth is described by the Paris-Erdogan Law(20). 

da 
dN 
- = C ( A K ) m  (11.47) 

C and m are material coefficients. Usually m lies between 2 and 7 but values close to 4 are 
generally found. This simple relationship can be used to predict the lifetime of a component if 
the stress amplitude remains approximately constant and the maximum crack size is known. 
If the stress amplitude varies, then the growth rate may depart markedly from the simple 
power law. Complications such as fatigue crack closure (effectively the wedging open of 
the crack faces by irregularities on the crack faces) and single overloads can reduce the 
crack growth rate drastically. Small changes in the concentration of corrosive agents in the 
environment can also produce very different results. 

Stage I11 growth is usually a small fraction of the total lifetime of a fatigue crack and 
often neglected in the assessment of the maximum number of load cycles. 

Since we are considering AK as the controlling parameter, only brittle materials or those 
with well-contained plasticity can be treated in this manner. When the plastic deformation 
becomes extensive we need another parameter. Attempts have been made to fit growth-rate 
curves to AJ the amplitude of the J integral. However while non-linear elastic and plastic 
behaviour may be conveniently merged in monotonic loading, in cyclic loading there are 
large differences in the two types of deformation. The non-linear elastic material has a 
reversible stress-strain relationship, while large hysteresis is seen when plastic material is 
stressed in the opposite sense. As yet the use of AJ has not been universally accepted but, 
on the other hand, no other suitable parameter has been developed. 

11.3.8. Crack tip plasticity under fatigue loading 

As a cracked body is loaded, a plastic zone will grow at the crack tip as described in 
5 11.3.3. When the maximum load is reached and the load is subsequently decreased, the 
deformation of the plastic zone will not be entirely reversible. The elastic regions surrounding 
the plastic zone will attempt to return to their original displacement as the load is reduced. 
However, the plastic zone will act as a type of inclusion which the relaxing elastic material 
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O‘Y 

then loads in compression. The greatest plastic strain on the increasing part of the load cycle 
is near the crack tip, and is therefore subjected to the lightest compressive stresses when 
the load decreases. At a sufficiently high load amplitude the material near the crack tip will 
yield in compression. A “reverse” plastic zone is produced inside the material which has 
previously yielded in tension. Figure 1 1.46 shows schematically the configuration of crack 
tip plasticity and the variation in vertical stress, in plane stress conditions, at the minimum 
load of the cycle. 

Tensile 
PlOStlC 
zone 
/ 

O‘f Y I 

pla S t  IC -Y ‘!One 

Fig. 11.46. Crack tip plasticity at the minimum load of the load cycle (plane stress conditions) 

The material adjacent to the crack tip is therefore subjected to alternating plastic strains 
which lead to cumulative plastic damage and a weakening of the structure so that the crack 
can propagate. In metallic materials, striations on the fracture surface show the discontinuous 
nature of the crack propagation, and in many cases it can be assumed that the crack grows 
to produce a striation during each load cycle. Polymeric materials, however, can only show 
striations which occur after several thousands of load cycles. 

11.3.9 Measurement of fatigue crack growth 

In order to evaluate the fatigue properties of materials SN curves can be constructed 
as described in $11.1.1, or growth-rate curves drawn as shown in Fig. 11.45. Whilst non- 
destructive testing techniques can be used to detect fatigue cracks, e.g. ultrasonic detection 
methods to find flaws above a certain size or acoustic emission to determine whether cracks 
are propagating, growth-rate analysis requires more accurate measurement of crack length. 
Whilst a complete coverage of the many procedures available is beyond the scope of this text 
it is appropriate to introduce the most commonly used technique for metal fatigue studies, 
namely the D.C. potential drop method. 

Essentially a large constant current (-- 30 amps) is passed through the specimen. As the 
crack grows the potential field in the specimen is disturbed and this disturbance is detected 
by a pair of potential probes, usually spot-welded on either side of the crack mouth. For 
single-edge notched (SEN) tensile and bend specimens theoretical solutions exist to relate 
the measured voltage to the crack length. In compact tension specimens (CTS) empirical 
calibrations are usually performed prior to the actual tests. Fig. 11.47 shows a block diagram 
of the potential drop technique. The bulk of the signal is “backed off’ by the voltage source 
so that small changes in crack length can be detected. As the measured voltage is generally 
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+ 

Fig. 11.47. Block diagram of the D.C. potential drop system for crack length measurement. 

of the order of microvolts (steel and titanium) or nanovolts (aluminium), sensitive and stable 
amplifiers and voltage sources are required. A constant temperature environment is also 
desirable. If adequate precautions are taken, apparent increases in crack length of mm 
can be detected in some materials. 

If the material under test is found to be insensitive to loading frequency and a constant 
loading amplitude is required, the most suitable testing machine is probably one which 
employs a resonance principle. Whilst servo-hydraulic machines can force vibrations over a 
wider range of frequencies and produce intricate loading patterns, resonance machines are 
generally cheaper and require less maintenance. Each type of machine is usually provided 
with a cycle counter and an accurate load cell so that all the parameters necessary to generate 
the growth rate curve are readily available. 
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Examples 

Example 11.1 

stress is given by the expression: 
The fatigue behaviour of a specimen under alternating stress conditions with zero mean 

r$*Nf = K  

where a, is the range of cyclic stress, Nf is the number of cycles to failure and K and a 
are material constants. 

It is known that Nf = lo6 when a, = 300 MN/m2 and Nf = lo* when a, = 200 MN/m2. 
Calculate the constants K and a and hence the life of the specimen when subjected to a 

stress range of 100 MN/m2. 

Solution 
Taking logarithms of the given expression we have: 

a log 0, + log Nf = log K 

Substituting the two given sets of condition for Nf and a,: 

2.4771a + 6.oooO = log K 
2.3010~ + 8.oooO = log K 

:. (3) - (2) -0.1761~ + 2.oooO = 0 

2 . m  a = -  
0.1761 

= 11.357 

Substituting in eqn. (2) 

11.357 x 2.4771 + 6.000 = logK 

= 34.1324 

:. K = 1.356 x 

Hence, for stress range of 100 MN/m2, from eqn (1): 

11.357 x 2.oooO + logNf = 34.1324 

22.714 + logNf = 34.1324 

logNf = 11.4184 

Nf = 262.0 x lo9 cycles 
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Example 11.2 

A steel bolt 0.003 m2 in cross-section is subjected to a static mean load of 178 kN. What 
value of completely reversed direct fatigue load will produce failure in lo7 cycles? Use the 
Soderberg relationship and assume that the yield strength of the steel is 344 MN/m2 and 
the stress required to produce failure at lo7 cycles under zero mean stress conditions is 
276 MN/m2. 

Solution 
From eqn. (1 1.9) of Soderberg 

a, = O N  [l - (31 
178 x 1 0 - ~  
3 x 10-3 

- Now, mean stress a,,, on bolt - 

= 59.33 MN/m2 

= 276(1 - 0.172) 

= 276 x 0.828 

= 228.5 MN/m2 

Load = 228.5 x 0.003 MN 

= 0.6855 MN 

= 685.5 kN 

Example 11.3 

A stepped steel rod, the smaller section of which is 50 mm in diameter, is subjected to a 
fluctuating direct axial load which varies from +178 kN to -178 kN. 

If the theoretical stress concentration due to the reduction in section is 2.2, the notch 
sensitivity factor is 0.97, the yield strength of the material is 578 MN/m2 and the fatigue 
limit under rotating bending is 347 MN/m2, cakulate the factor of safety if the fatigue limit 
in tension-compression is 0.85 of that in rotating bending. 

Solution 
From eqn. (11.12) 

. .  
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But 
178 x 4 

n x (0.05)2 

= 90642 kN/m2 

= 90.64 MN/m2 

amax = 

. .  

:. Under direct stress conditions 

ami,, = -90.64 MN/m2 and amean = 0 

CN = 0.85 x 347 

= 294.95 MN/mZ 

From em. (1 1.13) 

:. With common units of MN/m2: 
294.95 

2.16 x F 
90.64 = 

. .  
294.95 

2.16 x 90.64 
F =  

F = 1.5 

Example 11.4 

tional steel fatigue specimens are given below: 
The values of the endurance limits at various stress amplitude levels for low-alloy construc- 

a, (MN/m2) Nf (cycles) 
550 1 500 
510 10050 
480 20 800 
450 50 500 
410 1 25 000 
380 275000 

A similar specimen is subjected to the following programme of cycles at the stress amplitudes 
stated; 3 000 at 5 10 MN/m2, 12 000 at 450 MN/m2 and 80 000 at 380 MN/m2, after which 
the sample remained unbroken. How many additional cycles would the specimen withstand 
at 480 MN/m2 prior to failure? Assume zero mean stress conditions. 

Solution 
From Miner's Rule, eqn. (11.14), with X the required number of cycles: 

X 
+-=1 

3000 12000 80000 +- +- 
. '  10050 50500 275000 20800 
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X 
20 800 

0.2985 + 0.2376 + 0.2909 + - = 1 

X 
20 800 
-- - 1-0.8270 

:. X = 3598 cycles. 

Example 11.5 
The blades in a steam turbine are 200 mm long and they elastically extend in operation 

by 0.02 mm. If the initial clearance between the blade tip and the housing is 0.075 mm and 
it is required that the final clearance be not less than 0.025 mm, calculate: 

(i) the maximum percentage creep strain that can be allowed in the blades, 
(ii) the minimum creep strain rate if the blades are to operate for loo00 hours before 

replacement. 

Solution 
Permissible - Initial Final Elastic 

creep extension - clearance - (clearance + extension) 
= 0.075 - (0.025 + 0.02) 
= 0.03 mm 

= -  0.03 x 100 Max. percentage 
creep strain 200 

= 0.015% 
0.015 
- - - 1.5 x 10-6%/h. 10 OOO 

:. Min. creep rate = 

Example 11.6 

subjected to a constant stress of 1.3 MN/m2. 
The following secondary creep strain rates were obtained when samples of lead were 

Temperature Minimum creep rate (E:) 

("C) W1) 
33 8.71 x 10-5 
29 4.98 x 10-5 
27 3.42 x 10-5 

Assuming that the material complies with the Arrhenius equation, calculate the activation 
energy for creep of lead. Molar gas constant, R = 8.314 J/mol K. 

Solution 
Construct a table as shown below: 

8.71 x 10-5 -9.3485 
29 302 3.31 4.98 x 10-5 -9.9156 

300 3.33 3.42 x 10-5 -10.2833 
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The creep rate is related to temperature by eqn. (1 1.19): 
E 0 = A ~ - H I R T  

S 

1 
T 

Hence we can plot Zn&; against - (as in Fig. 11.48) 
From the graph. 

Slope = 15.48 x lo3 

H = slope x R 

H = 15.48 x lo3 x 8.314 

But 

. .  
= 128.7 kJ/mol. 

Fig. 11.48. 

Example 11.7 

An alloy steel bar 1500 mm long and 2500 mm2 in cross-sectional area is subjected to an 
axial tensile load of 8.9 kN at an operating temperature of 600°C. Determine the value of 
creep elongation in 10 years using the relationship 
h-1(N/mm2)-6, and n = 6.0. 

Solution 

= /?a'' if, for 600°C, /? = 26 x 

P 8900 
A 2500 

Applied stress u = - = - - - 3.56 N/mm2 

Duration of test = 10 x 365 x 24 = 87600 hours 

:. From eqn. (1 1.20) 

:. E = 26 x lo-'* x 87600 x (3.56)6 

= 26 x 

= 4.637 x 

x 87600 x 2036 
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Since the member is 1500 mm long, 

total elongation = 1500 x 4.637 x = 6.96 mm. 

Example 11.8 

Creep tests camed out on an alloy steel at 600°C produced the following data: 

Stress (kN/m2) Minimum creep rate (% / loo00 h) 

10.2 0.4 
13.8 1.2 
25.5 10.0 

A rod, 150 mm long and 625 mm2 in cross-section, made of a similar steel and operating 
at 6OO"C, is not to creep more than 3.2 mm in loo00 hours. Calculate the maximum axial 
load which can be applied. 

Solution 
3.2 
150 

% Creep strain = - x 100 = 2.13%/10000 h 

Ln u 

Fig. I I .49. 
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Since secondary creep rate is related to stress by the eqn. (1 1.20): 

a graph may be plotted of 1 , ~ :  against 1,a. 
From the given data: 

I, stress LE: 

2.3224 -0.9 163 
2.6247 0.1823 
3.2387 2.3026 

Producing the straight line graph of Fig. 11.49. 

For % creep strain rate 2.13%, 1 , ~ :  = 0.7561. 

:. From graph, 1,a = 2.78 and a = 16.12 kN/m2. 

If the cross sectional area of the rod is 625 mm2 

then load = 16 120 x 625 x IOw6 

= 10 N. 

Example 11.9 

temperature are set out in the table below. 
The lives of Nimonic 90 turbine blades tested under varying conditions of stress and 

I Stress (MN/m2) I Temperature ("C) I Life (h) I 
180 
180 
300 
350 

750 
800 
700 
650 

3000 
500 

5 235 
23 820 

Use the information given to produce a master curve based upon the Larson-Miller 
parameter, and thus calculate the expected life of a blade when subjected to a stress of 
250 MN/m2 and a temperature of 750°C. 

Solution 

(i) To calculate C: from eqn. (1 1.23), inserting absolute temperatures: 

T ~ ( l n t ,  + C )  = T~( ln t r  + C )  

1023(1,3000 + C )  = 1073(1,500 + C )  

1023(8.0064 + C )  = 1073(6.2146 + C )  

8190.5 + 1023C = 6668.27 + 1073C 

1522.23 = 50C 

C = 30.44. 
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(ii) To determine P values 

Again, from eqn. (1 1.23): 

p1 = [T(lfl t ,  + 0 1  
= 1023(1,3000 + 30.44) 

= 39330 

P2 = 1073(1,500 -+ 30.44) 

= 1073(6.2146 + 30.44) 

= 39330 

P3 = 973(1,5235 + 30.44) 

= 973(8.5632 + 30.44) 

= 37950 

P4 = 923(1.23 820 + 30.44) 

= 923(10.0783 + 30.44) 

= 37 398. 

Plotting the master curve as per Fig. 11.31 we have the graph shown in Fig. 11.50. 

:. For the required temperature of 750°C (= 1023" absolute) 

38 525 = 1023(1,t, + 30.44) 

38525 = 10231,t, + 31 144 

From Fig. 1 1 S O ,  when the stress equals 250 MN/m2 the appropriate parameter P = 38 525 

ln tr  = 7.219 

fr = 1365 hours. 

300 

? 250 

200 

v) 

\ 

c 

1 I 
37000 38000 39000 

P 

Fig. 11 S O .  
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Example 11 .I 0 
The secondary creep rate in many metals may be represented by the equation 

Eo = pa". 

A steel bolt clamping two rigid plates together is held at a temperature of 1OOO"C. If n 
is 3.0 and eo = 0.7 x 10-9h-' at 28 MN/m2, calculate the stress remaining in the bolt after 
9000 h if the bolt is initially tightened to a stress of 70 MN/m2. 

Solution 
From eqn. (1 1.20) 
. .  

EO = pa" 
0.7 x 10-9 = p(28 x 106)3 

0.7 10-9 
= 21952 x 10l8 
= 3.189 x 

. .  

Using eqn. (1 1.27) for stress relaxation 

1 1 

. .  I + 3.189 x x 200 - I - - 
u2 (70 x 106)2 

x io9 ~ 2 x 9 0 0  

= x 3.188 
1 

u2 
- 

u =  lo8 x - 
/3.;88 

= lo8 x 0.56 

i.e. stress in bolt = 56 M N h 2  

Example 11 .I 1 
A steel tie in a girder bridge has a rectangular cross-section 200 mm wide and 20 mm deep. 
Inspection reveals that a fatigue crack has grown from the shorter edge and in a direction 

approximately normal to the edge. The crack has grown 23 mm across the width on one 
face and 25 mm across the width on the opposite face. 

If Klc for the material is 55 MN/m3/2 estimate the greatest tension that the tie can with- 
stand. 
(Assume that the expression for K in a SEN specimen is applicable here.) 

Solution 

calculate the compliance function. 

Hence 

Since the crack length is not small compared with the width of the girder we need to 

a/W = 24/200 = 0.12 
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Then, from Table 1 1.1 

Y = 1.99(0.12)'/2 - 0.41(0.12)3/2 + 18.70(0.12)5/2 

- 38.48(0.12)7/2 + 53.?~5(0.12)~/~ 

= 0.689 - 0.017 + 0.093 - 0.023 + 0.004 

= 0.745 

Also, from eqn. (1 1.39), 

At the onset of fracture K = K I C  

P x 0.745 
55 x lo6 = 

0.02 x (0.2)'/2 
Hence failure load P = 660 kN. 

Example 11.12 

A thin cylinder has a diameter of 1.5 m and a wall thickness of 100 mm. The working 
internal pressure of the cylinder is 15 MN/m2 and K I ~  for the material is 38 MN/m3/2. 
Estimate the size of the largest flaw that the cylinder can contain. (Assume that for this 
physical configuration K = o@.) 

Non-destructive testing reveals that no flaw above 10 mm exists in the cylinder. If, in 
the Paris-Erdogan formula, C = 3 x (for K in MN/rn3I2) and m = 3.8, estimate the 
number of pressurisation cycles that the cylinder can safely withstand. 

Solution 
Assume that the flaw is sharp, of length 2a, and perpendicular to the hoop stress. 
Then from $9.1 . l t  hoop stress 

Pd 15 x 1.5 
2t 2 x 0.1 

= 112.5 MN/m2 g = - = -  

From eqn. (1 1.37a), at the point of fracture 

K = K I ~  = aJ7ca 

38 = 112 .5 f i  

Hence a = 64.3 mm 
da 
dN 

From eqn. ( 1 1.47) - = C ( A K ) m  

and for pressurisation from zero A K  = K,,, 

+ E.J. H e m ,  Mechanics of Materials I ,  Butterworth-Heinernann, 1997. 
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a- da  
= i 1 (1 12~&i i i )~ .*  

0.005 

= 14.8(-11.88 + 1178) 

= 1156 cycles. 

Example 11.13 

In a laboratory fatigue test on a CTS specimen of an aluminium alloy the following crack 
length measurements were taken. 

Crack length (mm) 21.58 22.64 23.68 24.71 25.72 27.37 28.97 29.75 
Cycles 3575 4255 4593 4831 5008 5273 5474 5514 

The specimen has an effective width of 50.0 mm. 
Load amplitude = 3 kN. Specimen thickness = 25.0 mm. 

Paris-Erdogan equation 
dajdN = C ( A K ) m  

Use the expression given in Table 1 1.1 to evaluate A K .  
Use the three-point method to evaluate da/dN. 

Construct a growth rate curve in order to estimate the constants C and m in the 

i.e. at point n; 

Solution 
Equation (1 1.47) gives the Paris-Erdogan law as 

dajdN = C(AK)”’  

log(da/dN) = log C + m log( A K )  

From Table 11.1 we can calculate the amplitude of the stress intensity factor from 
the equation 

A K  = ..-.&!- BW‘12 b . 6  (E) ’I2 - 185.5 ( + 655.7 

-1017 ( E)7’2 + 638.9 ( r).i2] 
The crack growth rate is most easily found by using the three-point method. The crack 
growth rate at the point n is calculated as the slope of the straight line joining the (n + 1)th 
and the (n - 1)th points. 

i.e. 
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From these calculations we obtain the following results 

Crack length 21.58 22.64 23.68 24.71 25.72 27.37 28.97 29.75 
Cycles 3575 4355 4593 4831 5008 5273 5474 5514 
A K (MN/m312) 4.13 4.38 4.65 4.84 5.26 5.86 6.57 6.97 
h30(AK) 0.616 0.642 0.668 0.685 0.721 0.769 0.818 0.843 
da 
- x lo6 &cycle 2.06 4.34 4.91 6.02 6.97 8.38 
dN 
log,, (da/dN) -5.68 -5.36 -5.31 -5.22 -5.15 -5.07 

A log-log plot of da/dN versus AK is shown in Fig. 11.51. 

- 5.2 - 
Z P 
\ 

0 P 

CII 

- 
2 5.4 - 

5.6 - 

0.6 0.7 0.8 

tog t d K l  

Fig. 11.51. 

The first point is not close to the best straight line fit to the other points. The fatigue crack 
is normally initiated at a high stress amplitude in order to produce a uniform crack front. 
Although the stress amplitude is reduced gradually to the desired value the initial crack 
growth is through a crack tip plastic zone associated with the previous loading. The crack 
is then “blunted” by the larger plastic zone until the crack has grown through it. There is 
therefore a justification for ignoring this point. 

A “least-squares’’ fit to the remaining points gives 

Slope = 2.67 = rn 

Intercept = -7.57 = log C 

C = 2.69 x lo-’ 

The Paris-Erdogan equation (1 1.47) then becomes 
da 
dN 
- = 2.69 1 0 - 8 ( ~ ~ ) 2 . 6 7  

(For AK in MN/m312) 
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Problems 

11.1 (B). (a) Write a short account of the microscopical aspects of fatigue crack initiation and growth. 
(b) A fatigue crack is considered to have been initiated when the surface crack length has reached mm. 

The percentage of cycle lifetime required to reach this stage may be calculated from the equation: 

Where Ni  is the number of cycles to initiate the crack and N f  is the total number of cycles to failure. 
(i) Determine the cyclic lifetime of two specimens, one having a N i / N f  ratio of 0.01 corresponding to a stress 

(ii) If the crack at failure is 1 mm deep, determine the mean crack propagation rate of A q  and the mean crack 

mm/cycle, 17.83 x IO-’ mm/cycle] 
11.2 (B). (a) “Under fatigue conditions it may be stated that for less than 1000 cycles, life is a function of 

ductility and for more than 10,000 cycles life is a function of strength.” By consideration of cyclic strain-stress 
behaviour, show on what grounds this statement is based. 

(b) In a tensile test on a steel specimen, the fracture stress was found to be 520 MN/m2 and the reduction in 
area 25%. 

Calculate: (i) the plastic strain amplitude to cause fracture in 100 cycles; (ii) the stress amplitude to cause 
fracture in lo6 cycles. [0.0268; 173.4 MN/m2] 

11.3 (B). An aluminium cantilever beam, 0.762 m long by 0.092 m wide and 0.183 m deep, is subjected to 
an end downwards fluctuating load which varies from a minimum value Pmin of 8.9 kN to some maximum 
value Pmm. 

The material has a fatigue strength for complete stress reversal UN of 206.7 MN/m2 and a static yield strength 
u y  of 275.6 MN/m2. 

By consideration of the Soderberg equation, derive an expression for P,, and show that it is equal to: 

range Aal and the other having a N i / N f  ratio of 0.99 corresponding to a stress range Aa2. 

nucleation rate at ADZ. 
[lo3 cycles, 5.66 x lo6 cycles, 9.794 x 

where p = U N / U ~  and y is the distance of the extreme fibres from the neutral axis of bending and I is the second 
moment of area of the beam section. Determine the minimum value of P,, which will produce failure of the beam. 

[I59 kN] 
11.4 (B). (a) Explain the meaning of the term “stress concentration” and discuss its significance in relation to 

(b) A member made of steel has the size and shape indicated in Fig. 11.52. 
the fatigue life of metallic components. 

E Hole 8 mm 0 

E 

0 

Fig. 11.52. 

The member is subjected to a fluctuating axial load that varies from a minimum value of P/2 to a maximum value 
of P. Use the Soderberg equation to determine the value of P that will produce failure in IO6 cycles. 
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Stress amplitude 
MN/mZ 

Assume: 
Yield strength of steel = 420 MN/m2 
Fatigue strength of steel = 315 MN/m2 for IO6 cycles 
Notch sensitivity factor = 0.9 
Static stress concentration factor = 3.0 

Number of cycles Fatigue life 
in each IO' cycles ( N r )  

[0.62 MN] 

340 
290 
240 
215 
190 

1000000 
34 OOO 3000000 
40 OOO 35000 000 

[ I I . ~ I  x cycles] 

11.6 (B). A stress analysis reveals that at a point in a steel part the stresses are uLv = 105, uyy = 35, a,, = -20, 
rxy = 56, ryz = I O ,  r, = 25 MN/m2. These stresses are cyclic, oscillating about a mean stress of zero. The fatigue 
strength of the steel is 380 MN/m2. Determine the safety factor against fatigue failure. Assume that the fatigue 
could initiate at a small internal flaw located at the point in question, and assume a stress-concentration factor of 2. 
Ignore the effect of triaxial stresses on fatigue. [ 1.351 

11.7 (B). (a) Briefly discuss how the following factors would affect the fatigue life of a component: 
(i) surface finish, 

(ii) surface treatment, 
(iii) surface shape. 

(b) An aluminium airframe component was tested in the laboratory under an applied stress which varied sinu- 
soidally about a mean stress of zero. The component failed under a stress range of 280 MN/m2 after IO5 cycles 
and under a stress range of 200 MN/m2 after IO7 cycles. Assuming that the fatigue behaviour can be repre- 
sented by: 

Aa(Nf)' = C 

where a and C are constants, find the number of cycles to failure for a component subjected to a stress range of 
150 MN/m2. 

(c) After the component has already endured an estimated 4 x 10' cycles at a stress range of 150 MN/m2, it is 
decided that its failure life should be increased by 4 x IO8 cycles. Find the decrease in stress range necessary to 
achieve this additional life. 

You may assume a simple cumulative damage law of the form: 

[ 15.2 MN/m2] 

11.8 (B). (a) Write an account of the effect of mean stress upon the fatigue life of a metallic component. Include 
within your account a brief discussion of how mean stress may be allowed for in fatigue calculations. 

(b) A thin-walled cylindrical vessel 160 mm internal diameter and with a wall thickness of IO mm is subjected 
to an internal pressure that varies from a value of -f/4 to f. The fatigue strength of the material at 10' cycles 
is 235 MN/m' and the tensile yield stress is 282 MN/m2. Using the octahedral shear theory, determine a nominal 
allowable value for P such that failure will not take place in less than 10' cycles. 136.2 MN/m2] 

11.9 (B). (a) The Manson-Haferd creep parameter method was developed on an entirely empirical basis, whilst 
those of Larson-Miller and Skerby-Dorn are based upon the well known Arrhenius equation. Compare all three 
extrapolation methods and comment on the general advantages and disadvantages of applying these methods in 
practice. 



Fatigue, Creep and Fracture 505 

Temp(”C) 
&/S 

(b) The following table was produced from the results of creep tests carried out on specimens of Nimonic 80 A. 

500 550 600 650 700 
1.0  IO-^ 2.1  IO-^ 4.3  IO-^ 7.7 x  IO-^ 1.4  IO-^ 

Stress 
(MN/m2) 

180 
I80 
300 
300 

Stress 
(MN/m2) 

Temperature 
(“C) 

752 
502 
45 2 
317 

Temperature (“C) Life (h) 

I Time to rupture 
(h) 
I 

56 
lo00 
316 

3160 

Use the information given to produce a master curve based upon the Manson -Haferd parameter and thus estimate 

[ 1585 hours] 

11.10 (B). (a) Briefly describe the generally desirable characteristics of a material for use at high temperatures. 
(b) A cylindrical tube in a chemical plant is subjected to an internal pressure of 6 MN/m2 which leads to a 

circumferential stress in the tube wall. The tube is required to withstand this stress at a temperature of 575°C for 
9 years. 

A designer has specified tubes of 40 mm bore and 2 mm wall thickness made from a stainless steel and the 
manufacturer’s specification for this alloy gives the following information at o = 200 MN/m2. 

the expected life of a material when subjected to a stress of 250 MN/m2 and a temperature of 400°C. 

[22 330 hours] 

11.12 (B). A cylindrical polymer component is produced at constant pressure by expanding a smaller cylinder 
into a cylindrical mould. The initial polymer cylinder has length 1200 mm. internal diameter 20 mm and wall 
thickness 5 mm; and the mould has diameter 100 mm and length 1250 cm. Show that, neglecting end effects, the 
diameter of the cylindrical poxtion (which may be considered thin) will increase without any change of length until 
the material touches the mould walls. Hence determine the time taken for the plastic material to reach the mould 
walls under an internal pressure of I O  kN/m2, if the uniaxial creep equation for the polymer is dc/dt = 320, where 
t is the time in seconds and o is the stress in N/mm2 

The Levy-von Mises equations which govern the behaviour of the polymer are of the form 

where a, is the equivalent stress and E, is the equivalent strain. [ I  second] 

11.13 (B). (a) Explain, briefly, the meaning and importance of the term “stress relaxation” as applied to 
metallic materials. 

(b) A pressure vessel is used for a chemical process operating at a pressure of 1 MN/m2 and a temperature of 
425°C. One of the ends of the vessel has a 400 mm diameter manhole placed at its centre and the cover plate is 
held in position by twenty steel bolts of 25 mm diameter spaced equally around the flanges. 
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10 
30 
50 

Tests on the bolt steel indicate that n = 4 and E' = 8.1 x 10-lo/h at 21 MN/m2 and 425°C. 
Assuming that the stress in a bolt at any time is given by the equation: 

27 
50 
72 

and that the secondary creep rate can be represented by the relationship E' = Pa", with E for the bolt 
steel = 200 GN/m2, calculate: 
(i) the initial tightening stress in the bolts so that after loo00 hours of creep relaxation there is still a safety factor 

of 2 against leakage, 
(ii) the total time for leakage to occur. [30.7 MN/m2; 177.2 x IO3 hours] 

11.14 (B). (a) The lives of Nimonic 90 turbine blades tested under varying conditions of stress and temperature 
are set out in the table below: 

1 Stress (MN/m2) 1 Temperature ("C) I Life (h) I 
180 
180 
300 
350 

750 
800 
700 
650 
131 23 820 

Use the information given to produce a master curve based upon the Larson-Miller parameter. and thus calculate 
the expected life of a blade when subjected to a stress of 250 MN/m2 and a temperature of 750°C. 

(b) Discuss briefly the advantages and disadvantages of using parametric methods to predict creep data compared 
with the alternative method of using standard creep strain-time curves. [ 1365 hours] 

11.15 (B). (a) A support bracket is to be made from a steel to be selected from the table below. It is important 
that, if overloading occurs, yielding takes place before fracture. The thickness of the section is 10 mm and the 
maximum possible surface crack size that could have escaped non-destructive inspection is 10% of the section 
thickness. Select a suitable tempering temperature from the list. Assume that this is equivalent to an edge crack in 
a wide plate and assume an associated flaw shape parameter of 1.05. 

Tempering 
temperature ("C) (MN/m2) 

370 1586 41.8 
~~ 

[425 "C] 
11.16 (B). A high-speed steel circular saw of 300 mm diameter and 3.0 mm thickness has a fatigue crack of 

length 26 mm running in a radial direction from the spindle hole. Assume that this is an edge crack in a semi-infinite 
plate. The proof strength of this steel is 1725 MN/m2 and its fracture toughness is 23 MN/m3/'. The tangential 
stress component adjacent to the spindle hole during operation has been calculated as follows: 

Periphery temperature Tangential stress (MN/m2) 
relative to centre ("C) 

First estimate the size of the plastic zone in order to decide whether plane strain or plane stress conditions 

[0.0226 mm; 50"Cl 
What relative safety factor (on tangential stress) can be gained by using a carbide-tipped lower-strength but 

tougher steel saw of yield strength 1200 MN/rn2 and fracture toughness 99 MN/m3I2, in the case of the same size 
of fatigue crack? V.31 

11.17 (B). (a) When a photoelastic model similar to the one shown in Fig. 11.39 is stressed the fifth fringe is 
found to have a maximum distance of 2.2 mm from the crack tip. If the fringe constant is 1 I N/mmz/fringe-mm 

predominate. Then estimate at what periphery temperature the saw is likely to fail by fast fracture. 
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and the model thickness is 5 mm, determine the value of the stress-intensity factor (in N/m3/’) under this applied 
load. Discuss any important errors which could be associated with this measurement. [ 1.293 MN/m3/’] 

(b) Suggest a way of checking to ensure that the stresses are purely mode I (Le. those tending to “open” the 
crack) and that there is no superimposed mode I1 component (Le. the tendency to shear the crack along its plane, 
as shown in Figure 11.34). 

11.18 (B). (a) The stresses near the crack tip of a specimen containing a through-thickness crack loaded in 
tension perpendicular to the crack plane are given by the following equations 

e 

G 0, = - 

8 

a,, = K /  - cos 2 [sin e . cos ”1 
G 2 2  

where KI is the stress intensity factor, r is the distance from the crack tip and 8 is the angle measured from the 
projected line of the crack in the uncracked region. 

Using the proportions of Mohr’s circle, or otherwise, show that the maximum shear stress near the crack tip is 
given by: 

KI sin e 
h a x  = - 

2 G  

(b) Sketch the photoelastic fringe pattern which would be expected from a model of this loading case. 
(c) In such a fringe pattern the fourth fringe occurs at a distance of 1.45 mm from the crack tip. If the material 

fringe constant is 10.5 kN/m’/fringe/m and the model thickness is 5 mm determine the value of KI under the given 
applied load. What error is associated with this measurement? [0.8 MN/rn3/’] 

11.19 (B). (a) Write a short essay on the application of fracture mechanics to the problem of crack growth in 
components subjected to alternating loading conditions. 

(b) After two years service a wide panel of an aluminium alloy was found to contain a 5 mm long edge crack 
orientated normal to the applied stress. The panel was designed to withstand one start-up/shut-down cycle per day 
for 20 years (assume 250 operating days in a year), the cyclic stress range being 0 to 70 MN/m2. 

If the fracture toughness of the alloy is 35 MNm-3/2 and the cyclic growth rate of the crack is represented by 
the equation: 

calculate whether the panel will meet its design life expectancy. (Assume KI = 0 6 ) .  
[No - 15.45 years] 

11.20 (B). (a) Differentiate between the terms “stress concentration factor” and “stress intensity factor”. 
(b) A cylindrical pressure vessel of 7.5 m diameter and 40 mm wall thickness is to operate at a working pressure 

of 5.1 MN/m2. The design assumes that failure will take place by fast fracture from a crack and to prevent this 
the total number of loading cycles must not exceed 3000. 

The fracture toughness of the sheet is 200 MN/m3f2 and the growth of the crack may be represented by the 
equation: 

da 
- =A(AK)4 dN 

Where A = 2.44 x 
be tested before use to guarantee against fracture in under 3000 cycles. 

components subjected to alternating loading conditions. 

cracks or flaws of length 2a greater than 2 mm, and rods with flaws larger than this are rejected. 

and K is the stress intensity factor. Find the minimum pressure to which the vessel must 
[8.97 MN/mZ] 

11.21 (B). (a) Write a short essay on application of fracture mechanics to the problem of crack growth in 

(b) Connecting rods for an engine are to be made of S.G. iron for which KIC = 25 MNm-3/2. NDT will detect 

Independent tests on the material show that cracks grow at a rate such that 

da/dN = 2 x 10-’5(AK1)3 m cycle-’ 
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The minimum cross-sectional area of the rod is 0.01 m2, its section is circular and the maximum tensile load in 
service is 1 MN. 

Assuming that K I  = u f i  and the engine runs at IO00 rev/min calculate whether the engine will meet its 
design requirement of 20,000 h life. [Nf = 4.405 x IO9 and engine will survive] 

11.22 (B). (a) By considering constant load conditions applied to a thin semi-infinite sheet and also the elastic 
energy in the material surrounding an internal crack of unit width and length 2c, derive an expression for the stress 
when the crack propagates spontaneously. 

(b) A pipeline is made from a steel of Young's modulus 2.06 x 10" Nm-2 and surface energy 1.1 J m-2. 
Calculate the critical half-length of a Griffith crack for a stress of 6.2 x lo6 Nm-2, assuming that all the supplied 

enerp;y is used for forming the fracture surface. -_ - [E, 3.752 mm] 

11.23 (B). (a) Outline a method for determining the plane strain fracture toughness K l c ,  indicating any criteria 

(b) For a standard tension test piece, the stress intensity factor K I  is given by: 
to be met in proving the result valid. 

the symbols having their usual meaning. 
Using the Dc poteiitial drop crack detection procedure the load at crack initiation P was found to be 14.6 kN. 
Calculate K l c  for the specimen if B = 25 mm, W = 50 mm and a = 25 mm. 

(c) If 01 = 340 MN/m2, calculate the minimum thickness of specimen which could be used still to give a valid 
K l c  value. [25.07 13.6 mm] 


