
CHAPTER 5 

SLOPE AND DEFLECTION OF BEAMS 

Summary 

The following relationships exist between loading, shearing force (S.F.), bending moment 
(B.M.), slope and deflection of a beam: 

deflection = y (or 6 )  
dY slope = i or 0 = - 
dx 
d2Y bending moment = M = EI  ~ 

dx2 
d3Y shearing force = Q = E I -  
dx3 
d4Y loading = w = E I -  
dx4 

In order that the above results should agree mathematically the sign convention illustrated in 
Fig. 5.4 must be adopted. 

Using the above formulae the following standard values for maximum slopes and dejections 
of simply supported beams are obtained. (These assume that the beam is uniform, i.e. EI is 
constant throughout the beam.) 

MAXIMUM SLOPE AND DEFLECTION OF SIMPLY SUPPORTED BEAMS 

Loading condition Maximum slope Deflection ( y) Max. deflection 
( Y I d  

Cantilever with concentrated 

load Wat end 

W L 2  

2EI 

W 

6E1 
- ~ 2 ~ 3  - 3 ~2~ + x 3 ~  

WL3 

3EI 

Cantilever with u.d.1. across 

the complete span 

wL3 

6EI  
- 

W 
__ [3L4 - 4L3x + x4]  
24EI 

wL4 

8EI 
~ 

Simply supported beam with 

concentrated load W at the centre 

W L Z  

16EI 

w x  

48EI 
__ [3L2 - 4x23 

WL3 

48EI 
~ 

Simply supported beam with 

u.d.1. across complete span 

wL3 

24EI 
~ 

wx 
~ [ L3 - 2Lx2 + x3]  
24EI 

5wL4 

384EI 
~ 

Simply supported beam with concentrated 
load W offset from centre (distance a from WLZ 

0.062 __ 
El 

one end b from the other) 

92 



Slope and Depection of Beams 93 

Here Lis the length of span, E l  is known as the flexural rigidity of the member and x for the 
cantilevers is measured from the free end. 

The determination of beam slopes and deflections by simple integration or Macaulay's 
methods requires a knowledge of certain conditions for various loading systems in order that 
the constants of integration can be evaluated. They are as follows: 

(1) Deflections at supports are assumed zero unless otherwise stated. 
(2) Slopes at built-in supports are assumed zero unless otherwise stated. 
(3) Slope at the centre of symmetrically loaded and supported beams is zero. 
(4) Bending moments at the free ends of a beam (i.e. those not built-in) are zero. 

Mohr's theorems for slope and deflection state that if A and B are two points on the 
deflection curve of a beam and B is a point of zero slope, then 

M .  
E l  

slope at A = area of - diagram between A and B (1) 

For a uniform beam, E l  is constant, and the above equation reduces to 

1 
E l  

slope at A = - x area of B.M. diagram between A and B 

N.B.-If B is not a point of zero slope the equation gives the change of slope between A and 
B. 

M .  
E l  (2) Total deflection of A relative to B = first moment of area of - diagram about A 

For a uniform beam 

total deflection of A relative to B = - x first moment of area of B.M. diagram about A 

Again, if B is not a point of zero slope the equation only gives the deflection of A relative to 

Useful quantities for use with uniformly distributed loads are shown in Fig. 5.1. 

1 
EI 

the tangent drawn at B. 

I I 

Fig. 5.1. 
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Both the straightforward integration method and Macaulay’s method are based on the 
relationship M = E l ,  d2Y (see 5 5.2 and 0 5.3). 

dx 
Clapeyron’s equations of three moments for continuous beams in its simplest form states that 

for any portion of a beam on three supports 1,2 and 3 ,  with spans between of L ,  and L, ,  the 
bending moments at the supports are related by 

where A ,  is the area of the B.M. diagram, assuming span L ,  simply supported, and X, is the 
distance of the centroid of this area from the left-hand support. Similarly, A ,  refers to span 
L,,  with f 2  the centroid distance from the right-hand support (see Examples 5.6 and 5.7). The 

following standard results are useful for -: 6 A f  
L 

(a) Concentrated load W, distance a from the nearest outside support 

6 A f  Wa 
L L  

(L2 - a2) -- -~ 

(b) Uniformly distributed load w 

6 A f  wL3  
L 4 

(see Example 5.6) -- -- 

Introduction 

In practically all engineering applications limitations are placed upon the performance and 
behaviour of components and normally they are expected to operate within certain set limits 
of, for example, stress or deflection. The stress limits are normally set so that the component 
does not yield or fail under the most severe load conditions which it is likely to meet in service. 
In certain structural or machine linkage designs, however, maximum stress levels may not be 
the most severe condition for the component in question. In such cases it is the limitation in 
the maximum deflection which places the most severe restriction on the operation or design of 
the component. It is evident, therefore, that methods are required to accurately predict the 
deflection of members under lateral loads since it is this form of loading which will generally 
produce the greatest deflections of beams, struts and other structural types of members. 

5.1. Relationship between loading, S.F., B.M., slope and deflection 

Consider a beam AB which is initially horizontal when unloaded. If this deflects to a new 
position A ‘ B  under load, the slope at any point C is 

dx 
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Fig. 5.2. Unloaded beam AB deflected to A’B’ under load. 

This is usually very small in practice, and for small curvatures 

ds = dx = Rdi (Fig. 5.2) 

di 1 
dx R 

- -  -- 

But 

. .  

. dY I = -  
dx 

d2y 1 
dx2 R 
- = -  

Now from the simple bending theory 

M E  
I R  
- -  -- 

Therefore substituting in eqn. (5.1) 

M = E I -  d2Y 
dx2  

This is the basic differential equation for the deflection of beams. 
If the beam is now assumed to carry a distributed loading which varies in intensity over the 

length of the beam, then a small element of the beam of length d x  will be subjected to the 
loading condition shown in Fig. 5.3. The parts of the beam on either side of the element EFGH 
carry the externally applied forces, while reactions to these forces are shown on the element 
itself. 

Thus for vertical equilibrium of EFGH, 

. .  
Q - w d x  = Q - d Q  

dQ = wdx 
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Fig. 5.3. Small element of beam subjected to non-uniform loading (effectively
uniform over small length dx).

(5.3)and integrating, Q = f wdx

Also, for equilibrium, moments about any point must be zero.

Therefore taking moments about F,

dx
(M+dM)+wdxT = M+Qdx

Therefore neglecting the square of small quantities,

dM = Qdx

and integrating, M = f Qdx

The results can then be summarised as follows:

deflection = y

d2ybending moment = El ~

d3
shear force = El -JJ

d4
In~ti tii~trihlltinn = 1':1 ~.~-- -.~...~-..~.. --dx4

In order that the above results should agree algebraically, i.e. that positive slopes shall have the
normal mathematical interpretation of the positive sign and that B.M. and S.F. conventions
are consistent with those introduced earlier, it is imperative that the sign convention
illustrated in Fig. 5.4 be adopted.
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( a )  Deflection y = 8  positive upwards 

+a X E I  .,:.i , 
( e )  Loading Upward loading positive 

Fig. 5.4. Sign conventions for load, S.F., B.M., slope and deflection. 

N l q '  

5.2. Direct integration method 

If the value ofthe B.M. at any point on a beam is known in terms of x,  the distance along the 
beam, and provided that the equation applies along the complete beam, then integration of 
eqn. (5.4a) will yield slopes and deflections at any point, 

i.e. 

or 

dx d y  s" E l  

y = Is( Z d x )  dx + A x  + B 

d2Y M = E I ,  and - =  - - d x + A  
dx 

where A and B are constants of integration evaluated from known conditions of slope and 
deflection for particular values of x. 

(a) Cantilever with concentrated load at the end (Fig. 5.5)  

w 

Fig. 5.5.  
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. .  

d2Y M,, = E I y  = - W X  
dx 

dy W x 2  
dx 2 

E I - =  - - + A  

assuming EI is constant. 
w x 3  

E I y =  - - + A x + B  
6 

Now when x = L ,  -- d y  - 0 :. 
dx 

w12 
2 

A = - - - -  

and when 

. .  

WL3 WLZ w13 
6 2 3 

x = L , y = Q  .’. B = - - - L =  -- 

--+--- 
EI 6 2 (5.5) 

This gives the deflection at all values of x and produces a maximum value at the tip of the 
cantilever when x = 0, 

i.e. 
w13 

Maximum deflection = y,= - - 
3e1 

The negative sign indicates that deflection is in the negative y direction, i.e. downwards. 

Similarly 
dY 1 w x 2  W L 2  
dx EI 

and produces a maximum value again when x = 0. 

Maximum slope = (2) =- w12 (positive) , 2EI 

(b)  Cantilever with uniformly distributed load (Fig. 5.6) 

Fig. 5.6. 

d2y  wx2 
dx2 2 

M = E I - = - - - -  
xx 

dy  wx3 
dx 6 

wx4 
E I y =  - - + A x + B  

24 

E I - =  - - + A  

(5.7) 
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Again, when 

Slope and Deflection of Beams 

dY w13 
x = L ,  - = 0  and A = -  

dx 6 

. .  

At x = 0, 
wL4 w13 

y,= -__ and (2) =- 
8 E l  rmx 6 E l  

(c )  Simply-supported beam with uniformly distributed load (Fig. 5.7)  

I' w/metre 

W L  - W L  - 
2 2 

Fig. 5.1. 

d2y  wLx wx2 
dx2 2 2 .  

M = E l - = - - -  
xx 

d y  wLx2 wx3 
dx 4 6 

wLx3 wx4 
12 24 

+ A  EI-  = __ - ~ 

E l y  = ~ - __ + A x + B  

At x = O ,  y = O  .'. B = O  

At 

99 

(5.9) 

(5.10) 

(5.11) 

In this case the maximum deflection will occur at the centre of the beam where x = L/2. 

. .  

- 5wL4 - -__ 
384El  

W L 3  

, 24EI 
Similarly (2) =*- at the ends of the beam. 

(5.12) 

(5.13) 
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( d )  Simply supported beam with central concentrated load (Fig. 5.8) 

W 

Fig. 5.8. 

In order to obtain a single expression for B.M. which will apply across the complete beam 
in this case it is convenient to take the origin for x at the centre, then: 

WLX2 wx3 

8 12 + A x + B  Ely = ~ - _ _  

At dY x = o ,  - = o  :. 
d x  

L 
2 ’  

x = -  y = o  WL3 WL3 
+ B  O = -  -__ 

32 96 

(5.14) 12 48 Y = -  

= -___ . .  wL3 at the centre 
ymax 48EI 

and 
at the ends 

WLZ 

(5.15) 

(5.16) 

In some cases it is not convenient to commence the integration procedure with the B.M. 
equation since this may be difficult to obtain. In such cases it is often more convenient to 
commence with the equation for the loading at the general point X X  on the beam. A typical 
example follows: 
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( e )  Cantilever subjected t o  non-uniform distributed load (Fig. 5.9) 

Fig. 5.9. 

The loading at section X X  is 

w‘ = E l -  d4Y = - [ w + (3w - w)’] = - w (1 + %) 
dx4 1 

Integrating, 

E ~ - = - w  d 2 y  (; -+- ;I) + A  x + B  dx2 

(;: 6.6,) A x 3  Bx2 (4) E l y =  - W  -+- + - + - - + + x + D  
6 2  

( 3 )  

Thus, before the slope or deflection can be evaluated, four constants have to be determined; 
therefore four conditions are required. They are: 

At x = 0, S.F. is zero 
.‘. from (1) A = O  

At x = 0, B.M. is zero 
.’. from ( 2 )  B = O  

At x = L,  slope d y l d x  = 0 (slope normally assumed zero at a built-in support) 

.’. from ( 3 )  

At x = L ,  y = O  

... from (4) 

o = - w  -+- + C  (: ti) 

O =  - w ( $ + $ ) + F + D  

. .  23wL4 
120 

D =  -~ 
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wx4 wx5 wL3x 23wL4 
24 6OL 4 120 

. .  E l y =  

Then, for example, the deflection at the tip of the cantilever, where x = 0, is 

23wL4 y =  -___ 
120EI 

5.3. Macaulay’s method 

The simple integration method used in the previous examples can only be used when a 
single expression for B.M. applies along the complete length of the beam. In general this is not 
the case, and the method has to be adapted to cover all loading conditions. 

Consider, therefore, a small portion of a beam in which, at a particular section A, the 
shearing force is  Q and the B.M. is  M ,  as shown in Fig. 5.10. At another section B, distance a 
along the beam, a concentrated load W is applied which will change the B.M. for points 
beyond B. 

W 0 

I X  

A B 

Fig. 5.10. 

Between A and B, 

d2Y M = E l -  dx2 = M +Qx 

x2 x3 
and E l y  = M -  2 + Q- 6 + C ~ X  +C2 

Beyond B 
d2Y M = ElT = M + Q x -  W ( x - a )  
dx 

and 

dY x 2  x2 
E l - = M x + Q - -  W-+ W a x + C 3  dx 2 2 

x 2  x3 x3 X 2  

2 6 6 E l y =  M - + Q - -  W - +  W a - + C 3 x + C ,  2 

Now for the same slope at B, equating (2)  and (5),  

X 2  x2 x2  
2 2 2 M x + Q - + C C ,  = M x + Q - -  W - +  W a x + C 3  
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But at B,x = a 

. .  Wa2 
2 

c + Wa2 + C3 1 -  

L 

Substituting in (9, 

. .  

dY x2 x 2  Wa2 
E l - = M x + Q - -  W-+ W a x + C , - - -  

dx 2 2 2 

dY x 2  w 
El-  = M x  + Q- - -(x-a)’ +C, dx 2 2  

Also, for the same deflection at B equating (3) and (6), with x = a 

Ma2 Qa3 Ma2 Qa3 Wa3 Wa3 + ~ + C3a  + C, -+-+C,a+C, =-+---- 2 6 2 6 6 2 

. .  

. .  

Substituting in (6), 

Wa3 Wa3 +- + C3a  + C, C , a + C 2  = -- 
2 6 

= -__ W a 3 + w a 3  + ( c,--- y 2 ) a + c ,  
6 2 

Wa c,=c2+- 
6 

(7) 

x2 x 3  (x - a)3 
2 6 6 

= M -  + Q- - W- + c , x  + c, 

Thus, inspecting (4), (7) and (8), we can see that the general method of obtaining slopes 
and deflections (i.e. integrating the equation for M )  will still apply provided that the term 
W ( x  - a )  is integrated with respect to ( x  - a )  and not x .  Thus, when integrated, the term 
becomes 

( x  - a)2 
W- 

2 
( x  - a)3 

and W- 
6 

successively. 
In addition, since the term W ( x  - a)  applies only after the discontinuity, i.e. when x > a, it 

should be considered only when x > a or when ( x  - a) is positive. For these reasons such terms 
are conventionally put into square or curly brackets and called Macaulay terms. 

Thus Macaulay terms must be (a)  integrated with respect to themselves and (b)  neglected when 
negative. 

For the whole beam, therefore, 

d2Y E l ,  = M + Q x -  W [ ( x - a ) ]  
dx 
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Fig. 5.11. 

As an illustration of the procedure consider the beam loaded as shown in Fig. 5.1 1 for which 
the central deflection is required. Using the Macaulay method the equation for the B.M. at 
any general section XX is then given by 

Care is then necessary to ensure that the terms inside the square brackets (Macaulay terms) 
are treated in the special way noted on the previous page. 

Here it must be emphasised that all loads in the right-hand side of the equation are in units 
of kN (i.e. newtons x lo3). I n  subsequent working, therefore, i t  is convenient to carry through 
this factor as a denominator on the left-hand side in order that the expressions are dimensionally 
correct. 

B.M. xx = 1 5 ~  - 20[ (X - 3)] + 10[(~ - 6)] - 30[ (X - lo)] 

Integrating, 
- - = 1 5 - - 2 0 [ ~ ] + 1 0 [ ~ ] - 3 0 [ (  El d y  x2 x - 3)2 x - 6)2 x - 10)2 ] + A  
lo3  d x  2 

E1 x 3  x - 3)3 x - 6)3 x - 1013 
and 

~ l o3 ’=  15- 6 - 20 [ 51 + 10 [ +] - 30[ ( ] + Ax + B 

where A and B are two constants of integration. 
Now when x =0, y = O  .’. B = O  

and when x = 12, y = 0 
15 x 123 . .  o=-- 

6 

= 4320 - 2430 + 360 - 40 + 12A 
. .  
. .  A = - 184.2 

12A = -4680+2470 = -2210 

The deflection at any point is given by 
x3 x - 3)3 x - 6)3 - 1013 E1 

Sy= 6 
15- - 20[%] + IO[ $1 - 30[ ( ] - 1 8 4 . 2 ~  

The deflection at mid-span is thus found by substituting x = 6 in the above equation, 

N.B.-Two of the Macaulay terms then vanish since one becomes zero and the other 
bearing in mind that the dimensions of the equation are kNm3. 

negative and therefore neglected. 

. .  central deflection = 

655.2 x lo3 
E1 

- _  - 
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With typical values of E = 208 GN/m2 and I = 82 x 

Slope and Defection of Beams 

m4 

central deflection = 38.4 x lo-’ m = 38.4 mm 

105 

5.4. Macaulay’s method for u.d.1.s 

If a beam carries a uniformly distributed load over the complete span as shown in Fig. 5.12a 
the B.M. equation is 

d2Y wx2 
B.M.xx= E I - =  R A x - - -  W , [ ( x - a ) ] -  W 2 [ ( x - b ) ]  d x 2  2 

W W, 

A 

A, B 

Fig. 5.12. 

The u.d.1. term applies across the complete span and does not require the special treatment 
associated with the Macaulay terms. If, however, the u.d.1. starts at B as shown in Fig. 5.12b 
the B.M. equation is modified and the u.d.1. term becomes a Macaulay term and is written 
inside square brackets. 

d2Y B . M . x x = E l , = R A x - W , [ ( x - a ) ] - w  
dx  

Integrating, 

d y  x2 
E I -  = RA- - 

dx 2 

x 3  x - a)3 

6 
E l y  = R A -  - W ,  [&-I - w 

( x  -a)’ 
6 

Note that Macaulay terms are integrated with respect to, for example, ( x  - a )  and they must 
be ignored when negative. Substitution of end conditions will then yield the values of the 
constants A and B in the normal way and hence the required values of slope or deflection. 

It must be appreciated, however, that once a term has been entered in the B.M. expression it 
will apply across the complete beam. The modifications to the procedure required for cases 
when u.d.1.s. are applied over part of the beam only are introduced in the following theory. 
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5.5. Macaulay's method for beams with u.d.1. applied over part of the beam 

Consider the beam loading case shown in Fig. 5.13a. 

X 
A 

I 

Fig. 5.13. 

The B.M. at the section SS is given by the previously introduced procedure as 

B.M.ss= RAx' -  W , [ ( x ' - a ) ] -  W - 
['"' a)2 1 

Having introduced the last (u.d.1.) term, however, it will apply for all values of x' greater than 
a, i.e. across the rest of the span to the end of the beam. (Remember, Macaulay terms are only 
neglected when they are negative, e.g. with x' < a.) The above equation is NOT therefore the 
correct equation for the load condition shown. The Macaulay method requires that this 
continuation of the u.d.1. be shown on the loading diagram and the required loading 
condition can therefore only be achieved by introducing an equal and opposite u.d.1. over the 
last part of the beam to cancel the unwanted continuation of the initial distributed load. This 
procedure is shown in Fig. 5.13b. 

The correct B.M. equation for any general section XX is then given by 

d2Y B.M.xx= EZ7 = RAx- W , [ ( x - a ) ] - w  
d x  

This type of approach can be adopted for any beam loading cases in which u.d.1.s are 
stopped or added to. 

A number of examples are shown in Figs. 5.14-17. In each case the required loading system 
is shown first, followed by the continuation and compensating load system and the resulting 
B.M. equation. 

5.6. Macaulay's method for couple applied at a point 

Consider the beam AB shown in Fig. 5.18 with a moment or couple M applied at some 
point C. Considering the equilibrium of moments about each end in turn produces reactions 
of 

M 
downwards R A = x  upwards, and R B = L  

M 

These equal and opposite forces then automatically produce the required equilibrium of 
vertical forces. 
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APPLIED LOAD SYSTEM EQUIVALENT LOAD SYSTEM 

Applied loading 
w/metre Continuation lx / Applied w 

+ + - a 4  

RA 
Compensating 

E M  - H 2 + w [ ( ' a ' ?  
2 2 

RA E%-lRB 
Fig 5 14 

+Compensating' 

I 
T 

RA RE RE 

2w 

Fig. 5.15. 8 M., =RAx -e2- 2 2w [??I 

Second 

RA 

First compensating 

Fig 5 16. EMxx ;R,X-W [I&& + w ['?*]-W[(?)~] 

is' compensating 

2w 

compensatlng 
2 2"d 

BM,,=-2wL2 t RA [(a-a)] + w  [(X-b"] + w [ ' x - c '  1 
2 2 2 Fig. 5 17. 

Figs 5 14,5 1 5 , 5  16 and 5.17. Typical equivalent load systems for Macaulay method together with 
appropnate B M. expressions 

A n 

B M diagram 

MIL-a1 
L 

Fig. 5.18. Beam subjected to applied couple or moment M .  
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M 
L 

For sections between A and C the B.M. is - x .  

M x  
L 

For sections between C and B the B.M. is ~ - M 

The additional ( -  M )  term which enters the B.M. expression for points beyond C can be 
adequately catered for by the Macaulay method if written in the form 

M[I(x-a)Ol 
This term can then be treated in precisely the same way as any other Macaulay term, 
integration being carried out with respect to (x  - a)  and the term being neglected when x is 
less than a. The full B.M. equation for the beam is therefore 

d 2 y  M x  
dx2 L 

M , , = E I - = - - M [ ( x - a ) 0 ]  (5.17) 

Then 
dy  M x 2  
dx 2L E l -  = - - M [ ( x - a ) ] + A ,  etc. 

5.7. Mohr’s “area-moment” method 

In applications where the slope or deflection of beams or cantilevers is required at only one 
position the determination of the complete equations for slope and deflection at all points as 
obtained by Macaulay’s method is rather laborious. In such cases, and in particular where 
loading systems are relatively simple, the Mohr moment-area method provides a rapid 
solution. 

\ ‘- 

B.M. diagram 

I I I 17 I /  I 

I I 
I I 

Fig. 5.19. 

Figure 5.19 shows the deflected shape of part of a beam ED under the action of a B.M. 
which varies as shown in the B.M. diagram. Between any two points B and C the B.M. 
diagram has an area A and centroid distance X from E. The tangents at the points B and C give 
an intercept of xSi on the vertical through E, where S i  is the angle between the tangents. 

6s = R6i 

Now 
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and 6x -6s 

if slopes are small. 

change of slope between E and D = i = - d x  . .  jk 
i.e. change of slope = area of M/EI diagram between E and D (5.18) 

1 
E l  N.B.-For a uniform beam (El constant) this equals - x area of B.M. diagram. 

Deflection at E resulting from the bending of BC = x6i 

... total deflection resulting from bending of ED = 

The total deflection of E relative to the tangent at D is equal to the$rst moment of area of the 

Again, if E l  is constant this equals 1/EI x first moment of area of the B.M. diagram about 
E. 

The theorem is particularly useful when one point on the beam is a point of zero slope since 
the tangent at this point is then horizontal and deflections relative to the tangent are absolute 
values of vertical deflections. Thus if D is a point of zero slope the above equations yield the 
actual slope and deflection at E. 

The Mohr area-moment procedure may be summarised in its most useful form as follows: 
if A and Bare two points on the deflection curve of a beam, El is constant and B is a point of 
zero slope, then Mohr's theorems state that: 

MIEI diagram about E. (5.19) 

(1) Slope at A = l/EZ x area of B.M. diagram between A and B. 
(2) Deflection of A relative to B = 1/EZ x first moment of area of B.M. diagram between 

In many cases of apparently complicated load systems the loading can be separated into a 
combination of several simple systems which, by the application of the principle of 
superposition, will produce the same results. This procedure is illustrated in Examples 5.4 and 
5.5. 

The Mohr method will now be applied to the standard loading cases solved previously by 
the direct integration procedure. 

(5.20) 

(5.21) A and B about A .  

(a)  Cantilever with concentrated load at the end 

In this case B is a point of zero slope and the simplified form of the Mohr theorems stated 
above can be applied. 
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Slope at A = ~ [area of B.M. diagram between A and B (Fig. 5.20)]

=~ [ ~WL
El 2

WL2
--
-1.EI

w

A~'
1-2L/3

B.M. diagram

Fig. 5.20.

Deflection at A (relative to B)

= ~ [first moment of area of B.M. diagram between A and B about A ]

1 [ WLJ

=El =JET

~ WL ) ~

2 3

(b) Cantilever with u.d.l.

Fig. 5.21.

Again B is a point of zero slope.

slope at A = ~ [area of B.M. diagram (Fig. 5.21)]
El

= ~ [ !L~
El 3 2

wL3

-6El

Deflection at A = b [moment of B.M. diagram about A]

=b[ ~L~)~J=*
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(c) Simply supported beam with u.d.l.

Fig. 5.22.

(d) Simply supported beam with central concentrated load

Fig. 5.23.

111
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Again working relative to the zero slope point at the centre C,  

1 
E l  

slope at A = - [area of B.M. diagram between A and C (Fig. 5.23)] 

16EZ 
Deflection of A relative to C ( =  central deflection of C) 

1 
E l  

= -[moment of B.M. diagram between A and C about A] 

1 L W L  WL3 
= & [ (z;iq)( E)] = 48EI 

5.8. Principle of superposition 

The general statement for the principle of superposition asserts that the resultant stress or 
strain in a system subjected to several forces is the algebraic sum of their effects when applied 
separately. The principle can be utilised, however, to determine the deflections of beams 
subjected to complicated loading conditions which, in reality, are merely combinations of a 
number of simple systems. In addition to the simple standard cases introduced previously, 
numerous different loading conditions have been solved by various workers and their results 
may be found in civil or mechanical engineering handbooks or data sheets. Thus, the 
algebraic sum of the separate deflections caused by a convenient selection of standard loading 
cases will produce the total deflection of the apparently complex case. 

It must be appreciated, however, that the principle of superposition is only valid whilst the 
beam material remains elastic and for small beam deflections. (Large deflections would 
produce unacceptable deviation of the lines of action of the loads relative to the beam axis.) 

5.9. Energy method 

A further, alternative, procedure for calculating deflections of beams or structures is based 
upon the application of strain energy considerations. This is introduced in detail in Chapter 
1 1  aild will not be considered further here. 

5.10. Maxwell’s theorem of reciprocal displacements 

Consider a beam subjected to two loads WA and W B  at points A and B respectively as 
shown in Fig. 5.24. Let W A  be gradually applied first, producing a deflection a at A. 

Work done = 3 WAa 

When W B  is applied it will produce a deflection b at Band an additional deflection 6,, at A 
(the latter occurring in the presence of a now constant load W J .  

Extra work done = 3 WB b + W A  dab 

. .  total work done = f W A  a + 3J W B  b + W A  a,, 
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60, =deflection at A with load at B 
8 b o  =deflection at B with load a t  A 

Fig. 5.24. Maxwell's theorem of reciprocal displacements. 

Similarly, if the loads were applied in reverse order and the load W A  at A produced an 
additional deflection 6 b ,  at B, then 

total work done = 3 WBb + 3 WA a + WB&, 

It should be clear that, regardless of the order in which the loads are applied, the total work 
done must be the same. Inspection of the above equations thus shows that 

wA 60, = wB 6 b a  

If the two loads are now made equal, then 

= 6bo (5.22) 

i.e. the dejection at A produced by a load at B equals the dejection at Bproduced by the same 
load at A.  This is Maxwell's theorem of reciprocal displacements. 

As a typical example of the application of this theorem to beams consider the case of a 
simply supported beam carrying a single concentrated load off-set from the centre (Fig. 5.25). 

IW 

1-7 ------,;i - 

8,: 8,(above) 

Fig. 5.25. 
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The central deflection of the beam for this loading condition would be given by the reciprocal 
displacement theorem as the deflection at D if the load is moved to the centre. Since the 
deflection equation for a central point load is one of the standard cases treated earlier the 
required deflection value can be readily obtained. 

Maxwell’s theorem of reciprocal displacements can also be applied if one or both of the 
loads are replaced by moments or couples. In this case it can be shown that the theorem is 
modified to the relevant one of the following forms (a), (b): 

(a) The angle of rotation at A due to a concentrated force at B is  numerically equal to the 
deflection at B due to a couple at A provided that the force and couple are also 
numerically equal (Fig. 5.26). 

M 

I I 

( b )  

8. = slope 01 A wirh moment (or load) at A 
4, = sbpe ot o with load at B 

Fig. 5.26. 

(b) The angle of rotation at A due to a couple at B is equal to the rotation at B due to the same 
couple applied at A (Fig. 5.27). 

M 
A 

Fig. 5.27. 
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All three forms of the theorem are quite general in application and are not restricted to 
beam problems. Any type of component or structure subjected to bending, direct load, shear 
or torsional deformation may be considered provided always that linear elastic conditions 
prevail, i.e. Hooke’s law applies, and deflections are small enough not to significantly affect 
the undeformed geometry. 

5.1 1. Continuous beams- Clapeyron’s “three-moment” equation 

When a beam is supported on more than two supports it is termed continuous. In cases such 
as these it is not possible to determine directly the reactions at the three supports by the 
normal equations of static equilibrium since there are too many unknowns. An extension of 
Mohr’s area-moment method is therefore used to obtain a relationship between the B.M.s at 
the supports, from which the reaction values can then be determined and the B.M. and S.F. 
diagrams drawn. 

Consider therefore the beam shown in Fig. 5.28. The areas A, and A, are the “free” B.M. 
diagrams, treating the beam as simply supported over two separate spans L, and L,. In 
general the B.M.s at the three supports will not be zero as this diagram suggests, but will have 
some values M, , M ,  and M 3 .  Thus ajixing-moment diagram must be introduced as shown, 
the actual B.M. diagram then being the algebraic sum of the two diagrams. 

Undeflected beam 

, L, , Fixlng-moment diagram (assumed positive) 

fi Deflected beam showing support’ ~ I ’fZ2 

Fig. 5.28. Continuous beam over three supports showing “free” and “fixing” moment diagrams together with the 
deflected beam form including support movement. 

The bottom figure shows the deflected position of the beam, the deflections 6, and 6 ,  being 
relative to the left-hand support. If a tangent is drawn at the centre support then the intercepts 
at the end of each span are z,  and z2 and 8 is the slope of the tangent, and hence the beam, at 
the centre support. 
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Now, assuming deflections are small, 

z ,+6 ,  z,+6,-6, 
L, L2 

fl (radians) = ~ = 

z1 +I = z2 ~ (62 - 6,) . .  - 
Ll Ll L2 L2 

But from Mohr’s area-moment method, 

A 2  
El  

z = -  

where A is the area of the B.M. diagram over the span to which z refers. 

1 M,L: M2L: 
= E l ,  +-I 3 

and 

1 M3L: M2L; 
= - [ A 2 2 2 + b  E12 +-I 3 

N.B. - Since the intercepts are in opposite directions, they are of opposite sign. 

(5.23) 

This is the full three-moment equation; it can be greatly simplified if the beam is uniform, i.e. 
I, = I, = I, as follows: 

If the supports are on the same level, i.e. 6, = a2 = 0, 

This is the form in which Clapeyron’s three-moment equation is normally used. 
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6 A% 
L The following standard results for - are very useful 

( 1 )  Concentrated loads (Fig. 5.29) 

EM. diagram 

Fig. 5.29. 

Wab Wab 
L2 L2 

= -[2a2 + 3ab + b2]  = -(2a + b) (a + b) 

But 

Wab 
L 

= -(2a + b) 

b = L - a  

6A2 Wa 
- = - ( L - a ) ( 2 a + L - a )  

L L  

(2)  Uniformly distributed loads (Fig. 5.30) 

117 

(5.25) 

(5.26) 

Fig. 5.30. 
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Yt-1 

$5.12 

y, y,+, 

- 

Here the B.M. diagram is a parabola for which 

area = 5 base x height 

6A2  6 2 wL2 L - = - x - x L x -  
8 " T  . .  

L L 3  

w L3 

4 
=- (5.27) 

5.12. Finite difference method 

A numerical method for the calculation of beam deflections which is particularly useful for 
non-prismatic beams or for cases of irregular loading is the so-calledfinite diference method. 

The basic principle of the method is to replace the standard differential equation (5.2) by its 
finite difference approximation, obtain equations for deflections in terms of moments at 
various points along the beam and solve these simultaneously to yield the required deflection 
values. 

Consider, therefore, Fig. 5.31 which shows part of a deflected beam with the x axis divided 
into a series of equally spaced intervals. By convention, the ordinates are numbered with 
respect to the Central ordinate E .  

(5.28) 

The rate of change of the first derivative, i.e. the rate of change of the slope ( = - ::)is 

given in the same way approximately as the slope to the right of i minus the slope to the left of 
i divided by the interval between them. 

h h 1 
Thus: ($)i= h h2 

( ~ i + l  - Y i )  - (Yi-Yi-1) 

(5.29) = -(Yi + 1 -2Yi + Yi - I 1 
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Equations 5.28 and 5.29 are the finite diyerence approximations of the standard beam 
deflection differential equations and, because they are written in terms of ordinates on either 
side of the central point i, they are known as central diferences. Alternative expressions which 
can be formed to contain only ordinates at, or to the right of i ,  or ordinates at, or to the left of i 
are known as forward and backward differences, respectively but these will not be considered 
here. 

Now from eqn. (5.2) 

.'. At position i ,  combining eqn. (5.2) and (5.29). 

(5.30) 

A solution for any of the deflection (y) values can then be obtained by applying the finite 
difference equation at a series of points along the beam and solving the resulting 
simultaneous equations - see Example 5.8. 

The higher the number of points selected the greater the accuracy of solution but the more 
the number of equations which are required to be solved. The method thus lends itself to 
computer-assisted evaluation. 

In addition to the solution of statically determinate beam problems of the type treated in 
Example 5.8 the method is also applicable to the analysis of statically indeterminate beams, 
i.e. those beam loading conditions with unknown (or redundant) quantities such as prop 
loads or fixing moments-see Example 5.9. 

The method is similar in that the bending moment is written in terms of the applied loads 
and the redundant quantities and equated to the finite difference equation at selected points. 
Since each redundancy is usually associated with a known (or assumed) condition of slope or 
deflection, e.g. zero deflection at a propped support, there will always be sufficient equations 
to allow solution of the unknowns. 

The principal advantages of the finite difference method are thus: 

(a) that it can be applied to statically determinate or indeterminate beams, 
(b) that it can be used for non-prismatic beams, 
(c) that it is amenable to computer solutions. 

5.13. Deflections due to temperature effects 

It has been shown in $2.3 that a uniform temperature increase t on an unconstrained bar of 
length L will produce an increase in length 

AL = aLt 

where a is the coefficient of linear expansion of the material of the bar. Provided that the bar 
remains unconstrained, i.e. is free to expand, no stresses will result. 

Similarly, in the case of a beam supported in such a way that longitudinal expansion can 
occur freely, no stresses are set up and there will be no tendency for the beam to bend. If, 
however, the beam is constrained then stresses will result, their values being calculated using 
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the procedure of $2.3 provided that the temperature change is uniform across the whole beam 
section. 

If the temperature is not constant across the beam then, again, stresses and deflections will 
result and the following procedure must be adopted 

Fig. 5.32(a). Beam initially straight before application of temperature TI on the top surface and T, on the lower 
surface. (Beam supported on rollers at B to allow “free” lateral expansion). 

Fig. 5.32(b). Beam after application of temperatures TI and T,, showing distortions of element dx.  

Consider the initially straight, simply-supported beam shown in Fig. 5.32(a) with an initial 
uniform temperature To. If the temperature changes to a value Tl on the upper surface and T, 
on the lower surface with, say, T2 > Tl then an element dx on the bottom surface will expand 
to a(T2 -To) .dx whilst the same length on the top surface will only expand to Q (TI -To).dx. 
As a result the beam will bend to accommodate the distortion of the element dx,  the sides of 
the element rotating relative to one another by the angle de,  as shown in Fig. 5.32(b). For a 
depth of beam d :  

d.d0 = “(TZ -To)dx - g(T1 -To)dx 

or 
d e  a (T2-T l )  
d x  d 
_ -  - (5.31) 

The differential equation gives the rate of change of slope of the beam and, since 8 = dy/dx ,  

then 

Thus the standard differential equation for bending of the beam due to temperature gradient 
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across the beam section is: 

(5.32) 

d2y M 
dx2  -EX This is directly analogous to the standard deflection equation- - - so that integration of 

this equation in exactly the same way as previously for bending moments allows a solution for 
slopes and deflections produced by the thermal effects. 

N B .  If the temperature gradient across the beam section is linear, the average temperature 
$(T, +T2) will occur at the mid-height position and, in addition to the bending, the beam will 
change in overall length by an amount rxL[$(T, +T2) -To] in the absence of any constraint. 

Application to cantilevers 

Consider the cantilever shown in Fig. 5.33 subjected to temperatureT, on the top surface and 
Tz on the lower surface. In the absence of external loads, and because the cantilever is free to 
bend, there will be no moment or reaction set up at the built-in end. 

Fig. 5.33. Cantilever with temperature TI on the upper surface, T, on the lower surface (r, > TI).  

Applying the differential equation (5.32) we have: 

dx2 - d '  
-- d2Y a(Tz -T1) 

Integrating: 

dY But at x = 0, - = 0, .'. C, = 0 and: dx 

_ -  dY - a(T2 -Tdx = 

a(T2 -TI) L. 

dx d 
... The slope at the end of the cantilever is: 

d &I., = 

Integrating again to find deflections: 

(5.33) 
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and, since y = 0 at x = 0, then C, = 0, and: 

At the end of the cantilever, therefore, the deflection is: 

(5.34) 

Application to built-in beams 

Fig. 5.34. Built-in beam subjected to thermal gradient with temperature TI on the upper surface, T, on the lower 
surface. 

Consider the built-in beam shown in Fig. 5.34. Using the principle of superposition the 
differential equation for the beam is given by the combination of the equations for applied 
bending moment and thermal effects. 

d 2Y For bending E l - =  MA+ RAx. 
dx2  

d2Y a(T2 -T1) 
d For thermal effects 7 = dx 

. .  d 2Y a(T2 -TJ 
d 

E I -  = EI 
dx2 

... The combined differential equation is: 

However, in the absence of applied loads and from symmetry of the beam: 

R A =  R g = 0 ,  
and M A =  M g =  M .  

d 2Y a(T2 --Td 
d . .  E I -  = M + E I  

dx2 

Integrating: 

dY 
dx Now at x = 0, - = 0 .'. c, = 0, 

(5.35) 
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Integrating again to find the deflection equation we have: 

x2 a(T2-T,) x2 
d ' 2  2 

-+Cc, E l y =  M . - + E l  

When x = 0, y = 0 .'. C ,  = 0, 

and, since M = - E l  a(T2 then y = 0 for all values of x. 
d 

Thus a rather surprising result is obtained whereby the beam will remain horizontal in the 
presence of a thermal gradient. It will, however, be subject to residual stresses arising from the 
constraint on overall expansion of the beam under the average temperature +(T, + T2). 
i.e. from $2.3 

residual stress = Ea[$(T, + T2)]  

= +Ea(T, +T,). (5.36) 

Examples 

Example 5.1 

(a) A uniform cantilever is 4 m long and carries a concentrated load of 40 kN at a point 3 m 
from the support. Determine the vertical deflection of the free end of the cantilever if 
EI = 65 MN m2. 

(b) How would this value change if the same total load were applied but uniformly 
distributed over the portion of the cantilever 3 m from the support? 

Solution 

(a) With the load in the position shown in Fig. 5.35 the cantilever is effectively only 3 m 
long, the remaining 1 m being unloaded and therefore not bending. Thus, the standard 
equations for slope and deflections apply between points A and B only. 

W L ~  40 x 103 x 33 Vertical deflection of B = - - = - = - 5.538 x m = 6, 3EI 3 x 65 x lo6 

W L ~  40 x 103 x 32 
Slope at B = - - - = 2.769 x rad = i 2El  2 x 65 x lo6 

Now BC remains straight since it is not subject to bending. 
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. .  

. .  
6, = -iL = -2.769 x x 1 = -2.769 x l o v 3  m 

vertical deflection of C = 6, + 6, = - (5.538 + 2.769)10-3 = -8.31 mm 

The negative sign indicates a deflection in the negative y direction, i.e. downwards. 
(b) With the load uniformly distributed, 

40 x 103 
= 13.33 x lo3 N/m w=- 

3 

Again using standard equations listed in the summary 

wL4 
8EI 

13.33 x lo3 x 34 
8 x 65 x lo6 

6‘ - --= = -2.076 x m 1 -  

wL3 
6EI 

13.33 x lo3 x 33 
6 x 65 x lo6 

and slope i = - - - = 0.923 x lo3 rad 

. .  

.’. 
6; = -0.923 x x 1 = 0.923 x 10-3m 

vertical deflection of C = 6; +Si = - (2.076+0.923)10-3 = - 3mm 

There is thus a considerable (63.9%) reduction in the end deflection when the load is 
uniformly distributed. 

Example 5.2 

Determine the slope and deflection under the 50 kN load for the beam loading system 

E = 200 GN/mZ; I = 83 x l ov6  m4. 
shown in Fig. 5.36. Find also the position and magnitude of the maximum deflection. 

20 kN 

lm--+--2m+2m R,=130 kN 
- I X  

Fig. 5.36. 

Solution 

Taking moments about either end of the beam gives 

R a =  6okN and R B =  130kN 

Applying Macaulay’s method, 

EI  d 2 y  
10 dx  

B M x x  = j 7 = 6ox - 20[(x - l)] - 50[(x - 3) l -  6o 

The load unit of kilonewton is accounted for by dividing the left-hand side of (1) by lo3 and 
the u.d.1. term is obtained by treating the u.d.1. to the left of XX as a concentrated load of 
60(x - 3) acting at its mid-point of (x - 3)/2 from XX. 
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Integrating (l), 

(2) 
x - 3)2 (x - 3)3 

103dx E l  dy - 60x2 2 
20 [ q] - 50 [ +] - 60 [ + A 

- E l  60x3 20[ v] - 50[ 7 1  (x - 3)3 - 60[ !4] x - 3)4 + A x  + B (3) lo3 ’- 6 
and 

Nowwhenx=O,  y = O  . ‘ .B=O 
when x = 5, y = 0 .’. substituting in (3) 

60x  2 0 ~ 4 ~  5 0 ~ 2 ~  6 0 ~ 2 ~  o = - - - - ~ - - . . - - -  + 5A 
6 6 6 24 

0 = 1250 - 213.3 - 66.7 - 40 + 5A 

. .  5A = -930 A = -186 

Substituting in (2), 

... slope at x = 3 m (i.e. under the 50 kN load) 

103 x 44 
186 = 

2 ] 200 x log x 83 x 

= 0.00265rad 

And, substituting in (3), 

- 103 Y = ~ - 20[ v] - 50[ 7--] (x - 3)3 - 60[ !4] x - 3)4 - 1 8 6 ~  E l  60 x 33 
6 

.’. deflection at x = 3 m 

186 x 3 1  
103 60x33 20x23 -- ___-___- 

- , I [  6 6 

103 lo3 x 314.7 
- [ 270 - 26.67 - 5581 = - 
E l  200 x 109 x 83 x 10-6 

= -0.01896m = -19mm 

In order to determine the maximum deflection, its position must first be estimated. In this 
case, as the slope is positive under the 50 kN load it is reasonable to assume that the maximum 
deflection point will occur somewhere between the 20 kN and SO kN loads. For this position, 
from (2), 

E l  dy 6 0 ~ ’  (x-1)’ 
103dx 2 2 

- 20- - 186 

= 3 0 ~ ’  - lox2  OX - 10 - 186 
= 2 0 ~ ’  + 2 0 ~  - 196 
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But, where the deflection is a maximum, the slope is zero. 
. .  0 = 20x2 + 2 0 ~  - 196 

- 20 & (400 + 15680)”2 - 20 126.8 - - 
40 40 

. .  X =  

i.e. x = 2.67m 

Then, from (3), the maximum deflection is given by 

1 20 x 1.673 
6 

- - 186 x 2.67 s,,,= -- 
EI 

= - 0.0194 = - 19.4mm 
lo3 x 321.78 

= -  
200 109 x 83 x 10-6 

In loading situations where this point lies within the portion of a beam covered by a 
uniformly distributed load the above procedure is cumbersome since it involves the solution 
of a cubic equation to determine x .  

As an alternative procedure it is possible to obtain a reasonable estimate of the position of 
zero slope, and hence maximum deflection, by sketching the slope diagram, commencing with 
the slope at either side of the estimated maximum deflection position; slopes will then be 
respectively positive and negative and the point of zero slope thus may be estimated. Since the 
slope diagram is generally a curve, the accuracy of the estimate is improved as the points 
chosen approach the point of maximum deflection. 

As an example of this procedure we may re-solve the final part of the question. 
Thus, selecting the initial two points as x = 2 and x = 3, 

when x = 2, 

186 = -76 
EZ dy 60 x 22 20(12) 
lo3 d x  2 2 

when x = 3, 

186 = +44 
EZ dy 6 0 ~ 3 ~  20(22) 
lo3 d x  2 2 
--=---- 

Figure 5.37 then gives a first estimate of the zero slope (maximum deflection) position as 
x = 2.63 on the basis of a straight line between the above-determined values. Recognising the 
inaccuracy of this assumption, however, it appears reasonable that the required position can 

/ I’ -- 
X--. 2 . . . . . .  

I /\ 3 

Fig. 5.31. 
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be more closely estimated as between x = 2.5 and x = 2.7. Thus, refining the process further, 
when x = 2.5, 

E l  dy 6 0 ~ 2 . 5 ~  2 0 x  1.5’ 
lo3 d x  2 2 

- - - 1 8 6 =  -21 

when x = 2.7, 

E l  dy 6 0 ~ 2 . 7 ~  2 0 x  1.72 
lo3 d x  2 2 

- 186 = +3.8 - - 

Figure 5.38 then gives the improved estimate of 

x = 2.669 

which is effectively the same value as that obtained previously. 

Fig. 5.38. 

Example 5.3 

Determine the deflection at  a point 1 m from the left-hand end of the beam loaded as 
shown in Fig. 5.39a using Macaulay’s method. E l  = 0.65 MN m2. 

20 kN 20 kN 

t B 
!+6rn+I.2 m+1.2 m 

Rb la 1 

20 kN 20 kN 

x-----! 1 4 k N  
l b )  

Fig. 5.39. 

Solution 

Taking moments about B 

(3 x 20) + (30 x 1.2 x 1.8) + (1.2 x 20) = 2.4RA 

. .  R A = 6 2 k N  and R B = 2 0 + ( 3 0 x 1 . 2 ) + 2 0 - 6 2 =  14kN 
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Using the modified Macaulay approach for distributed loads over part of a beam 
introduced in (j 5.5 (Fig. 5.39b), 

[ -yl2 ] + 30[ -;.8' ] -2O[(X - 1.8), 
E l  d2y 
lo3 dx2 

M,,  =--I = - 2 0 ~  + 62[ (X -0.6)] - 30 

__  E l  dy - -- -20x2 +62[ (X - 0.6)2 ]-30[( x - 0.6)3 ]+30[( x - 1.8)3 ] 
103 dx 2 

E I  - 2oX3 +62[ (X - 0.6)3 ] - ~ O [ ( ~ - O . ~ ) '  
m Y = 6  24 

(X - 1.8)' 
+ 30[ 24 

-20[ 6 
(X - 1.8)3 

+ A  

+ A X + B  

Now when x = 0.6, y = 0, 

20 x 0.63 
. .  o =  - + 0.6A + B 

6 

0.72 = 0.6A + B 

y = 0, 
20 x 33 62 x 2.43 30 x 2.4' 30 x 1.2' 20 x l.z3 

and when x = 3, 

+ . .  o =  -___ - + 3 A + B  
6 24 24 6 

+ - 
6 

= - 90 + 142.848 - 41.472 + 2.592 - 5.76 + 3A + B 

- 8.208 = 3A + B 

(2) - (1) 

- 8.928 = 2.4A .'. A = -3.72 

Substituting in (l), 

B = 0.72 -0.6( - 3.72) B = 2.952 

Substituting into the Macaulay deflection equation, 

S Y  E l  = -~ 20x3 + 62[ (' -:6)3 ] - 30[ (x --t6)"] + 30[ (x ;-')'I 
6 

- 20 [ (x -:'8'9 1 - 3 . 7 2 ~  + 2.952 

At x = l  

1 30 x 0.4' 
24 

- 3.72 x 1 + 2.952 
20 62 
6 6  

+ - x 0.43 - 
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103 
= - [ - 3.33 + 0.661 - 0.032 - 3.72 + 2.9521 

E l  

= - 5 . 3 4 ~  i0 -3m = -5.34mm lo3 x 3.472 
0.65 x lo6 

= -  

The beam therefore is deflected downwards at the given position. 

Example 5.4 

from the left-hand end. E1 = 1.4MNm2. 
Calculate the slope and deflection of the beam loaded as shown in Fig. 5.40 at a point 1.6 m 

30, kN 7 2 0 k N  30 kN 

+- I6 m -07m-/ 

I 
I 

5 

7 k N m  -+’I3 kN m for B.M. 2 0 k N  diagram load 

06x 1 3  l 3 = 6 k N m ~  2 

X 

Fig. 5.40. 
Solution 

Since, by symmetry, the point of zero slope can be located at C a solution can be obtained 
conveniently using Mohr’s method. This is best applied by drawing the B.M. diagrams for the 
separate effects of (a) the 30 kN loads, and (b) the 20 kN load as shown in Fig. 5.40. 
Thus, using the zero slope position C as the datum for the Mohr method, from eqn. (5.20) 

1 
E1 

slope at X = - [area of B.M. diagram between X and C] 

103 
= ~ [ ( - 30 x 0.7) + (6 x 0.7) + (3 x 7 x 0.7)] 

EI 
103 14.35 x lo3 
EI 1.4 x lo6 

=-[-21+4.2+2.45] = - 

= - 10.25 x 1O-j rad 
and from eqn. (5.21) 



130 Mechanics of Materials 

deflection at X relative to the tangent at C 
1 

E l  
- -- [first moment of area of B.M. diagram between X and C about X]  

103 
6,yc = __ [ ( - 30 x 0.7 x 0.35) + (6 x 0.7 x 0.35) + (7 x 0.7 x 3 x 3 x 0.7)] 

A,% A222 '43% 
E l  

103 103 x 4.737 
= --[ - 7.35 + 1.47 + 1.1431 = - 

E l  1.4 x lo6 
= -3.38 x 10-3m = -3.38mm 

This must now be subtracted from the deflection of C relative to the support B to obtain the 
actual deflection at X. 

Now deflection of C relative to B 
= deflection of B relative to C 

1 
E l  

= - [first moment of area of B.M. diagram between B and C about B ]  

1 0 3  
= - [ ( - 3 0 ~ 1 . 3 ~ 0 . 6 5 ) + ( 1 3 ~ 1 . 3 ~ ~ ~ 1 . 3 ~ ~ ) ]  

E l  

= - 12.88 x = - 12.88mm 103 18.027 x lo3 
E l  1.4 x lo6 

= - [ - 25.35 + 7.3231 = - 

.'. required deflection of X = - (12.88 - 3.38) = - 9.5 mm 

Example 5.5 

(a) Find the slope and deflection at the tip of the cantilever shown in Fig. 5.41. 

20 kN 

A 
B 

Bending moment diagrams 
I I la) 20 kN laad at end 

(c)Upward load P 
2P 

Fig. 5.41 
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(b) What load P must be applied upwards at mid-span to reduce the deflection by half? 
EI = 20 MN mz. 

Solution 

Here again the best approach is to draw separate B.M. diagrams for the concentrated and 
uniformly distributed loads. Then, since B is a point of zero slope, the Mohr method may be 
applied. 

1 
EI (a) Slope at A = -[area of B.M. diagram between A and B] 

1 1 0 3  
= - [ A ,  +A,]  =---[{$ x 4 x (-80)) + { f x  4 x ( -  160)}] 

E l  EI 

103 373.3 x 103 =-[-160-213.3] = 
EI 20 x lo6 

= 18.67 x lo-’ rad 

1 
EI 

Deflection of A = - [first moment of area of B.M. diagram between A and B about A] 

lo3 [ ( - 80 x 4 x 3 x 4 )  + ( - 160 x 4 x 3 x 4 
E l  2 

- 103 1066.6 x lo3 

3 

= -53.3 x w 3 r n  = -53mm 

=- 

20 x 106 
=- [426.6+640] = - EI  

(b) When an extra load P is applied upwards at mid-span its effect on the deflection is 
required to be 3 x 53.3 = 26.67 mm. Thus 

1 
EI  

26.67 x = - [first moment of area af-B.M. diagram for P about A] 

103 
= - [+ x 2P x 2(2+f x 2)] 

EI 

26.67 x 20 x lo6 
lo3 x 6.66 

P =  = B O X  1 0 3 ~  . .  

The required load at mid-span is 80 kN. 

Example 5.6 

The uniform beam of Fig. 5.42 carries the loads indicated. Determine the B.M. at B and 
hence draw the S.F. and B.M. diagrams for the beam. 
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-: “8“ 3 0 k  

Total 0.M diagrorn 

L F r x m g  moment dlagrom 
Free moment diagrams 

491 kN 

-70 9-kN 

Fig. 5.42. 

Solution 

Applying the three-moment equation (5.24) to the beam we have, 

(Note that the dimension a is always to the “outside” support of the particular span carrying 
the concentrated load.) 

Now with A and C simply supported 

M A = M c = O  

. .  

- 8 k f ~  = (120+ 54.6)103 = 174.6 X lo3 

MB = - 21.8 kNm 

With the normal B.M. sign convention the B.M. at B is therefore - 21.8 kN m. 
Taking moments about B (forces to left), 

~ R A  - (60 X lo3 X 2 X 1) = - 21.8 X lo3 
RA = +( - 21.8 + 120)103 = 49.1 kN 

Taking moments about B (forces to right), 

2Rc - (50 x lo3 x 1.4) = - 21.8 x lo3 

Rc = *( -21.8 + 70) = 24.1 kN 
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- 3 . 3 9 k N  

133 

24 kN - 

and, since the total load 
. .  

= R A + R B + R c = ~ O + ( ~ O X ~ ) =  170kN 

RB = 170-49.1 -24.1 = 96.8kN 
The B.M. and S.F. diagrams are then as shown in Fig. 5.42. The fixing moment diagram can 

be directly subtracted from the free moment diagrams since MB is negative. The final B.M. 
diagram is then as shown shaded, values at any particular section being measured from the 
fixing moment line as datum, 
e.g. B.M. at D = + h  (to scale) 

Example 5.7 

A beam ABCDE is continuous over four supports and carries the loads shown in Fig. 5.43. 
Determine the values of the fixing moment at each support and hence draw the S.F. and B.M. 
diagrams for the beam. 

20 kN 10 kN 

I kN/m A 

A13.3 kN m 

diagram 

Solution 

By inspection, MA = 0 and MD = - 1 x 10 = - 10 kNm 
Applying the three-moment equation for the first two spans, 

- 16MB- 3Mc = (31.25 + 53.33)103 

- 16MB- 3Mc = 84.58 x lo3 
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and, for the second and third spans, 

4 
- 3 M ~ - 2 M c ( 3 + 4 ) - ( - 1 0 ~ 1 0  

- ~ M B -  14Mc + (40 x lo3) = (66.67 + 48)103 

- 3MB- 14Mc = 74.67 x lo3 

(2) x 16/3 

(3) - (1) 

- 16MB- 74.67Mc = 398.24 x lo3 

- 71.67Mc = 313.66 x lo3 

Mc = - 4.37 x lo3 Nm 
Substituting in (l), 

- 1 6 ~ ,  - 3( - 4.37 x 103) = 84.58 x 103 

(84.58 - 13.11)103 
16 

Mg= - 

= - 4.47 kN m 

Moments about B (to left), 

5R, = (-4.47 + 12.5)103 

RA = 1.61 kN 
Moments about C (to left), 

R A x 8 - ( 1  x 1 0 3 x 5 x 5 . 5 ) + ( R , x 3 ) - ( 2 0 x 1 0 3 x  1)= - 4 . 3 7 ~  lo3 
3R, = - 4.37 x lo3 + 27.5 x lo3 + 20 x lo3 - 8 x 1.61 x lo3 
3R, = 30.3 x lo3 

RE = 10.1 kN 

Moments about C (to right), 

( -  I O X  lo3 x 5)+4RD-(3 x lo3 x 4 x 2) = -4.37 x lo3 
4R, = ( - 4.37 + 50 + 24)103 

R, = 17.4 kN 

Then, since 
RA + R, + R,+ R, = 47kN 

1.61 + 10.1 + R,+ 17.4 = 47 
R, = 17.9 kN 
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This value should then be checked by taking moments to the right of B, 

( - 10 x lo3 x 8) + 7R, + 3R, - (3 x lo3 x 4 x 5) - (20 x lo3 x 2) = - 4.47 x l o3  
3R,= ( - 4 . 4 7 + 4 0 + 6 0 + 8 0 -  121.8)103 = 53.73 x lo3 

R, = 17.9 kN 
The S.F. and B.M. diagrams for the beam are shown in Fig. 5.43. 

Example 5.8 

Using the finite difference method, determine the central deflection of a simply-supported 
over its complete span. The beam can be beam carrying a uniformly distributed load 

assumed to have constant flexural rigidity El  throughout. 

Solution 

w / metre 
A E Uniformly loaded 

beam 

Fig. 5.44. 

As a simple demonstration of the finite difference approach, assume that the beam is 
divided into only four equal segments (thus reducing the accuracy of the solution from that 
which could be achieved with a greater number of segments). 

Then, 

but, from eqn. (5.30): 

WL L WL L 3WL2 
2 4 4 8  32 

B.M. at B = - x ---.- = - - - MB 

and, since y ,  = 0, 

3WL2 
512 E l  
-- - Y c  - 2YB. 
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Similarly OL L OL L wL2 
2 2  2 4  8 

B.M. at C = -.- - --.- = - - - M , .  

and, from eqn. (5.30) 

1 _ _ _  ;! ( y) = (L/4)2 ( YB - 2YC + Y,)  

Now, from symmetry, y ,  = y ,  

. .  wL4 
128EI 
-- - 2YB - 2Yc 

Adding eqns. (1) and (2); 
wL4 30L4 - y c = - + -  

128EI 512EI 

- 7 0 L 4  OL4 
yc = ~ = -0 .0137-  512EI E l  

. .  

the negative sign indicating a downwards deflection as expected. This value compares with 
the "exact" value of: 

5 w L 4  OL4 y c = - -  - - 0.01302 - 
384EI E l  

a difference of about 5 %. As stated earlier, this comparison could be improved by selecting 
more segments but, nevertheless, it is remarkably accurate for the very small number of 
segments chosen. 

Example 5.9 

The statically indeterminate propped cantilever shown in Fig. 5.45 is propped at Band carries 
a central load W It can be assumed to have a constant flexural rigidity E l  throughout. 

Fig. 5.45 
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Determine, using a finite difference approach, the values of the reaction at the prop and the 
central deflection. 

Solution 

Whilst at first sight, perhaps, there appears to be a number of redundancies in the cantilever 
loading condition, in fact the problem reduces to that of a single redundancy, say the 
unknown prop load P ,  since with a knowledge of P the other “unknowns” M A  and R, can be 
evaluated easily. 

Thus, again for simplicity, consider the beam divided into four equal segments giving three 
unknown deflections yc ,  y ,  and y E  (assuming zero deflection at the prop B )  and one 
redundancy. Four equations are thus required for solution and these may be obtained by 
applying the difference equation at four selected points on the beam: 
From eqn. (5.30) 

P L  E l  
B.M. at E = M =- =- ( Y B - ~ Y E  + Y O )  

E 4 (L/4)2 

but y ,  = 0 

But y A  = 0 

. .  

3 L  WL E l  
B.M. at C = Mc = P . -  - - = - ( Y,  - 2YC + YD) 4 4 (L/4)2  

3PL3 m3 
y , -  2yc = - - - 

6 4 6 4  ( 3 )  

At point A it is necessary to introduce the mirror image of the beam giving point C’ to the left 
of A with a deflection y ;  = y c  in order to produce the fourth equation. 
Then: 

and again since y ,  = 0 P L 3  W L 3  
y c = - - -  32 64 

Solving equations (1) to ( 4 )  simultaneously gives the required prop load: 

7w 
P = = 0.318 W, 

LL 

and the central deflection: 

( 4 )  

17W3 wz3 
y = --= -0.0121- 

1408EI E l  
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Problems 

5.1 (AD). A beam of length 10m is symmetrically placed on two supports 7m apart. The loading is 15 kN/m 
between the supports and 20kN at each end. What is the central deflection of the beam? 
E = 210GN/mZ; I = 200 x 10-6m4. [6.8 mm.] 

5.2 (A/B). Derive the expression for the maximum deflection of a simply supported beam of negligible weight 
carrying a point load at its mid-span position. The distance between the supports is L, the second moment of area of 
the cross-section is I and the modulus of elasticity of the beam material is E. 

The maximum deflection of such a simply supported beam of length 3 m is 4.3 mm when carrying a load of 200 kN 
at its mid-span position. What would be the deflection at the free end ofacantilever of the same material, length and 
cross-section if it carries a load of l00kN at a point 1.3m from the free end? [ 13.4 mm.] 

5.3 (AD). A horizontal beam, simply supported at its ends, carries a load which varies uniformly from 15 kN/m 
at one end to 60 kN/m at the other. Estimate the central deflection if the span is 7 m, the section 450mm deep and the 
maximum bending stress 100MN/m2. E = 210GN/mZ. [U.L.] [21.9mm.] 

5.4 (A/B). A beam AB, 8 m long, is freely supported at its ends and carries loads of 30 kN and 50 kN at points 1 m 
and 5 m respectively from A. Find the position and magnitude of the maximum deflection. 
E = 210GN/m2; I = 200 x 10-6m4. [ 14.4 mm.] 

5.5 (A/B). A beam 7 m long is simply supported at its ends and loaded as follows: 120 kN at 1 m from one end A, 
20 kN at 4 m from A and 60 kN at 5 m from A. Calculate the position and magnitude of the maximum deflection. The 
second moment of area of the beam section is 400 x 

[9.8mm at 3.474m.l 
5.6 (B). A beam ABCD, 6 m long, is simply-supported at  the right-hand end D and at a point B 1 m from the left- 

hand end A. It carries a vertical load of 10 kN at A, a second concentrated load of 20 kN at C, 3 m from D, and a 
uniformly distributed load of 10 kN/m between C and D.  Determine the position and magnitude of the maximum 
deflection if E = 208 GN/mZ and 1 = 35 x C3.553 m from A, 11.95 mm.] 

5.7 (B). A 3 m long cantilever ABCis built-in at A, partially supported at B, 2 m from A, with a force of 10 kN and 
carries a vertical load of 20 kN at C. A uniformly distributed load of 5 kN/m is also applied between A and B. 
Determine a) the values of the vertical reaction and built-in moment at A and b) the deflection of the free end C of the 
cantilever. 

Develop an expression for the slope of the beam at any position and hence plot a slope diagram. E = 208 GN/mz 
and I = 24 x m4. [ZOkN, SOkNm, -15mm.l 

5.8 (B). Develop a general expression for the slope of the beam of question 5.6 and hence plot a slope diagram for 
the beam. Use the slope diagram to confirm the answer given in question 5.6 for the position of the maximum 
deflection of the beam. 

5.9 (B). What would be the effect on the end deflection for question 5.7, if the built-in end A were replaced by a 
simple support at the same position and point B becomes a full simple support position (i.e. the force at B is no longer 
10 kN). What general observation can you make about the effect of built-in constraints on the stiffness of beams? 

C5.7mm.l 

5.10 (B). A beam AB is simply supported at A and B over a span of 3 m. It carries loads of 50kN and 40kN at 
0.6m and 2m respectively from A, together with a uniformly distributed load of 60 kN/m between the 50kN and 
40 kN concentrated loads. If the cross-section of the beam is such that 1 = 60 x m4 determine the value of the 
deflection of the beam under the 50kN load. E = 210GN/m2. Sketch the S.F. and B.M. diagrams for the beam. 

13.7 mm.] 
5.11 (B). Obtain the relationship between the B.M., S.F., and intensity of loading of a laterally loaded beam. 
A simply supported beam of span L carries a distributed load of intensity kx2/L2 where x is measured from one 

(a) the location and magnitude of the greatest bending moment; 
(b) the support reactions. [ U.Birm.1 [0.63L, 0.0393kLZ, kL/12, kL/4.] 

5.12 (B). A uniform beam 4m long is simplx supported at its ends, where couples are applied, each 3 kN m in 
m4 determine the magnitude of the 

What load must be applied at mid-span to reduce the deflection by half? C0.317 mm, 2.25 kN.] 

5.13 (B). A 500mm xJ75mmsteelbeamoflength Smissupportedattheleft-handendandatapoint 1.6mfrom 
the right-hand end. The beam carries a uniformly distributed load of 12 kN/m on its whole length, an additional 
uniformiy distributed load of 18 kN/m on the length between the supports and a point load of 30 kN at the right- 
hand end. Determine the slope and deflection of the beam at the section midway between the supports and also at the 
right-hand end. E l  for the beam is 1.5 x 10' NmZ. [U.L.] C1.13 x 3.29mm, 9.7 x 1.71 mm.] 

m4 and E for the beam material is 210GN/m2. 

m4. 

support towards the other. Find 

magnitude but opposite in sense. If E = 210GN/m2 and 1 = 90 x 
deflection at mid-span. 
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5.14 (B). A cantilever, 2.6 m long, carryinga uniformly distributed load w along the entire length, is propped at its 
free end to the level of the fixed end. If the load on the prop is then 30 kN, calculate the value of w. Determine also 
the slope of the beam at the support. If any formula for deflection is used it must first be proved. E = 210GN/m2; 
I = 4 x 10-6m4. [U.E.I.] C30.8 kN/m, 0.014 rad.] 

5.15 (B). A beam ABC of total length L is simply supported at one end A and at some point B along its length. It 
carriesa uniformly distributed load of w per unit length over its whole length. Find the optimum position of B so that 
the greatest bending moment in the beam is as low as possible. [U.Birm.] [L/2.] 

m4, is hinged at A and simply 
supported on a non-yielding support at C. The beam is subjected to the given loading (Fig. 5.46). For this loading 
determine (a) the vertical deflection of E; (b) the slope of the tangent to the bent centre line at C. E = 80GN/m2. 

[I.Struct.E.] [27.3mm, 0.0147 rad.] 

5.16 (B). A beam AB, of constant section, depth 400 mm and I,, = 250 x 

x) kN/rn 1” kN 

1 I 

Fig. 5.46. 

5.17 (B). A simply supported beam AB is 7 m long and carries a uniformly distributed load of 30 kN/m run. A 
couple is applied to the beam at a point C, 2.5m from the left-hand end, A, the couple being clockwise in sense and of 
magnitude 70 kNm. Calculate the slope and deflection of the beam at a point D, 2 m from the left-hand end. Take 
EI = 5 x. lo7 Nm’. [E.M.E.U.] C5.78 x 10-3rad, 16.5mm.l 

5.18 (B). A uniform horizontal beam ABC is 0.75 m long and is simply supported at A and B, 0.5 m apart, by 
supports which can resist upward or downward forces. A vertical load of 50N is applied at the free end C, which 
produces a deflection of 5 mm at the centre of span AB. Determine the position and magnitude of the maximum 
deflection in the span AB, and the magnitude of the deflection at C. .[E.I.E.] C5.12 mm (upwards), 20.1 mm.] 

5.19 (B). A continuous beam ABC rests on supports at A, B and C.  The portion AB is 2m long and carries a 
central concentrated load of40 kN, and BC is 3 m long with a u.d.1. of 60 kN/m on the complete length. Draw the S.F. 
and B.M. diagrams for the beam. [ - 3.25, 148.75, 74.5 kN (Reactions); M, = - 46.5 kN m.] 

5.20 (B). State Clapeyron’s theorem of three moments. A continuous beam ABCD is constructed of built-up 
sections whose effective flexural rigidity E l  is constant throughout its length. Bay lengths are AB = 1 m, BC = 5 m, 
C D  = 4 m. The beam is simply supported at B, C and D, and carries point loads of 20 kN and 60 kN at A and midway 
between C and D respectively, and a distributed load of 30kN/m over BC. Determine the bending moments and 
vertical reactions at the supports and sketch the B.M. and S.F. diagrams. 

CU.Birm.1 [-20, -66.5, OkNm; 85.7, 130.93, 13.37kN.l 
5.21 (B). A continuous beam ABCD is simply supported over three spans AB = 1 m, BC = 2 m and CD = 2 m. 

The first span carries a central load of 20 kN and the third span a uniformly distributed load of 30 kN/m. The central 
span remains unloaded. Calculate the bending moments at B and C and draw the S.F. and B.M. diagrams. The 
supports remain at the same level when the beam is loaded. 

[1.36, -7.84kNm; 11.36, 4.03, 38.52, 26.08kN (Reactions).] 
5.22 (B). A beam, simply supporded at its ends, carries a load which increases uniformly from 15 kN/m at the left- 

hand end to 100 kN/m at the right-hand end. If the beam is 5 m long find the equation for the rate of loading and, 
using this, the deflection of the beam at mid-span if E = 200GN/m2 and I = 600 x 10-6m4. 

[ w  = - (1 5 + 85x/L); 3.9 mm.] 
5.23 (B). A beam 5 m long is firmly fixed horizontally at one end and simply supported at the other by a prop. The 

beam carries a uniformly distributed load of 30 kN/m run over its whole length together with a concentrated load of 
60 kN at a point 3 m from the fixed end. Determine: 

(a) the load carried by the prop if the prop remains at the same level as the end support; 
(b) the position of the point of maximum deflection. [B.P.] [82.16kN; 2.075m.l 
5.24 (B/C). A continuous beam ABCDE rests on five simple supports A ,  B, C ,  D and E .  Spans AB and BC carry a 

u.d.1. of 60 kN/m and are respectively 2 m and 3 m long. CD is 2.5 m long and carries a concentrated load of 50 kN at 
1.5 m from C .  DE is 3 m long and carries a concentrated load of 50 kN at the centre and a u.d.1. of 30 kN/m. Draw the 
B.M. and S.F. diagrams for the beam. 

[Fixing moments: 0, -44.91, -25.1, -38.95, OkNm. Reactions: 37.55, 179.1, 97.83, 118.5, 57.02kN.l 


